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Estimation of Surface and
Near-Surface Air Temperatures in Arid
Northwest China Using Landsat
Satellite Images
Yi Liu1, Samuel Ortega-Farías2, Fei Tian1, Sufen Wang1* and Sien Li1

1Center for Agricultural Water Research in China, China Agricultural University, Beijing, China, 2Research and Extension Center for
Irrigation and Agroclimatology (CITRA) and Research Program on Adaptation of Agriculture to Climate Change (A2C2), Faculty of
Agricultural Sciences, Universidad de Talca, Talca, Chile

Near-surface air (Ta) and land surface (Ts) temperatures are essential parameters for
research in the fields of agriculture, hydrology, and ecological changes, which require
accurate datasets with different temporal and spatial resolutions. However, the sparse
spatial distribution of meteorological stations in Northwest China may not effectively
provide high-precision Ta data. And it is not clear whether it is necessary to improve
the accuracy of Ts which has the most influence on Ta. In response to this situation, the
main objective of this study is to estimate Ta for Northwest China using multiple linear
regression models (MLR) and random forest (RF) algorithms, based on Landsat 8 images
and auxiliary data collected from 2014 to 2019. Ts, NDVI (Normalized Difference
Vegetation Index), surface albedo, elevation, wind speed, and Julian day were
variables to be selected, then used to estimate the daily average Ta after analysis and
adjustment. Also, the Radiative Transfer Equation (RTE) method for calculating Ts would
be corrected by NDVI (RTE-NDVI). The results show that: 1) The accuracy of the surface
temperature (Ts) was improved by using RTE-NDVI; 2) Both MLR and RF models are
suitable for estimating Ta in areas with few meteorological stations; 3) Analyzing the
temporal and spatial distribution of errors, it is found that the MLR model performs well in
spring and summer, and is lower in autumn, and the accuracy is higher in plain areas away
from mountains than in mountainous areas and nearby areas. This study shows that
through appropriate selection and combination of variables, the accuracy of estimating the
pixel-scale Ta from satellite remote sensing data can be improved in the area that has less
meteorological data.

Keywords: average air temperature, land surface temperature, remote sensing, Landsat 8, statistical models

INTRODUCTION

Near-surface air temperature (Ta), usually refers to the air temperature at 2 m above the ground, is an
essential factor affecting ecology, agriculture, and urban areas (Raja Reddy et al., 1997; Krüger and
Emmanuel, 2013; Shamir and Georgakakos, 2014), and is also the basis for climate change studies
(Alkama and Cescatti, 2016; Bathiany et al., 2018). The traditional method of obtaining Ta mainly
relies on the temperature sensor installed at the meteorological station, and the interpolation method
is frequently used to extend to regional-scale applications (Mostovoy et al., 2006). If the
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meteorological stations are sparse and unevenly distributed, the
accuracy of the interpolation method will be greatly restricted due
to the influence of underlying surface heterogeneity and heat
conduction unevenness to air temperature (Chen et al., 2015).
The air temperature has become the primary driving variable of
many land surface models (Nieto et al., 2011), so its spatial fidelity
must be higher than that obtained by interpolation of point
observation data, and even the most complex geostatistical
techniques cannot meet the requirements (Prince et al., 1998).

Satellite data has the characteristics of continuous spatial
coverage (Czajkowski et al., 1997), which can obtain large-
scale atmospheric information and invert surface parameters,
including global surface temperature, vegetation index, elevation,
and other information (Wang et al., 2018; Yoo et al., 2018). Due
to the complexity of atmospheric radiation and its low proportion
in remote sensing signals, Ta cannot be directly reversed (Xu
et al., 2012; Li and Zha, 2018). However, Ta can be obtained by
establishing the regression relationship between Ta and remote
sensing inversion and auxiliary parameters, such as using land
surface temperature (Ts), Normalized Difference Vegetation
Index (NDVI), wind speed, geographic location and elevation,
among which Ts is the most important parameter (Vancutsem
et al., 2010; Hachem et al., 2012; Song and Wu, 2018).

Ts as the direct driving force of long-wave radiation and
turbulent heat flux exchange at the surface-atmosphere interface
is one of the most significant parameters in the physical process of
surface energy and water balance at regional and global scales
(Anderson et al., 2008; Li et al., 2013; Orhan et al., 2014; Folland
et al., 2018). At present, there are three main methods for using
Landsat to retrieve Ts: atmospheric correction method (also known
as Radiative Transfer Equation: RTE), Single Channel Algorithm
(SCA), and Split Window Algorithm (SWA). The SWA does not
require any atmospheric profile information at the time of
collection, which needs to use two thermal infrared channels (Li
et al., 2013). However, the United States Geological Survey has
pointed out that Thermal Infrared Sensor (TIRS) 11th band has
data reception abnormalities and calibration instability problems,
which mainly affects the accuracy of the split window algorithm
applied to Landsat-8 TIRS data to retrieve Ts (Xu, 2015). SCA and
RTE rely on atmospheric transmissivity and upwelling and
downwelling atmospheric radiances (Jimenez-Munoz et al., 2009;
Sekertekin and Bonafoni, 2020). RTE removes the error caused by
the atmosphere’s thermal radiation on the surface and converts the
thermal radiation intensity to the corresponding Ts (Ma and Pu,
2020). When using different data sets, the performance of the RTE
method to retrieve Ts is also different. The Ts calculation result for
Landsat TM 5 data is better than other methods in the same period
with RMSE is 1–3°C (Sobrino et al., 2004; Ndossi and Avdan, 2016;
Windahl and Beurs, 2016); however, the RMSE calculated based on
Landsat 8 TIRS 10th band was 1.5–5°C, and most of them are
inferior to other algorithms (Ndossi and Avdan, 2016; Wang et al.,
2016; Sekertekin and Bonafoni, 2020). Moreover, the
overestimation shown in the TIRS band will increase as the
proportion of vegetation decreases (Xu and Huang, 2016).

Several studies have used surface information to estimate air
temperatures, such as the temperature-vegetation index (TVX),
energy balance, statistics, and machine learning methods (Zakšek

and Schroedter-Homscheidt, 2009; Benali et al., 2012). Nemani
and Running (1989), Goward et al. (1994) proposed the TVX
approach to estimate near surface air temperature with promising
results. The method is based on the assumption that there is a
strong negative correlation between Ts and vegetation index
(Goward et al., 1994; Czajkowski et al., 1997). Assuming that
the Ta for fully covered vegetation is close to Ts, the value of full
coverage NDVI (NDVImax) can be used to obtain an
approximate value of Ta (Stisen et al., 2007; Nieto et al., 2011;
Zhu et al., 2013). However, this assumption does not apply to all
seasons, soil moisture, and ecosystem types, so estimation of Ta
by using TVX method is not feasible in areas or seasons without
high vegetation cover (Vancutsem et al., 2010).

The energy balance method has a physical mechanism, so it
has well portability and versatility (Hou et al., 2013; Shen et al.,
2020). According to the energy balance equation, Ta is related to
surface temperature, and it depends on various environmental
factors such as solar radiation, cloud cover, wind speed, soil
moisture, and surface type (Prince et al., 1998). A large number of
required parameters cannot be completely retrieved by remote
sensing (Mostovoy et al., 2006), so it is difficult to use remote
sensing to perform Ta inversion in the area. The issue of unclosed
surface energy balance also brings additional uncertainty to this
method (Zhang et al., 2015).

Statistical methods need to analyze the relationship between
Ta and Ts and other auxiliary data, and then build an estimation
model based on specific correlation (Cresswell et al., 1999; Park,
2011), which including simple statistical models, multiple linear
regression (MLR) models, geographically weighted regression
(GWR) models, and machine learning methods (Vogt et al.,
1997; Vancutsem et al., 2010; Shen et al., 2020). Studies have
shown that the linear regression models are more accurate in
calculating the average daily temperature with a root mean square
error (RMSE) ranging between 1.29–3.60°C (Chen et al., 2015; Shi
et al., 2016; Yang et al., 2017), which can produce good results in a
specific space and time range, but require a large amount of data
involved in the calculation and training of the algorithms (Stisen
et al., 2007). Geographically weighted statistical and machine
learning methods usually have higher accuracy (Moser et al.,
2015; Wang et al., 2017, 2018). Geographically and temporally
weighted regression (GTWR) is an extension of the general linear
regression model, which embeds changes in location and time
into the regression equation and estimates regression coefficients
for spatio-temporal variation by performing local regressions that
can solve for constant-coefficient limits (Bai et al., 2016; Li et al.,
2018). Machine learning methods can handle non-linear and
highly correlated predictors (James et al., 2013) and estimate the
temperature in areas with complex and heterogeneous underlying
surfaces, mainly including neural networks (Jang et al., 2004), M5
model trees (Emamifar et al., 2013), and random forests (Zhang
et al., 2016), support vector machine (Moser et al., 2015). Random
forests (RF) are widely used and have been verified in various
terrains. Ho et al. (2014) indicated that the RF algorithm is very
useful for mapping the variability of urban internal temperature.
Meyer et al. (2016) have pointed out that compared with linear
regression, generalized augmented regression model (GBM), and
cubic regression, the RF algorithm performs poorly in the
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extremely cold Antarctica. However, Noi et al. (2017) have shown
reliable results in mountainous areas. Therefore, the conclusion
of RF estimation Ta still needs to be discussed.

Most of the current researches for estimating Ta is based on
the MODIS due to its time continuity advantage, but its
resolution cannot meet the demand for farmland or even
smaller scales. The spatial resolution of Landsat 8 imagery is
higher than that of MODIS, and the estimated Ta data have a
more intuitive correspondence with land use. Generally, if the
temperature estimate based on remote sensing data is accurate,
the accuracy should be between 1 and 2°C (Vázquez et al., 1997).
Research suggests that site density is positively correlated with
model accuracy. In other words, the denser the sites, the higher
the accuracy of the model (Shen et al., 2020). If Ta is estimated
jointly in Northwest China, where meteorological stations are
scarce, and in areas where other stations are d ense, the former
regions often do not obtain more accurate Ta data (Chen et al.,
2015; Li and Zha, 2018). Therefore, it is very necessary to
separately model and estimate the area where the data is lacking.

The main objective of this study was to propose a statistical
method based on Landsat 8 and auxiliary data for accurately

estimating Ta, especially in arid northwest China, where
meteorological stations are scarce and unevenly distributed.
The specific objectives of this study were to 1) use the RTE
method to estimate Ts based on the Landsat8 data, and improve
accuracy. 2) Select reasonable independent variables, participate
in the modeling of MLR and RF, and compare the results of Ta
estimation. 3) Evaluate the performance of the optimal Ta
estimation model in time and space scale.

MATERIALS AND METHODOLOGY

Study Region and Meteorological Station
The study area is the Shiyang River basin in the arid region of
Northwest China, which is located in the Hexi Corridor of Gansu
Province and the coordinate range is between 101°40′E-104°20′E
and 36°30′N-39°30′N (Figure 1). It covers an area of 41,600 km2,
and the range of altitude is 1,157m–5012 m. This area is of a
continental temperate arid climate, with the characteristics of
aridity where precipitation is 300 mm per year and average
annual pan evaporation is 2,000 mm.

FIGURE 1 | The location of the study area, the coverage area of Landsat8, distribution of meteorological stations, and land use cover.

TABLE 1 | Type and source of data used.

Data Unit Time scale Type Source

Ta Wind speed °C m/s Daily 2014-2019 Points National Meteorological Information Center (http://data.cma.cn/)
Ts by RTE Albedo °C Instantaneous 2014-2019 Grids with a resolution of 30m × 30m “USGS Landsat 8 Surface Reflectance Tier 1” from the GEE

platform
NDVI - ID: “LANDSAT/LC08/C01/T1_SR”
Elevation m 2014-2019 Grids with a resolution of 30m × 30m NASA SRTM Digital Elevation 30m from the GEE platform

ID: “USGS/SRTMGL1_003”
Surface
temperature

°C Quarter of an hour 2014-
2015

Points SI-111 thermal infrared radiometer
Coordinate: 102.885090, 37.824715 (2014)
102.884864, 37.819561 (2015)
102.876055,37.823513 (2016-2018)

Landcover - One year 2020 Grids with a resolution of 10m × 10m “ESA WorldCover 10 m v100” from the GEE platform
ID: “ESA/WorldCover/v100”
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Meteorological stations in Northwest China are sparse, with only
five stations in and near the study area (Minqin, Wuwei,
Yongchang, Wushaoling, Jintai station), which can be collected
from the China Meteorological Science Data Center (http://data.
cma.cn). The observation station (National Field Scientific
Observation and Research Station on Efficient Water Use of
Oasis Agriculture in Wuwei of Gansu Province) has a
meteorological station to collect Ta data, SI-111 thermal infrared
radiometers to obtain Ts data (the coordinates in Table 1). Google
Earth Pro was used to verify the location of the meteorological
station and ensure that Ta data corresponds totally to the site
location. Then obtain the available satellite images from 2014 to
2019 and calculate and extract the Ts data corresponding to the
location of the meteorological station through the GEE platform.

Satellite Data and Processing
Google Earth Engine (GEE) is a geospatial processing platform
based on cloud computing developed by Google, which promotes
fast analysis by using Google’s computing infrastructure and
providing a convenient platform for applications based on
linking to the cloud computing engine (Becker et al., 2021).
Most of the algorithms built into the GEE cloud computing
platform use pixel-by-pixel calculation functions, so no matter
what the area or proportion of the calculation and analysis is
required, as long as the research area has available data. The
platform is suitable for scientific researchers with a background
in non-professional programming and can quickly realize global-
scale remote sensing data processing and mining. This research
uses the online JavaScript API of the GEE platform (https://
earthengine.google.com/) to access and analyze the data sets
used from the public catalog, without downloading images, only
outputting the processing results, which improves computing
efficiency.

This study uses the Landsat 8 Raw and SR (Surface Reflectance
product) dataset in the GEE platform, screening the images with
cloudiness not exceeding 30% from 2014 to 2019 and perform
cloud removal processing. To cover the entire area of the Shiyang
River basin using images of four Landsat-8 tiles 131/033,131/034
and 132/033,132/034 (Figure 1). By using the GEE platform, the
remote sensing images were spliced efficiently, clipped, and
parameter inversion, also the meteorological data were
interpolated.

Land Surface Temperature
At present, there are three main methods for remote sensing to
retrieve land surface temperature: atmospheric Radiative Transfer
Equation (RTE) method, single-channel algorithm, and split-
window algorithm. This study uses the Landsat 8 SR data set in
the GEE platform, to retrieve the Ts based on the RTE method.

The expression of the radiation transfer equation of the
thermal infrared radiation value (Lλ) received by the satellite
sensor is (Li et al., 2013; Windahl and Beurs, 2016):

Lλ � [εB(Ts) + (1 − ε)L↓]τ + L↑ (1)

where Lλ is the spectral radiance value at the top of the
atmosphere at the band λ (W ·m−2 · μm−1 · sr−1); ε is the

surface specific emissivity; B (Ts) is the blackbody thermal
emissivity brightness (W ·m−2 · μm−1 · sr−1); τ is the
atmospheric thermal infrared band transmittance; L↓ is the
downward radiance of the atmosphere after reflection on the
ground (W ·m−2 · μm−1 · sr−1); L↑ is the upward radiance of the
atmosphere (W ·m−2 · μm−1 · sr−1).

Knowledge of land surface emissivity (LSE) is necessary to
apply the above methods to a Landsat image. Considering
different situations, obtain the emissivity value from NDVI
(Sobrino et al., 2004; Orhan and Yakar, 2016):

ε �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.986 NDVI≤NDVISoil

0.004[ NDVI − NDVISoil
NDVIVeg − NDVISoil

] + 0.986NDVISoil <NDVI<NDVIVeg

0.990 NDVI≥NDVIVeg
(2)

where NDVIVeg � 0.7 and NDVISoil � 0.05 (Ma and Pu, 2020).
When using Landsat8 images, take the 10th band to provide

the thermal infrared radiance value. The calculation formula of
B(Ts) is:

B(Ts) � [Lλ − L↑ − (1 − ε)τL↓]
τε

(3)

The calculation of the surface temperature (Ts) uses the Planck
formula:

Ts � K2

ln( K1

B(Ts) + 1) − 273.15
(4)

where Ts is surface temperature (°C);K1,K2 can be obtained from
the header file of the remote sensing data. For Landsat8 TIRS
Band10, K1 � 774.89W ·m−2 · μm−1 · sr−1, K2 � 1321.08K.

It can be seen that the use of Radiative Transfer Equation
method to retrieve the Ts needs to have the atmospheric profile
parameters, which can be obtained by entering the shadowing
time, latitude, and longitude in the website provided by NASA
(http://atmcorr.gsfc.nasa.gov/).

Auxiliary Data and Processing Flow
The near-surface air temperature (Ta) has a good correlation with
the surface temperature (Ts) (Benali et al., 2012; Ruiz-Álvarez
et al., 2019). Ts is a physical quantity that reflects the degree of
cold and heat on the surface of a ground object because it is
affected by the characteristics of the underlying surface, such as
vegetation coverage and dry and wet conditions. Ta is a physical
quantity reflecting the degree of cold and hot air in the
atmosphere. The atmosphere has strong fluidity, which is
easily affected by the surrounding environment (Xu et al.,
2012; Gholamnia et al., 2017). Therefore, when looking for the
correlation between Ts and Ta, the influence of various factors
such as ground characteristic and environment must be
considered. For the estimation of Ta, Jang et al. (2004)
showed that Julian day is a more significant parameter than
altitude or the solar zenith angle. In addition, we have chosen

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 7913364

Liu et al. Estimation of Temperatures

8

http://data.cma.cn/
http://data.cma.cn/
https://earthengine.google.com/
https://earthengine.google.com/
http://atmcorr.gsfc.nasa.gov/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


variables that are often selected as predictors in air temperature
modeling literature, such as surface albedo, elevation (DEM),
normalized vegetation index (NDVI), and wind speed
(Riddering and Queen, 2006; Cristóbal et al., 2008; Hou
et al., 2013). The full name of the DEM (WGS84/EGM96)
data source is “NASA SRTM Digital Elevation 30 m,” which
is used directly on the GEE platform and provided by NASA JPL
(Farr et al., 2007).

The broadband albedo (α) of the ground surface is a critical
variable for many scientific applications, which is the ratio of
the total radiant flux reflected by the ground surface to the
incident flux (Liang et al., 2003). The calculation formula of
α is:

α � 0.356α2 + 0.130α4 + 0.373α5 + 0.085α6 + 0.072α7 − 0.0018

(5)

Where α is the surface reflectance, and its value is between 0–1.0;
α2, α4, α5, α6, and α7 are the 2, 4, 5, 6, and 7 bands of Landsat 8
surface reflectance products.

As has been commented in the previous section, the LSE can
be retrieved from NDVI values. The data can be used to construct
NDVI according to the following equation:

NDVI � NIR − R

NIR + R
(6)

Where NIR and R are the reflection values of the near-infrared
and infrared bands, respectively, which are the fifth and fourth
bands of Landsat 8.

This study mainly considers the relationship between Ta
and Ts, NDVI, surface albedo, DEM, wind speed and Julian
day. The flow chart of the models used is shown in Figure 2,
and the process can be summarized as Data preparation,
processing and prediction. Data collection is the basis for
establishing a reliable model, but it is also necessary to filter
the input variables and try to use as few variables as possible
under the condition of high model accuracy. Variables used
in this study are readily available, which are closely related
to the changes of Ta. Previous studies on Ta estimation lack
the verification of Ts and analysis of related results.
Therefore, this research explored whether it is necessary
to improve the precision of Ts to achieve better results in
actual application. After verification and comparison, the
best model is selected from the combined methods to
estimate Ta.

The spatial and temporal matching among the variables is
the main issue for the reliability of the regression
implementation. Table 1 shows the sources and resolutions
of all data sets. On the spatial scale, the resolutions of spatial
variability independent variables such as Ts, Albedo, NDVI,
elevation, wind speed (resampled after interpolation) are all

FIGURE 2 | The flow chart for estimating daily mean air temperature (Ta). Input variables include surface temperature (Ts), normalized vegetation index (NDVI),
surface albedo (Albedo), elevation (DEM), wind speed, and Julian day, and build MLR and RFmodels. Variables are selected by indicators such as variance inflation factor
(VIF), residual sum of squares (RSS), coefficient of determination ( R2), Mallows Cp (Cp) value, and Bayesian Information Criterion (BIC). Finally, compare the simulation
results of the four combined models with the measured values, then obtaining the Ta distribution in the study area.
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30 m × 30 m, which is spatially consistent. On the time scale,
Ts, Albedo, and NDVI are instantaneous data, and only wind
speed is daily data.

Models Adjustment and Validation
Multiple Linear Regression
The regression model aims to establish the corresponding
functional relationship between several independent input
parameters and output targets (Giacomino et al., 2011;
Agha and Alnahhal, 2012; Williams and Ojuri, 2021). MLR
is a linear regression technique and very useful for the best
relationship between predictor variables and several
independent variables, which is different from a simple
linear regression analysis (Akan et al., 2015). R is an
excellent tool for statistical calculation and statistical
mapping. It is free, open-source software that does not
require any license and is simple to operate (Williams and
Ojuri, 2021). Using the “lm” function in R software, an MLR
model of Ta and multiple correlation factors are established
Expanding the MLR equation into the more commonly used
form is:

A � b0 + b1X1 + b2X2 + b3X3 + . . . + bnXn (7)

where A is the regression target variable; b0∼bn are undetermined
coefficients; X1∼Xn are independent variables.

Random Forest
The random forest (RF) is a non-parametric machine learning
algorithm, which is more flexible than classical statistical models
(Genuer et al., 2017; Li et al., 2019). It hardly requires statistical
assumptions and is more tolerant of missing values and outliers.
Due to the Law of Large Numbers, RF does not overfit. Injecting
the correct randomness makes them accurate classifiers and
regressors. RF algorithm can automatically distinguish the
importance of each variable, give out the dependence between
variables, and easily give explanations in combination with
professional knowledge (Breiman, 2001). The RF method has
been widely used for classification and regression in remote
sensing applications (Ke et al., 2016; Park et al., 2016, 2018;
Richardson et al., 2017). RF has begun to be used for Ta
estimation in recent years (Ho et al., 2014; Zhang et al., 2016;
Yoo et al., 2018). Use the default model parameter settings of R
and its contribution packages to develop and apply statistical
models (R Core Development Team, 2008; Ho et al., 2014; Liaw
and Wiener, 2015).

Variable Adjustment
The absence of complete collinearity between any two
independent variables is one of the assumptions of multiple
linear regression. Variance Inflation Factor (VIF) is an index
used to judge whether there is collinearity. If there is no linear
relationship between the independent variables, the VIF value is
1, and a deviation from 1 indicates a trend of collinearity. From
the effect of the multicollinearity test, multicollinearity can be
tolerated when VIF <10. The VIF value of a variable greater than
10 indicates that there may be estimation problems. If there is
multicollinearity, we would simply delete the variable directly, or

use a biased estimate for processing (Shabani and Norouzi, 2015;
Williams and Ojuri, 2021).

The Ta peaks around the 200th day of each year, which is
nonlinear with the increase of Julian Day, so assuming that there
is a quadratic function relationship. Linearize the Julian Day
and adjust it to x7 � (J − 200)2 as the independent variable. The
Ts and the Julian day are independent variables with a strong
correlation. Therefore, adding the relationship of x8 � x7 × Ts
as an interaction term to match the model, assuming that the
slope of Ts depends on the value of Julian day.

Selecting appropriate variables can not only avoid overfitting
but also increase the explanatory degree of the model. The idea
of the optimal subset selection method is to model all the
variable combinations, then select the model with the best
result. The advantage of this method is that all possible
combinations are tested, and the final choice must be the
best result. However, as the number of candidate variables
increases, the amount of calculation will increase
exponentially. Therefore, this method is only suitable for
situations with few independent variables.

Residual Sum of Squares (RSS), adjusted coefficients of
determination (adjusted R2), Mallows’s Cp (Cp) value, and
Bayesian Information Criterion (BIC) value are used to
evaluate model statistics (Cristóbal et al., 2008). The closer
Adjusted R2 is to 1, and the other indicators are smaller, the
better the model fits. The optimal model can be determined by
comparing the indicators of each variable.

Validation Data and Indicators
The verification of Ts used the infrared sensor (SI-111)
observation data in the uniform and widespread farmland
from 2014 to 2018. Ta and wind speed data records for
2014–2019 come from the daily data set of surface climate
data, obtaining from the China Meteorological Data Service
Centre (http://data.cma.cn/). Use Ts and other independent
variables from 2014 to 2017 as a training set to build the
MLR model and use data from 2018 to 2019 to verify the
accuracy. The RF model randomly extracts 70% of all the
data as a training set, using the remaining data to validate
the resulting model. Such a verification method can explore
whether the model constructed by the data from the past years is
also applicable to the future years, which achieve the expansion
of the time scale.

A set of statistical parameters were calculated to assess the
accuracy of the predicted air temperature, including coefficients
of determination (R2), root mean square error (RMSE), and
model efficiency (MEF). Values of R2, RMSE, MEF and can be
estimated using the following equations:

R2 �
∑n
i�1
[(yi − �y)(Oi − �O)]

∑n
i�1
[(yi − �y)2]∑n

i�1
[(Oi − �O)2] (8)

RMSE � ⎡⎣∑n
i�1

(Oi − yi)2
n

⎤⎦1

/

2

(9)
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MEF � 1 −⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝∑n
i�1

(Oi − yi)2∑n
i�1 (Oi − �O)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10)

where n is the number of records in validation data sets used in
this study, yi is the estimated variable, and Oi is the observed
variable, �y is the mean value of the predicted for all validation
sites, �O is the mean value of the observed variable for all
validation sites.

R2 always calculated for a significance level of 0.005, was used
as a measure of correlation and proportion of observed variability
accounted by the model (Benali et al., 2012). RMSE is used to

quantify the error (Willmott and Matsuura, 2005). RMSE is an
indicator that shows the mean and spatial variance and is used to
measure the quadratic error at a single level, which is also
particularly sensitive to outliers (Janssen and Heuberger,
1995). The value of MEF is in the range between −1.0 and 1.0.
If the performance of the estimation method is poor, the value
will be lower (Zheng et al., 2013; Yang et al., 2017; Wang and Lu,
2018). Because MEF integrates correlation and error
measurement, it is a robust statistical indicator for model
consistency evaluation and reflects the adjustment of the 1:1
line, so it is used to measure the predictive ability of the model
(Nash and Sutcliffe, 1970). The above parameters compared the

FIGURE 3 | Surface temperature (Ts °C) computed from the Radiative Transfer Equation (RTE) method and observed (Obs) from 2015 and 2014. As reference, the
normalized difference vegetation index (NDVI) is included from Julian Day 100 to 250.

FIGURE 4 | Comparison between observed (Obs) and estimated (Est) surface temperature for 2014-2017 (A), 2018 (B). RTE and NDVI-RTE corresponds to the
estimated values from the original equation and RTE equation adjusted using the normalized difference vegetation index (NDVI), respectively. Also, coefficients of
determination (R2) and root mean square error (RMSE °C) are indicated in the figure.
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observations and predictions values of each meteorological
station and described the fitting performance of each model.
The uncertainty of the predicted Ta in spatiotemporal scale was
also calculated.

RESULTS

Surface Temperature Calibration
SI-111 collected Ts data for the 5 years from 2014 to 2018. Based
on Landsat8, using RTE to invert the Ts, 40 points corresponding
to the position of the ground instrument were extracted. The RTE
method estimates Ts from 2014 to 2017, compared with
observation data and its R2 � 0.77, RMSE � 3.27°C. This study
found that the RTE method overestimated the value of Ts.
Especially when the surface vegetation coverage is low, the
error will be more obvious (Figure 3). To resolve this
uncertainty, a correction method using NDVI is proposed to
improve the accuracy of the RTE method for inversion of Ts.

Correcting RTE with NDVI, the expression is:

TsRTE−NDVI � TsRTE − 0.22
NDVI

− 1.5 (11)

where NDVI is Normalized Difference Vegetation Index;
TsRTE−NDVI is the surface temperature calculated using the
Radiation Transfer Equation corrected by NDVI (°C); TsRTE is
the surface temperature calculated using the original Radiation
Transfer Equation (°C).

The 31 measured data from 2014 to 2017 were used as the
target to revise the RTE (Figure 4A), and the 2018 data were used
as verification (Figure 4B). After correction using NDVI of

FIGURE 5 | Effect of number of variables in the air temperature model on
Residual Sum of Squares (RSS), adjusted coefficients of determination
(adjusted R2), Mallows’s Cp (Cp) value, and Bayesian Information
Criterion (BIC).

FIGURE 6 | Combination of different variables when the value of coefficients of determination (R2), adjusted coefficients of determination (adjusted R2), Mallows's
Cp (Cp) value, and Bayesian Information Criterion (BIC) value were stabilized. The variables included surface temperature (Ts), normalized vegetation index (NDVI),
surface albedo (Albedo), elevation (DEM), wind speed (wind), x7 � (J − 200)2 and x8 � x7 × Ts. The highest color in the figure indicates that the statistical indicators are
gradually stable, and the variable combination is optimal.
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2014–2017, compared with the verified data, the accuracy of
the model is R2 � 0.83, RMSE � 2.09°C. And after the
verification of the data in 2018, it is confirmed that Eq. 11
has improved the accuracy of RTE (before: R2 � 0.63, RMSE �
4.80°C; After: R2 � 0.76, RMSE � 2.41°C). The fitting line is
close to 1:1, indicating that the estimation accuracy of the Ts is
significantly improved.

Variable Importance and Selection
Seven variables were tested for multicollinearity, and there was no
variable with VIF greater than 10, indicating that the regression
model can be established. As shown in Figure 5, RSS

monotonically decreases with the increase of the number of
independent variables, which cannot be directly judged.
Adjusted R2 and Cp values tended to be the largest when the
number of variables was 6 and 7. The adjusted R2 for Ta models
ranged from 0.87 to 0.95, which eventually fixed at 0.95. Further
addition of the independent variable did not improve the adjusted
R2, indicating that 6 independent variables were considered
optimal. The change of BIC with the number of variables also
proves that the model with six variables has the highest accuracy.

The statistical analysis indicated that Ts, Albedo, NDVI,
DEM, x7, and x8 were significant independent variables for
estimating Ta. As shown in Figure 6, R2 was increased with
the increase of the independent variables, so optimal
combination of independent variables was not proposed in
this study. However, in the absence of the wind speed, the
adjusted R2 reached a maximum while Cp and BIC arrived at a
minimum, indicating that wind speed does not improve the
accuracy of the Ta model. Except that the wind speed does not
affect the model construction, the addition of other variables
can improve the fitting accuracy of the model. The date of Ta
estimation is almost always sunny when the average wind
speed is slightly different in space. Therefore, there is no
significant correlation between wind speed and Ta variation.
Moreover, the average wind speed data is interpolated from
the data obtained from meteorological stations, which may be
inaccurate at the regional scale. To sum up, it is sufficient to
use remote sensing data, elevation, and Julian days as the
independent variables for the model.

After determining the independent variables, the formula of
the constructed multiple linear regression equation is as follows:

Ta � b0 + b1Ts + b2α + b3NDVI + b4H + b5x7 + b6x8 (12)

where Ta is the near-surface air temperature; Ts is the surface
temperature; a is the surface albedo; NDVI is Normalized
Difference Vegetation Index; H is the altitude;

FIGURE 7 | Mean of squared residuals and variation in percentage
variance explained by the random forest model with different number of trees
to grow (ntree) and number of variables to be used at each node (mtry). Dotted
lines represent percentage variance explained; solid lines represent
Mean of squared residuals.

FIGURE 8 | Scatter plot between predicted and in-situ near-surface air temperatures (Ta °C) based on multiple linear regression (MLR) model (Figure 8A) and
random forest (RF) algorithm (Figure 8b). The surface temperature (Ts °C) in the models is calculated by radiation transfer equation (RTE). Coefficients of determination
(R2) and root mean square error (RMSE °C) were used to evaluate the accuracy of Ta estimation from the training set.
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x7 � (J − 200)2; x8 � x7 × Ts; J is Julian Day (the number of
the day of the year); b0∼b6 are undetermined coefficients.

The random forest algorithm cannot provide an estimation
form similar to MLR because it cannot be parameterized. Two
parameters are critical to the operation of the random forest
model: the number of trees to grow (ntree) and the number of
variables to be used at each node (mtry). These two parameters
are selected based on the percentage of model interpretation and
mean of squared residuals. The mtry value was tested from 1 to 8,
and the ntree value was tested using the following 6 values: 100,
300, 500, 1,000, 1,500, and 2,000.

Figure 7 shows the changes in Mean of squared residuals and
Percent variance explained after running a random forest with
different ntree and mtry values. The highest Percent variance
explained and the lowest Mean of squared residuals were
obtained when mtry � 3 and ntree � 1,500 or 2,000. Since the
higher the value of ntree, the more cost and time for calculation,

so the value of ntree is set to 1,500, and the value of mtry is set to 3
to run the random forest model.

The amount of Ta-related data from 2014 to 2019 is 397.
Randomly select 70% of the total amount as the training set to
determine the variables and parameters, and the remaining data
as the testing set. Figure 8 is a scatter plot of the simulated and
observed values of the two models constructed from the training
set data. The R2 and RMSE of the MLR model were 0.953 and
1.74°C, respectively. Most of the points of the RF are concentrated
and close to the 1:1 line. The comparison between the results of
the RF model and the MLR model shows that the random forest
has higher estimation accuracy.

Model Validation
To understand the universality of the built model, theMLRmodel
was verified using the 2018–2019 dataset; the RF algorithm was
verified using the reserved test dataset. At the same time, it is

FIGURE 9 | The Ts involved in the Ta estimation were calculated through the radiation transfer equation (RTE, (A)) and the NDVI correction (NDVI-RTE, (B)). The
coefficient of determination (R2) and root mean square error (RMSE °C) were used to evaluate the accuracy of estimation Ta on the validation set for the two models and
the two Ts data.

FIGURE 10 | Relations between the temporal distribution of observed near-surface air temperature (Ta °C) and model performance, using root mean square error
(RMSE °C) to represent the accuracy in the estimation of air temperature (Ta).

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 79133610

Liu et al. Estimation of Temperatures

14

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


explored whether the improvement of the estimation accuracy of
Ts will affect the estimation accuracy of Ta.

The prediction result of Ta estimated through the validation
data set (Figure 9) cannot reach the accuracy of the initial
training set. When Ta is estimated from the validation data set
of the RF, the prediction could not achieve the accuracy of the
initial training set, respectively. When using NDVI to correct
RTE, the R2 and RMSE of the RF model was 0.943 and 2.12°C,
respectively, indicating that the estimation accuracy of using
RTE-NDVI is reduced. In contrast, the simulation results of
MLR on Ta are relatively stable. The two calculation methods
of Ts have little effect on MLR. Therefore, the accuracy of Ts
inversion will not affect the accuracy of the two methods for
estimating Ta. The estimation results of all models show good
performance, and the fitting line is close to 1:1.

Spatial and Temporal Performance
Through the analysis of the average daily Ta and error estimated by
MLR for 2018–2019, it was found that the temperature and error on
the time scale have spatial variability. As shown in Figure 10, Ta had a
clear trend with Julian day and season, and the estimation accuracy
had an apparent seasonal trend. Sometimes, themeteorological station
is covered by clouds and cannot participate in the calculation or
verification, especially at the high-altitude Wushaoling station. The
amount of remote sensing image data in winter is insufficient.
Although the error is small, it cannot be fully verified. There was
notmuch difference in the accuracy between spring and summer. The
RMSE values in spring and summer were both 1.66°C, which had no
difference in the estimation accuracy. With the increase of
temperature, the error value was relatively stable and had no
apparent change trend. In autumn, the RMSE was 2.35°C. At this

FIGURE 11 | Spatial distribution of the optimal models, model efficiency (MEF): (A) 2018, (B) 2019, root mean square error (RMSE °C): (C) 2018, (D) 2019 for all the
meteorological stations.
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time, the study area is in the rainy season, and the estimate of Ta will
be affected by the increase in rainfall.

In 2018 and 2019, the MEF value of each station was between
0.84 and 0.97, and the overall MEF was 0.946, indicating that
MLR has good performance. Analyze the error distribution of Ta
estimated by the MLR model at each site. Figure 9 shows that Ta
is more accurate at locations far from the mountainous area.

The MEF of the Minqin station for 2 years was close to 1, and
the degree of the fitting was relatively high. The MLR model
behaved differently in different altitude ranges. As the altitude
increases, the performance of the MLR model gradually weakens,
which may be caused by the complexity of the terrain. The RMSE
has the maximum value at the highest altitude site (Wu Shaolin)
(Figures 11C,D). The average RMSE of Minqin and Jintai Station
are below 1.5°C. The accuracy of these two stations is better than

that of other stations, possibly because the terrain and
environmental conditions of the stations are not complicated.
The locations of these two stations are far away from the Qilian
Mountains, which are as high as 5,000 m above sea level. The
estimation model had the highest relevance and accuracy at the
Minqin station, which is located on the north side of the basin,
and the surrounding terrain is flat and less affected by high
mountains. Although Jintai Station is close to the east of Qilian
Mountain, which is far from the mountain range, the estimation
accuracy of Ta is also very high.

Because the data of the two adjacent columns of the Landsat
satellite are of different periods, remote sensing images of the
entire study area cannot be obtained on the same day, so the
basin can only be divided into two parts for comparison. Chosen
four images with fewer clouds, then calculated the difference

FIGURE 12 | Difference between interpolation method and multiple linear regression model estimation result (A-D): (July 31 and August 22, 2018, and May 21 and
May 28, 2019).
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between the spatial interpolation result and the MLR model
estimate. Inverse Distance Weighted (IDW) assumes that the
influence of variables on the surrounding area decreases as the
distance to the sample location increases, which was used to
interpolate Ta data from the meteorological station. The error of
Ta distribution obtained by IDW in the area is related to the
underlying surface. Using meteorological and remote sensing
data from July 31, August 22, 2018, May 21, May 28, 2019, Ta
spatial interpolation and estimation maps were obtained and
compared.

It iswidely believed that Ta is related to altitude. Temperature
decreased with the increase of altitude in most cases. In high altitude
areas, where no meteorological station provides temperature data,
the Ta of the regions was determined by data from nearby stations.
Therefore, Ta in high altitude areas was often overestimated by
interpolation (the red area below Figures 12A,C). Simultaneously,
there are also large desert areas in the study area (the blue area in
Figure 12). Since the temperature in the desert during the day will be
much higher than in other zones, the interpolation method can
underestimate the temperature by up to 15°C. The Ta of farmland is
overestimated during spatial interpolation (the part of the red area
above d in Figure 12B), which is also related to the location of
meteorological stations. Most of the station is established in cities or
border areas. The vegetation coverage of farmland is very high
during the growth period of crops, whichwill affect its Ta. Therefore,
when using interpolation methods such as IDW, more
meteorological stations are needed to ensure the accuracy of the
interpolation results, and at the same time, should pay attention to
the unreliability of interpolation methods in mountains or deserts.

DISCUSSION

Model Selection
In areas with vegetation cover, the temperature value retrieved from
remote sensing data is often a mixed value of Ts and canopy
temperature (Tc). The accurate estimation of Ts still needs to be
analyzed according to the vegetation situation and terrain (Zhang and
Li, 2018). Comparing the Ts calculated by RTE with the measured
values, it was found that RTE overestimated the Ts, especially when
the vegetation coverage was low, consistent with the conclusions
published by USGS in 2015 (Barsi et al., 2014; Xu and Huang, 2016).
However, due to the characteristics of fewer parameters and suitable
for any thermal infrared band, the improved accuracy can also be
widely used. Ts is considered to be the most important independent
variable the many estimated Ta models (Park, 2011; Zhang et al.,
2016; Song and Wu, 2018). In this study, the RMSE of Ts directly
calculated by RTE is 3–5°C, and it is 2–3°C after correction. The
correction equation is proposed based on the local estimation results,
and its universality still needs to be verified. The error is related to the
surface emissivity or atmospheric profile parameters (Li et al., 2013;
Sekertekin and Bonafoni, 2020).

The variables of this study to be selected are closely related to Ta
in many studies (Cristóbal et al., 2008; Gholamnia et al., 2017; Shen
et al., 2020). Although the correlation between time parameters and
Ta was not strong, the adjusted x7 had a significant influence on
model accuracy indicating that the adjustment using the Julian Day

was useful. Studies have suggested that wind speed is significant,
especially when using energy balance methods, which require wind
speed to calculate aerodynamic resistance (Hou et al., 2013; Zhang
et al., 2015). Through indicators comparison, it is found that when
using a statisticalmethod to build themodel, the average wind speed
is not helpful to improve Ta estimation accuracy (Stisen et al., 2007).

The selected variables participate inMLR andRF to estimate Ta,
using the available satellite dataset. The RMSE of the two methods
were both lower than 2.0°C, which indicated that they were both
suitable for northwest China. Previously, Ho et al. (2014) Using the
RF algorithm to estimate the maximum Ta in Vancouver, Canada,
and the RMSE was 2.3°C. The optimal MLR model established by
Yang et al. (2017) estimates the average Ta and the RMSE is 3.6°C.
Therefore, the methods of estimating Ta in this study had relatively
high accuracy. However, due to the 16-days revisit cycle of the
Landsat satellite and the low temporal resolution of the images,
there are limitations in monitoring daily Ta (Yoo et al., 2018).

When performing regression, the random forest cannot make
predictions that exceed the range of the training dataset, which may
lead to overfitting when modeling some data with specific noise. For
many statistical modelers, the random forest is like a black box
(Zheng et al., 2019), almost unable to control the internal operation of
the model, can only try between different parameters and random
allocation. The simulation results of the random forest algorithm for
the existing data are very good, but when it is used in the prediction
and estimation, its accuracy may drop suddenly. It is difficult to
improve it because it cannot control the internal operation of the
model. For this study,multiple linear regression is still recommended.
The simulation accuracy of the MLR model is similar to that of
validation, which is conducive to the evaluation of subsequent
prediction results. From the comparison results of the models, the
MLR and RF models that without improving the accuracy of Ts
performed better, and the actual operation was simpler. The reason
for this phenomenon may be that the NDVI involved in the Ts
correction is also one of the independent variables of the Ta
estimation model, which makes the internal adjustment of the
model during operation can ignore the errors of Ts.

Spatial and Temporal Uncertainties of
Model
The seasonal variation of the average temperature and the
distribution of the station will affect the estimation accuracy of Ta
(Holden et al., 2011; Chen et al., 2015). From the time point of view,
the RMSE in autumn reaches 2.24°C, which is 0.57°C higher than that
in spring and summer. This is consistent with the results of Golkar
et al. (2018), which believe that the estimation of Ta in spring and
summer has higher accuracy, while there are more uncertainties in
autumn. Therefore, the estimation model of daily average
temperature is more suitable for spring and summer days. Yang
et al. (2017) integrated various statistical indicators and believed that
each model performed better in spring, and the estimation accuracy
decreased due to the influence of rainfall and cloudy weather. The
study area is located in the inland of Northwest China, and rainfall is
mainly concentrated in autumn. Benali et al. (2012) believe that the
cloud cover of remote sensing images is inversely proportional to the
model performance, and higher cloud cover harms model
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performance. That is, because cloud cover could reduce the accuracy
of the Ts, which affects the accuracy of estimated values of daily
average temperature. Therefore, the model can be optimized to the
season or month scale, and the process of climate and environmental
impacts can be added to adapt to the impact of climate change and
cloud cover.

The spatial distribution map of RMSE shows that the model in
mountainous and plateau areas generally performs worse than in
plain areas. This conclusion is consistent with the research results of
Yang et al. (2017). Due to the influence of terrain differences,
mountainous terrain has a broader spatial variation range than flat
terrain, so mountain temperature changes are more complicated. On
relatively flat terrain and vegetation, horizontal uniformity leads to
stable atmospheric conditions (Blandford et al., 2008; Lin et al., 2016).
Ta raster data is usually limited by site coverage, especially in
mountainous areas where the density and elevation distribution of
meteorological observations vary greatly (Holden et al., 2011). Shen
et al. (2020) believe that in the case of large-scale use of MLR and RF,
the accuracy of the estimation results is poor due to the scarcity of sites
in Northwest China that can participate in model training. When
MLR is estimated in the Shiyang River Basin, the MEF of the highest
altitude station (3000m) is higher than 0.83, and the RMSE � 2.10°C,
the model also performs well.

The method proposed by the research can obtain high-
precision Ta estimation results when using the Landsat 8 data
set, and improve the spatial resolution. However, the actual
situation of only six meteorological stations limits the accuracy
of Ta inversion in this area. We hope that more reliable
verification data can be obtained in future studies.

CONCLUSION

The purpose of this study is to estimate Ts and Ta in the Shiyang
River Basin. Perform parameter inversion based on Landsat8
images, use RTE to calculate and correct Ts. Using Ts, NDVI,
elevation, and other parameters as variables to construct MLR
and RFmodels for estimating Ta. The results show that: For MLR
and RF, after calibrating Ts and participating in the estimation of
Ta, both methods have accurate estimation results; The accuracy
of RF training results is better than MLR, but the test set results of
the two models are not significantly different; Although the
topography of the study area is complex and the land cover

conditions are different, the MLRmodel applies to the study area.
In addition, compared with the MLR model, the comparison
found that the interpolation method will underestimate the
temperature in areas with low vegetation coverage like deserts,
while the opposite is in the mountains and farmland areas.

This study can be used to accurately understand the
distribution characteristics and changing trends of Ts and Ta
in the study area. Further research can optimize the model in
time to a month to adapt the climate change; make up the
deficiency of Landsat8 and MODIS data by fusing remote
sensing data, then obtaining Ta data with high temporal and
spatial resolution.
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Assessing Spatial and Temporal
Distribution of Algal Blooms Using Gini
Coefficient and Lorenz Asymmetry
Coefficient
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Algal bloom in an inland lake is characterized by significant spatial and temporal dynamics.
Accurate assessment of algal bloom distribution and dynamics is highly required for tracing
the causes of and creating countermeasures for algal bloom. Satellite remote sensing
provides a fast and efficient way to capture algal bloom distribution at a large scale, but it is
difficult to directly derive accurate and quantitative assessment based on satellite images.
In this study, the Gini coefficient and Lorenz asymmetry coefficient were introduced to
examine the spatio-temporal algal bloom distribution of Chaohu Lake, the fifth largest
inland lake in China. A total of 61 remote sensing images from three satellite sensors,
Landsat, Gaofen, and Sentinel were selected to obtain algal bloom distributions. By
dividing remote sensing images into 0.01°*0.01° grid cells, the normalized difference
vegetation index (NDVI) for each grid cell was derived, forming a spatial and time series
database for quantitative analysis. Two coefficients, Gini coefficient and Lorenz asymmetry
coefficient, were used to evaluate the overall intensity, unevenness, and attribution of algal
bloom in Chaohu Lake from 2011 to 2020. The Gini coefficient results show a large variety
of algal bloom in the spatial and temporal scales of Chaohu lake. The lake edge and
northwestern part had longer lasting and more severe algal bloom than the lake center,
which wasmainly due to nutrient import, especially from three northwestern tributaries that
flow through the upstream city. The Lorenz asymmetry coefficient revealed the exact
source of the unevenness. Spatial uncertainties were mostly caused by the tiny areas with
high NDVI values, accounting for 53 cases out of 61 cases. Temporal unevenness in
northwestern and northeastern parts of the lake was due to the most severe breakout
occurrences, while unevenness in the lake center was mainly due to the large number of
light occurrences. Finally, the advantage of Gini coefficient and Lorenz asymmetry
coefficient are discussed by comparison with traditional statistical coefficients. By
incorporating the two coefficients, this paper provides a quantitative and
comprehensive assessment method for the spatial and temporal distribution of
algal bloom.

Keywords: remote sensing, algal bloom distribution, NDVI, gini coefficient, lorenz asymmetry coefficient, chaohu
lake
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1 INTRODUCTION

Algal bloom in water areas has been a critical worldwide
environment issue for the past several decades (Haag, 2007).
Many studies have tracked long-term algal bloom outbreaks of
various inland lakes in China (Wang et al., 2012; Yan et al., 2012;
Huang et al., 2015; Zhang et al., 2015; Kang et al., 2016), U.S.
(Hambright et al., 2010; Winston et al., 2014), India (Kamerosky
et al., 2015), Mexico (Stumpf et al., 2003), and Canada (Hecker
et al., 2012; Sorichetti et al., 2014). Since algal bloom is highly
sensitive to various factors such as nutrients, temperature, wind
speed, air pressure, and human controlling (Ahlgren, 1988;
Vedernikov et al., 2007; Klemencic and Toman, 2010; Ribeiro
et al., 2015; Wang et al., 2017), its spatial and temporal
distribution is characterized as highly uneven and fluctuating,
especially for inland lakes where the water flow and regeneration
rate are lower. Therefore, an accurate description of spatial and
temporal distribution is an important prerequisite for analyzing
and controlling algal bloom outbreaks.

Satellite remote sensing has significant advantages for its large-
scale and periodic observation, providing an efficient manner to
observe large-scale algal blooms. Since the 1990s, the Landsat
satellite has been used to monitor lake algal blooms and their
dynamics (Galat and Sims, 1990; Richardson, 1996). Today there
are several satellites that are widely used in algal bloom
observation, i.e., the Landsat satellite (Ho et al., 2019), Sentinel
satellite (Moita et al., 2016; Pirasteh et al., 2020), MODIS satellite
(Lu and Tian, 2012; Zhang et al., 2015), Gaofen satellite (Hu et al.,
2019), and GOCI satellite (Choi et al., 2014; Lou and Hu, 2014).
Algal bloom indicators derived from satellite remote sensing
bands include normalized difference vegetation index (NDVI)
(Van Der Wal et al., 2010; Lin et al., 2016), FAI (Hu, 2009; Zhang
et al., 2014; Page et al., 2018), Chla (Hu, 2009; Zhang et al., 2014;
Page et al., 2018; Guan et al., 2020; Pompeo et al., 2021), etc. On
this basis, various analyses are conducted on algal bloom
distribution from spatio-temporal (Lu and Tian, 2012; Zhang
et al., 2015; Page et al., 2018; Zabaleta et al., 2021) and vertical
(Bosse et al., 2019) points of view. In 2019, a global spatio-
temporal algal blooms analysis covering 71 large lakes from 33
countries based on Landsat five satellite images (Ho et al., 2019)
revealed that algal bloom in over 2/3 of lakes had been increasing
during the last 30 years. These studies show that the application of
satellite remote sensing is a useful and efficient way to observe,
track, and evaluate long-term and large-scale algal bloom
distribution.

Although remote sensing images inversion can display the
general coverage, severity, and evolution trend of algal bloom, the
evaluation of distribution based on numerous images, especially
for time series analysis, is subjective. Since algal bloom may grow
and fade rapidly, its characteristics may be highly diverse in a
couple of days (Lu and Tian, 2012; Zhang et al., 2020). Current
research focuses less on the quantitative assessment method of
algal bloom distributions. Using hotspots is one of the
quantitative assessment methods that has been applied in
spatial distribution analysis (Wei et al., 2021; Zabaleta et al.,
2021). Generally, a quantitative description of temporal and
spatial distribution of algal blooms is still lacking. Indices that

accurately and briefly abstract the key information of algal bloom
distribution features are highly needed. This requirement is more
important when incorporating long-term temporal analysis in
analysis.

In this paper, we focus on the assessment method of algal
bloom distribution of Chaohu Lake from 2011 to 2020. Two
indices, the Gini coefficient and Lorenz asymmetry coefficient,
which are originally proposed to assess citizen income inequality,
are applied to spatial and temporal distribution analysis of algal
bloom. These two indices have been adopted to analyze river flow
variability and biological species variability in previous studies
(Damgaard andWeiner, 2000; Zhen-Xiang et al., 2004; Jawitz and
Mitchell, 2011; Masaki et al., 2014; Zhang et al., 2020). It is
considered suitable to use these two indices to measure and
explain this variability. The Gini coefficient is used to measure
the spatial or temporal distribution inequality (unevenness) of
algal blooms, while the Lorenz asymmetry coefficient explains
whether the unevenness is caused by a small number of large
NDVI values or a large number of small NDVI values. To be
specific, for spatial analysis, the two coefficients indicate the
extent of lake-wide variability of algal bloom and which area
contributes to the unevenness; for temporal analysis, the two
coefficients indicate the temporal variability of algal bloom in
each grid cell, and which occurrences contribute most to the
unevenness.

The study site and data of Chaohu Lake are described in
section 2. The application of the Gini coefficient and Lorenz
asymmetry coefficient in assessing algal bloom spatial and
temporal distribution are explained in section 3. Section 4
presents the result of spatial and temporal distribution with
discussion. A conclusion is given in section 5.

2 STUDY AREA AND DATA

2.1 Chaohu Lake
Chaohu Lake (31°25’ ~ 31°42′N, 117°17’ ~ 117°50′E), located in
central-eastern China, is the fifth largest inland freshwater lake of
China. The lake covers an area of 780 km2, with a length of 55 km
in longitude and a width of 21 km in latitude (Shang and Shang,
2005). A total of 90% of the Chaohu Lake is supplied by surface
runoff (Yang et al., 2013), consisting of 10 major inflow-
tributaries entering the lake. The location and distribution of
Chaohu Lake is shown in Figure 1.

Algal bloom of Chaohu Lake has occurred almost every
summer in the past several decades (Shang and Shang, 2005).
Since the 1970s, with rapid industry and population
development, nutrients and organic matter such as nitrogen
and phosphorus in the lake have rapidly increased, resulting in
the frequent occurrence of algal bloom (Kong et al., 2013).
Satellite remote sensing data showed that algal bloom in
Chaohu Lake has broken out almost every year in the past
30 years, with an average annual outbreak frequency of six
times (Damgaard and Weiner, 2000). In the early 1980s, the
algal blooms were mainly distributed in the northwest and
northeast lake areas. During 1983–1990, the algal bloom
gradually moved to the lake center. In 1990, the algal bloom
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FIGURE 1 | Location and distribution of Chaohu Lake.

TABLE 1 | Parameters of Landsat satellite, GF-1 satellite, and Sentinel satellite.

Satellite Launch year Country Spatial resolutiona Repeat period (d)

Landsat-5 1982 U.S. 30/60 m 16
Landsat-7 1999 U.S. 15/30/60 m 16
Landsat-8 2013 U.S. 15/30/100 m 16
GF-1 2013 China 16 m 4
Sentinel-2A 2015 European Space Agency 10/20/60 m 10
Sentinel-2B 2017 European Space Agency 10/20/60 m 10

aSpatial resolution may vary in different bands.

TABLE 2 | Satellite images dates and sources .

Year Number of images Image date and source

2011 2 07/11a 09/14a

2012 4 06/20b 07/22b 08/07b 09/24b

2013 6 06/15c 07/09b 08/10b 08/18c 09/03c 09/19c

2014 5 07/21d 08/05c 08/15d 08/21c 09/04d

2015 3 08/31d 10/24d 10/27c

2016 3 06/14d 07/25c 09/12d

2017 2 08/25e 09/16d

2018 13 06/06e 06/12d 07/20d 07/24d 07/29d 09/4d 09/15d 09/19d 10/2d

10/03d 10/06d 10/27d 10/31d

2019 17 05/23d 06/14d 06/26e 07/07d 07/11e 07/20d 07/21e 08/01d 08/03c

09/19d 09/23d 09/29e 10/18d 10/29e 10/30d 10/31d 11/01c

2020 6 05/17c 08/01d 08/19e 08/24e 09/03e 09/19d

Sum 61

a: Landsat-5
b: Landsat-7
c: Landsat-8
d: GF-1;
e: Sentinel-2.
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occurred throughout the lake. From 1999 to 2017, algal bloom
began to shrink gradually, with most algal blooms
concentrated in the northwest lake area (Li S M, 2019). The
initial time of algal bloom outbreak in each year is gradually
getting earlier, and the duration is gradually increasing
(Damgaard and Weiner, 2000).

2.2 Data Sources
In this study, three types of satellite sensors, the Landsat 5/7/8
satellite, GF-1 satellite, and Sentinel-2 satellite are used to obtain
the algal distribution of Chaohu Lake. Table 1 lists the main
parameters of the three sensors. All candidate images from May
to October between the years 2011–2020 were examined, and
only cloud-free images with algal bloom areas greater than
50 km2 were considered. A total of 61 remote sensing images
were obtained with significant algal bloom coverage and almost
no cloud coverage. Table 2 shows the date and source of selected
images. The number of images varies widely from year to year due
to the different severity of algal bloom and image quality.

All the images were checked or preprocessed to make sure
atmospheric correction was applied. The aim of atmospheric
correction is to eliminate the influence of atmospheric and
illumination factors on the reflection of ground objects. In this
study, the Landsat-5, Landsat-7, and Landsat-8 data were L2
grade and corrected by the Landsat official production system
including radiometric and geometric correction (https://www.
usgs.gov/faqs/does-landsat-level-1-data-processing-include-
atmospheric-correction). The Sentinel-2 data (L2A level) used in
this paper were generated from 1C products based on scenario
classification and atmospheric correction algorithms. (https://
sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-
2-msi/level-2a-processing). The GF-1 data were pre-processed
using FLAASH mode in ENVI 15.3 software.

2.3 NDVI Indicator
Since green algae has similar spectral characteristics with terrestrial
vegetation, some indicators that reflect vegetation are widely adopted
to characterize algal bloom coverage of a water area, such as FAI and
NDVI (Zhu et al., 2020). In this study, due to the lack of short-wave
infrared band data in the GF-1 sensor, the NDVI index was adopted
as an indicator of algal bloom. The derivation of NDVI is:

NDVI � NIR − R

NIR + R
(1)

where NIR is the reflectance of the near-infrared band and R is
the reflectance of the red band. The NDVI value ranges from -1 to
1. Positive NDVI denotes the existence of algal bloom, and higher
NDVI indicates higher algal bloom severity. Bands of NIR and R
for each satellite used in this study are listed in Table 3.

3 MATERIALS AND METHODS

3.1 Extraction of Lake Cells
Although the distribution of algal bloom can be roughly seen
and analyzed from the NDVI distribution map of remote
sensing inversion, it is still very important to divide the lake
area into grid cells for quantitative assessment, because
appropriate cell division can facilitate further calculation
and make the spatial and temporal evaluation results
closer to the real value. Grid cell division has been used in
various spatial analyses for quantitative analysis. Masaki et al.
(2014) extracted major river channel cells to analyze the
variability of inflow regimes for different parts of rivers;
Guevara-Escobar et al. (2007) used grid-divided data to
evaluate rainfall distribution patterns; Raziei and Pereira
(2013) and Das et al. (2014) interpolated and gridded
rainfall distributions to 0.5°*0.5° and 1°*1° grid cells
respectively for spatial analysis. With this consideration,
the Chaohu Lake area was divided into equidistant grids
for quantitative spatial and temporal analysis. First, the
shape of Chaohu Lake was clipped using DEM contours.
To avoid the confusion of lake edge caused by water level
fluctuation, the DEM contour latitude was set slightly lower
than the normal water level. The clipped lake area was then
taken as the “uniform lake shape” for all images, assuring the
location of grids was consistent in every image. Second, the
lake area was divided by horizonal and vertical parallel lines
with 0.01° distance, generating 850 0.01°*0.01° grid cells. In
this way, the distribution of algal bloom was represented by
uniform grid data of mean NDVI. The grid data were
regarded as the regularized vector for quantitative spatial
and temporal analysis. Figure 2 shows an example of the
NDVI distribution from 2014.08.15 with grid cell division.

Based on grid cell division, spatial and temporal distribution
can be analyzed quantitatively and comprehensively. Figure 3
shows an illustration of the spatial and temporal analysis based on
grid cells. Spatial analysis is based on grid cells of each image,
while temporal analysis is derived by the NDVI time series of each
grid cell from different images.

3.2 Gini Coefficient and Lorenz Asymmetry
Coefficient
In this paper, the Gini coefficient and Lorenz asymmetry
coefficient are adopted to evaluate the shape of NDVI-area
curve. The advantage of such coefficients is that they can
describe not only the variability of NDVI over different areas
but also the attribution of variability. As mentioned above, the
algal bloom distribution, which is represented by NDVI, varies
largely in different areas and different years in Chaohu Lake. The
two indices help the interpretation of spatial and temporal
inequality of algal bloom. The Gini coefficient provides the
total inequality degree, while the Lorenz asymmetry coefficient
interprets whether the inequality is caused by high-NDVI
elements or low-NDVI elements. Considering these features of
indices, we attempted to give a comprehensive description and
attribution of algae distribution inequality.

TABLE 3 | NIR and R bands for Landsat-5, Landsat-7, Landsat-8, GF-1, and
Sentinel-2 satellites.

Landsat-5 Landsat-7 Landsat-8 GF-1 Sentinel-2

NIR Band 4 Band 4 Band 5 Band 4 Band 8
R Band 3 Band 3 Band 4 Band 3 Band 4
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3.2.1 Gini Coefficient
The Gini coefficient was first introduced by Corrado Gini in 1912
(Gini, 1912) to quantify inequality of household incomes. In the
past decades, the Gini coefficient has been extended to
environment sciences, such as inequality of plant species
distribution (Ma et al., 2006; Shi et al., 2012), precipitation
inequality (Shi et al., 2012), and river flow temporal
distribution (Masaki et al., 2014), etc. Hereafter, we apply the
Gini coefficient to spatial and temporal distribution inequality of
Chaohu Lake.

The Gini coefficient G is given by (Eytan, 1972; Kimura, 1994)

G � ∑n
i�1∑n

j�1
∣∣∣∣∣yi − yj

∣∣∣∣∣
2n2 �y

(2)

where n is the number of individuals, yi is the income of
individual i, and �y is average income of all individuals. Note

that y1 ≤ y2 ≤. . .≤ yn. A higher Gini coefficient reflects a higher
income diversity, and vice versa. When applying the Gini
coefficient to assess the unevenness of algal bloom, n
represents the number of total grids, yi denotes algal bloom
amount which is represented by NDVI in grid i.

The Gini coefficient is more widely interpreted using a graphical
manner, known as the Lorenz curve. The Lorenz curve is obtained by
aggregating the percentage of individuals (horizonal axis) and the
percentage of incomes (vertical axis). In this study, the horizonal and
vertical axes of the Lorenz curve are the cumulative percentage of the
grid area and the cumulative percentage of algal blooms, as shown in
Figure 4. The graphical interpretation of the Gini coefficient is the
ratio of area A to the triangle (A + B) in Figure 4. Note that (A + B) =
1
2, and the relationship between G and A is:

G � A

A + B
� 2A (3)

FIGURE 2 | NDVI distribution with grid cell division from 2014.08.15.

FIGURE 3 | Illustration of spatial and temporal analysis based on grid cells.
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The slope of the Lorenz curve reveals the inequality degree of
algal bloom spatial distribution. Imagining a perfectly even
distribution of algal bloom where a 1% increase in area
corresponds to a 1% increase in algal cumulation, the Lorenz
curve is a line with slope 1 (y = x), which is called the “absolutely
equal line”. For unevenly distributed algal bloom area
distribution, the Lorenz curve is under the absolutely equal
line. The farther the Lorenz curve is from the y = x line, the
more uneven the algal bloom distribution is, and the higher the G
value is.

3.2.2 Lorenz Asymmetry Coefficient
Although the Gini coefficient presents an efficient indicator to
describe the unevenness of algae distribution, it also has some
limitations. Since G = 2A, it is possible that different Lorenz
curves may have the same Gini coefficient. Figure 5 shows NDVI
distributions from 2016.06.14 to 2018.09.19. Both Gini
coefficients are 0.12, however their algal bloom intensity and
distribution are quite diverse, also the shape of the Lorenz curves
is different. This indicates that the Gini coefficient is insufficient
to describe algal bloom distribution, and the Lorenz asymmetry
coefficient is then adopted.

The Lorenz asymmetry coefficient, denoted as S, is given by
(Damgaard and Weiner, 2000):

S � F + L (4)
δ � �x − xm

xm+1 − xm
(5)

F � m + δ

n
(6)

L � ∑m
i�1xi + δxm+1∑n

i�1xi
(7)

wherem is the number of pixels with a value less than �x. In this paper,
x denotes NDVI series for each grid. The graphical explanation to F
and L is the x-coordinate and the y-coordinate of the point with slope
one of the Lorenz curve. If S = 1, the coordinate (F, L) lies exactly on
line x + y = 1. If S > 1, the coordinate (F, L) lies above line x + y = 1; if
S < 1, the coordinate (F, L) lies below line x + y = 1. Figure 6 shows
three types of Lorenz curve with S < 1, S = 1, and S > 1. Triangular
marks denote points with slope = 1. Note that S=F + L for the three
curves in Figure 6: 0.59 = 0.47 + 0.12, 1 = 0.56 + 0.44, 1.11 =
0.65 + 0.46.

FIGURE 4 | Sketch of the Lorenz curve and Gini coefficient.

FIGURE 5 | Example of images with the same G but different algal bloom distribution and Lorenz curve.
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The significance of the Lorenz asymmetry coefficient S is that
when S > 1, the inequality of algal bloom distribution is mostly
due to the small amount of high NDVI values, which is also
shown in the upper-right tail of the Lorenz curve; when S < 1, the
inequality of algal bloom distribution is mostly due to large
amounts of low NDVI values, which is shown in the lower-left
tail of the Lorenz curve; S = 1 denotes that both parts have the
same contribution to algal bloom inequality. Therefore, we can
infer from Figure 6 that algal bloom unevenness on 2018.10.31
was mostly due to large NDVI elements, and unevenness on
2020.08.01 was mostly due to small NDVI elements. This
provides clear notice about areas with great diversity, and, if

the diversity is due to large elements (S > 1), it is an explicit
warning of algal concentration.

4 RESULTS AND DISCUSSION

4.1 Spatial Distribution of NDVI in Chaohu
Lake
4.1.1 General Spatial Distribution Based onMeanNDVI
The 61 remote sensing images listed in Table 1 were processed to
obtain the NDVI distribution in grid cells. Figure 7 shows the
monthly maximum NDVI fromMay to October. It can be clearly
indicated that the algal bloom develops from May, reaching its
peak in September, and then slightly decreases in October. This
trend is highly accordant with the temperature trend of the
Chaohu Lake area. The algal bloom first concentrates at the
northwestern part of the lake (June), and then spreads to the lake
center (July and August) and the whole lake (September). Besides,
the lake edge and tributaries have relatively higher NDVI values
than the lake center, even in May when there is almost no algal
bloom throughout the lake. This indicates that algal bloom of
Chaohu Lake originates from the lakeside, and is mainly
imported from lake tributaries. The upper reaches of the three
northwestern tributaries, Nanfei river, Paihe river, and Shiwuli
river (Figure 1), flowing through Hefei City, which is the capital
city of Anhui province with a population over 5.7 million, brings
massive nutrients that trigger algal bloom at the northwestern
lake area. This inference is also proved in relative studies. It is
concluded that nutrient and climate conditions are two dominant
issues for algal blooms of Chaohu Lake (Li et al., 2019), while
Chen and Liu (2014) stated that tributaries bring 68.5% and
76.5% of nutrients (TN and TP) into Chaohu Lake; three
northwestern rivers: Nanfei river, Paihe river, and Shiwuli
river have the highest comprehensive pollution index among
all tributaries.

FIGURE 6 | Examples of Lorenz curves with different S values. Blue, red,
and green colors indicate results for algal bloom distribution on 08/01/2020,
09/04/2014, and 10/31/2018, respectively.

FIGURE 7 | Monthly maximum NDVI distribution of Chaohu Lake, 2011-2020.
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4.1.2 Gini Coefficient and Lorenz Asymmetry
Coefficient
1) Gini coefficient and Lorenz asymmetry coefficient results

TheGini coefficients (G) and Lorenz asymmetry coefficients (S) of
61 images are shown in Figure 8. G varies from 0.04 to 0.2, indicating
a diverse unevenness of algal bloom. There are 53 cases with S > 1,
accounting for 87% of the total 61 cases. Recalling that S implies the
source of unevenness, this reveals that the algal bloom unevenness of
Chaohu Lake is mostly due to the small amount of high NDVI value
areas, in other word, the tiny severe algal-concentrated areas.

2) Comprehensive discussion using mean NDVI and G

By coupling mean NDVI and G, we can categorize the spatial
distribution of algal bloom into four types: heavy and uneven type,
heavy and even type, light and uneven type, and light and even type.
Figure 9 shows the four types with representative examples for each
type. The heavy and even type and light and uneven type are in the
majority, accounting for 53 cases among all 61 cases. In addition, it

can be clearly found that G can be diverse in different cases even if
they have the same mean NDVI, and mean NDVI can be diverse in
different cases even if they have the same G. This demonstrates that
univariate assessment is insufficient to describe the distribution of
algal bloom. These four types of algal bloom distribution
characterized by mean NDVI and G are helpful in identifying the
distribution patterns of algal bloom and taking targeted measures.

3) Comprehensive discussion using mean NDVI, G, and S

In order to analyze the integrated assessment of mean NDVI, G,
and S, four distributionmaps are chosen from 61 images as examples:
1. minimum G (2014.08.21); 2. maximum G (2017.08.25); 3.
minimum mean NDVI value (2019.05.23); and 4. maximum
mean NDVI value (2019.10.29). Their NDVI distributions, Lorenz
curves, mean NDVI, G, and S are shown in Figure 10.

The lowest and highest G (Figure 10A) occurred on
2014.08.21 and 2017.08.25, respectively. The NDVI map from
2014.08.21 has only sporadic high NDVI cells, emerging with an
even algae distribution. In contrast, NDVI on 2017.08.25 is quite

FIGURE 8 | Gini coefficients and Lorenz asymmetry coefficients from 2011 to 2020.

FIGURE 9 | Four types of algal bloom characterized by mean NDVI and G with example images.
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diverse as the northwestern part of the lake and lake side had
significantly high NDVI, while NDVI in the lake center kept at a
low level. This diversity is the reason for the high G value.

Theminimum andmaximummeanNDVI, (Figure 10B) which is
−0.31 and 0.80, occurred on 2019.05.23 and 2019.10.29, respectively.
Note that theNDVI value rangeswithin [−1,1], thus an average of 0.80
in NDVI indicates severe algal bloom. Algae coverage on 2019.10.29
reached 69%, while on 2019.05.23 was only 10%. However, it is
interesting that their Gini coefficients are indeed the same although
the NDVI difference is huge, because the Gini coefficient is related to
the percentage quantiles but not the NDVI value itself.

Lorenz asymmetry coefficients (S) of the four cases are greater
than 1, revealing that the unevenness of the algal bloom
distribution of four cases is mainly due to the small amount of
large NDVI grid cells. S value on 2014.08.21 was the greatest
among the four images, revealing that the very small areas with
highest NDVI in the map, are the reason for unevenness. In
conclusion, mean NDVI, G, and S form a comprehensive
description indicator system describing the severity and spatial
distribution of algal bloom, thus providing an alternative way to
quantitatively assess multiple remote sensing images.

4.2 Temporal Analysis of Algal Bloom
4.2.1 General Temporal Distribution Based on
Frequency Analysis
By deriving the NDVI time series data of each grid cell, temporal
analysis is carried out to reveal the change trend of algal bloom
distribution for each grid cell. Here, the occurrence frequency map
that consists of the frequency of each grid is derived. The frequency of
grid i, Fi, is denoted by:

Fi � Ti

T
(8)

where Ti represents counts of images withNDVI >0 for grid i; T
represents the number of total images, which is 61 in this study.
NDVI >0 is regarded as the indication of algal bloom occurrence.
The frequency map is calculated and drawn, as shown in
Figure 11.

It is clearly indicated from Figure 11 that the northwestern part of
the lake and lake edge have significantly high frequency in algal
bloom. In addition, almost all tributary estuaries (tiny branches at the
lake sides) have amuch higher frequency than the lake center. Similar
conclusions are inferred in Zhang et al. (2015) and Liu et al. (2017)
where the northwestern part of the lake has the highest frequency of
algal bloomduring 2000–2013, and the primary source of algal bloom
is tributary and lakeshore imports.

In the northwestern part of the lake, algal bloom frequency
gradually decreases from the lake side to the lake center. By
reviewing NDVI distribution images, the reason is the
occasional spread of algal bloom from the lake side to the
lake center. Severe algal bloom may spread from the
northwestern lake edge to the lake center, and the nearby
northwestern lake area suffers.

4.2.2 Gini Coefficient and Lorenz Asymmetry
Coefficient
1) Gini coefficient and Lorenz asymmetry coefficient results

The Gini coefficients and Lorenz asymmetry coefficients for each
grid are shown in Figure 12A indicates that the Gini coefficient varies

FIGURE 10 | Examples of algae distribution with (A) maximum and minimum G, and (B) maximum and minimum mean NDVI.
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from 0.03 to 0.15 throughout the lake. In contrast with results of
mean NDVI and frequency, the lake edge, where both frequency and
mean NDVI are high, has the lowest G. This is because the lake edge
area has a “stable and high” NDVI value during 2011–2020, and a
stable NDVI levelmeans low variance and lowG. In contrast, the lake
center has a relatively mixed G value, which is due to a high variance
of NDVI values caused by occasional algal bloom occurrences.

Lorenz asymmetry coefficient S is divided and presented into two
categories: S > 1 and S < 1, shown in Figure 12B. It can be clearly
observed from Figure 12B that grid cells with S> 1 concentrate in the
northwestern and northeastern areas, with a total of 124 grid cells. It
means that the unevenness of these areas is due to the most severe
occurrences among the 61 occurrences. In other words, these areas
had a few extraordinarily severe algal bloom events, and these events
caused the distribution unevenness in the temporal dimension.

2) Discussion on the sources of unevenness with S > 1.

Areas with S > 1 are more concerning in this study, as they imply
the unevenness is due to high NDVI value occurrence which
indicates severe algal bloom occurrences. Therefore, for the 124
grid cells with S > 1, the occurrences that contribute most to the
unevenness of each grid cells are singled out. If one occurrence is
responsible for multiple grid cells, the frequency is recorded by
counts. We found that 39 occurrences were responsible for the
unevenness of S > 1, as shown in Figure 13. Let us only take the
occurrences with highest count for example, where the occurrence on
2019.10.29 involved 82 counts of all 124 grid cells. It implies that the
algal bloom event on 2019.10.29 was a significant outlier that was
responsible for the temporal unevenness of 2/3 grid cells. It is not
surprising because the occurrence on 2019.10.29 was also mentioned in
Figure 10B as the highest mean NDVI during 2011–2020. Also, this
event was reported by the Department of Ecology and Environment of
AnhuiProvince, anddescribed as a “partial bloom”, which ismuch rarer
andmore serious than “sporadic bloom” that often occurs (Department
of Ecology and Environment of Anhui Province).

It can be inferred from the above analysis that the Gini coefficient
combined with the Lorenz asymmetry coefficient is able to quantify
algal bloom distribution spatially and temporally and examine the
origination of unevenness by “overlapping” numerous algal bloom
events. Therefore, it provides a quantitative and useful guideline for
researchers and operators to rank or evaluate numerous algal bloom
occurrences over time, and track influence factors for algal blooms in
specific lake areas.

FIGURE 11 | Algal bloom frequency map for each grid cell (number of grid cells: 850).

FIGURE 12 | Map of (A) Gini coefficient and (B) Lorenz asymmetry
coefficient for each grid cell.
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4.3 Comparison of the Gini Coefficient and
Lorenz Curve With Other Statistical
Coefficients
Since the Gini coefficient and Lorenz curve are descriptions of
unevenness of distribution, there are some existing coefficients
that also describe the degree of data variations, such as variance

and standard deviation. As analyzed in Masaki et al. (2014) and
Milanovic (1997), the Gini coefficient is proportional to the
coefficient of variation and standard deviation. Also, the Lorenz
curve has similarities with cumulative distribution curve (CDF) in
statistics, but they have not been compared as far aswe know.Hereby,
the relationship and distinction between these variables are explored
using the dataset in this study.

FIGURE 13 | Counts of dates that contribute to unevenness of grid cells with S > 1.

FIGURE 14 | Relationships between (A). G ~ variance and (B). G ~ standard deviation of spatial distribution (sample size: 61).
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4.3.1 Comparison Between Gini Coefficient With Other
Statistical Coefficients
Fitting performance between G ~ variance and G ~ standard
deviation based on spatial and temporal results are derived and
shown in Figure 14 and Figure 15, respectively. The results show
that the Gini coefficients in this study also have fine relationships

with variance and standard deviation. The regression function
type is the same as the results from Masaki et al. (2014), that is, a
linear relationship between G and standard deviation, and
polynomial relationship between G and variance. Nevertheless,
the coefficient G has an outstanding feature over the other two
coefficients: the G value is normalized to [0,1] regardless of the

FIGURE 15 | Relationships between (A). G ~ variance and (B). G ~ standard deviation of temporal distribution (sample size: 850).

FIGURE 16 | Comparison between CDF curve and Lorenz curve.
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value of samples data, which allows it to be used as a universal
indicator for all cases.

4.3.2 Comparison Between Lorenz Curve With CDF
Curve
The CDF curve, which is derived by aggregating the NDVI value
in ascending order and its corresponding non-exceedance
probability, can also ascertain the variability of samples in the
form of curves. Here, the four NDVI distributions in Figure 10
are taken as a study example to compare the performances of
CDF and Lorenz curves. Figure 16 shows the results of CDF and
Lorenz curves for each distribution.

Figure 16 shows that both the CDF curve and Lorenz curve can
reveal the variability features of spatial distributions. However, the
CDF curve has similar limitations with variance and standard
deviation in that it is not a universal coefficient, for its vertical
axis (NDVI) varies with the NDVI values. The Lorenz curve,
however, has an axis of cumulative percentage that is restricted
within [0, 1]. Besides, the features of the Lorenz curve can be
interpreted by the Gini coefficient and Lorenz asymmetry
coefficient. By these two coefficients we can easily judge various
distributions without comparing the curves. However, it is not
convenient to compare various CDF curves as there is no such
scalar coefficient to describe curve features. Although the CDF curves
in Figure 16 are very diverse and it is easy to tell the difference, it
could be confusing in comparing various sample sets with similar
distributions. In conclusion, the Lorenz curve outperforms the CDF
curve in assessment analysis for its regularization and comparability.

5 CONCLUSION

This paper examined the characteristics of algal bloom distribution
between 2011 and 2020 using mean NDVI, Gini coefficient, and
Lorenz asymmetry coefficient of Chaohu lake, China. By dividing 61
remote sensing images into equidistant grid cells, statistical analysis
can be carried out based on grid cell data to explore spatial and
temporal distribution and trend in a quantitative way. Results suggest
that algal bloom is severe at the lake edge and northwestern part of
Chaohu Lake owing to tributary and lakeside nutrient imports.
Lorenz asymmetry coefficient is applied to detect the source of
unevenness, and the primary source of spatial distribution
unevenness is the small area with very high NDVI values.

Temporal analysis shows that the northwestern part and lake edge
has very high algal bloom frequency but low Gini coefficient,
indicating a stable and severe algal bloom situation. Lorenz
asymmetry coefficient reveals that unevenness in the 124 grid cells
concentrated in the northwestern and eastern parts of the lake is due
to the most severe algal bloom occurrences.

Analysis in this paper indicates that mean NDVI, Gini
coefficient, and Lorenz asymmetry coefficient can
comprehensively and quantitively describe the distribution
characteristics of lake algal bloom, while any single
coefficient is one-sided and insufficient to accurately depict
the distribution information. The algal bloom distribution
may be different even if they have the same mean NDVI or
Gini coefficient. The compound assessment method could allow
researchers to identify algal bloom distribution patterns as well
as sources to the unevenness. Possible extensions of this work
will include the analysis of connections between algal booms
and meteorological factors for the selected extreme occurrences,
and the application of the methodology to assessment in other
spatial distributions.
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Evaluation of Water Resources
Utilization Efficiency in Guangdong
Province Based on the
DEA–Malmquist Model
Lifen Cheng1, Song Song1,2* and Yufeng Xie1

1School of Geography and Remote Sensing, Guangzhou University, Guangzhou, China, 2Southern Marine Science and
Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

In this study, we examined the temporal and spatial trends of water utilization efficiency in
the highly developed Guangdong Province based on a data envelopment analysis (DEA)
model and Malmquist index, trying to evaluate and predict the water utilization status in
prefecture-level cities from the input–output perspective. The results showed that the
water utilization efficiency in Guangdong Province in 2012–2018 was on a fluctuating
upward trend, although the utilization efficiency had not reached the DEA efficiency;
spatially, the water utilization efficiency in Guangdong Province was relatively high in the
Pearl River Delta and the surrounding cities, but low in the Western Guangdong region; in
the perspective of efficiency decomposition factors, technological change was the most
pervasive driving force of the water utilization efficiency. Pearl River Delta and Northern
Guangdong made progress in productivity due to the advantages of scale expansion
benefit. Eastern Guangdong achieved improvement in all-over parameters and made the
largest growth in water utilization efficiency, while Western Guangdong basically profited
from organizational management during the study period; the prediction analysis revealed
a continuous increase in the water utilization efficiency in Guangdong Province during
2019–2025 with an average annual growth rate of about 0.6%, benefiting mainly from the
technological innovation and secondly from management renewal, while scale expansion
benefit tended to decline. Furthermore, spatial heterogeneity exhibited a decreasing
tendency in the future owing to the rapid water utilization efficiency increase in the
Western and Eastern Guangdong. It is suggested that the technological innovation
and the integrated management capability in water use should be paid more attention
to enhance the water utilization efficiency in Guangdong Province. Achieving a balance
between economic growth and water resource protection, and promoting the sustainable
development of the nature-economy-society compound system is of the utmost priority in
Guangdong.
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INTRODUCTION

Water is the fundamental resource for the living organism, and the
indispensable ingredient of animate and non-animate systems on
earth. Water resources serve as the basic element to the national
social-economic production, and at the same time support the
healthy evolution and beneficent circulation of ecological
processes. Unreasonable water use will inevitably bring restrictions
on ecosystem health, socioeconomic development, and even human
survival. Water shortage has become a bottleneck problem restricting
economic development and influencing the population’s livelihood in
China and the world (Chen et al., 2020). It was estimated that more
than two thirds of cities in China are in short supply of water
resources, while half of them are confronting serious water shortages
(Wan and Zhang, 2012), while globally around 4 billion people are
bedeviled by severe water shortages (Khaskheli et al., 2021; Salehi,
2022). In the past decades, China has been suffering a series water
related stress, including a sharp water demand surge, rapid water
quality deterioration, and continuouswater environment degradation
due to long-term and high-intensity exploitation of water resources.
Considering the integrated impact of climate change, population
growth, and industrialization, the conflict betweenwater demand and
supply will be more acute, especially in the highly developed regions.

The United Nations’ 2030 Agenda for Sustainable Development
clearly states the direction for the sustainable development of water
resources, by emphasizing that “every country need to ensure the
sustainable supply of freshwater, greatly reduce the number of people
suffering fromwater stress, and improvewater-use efficiency by 2030,
” to alleviate the ever-growing pressure in water resources and water
environments (Adeel, 2017). Accurate evaluation and gradual
improvement of the water utilization efficiency (WUE) are the
basic steps to facilitate the sustainable development of water
resources. The WUE is concomitant with labor and capital (Ding
et al., 2019), and is defined as the economic value of products
manufactured per unit of water resources consumed (Liu et al.,
2020) WUE is closely associated with a country’s economic strength
and scientific-technical advancement. The United Nations has listed
China as one of the 13 countries with severewater shortage, due to the
low per capita water availability (less than one-quarter of the world’s
average level) and the inferior WUE compared with those of other
countries. In theUnited States, however, the development, utilization,
andmanagement of water resources have reached the world’s leading
level since the 1930s (Fan et al., 2008). How to improve theWUE has
become one of the primary concern of researchers, policy makers,
and business leaders to relieve China’s water resource crisis.

Researchers in China and worldwide have primarily evaluated
WUE on a variety of spatial and temporal scales. Existing research
mainly focuses on the comparation ofWUE in different industrial
sectors and the suitability of various evaluation methods (García-
Valiñas andMuñiz, 2007; Sun and Yang, 2019; Qi and Song, 2020;
Shi et al., 2021). WUE showed significant variation among
regions and cities from different perspectives, and wide
fluctuation over time can also be witnessed due to the
productivity and economic structure alteration (Chen et al.,
2018; Qiu and Sheng, 2020). Spatially, WUE is highest in
eastern China, followed by central China, while western China
was the lowest in efficiency (Han et al., 2018). WUE of cities is not

only related to their economic strength, but also connected to the
water management level and the local physical endowment (Zhu
and Tang, 2020). In general, the WUE is significantly lower in the
agriculture sector than the industry and service sectors (Geng
et al., 2019; Huang et al., 2021), higher in water-deficient or
vulnerable regions than in water-rich regions (Guo et al., 2019),
and lower in cities and towns than in rural areas (Hai et al., 2018).

In recent years, researchers have continuously renewed the
evaluation methods for WUE. They have adopted a variety of
methods including data envelopment analysis (DEA), stochastic
frontier analysis (SFA) (Mu et al., 2016), the technique for order
preference by similarity to ideal solution (TOPSIS) entropy weight
fuzzy matter-element model (Liu et al., 2018), and the projection
pursuit method (Fu et al., 2012), etc.. Among all these methodologies,
DEA tends to be superior in evaluatingmulti-input andmulti-output
decision-making units (DMUs) based on a mathematical
programming method, without dimensionless processing of data,
prior identification of functional relationships, or setting non-
subjective weights to each parameters (Wang et al., 2018a). DEA
and its modified methodology gained extensive application
worldwide, to comprehensively evaluate water use and assist
decision-making (Hu et al., 2018; Gautam et al., 2020; Laureti
et al., 2021). The national, provincial, and catchment research of
WUE based on the methodology mentioned above reached broad
consensus in China that the WUE is steadily improving, but still
remains at a low level in general (Mu et al., 2016; Hai et al., 2018;
Geng et al., 2019; Guo et al., 2019).Muchmore effort should bemade
to promote the construction of a water-saving society.

The WUE in Guangdong Province is slightly lower compared
with the eastern metropolitan area (Sun and Liu, 2009; Zhang and
Wu, 2020). The average WUE in Guangdong was only 26.9% of the
national average in 2000, which increased to 31.9% in 2011. The
utilization degree and reliability of water resources in Guangdong
Province are restricted by the frequent droughts and floods, the
limited water supply facilities, as well as the inadequate adjustment
capacity. Apart from that, the widespread unreasonable water
utilization, such as backward water resources management, the
huge water resources waste, and improper sewage treatment, pose
unprecedent threats on Guangdong water management (Chen,
2014). In addition, the spatial mismatch of the water resources
and social-economic power inside Guangdong Province make the
optimization of water utilization more challenging. The
comprehensive development and utilization rate of water
resources was 1.3% in Xijiang River Basin with plenty of water
resources but a relatively weak economy, while in Dongjiang Basin
where the water is in shortage and the economy is strong, 38.3% of
water resources have been exploited. The per capita water availability
is less than half of the national average in the core cities such as
Guangzhou, Shenzhen, and Zhuhai. Three major practical demands
were highlighted in the Water Conservancy and Water Resources
Blue Book 2020: Guangdong-Hong Kong-Macao Greater Bay Area
Water Resources Research Report: 1) solving the uneven spatial
distribution of water resources in the Pearl River Basin, 2) optimizing
the allocation of regional water resources development and
utilization, and 3) guaranteeing the high-quality economic and
social development and construction of the Guangdong–Hong
Kong–Macao Greater Bay Area (Gu, 2002; SOHU, 2020).
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Altogether, the current status of water resources restricts the
sustainable development of Guangdong Province. Researchers
and policy makers should comprehensively and systematically
analyze the local WUE, clarify the temporal and spatial
differentiation and its development trends, and explore
strategies for the WUE optimization. Therefore, in this study
we examined the WUE in prefectural cities in Guangdong
Province during 2012–2018 based on the integrated Data
Envelopment Analysis and Malmquist (DEA–Malmquist)
model from spatial and temporal perspectives. We revealed
the temporal and spatial characteristics of WUE changes in
Guangdong Province and made predictions for the years
2019–2025. The study results will provide a theoretical basis
and guidance for the guarantee of regional water resources.

METHODOLOGY

Study Area
Located in the southernmost region of the Chinese mainland,
Guangdong Province has the most abundant light, heat, and
water resources in China (Figure 1A). The region is dominated
by a subtropical monsoon climate, with an annual average
precipitation of 1,789mm. Owing to the monsoon stability and
tropical circulation, the precipitation has considerable temporal
and spatial variability (SLT, 2020a). The average multiyear total
water resources include 182 billion m3 of surface water resources
and 45 billion m3 of groundwater resources with unbalanced
temporal and spatial distributions. The topography of Guangdong
is high in the north and low-lying in the south, resulting in severe
flooding risk in the highly developed southern region, and low water

storage in coastal terraces and low hilly areas. Due to the extensive
non-point source pollution and ever-growing waste water effluence,
the middle and lower reaches of Pearl River Delta are confronting
with quality-induced water shortage. Guangdong Province is covered
by Pearl River and its branches the Xijiang River, Dongjiang River,
and Beijiang River systems (SLT, 2020b). Correspondingly, the
province can be divided into four regions based on territory: the
Pearl River Delta, eastern Guangdong, western Guangdong, and
northern Guangdong (Figure 1B).

Research Methods
In this study, we employed the integrated DEA–Malmquist
model to evaluate the WUE of Guangdong Province and each
prefecture-level city from the years 2012–2018. The spatial/
temporal variations and patterns of WUE were then analyzed
using GIS spatial analysis and mathematical statistical analysis.
The WUE prediction from 2019 until the end of the 14th Five-
Year Plan period was carried out based on the annual growth rate
estimation and integrated ARIMA and grey prediction model.

DEA–BCC Model
The DEA-CCR model was proposed in 1978 by American
operational research experts Charness, Coopor, and Rhodes
(CCR is the abbreviation of the developers) analyzing the
relative efficiency during production process. DEA-CCR model
assumes the production exhibits constant returns to scale, which
means, for example the increase of 1% input will result in 1%
production growth. This is clearly contrary to realism considering
the scale effect of most industry and energy sectors. In the middle
of 1980s, Banker, Charnes, and Cooper established a renovated
DEA-BBC model, indicating that the production tends to show

FIGURE 1 | Land use (A) and administrative division (B) map in Guangdong Province.
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variable returns to scale during the estimation of the Decision-
Making Units (DMUs) technology efficiency (Banker et al., 1984).
The comprehensive efficiency can be correspondingly expressed
by the multiplication of technical efficiency and scale efficiency
(crste = vrste*scale). In addition, researchers can set the DEA-BBC
model into input-oriented, output-oriented, or non-oriented
according to the specific research objectives, where the
orientation classifies the variable into optimized inputs,
undesirable outputs, and overall outputs. Classically, the non-
oriented model was more frequently adopted in
environmental analysis, owing to its ability to deal with
both desirable and undesired outputs simultaneously. DEA-
BBC model has been widely applied in various professions,
including water resources, energy industry, medical care,
education, and banking (Castano and Cabanda, 2007; Sala-
Garrido et al., 2012; Othman et al., 2016; Siampour et al., 2021;
Sun et al., 2021), and was proven to be highly stable and
reliable. As a result, we analyzed the WUE of Guangdong
Province based on the DEA–BCC model in this study, trying
to find out how to realize the high-efficiency utilization of
water resources by reducing water resources and other
component inputs, optimizing the desirable output and
minimizing the negative output (Li and Cui, 2009). The
model formula is shown below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min⎡⎢⎢⎣θ − ε⎛⎝∑m
i�1
sr− +∑n

r�1
si+⎞⎠⎤⎥⎥⎦

∑I
j�1
xijλj + si− � θxij0

∑I
j�1
yrjλj − sr+ � yrj0

∑I
j�1
λj � 1

λj ≥ 0, si− ≥ 0
, sr+ ≥ 0, j � 1, 2, 3, I, n

(1)

Where, xij refers to the ith input of the jth decision-making
unit (DMU), yrj means the rth output of the jth DMU, λj
presents the planning decision variable, n is the DMU, ε
demonstrates the non-Archimedean infinitesimal, and si

-

and sr
+ indicate the slack variable vectors. The effective

value of the DMU is θ.
Generally, the DMU is considered to be DEA-efficient when

θ = 1, and si
- = sr

+ = 0. In such a situation, the DMU is optimal
regardless of input or output perspective, and the production
process reaches technical and scale efficiency. If θ = 1, and one of
the slack variable vectors is greater that 0, then the DMU is
considered to be weakly efficient, the production process is either
technically inefficient or scale inefficient. If θ < 1, then the DMU
is DEA-inefficient, neither technical efficiency nor scale efficiency
is realized.

Malmquist Index Model
The Malmquist index model was developed based on the DEA
model, which can reflect the dynamic change of the DMU
efficiency by estimating the efficiency of input and output using

the distance function. This model usually assumes that input
elements remain unchanged and the output need to be
optimized. Distance functions in different periods are
established to represent the corresponding temporal
efficiency, and each decision unit is compared with the
optimized front plane to construct the dynamic model of
productivity.

The Malmquist index can be decomposed into technological
efficiency change (effch) and technological progress (techch)
indices. The effch can be further divided into pure efficiency
change (pech) and scale efficiency change (sech) indices. These
decompositions indicate that the productivity growth is for one
thing caused by the development of science and technology
(techch), and for another comes from the organization and
management progress (effch), including the pure efficiency
change (pech) and scale effect improvement (sech). Thus, Effch
represents the level of organization and management and the
ability to comprehensively allocate resources across the region.
The techch refers to the development and progress of science and
technology related to the development and use of water resources.
Pech primarily means the production efficiency of enterprises
affected by factors such as management and technology, and the
sech is the efficiency change caused by the expansion or reduction
of production scale.

The indices were decomposed as follows:

M(xt+1, yt+1, xt, yt) �
����������������������������
[Dt(xt+1, yt+1)

Dt(xt, yt) ×
Dt+1(xt+1, yt+1)
Dt+1(xt, yt) ]

√
×
Dt(xt+1, yt+1)
Dt(xt, yt)

(2)

Techch �
����������������������������
[Dt(xt+1, yt+1)

Dt(xt, yt) ×
Dt+1(xt+1, yt+1)
Dt+1(xt, yt) ]

√
(3)

Effch � Pech × Sech � Dt(xt+1, yt+1)
Dt(xt, yt) (4)

Tfpch � (Effch × Sech)Tech (5)
where (xt+1, yt+1) , Dt(xt, yt) are output distance functions;
M(xt+1, yt+1, xt, yt) represents the productivity index in the
period t and t + 1; and tfpch means the aggregate productivity
index. tfpch > 1, represents the growth in efficiency or productivity,
tfpch = 1 indicates unchanged efficiency or productivity, while
tfpch <1 reflects decline in efficiency or productivity.

Data Sources
The data we used in this study were primarily collected from the
Guangdong Statistical Yearbook 2012–2020, the Water Resources
Bulletin of Guangdong Province 2012–2020, and the statistical
yearbooks of various prefecture-level cities in Guangdong Province
of the corresponding year.

Index Selection
DEA evaluates the decision-making problem of water resource
utilization with multiple inputs and outputs, showing high
flexibility and simplicity, irrespective of the correlation
between variables, the inefficiency distribution, and the type of
production process (Nataraja and Johnson, 2011). It is not
necessary to set a specific production function or to specify
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the distribution of the error term. It is worth mentioning that the
ratio cannot serve as an input or output indicator, meanwhile the
selected indicators should be authentic reflecting a basic
production relationship. According to the connotation of
WUE and the data accessibility of Guangdong, combined with
the relevant studies, we took labor and water resource as input
variables, and the economic benefit and wastewater as output
index (Table 1) (Hu et al., 2019; Wang et al., 2021). In terms of
water resource input, we primarily focus on the industrial water
use, domestic water for residents and eco-environmental water
use, considering the highly developed economy, densely

concentrated population, and the environment-friendly
development orientation of Guangdong province.

Index Prediction
Population growth and socio-economic development in
Guangdong Province are supposed to maintain at high rates
during the 14th Five Year Plan Period (2021–2025), which will
inevitably intensify the conflicts between water supply and
demand among different regions and sectors. It is thus
essential to forecast the WUE of the corresponding period. We
estimated the various indices of Guangdong Province in
2019–2025 based on ARIMA and the grey prediction model,
and then evaluated WUE in Guangdong Province for 2019–2025
using the DEA–Malmquist model (Table 2).

The flow chart of this research is shown as Figure 2.

RESULTS AND DISCUSSION

Temporal Variation of DEA Efficiency in
Guangdong Province
DEA efficiency mainly represents the overall WUE of the entire
region. According to the results of the DEA–Malmquist model,
the annual overall WUE in Guangdong Province was on an
increasing trend during the study period, from 0.896 in 2012 to
0.936 in 2018 (as shown in Figure 3). In terms of subregion, the
WUE in the Pearl River Delta was the highest, followed by that
in northern Guangdong, and eastern Guangdong, while
western Guangdong showed the lowest in WUE. Apart
from spatial variation, the WUE significantly fluctuated over
time in different regions. The WUE in the Pearl River Delta
kept to around 0.9, significantly higher than that in other
regions during the whole study period. In northern
Guangdong, the WUE was increased gradually to 0.943 in
2016 and then declined by nearly 9% in the following
2 years. The WUE in eastern Guangdong was relatively low
and showed large fluctuations, while in western Guangdong
the averaged WUE was 0.712, much lower than other sub
regions. In perspective of the decomposed efficiency, all the
regions reached technological efficiency except western
Guangdong. Pearl River Delta and eastern Guangdong

TABLE 1 | Output-input indices of water-use efficiency.

Index
type

Index Specific index

Input Labor input Number of employees (10,000)
Water resource input Industrial water consumption (100 million m3)

Domestic water consumption for residents
(100 million m3)
Eco-environmental water consumption (100
million m3)

Output Economic benefit
output

GDP (100 million yuan)

Wastewater output Quantity of wastewater effluent (100 million
tons)

TABLE 2 | Prediction methods and sources of index data.

Index
type

Index Prediction
method

Basis

Input Industrial water consumption (100
million m3)

Grey prediction
model

Wu et al.
(2017)

Domestic water consumption for
residents (100 million m3)
eco-environmental water
consumption (100 million m3)
Number of employees (10,000) ARIMA model Alho

(2004)

Output GDP (100 million yuan)
Quantity of wastewater effluent (100
million tons)

Grey prediction
model

Li et al.
(2017)

FIGURE 2 | The flowchart of this study.
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exhibited the highest and lowest scale efficiency respectively
(Table 3).

According to the Malmquist decomposition model, the
annual average water resources total factor productivity
change (tfpch 1.005), the effch (1.008), pech (1.004), and
sech (1.004) values in Guangdong Province were all larger
than 1, while the annual averaged techch (0.997) were lower
than 1 (Table 4). These results demonstrated that the overall
growth of the WUE in Guangdong Province benefitted mainly
from the promotion of the comprehensive ability of enterprise
organization and management (Effch). Besides, the
optimization of regional water allocation ability (pech) and
expansion of scale (sech) made accessory contributions to
the increasing WUE. In contrast, although the new
technologies of water resource conservation and high
efficient utilization were widely adopted, the technical
limitations for the water resources utilization, indicated by
the low techch, were still obvious in Guangdong. Currently,
traditional manufacture of extensive type, represented by high
water consumption, high water contamination, and high
waste water emission still occupies a large proportion in
Guangdong. Introduction and implementation of superior
technology promoting industrial water resource saving,
circulation, and pollution control are strongly
recommended to improve the local WUE.

WUE Growth in Typical Years
2016–2017 was a typical period when the WUE growth was
driven by strong technology progress, while in other stages the
WUE increases were mainly conducive to scale expansion or
management advantage. In 2016–2017, the water conservancy
investment of Guangdong Province reached 31 billion yuan,
creating a new record. Furthermore, the Provincial Water
Resources Conservation and Protection Special Fund initiated
by the Water Resources Department strongly promotes
investment in water related research and development.
Financial support and scientific research progress
contributed to the construction of water conservancy
facilities and the upgradation of water-saving technologies
in Guangdong Province and promoted the techch to a large
extent, thereby the improvement of WUE was achieved. As
shown in Table 4, effch, pech, and sech values in 2016–2017
were all less than 1, which indicates that Guangdong Province
made a deficient effort in the resource scale allocation,
management methods, and management organization
structure compared with scientific investment in this
period. In 2018, the effch and other decomposition indices
increased to greater than 1. The policies issued in 2018,
Guangdong Province Urban Management Regulations
(2018 Revision) and Strictest Water Resources Management
Assessment Measures Implemented in Guangdong Province,
greatly promoted the optimization of resource allocation,

TABLE 3 | Averaged decomposed WUE of various regions in Guangdong
Province from 2012 to 2018.

Region Comprehensive
efficiency

(crste= vrste* scale)

Technical
efficiency (vrste)

Scale
efficiency
(scale)

Guangdong 0.919 0.953 0.966
Pearl River
Delta

0.904 1 0.904

Eastern
Guangdong

0.867 1 0.867

Western
Guangdong

0.712 0.808 0.882

Northern
Guangdong

0.885 1 0.885

TABLE 4 | Malmquist Index and its Decomposition Results in Guangdong
Province from 2012 to 2018.

Year Effch Effch = Pech * Sech Techch Tfpch

Pech Sech

2012–2013 1.020 (+) 1.011 (+) 1.009 (+) 0.985 1.005 (+)
2013–2014 1.011 (+) 0.998 1.013 (+) 0.988 0.998
2014–2015 1 1.009 (+) 0.991 0.994 0.993
2015–2016 1.014 (+) 1.004 (+) 1.009 (+) 0.998 1.011 (+)
2016–2017 0.986 0.994 0.991 1.028 (+) 1.013 (+)
2017–2018 1.017 (+) 1.006 (+) 1.011 (+) 0.991 1.008 (+)
Average value 1.008 (+) 1.004 (+) 1.004 (+) 0.997 1.005 (+)

The bold value represent the increasing trend.

FIGURE 3 | Average WUE in different regions of Guangdong Province.
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management strategy, and organization structure in
Guangdong Province. In contrast, the techch value in
2017–2018 was less than 1, which meant the technological
innovation was relatively less propulsive. According to the
analysis of the typical periods from 2016 to 2018, it is clear
that the technical innovation seems be harder to achieve in the
annual slice, in contrast to the gradual management or scale
effect, but the technical innovation can promote the WUE to a
larger extent once it works.

Spatial Pattern of WUE
As shown in Figure 4, only five cities (Guangzhou, Shenzhen,
Zhuhai, Zhongshan, and Shaoguan) reached the DEA efficiency
in water utilization. As the leading forces of economic
development in Guangdong Province, the Guangzhou,
Shenzhen, Zhuhai, and Zhongshan were superior to other
cities in terms of technological innovation and industrial
structure configuration, and their average WUE was higher
than surrounding regions. The water resources in western
Guangdong were relatively abundant, but the average WUE
was low because of many technical developments and physical
restrictions.

From the Malmquist index and its decomposition analysis,
about half of the prefecture-level cities had made progress in the
WUE during the study period. Among them, The WUE in
Jieyang increased with the highest rate in the technological
innovation, organizational management, water resource
allocation, and scale expansion aspects. In addition, Jieyang
was the only city which achieved the comprehensive progress.
Despite the organizational management and scale effect of
Guangzhou, Shenzhen and Shantou remained at a stable level,
the remarkable technological innovation of the three cities
promoted the WUE growth, especially Shenzhen, representing
the most rapid technological advancement. The WUE increase of
Foshan, Maoming, and Shanwei were integrally driven by
technological progress and scale expansion. Chaozhou gained
momentum from scale expansion, which helped the WUE to

continue ascending. Excellent enterprise management,
reasonable resources allocation, and stable technical
development drove the WUE growth in Meizhou, Zhanjiang,
and Qingyuan. Apart from the above mentioned cities, theWUEs
of the rest of the regions were decreasing, mainly restricted by the
technological degradation, except Zhaoqing, which is hindered by
a combination of technological and organizational weakness
(Table 5).

In terms of subregion, theWUE growth of PRD and northern
Guangdong were mainly dominated by scale expansion,
while eastern Guangdong realized the comprehensive
progress of the highest WUE increase due to a strong scale
effect, slight technological progress, and stable organizational
management. The rising WUE of western Guangdong was
driven by similar scale and technological progress, despite the
relative deficiency in enterprise management and resources
allocation (Table 5).

In general, the technology innovation is the dominant factor
controlling the water use efficiency and productivity. Nine and six
prefectural cities improved and regressed their water use
productivity, respectively, due to the technological
parameters. Furthermore, the variation of prefecture city
WUE showed strong spatial heterogeneity and spatial
agglomeration effect in the study period. For example, the
technological regression region was mainly concentrated in
middle-east and middle-west region (Figure 5). In the sub
region perspective, the Pearl River Delta and northern
Guangdong regions were advantageous in the scale
expansion effect, the Western Guangdong region had scale
and technological preponderance, while the eastern
Guangdong region made progress in all-round parameters.

Prediction on WUE
DEA Prediction
The predictions showed that the WUE in Guangdong Province
will continue to improve over time. The average overall efficiency
in 2019–2025 would reach 0.933, around 2% higher than the

FIGURE 4 | WUE of the prefecture-level cities in Guangdong Province in 2012–2018.
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TABLE 5 | Malmquist index and its decomposition of average water resources in prefecture-level cities and regions in the last 9 years.

City Effch Effch = pech asech Techch Tfpch Type

Pech Sech

Jieyang 1.031 (+) 1.013 (+) 1.018 (+) 1.022 (+) 1.054 (+) Comprehensive progress

Guangzhou 1 1 1 1.001 (+) 1.001 (+) Technological innovation
Shenzhen 1 1 1 1.051 (+) 1.051 (+)
Shantou 1 1 1 1.022 (+) 1.022 (+)
Foshan 1.006 (+) 1 1.006 (+) 1.029 (+) 1.036 (+)
Shanwei 1.008 (+) 1 1.008 (+) 1.013 (+) 1.021 (+)
Maoming 0.985 0.983 1.002 (+) 1.025 (+) 1.01 (+)

Chaozhou 1.041 (+) 1.018 (+) 1.023 (+) 0.973 1.013 (+) Scale advantage

Meizhou 1.024 (+) 1.025 (+) 0.999 0.981 1.005 (+) Organizational management advantage
Zhanjiang 1.039 (+) 1.041 (+) 0.998 1.016 (+) 1.055 (+)
Qingyuan 1.005 (+) 1.006 (+) 0.998 1.004 (+) 1.009 (+)

Zhuhai 1 1 1 0.975 0.975 Technological regression
Huizhou 1 1 1 0.984 0.984
Shaoguan 1 1 1 0.972 0.972
Heyuan 1.002 (+) 1 1.002 (+) 0.992 0.993
Dongguan 1.012 (+) 1 1.012 (+) 0.986 0.998
Zhongshan 1 1 1 0.961 0.961
Jiangmen 1.005 (+) 1.01 (+) 0.995 0.972 0.977
Yangjiang 1 1 1 0.993 0.993
Yunfu 1.007 (+) 1 1.007 (+) 0.989 0.995

Zhaoqing 0.999 0.984 1.015 (+) 0.984 0.983 Comprehensive restrictions

Guangdong 1.008 (+) 1.004 (+) 1.004 (+) 0.997 1.005 (+) —

PRDa 1.008 (+) 1 1.008 (+) 0.998 1.006 (+) Scale progress
EGa 1.008 (+) 1 1.008 (+) 0.98 0.988
WGa 1.023 (+) 1 1.023 (+) 1.001 (+) 1.024 (+) Comprehensive progress
NGa 1.002 (+) 0.989 1.012 (+) 1.013 (+) 1.015 (+) Scale and technology progress

The bold typing means the four regions and the province, while the others are the prefecture-level cities.
aPRD represent Pearl River Delta, while EG, WG and NG are the abbreviation of eastern, western and northern Guangdong.

FIGURE 5 | Malmquist index and decomposition trend map of water resource utilization in prefecture-level cities in Guangdong Province in the last 7 years.
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2012–2018 level, although still falling behind DEA efficiency.
With the continuous emphasis on science and technology
investment, the technological efficiency would be largely
improved. However, the scale efficiency would keep constant
or grow slowly limited to the scale benefit decline principle.
Spatially, the regions where WUE reached DEA efficiency would
extend from the Pearl River Delta to the adjacent western and
northern Guangdong regions during 2019–2025. The spatial
heterogeneity tends to weaken with the promotion of the
WUE (Figure 6).

Malmquist Prediction
As shown in Table 6, the water resource utilization productivity
value was greater than 1, and the average annual growth rate was
maintained at 0.4–0.5%, indicating the improvement of the total
factor efficiency during the prediction period. On one hand,
Techch and Pech serve as the main and secondary driving
force for improving efficiency respectively, with the correlation
coefficient between technological progress and total factor
productivity of water resources reaching 0.863. On the other
hand, the sech would improve at the beginning and then enter the
scale benefit decline stage, which would restrict the upgrading of
productivity. Guangdong Province would make progress in the

implementation of water resource saving, protection, and recycle
utilization technology. The regional comprehensive resource
allocation and enterprise management capabilities are expected
to be strengthened.

In terms of spatial pattern, during the 14th Five-Year Plan
period, rapid comprehensive growth of the productivity and
WUE in Dongguan, Zhanjiang, and Heyuan would be
witnessed. Coastal cities including Shenzhen, and Foshan
would achieve innovative growth conducive to the
development of science and technology. Traditional high water
efficiency cities, Guangzhou, Shaoguan, and Zhuhai are
threatened by the relatively declined technology innovation
and the potential retrogress of the productivity and WUE.
Although the organizational management, allocation capability
and scale benefit tends to expansion in Jiangmen city, the low
technology investment might hinder the local productivity and
WUE. All the other cities would suffer a slight decline of overall
productivity and WUE, owing to the combined weakness of the
resource allocation, technology innovation, enterprise
management, or shrinking scale return (Table 7 and Figure 7).

Significance of Parameters
We conducted correlation and automatic linear modeling
regression to analyze the significance of the input and output
parameters to the efficiency. The correlation results showed that
the output parameter, GDP, and waste water discharge, were
correlated with efficiency relatively higher compared to the input
parameters. The increasing GDP and its investment to
management renewal and technology upgrading promoted the
growth of WUE (Table 8).

As shown in Figure 8, GDP, the amount of employees and the
waste water discharge are the main influencing factors to the WUE.
Specifically, scale efficiency wasmainly controlled by GDP, while the
amount of employees was the strongest influence to the technical
and comprehensive efficiency. Waste water discharge and GDP
played the secondary role in the technical and comprehensiveWUE.
New technical approach reducing the employee investment and

FIGURE 6 | Efficiency distribution map in prefecture-level cities in 2019–2025.

TABLE 6 |Malmquist index and its decomposition results in Guangdong Province
in 2019–2025.

Year Effch Effch = pech
*sech

Techch Tfpch

Pech Sech

2019–2020 1.006 1.003 1.003 0.995 1
2020–2021 1.006 1.003 1.003 1.002 1.008
2021–2022 0.999 1 1 1.009 1.009
2022–2023 1.001 1.001 1.001 0.997 0.998
2023–2024 1.002 1.004 0.998 1.013 1.015
2024–2025 0.995 0.999 0.996 1.008 1.004
Average 1 1 1 1.004 1.004
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waste water output would highly improve the technical and
comprehensive efficiency in future endeavors. Maintaining the
GDP growth under the same or lower water consumption would
stimulate the WUE in all perspectives.

Management Implications
Substantial efforts toward water resource protection and water
ecological/environmental control have been made on the national
level, which improves the WUE overall. High developed

metropolises like Jingjintang (JJT), Yangtze River Delta (YRD)
and Peral River Delta (PRD) depict higher WUE index, owing to
the more developed water allocation strategy and water utilizing
technique. The WUE in Guangdong province is higher than the
YRD (Shanghai and Jiangsu), but lower than the JJT region (Liu
et al., 2020; Shi et al., 2020). Although some core PRD cities, such as
Guangzhou, showed the best decoupling status between the urban
economic output and water usage (Wang et al., 2018b), Guangdong
Province is still enconfronting with low efficiency problems
especially in industry water use. As the one of the leading
industry provinces, waste water discharge of Guangdong Province
ranks first among all the Chinese Provinces, strongly restricting the
further improvement of WUE. Professional disposal techniques are
in urgent need to effectively handle the huge wastewater discharge
containing nitrogen and other harmful chemicals. Research and
development investment in waste water treatment infrastructure and
enhancement of wastewater treatment capacity are critical for WUE

TABLE 7 | Average Malmquist index and its decomposition value of cities in Guangdong Province in 2019–2025.

City Effch Effch = pech *sech Techch Tfpch Type

Pech Sech

Dong guan 1.044 1.011 1.033 1.004 1.048 Comprehensive growth
Zhanjiang 1.019 1.019 1.001 1.038 1.058
Heyuan 1.003 1 1.003 1.04 1.043

Shenzhen 1 1 1 1.039 1.039 Innovative growth
Shantou 1 1 1 1.02 1.02
Foshan 1 1 1 1.059 1.059
Huizhou 1 1 1 1.006 1.006
Chaozhou 1 1 1 1.013 1.013
Jieyang 1 1 1 1.066 1.066
Maoming 0.999 1 0.999 1.003 1.001

Guangzhou 1 1 1 0.989 0.989 Innovative decline
Shaoguan 1 1 1 0.965 0.965
Zhuhai 1 1 1 0.983 0.983
Jiangmen 1.022 1.006 1.016 0.977 0.998

Zhaoqing 1.021 1.021 0.999 0.97 0.99 Comprehensive degradation
Shanwei 0.974 1 0.974 0.999 0.973
Yangjiang 0.992 1 0.992 1.002 0.994
Qingyuan 0.998 1 0.998 0.996 0.993
Yunfu 0.981 1 0.981 0.991 0.972
Meizhou 0.996 0.986 1.01 0.987 0.984
Zhongshan 0.988 0.993 0.995 0.946 0.935

Guangdong 1.002 1.002 1 1.004 1.006 —

The bold represents the general condition of Guangdong Province.

FIGURE 7 | Development of predicted WUE in Guangdong Province
during 2019–2025.

TABLE 8 | Average Malmquist index and its decomposition value of cities in
Guangdong Province in 2019–2025.

Correlation GDP WW IWC RWC EWC Employee

Scale efficiency 0.250** 0.212** 0.074 0.105 −0.051 0.081
Technical
efficiency

0.189* 0.216** 0.170* 0.052 0.173* 0.077

Comprehensive
efficiency

0.208* 0.264** 0.145 0.013 −0.084 −0.018

Note, ** and * refer to the correlations which passed the 0.01 and 0.05 significance test.
WW represents the waste water discharge. IWC, RWC, and EWC mean the industrial,
residential, and eco-environmental water consumption individually. The bold values
indicate the higher correlation of GDP and WW with other parameters.
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improvement. In addition, the regional disparities in industrialWUE
make new demands on reliable and effective water allocation
projects and up-down stream linkage water dispatch. With
respect to urban and rural water use, adjusting supply structure,
adopting discharge-reducing techniques, and reclaiming domestic
waste water might be effective to promote the WUE.

CONCLUSION

Water is a significant resource supporting socio-economic growth
and maintaining environmental health. The water utilization
efficiency (WUE) reflected the intensity and potential of water
utilization and development. Moreover, improving WUE is
conducive to the sustainable development of the
economic–social–ecological system on a regional and global
scale. In this paper, we evaluate and predict the water
utilization efficiency (WUE) in Guangdong Province based on
the DEA–Malmquist model. The results revealed the gradual
increase of the WUE, from 0.896 in 2012 to 0.936 in 2018. The
WUE growth was for one thing stemmed from the scientific and
technological progress, and for another driven by the improvement
of regional resource allocation capability and the scale expansion
benefit. The comprehensive promotion of the enterprise
organization and management serves as an important factor
affecting the total factor productivity of water resources. In
terms of spatial distribution, the WUE in Pearl River Delta was
higher than that of northern Guangdong and eastern Guangdong,
while western Guangdong was lowest in WUE. Pearl River Delta
made WUE progress due to the advantages of organization and
management, as well as the scale benefit. WUE in eastern and
western Guangdong were basically effective due to the integrated
advantages of scale benefit, technological innovation, or
organizational management. Northern Guangdong is relatively
deficient in water resources, technological innovation, and the
allocation of various resources. The spatial heterogeneity of
WUE was on decline trend. Prediction analysis suggest that the
technological innovation and the integrated management
capability in Guangdong Province will be continuously
promoted during the 14th Five Year Plan period, while the

scale expansion benefit tends to diminish. The WUE and
productivity will be comprehensively improved, and the spatial
difference will be continually narrowed along time. This study
responds to improve the WUE, to alleviate the water resource
pressure, and to achieve optimal water use under the rapid regional
socioeconomic development. The results provide important
perspectives to policy-makers on how to balance the economic
growth, the ecological health, and the human-water system, to
ultimately pursue the sustainable development.

DATA AVAILABILITY STATEMENT

The original contribution presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

SS conceptualized the research and managed the funding; LC was
responsible for the software, the calculation and organized the original
manuscript; YX contributed in data collection and processing.

FUNDING

This research is supported by the Guangdong Province
Universities and Colleges Pearl River Scholar Funded Scheme
(2019), Natural Science Foundation of Guangdong Province
(2020A1515011065) and Key Special Project for Introduced
Talents Team of Southern Marine Science and Engineering
Guangdong Laboratory (Guangzhou) (GML2019ZD0301).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fenvs.2022.819693/
full#supplementary-material

FIGURE 8 | Significance of each parameter.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 81969311

Cheng et al. A Case Study of Guangdong Province

47

https://www.frontiersin.org/articles/10.3389/fenvs.2022.819693/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2022.819693/full#supplementary-material
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


REFERENCES

Adeel, Z. (2017). A Renewed Focus on Water Security within the 2030 Agenda for
Sustainable Development. Sustain. Sci. 12, 891–894. doi:10.1007/s11625-017-
0476-7

Alho, J. M. (2004). Population Forecasting Theory, Methods and Assessments of
Accuracy. TheMagnitude of Error Due to Different Vital Processes in Population
Forecasts. Int. J. Forecast. 8, 301–314. doi:10.1016/0169-2070(92)90049-f

Banker, R. D., Charnes, A., and Charnes, W. W. (1984). Some Models for
Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis.
Manage. Sci. 30, 1078–1092. doi:10.1287/mnsc.30.9.1078

Castano, M. C. N., and Cabanda, E. C. (2007). Performance Evaluation of the
Efficiency of Philippine Private Higher Educational Institutions: Application of
Frontier Approaches. Int. Trans. Oper. Res. 14, 431–444. doi:10.1111/j.1475-
3995.2007.00599.x

Chen, T. L. (2014). Changes, Problems and Suggestions of Water Resources in
Guangdong Province. People’s Tribune (34), 222–223. doi:10.16619/j.cnki.rmlt.
2014.34.003 (in Chinese).

Chen, W., Du, J., and Chang, J. J. (2018). Utilization Efficiency of Water Resources
in Wuhan Urban Agglomeration. Resour. Environ. Yangtze Basin 27 (06),
1251–1258. doi:10.11870/cjlyzyyhj201806008 (in Chinese).

Chen, X. X., Zhuang, Y. N., Liu, L., andWang, L. N. (2020). Water Use Efficiency in
Shanxi and Shanxi Province Ananlyzed Using the Super Efficiency DEAModel.
J. Irrigation Drainage 39 (10), 138–144. doi:10.13522/j.cnki.ggps.2020029 (in
Chinese).

Ding, X., Fu, Z., and Jia, H. (2019). Study on Urbanization Level, Urban Primacy
and Industrial Water Utilization Efficiency in the Yangtze River Economic Belt.
Sustainability 11, 6571. doi:10.3390/su11236571

Fan, X. Z., Chen, H. Z., Zhang, P. N., Chen, H., and Zhang, F. N. (2008). Investigation
Report on Water Energy Resources Development and Utilization Management in
USAandCanada.ChinaWater Power&Electrification (04), 23–28+36. doi:10.3969/
j.issn.1673-8241.2008.04.009 (in Chinese).

Fu, Q., Jiang, Q., and Wang, Z. (2012). “Sustainability Assessment of Regional
Water Resources Use Based on PSO-PPE,” in Computer and Computing
Technologies in Agriculture V. Editors D. Li and Y. Chen (Beijing: Springer),
383–390. doi:10.1007/978-3-642-27275-2_43

García-Valiñas, M. A., andMuñiz, M. A. (2007). Is DEAUseful in the Regulation of
Water Utilities? A Dynamic Efficiency Evaluation (A Dynamic Efficiency
Evaluation of Water Utilities). Appl. Econ. 39 (2), 245–252. doi:10.1080/
00036840500428054

Gautam, T. K., Paudel, K. P., and Guidry, K. M. (2020). An Evaluation of
Irrigation Water Use Efficiency in Crop Production Using a Data
Envelopment Analysis Approach: A Case of Louisiana, USA. Water 12
(11), 31–93. doi:10.3390/w12113193

Geng, Q., Ren, Q., Nolan, R. H., Wu, P., and Yu, Q. (2019). Assessing China’s
Agricultural Water Use Efficiency in a green-blue Water Perspective: A Study
Based on Data Envelopment Analysis. Ecol. Indicators 96, 329–335. doi:10.
1016/j.ecolind.2018.09.011

Gu, J. H. (2002). The Causes and Countermeasures of the Prominent
Contradiction between Supply and Demand of Water Resources in
Guangdong Province. Pearl River (1), 17–20. doi:10.3969/j.issn.1001-9235.
2002.01.006 (in Chinese).

Guo, S.-D., Li, H., Zhao, R., and Zhou, X. (2019). Industrial Environmental
Efficiency Assessment for China’s Western Regions by Using a SBM-Based
DEA. Environ. Sci. Pollut. Res. 26, 27542–27550. doi:10.1007/s11356-019-
06062-5

Hai, X., Li, W. F., and Han, L. J. (2018). Study on the Domestic Water Use
Efficiency between Urban and Rural Areas of Beijing-Tianjin-Hebei Urban
Agglomeration, China. J. Water Resour. Water Eng. 29 (02), 27–33. doi:10.
11705/j.issn.1672-643X.2018.02.05 (in Chinese).

Han, W. Y., Chen, X. P., Zhang, Z. L., Wang, N. F., and Yu, Y. H. (2018).
Analysis on Spatiotemporal Structure of Water Resources Utilization
Efficiency of the Orefecture Level Cities and beyond in China. Res. Soil
Water Conservation 25 (02), 354–360. doi:10.13869/j.cnki.rswc.2018.02.051
(in Chinese).

Hu, M., Hu, Y., and Yuan, J. (2019). Benchmarking on Water Resource Utilization
Efficiency of Prefecture-Level Cities in Jiangxi, China: A Bootstrap-DEA

Approach with Three-Stage DEA Models. Environ. Nat. Resour. J. 9, 14.
doi:10.5539/enrr.v9n3p14

Hu, Z., Yan, S., Yao, L., andMoudi, M. (2018). Efficiency Evaluation with Feedback
for Regional Water Use and Wastewater Treatment. J. Hydrol. 562, 703–711.
doi:10.1016/j.jhydrol.2018.05.032

Huang, Y., Huang, X., Xie, M., Cheng, W., and Shu, Q. (2021). A Study on the
Effects of Regional Differences on Agricultural Water Resource Utilization
Efficiency Using Super-Efficiency SBM Model. Sci. Rep. 11, 9953. doi:10.1038/
s41598-021-89293-2

Khaskheli, M. A., Abro, M. I., Chand, R., Elahi, E., Khokhar, F. M., Majidano, A. A.,
et al. (2021). Evaluating the Effectiveness of Eggshells to Remove Heavy Metals
from Wastewater. Desalination Water Treat 216, 239–245. doi:10.5004/dwt.
2021.26807

Laureti, T., Benedetti, I., and Branca, G. (2021). Water Use Efficiency and Public
Goods Conservation: A Spatial Stochastic Frontier Model Applied to Irrigation
in Southern Italy. Socio-Economic Plann. Sci. 73, 100856. doi:10.1016/j.seps.
2020.100856

Li, S., Meng, W., and Xie, Y. (2017). Forecasting the Amount of Waste-Sewage
Water Discharged into the Yangtze River Basin Based on the Optimal
Fractional Order Grey Model. Int. J. Environ. Res. Public Health 15, 20.
doi:10.3390/ijerph15010020

Li, X., and Cui, J. (2009). “Real-Time Water Resources Allocation: Methodology
and Mechanism,” in 2009 IEEE International Conference on Industrial
Engineering and Engineering Management, Beijing, China, December 8–11,
2009, 1637–1641. doi:10.1109/ieem.2009.5373121

Liu, K.-D., Yang, G.-L., and Yang, D.-G. (2020). Investigating Industrial Water-Use
Efficiency in mainland China: An Improved SBM-DEA Model. J. Environ.
Manage. 270, 110859. doi:10.1016/j.jenvman.2020.110859

Liu, X., Qi, Y., Li, F., Yang, Q., and Yu, L. (2018). Impacts of Regulated Deficit
Irrigation on Yield, Quality and Water Use Efficiency of Arabica Coffee
under Different Shading Levels in Dry and Hot Regions of Southwest
China. Agric. Water Manage. 204, 292–300. doi:10.1016/j.agwat.2018.
04.024

Mu, L., Fang, L., Wang, H., Chen, L., Yang, Y., Qu, X. J., et al. (2016). Exploring
Northwest China’s Agricultural Water-Saving Strategy: Analysis of Water Use
Efficiency Based on an SE-DEA Model Conducted in Xi’an, Shaanxi Province.
Water Sci. Technol. 74, 1106–1115. doi:10.2166/wst.2016.286

Nataraja, N. R., and Johnson, A. L. (2011). Guidelines for Using Variable Selection
Techniques in Data Envelopment Analysis. Eur. J. Oper. Res. 215 (3), 662–669.
doi:10.1016/j.ejor.2011.06.045

Othman, F. M., Mohd-Zamil, N. A., Rasid, S. Z. A., Vakilbashi, A., and Mokhber,
M. (2016). Data Envelopment Analysis: A Tool of Measuring Efficiency in
Banking Sector. Int. J. Econ. Financ. Issues 6, 911–916.

Qi, Q., and Song, S. (2020). Measurement and Influencing Factors of Industrial
Water Resource Utilization Efficiency in Yangtze River Economic Belt. Int.
J. Des. Nat. Ecodynamics 15 (5), 653–658. doi:10.18280/ijdne.150506

Qiu, Y. Y., and Sheng, J. (2020). Study on Urban Water Resources Utilization
Efficiency Based on SE-DEA and Malmquist Index. J. North China Univ. Water
Resour. Electric Power (Natural Sci. Edition) 41 (05), 25–33. doi:10.19760/j.
ncwu.zk.2020059 (in Chinese).

Sala-Garrido, R., Molinos-Senante, M., and Hernández-Sancho, F. (2012). How
Does Seasonality Affect Water Reuse Possibilities? an Efficiency and Cost
Analysis. Resour. Conservation Recycling 58, 125–131. doi:10.1016/j.resconrec.
2011.11.002

Salehi, M. (2022). Global Water Shortage and Potable Water Safety; Today’s
Concern and Tomorrow’s Crisis. Environ. Int. 158, 106936. doi:10.1016/j.
envint.2021.106936

Shi, C., Zeng, X., Yu, Q., Shen, J., and Li, A. (2021). Dynamic Evaluation and
Spatiotemporal Evolution of China’s Industrial Water Use Efficiency
Considering Undesirable Output. Environ. Sci. Pollut. Res. 28, 20839–20853.
doi:10.1007/s11356-020-11939-x

Shi, Z., Huang, H., Wu, F., Chiu, Y.-h., and Zhang, C. (2020). The Driving Effect of
Spatial Differences of Water Intensity in China. Nat. Resour. Res. 29,
2397–2410. doi:10.1007/s11053-019-09602-5

Siampour, L., Vahdatpour, S., Jahangiri, M., Mostafaeipour, A., Goli, A.,
Shamsabadi, A. A., et al. (2021). Techno-Enviro Assessment and Ranking of
Turkey for Use of Home-Scale Solar Water Heaters. Sustainable Energ. Tech.
Assessments 43, 100948. doi:10.1016/j.seta.2020.100948

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 81969312

Cheng et al. A Case Study of Guangdong Province

48

https://doi.org/10.1007/s11625-017-0476-7
https://doi.org/10.1007/s11625-017-0476-7
https://doi.org/10.1016/0169-2070(92)90049-f
https://doi.org/10.1287/mnsc.30.9.1078
https://doi.org/10.1111/j.1475-3995.2007.00599.x
https://doi.org/10.1111/j.1475-3995.2007.00599.x
https://doi.org/10.16619/j.cnki.rmlt.2014.34.003
https://doi.org/10.16619/j.cnki.rmlt.2014.34.003
https://doi.org/10.11870/cjlyzyyhj201806008
https://doi.org/10.13522/j.cnki.ggps.2020029
https://doi.org/10.3390/su11236571
https://doi.org/10.3969/j.issn.1673-8241.2008.04.009
https://doi.org/10.3969/j.issn.1673-8241.2008.04.009
https://doi.org/10.1007/978-3-642-27275-2_43
https://doi.org/10.1080/00036840500428054
https://doi.org/10.1080/00036840500428054
https://doi.org/10.3390/w12113193
https://doi.org/10.1016/j.ecolind.2018.09.011
https://doi.org/10.1016/j.ecolind.2018.09.011
https://doi.org/10.3969/j.issn.1001-9235.2002.01.006
https://doi.org/10.3969/j.issn.1001-9235.2002.01.006
https://doi.org/10.1007/s11356-019-06062-5
https://doi.org/10.1007/s11356-019-06062-5
https://doi.org/10.11705/j.issn.1672-643X.2018.02.05
https://doi.org/10.11705/j.issn.1672-643X.2018.02.05
https://doi.org/10.13869/j.cnki.rswc.2018.02.051
https://doi.org/10.5539/enrr.v9n3p14
https://doi.org/10.1016/j.jhydrol.2018.05.032
https://doi.org/10.1038/s41598-021-89293-2
https://doi.org/10.1038/s41598-021-89293-2
https://doi.org/10.5004/dwt.2021.26807
https://doi.org/10.5004/dwt.2021.26807
https://doi.org/10.1016/j.seps.2020.100856
https://doi.org/10.1016/j.seps.2020.100856
https://doi.org/10.3390/ijerph15010020
https://doi.org/10.1109/ieem.2009.5373121
https://doi.org/10.1016/j.jenvman.2020.110859
https://doi.org/10.1016/j.agwat.2018.04.024
https://doi.org/10.1016/j.agwat.2018.04.024
https://doi.org/10.2166/wst.2016.286
https://doi.org/10.1016/j.ejor.2011.06.045
https://doi.org/10.18280/ijdne.150506
https://doi.org/10.19760/j.ncwu.zk.2020059
https://doi.org/10.19760/j.ncwu.zk.2020059
https://doi.org/10.1016/j.resconrec.2011.11.002
https://doi.org/10.1016/j.resconrec.2011.11.002
https://doi.org/10.1016/j.envint.2021.106936
https://doi.org/10.1016/j.envint.2021.106936
https://doi.org/10.1007/s11356-020-11939-x
https://doi.org/10.1007/s11053-019-09602-5
https://doi.org/10.1016/j.seta.2020.100948
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


SLT (2020a). Department of Water Resources of Guangdong Province- Overview
of Water Resources. Available at: (in Chinese)http://slt.gd.gov.cn/szy8924/
content/post_888844.html (Accessed 5 8, 2020).

SLT (2020b). Department of Water Resources of Guangdong Province- Overview
of Water Resources. Available at: (in Chinese)http://slt.gd.gov.cn/szy8924/
content/post_888844.html (Accessed 04 30, 2020).

SOHU (2020). Water Shortage in Guangdong-Hong Kong-Macao Bay Area-
Water Resources. Available at: (in Chinese)www.sohu.com/a/404225825_
120705352 (Accessed May 8, 2021).

Sun, B., and Yang, X. (2019). Analysis of Water Resources Utilization Efficiency in
Jilin Province Based on DEA Method. Destech Trans. Comput. Sci. Eng.,
700–704. doi:10.12783/dtcse/iteee2019/28828

Sun, C. Z., and Liu, Y. Y. (2009). Analysis of the Spatial-Temporal Pattern of Water
Resources Utilization Relative Efficiency Based on DEA-ESDA in China.
Resour. Sci. 31 (10), 1696–1703. doi:10.3321/j.issn:1007-7588.2009.10.010 (in
Chinese).

Sun, Y., Ren, F., Liu, J., Shi, N., Wang, H., and You, X. (2021). Evaluation of
Wastewater Pollution and Treatment Efficiencies in China during Urbanization
Based on Dynamic Exogenous Variable Data Envelopment Analysis. Front.
Environ. Sci. 9, 585718. doi:10.3389/fenvs.2021.585718

Wan, Y. H., and Zhang, G. Y. (2012). Thoughts on Accelerating the Development
and Utilization of Unconventional Water Sources. China Water Resour. 17,
9–10. doi:10.3969/j.issn.1000-1123.2012.17.004 (in Chinese).

Wang, M., Huang, Y., and Li, D. (2021). Assessing the Performance of Industrial
Water Resource Utilization Systems in China Based on a Two-Stage DEA
Approach with Game Cross Efficiency. J. Clean. Prod. 312, 127722. doi:10.1016/
j.jclepro.2021.127722

Wang, Q., Jiang, R., and Li, R. (2018). Decoupling Analysis of Economic
Growth from Water Use in City: A Case Study of Beijing, Shanghai, and
Guangzhou of China. Sustain. Cities Soc. 41, 86–94. doi:10.1016/j.scs.2018.
05.010

Wang, S., Zhou, L., Wang, H., and Li, X. (2018). Water Use Efficiency and its
Influencing Factors in China: Based on the Data Envelopment Analysis (DEA)-
Tobit Model. Water 10 (7), 8–32. doi:10.3390/w10070832

Wu, H. A., Zeng, B., and Zhou, M. (2017). Forecasting the Water Demand in
Chongqing, China Using a Grey Prediction Model and Recommendations for
the Sustainable Development of Urban Water Consumption. Int. J. Environ.
Res. Public Health 14 (11), 1386. doi:10.3390/ijerph14111386

Zhang, G. J., and Wu, H. Q. (2020). Measurement and the Spatial Interaction
Analysis of the Water Resource Comprehensive Utilization Efficiency in China.
J. Quantitative Tech. Econ. 37 (08), 123–139. doi:10.13653/j.cnki.jqte.2020.08.
007 (in Chinese).

Zhu, D., and Tang, L. (2020). Efficiency Assessment ofWater Resource Utilization in
the Chinese Provincial Capital Cities Based OmData Envelopment analysis. Acta
Ecologica Sinica 40 (06), 1–11. doi:10.5846/stxb201903020385 (in Chinese).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Cheng, Song and Xie. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 81969313

Cheng et al. A Case Study of Guangdong Province

49

http://slt.gd.gov.cn/szy8924/content/post_888844.html
http://slt.gd.gov.cn/szy8924/content/post_888844.html
http://slt.gd.gov.cn/szy8924/content/post_888844.html
http://slt.gd.gov.cn/szy8924/content/post_888844.html
http://www.sohu.com/a/404225825_120705352
http://www.sohu.com/a/404225825_120705352
https://doi.org/10.12783/dtcse/iteee2019/28828
https://doi.org/10.3321/j.issn:1007-7588.2009.10.010
https://doi.org/10.3389/fenvs.2021.585718
https://doi.org/10.3969/j.issn.1000-1123.2012.17.004
https://doi.org/10.1016/j.jclepro.2021.127722
https://doi.org/10.1016/j.jclepro.2021.127722
https://doi.org/10.1016/j.scs.2018.05.010
https://doi.org/10.1016/j.scs.2018.05.010
https://doi.org/10.3390/w10070832
https://doi.org/10.3390/ijerph14111386
https://doi.org/10.13653/j.cnki.jqte.2020.08.007
https://doi.org/10.13653/j.cnki.jqte.2020.08.007
https://doi.org/10.5846/stxb201903020385
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Quantitative Evaluation and Diagnosis
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Systems Engineering, Hefei University of Technology, Hefei, China

In order to effectively deal with the uncertainty between evaluation samples and evaluation
criteria, and quantitatively identify the water resources carrying capacity (WRCC) and its
obstacle factors in the Yellow River irrigation district, a calculation method of dynamic
difference degree coefficient varying with evaluation sample was proposed, and then an
evaluation and diagnosis model of WRCC was established. The results applied to the
Dagong irrigation district showed that the overall WRCC of five counties in the irrigation
district were improved from 2010 to 2017, especially since 2013. The improvement
magnitudes of Changyuan County, Fengqiu County, and Hua County were significantly
higher than those of Xun County and Neihuang County. In 2017, Fengqiu County,
Changyuan County, Hua County, Xun County, and Neihuang County were in water
resources critical overloaded status, and the connection number values were 0.231,
0.163, 0.120, −0.293, and −0.331, respectively, which is consistent with the fact that their
distances become farther from the main stream of the Yellow River. In addition, the
utilization ratio of water resources, available water resources amount per capita, GDP per
capita, and water deficient ratio in each county belonged to the middle or strong obstacle
index over a long period of time. They were the crucial obstacle factors of WRCC in the
Dagong irrigation district, as well as the core and difficult points of water resources
management. In some counties, the effective irrigation area ratio, effective utilization
coefficient of irrigation water, and water consumption ratio of the ecological
environment gradually developed from strong obstacle to weak or strong promotion
index. These were important reasons for the improvement of their carrying situation,
reflecting their control of agricultural and ecological water consumption. In short, the
results of the case study suggest that the model established in this study is conducive to
the identification of water resources’ carrying status and its key obstacle factors in the
Yellow River irrigation district, and can be applied to the evaluation and regulation of
resources and environment carrying capacity.
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INTRODUCTION

The Yellow River irrigation district plays a key role in national
food security and regional water security in China (Ren et al.,
2018; Xiong et al., 2021; Yin et al., 2021). However, due to the
conflicting issues in water resources supply and demand, in
combination with a fragile ecological environment and severe
water problems in the Yellow River basin, the sustainable
development of the Yellow River irrigation district is
significantly restricted at present (Gonçalves et al., 2007; Jia
et al., 2013; Miao et al., 2015). Water resources carrying
capacity (WRCC) is a key index to quantify the sustainability
of regional water resources utilization. Therefore, accurate
evaluation and diagnosis of obstacle factors for WRCC in the
Yellow River irrigation district are of great significance to ensure
the coordinated development of water resources, the social
economy, and the ecological environment (Pereira et al., 2007;
Zhang X. et al., 2020; Jin et al., 2021).

Over the past 3 decades, WRCC has become a hot and difficult
issue in the field of sustainable water resources utilization (Wang
et al., 2013; Peng et al., 2021; Qi et al., 2021). Gong and Jin (2009)
established a fuzzy comprehensive evaluation model of WRCC.
Wang et al. (2018) constructed an evaluation model of WRCC
based on entropy and synergy theories. Similarly, Dai et al. (2019)
used a system dynamics model to evaluate WRCC. Song et al.
(2020) assessed WRCC using the catastrophe series method. Wu
et al. (2020) built an evaluation model of WRCC based on cloud
model. Furthermore, Zhao et al. (2021) established an evaluation
and influencing factor analysis model of WRCC based on the
theoretical framework of pressure support, damage recovery, and
recession promotion. However, previous studies on WRCC
evaluation have mostly focused on cities or regions, while
those focusing on irrigation districts are scarce (Kang et al.,
2019; Zhang et al., 2019; He et al., 2021). In addition, research
on the obstacle factor diagnosis of WRCC is even less common
(Cui et al., 2018). Therefore, it is urgent to establish an effective
evaluation and diagnosis model, as well as accurately identify the
level and obstacle factors of WRCC in the Yellow River irrigation
district.

The WRCC system is affected by many factors, including
water resources, the social economy, and the ecological
environment, and is a typically complex system (Yang et al.,
2015; Wang et al., 2019; Liao et al., 2020). At present, the
multi-index system comprehensive evaluation is an effective
method of WRCC evaluation by constructing an evaluation
index system and evaluation model (Zhang et al., 2019; Peng
and Deng, 2020; Zuo et al., 2021). However, most models are
unable to fully consider the uncertainty between evaluation
samples and evaluation criteria, resulting in the deviations of
evaluation results (Jin et al., 2008). Set pair analysis (SPA) is a
new system uncertainty analysis method which fully reflects
the certainty and uncertainty relationships between evaluation
samples and evaluation criteria by the same-different-inverse
structure of connection number for the set pair constructed by
these two sets (Zhao, 2000; Kumar and Garg, 2016; Chong
et al., 2017). This method has been widely used to
comprehensively evaluate water resources system problems

(Wang et al., 2009; Li et al., 2019; Zhang et al., 2021). Yang
et al. (2014) used SPA to evaluate the vulnerability of water
resources system. Roy and Datta (2019) studied the adaptive
management of coastal aquifers based on SPA and entropy
theory. In addition, Su et al. (2019) conducted water security
evaluation using SPA and scenario simulation. Similarly, Lyu
et al. (2021) coupled SPA and fuzzy number to assess the risk of
urban water quality. Wan et al. (2021) built a river health
evaluation and prediction model based on SPA and extension
theory. Nevertheless, the majority of studies only reflect the
evaluation results based on the connection number
components (Li et al., 2021). Thus, it is difficult to obtain
the value of the complete connection number, which results in
a loss of information, thereby limiting the development of
SPA. Moreover, the key is to reasonably determine the
difference degree coefficient of the connection number.

As a key part of the connection number, the difference
degree coefficient is used to quantitatively describe the
uncertainty of the constructed set pair at the micro level
(Zhao, 2000; Wang et al., 2009; Pan et al., 2017). This has a
significant impact on the evaluation results. Several
researchers have reported on the calculation methods of the
difference degree coefficient. For example, Li et al. (2009)
deduced and optimized the difference degree coefficient
using the target value of the connection number. Tang
(2009) proposed an expert estimation method of the
difference degree coefficient. Furthermore, Pan et al. (2016)
and Li et al. (2021) respectively constructed the trapezoidal
and triangular fuzzy numbers of the difference degree
coefficient, and determined the variation range of difference
degree coefficient at a given cut set level. Jin et al. (2019a,
2019b) allocated the difference degree coefficient in
proportions using grey correlation degree and full partial
certainty, respectively. However, the majority of these
methods are relatively rough and only obtain an
approximate value or an interval range of difference degree
coefficients (Tang, 2009; Pan et al., 2016; Li et al., 2021). In fact,
accurately calculating the value of the difference degree
coefficient remains difficult, which leads to large deviations
between the research results and reality. In addition, this
coefficient should be determined in combination with
evaluation sample information. Therefore, at present, there
is a need for the development of an effective method with
which to calculate the difference degree coefficient.

In this study, based on the theoretical analysis and practical
investigation of the water resources carrying characteristics in the
Yellow River irrigation district, an evaluation index system and
evaluation grade criteria were built. Additionally, a method to
calculate the dynamic difference degree coefficient varying with
the evaluation sample was also proposed, and the value of the
complete connection number was obtained. Then, a model was
established to quantitatively evaluate the WRCC and diagnose its
key obstacle factors in the Yellow River irrigation district.
Furthermore, this model was further applied to the Dagong
irrigation district in Henan Province, China. The results
provide scientific support for water resources management and
decision-making in the Yellow River irrigation district.
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MATERIALS AND METHODS

Evaluation and Diagnosis Model of WRCC
Based on Dynamic Difference Degree
Coefficient
The evaluation and diagnosis model of WRCC in the Yellow
River irrigation district based on dynamic difference degree
coefficient was constructed according to the following steps
(Figure 1):
Step 1: Based on the structural and functional analysis of
WRCC system (Jin et al., 2018; Liao et al., 2020), combined
with the results of practical study, expert consultation, and
literature review in the Yellow River irrigation district (Zhang
et al., 2019; Zhang X. Y. et al., 2020; Jin et al., 2021), an
evaluation index system {xkj|k = 1, 2, 3; j = 1, 2, . . . , nk} was
established. The evaluation index sample set was set as {xikj|i =
1, 2, . . . , m; k = 1, 2, 3; j = 1, 2, . . . , nk}, where xikj denotes the
value of index j in subsystem k for sample i, m denotes the
number of evaluation samples, k = 1, 2, 3 denotes the water

resources carrying support force subsystem, carrying pressure
force subsystem, and carrying regulation force subsystem,
respectively, and nk denotes the number of indexes in
subsystem k. In addition, in this study, the WRCC in the
Yellow River irrigation district was divided into three
evaluation grades (Cui et al., 2018; Li et al., 2021) {sgkj|g =
1, 2, 3; k = 1, 2, 3; j = 1, 2, . . . , nk}, where g = 1, 2, 3 denotes the
water resources loadable status, critical overloaded status, and
overloaded status, respectively.
Step 2: The improved fuzzy analytical hierarchy process based on
accelerating genetic algorithm (AGA-FAHP) (Jin et al., 2004) was
used to determine the weight of subsystem and that of each
evaluation index {wkj|k = 1, 2, 3; j = 1, 2, . . . , nk}.

For subsystem k, experts were invited to compare the
importance of each index in this subsystem to the WRCC in
the irrigation district, and the fuzzy complementary judgment
matrix Ak = (akjl)nk×nk was obtained. This matrix met 0 ≤ akjl ≤ 1
and akjl + aklj = 1, akjl = 0.5, indicating that index j was as important
as index l, akjl > 0.5, indicating that index j was more important
than index l, and vice versa. Furthermore, the AGA-FAHP was

FIGURE 1 | Construction process of evaluation and diagnosis model for water resources carrying capacity (WRCC) in the Yellow River irrigation district based on
dynamic difference degree coefficient.
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used to verify and modify the consistency of Ak and calculate the
weight of each evaluation index wkj. If Ak satisfies additive
transitivity, then (Song and Yang, 2003):

(akjq − 0.5) + (akql − 0.5) � (akjl − 0.5), k � 1, 2, 3; j, q, l

� 1, 2, . . . , nk (1)
where Ak denotes the fuzzy consistency judgment matrix, (akjl ‒
0.5) describes the importance of index j compared with index l,
and the fuzzy consistency judgment matrix meant that this
preference of importance could be transmitted. Moreover, if
Ak meets complete consistency, then (Song and Yang, 2003):

∑nk
j�1

∑nk
l�1

∣∣∣∣∣0.5(nk − 1)(wkj − wkl) + 0.5 − akjl
∣∣∣∣∣/n2k � 0 (2)

where the left term in Eq. 2 is the consistency index of Ak. If this
index did not exceed a certain critical value, it would indicate that
Ak had satisfactory consistency. Otherwise, Ak should be
modified. The modified matrix was Bk = (bkjl)nk×nk, and the
sorting weight of the element in Bk was still set as {wkj|k = 1,
2, 3; j = 1, 2, . . . , nk}. Hence, Bk satisfies the following equation
(Jin et al., 2004):

minCIC(nk) �∑nk
j�1

∑nk
l�1

∣∣∣∣∣bkjl −akjl∣∣∣∣∣/n2k +∑nk
j�1

∑nk
l�1

∣∣∣∣∣0.5(nk −1)(wkj −wkl)
+0.5−bkjl

∣∣∣∣∣/n2k

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

bkjj � 0.5, k� 1,2,3;j� 1,2, . . . ,nk
1−bklj � bkjl ∈ [akjl −d,akjl +d]∩ [0,1],

k� 1,2,3;j� 1,2, . . . ,nk; l� j+1, j+2, . . . ,nk
∑nk
j�1

wkj � 1.0,wkj ∈ [0,1], k� 1,2,3;j� 1,2, . . . ,nk

(3)
which represents the optimal fuzzy consistency judgment matrix
forAk. Here,CIC(nk) is the consistency index coefficient and d is a
parameter that usually takes the value within [0, 0.5]. The sorting
weight {wkj|k = 1, 2, 3; j = 1, 2, . . . , nk} and the upper triangular
elements in Bk were the optimization variables. Accelerating
genetic algorithm (AGA) is a general global optimization
method and it is effective in solving Eq. 3. In addition, when
CIC(nk) was less than a certain critical value,A

kwas considered to
have satisfactory consistency, and the obtained sorting weight of
each evaluation index was acceptable. Otherwise, d should be
adjusted. Based on a large number of simulation tests and relevant
studies (Jin et al., 2004; Cui et al., 2018), a critical value of 0.20 was
selected in this study.

Step 3: SPA is an original theory of uncertainty quantitative
analysis proposed by Chinese scholar Zhao Keqin in 1989 (Zhao,
2000). The foundation of SPA was the connection number u of
the set pair constructed by two sets with a common attribute, and
the certainty and uncertainty relationships of the set pair were
quantitatively described by a same-different-inverse structure.
Specifically, according to SPA, the certainty of the set pair was

divided into two aspects of similarity and opposition, which were
quantitatively expressed by a and c, respectively. Furthermore, the
uncertainty of the set pair was divided into the uncertainty at a
macro level, which was measured by b, and that at the micro level,
which was depicted by I. The ternary connection number u,
which was commonly used, is expressed as follows (Yang et al.,
2014):

u � a + bI + cJ (4)
where a, b, and c denote the similarity degree, difference degree,
and opposition degree components of connection number u,
respectively, which were used to quantitatively express the
degrees of the same property, different property, and inverse
property for the constructed set pair, a + b + c = 1. I denotes the
difference degree coefficient and its value varies with the
relationship type of the set pair. The set pair constructed in
this study belonged to the positive-negative type, and I generally
took the value within [‒1, 1]. J denotes the opposition degree
coefficient, which generally takes ‒1 for the set pair of positive-
negative type (Wang et al., 2009; Cui et al., 2018).

Based on SPA and the practical problem of WRCC
evaluation in the Yellow River irrigation district, two sets of
evaluation index value and evaluation grade criteria
constituted a set pair. According to the variable fuzzy set of
the proximity between index value and grade criteria, the
connection number of evaluation index was calculated.
Specifically, the initial ternary connection number
component ugikj between WRCC evaluation index sample
value xikj and grade criteria sgkj (g = 1, 2, 3) in the
irrigation district were, respectively, as follows (Jin et al.,
2008):

u1ikj �

1, s0kj ≤xikj ≤ s1kj for positive index,
or s0kj ≥xikj ≥ s1kj for negative index

1 − 2(xikj − s1kj)/(s2kj − s1kj), s1kj <xikj ≤ s2kj for positive index,
or s1kj >xikj ≥ s2kj for negative index

−1, s2kj < xikj ≤ s3kj for positive index,
or s2kj >xikj ≥ s3kj for negative index

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(5)

u2ikj �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 2(s1kj − xikj)/(s1kj − s0kj), s0kj ≤xikj ≤ s1kj for positive index,
or s0kj ≥xikj ≥ s1kj for negative index

1, s1kj <xikj ≤ s2kj for positive index,
or s1kj >xikj ≥ s2kj for negative index

1 − 2(xikj − s2kj)/(s3kj − s2kj), s2kj <xikj ≤ s3kj for positive index,
or s2kj >xikj ≥ s3kj for negative index

(6)

u3ikj �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1, s0kj ≤ xikj ≤ s1kj for positive index,
or s0kj ≥xikj ≥ s1kj for negative index

1 − 2(s2kj − xikj)/(s2kj − s1kj), s1kj <xikj ≤ s2kj for positive index,
or s1kj >xikj ≥ s2kj for negative index

1, s2kj <xikj ≤ s3kj for positive index,
or s2kj >xikj ≥ s3kj for negative index

(7)
where the larger the value of positive (negative) index, the
higher (lower) the evaluation grade. s1kj and s2kj denote the
critical value between grade 1 and grade 2, and that between
grade 2 and grade 3, respectively, for index j in subsystem k. s0kj
and s3kj denote the other critical values of grade 1 and grade 3,
respectively.
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The initial ternary connection number component ugikj
depended on whether the evaluation index sample value xikj
belonged to the same interval, adjacent interval, or separated
interval of evaluation grade g, and took 1, the value within [‒1, 1],
or ‒1, respectively. Therefore, ugikj can be regarded as a relative
difference degree function for the variable fuzzy set of the
proximity between index value and grade criteria, the
corresponding relative membership degree is as follows (Chen,
2005):

apikj � 0.5+0.5u1ikj,b
p
ikj � 0.5+0.5u2ikj,c

p
ikj � 0.5+0.5u3ikj, i

� 1,2, . . . ,m;k� 1,2,3;j� 1,2, . . . ,nk (8)
Furthermore, the final ternary connection number

components a, b, and c of the WRCC evaluation index in the
irrigation district were obtained using Eq. 8 after normalization
as follows (Jin et al., 2008; Cui et al., 2018):

aikj �apikj/(apikj+bpikj+cpikj), bikj � bpikj/(apikj+bpikj+cpikj), cikj
� cpikj/(apikj+bpikj+cpikj) (9)

Step 4: According to SPA and the expression of connection
number u in Eq. 4, the difference degree coefficient I was the
link that transformed difference degree b to similarity degree a or
opposition degree c under certain conditions. It was considered to
be an important connector between the theoretical model of
connection number and the practical research question.
Therefore, how to scientifically determine I was a key and
challenging problem when calculating the value of the
complete connection number. However, the value process of
difference degree coefficient I was highly uncertain and
complex and few studies had been published at present.

The difference degree coefficient I was essential to
quantitatively describe the uncertainty of set pair at the
micro level (Zhao, 2000; Wang et al., 2009; Pan et al.,
2017), while an important source of the uncertainty was
the information carried by sample data. In addition, the
physical meaning of I can be interpreted as the level of
difference degree b transformed to similarity degree a or
opposition degree c, wherein the direction (transformed to a
or c) and magnitude should be closely related to the proximity
between evaluation sample value and each evaluation grade.
That was, the larger the value of a (or c), the more b
transformed to a (or c). Therefore, I should vary
continuously and dynamically with the practical sample
value of research question. In this study, the set pair
composed of WRCC evaluation index sample value xikj
and grade criteria sgkj in the Yellow River irrigation
district belonged to the positive-negative type, where the
value range of I was [‒1, 1] (Zhao, 2000; Zhang, 2020a; Jin
et al., 2021). Furthermore, when I was within [0, 1], this
indicated that b transformed to a, whereas when I was within
[‒1, 0], indicating that b transformed to c, and the absolute
value of I reflected the transformed magnitude. In other
words, the difference degree coefficient Iikj in this study
continuously and dynamically changed with the evaluation

index sample value xikj, as shown in Figure 2. Specifically,
when xikj was closer to the critical value s0kj of grade 1, Iikj was
closer to 1. When xikj was closer to the critical value s1kj
between grades 1 and 2, Iikj was closer to 1/3. When xikj was
closer to the critical value s2kj between grades 2 and 3, Iikj was
closer to ‒1/3. Moreover, when xikj was closer to the critical
value s3kj of grade 3, Iikj was closer to ‒1. Based on SPA and
the above analysis, this study proposed a method for
calculating the dynamic difference degree coefficient of the
ternary connection number as follows:

Iikj �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 2(xikj − s0kj)/3(s1kj − s0kj), s0kj ≤xij ≤ s1kj for positive index,
or s0kj ≥xikj ≥ s1kj for negative index

−2[xikj − (s1kj + s2kj)/2]/3(s2kj − s1kj), s1kj <xikj ≤ s2kj for positive index,
or s1kj >xikj ≥ s2kj for negative index

−1 + 2(s3kj − xikj)/3(s3kj − s2kj), s2kj < xikj ≤ s3kj for positive index,
or s2kj >xikj ≥ s3kj for negative index

(10)

Step 5: The ternary connection number uikj of index j in
subsystem k for WRCC evaluation sample i was calculated by
substituting the results obtained by Eqs. 5‒10) into Eq. 4 (Zhao,
2000; Jia et al., 2013):

uikj � aikj + bikjIikj + cikjJ, i � 1, 2, . . . , m; k � 1, 2, 3; j

� 1, 2, . . . , nk (11)
Combined with the weight wkj of index j in subsystem k

obtained by Eq. 3, the ternary connection number uik of
subsystem k for sample i was calculated as follows (Jin et al.,
2008):

uik � ∑nk
j�1

wkjaikj +∑nk
j�1

wkjbikjIikj +∑nk
j�1

wkjcikjJ, i � 1, 2, . . . , m;

k � 1, 2, 3 (12)
Finally, the ternary connection number ui of WRCC

evaluation sample i in the Yellow River irrigation district was
obtained according to the following equation (Cui et al., 2018):

ui � ∑3
k�1

∑nk
j�1

wkwkjaikj +∑3
k�1

∑nk
j�1

wkwkjbikjIikj +∑3
k�1

∑nk
j�1

wkwkjcikjJ,

i � 1, 2, . . . , m (13)
where wk denotes the weight of subsystem k, which can be
calculated using the AGA-FAHP.

The evaluation grade value of WRCC in the irrigation district
was calculated based on the connection number value u
obtained by Eq. 13, wherein u∈[‒1, 1]. Furthermore, u was
divided into three levels according to the critical values of
evaluation index grade criteria, which corresponded to water
resources overloaded status u∈[‒1.000, ‒0.667), critical
overloaded status u∈[‒0.667, 0.667], and loadable status
u∈(0.667, 1.000], respectively.

To compare with the connection number value u, the
evaluation grade value hi of sample i was calculated using the
level eigenvalue method (Zhou et al., 2022) in Eq. 14. h was also
divided into three levels according to the critical values of
evaluation index grade criteria, which corresponded to water
resources overloaded status h∈(2.5, 3.0], critical overloaded status
h∈[1.5, 2.5], and loadable status h∈[1.0, 1.5), respectively.
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hi � ∑3
k�1

∑nk
j�1

wkwkjaikj + 2∑3
k�1

∑nk
j�1

wkwkjbikj + 3∑3
k�1

∑nk
j�1

wkwkjcikj,

i � 1, 2, . . . , m (14)
Step 6: The main obstacle factors hindering the improvement of
WRCC in the Yellow River irrigation district were diagnosed
based on the connection number value uikj of evaluation index
calculated using Eq. 11. It can be proven that uikj∈[‒1, 1], and
based on the principle of equal division, the evaluation indexes
were divided into five types. They were strong obstacle uikj∈[‒
1.0, ‒0.6), middle obstacle uikj∈[‒0.6, ‒0.2), weak obstacle
uikj∈[‒0.2, 0.2], weak promotion uikj∈(0.2, 0.6], and strong
promotion indexes uikj∈(0.6, 1.0]. Moreover, the strong or
middle obstacle index was the factor that seriously hindered
the improvement of WRCC, and at the same time, the key focus
of water resources regulation and control in the irrigation
district.

For comparison with the connection number value u, the set
pair potential of connection number for evaluation index was
used to diagnose the obstacle factors of WRCC. According to
SPA, set pair potential reflected the overall development trend of
set pair at the macro level (Zhao, 2000; Zhou et al., 2022). To
quantitatively describe this trend, Cui et al. (2018) constructed
the subtraction set pair potential s1(u) of the ternary connection
number in Eq. 15, the basic idea was to allocate b to a and c
according to the proportions of a/(a+b + c) and c/(a+b + c),
respectively:

s1(uikj)�[aikj+bikjaikj/(aikj+bikj+cikj)]−[cikj+bikjcikj/
(aikj+bikj+cikj)] (15)

In addition, the partial connection number reflected the
overall development trend of set pair at the micro level (Zhao,
2000). From the perspective of same-different-inverse
transformation based on the partial connection number, to
transform the similarity component of b to a, (a+b) should be
regarded as a whole of the similarity and should not include the

opposition degree c. Therefore, it was more reasonable to take a/
(a+b) as the proportion of b allocated to a than a/(a+b + c) in Eq.
15. Similarly, to transform the opposition component of b to c,
(c + b) should be regarded as a whole of the opposition and should
not include the similarity degree a. It was more reasonable to
consider c/(c + b) as the proportion of b allocated to c than c/
(a+b + c) in Eq. 15. Therefore, based on the subtraction set pair
potential and further combined with the idea of the partial
connection number, a new adjoint function of the ternary
connection number, the semipartial subtraction set pair
potential s2(u) was proposed (Jin et al., 2021):

s2(uikj) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1, aikj + bikj � 0
1, bikj + cikj � 0[aikj + bikjaikj/(aikj + bikj)] − [cikj + bikjcikj/(cikj + bikj)],

aikj + bikj ≠ 0 and bikj + cikj ≠ 0

(16)
It can be seen that s2(uikj)∈[‒1, 1], according to the principle of

equal division, s2(uikj) was divided into five levels. They were
inverse potential s2(uikj)∈[‒1.0, ‒0.6), partial inverse potential
s2(uikj)∈[‒0.6, ‒0.2), symmetrical potential s2(uikj)∈[‒0.2, 0.2],
partial identical potential s2(uikj)∈(0.2, 0.6], and identical
potential s2(uikj)∈(0.6, 1.0], respectively. Furthermore, the
index of partial inverse potential or inverse potential was
diagnosed as the main obstacle factor hindering the
improvement of WRCC and also the important object of
water resources management in the Yellow River irrigation
district (Li et al., 2021).

Study Area
The evaluation and diagnosis model of WRCC based on dynamic
difference degree coefficient was applied to the Dagong ecological
irrigation district in Henan Province, China. The level of WRCC
and key obstacle factors were quantitatively identified in the
typical Yellow River irrigation district. The Dagong irrigation
district was located in the north of the Yellow River (Figure 3),
with a design irrigation area of 190,000 ha and a land area of

FIGURE 2 | Value process for dynamic difference degree coefficient of the ternary connection number changes with evaluation index sample value. The larger the
value of positive (negative) index, the higher (lower) the evaluation grade.
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2,886 km2. It was a large-scale Yellow River irrigation district in
Henan Province (Zhang et al., 2019; Du et al., 2020). This
irrigation district included Neihuang County, Xun County,
Hua County, Changyuan County, and Fengqiu County, all of
these were advanced counties of grain production in China. The
main planting crops included wheat, rice, and corn, while
intercropping crops included peanuts, millet, beans, cotton,
and sesame (Zhang X. et al., 2020). In recent years, with the
rapid development of the social economy in the irrigation district,
the demand for water resources for agriculture, life, secondary
and tertiary industries, and ecology had continuously increased,
which resulted in a prominent contradiction between limited
supply and increased demand for water resources (Gonçalves
et al., 2007; Pereira et al., 2007; Jia et al., 2013). In summary, the
water resources situation in the Dagong irrigation district was
severe.

RESULTS AND DISCUSSION

Establishment of WRCC Evaluation Index
System in Irrigation District
According to the evaluation target and construction principle
of evaluation index system (Gong and Jin, 2009; Song et al.,
2011; Chang et al., 2020), and combined with the influencing
factors of the real process for WRCC in the ecological Yellow
River irrigation district, the WRCC system was divided into
three subsystems. They were water resources carrying support
force subsystem, carrying pressure force subsystem, and
carrying regulation force subsystem, respectively (Cui et al.,

2018; Jin et al., 2018; Li et al., 2021). Moreover, based on the
comprehensive analysis of carrying characteristics for these
three subsystems, the actual development of water resources,
the social economy, and the ecological environment in the
Dagong irrigation district, as well as relevant research (Du
et al., 2020; Zhang X. et al., 2020; Jin et al., 2021), an evaluation
index system (three subsystems, a total of nine indexes
X1—X9), and the corresponding evaluation grade criteria
(water resources loadable, critical overloaded, and
overloaded status) are listed in Table 1. In addition, the
weights of subsystem and each evaluation index were
determined using the AGA-FAHP in Eq. 3, together with
relevant studies (Du et al., 2020; Zhang X. et al., 2020)
(Table 1).

In this study, the sample data ofWRCC evaluation index in the
Dagong irrigation district were obtained from the Henan Water
resources Bulletin (2010–2017), the Henan Statistical Yearbook
(2011–2018), and phased achievements of the third national
survey and evaluation of water resources utilization in Henan
Province, China.

Evaluation and Analysis of WRCC for Five
Counties in Irrigation District
The sample data of nine WRCC evaluation indexes for five
counties in the Dagong irrigation district from 2010 to 2017,
and the corresponding evaluation grade criteria in Table 1, were
substituted into Eq. 5‒9 to obtain the connection number
components of each index. Furthermore, the dynamic
difference degree coefficient of the connection number for

FIGURE 3 | Location of the Dagong ecological Yellow River irrigation district in Henan Province, China.
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each index was calculated in combination with Figure 2 and Eq.
10. Then, according to the index weight in Table 1 and Eq. 11‒
13, the connection number values of evaluation index, subsystem,
and WRCC were calculated. Meanwhile, the evaluation grade
value according to the level eigenvalue method was obtained
using Eq. 14. Finally, the evaluation results of WRCC in the
Dagong irrigation district are shown in Figures 4‒6.

(1) According to the average value of WRCC evaluation
connection number u from 2010 to 2017 for each county
(Figure 4), from the perspective of multi-year average, Xun
County and Neihuang County belonged to the water resources
overloaded status (‒1.000 ≤ u < ‒0.667), while the other three
counties were in critical overloaded status (‒0.667 ≤ u ≤ 0.667).
The results are consistent with those of Du et al. (2020) and

Zhang et al. (2021). It indicates that although the carrying status
of the five counties has been different over the years, the overall
carrying situation in the Dagong irrigation district is serious.
Thus, there is a need to analyze the driving mechanism of WRCC
in different counties, identify the key factors hindering the
improvement of WRCC, and then take the corresponding
measures.

In addition, it can be seen that from the average value of the
connection number component (Figure 4), the multi-year
average values of opposition degree c for the five counties
were all significantly larger than those of similarity degree a,
which was consistent with the above evaluation result of severe
water resources carrying situation for these five counties.
Moreover, the average values of a in Hua County, Fengqiu

TABLE 1 | Evaluation index system and evaluation grade criteria of water resources carrying capacity (WRCC) in the ecological Yellow River irrigation district (Du et al., 2020;
Zhang X. et al., 2020; Jin et al., 2021).

Evaluation system Evaluation
subsystem

Evaluation index Evaluation grade criteria Index
weight

Index
typeaGrade 1

(loadable)
Grade 2
(critical

overloaded)

Grade 3
(overloaded)

WRCC system in the ecological
Yellow River irrigation district

Carrying support
force

Available water resources amount
per capita X1 (m3)

≥500 [400, 500) <400 0.041 Negative

Utilization ratio of water resources
X2 (%)

≤40 (40, 60] >60 0.166 Positive

Carrying pressure
force

Average urbanization ratio X3 (%) ≤35 (35, 40] >40 0.028 Positive
GDP per capita X4 (Yuan) ≥50000 [30000, 50000) <30000 0.083 Negative
Effective irrigation area ratio X5 (%) ≥60 [40, 60) <40 0.186 Negative
Water deficient ratio X6 (%) ≤10 (10, 20] >20 0.028 Positive
Shallow groundwater exploitation
ratio X7 (%)

≤10 (10, 17.5] >17.5 0.055 Positive

Carrying
regulation force

Effective utilization coefficient of
irrigation water X8

≥0.65 [0.60, 0.65) <0.60 0.166 Negative

Water consumption ratio of
ecological environment X9 (%)

≥5 [3, 5) <3 0.247 Negative

aThe larger the value of positive (negative) index, the higher (lower) the evaluation grade.

FIGURE 4 | Average values of connection number u and its components a, b, and c for water resources carrying capacity (WRCC) evaluation from 2010 to 2017 in
the Dagong irrigation district.
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County, and Changyuan County were relatively higher (0.198,
0.193, and 0.179, respectively), while those of c in Xun County
and Neihuang County were relatively larger (0.598 and 0.591)
(Figure 4). These results were consistent with the above result
that theWRCC in Hua County, Fengqiu County, and Changyuan
County were stronger than those in Xun County and Neihuang
County.

(2) It can be seen from the evaluation results of two methods
(Figure 5), the changing trends of the evaluation grade values of
WRCC for five counties from 2010 to 2017 calculated by
connection number method were consistent with those of level
eigenvalue method. Furthermore, the changing range and the
differences in grade value year to year obtained by connection
number were more significant than level eigenvalue. It shows that
the evaluation method of the connection number based on the
dynamic difference degree coefficient can fully excavate andmake
use of the information carried by sample data. Furthermore, the
uncertainty of the WRCC system can be accurately quantified by
the dynamic difference degree coefficient varying with the actual
evaluation sample, and the value of the complete connection
number can be directly determined. Therefore, the WRCC
evaluation method proposed in this study has a higher
sensitivity and accuracy, and the evaluation results are
reasonable and reliable.

(3) According to the connection number values and the
corresponding grade values of WRCC evaluation for each
county from 2010 to 2017 (Figures 6, 7), from the perspective

of overall development in the irrigation district, from 2010 to 2017,
most counties were in water resources overloaded status (‒1.000 ≤
u < ‒0.667), some belonged to critical overloaded status (‒0.667 ≤
u ≤ 0.667), and others were in loadable status (0.667 < u ≤ 1.000).
Furthermore, the number of overloaded counties decreased from
three in 2010 to zero in 2017, and the average value of the
connection number for the five counties decreased from ‒0.656
in 2010 to ‒0.022 in 2017. After 2013, the average value from 2010
to 2013 and that from 2014 to 2017were ‒0.681 (overloaded) and ‒

FIGURE 5 | Evaluation grade values of two methods for water resources carrying capacity (WRCC) from 2010 to 2017 in the Dagong irrigation district. The two
dashed lines from top to bottom in the figures represent the boundary of connection number value for water resources loadable and critical overloaded status (0.667),
and that for critical overloaded and overloaded status (‒0.667) in each county, respectively.

FIGURE 6 | Connection number values of water resources carrying
capacity (WRCC) evaluation from 2010 to 2017 in the Dagong irrigation
district. The dashed line in the figure represents the boundary of the
connection number value for water resources critical overloaded and
overloaded status (‒0.667) in the irrigation district.
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0.260 (critical overloaded), respectively. Additionally, in 2016 and
2017, the connection number values of the three counties (Fengqiu
County, Changyuan County, and Hua County) were larger than
zero and approached loadable status (Figure 6). The WRCC in the
irrigation district were significantly improved and. it indicates that
although the carrying situation in the Dagong irrigation district is
severe in recent years, it has developed in a favorable direction as a
whole (Zhang et al., 2019; Jin et al., 2021). Thus, there is a need to
continuously strengthen the scientific measures of water resources
regulation. In addition, the Dagong irrigation district may not have
paid enough attention to water resources management before 2013,
resulting in the exploitation of water resources far exceeding the
available amount. The WRCC system is unbalanced and the
WRCC is weak. However, since the implementation of the
strictest water resources management system in China (Zuo
et al., 2014; Wang et al., 2018), the carrying situation in the
irrigation district has been improved markedly, which is
consistent with the studies of Du et al. (2020) and Zhang X.
et al. (2020).

From the perspective of each county, from 2010 to 2017, the
WRCC of the five counties tended to be improved, wherein the
magnitudes in Hua County, Changyuan County, and Fengqiu
County were significantly higher than Neihuang County and
Xun County, especially since 2015. Also, the connection
number value in Neihuang County decreased from 2015 to
2016, reflecting the decline of WRCC (Figure 6). The average
values of the connection number from 2015 to 2017 in Hua
County, Changyuan County, and Fengqiu County were 0.088,
0.106, and 0.080, respectively, all greater than zero, while those in
Neihuang County and Xun County were ‒0.466 and ‒0.531, which
were close to the edge of overloaded status. Moreover, in 2017, the
order of carrying status in the five counties from excellent to poor
was Fengqiu County, Changyuan County, Hua County, Xun
County, and Neihuang County, with the corresponding
connection number values of 0.231, 0.163, 0.120, ‒0.293, and ‒
0.331, respectively. It is consistent with the fact that these five
counties become farther away from the main stream of the Yellow
River (Figure 7). Therefore, the WRCC in each county is

FIGURE 7 | Spatial distributions of water resources carrying capacity (WRCC) evaluation grade values from 2010 to 2017 in the Dagong irrigation district.
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significantly related to its distance from the Yellow River (Jin et al.,
2021).

In reality, there are many upstream and downstream
management units of the backbone projects in the Dagong
irrigation district, wherein their relationships are complex and
difficult to coordinate, and the upstream water resources supply
conditions cannot meet the downstream demand (Zhang X. Y.
et al., 2020). Taking Neihuang County at the downstream end of
the irrigation canal system as an example, this county needs to
apply to the Dagong management office of Xinxiang City and
coordinate with the water conservancy bureaus of the upstream
counties for water resources use (Song and Zhang, 2018). There
are many intermediate links that make it extremely difficult to use
water resources. In addition, Neihuang County has only been able
to divert water once a year in flood season since 2009, with a time
of 1 week. Furthermore, the Yellow River diversion and storage
projects are dry most of the time (Zhang, 2017). Combined with
the statistical data, in 2017, the available water resources amount
per capita in Fengqiu County, Changyuan County, Hua
County, Xun County, and Neihuang County are 340.00 m3,
298.50 m3, 280.56 m3, 178.49 m3, and 278.00 m3, respectively.
Correspondingly, the average water deficient ratios from 2010
to 2017 are 27.91%, 29.91%, 45.60%, 54.89%, and 41.04%,
respectively. The above results are also consistent with the
studies of Zhang et al. (2015) and Du et al. (2020), indicating
that the WRCC of Changyuan County and Fengqiu County have
begun to be strengthened since 2014, and the WRCC in
the Dagong irrigation district improved in 2017, and the
exceptions are Neihuang County and Xun County. Therefore,
to promote the WRCC of each county in the Dagong irrigation
district to a direction of improvement, this study further analyzes
the change of the connection number value for each evaluation
index year to year, and diagnoses the main obstacle factors
of WRCC.

Affected by many factors such as nature, the economy,
society, population, science and technology, the WRCC system
in irrigation district is a typical complex system with great
uncertainty, mainly including a kind of fuzzy uncertainty due
to the uncertainty of the boundary between evaluation samples
and evaluation criteria. In this study, SPA is applied to the
WRCC evaluation in the Yellow River irrigation district, two
sets of evaluation index value and evaluation grade criteria
constitute a set pair, and the certainty and uncertainty of their
proximity are quantitatively analyzed from three aspects of the
same (the evaluation sample value is at the same level as the
evaluation level), different (adjacent level) and inverse
(separated level). Specifically, SPA divides the certainty of
this set pair into similarity and opposition components,
which are quantitatively described by a and c, respectively.
In addition, the uncertainty between similarity and opposition
is divided into the uncertainty at the macro level, measured by
b, and that at the micro level, measured by I. Therefore, the
calculation method of dynamic difference degree coefficient I
varying with evaluation sample proposed in this study,
quantifies the uncertainty at the micro level of the set pair
constituted by index value and grade criteria. From the
perspective of information utilization, this method retains

the extremely important information of the variation range
of sample data for the research objective. In a word, this study
further considers the boundary fuzzy uncertainty of WRCC
system in the Yellow River irrigation district, making the
evaluation results more comprehensive, more objective, and
closer to reality.

Diagnosis of WRCC Obstacle Factors for
Five Counties in Irrigation District
The changes of WRCC for each county in recent years were
analyzed and discussed above. Then, the obstacle factors of
WRCC were diagnosed by the connection number value and
semipartial subtraction set pair potential of evaluation index to
provide a basis for water resources regulation and control in
the Dagong irrigation district.

(1) The connection number value of evaluation index was
calculated using the connection number components and
difference degree coefficients according to Eq. 11. The average
values of the connection number for each index from 2010 to
2017 for five counties in the irrigation district are listed in
Table 2. As shown in Table 2, there were six, six, five, two,
and three strong obstacle indexes (‒1.0 ≤ u < ‒0.6) in Neihuang
County, Xun County, Hua County, Changyuan County, and
Fengqiu County, respectively, on average for many years.
Nevertheless, there were zero, zero, one, one, and one strong
promotion indexes (0.6 < u ≤ 1.0), respectively. These results were
consistent with the above results that the WRCC of Fengqiu
County, Changyuan County, and Hua County were stronger than
Neihuang County and Xun County (Figures 4, 7). It indicates
that the numbers of strong obstacle indexes and the strong
promotion indexes determined by the connection number
value in this study can reflect the overall carrying situation of
each county. The more the strong obstacle index and the less the
strong promotion index, the worse the carrying status, and
vice versa.

Over the years, the utilization ratio of water resources X2

was a strong obstacle index, available water resources
amount per capita X1, GDP per capita X4, and water
deficient ratio X6 were strong or middle obstacle indexes
for the five counties (Table 2). These are the key factors
that hinder the improvement of WRCC in the Dagong
irrigation district, and also the important objects of
WRCC regulation and control. Meanwhile, the annual
variations of the connection number value for these
indexes are so small that they are difficult to be improved
and regulated.

(2) The connection number values of nine WRCC evaluation
indexes from 2010 to 2017 for five counties in the Dagong
irrigation district, and the semipartial subtraction set pair
potential calculated by Eq. 16, are shown in Figure 8. The
change of the connection number value for each index was
analyzed and the key influencing factors of carrying status in
each county were identified. Moreover, the strong obstacle index
and middle obstacle index were the main reasons for weak
WRCC, which can be diagnosed as the obstacle factors of
WRCC and key objects to be improved.
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The change trend of the connection number value for each
index from 2010 to 2017 was consistent with the semipartial
subtraction set pair potential for the five counties, while the
overall variation range of the connection number value was
larger. However, when the value varied markedly during
2 years, the range of the set pair potential was greater
(Figure 8). For example, the connection number values of
water consumption ratio of ecological environment X9 for Hua
County in 2016 and 2017 were 0.97 and 0.69 (the absolute
difference was 0.28), respectively, while the set pair potential
were 0.97 and 0.76 (0.21) respectively. In addition, the connection
number values of average urbanization ratio X3 for Fengqiu
County in 2013 and 2014 were ‒0.81 and 0.68 (the absolute
difference was 1.49), respectively, while the set pair potential were
‒0.83 and 0.76 (1.59) respectively. It indicates that the connection
number value determined by the calculation method of dynamic
difference degree coefficient proposed in this study is reasonable
and reliable, and can more sensitively and accurately identify the
change of carrying status for evaluation index.

The obstacle factors of WRCC (the connection number value
u < ‒0.2) in Neihuang County were X1, X2, X4, X5, X6, X7, and X8

(Figure 8A). It reflected that in recent years, this county was
generally in water resources overloaded status because of the less
water resources amount, large population, low economic level,
high urbanization degree, less effective irrigation area, and low
utilization coefficient of irrigation water (Zhang et al., 2017).
Furthermore, the reasons for the change in carrying situation

were analyzed to guide water resources management, according
to the connection number value of index. The improvement of
WRCC in 2015 (Figure 5A) was mainly due to the water
consumption ratio of ecological environment X9 developed
from strong obstacle (the connection number value was ‒1.00)
in 2014 to the strong promotion (0.74) in 2015 (Figure 8A).
Additionally, the carrying status worsened again in 2016
(Figure 5A) because the shallow groundwater exploitation
ratio X7 further deteriorated from strong obstacle (‒0.72) in
2015 to the largest strong obstacle (‒1.00) in 2016, and
meanwhile X9 deteriorated from strong promotion (0.74) in
2015 to strong obstacle (‒0.68) in 2016 (Figure 8A).
Therefore, the main season for the declined WRCC from 2015
to 2016 is the sharp drop of water resources supply for the
ecological environment, followed by the continuous degree
increase of groundwater exploitation. Moreover, the reason for
the improvement of WRCC in 2017 was that the average
urbanization ratio X3, effective irrigation area ratio X5, and X9

were improved (Figure 5A and 8A) (Song and Zhang, 2018).
Therefore, the key measures to improve the severe water
resources carrying situation in Neihuang County are to
reasonably control the levels of shallow groundwater
exploitation and urban development, and to increase the
effective irrigation area and water resources consumption for
ecological environment.

The obstacle factors in Xun County were X1, X2, X4, X6, X7,
and X9 (Figure 8). Furthermore, the main reasons for the

TABLE 2 | Average values of connection number for water resources carrying capacity (WRCC) evaluation index from 2010 to 2017 in the Dagong irrigation district.

Evaluation
index

Neihuang county Xun county Hua county Changyuan county Fengqiu county

Connection
number
value

Index
type

Connection
number
value

Index
type

Connection
number
value

Index
type

Connection
number
value

Index
type

Connection
number
value

Index
type

Available water
resources amount
per capita X1 (m3)

−0.58 Middle
obstacle

−0.80 Strong
obstacle

−0.80 Strong
obstacle

−0.80 Strong
obstacle

−0.76 Strong
obstacle

Utilization ratio of
water resources
X2 (%)

−0.88 Strong
obstacle

−0.92 Strong
obstacle

−0.90 Strong
obstacle

−0.79 Strong
obstacle

−0.79 Strong
obstacle

Average
urbanization ratio
X3 (%)

−0.31 Middle
obstacle

0.10 Weak
obstacle

0.81 Strong
promotion

−0.43 Middle
obstacle

0.41 Weak
promotion

GDP per capita X4
(Yuan)

−0.72 Strong
obstacle

−0.63 Strong
obstacle

−0.75 Strong
obstacle

−0.29 Middle
obstacle

−0.81 Strong
obstacle

Effective irrigation
area ratio X5 (%)

−0.55 Middle
obstacle

−0.67 Strong
obstacle

0.50 Weak
promotion

−0.31 Middle
obstacle

0.04 Weak
obstacle

Water deficient
ratio X6 (%)

−0.79 Strong
obstacle

−0.86 Strong
obstacle

−0.81 Strong
obstacle

−0.25 Middle
obstacle

−0.32 Middle
obstacle

Shallow
groundwater
exploitation ratio
X7 (%)

−0.79 Strong
obstacle

−0.46 Middle
obstacle

−0.81 Strong
obstacle

1.00 Strong
promotion

1.00 Strong
promotion

Effective utilization
coefficient of
irrigation water X8

−0.71 Strong
obstacle

−0.34 Middle
obstacle

−0.26 Middle
obstacle

−0.42 Middle
obstacle

−0.40 Middle
obstacle

Water
consumption ratio
of ecological
environment X9 (%)

−0.63 Strong
obstacle

−0.91 Strong
obstacle

−0.30 Middle
obstacle

−0.30 Middle
obstacle

−0.34 Middle
obstacle
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overloaded status from 2010 to 2013 (Figure 5B) were that the
water resources amount was low, the population was large, the
economic level was low, and the effective irrigation area was small
(Figure 8) (Jin et al., 2021). The slight improvement of WRCC
since 2014 (Figure 5B) was due to the effective irrigation area
ratio X5 and effective utilization coefficient of irrigation water X8

gradually developed from strong obstacle to strong promotion.
Nevertheless, at the same time, the average urbanization ratio X3

degenerated from middle obstacle to strong obstacle, and the
shallow groundwater exploitation ratio X7 gradually degenerated
from strong promotion to weak obstacle and even strong obstacle
(Figure 8). It indicated that in recent years, the increase of
effective irrigation area had promoted the improvement of
WRCC in Xun County. Meanwhile, the rapid development of
urbanization and the increasingly high rates of groundwater
exploitation had limited the magnitude of improvement, which
should be paid attention to. These were consistent with research
of Zhang X. et al. (2020), who found that Xun County was in the
edge of overloaded status. This may be due to the fact that, for
satisfying the water consumption of social and economic

development, the expansion of groundwater funnel had not
been effectively controlled. In addition, this county is located
at the downstream end of the canal system in the Dagong
irrigation district (Figure 7), and the upstream water supply
condition cannot meet the downstream water demand, resulting
in the poor WRCC.

The obstacle factors in Hua County were X1, X2, X4, X6, and X7

(Figure 8). In addition, the approaching overloaded status from
2010 to 2014 (Figure 5C) was mainly due to the less water
resources amount, large population, low economic level, and high
degree of water resources utilization (Figure 8) (Zhang, 2017).
Therefore, supplementing the amount of water resources,
accelerating social and economic development, promoting
water saving level, and controlling water resources exploitation
are effective means to improve the carrying situation. TheWRCC
increased significantly from 2015 to 2017 (Figure 5C) because of
the improvement in the effective utilization coefficient of
irrigation water X8 and water consumption ratio of ecological
environment X9. X8 gradually developed from strong obstacle
before 2015 to weak obstacle and strong promotion thereafter,

FIGURE 8 | Connection number values of water resources carrying capacity (WRCC) evaluation index from 2010 to 2017 in the Dagong irrigation district. The four
dashed lines from top to bottom in the figures represent the boundary of connection number value for strong promotion and weak promotion types (0.6), and those for
weak promotion and weak obstacle (0.2), weak obstacle and middle obstacle (‒0.2), and middle obstacle and strong obstacle (‒0.6) in each county, respectively.
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while X9 was improved from strong obstacle in 2014 to strong
promotion in 2017 (Figure 8). These are directly related to the
control of agricultural and ecological water consumption by the
policy of “three red lines,” and reflect the effectiveness and
necessity of the strictest water resources management system
in China (Zuo et al., 2014; Zhang et al., 2015). Furthermore,
according to the investigation, the amount of water diversion
from the Yellow River in Hua County has been about 70 million
m3 since 2007, without taking into account the normal water
supply, excessive water resources were stored in reservoirs. This
effectively alleviates the problem of farmland irrigation, improves
the ecological environment, and guarantees the sustainable and
stable development of the social economy in this county. In
addition, the average urbanization ratio X3 remained the index of
strong promotion type for a long time (Figure 8). The
appropriate urbanization level is an important factor to ensure
excellent carrying status in Hua County (Figure 7).

The obstacle factors in Changyuan County were X1, X2, X3, X4,
andX6 (Figure 8). Furthermore, the carrying status was improved
from near overloaded to critical overloaded from 2014 to 2017
(Figure 5D). This was mainly because the effective irrigation area
ratio X5 gradually developed from strong obstacle in 2014 to weak
promotion and strong promotion. Meanwhile, the effective
utilization coefficient of irrigation water X8 and water
consumption ratio of ecological environment X9 were
improved from strong obstacle to strong promotion
(Figure 8). It shows that since the implementation of the
strictest water resources management system, this county has
scientifically adjusted the agricultural and ecological water
consumption, and the effects are remarkable (Dou and Wang,
2017; Zhang et al., 2017). However, the connection number
values of average urbanization ratio X3, GDP per capita X4,
and water deficient ratio X6 fluctuated markedly over the
years, and they all belonged to the index of middle obstacle
type (Figure 8 and Table 2), which should be paid close attention
as obstacle factors. The shallow groundwater exploitation ratio X7

was always strong promotion (Figure 8), indicating that
Changyuan County has strictly controlled the degree of
groundwater exploitation for a long time (Song et al., 2020).
This is a crucial factor for guaranteeing its relatively excellent
water resources carrying situation (Figure 7).

The obstacle factors in Fengqiu County were X1, X2,X4, and X6

(Figure 8). It can be seen that the less water resources amount,
large population, and low economic level significantly restricted
the improvement of its WRCC (Zhang, 2017; Jin et al., 2021).
Therefore, transferring and supplementing the water resources
and promoting the economic development are powerful
measures to strengthen the WRCC. Similar to Changyuan
County, Fengqiu County gradually developed from near
overloaded status to critical overloaded status from 2014 to
2017 (Figure 5e), which was mainly due to that the effective
irrigation area ratio X5, effective utilization coefficient of
irrigation water X8, and water consumption ratio of ecological
environment X9 were improved from middle obstacle or strong
obstacle to strong promotion (Figure 8). It suggests that this
county has strictly carried out the control of “red lines” on
agricultural and ecological water consumption (Zhang et al.,

2015), fully ensuring the effective improvement of its carrying
situation. Moreover, the average urbanization ratio X3 quickly
recovered to weak promotion and strong promotion after
deteriorating to strong obstacle in 2013, while the water
deficient ratio X6 was not improved after worsening to strong
obstacle in 2012 from strong promotion in 2010 and 2011. The
shallow groundwater exploitation ratio X7 was the index of strong
promotion type for a long time (Figure 8) (Song et al., 2020). It
reflects that the appropriate levels of groundwater exploitation
and urbanization are key factors to ensure the strong WRCC in
Fengqiu County (Figure 7). Meanwhile, it is necessary to take
measures, such as adding water supply, decreasing water
consumption, or increasing water use efficiency, to reduce the
water deficient ratio and then strengthen the WRCC.

In summary, the evaluation and diagnosis results obtained in
this study are consistent with the real water resources carrying
situation in the Dagong irrigation district under the current
policy environment (Xu, 2020; Fan et al., 2021; Qin, 2021).
According to the construction standard of ecological irrigation
district, and great concerns about ecological civilization
construction and new water resources management concept in
China, the administrative departments should further improve
the water resources allocation of each county in the irrigation
district and conduct other relevant works. So as to realize that
there are water resources for supplementing source in flood
season and those for irrigation in non-flood season, on the
basis of guaranteeing the domestic and industrial water supply.

CONCLUSION

In order to deal with the uncertainty between evaluation samples
and evaluation criteria, a connection number model of WRCC
evaluation was established. Furthermore, taking account of the
information carried by sample data, a calculation method of
dynamic difference degree coefficient varying with the actual
evaluation sample was also proposed. As a result, a quantitative
evaluation and obstacle factor diagnosis model of WRCC in the
Yellow River irrigation district was constructed. In addition, an
empirical study was carried out in the Dagong ecological
irrigation district, and the following main conclusions were
obtained:

1) The results of WRCC evaluation and diagnosis in a typical
irrigation district were consistent with the real situation and
existing studies, indicating that the connection number
evaluation and diagnosis method based on dynamic
difference degree coefficient was effective and reliable.
These results provided important scientific support for
water resources allocation and management in the Yellow
River irrigation district.

2) Although the WRCC in the Dagong irrigation district
remained severe, it had been improved as a whole since
2013. Five counties of the irrigation district were all in
water resources critical overloaded status by 2017.
Moreover, the WRCC of Fengqiu County, Changyuan
County, Hua County, Xun County, and Neihuang County
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became weaker in turn, which was consistent with the fact that
theywere further away from themain stream of the YellowRiver.

3) The utilization ratio of water resources, available water
resources amount per capita, GDP per capita, and water
deficient ratio belonged to the index of strong or middle
obstacle type. These were the main obstacle factors of WRCC,
as well as the key and difficulty of water resources regulation
and control for the Dagong irrigation district.

4) The connection number model based on dynamic difference
degree coefficient proposed in this study can identify the
relatively certain water resources carrying situation and its
crucial obstacle factors in irrigation district, and can be
applied to resources, environment, ecology carrying
capacity fields, and other set pair system problems.
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Spatial–Temporal Pattern and
Influencing Factors of Drought
Impacts on Agriculture in China
Xiyuan Deng1,2, Guoqing Wang1,2,3*, Haofang Yan4, Jintao Zheng1 and Xuegang Li1

1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing,
China, 2Research Center for Climate Change, Nanjing, China, 3Yangtze Institute for Conservation and Development, Nanjing,
China, 4Research Centre of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China

Agricultural drought disaster is a major natural disaster affecting economic and social
development. It is of significance to investigate the spatial–temporal pattern and the
dominant influence of natural and human factors on agricultural drought disasters for
drought hazard relief. In this study, Mann–Kendall test was adopted to explore the
evolution of agricultural drought disasters. Random forest algorithm, which integrates
feature importance and accumulated local effects plot, was applied to quantify the effect of
principal influencing factors on agricultural drought disasters. Results show that over the
period from 1950 to 2019, agricultural drought disasters in China have undergone
significant fluctuations. The spatial pattern of agricultural drought disaster tends to
decrease in severity from north to south. The total sown area of crops, precipitation,
effective irrigation area, domestic patent application authorization, and regional GDP are
the top 5 dominant factors influencing agricultural drought disasters. It also found that
agricultural drought disaster negatively correlates with precipitation, domestic patent
application authorization, and regional GDP, and the nonlinear response of agricultural
drought disaster to total sown area of crops and effective irrigation area can be basically
divided into two stages. In the first stage, with the increase of feature value, agricultural
drought disaster is also increasing. In the second stage, with the increase of feature value,
agricultural drought disaster is growing slow or just decreasing. The results can deepen the
understanding of agricultural drought disasters and provide scientific basis for drought
event monitoring, evaluation, and early warning.

Keywords: agricultural drought disaster, drought impacts, spatial–temporal pattern, influencing factors, human
activities, random forest, feature importance, ALE plots

1 INTRODUCTION

Drought is one of the most frequent natural hazards in the world (Schwalm et al., 2017). Compared
with other natural disasters, drought usually affects vast space with long period, and has great impact
on hydrology and ecosystem (Orth and Destouni, 2018). Drought may bring about the reduction of
soil moisture, river runoff, and crop yield; cause the degradation of river ecological function; and
even affect regional water, food, and ecological security. Drought is a major natural disaster affecting
economic and social development in China (Lv et al., 2011). From 2008 to 2018, the average area
affected by drought in China was 12.8 million hectares, with an average grain loss of 18.7 billion kg
(Ministry of Water Resources of China, 2019). In the context of global warming, agriculture
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production is affected by increasingly serious meteorological
disasters. It is quite important to carry out the research on
spatial–temporal pattern and evolution characteristics of
agricultural drought disasters in China, so as to reduce the
potential risk of drought hazard and formulate corresponding
measures (Yan et al., 2016; Dayal et al., 2018; Ni et al., 2019; Wu
et al., 2020; Zhao et al., 2020).

The selection of agricultural drought indicators is the basis of
agricultural drought analysis. Agricultural drought involves
atmosphere, soil, and crops. The commonly used indicators
include standardized precipitation index (SPI), standardized
soil moisture index (SSMI), water deficit index (WDI), crop
moisture index (CMI), and Palmer Drought Severity Index
(PDSI) (Cancelliere et al., 2006; Shah and Mishra, 2020; Tian
et al., 2022). Most of the aforementioned agricultural indicators
are composed of data of crop and soil (Hao et al., 2017;West et al.,
2019). They mainly consider disaster drivers and disaster
environment, without involving the actual loss of crops
directly after drought events. Effective agricultural drought
indicators should reflect the impacts of drought (Liu et al.,
2019). Li et al. (2019) analyzed the temporal and spatial
characteristics of drought in Heilongjiang, Jilin, and Liaoning
provinces based on the statistical data of crop sown area, drought-
affected area, drought-suffering area, area with no harvest, and
grain loss due to severe drought in Northeast China from 1949 to
2017. Wu et al. (2018) adopted drought-affected area rate as
drought risk index to establish the risk assessment and zoning
model for regional drought disaster based on Cloud Model and
Bootstrap Method (CMBM) in Anhui province.

Drought is a natural phenomenon, but it is also widely affected
by human activities. For instance, hydrological drought may
occur downstream of a reservoir; diversion irrigation may
alleviate agricultural drought; long-term overexploitation of
groundwater for domestic and production water use may
cause ecological drought. Nowadays, human activities have
deeply affected water cycle and energy cycle, and the
influencing factors of agricultural drought disasters are
becoming more and more complex. It is necessary to identify
the influencing factors of agricultural drought disasters, screen
key disaster-causing factors, and explore the relationship between
agricultural drought disaster and various factors, to prevent and
control agricultural drought disasters (Yang et al., 2020). Many
researches have been carried out on driving factors of agricultural
drought disasters (Blauhut et al., 2016; Huang et al., 2015; Pang
et al., 2019; Zobeidi et al., 2021). Han et al. (2021) analyzed the
influencing factors of agricultural drought in Loess Plateau (LP),
and the result shows that significant increasing precipitation (p <
0.01) in the LP has not alleviated agricultural drought, whereas
significant increasing temperature (p < 0.01) is the direct factor
inducing agricultural drought, and the implementation of
vegetation restoration project further aggravates the risk of
agricultural drought. Hong (2017) calculated the information
transmission direction and intensity between different types of
drought indicators in Hanjiang River Basin, and analyzed the
regular pattern of drought propagation and evolution; the result
shows that the interaction between agricultural drought and
hydrological drought is quite close, showing a high degree of

synchronization. However, most of the previous studies on
drought are conducted for a river basin or a region rather
than the entire China (Huang et al., 2015; Cheng et al., 2017;
Wu et al., 2017; Dai et al., 2020), and influencing factors only
focus on natural attributes, with less consideration of the role of
human activities on drought disasters (Javadinejad et al., 2020).

The response of hydrological and agricultural systems to
meteorological conditions is nonlinear (Berghuijs et al., 2016;
Konapala and Mishra, 2016); it is one of the sticky points to
separate the role of individual natural or human factors and
clarify their driving mechanism on agricultural drought disasters.
As an algorithm that uses computers to imitate human learning,
machine learning can develop learning strategies, analyze
potential patterns, and predict target variables according to
existing data (Kohavi and Provost, 1998; Liu et al., 2019;
Apley and Zhu, 2016). In water cycle field, machine learning
algorithm can capture the nonlinear relationship between input
variables (e.g., precipitation, temperature) and output variables
(e.g., runoff), and apply the functional relationship to target
prediction (Nourani et al., 2014; Raghavendra and Deka,
2014). Although most machine learning algorithms cannot
directly quantify the internal mechanism of the model
behavior (Gupta and Nearing, 2015; Karpatne et al., 2017), the
emergence of interpretable methods can improve the
understanding of specific machine learning model or
prediction (Guidotti et al., 2019; Ji et al., 2019; Liu. W et al.,
2019). Based on interpretable methods, it is easier to quantify
feature importance, and clarify the dependency between input
features and output targets. Nowadays, machine learning
algorithms have been widely used in drought prediction (Liu
et al., 2018; Başakın et al., 2019; Shamshirband et al., 2020);
interpretable methods also began to rise in hydro-meteorological
area (Schwalm et al., 2017; Fienen et al., 2018; Koch et al., 2019),
but the application of the aforementioned emerging technologies
in the identification of key factors of agricultural drought
disasters is still limited.

The previous discussion suggests that limited research has
been conducted to investigate the dominant nonlinear influence
of natural and human factors on agricultural drought disasters
over China based on machine learning model. Therefore, the
main objectives of this paper are

1) To explore the spatial–temporal pattern and evolution
characteristics of agricultural drought disasters in China;

2) To identify the dominant natural and human factors and their
effects on agricultural drought disasters in China based on
machine learning model.

To achieve these aims, first, we selected drought-affected area
and drought-suffering area as the indexes indicating agricultural
drought disasters, and the spatial–temporal pattern and evolution
characteristics of agricultural drought disasters were presented
based on Mann–Kendall test. Second, an index system that
consisted of natural and human factors of agricultural drought
disasters with 22 indexes was established, and Random Forest
algorithm derived from 4 datasets of 2011–2019, 2004–2019,
1987–2019, and 1979–2019 were trained and tested to explore
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TABLE 1 | List of indicators; their data sources and brief description are provided

Indicator Data source Description Unit Time period

Drought-affected area China Statistical
Yearbook

The sown area with crop yield 10% or more lower than normal year due
to drought disaster

103 ha 1950–2020 (National
scale)
1979–2019
(Provincial scale)

Drought-suffering area China Statistical
Yearbook

The sown area with crop yield 30% or more lower than normal year due
to drought disaster

103 ha

Total sown area of crops China statistical
yearbook

The sown or transplanted area of crops on all land that should be
harvested by agricultural producers and operators

103 ha

Drought-affected area rate — The percentage of drought-affected area to total sown area of crops %
Drought-suffering area rate — The percentage of drought-suffering area to total sown area of crops %

Regional GDP China Statistical
Yearbook

The final result of production activities of all resident units in a region
during a year calculated according to the market price

108 yuan 1979–2019
(Provincial scale)

Total population China Statistical
Yearbook

The population on December 31 of each year 104 1979–2019
(Provincial scale)

Rural population China Statistical
Yearbook

Total population except urban population 104 1979–2019
(Provincial scale)

Total power of agricultural
machinery

China Statistical
Yearbook

The sum of rated power of all agricultural machinery 103 kW 1979–2019
(Provincial scale)

Net amount of agricultural chemical
fertilizer application

China Statistical
Yearbook

The amount of chemical fertilizer actually used for agricultural
production in a year

104 t 1979–2019
(Provincial scale)

Rural electricity use China Statistical
Yearbook

— 108 kW h 1979–2019
(Provincial scale)

Number of reservoirs China Statistical
Yearbook

— — 1987–2019
(Provincial scale)

Reservoir storage capacity China Statistical
Yearbook

Total storage volume below check flood level 108 m3 1987–2019
(Provincial scale)

Number of rural hydropower
stations

China Statistical
Yearbook

— — 2011–2019
(Provincial scale)

Effective irrigation area China Statistical
Yearbook

The cultivated land area with certain water source, relatively flat land,
supporting irrigation projects or equipment, and capable of irrigation in
normal years

103 ha 1979–2019
(Provincial scale)

Number of ordinary high school
graduates

China Statistical
Yearbook

Indicating the level of education in a region 104 1987–2019
(Provincial scale)

Domestic patent application
authorization

China Statistical
Yearbook

The scientific, technological, and design achievements with
independent intellectual property rights, indicating the level of science
and technology in a region

— 1987–2019
(Provincial scale)

Total book prints China Statistical
Yearbook

Indicating the level of cultural propagation in a region 108 1979–2019
(Provincial scale)

Total water resources China Water
Resources Bulletin

The total amount of surface and subsurface water produced by local
precipitation

108 m3 2011–2019
(Provincial scale)

Water production modulus China Water
Resources Bulletin

The ratio of total water resources to regional area in a year 104 m3/
m2

2011–2019
(Provincial scale)

Total water use China Water
Resources Bulletin

The gross water taken by various water users, including water
transmission loss

108 m3 2004–2019
(Provincial scale)

Agricultural water use China Water
Resources Bulletin

Including farmland irrigation water, forest and fruit land irrigation water,
grassland irrigation water, fish pond replenishment water, and livestock
and poultry water

108 m3 2004–2019
(Provincial scale)

Actual irrigation water use per mu of
cultivated land

China Water
Resources Bulletin

The average water use per mu in actual agricultural irrigation area m3 2011–2019
(Provincial scale)

Effective utilization coefficient of
farmland irrigation water

China Water
Resources Bulletin

The proportion of actual water demand for crop growth in irrigation
water

— 2011–2019
(Provincial scale)

(Continued on following page)
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the functional relationship between potential factors and
agricultural drought disasters. Finally, Gini importance,
permutation feature importance, and accumulated local effects
(ALE) plot were applied to identify principal factors and their
influence on agricultural drought disasters.

The remainder of the article is organized as follows: Section 2
provides an overview of study area and data sources, Section 3
presents the methods adopted in the study, Section 4 presents the
results, Section 5 discusses the findings and outlook, and finally
the article is concluded in Section 6.

2 STUDY AREA AND DATA SOURCES

The paper selects China (excluding Hong Kong Special
Administrative Region, Macao Special Administrative Region,
and Taiwan Province) and its 31 provinces as the study area, and
collects the annual data of 24 indicators at national or provincial
spatial scale (Table 1). For national spatial scale, there are three
indicators including drought-affected area, drought-suffering
area, and total sown area of crops, whose data source is China
Statistical Yearbook, with time scale from 1950 to 2020. For
provincial scale, all the 24 indicators are included, but the time
scale of different indicators is different, with the longest from
1979 to 2019 and the shortest from 2011 to 2019. Among the 24
indicators, data of 16 indicators of drought and social economy
such as drought-affected area, regional GDP, and total book
prints number are from China Statistical Yearbook; data of six
indicators of water resources such as total water resources, total
water use, and actual irrigation water use per mu of cultivated
land are from China Water Resources Bulletin; data of two
indicators including precipitation and temperature are from
China Climate Bulletin and ERA5 (Hersbach et al., 2019).
Previous studies indicated that ERA5 data have good
suitability to China, which could reasonably depict regional
difference of hydrological cycle elements (Su et al., 2020;
Zhang et al., 2021; Zhou et al., 2021). However, we found that
there is still a certain bias between original ERA5 products and in
situ observations. We therefore corrected temperature and
precipitation of the original ERA5 data by using bias
correction method. It is found that the corrected ERA5
products are consistent with observations (Supplementary
Figure S1).

Some data are missing for the 4 indicators of drought-affected
area, drought-suffering area, number of reservoirs, and reservoir
storage capacity. Among them, data of drought-affected area and
drought-suffering area from 1967 to 1969 at national spatial scale are
missing, and there are varying degrees of missing data for each

province in each year. To ensure authenticity and objectivity, the
paper does not deal with the missing data in drought-affected area
and drought-suffering area. Data of reservoir number and reservoir
storage capacity in 1999 are missing, and the arithmetic average
values of 1998 and 2000 are used for interpolation.

3 METHODS

3.1 Mann-Kendall Test
Among all the trend analysis methods for time series,
Mann–Kendall test is a method recommended by the World
Meteorological Organization and widely used around the world.
As a nonparametric test method, Mann–Kendall test is an
effective tool to diagnose the trend of a data sequence, which
does not need data series to follow a specific distribution, and is
not affected by sample values, distribution types, and a few
outliers either. Mann–Kendall test has the advantages of
relatively simple calculation, high degree of quantification, and
wide detection range. It is widely used in the analysis of
hydrological data series. The mathematical fundamentals of
Mann–Kendall test are as follows:

For time series x1, x2, . . . , xn, dual number p is calculated by

p � ∑n−1
i�1 ∑n

j−i+1sgn(xj − xi) (1)

where sgn(xj − xi) � { 1 if xj − xi > 0
0 if xj − xi ≤ 0

}.
Then, τ, Var (τ), and U are calculated based on p:

τ � 4p
n(n − 1) − 1 (2)

Var(τ) � 2(2n + 5)/9n(n + 1) (3)
U � τ

Var(τ)1/2 (4)

When the value of statistic U is positive, it indicates that the
time series shows an upward trend, otherwise the time series
shows a downward trend. Taking the significance level as 95%,
U0.05 equals ±1.96. If |U|≥1.96, then the trend of the time series is
significant, otherwise the trend of the time series is not significant.

3.2 Random Forest Model
Random Forest (RF) is a statistical learning theory proposed by
Breiman (2001). Compared with other machine learning
algorithms, Random Forest is insensitive to multicollinearity,
robust to missing data and unbalanced data, does not need
data preprocessing, and can provide reasonable prediction
results for nonlinear relationships. It is one of the best

TABLE 1 | (Continued) List of indicators; their data sources and brief description are provided

Indicator Data source Description Unit Time period

Air temperature China Climate Bulletin,
ERA5

Mean annual air temperature °C 1979–2019
(Provincial scale)

Precipitation China Climate Bulletin,
ERA5

Mean annual precipitation mm 1979–2019
(Provincial scale)
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algorithms for processing high-dimensional data based on
machine learning.

Random Forest is a collection of decision trees, each of which
is slightly different from another. Random Forest repeatedly
extracts samples from the training set, and the unselected
samples constitute the out-of-bag data. Each training sample
set is used to construct a decision tree. During the growth of a
decision tree, features are randomly selected at each node, and the
error of a decision tree is estimated according to the data out of
bag. The prediction result of a RF algorithm is the mean value of
the prediction result of each decision tree, and the prediction
accuracy of a RF algorithm is estimated by the average prediction
accuracy of each decision tree. The model construction process is
as follows:

1) Split the whole data set into training set (75%) and test set
(25%) randomly.

2) The training set is used to construct the RF model, and the
best parameters of the model are determined based on
network search and cross-validation. The accuracy of RF
algorithm output mainly depends on three parameters: a)
the number of trees (n_estimators) to grow in the forest, b)
the maximum number of randomly selected features
(max_features) at each node, and c) the maximum depth
of each tree to grow (max_depth). In this paper, we
randomly resampled different combinations of parameter
sets with max_features ranging from one to total variables
considered, and max_depth ranging from one to ten to
avoid overfitting. Besides, we set n_estimators to 1,000 as
suggested by Hengl et al. (2018) and Probst et al. (2017).
Determination coefficient R2 is adopted to measure the
model training accuracy and then select the optimal
parameters of the RF model. Calculation details are as
follows:

FIGURE 1 | Temporal variation of agricultural drought disasters in China from 1950 to 2020. (A) Drought-affected area and drought-suffering area. (B) Drought-
affected area rate and drought-suffering area rate.
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R2 � ⎡⎢⎢⎣ cov(yi, ypred)
σ(yi) · σ(ypred)⎤⎥⎥⎦

2

(5)

where yi is the actual value in the validation set and ypred is the
predicted value of a RFmodel in the validation set. R2 is between 0
and 1; the optimal value of R2 is 1. Generally, R2 greater than 0.6
would point to a model with good predictive power.

3) The test set is used to evaluate the generalization ability of the
established RF model, and R2, root mean square error
(RMSE), and percent bias (PBIAS) are adopted to be the
evaluation index. Calculation details are as follows:

RMSE �
���������������
1
n
∑n

i�1[yi − ypred]2
√

(6)

PBIAS � 100 ×
∑n

i�1(yi − ypred)∑n
i�1yi

(7)
where n is the number of samples in the test set.

RMSEmeasures the average distance between predicted values
and actual ones. The optimal value of RMSE is 0, with low-
magnitude values indicating accurate model simulation.

PBIAS measures the average tendency of predicted values
larger or smaller than their actual ones. The optimal value of
PBIAS is 0, with low-magnitude values indicating accurate model
simulation. Positive values represent underestimation bias,
whereas negative values represent overestimation bias.

In this paper, Sklearn package in Python is used to realize the
construction and verification of RF model.

3.3 Feature Importance
Two kinds of methods including Gini importance and
permutation feature importance are adopted to filter out the
significant features of target variables.

3.3.1 Gini Importance
Gini coefficient calculates the amount of probability of a specific
feature that is classified incorrectly when selected randomly.
Supposing there are K categories, the probability of i category
is Pi, then the expression of Gini coefficient is

Gini(P) � ∑K

i�1Pi(1 − Pi) � 1 −∑K

i�1P
2
i (8)

Gini coefficient reflects the impurity at a node in a decision
tree. Each time a particular feature is used to split a node, the Gini

coefficient for the child nodes are calculated and compared with that
of the original node. If the reduction is large, it shows that the feature
at the node has a great impact on the decision tree. The importance
of a feature is computed as the normalized total reduction of the Gini
coefficient brought by that feature in a Random Forest, and the sum
of Gini importance of all features is equal to 1. In this paper, Sklearn
package in Python is used to realize the Gini feature importance.

3.3.2 Permutation Feature Importance
Permutation feature importance, introduced by Breiman (2001) for
Random Forests, measures the increase in the prediction error of the
model after we permuted the feature’s values. Features with higher
importance value likely have higher dominant control. Permutation
feature importance provides a highly compressed, global insight into
the model’s behavior. Detailed algorithm turns to Fisher et al. (2019)
and Molnar (2021). In this paper, eli5 package in Python is used to
realize permutation feature importance.

3.4 Accumulated Local Effects Plot
Accumulated local effects plot describes how features influence
the prediction of RF model on average, which can present the
nonlinear response of target variables to features. Compared with
partial dependence plots (PDPs), ALE plots can still work when
features are correlated. In addition, the value at each point of the
ALE curve is the difference to the mean prediction, which makes
their interpretation clearer. In this paper, we repeated the ALE
algorithm in Monte Carlo simulation with 100 replicates, where
on each replicate we generated a new training data set and refit
the RF model with the same best parameters. Detailed algorithm
turns to Grömping (2020) and Molnar (2021). In this paper,
alepython package in Python is used to realize ALE plot.

4 RESULTS

4.1 Spatial-Temporal Pattern of Agricultural
Drought Disasters
4.1.1 Temporal Evolution
The temporal variations of drought-affected area and drought-
suffering area, drought-affected area rate and drought-suffering
area rate over the years from 1950 to 2020 are shown in Figure 1.

TABLE 2 | Statistics of drought-affected area rate and drought-suffering area rate
based on Mann–Kendall test in 1950–1980, 1981–2000, and 2001–2020

Stage Item Statistics

Mean (%) SD Cv U

1950–1980 Drought-affected area rate 13.19 7.56 0.57 3.16a

Drought-suffering area rate 4.72 3.56 0.75 2.61a

1981–2000 Drought-affected area rate 17.12 4.56 0.27 0.84
Drought-suffering area rate 8.44 3.44 0.41 1.3

2001–2020 Drought-affected area rate 10.35 5.76 0.56 −4.48a

Drought-suffering area rate 5.51 3.60 0.65 −4.54a

aMeans passing the significance test with a significance level of 5%.

FIGURE 2 | Frequency curves of drought-affected area and drought-
suffering area in China.
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It can be seen that drought-affected area and drought-suffering
area, drought-affected area rate and drought-suffering area rate
fluctuate since 1950, which can be roughly divided into three
stages: 1950–1980, 1981–2000, and 2001–2020. By calculating the
statistics of the time sequences of drought-affected area rate and
drought-suffering area rate (Table 2), it can be found that the
national multi-year average drought-affected area rate and
drought-suffering area rate are 13.19 and 4.72% in 1950–1980,
17.12 and 8.44% in 1981–2000, and 10.35 and 5.51% in
2001–2020. Compared among the three stages, the national
multi-year average drought-affected area rate and drought-
suffering area rate are the largest in 1981–2000, which are
about 1.3 times and 1.8 times as large as those in 1950–1980,
and 1.7 times and 1.5 times as large as those in 2001–2020. The
variation coefficients of drought-affected area rate and drought-
suffering area rate are 0.57 and 0.75 in 1950–1980, 0.27 and 0.41
in 1981–2000, and 0.56 and 0.65 in 2001–2020. Compared among
the three stages, the variation coefficients of drought-affected area
rate and drought-suffering area rate are the smallest in
1981–2000. This indicates that the agricultural drought
disasters in 1950–1980 and 2001–2020 are relatively gentle,
but the interannual variation is relatively large; the agricultural
drought disasters in 1981–2000 are relatively heavy, but the
interannual variation is relatively small. The U statistics
derived from the Mann–Kendall test of drought-affected area
rate and drought-suffering area rate are 3.16 and 2.61 in
1950–1980 with significant upward trend, 0.84 and 1.3 in
1981–2000 with non-significant upward trend, and −4.48 and
−4.54 in 2001–2020 with significant downward trend. Compared
among the three stages, the downward trend is the most obvious

in 2001–2020. In the past decade (2011–2020), drought-affected
area rate and drought-suffering area rate have been decreasing
continuously, with an average drought-affected area rate of 6.26%
and an average drought-suffering area rate of 2.82%.

The frequency curves of drought-affected area rate and
drought-suffering area rate are shown in Figure 2, and the
frequency characteristic values are shown in Table 3. The
variation of frequency curves of drought-affected area rate and
drought-suffering area rate is overall gentle, but the variation of
rare drought (p < 10%) is relatively heavy. For drought-affected
area rate, there is a probability of 50% greater than 14.29%, 10%
greater than 21.88%, and 5% greater than 24.37%. For drought-
suffering area rate, there is a probability of 50% greater than
5.49%, 10% greater than 10.83%, and 5% greater than 12.47%.
Under the probability of 50%, the value of drought-affected area
rate is about 2.6 times as large as that of drought-suffering area
rate, while under the probability of 10%, the value of drought-
affected area rate is only about 2.0 times as large as that of
drought-suffering area rate. This indicates that with the increase
of drought intensity, it is more likely to evolve into a drought
disaster of high impact with crop yield 30% or more lower than
normal year. The years 1961, 2000, 1960, 2001, and 1959 are the
5 years with the highest drought-affected area rate in China from
1950 to 2020. Also, 2000, 2001, 1961, 1997, and 1994 are the
5 years with the highest drought-suffering area rate in China from
1950 to 2020. The reduction of grain yield in these years was over
5%, up to 11.5% (Zhang et al., 2008).

4.1.2 Spatial Pattern
The spatial distribution of the average drought-affected area rate
and drought-suffering area rate from 1979 to 2019 in China is
shown in Figure 3, and we can see that on the whole, drought-
affected area rate and drought-suffering area rate in northern
China are higher than those in southern China. In southern
China, the southeast coastal provinces have the lowest drought-
affected area rate and drought-suffering area rate. In Northern
China, drought-affected area rate and drought-suffering area rate
of Beijing, Tianjin, and Xinjiang are relatively low. The top five

TABLE 3 | Frequency characteristic value of drought-affected area and drought-
suffering area in China

Possibility 75% 50% 25% 10% 5%

Drought-affected area rate 8.22 14.29 18.42 21.88 24.37
Drought-suffering area rate 3.29 5.49 8.86 10.83 12.47

FIGURE 3 | Spatial distribution of multi-year average agricultural drought disasters. (A) Drought-affected area rate. (B) Drought-suffering area rate.
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provinces with the highest drought-affected area rate are Shanxi
(32.86%), Inner Mongolia (28.88%), Liaoning (24.5%), Gansu
(24.33%), and Shaanxi (22.41%). The top five provinces with the
highest drought-suffering area rate are Inner Mongolia (18.15%),
Shanxi (17.21%), Gansu (14.04%), Liaoning (13.47%), and
Shaanxi (12.33%). The two collections of provinces are exactly
the same and all of them are located in northern China.

Scatter plots of drought-affected area rate and drought-
suffering area rate against sown area proportion are shown in
Figure 4. Here, sown area proportion refers to the percentage of
sown area of crops in a province in the total sown area of crops in
China, which can reflect the contribution of agricultural
production of a province to the whole country. The lines
represent the 50% quantile of drought-affected area rate,
drought-suffering area rate, and sown area proportion, which

is 14.29, 5.49, and 2.93%, respectively. Among the four quadrants,
the first quadrant indicates that agricultural drought disasters are
relatively serious and sown area of crops accounts for a high
proportion of the country. The second quadrant indicates that
agricultural drought disasters are relatively serious but sown area
of crops accounts for a low proportion of the country. The third
quadrant indicates that sown area of crops accounts for a low
proportion of the country and agricultural drought disasters are
relatively light. The fourth quadrant indicates that sown area of
crops accounts for a high proportion of the country but
agricultural drought disasters are relatively light. Therefore, the
provinces located in the first quadrant need to be paid enough
attention. As we can see from the figure, seven provinces
including Inner Mongolia, Gansu, Jilin, Shaanxi, Hebei,
Heilongjiang, and Shandong account for a high proportion of

FIGURE 4 | Agricultural drought disasters against sown area proportion. (A) Drought-affected area rate. (B) Drought-suffering area rate.

FIGURE 5 | Spatial distribution ofU statistic derived fromMann–Kendall test of agricultural drought disasters. (A) Drought-affected area rate. (B) Drought-suffering
area rate.
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sown area and high drought-affected area rate. Ten provinces
including Inner Mongolia, Jilin, Shaanxi, Hebei, Heilongjiang,
Shandong, Yunnan, Hubei, Hunan, and Henan account for a high
proportion of sown area and high drought-suffering area rate.

The trend of drought-affected area rate and drought-suffering
area rate with time of each province was estimated based on
Mann–Kendall test (Figure 5). The drought-affected area rate of
all provinces presents a downward trend with time. Heilongjiang,
Jilin, Liaoning, Inner Mongolia, Ningxia, Gansu, Qinghai,
Xinjiang, Hubei, and Yunnan show a non-significant
downward trend, mainly distributed in northeast China and
northwest China. The rest of the provinces show a significant
downward trend. The drought-suffering area rate of Xinjiang and
Qinghai presents a non-significant upward trend with time, while
the drought-suffering area rate of the other 29 provinces presents
a downward trend with time. Heilongjiang, Jilin, Liaoning, Inner
Mongolia, Ningxia, Gansu, Hubei, Anhui, Jiangxi, Fujian, and
Yunnan show a non-significant downward trend, mainly
distributed in northeast China, northwest China, and
provinces in the middle and lower reaches of the Yangtze
River. The rest of the provinces show a significant
downward trend.

4.2 Analysis on the Influencing Factors of
Agricultural Drought Disasters
4.2.1 Index System
Agriculture drought disasters, impacted by many natural factors
and human activities, are a complicated system. To explore the

principal influencing factors and their effect on agriculture
drought disasters, it is necessary to select operational indexes
comprehensively and construct scientific multi-hierarchy index
systems. Generally, agricultural drought disasters are affected by
natural and human factors.

Natural factors are mainly divided into meteorological
conditions and water resources conditions, including
temperature, precipitation, total water resources, and water
production modulus, which reflects the basic hydrothermal
conditions of agricultural production in a region.

Human factors are mainly divided into 4 aspects: basic socio-
economic conditions, agricultural development, water
conservancy conditions, and water saving consciousness. Basic
socio-economic conditions include three indexes, regional GDP,
total population, and total water use, which represent the
comprehensive socio-economic capacity in a region.
Agricultural development includes six indexes, rural
population, total sown area of crops, total power of
agricultural machinery, net amount of agricultural chemical
fertilizer application, agricultural water use, and rural
electricity use, which shows the basic conditions of agricultural
production in a region. Water conservancy conditions include six
indexes, number of reservoirs, reservoir storage capacity, number
of rural hydropower stations, effective irrigation area, actual
irrigation water use per mu of cultivated land, and effective
utilization coefficient of farmland irrigation water, which
indicates the development and utilization level of water
resources and the ability of drought prevention and reduction
in a region. Water saving consciousness includes three indexes,

TABLE 4 | Index system of influencing factors of agricultural drought disasters

Index system Data series

Abbr Primary Secondary Tertiary 1979–2019 1987–2019 2004–2019 2011–2019

F1 Natural
factor

Meteorological conditions Air temperature 1 1 1 1
F2 Precipitation 1 1 1 1
F3 Water resources conditions Total water resources 0 0 0 1
F4 Water production modulus 0 0 0 1

F5 Human
factor

Basic socio-economic
conditions

Regional GDP 1 1 1 1
F6 Total population 1 1 1 1
F7 Total water use 0 0 1 1
F8 Agricultural development Rural population 1 1 1 1
F9 Total sown area of crops 1 1 1 1
F10 Total power of agricultural machinery 1 1 1 1
F11 Net amount of agricultural chemical fertilizer

application
1 1 1 1

F12 Agricultural water use 0 0 1 1
F13 Rural electricity use 1 1 1 1
F14 Water conservancy conditions Number of reservoirs 0 1 1 1
F15 Reservoir storage capacity 0 1 1 1
F16 Number of rural hydropower stations 0 0 0 1
F17 Effective irrigation area 1 1 1 1
F18 Actual irrigation water use per mu of cultivated land 0 0 0 1
F19 Effective utilization coefficient of farmland irrigation

water
0 0 0 1

F20 Water saving consciousness Number of ordinary high school graduates 0 1 1 1
F21 Domestic patent application authorization 0 1 1 1
F22 Total book prints 1 1 1 1

Total — — — 11 15 17 22
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number of ordinary high school graduates, domestic patent
application authorization, and total book prints, which
indirectly reflect the level of education, scientific research, and
cultural propagation in a region, respectively.

Thus, an index system of influencing factors of agricultural
drought disasters with 22 indexes was established (Table 4). Due
to the limited time length of some indexes obtained from data
sources (Table 1), a total of four datasets have been integrated.
Dataset of 2011–2019 has the shortest time length (9 years), but
contains all the 22 indexes. Dataset of 2004–2019 has time length
of 16 years with 17 indexes. Dataset of 1987–2019 has time length

of 33 years with 15 indexes. Dataset of 1979–2019 has the longest
time length (41 years), but contains only 11 indexes. In the
following paper, we will use these four datasets to explore the
influence of sample number and feature number on the fit
goodness of Random Forest algorithm.

4.2.2 RF Model Performance
Taking drought-affected area and drought-suffering area as target
variables, and taking indexes in Table 4 as features, Random
Forest model was constructed based on the method described in
Section 3.4. It should be mentioned that log (y+1) transformation

FIGURE 6 | Heatmaps are provided with R2 of grid research and cross-validation in case of drought-affected area. (A) 2011–2019. (B) 2004–2019. (C)
1987–2019. (D) 1979–2019.

TABLE 5 | Optimal parameters and the corresponding model performance metrics of RF algorithms for drought-affected area and drought-suffering area

Drought characteristics Time series Best R2 Optimal RF parameters Model performance

max_depth max_features R2 RMSE PBIAS

Drought-affected area 2011–2019 0.25 10 5 0.26 1.30 −4.40
2004–2019 0.44 7 6 0.38 1.24 5.84
1987–2019 0.53 7 9 0.60 1.01 −0.44
1979–2019 0.52 8 5 0.65 0.88 −0.04

Drought-suffering area 2011–2019 0.26 5 3 0.21 1.21 −4.30
2004–2019 0.43 7 4 0.42 1.22 7.88
1987–2019 0.50 7 10 0.59 1.07 −0.49
1979–2019 0.47 9 5 0.62 0.96 0.27
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was carried out on target variables when building the RF model
because both drought-affected area and drought-suffering area
correspond to a positive skew distribution (Figure 2).

To explore the influence of sample number and feature
number on the fit goodness of RF algorithm, the four datasets
of 2011–2019, 2004–2019, 1987–2019, and 1979–2019 were used
as the input data, respectively. Figure 6 and Supplementary
Figure S2 present the results of parameter network search and
cross-validation for drought-affected area and drought-suffering
area in the training set. It can be found that when max_depth is
small (1–4), R2 derived from all the four datasets is poor. When
max_features is small (1–2), R2 derived from all the four datasets
is poor. For the dataset of 2011–2019, R2 is poor when
max_features is large (>7). For the datasets of 2004–2019,
1987–2019, and 1979–2019, R2 changes little with max_depth
(>4) and max_features (>2) increasing.

According to the best R2 of cross-validation, we obtain the
optimal parameters of RF algorithms derived from the four
datasets (Table 5). It shows that the optimal max_depth of all
the algorithms is relatively large (5–10), and the optimal

max_features of the algorithms varies greatly (from 3 to 10).
For drought-affected area, the best R2 of dataset of 2011–2019 is
the smallest (0.25), and that of 1979–2019 is the largest (0.52). For
drought-suffering area, the best R2 of dataset of 2011–2019 is the
smallest (0.26), and that of 1987–2019 is the largest (0.50).
Generally speaking, the increase of sample numbers
significantly improves the simulation accuracy of the RF
algorithm.

We evaluated the performance of RF algorithm derived from
the four datasets in the test set. The metrics of R2, RMSE, and
PBIAS for the corresponding model configurations are listed in
Table 5. Among the four datasets, the algorithm derived from the
dataset of 1979–2019 performs best with the largest R2, smallest
RMSE and PBIAS closest to 0, indicating that the RF algorithm
driven by the dataset of 1979–2019 can explain the variance of
drought-affected area and drought-suffering area to the greatest
extent. It can also be seen from Figure 7D and Supplementary
Figure S3D that the deviation between the actual values in the
test set and the fitted values of the RF algorithm are the smallest.
The RF algorithm driven by the dataset of 2011–2019 performs

FIGURE 7 | Comparison plots are provided with x-axis as the actual values in test set of drought-affected area and y-axis as the fitted values of the RF model. (A)
2011–2019. (B) 2004–2019. (C) 1987–2019. (D) 1979–2019.
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poorly with R2 smaller than 0.30 and overestimates the actual
values (Figure 7A and Supplementary Figure S3A). While the
RF algorithm driven by the dataset of 2004–2019 underestimates
the actual values (Figure 7B and Supplementary Figure S3B)
with R2 smaller than 0.45. The RF algorithm derived from the
dataset of 1987–2019 has high prediction accuracy, but slightly
overestimates the actual values (Figure 7C and Supplementary
Figure S3C), especially drought with low intensity. The test result
of the model also shows that the increase of sample numbers can

improve the generalization ability of the RF algorithm compared
with the increase of the number of features.

4.2.3 Drought-Affected Area
Figure 8 shows the rank of natural and human factors that has potential
influence on drought-affected area indicated by the twomethods of Gini
importance and permutation feature importance based on the four
datasets. Red circles and top x-axis represent results derived from Gini
importance, and blue triangles and bottom x-axis represent results

FIGURE 8 | Rank plots are provided in descending order with features exhibiting maximum importance on the leftmost in case of drought-affected area based on
datasets of (A) 2011–2019, (B) 2004–2019, (C) 1987–2019, and (D) 1979–2019. Red circles and top x-axis represent results derived from Gini importance, blue
triangles and bottom x-axis represent results derived from permutation feature importance. The line shows the average feature importance, which can be used as a
threshold to determine the significant features of interest for Gini importance.
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derived from permutation feature importance. The line shows the
average feature importance of Gini importance, which can be used as
a threshold to determine the significant features of interest.

For the dataset of 2011–2019, F17 (effective irrigation area), F9
(total sown area of crops), F2 (precipitation), F12 (agricultural
water use), F4 (water production modulus), F10 (total power of

FIGURE 9 | ALE plots of top six features controlling drought-affected area. (A) 2011–2019. (B) 2004–2019. (C) 1987–2019. (D) 1979–2019.
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agricultural machinery), F18 (actual irrigation water use per mu
of cultivated land), and F14 (number of reservoirs) have more
than average Gini importance, while F2, F4, and F17 show the top
three permutation importance. It is worth noting that these three
features are the only three features whose permutation
importance value is over 0. For the dataset of 2004–2019, F9,
F2, F17, F12, and F7 (total water use) have more than average
Gini importance, while F9, F2, and F21 (domestic patent
application authorization), and F17 and F5 (regional GDP)
show the top five permutation importance. For the dataset of
1987–2019, F9, F2, F21, and F17 have more than average Gini
importance; these four features are exactly the same as the top
four features derived from permutation feature importance. For
the dataset of 1979–2019, F9, F2, F5, F17, and F8 (rural
population) have more than average Gini importance; these
five features are exactly the same as the top five features
derived from permutation feature importance.

We can find that the significant features screened by the two
methods of Gini importance and permutation importance based
on the datasets of 1979–2019 and 1987–2019 are identical, while
the significant features screened by the twomethods derived from
the dataset of 2011–2019 show significant difference. Considering
the performance of RF models, we can deduce that models with
low prediction accuracy have high uncertainties, and the feature
importance derived from the datasets of 1979–2019, 1987–2019,
and 2004–2019 is more reliable.

In addition, F9, F2, and F17 dominate in controlling drought-
affected area for all the four datasets. F21 dominates in
controlling drought-affected area for datasets of 1987–2019
and 2004–2019. F5 dominates in controlling drought-affected
area for datasets of 1979–2019 and 2004–2019. Based on the
aforementioned facts, we can make a preliminary judgement that
F9, F2, F17, F21, and F5 are the principal features influencing
drought-affected area.

To further understand how these key features influence
drought-affected area, the ALE plots of the top six features
derived from the four datasets are plotted (Figure 9).
Basically, drought-affected area is positively correlated with F9,
and the nonlinear relation between F9 and drought-affected area
can be divided into two stages at 4 million hectares. Before 4
million hectares, drought-affected area increases significantly
with the increase of F9; after 4 million hectares, drought-
affected area increases slightly or even decreases with the
increase of F9. Drought-affected area is negatively correlated
with F2 based on a linear behavior. A non-significant jump
point can be observed at 1,000 mm, and the downward trend
after 1,000 mm is steeper than that before 1,000 mm. The relation
between drought-affected area and F17 is complicated, which can
be roughly divided into two stages around 1 million hectares.
Before 1 million hectares, drought-affected area increases
significantly with the increase of F17; after 1 million hectares,
drought-affected area decreases slightly with the increase of F17.
Two-stage relationship can be observed between drought-affected
area and F21. Before 20,000, drought-affected area decreases
significantly over F21 increasing; after 20,000, drought-affected
area decreases slightly over F21 increasing. Drought-affected area
is negatively correlated with F5. A jump point can be observed

around 150 trillion yuan, and the downward trend after 150
trillion yuan is gentler than that before 150 trillion yuan.

4.2.4 Drought-Suffering Area
Supplementary Figure S4 shows the rank of natural and human
factors that has potential influence on drought-suffering area
indicated by the two methods of Gini importance and
permutation feature importance based on the four datasets.
For the dataset of 2011–2019, F17, F9, F12, F2, F4, F10, F7, F1
(air temperature), and F14 have more than average Gini
importance, while F4, F2, F17, and F3 (total water resources)
show the top four permutation importance. It should be noted
that these four features are the only four features whose
permutation importance value is over 0. For the dataset of
2004–2019, F9, F2, F17, F7, F12, and F21 have more than
average Gini importance, while F9, F21, F2, F17, F5, and F6
(total population) show the top six permutation importance. For
the dataset of 1987–2019, F9, F2, F21, and F17 have more than
average Gini importance; these four features are exactly the same
as the top four features derived from permutation feature
importance. For the dataset of 1979–2019, F9, F2, F5, and F17
have more than average Gini importance; these four features are
exactly the same as the top four features derived from
permutation feature importance.

In addition, F9, F2, and F17 dominate in controlling drought-
suffering area for all the four datasets. F21 dominates in
controlling drought-suffering area for datasets of 1987–2019
and 2004–2019. F5 dominates in controlling drought-suffering
area for datasets of 1979–2019 and 2004–2019. Based on the
aforementioned facts, we can make a preliminary judgement that
F9, F2, F17, F21, and F5 are the key features influencing drought-
suffering area. To further understand how these dominant
features influence drought-suffering area, the ALE plots of top
six features for the four datasets are plotted (Supplementary
Figure S5). The nonlinear relation between drought-suffering
area and F9, F2, F17, F21, and F5 is almost the same as drought-
affected area, so we will not go into much detail here.

5 DISCUSSION

Over the past 70 years, agricultural drought disasters in China
have undergone significant fluctuations, and the spatial pattern of
agricultural drought disasters varies from north to south. In terms
of drought intensity characterized by the absolute value of
drought-affected area and drought-suffering area, northern
China is significantly higher than southern China. In terms of
the impact of drought on agricultural production characterized
by the relationship between drought-affected/suffering area rate
against sown area proportion, eight northern provinces including
Inner Mongolia, Gansu, Jilin, Shaanxi, Hebei, Heilongjiang,
Shandong, and Henan and three southern provinces including
Yunnan, Hubei, and Hunan are greatly affected by drought. In
terms of the trend of drought characterized by the U statistics
derived from Mann–Kendall test, among the aforementioned 11
provinces, drought in Inner Mongolia, Gansu, Jilin, Heilongjiang,
Yunnan, and Hubei shows a non-significant downward trend,
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while drought in Shaanxi, Hebei, Shandong, Hunan, and Henan
presents a significant downward trend. These results show that we
should carry out regular monitoring, predicting, early warning,
and risk management on drought in northern China. At the same
time, we should also pay enough attention to the three southern
provinces including Yunnan, Hubei, and Hunan. In addition, it
should be noted that with the increase of drought intensity, it is
more likely to evolve into a drought disaster of high impact with
crop yield 30% or much lower than normal year, which indicates
that all provinces should further improve their response ability to
heavy drought disasters.

Wang et al. (2021a, 2021b) showed that standardized
precipitation evapotranspiration index (SPEI) has the best
correlation with drought-affected area in Northeast China, and
by analyzing the trend of SPEI during the growing season, they
found that there was an overall increasing trend, and the jump
point was in 1983. Liao and Zhang (2017) found that from the
perspective of drought-affected area rate, northern China is
relatively high, while the middle and lower reaches of the
Yangtze River are relatively low, and the spatial distribution of
drought-affected area rate is basically consistent with that of
meteorological drought days. These results show that sometimes
drought indices derived from hydro-meteorological variables can
be a good representation for agricultural drought disaster. In fact,
drought-affected area and drought-suffering area are not only
related to drought itself, but also closely related to the local
agricultural distribution characteristics.

By analyzing the feature importance in each dataset based on
the two methods of Gini importance and permutation feature
importance, we can deduce that total sown area of crops,
precipitation, effective irrigation area, domestic patent
application authorization, and regional GDP are the top five
dominant factors that influence agricultural drought disasters.
These 5 factors correspond to 5 secondary indexes including
agriculture development, meteorological conditions, water
conservancy conditions, water saving consciousness, and basic
socio-economic conditions, respectively. This also illustrates the
complexity of the influencing factors of agricultural drought
disasters and indicates the applicability of the index system
constructed in this paper.

Qian et al. (2016) analyzed the relationships between
agricultural drought and climate factors based on Pearson
correlation coefficient using vegetation condition index data
recorded from 1982 to 2010; they found that temperature and
wind velocity were the main factors that influenced drought in the
agricultural areas of China. Liu et al. (2021) analyzed
meteorological factors on droughts in Xilinguole Grassland
with a combination of Pearson correlation analysis and t-tests,
and result shows that temperature, precipitation, water vapor
pressure, and solar radiation are the key factors. These two studies
only considered the effect of meteorological factors based on
linear methods, and results showed that temperature and
precipitation are the main influencing factors on agricultural
drought, which is basically consistent with the results in our paper
(Figure 8 and Supplementary Figure S4). However, they
neglected the effect of human activities on agricultural
drought, as Qian et al. (2016) discussed that the correlation

between VCI and precipitation was low, possibly due to the
widespread use of artificial irrigation technology, which
reduces the reliance of agricultural areas on precipitation.
Zhang et al. (2021) identified influencing factors of regional
agricultural drought vulnerability during the period from 2012
to 2018 in Henan Province based on grey trend relational analysis
method, and they found that the influencing factors mainly
related to natural resources, agricultural industrial structure,
agricultural attention, agricultural water efficiency, residents’
awareness of water conservation, and water and soil
conservation measures. This study explored influencing factors
of agricultural drought considering both natural and human
factors based on a nonlinear method, which is quite similar to
our research, and the important impact of natural resources,
agricultural attention, agricultural water efficiency, and residents’
awareness of water conservation is also indicated in our results.
All aforementioned studies explored the dominant influencing
factors on agricultural drought, and the results are different since
influencing factors considered are different. However, few
research studies have investigated how these factors impact
agricultural drought.

ALE plots were adopted to interpret RF algorithm for
revealing how key factors impact agricultural drought disasters
in our paper, and we find that there is a negative linear correlation
between agricultural drought disasters and precipitation basically,
but a non-significant jump point can still be observed at
1,000 mm, showing that when precipitation exceeds 1,000 mm,
the intensity of agricultural drought disasters will decrease more
significantly. This is an important reason for the low intensity of
agricultural drought disasters in southeast coastal China, such as
Jiangsu, Shanghai, Zhejiang, Fujian, Guangdong, and Hainan.
Moreover, agricultural drought disaster negatively correlates with
domestic patent application authorization and regional GDP, and
we suppose that domestic patent application authorization is a
quantifiable index indicating scientific and technological
innovation, and that regional GDP is an excellent index
indicating economic development. They play a great role in
promoting the reduction of agricultural drought disasters at
the beginning of the growth of scientific and technological
innovation and economic development, while during the
development of economy, science and technology reaches a
certain level; for example, in our case, domestic patent
application authorization equals 20,000, regional GDP equals
150 trillion yuan, and the promotion effect of economy, and
science and technology on agricultural drought reduction will
slow down. The responses of agricultural drought disasters to
total sown area of crops and effective irrigation area are similar
and can be basically divided into two stages. The first stage mainly
corresponds to the stage when China’s economy and society have
not yet developed rapidly. Total sown area of crops and effective
irrigation area are low, and the ability of science and technology
to support drought disaster response is also poor. Therefore, with
the increase of total sown area of crops and effective irrigation
area, agricultural drought disasters are also increasing. The
second stage mainly corresponds to the stage of rapid
economic and social development in China. Total sown area
of crops and effective irrigation area are rising, and the ability of
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science and technology to support drought disaster response is
also significantly enhanced. Therefore, with the increase of crop
sown area, the growth rate of agricultural drought disasters slows
down or even decreases. The implementation of irrigation
measures also effectively mitigates drought events. With the
increase of effective irrigation area, agricultural drought
disasters are decreasing. Based on the aforementioned analysis,
we can present the critical thresholds for agricultural drought
disaster prevention and control in China: total sown area of crops
>4 million hectares, effective irrigation area >1 million hectares,
domestic patent application authorization >20,000, and regional
GDP >150 trillion yuan.

Chen et al. (2018) explored the relationship between
socioeconomic factors and grain vulnerability to drought in
China covering the period of 1949–2015 using the method of
locally weighted regression plots. Result shows that irrigated
area rate and GDP in agriculture have a generally monotonous,
linear, and positive relationship with grain sensitivity of
drought, which means with the increase of irrigated area rate
and GDP in agriculture, sensitive crop production to droughts
decreases. This result is basically consistent with the effect of the
second stage of effective irrigation area and regional GDP on
agricultural drought disasters presented in our paper. Pogson
et al. (2012) carried out sensitivity analysis based on a crop
model in the UK, and results showed that with the increase of
precipitation, relative crop yield is increasing with an S-curve
shape. This result is close to the negative relationship between
precipitation and agricultural drought disasters presented in
our paper.

In addition, although other factors do not show significant
influence on agricultural drought disasters, their ALE plots can
still reflect their effect since ALE plots have already removed the
interference of relevant factors. For example, as can be seen
from Figure 9 and Supplementary Figure S5, agricultural
drought disasters is negatively correlated with F4 (water
production modulus), but positively correlated with F8 (rural
population).

Furthermore, it is worth noting that although R2 of cross-
validation and test for RF models are not high (<0.7), the
relationship between influencing factors and target variables
based on Monte Carlo simulation is relatively stable (Figure 9
and Supplementary Figure S5). The purpose of this paper is to
filter out the principal influencing factors of agricultural drought
disasters, so the constructed RF model can fully meet this
requirement. However, the accuracy of cross-validation and
test is not high, which also shows that the input features
cannot fully explain the variance of drought-affected area and
drought-suffering area. It is necessary to further improve the
input features to predict agricultural drought disasters in the
future.

From the analysis of agricultural drought disasters in China,
we can perceive that the north–south spatial pattern of
agricultural drought is remarkable. Next, we will use
unsupervised learning method to further refine agricultural
drought disaster zoning. On this basis, based on RF algorithm,
we will explore the differences of the key influencing factors of
agricultural drought disasters in different zones. In addition, we

will further analyze the occurrence and development process of
agricultural drought disasters from the perspective of physical
causes, and explore the relationship between meteorological
drought, hydrological drought, and agricultural drought in
near-natural areas and areas affected by human activities, so
as to deepen the understanding of drought disasters and provide
scientific basis for drought event monitoring, evaluation, early
warning, and prediction.

6 CONCLUSION

In this study, we analyzed the spatial–temporal pattern and
evolution characteristics of agricultural drought disasters in
China based on the Mann–Kendall test, and applied Random
Forest algorithm by integrating Gini importance, permutation
feature importance, and accumulated local effects plot to quantify
the role of natural and human factors on agricultural drought
disasters. The constructed RF model can adequately meet the
requirement to filter out the key factors of agricultural drought
disasters, reveal the nonlinear response of agricultural drought
disasters to the principal drivers, and identify the critical
thresholds for agricultural drought disaster prevention and
control.

The following conclusions can be drawn from this study:

1) Agricultural drought disaster has been fluctuating since 1950,
which can be roughly divided into three stages: 1950–1980
with a significant upward trend, 1981–2000 with a non-
significant upward trend, and 2001–2020 with a significant
downward trend.

2) The spatial pattern of agricultural drought disaster tends to
decrease in severity from north to south. Eight northern
provinces including Inner Mongolia, Gansu, Jilin, Shaanxi,
Hebei, Heilongjiang, Shandong, and Henan and three
southern provinces including Yunnan, Hubei, and Hunan
are greatly affected by drought. Among them, agricultural
drought disasters in Shaanxi, Hebei, Shandong, Hunan, and
Henan present a significant downward trend, while drought in
Inner Mongolia, Gansu, Jilin, Heilongjiang, Yunnan, and
Hubei shows a non-significant downward trend.

3) Total sown area of crops, precipitation, effective irrigation
area, domestic patent application authorization, and regional
GDP are the top 5 dominant factors influencing agricultural
drought disasters.

4) Agricultural drought disasters have a negative correlation with
precipitation, domestic patent application authorization, and
regional GDP, and the nonlinear responses of agricultural
drought disasters to total sown area of crops and effective
irrigation area can be basically divided into two stages. In the
first stage, with the increase of feature value, agricultural
drought disaster is also increasing. In the second stage,
with the increase of feature value, agricultural drought
disaster is growing slow or just decreasing.

5) The critical thresholds for agricultural drought disaster
prevention and control in China are as follows: total sown
area of crops >4 million hectares, effective irrigation area >1
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million hectares, domestic patent application authorization
>20,000, and regional GDP >150 trillion yuan.

From these insights, we propose that more attention should be
paid in northern China and three southern provinces including
Yunnan, Hubei, and Hunan, and all provinces should further
improve their response ability to heavy drought disasters.
Furthermore, to improve the prediction ability of the RF
model, it is necessary to integrate more knowledge about
agricultural drought disasters. This implies that a better
understanding of the role of factors on agricultural drought
disasters and a better understanding of the development
process of agricultural drought disasters complement each other.
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The Possible Incoming Runoff Under
Extreme Rainfall Event in the Fenhe
River Basin
Shengqi Jian1*, Changyan Yin1, Yafei Wang1, Xin Yu2 and Yong Li2

1College of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou, China, 2Yellow River Institute of
Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, China

Prediction of runoff is of great significance for the sustainable utilization of water resources
and flood control and disaster reduction in the basin. In this study, a method for predicting
the runoff caused by extreme sub-rainfall events was constructed based on the
identification of extreme rainfall events, Mann–Kendall Test, R/S analysis, and
regression analysis. The method was applied to the Jingle sub-basin, and the results
showed that the extreme precipitation in this basin will maintain a slight rising trend in the
future, assuming that the climate and underlying conditions remain the same as they were
in the current scenario. There is a more stable correlational relationship between rainfall
characteristic factors and runoff in extreme rainfall events. The extreme precipitation of 1–5
consecutive days under the 100a return period designed by the hydrological frequency
method is 38.74, 60.01, 66.00, 71.44, and 73.69 mm, respectively, and the possible runoff
predicted by the four empirical formulas is 1295−2495, 2108−4935, 2408−5801, and
3051−7062 × 104 m3, respectively. The rainfall designed by the hydrological frequency
combination method is 203.64mm, and the possible runoff predicted by the four empirical
formulas is 2.8−5.3 × 108 m3. This study can provide a new reference for predicting the
possible incoming runoff under extreme sub-rainfall events.

Keywords: extreme rainfall event, rainfall event, jingle sub-basin, runoff prediction, regression analysis

1 INTRODUCTION

Analysis and prediction of runoff characteristics can provide a reasonable basis for rational
regulation and optimal allocation of water resources, water resource protection and planning,
and effective management of water resources. Under the combined influence of climate change and
human activities, the relationship between rainfall and runoff presented uncertainty, multiple time
scales, randomness, chaos, weak dependent, highly complex nonlinear, and non-stationary
characteristics (Galelli and Castelletti, 2013; Zhang et al., 2018). These change characteristics
proposed great challenges for the prediction of runoff. The commonly used methods of runoff
prediction include the process-driven model and data-driven model. The process-driven model
focuses on the process of flow generation and concentration to simulate the runoff process from the
perspective of hydrological principles, such as HEC-HMS (Teng et al., 2017), SWAT (Wu et al.,
2019), Xin’anjiang (Hao et al., 2018), and MIKE-SHE (Qi et al., 2021). From the perspective of data
analysis and mining, the data-driven model analyzes the flow process and its influencing factors,
combines the mathematical–statistical relationship between data input and output, and constructs a
model for runoff prediction, such as the regression model (Qamar et al., 2016; Visessri andMcIntyre,
2016), artificial neural networks (Seckin et al., 2013; Gökbulak et al., 2015), and support vector
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machine (SVM) (Li et al., 2013; Wang et al., 2014). Most of the
researchers used effective methods and obtained ideal results for
runoff prediction and rainfall–runoff process simulation. But,
only a few studies focus on runoff prediction on a small time-
scale, especially on the scale of the sub-rainfall event.

Global warming caused by climate change has become one of
the most serious environmental challenges facing the world (Sun
et al., 2015). Climate change will pose a severe threat to the global
and regional ecological environment, among which the impact of
extreme rainfall on nature and society is far greater than that of
others (Manfreda et al., 2018; Barlow et al., 2019). An increasing
amount of research has found that extreme precipitation
characteristics have changed around the world (Westra et al.,
2013; Tan et al., 2021). The relationship between rainfall
characteristics and runoff generation varied within different
rainfall levels and intensities (de Lima et al., 2009; Ran et al.,
2012), so numerous researchers have investigated the
characteristics of water and sediment under extreme rainfall
separately (Liu et al., 2019; Dang et al., 2020; Zhao et al.,
2020). Liu et al. (2019) took Hekou to the Tongguan section
in the middle reaches of the Yellow River as the research area and
analyzed the possible annual sediment and runoff yield under
extreme rainstorm conditions by the SWAT model. Dang et al.
(2020), based on historical rainfall sediment records, studied the
relationship between precipitation and sediment yield and
predicted the annual sediment under the design extreme
precipitation scenario. Therefore, from the perspective of the
sub-rainfall event, this study predicts the possible runoff under
extreme sub-rainfall events.

As mentioned above, the main purpose of this study is to
predict the runoff under extreme sub-rainfall events. We used the
Jingle sub-basin as the study area, and the following steps were
carried out. 1) Based on the definition of the extreme
precipitation index, the selection criteria of sub-extreme
rainfall event in this study were defined. 2) The trend and
consistency of extreme rainfall were analyzed by the MK test
and R/S analysis, respectively. 3) Different rainfall factors were
selected to establish several rainfall–runoff empirical formulas by
regression analysis. 4) Then, the empirical formulas combined
with designed extreme rainfall scenarios were used to predict the
possible incoming runoff under extreme rainfall events.

2 MATERIALS AND METHODS

2.1 Study Area
Fenhe River is located in the middle reaches of the Yellow River
and is the second-largest tributary of the Yellow River, with a total
length of 716 km and a drainage area of 39,471 km2

(110°30’–113°32’E; 35°20’–39°00’N). The climate in this basin
differs significantly as a result of the complex atmospheric and
monsoon circulation in the mid-latitude zone. The annual
average evaporation is 1120 mm, and the average annual
precipitation is 503 mm. The average annual runoff is 2.28 ×
109 m3. The spatial distribution of rainfall is uneven, showing a
decreasing trend from south to north. Approximately 60–80% of
the annual precipitation falls in the form of heavy rain and is

temporally concentrated between June and September. Due to the
gentle river course and the influx of sediment carried by many
tributaries, flood disasters occur frequently in the Basin. In the
past 100 years, there were more than 20 record floods in the
Fenhe River, roughly once every 5 years. After 1949, there were
five relatively large-scale floods in the middle and lower reaches of
the Fenhe River. Among them, the magnitude of the flood that
occurred on 21 August 1982 was the largest, with a peak discharge
of 1420 m3/s, which caused huge economic losses and casualties.
It can be seen that flood disasters have always been a vital and
prominent issue in the basin.

The Jingle sub-basin (Figure 1) lies in the upper reaches of
Fenhe River, controlling approximately 1/3 of the area of the
upper reaches of Fenhe River. The area of the basin is 2799 km2,
and the length of the river is about 83.9 km. The Jingle
Hydrological Station is a control station for the Jingle sub-
basin. The average annual precipitation is 497.85 mm, and the
monthly average temperature is 4–13°C. Construction lands
substantially expanded after 2000 with the rapid development
of the economy and urbanization across the whole basin.
Concomitantly, vegetation coverage has increased in the basin
due to the implementation of the national level “Soil and Water
Conservation” program for 20 years, beginning in 1988, but the
mainland use types in this area are still woodland and arable land.

2.2 Data Collection and Processing
The measured daily precipitation data of five hydrological
stations in the Fenhe River Basin (Figure 1B) from 1960 to
2019 are obtained from the National Meteorological Science Data
Center (http://data.cma.cn/), and some missing data were
interpolated reasonably by the hydrological analogy method
and linear interpolation method. The measured rainfall–runoff
process data (1971–2018) of the hydrological station and
meteorological station of the Jingle sub-basin were
systematically unified into a 1-h time step (Figure 1C). A total
of 103 rainfall events were selected according to the principle of
no precipitation within 24 h. The area-averaged rainfall of sub-
rainfall events was obtained via the Thiessen polygon method,
and the rainfall characteristic variables (volume, period intensity,
and duration) were counted (Figure 2).

2.3 Methods
2.3.1 Definition of Extreme Rainfall Event
The IPCC provides little information on the definition of the sub-
extreme rainfall event, considering the long duration of rainfall
events in the study area, and instead of fixed absolute threshold
values, relative threshold values of rainfall corresponding to the
95th percentiles were proposed to represent the extreme rainfall
event. For rainfall events with a duration less than 24 h, the
criterion to judge whether it is an extreme rainfall event is its total
rainfall beyond the 95th percentile threshold of daily
precipitation; for rainfall events lasting 24–48 h, the criterion
to judge whether it is an extreme rainfall event is its total rainfall
beyond the 95th percentile threshold of rainfall during two
consecutive days; similarly, for rainfall events lasting 48–72 h,
72–96 h, and more than 96 h, the judgment criteria are that the
total rainfall of them beyond the 95th percentile threshold of
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rainfall during three consecutive days, rainfall during four
consecutive days, and rainfall during five consecutive days.
The specific implementation steps are as follows: according to
the collected daily precipitation data of five stations in the Fenhe

River Basin from 1960 to 2019. The kriging interpolation method
was adopted to obtain the daily precipitation data of the Jingle
sub-basin from 1960 to 2019. When the daily precipitation is
greater than 0.1 mm, it is considered to be a rainy day. The series

FIGURE 1 | Topographic map of the Jingle sub-basin. (A) Description of Yellow River in China; (B) Description of the Jingle sub-basin in the Yellow River Basin; (C)
Control catchment of the Jingle station in Fenhe River and distribution of rainfall gage stations.

FIGURE 2 | Values of sub-rainfall event characteristic factors, 1–103 are the numbers of sub-rainfall events. I1 is the maximum 1 h rain intensity; I2−1 is the second-
largest hourly rainfall intensity; Similarly, I3−2, I4−3, I5−4, and I6−5 are the 3rd, 4th, 5th, and 6th largest hourly rainfall intensity, respectively; Pp-6 is the rainfall minus the
maximum rainfall of 6 h; P is the rainfall; W is the flood amount yielded by sub-rainfall; T is the sub-rainfall duration.
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of rainy days in each year is arranged in ascending order of size to
get x1, x2, . . ., xn and then the 95th percentile threshold of daily
precipitation (1 day) each year is as follows:

x � (1 − a)xj + axj+1, (1)
where j is the sequence number of daily rainfall arranged in
ascending order, j � Int[P(n + 1)], Int [] is the integral function;
P is the corresponding percentile; and a is the weight
coefficient, a � P(n + 1) − j

Similarly, the 95th percentile threshold of rainfall during two
consecutive days, rainfall during three consecutive days, rainfall
during four consecutive days, and rainfall during five consecutive
days of each year can be obtained. In this study, the series
comprising 95th percentile threshold of daily precipitation of
each year from 1960 to 2019 was called C1 day, the next was called
C2 day, and so on until C5 day. The 60 year’ average values of C1
day, C2 day, C3 day, C4 day, and C5 day are defined as the
thresholds of extreme rainfall events with different durations.

2.3.2 Trend Analysis of Extreme Rainfall
Since the nonparametric MK test does not directly give the
amplitude of the upward or downward trend, a simple linear
regression method combined with the MK test was used to detect
the trend significance and mutation test of the series (C1 day, C2
day, C3 day, C4 day, and C5 day), and their statistical
significances were detected at the 0.05 level (Shi et al., 2016b;
Shi et al., 2018).

R/S analysis was used to calculate the Hurst values of the series
(C1 day, C2 day, C3 day, C4 day, and C5 day) in the Jingle sub-
basin during 1960–2019, and the future trend of change can be
evaluated according to the value of H (0 < H < 1) as follows: 1)
when H = 0.5, the series is independent of each other, that is,
future changes are independent of historical changes; 2) when 0 <
H < 0.5, the series of each element has anti-persistence, that is, the
future changes will be opposite to past changes; 3) when 0.5 <H <
1, future changes are consistent with past changes (Wu et al.,
2021). Anti-persistence or persistence can be divided into five
grades according to the strength from weak to strong (Table 1).

2.3.3 Empirical Formula Building
As the direct source of runoff, rainfall has a close relationship with
runoff, which is manifested in the linear or nonlinear relationship
between rainfall characteristic factors and runoff. In this study, the
rainfall–runoff empirical formula between multiple rainfall
characteristic factors and runoff was established by curve
regression and multiple stepwise linear regression analysis. The
specific steps of curve regression analysis are as follows: 1) the sub-

rainfall prediction factor is taken as the abscissa and the sub-runoff
as the ordinate and the scatter diagram of two variables is drawn; 2)
the regression models between predictive variables and dependent
variables were established through linear regression, binomial
regression, power function regression, exponential function
regression, and logarithmic function. 3) Finally, the decisive
coefficient is taken as the criterion to choose the best
rainfall–runoff empirical model.

2.3.3.1 The Method of Sub-Rainfall Fitting
Rainfall is the sum of the amount of rainfall in a certain period of
time, which is the direct source of the amount of flood. The sub-
rainfall fitting method is to use the total rainfall of an extreme
rainfall event as the independent variable and the flood amount as
the dependent variable to establish rainfall–runoff empirical
formula 1 through curve regression analysis.

2.3.3.2 The Method of Rainfall Factors Combination Fitting
The rainfall factors leading to soil erosion include rainfall and
rainfall intensity. In order to consider the impact of the two
factors on the sub-rainfall–runoff event at the same time, the
product (PI1) of rainfall (P) and the maximum 1 h rainfall
intensity (I1) of the sub-rainfall event was used as the
prediction factor to establish the rainfall–runoff empirical
formula 2 by curve regression.

2.3.3.3 The Method of Sub-Rainfall Time-Segment Rainfall
Fitting
In the process of precipitation, as the amount of rainfall varies, the
influence of rainfall on water yield is different in various periods.
Therefore, considering the influence of rainfall in different
periods on the water yield, the empirical formula 3 which
describes the relationship between seven sub-periods (P1, P2−1,
P3−2 . . . Pp−6) and runoff of sub-rainfall events was established by
multiple stepwise linear regression analysis.

2.3.3.4 The Method of Upper Envelop
To consider complex and adverse situations in depth, the point
data on the upper edge of the rainfall–runoff figure were selected
to plot the rainfall–runoff upper envelop and fit the upper
envelop relation through curve regression to get empirical
formula 4.

2.3.4 Extreme Rainfall Event Scenario Setting and
Possible Incoming Flood Prediction
Based on historical extreme precipitation records in the basin,
two extreme rainfall scenarios were constructed in this study, and

TABLE 1 | Classification of the Hurst index.

Grades Range of
H index

Anti-persistence Grades Range of
H index

Persistence

−1 0.45 ≤ H < 0.5 Very weak 1 0.50 < H ≤ 0.55 Very weak
−2 0.35 ≤ H < 0.45 Relatively weak 2 0.55 < H ≤ 0.65 Relatively weak
−3 0.25 ≤ H < 0.35 Relatively strong 3 0.65 < H ≤ 0.75 Relatively strong
−4 0.20 ≤ H < 0.25 Strong 4 0.75 < H ≤ 0.80 Strong
−5 0.00 ≤ H < 0.20 Very strong 5 0.80 < H ≤ 1.00 Very strong
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the possible runoff under extreme precipitation scenarios was
predicted by the established empirical model. The details of the
scenario setting are as follows:

2.3.4.1 The Method of Hydrologic Frequency Analysis
The occurrence of rainfall events in the Jingle sub-basin is
random, so it can be analyzed and calculated by the frequency
analysis method.

The normal, gamma, gen gamma, log gamma, generalized
extreme value, Gumbel max, and Weibull distribution were used
to fit the C1 day, C2 day, C3 day, C4 day, and C5 day in the Jingle
sub-basin. These functions were fitted using the maximum
likelihood estimation method. In our study,
Kolmogorov–Smirnov (K-S) analysis was selected to test if the
data follow one of the specified distributions well. The hypothesis
is evaluated at the 0.05 significance level. The distribution that passes
the significance level test and has the smallest statistical value was
selected as the optimal distribution. From the historical rainfall event
record, the rainfall events with similar duration were taken as typical
rainfall events to obtain the design rainfall process under different
duration and different return periods by the fragment method.

2.3.4.2 The Method of Historical Measured Extreme Rainfall
Combination
It is assumed that the rainfall extreme values of seven sub-periods
(P1, P2−1, P3−2, P4−3, P5−4, P6−5, and Pp−6) in the historical
measured rainfall events are all combined into one rainfall
event so that the rainfall intensity and concentration degree of
the composite rainfall were larger.

3 RESULTS AND DISCUSSION

3.1 Definition of Extreme Rainfall Event
According to the definition, the mean value (1960–2019) of the
C1 day, C2 day, C3 day, C4 day, and C5 day series was obtained
(Figure 3). That is, for rainfall events with a duration of less than
24 h, the value to judge whether it is an extreme rainfall event is
the total rainfall of it beyond 24.66 mm; for rainfall events lasting
24–48 h, 48–72 h, 72–96 h, and more than 96 h, the judgment
criteria are the total rainfall of them beyond 33.33, 37.68, 42.84,
and 47.00 mm, respectively.

3.2 Trend Analysis of Extreme Rainfall
Simple linear regression and MK trend analysis show that in
the past 55 years, the series of C1 day, C2 day, C3 day, C4 day,
and C5 day increased slightly with the rate of 0.5 mm/10a,
0.7 mm/10a, 0.4 mm/10a, 1.1 mm/10a, and 0.6 mm/10a,
respectively (Figure 4) (Table 2). The series of C1 day, C2
day, C3 day, C4 day, and C5 day generally had mutation points
between 1964 and 2008, but the mutation was not significant
(Figure 5).

To predict future increasing or decreasing trends, we used R/S
analysis to calculate the H values of the series of C1 day, C2 day,
C3 day, C4 day, and C5 day in the Jingle sub-basin during
1960–2019. The R/S analysis results of the series are shown in
Figure 6; it can be seen that the Hurst indices of the series are
0.67, 0.61, 0.71, 0.57, and 0.54, indicating that the persistence of
the five series is in the one-to-third intensity grade. The trends of
them have a relatively weak persistence.

FIGURE 3 | 95th percentile threshold of extreme rainfall events with different durations.
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Combining the results of the MK trend analysis and R/S
analysis, the trend shows slight increments in extreme rainfall
of the Jingle sub-basin, with a high likelihood of the trend
continuing in the future, assuming the climate and underlying
surface conditions remain the same as they were in the current
scenario. This indicates that the calculated formula can be fitted
using the rainfall–runoff series from 1971 to 2018 to predict the
possible incoming flood amount in the future under extreme
rainfall events.

3.3 Rainfall–Runoff Empirical Model
3.3.1 The Method of Sub-Rainfall Fitting
For 103 rainfall events and screened extreme rainfall events in the
Jingle sub-basin from 1971 to 2018, Pearson’s correlation
coefficients between the total rainfall of an event and runoff are
0.77 and 0.83, respectively, indicating that rainfall ismore related to
runoff in extreme rainfall events. The binomial regression analysis
in curve regression can better describe the relationship between
rainstorm and runoff. The binomial coefficient in the empirical

formula of all rainfall events is smaller than that of extreme rainfall
events, indicating that per unit of rainfall yields more runoff in
extreme rainfall events (Figure 7).

3.3.2 The Method of Rainfall Factor Combination
Fitting
The rainfall factor combination (PI1) can express the combined
effect of rainfall and intensity on water and sediment yield in the
watershed. Regression analysis shows that the binomial
regression ideally simulates the rainstorm–runoff relationship,
the binomial coefficients in the empirical formula of all rainfall
events are smaller than those of extreme rainfall events, and it
shows that runoff is more sensitive to the change of PI1 in extreme
rainfall events (Figure 8). In the study area, under the extreme
rainfall event, rainfall factor combination fitting methods are
better suited to two types of rainfall: type Ⅰ storms were
characterized by a long duration and heavy rainfall amount,
whereas type Ⅱ storms had a higher concentration and higher
intensities. The rainfall types of the deviation point data on 28
July 1982, 8 July 1985, and 19 August 1973 are intermediate
between the first two types, and the rainfall and intensity are
lower than both, indicating that the fitting method fits the
extreme scenarios better.

3.3.3 The Method of Sub-Rainfall Time-Segment
Rainfall Fitting
When using the rainfall in seven sub-periods (P1, P2−1, P3−2, P4−3,
P5−4, P6−5, and Pp−6) as input variables for stepwise regression
analysis, these variables are independent of each other. The

FIGURE 4 | Results of simple linear regression analysis.

TABLE 2 | Result of MK trend analysis.

Series Z1−α Z Trends

C1 day 1.96 1.81 Increased slightly
C2 day 1.96 1.31 Increased slightly
C3 day 1.96 0.37 Increased slightly
C4 day 1.96 0.91 Increased slightly
C5 day 1.96 0.62 Increased slightly
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FIGURE 5 | Mann–Kendall (MK) mutation test for the series.

FIGURE 6 | Hurst long-range forecasting for the time series.
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variance contribution of the seven factors is calculated. Among all
rainfall events, only Pp−6 is selected to have a significant impact on
the prediction object (Eq. 2). For extreme rainfall events, the most
significant factors affecting the prediction object are PP−6 and
P2−1 (Eq. 3). Indicating whether it is ordinary rainfall or extreme
rainfall, the accumulated rainfall (Pp−6) over a long period
contributes significantly to runoff generation. But compared
with ordinary precipitation events, the runoff yield in extreme
precipitation events is gradually affected by several periods with
large rainfall intensity.

W � 93.21PP−6 − 315.15 (R2 � 0.60). (2)
W � 117.62PP−6 + 665.88P2−1 − 4170.81 (R2 � 0.69). (3)

3.3.4 The Method of Upper Envelope
The point data on the upper edge of the rainfall–runoff figure
were selected to plot the rainfall–runoff upper envelop line. The
rainfall of the upper envelop points on 31 August 1995 and 3

August 1996 were 186.71 and 140.65 mm, respectively, and
belonged to the type of heavy rainfall with a long duration; on
28 July 1982 and 7 September 1985, they were 82.69 and
69.41 mm, respectively, and were of the concentrated and
short duration type. In both types, the upper envelop method
performs better (Figure 9).

3.4 Extreme Rainfall Event Scenario Setting
and Possible Incoming Flood Prediction
3.4.1 Extreme Rainfall Event Scenario Setting
3.4.1.1 Hydrological Frequency Analysis Method
To explore the design of extreme rainfall under different
durations and different return periods, using normal, gamma,
gen gamma, log gamma, generalized extreme value, Gumbel
max, and Weibull distribution functions fit the possible
distribution of C1 day, C2 day, C3 day, C4 day, and C5 day
in the Jingle sub-basin. The optimal distribution and the
corresponding parameters estimated by maximum likelihood

FIGURE 7 | Method of sub-rainfall fitting: (A) for all rainfall; (B) for extreme rainfall events.

FIGURE 8 | Method of rainfall factor combination fitting: (A) for all rainfall; (B) for extreme rainfall events.
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are shown in Table 3. Table 3 illustrates that the normal, gen
gamma (4P), log gamma, gen gamma, and normal distribution
were selected as the best fitting distribution of the C1 day, C2
day, C3 day, C4 day, and C5 day, respectively (Figure 10).

According to the parameter values of the best fitting distribution
provided in Table 3, the value of each design extreme rainfall
corresponding to different return periods can be calculated
according to needs (Table 3). Figure 11 shows the rainfall

FIGURE 9 | Method of upper envelop: (A) for all rainfall; (B) for extreme rainfall events.

TABLE 3 | Optimal distribution of C1 day, C2 day, C3 day, C4 day, and C5 day.

Series Optimal distribution Parameter K-S 0.05 significance level

C1 day Normal σ = 5.29 μ = 26.44 0.09 1.73
C2 day Gen Gamma (4P) k = 0.63 α = 11.38 β = 0.38 γ = 15.09 0.07 1.73
C3 day Log Gamma α = 219.1 β = 0.016 0.06 1.73
C4 day Gen Gamma k = 1.01 α = 15.75 β = 2.82 0.05 1.73
C5 day Normal σ = 11.47 μ = 47.00 0.06 1.73

FIGURE 10 | Optimal distribution of C1 day, C2 day, C3 day, C4 day, and C5 day.
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process under different duration and different return periods
obtained by the fragment method.

3.4.1.2 The Method of Historical Measured Extreme Rainfall
Combination
The extreme values of rainfall in each period corresponding to
rainfall events are shown in Table 4. The extreme rainfall in each
period was transplanted to the historical maximum rainfall events
to obtain the rainfall process under extreme rainfall scenarios.

3.4.2 Prediction of Possible Incoming Flood Amount
Under Extreme Rainfall Scenarios
The possible incoming flood amount under two extreme rainfall
scenarios calculated by established rainfall–runoff empirical

formulas is shown in Table 5. Under the same rain pattern,
the predicted runoff increased with the increase in the return
period. The extreme precipitation of 1–5 consecutive days under
the 100a return period designed by the hydrological frequency
method is 38.74, 60.01, 66.00, 71.44, and 73.69 mm, respectively,
and the possible runoff predicted by the four empirical formulas
is 1295−2495, 2108−4935, 2408−5801, and 3051−7062 × 104 m3,
respectively. The rainfall designed by the hydrological frequency
combination method is 203.64 mm, and the possible runoff
predicted by the four runoff prediction calculation formulas is
2.8−5.3 × 108 m3. The runoff predicted by the method of sub-
rainfall and rainfall factor combination fitting is close and less
than that predicted by the method of sub-rainfall time-segment
rainfall fitting and upper envelop. The method of sub-rainfall

FIGURE 11 | Rainfall process under different duration and different return periods.

TABLE 4 | Extreme rainfall obtained by the method of historical extreme rainfall combination.

Date Rainfall and rainfall in different periods (mm)

P Pp−6 P6−5 P5−4 P4−3 P3−2 P2−1 P1 Duration PI1

1995/8/31 186.71 151.28 5.56 5.27 5.62 5.54 5.77 7.67 204.00 170.89
1995/8/31 186.71 151.28 5.56 5.27 5.62 5.54 5.77 7.67 204.00 170.89
2010/8/10 74.59 36.72 5.72 5.41 3.61 7.41 6.90 8.83 46.00 120.94
1973/8/19 88.89 60.55 3.76 5.57 3.61 4.75 4.16 6.49 51.00 154.95
2003/7/29 76.95 39.50 5.09 5.38 7.02 4.79 5.38 9.79 55.00 107.67
1977/7/6 43.96 5.72 3.11 5.53 6.03 8.13 7.17 8.27 18.00 107.37
2006/6/28 40.98 5.72 4.59 4.50 4.59 5.55 7.90 8.13 24.00 69.99
1974/7/22 38.26 5.24 0.42 1.18 3.60 4.95 4.85 18.01 29.00 50.47
Combined extreme rainfall 203.64 151.28 5.72 5.57 7.02 8.13 7.90 18.01 204.00 203.28
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time-segment rainfall fitting and the upper envelop method are
more sensitive to the change of rainfall and increase with the
return period.

In this study, based on the daily precipitation data of the past
6 decades, the study of the 95th percentile threshold of daily to 5

consecutive days of precipitation shows that the trend of extreme
precipitation presents a no significant increase. Gao et al., 2015
and Sun et al., 2020 obtained the same result by studying other
rainfall indicators. The characteristics of rainfall events such as
precipitation, rainfall intensity, and rainfall duration have been

TABLE 5 | Possible incoming flood amount under two extreme rainfall scenarios.

Scenario Series Return
period

Design
Rainfall
(mm)

Rainfall characteristics of typical rainfall Possible runoff (104 m3)

(a) Date Rainfall
(mm)

Runoff
(104 m3)

Duration
(h)

Formula
1

Formula
2

Formula
3

Formula
4

S1 C1 day 5a 30.88 1977/
7/22

37.77 1102.98 21 1197.00 987.74 856.41 1363.90

10a 33.21 1977/
7/22

37.77 1102.98 21 1214.92 999.52 1073.22 1699.27

30a 36.13 1977/
7/22

37.77 1102.98 21 1250.91 1020.39 1345.45 2120.36

50a 37.29 1977/
7/22

37.77 1102.98 21 1269.40 1030.57 1453.79 2287.95

100a 38.74 1977/
7/22

37.77 1102.98 21 1295.64 1044.69 1588.14 2495.76

C2 day 5a 39.62 1988/
7/17

56.10 1049.62 42 1313.60 2435.88 675.59 2744.73

10a 44.69 1988/
7/17

56.10 1049.62 42 1442.93 2293.40 1272.16 3180.29

30a 52.18 1988/
7/17

56.10 1049.62 42 1716.32 2109.89 2152.07 3955.14

50a 55.53 1988/
7/17

56.10 1049.62 42 1870.87 2037.92 2546.57 4353.77

100a 60.01 1988/
7/17

56.10 1049.62 42 2108.02 1951.82 3073.15 4935.31

C3 day 5a 44.82 1994/
7/6

47.84 1459.98 54 1446.84 1704.69 1687.77 3192.41

10a 50.14 1994/
7/6

47.84 1459.98 54 1632.12 1668.67 2183.08 3728.52

30a 57.89 1994/
7/6

47.84 1459.98 54 1991.54 1708.21 2905.65 4653.41

50a 61.36 1994/
7/6

47.84 1459.98 54 2186.57 1761.27 3228.90 5122.04

100a 66.00 1994/
7/6

47.84 1459.98 54 2480.56 1866.45 3661.30 5801.93

C4 day 5a 51.47 1976/
8/19

67.30 762.68 91 1686.39 1935.80 2040.87 3875.49

10a 56.95 1976/
8/19

67.30 762.68 91 1942.42 1834.57 2685.54 4532.48

30a 64.35 1976/
8/19

67.30 762.68 91 2371.78 1735.81 3555.58 5553.45

50a 67.46 1976/
8/19

67.30 762.68 91 2580.78 1707.31 3920.91 6028.15

100a 71.44 1976/
8/19

67.30 762.68 91 2873.63 1681.98 4389.39 6676.70

C5 day 5a 56.66 1977/
6/23

72.13 2087.32 99 1927.22 1777.98 1786.84 4494.76

10a 61.70 1977/
6/23

72.13 2087.32 99 2207.04 1717.92 2380.35 5170.28

30a 68.04 1977/
6/23

72.13 2087.32 99 2621.83 1675.51 3125.54 6120.13

50a 70.56 1977/
6/23

72.13 2087.32 99 2806.56 1668.84 3422.12 6529.64

100a 73.69 1977/
6/23

72.13 2087.32 99 3051.18 1668.66 3789.88 7062.35

S2 Combined
rainfall

203.64 -- 204 28,437.67 2070.72 18,886.46 53,589.13

S1 is the scenario obtained by the hydrological frequency analysis method; S2 is the scenario obtained by the historical measured extreme rainfall combination method.
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demonstrated, which is closely related to the amount of flood
(Ran et al., 2012; Adib et al., 2018). For all rainfall events and
selected extreme rainfall events, different rainfall factors were
selected to establish several runoff prediction formulas, which
directly map the relationship between rainfall and runoff and
objectively respond to the influence of a variable on water yield.
The accuracy of runoff prediction mainly depends on the
correlation between selected rainfall factors and runoff
(Quilty et al., 2016). Rainfall is the direct source of runoff; it
has a high correlation with runoff. There was the closest
relationship between rainfall and runoff. Many researchers
established empirical hydrological models based on the
relationship between rainfall and runoff by using regression
analysis, which achieved desirable results (Sharifi et al., 2017;
Zeinali et al., 2019). In this study, the correlation coefficient
between rainfall and runoff reached 0.85, and the fitting effect
was relatively satisfactory (Figure 7). In semi-arid areas, rainfall
intensity is particularly important for surface runoff generation
(Smith et al., 2010; Yang et al., 2016). The combination of the
rainfall factors method integrates the effect of rainfall amount
and the maximum 1 h hour intensity on water and sediment
yield in the watershed and it has a better fitting effect on the two
rainfall types of large amounts, long duration, and high
concentration and intensity (Figure 8). This is consistent
with the research findings of Huang et al., 2010. The water
and sediment yield of most rainstorms in The Loess Plateau
Basin is concentrated in a few periods (Zhou and Wang, 1992).
In this study, stepwise regression shows whether it is ordinary
rainfall or extreme rainfall, and the accumulated rainfall (Pp−6)
over a long period contributes greatly to runoff generation. But,
compared with ordinary rainfall events, the runoff yield in
extreme precipitation events is gradually affected by several
periods with large rainfall intensity. This phenomenon is more
obvious in a rainstorm (Li et al., 2016). The upper envelop
method considers the extreme cases under the rainfall–runoff
event. (Figure 9). The four formulas all show that there is a
more significant correlation between rainfall factors and runoff
under extreme rainfall events. The relationship between rainfall
characteristics and runoff generation increases with the increase
in rainfall level and intensity (Zhang et al., 2020; Jonathan et al.,
2021). Although the characteristics of a rainfall event are closely
related to the amount of flood, it seems that this relationship is
more obvious in extreme rainfall events. So, it is necessary to
study the relationship between extreme rainfall events and
runoff alone, and it is of great significance for the sustainable
utilization of water resources and flood control and disaster
reduction in the basin.

4 CONCLUSION

Based on the daily precipitation data of the past 6 decades, the
trend characteristics of the 95th percentile extreme precipitation
(daily to 5 consecutive days of precipitation) were studied.
Moreover, different rainfall factors were selected to establish
several runoff prediction formulas for all rainfall events and

selected extreme rainfall events and then the empirical
formulas were combined with designed extreme rainfall
scenarios to predict the possible incoming flood. It can
provide a reference for water security and major project
deployment in the basin.

The main findings of the present study are summarized as
follows: the 95th percentile extreme precipitation (daily to 5
consecutive days of precipitation) of the Jingle sub-basin
presents a slight increased trend and has positive consistency.
Combining the results of MK and R/S, the extreme precipitation
in this basin will maintain a slight rising trend in the future,
assuming that the climate and underlying conditions remain the
same as they were in the current scenario. There is a more stable
correlational relationship between rainfall factors (P, PI, seven
sub-periods) and runoff in extreme rainfall events. The extreme
precipitation of 1–5 consecutive days under the 100a return
period designed by the hydrological frequency method is
38.74, 60.01, 66.00, 71.44, and 73.69 mm, respectively, and the
possible runoff predicted by the four empirical formulas is
1295−2495, 2108−4935, 2408−5801, and 3051−7062 × 104 m3,
respectively. The rainfall designed by the hydrological frequency
combination method is 203.64 mm, and the possible runoff
predicted by the four empirical formulas is 2.8−5.3 × 108 m3.
Although the characteristics of rainfall events are closely related
to the amount of flood, it seems that this relationship is more
obvious in extreme rainfall events. So, it is necessary to study the
relationship between extreme rainfall events and runoff alone,
and it is of great significance for the sustainable utilization of
water resources and flood control and disaster reduction in
the basin.
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It is reported that the China–Pakistan Economic Corridor has been affected by extreme
precipitation events. Since the 20th century, extreme weather events have occurred
frequently, and the damage and loss caused by them have increased. In particular, the
flood disaster caused by excessive extreme precipitation seriously hindered the
development of the human society. Based on CRiteria Importance Through Intercriteria
Correlation and square root of generalized cross-validation, this study used
intensity–area–duration to analyze the trend of future extreme precipitation events,
corrected the equidistance cumulative distribution function method deviation of
different future scenario models (CESM2, CNRM-CM6-1, IPSL-CM6A-LR, and
MIROC6) and evaluated the simulation ability of the revised model. The results showed
that: 1) the deviation correction results of CNRM-CM6-1 in the Coupled Model
Intercomparison Project Phase (CMIP) 6 could better simulate the precipitation data in
the study area, and its single result could achieve the fitting effect of the CMIP5 multimodel
ensemble average; 2) under CNRM-CM6-1, the frequency of extreme precipitation events
under the three climate scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) presents
interdecadal fluctuations of 3.215 times/10A, 1.215 times/10A, and 5.063 times/10A,
respectively. The average impact area of extreme precipitation events would decrease in
the next 30 years, while the total impact area and the extreme precipitation events in a
small range would increase. Under the future scenario, the increase rate of extreme
precipitation was highest in August, which increased the probability of extreme events; 3) in
the next 30 years, the flood risk had an obvious expansion trend, which was mainly
reflected in the expansion of the area of high-, medium-, and low-risk areas. The risk zoning
results obtained by the two different flood risk assessment methods were different, but the
overall risk trend was the same. This study provided more advanced research for regional
flood risk, reasonable prediction for flood risk under future climate models, and useful
information for flood disaster prediction in the study area and contributes to the formulation
of local disaster prevention and reduction policies.
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1 INTRODUCTION

The impact of climate change on the hydrological cycle has been
recognized for a long time (Sun et al., 2021). Although it is widely
acknowledged that precipitation extremes are likely to cause an
increase in flood risk, the relationship between climate and flood is
rather complex (Zhang et al., 2008). It was reported that frequent
extreme climate events had brought the serious loss of life and
property to people worldwide since the beginning of the 21st
century (Zhang et al., 2011). With the increasing emissions of
global carbon dioxide and other greenhouse gases, global warming
continues to intensify (Pachauri and Reisinger, 2008; Huang et al.,
2017), and the instability and extremes of the climate increased,
increasing the intensity and frequency of extreme precipitation
events and floods in the future scenario (Meehl et al., 2000). Floods
caused by extreme precipitation frequently occur in China-
Pakistan Economic Corridor (CPEC) and increased frequency
and strength with duration expansion. Therefore, it was
urgently needed to investigate climate change’s flood risk in
high-risk areas.

Extreme precipitation events are critical indicators for
studying extreme climate events and an essential factor for
studying future climate changes. The flood disaster caused by
extreme precipitation seriously hinders the development of
society, and human civilization’s progress has become the
focus of attention all over the world (Goswami et al., 2006). In
the present-day climate over most of the globe, the curve relating
daily precipitation extremes with local temperatures had a peak
structure, increasing as expected at the low–medium range of
temperature variations but decreasing at high temperatures
(Wang et al., 2011; Chang et al., 2022). Wang et al. (2015)
attempted to explain the climate change effects on regional
precipitation. However, the characteristics of precipitation
extremes may depend on the method used for analysis. One
method that could reveal precipitation characteristics is Intensity-
Area-Duration (IAD), which for identifying extreme
precipitation events was improved based on
severity–Area–Duration (SAD) of Andreadis et al. (2005). This
method was proved to be effective for assessing drought and flood
risk by several researchers. Jing et al. (2016) applied IAD to
identify regional extreme precipitation events for the first time in
researching regional extreme precipitation events in China. They
correlated the identified extreme precipitation events with
population economic exposure. Wen et al. (2019) also used
this method to identify drought events under three global
warming scenarios based on several global climate models
(CPEC (formerly known as silk road and well-known as
Karakoram Highway) had been affected by extreme 25
precipitation events).

It should be noted that the role of precipitation extremes in
shaping flood risk depends on land cover, region, and
environmental conditions (Wang et al., 2017; Sun et al., 2022).
Benito et al. (2015) used the flood risk assessment model
established by the ancient flood data to assess the risk in
Europe. The ancient flood data had a large time span and can
fully reflect the impact of climate change. This kind of assessment
method was more accurate in calculating flood probability. Yang

et al. (2010) used the BP neural network algorithm of rough set
reduction to obtain the flood risk. The integrated system based on
the spatial processing ability of the geographic information
system (GIS) has gradually become a powerful tool for flood
risk assessment. Brendel et al. (2021) used SWMM and GSSHA to
model storm pipeline networks and urban floods in Roanoke,
Virginia. They found that the value of GSSHA to the city lies in its
ability to predict flood duration and spatial range in a two-
dimensional rangeability.

The GCMs were considered to be useful for the investigation
of hydrological cycles (Li et al., 2018; Yang et al., 2021), decision-
making in water resource management (Sun et al., 2021), and the
atmosphere–land interactions (Simpkins, 2017; Sun et al., 2021).
It may be helpful to use future scenarios and GCMs for the
projection of precipitation extremes and flood risks (Su et al.,
2008). The climate model was a vital tool used to predict climate
change and explore the change mechanism of meteorological
elements (Xue et al., 2013). At present, GCM simulations have
provided climate change scenarios for scholars worldwide to
carry out future climate research and evaluation and climate
negotiations (Zhao et al., 2021). Regionalized increased and
decreased drought duration and frequency were driven by
changes in precipitation mean and variability (Su et al., 2006;
Pierce et al., 2009; Sun et al., 2016). To predict the future flood risk
of CPEC, provide theoretical support for managers to formulate
policies, and reduce the losses caused by extreme events in CPEC,
this study used IAD to predict the trend of future extreme
precipitation events based on the data on three new combined
path models in CMIP6. In addition, it used four future scenario
model data sets to predict future extreme events. The results were
analyzed and compared by downscaling analysis. Then, the most
suitable model for CPEC was selected to obtain the development
trend of flood disaster risk of CPEC and provide theoretical
support for future risk aversion. The rest of this article describes
the data and methods in Section 2. The results are presented in
Section 3, followed by discussions in Section 4 and conclusions
in Section 5. This study will provide a reference for the research
of regional flood risk and the prediction of regional flood risk
under future scenarios and provide theoretical support for
extreme regional events and flood prevention measures.

2 DATA AND METHODS

2.1 Study Area
CPEC extends from the port of Guarda in Pakistan to Kashgar in
China, especially covering the whole territory of Pakistan,
Kashgar in Xinjiang, and its surrounding areas, with a total
length of about 3,000 km and a total area of about
932,000 km2. The Indus River is an international river that
runs through the whole territory of Pakistan and provides
most of the irrigation water in the region. Its five tributaries,
Jhelum River, Janab River, Ravi River, Bias River, and Sutlej River,
converge in the Punjab plain (Figure 1). The precipitation in
CPEC was mainly affected by two weather systems: summer
precipitation and winter precipitation (Khan et al., 2014).
Summer precipitation resulted from the Indian Ocean
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monsoon disturbance, and winter precipitation resulted from the
Mediterranean westerly disturbance (Safi et al., 2018). The
southern part of CPEC was affected by the Indian Ocean
monsoon climate with uneven precipitation and regional
precipitation within the year, which was very prone to extreme
precipitation. Since the 1990s, the precipitation in this area has
increased significantly, and extreme climate events have been
significant. Flash floods, originating from extreme weather
events, have relatively less duration but severe intensity and
impacts. These floods usually occur during the South Asian
monsoon period between July and September (Memon et al.,
2015). In 2011, large-scale heavy rains were observed in Sindh,
leading to substantial economic losses, destruction of ecological
resources, food shortages, and starvation (Haq et al., 2012).

Historically, CPEC has suffered many rainstorms and flood
disasters (Federal Flood Commission, Ministry of Water and
Power, 2015). According to statistics, 25 significant flood events
have occurred in CPEC in the past 70 years. The flood disaster
had caused more than $30 billion in the loss in Pakistan. About
25,502 people were killed, 197,273 villages were destroyed,
616,598 km2 of land has been affected, and the flood disaster
has become one of the main challenges affecting local economic
and social development.

2.2 Data
2.2.1 Precipitation Data Sets
This study used a specific precipitation data set to study and
analyze the extreme precipitation events and flood risk
assessment. This data set used the professional meteorological
interpolation software ANUSPLIN to carry out spatial
interpolation combined with three-dimensional geospatial
information and evaluate the interpolation model’s effect
through generalized cross-validation and error analysis. Test
and verification of this data set can be referred toWu et al. (2021).

The CMIP6 precipitation data were selected for this study’s
extreme precipitation and flood risk projection. Compared with
the planned model, the scenario model in CMIP6 usually had
better resolution and improved dynamic process, and the new
emission scenario based on the shared socioeconomic pathway
(SSP)/Representative Concentration Pathways (RCP) could be
used for future climate change simulation (Eyring et al., 2016;
O’Neill et al., 2016; Riahi et al., 2017; Jiang et al., 2020). The
models data used in this study were three scenarios (SSP1-2.6,
SSP3-7.0, and SSP5-8.5) of the global climate model (Table 1) in
the scenario comparison plan under CMIP6. The precipitation
data from 1984 to 2013 were used as the base period, and the data
from 2021 to 2050 were used as the simulation data. In order to

facilitate comparative analysis, based on the observation data set,
the spatial resolution of model data was uniformly interpolated
on a grid point of 0.25 × 0.25 by bilinear interpolation. The data
used in the grid include the data on 50 meteorological stations
within CPEC. The stations are evenly distributed in the south of
30°N, relatively concentrated in 30°N ~ 35°N, and almost no
stations are distributed in the north of 35°N in the study area.
According to the precipitation distribution in the study area, the
area north of 35°N is affected by terrain and airflow, and the
annual precipitation is sparse, so it can be ignored. The
precipitation in the whole study area is mainly distributed in
the southern and central plains. Therefore, the selection of sites is
reasonable.

Notably, the daily scale data are more obvious than the
monthly scale data. We had considered using daily scale data
to make the results of the benchmark period close to the
extreme situation. However, the data on the benchmark
period here was mainly to verify the relative accuracy of
the model simulation and select the best. Therefore, the data
on the monthly scale could fully achieve the purpose here.
We also referred that Ali et al. (2018) used Hydrologiska
Byrans Vattenbalansavdeling (HBV) light model to simulate
the hydrology of the Hunza River Basin, which is affected by
extreme precipitation. It was found that the model based on
monthly scale data performs better. Based on this, they
compared the simulation results of CSM1.1, CanESM2,
and MIROC-ESM three GCMs models in the future
scenario.

Here, this study selected four different model data recently
released by CMIP6 for long-term simulation ability evaluation
and set the model data closest to the measured data for statistical
downscaling to improve the simulation ability of the model
further (Lu et al., 2021). These models were commonly used
by others. Abbas et al. (2022) used these four models for climate
simulation in Pakistan. The CESM2 simulations exhibit
agreement with satellite-era observations of the climate mean
state, seasonal cycle, and interannual variability that are among
the closest coupled climate model in the present CMIP6 archive
(Danabasoglu et al., 2020). The equilibrium climate sensitivity of
CNRM-CM6-1 is significantly increased compared to that of
CNRM-CM5-1 (Voldoire et al., 2019). The equilibrium climate
sensitivity and transient climate response of IPSL-CM6A-LR
have increased from the previous climate model IPSL-CM5A-
LR used in CMIP5 (Boucher et al., 2020). The tropical climate
systems (e.g., summertime precipitation in the western Pacific
and the eastward-propagatingMadden-Julian oscillation) and the
midlatitude atmospheric circulation (e.g., the westerlies, the polar

TABLE 1 | Basic information of four global climate models in CMIP6.

Model Institution Resolution (longitude ×
latitude)

Ensembles

CESM2 NSF-DOE-NCAR 1.25 × 0.9424 r1i1p1f1
CNRM-CM6-1 CNRM-CERFACS 1.4062 × 1.4088 r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r5i1p1f2, and r6i1p1f2
IPSL-CM6A-LR IPSL 2.5 × 1.2676 r1i1p1f1
MIROC6 MIROL 1.4062 × 1.4088 r1i1p1f1
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night jet, and troposphere–stratosphere interactions) are
significantly improved in MIROC6 (Kataoka et al., 2020).

2.2.2 Collected Data for Flood Risk Assessment
The CPEC regional geographic data set was constructed in this
study by comprehensively considering multiple data sources.
The resampling method was used to solve the spatial data
resolution difference between multiple data sources. The
selected DEM data with 30 m resolution (downloaded from
geospatial data cloud: http://www.gscloud.cn/) and the original
DEM data processing were used to obtain non-depression DEM
and slope data. The land use was divided into 10 categories (the
impact of vegetation, water conservancy facilities, and other
factors considered in the classification). Globeland30 (30M
global surface coverage data, downloaded from the National
Geographic Information Resources Directory Service System:
https://www.webmap.cn/) was used to sort according to the
impact degree, and the partial area index of the cultivated land
was obtained after processing. The NDVI indexes required for
analysis were obtained from landsat8 satellite data through
image processing and band operation. Furthermore, the
gridded population of the world (GPW) V4 population
density data set (grid 0.25°, 30 km resolution) was selected to
obtain the population density data in the study area. In order to
get the building density, this study used the 2010 QuickBird
orthophoto of CPEC as the primary data source. The road
network density map was drawn after the aforementioned
parallel processing based on the road network data (from
OpenStreetMap: https://www.openstreetmap.org/).

2.3 Methods
2.3.1 Intensity–Area–Duration (IAD)
By employing IAD, this study comprehensively considered the
three-dimensional characteristics, which was the intensity,

impact area, and duration of extreme precipitation, and
defines the grid set with certain intensity within a specific
range on a given timescale as an extreme precipitation event
based (Andreadis et al., 2005) on drought SAD.

In identifying extreme precipitation events, we first extracted
the scope of the event, that is, the influence area of an extreme
precipitation event. The grid point with the largest relative
intensity within the range of extreme precipitation events in
each timescale was the “strongest precipitation center” of the
event, and then we searched the “secondary heavy precipitation
center” from the center to the surrounding and repeated until
there was no point exceeding the threshold within the range. Each
extreme precipitation event’s relative intensity and impact area
was recorded, and then we found a new “strongest precipitation
center” and repeated the aforementioned steps until all regional
extreme precipitation events within the duration scale were found
(Figure 2).

2.3.2 Assessment of the Flood Risk
The intuitionistic fuzzy analytic hierarchy process (IFAHP) was
an improved subjective weighting method based on the analytic
hierarchy process (AHP) (Sadiq and Tesfamariam, 2009). First,
the intuitionistic fuzzy judgment matrix was constructed, and
then its consistency was tested, and finally, the weight of each
index was calculated.

CRITIC was an objective weighting method proposed by
Diakoulaki et al. (1995). The basic idea of determining the
index weight was based on two fundamental concepts: one was
a comparative strength, and the other was the conflict between
indicators. The basic idea of the critical method was to
comprehensively use the difference and disagreement
between indicators to calculate the weight, and the
difference was based on the standard deviation σ. The
calculation formula was as follows:

FIGURE 1 | Geographical location and meteorological station distribution of CPEC.
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σ �
��������������
1
n
∑n

i�1(Xi − �X)2√
, (1)

where n is the evaluation quantity of the same index, Xi is the ith
value of the same index, and �X is the average value of the
index value.

The improved combination weighting method of game
theory (ICWGT) analyzed the rationality and decision
equilibrium of decision-making behavior when game theory
interacts with each other by introducing game theory in the
field of operations research. Its idea of combination weighting
was to find a consistent or compromise weighting method
among different weighting methods by minimizing the
deviation between each index weight and the optimal linear
combination index weight to achieve a balanced optimization
method (Ren and Li, 2017) to screen the optimal combination
weight. The combination weighting based on game theory
could be expressed as follows:

w � ∑L

l�1αlw
T
l , (2)

where αl is the linear combination coefficient, αl > 0, w is the
combined weight vector, and wl is the weight obtained by each
weighting method. The weight vector w is combined with all
wlvalues; the objective was to minimize the deviation of L. By
optimizing the L linear combination coefficients of the

aforementioned formula, the optimal solution w* of w can be
obtained. The resulting game model was as follows:

min
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, p � 1, 2..., L, (3)

where p indicates the number of methods to calculate the weight
of evaluation indicators, and the pth basic weight set is wp.

In this study, the index weight of subjective weighting was
obtained according to IFAHP, and the index weight of objective
weighting was obtained according to CRITIC. On the basis of
these, the combination coefficient was calculated through the
improved game theory combination weighting, and the final
index weight with combination weighting was normalized.
Details of the process can be referred to Wu et al. (2021).

2.3.3 Accuracy Assessment
The global model data would inevitably appear in the simulation
of regional precipitation, and there would be corresponding
deviations in interpolating the grid data. To improve the
simulation accuracy of the model data, a statistical
downscaling correction method was used for model correction.
Statistical downscaling of climate models was carried out through
EDCDFm. It corrected the deviation of GCM-simulated climate
elements through the difference of cumulative distribution

FIGURE 2 | Schematic diagram of identifying extreme precipitation events by the IAD method. (A) Distribution map of extreme precipitation events in different
duration scales in the region. (B) Calculation steps of IAD identifying extreme precipitation events, which includes cyclic judgment calculation. The extreme precipitation
events within the range are gradually identified according to the intensity until all identification is completed, and finally, the IAD envelope is obtained.
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characteristics between measured data and GCM-simulated data
to make the model achieve a more accurate simulation effect. It
was assumed that the difference between the cumulative
distribution probabilities of the two data in the observation
stage would remain unchanged in the future.

F(x) � (1 − Q)H(x) + G(X), (4)
where F(x) is the cumulative distribution function of
precipitation in the observation period, and q is the
proportion of precipitation months. H(x) is the step function.
The month without precipitation is 0, and the month with
precipitation is 1.

Pmcf � F−1
OC(Fmc(Pmc)), (5)

Pmpj � Pmp

F−1
oc (Fmp(Pmp))

F−1
mc(Fmp(Pmp)), (6)

where Pmcj is the corrected value of the model data in the base
period, Pmpj is the corrected value of the model data in the future
period, Foc

−1 is the quantile function of the observed value in the
base period, Fmc is the cumulative distribution function in the
historical period of the model, Pmc is the precipitation data in the
historical period of the model, Pmp is the precipitation data
simulated in the future of the model, and Fmc

−1 is the quantile
function in the historical period of the model, and Fmp is the
cumulative distribution function of data in the future period of
the model.

RTGCV was selected to compare and analyze the model
interpolation results with the observed values and combined
with the root mean square error (RMSE) as the index to
evaluate the interpolation effect. RMSE was the estimated
value error after excluding the observed value error. The
smaller the RMSE was, the better the interpolation effect was.
Through verification, it was found that the fluctuation of RTGCV
had apparent periodic law, with larger in summer and less in
autumn and winter, and there were no significant interannual
variation characteristics.

3 RESULTS

3.1 Data Accuracy Assessment in CPEC
For the validation of observed precipitation data sets used in
this study, the statistical analysis showed that the annual
average RMSE of interpolation grid point was 0.9 mm,
which showed that the precipitation grid-point data had
good accuracy and interpolation effect. The precipitation
data obtained by GCMs were then compared with observed
data sets. First, the simulation ability of the four models’ data
interpolated to the same accuracy was evaluated. Then, the
multiyear average monthly precipitation was used as the
evaluation index.

According to the existing research, the precipitation seasons in
CPEC are from July to September. In particular, there are many
extreme precipitation events in August, and the probability of
extreme precipitation events will increase in the future (Bhatti
et al., 2020). Therefore, the results obtained from the accurate

evaluation of the model in August are more reasonable and
representative. Consequently, the data of a grid point in
August were taken as an example.

Figure 3A showed that the rainfall after correction matches
well, which significantly reduced the correction error; Figure 3B
showed the measured multiyear average monthly precipitation in
the benchmark period 1984–2013 and the multiyear average
monthly precipitation in the historical period of model
simulation. It could be seen that except that MIROC6
obviously underestimates precipitation; most of the
precipitation simulated by other models was slightly
overestimated. Among them, the precipitation simulated by
CNRM-CM6-1 was slightly underestimated by 10 mm in July,
and the rest was overestimated somewhat, and its simulation
situation was the closest. On the other hand, IPSL-CM6A-LR had
the best simulation effect in March and May, and several models
had significantly overestimated the simulation in November. In
Figure 3C, the Taylor diagrams of four models were given, and
the results of several models were in a good interval, among which
CESM2 and CNRM-CM6-1 had smaller RMSD (Equivalent to
RMSE divided by the standard deviation of the observed data).

Here, CESM2 and CNRM-CM6-1 with better precipitation
simulation effect were selected for EDCDFm deviation
correction, the simulation ability of the revised model was
evaluated, and the Taylor diagram was used to compare the
proximity between the two models and the observation data.
The results of the model evaluation are shown in Figure 3D.
Among them, the spatial correlation coefficients of the two
corrected models were more outstanding than 0.9, the RMSD
of CNRM-CM6-1 was smaller, and the ratio of their standard
deviation was close to 1. Therefore, the model data simulation
ability of CNRM-CM6-1 were more robust, and the three paths
of the model data were selected for extreme precipitation event
evaluation.

3.2 Projection of Extreme Precipitation in
CPEC
For extreme precipitation events in different durations, the
frequency difference of extreme precipitation events in the
three scenarios in the future was not obvious under the
condition of continuous 3d extreme precipitation.

Figure 4 shows the frequency of extreme precipitation events
in the three scenarios in the future. The years of maximum
frequency indicated under the three scenarios were different.
Under SSP3-7.0, the frequency of extreme precipitation was the
highest around 2037, and SSP1-2.6 was consistent with the year of
the maximum frequency of extreme precipitation under SSP5-
8.5. After reaching the maximum frequency, it showed a
downward trend and then rose again after reaching the
bottom in 2046. From the overall direction, under the three
scenarios, the frequency of extreme precipitation fluctuated and
increased and increased significantly in 2030. The interdecadal
frequency variabilities under the three scenarios were
3.215 times/10A, 1.215 times/10A, and 5.063 times/10A,
respectively. The interdecadal variability of extreme
precipitation under the three scenarios was quite different. The
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interdecadal variability under SSP5-8.5 was relatively large, in line
with the climate change characteristics of high forcing and high
radiation.

Comparing the occurrence of extreme precipitation events in
the prediction stage with the average extreme precipitation
frequency in the reference period, Figure 5 was obtained.
Compared with the base period, the extreme precipitation
frequency under the three scenario models showed an upward
trend, with significant extreme points under SSP1-2.6 and a large
variation range under SSP3-7.0. On the other hand, under SSP5-
8.5, the change of extreme precipitation frequency was relatively
average, but it was always a large stage.

The impact area of extreme precipitation events was the
grid area covered by an extreme event, and it was one of the
important indicators to evaluate extreme precipitation events.
In the prediction period, the average annual impact area
under the three scenarios of extreme precipitation events
lasting for 1 day generally showed an upward trend year by
year (Figure 6). Among them, the impact area under SSP5-8.5
increased the fastest, and the minimum area exceeded
20000 km2, the multiyear average impact area of a single
event was 41000 km2, and the maximum impact area
reached 52.53 million km2. As a result, the total impact

area in the prediction period was 120.33 million km2, and
the total impact area in the benchmark period was 101.44
million km2.

In Figures 4–6, we concluded that in the next 15 years, the
average impact area of extreme precipitation events under the
three scenarios would decrease, and the total impact area would
increase to a certain extent. In addition, the number of extreme
events would decrease slightly, indicating that the number of
small-scale and high-intensity extreme precipitation events
would increase from 2021 to 2035. In the next 30 years, the
average impact area of extreme precipitation events would
decrease, the total impact area would increase, and the
number of extreme events would increase, indicating that the
number of small-scale extreme precipitation events would
increase from 2021 to 2050.

The observation of precipitation extremes was largely
different among different SSPs. In identifying IAD extreme
precipitation events, this study adopts the concepts of grid
precipitation threshold and relative intensity. Most of the grid
precipitation thresholds have increased in varying degrees
under the following three scenarios, especially for periods of
5 days and 7 days. The multiyear monthly average
precipitation was used as the standard to obtain the

FIGURE 3 | (A)Model correction process (Taking August data of a grid point as an example). (B) Monthly precipitation in the base period and the monthly
precipitation simulated by the model data. (C) Taylor diagram of four model data. (D) Taylor diagram of the model after deviation correction.
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variation trend of future precipitation. Figure 7 shows the
multiyear average monthly precipitation during the
observation period from 1984 to 2013 and the future three
scenarios from 2021 to 2050. For the dry season, the
precipitation under SSP1-2.6 was more than that under
other paths, and the simulation of precipitation in SSP1-2.6
focused on balancing the precipitation in the dry season; In the

rainy season (July/August), the simulation under SSP5-8.5 was
more significant than the other two. This was a precipitation
process simulated by high radiation and high forcing without
climate policy intervention, which could better represent an
extreme scenario. Therefore, the following inundation
simulation and flood risk assessment were carried out using
the precipitation data under this scenario.

FIGURE 4 | Annual variation of the extreme precipitation frequency in three future scenarios under different durations. (A) Lasting for 1 day. (B) Lasting for 3 days.
(C) Lasting for 5 days. (D) Lasting for 7 days.

FIGURE 5 |Change percentage of extreme precipitation frequency under different scenarios in the future. (A) Average change percentage. (B)Change percentage
of each year.
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3.3 Projection of the Flood Risk in CPEC
In the context of global climate change, the intensity of extreme
precipitation was increasing. Through the processing and
research of model data, this study obtained that the extreme
precipitation was the most obvious under SSP5-8.5. Therefore,
the daily rainfall value in 2021–2050 under SSP5-8.5 and CNRM-
CM6-1 was selected to calculate the area rainfall process with a
100-year return period and 20-year return period, and the
corresponding DEM, land use, and other data were substituted
into the flood area model for simulation, The flood inundation
map (Figure 8) of the 100-year return period (high scenario) and
20-year (low scenario) under the future climate model scenario
could be obtained to guide the flood prevention work under the
future climate change scenario.

As shown in the figures, compared with the design flood
inundation distribution in the historical period, the design
flood inundation range had a partial increasing trend in the

FIGURE 6 | Average annual impact area of extreme precipitation under different scenarios in the future. (A) Under SSP1-2.6. (B) Under SSP3-7.0. (C) Under
SSP5-8.5.

FIGURE 7 | Monthly average precipitation in the base period and
monthly average precipitation in three combined paths from 2021 to 2050.

FIGURE 8 | Schematic diagram of the flood risk under the future scenario (SSP5-8.5). (A) 100-year flood process value. (B) 20-year flood process value.
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future scenario and had increased in a small range. According
to the statistics of inundation areas in different water depths,
it was found that the increased range of inundation areas in
different risk areas was different. Compared with the flood
inundation in the historical period, the expansion area of the
design 100-year flood under 1 m inundation depth was more
prominent in the future scenario, and the expansion area of
high water depth inundation was less pronounced.

As for frequency calculation, the daily rainfall data from
2021 to 2050 under SSP5-8.5 and CNRM-CM6-1 were
selected for analysis. The grid-point rainfall was calculated
as the design rainfall under the return period of 20 years and
100 years, respectively. The spatial distribution of design
rainfall was obtained by interpolation of design rainfall to
carry out the following risk assessment calculation. Finally,
the 20-year flood risk distribution and 100-year flood risk
distribution under the future scenario could be obtained
(Figure 9). Compared with the historical observation
period, under the future scenario, the area of medium- and
high-risk areas in the 20-year flood risk zoning was partially
expanded, especially located in the south of Sindh province
and part of the Indus River into the sea, and the medium- and
high-risk areas tend to expand in the middle of Punjab
province. The expansion of the high-risk area with 100-
year flood risk was the most obvious, which was mainly
located in the plain of Punjab province. The area of the
high-risk area was expanded by about 3.1%. The area of
the low-risk area was in the south of Sindh province, and
the south of Balochistan province had increased by 4.2%, and
the area of the low-risk area and the medium-risk area had
decreased correspondingly.

In general, the area of high-risk areas in the future scenario
had an expanding trend, especially located in the east and
south, affected by the summer monsoon and densely populated
areas. Therefore, it was necessary to improve the flood
prevention level further to avoid more significant losses in
the future.

4 DISCUSSION

Due to the differences in simulation mechanism, topographic
elements, and spatial resolution of different climate models, the
simulation results were uncertain, and the simulation ability of
other regions was different, especially in areas with complex
topographic and atmospheric elements. The prediction of
global precipitation data by the model data before CMIP5 was
more in line with the measured situation than in a single region.
In recent years, significant progress has been made in the regional
simulation of GCMs. Huang et al. (2015) found that CMIP5
multimodel set data had a strong simulation ability for temporal
and spatial temperature and precipitation changes. The model
could also well simulate the seasonal fluctuations of precipitation.
Chen et al. (2014) used 43 GCMs to predict the precipitation in
China. They found that the CMIP5 model data could better
simulate the regional distribution characteristics, which were
higher in the southwest. Therefore, when using the global
climate model to analyze the various features of
meteorological elements under regional future climate change,
it was necessary to select appropriate GCMs and evaluate the
simulation ability of the climate model. Significantly, there would
still be uncertainty in the application of GCM in predicting
extreme regional events even if there were downscaling
methods and deviation correction methods and the RCM
dynamical downscaling method was still dominant in terms of
regional precipitation simulation (Guo and Wang, 2016). In
future research, it is suggested to use RCM or the GCM model
with high accuracy and project precipitation extremes/floods.

Unlike CMIP5 model data, CMIP6 combined the typical
concentration path and shared economy path to form a new
scenario path model (SSP-RCP) to obtain more reliable
prediction results. Jiang et al. (2020) also attempted to use
CMIP6 data to evolve temporal–spatial characteristics of
temperature and precipitation. However, IAD was not applied
to their study. The climate in different regions of CPEC was quite
different. Therefore, it was difficult to study the change

FIGURE 9 | Flood risk zoning in different return periods under future scenarios (SSP5-8.5). (A) 20-year flood risk zoning. (B) 100-year flood risk zoning.
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characteristics of extreme events in time series on a large unified
scale and take the characteristics of different regions into account.
The study area could be divided according to climatic and
topographic characteristics to further explore the changing
trend of extreme events in different regions. Spatially, the
number of people affected by drought would be greater than
that in the reference period. The increase in temperature
exacerbated the drought. Regional drought risk levels were
different (Wen et al., 2019), which proved IAD had a good
effect on spatial characteristics. Considering the three-
dimensional aspects of extreme precipitation events, IAD
clustering was used to identify extreme precipitation events in
CPEC in this study. The changing trend of extreme precipitation
events under the background of climate change was obtained. It
could expand the simulation path of the existing research to carry
out more representative research on extreme climate events.

In this study, the newly released model data in CMIP6 were
downscaled, the simulation ability was evaluated, and the
applicability of CNRM-CM6-1 model data in CPEC was
obtained. Compared with CMIP5, the single CNRM-CM6-1
model in CMIP6 could achieve the fitting effect of the
multimodel aggregation average in CMIP5. Furthermore, the
path data of three SSPs under CNRM-CM6-1 in CMIP6 were
used to predict and evaluate extreme events under different
climate change backgrounds in the future. Meanwhile, IFAHP,
CRITIC, and ICWGT used in this study for assessing flood risk
could make results obtained quickly, which was helpful for the
division of flood risk areas. In previous studies, Abbas et al. (2022)
found that under the high-forcing scenario (SSP5-8.5), the trend of
extreme precipitation events in CPEC increased significantly, and
the tendency of extreme precipitation events in summer also
increased significantly, which is consistent with the conclusions
of this article. In the verification of temperature simulation in
Thailand (Suchada et al., 2021), the simulation results and
accuracy of CNRM-CM6-1 were affirmed, so the accuracy of the
simulation results based on CNRM-CM6-1 could be considered to
be guaranteed. However, the resolution of CNRM-CM6-1 may still
impact the accuracy of research results. Therefore, in future research,
if the model’s resolution can be solved, it will be an important
breakthrough in improving the accuracy of disaster prediction.

5 CONCLUSION

For the rainfall data under the new combination scenario in the
newly released CMIP6 model data, EDCDFm was used to correct
the downscaling deviation. Before the correction, the model data
were partially overestimated for rainfall. We selected the model
closest to the measured data for correction. The single corrected
model had a good fitting ability for the measured data’s seasonal

fluctuation and spatial distribution. The appropriate level of a
single model could reach the level of the multimodel set in
CMIP5.

Variation characteristics of extreme precipitation events
under the background of climate change. Under CNRM-
CM6-1, the frequency of extreme precipitation events
presents interdecadal fluctuations of 3.215 times/10A,
1.215 times/10A, and 5.063 times/10A under three
combined path datasets (SSP1-2.6, SSP3-7.0, and SSP5-8.5).
In the next 30 years, the average impact area of extreme
precipitation events would decrease, the total impact area
would increase, and the extreme precipitation events in a
small range would increase. Under the future scenario, the
increased rate of extreme precipitation in August was the
fastest, which increased the probability of extreme events.

For the flood risk under different return periods in the future,
compared with the observation period, the flood risk had a more
obvious expansion trend in the next 30 years, which was mainly
reflected in the expansion of the area of high-, medium-, and low-
risk areas. The risk zoning results obtained by the two different
flood risk assessment methods differed, but the overall risk trend
was the same.
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The Three Gorges Project is the largest water conservancy project in the world. To cope
with the ecological problems of the subsidence zone in the Three Gorges Reservoir area,
the Kaizhou water-level-regulating dam was built, forming a model of nested water
conservancy projects. The Pengxi River Basin is affected not only by this project but
also by human activities in the reservoir area and changes in the substratum and hydro-
meteorology, which exert influences on the water connotation function and its ecological
value through complex mechanisms. In addition, the response mechanism of the changes
in the environment is unclear. Therefore, based on the Integrated Valuation of Ecosystem
Services and Tradeoffs (InVEST) model and a spatial interpolation method, in this study,
two time nodes (2005 and 2018) before and after the operation of the nested water
conservancy projects began were selected, and seven simulation scenarios with different
water levels, precipitations, and temperatures were created to explore the evolution of the
water conservation service function in the nested water conservancy project operation
area under the complex changes in the environment. The results reveal that the operation
of the water conservancy projects has had some influence on the water content, but the
response of the water content function to the precipitation conditions has been more
significant. In colder and rainier years, the water content was higher. In contrast, the lowest
value occurred in a year with high temperatures and low rainfall. The highest and lowest
values were quantitatively different. Therefore, the influences of the complex environmental
factors on the regional water connotation service function deserve more attention. The
results of this study provide a scientific basis for research on the ecological service function
and the value of water conservation in the Three Gorges Reservoir subsidence zone and
the nested operation area of the related water conservancy projects, as well as a data
reference for the optimal allocation of regional water resources.

Keywords: InVESTtmodel1, water yield2, nested area of water conservancy project3, hydrologyweather condition4,
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1 INTRODUCTION

Under the context of climate change, ecological degradation has
become a global priority. As a result, human well-being and
livelihoods depend heavily on freshwater ecosystems and their
service functions (Capon et al., 2018). Water conservation service
is an important link between natural ecosystems and human
society’s demand for ecosystem services, and it plays an
important role in the water cycle and water balance of river
basins, as well as human survival and development (Ren and
Mao, 2021).

The integrated valuation of ecosystem services and tradeoffs
(InVEST) model has been widely used in water conservation
services research. This model has been used inmany regions, such
as the Chindwin River Basin in Myanmar, the Portuguese
Continental Basin, the Sokoto–Rima Basin in West Africa,
Chile in South America, and the middle and lower reaches of
the Yangtze River in China (Almeida and Cabral, 2021; Benra
et al., 2021; Raji et al., 2021; Shrestha et al., 2021; Chen et al.,
2022). This model can be used not only to evaluate the ecological
service functions of different regions but also to predict the
changes in ecological services by simulating different scenarios
in order to identify the best scenario for sustainable regional
development.

In recent years, due to the impacts of global climate change
and social and economic development, Chinese and foreign
scholars have focused on analyzing the driving factors of
regional water conservation services with the help of this
model. Dai and Wang (2020) analyzed the spatial
heterogeneity and conducted the attribution analysis of water
producing services in the Hengduanmountainous area and found
that climate factors were the main factors controlling the spatial
heterogeneity of the water producing service. In addition,
evapotranspiration and precipitation can be interpreted
differently for different topography. Wang et al. (2020) used
the InVEST model to simulate the water conservation scenarios
for the Fujian Triangle urban agglomeration in 2015 and 2030
and found that the impact of land-use changes on water
conservation is mainly manifested in four aspects: changes in
area, changes in direction, action intensity, and area
compensation. Aneseyee et al. (2022) used the InVEST model
to analyze the spatial and temporal variabilities of the water yield
under land-use change (LUC) and climate change in the Winike
watershed, Ethiopia, and found that land conversion affected the
water yield but precipitation had a greater impact. Wang et al.
(2022) quantitatively assessed the spatial and temporal
variabilities of the ecosystem services in the Qilian Mountains
using the InVEST model, as well as the differences in the eco-
hydrological services under different land-use types. The
Daqinghe River Basin was selected as an example to study the
changes in the ecosystem services and its influencing factors. The
results revealed that the natural background conditions and
ecological protection policies were the main factors driving the
changes in the ecosystem regulation services. The supply of
agricultural products and the change in the area of
construction land were the main factors driving the
spatiotemporal changes in the agricultural product supply

service and human settlement environment, respectively (Pan
et al., 2021). Li J. et al. (2021) studied the impacts of precipitation
and land-use changes on the water supply and service function in
the Beisanhe River Basin. Their results revealed that the impact of
the climate on the water yield was far greater than that of the
land-use changes, and the surge in precipitation played a leading
role. Zhao et al. (2019) analyzed the driving factors affecting the
water yield in the upper reaches of the Shiyang River and
concluded that climate was the leading factor affecting the
changes in the water yield. Most of these studies focused on
the response of water harvesting to land-use changes and climate
change. With the increasing disturbance of human activities,
especially the construction and operation of large-scale water
conservancy projects, the water resources and ecosystems in the
basin are greatly affected. However, few studies have been
conducted on the mechanism of water-level fluctuations under
the influence of water conservancy projects and their effect on
water conservation services.

The Three Gorges Project formed a fluctuation zone, and its
ecosystem is fragile. Related studies have mainly focused on the
health and change mechanism of the ecosystem in the water-level
fluctuation zone of the Three Gorges Reservoir area, including the
soil, vegetation, ecological problems, and restoration (He and
Bao, 2019; Lu, 2021; Lu et al., 2021; Shen et al., 2021). In addition,
the characteristics of the water-level fluctuation zone, such as its
long and narrow shape, cloudy weather, and large variations in
the water level, increase the difficulty of data acquisition, and
thus, previous research studies on the water conservation services
are mainly based on static evaluations (Zhang et al., 2007). Few
studies have been conducted on the dynamic changes caused by
the operation of nested water conservancy projects. The
operation of large-scale water conservancy projects has
significantly affected the regional water and soil resources and
the ecological services (Cheng et al., 2015; Cheng et al., 2018; Hu,
2019; Li and Hao, 2019; Li et al., 2019; Gong et al., 2020; Li et al.,
2021a). Lu et al. (2021) analyzed the comprehensive effect and
driving mechanism of the ecological water transfer project in the
Heihe River Basin since 2000 and found that the hydrological,
ecological, and socio-economic systems in the LXS region have
formed feedback loops, but the comprehensive correlation among
the water resources, ecosystem, and socio-economic system
should still be considered in order to coordinate the
relationship between them.

The Pengxi River Basin was chosen as the research area of this
study. A large water-level fluctuation zone has formed in this
basin under the influences of the operation of the Three Gorges
Project and the special terrain conditions in this region. It
accounts for about 45% of the water-level fluctuation zone in
the Three Gorges Reservoir area, which makes this watershed
ecologically fragile. In order to reduce the deterioration of the
ecological environment in the water-level fluctuation zone and its
surrounding areas, a water-level-regulating dam was built in
Kaizhou. The operation of nested water conservancy projects
makes the regional ecological driving mechanism more complex.
Under the multiple effects of land-use changes, the operation of
nested water conservancy projects, the human activities in the
reservoir area, and changes in the meteorological conditions, the
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change mechanisms of the ecological service functions and the
value of the water conservation need to be investigated further.
Therefore, in this study, the Pengxi River Basin was taken as the
study area, and the InVEST model was used to evaluate the water
conservation service functions under the effects of multiple
impacts via statistical analysis and geographic information
system (GIS) technology and to determine the change
mechanism of the water conservation ecological service
functions under the influence of human activities, land-use
changes, changes in the meteorological conditions, and water-
level control of different water conservancy projects (the water-
level control of the Three Gorges Project: low water level 145 m,
high water level 175 m, the same below). The results of this study
provide a scientific basis for ecological protection and restoration
and the optimal allocation of regional water and soil resources in
the Pengxi River Basin and the affected areas of related large-scale
water conservancy projects and a theoretical reference for the
ecological effects of related engineering measures.

2 MATERIALS AND METHODOLOGY

2.1 Study Area
The operation of the Three Gorges Project has formed a water
fluctuation zone at 145–175 m in the reservoir. The special
topography of the Pengxi River Basin in the Chongqing
section of the Three Gorges Reservoir area has resulted in the
formation of a large water-level fluctuation zone, accounting for
about 45% of the Three Gorges Reservoir area. In order to

improve the water-level fluctuation zone and the vulnerability
of the surrounding ecological environment, the Kaizhou water-
level regulation dam was constructed to form a nested area of
large-scale water conservancy projects (Figure 1).

The Pengxi River Basin (Figure 2) is located in the eastern part
of the Sichuan Basin (107°56’–108°54’E, 30°49’–31°42’N), and the
Pengxi River mainly flows through the Kaizhou District and
Yunyang County in Chongqing, with a total basin area of
5,173 m2. The main landforms in the basin include mountains,
hills, and plains. The topography of the region is undulating and
is generally high in the northeast and low in the southwest. Most
of the region has a subtropical humid monsoon climate, except
for the northern mountainous area, which has an altitude of more
than 1,000 m and a warm temperate monsoon climate.

The average annual temperature is 18.47–10.81°C, and the
temperature difference between the northern and southern
parts of the study area is large due to the influence of the
vertical temperature gradient. The rainfall is concentrated in
summer and autumn, and the rainy season is long. The
annual average rainfall is 1,100–1,500 mm, and the annual
average runoff is 3.58 × 109 m³. The forest coverage rate of the
basin is 31.4%, and the vertical zoning of the vegetation is
obvious. Purple soil, yellow soil, and paddy soil are the main
soil types.

2.2 Research Data
The sources of the land cover, meteorological, and socio-
economic data used in this study are presented in Table 1. In
this study, two time nodes were selected: one before the operation

FIGURE 1 | Water conservancy projects are nested to form a timeline.
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of the nested hydraulic project began (2005) and one after the
operation of the nested hydraulic project began (2018).
According to the land-use classification standard GB/T21010-
2017, the spatial distributions of the ecosystems in 2005 and 2018
in the study area were determined. The hydrological analysis tool
in ArcGIS was used to determine the boundary of the watershed
in the study area based on a digital elevation model (DEM). Based
on hydrological and meteorological data from three

meteorological stations in the Kaizhou District and its
surrounding areas for typical years, such as a wet year, a
normal water year, a dry year, a high-temperature year, and a
low-temperature year, an annual rainfall distribution map and
temperature distribution map were generated via inverse distance
weighted interpolation. Hydrometeorological simulation
scenarios were defined based on the temperature,
precipitation, and solar radiation data in order to calculate the

FIGURE 2 | Schematic diagram showing the location, elevation, water system, and dam in the study area.

TABLE 1 | Data and sources.

Data Data Source

Land use Southwest Mountain Center of the National Earth System Science Data Center
NDVI IKONOS satellite and WorldView-3 satellite
DEM ALOS-DSM satellite
Monthly and yearly precipitation Southwest Mountain Center of the National Earth System Science Data Center
Daily temperature National Meteorological Science Data Center
Radiation from the top of the solar atmosphere Data publishing system for global change science research
Based on HWSD China soil dataset National Earth System Science Data Platform—Cold Area and Early Area Data Center
Evapotranspiration coefficient InVEST model database
Root depth of vegetation InVEST model database
Velocity coefficient InVEST model database
Socio-economic data Statistical Yearbook and Bulletin of Chongqing Municipality and Kaizhou District of Chongqing Municipality
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potential evapotranspiration. The water available for vegetation
growth was calculated based on the soil’s sand, silt, clay, and
organic matter contents. The plant evapotranspiration coefficient
was calculated based on the leaf area index (LAI). The saturated
water conductivity of the soil was calculated using the soil’s sand
and clay contents and the soil bulk density. The soil depth and
DEM were extracted from the soil dataset of the Harmonized
World Soil Database (HWSD) to calculate the topographic index.

2.3 Methods of Evaluation of Water
Conservation Service Functions
The water conservation module of the InVEST model calculates
the water yield based on the water cycle principle using
parameters such as the average annual precipitation, surface

and vegetation evapotranspiration, and soil and vegetation
root depth. Then, it obtains the final amount of water
conservation using the velocity coefficient, topographic index,
and saturated soil water conductivity. The specific calculation
formula is as follows:

WaterRetention � min(1, 249
Velocity

)
× min(1, 0.9 × TI

3
) × min(1, Ksat

300
) × Yield,

(1)

where water retention is the water retention depth (mm), velocity
is the velocity coefficient, and TI is the dimensionless topographic
index, which is calculated using Eq. 2. Ksat is the saturated soil
water conductivity (cm/d), which is calculated using the Saxton

FIGURE 3 | Map of land-use changes in the Pengxi River Basin from 2005 to 2018.
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model and Eq. 3 (Li et al., 2019). Yield is the water yield, which
can be calculated using Eq. 4.

TI � lg( Gridnumber

Soil Depth × Percent Slope
), (2)

where Gridnumber is the number of grids in the study area, Soil
Depth _is the soil depth (mm), and Percent Slope is the slope
percentage.

Ksat � 22.644 × epower

power � −0.995 + 0.014sand

+ ( − 376.988 + 3.323sand − 2.329clay + 0.113clay2)
θs

,

(3)

where Ksat is the saturated soil water conductivity (cm/d), sand
and clay are the soil sand and clay contents (%), and θs is the
saturated soil water content (%).

Yjx � (1 − AETxj

Px
) × Px, (4)

where Yjx is the annual water output, Px is the average annual
rainfall in grid unit X, and AETxj is the annual average
evapotranspiration in grid unit X in ecosystem type J (Wang
et al., 2021), which can be calculated using Eq. 5.

AETxj

Px
� 1 + ωxRxj

1 + ωxRxj + 1
Rxj

,
(5)

where Rxj is the dimensionless dryness index of grid unit X in
ecosystem type J, which is calculated based on the ratio of the
potential evapotranspiration to rainfall and using Eq. 6.Ωx is the
dimensionless ratio of the annual available water to rainfall for
modified vegetation.

Rxj � k × ET0

Px
, k � min(1, LAI

3
), (6)

where k is the vegetation coefficient, which can be calculated
using the LAI. ET0 is the evapotranspiration when the flat ground
is completely covered by certain short green vegetation and the
soil is still sufficiently moist (mm/d) (Zhang et al., 2012). Eq. 7 is
used to calculate the evapotranspiration.

ET0 � 0.0013 × 0.408 × RA × (Tavg + 17) × (TD − 0.0123P)0.76,
(7)

where RA is the solar atmospheric top layer radiation (MJ/m2·d),
Tavg and TD are the mean and difference of the mean of the daily
maximum and minimum temperature (°C), respectively, and P is
the monthly precipitation (mm).

ωx � Z
AWCx

Px
, (8)

where Z is the Zhang coefficient (constant) and its range is (1–10),
which represents the seasonal characteristics of the precipitation.
When the precipitation is mostly concentrated in winter, Z
approaches 10. When the precipitation is relatively

concentrated in summer or is evenly distributed in all seasons,
Z approaches 1. According to the model test and the analysis of
the precipitation data, the precipitation in the study area is mainly
concentrated from May to October, of which the precipitation
from June to August accounts for about 50%. In addition, by
referring to the research results of other scholars regarding the
Three Gorges Reservoir area (Xiao et al., 2015), it was found that

AWCx � min(max SoilDepthx,RootDepthx) × PAWCx, (9)
where maxSoil_Depthx is the maximum soil depth, Root_Depthx
is the root depth, and PAWCx is the water available for vegetation
growth, which is calculated using Equation 10:

PAWCx � 54.509 − 0.132sand − 0.003(sand)2
− 0.055silt − 0.006(silt)2 − 0.738clay

+ 0.007(clay)2 − 2.688OM + 0.501(OM)2, (10)
where sand, silt, clay, and OM are the sand, silt, clay, and organic
matter contents of the soil (%), respectively.

3 RESULTS

3.1 Analysis of Temporal and Spatial
Characteristics of Regional Environmental
Changes
3.1.1 Simulation Scenarios
After the completion of the Kaizhou water-level regulation dam
in 2017, the Kaizhou water-level regulation dam and the Three
Gorges Dam formed a nested operation to influence the area of
water conservancy projects. The highest and lowest water levels of
the Three Gorges Project are 175 m (hereinafter referred to as the
high water level) and 145 m (hereinafter referred to as the low
water level), based on which surface cover data were obtained for
the high and low water levels at two time nodes in the study area.

Second, the ecosystem service functions of the water
conservation were the result of the combined effect of the
meteorological and hydrological factors. Therefore, for
precipitation and temperature, seven simulation scenarios were
designed based on the meteorological data from 1959 to 2019 for
the study area. For precipitation, a wet year (PH), normal year
(PN), and dry year (PL) were defined. A high-temperature year
(TH) and low-temperature year (TL) were defined for air
temperature. In view of the dual effects of precipitation and
temperature, we defined a high-temperature year with little rain
(THPL) and a low-temperature year with abundant rain (TLPH).

3.1.1.1 Land Cover Changes
In order to reveal the impacts of human activities on the land
cover, land cover data for two time nodes were selected to analyze
the direction and source of the land loss of each land-use type
during the study period using an ecosystem type transfer matrix.
Before and after the operation of the nested water conservancy
projects began, the area of grassland converted to other land-use
types was the largest, followed by cultivated land, and the amount
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of dryland converted was the smallest. The area of cultivated land
was the largest, followed by woodland. The area of grassland
converted was the largest (Figure 3) and was 523.38 km2. The
converted areas were mainly medium and high coverage
grassland, and the area of medium coverage grassland
converted (509.03 km2), accounted for 45.85% of the total area
of grassland converted, while the area of high coverage grassland
converted was only 12.71 km2 (1.15%). More grassland with a
medium coverage was converted into the dryland (403.79 km2),
accounting for 42.19% of the total area converted. The high
coverage grassland was converted into the woodland (7.20 km2),
dryland (3.79 km2), and sparse woodland (0.55 km2). The 22.28%
of the farmland was converted to the dryland, and the dryland
was mainly converted to sparse woodland, paddy fields, and
medium coverage grassland. The percentage of farmland
converted was the largest (61.39%). Among them, the area of
dryland converted was the largest (568.45 km2). The second
largest was woodland (20.84%), among which the area of
sparse forest land converted was the largest (111.37 km2), and
it was mainly converted from the medium coverage grassland,
dryland, and paddy fields.

The results revealed that from 2005 to 2018, the areas of the
dryland, open woodland, high coverage grassland, canals and
reservoirs pits, urban land, land for rural residents, and land for
industry, mining, and transportation increased; the areas of the
paddy fields, shrub land, forest land, other beaches and coverage,
low coverage grassland, and the grass in the bare rock gravel land
decreased. These changes were mainly due to the nested
operation of the water conservancy projects and corresponded
to the impacts of human activities.

The dynamic changes in the land cover are presented in
Table 2. Before the water conservancy project nesting was
implemented in 2005, the land cover was dominated by the
dryland (31.69%), medium coverage grassland (19.24%), and
sparse forest land (13.53%). In 2018, the dryland (38.15%),
sparse forest land (13.98%), and paddy fields (13.32%) were
the main land-use types. After the nested water conservancy

projects were implemented, the areas of the dryland and medium
coverage grassland changed significantly, and the area of the
dryland increased by 321.11 km2. The area of the medium
coverage grassland decreased the most by 445.878 km2.

From 2005 to 2018, the dynamic attitudes of the urban and
rural areas, water area, cultivated land, and forest land were 23.98,
16.11, 1.07, and 0.13%, respectively. The dynamic attitude of the
industrial, mining, and transportation land was the largest
(14,684.10%). The dynamic attitude of the water channels was
the second largest (53.28%). The dynamic attitudes of the
grassland and bare gravel land were –3.07% and –0.02%,
respectively. Due to the construction of the Three Gorges
Dam, the total reservoir area of about 55.5 km2 in the Kaizhou
District was submerged, and the grace length of the 400 km
reservoir was submerged. The urban pattern of the district was
completely changed. The old city was basically submerged, and
the population in the district affected by this change accounted
for 16.62% of the total immigrant population in Chongqing (Zeng
and Wang, 2017). The migration period (1993–2008) accelerated
the urbanization process in the Kaixian County, and the dynamic
attitudes of the urban and rural land and cultivated land in the
study area were relatively large. In addition, the construction of
new towns in the county promoted the development of the
urbanization pattern of the Kaizhou District.

3.1.1.2 Precipitation Characteristics
The total rainfall in the wet years was 1716.4 mm, which mainly
occurred from June to October. The annual rainfall in normal
years was about 869.3 mm, which was 49.36% lower than that in
wet years, and the average daily rainfall was 6.44 mm. The total
rainfall in the dry years was only 759.7 mm, which was the lowest
compared to the other years and was 55.77% lower than that in
the wet years.

Precipitation was abundant in the low-temperature years, with
the annual rainfall reaching 1180.7 mm. The annual total rainfall in
the high-temperature years was the same as that in the normal
years, which was 26.37% lower than in the low-temperature years.

TABLE 2 | Dynamic change of land cover.

Land-use type 2005 2018 2005–2018

Area (km2) Area (km2) Area (km2) Dynamic attitude (%)

Paddy fields 671.90 662.68 −9.22 –0.11
Dryland 1576.05 1897.16 321.11 1.57
Forest land 427.87 459.92 32.05 0.58
Shrub land 421.84 408.17 –13.68 –0.25
Open forest land 672.75 695.37 22.62 0.26
Other woodland 127.00 114.18 –12.82 –0.78
High coverage grassland 79.03 108.27 29.24 2.85
Medium coverage grassland 957.07 511.19 445.88 –3.58
Low coverage grassland 8.12 7.55 –0.57 –0.54
Graff 4.87 38.57 33.70 53.28
Reservoir pits 5.37 12.80 7.42 10.63
Beaches 7.06 2.18 –4.88 –5.31
Urban land 8.29 15.13 6.85 6.35
Rural residential land 4.82 13.12 8.29 13.23
Land for industry, mining, and transportation 0.01 25.78 25.77 14684.10
Bare rock gravel fields 1.27 1.27 –0.003 –0.02
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The annual precipitation in Fengshui exhibited an increasing trend
from the Mingzhong Township in the northeast to the southwest
(Figure 4), and the rate of increase was rapid. The annual
precipitation in the normal years and high-temperature years
decreased from the central area to the Toudao River to the
northeast and southwest, and the precipitation was lower in the
southwest than that in the northeast. The distribution of the rainfall
was roughly the same in the dry and wet years, that is, the
precipitation decreased from southwest to northeast, but the
annual precipitation was lower in the dry years. However, the
annual precipitation in the low-temperature years decreased from
the northeast to the central part of the study area and increased
from the central part of the study area to the Kanto River in the
southwest. Moreover, the precipitation was lower in the southwest
than that in the northeast. The annual precipitation in the high
temperature and low rainfall years increased slowly from northeast
to southwest in the study area. In the low temperature and rainy
years, the precipitation increased from northeast to southwest.

In general, the precipitation increased from northeast to
southwest in the wet years, dry years, high temperature and
low rainfall years, and low temperature and high rainfall years,
with a rapid increase in wet years and a slow increase in dry years.
The precipitation characteristics were the same in the low
temperature and high rainfall years and high temperature and
low rainfall years, and the precipitation characteristics were the
same in the high temperature and low rainfall years and dry years.
The annual precipitation in the normal years and high-
temperature years decreased from the central China to the
northeast and southwest. The precipitation in the low-

temperature years increased from central China to the
northeast and southwest, and the precipitation in the
northeast was greater than that in the southwest. Although the
spatial distribution characteristics of the precipitation were
similar under the different scenarios, the precipitation itself
was quite different in different scenarios.

3.1.1.3 Temperature Characteristics
The average daily temperatures in the wet years, normal years, and dry
years were 17.97, 19.61, and 18.41°C, respectively. The annual average
temperatures in the Pengxi River Basin in the high temperature and
low-temperature years were 18.69 and 16.84°C, respectively. Under the
two extreme scenarios, the trends of the temperature and precipitation
were similar. The temperature initially gradually increased and then
began to decrease in August. The precipitation exhibited an
increasing–decreasing–increasing–decreasing trend. The difference
in the potential evapotranspiration between the high-temperature
years and low-temperature years in the study area is
250.51–305.53mm/d (Figure 5). The average temperature in the
high-temperature years was 19.4°C, and that in the low-temperature
years was 17.42°C.

The results of the potential evapotranspiration calculation are
shown in Figure 5. The distributions of the potential
evapotranspiration in the high-temperature years and low
temperature and high rainfall years were roughly the same,
increasing from the central part of the area to the Toudao
River in the axial direction. In contrast, in the normal years, it
increased from the northeast and southwest to the central part of
the area. In general, the distribution of the potential

FIGURE 4 | Annual precipitation in the Pengxi River Basin under different scenarios.
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FIGURE 5 | Distribution of potential evapotranspiration in the Pengxi River Basin under different scenarios.

FIGURE 6 | Comparison of water conservation and actual evapotranspiration of the different types of ecosystems.
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evapotranspiration was basically consistent with the precipitation
and air temperature distributions, which preliminarily indicates
that the water conservation was strongly correlated with the
evapotranspiration.

3.2 Analysis of Effects of Land Cover
Changes on the Water Conservation
Function
3.2.1 Effects of Different Types of Ecosystems on the
Functional Characteristics of the Water Conservation
Under the same precipitation and temperature conditions, the
water conservation and actual evapotranspiration of different
surface cover types were compared, and it was found that the

water conservation values of the open forest land, shrub land,
dryland, and forest land were higher. Among them, the open
forest had the highest water conservation (19.5751 × 106 m3)
(Figure 6), but the shrub ecosystem had the highest average water
conservation, which was 94.10% higher than the average water
conservation of the reservoirs and ponds. The average water
conservation values of the paddy fields and dryland were low, but
they increased by 56.38 and 288.30% compared with those of the
reservoirs and pits. The total actual evapotranspiration was
higher in the dryland, paddy fields, medium coverage
grassland, and forest land. The bare rock and gravel land and
rural residential land had the lowest average evapotranspiration,
but the average evapotranspiration of the low coverage grassland
and reservoirs and pools increased by 286.15 and 230.88%,

FIGURE 7 | Land-use changes and water conservation changes at different water levels in 2018.

TABLE 3 | Land-use changes and water conservation changes at different water levels in 2018.

Land-use type Variable-area (km2) Low water-level water
conservation (ten thousand

m³)

High water-level water
conservation (ten thousand

m³)

Changes in water
conservation (ten thousand

m³)

Arable land –15.58 2523.42 2509.47 –13.95
Woodland –4.01 7031.31 7017.31 –14.01
Grassland –12.61 796.56 773.65 –22.90
Water 42.96 35.09 67.86 32.77
Urban and rural land –10.88 38.30 30.55 –7.75
Unused land 0.12 0.87 1.17 0.30
Total 0 10425.55 10400.01 –25.54
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respectively. Therefore, the water conservation function of the
reservoirs was weak.

Overall, the water conservation exhibited a decreasing trend
from southeast to northwest, and the water conservation was
higher around the Liangma River, Xiaojiagou River, and
Tuantan River. The actual evapotranspiration exhibited a
decreasing trend from northwest to southeast, and the total
evapotranspiration was higher around the Taoxi River, Qili
River, and Baqu River.

3.2.2 Analysis of the Changes in the Water
Conservation Function Caused by Changes in the
Water Level
Under the same precipitation and temperature conditions
(Figure 7), after the formal operation of the nested water
conservancy projects began in 2018, except for the water area
and unused land, the surface cover of the cultivated land,
grassland, forest land, and urban and rural land at the low
water level exhibited obvious decreasing trends compared with

TABLE 4 | Average variations in water conservation and actual evapotranspiration in the Pengxi River Basin in 2005 and 2018 (104 m3).

Land-use type 2005 2018 Variation

Water conservation Actual
evapotranspiration

Water conservation Actual
evapotranspiration

Water conservation Actual
evapotranspiration

Arable land 1020.13 6140.32 1203.04 6997.91 182.90 857.60
Woodland 3608.12 3956.17 3672.82 4076.83 64.70 120.66
Grassland 524.72 3426.49 339.25 2029.40 –185.47 –1397.09
Water 26.12 109.68 29.08 132.59 2.96 22.91
Urban and rural land 4.56 16.24 20.89 58.65 16.33 42.42
Unused land 0.70 1.84 0.61 1.83 –0.09 –0.01
Total 5184.35 13650.74 5265.68 13297.22 81.33 –353.51

FIGURE 8 | Distribution of the water conservation for different water levels under the different precipitation scenarios in 2005 and 2018.

TABLE 5 | Response of water conservation function under different precipitation conditions (Unit: 10,000 m3).

Annual precipitation Total water conservation Total
actual evapotranspiration

Wet years 1716.40 104255.54 13601.19
Dry years 795.74 49554.94 15169.89
Normal years 1256.86 16816.23 13081.99
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those at the high water level. The area of the high water level
mainly increased in the vicinity of the Toudao River and its
junction with Xiaojiagou. In the case of the high water level, the
water conservation changed most obviously, with an average
increase of 327,700 m3 (Table 3).

The actual evapotranspiration increased the most in the
cultivated land (8.5760 × 106 m3), while the actual
evapotranspiration of the grassland increased by –13.9709 ×
106 m³ (Table 4). The change in the water conservation of the
cropland and grassland exhibited the opposite trend, and the total
change in the water conservation of the cropland increased by
200% compared with that of the grassland, which was mainly
caused by the construction of the water-level regulation dam and
the immigration engineering in the reservoir area of the Three
Gorges project. Through comprehensive comparison, it was
found that the changes in the land cover had a certain impact
on the water conservation and the actual evapotranspiration due
to the difference in the evapotranspiration intensity and root
depth in the different types of ecosystems. The change in the

water level caused by the operation of the nested water
conservancy projects was finally reflected in the change in the
land cover, resulting in a reduction in the amount of water
conservation (813,300 m³) and the total actual
evapotranspiration (3,535,100 m³). Therefore, the construction
of the Kaizhou water-level regulation dam and the Hanfeng Lake
positively affected the water conservation in the region and
improved the ecological service functions in the study area.

3.3 Analysis of Effects of Meteorological
Changes on the Water Conservation
Function
3.3.1 Analysis of Water Conservation Function Under
Different Precipitation Conditions
Under different precipitation conditions (Figure 8 and Table 5),
the average water conservation depth in the wet years increased
by 86.52 and 135.84 mm compared to the normal years and dry
years, respectively, and the total water conservation increased by

FIGURE 9 | Distribution of the total actual evapotranspiration for the different water levels under the different precipitation conditions in 2005 and 2018.

TABLE 6 | Response of water conservation function to evapotranspiration conditions.

Cumulative daily mean
air temperature (°C)

Total water conservation
(×104 m³)

Total actual evapotranspiration
(×104 m³)

High-temperature scenario 223.32 27355.28 13994.28
Low-temperature scenario 201.71 43715.36 12128.52
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32.62 and 17.55% under the low water level control. The effects of
the different precipitation conditions on the water conservation
were similar under the high water level and low water-level
control. The results revealed that the influence of the
precipitation conditions on water conservation was greater
than that of the water level difference caused by the operation
of the water conservancy projects. The precipitation conditions
had a significant effect on the water conservation values of the
different land cover types. The distribution of the water
conservation was similar to that of the vegetation cover, that
is, the high values are mainly distributed in the northeastern part
of the Pengxi River Basin.

The average evapotranspiration and total actual
evapotranspiration were the highest in the normal years,
followed by the wet years, and were the lowest in the dry

FIGURE 10 | Distributions of the total actual evapotranspiration for different water levels under different annual precipitation and evapotranspiration conditions in
2005 and 2018.

FIGURE 11 | Distribution of water conservation under extreme meteorological conditions for different water levels in 2005 and 2018.

TABLE 7 | Change in the total water conservation under the influence of double
extreme scenarios (unit: 10,000 m³).

Scenario 2005 2018

Low water High water Low water High water

THPL 1435.69 11171.44 1437.86 11111.18
TLPH 1481.47 11239.79 1483.68 11210.07
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years (Figure 9). Under the low water-level control, the average
evapotranspiration in the dry years increased by 25.99 and
45.78 mm compared with the wet years and normal years,
respectively, and the total actual evapotranspiration increased
by 10.34 and 13.76%. Under the high water-level control, the
average evapotranspiration in the normal years was 25.80 and
45.42 mm compared with that in the dry years and wet years,
respectively. Spatially, the actual evapotranspiration was stronger
in the eastern part of Xiaojiagou in the normal years. This was
mainly because there were more paddy fields, grassland, and
beaches in the east, so the potential evapotranspiration was
relatively large and the change was obvious.

Overall, the average water conservation depth and total water
conservation in the Pengxi River Basin were highest in the wet
years, followed by the normal years, and were the lowest in the
dry years. However, the average evapotranspiration and total
actual evapotranspiration were the highest in the normal years,
followed by the wet years, and were the lowest in the dry years.

3.3.2 Analysis of Effects of Temperature Conditions on
the Water Conservation Function
Under the land cover conditions and low water-level control in
2005, the average water conservation depth under the low-
temperature scenario was 25.27 mm higher (61.04%) than that
under the high-temperature scenario. The average
evapotranspiration under the high-temperature scenario was
29.72 mm higher (11.44%) than that under the low-
temperature scenario. Under the land cover conditions and
high water-level control in 2005, the average water
conservation depth under the low-temperature scenario was

24.85 mm higher than that under the high-temperature
scenario. The average evapotranspiration under the high-
temperature scenario was 23.29 mm higher (9.19%) than that
under the low-temperature scenario.

Under the land cover conditions and low water-level control in
2018 (Table 6), the annual average water conservation depth
under the low-temperature scenario was 25.58 mm higher
(63.56%) than that under the high-temperature scenario. The
annual average evapotranspiration under the high-temperature
scenario was 28.73 mm higher (11.13%) than that under the low-
temperature scenario. Under the land cover conditions and high
water-level control in 2018, the annual average water
conservation depth under the low-temperature scenario was
25.66 mm (62.67%) higher than that under the high-
temperature scenario. The annual average evapotranspiration
under the high-temperature scenario was 29.82 mm higher
(11.48%) than that under the low-temperature scenario.

If the water level and surface cover conditions are ignored, the
water conservation level was about 60% higher under the low-
temperature scenario than under the high-temperature scenario,
and the total actual evapotranspiration was about 12–13% higher
under the high-temperature scenario than under the low-
temperature scenario. In particular, the temperature in the
southwestern part of the Pengxi River Basin was higher under
the high-temperature scenario, so the actual evapotranspiration
in the southwestern part of the Pengxi River Basin was larger,
which was in sharp contrast to the low-temperature scenario
(Figure 10). Therefore, the air temperature was also one of the
important factors controlling the water conservation function.
Precipitation and temperature not only affected the total amount
of water conservation, but also affected its spatial distribution.

3.3.3 Analysis of the Effects of Precipitation and
Temperature on the Water Conservation Function
In the case of precipitation and temperature extremes, the
changes in the water conservation function were significantly
different (Figure 11; Table 7). Under the low-temperature and
high rainfall scenarios, the water conservation reached the
maximum value, and it was as high as 112.3979 × 106 m³ for

FIGURE 12 | Comparison of actual evapotranspiration for different water levels in 2005 and 2018.

TABLE 8 | Change in the total actual evapotranspiration under the influence of
dual extreme scenarios (unit: 10,000 m³).

Scenario 2005 2018

Low water High water Low water High water

THPL 13673.06 12298.92 13608.55 12215.97
TLPH 13471.79 11860.21 13422.54 11795.54
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the high water-level control in 2018. In contrast, the lowest value
occurred under the high temperature and low rainfall scenario,
and it was as low as 14.3569 × 106 m³ under the low water-level
control in 2005. There was an order of magnitude difference
between them, that is, a difference of about 98 × 106 m³ (87.23%).

Similarly, under the two extreme evapotranspiration and
precipitation scenarios for the study area, the average
difference in the average water conservation was 9.6 m³
(Figure 12). From the perspective of the spatial distribution,
the amount of water conservation was not only related to the type
of ecosystem but also to the precipitation and air temperature
distributions in the region (Table 8).

The maximum and minimum values of actual
evapotranspiration increased in the Pengxi River Basin were
136,730,600 m³ and 117,953,300 m³, respectively, that is, a
difference of 15.91%. The main reason for the high and low
values is that the population and urban land in the study areas
were mainly distributed near Qukou Town. When the water level
changed, the main change in the land cover type was reflected in
the water area and cultivated land, and the actual
evapotranspiration per unit area of these two land cover types
was higher.

4 DISCUSSION

The InVEST model was used to simulate the water-level changes
in the study area and different meteorological conditions to
obtain the amount of water supplied to the study area after
subtracting the actual evapotranspiration from the precipitation
and to calculate the water production coefficients and water
production moduli of all of the scenarios. The results were
compared with the water production modulus and water
production coefficients for Kaizhou and Yunyang in
Chongqing, which are located in the study area, obtained from
the Chongqing Water Resources Bulletin (Table 9). The relative
error of the validation model is 0.2, which shows that the model
results are reliable.

The operation of the nested water conservation projects
resulted in a positive trend in the water catchment’s function.
The operation of the water conservation projects has had a certain
influence on the water conservation, but the meteorological
conditions have had a greater impact on it. Moreover, the
simulation results of the different precipitation and
temperature scenarios show that the water conservation
function responded more significantly to the precipitation
conditions, which is consistent with the results of previous

studies (Delphin et al., 2016; Dai and Wang, 2020). The depth
of the water cover in this study is generally consistent with the
precipitation trend. In addition, the water conservation function
responded most significantly to the combined effect of the
precipitation and temperature. In low temperature and high
rainfall years, the water conservation was extremely high,
especially under the high water-level control scenario after the
operation of the nested water conservancy projects began, and the
water conservation exceeded 100 × 106 m³. In contrast, the lowest
values occurred in the high temperatures and low rainfall years,
with water conservation of around 14 × 106 m³. The highest and
lowest values are quantitatively different. Under the high-
temperature scenario, the potential evapotranspiration was
higher and the water conservation was lower. This is
consistent with the findings of Chen et al. (2016) and Wang
et al. (2021). Therefore, the influences of the complex
environmental factors on the regional water conservation
service function deserve further attention.

Climate change, management policies, and other factors have
a certain impact on the function and value of ecological services
(Luo et al., 2019; Marques et al., 2021). Relevant research results
have shown that the terrain also has a certain impact on the
evapotranspiration conditions and water conservation. Water
conservation increases as the slope and topographic relief
increase, and it fluctuates as the topographic position index
increases (Xu et al., 2020). The topographic gradient
significantly affects the water supply (Gao et al., 2016; Zhou
et al., 2021). Hu et al. (2021) found that the correlation between
the heterogeneity of the landscape and water conservation is
higher than that between climate factors and water conservation
(Hu et al., 2021). The impact of the landscape pattern on water-
related ecosystem services is mainly reflected in the change in the
intensity, but the dominant relationship does not change (Li et al.,
2021b). Therefore, the influences of terrain and landscape
heterogeneity on water conservation will be considered further
in future studies.

5 CONCLUSION

The factors influencing the water conservation service function
are complex and differ significantly in different situations. In the
study area, there was a positive correlation between the land cover
changes and water conservation changes. Among the land cover
types, the forest ecosystem contributed the most to the water
conservation, with an average contribution rate of 68%. The
Pengxi River Basin is an important water conservation area in

TABLE 9 | Model availability validation.

Year Kaizhou Yunyang Modeled water
production
coefficient

Modeled water
production
modulus

Precipitation
depth
(mm)

Water
production
coefficient

Water
production
modulus

Precipitation
depth
(mm)

Water
production
Coefficient

Water
production
modulus

2005 1386.5 0.58 80.33 1196.8 0.48 57.35 0.43 46.872
2018 1146.5 0.48 55.58 1033.7 0.47 48.2 0.50 54.870
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northeastern Chongqing and is an important component of the
Yangtze River ecological corridor.

Under the operation of nested water conservancy projects, the
water conservation function has exhibited a positive development
trend. The operation of the water conservancy project has had a
certain effect on the water conservation function, but the
meteorological conditions have had a greater effect. A
comprehensive comparison of the water conservation function
under seven simulated scenarios revealed that the changes in the
precipitation and air temperature were the leading factors causing
the changes in the water conservation function. However, there
were differences in the mechanisms by which these two factors
affected the water conservation function. Comparatively,
precipitation had the greatest influence on the water
conservation function.
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Characteristics and Pollution
Contribution of the Internal Nitrogen
Release From the Sediments in the
Dahekou Reservoir in Inner Mongolia
Junping Lu*, Tingxi Liu*, Xiao Hong Shi, Biao Sun and Shengnan Zhao

Water Resources Protection and Utilization Key Laboratory, Water Conservancy and Civil Engineering College, Inner Mongolia
Agricultural University, Hohhot, China

To clarify the influence of the changes in the overlying water environment on the internal
nitrogen release from reservoir sediments in different seasons, the quantitative linear
relationship between the intensity of the nitrogen release from the sediment and the
environmental factors of the overlying water was established, and their contribution rate to
the nitrogen pollution of the reservoir during different storage periods was investigated. In
this study, the sediment samples were collected from the Dahekou Reservoir in the Xilingol
League, and the orthogonal simulation experiments were conducted in the laboratory. The
mathematical model, which was established using multiple linear regression methods,
revealed the following. The order of the significance of the influences of the environmental
factors on the nitrogen release from the sediments in the Dahekou Reservoir is water
temperature (T) > dissolved oxygen (DO) > pH value > hydrodynamic force (K). The total
nitrogen release flux from the sediments in the Dahekou Reservoir was 14.278 t/a in 2018,
accounting for 27.91% of the total nitrogen (TN) pollution load input during the same
period. In particular, in winter, the contribution rate of the nitrogen released from the
sediments reached the highest level (57.06–63.26%), which was significantly higher than
the river’s contribution to the total nitrogen pollution load of the reservoir. The nitrogen
released from the sediments became the main source of nitrogen nutrients in the reservoir
in the ice-sealed period.

Keywords: northern cold area, Dahekou Reservoir, endogenous pollution, sediment, nitrogen release model,
contribution rate

1 INTRODUCTION

Eutrophication of water has been a concern since the early 20th century. The eutrophication of water
bodies was first studied in the Great Lakes region of North America. According to the survey results
of Davis (1964) for Lake Erie in North America, the number of phytoplankton’s in the lake continued
to increase, reaching the maximum in spring and autumn and lasting for an increasingly long time.
Subsequently, Beeton’s (1965) research confirmed that the acceleration of the Lake Erie
eutrophication was caused by human activities. In addition to the United States, Japan (Okino
and Kato, 1987), Germany (Hartman and Nümann, 1977), Sweden (Gelin, 1975), Australia
(Hammer et al., 1973), and other countries have also conducted studies on lake eutrophication.
Since eutrophication was first discovered in the 1930s, 30–40% of the world’s lakes and reservoirs
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have been affected by eutrophication to varying degrees. Taking
effective measures to control the input of exogenous nitrogen and
phosphorus nutrients into the upper reaches of reservoirs has
become a common measure for the prevention and control of
water eutrophication. However, the internal pollution caused by
the release of nitrogen and phosphorus from sediments has been
neglected. In this study, the term sediment generally refers to
river and lake sediments, which is a common accumulation of
particles. A variety of pollutants and numerous types of pollutant
degradation, adsorption, desorption, and other biological and
ecological effects lead to a variety of pollutant and natural
material interactions after the combined effects of these factors
have prevailed for a long period of time. Throughout the entire
water system, material circulation serves the important roles of
confluence and source (Yang et al., 2018). Previous studies have
shown that the migration and transformation of nutrients at the
mud-water interface are affected and restricted by various
environmental factors such as water temperature (Zhong et al.,
2008), pH (Bocrs and Istvanovics, 1991), water disturbance (Pang
et al., 2008; Yan et al., 2008), and dissolved oxygen (Zhang et al.,
2012). The released form, release time, and released quantity of
the nutrient salts in the sediments have been found to be random
(Hartman and Nümann, 1977; Okino and Kato, 1987; Xue and
Lu, 2015). Under the gradual and effective control of the
exogenous input, the release of nutrients from sediments
becomes an important cause of the deterioration and
eutrophication of the lake water quality (Mayer et al., 2005).
Therefore, the secondary pollution caused by the internal release
of nutrients from sediments has attracted the attention of many
scholars (Ni and Wang, 2015; Gu et al., 2016). In the 1970s,
Schindler (1974) conducted long-term large-scale experiments on
a lake, and Schelske et al. (1974) investigated and studied the
phosphorus and silicon dioxide in Lake Michigan, both of which
revealed that phosphorus was the main limiting factor in the
eutrophication of freshwater lakes. Therefore, phosphorus load
reduction has become the main strategy for lake management in
North America and Europe. Subsequently, research on lakes
Apopka, George, and Okeechobee in the United States, East
Lake in China, and Xiupu Lake in Japan have confirmed that
using only this method of controlling the phosphorus input fails
to control the eutrophication of the water body (Conley et al.,
2002). The contribution of nitrogen to water eutrophication has
increased significant interest among scientists, and a large
number of studies have confirmed that nitrogen is another key
limiting factor in the water eutrophication of freshwater lakes
(Han et al., 2014; Shan et al., 2015). At present, most scholars have
mainly focused on the influences of the lake water body sediment
nitrogen composition, occurrence forms, spatial distribution,
diffusion flux, and interface structure on the contribution to
the water environment (Pennuto et al., 2014; Yang et al., 2017).
Conversely, little research has been conducted on the nitrogen
release from sediments, which is affected by changes in the
overlying water environment. Most previous studies were
conducted in the laboratory under static conditions to
simulate the impact of changes in a single environmental
factor on the release characteristics of the internal nitrogen in
sediments, and few studies have investigated the impacts of the

synergistic effects of various environmental factors on the release
characteristics of the internal nitrogen in sediments. In addition,
most studies on sediment nitrogen nutrient release are still in the
qualitative stage, so it is urgent to further analyze and
quantitatively discuss and estimate the sediment internal
nitrogen release load and the pollution contribution rate to the
overlying water body. Studies of the contribution of the
exogenous input and internal release under the influence of
seasonal changes, river runoff, and the water quality upstream
of the reservoir will have a significant impact on the formulation
of pollution prevention plans and measures for the reservoir.

The Dahekou Reservoir is in a cold and dry area with strong
sand movement. The water quality exhibits a eutrophication level
that has increased year by year. During winter and spring
replacement and the freezing and thawing of the reservoir, the
water temperature stratification and inversion influence the
release of the nitrogen and nutrient salts in the sediments.
Wind and reservoir water drainage disturb the reservoir
sediments at the bottom, resulting in sediment suspension and
nitrogen redistribution at the interface between the sediments
and water (Xiang et al., 2015). Some nutrients can be released
from sediments into the upper water, increasing the nutrient load
(Holdren and Armstrong, 1980). Therefore, the temperature, pH,
dissolved oxygen, hydraulic disturbance, and sediment
mathematical model of the internal nitrogen release strength
(lake) were considered when simulating the reservoir conditions
at the soil interface under environmental changes to estimate the
deposited silt sediment nitrogen release flux, to control the water
source pollution, to prevent eutrophication, and to ensure the
reservoir and downstream water supply function.

2 MATERIALS AND METHODS

2.1 Survey of Study Areas
The Dahekou Reservoir (42°13′19.17″N, 116°38′4.00″E) is
located on the main stream of the Luanhe River in Duolun
County, Xilingol League, Inner Mongolia. It was built in
August 1995, and it has a maximum water depth of 18.1 m, a
designed reservoir capacity of 26 million m3, an area of
8684.54 km2 above the dam site, an average monthly area of
2.14–2.87 km2, and a water level of 1213.39–1215.13 m. The
maximum water temperature for many years is 23.3°C, and
the average water temperature under the ice during the ice
period is 0.4°C. The water level, area, and depth of the
reservoir vary with the storage and discharge of the Datang
Duolun Hydropower Station at the mouth of the dam. It is a
medium-sized narrow reservoir, and water supply and power
generation are its main purposes, as well as comprehensive
utilization of flood control, agricultural irrigation, and
aquaculture. It is mainly recharged by the surface runoff of
the Tuligen River in the east and Luanhe River in the west.
For many years, due to the influence of sewage discharge from the
sewage treatment plant in the upper reaches of Duolun County
and the fishery culture in the reservoir, the organic matter (e.g.,
humus) in the sediments of the reservoir rot, and the nitrogen and
phosphorus contents increase year by year. The eutrophication of
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the reservoir water has not been effectively controlled under these
conditions although the external pollution sources are constantly
being rectified and reduced. The eutrophication of the reservoir
water has adversely affected the water quality of the lower reaches
of the Luanhe River and has threatened the safety of the drinking
water of the Tianjin residents in the lower reaches of the Luanhe
River (Liu et al., 2010).

2.2 Sample Collection
Based on the Chinese water environment and the lake wetland
survey norms, according to the distribution of the pollution
sources, reservoir area, and water surface width of the
Dahekou Reservoir, the reservoir was divided into five sections
in the order of (A, B, C, etc.). A total of 18 water quality
monitoring points were arranged (Figure 1).

From March 2018 to February 2019, each month, we traveled
by hovercraft to the monitoring points using Global Positioning
System (GPS) navigation. At eachmonitoring point, wemeasured
the water depth (using a long-line portable LOWRANCE X-4 Pro
water depth meter), the bottom water temperature, the dissolved
oxygen content (using a YSI550A dissolved oxygen meter), the
pH (using an HACH HQ30D instrument), and the flow rate
(using a rotary cup flowmeter).Wemeasured the average value of
the water temperature, the dissolved oxygen, and the pH at the
bottom of each monitoring point as the basic physical and
chemical index parameters for estimating the nitrogen release
load of the sediments.

2.3 Subject Material
2.3.1 Sediment
The sediment samples collected from the bottom of the Dahekou
Reservoir at a depth of 15 cm were packed in cloth bags, which
were labeled and transported back to the laboratory in a cryogenic

sealing device. The physical and chemical indexes of the sediment
were determined to be as follows: a pH of 7.63, an organic matter
content of 4.2%, and a total nitrogen (TN) content of 2246 mg/kg.
The sediment samples were used as orthogonal simulation test
samples to investigate the nitrogen release from the sediments.

2.3.2 Overlying Water
Samples of the water overlying the sediments at each sampling
point were collected in polyethylene bottles and were transported
back to the laboratory refrigerator (4°C) for storage. The TN
concentration of the overlying water at the sampling point was
2.1 mg/L.

2.4 Test Scheme
2.4.1 Selection of the Factors Influencing the
Orthogonal Test of the Total Nitrogen Exchange Flux in
the Sediments
The sediment nitrogen release test method was conducted
according to the “Lake Eutrophication Survey Specification.”
An orthogonal simulation test of the sediment-overlying water
total nitrogen exchange was performed by selecting
environmental factors, such as the temperature, pH, dissolved
oxygen (DO), and hydrodynamics, which have significant effects
on the sediment release.

1) Temperature: Na2CO3 and (1 + 5) H2SO4 solutions with 1 M
concentrations were used to adjust the pH to 7.0. The TN
concentration of the overlying water was measured in three
triangular conical bottles placed in a biochemical incubator at
48-h interval under three ambient temperature conditions,
that is, 5, 20, and 35°C.

2) pH: Na2CO3 and (1 + 5) H2SO4 solutions with 1 M
concentrations were used to adjust the initial pH values of

FIGURE 1 | Layout of the monitoring points in the Dahekou Reservoir.
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the overlying water samples to 6.0, 7.5, and 9.0. The TN
concentrations of the overlying water samples were measured
at 48-h interval in three simulated reactors.

3) DO: Na2CO3 and (1 + 5) H2SO4 solutions with 1 M
concentrations were used to adjust the pH to 7.0. The DO
concentration of the overlying water was maintained at
2.0 mg/L (N2), 4.0 mg/L, and 6.0 mg/L by controlling the
air or nitrogen aeration of the gas rotor flowmeter. The TN
concentration of the overlying water was measured at 48-h
interval in three reactors.

4) Hydrodynamic conditions: A biochemical incubator was used
to control the ambient temperature at 25°C. Na2CO3 and (1 +
5) H2SO4 solutions with 1 M concentrations were used to
adjust the pH of the overburden water of the reactor to 7.0.
Three different hydrodynamic conditions (i.e., 0 r/min, 30 r/
min, and 60 r/min) were set using an infinitely variable speed
agitator. The TN concentration of the overlying water was
measured at 48 h intervals in three reactors.

2.4.2 Orthogonal Experimental Design of the Nitrogen
Release From Sediments
According to the orthogonal experimental design method,
which has four factors and three levels [L9 (34)], three
groups of experimental designs, including nine schemes,
were set up (Table 1). The orthogonal test device is shown
in Figure 2.

2.5 Estimation of the Internal Nitrogen
Release Pollution Load in the Sediments
Three groups of experiments were designed. Each group was run
continuously for 14 days, and the sampling frequency was 1 time
every 2 days. At the beginning of each experiment, 10 g of
reservoir sediments were placed in glass bottles with plugs.
Then, they were slowly injected into 500 ml of overlying water
from the original reservoir, sealed with plugs, connected by
pipelines, and placed in a biochemical constant temperature
incubator.

Four factors including temperature, pH, DO, and water
disturbance were selected as the influencing factors for the
orthogonal simulation test of the total nitrogen exchange flux
in the sediments. After the start of the experiment, every 2 days,
10 ml of the water overlying the sediment samples was taken
using a pipette to determine the TN concentration. At the same
time, the original calibration of the glass bottle was supplemented
with 10 ml of surface water from the original reservoir. To ensure
the rationality and reliability of the test data, two parallel tests
were conducted for each test scheme (the error of the results of
the two analyses was less than 5%), and the mean value of the
results of the two tests was taken. The intensity of the total
nitrogen release from the sediments was calculated using the
following equation:

R � ⎡⎣V(Cn − C0) +∑n
i�1
Vi(Ci−1 − Ca)⎤⎦/A.

TABLE 1 | Statistics of the total nitrogen released from the sediments of the Dahekou Reservoir in the orthogonal experiment.

Sequence
number

Temperature
(°C)

pH (dimensionless) Dissolved oxygen
(mg/L)

Hydrodynamic
(r/min)

Release
strength of
two parallel

tests
(mg/m2•d)

Mean release
intensity
(mg/m2•d)

Range
Ri

1 2

1 1 (5) 1 (6.0) 1 (2.0) 1 (0) 17.53 17.41 17.47 0.119
2 1 (5) 2 (7.5) 2 (4.0) 2 (30) 16.76 16.66 16.71 0.096
3 1 (5) 3 (9.0) 3 (6.0) 3 (60) 14.37 14.47 14.42 0.102
4 2 (20) 1 (6.0) 2 (4.0) 3 (60) 19.95 19.72 19.84 0.226
5 2 (20) 2 (7.5) 3 (6.0) 1 (0) 16.92 17.12 17.02 0.206
6 2 (20) 3 (9.0) 1 (2.0) 2 (30) 19.13 19.06 19.09 0.076
7 3 (35) 1 (6.0) 3 (6.0) 2 (30) 18.59 18.74 18.67 0.150
8 3 (35) 2 (7.5) 1 (2.0) 3 (60) 21.14 20.84 20.98 0.297
9 3 (35) 3 (9.0) 2 (4.0) 1 (0) 18.94 19.14 19.04 0.201
Kj1 48.60 54.71 57.54 53.53
Kj2 55.95 52.55 55.59 54.47
Kj3 58.70 55.98 50.11 55.24

FIGURE 2 | Equipment used to test the nitrogen release from the
sediments.
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where R is the intensity of the nitrogen release (mg/m2); V is the
water sample’s volume (L); Cn is the TN concentration of the
water overlying the sediment for each sampling site (mg/L); C0 is
the initial TN concentration (mg/L); Vi is the volume of each
sample (L); Ci−1 is the TN concentration (mg/L); Ca is the TN
concentration of the water added (mg/L); and A is the surface
area of the sediment in contact with the water (m2).

3 RESULTS AND DISCUSSION

3.1 Establishing and Testing the Model of
the Intensity of the Nitrogen Release From
the Sediments
3.1.1 Establishing a Mathematical Model of the
Intensity of the Nitrogen Release From the Sediments
in the Reservoir
According to the orthogonal simulation test results for the
intensity of the total nitrogen release from the sediments, the
release intensity from the sediments was calculated, and the
statistics and range analysis were conducted (Table 1).

Based on the analysis of the data from the aforementioned
nine orthogonal test schemes for investigating the intensity of the
nitrogen release from the sediments, the relationship between the
four environmental factors (i.e., temperature, pH, DO, and
hydrodynamic conditions) and the intensity of the nitrogen
release from the sediments was obtained using the multiple
linear regression method:

R � 20.938 + 0.112[T] − 0.379[pH] − 0.621[DO] + 0.010[K],

where R is the intensity of the nitrogen release from the
sediments (mg/m2•d); T is the water temperature (°C), 5 <
T < 35°C; pH is the pH of the water, 6 < pH < 9; DO is the
dissolved oxygen content (mg/L), 0 < DO < 6 mg/L; and K is the
speed of the stepless speed regulating agitator (r/min),
0 < K < 60.

3.1.2 Testing the Mathematical Model of the Intensity
of the Nitrogen Release From the Sediments
The significance test for a multiple linear regression equation that
is generally used to judge the overall significance of the regression
model is the F test. If the statistical variable F is selected, then
given the significance level a, the check F critical value is f1−2 = (k,
n−k−1). If the statistical value F> f1−2 is obtained from the
sample calculation, the regression model is considered to be
significant. Otherwise, the regression model is not significant
(Growns et al., 2003).

1) Significance test of the regression equation of the intensity of
the nitrogen release from the sediments.

The significance of the regression equation of the
mathematical model of the intensity of the nitrogen release
from the sediments is tested: H0:β1 = β2 = β3 = β4 = 0. The
sum of the squared deviations of each factor is as follows:

S2T � ∑y2
i − n(1/n∑yi)2 � 61.302,

S2R � ∑n
i�1
(ŷi − y

−)2

� 57.338,

S2E � S2T − S2R � 61.302 − 57.338 � 3.964,

where S2T is the sum of the squares of the total deviation; S2E is the
sum of the squares of the residual error; S2R is the sum of the
regression squares; and n = 18.Thus,
F � (S2R/4)/(S2E/(18 − 4 − 1)) � 47.016,and F �
(S2R/4)/(S2E/(18 − 4 − 1)) � 47.016.

For a significance level α = 0.05, F1−α (4, 13) = 3.18, F > F1−α,
and the rejection of H0, the regression equation of the
mathematical model of the intensity of the nitrogen release
from the sediments was significant.

2) Significance test of the regression coefficient of the intensity of
the nitrogen release from the sediments.

MATLAB 21.0 was used to test the significance of the
regression coefficient of the model equation of the intensity of
the nitrogen release from the sediments in the Dahekou
Reservoir. The test results are presented in Table 2.

As can be seen from Table 2, the regression coefficients of the
environmental factors T, pH, and DO in the regression equation
of the mathematical model are highly significant, while the
regression coefficients of the environmental factor K are not
significant.

3.1.3 Comparison of the Significance Levels of the
Factors Influencing the Intensity of the Nitrogen
Release From the Sediments
A comparison of the significance levels of the various
environmental factors affecting the nitrogen release from the
sediments was carried out (Figure 3).

As is shown in Figure 3, as the temperature increased, the
intensity of the nitrogen release from sediment increases
obviously, and the sediments increased significantly. The
increase in temperature accelerated the decomposition of the
organic nitrogen in the sediments, and thus, the amount of
organic nitrogen released into the overlying water increased.
In addition, as the dissolved oxygen content decreased, the
intensity of the nitrogen release from the sediments increased.
This is because the surface layer and the water overlying the
sediments are in an anoxic or anaerobic state when the dissolved
oxygen content is low, so the release level of ammonia nitrogen,
nitrate, and nitrite from sediments is significantly reduced, and
the release intensity is much higher than 2–8 times the release rate
under aerobic conditions (Zhao et al., 2018.). Ammonium
nitrogen is the main form of internal nitrogen released, and its
release degree is negatively correlated with the dissolved oxygen
content, while it is positively correlated with temperature (Wang
et al., 2011). The intensity of the nitrogen release from the
sediments initially decreased and then increased as the
pH changed from acidic to alkaline. This is attributed to the
fact that when the pH of the solution was acidic, H+ competed
with NH4

+ for adsorption positions on the colloidal particles of
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the sediments, leading to a significant increase in the intensity of
the nitrogen release from the sediments. When the solution was
close to neutral, the exchange capacity of NH4

+ decreased
correspondingly, and the intensity of the nitrogen release from
the sediments was weakened. When the pH of the water was
alkaline, NH4

+ in the water reacted with OH− to form molecular
ammonia compounds, which escaped and increased the intensity
of the nitrogen release from the sediments (Liu et al., 2014). As
the hydrodynamic strength of the intensity of the nitrogen release
from the sediments increased, the water disturbance not only
resuspended the particle nitrogen in the sediments, but it also
accelerated the nitrogen diffusion in interstitial water in the
sediments, which increased the material exchange between the
overlying water and the sediments, effectively promoting the
release of nitrogen from the sediments.

To compare the order of the influences of the various
environmental factors on the intensity of the nitrogen release
from the sediments, range analysis was conducted on the
orthogonal test data for the nitrogen release from the
sediments, and the results are as follows:

Temperature: S2jA � 1/3 × (K2
j1 +K2

j2 +K2
j3) − 1

3 × 3 (a1 + a2 +
.....a9) � 18.54.

In the formula, Kj1, Kj2, and Kj3 are the sums of test values
under various levels; a1, a2.....a9 is the value of the total nitrogen
release intensity; and SjA, SjB, SjC, and SjD are the standard
variances under the environmental conditions of temperature,
pH, DO, and K, respectively.

In the same way: S2jB � 2.00, S2jC � 8.98, and S2jD � 0.49.
The results of the range analysis of the data show that within

the range of values specified for the various environmental
factors, there is a relationship of SjA

2>SjC2>SjB2>SjD2. In other
words, the significance of the four environmental factors on the
release of nitrogen from the sediments in the Dahekou Reservoir
is ranked as follows: water temperature (T) > dissolved oxygen
(DO) > pH value > hydrodynamic (K).

3.2 Estimation and Variation Analysis of the
Internal Nitrogen Release Pollution Load in
the Sediments
According to the monitoring data for the actual physical and
chemical indexes, such as water temperature, pH, and dissolved
oxygen, at the bottom of the Dahekou Reservoir in 2018, the
intensity of the nitrogen release from the reservoir sediments
during different time periods was estimated using the
mathematical equation:

W � ∑Ri · ΔTi · A × 10−9,

where W is the internal nitrogen release pollution load of the
reservoir sediments (t); Ri is the nitrogen exchange flux under ice
conditions [mg/(m2•d)]; ΔTi is the corresponding time period
under ice conditions (d); and A is the corresponding reservoir
area at different time periods (m2).

The Dahekou Reservoir is located in a windy and sandy area,
with an average annual wind speed of >3.3 m/s. The kinetic
energy generated by the wind-wave disturbances and the scouring
effect of the discharged water on the sediments during power
generation is transferred to the sediment-water interface, from
the sediment-water interface to the sediments, and the sediments
are resuspended, which has an important effect on the migration
and transformation of phosphorus nutrient salt between the
sediment and the water (Schelske et al., 1974). The wave
hydraulic effect of the reservoir sediment disturbance intensity
is currently not directly measurable using the currently available
experimental instruments. Therefore, in this study, a Nanjing
south water LB70-1 c cup type current meter was used to
determine the value for the reservoir. Based on the
relationship between the flow velocity and the spin cup speed,
the hydraulic disturbance intensity was indirectly determined
using the established mathematical model of the sediment

TABLE 2 | Significant test results of the multiple linear regression coefficients of the TN release strength from the sediments.

Variance source
deviation square
sum degree
of freedom
variance F
ratio significance

Deviation square
sum

Degree of
freedom

Variance F ratio Significance

T 33.9697 1 33.9697 111.4174 Highly significant
pH 3.8874 1 3.8874 12.7503 Highly significant
DO 18.5008 1 18.5008 60.681 Highly significant
K 0.98041 1 0.98041 3.2156 Not significant

FIGURE 3 | Square deviation analysis of the total nitrogen released from
the Dahekou sediments during the orthogonal experiments.

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 9077696

Lu et al. Nitrogen Release From Reservoir Sediments

135

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


nitrogen release for the pollution load estimation. The results are
presented in Table 3.

v � a + bn,

where v is the flow rate (m/s); a is the current meter constant
(0.0067 m) (m/s); b is the hydraulic pitch of the rotary cup
(0.7432 m) (m); and n is the rotor velocity of the current
meter (s−1).

As can be seen from Tables 3, 4, the amount of TN released
from the sediments in the Dahekou Reservoir was 14.278 t/a in
2018, among which the amount of TN released during the wet
season (from June to September) was 5.504 t, accounting for
38.55% of the annual amount of TN released. From February to
May, the total nitrogen released from the sediments was 4.599 t,
accounting for 32.21% of the total nitrogen released throughout
the year. During the dry season (October to January), the total
nitrogen released from the sediments was 4.176 t, accounting for
29.25% of the total nitrogen released throughout the year. The
annual amount of total nitrogen released from the sediments in
the reservoir was the largest in the wet season and the smallest in

the dry season, which is consistent with the results reported by
Liu et al. (2006). Based on the comprehensive analysis of the water
temperature, pH, DO, and the hydrodynamic conditions, the
various physical, chemical, and biological reaction conditions
(e.g., diffusion and organic matter degradation) during the wet
season are conducive to promoting and accelerating the
decomposition of the organic nitrogen in the sediments
(Wang et al., 2013; Zhu et al., 2017), which leads to an
increase in the amount released into the overlying water. The
level period after the reservoir freezes is influenced by reservoir
fisheries and power stations and by human activities, such as
water disturbances. This can cause sediment resuspension and
the particulate nitrogen in the accelerated interstitial diffusion of
nitrogen from the sediment into the water, which increases the
material exchange capacity between overlying water and
sediment, effectively promoting the release of nitrogen from
the sediments (Nowlin et al., 2005). However, the level period
also includes algae growth, photosynthesis, and increase in pH,
which is beneficial to sediment nitrogen adsorption by the upper
water, so the plentiful release of nitrogen from the sediment is not

TABLE 3 | Estimation of the TN release pollution load from the sediments in the Dahekou Reservoir.

Month Time
(d)

Water
temperature

(°C)

pH (dimensionless) DO
(mg/L)

Hydrodynamic
force
(r/min)

Exchange
flux

(mg/m2•d)

Reservoir
area
(km2)

TN
release
(t/month)

January 31 5.48 7.81 8.03 12.40 13.73 2.31 0.983
February 29 5.66 7.70 7.72 16.81 14.03 2.53 1.029
March 31 6.85 8.08 6.69 22.45 14.71 2.47 1.127
April 30 8.38 8.09 6.72 24.34 14.88 2.54 1.134
May 31 9.58 8.29 5.45 32.45 15.81 2.67 1.309
June 30 13.09 6.18 4.65 21.45 17.39 2.71 1.414
July 31 14.46 6.26 2.34 20.48 18.94 2.14 1.256
August 31 15.66 6.49 2.08 16.36 19.10 2.40 1.421
September 30 11.72 6.97 5.53 23.34 16.41 2.87 1.413
October 31 9.53 6.68 6.49 18.65 15.63 2.34 1.134
November 30 8.97 7.34 7.32 16.75 14.78 2.30 1.020
December 31 5.68 7.62 8.11 13.82 13.79 2.43 1.039
Total 14.278

TABLE 4 | Estimations of the reservoir’s TN pollution load from runoff.

Month Time(d) Luanhe River Tuligen River Total TN
load (t/month)Volume of

runoff (m3/s)
Storage TN

concentration (mg/L)
TN load
(t/month)

Volume of
runoff) m3/s)

Storage TN
concentration (mg/L)

TN load
(t/month)

January 31 0.061 3.54 0.578 0.031 2.81 0.233 0.812
February 28 0.06 3.37 0.489 0.028 2.66 0.180 0.669
March 31 0.071 3.55 0.675 0.033 2.58 0.228 0.903
April 30 0.103 4.01 1.071 0.039 4.21 0.426 1.496
May 31 0.128 9.01 3.089 0.042 8.45 0.951 4.040
June 30 0.121 5.13 1.609 0.044 5.32 0.607 2.216
July 31 0.143 10.33 3.957 0.056 8.46 1.269 5.225
August 31 0.167 8.53 3.815 0.048 7.53 0.968 4.783
September 30 0.192 9.12 4.539 0.061 8.95 1.415 5.954
October 31 0.199 11.32 6.034 0.057 10.43 1.592 7.626
November 30 0.112 5.17 1.501 0.036 3.6 0.336 1.837
December 31 0.072 2.57 0.496 0.029 2.41 0.187 0.683
Total 27.852 8.392 36.244
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very obvious (Wu and Hua, 2014). During the dry, deep freeze
period, the water temperature is much lower than at other times
throughout the year. The use of NO2

−-N by water algae
microorganisms or dormant microorganisms (Robarts and
Zohary, 1987; Cao et al., 2008) and the mud microbial
activities near the weak interface is slow, and thus, the mud
nutrient exchange flux is tiny at the interface, and the nitrogen
release from the sediments is not significant (Nowlin et al., 2005;
Cheng et al., 2015). As a result, the nitrogen release intensity
reaches a minimum for the year during this period, and for the
sediments in the reservoir, the contribution rate of the nitrogen
nutrient released is smaller.

3.3 Identification of the Contribution of
Nitrogen Pollution From the Sediments in
the Reservoir
To identify the contribution rate of the internal nitrogen input to
reservoir eutrophication, based on the 2018 storage in the Luanhe
River mouth section, the water quality monitoring data for the spit
storage root rivermouth section, the Duolun county bigmouth spit
force provided by the river, and the data for the incoming runoff at
the Luanhe River reservoir management stations, the same period
for the contribution of the rivers to the TN pollution load was
estimated using the following equation (Table 4):

M � ρi × Qi × 3600 × 24 × ni × 10−6,

where M is the monthly TN pollution load of the river runoff
input into the storage area (t/month); Qi is the monthly river
inflow cross-section flow (m3/s); and Ni is the number of days per
month (d).

As can be seen from Tables 3, 4, the Dahekou Reservoir’s TN
input pollution load was 36.244 t in 2018, and the internal
nitrogen released from the sediment into the nitrogen load
was 14.278 t, accounting for 28.26% of the reservoir TN
pollution load. In the similarly eutrophic Lake Taihu, China,
based on the relationship between the sediment resuspension flux
and the wind speed, Pang et al. (2008) estimated the amount of
internal nitrogen released from the Taihu lake sediments and
determined that it accounted for 25.7% of the total exogenous
nitrogen input.

To determine the contribution rate of the sediment to the TN
pollution of the Dahekou Reservoir, the calculation results for the
sediment pollution load and the TN pollution load of the river
runoff into the reservoir were plotted (Figure 4) to compare their
contributions.

As is shown in Figure 4, the contributions of the nitrogen
released from the sediments and that input by the river runoff to
the total nitrogen pollution load exhibit regular trends. In spring
(March–May), when the reservoir is unblocked, the water
temperature is affected by stratification and inversion, and the
nitrogen nutrients in the sediment have significant release
characteristics (Wang et al., 2019), which leads to the
significant release, adsorption, and desorption of the nitrogen
and phosphorus in the sediments, including suspended solids
(Gao et al., 2013; Testa et al., 2013). Therefore, the nutritional
level of the overlying water body is increased, and it is affected by
biological activities, such as algae and zooplankton growth and
the double impact of the hydropower generation discharge of the
Datang International Duolun Hydropower Station on the
disturbance of the reservoir sediment. In summer
(June–August), the temperature and rainfall intensity increase
sharply, and the reservoir river runoff also increases soaring.
Because the reservoir is surrounded by fertilized farmland and the
rainfall surface runoff from this farmland flows into the Luanhe
River and thus into the reservoir, the contribution rate of the total
nitrogen pollution load increased to 61.05–80.62%, the river
runoff nitrogen nutrient transport has become the main input
to the reservoir in the summer, and the total nitrogen content
increased. In autumn (September–November), because of the
increase in rainfall in the areas upstream of the reservoir,
especially in October, the river input increased rapidly, the
inflow of surface runoff reached a peak for the year, the water
level rose significantly, and the rivers’ total nitrogen pollutant
load input to the TN storage reached the maximum value of
7.626 t/month, accounting for 87.05% of the monthly total
nitrogen storage load. For the nitrogen released from the
sediments in the reservoir, the contribution rate of the total
nitrogen reached the annual minimum, and the contribution
of the river runoff nitrogen nutrient transport to the reservoir’s
water quality and eutrophication level played a key role. In winter
(December–February), the reservoir entered the ice sealing
period, the runoff from the Luanhe and the Tuligen rivers into
the reservoir system reached the lowest level for the year.
Furthermore, the point source and non-point source pollution
along the rivers were reduced, and the water quality improved
significantly, resulting in the reduction of the contribution rate of
the total nitrogen pollution into the reservoir. Under the
influence of the lower water temperature and higher dissolved
oxygen content, the activity of microorganisms also decreased
further, and the rate of nitrification and denitrification reached
the lowest of the year; thus the intensity of the nitrogen release
from the sediments reached the lowest for the year. Because the
ice sealing period occurred in the dry season, the area of the
reservoir was reduced, and the total nitrogen pollution load
released from the sediments was lower than the total nitrogen
pollution load at other times of the year. However, owing to the
huge decrease in the river runoff in the dry season, the

FIGURE 4 | Monthly variations in the reservoir’s TN contribution rate
from two sources.
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contribution rate of the total nitrogen released from the
sediments to the total reservoir pollution load was higher than
in other seasons, reaching the highest level (54.76–60.60%),
which is higher than the total nitrogen pollution load the
rivers contribute to the reservoir. The total nitrogen released
from the sediments becomes an important source of nitrogen
nutrition when the reservoir is frozen.

4 CONCLUSION

Nitrogen release from the sediments in a reservoir (lake) is a very
complex dynamic process, which is influenced by multiple
factors. To determine the factors influencing the nitrogen
release from the sediment, the intensity of the internal
nitrogen release and its contribution to the pollution of the
reservoir were estimated. An orthogonal test of nitrogen
release from sediments for four factors and three factors [L9
(34)] were designed, laboratory simulation tests of the influences
of the four factors (i.e., T, pH, DO, and K) were conducted, and
the test results were analyzed. The following conclusions were
drawn.

1) The mathematical model equation [R = 20.938 + 0.122
(T)−0.379 (pH)−0.621 (DO) + 0.010 (K)] for the nitrogen
release from the sediments for the ranges of the specified
environmental variables was established based on the results
of laboratory orthogonal simulation experiments, and the
significance of the model was determined using the F test.
The results revealed that the regression equation of the
mathematical model of the intensity of the nitrogen release
from the sediments is significant, and the regression
coefficients of the environmental factors T, pH, and DO
were highly significant, but that of K was not.

2) In 2018, the TN release load of the sediments in the Dahekou
reservoir was 14.278 t/a, of which the total nitrogen released
from the sediments in the wet season (from June to
September) was 5.504 t, accounting for 38.55% of the total
nitrogen released throughout the year. The total nitrogen
released from the sediments in the horizontal period (from
February to may) was 4.599 t, accounting for 32.21% of the
total nitrogen releases throughout the year. During the dry
season (October to January), the total nitrogen released from

the sediment was 4.176 t, accounting for 29.25% of the total
nitrogen released throughout the year.

3) In spring, the contribution rate of the nitrogen released from the
sediments and that of the river runoff to the nitrogen and
nutrients in the reservoir were relatively close, so they were
the main sources of nutrients for the reservoir water during this
season. In summer and autumn, although the environmental
conditions were conducive to the release of nitrogen nutrients
from the sediments into the overlying water, the contribution rate
of the nitrogen released from the sediments into the overlying
water decreased to 19.38–38.95% due to the increased
contribution of the runoff pollution from the rivers upstream.
The contribution rate of the nitrogen released from the sediments
reached the lowest level at this time, and the input of nitrogen
nutrients by the upstream river was the main cause of the
eutrophication of the reservoir. During the frozen period, the
contribution rate of the nitrogen released from the sediments into
the overlying water reached the highest level (54.76–60.60%), and
it was one of the main sources of nitrogen nutrients in the water.
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In recent years, with the deterioration of the ecological environment, runoff in

the Yellow River has been decreasing. Given these phenomena, it is necessary

to research the base-flow segmentation methods and its characteristics. The

Huangfuchuan Basin in the middle reaches of the Yellow River basin was

selected as the research area. This paper calculated the base-flow with

commonly used base-flow segmentation methods, including Base-flow

index method (BFI), Hydrograph-separation techniques (HYSEP), and the

digital filtering methods, and compared the applicability of these methods in

the study area. Then the variation characteristics, abrupt change year, periodic

change, and future trend of the base-flow were analyzed. The results are as

follows: 1) Through the analysis and comparison of several common base-flow

segmentation methods, these methods had a marked difference in base-flow

segmentation. The variance and extreme-ratio of DF4 in the digital filtering

methods were small. The correlation between DF4 and other methods was

high. DF4 in the digital filtering methods was the most appropriate method in

the research area. 2)The runoff and base-flow index presented a decreasing

trend. The annual average runoff was 1,100.27 × 104 m3, and the maximum

base-flow was 0.21. The base-flow also showed a significant decrease trend by

the Mann-Kendall trend test, the average base-flow was 10,578.35 × 104 m3. 3)

The base-flow had periodic variations of 3–6, 7–18, and 19–32. In the

19–32 years time scale, three oscillations alternated between abundant and

dry. The whole time was 31 years as the center of the periodic change, the first

primary cycle of base-flow change. 4) The base-flow mutation occurred in

1986. The Hurst index of base-flow in the Huangfuchuan Basin was 0.84. It was

shown that the trend of future development is positively correlated with past

change, showing a trend of continuous decrease. Selecting the appropriate

method of base-flow segmentation and reasonably analyzing the variation

characteristics of base-flow can provide scientific guidance for the

ecological environment construction and water resource evaluation in the

Huangfuchuan Basin and even the Yellow River Basin.
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Introduction

Water resources are the primary condition for the sustainable

development of the Earth’s ecological environment. Meanwhile, it is

an indispensable material for the survival of organisms (Liao et al.,

2020).With the rapid growth of the social economy, many countries

face different degrees of water shortages (Chang, 2009). Climate

change and human activities pose significant threats to water

resources and water cycles. The complex relationship between

the water cycle, climate change, and human activities has become

the focus of scientific research today (Bastin et al., 2019).

Base-flow is a considerable part of water resources and plays a

vital role in the water cycle (Chen et al., 2006). Base-flow is the

essential runoff replenished by groundwater, and it is also the primary

runoff to maintain the stability of the ecosystem (Brutsaert and

Nieber, 1977; Tallaksen, 1995). It has the characteristics of stable

flow and slight variation in annual distribution. The distribution

features of base-flow are influenced by climate type, topography, and

soil properties. Meanwhile, the influence of human activities is also

gradually growing (Veldkamp et al., 2017). Base-flow plays a crucial

role in maintaining the water balance, managing water resources

reasonably and scientifically, and maintaining ecological river health.

Base-flow is a hot topic that attracts attention and exploration in

hydrology research (Lin and Li, 2010). In recent years, experts and

scholars have performed much research on the base-flow and

obtained some breakthroughs, but the definition of base-flow has

not been unified, which has led to the diversity of base-flow

segmentation methods (Santhi et al., 2008; Janke et al., 2014).

Base-flow segmentation is the focus and difficulty of current base-

flow research. To date, many base-flow segmentation methods have

been proposed by scholars from various countries, but it is still difficult

to find a universally recognized base-flow segmentation method (Xu

et al., 2016; Eckhardt, 2008). The traditional techniques of base-flow

segmentation include the straight-line segmentation method and

regression curve method. Nevertheless, these methods are difficult

to apply to long time series data due to their complex calculation (Zuo

et al., 2007). With the wide application of computer technology in

hydrology, automatic base-flow segmentation methods have been

developed, including BFI (Wels et al., 1991), HYSEP (Sloto and

Crouse, 1996), digital filter methods (Arnold et al., 1995), Kalinin

method (Wittenberg and Sivapalan, 1999), hydrological model

method, and isotope method (Li et al., 2009). The United States

Geological Survey (USGS) developed the Base-flow Partitioning

Method (PART) and compared it with the manual mode. The

difference between the result of this method and manual

calculation was less than 10%, so the result was reasonable

(Rutledge, 1993). The digital filtering method was first proposed in

1979. Nathan andMcMahon improved the technique and verified the

base-flow segmentation results of different watersheds. The

segmentation results of the digital filtering method were reasonable.

Automatic base-flow segmentation technology has become mature

and widely used (Lyne and Hollick, 1979; Chapman, 1991). The

smoothed minimum method proposed by the British Institute of

Hydrology was compared with the manual method to segment the

base-flow. A better result can be obtained when the optimal inflection

point test factor is 0.9 (Mazvimavi et al., 2004). With the wide

application of 3S technology, the emergence of distributed

hydrological models, such as the TOPgraphy based hydrotogical

Model (TOPMODEL) and Soil and Water Assessment Tool

(SWAT), provided a suitable method for base-flow segmentation

(Partington et al., 2012). These methods had reasonable objectivity

and repeatability; consequently, they had been applied and developed

rapidly in current studies. However, the segmentation results of these

methods were not identical or even entirely different.

In practical applications, selecting stable and reliable base-flow

segmentation according to hydrogeological conditions of different

basins has become the research focus. Eckhardt used seven other

methods to calculate the base-flow of 65 watersheds in the northern

United States. The results showed that the calculation results based

on the two-parameter Eckhardt filtering method were more

reasonable and more consistent with the receding process of

base-flow (Eckhardt, 2008). Zhang et al. used the SWAT model

to simulate surface runoff and base-flow in a small watershed in the

United States. The results showed that SWATmodel simulation had

superior performance. This technology can be used as a valuable tool

to explore surface runoff and base-flow. It also provided a reference

for further diagnostic evaluation and model recognition (Zhang

et al., 2011). Wang et al. used five automatic base-flow segmentation

methods to segment the runoff data of Luoshan Station in the

Yangtze River from 1965 to 2012. They found that the annual base-

flow process segmented by the five methods was significantly

different. The calculation results of BFI were more in line with

the various characteristics of base-flow. It was a suitable method for

base-flow segmentation in the middle reaches of the Yangtze River

(Wang et al., 2015). Lv et al. used the fixed interval method, sliding

time method, local minimum method, and digital filtering method

to calculate base-flow in the Fen River Basin. The curve of the digital

filtering method was smooth and consistent with runoff, which

conformed to the regularity of base-flow. The digital filtering

method can objectively reflect the base-flow condition of the

Fenhe River basin (Lv et al., 2021). Yang et al. used the SWAT

model to simulate the base-flow of the Luohe River Basin. The

results showed that the accuracy of the SWAT model simulation is

higher than that of the digital filtering methods (Yang et al., 2003).

The Yellow River is an essential river in northern China. The

HuangfuchuanBasin is one of themost severe areas of soil erosion in

the middle of the Yellow River Basin. Climate change, plant change,

and soil and water conservation measures have significantly affected
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the watershed. In recent decades, the runoff of the Huangfuchuan

Basin has shown a declining trend (Sui et al., 2008). Studies by

experts and scholars have shown that climate change and human

activities are the main reasons for the decrease in runoff and

sediment movement law (Shao et al., 2014; Liu et al., 2021).

However, most of the research was mainly on runoff, and few

types of analysis were on the division and trend change of base-flow.

In the middle reaches of the Yellow River Basin, the soil erosion

control measures for a long time have resulted in the change of the

flow matrix and the base-flow. Studying base-flow in the

Huangfuchuan Basin is essential content for water balance and

water resources management. It is also an essential basis for

maintaining river ecological health (Yi and Zhou, 2017).

Based on the daily runoff data of the Huangfuchuan Basin

this paper used BFI, HYSEP, and the digital filtering methods to

calculate the base-flow. Through comparative analysis, this paper

obtained the most suitable base-flow segmentation method in

Huangfuchuan basin. This paper used the Mann-Kendall trend

test, Pettitt mutation point test, Hurst index method, and wavelet

analysis method to systematically research the properties of base-

flow. We revealed the interannual and periodic changes of runoff

and base-flow in the study area from 1960 to 2015, and predicted

the future changes of baseflow. With the contradiction between

the supply and demand of water resources becoming increasingly

prominent, the study of this paper could provide essential

information on the production mode and flow decision, the

redistribution of water resources, and the optimization of the

economic layout in the Huangfuchuan Basin.

Materials and methods

Study area

The Huangfuchuan Basin is located in the middle reaches of the

Yellow River (Figure 1). It is in the transition zone between the Loess

Plateau and the desert steppe. The latitude and longitude range are

113.3°–111.2° E, 39.2°–39.9° N, with a catchment area of 3,246 km2

and the main steam of 137 km (Li et al., 2019). As a result of the high

difference in topography and heavy rain erosion, the Huangfuchuan

Basin formed a hilly gully landform. The basin has an arid and

semiarid climate, with an annual average temperature of 6–7°C and an

annual rainfall of 350–450mm. The annual variation of rainfall is

considerable, and most of them are concentrated in summer in the

form of heavy rain. Rainfall and groundwater recharge are the

primary water sources, and the correlation between annual runoff

and rainfall is obvious and uneven (Hu et al., 2018). It is a typical

farming-pastoral ecotone, and the land use types aremainly grassland,

cultivated land, and artificial forestland. Drought and rainstorm

disasters frequently occur in the Huangfuchuan Basin. Soil erosion

and land desertification make the river ecological environment and

hydrological process very sensitive (Wei and Jiao, 2017).

FIGURE 1
The geographical location and elevation of the Huangfuchuan Basin.
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Data source

The runoff data were from the Hydrological Yearbook of the

Yellow River Basin by the Yellow River Water Conservancy

Commission of the Ministry of Water Resources. We used the

daily runoff data of the hydrological station in the Huangfuchuan

Basin from 1960 to 2015.

Base-flow segmentation method

BFI
The Base-flow index method (BFI) is a way to calculate

base-flow with base-flow index as weight coefficient, which is

mainly expressed by the ratio of base-flow and total runoff.

There are three main steps in the calculation process. First, the

same time interval was selected to divide the annual daily runoff

process into 365/N periods. The study usually uses trial analysis

to determine N. N could be 1, 2, 3. . ., until the base-flow index

tends to be stable. This paper calculated the daily runoff data of

the Huangfuchuan Basin and found that when N ≥ 5, the base-

flow index is stable. So in this paper, we used parameter N = 5.

Second, we should determine the minimum flow value of this

period, and compare it with the minimum flow value of

adjacent periods. Finally, we should evaluate each inflection

point on the flow process line. The flow process line is

connected to all inflection points. BFI method has BFIf and

BFIk. Generally, their inflection point test factors F and K are

0.9 and 0.9792, respectively (Wels et al., 1991; Mazvimavi et al.,

2004).

HYSEP
Pettyjohn and Henning first compiled the base-flow

calculation program and proposed the Hydrograph-separation

techniques (HYSEP) in 1979 (Pettyjonh and Henning, 1979). It

mainly includes Fixed interval method, Sliding time method, and

Local minimum method (Sloto and Crouse, 1996). The

formula is:

N � (2.59A)0.2

where, A is the basin area, N is the duration of surface runoff. The

area of the Huangfuchuan Basin is 3,246 km2. Through

calculation, N = 6.09 is obtained. The base-flow segmentation

interval parameter t is an odd number that is closest to 2t and

between 3 and 11. In this paper, N = 11 is used to calculate the

base-flow.

Fixed interval method: the base-flow in the segmentation

interval is equal to the minimum flow in the period. Sliding time

method: the base-flow at the current moment is the minimum

flow in the period before and after (2N-1)/2d. Local minimum

method: in the selected time interval, the base-flow at the

central moment is the minimum flow in the period before

and after (2N-1)/2d. The flow at other times is obtained by

linear interpolation with the flow at the major moment of the

adjacent break.

Digital filtering method
The digital filtering method is a common technology of base-

flow segmentation. It can decompose the signal into a high-

frequency signal (surface runoff) and a low-frequency signal

(base-flow) through a digital filter to achieve base-flow

segmentation (Eckhardt, 2012). Digital filtering methods

include Lyne-Hollick filtering (DF1) (Lyne and Hollick, 1979),

Chapman-Maxwell filtering (DF2) (Chapman, 1999), Boughton-

Champan filtering (DF3) (Boughton, 1993), and Eckhardt

filtering (DF4) (Eckhardt, 2005).

Lyne-Hollick filtering (DF1):

qt � zqt−1 +
1 + z

2
(Qt − Qt−1), bt � Qt − qt

where, Qt is the river runoff; qt is the surface runoff; bt is base-

flow; z is the filter coefficient; and when z is 0.925, the effect is

better.

Chapman-Maxwell filtering (DF2)

bt � k
2 − k

bt−1 + 1 − k
2 − k

Qt

where, k is the regression coefficient, in general, k = 0.95.

Boughton-Champan filtering (DF3)

bt � k
1 + C

bt−1 + C
1 + C

Qt

where, C is the parameter, in general, C = 0.15.

Eckhardt filtering (DF4)

bt � α(1 − Bmax)bt−1 + (1 + α)BmaxQt

1 − αBmax

where, Bmax is the maximum base flow coefficient of the

river.

Trend research method

Mann-Kendall trend analysis
The Mann-Kendall (MK) test is an effective tool to show the

trend of change recommended by meteorological and

hydrological institutions at home and abroad (Burn and

Elnur, 2002). The MK test method is nonparametric. The

nonparametric test method has the advantage of strictly

following a specific distribution and is not affected by a few

outliers. The MK test has been widely used in the change trend

analysis of meteorological and hydrological time series. Its

calculation formula is as follows:

Define the test statistic S:
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S � ∑n−1
k�1

∑n
j�K+1

sgn (xj − xk)

Sgn(Xj − Xk) � ⎧⎪⎪⎨⎪⎪⎩
+1 if (Xj − Xk) > 0

0 if (Xj − Xk) > 0

−1 if (Xj − Xk) > 0

Calculate the standard statistic Z:

ZMK �

S − 1																			
n (n − 1) (2n + 5) / 18√ for S > 0

0 for S � 0

S + 1																		
n (n − 1)(2n + 5)/18√ for S < 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where, n is the number of samples, xj and xk are the ranks of

samples, xi and xj of the time series.

When Z < 0, the sequence shows an upward trend; when Z >
0, the series shows a downward trend. When the absolute value of

Z is greater than or equal to 1.28, 1.64, 2.32, it means that it passes

the significance test of the confidence interval of 90, 95, and 99%

(Chen and Xu, 2016).

Pettitt mutation point analysis
The Pettitt mutation point test is an analysis method for the

mutation point of hydrological time series based on the

nonparametric test, and its premise is that there is trend

change in the series (Pettitt, 1979). The formula can be

calculated as follows:

Ut � ∑t
i�1

∑T
j�K+1

sgn (xi − xj)

Sgn(Xj − Xk) � ⎧⎪⎪⎨⎪⎪⎩
+1 if (Xi − Xj)> 0

0 if (Xi − Xj) � 0

−1 if (Xi − Xj)< 0

When testing the sequence, it uses the K-S two-sample test

according to the theory of sequential statistics. The position of

the mutation point (P) is the accumulation probability of the

difference between the maximum values of the two-sample

distribution functions.

Kt � max1≤ t ≤T |Ut |
p(Kt ≤ α) � [ln α(N3 + N3)/6]1/2

Wavelet analysis method
Wavelet analysis provides the possibility to study time series

better. It can reveal a variety of trends hidden in the time series

and can qualitatively estimate the future development trend of

the system (Wang, 2005).

The calculation formula of wavelet transforms:

Wf (a, b) � |a|−1/2 ∫ f (t) × φ(t − b
a

)db
The calculation formula of wavelet square difference:

V(a) � ∫ ∣∣∣∣Wf (a, b)
∣∣∣∣2db

where, Wf(a, b) is a wavelet transform coefficient; φ(t) is the
wavelet function; f(t) is the hydrologic time series; a is the scale

factor of sequence period length; b is the time factor for time

translation; V(a) is the wavelet variance.

Hurst index
The Hurst index is an effective method to describe the long-

term dependence of a time series and is used to estimate the

persistence or anti-persistence of trends in time series (Bashir

et al., 2020). The R/S analysis method is commonly used to obtain

the Hurst index.

The Hurst index has three methods: 1) H > 0.5 means the

persistence of the series, and the same trend changes in the future

time series. 2) H = 0.5 stands for the randomness of the time

series without persistence, indicating that the changing trend of

the future time series has nothing to do with other changes. 3)

H < 0.5 indicates the anti-persistence of the series, indicating that

there is an opposite change trend in the future time series.

Results

Suitability analysis of base-flow
segmentation

Base-flow index analysis
In this paper, the study area was segmented by nine base-flow

segmentation methods in three categories (Table 1). The results

of different segmentation methods differ significantly.

Among the base-flow index results calculated by HYSEP,

the results calculated by LocalMin were too large, 0.249. The

Fixed and Slide results were 0.179 and 0.16, respectively. BFI

showed little difference and was stable at 0.1; the results

obtained by the digital filtering methods were relatively

scattered. In particular, the base-flow index calculated by

DF2 was less than 0.1, which was the ratio of base-flow to

river runoff was less than 10%. The calculation result was too

small to conform to the characteristics of groundwater

discharge in the study area. The other three calculation

results were relatively stable, at 0.124, 0.136, and 0.113. The

results of base-flow index calculated based on BFI, DF1, and

DF4 are relatively close, which are all between 0.11 and 0.12.

Among the nine base-flow segmentation methods, except the

LocalMin, the base-flow index calculated by other methods

presented a decreasing trend.
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Stability analysis
We calculated the variance and extreme-ratio (the ratio of the

difference between maximum and minimum to minimum) of nine

methods and compared their stability (Table 2). From themean value,

the results of the HYSEP were generally high, which was between

0.16 and 0.25; the result of BFI was relatively stable; in the digital filter

methods, the values ofDF1, DF3, andDF4were between 0.1 and 0.14,

and DF2 calculation had a small mean value. In terms of variance,

HYSEP had high variances, and the value was above 0.1. The variance

of BFI was 0.079. In the digital filter methods, DF2 and DF4 had

minor variance. From the extreme-ratio, the smaller values were

LocalMin inHYSEP andDF4; the largest values were Fixed inHYSEP

and DF2. From the comprehensive perspective of the mean value,

variance, and extreme-ratio, the variance and extreme-ratio of

DF4 were relatively small. The base-flow index of different years

was between 0.009 and 0.221. The calculation results of this method

have slight interannual variation and are in line with the

characteristics of slight fluctuation of base-flow age.

Correlation analysis
The correlation of the nine base-flow segmentation methods

was calculated (Table 3). The correlation between the base-flow

index values calculated by the LocalMin in the HYSEP and other

methods was very low, so the following discussion did not include it.

In the HYSEP, the correlation between the Fixed and other

methods was more than 0.5. Similarly, the correlation between the

Slide and other methods was more than 0.5. The correlation of the

base-flow index obtained by BFI (F) and BFI (K) was close to other

methods, and the correlation with other methods was more than

0.45. In the digital filtering methods, the correlation coefficient

between DF1 and other methods was between 0.57 and 0.77, and

DF2 and other methods were between 0.46 and 0.66. The correlation

coefficient between DF3 and other techniques was 0.63–0.89. The

correlation between F4 and other methods was higher than

0.77 except for the correlation with DF2. In the three categories

of methods, the correlation between the BFI and HYSEP is better

than digital filtering methods, indicating that BFI is close to the base-

flow segmentation results of HYSEP.

By analyzing the base-flow segmentation method, the value of

the LocalMin in HYSEP was too small, and DF2 in the digital

filtering methods was too high; neither of these two methods can

accord with the change characteristics of base-flow in the study area.

In general, the base-flow index of DF4 had the highest correlation

with the other methods. Its variance and extreme-ratio were

generally very small, showing high stability. In the

Huangfuchuan Basin, the base-flow result calculated by DF4 in

the digital filtering method was more appropriate, and base-flow

results were also used in this paper to analyze the base-flow changes.

TABLE 1 The result of base-flow segmentation method.

Period HYSEP BFI Digital filtering

Fixed Slide LocalMin BFI(F) BFI(K) DF1 DF2 DF3 DF4

1960–1969 0.221 0.198 0.188 0.144 0.151 0.156 0.070 0.151 0.134

1970–1979 0.146 0.124 0.131 0.090 0.091 0.098 0.048 0.118 0.092

1980–1989 0.167 0.164 0.167 0.113 0.028 0.115 0.033 0.119 0.039

1990–1999 0.129 0.104 0.128 0.057 0.057 0.073 0.027 0.101 0.109

2000–2009 0.041 0.036 0.284 0.023 0.024 0.064 0.017 0.057 0.078

2010–2015 0.202 0.184 0.410 0.137 0.128 0.109 0.035 0.130 0.043

Average 0.179 0.160 0.249 0.111 0.110 0.124 0.047 0.136 0.113

TABLE 2 Characteristic plant of base-flow segmentation method.

HYSEP BFI Digital filtering

Fixed Slide LocalMin BFI (F) BFI (K) DF1 DF2 DF3 DF4

Mean 0.179 0.160 0.249 0.111 0.110 0.124 0.047 0.136 0.113

Variance 0.110 0.100 0.219 0.079 0.079 0.067 0.034 0.059 0.051

Maximum 0.571 0.520 0.730 0.447 0.447 0.305 0.223 0.259 0.211

Minimum 0.005 0.005 0.041 0.005 0.005 0.003 0.002 0.004 0.009

Extreme-ratio 105.498 101.933 16.770 97.037 97.037 92.171 103.051 63.870 23.600
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Analysis of base-flow characteristics

Trend analysis
Through the trend line in the research area, the runoff

presented a decreasing trend (Figure 2). The maximum runoff

occurred in 1979, which was 43,712.22 × 104 m3, and the annual

average runoff was 1,100.27 × 104 m3. The base-flow index also

showed a downward trend. The maximum base-flow index was

0.21, which appeared in 1962. The average base-flow was

10,578.35 × 104 m3, the maximum yearly base-flow was

46.679 × 104 m3. The Mann-Kendall trend approach to

calculate the Z-testing statistical value was −6.349, indicating

that the base-flow presented a significant downward trend and

reached a significant level of 99% reliability.

Mutagenicity analysis and persistent
We used the Pettitt mutation point test method to analyze the

base-flow mutation years in the Huangfuchuan Basin from 1960 to

2015 (Figure 3). The mutation year was 1986, and the confidence

level was 99%. The Hurst index of base-flow in the study area was

0.84 (H = 0.84). H > 0.5, there was a long-term correlation between

the future trend and its historical trend. As seen from the above, the

base-flow in the study area is decreasing continuously, and it will be

further reduced in the future.

Periodicity
The periodic variation of base-flow in the study area was

analyzed by a wavelet coefficient diagram and wavelet variance

(Figure 4). The base-flow presented periodic variation characteristics

at scales of 3–6, 7–18, and 19–32. In the 19–32 years time scale, three

oscillations alternated between abundant and dry. The center of the

periodic change was 31 years, corresponding to the first peak value

of the wavelet variance. The oscillation was weak on the time scale of

3–6 years and gradually disappeared in 1980. On a time scale of

7–18 years, there were six oscillations and the oscillations gradually

became weaker.

TABLE 3 Correlation of base-flow segmentation methods.

HYSEP BFI Digital filtering

Fixed Slide LocalMin BFI(F) BFI(K) DF1 DF2 DF3 DF4

Fixed 1.000

Slide 0.961 1.000

LocalMin 0.157 0.181 1.000

BFI(F) 0.905 0.949 0.180 1.000

BFI(K) 0.891 0.927 0.171 0.985 1.000

DF1 0.706 0.752 0.348 0.711 0.701 1.000

DF2 0.513 0.551 0.042 0.469 0.492 0.576 1.000

DF3 0.862 0.851 0.030 0.773 0.756 0.637 0.657 1.000

DF4 0.879 0.905 0.061 0.843 0.829 0.774 0.629 0.891 1.000

FIGURE 2
Change curves of runoff, base-flow, and base-flow index.

FIGURE 3
Mutagenicity analysis of the Huangfuchuan Basin.

Frontiers in Environmental Science frontiersin.org07

Zhang et al. 10.3389/fenvs.2022.831122

146

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.831122


In the wavelet variance of base-flow, there are three peaks,

corresponding to 5, 15, and 31 years (Figure 5). Below 10 years,

the cycle oscillates violently without apparent regularity. On

scales 15 and above, periodic and regular regions were evident.

The first peak value of the wavelet square difference was 31 years,

which was the first main period of base-flow change.

Discussion

The Huangfuchuan Basin is one of the areas with the most

severe soil erosion on the Loess Plateau. In recent years, climate

change and human activities have changed the base-flow, so

researching the base-flow is indispensable for constructing the

local ecological environment. This paper used HYSEP, BFI, and

the digital filters methods to calculate the base-flow in the study

area. By comparing the stability and correlation of the nine

methods, the variance and extreme-ratio of DF4 in the digital

filtermethods were generally minor, and the correlation with other

methods was also high. It is concluded that the base-flow

segmentation result of DF4 was the most appropriate. According

to the DF4 results, the average annual base-flow in the study area is

1,057.84 × 104 m3, and the average yearly base-flow index is 0.113.

Liu et al used BFI and the digital filtering methods to calculate the

base-flow of the Huangfuchuan Basin, and the study showed the

changes of runoff and base-flow showed a decreasing trend, which

was consistent with the results of this paper (Liu et al., 2016). In

addition, this paper analyzed the periodicity, mutation year and

future trend of base-flow. The abrupt change of base-flow occurred

in 1986. The first principal period of the base-flow is 31 years. There

was also a trend of further decrease in the future.

Base-flow segmentation is a common problem in hydrological

analysis and calculation of watersheds. At present, there are many

methods for base-flow segmentation; however, there is no universally

accepted technology. The segmentation results of each technology are

not exactly the same, and sometimes even very different. Due to the

differences in hydrogeological conditions and basic abortion flow

processes, the appropriate methods are different in different basins.

In the Yangtze River Basin, BFI is the most suitable method for base-

flow segmentation, while in the Fenhe River Basin and the

Huangfuchuan Basin, digital filtering method is the most suitable

method (Wang et al., 2015; Lv et al., 2021). In addition to the above

automatic segmentation methods, hydrological modeling methods

also began to develop rapidly. SWAT was used to study a small area

in theUnited States and the Luohe River basin, and the study showed

that the accuracy of SWATwas higher than that of the digital filtering

method (Yang et al., 2003).

Base-flow is a component of runoff, which is affected by

climatic characteristics, precipitation, human activities, vegetation and

soil characteristics (Hu et al., 2021). Li et al showed that forest

disturbance not only increased the runoff of the basin, but also

increased the base-flow. Climate change, contrary to the effect of

forest disturbance, reduced the flow of all runoff components (Li

et al., 2018). Guo et al showed that different land use types,

precipitation, drainage density and river gradient affected the

change of base-flow on the Loess Plateau. The change of runoff

and base-flow shows a decreasing tendency in the Huangfuchuan

Basin (Guo et al., 2011). According to the climate characteristics of

the Huangfuchuan Basin, the temperature shows a rising trend,

while the precipitation shows a declining trend (Hu et al., 2018).

Evapotranspiration intensifies the water pressure, and the decrease

of rainfall caused by climate change has an important impact on

runoff and base-flow. In addition, the changes of runoff and base-

flow are also affected by human activities, such as conversion of

farmland to forest and water conservation processes, which change

the underlying surface and reduce the runoff (Zhao et al., 2013; Liu

et al., 2016). In recent years, there has been excessive exploitation

of coal resources and the increase of urban land area in the

Huangfuchuan Basin (Jin et al., 2013; Yu et al., 2014). These

FIGURE 4
The wavelet coefficient of base-flow in the Huangfuchuan
Basin.

FIGURE 5
The wavelet variance of base-flow in the Huangfuchuan
Basin.
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human activities have greatly reduced the water area and affected

runoff and base-flow.

Due to the limitations of data, research methods, and

techniques, this paper still has some deficiencies and

uncertainty. In this paper, we used a variety of methods

widely recognized to calculate the base-flow and selected the

most suitable segmentation method. However, base-flow is

difficult to measure directly, so it was difficult to verify the

results of base-flow segmentation method. The results in this

paper were only the estimated value of the actual base-flow,

rather than the real value (Lei et al., 2021). Using the results to

analyze the variation characteristics of base-flow, and only using

the method of mathematical statistics, there are certain errors

between the results and the actual situation. Therefore, in future

research, we should further optimize the practicability of the

base-flow segmentation method in the Huangfuchuan Basin.

Conclusion

In this paper, nine base-flow segmentation methods were

used to calculate the base-flow, and then their suitability in the

Huangfuchuan Basin was discussed. Based onMK trend analysis,

Pettitt mutation point test, Wavelet analysis method, and Hurst

index, the characteristics of base-flow were studied. The main

conclusions of this paper are as follows:

1) Among the results of HYSEP, BFI, and the digital filtering

methods for base-flow, the variance and extreme-ratio of

DF4 in the digital filtering methods were slight. The

correlation between DF4 and other base-flow segmentation

methods was the highest. The DF4 results were consistent with

the stable characteristics of base-flow; thus, it was the most

stable and appropriate method in the Huangfuchuan Basin.

2) The runoff and base-flow presented a decreasing trend. We

used MK trend test to analyze the movement of base-flow,

which showed a decreasing trend, and the annual base-flow

was 1,057.84 × 104 m3.

3) The Pettitt abrupt change point and the Hurst index were

used to analyze the catastrophe point and future change trend

of base-flow. The abrupt change point occurred in 1986. The

trend of future development was positively correlated with the

past change, showing a trend of continuous decrease.

4) According to the results of wavelet analysis, the base-flow

showed a periodic change of 3–6, 7–18, 19–32 scales. Base-

flow showed a period change centered on 31 years,

corresponding to the first front value of wavelet square.
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Characterization and Risk
Assessment of Heavy Metals in
Surface Sediments From Jian and
Moyang Rivers in Western Guangdong
Jie Feng, Yuemin Lin, Mingkun Li, Tingping Ouyang and Mingjie Yu*

School of Geographic Sciences, South China Normal University, Guangzhou, China

The river environment is complex and receives a variety of contaminants from numerous
sources that are persistent, bioaccumulative, and toxic. The distribution, source,
contamination, and ecological risk status of Zn, Pb, Cu, Ni, Cr, and Cd were evaluated
in the surface sediments at 45 sites on the Moyang and Jian rivers in Western Guangdong,
China. Single pollution indices, including contamination factor (CF) and enrichment factor
(EF), revealed that Zn, Pb, Ni, Cu, and Cd showed moderate to significant enrichment. To
overcome the limitation of the single element indices, a range of sediment quality indices,
including modified contamination index (mCd), pollution index (PI), and modified pollution
index (MPI), were utilized to ascertain the sediment quality. The sediment in the study area
is deemed to be slightly to extremely polluted. The sediment quality guidelines (SQGs),
potential ecological risk index (RI), and modified ecological risk index (MRI) were used to
assess possible ecological risks. According to the SQGs, Pb, Ni, and Cu have the potential
to induce biological effects. The RI indicated that the sediment poses a low ecological risk.
However, the MRI indicated that the ecological risk of the sediment was moderate to very
high. The accuracy of the single and multi-element indices and ecological risk assessment
were evaluated in the river using the principal component analysis (PCA) and cluster
analysis (CA), showing an anthropogenic impact. Results demonstrate the need to pay
attention to the ecological environment of small rivers, which are sensitive to their
surroundings.

Keywords: surface sediment quality, pollution indices, modified ecological risk index, principal component analysis,
cluster analysis, spatial distribution, Jian and Moyang rivers, Western Guangdong

1 INTRODUCTION

Metal pollutants pose potential harmful effects on human health and the whole ecosystem due to their
inherent toxicity, persistence, non-degradability, and bioaccumulation (Wei et al., 2016). Metals in
aquatic environments originate from natural sources (mainly weathering of soil and rock, erosion,
forest fires, and volcanic eruptions) and anthropogenic activities (industrial effluents, mining and
refining, agricultural drainage, domestic discharges, and atmospheric deposition) (Karbassi et al., 2007;
Malik et al., 2009; Davutluoglu et al., 2011). Toxic heavy metal elements (such as Pb, Hg, and Cr) enter
the human body through the food chain, causing serious harm to the human body (Liu et al., 2018).

Sediment acts as an ultimate receptor of pollutants and a potential secondary source of overlying
water. The pollutants from residential sewage and agricultural water may be stored in the sediments

Edited by:
Zhenzhong Zeng,

Southern University of Science and
Technology, China

Reviewed by:
Venkatramanan Senapathi,
Alagappa University, India

Omowunmi H. Fred-Ahmadu,
Covenant University, Nigeria

*Correspondence:
Mingjie Yu

yumj@m.scnu.edu.cn

Specialty section:
This article was submitted to

Freshwater Science,
a section of the journal

Frontiers in Environmental Science

Received: 25 April 2022
Accepted: 16 June 2022

Published: 19 August 2022

Citation:
Feng J, Lin Y, Li M, Ouyang T and YuM

(2022) Characterization and Risk
Assessment of Heavy Metals in

Surface Sediments From Jian and
Moyang Rivers in

Western Guangdong.
Front. Environ. Sci. 10:927765.

doi: 10.3389/fenvs.2022.927765

Frontiers in Environmental Science | www.frontiersin.org August 2022 | Volume 10 | Article 9277651

ORIGINAL RESEARCH
published: 19 August 2022

doi: 10.3389/fenvs.2022.927765

151

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.927765&domain=pdf&date_stamp=2022-08-19
https://www.frontiersin.org/articles/10.3389/fenvs.2022.927765/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.927765/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.927765/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.927765/full
http://creativecommons.org/licenses/by/4.0/
mailto:yumj@m.scnu.edu.cn
https://doi.org/10.3389/fenvs.2022.927765
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.927765


through hydrodynamic and biogeochemical processes (Wu et al.,
2017). The harm caused by heavy metal sediments is mainly
reflected in the “secondary pollution”. In addition, heavy metals
accumulated in sediments enter the water due to changes in
interface environmental conditions such as pore water pH,
decomposition of organic matter, biological activities, storms
and dumping of port dredged materials (Tang et al., 2015).
Therefore, the analysis of river sediments is a useful approach
to characterize pollution in an ecosystem (Akcay et al., 2003).

A number of indices have been developed to accurately assess
the metal contamination in sediments and its ecological risk. The
common indicators mainly include contamination factor (CF),
enrichment factor (EF), (modified) degree of contamination (Cd
or mCd), (modified) pollution index (PI or MPI), sediment
quality guidelines (SQGs), and (modified) potential ecological
risk index (RI or MRI) (Yuan et al., 2014; Vaezi et al., 2015;
Duodu et al., 2016; Kumar et al., 2018). These indicators can be
divided into two broad categories. SQGs, RI, andMRI indicate the
risk of sediments based on the metal concentrations, while CF,
EF, Cd, mCd, PI, and MPI denote the enrichment compared with
the background concentrations based on the total metal
concentrations (Yuan X et al., 2014). The CF, EF, Cd, and
mCd assess the sediment quality by using single pollution
indices. Meanwhile, PI and MPI assess the sediment quality by
using multi-element indices (Duodu et al., 2016). MRI and MPI
can normalize the impact of terrestrial sedimentary inputs using
EFs (Brady et al., 2015; Duodu et al., 2016). Numerous studies
have used more than one index to have a more comprehensive
analysis of the contamination in sediment (Vaezi et al., 2015;
Kumar et al., 2018; Siddiqui and Pandey, 2019).

Recently, urban-industrial-driven economic development
has dramatically altered the aquatic environments with
increasingly high input of metals and other pollutants.
Terrestrially derived metals, whether geogenic or
anthropogenic, flow into rivers and accumulate in sediments
(Omwene et al., 2018). Studies on heavy metal pollution in river
sediments have mostly focused on large rivers, such as the
Yangtze and Pearl rivers in China (Fu et al., 2013; Zhao
et al., 2016), the Korotoa and Buriganga rivers in Bangladesh
(Mohiuddin et al., 2016), and the Tajum River in Indonesia
(Budianta, 2020). However, studies on small rivers are scarce.
The Pearl River is located in the developed Pearl River Delta
region of Guangdong Province, where sediment pollution has
received considerable attention (Zhao et al., 2016). However,
few investigations have been conducted on the pollution status
of sediments in the Jian and Moyang rivers in Western
Guangdong’s underdeveloped areas.

Although the economic and social development in Western
Guangdong is slow, it is the main agricultural contribution area in
Guangdong. In addition, with the transfer of industries in the
Pearl River Delta, the industrial domestic pollution of Western
Guangdong has increased (Zhong and Yang, 2001; Chen, 2014).
Therefore, the pollution problems of small rivers located in
Western Guangdong have frequently occurred in recent years,
which need to be paid attention to.

In this study, 45 surface river sediment samples collected
from Moyang and Jian rivers in Western Guangdong, China,

were studied. This study aimed to use sediment quality
indicators, such as CF, EF, PI, MPI, RI, MRI, and SQGs to
examine the contamination and ecological status of the Moyang
and Jian Rivers sediment. Moreover, this study sought to
identify natural and anthropogenic sources of metal
contamination based on multivariate statistical analysis. To
the best of our knowledge, this work is the first to study
heavy metal contamination and bioavailability for the
ecological risks in the Moyang and Jian rivers, which might
construct a more susceptible and accurate evaluation system for
similar river ecosystems in China.

2 MATERIALS AND METHODS

2.1 Study Area
The study area (Western Guangdong, 109°31′E to 112°21′E and
20°13′N to 22°41′N) is located in the western part of Guangdong
Province. This area has a subtropical climate, which is affected
by the maritime monsoon and subtropical high-pressure
climate. The main source of surface runoff is rainfall. Due to
the uneven distribution of rainfall over time, annual runoff
varies greatly. Flood season is mainly from April to September,
and non-flood season is from October to March of the next year.
The coastal rivers in the study area include Jian, Moyang,
Jiuzhou, Nandu, and Suixi Rivers. Our study focused on
sediment pollution in the Jian and Moyang rivers, which are
longer rivers in Western Guangdong, with a total length of
231 and 199 km, respectively. The urban land accounts for about
10% of the province in Western Guangdong, while the arable
land accounts for 32.4% of the province. The economic structure
of the study area accounts for a large proportion of agricultural
output value (Zhang, 2020). Therefore, the environmental
pollution caused by pesticides, fertilizers, and livestock is
obvious during agricultural production. The study area, as
the undertaking area for industrial transfer in the Pearl River
Delta, has experienced significant growth in economic and
social development in recent years (Zhang, 2013; Huang
et al., 2020), which probably increased industrial and urban
life pollution.

2.2 Experimental Design
Considering the distribution of land utilization types, dam
distribution, and flood season time, 45 surface sediment
samples (0–10 cm) were collected using corers from November
1st to 7th, 2020 (Figure 1). It was found that periods of low flows
in dry seasons lead to higher concentrations of heavy metals in
channel-bed sediments, whereas wet seasons are characterized by
a lower metal content in the bed and a higher metal content in
suspended sediments (Gaiero et al., 1997; He et al., 1997). In order
to avoid the dilution of heavy metals in river sediments during
flood season, we sampled river sediments during non-flood
season. A total of 45 sampling sites were set up downstream
of Jian River (S1-S20) and downstream of Moyang River (S20-
S45). They are distributed in agricultural areas, urban areas,
estuaries, and other types of land areas. Reservoirs and dams
weakened the hydrodynamic intensity of the river and accelerated
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the deposition of suspended solids (Kang et al., 2021). But there is
no reservoir and dam in the section where the sampling site is
located. Locations of sampling stations were determined using
Global Positioning System (GPS) (Supplementary Table S1).
The collected samples were collected in polyethylene sealed bags
and transported to the laboratory of Guangdong Polytechnic of
Water Resources and Electric Engineering for analysis.

2.3 Sampling and Analytical Methods
After the sediment samples were freeze-dried, they were ground
through a 200-mesh sieve and stored for testing. The analytical
method of heavy metal concentration in sediment was as follows:
0.5 g of sediment was taken into a digestion tube. Then, 3–5drops
of pure water, 8 ml of concentrated nitric acid, 5 ml of
hydrofluoric acid, and 5 ml of hydrogen peroxide were added
in sequence. Then, a graphite digester (GDI-20, Guangzhou
Jichuang Instrument Co., Ltd. China) was used to digest until
1–2 ml of sample solution remained in the tube. The solution was

filtered into a 50 ml colorimetric tube with a 0.45 um water-based
disposable filter needle. the volume was diluted to 50 ml with pure
water for testing. The prepared samples were analyzed by atomic
absorption spectrometry (AAS). Seven metals were analyzed in
the sediment sample, which are Cu, Pb, Zn, Cd, Cr, Ni, Fe, and
Mn. The quality control process of heavy metal analysis in
sediments was as follows: The reagents used in the
experimental analysis were all high-grade samples. The relative
standard deviation (RSD) of experiments was less than 5%.

2.4 Data Analysis
The average of the metal concentrations was calculated in this
study. The data were analyzed using the multivariate statistical
tools, principal component analysis (PCA) and cluster analysis
(CA), to group variables based on similarities and their sources.
Single pollution indices, multi-element indices, and ecological
risk assessment were combined to analyze heavy metal pollution
in the study area. Given that the study area is located in the South

FIGURE 1 | Locations of sampling sites of surface sediments in Jian and Moyang river basins.
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China–Youjiang water system and the low mountain and hilly
water system, the evaluation method in this study took the
average background value of these water systems as the
evaluation standard Cb, Zn: 67.60 mg/kg, Pb: 28.49 mg/kg, Ni:
20.13 mg/kg, Mn: 575.35 mg/kg, Cu: 19.00 mg/kg, Cr:
51.30 mg/kg, and Cd: 0.1298 mg/kg (Shi et al., 2016).

2.4.1 Single Element Indices
Contamination factor (CF) provides the ratio of an element at
background sites, a reference value or a national criterion for that
metal (Duodu et al., 2016). This indicator provides information
about how an element has been concentrated at the site of interest
relative to a background site, which indicates the input of metals
by human activities (Ahmed et al., 2016). Eq. 1 shows how CF is
calculated (Hakanson, 1980).

CF � Ci

Cb
, (1)

where CF is the contamination factor, Ci is the concentration of
interest metal at a site, and Cb is the concentration of the same
metal at a background or reference site. Four qualitative
terminologies are used to describe the CF by Hakanson
(1980): CF < 1: low contamination; 1 ≤CF < 3: moderate
contamination; 3 ≤ CF < 6: considerate contamination; CF ≥
6: very high contamination.

EF is normalized against an element, which compares the ratio
of the element of interest to a “conservative element” in a given
sample to the same ratio in a local background (Brady et al., 2015;
Islam et al., 2018). “Conservative element” commonly uses the
following elements: Al, Fe, Mn, Sc, and Ti. In this study, Mn was
selected as the “conservative element” (Bergamaschi et al., 2002;
Salati and Moore, 2009; Duodu et al., 2016; Islam et al., 2018).
Before adopting EF, PCA and CA were used to determine
whether Mn is a conserved element (Han et al., 2006). This
approach can negate the effect of terrestrial sedimentary input
and identify anthropogenic pollution sources (Brady et al., 2015).

This was determined using the following equation given by
Muller (1981):

EF � (Ci/Cb)sample

(Ci/Cb)background, (2)

where Ci is the concentration of the element of interest and Cb is
the concentration of the normalization element. Five
contamination categories are associated with EF by Sutherland
(2000): EF < 2 indicates depletion to minimum enrichment; 2 ≤
EF < 5 represents moderate enrichment; 5 ≤ EF < 20 indicates
significant enrichment; 20 ≤ EF < 40 represents very high
enrichment; and EF ≥ 40 indicates extremely high enrichment.

2.4.2 Multi-Element Indices
The limitations of the single element indices have led to the
development of multiple element indices to assess sediment
quality (Brady et al., 2015; Duodu et al., 2016). The most
common multiple element indices are the modified
contamination index (mCd) developed by Hakanson (1980),

the Nemerow pollution index (PI) (Nemerow, 1991), and the
modified pollution index (MPI) by Brady et al. (2015).

The mCd calculates the average impact of all heavy metal
elements at a sampling point to evaluate sediment pollution.
Meanwhile, the PI allows the qualification of sediment quality
that is much more considerate of the effect of a single element by
using a weighted average. To account for the behaviour of
sediments within estuaries and the possibilities of multiple
sediment sources, an improved method for determining the PI
is proposed by using EF to calculate an MPI, which would allow
for the non-conservative behaviour of sediments due to
normalization against an element (Brady et al., 2015). Eqs. 4
and 6 show how mCd, PI, and the MPI are calculated. The
thresholds for sediment quality classification using the three
integrated indices are presented in Table 1.

mCd � ∑n
i�1CFi

n
, (3)

PI �
�������������������(CFaverage)2 + (CFmax)2

2

√
, (4)

MPI �
������������������(EFaverage)2 + (EFmax)2

2

√
, (5)

where CFi, CFaverage, CFmax, and EFmax represent contamination
factors for an individual element, average of CF, average of EF,
maximum CF, and maximum EF, respectively.

2.4.3 Ecological Risk Assessment
The SQGs is a simple and comparative indicator used to assess the
quality of sediments and their adverse biological effects on the
aquatic ecosystem (MacDonald et al., 2000; Ke et al., 2017; Kang
et al., 2020). In this study, two limit values were applied to
evaluate the potential risk of the ecosystem, threshold effect
content (TEC) and probable effect content (PEC). If the
content is below the TEC, then adverse biological effects rarely
occur; if the concentrations are equal to or greater than the TEC
but less than the PEC, then a range of biological effects
occasionally occur; if the concentrations are at or above the
PEC, then a probable effect range of adverse biological effects
frequently occur (Ke et al., 2017; Kang et al., 2020).

Potential ecological risk index (RI) and modified potential
ecological risk index (MRI) were used to assess the extent of heavy
metal pollution and its potential ecological harm (Hakanson,
1980). RI takes into consideration the CF of metal, potential
ecological risk factors (Er), and toxicological response factors (Tr)
(1 for Zn; 2 for Cr; 5 for Cu, Pb, and Ni; and 30 for Cd) (Hakanson
1980; Xu et al., 2008). MRI uses EF in the calculation of RI to
account for the effect of terrestrial sedimentary (Duodu et al.,
2016). Eqs. 7 and 8 show how the RI and MRI are calculated.

RI � ∑n
i�1
Ei
r � ∑n

i�1
Ti
r × CFi, (6)

MRI � ∑n
i�1
Ei
r � ∑n

i�1
Ti
r × EFi, (7)
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where Er
i is the potential ecological risk index of an individual

element, Tr
i is the biological toxic response factor of an individual

element, CFi is the contamination factor for each single element,
and EFi is the enrichment factor for each single element. Grading of
potential ecological risk factors are as follows: Er <40 for low risk,
40–80 indicatesmoderate risk, 80–160 represents considerable risk,
160–320 represents high risk, and >320 represents very high risk.
Grades of potential andmodified ecological risk index such as RI or

MRI <150 indicates low risk, 150–300 represents moderate risk,
300–600 indicates considerable risk, and >600 indicates very
high risk.

3 RESULTS

3.1 Concentration of Heavy Metals in
Surface Sediments
Table 2 illustrates the descriptive statistics of the heavy metal
contents of the Jian and Moyang rivers. The metals in the
sediments from the Jian and Moyang rivers ranged from
57.86 to 317.41 for Mn, 18.64 to 109.34 for Zn, 21.16 to
97.80 for Pb, 9.89 to 53.66 for Ni, 1.20 to 93.66 for Cu,
1.27 to 11.44 for Cr, and 0.004–0.63 mg/kg for Cd. The values
of the median concentrations can be ranked in descending order
for the Jian and Moyang rivers: Mn > Zn > Pb > Ni > Cu > Cr >
Cd. The comparison of the reported results of this study with the
background value of water system sediments in the South China
Youjiang orogenic zone and low hill water system sediments (Shi
et al., 2016) revealed that the concentrations of Cu, Cd, Ni, and Pb
were higher than the background value. The average Zn, Pb, Cu,
and Cd concentrations in this study were higher than the other
studies in Table 3, whilst the concentrations of Zn, Pb, and Cd
were much lower in China’s Pearl River.

TABLE 1 | Thresholds for sediment quality classification for multi-element indices.

Class Sediment qualification mCd PI MPI

0 Unpolluted MCd < 1.5 PI < 0.7 MPI < 1
1 Slightly polluted 1.5 ≤ mCd < 2 0.7 ≤ PI < 1 1 ≤ MPI < 2
2 Moderately polluted 2 ≤ mCd < 4 1 ≤ PI <2 2 ≤ MPI < 3
3 Moderately–heavily polluted 4 ≤ mCd < 8 − 3 ≤ MPI < 5
4 Severely polluted 8 ≤ mCd < 16 2 ≤ PI < 3 5 ≤ MPI < 10
5 Heavily polluted 16 ≤ mCd < 32 PI ≥ 3 MPI ≥ 10
6 Extremely polluted MCd ≥ 32 − −

TABLE 2 | The heavy metal consensus-based quality guideline values (mg/kg) and background values (mg/kg) in soils of Jian and Moyang river basins.

Zn Pb Ni Mn Cu Cr Cd

Mean 58.43 40.28 26.57 144.97 24.21 6.71 0.17
Range 18.64–109.34 21.16–97.80 9.89–53.66 57.86–317.41 1.20–93.66 1.27–11.44 0.004–0.63
VC 0.38 0.38 0.42 0.48 0.85 0.36 0.93
Skewness 0.52 1.55 0.57 0.77 1.60 −0.66 1.17
Background (Shi et al., 2016) 67.60 28.49 20.13 575.35 19.00 51.30 0.13
Multiple 0.86 1.41 1.32 0.25 1.27 0.13 1.30

TABLE 3 | Metal concentrations (mg/kg) in the Jian and Moyang rivers compared with the mean sediment concentrations reported previously.

Location Zn Pb Ni Mn Cu Cr Cd References

The Jian River and Moyang River, China 109.34 97.80 53.66 317.41 93.66 11.44 0.63 Present study
The Pearl River, China 543.60 104.58 54.10 1104.73 80.20 86.62 10.60 Xie et al. (2012)
The Yangtze River, China 98.09 27.72 − − 40.47 74.60 0.30 Ke et al. (2017)
The Haihe River, China 89.41 20.65 44.63 − 74.23 92.09 0.264 Kang et al. (2020)
Langat River, Malaysia 29.71 15.52 − − 79.10 − 0.10 Shafie et al. (2014)

TABLE 4 | Loading corresponding to three factors for surface sediments of the
Jian and Moyang rivers.

Parameters Component

Factor 1 Factor 2 Factor 3

Cr 0.897
Cu 0.845
Ni 0.724
Zn 0.723
Pb 0.532
Mn 0.903
Fe 0.845
Cd 0.889
Eigenvalue 4.424 3.794 2.916
Total variance (%) 37.872 29.348 19.165

Frontiers in Environmental Science | www.frontiersin.org August 2022 | Volume 10 | Article 9277655

Feng et al. Heavy Metals in Surface Sediments

155

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


FIGURE 2 | (A–B) Cluster diagram of sampling sites and heavy sites and heavy metal elements obtained using Ward’s method and Squared Euclidean distance
matrix. (A) Sampling sites. (B) Heavy metal elements. (C) Principal component analysis of different metals.

TABLE 5 | Evaluation results in contamination factor (CF) and enrichment factor (EF) percentage (%) in the surface sediments of the Jian and Moyang rivers.

Contamination factor (CF)

Ranges of indexes State of pollution Zn Pb Ni Cu Cr Cd

Average 0.86 1.41 1.32 1.27 0.13 1.30
CF < 1 Low contamination 62.22% 20.00% 31.11% 44.44% 100.00% 53.33%
1 ≤ CF < 3 Moderate contamination 37.78% 77.78% 68.89% 46.67% 0.00% 33.33%
3 ≤ CF < 6 Considerable contamination 0.00% 2.22% 0.00% 8.89% 0.00% 13.33%
CF ≥ 6 Very high contamination 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Enrichment factor (EF)

Average 3.83 6.40 5.72 5.39 0.61 5.47
EF < 2 Depletion to minimum enrichment 4.44% 0.00% 0.00% 22.22% 0.00% 24.44%
2 ≤ EF < 5 Moderate enrichment 82.22% 35.56% 44.44% 31.11% 0.00% 40.00%
5 ≤ EF < 20 Significant enrichment 13.33% 62.22% 55.56% 44.44% 0.00% 31.11%
20 ≤ EF < 40 Very high enrichment 0.00% 2.22% 0.00% 2.22% 0.00% 4.44%
EF > 40 Extremely high enrichment 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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3.2 Cluster Analysis and Principal
Component Analysis
Cluster analysis (CA) was performed to divide the sampling sites
into groups with similar concentrations of heavy metals in
sediments. CA is a statistical method used to identify groups
or clusters of similar parameters based on similarities within a
class and dissimilarities between different classes. In this study,
CA made it possible to divide the measurement points into
groups 1–1, 1–2, and 2 (Figure2).

Considering the relatively high variability of the heavy metal
concentrations in certain groups of sampling sites, principal

component analysis (PCA) and CA was separately performed
for three clusters (Table 4 and Figure 2). The first factor
represented 37.872% out of the total variance and members of
the significant variables with high loading on Cr, Cu, Ni, Zn, and
Pb. The second factor was dominated by Mn and Fe, accounting
for 29.348% of the total variance. The third factor contributed
19.165% of the total variance and was only characterized by the
loading of Cd.

3.3 Single Pollution Indices
Amongst the studied metals, the average values of CF decreased
in the order Pb >Ni > Cd > Cu > Zn > Cr. Meanwhile, Zn, Pb Ni,

FIGURE 3 | Distribution of pollution evaluation results by CF and EF from Jian and Moyang rivers’ sediments. (A) Contamination factor; (B) enrichment factor (The
results of the contamination factor only show the sampling sites with moderate contamination and above, and the results of the enrichment factor only show the sampling
sites with moderate contamination and above).
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Cu, and Cd showed moderate contamination in some sample
stations (37.78%, 77.78%, 68.89%, 46.67.56, and 33.33%,
respectively) (Table 5). Significant contamination was
observed at the S22, S17, S19, and S22 (group2) sample
stations, mainly because of Cu concentration. At sample
stations S11 (group 1–1), S18 (group 1–2), and S10, S37, S42,
and S43 (group 2), the values of CF for Cd indicated considerate
contamination. In addition, S39 (Group2) sample station
indicated considerable contamination by Pb (Figure 3).

Group 2 consisted of Mn–Fe in PCA, which widely exists in
nature (Graney and Eriksen, 2004). This notion means that Mn is
a conservative element in the studied environment. EF values
computed for the metals at various sites are also presented in
Table 5. The average values of EF decreased in the order Pb >
Ni > Cd > Cu > Zn > Cr, which is similar to the CF results. The
assessment of the EF values for the Jian and Moyang rivers
demonstrated that Pb, Ni, Cd, and Cu have greater enrichment
compared with the other heavymetals (Table 5). In the case of the
Jian and Moyang rivers, the values of EF for Pb indicated
moderate enrichment at 35.56% of the sample stations and
significant enrichment at 62.22% of the sample stations, whilst
very high enrichment was observed at S39 (group 2). The analysis
of the EF for Ni shows that moderate enrichment occurs at
44.44% of the sample stations and significant enrichment at
55.56% of the sample stations. The assessment of the EF for
Cd shows moderate enrichment at 40.00% of the sample stations
and significant enrichment at 31.11% of the sample stations, but
very high enrichment at S11 (group 1–1) and S20 (group 1–2). In
addition, 31.11% of the sample stations indicated moderate
enrichment, and 44.44% of the sample stations implied
significant enrichment by Cu, with only S39 (group2) having
very high enrichment (Figure 3). Spatial distribution of the CF
and EF from Jian and Moyang rivers show heavier metal
enrichment of sediments in the upper course of Moyang River
and heavier Cd metal enrichment of sediments in the upper
course of Jian River (Figure 3).

3.4 Multi-Element Indices
Given that the problem of heavy metal pollution in sediments is
influenced by various heavy metals, this study used multi-element
indices (mCd, PI, and MPI) to assess the influence of multiple
contamination species at a site to overcome some limitations of
the single indices. In this study, contamination was low, as
indicated by “unpolluted” (Figure 4), because none of the sites
had an index (mCd) greater than 1.5 except S10, S17, S18, S23,
S22, and S39 (group 2), which are slightly to moderately polluted
(Table 6). However, the PI value for the Jian River (group 1–2:S2)
was lower than 0.7 at only one sample station (Figure 4). The PI
values for the rest of the sample stations were above 0.7,
indicating that the overall contamination status of the Jian and
Moyang rivers was polluted. In the case of the study area,
28.89 and 46.67% of the sample stations were slightly polluted
andmoderately polluted by PI, respectively. The analysis of the PI
for the Jian and Moyang rivers shows that severe pollution occurs
at 13.33% of the sample stations (group 1–1: S11, group 1–2: S18,
group2: V2, V16, V18, and V23), whilst heavy pollution was
observed only at four sample stations (group 2: S10, S37, S39, and
S42) (Figure 4). The PI results indicated heavier pollution of
sediments in group 2 sample stations. The values of MPI for
sediments indicated that the pollution was moderate to heavily in
the study area, with a mean value of 7.02. The MPI values for
35.56% of the sample stations indicate moderate to heavy
pollution, and 51.11% denoted heavy pollution (Table 6).
Moreover, assessment of the MPI shows that extreme
pollution occurs at 13.33% of the sample stations (group1–1:
S11 and S25; group1–2: S18 and S20; and group2: S39 and S40).

FIGURE 4 | Sediment quality assessment by multi-element indices
(mCd: modified degree of contamination, PI: pollution index, and MPI:
modified pollution index).
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3.5 Ecological Risk Assessment of Metals in
Sediment
When compared with the reference limit values of TEC and PEC,
the majority of the samples were below the PEC value, which is
defined as the limit above which a toxic effect on aquatic can be
expected. Only 4.44% of the Ni sediment samples for the Jian and
Moyang rivers were above this level (Table 7). However,
biological Ni, Cu, and Ni effects occur in 51.11%, 31.11%, and
4.44% of the sample, with values between TEC and PEC.
Therefore, the application of SQGs to the sediment analyzed
revealed that Pb, Ni, and Cu can potentially cause biological
effects.

The Er calculated using CF showed that the heavy metals all
have a low risk, except for Cd (Table 8). In the case of the study
rivers, the Er with CF for Cd indicated moderate to considerate
risk at 28.89% of the sample stations. Meanwhile, the average
value of the Er with EF showed that only Cd had an ecological risk
in the study area. The obtained results showed that the Er with EF
for Pb, Ni, and Cu has moderate to considerable ecological risk in
some sampling stations (20.00%, 15.56%, and 13.33%,
respectively) (Table 8).

The RI and MRI were computed (Figure 5). The RI values for
the analyzed heavy metals were lower than 150, indicating that
none of the sample stations has an ecological risk for the aquatic
environment (Table 9), except for S10 and V22 (Group2).
However, the mean values of the MRI indicated that moderate
ecological risk occurred in Jian and Moyang rivers. In the case of
the study area, 48.89% of the sample stations showed moderate
risk. Moreover, the MPI values were more than 300 at 22.22% of
the sample stations (group 1–1: S11 and S34; group1–2: S18 and
S20; and group2: S10, S36, S39, S40, S42, and S43).

4 DISCUSSION

4.1 Contamination and Risk Assessment
In this study, the mean values of the heavy metals in CF and EF
showed that Pb, Ni, Cd, and Cu are moderate contaminants. This
finding is similar to the results of related studies in the Pearl River
Basin (Xiao et al., 2013; Zhao et al., 2016; Jiao et al., 2018). The Pb
contamination can be linked to leaded gasoline (Al-Khashman,
2007) because the seriously impacted sample station S39 is close
to the highway. The proximity of S10, S11, S18, S37, S42, and

S43 to the farming area indicates that Cd contamination is a result
of the application of pesticides and fertilizers (Gray et al., 1999).
The considerate Cu contamination may have been caused by
antifouling paints from a shipping yard and ferry activities near
S22 (Duodu et al., 2016) and the use of Cu-containing insecticides
and fungicides around S22, S37, and S39. Moreover, Cu
contamination may be associated with traffic, such as tyre and
brake wear because the affected sample station S39 was a road
(Duodu et al., 2016). According to the SQGs, some sample
stations may occasionally have biological Ni, Pb, and Cd
effects. This result is similar to the research results in the
Pearl River Basin (Niu et al., 2009; Xiao et al., 2013; Liao
et al., 2017; Yao et al., 2021). The results of the potential
ecological risk indices of each metal (Er) showed that all heavy
metals are a low risk, except for Cd, based on the mean value in Er
with (EF). This difference is probably related to the magnitude of
toxicological response factors:1 for Zn; 2 for Cr; 5 for Cu, Pb, and
Ni; and 30 for Cd (Hakanson 1980; Xu et al., 2008). Cd is highly
toxic to living organisms (Kumar et al., 2018). Our study
performed a PCA to extract a small number of latent factors
to analyze the relationships amongst variables. The results of the
PCA, in combination with the abovementioned research, on the
sources of single heavy metals in the study are as follows. The first
factor is dominated by Cr, Cu, Ni, Zn, and Pb, which are
associated with a variety of polluted sources, such as
transportation, agricultural, industrial, and natural sources.
The second factor showed strong loadings of Mn and Fe,
indicating a lithogenic contribution (Graney and Eriken,
2004). The third factor is characterized by Cd, demonstrating
the impact of agricultural production.

To identify the groups of similar sample stations, CA was used
to divide the sample sites in this study into groups 1–1, 1–2, and 2.
In multi-element indices, S11, S23, and S25 (group 1–1), S18 and
S20 (group 1–2), and S10, S17, S22, S36, S37, S38, S39, S40, S42,
and S43 (group 2) are slightly to moderately polluted by mCd or
severely polluted by PI or extremely polluted by MPI. This notion
indicates that group 2 is the most prominent in heavy metal
pollution. The analysis of the RI showed that moderate ecological
risk occurs at S10 and S42 (group 2). The result of the MRI
indicated that very high ecological risk occurs at S11 and S34
(group 1–1), S18 and S20 (group 1–2), and S10, S16, S39, S40, S42,
and S43 (group 2). The comprehensive pollution of group 2 is
more serious than that of group 1, and 65.16% of the sampling

TABLE 6 | Variations of evaluation results in the modified degree of contamination (mCd), pollution index (PI), and modified pollution index (MPI) percentage (%) in the surface
sediments of the Jian and Moyang rivers.

State of
pollution

Ranges of
indexes

mCd Ranges of
indexes

PI Ranges of
indexs

MPI

Average 0.94 Average 1.52 Average 7.02
Unpolluted MCd < 1.5 86.67% PI < 0.7 2.22% MPI < 1 0.00%
Slightly polluted 1.5 < mCd < 2 6.67% 0.7 < PI < 1 28.89% 1 < MPI < 2 0.00%
Moderately polluted 2 < mCd < 4 6.67% 1 < PI < 2 46.67% 2 < MPI < 3 0.00%
Moderately-heavily polluted 4 < mCd < 8 0.00% 3 < MPI < 5 35.56%
Severely polluted 8 < mCd < 16 0.00% 2 < PI < 3 13.33%
Heavily polluted 16 < mCd < 32 0.00% PI > 3 8.89% 5 < MPI < 10 51.11%
Extremely polluted MCd > 32 0.00% MPI > 10 13.33%
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points with significant and very high Cd enrichment are located
in group 2. This finding indicated that group 2 might be affected
by agricultural production mainly located in the upper reaches of
Moyang River. Although groups 1–1 and 1–2 have no significant
difference in the proportion of high pollution values, the MRI
evaluation results showed that group 1–1 was moderate and
above an ecological pollution level, except S26, and 52.94% of
the samples in group 1–2 are low risk. In the single element
Indices, all the samples in group 1–1 have Cu and Ni significant
enrichment, except S1 and S32. In combination with the sample
distribution, group 1–1 is mainly affected by industrial
production and urban activities. These findings suggest that
continuous monitoring of Cd, Pb, Ni, and Cu in the river
sediment of the Jian and Moyang rivers should be directed to
evaluate the threat of these elements to the public health and to
the ecology of the river under study. Agricultural pollution must
be given attention, and the detection of industrial and urban
pollution in river governance must be strengthened.

4.2 Use of Pollution Indices
The RI evaluates the combined pollution risk of an aquatic system
through a toxic-response factor using CF. Although the CF, PI,
and RI have been increasingly used in recent years, there are some
limitations relating to their use. CF does not take into
consideration lithogenic and sedimentary inputs of the
element of interest. If the CF is used to determine the PI and
RI, this could be a source of error when estuarine environments
are considered because there are areas of intense sedimentation
with significant input from terrestrial waterways (Brady et al.,
2015; Duodu et al., 2016). To negate the effect of terrestrial
sedimentary input, EF can be used to standardize the impact of
terrestrial inputs by normalizing the element of interest against an
element that has no anthropogenic source. An improved method
for determining PI and the RI is proposed by using EF to calculate

MPI and MRI, allowing for the non-conservative behaviour of
sediments due to normalization against an element (Brady et al.,
2015).

In this study, six heavy metal contaminants were used to
calculate the CF, EF, mCd, PI, MPI, RI, and MRI. Although the
CF and EF indicated heavy metal contamination in this study,
EF appeared to detect contamination (at more sites and of
more metals) better than CF in the worst-case scenario. The
assessment of the CF values demonstrated that Cd was
considered contamination in S11. Meanwhile, this sample
station has extremely high enrichment based on the EF.
This finding suggests that the use of EF is more sensitive to
monitoring heavy metal pollution because it can normalize the
impact of terrestrial sedimentary inputs to provide more useful
information. Similar results were obtained in earlier studies
(Duodu et al., 2016; Kumar et al., 2018), wherein EF could
detect terrestrial sedimentary inputs of metals due to the
normalization. In multi-element indices, the mCd values for
86.67% of the sample stations indicate unpolluted, whilst PI
overestimates the risk at all sites and indicates that only 2.22%
of the sample stations are unpolluted. The weighted average
rather than just the average CF of PI makes a more likely,
higher value for the index, and the trigger thresholds are lower
than those for the other indices (Brady et al., 2015).
Accordingly, the PI is more likely to identify high levels of
contamination for a suite of elements. The results of MPI also
indicated that the sample stations were affected by multiple
contaminations. However, MPI shows more sample points
with high values. According to the ecological risk
assessment of the metals in the sediment, the RI showed no
ecological risk for the aquatic environment, except for S10 and
V22. However, the MRI values indicated that 71.11% of the
sample stations were at moderate to very high ecological risk.
Therefore, the MPI and MRI, which are calculated from EF,
can more sensitively detect pollution in this study than PI and
MRI. The results of the study would be valuable for researchers
in environmental quality evaluation, and the applied methods
applied can be used for pollution assessment in other
environments.

4.3 Pollution Assessment in Small Rivers
Environmental conditions are complicated, with towns, villages,
and farmland on both sides of small rivers. Small rivers have been

TABLE 7 | Comparison between sediment quality guidelines (SQGs) and heavy
metal concentrations (mg/kg) of all samples in Jian and Moyang rivers.

Zn Pb Ni Cu Cr Cd

% of samples < TEC 100 51.11 44.44 80.00 100 100
% of samples between TEC–PEC 48.89 51.11 31.11
% of samples >PEC 4.44

TABLE 8 | Evaluation results in the potential ecological risk index of an individual element (Eri) with EF or CF percentage (%) in the surface sediments of the Jian and Moyang
rivers.

Ranges
of
indexes

State
of pollution

Zn (CF) Zn (EF) Pb (CF) Pb (EF) Ni (CF) Ni (EF) Cu (CF) Cu (EF) Cr (CF) Cr (EF) Cd (CF) Cd (EF)

Average 0.86 3.83 7.07 32.02 6.60 28.59 6.37 26.96 0.26 1.23 38.85 164.10
<40 Low risk 100.00% 100.00% 100.00% 80.00% 100.00% 84.44% 100.00% 86.67% 100.00% 100.00% 68.89% 20.00%
40–80 Moderate risk 0.00% 0.00% 0.00% 17.78% 0.00% 15.56% 0.00% 8.89% 0.00% 0.00% 11.11% 15.56%
80–160 Considerable

risk
0.00% 0.00% 0.00% 2.22% 0.00% 0.00% 0.00% 4.44% 0.00% 0.00% 17.78% 31.11%

160–320 High risk 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 22.22%
>320 Very high risk 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 11.11%
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used as a drainage channel for intensive runoff in densely
populated urban areas or as a water source in agricultural
areas (Lee et al., 2022). Once polluted, small rivers are difficult
to recover because they are low in volume, slow in flow, and
heavily silted. If small rivers are polluted, then the pollutants flow
into large rivers and oceans, affecting ecological security. In
comparison with big rivers, small rivers are more sensitive to
changes in the surrounding environment and capable of tending
to human activities and natural factors (Zhou et al., 2020).
Therefore, precise metal source identification, distribution, and
pollution characterization are particularly important in small
rivers.

The findings of Nasrabadi et al. (2010), Giri et al. (2013), Li
et al. (2014), Wu et al. (2017), and Arisekar et al. (2022) on the

small-scale rivers indicate the impact of anthropogenic agents on
the heavy metal abundance in Xiaoyang, Thamirabarani,
Subarnarekha, Lianshan, Wuli, and Cishan river sediments.
Wu et al. (2017) showed that anthropogenic input is
associated with urban development, especially industrial
intensification. Giri et al. (2013) confirmed that the increased
concentration of metals in the Subarnarekha River is due to the
direct discharge of industrial, urban, and mining wastes into the
river. However, Arisekar et al. (2022) highlighted that the high
level of pollution was influenced by agricultural runoff.
According to this study, the Moyang and Jian rivers are
moderately to very highly contaminated with Pb, Ni, Cd, and
Cumetals when the CF, EF, mCd, PI, MPI, RI, andMRI values are
taken into consideration. When combined with PA and PCA, we
concluded that the increased concentrations of metals in the
sediment of theMoyang and Jian rivers are due to the discharge of
agricultural, industrial, and urban wastes into the river.
Therefore, small rivers can be susceptible to the influence of
human activities, which must be addressed.

5 CONCLUSION

The concentrations of metals in the Jian and Moyang rivers’
sediment are presented in this study. Two single
contamination indices (EF and CF) were used to assess the

FIGURE 5 | Sediment quality assessment by ecological risk assessment of metals in sediment. (RI: potential ecological risk index and MRI: modified ecological risk
index).

TABLE 9 | Variations of evaluation results in the potential ecological risk index (RI)
and modified ecological risk index (MRI) percentage (%) in the surface
sediments of the Jian and Moyang rivers.

Ranges of indexes State of pollution RI MRI

Average 60.27 256.72
<150 Low risk 95.56% 28.89%
150–300 Moderate risk 4.44% 48.89%
300–600 Considerable risk 0.00% 13.33%
>600 Very high risk 0.00% 8.89%
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sediment quality in addition to the three multi-element indices
(mCd, PI, and MPI). The river sediment was slightly to
extremely polluted. The SQGs revealed that Pb, Ni, and Cu
have potential biological effects. MPI, which took into
consideration the lithogenic and sedimentary inputs of the
element of interest, indicated that most sampling points have
moderate to very high ecological risks. CA and PCA showed
that pollution in this study area is primarily caused by
anthropogenic activities (agricultural pollution, industrial
effluents, and sewage discharge). Our study found that both
sides of small rivers are vulnerable to being polluted by
production activities, which must be taken seriously. In
comparison with the various evaluation methods, the
indices calculated from EF detect pollution more sensitively
and may also be used to assess pollution in other
environments.
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Spatial and temporal evolution
characteristics of water
resources in the Hanjiang River
Basin of China over 50years
under a changing environment

Yiting Li, Jinglin Deng, Chuanfu Zang*, Ming Kong and
Jieni Zhao

School of Geography, South China Normal University, Guangzhou, China

In the formulation of scientific water resource management systems and

strategies for improving water resource utilization efficiency, the effects of

land use change and climate change on the temporal and spatial distribution of

water resources cannot be overlooked. And the Hanjiang basin is the main

source of water supply to eastern Guangdong and southwestern Fujian, China.

However, the basin is experiencing a significant imbalance between water

resource supply and demand. This study investigated the spatiotemporal

distribution of water resources in the Hanjiang River Basin under changing

environmental conditions using the Soil andWater Assessment Tool model. The

findings reveal that, from 1980 to 2020, changes in water resources significantly

varied among sub-basins, reflecting spatial heterogeneity. Moreover, sub-

basins with severe land use changes showed significant changes in water

resources. From 1970 to 2020, the water resources of each sub-basin

changed with climate change, indicating temporal variability. Under the

combined effects of land use change and climate change, the amount of

water resources decreased and its spatial distribution changed dramatically.

At the same time, the evolution of water resources under climate change was

consistent with that under the combined influence of both land use change and

climate change, indicating that climate change is the primary driver. The

findings provide theoretical guidance for water resource research and

management.

KEYWORDS

land use change, climate change, Hanjiang River Basin, SWAT model, water resource

1 Introduction

Water resources are one of the most important factors for maintaining ecosystem

balance, human survival, and socio-economic development (Long et al., 2019). With the

growth of the economy and society, human demand for water resources is growing, and

the sustainable use of water resources has emerged as a major stumbling block to China’s
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growth (Piao et al., 2010). Changes in hydrological circumstances

have potential long-term consequences on human civilization

(Hall et al., 2014). Climate change and changes in land cover/use

are frequently reported as two primary driving factors of

hydrological change (Zhou et al., 2015) and are strongly

associated with current and future water scarcity (Zhou et al.,

2022). At long time scales, climate change plays a dominant role

in influencing hydrological cycle processes in watersheds; at short

time scales, land use change is one of the key factors influencing

changes in hydrological elements in watersheds (Zhang et al.,

2020a). Under the background of global warming, changes in

rainfall, evaporation, runoff, and soil moisture will alter the

global hydrological cycle, inducing a redistribution of water

resources temporally and spatially (Xia et al., 2015). At the

same time, continued population growth and highly intensive

human activities also alter land cover conditions, which in turn

induce changes in various hydrological processes such as

infiltration and evaporation (Miller et al., 2014; Zang et al.,

2015; Anand et al., 2018; Ross and Randhir, 2022). Many

studies also suggest that land use change will negatively affect

the sustainable use of water resources in the future (Shrestha

et al., 2018; Ross and Randhir, 2022). The joint interaction of

climate change and land use change has resulted in changes in

terrestrial water cycle processes, redistribution of water resources

on the ground, and even extreme hydrological events, further

exacerbating the conflict between water supply and demand

(Davis et al., 2015; Zang et al., 2015; Zhang et al., 2020b; Wu

et al., 2021). In this context, the effects of climate change and

human activities on water resources, as well as the characteristics

of water resource evolution at the basin scale, should not be

overlooked when developing scientific water resource

management systems and strategies for improving water

resource utilization efficiency.

As the impact of human activities and climate change on

water resources is growing, the United Nations Educational,

Scientific and Cultural Organization (UNESCO)

Intergovernmental Hydrological Programme (IHP),

International Geosphere Biosphere Programme (IGBP) and

other large international scientific research programs are

increasingly focusing on the impact of these two factors to

establish a scientific foundation for the transformation and

rational use of water resources (Sivakumar, 2011). Many

researchers in China and worldwide have studied the effects

of changing scenarios (such as land use change and climate

change) on water resources under this setting. Piao et al. (2010)

investigated the effects of climate change on water resources and

agriculture in China by analyzing climate change trends and

water resource trends (2010). Lotz et al. (2018) quantified the

hydrological response of the Dongting Lake watershed in China

to land use change using the Soil and Water Assessment Tool

(SWAT) model, and they found that the transition from

agricultural land to forest land reduced surface runoff and

total water, while increasing evapotranspiration, subsurface

flow, and groundwater flow (2018). Kundu et al. (2017)

investigated the effects of climate and land use change on

future water balance, and concluded that climate change has a

stronger influence on water production, whereas land use change

has a stronger influence on evapotranspiration (2017). In general,

most studies have focused on changes in water resources within a

single environment. In terms of research methods, many scholars

have studied the use of various hydrological models to assess the

combined effects of land use change and climate change. Among

these, the SWATmodel is an integrated tool for multidisciplinary

studies at the regional scale in diverse physiographic and climatic

conditions. It is also one of the most widely used watershed-scale

models in the world today (Krysanova and White, 2015;

Souffront Alcantara et al., 2019). Therefore, more in-depth

quantitative analyses of the spatiotemporal evolution

characteristics and driving mechanisms of water resources at

the basin scale are required with the help of SWAT models,

considering both human activities and climate change. Such

analyses are critical for water resource planning and

management.

Apart from the Pearl River Basin, eastern Guangdong and

southern Fujian in China rely significantly on the Hanjiang River

for water. With a population of over 10 million people and a

combined regional gross domestic product (GDP) of over

190 billion Yuan, the Hanjiang River Basin is the second-

largest basin in Guangdong (Li et al., 2021), and occupies a

very important position in the economic and social development

of Guangdong. In the context of global climate change, changes

in the runoff of the Hanjiang River Basin are becoming

increasingly significant, with frequent floods in local areas in

the flood season and more severe water shortages or even severe

droughts in the non-flood season (Feng and Hu, 2021). For

example, the Hanjiang River Basin suffered the most severe

drought in 60 years in 2017. As precipitation is the primary

source of water in the Hanjiang River Basin, climate change

directly affects the spatiotemporal distribution of water resources

in the basin (Li et al., 2021). With the implementation of the

reform and opening up of China since 1978, the Hanjiang River

Basin has experienced rapid economic development, and with

urbanization, land use types in the Hanjiang River Basin have

shifted substantially (Zhang, 2007), which affect hydrological

processes such as runoff confluence, evaporation, and dispersion.

Major reservoirs in the Hanjiang River Basin have limited water

storage capacity, with their total water storage capacity

accounting for only about 5% of the water resources in the

entire basin, which is far below the national average 12% (Li et al.,

2021). Therefore, the basin has limited resistance to extreme

hydrological events.

This study investigated the spatiotemporal distribution of

water resources in the Hanjiang River Basin considering changes

in human activities and climatic conditions. The effects of climate

change and land use type change on both the temporal and

spatial variability of water resources in the Hanjiang River Basin
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under several scenarios were quantitatively analyzed using the

SWAT model. Furthermore, the geographical distribution

pattern of water resources was investigated at the basin scale.

The geographical distribution and usage of water resources were

combined to obtain a theoretical foundation and scientific basis

for the integrated management, water security, ecological

security, and long-term economic growth of the Hanjiang

River Basin. The findings will promote rational scheduling

and management of water resources in the basin,

modernization of the water governance system and

governance capacity in the basin, and high-quality, long-term

economic growth in the basin.

2 Study area

The Hanjiang River Basin is mainly located in eastern

Guangdong and southwestern Fujian, China. It covers some

counties and cities in Guangdong, Fujian, and Jiangxi

provinces (Figure 1). Following the Pearl River Basin, this

basin is the second-largest river basin in Guangdong Province.

The area of the basin is 30,112 km2, of which 13,929 km2 (46.3%)

is covered by the Meijiang River, 11,802 km2 (39.2%) by the Ting

River, 3,346 km2 (11.1%) by the Hanjiang River, and 1,035 km2

(3.4%) by the Hanjiang River Delta (below Chaoan Station). The

Hanjiang River Basin is located in the subtropical southeast

Asian monsoon region, which has subtropical climate. The

climate is hot and humid, with abundant rainfall and frequent

rainstorms. The annual average rainfall is approximately

1,600 mm. Precipitation shows uneven annual distribution and

wide spatial variability, controlled by the topography.

The variability of annual rainfall in the Hanjiang River Basin

causes large disparities in runoff in the dry and flood seasons,

with the average discharge in the flood season being 2.7 times that

of the dry season. The total annual runoff is 24.5 billion m3, the

average depth of yearly runoff is 600–1,200 mm, the average

annual runoff coefficient is 0.51, and the yearly runoff

distribution is unbalanced. Approximately 80% of the yearly

runoff occurs from April to September. The spatial distribution

of runoff is roughly consistent with the rainfall distribution. The

topography of the Hanjiang River basin is predominantly

mountainous and hilly. The mountainous area accounts for

70% of the total basin area, mostly distributed in the northern

and central regions, and the general elevation is above 500 m.

Hilly areas account for 25% of the total basin area, mostly

distributed in the Meijiang River Basin and other major

tributaries, with a general elevation below 200 m. Plain areas

account for 5% of the total basin area, mostly in the delta

downstream of the Hanjiang River, with a general elevation

below 20 m. The main land use types are forest, cultivated

land, grassland, and construction land, covering about 97% of

the basin area.

FIGURE 1
Location and distribution of meteorological stations in the Hanjiang River Basin, China.
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3 Materials and methods

3.1 Materials

It is necessary to collect and preprocess relevant data of the

Hanjiang River Basin and finally import the model database. The

construction of the SWAT model required the import of sub-

catchment data along with other data. The required data include

Digital ElevationModel Data (DEM), land use data, soil data, and

meteorological data (Table 1).

It is an important step to make sure the variables meet the

underlying assumptions of the algorithms before conducting any

statistical analyses. Therefore, following data collection, many

types of data must be processed. Considering the Digital

Elevation Model Data and Land-Use and Land-Cover Change

Data are consistent with the target data properties required for

modeling, we do less transformation processing on these data.

Contrarily, conversion processing is necessary for the original

soil andmeteorological data since their characteristics differ from

those needed to create the model. First, the raw Digital Elevation

Model Data was processed with Arcgis software. Second, the land

use categories map was reclassified in accordance with the

watershed’s real circumstances using the Land-Use and Land-

Cover Change classification method, which corresponds to

CropLu and UrbanLu, and ultimately the five reclassified land

use maps were obtained. Third, the processing and integration of

soil data is required for the building of the hydrological model. As

a result, we gathered soil type and property data from the World

Soil Database and then utilized the Soil-Plant-Atmosphere-

Water (SPAW) program created by Washington State

University to compute soil bulk density, effective field

capacity, saturated hydraulic conductivity, and other

parameters. Forth, for this study, observational data from

32 meteorological stations in the Han River watershed from

1969 to 2020 must be processed. In order to create the weather

file needed for modeling, the data must first be sorted and

validated before being fed into the weather generator.

3.2 Hydrological model: Soil and water
assessment tool

Soil and Water Assessment Tool (SWAT) utilizes

meteorological, hydrological, and management data to

calculate the internal circulation of each hydrologic response

unit (HRU) individually. The model then groups them into sub-

basins and connects them organically through the river network

to approximate surface catchments. Therefore, the model can not

only evaluate the distribution of water resources but also identify

and simulate non-point source pollution in critical areas (Arnold

et al., 1998). Currently, the SWATmodel has been widely used to

simulate and assess the impact of land use change on watershed

hydrology (Gassman et al., 2007). Therefore, the hydrological

module of this model was selected to simulate hydrological

processes in the Hanjiang River Basin.

SWAT simulates two types of hydrological processes: the

hydrological cycle and the confluence phase. The water balance

equation is the foundation of the hydrological cycle (Osei et al.,

2019):

SWt � SW0 +∑t

i�1(Pday − Qsurf − Ea −Wseep − Qgw) (1)

In Eq. 1, SWt is the final soil water content (mm); SW0 is the

pre-soil water content (mm); t is the time step (d); Pday is

precipitation on day i (mm); Qsurf is surface runoff on day i

(mm); Ea is evapotranspiration on day i (mm); Wseep is soil

infiltration and lateral flow on day i (mm); and Qgw is subsurface

runoff on day i (mm).

In this study, ArcSWAT version 2012 was used for the

construction and running of the SWAT model after data pre-

processing. The watershed was divided into 48 sub-basins with

topographic data and minimum catchment area (CSA)

thresholds from the Digital Elevation Model Data of the

Hanjiang River Basin. Secondly, the sub-basins were further

divided into 931 HRUs within each sub-basin based on a

combination of specific land use and soil type thresholds to

TABLE 1 Data used to construct the Soil and Water Assessment Tool for the Hanjiang River Basin, China.

Data type Data source Data description

Digital elevation Model
(DEM) data

Chinese Academy of Sciences data cloud (http://www.csdb.cn/) 90 m resolution

Land use data Land use data obtained through remote sensing interpretation, and Remote sensing data
obtained from the official website of the US Geological Survey (http://earthexplorer.
usgs.gov)

Five periods in 1980, 1990, 2000, 2010, 2020;
30 m resolution

Soil data Harmony World Soil Database, (https://www.fao.org/soils-portal/soil-survey/soil-maps-
and-databases/harmonized-world-soil-database-v12/en/);

1:1 million

Meteorological data National meteorological science data sharing service platform (http://data.cma.cn/site/
index.html) and some district and county meteorological bureaus of Guangdong Province,
Fujian Province, and Jiangxi Province.

Daily-scale data from 1969 to 2020

Runoff data Hanjiang River Basin Administration Chaoan Hydrological Station. 1981–1995;
1996–2010
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ensure that the entire sub-basin area was modeled. Finally,

32 meteorological stations and related files were written for

the period 1969–2020. After selecting the suitable calculation

technique and output items, the commands to run the model

were executed.

Before calibrating the model, the parameters that have the

most influence on the streamflow simulation need to be

estimated by sensitivity analysis. Since ArcSWAT contains a

large number of hydrological parameters and all of them may

have an impact on the model effects, important input parameters

for the simulation need to be identified (Uniyal et al., 2015). After

the SWAT model run is completed, the model needs to be

calibrated and validated to evaluate its applicability. SWAT-

CUP (Calibration and Uncertainty Program) is a stand-alone

program developed to calibrate SWAT (Abbaspour et al., 2007).

The procedure evaluates the sensitivity of model parameters

using multiple regression values of the objective function

based on Latin hypercube sampling, integrating the SUFI2

(Sequential Uncertainty Fitting) algorithm, PSO (Particle

Swarm) algorithm, GLUE (Maximum Likelihood) algorithm,

ParaSol algorithm, and MCMC (Monte Carlo) algorithm. The

SUFI2 algorithm is a method for calculating the objective

function by randomly generating a set of parameters

substituted into SWAT by the Latin-Hypercube simulations

(Abbaspour et al., 2015).

Especially in hydrology, correlation and correlation-based

measures such as the coefficient of determination and the Nash-

Sutcliffe coefficient have been widely used to evaluate the

“goodness-of-fit” of hydrologic and hydroclimatic models

(Legates and McCabe, 1999). Coefficient of determination is a

useful metric for a general interpretation of the efficiency of a

model or a part (Nash and Sutcliffe, 1970), as it is widely used not

only in hydrology but also for modeling and forecasting purposes

in domains related to ecology, agriculture, and climatology

(Onyutha, 2022). Its value ranges from 0 to 1. The higher

value of it is associated with an effective model. However, it’s

value can be low and high for an accurate and imperfect model,

respectively. Meanwhile, it does not quantify a model’s bias

(Onyutha, 2022). Therefore, the coefficient of efficiency such

as the Nash-Sutcliffe coefficient improve the coefficient of

determination for model evaluation purposes, as it is sensitive

to differences in the observed and model- simulated means

variances (Legates and McCabe, 1999). For that reason,

modelers, especially hydrologists, tend to agree that the NSE

is the optimal version of R-squared in general (Nash and

Sutcliffe, 1970; Kvålseth, 1985). The value range of Nash-

Sutcliffe coefficient is (−∞, 1], when Ens = 1, the simulation

effect is the best; when Ens < 0, it indicates that the simulated and

actual values are poorly fitted (McCuen et al., 2006). Many

scholars believe that the simulation of the model is considered

good when Ens > 0.75, good when Ens is between 0.36 and 0.75,

and poor when Ens < 0.36 (Santhi et al., 2001; McCuen et al.,

2006). R2 and Ens are calculated as follows.

R2 �
⎡⎣∑n

i�1(QOi − QO)(Qmi − Qm)⎤⎦2

∑n
i�1(QOi − QO)2∑n

i�1(Qmi − Qm)2
(2)

Ens � 1 − ∑n
i�1(Qmi − QOi)2

∑n
i�1(QOi − QO) (3)

In the equation, Qmi is the simulated runoff series; QOi is

the measured runoff series; QO is the arithmetic mean of the

measured runoff series; Qm is the arithmetic mean of

the simulated runoff series; n is the number of simulated

periods.

In this study, the Chaoan station, an important

hydrological station in the Han River basin, was selected

to calibrate the model for the monthly runoff in the Han River

basin from 1969 to 2020 with a simulation step of months.

Among them, 1969–1980 is set as the pre-calibration period,

1981–1995 as the calibration period, and 1996–2010 as the

validation period. The SWAT model was run with the

important complementary tool SWAT-CUP which

provides the SUFI2 algorithm to perform parameter

sensitivity analysis and rate and validate the sensitive

parameters to make the model accurate.

3.3 Water resource statistics

3.3.1 Calculation of water resources
When calculating water resources, this study did not simply

count the surface runoff of each sub-basin. Instead, the sum of

seepage, surface runoff, and lateral flow in the root zone was

calculated using SWAT model simulations based on the main

components and functions of water resources and combined with

the Hanjiang River basin’s characteristics.

W � ∑n
i�1
(PERC + SURQ + LATQ) p Si p 1000 (4)

In Eq. 4, i represents the i-th HRU and n represents the total

number of HRUs; W is the total water resources (m3); PREC is

seepage in the root zone during the time step (mm); SURQ is

the surface runoff generated by the hydrologic response unit

(HRU) within a certain period of time (mm); LATQ is lateral

flow generated in the HRU during timestep (mm).

3.3.2 The relative change rate
Under various scenarios, the relative rate of change of water

resources in the basin might reflect the change of water resources

(Zang et al., 2012). The relative change rate (RCR) of water

resources in different periods can be expressed as:

RCR � W2 −W1

W1
× 100% (5)
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In Eq. 5, RCR is the relative rate of change in water resources,

W is the water resource for each scenario, and W1 and W2 are

the water resources in the previous and latter period, respectively.

3.4 Scenario settings

After completing model evaluation, eight scenarios were set up

(Figure 2; Table 2) to quantitatively analyze the changes in the spatial

and temporal distribution of water resources in the basin under

human activities and climate change. Based on these scenarios, the

effects of land use variability, climate change on water resources were

assessed, as well as their combined impacts.

The periods of data used in eight simulation experiments

are as follows. In Scenarios A, B, C, D, and E, meteorological

data of 1970–2020 were used. Regarding land use data for

these scenarios, data of 1980 were used for Scenario A,

1990 for Scenario B, 2000 for Scenario C, 2010 for

Scenario D, and 2020 for Scenario E. For Scenario F, land

use data of 2020 and meteorological data of 1971–1980 were

used. For Scenario G, land use data of 2020 and

meteorological data of 2011–2020 were used. For scenario

H, land use data of 1980 and meteorological data of

1971–1980 were used. Scenarios A–E were compared to

analyze the impact of land use change on the spatial and

temporal distribution of water resources. By comparing

scenarios F–G, the impact of climate change on the spatial

and temporal distribution of water resources was

investigated. Scenario G was compared with Scenario H to

assess the impact of the two combined scenarios on the spatial

and temporal distribution of water resource.

4 Results

4.1 Validation results

The calibration and validation of the SWAT model simulations

of the downstream hydrographic station (Chaoan Station) provided

satisfactory results (Figure 3). The correlation coefficient R2 and the

Nash-Sutcliffe efficiency coefficient were used to evaluate the SWAT

model simulation results. For the calibration period, R2 = 0.95 and

Ens = 0.94, and for the validation period,R
2 = 0.95 and Ens= 0.93. The

accuracy of the runoff simulation values for the calibration and

validation periods was high, and the high R2 indicates that the

simulated and observed runoffs are highly correlated. Overall, the

model simulation results were satisfactory, indicating the applicability

of the model to the analysis of the regional and temporal distribution

of water resources in the Hanjiang River Basin under changing

conditions.

4.2 Impact of land use change

The flow of water in the Hanjiang River Basin, as well as the

spatial and temporal distribution of water resources, has changed as a

result of human activity. Land use categories in the basin have shifted

as a result of human activity, and the nature of the substratum affects

water cycle processes, resulting in changes in water resources. Under

changing land use types from1980 to 2020, themagnitude of changes

in water resources and the magnitude of changes in the sub-basins of

the Hanjiang River Basin fluctuated.

The most dramatic change in water resources was

observed between 1980 and 1990 (Scenario A to Scenario

B), as shown in Figure 4. Water resources in all sub-basins

increased by an average of 36.20%. The increase in

construction land and decline in farmland and forest area

are the primary causes of the significant increase in water

resources in the midstream and downstream areas. The loss

of cropland and woodland eventually resulted in an increase

in surface runoff and an increase in the total water resources,

whereas the increase in the area of impervious surface

negatively influences water infiltration.

No significant change in water resources was observed between

1990 and 2000 (Scenario B to Scenario C). A decline in water

FIGURE 2
Scenarios and conditions considered for analysis.

TABLE 2 Periods of land use and meteorological data considered in
the scenarios.

Scenario Year

Land use data Meteorological data

A 1980 1970–2020

B 1990 1970–2020

C 2000 1970–2020

D 2010 1970–2020

E 2020 1970–2020

F 2020 1971–1980

G 2020 2011–2020

H 1980 1971–1980
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resources was observed in all sub-basins, but the decrease was small,

with an average change of 15.01%. Although the amount of land used

for construction has increased in some sub-basins, the area of forest

land has also increased. Moreover, the increase in forested land is

more notable than the increase in land used for construction,

reducing the flow of water.

The change in water resources in each sub-basin from

2000 to 2010 (Scenarios C to D) was essentially the same as

FIGURE 3
Under (A–E) scenarios, comparison of the soil and water assessment tool (SWAT) models simulations results to observed data for the Chaoan
station over the calibration (1981–1995) and validation periods (1996–2010) in the Hanjiang River Basin, China (expressed as 95% prediction
uncertainty band).
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that from 1990 to 2000 (Scenarios B to C), although with a

comparatively large reduction. The area of forest land

increased in the downstream western sub-basin and the

area of mixed wetlands increased in the upstream eastern

sub-basin, with relatively considerable water resources losses

in these areas.

Water resources increased in all sub-basins from 2010 to

2020 (Scenarios D to E), but not significantly. It increased

considerably in individual sub-basins owing to the significant

expansion in built-up land area in this region. In these

scenarios, urbanization altered the spatial

distribution of water while increasing water resources in

all sub-basins.

pRelative change rate � W2 −W1
W1

× 100%

FIGURE 4
Water resources in the Hanjiang River Basin in different human activity scenarios. The impacts were assessed with relative change rate.
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In this equation, W1 and W2 are the water resources in the

previous and latter period respectively.

4.3 Impact of climate change

According to variations in annual average precipitation and

annual average temperature throughout the basin and in each

sub-basin from 1970 to 2020, temperature continuously

increased every year, while precipitation exhibited significant

temporal and spatial variability (Figure 5). After analyzing

changes in water resources in the basin under climate change

scenarios, changes in water resources were found to be

concentrated in the midstream and downstream areas, as well

as the lower reaches (Figure 6). Water resources increased

significantly in the midstream and downstream areas of the

sub-basin, with an average rate of change of approximately

20%. In contrast water resources decreased in the eastern half

of the downstream sub-basin, with an average rate of change of

approximately 18%. These variabilities are mostly attributable to

changes in precipitation and temperature. Temperature

exhibited a continuous increase on a basin-wide scale, while

precipitation in the middle and upper reaches increased and

subsequently decreased, as a result of which water resources

FIGURE 5
Climate change at meteorological stations in the Hanjiang River basin from 1970 to 2020.
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increased in some of the midstream sub-basins. From 1970 to

2020, the eastern sub-basin of the lower reaches experienced a

decline in water resources due to a decrease in precipitation and

an increase in temperature. On this basis, both temperature and

precipitation can be ascertained to influence the spatial and

temporal distribution of water resources in the Hanjiang River

Basin. Specifically, temperature exhibited a rising trend from

1970 to 2020, whereas precipitation exhibited variable increase

with uneven spatial distribution. Moreover, precipitation widely

varied among sub-basins, which may lead to increased

differences in the spatial and temporal distribution of water

resources.

pRelative change rate � W2 −W1
W1

× 100%

In this equation, W1 and W2 are the water resources in the

previous and latter period respectively.

4.4 Impact of land use change and climate
change

The total water resources in the basin decreased by

8.92 million m3 as a result of human activities and climate

change, but total evapotranspiration increased by 9.09 million

m3. According to the water balance formula, the overall change in

total water resources and total evapotranspiration in the

Hanjiang River Basin were almost equivalent. According to

water change rate statistics for each sub-basin between

1980 and 2020, water resources exhibited a rising trend in

31 sub-basins, accounting for 65% of the entire basin, and it

exhibited a declining trend in 16 sub-basins, accounting for 35%.

The rates of change of water resources in each sub-basin from

1980 to 2020 are compared in Figure 7. The figure reveals that the

spatial distribution of water resources in the Hanjiang River

Basin has dramatically changed over the years. Water resources

dramatically changed in the middle and upper reaches of the

basin, leading to considerable increases in overall water

resources, with an average rate of change of more than 16%.

Water resources dramatically increased in most of the central

sub-basins, with some sub-basins experiencing a rate of change of

more than 30%. Human activities changed the land use type

between 1980 and 2020, as reflected by the following changes.

With the increase in the area of building land, surface water

infiltration was decreased and the water resources increased. The

decrease in water resources in the southern sub-basin was more

noticeable, with an average rate of change of more than 15%.

According to the above finding, this decrease in water resources is

primarily attributable to climate change, as the temperature of

the region continuously increased from 1980 to 2020, whereas

precipitation decreased.

Analyzing the changes in the basin’s total water resources

under the combined change scenario reveals a decline in the

basin’s total water resources, which implies that the degree of the

FIGURE 6
Climate change in the Hanjiang River Basin and changes in water resources in the sub-basins under the influence of climate change. The
impacts were assessed with relative change rate.

Frontiers in Environmental Science frontiersin.org10

Li et al. 10.3389/fenvs.2022.968693

174

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.968693


influence of climatic conditions on water resource changes may

be greater than that caused by changes in land use. Additionally,

each sub-basin’s water resources are roughly comparable to those

in each sub-basin in a scenario of climate change, suggesting that

the climate may have been the primary driver of water resource

evolution in the Hanjiang River basin.

pRelative change rate � W2 −W1
W1

× 100%

In this equation, W1 and W2 are the water resources in the

previous and latter period respectively.

5 Discussion

Taking theHanjiang River Basin as the research object, this study

investigated the spatial and temporal distribution characteristics of

water resources under changing conditions, and quantitatively

analyzed the influence of different conditions on water resources.

This study fills a gap in existing studies and provides a theoretical

basis for the planning and management of water resources in the

Hanjiang River Basin. Two main findings can be deduced from the

results: first, anthropogenic land use change has significantly altered

the geographical and temporal distribution patterns of water

resources; second, the temporal variability of water resources is

more prominent with climate change, and the evolution

characteristics of water resources under climate change are more

consistent with those under the combined influence of both land use

change and climate change.

Changes in land use type driven by human activities were found

to directly alter the geographical and temporal distribution of water

resources in the Hanjiang River Basin. Between 1980 and 2020, the

regional and temporal distribution of water resources in theHanjiang

River Basin changed dramatically, but the overall change in the

amount of water resources was very small. Changes in land use can

affect water production by altering hydrological processes such as

evapotranspiration and soil moisture dynamics (Sterling et al., 2013;

Anand et al., 2018; Zhang et al., 2018). The land cover pattern within

the Hanjiang River Basin has changed dramatically with the

development of the social economy since the reform and opening

up of China starting from 1978 (Zhang, 2007). The area of

construction land within the basin increased significantly from

1980 to 2020, with an average change rate of more than 200%.

The impervious ground of construction land to some extent reduces

the production sink time and increases the flood peak, leading to an

increase in regional water production (Miller et al., 2014; Strohbach

et al., 2019). It is noteworthy that forest land is the primary land use

type in the Hanjiang River Basin (Zhang, 2007). Changes in the

extent of forest land are also important to the development of water

resources in the basin, and the loss of woodland area negatively

influences the processes of vegetation retention, lateral flow, and

evapotranspiration, resulting in an increase in runoff (Brown et al.,

2005; Foley et al., 2005; Sajikumar and Remya, 2015). Consequently,

the spatial distribution pattern ofwater resources within theHanjiang

River Basin was altered. Therefore, the major reasons for the change

in the spatial and temporal distribution of water resources are the

growth in building land and the reduction in forest land caused by

human activities.

FIGURE 7
Changes in water resource at the sub-basin scale under the influence of combined conditions.
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Regarding the evolution ofwater resources under climate change,

changes in climatic conditions from 1970 to 2020 induced significant

temporal variability of water resources in the Hanjiang River Basin.

In addition, the characteristics of changes in water resources were

similar to those under combined conditions. Climate change

(i.e., rising temperatures and changing rainfall patterns) is

anticipated to have a major influence on the hydrological cycle by

altering the spatial and temporal distribution of water cycle elements

such as precipitation, evaporation, runoff, and soil moisture, which

are predicted to affect the reallocation of water resources (Wu et al.,

2012; Wang et al., 2013; Zang and Liu, 2013). Precipitation in the

Hanjiang River Basin fluctuated downward from 1970 to 2020 while

temperature continuously increased, resulting in increased

evapotranspiration (Li and Fang, 2021). Consequently, the average

annual surface runoff, baseflow, groundwater recharge, and thus total

water quantity in the basin decreased. Furthermore, the

characteristics of the changes in water volume varied with climate

change in each sub-basin from 1970 to 2020, and the changes in

water volume were more significant in sub-basins with more

fluctuating climatic conditions, indicating that climate change is

the main driver of natural temporal changes in the total water

volume and water distribution in the basin. Furthermore, changes

in the water volume in each sub-basin under climate change were

similar to those under combined conditions, indicating that climate

change is currently the most influential factor controlling the spatial

and temporal evolution of water resources in the Hanjiang River

Basin.

Compared to previous research findings, the current study

presents similar but distinct findings. From a common point of

view, climate change affects the evolution of water resources over

time, and the effects of climate change are stronger than that of land

use (Hagemann et al., 2013; Anand et al., 2018; Shrestha et al., 2018;

Ross and Randhir, 2022). However, because anthropogenic land use

change does not always imply a change in total water resources but

rather changes in the distribution pattern of water resources, its

impact is more visible at the basin scale (Zang et al., 2015; Anand

et al., 2018; Ross and Randhir, 2022). In terms of various factors,

some scholars have explored future climate change trends and their

impact on water resources using climate change models and

concluded that water resources in southern China will decrease

significantly (Hagemann et al., 2013; Ljungqvist et al., 2016). In

contrast, the results of this study suggest that the decreasing trend of

future water resources in the Hanjiang River Basin is not significant.

The difference between the findings of this study and previous studies

can be attributed to the difference in the approaches employed. In

this study, the evolution of water resources under climate change

conditions was investigated with the scenario setting approach, and

because the number of scenarios established is limited, the difference

in the time scales of the climate change scenarios might lead to

varying results.

We provide the following recommendations in light of the

findings of this research and the situation of the water resources

in the Hanjiang River Basin. First, strengthen restrictions on the use

of water resources, such as strengthening oversight of water resources

of crucial sub basins, and severely limit activities that have a negative

impact on water resources. Second, we should standardize water

consumption and promote water conservation at the source in

important sectors of the economy, including agriculture and

industry. Third, improve the functional control and allocation of

water resources, as well as the management of water intake licenses

and themanagement of planned and quota water consumption; Stop

illegal groundwater exploitation and strengthen groundwater

management and protection. The above ideas enable the

sustainable expansion of the economy, society, and ecological

environment by following the law of change to the management

of water resources in a scientific and efficient manner.

Although the spatiotemporal evolution of water resources was

comprehensively analyzed, some limitations still remain and they

need to be further investigated. First, there are uncertainties in the

simulation of the hydrologicalmodel (SWAT). In this study,monthly

runoff data from the Chaoan station covering 1981–2010 were used

to calibrate and validate the model, and the spatial location of the

hydrological station will affect the model simulation performance.

Second, the climate change scenarios and integrated scenarios in this

study are relatively simple. Therefore, more climate change scenarios

are required to analyze the specific impact mechanisms of climate

change. Third, only a few indicators were considered to examine land

use change induced by human activities. Moreover, the influence

mechanismof each land use type on the evolution ofwater resource is

still unknown. To clarify the influence mechanism of each land use

type on water resources, subsequent studies should consider multiple

indicators to evaluate land use change. Fourth, other factors such as

topography, geochemistry, and the dynamic evolution of species

communities may also have an impact on how watershed water

resources evolve, making it possible to conduct a more

comprehensive study of this evolution in the future based on the

aforementioned aspects.

6 Conclusion

In this study, the SWAT model was calibrated and validated

using monthly runoff data covering 1969–2020 from the Chaoan

hydrological station in the Hanjiang River Basin, and eight types of

scenarios were set up to quantitatively analyze the influence of

anthropogenic land use change and climate change on the

regional and temporal evolution of water supply in the Hanjiang

River. From the results, the following conclusions can be drawn.

Under the influence of human activities, the distribution of

water resources in the Hanjiang River Basin exhibited spatial

heterogeneity between 1980 and 2020, which is mostly expressed

in the varied evolution of water resource among sub-basins.

Rapid development in the basin has had an impact on the water

cycle, aggravating disparities in water distribution across the

basin. Changes in land use type due to human activities bring

about changes in hydrological processes within the basin, thus
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changing the spatial and temporal distribution of water

resources. These results suggest that land use changes are the

primary factor controlling the spatial evolution of water

resources.

Under the climate pattern of continuous rise in temperature and

fluctuating decline in precipitation from 1970 to 2020, hydrological

processes and elements exhibited various changes, which in turn

reflect the influence of temperature and precipitation on water

resources. These changes indicate the temporal variability of the

evolution of water resources in the Hanjiang River Basin.

The total water resources in the Hanjiang River Basin

decreased by 8.92 million m³ under the combined conditions

(i.e., land use change and climate change), and the changes in

water volume varied among sub-basins. Nevertheless, the

changes in water volume caused by climate change were more

consistent with the combined conditions, indicating that climate

change is the main driver of the natural evolution of water

resources in the Hanjiang River Basin.

The findings of this study may provide scientific guidance for

determining the spatial and temporal distribution of water

resources and hydrological processes at a basin scale in basins

across the world with similar natural characteristics. The findings

can also serve as a reference for investigating the spatial and

temporal evolution of water resources in basins under changing

conditions. The findings have potential applicability in integrated

planning and efficient utilization of water resource in basins with

similar conditions around the world, including southern China.
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Does rural livelihood change?
Household capital, climate
shocks and farm entry-exit
decisions in rural Pakistan
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Agriculture is a primary source of livelihoods in developing countries. The

process of entry and exit of farming activities continues to play an important

role inmaintaining competition in agriculture and allocating resources between

agriculture and other sectors. However, climate changes and other economic

and social shocks have been severely affecting farmers’ livelihoods. This article

examines rural household livelihood transition in the context of farm entry and

exit decisions in rural Pakistan. Using 1867 rural household survey data, we

brought insights into how livelihood assets, climate shocks, climate investment

and locational characteristics affect their farm entry and exit decisions. The

results indicate that the proportion of farm entry (24%) was higher than that of

farm exit (15%). The major factors were crop inputs using as credit with a huge

markup, crop inputs sold by farmers on net cash in financial crisis, climate

shocks and poor climate investment that contributed to farm exit. They were

household head characteristics, land ownership (family farm), and livestock

ownership that increased the likelihood of farm entry decisions. Farm exit

decisions were significantly and positively associated with household

migration status, irrigation water shortage, off-farm income, crop input used

as credit, crop diseases, climate shocks and lack of local government role in

sharing climate knowledge. Furthermore, Propensity Score Matching (PSM)

results found that the entry decision significantly decreases household

income, while the exit decision significantly increases household income

and food security status. These findings provide insights into farm entry and

exit for those who are planning livelihood transition, and offer

recommendations on how to overcome the constraints faced by farming

businesses, agricultural sustainability, self-sufficiency and food security

during the transition nationally and internationally.

KEYWORDS

livelihood assets, farm entry, farm exit, livelihoods transition, off-farm work, on-farm
work, farmer wellbeing

OPEN ACCESS

EDITED BY

Fei Tian,
China Agricultural University, China

REVIEWED BY

Subash Surendran Padmaja,
National Institute for Agricultural
Economics and Policy Research (NIAP),
India
Keshav Lall Maharjan,
Hiroshima University, Japan

*CORRESPONDENCE

Hengyun Ma,
h.y.ma@163.com

SPECIALTY SECTION

This article was submitted to
Environmental Economics and
Management,
a section of the journal
Frontiers in Environmental Science

RECEIVED 18 January 2022
ACCEPTED 18 November 2022
PUBLISHED 05 January 2023

CITATION

Ahmad MI, Oxley L, Ma H and Liu R
(2023), Does rural livelihood change?
Household capital, climate shocks and
farm entry-exit decisions in
rural Pakistan.
Front. Environ. Sci. 10:857082.
doi: 10.3389/fenvs.2022.857082

COPYRIGHT

© 2023 Ahmad, Oxley, Ma and Liu. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 05 January 2023
DOI 10.3389/fenvs.2022.857082

179

https://www.frontiersin.org/articles/10.3389/fenvs.2022.857082/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.857082/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.857082/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.857082/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.857082&domain=pdf&date_stamp=2023-01-05
mailto:h.y.ma@163.com
https://doi.org/10.3389/fenvs.2022.857082
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.857082


1 Introduction

Farm entry and exit are a process of livelihood diversification

or transition in the agricultural sector, which contributes to

global competitiveness of agriculture and efficient resources

allocation between agriculture and other sectors in the

economy (Binswanger-Mkhize, 2013). More than 2.5 billion

out of the three billion rural population deriving their

livelihoods from agriculture (FAO, 2021). However, the

dwindling size of agricultural land, increasing population, low

productivity and hostile agro-ecological factors often result in

extreme income variability in agriculture. In response, rural

households often use farm entry and exit to diversify their

livelihood activities and smooth income variability. Off-farm

livelihood opportunities in rural areas often play an important

role in reducing food insecurity (Barrett et al., 2001). However,

farm exit in the form of shifting from on-farm to off-farm

activities does not necessarily create positive outcomes in

terms of either reducing poverty or increasing incomes,

particularly in developing agrarian countries. In some

circumstances, this shift seems to have increased poverty

(Imai et al., 2014).

Theoretically, structural transformation in the economy is

driving on-farm labor into the off-farm sector for pursing a more

sustainable livelihood. Some farming households exit farm and

move to other sectors, as they consider agriculture a low

productive and highly risky occupation (Haggblade et al.,

2010; Hussain, 2014). Farm exit to off-farm sectors has been

extensively investigated (Kimhi and Bollman, 1999; Pietola et al.,

2002; Glauben et al., 2006; World Bank, 2007; Cai and Wang,

2010; Knight et al., 2011; Wang et al., 2011; Bhandari, 2013;

Ahmad et al., 2020). In contrast, the shift from off-farm to on-

farm as new farm entry has not been investigated yet in the

context of agricultural-based economies including Pakistan. In

such cases, promoting agricultural activities remains a priority in

order to achieve the Millennium Development Goal (MDG),

which is to reduce poverty and hunger, to sustain livelihoods by

increasing new and well educated farmers and by stop farm exits

as well (World Bank, 2008). Adjustments to an agricultural

structure could also attract and encourage more people to

enter farming and pursue farming either as a main occupation

or an additional source of income (Mishra and El-Osta, 2016). In

addition, the emphasis of farmers’ rights for self-sufficiency in

food by growing their own food can encourage former farmers to

return to farming (Agarwal and Agrawal, 2017).

Pakistan is heavily dependent on agricultural production

which contributes 24% to its GDP (Pakistan Bureau of

Statistics, 2019). Unfortunately, its agricultural system fails to

maintain its growth due to serious challenges such as water

shortage, climatic change, rising input prices, limited policy

incentives for farming and low trust in government, making

farmers reduce their cultivated area and worsen the country’s

overall agricultural productivity (Pakistan Bureau of Statistics,

2018). Following the 9/11 event in U.S. in 2001, Pakistan has

fought a long war of 19 years against terrorism as an ally of the

US, by closing doors to foreign investments. Since then, the farm

sector has been in its recession. Pakistan’s agriculture sector

started to decrease in sizes since 2001 due to emerging water

shortages, climatic changes and natural disastrous events (floods,

heavy rain and drought), as well as high input prices, low output

prices, which reduced the earnings of both farming and non-

farming communities, and increased the unemployment rate in

the country (State Bank of Pakistan, 2015). More importantly, the

challenges mentioned above are causing farmers to exit from

farming. For example, the agricultural sector has experienced an

obvious decline at both the absolute and relative levels in farm

employment percentage, from 45 to 38.5% over the last decade

(Pakistan Bureau of Statistics, 2018). It is thus of importance to

know why farmers exit agriculture and how their livelihoods

change after exit (Ahmad et al., 2020).

This study aims to firstly close a significant research gap by

identifying the factors driving farm entry and exit in Pakistan.

Secondly, this study further investigates the impact of farm entry

and exit on households’ wellbeing in terms of total household

income, food security status and ability to save for an emergency

funds. Thirdly, this study also aims to identify the beginner farmers,

who are they, and why did they enter into farming? To the best of

our knowledge, these can be thefirst empirical work to examine both

farm entry and exit decisions for rural households in Pakistan.

To achieve the goals above, this study is organized as follows:

The next section provides a comprehensive literature review,

followed by introducing farmers’ livelihood options in Pakistan.

Section 4 provides a conceptual framework, followed by

introducing our methods and data. Section 6 provides

estimated results and analyses, followed by a balance test and

sensitive analyses. The last section concludes.

2 Literature review

Over the past century, agriculture sector has transformed

from a labor-intensive to a capital-intensive industry. The shift

has allowed people to engage in secondary and tertiary sectors

and to relocate to non-farm regions. As a result, farming workers

have fallen significantly (Lobao and Meyer, 2001; Gale 2003;

Conkin, 2008; Ahearn and Newton, 2009). For example, Gale

(2003) noted that most farm exits are voluntary, retiring, passing

management to the next-generation or leaving farming due to

poor health and death in western countries. The family farm is

viewed as the backbone of rural communities and the decline of

farm number raises questions with regard to whether these

communities can sustain themselves. Although

intergenerational family transfer remains the dominant

mechanism for farm succession, in most western European

countries and the United States, the number of family farm

transfers was decreasing (Gale, 2003; Calus et al., 2008).
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For the new entry farm, there could be some barriers for the

new farmers. For example, the studies consistently identify access

to affordable land as the greatest barrier to entry to agriculture

(Ackoff et al., 2017; Frost, 2017). Many beginning farmers said

that they lacked the means to employ the number of skilled farm

workers necessary to maintain and grow farm operations (Ackoff

et al., 2017). Climate change could be the key issue causing an

increase in unpredictable extreme weather events; increases in

drought and flooding events threaten to destroy crops and reduce

yields and most of the farmers have experienced the influence of

climate changes (Ackoff et al., 2017). Therefore, many small- and

mid-size farm operators require off-farm income to make ends

meet (Gillespie and Johnson, 2010). In general, beginning

farmers face steep start-up costs and barriers to accessing

capital, land, and credit (Ahearn, 2011; Lusher Shute, 2011;

Calo, 2018).

Farming is characterized by an ageing population with a

reduced rate of entry into farming by younger farmers and a

reduced rate of retirement by older farmers (ADAS, 2004).

The farming industry has failed to attract “new blood” into

the industry, partly due to the poor rewards and partly due to

entry barriers such as high start-up costs and a shortage of

available land (ADAS, 2004); something that is exacerbated

by restructuring processes that are leading to fewer, larger

farms within both the private and county estates (Whitehead

and Millard, 2000). At the same time, a lack of suitable

successors and taxation issues have been identified as

making farmers reluctant to retire (Williams and

Farrington, 2006). This is the result of a number of entry-

exit challenges such as increasing capital requirements, low

expected rates of return and higher off-farm career

opportunities (Gale, 2003; Williams and Farrington, 2006).

Several studies from developed countries have highlighted

these adjustment challenges facing the farming industry

(Caskie et al., 2002; Errington and Lobley, 2002; ADAS,

2004; Calus et al., 2008).

Concerns about the sustainability of an ageing farming

population have brought interest in so called entry-exit

issues in policy circles. Policy interventions to date have

offered limited scope in stimulating farm transfer, however,

the increase in unconventional tenures which include

partnerships, share farming and contract farming, would

appear to offer new opportunities for those wishing to enter

or leave farming (Ingram and Kirwan, 2011). Bruce (2019)

identified a new pathway into alternative agriculture that

returning farmers come from farm families, but left

agriculture to pursue higher education or a non-farm career

and then re-entered agriculture later in life through Alternative

Food Networks (AFNs). However, social movements

promoting alternative models of agriculture have created

organizations to support a new generation of farmers, and

generated AFNs that provide new training opportunities and

markets for aspiring farmers.

3 Farmers’ livelihood options in
Pakistan

As most of agriculture farms in Pakistan are small and not

well educated, thus they do not have better off-farm jobs in the

country except daily paid labor. For example, a study from

Khyber Pakhtunkhwa (KPK) province investigated the

determinants of the off-farm employment of the small farm

which showed that most of small farms (90%) were engaged in

off-farm jobs along with agricultural activities (Ali et al., 2014).

The nature of their job was in daily paid labor, part time

employment, and different off-farm businesses. The effects of

farm underemployment, working age group size (age of the

farmer), income from other sources, and education were

positive on the off-farm employment (Ali et al., 2014). For

example, Rizwan et al. (2017) conducted a study in province

Punjab, Pakistan and found that about 66% farmers were

involved with off-farm activities along with on-farm activities.

The results indicated that education has significant influence and

stimulate for engagement in off-farm employment. However,

presence of younger population in households and land renting

opportunity stimulate migration in other cities and countries.

Dependency ratio and large family size were the driving factors

for participation in off-farm labour activities.

Though, off-farm activities as part-time are also being

performed in Gilgit-Baltistan, Pakistan. In this case, farmer

characteristics (e.g. farmer age, gender and education), farm

characteristics (e.g., farm size, specialization in horticulture,

etc.) and agricultural income (Shahzad et al., 2021). Tahir

et al. (2012) investigated the factors contributing to off-farm

employment in North West Pakistan. They found that farm size,

family size, farm underemployment, education, and income from

other sources were the main factors determining off-farm

employment. It was also observed that farmers of the

comparatively developed areas devote more time to off-farm

employment. The study revealed that most of the farmers were

engaged in daily paid labor. Overall there is a gradual shift from

farm to off-farm employment which is resisted by the

underdeveloped means of transport and communication,

education and lack of basic infrastructure.

Few studies that investigated the factors that affect

occupational choices of populations living in rural areas of

Pakistan. Jan et al. (2012) revealed that the likelihood to

participate in non-farm informal sector increases for

household having relatively younger head with no education.

Household size positively and significantly related to all the

occupational groups while additional working members in a

household reduces the odds to engage in farming by about

67% relative to non-farm informal sector. Similarly, per capita

income also plays a significant role in pursuing occupations other

than informal activities. In addition, to know the influence of

migration on farm exit, Abbasi and Kim (2018) investigated that

agriculture is not the primary source of income and 32%
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agriculture labor force migrated andmigration is the main reason

for declining labor force and increasing shifted to off farm

activities.

However, the youth (aged between 15 and 29 years) in

Pakistan seems less interested in performing agriculture

activities. They regarded the agriculture sector as non-

profitable, hence they do not see them joining the agriculture

sector due to high cost of production, crashed marketing system,

absence of farmer-friendly policies, environmental issues and

lack of support from government in agriculture sector (Ahmad

et al., 2020; Aftab et al., 2021). Thus, most of farms are involved

in non-farm income generation activities in southern Punjab,

Pakistan. The majority of the farmers offered labor for off-farm

work followed by self-employment ventures. The major reason to

pursue non-farm work includes low income from agriculture,

mitigating risks associated with farming. A range of

socioeconomic and infrastructure-related variables are

associated with the decision to participate in specific off-farm

activity, such as age, education, family size, farm income,

dependency burden, farming experience, and distance to the

main city.

In case of Pakistan, there has been a steady shift from

subsistence farming to cash crops and fruit production, which

is particularly noticeable in the accessible parts of the region that

are located closer to urban centers. In addition, the rising

proportion of household income from non-farm activities

(increasing from 43% in 1994 to 63% in 2005 and more than

70% in 2020 (Shahzad et al., 2021), plays an important role in the

transformation of the rural economy. Similarly, the increased

labor outmigration towards the services sector in down-country

Pakistan stemming from the improved formal education systems

has increased the share of non-farm employment plays an

important role in the transformation of the rural economy.

Similarly, the increased labor outmigration towards the

services sector in down-country Pakistan stemming from the

improved formal education systems has increased the share of

non-farm employment.

Under these circumstances, the maintenance of farming

communities is largely under threat. The increased rate of

rural-to-urban migration (Gioli et al., 2014), particularly that

of younger people (Benz, 2016) and the rapid growth of the non-

farm sector (Gioli et al., 2014; Shahzad et al., 2021) have resulted

in decreased agricultural land-use and increased uncertainty

regarding farm continuation.

4 Conceptual framework

Studies on rural off-farm and on-farm activities consider

livelihood diversification and income stabilization (or risk

minimization) as the major motives for working outside of

agriculture (Rose, 2001; Haggblade et al., 2010). Livelihood

diversification is driven by “pull” factors (e.g., markets,

opportunities, infrastructural facilities and supportive

institutions) and “push” factors (e.g., various idiosyncratic

shocks such as floods, droughts, environmental degradation,

chronic rainfall deficit). Similarly, off-farm labor could shift

towards farming activities in case of unemployment, old age,

job insecurity and health issues (Mishra and El-Osta, 2016). Also,

farmers’ rights for self-sufficiency in food by growing their own

food can encourage former farmers to return to farming

(Agarwal and Agrawal, 2017). As a result, a large part of the

world’s labor force work in agriculture, not by choice, but due to

lack of alternatives (Cain, 1977; Kumar and Hotchkiss, 1988;

Chitrakar, 1990; Karan and Ishii, 1995; Filmer and Pritchett,

1997; Agarwal, 2014). It is important to understand households’

motives of diversifying beyond agriculture or moving away from

off-farm work. Therefore, we base our theoretical framework on

livelihood vulnerability as diversification/transition motive,

because it best serves the main objective of the study, which is

to investigate the determinants of households’ diversification

decisions1of farm entry and exit.

To better understand the Pakistani agriculture sector, we

classify the factors associated with “farm entry and exit” into the

following groups: 1) human capital referring to characteristics of

household head and household; 2) natural capital including land,

livestock and irrigation systems; 3) economic capital comprising

of loans or credit, off-farm employment, and off-farm income

and sources; 4) climate shocks, including natural disasters and

severe crop diseases; 5) climate change investment2 referring to

access to micro finance institutions (MFIs), all weather road and

climate knowledge (Eifert and Ramachandran, 2004); and 6)

locational characteristics such as home remoteness and the extent

of commercialization and urbanization.

It is hypothesized that a household can involve in one of the

two livelihood transition scenarios: 1) exit farming and shift to

off-farm activities; or 2) enter farming and shift to on-farm

activities. Each household is assumed to make a rational choice,

which is when income generated from the new sector is higher

than that from the last. Households that intends to enter farming

face barrier such as capital investment, climate challenges,

farming experience, knowledge and skills and other household

constraints. Similarly, households that want to exit farming could

face barriers in off-farm employment, age, skilled labor,

education, family labor and other household constraints. We

assume that a farming household i has fixed capital and labor

1 Even if the motive of the household is higher income, climate shocks
affecting agricultural income may still influence its expected earnings,
and hence the diversification decision.

2 Climate change investment is defined as different characteristics
specific to a certain location that could act as incentives or
disincentives for entry or exit such as availability/unavailability of
financial services, infrastructure, governance and regulations etc.
(Eifert and Ramachandran, 2004).
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endowments, assigned among different activities in agriculture,

which is expressed in Equation One:

Ii � Et∑T

τ�1β
τ−1πi IP, OP, LCi,φt, εi( ) (1)

Where Ii is the income of household i, Et is expectation operator

providing information at time t, β is the subjective discount

factor, T is the number of periods, πi isthe profit generated for

household i which is a function of input price IP, output price

OP, fixed labor and capital endowments LCi, a vector of

economic shocks that could affect household income and

livelihood diversification φt, and εi includes unobserved

characteristics that could affect income. Suppose a household

is generating income from agricultural activities, Equation One is

adapted to Equation Two with subscript A indicating agriculture:

IAi � Et∑T

τ�1β
τ−1πA,i IPA, OPA, LCi,φt, εi( ) (2)

For farm entry, household income is denoted by (IBi) and
expressed in Equation Three:

IBi � −Ci,t Ni, Ii, Hi,( ) + Et∑T

τ�1β
τ−1πBi

IPB, Ni, Ii( ), OPB Ni, Ii( ), LCB,i, μi( ) (3)

Where Ci,t is farm entry cost, which could be affected by

investment Ii such as climate, capital and farm machinery

assets and other inputs. Furthermore, other factors like

availability of financial services, government policies, taxes

and infrastructure could reduce or increase the entrance

barrier. These characteristics could also capture input-output

markets at specific locations and availability of micro finance

institutions (MFIs) and farm advisory services. Furthermore,

farm entry could also be affected by the characteristics of

household head (Hi) such as age, education, migration status

and location (Ni). Input prices (IPB) and output prices (OPB)
are part of the entry function into farming, which could be

affected by location factors that may be associated with lower

than market prices for crop outputs3 and μi isunobserved

characteristics.

Households assign their total amount of fixed labor and

capital for different activities, which can be expressed as:

LCi � LCAi + LCBi (4)

As we mentioned above, household could diversify income

strategy through farm entry if on-farm income is greater than off-

farm income, as shown in Eq. 6.

IAi + IBi > Ii (5)

OR

IBi > Ii − IAi (6)

Following Eq. 6, the probability of diversifying to farming can

be written as:

prob Bi( ) � prob(−Cit Ni, Ii, Hi,( ) + Et∑T

τ�1β
τ−1πBi IPB, Ni, Ii( ),(

OPB Ni, Ii( ), LCBi, μi))>prob(Et∑T

τ�1β
τ−1πi

IP, OP, LCi,φt, εi( ) − πAi IPA, OPB, LCi,φt, εi( )) (7)

As input and output prices do not change whether the

household works only in agriculture or diversity to off-farm

work. Therefore, we do not expect them to play a significant role

in affecting household’s choice except when the actual level of

profit is estimated. Hence, we expect that household labor and

capital endowments, which are fixed, may play a vital role in

decisions on farm entry and exit.

If a household enters into farming, dBi is defined as 1, and

0 if a household stays in off-farm activities (see

Supplementary Appendix SA1). Stochastic factors εi and

μi are assumed to be identically and independently

distributed, and then the probability of farm entry is

given as:

f Hi,Ni, Ii,φt( ) if dBi � 1
0 otherwise

{ (8)

Further, once households enter into farming, they could

face two choices: either continue or exit farming. Households

could face barriers when existing farming, such as investment

made on non-transferable fixed assets, land rent, farm

machinery and long run investment. Whereas, incentives at

household level such as high grain prices could encourage

farm entry, particularly for those who enter to produce

domestic grain food. The income generated from

agriculture will then depend on the trade-off between the

cost of farm exit and the profit earned from continuing

farming. Moreover, households’ earnings depend upon

farming inputs and output prices which are determinants

of farm entry together with other factors such as land

status, yields, etc. Given these, if the present value of on-

farm income is less than off-farm income, household will

decide to exit farming, which can be expressed as:

IEBi < I
E
i − IEAi

(9)

where IEi is income of an incumbent household i. Likewise,

the probability of farm exit is a function of household

specific characteristics Hi, farming capital factors FCi,

fixed inputs of labor and capital LCi, locational specific

factors (Ni, Ii) and climate shocks affecting agriculture

(φi).

3 Firstly, most of the farms in Pakistan are small and did not have access
to commercial markets. Therefore, they are dealt by commission
agents or middle men and they are offered a low price for their
output. Secondly, farmers who use crop inputs on credit incur a
heavy markup and are bounded to sell their crop outputs to input
dealers or lenders at a low price.
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5 Methods and data

5.1 The data

Data for this study is derived from the Pakistan Rural

Household Panel survey conducted in the Punjab, Sindh and

Khyber-Pakhtunkhwa (KPK) provinces of Pakistan in

2012–2014.

The survey was designed and supervised by International

Food Policy Research Institute (IFPRI) and was administered by

Innovative Development Strategies (IDS), Islamabad, Pakistan.

IDS served as the data collector and handled all of the survey

logistics, from enumerator training to the processing of the

completed questionnaires. This panel survey contains three

different rounds: Rounds 1, Round 1.5, and Round 2, which

identifies the status of household either continue or exit farming

and their climate change adaptation measure at farm level

(International Food Policy Research Institute, 2014;

International Food Policy Research Institute, 2015;

International Food Policy Research Institute, 2016;

International Food Policy Research Institute, 2017).

Additionally, one of author personally took part in data

collection when surveys were conducted in 2012 and 2014 in

all three rounds.

TABLE 1 Study provinces and sample size.

Province Number of
districts

Exit farming Continue farming Stay off-farm Enter into
farming

Total sample

Punjab 12 62 460 533 131 1,186

Sindh 5 60 216 136 60 472

KPK 2 14 113 47 35 209

Total 19 136 789 716 226 1867

FIGURE 1
Study districts and map of Pakistan.
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A total of 19 districts were surveyed across three

provinces: 12 from Punjab, 5 from Sindh and 2 from KPK

(Table 1; Figures 1,24). Within each district, 4 mouzas5 were

chosen as Primary Sampling Units (PSU) using an equal

probability systematic selection approach. The lists of

revenue villages/mouzas/dehs provided by the

1998 Population Census were used as the sampling frame.

The enumeration teams sectioned each mouza into

enumeration blocks according to the village map. Each

block consists of a maximum of 200 households.

Subsequently, one enumeration block was randomly chosen

from each mouza and households within a PSU were

considered as Secondary Sampling Units (SSU). Then

28 households were randomly selected from each block of a

maximum of 200 households. Finally, households (HHs) were

defined as, ‘a family or group of persons living in common

accommodation (family members living in the same building

or boundary wall), and cooking or sharing all their meals

together’. The respondents were the most knowledgeable

member and major decision maker in domestic affairs

within the household.

The survey includes various types of information on human

capital, natural capital, economic capital, locational

characteristics, as well as household demographic and

socioeconomic characteristics. We utilize the surveyed

household panel dataset (2012–2014) to identify farm entry

and exit of rural households as a whole. The first round

survey in 2012 includes additional household information for

the year 2010 and 2011. For example, the 2012 survey contains

information on employment of the households such as whether

they were working on-farm6 (farmer) or off-farm7 (not a farmer)

in year 2010 and 2011 as well as in 2012, respectively. The

2014 survey asked the same question for 2012, 2013 and 2014.

Out of the total 2090 surveyed households, 1,110 (53%)

were working off-farm, while the remaining 980 (47%) were

working on-farm in 2012. We then matched these11108

households with those in the 2014 survey to identify any

“new entrant”9 into farming. It is found that 226 (24%) off-

farm households in 2012 entered farming in 2014 and were

defined as “new entrants” (see Table 1; Figures 2, 3). We

matched 98010 households with the 2014 survey to identify any

“farm exit”. It is found that 136 (15%) households exited

farming in 2014, and were defined as “exit farming” (Figure 4).

FIGURE 2
Sampling of Households (HHs) and study process from the Pakistan Rural Household Panel Survey (PRHPS, 2012–2014).

4 Baluchistan province was not surveyed and skipped due to security
reasons. The sample excludes rural areas in Baluchistan and the
Federally Administered Tribal Areas because they were considered
unsafe for the enumeration.

5 In Pakistan, province subunit is district, then district subunit is Tehsil,
whereas Tehsil subunit is Union Council, and Union Council subunit is
Mouza, and Mouza subunit is village/dehs, village/dehs subunit is Basti/
Chak (groups of several households/families lived in and are identified
by their Basti/Chak).

6 Household head/individual(s) from a family who cultivated farmland,
despite the fact that any of family member worked at off−farm are
considered as on−farm households.

7 Household head individual(s) from a household/family who did not
cultivate farmland since 2010−2014 are considered as off−farm
households.

8 From 1,110 households, 168 observationswere dropped due tomissing
data and therefore 942 households remained in 2014.

9 “New entrants” into farming referred to households who did not
cultivate land and were working off−farm since 2010 but started
agricultural activities for the first time in 2014. Moreover, inheriting
a family farm is also considered as “new entrant”.

10 55 observations were dropped due to missing data and therefore
925 households remained in 2014.
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In addition, we tested for multicollinearity among the

explanatory variables using the Variance Inflation Factor

(VIF). If the maximum VIF value is above 10, there will be

econometrically problematic (Wooldridge, 2009; Bai et al., 2010).

In our test, the VIF is below 3.5 and therefore there is not found

multicollinearity.

5.2 Econometric approach

We used Probit model due to the dichotomous nature of both

dependent variables—farm exit and farm entry, whose

estimation equations are expressed in Eqs 10, 11, respectively.

prob exit( ) � γ1HHi + γ2HCi + γ3LCi+γ4NCi + γ5ECi + γ6ESi

+ γ7CIi + γ8LCi + γ9φt + ξ

(10)
prob entry( ) � θ1HHi + θ2HCi + θ3LCi

+ θ4NCi + θ5ECi + θ6ESi
+θ7CIi + θ8LCi + θ9φt + ] (11)

Where HHi is the indicator of household head

characteristics such as age, education and status of

immigration, HCi is household characteristics such as

fixed inputs of labor and capital and household size.

Household wealth is measured by building material of

house (concrete or mud) and grain shortage in the last

FIGURE 3
Household statuses based on entering and stay at off−farm and exiting and continuing farming.

FIGURE 4
Perceived main factors for entrance and exit into and from farming (percentage of households who responded accordingly.
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year. NCi indicates natural capital (e.g., land ownership,

access to canal irrigation, water shortage, water availability

for irrigation in Rabi and Kharif seasons11, actively working

Khal Panchayats system12and livestock ownership). ECi

indicates economic capital (e.g., owned and run off-farm

business, off-farm income, outstanding loans, crop inputs

used as credit and for sale in financial crisis). We also

estimated total household non-agricultural income (e.g.,

government transfers, remittances, salaries from off-farm

employment, wages, insurance and pensions). ESi indicates

climate shocks (e.g. abnormal temperature, droughts, crop

diseases, rainfall and floods). CIi indicates climate change

investment (e.g., distance from MFIs, climate relevant

knowledge provided by local government, and access to

commercial markets and all-weather road). LCi indicates

locational characteristics (e.g., access to nearby city and to

commercial markets, distance to off-farm source (factory/

industries) and district, access means to main commercial

market, and quality of village infrastructure) (Refer to

Supplementary Appendix SA1). γ s and θ s are the

corresponding vectors of parameters to be estimated, ξ

and ] are the error terms.

5.3 Impact of entry and exit on household
wellbeing

We measured wellbeing of a household by three major

indicators: total household income, index of food security

status, and ability of saving for an emergency fund. We

constructed an index of food security status for the year

2012, based on the PRHPS survey that collected

information on households’ experience of food shortage

caused by various climate shocks and illness or death of

household member(s) between 2012 and 2014. The index

ranges from zero to three, zero being no food shortage and

three being the highest level of food shortage. Households’

ability of saving for an emergency fund was coded as “1” when

they are able to raise Rs.200013 during an emergency and “0”

otherwise.

5.4 Propensity score matching

To evaluate the impact of farm exit and new entrance, we

apply the propensity score matching (PSM) method to control

for selection bias. An evaluation that failed to control for such

selection bias would conflate the effects of farm exit and new

entrance on outcomes with the effects of pre-existing differences

between farm exit and new entrance. When applying the PSM

method, we also test the sensitivity of estimates to potential

hidden biases. In theory, the impacts of a farm exit and new

entrance should be evaluated by estimating the average treatment

effect on the treated (ATT). Thus, we employed PSM to address

any self-selection bias of household in their entry/exit decision,

because the model matches households that share the same pre-

treatment observed socioeconomic characteristics (Heckman

et al., 1997; Ali and Peerlings, 2012).

Let Di ∈ 1, 0{ } be an indicator whether a household i has

received a treatment or not. The propensity score P(X) is defined
as the conditional probability of receiving a treatment given pre-

treatment characteristics as:

P X( ) ≡ prob Di � |X( ) � E Di |X( ) (12)
whereX denotes a vector of pre-treatment characteristics and E is the

expectation operator. The propensity score can be predictedwith either

a logit model under the assumption of a normal or logistic cumulative

distribution, respectively. Once the propensity scores are generated, the

treatment effect can then be calculated by selecting households that are

“nearest neighbor 1-to-1matchingmethodwith replacement” in terms

of their estimated propensity scores. The most common estimate of

treatment effects in the evaluation literature is the average treatment

effect on the treated (ATT). If the potential outcome of the treatment,

which is defined as household wellbeing previously, is denoted by

Yi(Di ), then the average treatment effect (ATT ) is given as:

ATT � E T |D � 1( ) � E Y1|D � 1( ) − E Y0|D � 1( ) (13)

Where E (Y1D � 1) is the expected outcome for those households

that have actually received a treatment, in this case those that have

entered into or exited from farming, and E (Y0|D � 1) is the

counterfactual for the treated, which estimates what the outcome

would be if those households that have in fact received a treatment

do not do so. An important assumption of PSM is the Conditional

Independence Assumption (CIA), which states that the set of pre-

treatment observable characteristics that are included in the

matching should determine both the probability of receiving a

treatment (entering into and exiting from farming) and the

outcome of interest (household wellbeing); that is

(Y0, Y1) ⊥ D|X, denoting the statistical independence of

(Y0, Y1), conditional on pre-treatment observable characteristics

X (Heckman et al., 1997). Given that the CIA holds, the PSM

estimate for the ATT can be written as:

ATTPSM � EP X|D�1( ) E Y1|D � 1, P X( )[ ] − Y0|D � 1, P X( )[ ]{ }
(14)

11 Pakistan has two major crop seasons: Kharif (broadly July to October)
and Rabi (broadly October to March/April).

12 Khal Panchayats or water users’ associations aremandated tomediate
water distribution conflicts, maintain watercourses, report on
tampering of outlets and shortage of water supply in the outlet to
minor or distributary−level farmer organizations, collect water
charges, and provide timely information about rotational running
of channels to the farmers.

13 Rs.2000/day or ($22/day) earning is a reasonable amount for
households to survive particularly in case of emergency such as
floods, droughts or any disaster occurring in the community.
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TABLE 2 Descriptive analysis and household characteristics comparison (mean and percentage).

Livelihood assets New entrance
(N = 226)

Stay at off
farm
(N = 716)

Left
farming
(N = 136)

Continue
farming
(N = 789)

Household head characteristics

Age (years) 46.42 46.15 44.26** 47.03

Education (years) 3.72 3.56 3.99 3.49

Immigrant (Yes = 1) 0.04 0.04 0.14** 0.07

Household characteristics

Family size (No.) 6.26 6.18 6.09*** 6.84

Number of working age individuals (16–64 years) 2.60 2.38 2.44 2.79

Number of working age children (6–15 years) 1.49* 1.46 1.43** 1.55

Number of elderly persons (>64 years) 0.26 0.20 0.13*** 0.28

Pucca (concrete) house (Yes = 1) 0.06* 0.03 0.01** 0.05

HHs faced shortage of grain food during a year (Yes = 1) 0.27* 0.21 0.31*** 0.15

Natural capital

Own land (Yes = 1) 0.13* 0.05 0.43*** 0.77

Livestock ownership (Yes = 1) 0.59** 0.50 0.71*** 0.87

Canal irrigation (Yes = 1) 0.82*** 0.70 0.60*** 0.74

Water (irrigation) shortage during the year (Yes = 1) 0.38*** 0.52 0.42 0.44

Khal Panchayats system exists (Yes = 1) 0.07*** 0.15 — —

Khal Panchayats system actively work (Yes = 1) 0.15*** 0.05 — —

Water availability in Rabi season (No. of weeks) — — 9.49** 11.18

Water availability in Kharif season (No. of weeks) — — 10.61*** 13.27

Economic capital

Household owned off-farm business (Yes = 1) 0.15 0.15 0.40 0.37

Household Off-farm income (>Rs. 300 k = 1) 0.27 0.23 0.02 0.01

Household total income (Rs.) 213,792 258,086.3 273,426.5 381,160.6

Outstanding loans (Yes = 1) 0.07** 0.12 0.12* 0.10

Crop inputs used as credit and paid markup (Yes = 1) — — 0.15* 0.11

Households sell crops inputs in financial crisis (Yes = 1) — — 0.59* 0.32

Climate shocks

Household affected by natural disasters every year (Yes = 1) 0.15 0.05 0.56*** 0.33

Household farms affected by natural disaster shocks for last 5 years
(Yes = 1)

— — 0.60*** 0.37

Household farms affected by uncontrolled crop diseases (Yes = 1) — — 0.90** 0.68

Climate investment

Distance to nearest from MFIs (Km) 19.93 18.75 14.27*** 17.87

Access to nearest all-weather road (Mins) 49.42 55.22 52.69*** 40.85

Local government helping in sharing climate change knowledge
(Yes = 1)

0.10 0.27 0.35* 0.02

Locational characteristics

Nearby city travelling time (minutes) 33.52 35.76 43.74*** 33.78

Nearby small commercial market distance (km) 15.05 16.14 20.55** 16.66

Distance to district headquarter (km) 49.20*** 43.34 33.76*** 42.05

Nearby main commercial market (Pacca_road = 1) 0.79 0.78 0.57 0.61

Poor village infrastructure (kacha road = 1) 0.17 0.17 0.71 0.70

Entry and Exit decisions across provinces

Punjab 0.14 0.57 0.07 0.50

Sindh 0.06 0.14 0.06 0.23

KPK 0.04 0.05 0.02 0.14

Overall 0.24 0.76 0.15 0.85

Notes: The significance differences between entrance and stay at off-farm, continuing and exiting farming were tested using a one-way ANOVA F-test or a chi-square as appropriate. ***, **,

and * are significant at 1%, 5%, and 10% level, respectively.
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To eliminate outliers that have very high and very low

propensity scores, the matching should be restricted to the

area of the common support in the sample, which can be

done by dropping the treatment observations at which the

propensity score density of the control observation is the

lowest (Sianesi, 2004). To be effective, matching should also

balance explanatory variables across the treated and non-treated

groups. A balancing test performed after the match can check the

quality of the match by assessing the extent to which differences

in explanatory characteristics between the treated and non-

treated groups have been eliminated.

6 Results and analyses

6.1 Descriptive statistics

Table 2 that the age of household heads exiting farming (44) is

significantly less than that of those staying farming (47). Household

migration status contributes significantly to farm exit (14% vs. 7%),

but insignificantly to farm entry. Households that have more family

members aged 6 to 15 are significantly more likely to enter farming

(1.49 vs. 1.46) and exit farming (1.43 vs. 1.55). This implies that

family laborers, particularly working-age youths and adults might

prefer to seek off-farm jobs. Similarly, those living in a pucca or

concrete house are significantly more likely to enter farming and

staying at off-farm (6% vs. 3%), as well to continue and exit farming

(5% vs. 1%). The proportion of households who faced a grain food

shortage during a year has a significant influence on the decision to

enter into farming (27% vs. 21%) and exit from farming (31% vs.

15%). Having a family farm or land ownership, is significantly more

important for entry decisions, and less important when it comes to

exit decisions (13% vs. 43%), respectively. This result is surprising for

exiting households with land ownership (family farm), and raises a

question about future of family farm in the country. However, in

case of farm exit despite land ownership the reasons may be

unavailability of successors within family or such farmers faced

consistent crop losses due to climate shocks and severe crop diseases,

lower output prices, and higher input prices, and therefore they

might decide to rent out their land and shift to off-farm activates.

Furthermore, the results depict that livestock ownership is also

contributing significantly for both entry and exit decisions (59% vs.

71%), respectively. Note that new entrant and households working

off-farm may still own livestock by sharing with friends/relatives or

landlords and animal feed is provided by owners of fodder, which is

a commonpractice in rural Pakistan. Alternatively, womenmay take

responsibility for the rearing of animals in rural Pakistan, and

undertake field work such as crop sowing, harvesting, and bring

herbs and grass as fodder for the animals (Ahmad and Ma, 2020b).

Access to irrigation canal and Khal Panchayat system plays a

significant role in entry decisions, whereas water shortage during

crop seasons play a significant role in exit decisions. Economic

capital in terms of outstanding loan, crop inputs used as credit and

sold by farmers on net cash in financial crisis significantly increase

farm exit (Ahmad and Ma, 2020b).

Turning to climate shocks, crops affected by natural disasters

and severe crop diseases play a significant role in exit decisions.

Furthermore, climate investments - the distance to MFIs and all-

weather roads—play a significant role in exit farming.

For locational characteristics, distances from off-farm source

location and home district are significantly contributing to both

entry and exit decisions. Additionally, travelling time to nearby

city and distance to commercial markets also significantly

contribute to farm entry and exit.

6.2 Household head characteristics

The Probit models were then used to estimate the probability of

farm entry and farm exit, respectively. Table 3 presents the marginal

effects from the probit regression for decisions on farm entry and

exit. In the exit model, migration status plays a significant role. Age

makes a significant difference when it comes to farm entry,

particularly in developed countries where farmers’ retirement

plans involve the recruitment of new and younger farmers

(Kimhi and Bollman, 1999; Pietola et al., 2002; Vare and

Heshmati, 2004; Glauben et al., 2006). Our results suggest that as

the age of the household head increases, households are more likely

to enter into farming. But age is insignificant in the exit model. This

result seems plausible as the elderly may move to the farming sector

when they become less productive with off-farm work due to aging

and declined health conditions.

6.3 Household characteristics

In the entry model, larger households are less likely to enter

into farming, mainly because such households have “surplus”

labor to generate sufficient off-farm income. It also found that the

households having more members in working age (16–64) are

more likely to enter into farming. This result suggests that the

presence of more adults overcome labor constraints and provide

more hands in fertilizing the crops, weeding, taking out infested

plants, and transplanting and harvesting. This result partly

supports Ahmad et al. (2020) who found that the significant

and positive relationship between working-age family member

and farm exit. Surprisingly, households experiencing food

shortage were more likely to exit from farming, which raises a

serious concern in relation to why they faced food shortage

despite growing their own grain. This seems to be contradictory

to the approach of the Millennium Development Goal (MDG)

that prioritizes farm activities as a means to reduce poverty and

hunger (World Bank, 2008). Possibly this is because these

households had to sell all their grain output to repay the

previous loans or experienced severe crop losses due to

climate shocks (Ahmad and Ma, 2020a).
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6.4 Natural capital

Access to capital as land ownership (family farm) increases the

probability of farm entry by 40%, and reduces the probability of farm

exit by 13%. Land ownership (family farms) are the most common

business model in small-scale agriculture (Davidova and Thomson,

2013). Consequently, land ownership plays an important role in

farming decisions. For example, in the case of access to credit or

agricultural loans, only landowners can benefit from these services

by using land as collateral. Households who owned land (family

farm) and access to canal source irrigation were less likely to exit

from farming with probabilities of 13% and 19%, respectively. As it

may be the reason that family farms and water availability make

farmers stay farming without extra cost of purchasing or hiring land

and pumping groundwater for irrigation.

Livestock ownership encourages households to stay farming or

enter into farming (as mixed-crop livestock production system).

Ownership of livestock increases and reduces the probability of farm

entry and farm exit by 5% and 7%, respectively. Mixed-crop

livestock production is an integral part of farming all over the

world including Pakistan, and is closely linked to livelihood

strategies as a major source of food and income (Gurung, 1987;

Herrero et al., 2010; Ahmad and Ma, 2020b). Households that own

livestock (such as buffalo, cattle, sheep, and goats etc.) were

significantly more likely to enter into farming and significantly

less likely to exit farming. In fact, approximately 35%–40% of the

TABLE 3 Marginal effects of probit regression for the probability of
entrance and exit into and from farming.

Livelihood assets Probability of
entrance

Probability of
exit

Household head characteristics

Age (years) 0.002* (0.001) 0.001 (0.001)

Education (years) 0.002 (0.003) 0.002 (0.002)

Immigrant (Yes = 1) −0.101 (0.068) 0.075* (0.039)

Household characteristics

Family size (No.) −0.019* (0.009) -0.012 (0.008)

Number of working age
individuals (16–64 years)

0.033** (0.013) 0.006 (0.011)

Number of working age children
(6–15 years)

0.020 (0.014) 0.002 (0.012)

Number of elderly persons
(>64 years)

0.045 (0.028) −0.032 (0.024)

Pucca (concrete) house (Yes = 1) 0.122* (0.067) −0.134* (0.074)

Household faced shortage of grain
food during a year (Yes = 1)

−0.008 (0.059) 0.055** (0.025)

Natural capital

Own land (Yes = 1) 0.409*** (0.081) −0.136*** (0.022)

Livestock ownership (Yes = 1) 0.049* (0.026) −0.074*** (0.025)

Canal water irrigation (Yes = 1) 0.272*** (0.042) −0.190*** (0.017)

Water shortage during seasons
(Yes = 1)

-0.146*** (0.030) 0.146*** (0.043)

Khal Panchayats system exists
(Yes = 1)

-0.135*** (0.046) —

Khal Panchayats system work
actively (Yes = 1)

0.134*** (0.050) —

Water availability in Rabi season
(No.of weeks)

— 0.004* (0.002)

Water availability in Kharif
season (No.of weeks)

— −0.006** (0.002)

Economic capital

Household owned off-farm
business (Yes = 1)

−.015 (0.036) −0.027 (0.043)

Household Off-farm income
(>Rs. 300 k = 1)

0.001 (0.034) 0.172** (0.078)

Outstanding loans (Yes = 1) −0.094* (0.044) 0.017 (0.032)

Households sell crops inputs in
financial crisis (Yes = 1)

— 0.353*** (0.023)

Crop inputs used as credit
(Yes = 1)

— 0.113*** (0.028)

Climate shocks

Household affected by natural
disasters every year (Yes = 1)

−0.138*** (0.044) 0.092* (0.050)

Household farms affected by
natural disaster shocks for last
5 years (Yes = 1)

— 0.094* (0.049)

Household farms affected by
uncontrolled crop diseases (Yes = 1)

— 0.148*** (0.034)

Climate investment

Distance to nearest from
MFIs (Km)

0.0003 (0.002) −0.007*** (0.002)

Access to nearest all-weather road
(Minutes)

−0.0003 (0.001) −0.002** (0.001)

(Continued in next column)

TABLE 3 (Continued) Marginal effects of probit regression for the
probability of entrance and exit into and from farming.

Livelihood assets Probability of
entrance

Probability of
exit

Local government sharing well
climate change knowledge (Yes = 1)

— −0.085* (0.092)

Locational characteristics

Nearby city travelling time
(minutes)

−0.001 (0.001) 0.003*** (0.001)

Nearby small commercial market
distance (Km)

0.002 (0.002) 0.004*** (0.001)

Off-farm source (factory/
industries) distance from village less
than 20 km = 1)

0.002 (0.002) 0.061** (0.028)

Distance to district
headquarter (km)

−0.001 (0.001) −0.001 (0.001)

Nearby main commercial market
distance (Pacca_road = 1)

0.037 (0.037) −0.104*** (0.027)

Poor village infrastructure (kacha
road = 1)

— −0.093*** (0.026)

Number of observations 942 925

Chi squared 213*** 264.49***

Pseudo R2 0.205 0.3424

Log likelihood −412.55 −253.95

Notes: Robust standard errors are reported in parenthesis. ***, **, and * are significant at

1%, 5%, and 10% level, respectively.
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Pakistani population are dependent on livestock as theirmain source

of income and the livestock sector provides food for over 8 million

rural families (Pakistan Bureau of Statistics, 2019).

Households who have less access to water in Rabi crop season

weremore likely to exit farming comparedwith Kharif season. This is

because most of the farms have enough canal irrigation in Kharif

season while have limited water availability in Rabi season. Hence

households exited farming due to irrigation water shortage in Kharif

season. In contrast, households that have better access to canal

source14 of irrigation were more likely to enter farming, with an

increase in the probability by 27%, less likely to exit farming, with a

decrease in the probability by 19%. Farmers seem to prioritize the use

of canal water, as it is the cheapest source of irrigation and it could

also encourage farmers to enter farming. Furthermore, we found that

where the Khal Panchayats system was working actively, farmers

were more likely to enter into farming, increasing the probability by

13%. Due to shortage of water during the crop seasons, it reduces and

increases the probability of entrance and exit decision by 14% and

15%, respectively. Additionally, our results in the exit model

demonstrate the importance of irrigation across seasons.

6.5 Economic capital

As annual income generated from off-farm activities increases

(more than Rs. 300 k), it also increases the probability of farm exit by

17%. Thus, household who worked at both on-farm and off-farm

can compare both income and decide either to stay or exit farming.

Hence, those who left farming,might find farming as a less rewarded

occupation and eventually they could decide to exit farming due to

higher off-farm income. However, in the entrance model, influence

of off-farm income is positive but insignificant.

Financial constraints, especially those related to the use of crop

inputs (rising prices of fertilizers, seed, pesticides, diesel for pumping

ground water, etc.), seem to have serious effects on farmers and

encourage them to exit farming in Pakistan. In this case, farmers

experience large mark-ups on these input costs when they use them

on credit, making them have no option but utilise their own income

and limited (or non-existent) savings. As a result, outstanding loans

create additional pressure for farmers, which affect their farming and

even sometimes lead farmers to committing suicide (Mishra, 2006;

Gruère and Sengupta, 2011). Our results show that farming

households that use crop input as credits are more likely to exit

farming, which increases the probability by 11%. Indeed, our results

show that outstanding loans or debts can significantly increase the

probability of farm exit. Meanwhile, longstanding loan and debt

pressure could distress farmers andmake them dislike or exit farming

(Deshpande and Prabhu, 2005). Thus, as expected any mark-up

imposed on using crop inputs (fertilizer, pesticide, seeds, etc.) as credit

could push farmers to exit from farming due to financial constraints.

Our results also suggest that farm households who sold their crop

inputs in financial crisis to feed families, were more likely to exit from

farming, by a probability of 35%,which is higher than the effect of any

other factors in this study. Approximate 60% of households have

exited farming activities between 2012 and 2014, with one of themost

important reasons being that farmers sold their borrowed or credit

crops inputs (mainly fertilizer) in financial crisis (Ahmad and Ma,

2020b). For example, farmers first borrowed or credited crop inputs

from input dealers at huge mark-ups, and then, they sold those crop

inputs to neighbour farmers (someone else) or other input dealers on

net cash at lower than market prices to deal with an emergency and

feed families in financial crises. As a result, this behaviour not only

increased the burden of loans on farmers but also converted their

previous input-driven small loans into larger loans, if they fail to pay

when the harvest was completed. To conclude, farmers should not

depend only on on-farm income, and they should be involved with

part time off-farmwork to stabilize income and support their families

in case of financial crisis particularly during the crop growing stages.

As the crop input mark-ups are higher, first, farmers should avoid

using these crop inputs on credit, and second should also avoid selling

heavy mark-up crop inputs during an emergency, because this will

create extra burden and lead to farm exit in the end. In addition, this

behaviour could also discourage farm entry.

6.6 Climate shocks

Erratic climate is severely affecting the livelihoods of households

who depend upon agricultural production. The results show that

climate weather shocks not only affect farm exit but also have

negative impact on farm entry. In fact, households who live in

disasters prone regions were less likely to enter farming, with the

probability being lowered by 14%. Similarly, households who faced

climate shocks during last consecutive five years andwere affected by

severe crop disease were more likely to exit farming, with the

probabilities of farm exit being increased by 9% and 15%,

respectively.

To conclude, households that have experienced large crop losses

due to heavy rain-fall, floods, droughts and severe crop disease are

more likely to exit from farming, and these climate shocks push

households to diversify their livelihoods beyond agriculture. As a

result, the productivity of the agricultural sector decreased gradually

due to emerging high input prices, lower output prices, water

shortages, and climate shocks. However, those living in these

regions face a number of challenges, such as food insecurity and

poverty, driven in part by climate shocks, which encourage them to

seek alternatives to farming and diversify their livelihoods towards

off-farm activities (Glauben et al., 2006; Bhandari, 2013). Thus,

climate shocks make farming livelihood more vulnerable and

increases the likelihood to diversification. This finding is

consistent with those of other studies in Pakistan on climate
14 In Pakistan, the availability of canal water supply is inconsistent (only

4–6 months in a year).
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change and climate shocks and their effects on survival of livelihoods

(Ahmad et al., 2020; Ahmad and Ma, 2020b).

6.7 Climate change investment

We found significant effects for distance to nearest MFIs,

access to nearest all-weather road and the role of local

government in farmers’ wellbeing (only in exit model). The

availability of MFIs in nearby locations has no significant

effect on the entry decision. This may be because the poor

access to MFIs reduces the required capital to start farming,

and enables households to use their capital endowment for

investment without necessarily being credit constrained

(Huang et al., 2008; Ruan and Zhang, 2009; Ali et al., 2010).

For example, those who have access to agricultural loans are

more likely to continue farming while access to agricultural loans

acts as an incentive for new entrants into farming. It appears that

rural finance is important to farmers and therefore policymakers

should consider policies to resolve such financial constraints to

attract new farmers. In fact, the role of local government,

particularly knowledge sharing of climate change and

livelihood diversification, could significantly reduce the

probability of farm exit by 8%.

6.8 Locational characteristics

The results show that the nearby city travelling time,

distance to nearby small commercial markets, distance to

nearby off-farm source (factory/industries), distance to

main commercial markets, poor village infrastructure are

all found significant in exiting from farming except for the

distance to district headquarter. These results suggest that

rural finance and urban employment could create significant

and positive associations on entry into farming for all those

who want to continue farming, or who are thinking of

becoming farmers. Households that live within additional

community service areas have a better chance of engaging

in off-farm opportunities, which could induce them to start

off-farm work. The distance to nearby off-farm sources

(factories, mills, and industry) has a positive and significant

association on farm exit. On the other hand, the distance to a

nearby small commercial market has a positive and significant

association on farm exit, but an insignificant association on

farm entry.

6.9 Farm entry-exit decisions and
household wellbeing

There are different matching methods to calculate the

average treatment effects in the evaluation literature. The one

we used in this study is before and after the nearest neighbor 1-

to-1 matching with replacement, which associates the outcome of

the treated household with the matched outcome that is given by

this 1-to-1 matchingmethod and weighted average of all the non-

treated households. Because the weighted average of all the non-

treated households is used to construct the counterfactual

outcome, 1-to-1 matching method has an advantage of lower

variance (Heckman et al., 1998).

A t-test was used to compare the mean of each covariate

between the treatment and control group after the matching

procedure. If the matching was successfully accomplished, the

mean difference after matching should be insignificant. The

results of the t-test showed that the differences in the

covariates became insignificant after the matching procedure,

which indicates that the observable characteristics of the

control group were sufficiently similar to those of the

treatment group after matching. The matching quality tests

for the entry and exit models suggest that the matching

procedures have performed well in terms of avoiding

systematic difference in the distribution of pre-treatment

observable covariates that are included in the PSM between

the treated and non-treated groups.

To check the above results of the match are robust, a

sensitivity analysis is performed by using a nearest neighbor

1-to-1 matching method with replacement. The findings confirm

that the matching results are quite robust. Although the above

results of the PSM indicate that biases from observables are

controlled, it might be difficult to infer a causal relationship

between diversification and wellbeing as there could still be some

unobserved factors that exert certain effects on both farm entry

(exit) and households’wellbeing. In addition, farm and non-farm

earnings can reinforce each other, which could then influence

households’ wellbeing through indirect channels such as

tightening of the agricultural labor market or raising demand

for agricultural products, etc. (Janvry de, 1994; Loening and

Mikael, 2009).

7 Propensity scores, balance tests and
sensitivity analysis

The characteristics of exit and continue farming

households are shown in Table 4. We find that the

difference between exit and continue farming was

statistically significant in household owned off-farm

business, owned land (family farm), access to canal

irrigation source and poor village infrastructure. Regarding

the household owned off-farm business, exit farmers

significantly were less (5%) compared to continued farms

(8%). Similarly, we found that the household that exit

farms were also those who had family farm (owned land),

anyhow these were less (43%) compared to continued farms

(77%). We also observe that canal source of irrigation
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significantly associated with farm exit (60%), which is lower

than farm continuing households (74%). More important,

natural disasters significantly increases the percentage of

exit farm (56%) which was higher than continued farming

(33%). Furthermore, village infrastructure also significantly

associated with farm exit, the results show that 14%

households exit farming due to poor village infrastructure

particularly connection of roads which is mud or kacha road.

Table 5 represents the characteristics of new entrance into

farming. We find that the difference between new entrance

and stay at farm was statistically significant and higher in new

entrance (2.602) compared to stay at farm (2.377). Similarly,

we find that the new entrance farms were also those who had

owned family farm (owned land) were higher (16%) compared

to stay at farm farms (5%). We also observe that canal source

of irrigation significantly associated with new entrance and

attract new entrance as 82% household enterd into farming

due to canal irrigation source. More important, natural

disasters significantly associated with new entrance by 15%.

Furthermore, Khal Panchayats system significantly attracts

15% new entrance. More important, household affected by

natural disasters significantly increases the percentage of exit

farm by 56% which was higher than stay at farm

farming (33%).

Table 6 presents the logit regression to generate the

propensity scores. The goodness of fit can be measured by

the pseudo R2 value, and logit estimation gives a pseudo R2 of

0.158 in farm exit model. The results indicate that, all other

TABLE 4 Variables, definitions, means, and difference-in-means tests.

Variables Mean all (N = 925) Left
farming (N = 136)

Continue
farming (N = 789)

Education (years) 3.563 (4.430) 3.985 (5.121) 3.490 (4.299)

Number of working age individuals (16–64 years) 2.741 (2.049) 2.441 (1.877) 2.792 (2.073)

Immigrant (Yes = 1) 0.082 (0.275) 0.140 (0.348) 0.072 (0.259)

Household owned off-farm business (Yes = 1) 0.078 (0.268) 0.051 (0.222)** 0.082 (0.275)

Own land (Yes = 1) 0.722 (0.448) 0.426 (0.496)*** 0.773 (0.419)

Canal water irrigation (Yes = 1) 0.719 (0.450) 0.596 (0.493)*** 0.740 (0.439)

Household affected by natural disasters every year (Yes = 1) 0.366 (0.482) 0.559 (0.498)*** 0.333 (0.472)

Crop inputs used as credit (Yes = 1) 0.332 (0.471) 0.331 (0.472) 0.332 (0.471)

Water shortage during seasons (Yes = 1) 0.436 (0.496) 0.419 (0.495) 0.439 (0.497)

Poor village infrastructure (kacha road = 1) 0.256 (0.437) 0.140 (0.348)*** 0.276 (0.447)

Notes: Numbers are means; numbers in parentheses are S.D., values. ***, **, and * are significant at 1%, 5%, and 10% level, respectively.

TABLE 5 Variables, definitions, means, and difference-in-means tests.

Variables Mean all (N = 942) New entrance (N = 226) Stay at off farm
(N = 716)

Education (years) 3.597 (4.328) 3.717 (4.254) 3.559 (4.353)

Number of working age individuals (16–64 years) 2.431 (1.728) 2.602 (1.705)** 2.377 (1.733)

Immigrant (Yes = 1) 0.039 (0.194) 0.040 (0.196) 0.039 (0.194)

Household owned off-farm business (Yes = 1) 0.149 (0.356) 0.146 (0.354) 0.149 (0.357)

Own land (Yes = 1) 0.034 (0.181) 0.128 (0.335)*** 0.004 (0.065)

Canal water irrigation (Yes = 1) 0.728 (0.445) 0.823*** (0.383) 0.698 (0.459)

Household affected by natural disasters every year (Yes = 1) 0.076 (0.266) 0.155 (0.363)*** 0.052 (0.222)

Water shortage during seasons (Yes = 1) 0.486 (0.500) 0.376 (0.485)*** 0.521 (0.500)

Outstanding loans (Yes = 1) 0.109 (0.312) 0.071 (0.257)* 0.122 (0.327)

Poor village infrastructure (kacha road = 1) 0.167 (0.373) 0.168 (0.375) 0.166 (0.373)

Khal Panchayats system work actively (Yes = 1) 0.076 (0.266) 0.150 (0.358)* 0.053 (0.224)

Local government sharing well climate change knowledge (Yes = 1) 0.717 (0.451) 0.721 (0.449) 0.715 (0.452)

Nearby main commercial market distance (Pacca_road = 1) 0.782 (0.413) 0.788 (0.410) 0.781 (0.414)

Notes: Numbers are means; numbers in parentheses are S.D., values. ***, **, and * are significant at 1%, 5%, and 10% level, respectively.
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things being equal in our sample, migration, land ownership,

irrigation source (canal), natural disasters, crop inputs

used as credit, water shortage during seasons and poor

village infrastructure are more likely to be exit farming.

Similarly, Table 7 also presents the logit regression to

generate the propensity scores and logit estimation gives a

pseudo R2 of 0.141 in new entrance model. The results

indicate that, all other things being equal in our sample,

land ownership, irrigation source (canal), natural disasters,

water shortage during seasons and Khal Panchayats

system work actively are more likely to be entrance into

farming.

Tables 8, 9 show the results of balancing tests for the PSM

with before and after nearest neighbor 1-to-1 matching

method (refer to Supplementary Appendix SA2,

Supplementary Appendix SA3, Supplementary Appendix

SA4). Further we used t-test to compare the mean of each

covariate between the treatment and control group after the

matching procedure. If the matching was successfully

accomplished, the mean difference after matching should

be insignificant. The results of the t-test showed that the

differences in most of the covariates became significant

after the matching procedure, which indicates that the

observable characteristics of the control group were

sufficiently similar to those of the treatment group after

matching.

Table 10 presents household wellbeing results for entry

and exit for three outcome variables (Total household

income, Domestic food shortage, and Able to earn money

in an emergency) by using nearest neighbor 1-to-1 matching

method. The results provide strong evidence that entry

decision has significantly and negatively associated with

household wellbeing in terms of total household income,

whereas positively associated with Domestic food shortage

and Able to earn money in an emergency but results are

insignificant. The results indicated that households that

have entered into farming on average have an annual

income Rs. 39,340.8 ($409.79) less than those who have

not entered into farming. Furthermore, we find that the

standard matching ATTs of Domestic food shortage is

positive and statistically insignificant, indicating that

entering into farming results in increase in food shortage.

However, these results void our hypothesis that entry into

farming could be an excellent effort for hushed to be self-

sufficient in food security in the future. Turning to farm exit,

the ATTs of Able to earn money in an emergency is

statistically significant and indicates that households that

have exit farming on average have an annual income Rs.

11,716.63 ($122.04) more than those who have not exit

farming but the results are insignificant. Furthermore, we

find that the standard matching ATT of Domestic food

shortage is positive and statistically significant, indicating

that exit from farming results increase in food shortage.

However, these results are in line towards our hypothesis

that exit farming could lead household to be food insecure in

the future.

TABLE 7 Logit regression results (dependent variables are whether the
new entrance farm).

Variables Coef S.E

Education (years) 0.016 0.020

Number of working age individuals (16–64 years) 0.077 0.047

Immigrant (Yes = 1) −0.262 0.443

Household owned off-farm business (Yes = 1) −0.125 0.243

Own land (Yes = 1) 3.086*** 0.635

Canal water irrigation (Yes = 1) 1.226*** 0.233

Household affected by natural disasters every year (Yes = 1) 0.826*** 0.285

Water shortage during seasons (Yes = 1) −1.265*** 0.200

Outstanding loans (Yes = 1) −0.807* 0.314

Poor village infrastructure (kacha road = 1) 0.176 0.233

Khal Panchayats system work actively (Yes = 1) 0.922*** 0.301

Local government sharing well climate change knowledge
(Yes = 1)

0.050 0.186

Nearby main commercial market distance (Pacca_road = 1) 0.171 0.218

Constant −2.117*** 0.332

LR. chi2 146.30 —

P > chi2 0.0099 —

Log likelihood −445.874 —

Pseudo R2 0.141 —

Note: ***, **, and * are significant at 1%, 5%, and 10% level, respectively.

TABLE 6 Logit regression results (dependent variables are whether the
farm exit farm).

Variables Coef S.E

Education (years) 0.03 0.02

Number of working age individuals (16–64 years) −0.03 0.06

Immigrant (Yes = 1) 0.56* 0.32

Household owned off-farm business (Yes = 1) −0.34 0.44

Own land (Yes = 1) −1.51*** 0.22

Canal water irrigation (Yes = 1) −1.28*** 0.28

Household affected by natural disasters every year (Yes = 1) 0.87*** 0.21

Crop inputs used as credit (Yes = 1) −0.37** 0.22

Water shortage during seasons (Yes = 1) 0.56* 0.27

Poor village infrastructure (kacha road = 1) −1.04*** 0.29

Constant −0.338*** 0.293

LR. chi2 122.13

P > chi2 0.000

Log likelihood −325.136

Pseudo R2 0.158

Note: ***, **, and * are significant at 1%, 5%, and 10% level, respectively.
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Furthermore, we calculated the critical value of Γ† (Table 10).
For the significant ATTs, the value of Γ† total household income

is 1.2. It implies that matched entry farmers with the same

observed covariates would have to differ in terms of

unobserved covariates by a factor of 1.2 for total household

income inference of a significant treatment effect. Similarly, in

case of farm exit decision, the value of Γ† for Able to earn money

in an emergency is 1.6. It implies that matched exit farmers with

the same observed covariates would have to differ in terms of

unobserved covariates by a factor of 1.6 for able to earn money in

an emergrncy to invalidate the inference of a significant

treatment effect. Therefore, we conclude that the impact

estimates are fairly robust to potentially hidden bias. Apel

et al. (2010) reported that the estimation results in applied

research often become sensitive to Γ value as small as 1.15.

However, the results are sensitive to unobserved characteristics of

other insignificant ATTs.

8 Conclusion and implications

This article has investigated and identified factors that affect

households’ farm entry and farm exit based a dataset of

1867 households. This study also investigates the impact of

entry and exit decisions on households’ wellbeing by using

PSM approach for three wellbeing outcomes. This study has

brought fresh insights into sustaining rural livelihoods of both

the farming and off-farm sectors.

Firstly, our results suggest that household decision of

entry into farming significantly decreases household income,

while household decision of exit from farming significantly

increases domestic food shortage. This finding indicates that

farming would be rural household income source in

Pakistan. This finding might explain why a larger share

(24%) of rural off-farm working labor has shifted into

farming as new entrants in Pakistan since 2014.

Secondly, we found that climate shocks could significantly

affect farm entry and farm exit decisions, respectively. It is

meant that climate shocks could change farmers’ future

attitudes towards farming. This finding points out a

potentially concern as Pakistan agricultural production and

livelihoods are particularly vulnerable to climate shocks. In

fact, as stated previously, Pakistan’s agriculture sector has

been faced serious challenges of water shortages and natural

disastrous since 2001, and even currently massive floods are

still in this country.

TABLE 8 Results of balancing tests before and after the nearest neighbor 1-to-1 matching with replacement (For exit farming).

Variables Sample Mean t-test V(T)/(VC)

Treated Control % Bias % Redu.
Bias

t p > |t|

Education (years) Unmatched 3.99 3.49 10.5 — 1.2 0.229 1.42*

Matched 4.01 3.42 12.7 −21.1 1.02 0.310 1.27

Number of working age individuals (16–64 years) Unmatched 2.44 2.79 −17.7 — −1.85 0.065 0.82

Matched 2.45 2.34 5.8 67.1 0.54 0.592 1.30

Immigrant (Yes = 1) Unmatched 0.14 0.07 22 — 2.65 0.008 1.80*

Matched 0.14 0.19 −16 27.3 −1.08 0.280 0.79

Household owned off-farm business (Yes = 1) Unmatched 0.05 0.08 −12.4 − −1.24 0.214 0.65*

Matched 0.05 0.04 6.5 47.3 0.65 0.514 1.43*

Own land (Yes = 1) Unmatched 0.43 0.77 −75.5 — −8.66 0.000 1.40

Matched 0.43 0.39 9.2 87.7 0.71 0.480 1.03

Canal water irrigation (Yes = 1) Unmatched 0.60 0.74 −31 — −3.48 0.001 1.26

Matched 0.60 0.67 −15.8 49.1 −1.26 0.210 1.09

Household affected by natural disasters every year (Yes = 1) Unmatched 0.56 0.33 46.5 — 5.11 0.000 1.12

Matched 0.56 0.54 4.2 90.9 0.34 0.736 0.99

Crop inputs used as credit (Yes = 1) Unmatched 0.33 0.33 −0.3 — −0.03 0.978 1.00

Matched 0.33 0.36 −6.1 −2,320 −0.49 0.623 0.96

Water shortage during seasons (Yes = 1) Unmatched 0.42 0.44 −3.9 — −0.42 0.674 0.99

Matched 0.41 0.45 −7.9 −102.2 −0.65 0.517 0.98

Poor village infrastructure (kacha road = 1) Unmatched 0.14 0.28 −34.1 — −3.39 0.001 0.60*

Matched 0.14 0.13 1.7 95.1 0.16 0.874 1.04

Note: ***, **, and * are significant at 1%, 5%, and 10% level, respectively.
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Thirdly, descriptive statistics show that approximate 60% of

smallholders exited from farming between 2012 and 2014,

and 15% of smallholders exit farming after 2014, because

they had to sell off their borrowed or credit crop inputs

(mainly fertilizer). The major reason is due to the lack of

national macro agricultural support policies. In fact, there are

more than 80% are samllholders, but the agricultural subsidies

(e.g., fertilizer and machinery purchase) are only provided

TABLE 9 Results of balancing tests before and after the nearest neighbor 1−to−1 matching with replacement (For new entrance into farming).

Variable Sample Mean t−test V(T)/(VC)

Treated Control % Bias % Redu.
Bias

t p > |t|

Education (years) Unmatched 3.717 3.559 3.7 — 0.48 0.632 0.95

Matched 3.689 3.726 −0.9 76.7 −0.09 0.929 0.99

Number of working age individuals (16–64 years) Unmatched 2.602 2.377 13.1 — 1.71 0.088 0.97

Matched 2.590 2.617 −1.6 87.9 −0.15 0.88 0.74*

Immigrant (Yes = 1) Unmatched 0.040 0.039 0.4 — 0.05 0.961 1.02

Matched 0.042 0.018 12.3 −3255.8 1.44 0.15 2.25*

Household owned off−farm business Unmatched 0.146 0.149 −1 — −0.13 0.9 0.98

Matched 0.142 0.123 5.1 −430.4 0.55 0.582 1.12

Own land (Yes = 1) Unmatched 0.128 0.004 51.4 − 9.38 0 26.89*

Matched 0.071 0.059 4.9 90.5 0.49 0.623 15.48

Canal water irrigation (Yes = 1) Unmatched 0.823 0.698 29.5 — 3.7 0 0.69*

Matched 0.811 0.797 3.3 88.7 0.36 0.716 0.95

Household affected by natural disasters every year (Yes = 1) Unmatched 0.155 0.052 34.3 — 5.16 0 2.68*

Matched 0.137 0.166 −9.8 71.6 −0.84 0.401 0.85

Water shortage during seasons (Yes = 1) Unmatched 0.376 0.521 −29.4 − −3.82 0 0.94

Matched 0.392 0.383 1.7 94.2 0.18 0.859 1.01

Outstanding loans Unmatched 0.071 0.122 −17.2 − −2.13 0.033 0.62*

Matched 0.075 0.065 3.6 79.1 0.43 0.67 1.15

Poor village infrastructure (kacha road = 1) Unmatched 0.168 0.166 0.5 — 0.07 0.946 1.01

Matched 0.175 0.156 4.9 −848 0.51 0.611 1.09

Khal Panchayats system work actively (Yes = 1) Unmatched 0.150 0.053 32.6 — 4.86 0 2.55*

Matched 0.123 0.097 8.4 74.1 0.83 0.408 1.22

Local government sharing well climate change knowledge
(Yes = 1)

Unmatched 0.721 0.715 1.4 — 0.18 0.858 0.99

Matched 0.717 0.724 −1.7 −21.3 −0.17 0.864 1.02

Nearby main commercial market distance (Pacca_road = 1) Unmatched 0.774 0.750 1.7 — 0.22 0.827 0.98

Matched 3.717 3.559 5.8 −247.2 0.58 0.565 0.93

Note: ***, **, and * are significant at 1%, 5%, and 10% level, respectively.

TABLE 10 Average treatment effect on ATTs and critical value of Rosenbaum’s Γ by using 1-to-1 matching method.

PSM Variables Mean treated Mean control ATT S.E. Γ†

Farm Entry Total household income 213,792 258,086 −39340** 21,598 1.2

Domestic food shortage 0.231 0.248 0.074 0.047 1.0

Able to earn money in emergency 0.044 0.048 0.003 0.021 1.3

Farm Exit Total household income 274,526 26,280,99 11,716 51,038 1.1

Domestic food shortage 0.311 0.205 0.105* 0.047 1.6

Able to earn money in emergency 0.037 0.079 −0.042 0.032 1.4

Note: ***, **, and * are significant at 1%, 5%, and 10% level, respectively.
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for large farms (over 12 acres of land) in Pakistan (Ali et al.,

2019).

Gernally, agriculture is still major income source for most

of rural huseholds and that is why smallholders exist in

Pakistan on the one hand. On the other hand, off-farm

income also reduces smallholders to exit farming. More

importantly, climate shocks and national agricultural

support policy can be the crucial factors for smallholders

whether to enage in agricultural production.

As with most research, this study has some limitations. For

example, we did not discuss whether any household member

inherited family farms as a successor or not. We are also

unable to identify whether the entrants into farming were

permanent or temporary. These questions are also potential

for future research.
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