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Editorial on the Research Topic

An update on neurological disorders post COVID-19 infection

A new zoonotic coronavirus epidemic began in December 2019 in the city of Wuhan,

China, and has affected almost the entire world. The World Health Organization (WHO)

named this coronavirus 2019-nCoV, and COVID-19 the disease caused by it. On 11 March

2020, WHO declared the COVID-19 outbreak a global pandemic (1).

Globally, as of 12 April 2023,WHO reported 762,791,152 confirmed cases of COVID-19,

including 6,897,025 deaths. As of 11th April 2023, a total of 13,340,343,269 vaccine doses

have been administered. Three million new cases and over 23,000 deaths were reported in

the previous 28 days (13 March to 9 April 2023), a decrease of 28% and 30%, respectively,

compared to the previous 28 days (13 February to 12 March 2023). However, in opposition

to the overall trend, important increases in reported cases and deaths were observed in the

South-East Asia and Eastern Mediterranean regions and in numerous other countries (2).

The world is not yet at the end of the COVID-19 epidemic because new virus variants are

expected. However, on 4th March 2023, the head of WHO declared “with great hope” an end

to COVID-19 as a global public health emergency, stressing that this does not mean that the

disease is no longer a worldwide threat (3).

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19,

a form of atypical pneumonia with multiple organ dysfunction but also simple respiratory

flu-like symptoms; infection can be prevented or attenuated by vaccination. As in most

respiratory infections, including influenza, SARS-CoV-2 infection viral shedding reaches the

highest level in the nasopharynx and the nasal cavity mucosa is one of the most relevant

sites of viral activity. Spinato et al. suggest, in a preliminary study, good compliance and

subjective satisfaction for nasal lavages with saline solution in patients with newly diagnosed

SARS-CoV-2 infection. The treatment showed effectiveness in reducing nasal symptoms of

SARS-CoV-2 infection, compared to the control group. Hence, the nasopharyngeal route of

viral dissemination and the easy administration of nasal sprays explains the rationale of the

intranasal vaccine models that are under investigation.
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According to the systematic review by Purja et al., the

neurological complications of COVID-19 are diverse, and direct

viral neuroinvasion is rare. The authors identify 2,387 studies

and include 167 studies in which SARS-CoV-2 CSF PCR assay

was performed in 101 patients. The SARS-CoV-2 PCR assay was

positive in only four CSF samples out of the 101 cases. Olfactory

dysfunction was present in only two of these four cases. The

central and peripheral neurological manifestations observed were

heterogeneous. The most common neurological diagnoses were

Guillain-Barré syndrome (GBS) and its variants (24%), followed by

encephalopathy (21%).

SARS-CoV-2 infection is a global health challenge producing

significant post-acute sequelae and 30% of COVID-19 patients

reported persistent symptoms for up to 9 months after

illness. Patients who recover from COVID-19 and experience

symptoms that persist for a protracted period after the

primary infection are defined as having long-COVID (4

weeks after the primary infection) or post-COVID syndrome

(12 weeks after the primary infection) (Schulze et al.).

These patients are given the diagnosis of long COVID, post-

acute COVID-19 syndrome (PACS), or post-acute sequelae

of COVID-19 (PASC). It remains unclear whether long-

COVID is a different disease entity than COVID-19 with

unclear pathophysiology or a spectrum of prolonged viral

infection (4).

Long COVID is frequently accompanied by new-

onset conditions, mainly cardiovascular, thrombotic,

or cerebrovascular disease; type 2 diabetes; myalgic

encephalomyelitis/chronic fatigue syndrome (ME/CFS); postural

orthostatic tachycardia syndrome; and other dysautonomic

events (Carmona-Torre et al.). There are no validated effective

treatments yet and these disabling symptoms can last for

years. In particular, ME/CFS and dysautonomia may be

lifelong conditions.

There are several possible causes of long COVID.

Several hypotheses regarding its pathogenesis have been

considered, including the persistent reservoir of SARS-

CoV-2 in tissues; immune dysregulation with or without

reactivation of the primary pathogen; and herpesviruses

such as Epstein–Barr virus (EBV) and human herpesvirus 6

(HHV-6). Furthermore, the impact of SARS-CoV-2 on the

microbiota, and the virome in particular; autoimmunity and

other dysregulation of the immune system; microclotting

with endothelial dysfunction; alterations in brainstem

signaling and/or vagus nerve; and genetic causes have been

considered (5).

Neuro-PASC involves direct or indirect brain invasion by the

virus. The virus can then cause brain dysfunction and neuronal

damage through direct cytolysis or secondary inflammatory and

immune responses (indirect effects).

Direct invasion is uncommon (6). The virus can infect

the Peripheral Nervous System (PNS) or CNS by direct

infection of nerve endings (including olfactory, trigeminal,

optic, and vagus nerves) gaining access to the CNS via

the transport machinery of nerves and ganglions (7). The

indirect mechanism is more frequent and involves the

infection of cells of the circulatory system which carry

the infection through the blood-brain barrier (BBB) into

the CNS.

There are three main mechanisms by which a virus may

cross the BBB: transcellular migration, paracellular migration,

and the “Trojan horse” strategy. During transcellular migration,

viruses enter the host endothelial cells to cross the BBB. In

paracellular migration, viruses invade tight junctions formed

by the endothelial cells of the BBB. With the Trojan horse

strategy, viral particles are phagocytized by neutrophils and

macrophages (8). Recently, some viral specialized molecules, called

fusogens, have been recognized that fuse the viral envelope

with neuronal or glioneuronal cell membranes and enter cells

producing syncytial units among neurons and glia. This still

poorly characterized, difficult-to-detect event could explain some

of the neurological consequences of viral infections of the nervous

system (9).

Viral BBB crossing determines three principal pathogenetic

events: endotheliopathy, inflammatory response, and immune

activation. These trigger astrocyte and microglia activation,

proinflammatory cytokine release (Mehboob et al.), and

CNS-specific immune activation which may be responsible

for neural tissue injury and neurological symptoms of

neuro-Covid (10). The neurological sequelae of Covid

infection are frequently immune-mediated (Vavougios

et al.).

Although COVID-19 may affect the incidence of specific

neurological diseases, it is still to be determined whether this

differs from the risk following other respiratory viral and

bacterial infections. Zarifkar et al., study the frequency of

neurodegenerative, cerebrovascular, and immune-mediated

neurological diseases in outpatients post-COVID-19 compared to

healthy control individuals and those with other respiratory

tract infections. The risk of specific neurodegenerative

and cerebrovascular, but not neuroimmune, disorders

was increased in individuals with previous COVID-19

compared to healthy controls. However, with the exception

of ischemic stroke, most neurological disorders were not

more frequent after COVID-19 than after Influenza A/B and

bacterial pneumonia.

Respiratory distress in patients with acute Covid-19 or in

those with post-COVID syndrome is not exclusively due to

atypical pneumonia. Both Vecchio et al. and Jareonsettasin

et al. in 2022 demonstrated that inappropriate ventilatory

homeostatic responses in individuals with acute COVID-19 may

be related to direct brainstem involvement with overlapping

indirect inflammatory mechanisms (8, 10–12) acting on

the peripheral nervous system (Figure 1 by Jareonsettasin

et al.). Weich et al. analyze the symptom of motor fatigue

in post-COVID syndrome. All the patients included in

Weich’s clinical trial were not initially hospitalized and at the

beginning displayed mild symptoms. Although they presented

absolute values of oxygen uptake and ventilation within the

normal range, they manifested mild anomalies in ventilation

and chronic fatigue. These symptoms were not caused by

organic lesions of the central motor system. In this study,

Weich et al. do not exclude potential organic causes for

chronic fatigue in long Covid disease such as mitochondrial
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FIGURE 1

Components of breathing control in the context of COVID-19 (Jareonsettasin et al.).

dysfunction, endothelial dysfunction, chronic inflammation,

autoimmunity, dysregulation of specific cytokines, or psychiatric

and psychosomatic comorbidities, but rule out involvement of

the central motor nuclei and cardiac and pulmonary deficit.

Furthermore, it is not clear whether the mild anomalies in

ventilation were caused by metabolic or psychogenic alterations

too. Additional investigations of the psychiatric disorders in post-

COVID-19 syndrome are necessary to understand the frequent

association observed by Lier et al. between long COVID disease

and a particular subset of patients with predominant fatigue,

somatization, and depression. These patients present minor

or no post-COVID cardiopulmonary distress and prominent

psychiatric manifestations.

COVID-19 is a complex syndrome and a complex of syndromes

with early complications and late sequelae involving the brain, the

brainstem, and the autonomic peripheral system, all of which are

still poorly characterized.

For this reason, the Neuroinfectious Diseases section in

Frontiers in Neurology “opens the door” to new “Frontiers” in

scientific adventures (An Update on Neurological Disorders Post

COVID-19 Infection Vol 2: cardiovascular effects, neuro-cardiac

and neuro-respiratory autonomic dysfunctions).
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Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mainly

colonizes nasopharynx. In upper airways acute infections, e.g., the common cold, saline

nasal irrigations have a significant efficacy in reducing symptoms. The present study

aimed to test the efficacy of nasal lavages in upper airways symptoms of Coronavirus

Disease 2019 (COVID-19).

Methods: A series of consecutive adult subjects who tested positive for SARS-CoV-2

from December 2020 to February 2021 performed daily nasal lavages with saline solution

(Lavonase®—Purling, Lugo di Romagna, Italy) for 12 days, starting on the day after

the SARS-CoV-2 positive swab. A control group included a historical series of patients

who were infected in February-March 2020 and who did not perform lavages. An ad

hoc questionnaire regarding symptoms was administered to each subjects at base-line

and 10 days after diagnosis (i.e., on the same day of the control swab) in both cases

and controls.

Results: A total of 140 subjects were enrolled. 68 participants in the treatment group

and 72 in the control group were included. 90% of respondents declared the lavages

were simple to use and 70% declared they were satisfied. Symptoms of blocked nose,

runny nose, or sneezing decreased by an average of 24.7% after the treatment. Blocked

nose and sneezing increased in the same period of time in the control group. Ears and

eyes symptoms, anosmia/ageusia symptoms, and infection duration (10.53 days in the

treatment group and 10.48 days in the control group) didn’t vary significantly among the

two groups.

Conclusion: Nasal lavages resulted to significantly decrease nasal symptoms in newly

diagnosed SARS-CoV-2 patients. These devices proved to be well-tolerated and easy to

be used. Further studies on a larger number of subjects are needed in order to possibly

confirm these preliminary results.

Keywords: SARS-CoV-2 infection, COVID-19, nasal lavage, upper airways infection, nasal swab
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INTRODUCTION

During the last year, the current pandemic situation has brought
clinicians to an ongoing quest toward the identification of
novel tools to manage Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) infection. In particular, the
management of asymptomatic or oligosymptomatic patients
represents a challenge, also in terms of development of
prophylactic strategies to prevent the manifestation or worsening
of clinically relevant symptoms, as well as to reduce the viral
transmission (1, 2).

As in most of the respiratory infections, including influenza,
also in SARS-CoV-2 viral shedding reaches the highest level
in the nasopharynx, being also nasal cavity mucosa as one
of the most relevant sites of viral activity (3–5). In previous
studies on other respiratory infections, including common
cold, saline nasal irrigations have been applied as a topical
treatment approach, showing a significant efficacy in reducing
symptom burden and decreasing viral shedding (6). This
observation has led clinicians to focus their interest on the
feasibility of a topical management of SARS-CoV-2 infection,
based on the reduction of viral load in the nasal cavities
and into the upper airways. However, although some trials
are currently ongoing (7, 8), to date few and sparse evidence
supporting topical preventive or therapeutic strategies in
managing SARS-CoV-2 infection are available in the literature
(9, 10).

Recently, three Cochrane reviews explored the evidence
supporting the use of antimicrobial mouthwashes and nasal
spray as a preventive tool to protect healthcare workers
when performing aerosol-generating procedures (11) and
when assisting suspected or confirmed Coronavirus Disease
2019 (COVID-19) cases (12), or as a therapeutic strategy
to improve the outcome of patients with SARS-CoV-
2 infection (13). However, none of these meta-analyses
found in the literature provided sufficient evidence to
support such strategies. Moreover, the large majority of
the available reports on topical treatment of SARS-CoV-2
infection regards the local administration of antimicrobial
solutions. On the other hand, the preventive and therapeutic
role of isotonic saline solution nasal lavages has yet to be
extensively explored.

The rationale of proposing isotonic saline solution lavages
in SARS-CoV-2 infection resides not only in the mechanical
action of the injected fluid which clears the viral particles
out of the nasal fossae (14), but also, as recently reported
(15), in a direct anti-microbial effect of saline solution,
which may allow the epithelial cells to produce hypochlorous
acid (HOCl).

Based on this rationale, and given the potential therapeutic

relevance of this practice the principle aim of the present
investigation was to evaluate the effectiveness of isotonic saline
nasal lavages in improving symptoms of COVID-19. Secondary

aims were to verify whether nasal lavages may reduce the
incidence of symptoms in patients with asymptomatic SARS-

CoV-2 infection and to evaluate the compliance to the use of a
nasal-lavage device.

MATERIALS AND METHODS

Study Design
The present study was approved by the ethics committee of
Treviso and Belluno provinces (ethic vote: 871/CESC). All
patients included in this study received specific information
material and signed a detailed informed consent form.

This study was a non-randomized controlled trial. The
treatment group included a series of consecutive patients which
underwent nasal lavages (see also paragraph “Treatment”), while
the control group included an historical cohort, matched for age,
sex, and base-line symptoms.

The date of the first negative test was also collected for
each patient.

Treatment Group
A series of consecutive subjects who received diagnosis of SARS-
CoV-2 infection in a period fromDecember 9th 2020 to February
25th 2021 were included in the treatment group.

Inclusion criteria were:

1. positive molecular test for SARS-CoV-2 infection,
2. age ≥18 years,
3. capability of self-performing nasal lavages.

Exclusion criteria were:

1. clinical conditions preventing self-administration of
nasal lavages,

2. clinical conditions preventing administration of the
symptom questionnaire,

3. refusal to take part in the study.

Treatment
Nasal lavages were self-performed by each patient in the
treatment group by the mean of a device, Lavonase R© (Purling,
Lugo di Romagna, Italy), which injected the saline solution
into a nasal fossa, allowing it to enter the nasopharynx and
to be evacuated from the other nasal fossa. Each nasal lavage
administrated 250ml of saline isotonic solution (NaCl 0.9%). The
treatment schedule included one daily nasal lavage for 12 days,
starting on the day after the molecular diagnosis of SARS-CoV-
2 infection.

Symptom Questionnaire
The COVID-Q questionnaire on SARS-CoV-2 infection
symptoms (16) was administered to each patient, at base-
line and 10 days after diagnosis. The questionnaire included
questions on the main clinical presentation patterns of
SARS-CoV-2 infection: asthenia, influenza-like symptoms,
ear and nose symptoms, breathing issues, throat symptoms,
and altered sense of smell or taste (16). From those data,
symptoms regarding the otolaryngologic field were considered
and analyzed. Among questions about patients’ history, one
regarding “other not previously specified” was clearly asked,
including sinonasal diseases.

When repeated 10 days after diagnosis, two further questions
were added, regarding the ease of use of the device and the
subjective satisfaction after treatment.
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Control Group
The control study included a historical series of patients who
tested positive for SARS-CoV-2 in a period from February 19th to
March 23rd 2020 andwho answered the COVID-Q questionnaire
on the following day and on the 10th day since diagnosis.

This series was statistically comparable with the treatment
group according to age, sex, and base-line symptoms.

Patients in both treatment and control group underwent a
control molecular test for SARS-CoV-2 10 days after diagnosis.
If they still tested positive at day 10, they would receive another
test 7 days later.

In line with other studies in the field, the sample size was
estimated according to a sensitivity analysis, which showed that
70 subjects provided 80% power to detect an effect size as low
as dz = 0.307 in a one-tailed Wilcoxon signed-rank test, at
the conventional alpha level of 0.05. One-hundred-forty subjects
provided 80% power to detect an effect size as small as d = 0.42
in a one-tailed t-test, at the conventional alpha level of 0.05.

Statistical Analysis
The aim of the study was to examine the impact of nasal
lavages on COVID-19, with regards to symptom frequency. First,
participants’ experiences with the intervention were assessed,
testing for age and sex effects. Given the ordinal scale of the
compliance variables, sex differences were investigated through
the non-parametric Mann-Whitney U test, and age effects
through Spearman’s rank-order correlations.

COVID-19 symptoms have been shown to follow different
trajectories during the infection. Therefore, each symptom
was analyzed individually. Baseline symptoms were compared
between the treatment and the control group. Next, change in
symptom frequency across occasions was analyzed for each group

separately using Wilcoxon’s signed-rank test. The results also
report the proportion of participants experiencing symptoms in
the two groups.

Finally, an independent sample t-test was used compare
the duration of the infection in the case and in the
control group.

RESULTS

140 Subjects Were Enrolled and Divided Into two Groups.
The Treatment Group Included 68 Participants (35 Males and
33 Females; Mean age 49.2 Years, Range 18–75 Years). The
Control Group Comprehended 72 Subjects (29 Males and 43
Females; Mean age 49.2 Years, Range 21–75 Years). As Intended,
There were no Significant Differences in the Mean age or sex
Composition of the two Groups. In the Overall Sample, Women
Were on Average 4.6 Years Younger than men: t (209) = −2.21,
p = 0.028. The Mean age was 46.7 Years in Women and 51.3
in men.

Participants in the treatment group were asked to report on
ease of use and satisfaction with the treatment. Sixty out of 68
participants answered the questions. The lavages appeared simple
to use, with 90% (N = 54) of respondents marking them as “easy”
or “extremely easy”. Furthermore, the answers indicated a good
satisfaction with the treatment, with 70% (N = 42) of participants
declaring themselves “satisfied”, “very satisfied” or saying they
“would suggest [the lavages] to others”. Mann-Whitney U test
showed that the experience did not vary significantly according to
sex (W = 471.5, p = 0.709 for ease of use,W = 553.5, p = 0.113
for satisfaction), nor did it correlate significantly with age (r =
0.11, p= 0.376 for ease of use, r= 0.10, p= 0.437 for satisfaction).

TABLE 1 | Reported symptom frequency.

First assessment Second assessment

0 1 2 3 4 5 prop symptom 0 1 2 3 4 5 prop symptom

Intervention

Painful pressure in ears1 51 16 1 – – – 0.25 57 11 0 – – – 0.16

Blocked nose1 31 32 5 – – – 0.54 52 15 1 – – – 0.24

Runny nose1 40 26 2 – – – 0.41 58 9 1 – – – 0.15

Sneezing1 49 18 1 – – – 0.28 61 7 0 – – – 0.10

Watery eyes1 61 7 0 – – – 0.10 65 3 0 – – – 0.04

Altered sense of smell or taste2 33 8 7 5 6 9 0.73 41 6 7 4 3 7 0.50

Control

Painful pressure in ears1 66 6 0 – – – 0.08 61 8 3 – – – 0.15

Blocked nose1 63 7 2 – – – 0.13 38 28 6 – – – 0.47

Runny nose1 56 16 0 – – – 0.22 52 16 4 – – – 0.28

Sneezing1 58 14 0 – – – 0.19 46 22 4 – – – 0.36

Watery eyes1 66 6 0 – – – 0.08 60 11 1 – – – 0.17

Altered sense of smell or taste2 56 0 1 1 2 12 0.28 61 0 0 3 2 6 0.18

Note. Prop symptom, proportion of patients scoring 1 or higher on the symptom frequency over total number of patients in the group.
1Symptom Frequency Assessed on a 0−2 Scale, 0 = not Experienced, 1 = Experienced a Little, 2 = Experienced a lot.
2Symptom Frequency Assessed on a 0−5 Scale, 0 = not Experienced, 1 = Experienced Barely, 2 = Experienced a Little, 3 = Experienced Moderately, 4 = Experiences a lot,

5 = Complete Loss of Smell or Taste.
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TABLE 2 | Test of between-group differences in symptom frequency at first

assessment.

U p-value

Painful pressure in ear 2,859 0.008

Blocked nose 3,459.5 0.000

Runny nose 2,928 0.013

Sneezing 2,663 0.224

Watery eyes 2,496 0.694

Altered sense of smell or taste 3,003 0.007

Note. U, U statistic from Mann-Whitney U test.

TABLE 3 | Test of within-group differences in symptom frequency between

assessments.

Intervention Control

V p-value V p-value

Painful pressure in ear 60 0.078 32.5 0.103

Blocked nose 510 0.000 39 0.000

Runny nose 264 0.000 203 0.217

Sneezing 198 0.010 170.5 0.018

Watery eyes 27 0.182 40 0.115

Altered sense of smell or taste 442.5 0.084 175.5 0.247

Note. V, V statistic from Wilcoxon’s signed-rank test.

None of the patients reported sinonasal diseases or others
possibly having an influence on nasal function, previous to
infection. Table 1 reports symptom frequency at the first and
second assessment for the treatment and control group. Group
differences in baseline symptoms were analyzed using Mann-
Whitney U test (Table 2).

The change in symptoms across time was investigated
within each group separately. Table 3 reports statistics and
significance levels fromWilcoxon’s signed-rank test and Figure 1
illustrates the proportion of patients experiencing symptoms.
The frequency of the blocked nose and sneezing symptoms
varied significantly in both the treatment and the control
group. In the treatment group, the proportion of participants
experiencing a blocked nose, either occasionally or frequently,
decreased by 30.9% (i.e., from 54.4 to 23.5%), and patients
experiencing sneezing decreased by 17.6% (i.e., from 27.9 to
10.3%). The control group showed the opposite trend, as the
number of people reporting symptoms increased significantly
across occasion: 24.2%more patients reported a blocked nose and
16.7% more patients reported sneezing (i.e., increasing from 13.2
to 37.4% and from 19.4 to 36.1%, respectively) (Table 1).

The runny nose symptom showed a significant decline (i.e.,
from 41.2 to 15.1% of participants) with the treatment, and no
significant change in the control group. The painful pressure in
ears, watery eyes, and anosmia/ageusia symptoms did not vary
significantly across occasions in either the case or the control
group (Table 1, Figure 1).

The infection lasted on average 10.53 days (range = 7–26,
sd = 3.5) in the treatment group and 10.48 days (range = 6–31,
sd = 3.95) in the control group. The t-test for independent
samples confirmed that there was no significant difference
between the mean infection duration in the two groups (t
(137)= 0.08, C.I.= −1.202; 1.304, p= 0.936).

Follow-up molecular test at 10 days resulted negative among
62 cases (91.1 %) and in 2 controls (2.8%), with a statistically
significant difference (p < 0.00001).

DISCUSSION

The present work was a pilot study investigating the effect of nasal
lavages on COVID-19 symptoms. Our analysis showed that nasal
lavages can significantly reduce the frequency of nose-related
symptoms. Specifically, the proportion of patients experiencing
a blocked nose, runny nose, or sneezing decreased by an average
of 24.7% after the treatment. Conversely, over the same period
of time, blocked nose and sneezing became more frequent in
patients who did not perform the lavages. Thus, our results
suggest that the treatment can offer a substantial relief from
COVID-19-symptoms affecting the nose.

On the other hand, our study did not identify a significant
difference in the evolution of non-nasal symptoms over time
between patients who performed nasal lavages and those who did
not. This seems to be in line with available evidence on other
upper respiratory tract infections, not related with SARS-CoV-
2, stating that nasal saline irrigation may be beneficial for nasal
symptoms but not respiratory symptoms (17).

It is worth noting that, in our study population, although
nasal symptoms seemed to worsen over time in the absence of
treatment, they significantly improved in patients who performed
nasal irrigation. This can be interpreted in view of both the well-
known efficacy of saline nasal irrigations on symptoms of chronic
sino-nasal inflammatory conditions and a possible direct effect in
reducing the local viral load into the upper airways.

Literature reports that saline irrigation may improve the
patient-reported severity of allergic rhinitis symptoms compared
with no saline treatment in children and adults, both on the
short-term (up to 4 weeks) and on the medium-term (4 weeks to
6 months) (18). Similar data emerged also from reports on non-
allergic chronic sino-nasal inflammatory conditions (19). The
effectiveness of nasal irrigation on chronic inflammatory sino-
nasal symptoms has been described for isotonic (20), hypertonic
(21), and mineral-enriched saline (22) solutions.

Regarding the effect of nasal irrigations on controlling the
pathogen load in sino-nasal cavities, evidences seem to support
the idea that saline solution alone may be as beneficial as direct
antimicrobial agents (23), probably due to a possible direct
antimicrobial effect of the hypochlorous acid, produced by the
epithelial cells based on sodium chloride (15).

Other previously published papers studied the effectiveness
of antimicrobial solutions (e.g., Amphotericin B) on sinonasal
diseases (24, 25). Accordingly, no relevant reduction of chronic
rhinosinusitis symptoms were obtained.Moreover, by comparing
antimicrobial and saline solution, effects were not statistically
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FIGURE 1 | Proportion (“Prop.” within the figure) of patients reporting otolaryngologic COVID-19 symptoms. “t0” refers to baseline. “t1” refers to follow-up period after

10 days. Results of the control group are reported on the left (“Control”) and those of the treatment group are reported on the right (“Treatment”). Note. *p ≤ 0.05, **p

≤ 0.01, ***p ≤ 0.001.

different. Based on these results, antimicrobial properties of nasal
irrigation seems not to be essential, thus confirming suitability of
the saline solution we used in this study.

Our findings confirm previous literature with regards to the
evolution of individual symptoms (26–28). Indeed, we observed
that the frequency of anosmia and ageusia (i.e., loss of smell
and taste), painful pressure in the ears, and watery eyes did not
change significantly acrossmeasurement occasions, neither in the
treatment nor in the control group. On the other hand, blocked
nose and sneezing symptoms showed a greater, significant change
in the observed time-span.

The nasal lavage treatment did not appear to affect the
duration of the infection, as the range and mean infection
duration did not differ significantly between the treatment
and the control group. A statistically significant difference was
obtained by comparing the rates of negative swabs among cases
and controls at 10-day follow-up, showing a clearly higher rate
among subjects who performed nasal lavages. However, such a

comparison may be weakened by the fact that microbiological
data were available only at fixed times, whereas a daily test might
have detected subtler differences between the two groups in time
to negativization.

Another weakness of this study concerns the relatively
limited number of cases considered. However, based on the
preliminary sample size analysis, it was deemed suitable to
address this study’s primary endpoint. Also, the modalities of
treatment administration prevented the possibility of blinding,
which might potentially reduce biases in patient’s reports
on symptoms.

On the other hand, the main strengths of this investigation
lie in its controlled design and in the homogeneity of the series
of patients considered because: only new diagnoses of SARS-
CoV-2 infection were considered; all treated patients received
the material for nasal lavage within 24 h from the diagnosis; the
control group was comparable regarding age, sex and symptoms
at the baseline.
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In conclusion, data from this preliminary study showed
a good compliance and subjective satisfaction for nasal
lavages in patients with newly diagnosed SARS-CoV-2
infection. The treatment showed effectiveness in reducing
nasal symptoms of SARS-CoV-2 infection, compared to
the control group. However, further studies on larger scale
are advocated to better characterize the effectiveness of
this treatment on non-nasal symptoms and on the time to
microbiological remission.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Comitato Etico Ospedaliero di Treviso e Belluno.
The patients/participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

GS and CF: conceptualization, manuscript drafting, and
manuscript supervision. GCos and FCo: data analysis and
manuscript drafting. PS, FCi, RD, AM, MC, GCon, CD,
and CA: data collection and manuscript drafting. EE, PB-R,
and DF: data collection, manuscript drafting, and manuscript
supervision. All authors contributed to the article and approved
the submitted version.

REFERENCES

1. Spinato G, Gaudioso P, Boscolo Rizzo P, Fabbris C, Menegaldo

A, Mularoni F, et al. Risk management during COVID-19:

safety procedures for otolaryngologists. Acta Biomed. (2021)

92:e2021105. doi: 10.23750/abm.v92i1.11281

2. Volo T, Stritoni P, Battel I, Zennaro B, Lazzari F, Bellin M, et al. Elective

tracheostomy during COVID-19 outbreak: to whom, when, how? Early

experience from Venice, Italy. Eur Arch Otorhinolaryngol. (2021) 278:781–

9. doi: 10.1007/s00405-020-06190-6

3. Spinato G, Fabbris C, Menegaldo A, Marciani S, Gaudioso P, Da Mosto MC,

et al. Correct execution of the nasopharyngeal swab: a fundamental method

to improve diagnosis of SARS-CoV-2 infection. J Dr Nurs Pract. (2021)

9:JDNP-D-20-00040. doi: 10.1891/JDNP-D-20-00040

4. Fabbris C, Cestaro W, Menegaldo A, Spinato G, Frezza D, Vijendren A, et al.

Is oro/nasopharyngeal swab for SARS-CoV-2 detection a safe procedure?

Complications observed among a case series of 4876 consecutive swabs. Am J

Otolaryngol. (2021) 42:102758. doi: 10.1016/j.amjoto.2020.102758

5. Capriotti V, Mattioli F, Guida F, Marcuzzo AV, Lo Manto A, Martone A, et al.

COVID-19 in the tonsillectomised population. Acta Otorhinolaryngol Ital.

(2021) 41:197–205. doi: 10.14639/0392-100X-N1436

6. Ramalingam S, Graham C, Dove J, Morrice L, Sheikh A. A pilot,

open labelled, randomised controlled trial of hypertonic saline

nasal irrigation and gargling for the common cold. Sci Rep. (2019)

9:1015. doi: 10.1038/s41598-018-37703-3

7. Khan FR, Kazmi SMR, Iqbal NT, Iqbal J, Ali ST, Abbas SA, et al.

Quadruple blind, randomised controlled trial of gargling agents in reducing

intraoral viral load among hospitalised COVID-19 patients: a structured

summary of a study protocol for a randomised controlled trial. Trials. (2020)

21:785. doi: 10.1186/s13063-020-04634-2

8. Kimura KS, Freeman MH, Wessinger BC, et al. Interim analysis of an

open-label randomized controlled trial evaluating nasal irrigations in non-

hospitalized patients with coronavirus disease 2019. Int Forum Allergy Rhinol.

(2020) 10:1325–8. doi: 10.1002/alr.22703

9. Baruah B. Could simultaneous nasal and oral irrigation be a

nontherapeutic tool against SARS-CoV-2? ACS Chem Neurosci. (2021)

12:2–4. doi: 10.1021/acschemneuro.0c00740

10. Farrell NF, Klatt-Cromwell C, Schneider JS. Benefits and safety of nasal saline

irrigations in a pandemic-washing COVID-19 away. JAMA Otolaryngol Head

Neck Surg. (2020) 46:787–8. doi: 10.1001/jamaoto.2020.1622

11. BurtonMJ, Clarkson JE, Goulao B, Glenny AM,McBain AJ, Schilder AG, et al.

Antimicrobial mouthwashes (gargling) and nasal sprays to protect healthcare

workers when undertaking aerosol-generating procedures (AGPs) on patients

without suspected or confirmed COVID-19 infection. Cochrane Database Syst

Rev. (2020) 9:CD013628. doi: 10.1002/14651858.CD013628.pub2

12. Burton MJ, Clarkson JE, Goulao B, Glenny AM, McBain AJ, Schilder AG,

et al. Use of antimicrobial mouthwashes (gargling) and nasal sprays by

healthcare workers to protect them when treating patients with suspected

or confirmed COVID-19 infection. Cochrane Database Syst Rev. (2020)

9:CD013626. doi: 10.1002/14651858.CD013626.pub2

13. Burton MJ, Clarkson JE, Goulao B, Glenny AM, McBain AJ, Schilder AG,

et al. Antimicrobial mouthwashes (gargling) and nasal sprays administered to

patients with suspected or confirmed COVID-19 infection to improve patient

outcomes and to protect healthcare workers treating them.Cochrane Database

Syst Rev. (2020) 9:CD013627. doi: 10.1002/14651858.CD013627.pub2

14. Frezza D, Fabbris C, Franz L, Vian E, Rigoli R, De Siati R, et al.

A Severe Acute Respiratory Syndrome Coronavirus 2 detection method

based on nasal and nasopharyngeal lavage fluid: a pilot feasibility

study. Laryngoscope Investig Otolaryngol. (2021) 6:646–9. doi: 10.1002/l

io2.625

15. Ramalingam S, Cai B, Wong J, Twomey M, Chen R, Fu RM, et al. Antiviral

innate immune response in non-myeloid cells is augmented by chloride ions

via an increase in intracellular hypochlorous acid levels. Sci Rep. (2018)

8:13630. doi: 10.1038/s41598-018-31936-y

16. Spinato G, Fabbris C, Conte F, Menegaldo A, Franz L, Gaudioso

P, et al. COVID-Q: validation of the first COVID-19 questionnaire

based on patient-rated symptom gravity. medRxiv. (2021)

12:e14829. doi: 10.22541/au.162144233.34223358/v1

17. Cabaillot A, Vorilhon P, RocaM, Boussageon R, Eschalier B, Pereirad B. Saline

nasal irrigation for acute upper respiratory tract infections in infants and

children: A systematic review and meta-analysis. Paediatr Respir Rev. (2020)

36:151–8. doi: 10.1016/j.prrv.2019.11.003

18. Head K, Snidvongs K, Glew S, Scadding G, Schilder AG, Philpott C, et al.

Saline irrigation for allergic rhinitis. Cochrane Database Syst Rev. (2018)

6:CD012597. doi: 10.1002/14651858.CD012597.pub2

19. Giotakis AI, Karow EM, Scheithauer MO, Weber R, Riechelmann H.

Saline irrigations following sinus surgery—a controlled, single blinded,

randomized trial. Rhinology. (2016) 54:302–10. doi: 10.4193/Rhin

16.026

20. Barberi S, D Auria E, Bernardo L, Pinto F, Pietra B, Ciprandi G. Isotonic

saline in children with perennial allergic rhinitis. J Biol Regul Homeost Agents.

(2016) 30:605–8.

21. Liu L, Pan M, Li Y, Tan G, Yang Y. Efficacy of nasal irrigation with

hypertonic saline on chronic rhinosinusitis: systematic review and meta-

analysis. Braz J Otorhinolaryngol. (2020) 86:639–46. doi: 10.1016/j.bjorl.2020.

03.008

22. Franz L, Manica P, Claudatus J, Frigo AC, Marioni G, Staffieri

A. Sulfurous-arsenical-ferruginous thermal water nasal inhalation

and irrigation in children with recurrent upper respiratory

tract infections: Clinical outcomes and predictive factors. Am

J Otolaryngol. (2021) 42:103083. doi: 10.1016/j.amjoto.2021.

103083

23. Ragab A, Farahat T, Al-Hendawy G, Samaka R, Ragab S, El-Ghobashy A.

Nasal saline irrigation with or without systemic antibiotics in treatment

of children with acute rhinosinusitis. Int J Pediatr Otorhinolaryngol. (2015)

79:2178–86. doi: 10.1016/j.ijporl.2015.09.045

Frontiers in Neurology | www.frontiersin.org 6 December 2021 | Volume 12 | Article 79447114

https://doi.org/10.23750/abm.v92i1.11281
https://doi.org/10.1007/s00405-020-06190-6
https://doi.org/10.1891/JDNP-D-20-00040
https://doi.org/10.1016/j.amjoto.2020.102758
https://doi.org/10.14639/0392-100X-N1436
https://doi.org/10.1038/s41598-018-37703-3
https://doi.org/10.1186/s13063-020-04634-2
https://doi.org/10.1002/alr.22703
https://doi.org/10.1021/acschemneuro.0c00740
https://doi.org/10.1001/jamaoto.2020.1622
https://doi.org/10.1002/14651858.CD013628.pub2
https://doi.org/10.1002/14651858.CD013626.pub2
https://doi.org/10.1002/14651858.CD013627.pub2
https://doi.org/10.1002/lio2.625
https://doi.org/10.1038/s41598-018-31936-y
https://doi.org/10.22541/au.162144233.34223358/v1
https://doi.org/10.1016/j.prrv.2019.11.003
https://doi.org/10.1002/14651858.CD012597.pub2
https://doi.org/10.4193/Rhin16.026
https://doi.org/10.1016/j.bjorl.2020.03.008
https://doi.org/10.1016/j.amjoto.2021.103083
https://doi.org/10.1016/j.ijporl.2015.09.045
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Spinato et al. Effect of Nasal Lavages in SARS-CoV-2 Infection

24. Ebbens FA, Scadding GK, Badia L, Hellings PW, Jorissen M, Mullol

J, et al. Amphotericin B nasal lavages: not a solution for patients

with chronic rhinosinusitis. J Allergy Clin Immunol. (2006) 118:1149–

56. doi: 10.1016/j.jaci.2006.07.058

25. Jiang RS, Hsu SH, Liang KL. Amphotericin B nasal irrigation as an adjuvant

therapy after functional endoscopic sinus surgery. Am J Rhinol Allergy. (2015)

29:435–40. doi: 10.2500/ajra.2015.29.4246

26. Boscolo-Rizzo P, Polesel J, Spinato G, Menegaldo A, Fabbris C, Calvanese L,

et al. Predominance of an altered sense of smell or taste among long-lasting

symptoms in patients with mildly symptomatic COVID-19. Rhinology. (2020)

58:524–5. doi: 10.4193/Rhin20.263

27. Boscolo-Rizzo P, Menegaldo A, Fabbris C, Spinato G, Borsetto D,

Vaira LA, et al. Six-month psychophysical evaluation of olfactory

dysfunction in patients with COVID-19. Chem Senses. (2021)

46:bjab006. doi: 10.1093/chemse/bjab006

28. Spinato G, Costantini G, Fabbris C, Menegaldo A, Mularoni F, Gaudioso

P, et al. The importance of early detection of ENT symptoms in mild-

to-moderate COVID- 19. Acta Otorhinolaryngol Ital. (2021) 41:101–

7. doi: 10.14639/0392-100X-N1038

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Spinato, Fabbris, Costantini, Conte, Scotton, Cinetto, De Siati,

Matarazzo, Citterio, Contro, De Filippis, Agostini, Emanuelli, Boscolo-Rizzo and

Frezza. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 7 December 2021 | Volume 12 | Article 79447115

https://doi.org/10.1016/j.jaci.2006.07.058
https://doi.org/10.2500/ajra.2015.29.4246
https://doi.org/10.4193/Rhin20.263
https://doi.org/10.1093/chemse/bjab006
https://doi.org/10.14639/0392-100X-N1038
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


BRIEF RESEARCH REPORT
published: 16 May 2022

doi: 10.3389/fneur.2022.868538

Frontiers in Neurology | www.frontiersin.org 1 May 2022 | Volume 13 | Article 868538

Edited by:

Beatrice Paradiso,

Dolo Hospital, Italy

Reviewed by:

Giuseppe Lanza,

University of Catania, Italy

Samir Abu Rumeileh,

Martin Luther University of

Halle-Wittenberg, Germany

Arianna Sartori,

Neurology Unit, ASUGI, Italy

*Correspondence:

Eleonora Vecchio

e.vecchio@miulli.it

Specialty section:

This article was submitted to

Neuroinfectious Diseases,

a section of the journal

Frontiers in Neurology

Received: 02 February 2022

Accepted: 11 April 2022

Published: 16 May 2022

Citation:

Vecchio E, Gallicchio L, Caporusso N,

Recchia V, Didonna L, Pezzuto G,

Pisani L, Petruzzellis A, Delmonte V

and Tamma F (2022)

Neurophysiological Aspects in

SARS-CoV-2–Induced Acute

Respiratory Distress Syndrome.

Front. Neurol. 13:868538.

doi: 10.3389/fneur.2022.868538

Neurophysiological Aspects in
SARS-CoV-2–Induced Acute
Respiratory Distress Syndrome
Eleonora Vecchio 1*, Lara Gallicchio 1, Nicola Caporusso 2, Valentina Recchia 1,

Luigi Didonna 1, Giancarlo Pezzuto 2, Luigi Pisani 2, Antonella Petruzzellis 1, Vito Delmonte 2

and Filippo Tamma 1

1Department of Neurology, General Regional Hospital “F. Miulli”, Acquaviva delle Fonti, Bari, Italy, 2Department of Intensive

Care, General Regional Hospital “F. Miulli”, Acquaviva delle Fonti, Bari, Italy

Patients with coronavirus disease 2019 (COVID-19) often develop acute respiratory

failure and acute respiratory distress syndrome (ARDS) that requires intensive care unit

(ICU) hospitalization and invasive mechanical ventilation, associated with a high mortality

rate. In addition, many patients fail early weaning attempts, further increasing ICU length

of stay and mortality. COVID-19 related ARDS can be complicated by neurological

involvement with mechanisms of direct central nervous system (CNS) infection and

with overlapping para-infective mechanisms of the peripheral nervous system (PNS).

We aimed to evaluate the possible involvement of the brainstem and PNS in patients

with COVID-19 related ARDS and difficulty in weaning from mechanical ventilation. We

evaluated electroencephalogram (EEG), brainstem auditory evoked potentials (BAEPs),

electroneurography of the four limbs and the phrenic nerve in 10 patients with respiratory

insufficiency due to SARS-CoV-2. All were admitted to intensive care unit and were

facing prolonged weaning from mechanical ventilation. All ten patients showed a mild

diffuse non-specific slowing of brain electrical activity on the EEG. Four patients had

an acute motor axonal neuropathy with absent or reduced amplitude phrenic nerve

CMAP while four patients showed impairment of the BAEPs. A patient with peripheral

nerve impairment suggestive of Guillain-Barré syndrome (GBS) underwent an intravenous

immunoglobulin (IVIg) cycle that led to an improvement in the weaning process

and progressive motor improvement. The inclusion of a comprehensive neurological

evaluation in COVID-19 patients in ICU facilitated the early identification and effective

management of Nervous System involvement.

Keywords: COVID-19, ARDS, brainstem, nervous system involvement, Guillain-Barré syndrome

INTRODUCTION

Interstitial pneumonia due to SARS-CoV-2 can be complicated by possible neurological
involvement with mechanisms of direct CNS infection and/or with para-infective mechanisms of
the peripheral nervous system (PNS), shown by some neuropathological findings of COVID-19
patients, as recently reviewed (1).

Respiratory failure appears to be one of the most worrying complications due to SARS-CoV-2
infection. Patients can develop severe pneumonia that requires invasive mechanical ventilation that
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leads to death in a significant percentage of them. Furthermore,
many patients fail early weaning attempts, thus prolonging the
length of stay in the intensive care unit (ICU) and increasing in
that way complications, morbidity, and mortality. In some cases,
there appears to be a discrepancy between the severity of lung
involvement and respiratory function. Severe COVID-19 leads
to death through multiple mechanisms, including myocardial
damage, renal failure, shock, and disseminated intravascular
coagulopathy (2, 3). It has also been suggested that the brain
stem could play a role in the severe respiratory failure of
COVID-19 patients (4). This hypothesis comes from animal
models infected with other coronaviruses that have shown that
the brainstem is severely affected and in particular the respiratory
center (i.e., the nucleus of the solitary tract in the medulla
oblongata) (5). In a small case series of an Italian group, this
hypothesis is taken into consideration in patients with poor
recovery of respiratory function when SARS-CoV-2 pneumonia
improves (6). The EEG of these patients showed a diffuse
slowing while the brain CT or MRI evaluation was substantially
normal (6). In a neurophysiological evaluation using Blink-
Reflex in 11 patients with typical interstitial pneumonia due to
COVID-19 and severe respiratory failure, the authors highlighted
the absence or alteration of the RII component, suggesting a
possible involvement of the brainstem, especially at the level of
the bulb (7).

Recent reports describe a Guillain-Barré syndrome related to
SARS-CoV-2, characterized mainly by axonal impairment with
early involvement of cranial nerves that could lead to severe
respiratory failure (8).

Our aim was to consider the possible overlap of central
and peripheral nervous system involvement in patients with
respiratory insufficiency due to COVID-19 and difficulty in
weaning from mechanical ventilation.

MATERIALS AND METHODS

We present data about patients with respiratory failure due
to SARS-CoV-2 infection admitted to the intensive care unit
of the Miulli Hospital in Acquaviva delle Fonti in the period
from 1 March to 30 May 2021, evaluated because they

TABLE 1 | Brainstem evoked potential results obtained in the 10 patients evaluated (normal values referred to normative values of our laboratory).

Lat. I (R/L) (ms) Lat. III (R/L) (ms) Lat. V (R/L) (ms) I-III (R/L) (ms) III-V (R/L) (ms) I-V (R/L) (ms)

Normal values 1.7 ± 0.15 4.5 ± 0.2 5.7 ± 0.25 2.1± 0.15 1.9 ± 0.18 4 ± 3SD

Pat. 1 1.61/1.81 3.85/3.89 5.92/6.23 2.24/2.08 2.07/2.34 4.31/4.42

Pat.2 1.88/1.86 4/3.95 6.14/6.12 2.12/2.09 2.14/2.17 4.26/4.26

Pat. 3 1.73/1.79 3.93/3.67 5.79/ab 2.2/1.88 1.86/ab 4.06/ab

Pat. 4 ab/1.79 ab/3.26 ab/5.08 ab/1.47 ab/1.82 ab/3.29

Pat. 5 1.94/1.73 4.0/4.0 6.85/6.05 2.27/2.06 2.85/2.05 4.91/4.32

Pat 6 2.05/1.83 3.29/3.99 6.42/5.94 1.24/2.16 3.13/1.95 4.37/4.11

Pat 7 1.98/ab 4.46/ab 6.9/ab 2.48/ab 2.44/ab 4.92/ab

Pat. 8 1.74/1.65 3.8/3.25 5.76/5.39 2.06/1.6 1.96/2.14 4.02/3.74

Pat. 9 1.75/1.6 4.34/4.3 6.3/6.1 2.59/2.7 1.96/1.8 4.55/4.5

Pat. 10 1.7/1.5 3.9/3.9 5.9/5.8 2.2/2.4 2/1.9 4.2/4.3

were facing prolonged weaning from mechanical ventilation,
despite the improvement in pulmonary conditions. All patients
underwent electroencephalogram (EEG), brainstem auditory
evoked potentials (BAEPs), electroneurography of the four limbs
and the phrenic nerve. A standard 20min EEG was recorded
according to the 10–20 International system of electrode
placement. BAEPs were recorded following auditory stimulation
by a 100-µs 85-dB ± click applied to one ear, with a (−20
dB) contralateral masking using “white noise.” The recurrence
frequency was 11Hz (bandpass, 150–1,500Hz; sweep time,
10ms). Two sets of 2,000 sweeps were averaged. BAEPs were
picked up in Cz. The reference electrode was placed at the
earlobe ipsilateral to the stimulated ear. Nerve conduction
studies were performed according to standardized techniques.
Distal motor latency, amplitude and duration of negative
peak of compound muscle action potential (CMAP), motor
conduction velocity and minimal F-wave latency were measured
from different stimulation sites (median, ulnar, peroneal, tibial,
and phrenic nerves). Sensory studies were performed anti-
dramatically in median, ulnar and sural nerves and amplitude
of sensory nerve action potential was measured baseline to
negative peak. Patients with previous pathology of the central
and peripheral nervous system were not considered. At the time
of the evaluation, patients were subjected to only mild sedation
with dexmedetomidine.

RESULTS

We evaluated 10 patients, 5 male, aged 53–75 years (mean
66.1); the duration of Covid, from the first detection of SARS-
CoV-2 RNA in respiratory specimen (Swab Nasopharyngeal)
until the neurophysiological evaluation, was 6–50 days (mean
25.5). In all subjects, the onset of symptoms was on the
same day or the day before arrival in ED and the diagnosis
of SARS-CoV-2 infection.The main comorbidities presented
by the patients were hypertension (present in the 80% of
subjects), obesity (60%), Chronic kidney Disease (20%), diabetes
(20%). All ten patients showed a mild diffuse non-specific
slowing of brain electrical activity on the EEG. Three patients
showed normal BAEPs, while in two patients we found
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FIGURE 1 | BAEPs recordings in two patients. (A) 65-year-old male patient with normal I-III-V complex latency and amplitude and related inter-peak times. (B)

73-year-old female patient with normal latency and amplitude of I complex, and absence of III and V waves.

non-evocable responses and in 5 patients increased interpeak III-
V wave latency monolaterally (Table 1, Figure 1). We performed
extensive electrophysiological examination in all patients. Six
of the patients examined show substantially normal or not
significant findings.

In 6 patients the neurological evaluation showed no specific
or significant findings. In these patients the electroneurographic
study showed normal findings or abnormal studies that did not

allow a specific electrodiagnostic classification (Figure 2). Four
of the 10 subjects showed rapidly progressive tetraparesis with
areflexia. In these, the nerve conduction studies showed low
or absent motor responses with preserved sensory responses
(Supplementary Table 2, Figure 2), whilst needle EMG findings
were consistent with intense and diffuse denervation. In
these patients also the CMAP of the phrenic nerve was
bilaterally not evocable. These findings suggested a clinical
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FIGURE 2 | Ulnar nerve CMAP and SAP of two subjects. (A,B) A 65-year-old male patient with normal findings; (C,D) A 57-year-old patient with diffuse axonal

neuropathy, with absent ulnar nerve CMAP, and SAP within normal values.

and neurophysiological diagnosis of acute motor axonal
neuropathy (AMAN) (Supplementary Table 2), according to
the Rajabally criteria (9). We managed to treat one of
these four patients with an IVIg cycle (2 g/kg) which led
to an improvement in the weaning process and progressive
motor improvement. This patient was then discharged at
home after 105 days because of renal complications. In the
remaining three patients with GBS profile, two of them
died, respectively, after 29 and 75 days; the third patient
was transferred to the COVID-19 Respiratory sub-intensive
unit, and, after 38 days of hospitalization, was sent to
a rehabilitation center. The patients with non-GBS profile
were sent to rehabilitation centers after a mean of 46 days
of hospitalization.

DISCUSSION

Whilst respiratory failure in COVID-19 arises from severe

interstitial lung involvement (10), SARS-CoV-2 likely spreads

also through the nervous system. It might spread cell-to-

cell in a prion-like way (5, 11, 12) along the vagus nerve,
reaching respiratory centers in the brainstem, possibly adding
a neurogenic component to the respiratory failure (4, 5). Seven
of our studied patients presented alterations of the BAEPs,
but in 3 of them due to non-evocable responses, it was
not possible to exclude a preexisting hearing loss, suggesting
a previous peripheral acoustic nerve disorder or technical
pitfalls. The remaining four subjects showed a prolonged
III–V inter-peak latency, suggesting changes between caudal
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pons and midbrain. These neurophysiological findings may be
suggestive of SARS-CoV-2-related brainstem involvement in
severe COVID-19 patients. EEG findings were non-specific and
possibly related to the hypoxic and metabolic conditions of the
patients, in addition to a possible pharmacological effect induced
by dexmedetomidine.

Another important aspect that emerged from our evaluation
in patients with COVID-19 is the need to consider a Guillain-
Barré syndrome associated with severe respiratory impairment.
Typically, GBS is a post-infectious condition with symptom onset
for 76% of the patients occurring in about 4 weeks after the
preceding respiratory or gastrointestinal infection (8). The para-
infectious profile like the one described in our series, is an atypical
feature that was only recently reported among patients infected
with the Zika virus and SARS-CoV-2 (8). In other, larger series of
patients with GBS associated with COVID-19, emerged a higher
frequency of subjects in which GBS started while COVID-19
symptoms were still ongoing (13–15). Furthermore, COVID-
GBS patients had respiratory symptoms at presentation to the
ED, and the length of these symptoms was significantly longer
than in COVID–non-GBS patient (14). The diagnosis of SARS-
CoV-2 infection, the absence of any other immunological or
microbiological explanation, and the epidemiological finding
of increased relative frequency and standardized incidence of
GBS in the COVID-19 patients in some studies, suggest that
SARS-CoV-2 may have been responsible for the development
of GBS in these patients (14, 15). The detection of a relatively
high incidence of GBS cases, and in particular of AMAN
subtype in our series, may therefore derive from the selection
of patient only with a more severe COVID-19. This association,
in subjects not specifically treated, revealed a worse outcome
in our series. Accurate identification and categorization of GBS
patients are very important, since the para-infectious profile
is associated with a concurrent manifestation of COVID-19
and GBS symptoms, which can complicate the treatment and
may be associated with a worse prognosis. Indeed, the patients
with a para-infectious profile were more likely to have a poor
prognosis (8, 13).

This study has several limitations. First, the number of
cases was very small. Second, it is a retrospective study and
some findings such as antiganglioside antibody titres and
cerebrospinal fluid analysis were not available. However, it
should be considered that these patients were studied in a
pandemic context and under the pressure of and exceptional
health emergency in a hospital of southern Italy. Therefore, the

interpretation of our findings should be made with caution and
should be interpreted as hypothesis-generating.

CONCLUSION

Overall, our results suggest that a central, mainly at brainstem
level, and peripheral nervous system involvement likely
contributes to respiratory failure in COVID-19 patients.
The inclusion of a comprehensive neurological evaluation
in SARS-CoV-2 patients with clinical and radiological lung
amelioration, but difficulty in weaning from mechanical
ventilation, facilitated the identification and effective treatment
of neurological involvement.
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Introduction: On March 11, 2020, the World Health Organization sounded the

COVID-19 pandemic alarm. While efforts in the first few months focused on reducing

the mortality of infected patients, there is increasing data on the effects of long-term

infection (Post-COVID-19 condition). Among the different symptoms described after

acute infection, those derived from autonomic dysfunction are especially frequent

and limiting.

Objective: To conduct a narrative review synthesizing current evidence of the signs

and symptoms of dysautonomia in patients diagnosed with COVID-19, together with a

compilation of available treatment guidelines.

Results: Autonomic dysfunction associated with SARS-CoV-2 infection occurs at

different temporal stages. Some of the proposed pathophysiological mechanisms

include direct tissue damage, immune dysregulation, hormonal disturbances, elevated

cytokine levels, and persistent low-grade infection. Acute autonomic dysfunction has

a direct impact on the mortality risk, given its repercussions on the respiratory,

cardiovascular, and neurological systems. Iatrogenic autonomic dysfunction is a

side effect caused by the drugs used and/or admission to the intensive care

unit. Finally, late dysautonomia occurs in 2.5% of patients with Post-COVID-19

condition. While orthostatic hypotension and neurally-mediated syncope should be

considered, postural orthostatic tachycardia syndrome (POTS) appears to be the most
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common autonomic phenotype among these patients. A review of diagnostic and

treatment guidelines focused on each type of dysautonomic condition was done.

Conclusion: Symptoms deriving from autonomic dysfunction involvement are common

in those affected by COVID-19. These symptoms have a great impact on the quality

of life both in the short and medium to long term. A better understanding of the

pathophysiological mechanisms of Post-COVID manifestations that affect the autonomic

nervous system, and targeted therapeutic management could help reduce the sequelae

of COVID-19, especially if we act in the earliest phases of the disease.

Keywords: dysautonomia, Post-COVID-19 condition, socioeconomic impact, orthostatic intolerance syndromes,

POTS, diagnosis, management

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) has created a pandemic, generally known as the coronavirus
disease 2019 (COVID-19) pandemic, with devastating effect on
the health and economy of the entire world population. The
first cases of COVID-19 were reported in Wuhan, China, in
November 2019, and the first cases in North America and Europe
in January 2020 (1). By February 2022, more than 430 million
confirmed cases of COVID-19 and more than 5.9 million deaths
had been reported to the World Health Organization (WHO)
(https://covid19.who.int/, as of February 27, 2022). About 80%
of COVID-19 cases are paucisymptomatic and mild, and many
patients recover within 2–4 weeks. However, severe pneumonia
and critical multi-organ failure may occur in 15 and 5% of cases,
respectively (2). Although there is a wealth of information on the
clinical manifestations, therapeutic management and short-term
consequences of the infection, there is less information on the
residual symptoms that occur and persist in patients who have
overcome acute infection but experience long-term multiorgan
complications (3). These manifestations were detected from
the very outset of the pandemic, and indeed, the existence of
persistent symptoms (i.e., long COVID-19) after acute infection
has been noted since April 2020 (4). Post-COVID symptoms

Abbreviations: ACE2, Angiotensin-converting enzyme 2; ADH, Vasopressin;

AIDP, Acute inflammatory demyelinating neuropathy; AMAN, Acute motor

axonal neuropathy; AMSAN, Acute motor and sensory axonal neuropathy;

ANS, Autonomic nervous system; AT1-R, Angiotensin II receptor type 1; BBB,

Blood-brain barrier; BP, Blood pressure (mmHg); CI, Confidence Interval; CNS,

Central nervous system; COMPASS-31, Composite Autonomic Symptom Scale

31; COVID-19, Coronavirus disease 2019; CT, Computed tomography; EAS,

Extended autonomic system; ECG, Electrocardiogram; ESC, Electrochemical skin

conductance; g-AChR, Ganglionic neuronal nicotinic acetylcholine receptor; GBS,

Guillain Barré Syndrome; GPCR, G-protein-coupled receptor; HR, Heart rate;

HT, Hypertensive; hT, Hypotensive; hTO, Orthostatic hypotension; ICU, Intensive

care unit; MasR, Mas receptor; MERS, Middle East respiratory syndrome; min,

Minutes; MRI, Magnetic resonance imaging; MSA, Multiple system atrophy; NA,

Noradrenaline; NICE, TheUnited KingdomNational Institute for Health and Care

Excellence; NOH, Neurogenic Orthostatic hypotension; NT-proBNP, N-terminal

prohormone of brain natriuretic peptide; PASC, Post-acute sequelae of COVID;

PLR, Pupillary light reflex; PNC, Polyneuritis cranialis; PNS, Peripheral nervous

system; POTS, Postural tachycardia syndrome; QSART, Quantitative sudomotor

axon reflex testing; RAAS, The renin-angiotensin-aldosterone system; SARS-CoV-

2, Severe acute respiratory syndrome coronavirus 2; SARS, Severe acute respiratory

syndrome; SNS, Sympathetic nervous system; WHO, World Health Organization.

are very heterogeneous and affect and involve multiple systems.
Numerous pathophysiological mechanisms have been proposed
that include, but are not limited to, direct or indirect invasion

of the virus into the brain, immune dysregulation, hormonal

disturbances, elevated cytokine levels due to immune reaction
leading to chronic inflammation, direct tissue damage, and

persistent low-grade infection.
The actual number of those affected who manifest symptoms

after the acute episode of COVID-19 is unknown; however, in

a survey carried out by the UK Government Office for National
Statistics in November 2020, around 20% of patients diagnosed
with COVID-19 reported symptoms that persisted 5 weeks or

more after acute infection, and 10% reported symptoms lasting
12 weeks or more (3).

Frequently reported residual effects of the SARS-CoV-2 virus

include a wide array of pulmonary and extrapulmonary clinical

manifestations, including nervous system and neurocognitive
disorders, mental health disorders, cardiovascular disorders,

gastrointestinal disorders, skin disorders, and signs and

symptoms associated with poor general wellbeing, including
malaise, fatigue, musculoskeletal pain, and reduced quality of

life. The most common neurocognitive symptoms reported

are difficulties concentrating, memory deficits and cognitive
impairment (5). Follow-ups conducted in Germany and the

United Kingdom found post–COVID-19 neuropsychiatric
symptoms in 20–70% of patients, including young adults (6).
Systemic and neurocognitive deficits may last only weeks but can
potentially lead to lifelong disability (2).

In a prospective study conducted in 3,762 participants from 56

countries with confirmed (diagnostic/antibody-positive; 1,020)
or suspected (diagnostic/antibody-negative or untested; 2,742)
COVID-19, it was found that more than 91% of participants
continued to have symptoms at 7-month follow-up, mainly
systemic and neurologic/cognitive symptoms. The most frequent
symptoms after month 6 were fatigue, Post-exertional malaise,
and cognitive dysfunction. Relapse or recurrence of symptoms,
triggered primarily by exercise, physical or mental activity, and
stress (7), were experienced by 85.9% of participants (95%
CI, 84.8–87.0%).

In individuals at low risk of COVID-19 mortality with
ongoing symptoms, 70% have impairment in one or more organs
4 months after the initial COVID-19 symptoms, including the
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heart (26%), lungs (11%), kidneys (4%), liver (28%), pancreas
(40%) and spleen (4%) (8). Furthermore, persistent symptoms
(>6 weeks) have been reported in 19% of 39 fully vaccinated
healthcare workers after breakthrough infections (9).

Some studies indicate that disease severity correlates with
worse and more prolonged neurologic symptoms (10, 11), while
other studies have found no such correlation (5, 12).

Several symptoms are impacted by the autonomic nervous
system, with fatigue described as one of the major clinical
features of dysautonomia in patients with COVID-19 (13).
Dysautonomia has been broadly defined as a condition where
changes in the functioning of one or more components of the
autonomic nervous system adversely affect health (14). Despite
its prevalence, the relationship between Post-COVID symptoms
and dysautonomic features has not been well-studied.

Changes in the Criteria for the
Classification of the Symptomatic Phases
of COVID-19
The United Kingdom National Institute for Health and Care
Excellence (NICE) (15) has defined several symptomatic phases
of COVID-19 useful for the conduction and comparison of
different studies, and established the following operational
definitions based on the timing of signs and symptoms after
illness onset. These are as follows:

• Acute COVID-19: signs and symptoms present up to 4 weeks
after illness onset.

• Ongoing symptomatic COVID-19: signs and symptoms of
COVID-19 persist from 4 to 12 weeks after illness onset.

• Post-COVID-19 syndrome: signs and symptoms that develop
during or after an infection compatible with COVID-19,
continue beyond 12 weeks and are not explained by an
alternative diagnosis once active infection or reinfection has
been ruled out.

• Prolonged COVID/“long-COVID”/“Post-acute sequelae” of
COVID (PASC) includes both ongoing symptomatic COVID-
19 (4–12 weeks) and Post-COVID-19 syndrome (12 weeks
or more).

Diagnostic criteria for Post-acute phase sequelae (PASC) of
SARS-CoV-2 infection, which may affect 20–60% of patients
(16), were subsequently proposed (17). The term “neuro-PASC”
refers to diagnostic criteria related to neurologic sequelae,
including dysautonomia mentioned above. In this context, the
neurologic symptoms or development of sequelae due to SARS-
CoV-2 infection persist beyond 4 weeks after the onset of acute
symptoms. Subacute neuro-PASC corresponds to neurologic
symptoms and abnormalities present from 4 to 12 weeks after
the acute phase of COVID-19, while chronic neuro-PACS refers
to neurologic symptoms and abnormalities persisting or present
beyond 12 weeks and not attributable to alternative diagnoses (2).

Finally, in the last consensus communication published on
6 October 2021, the WHO using a robust Delphi methodology,
published a clinical case definition of the Post-COVID-19
condition reached by Delphi consensus (18) (Box 1).

Despite these efforts to define the picture, there is a clear
need at the neurologic level to acquire a better understanding

BOX 1 | Clinical case de�nition of Post-COVID-19 condition.

Post-COVID-19 condition occurs in individuals with a history of probable or

confirmed SARS-CoV-2 infection, usually 3 months from the onset of COVID-

19 with symptoms that last for at least 2 months and cannot be explained

by an alternative diagnosis. Common symptoms include, but are not limited

to, fatigue, shortness of breath, and cognitive dysfunction, and generally

have an impact on everyday functioning. Symptoms might be new onset

following initial recovery from an acute COVID-19 episode or persist from the

initial illness. Symptoms might also fluctuate or relapse over time. A separate

definition might be applicable for children.

Notes:

There is no minimum number of symptoms required for diagnosis;

symptoms involving different organs systems and clusters have

been described.

of the underlying pathophysiology of these symptoms in order
to improve the therapeutic management of the different clinical
pictures, in which autonomic dysfunction triggered in patients
after COVID-19 (19) is of special interest.

Dysautonomia Definition
The autonomic nervous system, which innervates all organs
of the body, maintains biological homeostasis at rest and in
response to stress through an intricate network of central
and peripheral neurons that work automatically. Autonomic
disorders can manifest in a variety of ways: deafferentation of
the central autonomic centers can alter the degree or timing
of peripheral autonomic effectors; autonomic efferent neuron
lesions can reduce or suppress autonomic responses; and drugs or
antibodies acting on autonomic neuron receptors can produce a
variety of physiological phenomena ranging from hyperfunction
to hypofunction and loss of function (20).

Since the autonomic nervous system is an integrative system,
the clinical approach to autonomic disorders should be holistic.
Rarely does the patient present with a single, clearly explained
and easily identifiable symptom (20).

The search for autonomic disorders requires a careful and
thorough medical history. The goals of the assessment are to
identify whether there is an autonomic disorder, to locate and
define its distribution, and to measure its severity. It is especially
important to detect severe and treatable disorders (20).

Socio-Economic Impact of Autonomic
Dysfunction in COVID-19
The number of people with the Post-COVID-19 condition
remains uncertain. Recent reports indicate that ∼20–60% of
COVID-19 patients experience persistent symptoms, as stated
above (16), which means that between 86 and 258 million of the
more than 430 million confirmed cases of COVID-19 (https://
covid19.who.int/, as of February 27, 2022) would have persistent
symptoms. This gives us an idea of the enormous impact of the
Post-COVID-19 condition. Assuming dysautonomic symptoms
occur in 2.5% of Post-COVID-19 patients (21, 22), ∼2.15–
6.45 million people experience Post-COVID-19 dysautonomia
worldwide. This chilling statistic gives some idea of the
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significance of this symptomatology and of the need to deepen
our understanding of it.

The socio-economic impact of COVID-19 is largely related
to the development of Post-COVID fatigue, autonomic and
neurohemodynamic impairment (13). The potential scale of
Post-COVID-19 syndrome in lower-risk individuals, who
represent up to 80% of the population, calls for urgent policies
in all countries to monitor and treat the long-term implications
of COVID-19 and to mitigate its impact on healthcare utilization
and the economy (8). According to data from an online survey of
people with suspected and confirmed COVID-19, at 7 months
after suspected or confirmed COVID-19 infection, 45.2% of
patients required a reduction in working hours and 22.3% were
not working due to illness (7).

There is a strong association between fatigue and Post-
COVID anxiety, even in the absence of a preexisting diagnosis
of depression or anxiety (23).

Little is known about the prognosis of postural orthostatic
tachycardia syndrome (POTS). It is estimated that about 80%
of all patients with POTS improved and 60% had minimal
residual symptoms during ∼5 years (24). Addressing the needs
of Post-COVID-19 patients will therefore require a significant
investment in resources and funding both for clinical care and
research. Action is needed during this window of opportunity in
the interest of reducing or shortening the impact of symptoms
in these patients (25) and thus promoting their earliest possible
social and occupational reintegration.

This article reviews the available scientific evidence on
dysautonomic symptoms during the disease, as well as the
evidence on the management of the most prevalent syndromes.

METHODOLOGY

Methodological differences in the assessment of dysautonomia
in the different published studies, as well as the variations in
study design, prevent us from comparing them directly. We have
performed a critical narrative review with a synthesis of the
current publications on the subject.

We conducted a Non-systematic literature search of the
PubMed database in January 2022 for published manuscripts on
dysautonomia and COVID-19. The research strategy included
the key terms “dysautonomia AND COVID-19” and “autonomic
symptoms AND COVID-19”. Six of the authors (F C-T, A M-O,
A L-B, BT, VG, MW) independently reviewed the publications
and selected those that met the inclusion criteria. Duplicate
publications were removed by manual checking. Studies eligible
for inclusion were all types of articles published in English or
Spanish, human-centered, with well-defined COVID-19-related
descriptions of dysautonomic signs and symptoms.

Studies lacking a clear description of the diagnostic criteria
for dysautonomia or COVID-19 were excluded. Study protocols,
publications that did not specifically mention dysautonomia
or did not focus on dysautonomia in COVID-19, as well as
those published in a language other than English or Spanish
were excluded (Figure 1). The text has been completed with
publications obtained from PubMed that were considered
relevant. Figures 2, 3 were prepared using the BioRender.
com tool.

POSSIBLE ROUTES OF ENTRY OF THE
VIRUS

It is thought that part of the neurologic symptomatology may
be due to invasion of the central nervous system (CNS) by
SARS-CoV-2. The same hypothesis was considered in the 1918
influenza pandemic when an association between influenza,
encephalitis lethargica, and postencephalitic parkinsonism was
observed (28). It is known that SARS-CoV-2 penetrates the
olfactory mucosa, causing loss of smell, and may invade the brain
tissue by migrating from the cribriform plate along the olfactory
tract, or by the vagal or trigeminal pathways (26, 29) (Figure 2).

Another hypothesis is that the virus could cross the blood-
brain barrier (BBB) which is disrupted or becomes more
permeable through the action of inflammatory cytokines and/or
monocytes (30). The virus can reach the brain tissue through the
circumventricular organs (midline structures around the third
and fourth ventricles).

Once inside the CNS, SARS-CoV-2-related neuronal damage
can be induced either by direct cell invasion, mediated by a
virus protein binding to the endothelial acetylcholine receptor, or
by a cytokine-mediated dysimmune mechanism (31). Low-grade
inflammation in small vessels is also thought to play a role (32).
This is most likely facilitated by the inflammatory reflex and the
autonomic brainstem reflex (27, 33).

THE ROLE OF DYSAUTONOMIA IN THE
CLINICAL COURSE OF COVID-19

COVID-19 is especially life-threatening in the elderly and in
those with any of a variety of chronic medical conditions.
Pneumonitis and pulmonary dysfunction usually dominate the
clinical picture, but it is clear that COVID-19 significantly affects
other body organ systems, including the heart, gut, kidneys, and
brain (14, 34). One hypothesis contends that this heightened risk
may be caused by the development of dysautonomia (14).

It is not clear whether infection-associated dysautonomia is
the direct result of the action of the virus on autonomic nervous
system (ANS) structures or a consequence of postinfectious
immune-mediated processes (34, 35).

The ANS has traditionally been viewed as consisting of
the sympathetic nervous system, the parasympathetic nervous
system, and the enteric nervous system. Over the past century,
however, the neuroendocrine and neuroimmune systems have
come to the fore, prompting a change of nomenclature to
“extended autonomic system (EAS)”. Additional facets include
the sympathetic adrenergic system, for which adrenaline is
the key effector; the hypothalamic-pituitary-adrenocortical axis;
arginine vasopressin; the renin-angiotensin-aldosterone system,
with angiotensin II and aldosterone as the main effectors; and the
cholinergic anti-inflammatory and sympathetic inflammasome
pathways. A hierarchical brain network—the central autonomic
network—regulates these systems; embedded within it are
components of the Chrousos/Gold “stress system” (14).

Acute, coordinated alterations in homeostatic settings
(allostasis) can be crucial for surviving stressors. Allostatic
states however also increase wear and tear on both the effectors
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FIGURE 1 | Flow chart of the study.

and the target organs. Intense or long-term EAS activation in
the setting of chronically decreased homeostatic efficiencies
(dyshomeostasis), associated with aging and chronic disorders,
can prolong or intensify allostatic load, and eventually lower
the thresholds for a variety of vicious cycles (positive feedback
loops) that can be lethal. This phenomenon could explain the
close correlation of COVID-19 mortality with age and multiple
organ involvement in the disease (14).

Orthostatic intolerance, sudomotor, gastrointestinal and
pupillomotor disorders are described as common complications
of COVID-19, together with low tolerance for environmental
conditions, and sexual dysfunction (36). Figure 3 shows
the most prevalent symptoms of dysautonomia in severe
COVID-19 (27).

Autonomic dysfunction associated with SARS-CoV-2

infection occurs at different temporal stages. Acute autonomic
dysfunction is due to axonal damage or cardiopulmonary

involvement. Iatrogenic autonomic dysfunction is a side effect
caused by the drugs used and/or admission to the intensive care

unit (37). Finally, late dysautonomia occurs in the Post-COVID-

19 condition. Cardiovascular involvement, especially POTS, and
to a lesser extent neurogenic orthostatic hypotension (NOH),
has been more frequently observed in these latter patients. The
aspects that we consider to be the most important in each phase
are, in chronological order:

Acute-Subacute Autonomic Dysfunction
Among other things, activation of the EAS in the context of
acute COVID-19 increases myocardial oxygen consumption and
glucose levels, depletes energy, lowers thresholds for arrhythmias,
induces hypokalemia and hyponatremia, may promote renal
ischemic injury and intravascular thrombosis, and can induce a
form of stress cardiomyopathy. Imbalances in the inflammasome
system can contribute to cytokine storms (14, 34). All these
changes, facilitated by dysautonomia, generate a series of
manifestations at different levels. We summarize below the
neurologic, cardiovascular and respiratory manifestations.

Neurologic Manifestations
Like Post-Chikungunya syndrome in 2006, as well as other viral
infections and vaccines, SARS-CoV-2 could trigger an immune
response leading to Guillain Barré Syndrome (GBS) or other
neurologic manifestations of an autoimmune nature. By the end
of 2020, at least 220 patients with GBS or its variants following
COVID-19 infection have been reported. GBS subtype was
specified in 152 as acute inflammatory demyelinating neuropathy
(AIDP), 118 cases; acute motor axonal neuropathy (AMAN) in
13; acute motor and sensory axonal neuropathy (AMSAN) in 11;
Miller-Fisher Syndrome in 7; polyneuritis cranialis (PNC) in 2;
and the pharyngeal-cervical-brachial variant in 1. No cases of
Bickerstaff encephalitis were found (38).
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FIGURE 2 | Proposed COVID-19 pathways to the central nervous system. Adapted from the article by Yachou Y et al. (26).

It has been shown that antibodies to SARS-CoV-2 can cross-
react with peripheral myelin causing GBS (39). GBS usually
manifests with a florid picture of clinical dysautonomia
that includes the presence of hemodynamic instability,
urinary retention, gastroplegia, paralytic ileus or refractory
hypertension (40).

In most patients who develop GBS, the time gap between
COVID-19 infection and GBS is very short, which not
only complicates treatment, but could also result in a poor
prognostic clinical sign for development of severe autonomic
dysfunction (41) without early detection and appropriate
therapeutic management.

It is speculated that the pathogenesis of Miller Fisher
syndrome following SARS-CoV-2 infection is mediated by
neurotropism or aberrant activation of the immune system,
with production of circulating antibodies similar to GDq1B in
idiopathic Miller Fisher syndrome (42).

An increased incidence of acutemotor and sensory and axonal

neuropathy (AMSAN) and acute inflammatory demyelinating
polyneuropathy (AIDP) is also associated with COVID-19

infection, which may present with autonomic dysfunction,
especially in cases with greater axonal involvement (25, 43, 44).

Pupillary light reflex (PLR) is under the control of the
autonomic nervous system. Pupil dilation is innervated by
the sympathetic nervous system and pupil constriction by the
parasympathetic nervous system (45). Using PRL to assess
autonomic dysfunction in patients with acute COVID-19

infection varies according to the severity of clinical presentation.
In an observational, cross-sectional study, higher values of
pupillary dilation velocity and baseline pupil diameter were
reported in 20 Non-critically-ill COVID-19 patients in the acute
phase of the disease (31). Regarding critically-ill COVID-19
patients, a study in 18 patients with respiratory failure requiring
mechanical ventilation for >48 h did not find, after statistical
correction for possible confounders (i.e., sedation), significant
differences in PLR dynamics between SARS-CoV-2-infected
patients and those suffering from respiratory failure due to other
causes (46).

Cardiovascular Manifestations
Characteristics of cardiovascular involvement in patients with
COVID-19 may include myocardial lesions (myocarditis),
vasculitis-like syndromes, atherothrombotic manifestations and
autonomic dysfunction (47).

Maladaptive functions of the renin–angiotensin–aldosterone
system (RAAS) constitute another plausible pathophysiological
mechanism of SARS-CoV-2 infection–related tissue damage,
probably related to central autonomic network dysfunction
mentioned above. The RAAS is composed of a cascade of
regulatory peptides that participate in key physiological
processes in the body, including fluid and electrolyte balance,
blood pressure regulation, vascular permeability, and tissue
growth. Angiotensin-converting enzyme 2 (ACE2) has emerged
as a potent counter-regulator of the RAAS pathway. ACE2
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FIGURE 3 | Main dysautonomic changes in severe COVID-19 infection. Information extracted from the text and based on the article by Rangon et al. (27). Upward

and downward pointing arrows indicate increase and decrease, respectively. Double arrows indicate important variations. Recording hemodynamic changes and

detailed neurologic examinations are both standard clinical practice but are of the utmost importance in patients with COVID-19 and manifestations suggestive of

autonomic dysfunction.

cleaves angiotensin I into inactive angiotensin 1–9 and degrades
angiotensin II to angiotensin 1–7, which has vasodilatory,
antiproliferative, antifibrotic, anti-inflammatory and
sympathoinhibitory effects through binding to the Mas receptor
(14, 48–50). Angiotensin II promotes vasoconstriction, fibrosis,
hypertrophy and inflammation by binding to angiotensin II
receptor type 1 (AT1-R) and mediating sympathoexcitation.
Internalization of SARS-CoV-2 leads to inhibition of ACE2
activity and progressive depletion of membrane-bound ACE2,
with ACE1/ACE2 imbalance and increased angiotensin II (50).

Fluctuating blood pressure could be explained by acute
dysautonomia secondary to afferent baroreflex failure, a
syndrome characterized by very labile blood pressures in
which severe hypertensive crises alternate with hypotensive
episodes. This phenomenon has previously been observed as
a consequence of radiation therapy of the cervical region or
more rarely after surgery for Glomus caroticum or brainstem
tumors (51, 52). SARS-CoV-2 is known to have a tropism for the
medullary structures of the CNS, including the ventrolateral part
and the nucleus tractus solitarius, where the ACE2 receptor is
highly expressed (53).

The pathophysiology of COVID-19–related myocarditis is
thought to be a combination of direct viral injury and cardiac
damage due to the host immune response (54). In addition, toxic
effects of endogenous or exogenous catecholamines may show a
pattern of Takotsubo cardiomyopathy (14).

Cardiac arrhythmias, including new-onset atrial fibrillation,
heart block, and ventricular arrhythmias, are prevalent, occurring
in 17% of hospitalized patients and 44% of patients in the
ICU setting (34). Atrial arrhythmias are more common among
patients who required mechanical ventilation than among those
who did not (17.7 vs. 1.9%) (34).

Respiratory Manifestations
Impaired exercise tolerance is multifactorial and related to
cardiac sympathetic predominance, decreased response to
both sympathetic and parasympathetic stimuli that alter
cardiovascular and pulmonary function, muscle tone, and
impaired exercise tolerance (55). Airway sensory receptors
channel information to the central nervous system, which
regulates breathing and other parameters of lung function. This
degree of crosstalk is achieved through three distinct airway
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receptors: C-fiber receptors, rapidly adapting receptors, and
slowly adapting receptors. There are also deflation-activated
receptors (mechano-receptors) (55).

The parasympathetic nervous system regulates pulmonary
mucous production, airway smooth muscle tone, ciliary motility
and transport, mucous secretion, cough reflexes and also local
pulmonary inflammation and immunity (55).

SARS-CoV-2 infection-induced stress can activate the
sympathetic nervous system (SNS) leading to neurohormonal
stimulation and activation of pro-inflammatory cytokines
with further development of sympathetic storm. Sympathetic
overactivation in COVID-19 is correlated with increase in
capillary pulmonary leakage, alveolar damage, and development
of acute respiratory distress syndrome (56). However, it is
very likely that respiratory distress is not only the result of
inflammation and structural lung damage, but also of damage
caused by the virus to the respiratory centers of the brain, making
the management of these patients difficult (26).

The exact pathophysiological mechanism behind the “happy”
hypoxemia phenomenon is still unknown. Patients with severe
glossopharyngeal or vagus nerve lesions due to neck tumors or
congenital neuropathies have reported a disconnect between the
perceived degree of hypoxia and dyspnea after the development
of pneumonia. Possible damage to hypoxia-sensitive afferent
neurons in persons with COVID-19 could be due to cytokine
storm or the direct effect of SARS-CoV-2 on mitochondria
or nerve fibers. The brain magnetic resonance imaging (MRI)
findings and pathoanatomic studies in fatal cases of COVID-
19 are so far inconsistent in this regard and do not provide a
pathophysiological correlate to satisfactorily explain the absence
of dyspnea in these patients (57).

Other Manifestations
The incidence of gastrointestinal manifestations has ranged
from 12 to 61% in patients with COVID-19 (34). In a recent
meta-analysis of 29 studies, the pooled prevalence of individual
symptoms was reported to include that of anorexia (21%),
nausea and/or vomiting (7%), diarrhea (9%), and abdominal pain
(3%) (58).

In hospitalized COVID-19 patients, hypokalemia is frequent
and is also associated with increased mortality. Low serum
potassium may reflect increased aldosterone-mediated sodium/
potassium exchange in the kidneys, as well as endogenous
and exogenously administered epinephrine (14). ACE2
expression has been reported in the endocrine pancreas,
albeit inconsistently. Direct binding of SARS-CoV-2 to ACE2 on
β-cells could contribute to insulin deficiency and hyperglycemia.
The increase in counterregulatory hormones that contributes
to hepatic glucose production, decreased insulin secretion,
ketogenesis and insulin resistance (34) promotes hyperglycemia
in patients with COVID-19 at the time of hospitalization and has
been related to adverse prognosis (14).

Drug-Induced Autonomic Impairment
and/or ICU Admission
Cardiac arrhythmias, including atrial fibrillation and life-
threatening atrioventricular block, can be induced by
drugs used in the treatment of COVID-19. Among the

drugs used, especially at the beginning of the pandemic, are
chloroquine/hydroxychloroquine, macrolides (azithromycin)
and quinolones that can cause Torsades de Pointes-type
arrhythmias or other lethal arrhythmias as a potential
consequence of QT prolongation. Other drugs with
arrhythmogenic potential include other antiviral agents
such as lopinavir/ritonavir, favipiravir, immunomodulatory
treatments as tocilizumab, fingolimod, the anesthetic propofol,
the antiemetic domperidone, class IA and III antiarrhythmics
and the antipsychotic haloperidol, used in the initial phases of
the pandemic mainly to combat the so-called cytokine storm.
Drug combinations, especially QT-prolonging agents, used in
the early stages may have induced increased arrhythmogenicity
and secondary lethality (59). We suspect that all these events are
facilitated by disorders in the autonomic system.

Many critically ill COVID-19 patients often have previous
comorbidities, which together with acute comorbidities such as
electrolyte disturbances (hypokalemia, hypomagnesemia), fever,
systemic inflammation and excess autonomic lability contributes
to increased cardiovascular morbidity and mortality (47, 59).

Dysautonomia in Post-COVID-19 Condition
Dysautonomic symptoms observed after SARS-CoV-2 infection
are similar to those described after other viral infections such as
mumps, human immunodeficiency virus, hepatitis C, Epstein-
Barr, or Coxsackie type B virus (60, 61). In the severe acute
respiratory syndrome (SARS) epidemic of 2002–2004 [8,422
cases and 916 deaths (11% mortality)], one study reported that
40% of patients (67% female) still had chronic fatigue nearly
2 years after infection (62). Studies utilizing autonomic reflex
testing in post-SARS syndrome are scarce. One study of 14
patients (85% female) demonstrated an abnormal 30:15 ratio on
active stand testing in 4/14 (29%) patients at 6 months Post-
infection, with three reporting orthostatic intolerance (63). The
2012 coronavirus epidemic caused by theMiddle East respiratory
syndrome virus (MERS) was more limited and resulted in 2,468
cases and 851 deaths (34%mortality), but to our knowledge there
are no reports of autonomic impairment following MERS (1).

Approximately 2.5% of patients with infection suffered Post-
COVID-19 autonomic dysfunction (21, 22). In an observational
cohort study involving 205 patients with confirmed or probable
COVID-19 infection who met specific eligibility criteria
(hospitalization, life-limiting symptoms beyond 12 weeks,
desaturation <=95% on a Harvard step test, or chest pain
with electrocardiographic changes during acute illness) a high
prevalence (25%) of Post-COVID dysautonomia (64) was shown.
Dysautonomia was defined as a resting heart rate (HR) >75
bpm, HR increase with exercise <89 bpm, and HR recovery
<25 bpm 1min after exercise (64) and was associated with
objective functional limitations (reduced work rate and peak
oxygen consumption and a steeper VE/VCO2 slope), but was not
associated with subjective symptoms or limitations (64).

Orthostatic Intolerance Syndromes
It has been proposed that some symptoms of the post COVID-
19 condition may be related to a virus- or immune-mediated
disruption to the autonomic nervous system, resulting in
transient or long-term orthostatic intolerance syndromes. It is
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well established that some cases of autonomic disorders such
as NOH and POTS are associated with autoantibodies against
α-/β-adrenoceptors and muscarinic receptors (65–70).

When a healthy person stands upright, blood pools in the
pelvis and legs, reducing venous return to the heart. This is
detected by cardiac and aortic baroreceptors, which respond
by increasing sympathetic and adrenergic tone (mediated by
noradrenaline and epinephrine/adrenaline, respectively). This
results in tachycardia to compensate for the reduction in
stroke volume and is followed by vasoconstriction in the
splanchnic vascular bed, which increases the venous return to the
heart (69).

Orthostatic intolerance is the inability to tolerate the
upright posture because of symptoms of cerebral hypoperfusion
or sympathetic activation, or both, which are relieved by
recumbency (71). In orthostatic intolerance, the release of
epinephrine and norepinephrine causes pronounced tachycardia,
which is experienced as palpitations, breathlessness, and chest
pain. Very high catecholamine levels can lead to paradoxical
vasodilatation, sympathetic activity withdrawal and activation
of the vagus nerve, resulting in hypotension, dizziness and
ultimately, syncope (69).

Orthostatic intolerance syndromes include neurogenic
orthostatic hypotension, neuromediated syncope and postural
orthostatic tachycardia syndrome, and even orthostatic
hypotension and neurally-mediated syncope should be
considered. Since POTS appears to be the most common
autonomic phenotype among PACS patients (1), the explanation
of this feature has been expanded.

Neurogenic Orthostatic Hypotension (NOH)
Defined as a reduction of systolic blood pressure of at least
20 mmHg or a reduction in diastolic blood pressure of at
least 10 mmHg within 3min of active standing or head-
up tilt on a tilt table (71–73). Approximately one third of
persistent orthostatic hypotension is neurogenic (20). It is due to
reduced norepinephrine release from postganglionic sympathetic
nerves, resulting in defective vasoconstriction when assuming
the upright position. It is most frequent in patients with
diabetes mellitus, neurodegenerative disorders and small fiber
neuropathies (73).

Neuromediated Syncope (Particularly Vasovagal Syncope)
This is the most common cause of syncope. The median number
of episodes over a lifetime is 3, with a recurrence rate of 30% at
30 months (74).

Postural Orthostatic Tachycardia Syndrome (POTS)
POTS is a disorder in which patients frequently experience
symptoms of orthostatic intolerance in response to postural
stressors, despite autonomic reflexes that are generally
preserved (71). The main POTS mechanisms are impaired
sympathetically- mediated vasoconstriction in the lower limbs
(neuropathic POTS), excessive cardiac sympathoexcitation
response (hyperadrenergic POTS), volume dysregulation,
joint hypermobility, and physical deconditioning. POTS is
characterized by an increase of 30 bpm or more over baseline
or a sustained heart rate of more than 120 bpm, according

to current standing criteria, and symptoms associated with
orthostatic intolerance without a drop in blood pressure
(Appendix 1) (71). There may be an overlap between POTS and
other disorders, in particular, orthostatic hypotension, vasovagal
syncope, panic disorders, psychogenic pseudosyncope, chronic
fatigue syndrome, Ehlers–Danlos syndrome, mast cell activation
disorder and cardiac arrhythmias and should be considered in
complex cases (71, 75).

Symptoms of cerebral hypoperfusion that may occur
with any of the disorders of orthostatic intolerance include
lightheadedness, dizziness, presyncope, vision and hearing
changes, lower limb or generalized weakness, and cognitive
difficulties (often vaguely termed brain fog). Symptoms of
sympathoexcitation that distinguish POTS from orthostatic
hypotension include palpitations, chest pain, dyspnea,
tremulousness, sweating, pallor, nausea, diarrhea, and coldness
of the extremities (Appendix 2) (76).

The affected population is usually young and predominantly
female (77). Prevalence estimates are imprecise and there are
no European data available to our knowledge. In the USA,
estimates range from 0.2 to 1.0% in the general population. The
onset of POTS may be precipitated by typical immunological
stressors such as viral infection (20–50% of patients), frequently
of the upper respiratory or gastrointestinal tract, vaccination (70),
trauma, pregnancy, surgery, cardiovascular deconditioning (78)
or even after a period of intense psychosocial stress. However,
in a considerable number of patients with POTS, there is
no clear identifiable trigger (79). Cardiac symptoms include
chest pain, palpitations, exercise intolerance and orthostatic
intolerance. More than 90% of patients with POTS have at least
one gastrointestinal (GI) symptom, with nausea, abdominal pain,
and bloating being the most common (80). Other symptoms that
frequently accompany POTS include fatigue, “mental confusion”,
headache, temporomandibular joint disorder, fibromyalgia and
sleep disturbances (81) and others listed by organ system in
Appendix 3. It is recommended that all patients presenting with
signs or symptoms of POTS should be evaluated to rule out the
diagnosis of POTS (7, 82).

These syndromes may be exacerbated by hypovolemia
resulting either from the initial infection or physical
deconditioning following prolonged bed rest in the intensive
care unit; prolonged bed rest leads to reduced cardiac output
and stroke volume, hypovolemia, baroreflex dysfunction and
decreased sympathetic responsiveness (69).

Other Symptoms
Other more Non-specific symptoms such as palpitations,
tachycardia during mild exertion, “resting heart rate increase”
(11%), chest pains/discomfort (16%), labile blood pressure,
new-onset hypertension (1%), gastrointestinal symptoms (e.g.,
abdominal pain, bloating, nausea/vomiting (16%), gastroparesis,
constipation or loose stools), sleep disorders (11%), flushing
(5%), peripheral vasoconstriction, sweating abnormalities (17%),
temperature intolerance and even unexplained low-grade fever
are also thought to be due to autonomic dysfunction (1, 83)
and their presence in any person after SARS CoV2 infection
should prompt a thorough examination for possible autonomic
dysfunction (69).
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Sinus tachycardia, episodic sinus bradycardia and sinus pauses
have been described as manifestations of autonomic dysfunction
in patients with COVID-19 infection (84). Pupillary responses
were impaired in patients recovering from COVID-19 vs. healthy
controls, showing a larger resting-state pupil diameter and higher
pupil contraction velocity, and lower values of dilatation latency
and duration of pupil constriction (45).

DETECTION AND DIAGNOSIS OF
DYSAUTONOMIA IN COVID-19

A very detailed anamnesis with a thorough medical history
is essential to obtain all the necessary information from
the patient. Therefore, questions should be asked about
different aspects. Frequent comorbidities include migraine
and other headaches, inappropriate sinus tachycardia, visceral
hypersensitivity, gastrointestinal dysmotility, chronic fatigue,
insomnia, fibromyalgia, and often autoimmune diseases
(71, 85). The histories of SARS-CoV-2 survivors with persistent
autonomic dysfunction may reveal frequent episodes of fainting,
dizziness, lightheadedness, and/or palpitations, revealing
underlying hypotensive susceptibility or prior orthostatic
intolerance syndrome (85, 86). Unexplained dyspnea, fatigue,
chest pain, persistent dizziness, diarrhea, recurrent presyncope
episodes, anxiety, panic attacks with low-threshold emotional
triggers or symptoms of irritable bowel syndrome, among
others, have been observed (69, 71). These patterns may be
explained by autonomic instability and may be a consequence
of deconditioning, hypovolemia and immune-mediated or viral
neuropathy (69). Although the exact etiology is unknown, it is
thought that patients with dysautonomia have a less favorable
body composition compared to those without dysautonomia
(higher body mass index and waist circumference) (64).

The quantity and diversity of the symptoms mentioned are
the reason why, among the proposed Neuro-PASC diagnostic
criteria, orthostatic intolerance and cardiovascular, respiratory,
gastrointestinal, and genitourinary manifestations are regarded
as significant and related to autonomic dysfunction (2).

In Post-COVID patients with suspected dysautonomia, the
Composite Autonomic Symptom Scale 31 (COMPASS-31)

questionnaire is a sensitive tool to test the likelihood of
autonomic dysfunction. This questionnaire has been previously
applied to COVID-19 survivors, who showed significantly higher
scores than controls, with an optimal cut-point for ruling out
cardiovascular autonomic dysfunction of 13.25 (85).

Parameters related to heart rate variability and blood

pressure in sitting and standing positions seem to be another
key element in the detection of dysautonomia in patients with
COVID-19 (20). Sinus tachycardia, episodic sinus bradycardia,
and sinus pauses have been described as autonomic dysfunction
manifestations in patients with COVID-19 infection (84).Table 1
offers a simple guideline for monitoring blood pressure and heart
rate in this context.

Blood tests (including complete blood count, renal function,
B-type natriuretic peptide, electrolytes, thyroid stimulating
hormone, and morning cortisol), resting 12-lead ECG, and the
6-min walking test should be routinely evaluated (85).

Holter ECG monitoring, 24 h ambulatory blood pressure

monitoring, cardiothoracic imaging (chest X-ray, chest
Computed Tomography, echocardiography, and cardiac

magnetic resonance) and exercise testing are also invaluable
diagnostic tools for the study of Post-acute sequelae of SARS-

CoV-2 and COVID-19 complications (61, 85). It has been

suggested that remote electrophysiological monitoring or long-
term telemonitoring could be a very useful tracking tool after

hospital discharge, especially in patients who have been critically

ill (47, 59).
Active standing and/or head-up tilt tests are very useful

for evaluating PASC patients, especially in individuals with
inappropriate/orthostatic tachycardia, unexplained syncope, or

syndromes of orthostatic intolerance. Other autonomic function
tests include the Valsalva maneuver, deep breathing, and sweat

function testing (85). Sudomotor function is an indirect index
of sympathetic cholinergic Non-myelinated C-fiber activity,
since sweat glands lack parasympathetic innervation (31). It
can be assessed using Sudoscan, which allows estimation of
electrochemical skin conductance (ESC) (31, 87). Abnormal ESC
results suggest autonomic small fiber neuropathy and require
confirmation with other validated techniques of sudomotor
function, such as QSART testing and skin biopsy (1).

TABLE 1 | Interpretation of blood pressure and heart rate measurements in the event of clinical suspicion of orthostatic hypotension (20) and after differential diagnosis

with vertigo, postural instability, ataxia, weakness of leg muscles, and osteoarthritis with weight-bearing musculoskeletal pain.

After 5′ supine

position

1st measurement If BP: >140/90 mmHg → Probable NOH

1′ standing 2nd measurement If BP: ↓c+20/10 mmHg → hTO

[If BP: ↓ +30/15 mmHg → assess whether MSA phenotype exists]

2′-5′ standing 3rd−4th

measurements

In case of high clinical suspicion without objective proof of hTO in the

measurements, carry out several repetitions in this range until:

- BP: ↓ +20/10 mmHg → hTO

[if also not so pronounced HR ↑ → NOH]

10′ standing

(or head up tilt)

5th measurement Sustained HR ↑+30 lpm* without hTO → POTS

hTO, Orthostatic hypotension; NOH, neurogenic orthostatic hypotension; BP, blood pressure (mmHg); MSA, multiple system atrophy; HR, heart rate; POTS, Postural orthostatic

tachycardia syndrome; ↓, decrease; ↑, increase.

*For individuals between 12 and 19 years old, ↑+40 lpm is required.
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FIGURE 4 | General indications for examining chronic symptoms described after COVID-19 (61, 75, 85). DD, Differential diagnosis; ANAs, antinuclear antibodies; BP,

Blood pressure; h, hours; ECG, electrocardiogram; min, minutes; HT, Hypertensive; hT, Hypotensive; HR, Heart Rate; NT-proBNP, N-terminal prohormone of brain

natriuretic peptide; CT, Computed Tomography; POTS, postural orthostatic tachycardia syndrome; COMPASS-31, Composite Autonomic Symptom Scale 31

questionnaire; NA, Noradrenaline; ADH, Vasopressin.

A feature of PASC patients with POTS-like symptoms
is a high prevalence of specific circulating autoantibodies,
including G-protein-coupled receptor (GPCR) antibodies (such
as adrenergic, muscarinic and angiotensin II type-1 receptors)
and the ganglionic neuronal nicotinic acetylcholine receptor
(g-AChR) (75). Other recognized autoantibodies in POTS
include circulating anti-nuclear, anti-thyroid, anti-NMDA-type
glutamate receptor, anti-cardiac protein, anti-phospholipid, and
Sjögren’s antibodies (61, 71, 75, 85). Although neither sensitive
nor specific, autoantibody testing can be helpful in selected cases.
Specific tests for mast cell activation syndrome may also be
considered in PASC patients with flushing episodes, frequent
headaches, and persistent gastrointestinal symptoms (85).

Schematic summary of the diagnostic management of a
suspected Post-COVID condition is shown in Figure 4.

POSSIBLE TREATMENTS FOR
DYSAUTONOMIA IN COVID-19

Cardiovascular Dysautonomic Involvement
When there is cardiovascular dysautonomia, the following order
is recommended (55, 85, 88).

1/Physical reconditioning:

◦ Progressive aerobic exercise training programs.
◦ Use of compression accessories.

◦ Water and salt intake.
◦ Drinking water before getting up in the morning.
◦ Sleeping with the head raised in bed.
◦ Avoid situations that may exacerbate symptoms (sleep

deprivation, exposure to heat, alcohol intake or
large meals).

RECOMMENDATION: At the onset of prodromal symptoms
and to delay/prevent vasovagal syncope, perform physical
maneuvers such as crossing legs, tensing muscles and squatting.

2/ In case of insufficient or complementary Non-
pharmacological measures in patients with severe refractory
symptoms (Table 2).

Because of the tendency for blood pressure to fluctuate,
as explained above, it is important to maintain a euvolemic
state and avoid excessive fluid administration during episodes
of hypotension, with gradual titration of vasopressors to
avoid excessive blood pressure, and to use short-acting
antihypertensive drugs in hypertensive crises (89).

Postural Orthostatic Tachycardia
Syndrome
There are some more specific management protocols available
to help treat POTS. The aspects mentioned below represent
a summary of the nonpharmacologic and pharmacologic
therapeutic options available for the management of POTS. For
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TABLE 2 | Therapeutic options in case of insufficient non-pharmacological

measures or as a supplement in patients with serious refractory symptoms.

Volume expanders Fludrocortisone, desmopressin, and

intravenous saline

Heart rate inhibitors Propranolol, ivabradine, and

pyridostigmine

Vasoconstrictors Midodrine, octreotide,

methylphenidate, and droxidopa

Sympatholytic drugs Clonidine and methyldopa

more detail, it is advisable to consult documents that address
these issues in greater depth (90, 91).

• Non-pharmacologic measures: There is no Class I
recommendation. The Class IIA recommendation is based
on physical training to avoid chronicity of symptoms.
Indications based on the management of orthostatic
intolerance syndromes, such as educating the patient about
the pathology, simple isometric, aerobic and resistance
exercises, ensuring fluid replacement (2–3 liters of water
per day, avoiding caffeine and alcohol) and one or two
additional teaspoons of salt per day are maintained (Class
IIB), as well as moving carefully from a lying or sitting to a
standing position and avoiding exacerbating factors such as
prolonged standing, hot environments and dehydration, using
waist-high compression garments and assessing the need for
fluid expanders if hypovolemia is considered to be a dominant
symptom, among others (69, 90). Long-term repeated saline
infusions are not recommended (78).

• Pharmacologic measures: Midodrine, beta-blockers,
fludrocortisone, pyridostigmine, clonidine and alpha-
methyldopa (Class IIB) (69). The only drugs that have
demonstrated benefits in randomized trials are propranolol
and pyridostigmine (71). Since there is no good evidence
in this regard, polypharmacy is frequent; the overall
effects of drug therapy however are modest. Likewise, it
is recommended to discontinue the intake of noradrenaline
reuptake inhibitors such as duloxetine, nortriptyline,
and tapentadol. It should also be considered whether
the indication of fludrocortisone, midodrine, clonidine
methyldopa or propranolol is necessary, bearing in mind that
these drugs are not usually very well tolerated (69, 91).

A schematic proposal for the management of orthostatic
intolerance is set out in Table 3.

Other Therapeutic Options
Other therapeutic options include Non-invasive
neuromodulation (especially transcranial direct current
stimulation, repetitive transcranial magnetic stimulation and
vagus nerve stimulation) which could be used in patients with
COVID-19 and autonomic dysfunction (92). It seems that it may
on the one hand reduce the impact of the infection by stimulating
regions involved in the regulation of systemic anti-inflammatory
and/or autonomic responses, prevent neuroinflammation and
aid recovery of breathing, and, on the other, improve the

TABLE 3 | Therapeutic proposal for orthostatic intolerance and intended effects

(71, 73).

Treatment Mechanism

Non-pharmacologic

Increase water and sodium intake Avoids hypovolemia

Compression and physical

countermaneuvers

Reduces venous pooling

Physical exercise training, including

gradual resistance and lower

extremity resistance training

Improves physical deconditioning and

reduces venous pooling

Pharmacologic

Propranolol: 10mg 1–3 times/day Reduces standing heart rate and

improves orthostatic symptoms,

especially in hyperadrenergic patients

with POTS

Midodrine: 2.5–15mg 2–3 times/day

(3–4 h before going to bed)

Reduces venous pooling and

orthostatic hypotension, especially in

neuropathic patients with POTS.

Patients should be advised not to lie

flat for at least 4 h after any dose of

midodrine to avoid supine

hypertension

Pyridostigmine: 30–60mg 2–3

times/day

Reduces orthostatic tachycardia and

improves chronic symptoms without

worsening supine hypertension. Use

should be limited in case of diarrhea,

abdominal cramps, pain, nausea,

urinary frequency and urgency

Fludrocortisone: 0.05–0.2mg

once/day

The effect only lasts 1–2 days, avoid

prolonged use due to renal and

cardiac involvement

Ivabradine: 5–10mg Reduces heart rate without affecting

blood pressure

IV fluid therapy (saline) Improves symptoms quickly although

the effect lasts a short time. It is

considered a bridging therapy

Others:

- Droxidopa 100–600mg 3 times/day

(3–4 h before bedtime)

- Atomoxetine 10–18mg 2 times/day

symptoms of musculoskeletal pain, systemic fatigue, physical
and cognitive rehabilitation after the disease, even if it has been
critical, as well as treat the distress generated by the disease (92).

KEY POINTS

• Dysautonomia, present in at least 2.5% of COVID-19 patients,
is clinically similar to dysautonomia secondary to other viral
infections. The prevalence of Post-COVID dysautonomia
could rise to 25% in those patients who met specific eligibility
criteria (hospitalization, life-limiting symptoms beyond 12
weeks and so on).

• Potentials mechanism of autonomic impairment caused by
SARS CoV2 are based on direct tissue damage, immune
dysregulation, hormonal disturbances, elevated cytokine levels
due to immune reaction leading to chronic inflammation,
and persistent low-grade infection. The EAS with allostasis

Frontiers in Neurology | www.frontiersin.org 12 May 2022 | Volume 13 | Article 88660933

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Carmona-Torre et al. Narrative Review in COVID-19-Induced Dysautonomia

and dyshomeostasis may partially explain the mortality and
multi-organ involvement in COVID-19 patients.

• The major socioeconomic impact of symptom persistence
after COVID-19 infection stems from fatigue, autonomic and
neurohemodynamic involvement, hence the need for early
intervention in these areas.

• Dysautonomic involvement secondary to COVID-19 may
be acute-subacute, caused by drugs and/or ICU admission,
and chronic, as in the Post-COVID-19 condition, due to
orthostatic intolerance syndromes of autoimmune origin.

• A careful neurologic assessment is necessary in any patient
with findings compatible with autonomic dysfunction
following SARS CoV-2 infection.

• Protocols for the diagnostic and therapeutic management of
autonomic dysfunction are mainly aimed at avoiding triggers
of orthostatic intolerance by means of pharmacologic and
Non-pharmacologic measures.

LIMITATIONS

Some limitations need to be acknowledged in the interpretation
of our results. First, this is not a systematic review. We
limited our scope to selected articles which we believed could
be the most representative ones. Secondly, we relied on
PubMed only for our search strategy. Among the strengths
of our study, we analyzed an important quantity of articles
highlighting the most relevant research on COVID-19
and dysautonomia.

CONCLUSION

Two years after the declaration of the COVID-19 pandemic,
patients affected by this disease continue to manifest patterns of
neurological involvement attributable to autonomic dysfunction.
This could be the result of a multifactorial etiology deriving
from physical deconditioning after time spent isolated in home,
hospital wards or intensive care units, hypovolemia, virus-
mediated neuropathy, or an immune response secondary to
infection. One of the consequences is that a high percentage
of patients with COVID-19 do not make a full return
to work due to residual symptoms. The socioeconomic
impact is considerable and could be significantly reduced
with an appropriate diagnostic and therapeutic protocol for
the underlying autonomic dysfunction. Considering the wide
dissemination of COVID-19 worldwide and the extraordinary
dissemination of the SARS-CoV2 omicron variant and its
emerging subvariants, it would appear to be imperative to
adopt measures that, in addition to containing the spread of
the virus, also help improve the acute management of infected
patients and prevent and/or reduce the long-term sequelae of
the infection.

Among these measures, one would be improving access to
autonomic testing for early diagnosis of autonomic dysfunction.
This would allow early treatment, reducing the associated
morbidity and mortality and thus containing its personal and
socioeconomic impact.

At the same time, the sheer scale of the infection and of
the Post-COVID-19 syndrome presents a unique opportunity
to add to our knowledge and understanding of the specific
mechanisms responsible for orthostatic intolerance, POTS-like
symptoms, and their duration. It is particularly noteworthy that
the comprehension of the mechanisms of self-immunity could
generate new pathophysiological hypotheses applicable to other
disorders with which could share clinical similarities such as
chronic fatigue syndrome or fibromyalgia. This improvement in
awareness may turn out to help ameliorate diagnostic accuracy
in these entities, currently very diffuse and poorly managed.
Hence the value of studying in depth the clinical pictures
found in patients with the Post-COVID-19 syndrome, especially
Post-COVID-19-POTS condition, for which a special effort is
required in terms of clinical care and resources devoted to
their research.

A better recognition of dysautonomia will help to improve
the management of COVID-19 in all its phases, providing
information for possible diagnostic and therapeutic tools
applicable not only to these patients, but also to those
affected by other pathologies with physiopathological
similarities (other viral conditions, Alzheimer’s disease,
Parkinson’s disease, and so on). We therefore recommend
further studies to explore the prevalence, pathophysiology,
clinical features, and treatment approach in patients with
COVID-19-related dysautonomia.
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Background: The clinical presentation of COVID-19 suggests altered breathing control

- tachypnoea, relative lack of dyspnoea, and often a discrepancy between severity of

clinical and radiological findings. Few studies characterize and analyse the contribution

of breathing drivers and their ventilatory and perceptual responses.

Aim: To establish the prevalence of inappropriate ventilatory and perceptual response in

COVID-19, by characterizing the relationships between respiratory rate (RR), dyspnoea

and arterial blood gas (ABG) in a cohort of COVID-19 patients at presentation to hospital,

and their post-Covid respiratory sequelae at follow-up.

Methods: We conducted a retrospective cohort study including consecutive adult

patients admitted to hospital with confirmed COVID-19 between 1st March 2020 and

30th April 2020. In those with concurrent ABG, RR and documented dyspnoea status

on presentation, we documented patient characteristics, disease severity, and outcomes

at hospital and 6-week post-discharge.

Results: Of 492 admissions, 194 patients met the inclusion criteria. Tachypnoea

was present in 75% pronounced (RR>30) in 36%, and persisted during sleep. RR

correlated with heart rate (HR) (r = 0.2674), temperature (r = 0.2824), CRP (r = 0.2561),

Alveolar-arterial (A-a) gradient (r= 0.4189), and lower PaO2/FiO2 (PF) ratio (r=−0.3636).

RR was not correlated with any neurological symptoms. Dyspnoea was correlated with

RR (r = 0.2932), A-a gradient (r = 0.1723), and lower PF ratio (r = −0.1914), but not

correlated with PaO2 (r = −0.1095), PaCO2 (r = −0.0598) or any recorded neurological

symptom except for altered consciousness. Impaired ventilatory homeostatic control

of pH/PaCO2 [tachypnoea (RR>20), hypocapnia (PaCO2 <4.6 kPa), and alkalosis

(pH>7.45)] was observed in 29%. This group, of which 37% reported no dyspnoea,

had more severe respiratory disease (A-a gradient 38.9 vs. 12.4 mmHg; PF ratio 120 vs.

238), and higher prevalence of anosmia (21 vs. 15%), dysgeusia (25 vs. 12%), headache

(33 vs. 23%) and nausea (33 vs. 14%) with similar rates of new anxiety/depression (26

vs. 23%), but lower incidence of past neurological or psychiatric diagnoses (5 vs. 21%)
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compared to appropriate responders. Only 5% had hypoxia sufficiently severe to drive

breathing (i.e. PaO2 <6.6 kPa). At 6 weeks post-discharge, 24% (8/34) showed a new

breathing pattern disorder with no other neurological findings, nor previous respiratory,

neurological, or psychiatric disorder diagnoses.

Conclusions: Impaired homeostatic control of ventilation i.e., tachypnoea, despite

hypocapnia to the point of alkalosis appears prevalent in patients admitted to hospital

with COVID-19, a finding typically accompanying more severe disease. Tachypnoea

prevalence was between 12 and 29%. Data suggest that excessive tachypnoea is

driven by both peripheral and central mechanisms, but not hypoxia. Over a third of

patients with impaired homeostatic ventilatory control did not experience dyspnoea

despite tachypnoea. A subset of followed-up patients developed post-covid breathing

pattern disorder.

Keywords: ventilation, impaired homeostasis, COVID-19, breathing pattern disorder, dyspnea, post-covid

breathing pattern dysfunction

INTRODUCTION

Early descriptive studies of COVID-19 clinical presentations
found tachypnoea, a relative lack of dyspnoea, and often a
discrepancy between severity of respiratory clinical signs and
radiological findings. Some have described the combination of
phenomena as “silent” or “happy” hypoxemia (1–4), inferring
dysfunctional regulatory breathing mechanisms.

However, data on the nature of breathing control in COVID-
19 are lacking. A few previous studies investigated blood gas
analysis in hospitalized COVID-19 patients (5–8), but none
concurrently assessed arterial blood gases (ABG), respiratory rate
and perception of dyspnoea, and therefore could not directly
comment on appropriateness of physiological and breathing
perception responses, which we attempt to do here.

Various physiological mechanisms control breathing.
Hypercapnia/acidosis drives automatic breathing in a negative
feedback loop, while hypoxia only drives breathing when severe
(i.e., PaO2 < 6.6 kPa) (9–11). Additional drives include thermal,
emotional, somatosensory, pulmonary afferents, wakefulness-
related signals, and conscious volition. Their neural substrates
span all levels of the neuraxis, from the periphery to rostral brain
areas, overlapping many areas that process smell, taste, emotion,
and arousal.

Neurological symptoms, predominantly anosmia, dysgeusia
and altered mental status, occur in many COVID-19 patients
(12). Accumulating evidence points toward infection of vascular
and immune cells, but not CNS neurons, particularly not those of
the brainstem and cerebellum (13) – areas where major breathing
control sites lie, raising the possibility of altered breathing control
during COVID-19 infection due to direct injury to ancillary
support areas by the virus.

In this study, our aim was to establish the prevalence of
inappropriate ventilatory and perceptual responses in COVID-
19, by characterizing breathing responses during acute infection
through investigating the relationship between respiratory rate
(RR), dyspnoea and ABG in COVID-19 patients at presentation

to hospital, their relationship to neurological symptoms and
autonomic control dysfunction, and their post-Covid respiratory
sequelae at follow-up.

METHODS

We retrospectively collected data from electronicmedical records
(EPIC, Milky Way, Verona, WI, USA) of consecutive patients
with a nasopharyngeal PCR-positive COVID-19 diagnosis who
presented to the Emergency Department (ED) of University
College Hospital, London between 1st March 2020 and 30th
April 2020. Excluded patients were those transferred from
another hospital, those without ABG results within 4 h of
presentation, undocumented dyspnoea status, and patients who
were immediately intubated on arrival. All patients had a
respiratory presentation of COVID-19 as their main reason
for admission. There were no secondary diagnoses, but co-
morbidities are listed in Table 2. Clinical data, including RR,
HR and ABGs were part of the ED initial evaluation and
used for analysis. Dyspnoea status was assigned as positive
if any of the following were documented by the clerking
clinician: dyspnoea, breathlessness, shortness of breath, air
hunger, respiratory discomfort or respiratory distress. Arterial
blood samples were processed on ABL90 FLEX gas analysers
(Radiometer, Crawley, UK).

Physiological breathing response was considered
inappropriate (“Inappropriate Responders”) in those who were
simultaneously tachypnoeic (RR>20), hypocapnic (PaCO2<4.6
kPa) and alkalotic (pH>7.45) (15). Otherwise, the response
was considered appropriate (“Appropriate Responders”). No
patients had RR<12, which would suggest a deficient respiratory
response. Hypoxia was defined as PaO2 <10 kPa. Hypoxia
sufficient to stimulate respiratory drive was defined as PaO2 <6.6
kPa. The breathing pattern assessment tool (BPAT) provides a
validated score used to grade the severity and make the diagnosis
of breathing pattern disorder (BPD), with a BPAT score of 4
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or more corresponding to a diagnosis of BPD (16). BPD was
assessed using the BPAT for patients who attended face-to-face
follow-up appointments.

Correlations between continuous variables were evaluated
using Pearson’s correlation and described using median and
inter-quartile range (IQR); mortality rates between groups were
compared using the χ2 test. Data were analyzed using Prism 8
(GraphPad, San Diego, CA, USA). The study was approved by the
Westminster Research Ethics Committee (NHS Health Research
Authority, IRAS no: 284088).

RESULTS

Of 492 patients admitted with COVID-19 during the study
period, 194 had concurrent ABG, RR and documented dyspnoea
status, and were therefore included in the study.

Tachypnoea was common and pronounced: 75% (146/194)
exhibited RR>20 breaths per minute (bpm), RR>25 bpm in
57% (69/194), RR>30 bpm in 36% (42/194), RR>35 bpm in
22% (42/194), and RR>40 bpm in 8%(16/194) (Figure 1A).

RR at 1 and 2 h following arterial blood sampling varied little
(average standard deviation: 2.8 bpm). Notably, tachypnoea was
maintained with little variation both day and night over the 96 h
following admission, which included sleep periods (Figure 1B).
No patients in our cohort had RR<12, which would indicate
depressed respiratory drive.

RR correlated with HR (r = 0.267, p < 0.001), temperature
(r = 0.282, p < 0.001), CRP (r = 0.256, p < 0.001), A-a
gradient (r = 0.419, p < 0.001), and inversely correlated with
PF ratio (r = −0.363, p < 0.001). RR did not correlate with
mortality (r = 0.0319, p = 0.692), mean arterial pressure (MAP)
(r-0.113, p = 0.115), anosmia, dysgeusia, headache, dizziness,
altered consciousness, nausea, seizure, new anxiety or depression
(Table 1). There was no shift in the oxygen dissociation curve in
our cohort (Figure 1E).

Dyspnoea was present in 44% (86/194) of all patients, 48%
(48/101) of those with hypoxia (PaO2 < 10 kPa), but only 33%
(4/12) of those with hypoxia sufficient to stimulate respiratory
drive (PaO2 < 6.7kPa) (Figures 1C,D). Dyspnoea was weakly
correlated with RR (r = 0.293, p < 0.001), temperature (r =

FIGURE 1 | Panel (A) shows PaCO2 versus RR. Blue dots indicate patients with dyspnoea; red squares, patients with no dyspnoea. Dashed green lines indicate

boundaries of normocapnia (4.6kPa and 6.0kPa). Dashed orange line indicates severe hypoxia at 6.6kPa, a level sufficient to drive ventilation. Panel (B) shows the

4-hourly RR (median and interquartile range) over the first 96 hours since admission. Gray-shaded boxes indicate night. Panels (C) show PaCO2 versus PaO2 and

(D)PaCO2 versus RR. Panel (E) shows the oxygen dissociation curve (ODC) of Covid-19 patients in this cohort plotted against standard human ODC data from (14),

showing no shift.
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TABLE 1 | Relationship between neurological, autonomic, biochemical variables and RR and dyspnea.

RR (Pearson’s correlation) Dyspnea status

r-value p-value Dyspnea (n = 86) (%) No Dyspnea (n = 108) (%) p-value (Chi-square)

Neurological symptoms

Anosmia 0.055 0.4446 15 (17) 12 (11) 0.2057

Dysgeusia 0.041 0.5735 18 (21) 13 (12) 0.0878

Headache −0.009 0.9025 24 (28) 27 (25) 0.6477

Dizziness −0.058 0.4238 3 (3) 7 (6) 0.3489

Nausea 0.025 0.7270 20 (23) 20 (19) 0.4178

Altered consciousness −0.114 0.1128 3 (3) 25 (23) 0.0001

Seizure 0.109 0.1309 1 (1) 2 (2) 0.6992

Psychiatric (New anxiety or new depression) −0.043 0.5510 21 (24) 26 (24) 0.9556

RR (Pearson’s correlation) Dysnea (Pearson’s correlation)

r-value p-value r-value p-value

Autonomic variables

HR 0.2674 0.0002 0.1300 0.0708

MAP 0.1134 0.1153 0.1319 0.0668

Temperature 0.2824 <0.0001 0.1673 0.0198

RR n/a n/a 0.2932 <0.0001

Respiratory variables

pH −0.0568 0.4312 0.0988 0.1703

PaCO2 −0.1242 0.0844 −0.0598 0.4078

PaO2 −0.1142 0.1128 −0.1095 0.1284

PF −0.3636 <0.0001 −0.1914 0.0075

A-a gradient 0.4189 <0.0001 0.1723 0.0163

Laboratory variables

Hb 0.0838 0.2489 0.1492 0.0395

Lym 0.1316 0.088 −0.0918 0.2353

CRP 0.2561 0.0008 0.1232 0.1106

D-dimer 0.1556 0.1111 0.1979 0.042

LDH 0.1688 0.0666 0.1668 0.0698

Ferritin −0.0172 0.8471 0.0208 0.8154

Mortality 0.0319 0.692 −0.0412 0.5686

Bold values meant statistically significant.

0.167, p = 0.020), A-a gradient (r = 0.172, p = 0.016), Hb
(r = 0.149, p = 0.040) and D-dimer (r = 0.198, p = 0.042).
Dyspnoea was not correlated with pH (r = 0.099, p-0.170),
PaCO2 (r =−0.060, p= 0.408) or PaO2 (r=−0.110, p= 0.128),
nor mortality (r = −0.041, p = 0.569). Dyspnoea was weakly
inversely correlated to PF ratio (r = −0.191, p = 0.008). Except
for altered consciousness (p=0.002), dyspnoea was not correlated
with other neurological symptoms.

Inappropriate responders accounted for 29% (57/194).
Respiratory alkalosis was associated with more severe respiratory
disease; higher FiO2 (0.60 vs. 0.32, p < 0.001), greater A-a
gradient (38.9 vs. 12.4 mmHg, p = 0.002), and lower PF ratio
(120 vs. 238, p = 0.002).Markers of inflammation were also
higher in this group [LDH (498 vs. 386 IU/L, p < 0.001),
Ferritin (1,430 vs. 948 ug/L, p = 0.018)], but no significant
difference in mortality was observed (30 vs. 40%, p = 0.195).
The prevalence of severe hypoxia was low and similar in both

groups (5 vs. 4%). However, inappropriate responders had higher
rates of supplemental oxygen use (84 vs. 66%) indicating a higher
level of underlying pre-hospital hypoxia that was immediately
corrected on admission. Anosmia (21 vs. 11%), dysgeusia (25
vs. 12%), headache (33 vs. 23%), nausea (33 vs. 14%) were
more prevalent in inappropriate responders. There were no
differences in new anxiety or depression (26 vs. 23%), and
past neurological or psychiatric diagnoses were less prevalent (5
vs. 21%) in inappropriate responders. The two groups did not
differ significantly in age, sex, BMI, ethnicity, cardiovascular and
respiratory co-morbidities. Though inappropriate responders
had higher rates of dyspnoea (63 vs. 36%), 37% did not report
dyspnoea (Table 2).

Of the total cohort, 38% (74/194), had a 6-week follow-
up after hospital discharge, of which 34 (17.5%) were face-to-
face consultations which allowed full clinical assessment. A new
diagnosis of breathing pattern disorder (BPD) wasmade in 23.5%
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TABLE 2 | Characteristics of appropriate vs inappropriate responders.

Characteristics Appropriate Responders Inappropriate Responders (Tacyhpnoeic RR>20, p-value

[n = 137] hypocapnic PaCO2<4.6kPa alkalotic pH>7.45) [n = 57]

Age (median + IQR) 68 (51–80) 63 (50–74) 0.0708

Female (%) 47 (34) 17 (30) 0.6166

BMI (median + IQR) 26.7 (22.8–30.6) 28.0 (25.4–31.6) 0.0682

Ethnicity (%)

White 73 (53) 33 (58) 0.6355

Black 19 (14) 10 (18) 0.5137

Asian 26 (19) 6 (11) 0.2025

Other Ethnic Background 7 (4) 6 (3) 0.2082

Unknown 12 (9) 2 (4) 0.2401

Co-morbidities (%)

Cardiovascular Disorders 85 (62) 41 (72) 0.2475

Respiratory Disorders 43 (31) 12 (21) 0.1648

Asthma 22 (16) 5 (9)

COPD 14 (10) 2 (4)

ILD 2 (1) 2 (4)

OSA 2 (2) 4 (1)

Other respiratory disorders 2 (1) 1 (2)

Neurological/Psychiatric Disorders 29 (21) 3 (5) 0.0055

Other co-morbidities 59 (43) 14 (25) 0.0222

Neurological/Psychiatric Symptoms (%)

Anosmia 15 (11) 12 (21) 0.0719

Dysgeusia 17 (12) 14 (25) 0.0514

Headache 32 (23) 19 (33) 0.1567

Dizziness 6 (4) 4 (7) 0.4835

Nausea 21 (14) 19 (33) 0.0065

Altered consciousness 24 (18) 4 (7) 0.0726

Seizure 3 (2) 0 (0) 0.5568

New Anxiety or Depression 32 (23) 15 (26) 0.7140

Any neurological or psychiatric symptom 92 (67) 41 (72) 0.6113

Respiratory Characteristics (median + IQR)

Respiratory rate (bpm) 25 (20–32) 30 (26–36) <0.0001

pH 7.44 (7.40–7.62) 7.49 (7.48–7.41) <0.0001

PaCO2 (kPa) 4.87 (4.40–5.29) 4.10 (3.78–4.36) <0.0001

PaO2 (kPa) 10.10 (8.18–12.85) 9.02 (7.76–12.20) 0.2711

BE (mEq/L) 1.10 (−2.85–4.55) 0.70 (−1.00–2.25) 0.3848

FiO2 0.32 (0.21–0.60) 0.60 (0.32–0.90) 0.0011

Supplemental Oxygen (%) 90 (66) 48 (84) 0.0094

A-a gradient (mmHg) 12.4 (5.3–44.5) 38.9 (12.3–73.0) 0.0001

PF ratio 238 (134–328) 120 (74–276) 0.0019

Dyspnoea (%) 50 (36%) 36 (63) 0.0008

Severely hypoxemic (PaO2<6.6kPa) (%) 6 (4) 3 (5) 0.7237

CXR severity

Mild (%) 34 (25) 14 (25) 1.0000

Moderate (%) 29 (21) 22 (39) 0.0192

Severe (%) 31 (23) 16 (28) 0.4634

Unknown (%) 43 (31) 5 (9) 0.0008

Other Clinical Observations (median + IQR)

Heart Rate (bpm) 93 (78–105) 102 (86–115) 0.0048

Mean Arterial Pressure (mmHg) 90 (78–104) 94 (86–102) 0.1547

Temperature (◦C) 37.2 (36.6–38.0) 37.8 (37.2–38.7) 0.0006

(Continued)
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TABLE 2 | Continued

Characteristics Appropriate Responders Inappropriate Responders (Tacyhpnoeic RR>20, p-value

[n = 137] hypocapnic PaCO2<4.6kPa alkalotic pH>7.45) [n = 57]

Admission Bloods (median + IQR)

Hb (g/L) 129 (110–140) 134 (123–144) 0.0733

Lym (×10∧9/L) 1.03 (0.64–1.46) 0.96 (0.73–1.39) 0.9053

CRP (mg/L) 98 (42–192) 102 (66–238) 0.1299

D-dimer (mg/L) 1.68 (0.69–2.94) 1.28 (0.69–4.0) 0.721

Troponin T (ng/L) 22 (10–45) 16 (10–23) 0.596

LDH (IU/L) 386 (295–510) 498 (391–600) 0.0007

Ferritin (ug/L) 948 (406–1,814) 1,430 (793–2,491) 0.018

Mortality (%) 55 (40) 17 (30) 0.1948

Bold values meant statistically significant.

(8/34), with a BPAT score of 6 (5–7). None had a past medical
history of respiratory, neurological or psychiatric disorder. None
had other focal neurological findings on examination. 62.5%
(5/8) were in the inappropriate responders group. All eight
patients with BPD had 6-month follow-up, of which three still
had BPD, with a BPAT score of 2.5 (3–5). Five of the eight patients
attended 12-month follow-up, of which one had BPD, with a
BPAT score of 2 (2, 3) (Figure 2).

DISCUSSION

Nearly a third of the patients in this study demonstrated impaired
homeostatic control of ventilation i.e., tachypnoea, despite
hypocapnia to the point of alkalosis, a finding accompanying
more severe disease (as evidenced by worse physiological (higher
FiO2, greater A-a gradient, and lower PF ratio) and inflammatory
markers). Over a third showed a reduced dyspnoeic response
to tachypnoea.

The prevalence of inappropriate responders is consistent
with estimates of respiratory alkalosis in 28.7–55.4% from other
studies that investigated blood gas analysis in hospitalized
COVID-19 patients [(5) (55.4%); (6) (28.7%); (7) (30.3%); (8)
(40.4%)]. Wu et al. (6) found higher inflammatory markers
in respiratory alkalosis group, and other studies corroborate
admission hypocapnia as a marker of severe disease (17, 18).

No previous study concurrently assessed ABG, respiratory
rate and perception of dyspnoea, and therefore could not directly
comment on appropriateness of physiological and perception
response, which is a unique aspect here.

Outside the setting of COVID-19, few studies characterize
and analyse the ventilatory response in the context of
respiratory infection. Although a few studies report prevalence of
hypocapnia in community-acquired pneumonia (19–21), none,
to our knowledge, report the prevalence of hypocapnia to the
extent of alkalosis (PaCO2<4.6kPa and pH>7.45); therefore,
those findings cannot be directly compared.

Profound hypocapnia is found in the context of critical illness,
and when prolonged, may adversely influence outcome (15).
However, most critically ill patients with abnormal ventilatory
responses present with insufficiency (i.e. with acidemia) rather

than excessiveness (22). Inappropriate perception of dyspnea is
even less well studied. Impaired perception of dypsnoea is more
often found in patients with a history of near fatal asthma (23–
25), and is associated with impaired chemosensitivity (23, 26) and
downregulation of insular activity (27).

We also explored the potential processes that drive excessive
tachypnoea in the inappropriate responders group, as well as the
impaired perception of dyspnoea to these breathing patterns, and
how these acute findings relate to post-covid syndrome.

What Drives Excessive Tachypnoea?
Breathing is controlled by various physiological mechanisms.
At a systems level, hypercapnia (increase in PaCO2) and
acidosis are the principal chemical drivers of spontaneous
automatic breathing, while hypoxia drives breathing only at
severe hypoxemia (i.e. PaO2 < 6.6 kPa). In addition, thermal,
peripheral pulmonary afferents, sympathetic, emotional and
somatosensory drives provide adaptive value for particular
situations. When awake, further signals provide wakefulness-
related drive to breath which underlies why hypocapnia during
wakefulness, but not sleep or anesthesia, does not cause apnoea
(28). At the highest level, we can voluntarily control breathing
through top-down influence of lower breathing centers.

At a biological level, these physiological mechanisms span
all levels of the neuraxis from the periphery to central areas
illustrated in Figure 3. These drivers interact in a complex non-
linear fashion across large-scale neural networks that control
breathing. The final common downstream pathway includes
central rhythm generators (pre-Botzinger, parafacial respiratory
group, and post-inspiratory complex) that output to the central
pattern generators (rostral and caudal ventral respiratory group)
and then onwards to spinal and cranial motor nuclei and their
neuromuscular efferent arm (29).

The effects of COVID-19 on breathing control can occur at
multiple levels of regulatory control. Here, we explore evidence
of COVID-19 effects at various planes, and document disruption
inferred from these data.

Hypoxic Drive
Severe hypoxemia (i.e. PaO2 < 6.6kPa) drives breathing through
the hypoxic ventilatory reflex (HVR) (9–11). In the periphery,
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FIGURE 2 | Breathing Pattern Disorder severity over time. Breathing Pattern Assessment Tool score to rate breathing pattern disorder (BPD) severity, over time since

discharge from hospital. Threshold for BPD diagnosis is a score of 4 or more (16).

arterial chemoreceptors located in the carotid bodies (CB)
(Figure 3) sense PaO2. Aortic bodies play a minimal role, except
when carotid bodies are impaired (ref). Oxygen-regulating cells
are also present centrally in the caudal hypothalamus, posterior
thalamus, periaqueductal gray, nucleus tactus solitarii (NTS)
and the rostral ventrolateral medulla (RVLM)(ref). The CB
provide the dominant drive for the HVR, since CB denervation
significantly attenuates the response (ref). Central oxygen sensors
play a role in severe hypoxia-induced tachypnoea in animal
models of carotid-deafferented animals (30).

Given that O2-sensing glomus cells express ACE2 (a SARS-
CoV-2 receptor), direct infection and impairment of the carotid
body could either abolish the HVR or cause abnormal excitability
resulting in excessive CB-driven HVR.

However, our results do not support that scenario, since very
few patients (5%) had sufficient hypoxemia to drive ventilation.
Additionally, hypocapnia observed in our patients would further
blunt the HVR.

We cannot exclude pre-hospital periods of sustained severe
hypoxia, which could sensitize the CB. Such sensitization results
in hyperventilation and increased sympathetic activity that is
sustained even after reversal of sustained hypoxic insult, and
slowly declines over a few days (31). That more patients in the
inappropriate responder group required supplemental oxygen
on admission, suggests that this group had higher rates of
pre-hospital hypoxia which could sensitize the CB.

CO2 and pH Homeostasis
Central chemoreceptors that sense PaCO2 and pH, are
found in the brainstem, cerebellum, hypothalamus and
midbrain (32). Those sensors monitor brain interstitial
pH, which reflects the integration of PaCO2, cerebral
blood flow (CBF), and cerebral metabolic rate. CBF itself
responds to changes in PaCO2 (cerebral autoregulation).

A set-point exists which keeps PaCO2 and pH in a
relatively narrow range. Hypercapnia (PaCO2 >4.6kPa) or
acidosis (pH <7.35) drives hyperventilation. Conversely,
hypocapnia (PaCO2 <4.6kPa) or alkalosis (pH >7.45) drives
hypoventilation. The inappropriate responders group showed
hypocapnia and alkalosis, which should cause hypoventilation
(RR<12), yet they paradoxically are hyperventilating
(RR>20). This disturbance in normal homeostasis
requires explanation.

PCR-positive SARS-CoV-2 is present at autopsy in the
brainstem and cerebellum, specifically in vascular and glial cells,
but not neurons, along with activated microglia and evidence
of secondary neuronal damage in chemosensitive areas. Specific
affected areas include CN X, NTS, dorsal raphe nuclei and
cerebellum (13, 33–36) (Figure 3). As such, dysfunction in
this redundant network of chemoreceptors appears plausible.
Serotonergic neurons of the dorsal raphe, with their extensive
projections to motor and respiratory regulatory areas, especially
to the cerebellum, are of particular concern.

Two possible mechanisms are conceivable:
First is rheostasis – i.e., shifting the setpoint lower such

that hyperventilation is driven by lower PaCO2 than the
normal 4.6 kPa. Figure 4 shows that lowering the threshold
at which PaCO2 drives breathing (i.e., lower than the normal
set-point/threshold of 4.6 kPa), lowers the proportion of
inappropriate responders i.e., those who still have simultaneous
tachypnoea (RR>20) and alkalosis (pH>7.45) at the new
PaCO2 threshold. Rheostasis is normally an adaptive process in
homeostatic systems to a sustained change in the environment,
such as increased core temperature setpoint during infections,
or vestibular-ocular reflex set-points after prolonged stimulation
or imbalance in vestibular input (37). Supportive evidence
for this hypothesis predicts a rebound hypoventilation when
the setpoint returns to normal after the acute insult is
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FIGURE 3 | Components of breathing control in the context of COVID-19.
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FIGURE 4 | PaCO2 thresholds for breathing and % appropriate and inappropriate responders. The normal PaCO2 threshold for breathing is >4.6 kPa, below which

PaCO2 as a breathing drive would be suppressed. Lowering the PaCO2 threshold (set-point) for breathing, will decrease the proportion of patients who are

considered inappropriate responders for that particular PaCO2 threshold i.e., still simultaneously have tachypnoea (RR>20) and alkalosis (pH>7.45).

removed; that possibility has not been tested in COVID-
19 patients.

A second potential mechanism is added bias/additional
ventilatory drives.

Aberrant Peripheral Sensing
Peripheral drivers via pulmonary vagal C-fibers and slow-
adapting mechanoreceptors (SARS) provide sensory feedback
to central respiratory centers on local chemical and mechanical
conditions. Pulmonary vagal C-fibers fibers are sensitive to
inflammatory mediators (including histamine, bradykinin, and
prostaglandins), and are consistently activated in lung oedema
(38) and experimental acute lung injury (39). These C-fibers can
modulate ventilation (increase RR and decrease tidal volume)
(40), possibly through vagally-mediated cytokine release in the
brainstem (41).

Slow-adapting mechanoreceptors are normally activated
by lung inflation, and inhibit central chemoreception
(42). Peripheral drives from these sensors may explain
hyperventilation in pulmonary oedema, pulmonary fibrosis
and pulmonary embolism which persists in the absence of
hypercapnia or severe hypoxemia (43).

Our data support a role for these peripheral receptors. This
inference is based on the observation of a higher prevalence
of more-severe lung disease in the hypocapnic group. Acute
respiratory distress syndrome increases RR before impairing
gas exchange in rodent models, suggesting an initial role for
peripheral afferent stimulation. The acute lung inflammation

found in COVID-19 would be expected to stimulate SARs in a
similar manner.

Other Breathing Drives

Thermal Drive
Animals can regulate their body temperature with an increase
of core temperature by 1◦C, triggering hyperventilation to
induce heat loss (44). Our data, showing a correlation between
temperature and RR, support this relationship. The significantly
higher temperature in the inappropriate responder group
suggests a contribution of thermal drive to tachypnoea.

Diminished “Higher” Drivers of Breathing
Normally, higher brain centers influence breathing to allow
flexible control of breathing with emotion, experience and
context, and provide signals involved in the “wakefulness drive
to breathe” (28). Our study assessed measures of breathing
throughout the day and night. A remarkable finding was that little
change in tachypnoea was found in sleeping periods. Although
classification of sleep states was unavailable, the data indicate that
the normal slowing of respiratory rates with quiet sleep did not
occur. That finding is significant, since it points to an abolition of
the descending brain influences that mediate control of breathing
during sleep states. Although descending limbic and thalamic
drives, such as airflow, olfactory or temperature influences may
be exerting timing effects, the timing influences that normally
slow breathing during sleep appear to be ineffective.
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Systemic Inflammation
Systemic inflammation itself increases respiratory drive. Our
data support greater hyperinflammation in the inappropriate
responder group. Hypocapnia is seen in critically ill patients,
systemic inflammatory response syndrome, and liver failure
(45). In COVID-19, hyperinflammatory responses contribute to
disease severity and mortality (46).

Central Neurogenic Hyperventilation
In the inappropriate responders group, we found a higher
prevalence of anosmia (21 vs. 15%), dysgeusia (25 vs. 12%),
headache (33 vs. 23%) and nausea (33 vs. 14%) with similar
rates of new anxiety/depression (26 vs. 23%), but a lower
incidence of past neurological or psychiatric diagnoses (5
vs. 21%) compared to appropriate responders. These findings
warrant exploration of possible central neurogenic contributions
to hyperventilation.

The demonstration of COVID-19 influences on the olfactory
apparatus (36) and the role of those structures on sensing CO2

and other aspects of air passage, as well as the known injury to
the amygdala and other limbic structures mediating taste and
drive to respiratory phase switching areas of the parabrachial
pons (47) and thus, respiratory rate, provide a number of
potential central mechanisms to mediate the findings here.
Central neurogenic hyperventilation has been reported in other
conditions involving immune dysfunction, including multiple
sclerosis (48), anti-NMDA receptor encephalitis (49), neuro-
Behcet’s (50) and Bickerstaff encephalitis (51). Interestingly,
marked tachypnoea was the predominant respiratory phenotype
of the 1918–1925 epidemic of encephalitis lethargica (52), a
disease with recent evidence suggestive of an immune-mediated
pathogenesis (53).

Anosmia and dysgeusia are the most prevalent neurological
symptoms in COVID-19, suggesting key roles for forebrain
limbic structures (Figure 3), particularly olfactory and amygdala
structures. However, the weight of evidence supports an
interpretation that anosmia results predominantly from SARS-
CoV-2 infection of non-neuronal cells in the olfactory epithelium
and olfactory bulb (54), and dysgeusia more likely results from
peripheral damage to ACE-2-expressing cells of taste buds and
peripheral chemoreceptors, or cranial nerves responsible for
gustation (CN VII, IX, or X) (55).

Centrally, olfaction is processed by multiple cortical and
subcortical regions (56), in particular temporal lobe areas,
including the piriform and entorhinal cortex, hippocampus,
parahippocampus, amygdala and extra-temporal areas such
as the orbitofrontal cortex. Amongst these structures, the
hippocampus and amygdala are critical subcortical structures
controlling breathing (57, 58).

Central gustatory areas include the NTS, parabrachial
nucleus, gustatory thalamus (ventropostero-medial nucleus),
amygdala basolateral nucleus and central nucleus, insula cortex,
orbitofrontal cortex and anterior cingulate cortex. Among these
structures, the NTS and parabrachial nuclei are chemosensitive
brainstem structures or receive afferent signals mediating
control of breathing. The higher prevalence of nausea in
the inappropriate responder group supports involvement of

the NTS and parabrachial nuclei. Of interest, the nausea
finding is corroborated by the significantly higher prevalence of
vomiting in the respiratory alkalosis group (21.2%) compared
to the non-respiratory alkalosis group (7.3%) in a previous
study (6).

Headache as a symptom has no specific localization, but
hints at involvement of CN V (trigeminal nuclei). Another study
of hospitalized COVID-19 patients identified the presence of
new-onset headache in those presenting without dyspnoea, who
also presented earlier (4). This finding raises the possibility of
early activation of the trigeminal-vascular system, a concept
supported by neuropathological studies showing neuroinvasive
potential of SARS-CoV-2 to the brainstem (36). CN V plays
a major role in respiratory timing through airflow receptors
in the nasal and oral cavities and motor activation of the
upper airway musculature (59). These timing roles are especially
important for preventing obstructive apnea and maintaining
appropriate coordination of cerebellar and pontine respiratory
timing circuitry through airflow and thermal afferent activity
to the parabrachial pons, a major site of respiratory phase
switching (and thus, respiratory timing). The thermal role can be
readily demonstrated through cold water facial immersion, which
results in immediate apnea, while warming results in tachypnoea
and panting.

The amygdala, insula and anterior cingulate cortex, all injured
in COVID-19, also serve critical respiratory roles, integrating
afferent input from a wide range of receptors and sending
projections to other amygdala structures and the hypothalamus;
the central nucleus of the amygdala has prominent projections
to the parabrachial pons and can influence respiratory rate,
even to the point of pacing inspiratory efforts (60). The
hypothalamus provides substantial thermal drive to breathing,
perhaps influencing the significant role we found for breathing
rate and temperature.

Autopsy reports in COVID-19 indicate local immune-
mediated activity in the brainstem and cerebellum (13). The
cerebellum plays a critical role in respiratory timing, coordinating
afferent stimuli from multiple somatic and vascular sites and
essential timing circuitry with the parabrachial pons. The
cerebellar fastigial nuclei are particularly important in these
ventilatory roles, specifically during chemical stress and not
during eupnoea. Injury to the fastigial nuclei, such as in Central
Congenital Hypoventilation Syndrome or heart failure patients,
distorts both amplitude and timing to ventilatory and blood
pressure challenges (61, 62).

Sensitization of the Efferent Arm
A possible source of hyperventilation lies in the efferent arm.
There is no evidence to suggest dysfunction in the motor
nuclei, motor neurons or muscles. Nevertheless, pre-admission
sustained hypoxia could centrally sensitize motor neurons
driving the phrenic nerves, enhancing phrenic output. However,
the principal findings suggest a timing dysfunction, i.e., a rate, not
motor effort, issue.

Overall, the data presented here suggest that tachypnoea
was driven by both peripheral and central mechanisms, but
not hypoxia.
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What Drives Impaired Perception of
Dyspnoea to Tachypnoea?
Increased afferent feedback from chest wall mechanoreceptors
and muscle stretch receptors with increased RR is usually
perceived as breathlessness (63). It is abnormal that over a third
of patients in the inappropriate responder group had reduced
dyspnoeic response to tachypnoea.

First, neuromechanical coupling may be maintained in this
COVID-19 cohort due to relatively preserved lung compliance
(64). This coupling is unusual for most disorders that lead to
acute lung injury. To a large degree, this interpretation explains
the lack of dyspnoea, because the mechanoreceptor activity
should continue to be proportional to the predicted activity from
a given motor signal that drives ventilation. Therefore, there
should not be an error signal, which should indicate no dyspnoea.
This possibility has been supported by others (64, 65).

Secondly, interruptions in central processes that compare
expected consequences of (breathing) motor commands and
the actual consequences (feedback from periphery) may occur.
Normally the “error” signal generated from a mismatch between
these expected and actual consequences would generate the
dyspnoeic perception of “increased work of breathing” (66). Both
the cerebellum and insula play major roles in the perception of
dyspnoea (67), as well as their aforementioned roles in control
of ventilation. Damage to the cerebellum could impair gain
and timing of these signals. Alternatively, a shift in setpoint
to a higher threshold for dyspnoea perception would require
a higher RR to perceive dyspnoea. Here, one possibility is
a downregulation of insula activity. In patients with asthma,
downregulation of affect-related insula cortex activity correlates
with blunted perception of dyspnoea (68). Lesions in the right
insular cortex are associated with blunted dyspnoea (69).

How Do These Acute Findings Relate to
Post-COVID Syndrome in a Subset of
Patients?
The prevalence of breathing pattern disorder (BPD) at 6
weeks post-discharge was (24%) and in the absence of other
neurological findings, or previous respiratory, neurological, or
psychiatric disorder diagnoses. Notably, most patients recovered
over time. The pathophysiology of breathing pattern disorder is
poorly understood, but involves abnormal breathing rate, pattern
and inappropriate dyspnoea. The neural mechanisms underlying
the recovery are not understood.

Whether mechanisms of post-Covid breathing pattern
disorder can be inferred from our data is unclear. Only 62.5%
of patients who had BPD were inappropriate responders in the
acute phase – for this group, rheostasis may be explanatory– a
shift in set-point during the acute phase to a higher state. Such
a shift is likely followed by a resetting after the acute illness that
disturbs breathing perception and results in the high prevalence
of breathing disorder found in our cohort. Our data suggest that
by 1 year after the acute insult, the set-point has reset to its
pre-Covid state.

Future work should focus on prospective cohort
studies of hospitalized COVID-19 patients, with an

emphasis on gathering more objective respiratory rate
using wearable devices, more quantitative measures of
perception of dyspnea over multiple intervals from admission
to discharge, and prolonged follow-up. Correlation of
respiratory patterning with cardiovascular changes would
also be useful. Determination of respiratory patterning
during the normally short-lasting periods of rapid eye
movement sleep would help differentiate whether COVID-
19 impacts breathing differently during that state, thus
helping to determine abberant influences. Additional
functional neuroimaging of subsets of patients with impaired
ventilatory and perceptual response would further mechanistic
understanding. More broadly, it remains unanswered whether
the phenomena we observe here are unique to COVID-19 or
are found in other respiratory conditions – further studies
are needed.

Clinical Implications
We show (1) that dyspnoea alone poorly correlates with disease
severity or degree of hypoxia, despite its inclusion in many
severity triage scoring systems; (2) tachypnoea appears to be a
more useful clinical marker, as it is common, and correlated
with more severe pulmonary disease; (3) our study supports
the use of early blood gas analysis - with hypocapnia and
respiratory alkalosis being of particular concern, because this
group has more severe disease; (4) we suggest that acute
impairment in breathing control may lead to dysfunctional
breathing that is prolonged, but will likely resolve by 1
year. The unresponsiveness of control mechanisms to extreme
values in pH and oxygenation mandate further studies into
processes mediating disruption of sensory, integrative central
processing, and motor output on respiration, and the activities
underlying recovery of longer-term effects of COVID-19 on
breathing control.

Limitations of the Study
The limitations include a relatively small number of
subjects, and that the data are derived from a single
center. However, the study is from a geographical location
with a highly heterogenous population, providing a wide
representation of physiological presentation. The study
is also a retrospective design, and therefore, no formal
protocolised assessment of dyspnoea was available, nor
were comments on hyperpnoea. Not unique to the study is
the difficulty of counting RR in clinical situations. However,
the persistence of tachypnoea over multiple recordings argues
for the validity of the data. Inherently, the perception of
dyspnoea is subjective and multi-dimensional – but our
inclusion criteria for recording dyspnoea covers these multi-
dimensional descriptors. We also had limited detailed data
on other autonomic aspects including cardiac patterning.
We had no neuropsychometric assessment, for practical
reasons during that phase of the COVID-19 pandemic which
may have revealed subtler psychological localisable deficits.
Although we note that nearly a third of patients in our
study had impaired homeostatic control of ventilation, the
study only included 194 (who met the inclusion criteria)
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out of the 492 patients admitted. Therefore, the lowest
bound of the prevalence estimate would be 11.6% (57/492).
Finally, the number of patients who attended follow-up
appointment was low, which limited inferences of post-acute
Covid effects.
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Introduction:COVID-19might affect the incidence of specific neurological diseases, but

it is unknown if this differs from the risk following other infections. Here, we characterized

the frequency of neurodegenerative, cerebrovascular, and immune-mediated

neurological diseases after COVID-19 compared to individuals without COVID-19

and those with other respiratory tract infections.

Methods: This population-based cohort study utilized electronic health records covering

∼50% of Denmark’s population (n = 2,972,192). Between 02/2020 and 11/2021,

we included individuals tested for COVID-19 or diagnosed with community-acquired

bacterial pneumonia in hospital-based facilities. Additionally, we included individuals

tested for influenza in the corresponding pre-pandemic period between 02/ 2018 and

11/2019. We stratified cohorts for in- and outpatient status, age, sex, and comorbidities.

Results: In total, 919,731 individuals were tested for COVID-19, of whom 43,375

tested positive (35,362 outpatients, 8,013 inpatients). Compared to COVID-negative

outpatients, COVID-19 positive outpatients had an increased RR of Alzheimer’s disease

(RR = 3.5; 95%CI: 2.2–5.5) and Parkinson’s disease (RR = 2.6; 95%CI: 1.7–4.0),

ischemic stroke (RR = 2.7; 95%CI: 2.3–3.2) and intracerebral hemorrhage (RR = 4.8;

95%CI: 1.8–12.9). However, when comparing to other respiratory tract infections, only

the RR for ischemic stroke was increased among inpatients with COVID-19 when

comparing to inpatients with influenza (RR= 1.7; 95%CI: 1.2–2.4) and only for those>80

years of age when comparing to inpatients with bacterial pneumonia (RR = 2.7; 95%CI:

1.2–6.2). Frequencies of multiple sclerosis, myasthenia gravis, Guillain-Barré syndrome

and narcolepsy did not differ after COVID-19, influenza and bacterial pneumonia.

Conclusion: The risk of neurodegenerative and cerebrovascular, but not neuroimmune,

disorders was increased among COVID-19 positive outpatients compared to

COVID-negative outpatients. However, except for ischemic stroke, most neurological

disorders were not more frequent after COVID-19 than after other respiratory infections.

Keywords: COVID-19, SARS-CoV-2, bacterial pneumonia, Alzheimer’s disease (AD), Parkinson’s disease (PD),

ischemic stroke (IS), auto-immune
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INTRODUCTION

Neurological symptoms, including headache and anosmia,
are present in more than 80% of hospitalized COVID-19
patients (1, 2). There is also evidence of an inflammatory
hypercoagulable state with subsequent cerebrovascular incidents,
(3–8) and case descriptions exist of Guillain-Barré syndrome
(GBS) and Parkinson’s disease following COVID-19 (9, 10).
To our knowledge, however, epidemiologic studies investigating
the incidence of specific neurodegenerative diseases such as
Alzheimer’s disease and Parkinson’s disease or auto-immune
disorders (e.g., multiple sclerosis, narcolepsy, and myasthenia
gravis) after COVID-19 are still missing.

The aim of this study was to provide the first broad
investigation into the influence of COVID-19 on neurological
diseases, providing a rapid glimpse based on the electronic
health record data currently available while awaiting more
detailed longitudinal nationwide registry studies. Specifically, we
aimed to (1) characterize the frequency and relative risk (RR)
of neurodegenerative, cerebrovascular, and immune-mediated
diseases in patients with COVID-19, and (2) to compare the risk
of being diagnosed with a neurological disease after COVID-
19 to the risk after influenza A/B and community-acquired
bacterial pneumonia.

METHODS

Study Population
Using previously published methods, (5) we extracted patient
data from electronic health records covering 2,972,192
individuals, equating to ∼50% of the Danish population
from two (of five in total) well-defined administrative regions
in Denmark, i.e., the Capital Region (Greater Copenhagen and
Bornholm) and Region Zealand. The electronic health records
(EPIC, version 2021, Wisconsin, USA) Slicer-Dicer function,
were searched from implementation in 2016 to November 27,
2021. All individuals ≥ 18 years who were tested in a hospital
setting for COVID-19, influenza A/B (referred to as influenza)
or diagnosed with community-acquired bacterial pneumonia
(referred to as bacterial pneumonia) were followed for new-onset
neurological diseases up to 12 months later. Included individuals
were (1) hospitalized patients tested for COVID-19, influenza,
or diagnosed with bacterial pneumonia during admission
(referred to as “inpatients”), and (2) non-hospitalized patients
tested during ambulatory visits, or healthy individuals tested
in hospital-based facilities that serve the general population
(referred to as “outpatients”). Individuals tested for COVID-19
in the community setting (e.g., over-the-counter antigen tests or
PCR tests from private providers and primary care settings) were
not captured. We also collected anonymized aggregated data on
age, sex, smoking, pre-existing comorbidities, laboratory data,
medical prescriptions, and history of neurological disorders.
Data extraction and analysis were conducted in consultation
with EPIC data experts from our institution (Rigshospitalet,
Copenhagen University Hospital) according to previous
publications by our group (5).

Slicer Dicer search strategies are detailed in
Supplementary Table 1.

Study Period
The study period spanned from February 27, 2018 to November
27, 2021. COVID-19 and bacterial pneumonia patients were
included from February 27, 2020 (the first reported case of
COVID-19 in Denmark) (11) to November 27, 2021 (the day
before the first reported case of the omicron variant in Denmark)
(12), and influenza patients from February 27, 2018, to November
27, 2019 (the corresponding 2-year pre-pandemic period).

Assessment of Infection Exposure
COVID-19 or influenza positive cases were determined by
positive reverse-transcriptase polymerase chain reaction assays
of nasal, pharyngeal, or tracheal samples. We defined COVID-
19 or influenza negative cases as having negative laboratory test
results and (for those tested more than once) no previous history
of positive laboratory tests.

Assessment of Neurological Outcomes
Using ICD-10 diagnoses, we identified individuals with
neurodegenerative (Alzheimer’s disease, Parkinson’s disease),
cerebrovascular (ischemic stroke, intracerebral hemorrhage,
subarachnoid hemorrhage), and immune-mediated (multiple
sclerosis, GBS, myasthenia gravis, and narcolepsy) disorders.
ICD-10 diagnosis codes are detailed in Supplementary Table 1.

Statistical Analyses
We calculated the risk of new-onset neurological diagnoses in
the acute (1 month), subacute (3 and 6 months), and chronic
(12 months) phases after a diagnosis of COVID-19, influenza,
or bacterial pneumonia. Specifically, we calculated the relative
risk (RR) of diagnosis rates with 95% confidence intervals (CI)
and stratified the study population across admittance status
(inpatients and outpatients), age (18–39, 40–59, 60–79, and
≥80 years), and sex (male and female), using R studio (2021
Vienna, Austria). To reduce the risk of type II errors, statistical
analyses were only conducted for diseases with ≥4 cases in each
group. Hospitalization and delirium [which occurs at higher
rates in COVID-19 patients (Table 1)] can lead to cognitive
decline and aggravate neurodegenerative diseases (13–16). Thus,
to best balance recovery from hospitalization and allow for
reliable diagnoses, Alzheimer’s disease and Parkinson’s disease
patients diagnosed within the first 3 months after admission were
excluded from 6 and 12-month assessments (14–16).

Sensitivity Analyses
To search for possible bias related to restricted access to
diagnostic work-up during the pandemic, the prevalence
of disease-specific diagnostic procedures (including cerebral
fluorodeoxyglucose (FDG)- positron emission tomography
(PET)-18 for Alzheimer’s disease and single-photon emission
computerized tomography (SPECT) for Parkinson’s disease),
medical prescriptions and common risk factors, including
smoking status, and pre-existing comorbidities were compared
across groups using chi-squared statistics with a Yates correction.
Where there was a significant difference in risk factors
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TABLE 1 | Clinical characteristics and demographics at baseline.

Inpatient status at baseline Outpatient status at baseline

COVID-19

positive

(n = 8,013)

COVID-19

negative

(n = 230,686)

Influenza

positive

(n = 4,142)

Pneumonia

(n = 1,474)

COVID-19

positive

(n = 35,362)

COVID-19

negative

(n = 645,670)

Influenza

positive

(n = 3,960)

Age, n (%)

Mean, years 66y 58y 68y 75y 48y 47y 52y

18–39 1,023

(12.8%)

65,333

(28%)

508

(12.3%)

44

(3%)

14,309

(40.1%)

258,412

(40%)

1,352

(34.1%)

40–59 1,841

(23%)

38,108

(20.9%)

854

(20.6%)

140

(9.5%)

12,526

(35.4%)

234,480

(36.3%)

1,482

(37.4%)

60–79 3,128

(39%)

76,865

(33.3%)

1,743

(42.08%)

671

(45.5%)

5,731

(16.2%)

128,382

(19.9%)

929

(23.4%)

≥80 2,021

(25.2%)

40,380

(17.5%)

1,037

(25%)

619

(42%)

2,796

(7.9%)

24,396

(3.8%)

197

(5%)

Sex, n (%)

Females 3,567

(44.5%)

131,399

(57%)

2,257

(54%)

625

(42.4%)

20,913

(59.1%)

368,142

(57%)

2,374

(59.9%)

Smoking status, n (%)

Current or history of

smoking (%)

3,141

(39.2%)

93,283

(40.4%)

2,053

(49.6%)

829

(56.2%)

6,180

(17.5%)

117,505

(18.2%)

931

(23.5%)

Pre-existing comorbidities, n (%)

Celiac disease 11

(0.1%)

370

(0.2%)

1

(0.02%)

1

(0.07%)

51

(0.1%)

1,071

(0.2%)

3

(0.08%)

Delirium 149

(1.9%)

1,335

(1%)

19

(0.5%)

33

(2.2%)

127

(0.4%)

429

(0.1%)

1

(0.03%)

Diabetes mellitus, type 1 30

(0.4%)

719

(0.3%)

16

(0.4%)

7

(0.5%)

66

(0.2%)

974

(0.2%)

9

(0.2%)

Diabetes mellitus, type 2 501

(6.2%)

7,880

(3.4%)

142

(3.4%)

102

(6.9%)

4,397

(1.4%)

5,335

(0.8%)

30

(0.8%)

Hashimoto’s

auto-immune thyroiditis

11

(0.14%)

417

(0.2%)

5

(0.1%)

0

(0%)

67

(0.2%)

1,103

(0.2%)

3

(0.08%)

Hypercholesterolemia 431

(5.4%)

9,571

(4.2%)

118

(2.9%)

83

(5.6 %)

560

(1.6%)

8,303

(1.3%)

39

(1%)

Hypertension 1,681

(21%)

36,754

(15.9%)

519

(12.5%)

411

(27.9%)

2,155

(6.1%)

29,935

(4.6%)

155

(4%)

Ischemic stroke 340

(4.2%)

10,030

(4.4%)

53

(1.3%)

96

(6.5%)

442

(1.3%)

3,829

(0.6%)

26

(0.7%)

Obesity 356

(4.4%)

10,962

(4.8%)

60

(1.5%)

36

(2.4%)

959

(2.7%)

15,465

(2.4%)

56

(1.4%)

Rheumatoid arthritis 46

(0.6%)

982

(0.4%)

22

(0.5%)

13

(0.9%)

66

(0.2%)

995

(0.2%)

10

(0.2%)

Transitory cerebral

ischemia

130

(1.6%)

4,197

(1.8%)

24

(0.6%)

37

(2.5%)

220

(0.6%)

2,505

(0.4%)

7

(0.2%)

between groups, the populations at risk were excluded from
comparative analyses.

Ethics and Data Availability Statement
The Scientific Ethics Committee of the Capital Region of
Denmark waives approval for register-based studies on
aggregated anonymized data (Section 14.2, Committee Act 2).
The datasets included in this study are freely available to medical
and administrative staff in Denmark with access to electronic
health records in EPIC.

RESULTS

Between February 27, 2020 and November 27, 2021, a total of
919,731 individuals were tested for COVID-19 in a hospital-
based facility. Of these, 43,375 individuals had a positive COVID-
19 test (equating to 20% of the COVID-19 positive population
in the surveyed areas) (17) and 876,356 had a negative COVID-
19 test (40% of the COVID-negative population in these areas)
(18). A total of 1,474 individuals were diagnosed with bacterial
pneumonia in a hospital-based facility during the same period.
Between February 27, 2018 and November 27, 2019, a total of
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FIGURE 1 | Flowchart of individuals tested for COVID-19 or Influenza A/B, and diagnosed with community-acquired bacterial pneumonia.

8,102 individuals were tested positive for influenza. A flowchart
of the study population is depicted in Figure 1, and demographic
and clinical characteristics are detailed in Table 1.

Risk Factors at Baseline
The prevalence and comparative analyses of clinical
baseline characteristics are detailed in Table 1 and
Supplementary Table 2. Compared to COVID-negative
individuals (in- and outpatients separately and combined) and
influenza inpatients, COVID-19 positive individuals carried
higher rates of some pre-existing cerebrovascular risk factors,
(19) including hypercholesterolemia, diabetes mellitus type 2
and hypertension. Compared to COVID-negative outpatients
and influenza inpatients, COVID-19 positive individuals
also had higher rates of obesity, and a history of transitory
ischemic attack. By contrast, smoking rates were higher among
COVID-negative individuals, and influenza and pneumonia
inpatients. Pneumonia inpatients also had higher rates of past
transitory ischemic attacks. There were no other differences
in cerebrovascular risk factors, nor in the rates of pre-existing
auto-immune disorders.

The Incidence of New-Onset
Neurodegenerative, Cerebrovascular and
Auto-Immune Disorders
The incidence, absolute risk, and RR of all neurological diseases
in COVID-19 positive and COVID-negative individuals are

depicted in Figure 2 and Table 2. Stratifications by age and sex
are detailed in Supplementary Table 3, and stratifications by in-
and outpatient status are detailed in Supplementary Table 4.

The incidences, absolute risks, and RR’s of all neurological
diseases in COVID-19 positive, influenza positive, and
bacterial pneumonia patients are depicted in Table 3 and
Supplementary Table 5.

Alzheimer’s Disease and Parkinson’s
Disease
The RR of Alzheimer’s disease was increased 6 and 12
months after a positive test in COVID-19 positive compared
to COVID-negative individuals (in- and outpatients combined),
and separately among in- and outpatients (in- and outpatients:
RR= 3.5; 95%CI: 2.5–5.6 at 6 months and RR= 3.4; 95%CI: 2.3–
5.1 at 12 months; inpatients: six (RR = 3.3; 95%CI: 1.7–9.3 at 6
months and RR= 3.7; 95%CI: 1.7–8.0 at 12 months; outpatients;
RR = 3.6; 95%CI: 2.1–6.1 at 6 months and RR = 3.5, 95%CI:
2.2–5.5 at 12 months).

Notably, COVID-19 positive individuals had a higher
frequency of delirium, an independent risk factor for
dementia (20) (0.6 vs. 0.3%, χ

2 = 128.2, p < 0.00001),
compared to COVID-negative individuals. After exclusion
of those with a history of delirium, the RR for Alzheimer’s
disease remained elevated in COVID-19 individuals (in-
and outpatients combined) (Supplementary Table 6), and
separately in both in- and outpatients. COVID-19 positive
individuals also had a higher frequency of cerebrovascular

Frontiers in Neurology | www.frontiersin.org 4 June 2022 | Volume 13 | Article 90479655

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zarifkar et al. Neurological Diseases After COVID-19

FIGURE 2 | Relative risk of neurodegenerative, cerebrovascular and neuroimmune neurological disorders after COVID-19 (A). Bar chart of the relative risks (RR) of

new-onset neurodegenerative disorders and cerebrovascular events after 12 months in COVID-19 positive versus COVID-negative individuals, inpatients, and

outpatients. Barcharts depict RR with 95% confidence intervals. (B) Forest plot of the RR of new-onset neurodegenerative, cerebrovascular and neuroimmune

disorders six (black) and twelve (blue) after COVID-19 in COVID-19 positive outpatients compared to negative outpatients.

risk factors (Table 1 and Supplementary Table 2). After
exclusion of those with cerebrovascular risk factors, the RR for
Alzheimer’s disease remained elevated in COVID-19 individuals
(Supplementary Table 6). In the inpatient group, there were too
few cases for statistical analyses.

The RR of Parkinson’s disease was increased 6 and 12
months after a positive test in COVID-19 positive compared
to COVID-negative individuals (in- and outpatients combined)
and specifically in COVID-19 outpatients (in- and outpatients
combined: RR = 2.4; 95%CI: 1.5–3.8 at 6 months and RR
= 2.2; 95%CI: 1.5–3.4 at 12 months; outpatients: RR = 2.7;
95%CI: 1.7–4.4 at 6 months and RR = 2.6; 95% CI: 1.7–
4.0. Among inpatients, there were not enough Parkinson’s
disease cases to conduct meaningful statistics. Finally, there
was no excess risk of Alzheimer’s disease or Parkinson’s
disease compared to influenza or bacterial pneumonia inpatients
(Table 3).

From February 27, 2020 to November 27, 2021, 1,137
cerebral PET-FDG-18 scans were conducted in COVID-19
positive individuals and 23,889 in COVID-negative individuals,
corresponding to a 3% scanning rate in each group (χ2 = 1.7, p=
0.19). Similarly, there was no difference in the number of SPECT
scans among COVID-19 positive and negative individuals (0.04
vs. 0.03%, χ

2 = 2.1, p = 0.14), indicating equal access to these
diagnostic tools.

Ischemic Stroke
The frequency of new-onset ischemic stroke did not differ
significantly between COVID-19 positive and COVID-negative
individuals (in- and outpatients combined), nor between
COVID-19 positive and COVID-negative inpatients (Table 2
and Supplementary Table 4). Compared to COVID-negative
outpatients, the RR of ischemic stroke was increased three,
six, and 12 months after a positive test in COVID-19 positive
outpatients but was insignificant within the first month (RR =

1.4, 95%CI: 1.0–2.0, p = 0.08 after 1 month, RR = 2.3; 95%
CI: 1.8–3.0 after 3 months, RR = 2.8; 95%CI: 2.2–3.4 after
6 months and RR = 2.7; 95%CI: 2.3–3.2 after 12 months).

Notably, age-specific stratifications showed that the relative risk
was highest among younger patients between 40 and 59 years
(Supplementary Table 3). After exclusion of cerebrovascular risk
factors, the RR for ischemic stroke remained elevated in COVID-
19 positive outpatients (RR= 1.8; 95%CI: 1.5–2.8 after 3 months,
RR = 2.2; 95% CI:1.5–3.1 after 6 months, and RR = 2.1; 95%
CI:1.5–2.8 after 12 months).

Compared to influenza positive inpatients, COVID-19
inpatients had an increased RR of ischemic stroke one, three, and
6 months after a positive test (RR = 1.7; 95%CI: 1.1–2.6 after
1 month; RR = 1.7; 95%CI: 1.2–2.5 after 3 months; RR = 1.7;
95%CI: 1.2–2.4 after 6 months). After 12 months, the RR between
the two groups was decreased (RR = 1.3; 95%CI: 1.0–1.8, p =

0.09). After removal of cerebrovascular risk factors, the RR of
ischemic stroke remained increased in COVID-19 inpatients (RR
= 3.4; 95%CI: 1.4–8.2 after 1 month; RR = 3.0; 95%CI: 1.5–6.3
after 3 months; RR = 3.5; 95%CI: 1.7–7.2 after 6 months; RR =

2.8; 95%CI: 1.5–5.0 after 12 months; Supplementary Table 6).
The frequency of ischemic stroke did not differ significantly

between COVID-19 positive and bacterial pneumonia inpatients
(Table 3). After removal of individuals with significant
cerebrovascular risk factors, there remained no significant
difference between groups (Supplementary Table 6). After
stratification for age, the incidence of ischemic stroke was
increased in COVID-19 positive inpatients aged ≥ 80 (RR= 2.7;
95%CI:=1.2–6.2), but not in other age groups.

Intracerebral and Subarachnoid
Hemorrhage
The RR of intracerebral hemorrhage was increased 12 months
after a positive test in COVID-19 positive compared to COVID-
negative outpatients (RR = 4.8; 95%CI: 1.8–12.9). There
were no other differences in the rates of intracerebral and
subarachnoid hemorrhage between groups (Tables 2, 3 and
Supplementary Tables 4, 5). Notably, COVID-19 outpatients
received higher rates of intravenous thrombolysis, a risk factor
for medically induced intracerebral hemorrhage (21) (0.14% in
COVID-19 positive vs. 0.02% in COVID-negative outpatients,
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TABLE 2 | Relative risk of neurodegenerative, cerebrovascular and neuroimmune disorders in COVID-19 positive compared to COVID-negative individuals.

COVID-19

positive

(n = 43,375)

COVID-19

negative

(n = 876,356)

RR

(95%CI)

COVID-19

positive

(n = 43,375)

COVID-19

negative

(n = 876,356)

RR

(95%CI)

COVID-19

positive

(n = 43,375)

COVID-19

negative

(n = 876,356)

RR

(95%CI)

COVID-19

positive

(n = 43,375)

COVID-19

negative

(n = 876,356)

RR

(95%CI)

1 month, n (%) 3 months, n (%) 6 months, n (%) 12 months, n (%)

Alzheimer’s

disease�
- - - - - - 21

(0.05%)

121

(0.01%)

3.5

(2.2–5.6)*

29

(0.07%)

171

(0.02%)

3.4

(2.3–5.1)*

Parkinson’s

disease�
- - - - - - 20

(0.05%)

169

(0.02%)

2.4

(1.5–3.8)*

26

(0.06%)

234

(0.03%)

2.2

(1.5–3.4)*

Ischemic stroke 117

(0.3%)

6,251

(0.7%)

0.4

(0.3–0.5)*

180

(0.4%)

6,908

(0.8%)

0.6

(0.5–0.7)*

227

(0.5%)

7,365

(0.8%)

0.6

(0.5–0.7)*

281

(0.6%)

7,910

(0.9%)

0.7

(0.6–0.8)

Intracerebral

hemorrhage

7

(0.02%)

250

(0.03%)

0.6

(0.3–1.2)

10

(0.02%)

280

(0.03%)

0.7

(0.4–1.4)

13

(0.03%)

306

(0.03%)

0.9

(0.5–1.5)

16

(0.04%)

330

(0.04%)

1.0

(0.6–1.6)

Subarachnoid

hemorrhage

4

(0.01%)

201

(0.02%)

0.4

(0.1–1.1)

5

(0.01%)

233

(0.03%)

0.4

(0.2–1.1)

6

(0.01%)

254

(0.03%)

0.5

(0.2–1.1)

ll10

(0.02%)

289

(0.03%)

0.7

(0.4–1.3)

Guillain-Barré

syndrome

1

(0.002%)

52

(0.006%)

N/A 2

(0.005%)

58

(0.007)

N/A 2

(0.005)

61

(0.007%)

N/A 2

(0.005)

64

(0.007%)

N/A

Multiple sclerosis 4

(0.01%)

185

(0.02%)

0.4

(0.2–1.2)

6

(0.01%)

246

(0.03%)

0.5

(0.2–1.1)

11

(0.03%)

293

(0.03%)

0.8

(0.4–1.4)

14

(0.03%)

332

(0.04%)

0.9

(0.5–1.5)

Myasthenia gravis 1

(0.002%)

44

(0.005%)

N/A 1

(0.002%)

59

(0.007%)

N/A 1

(0.002%)

61

(0.007%)

N/A 1

(0,002%)

71

(0.008%)

N/A

Narcolepsy 0

(0.0%)

19

(0.002%)

N/A 0

(0.0%)

30

(0.003%)

N/A 0

(0.0%)

37

(0.004%)

N/A 0

(0.0%)

41

(0.005%)

N/A

Statistical analyses were only conducted for diseases with ≥ 4 cases in each group.

*Statistically significant RR (p < 0.05) are highlighted in bold.
�Excluding inpatient cases of Alzheimer’s disease and Parkinson’s disease the first three months after hospitalization with COVID-19.
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TABLE 3 | Relative risk of neurodegenerative, cerebrovascular and neuroimmune disorders in inpatients with COVID-19 compared to influenza inpatients and community-acquired bacterial pneumonia inpatients.

COVID- 19

positive

(n = 7,964)

Influenza

positive

(n = 4,142)

RR

(95%CI)

COVID-19

positive

(n = 7,964)

Influenza

positive

(n = 4,142)

RR

(95%CI)

COVID-19

positive

(n = 7,891)

Pneumonia

(n = 1,474)

RR

(95%CI)

COVID-19

positive

(n = 7,891)

Pneumonia

(n = 1,474)

RR

(95%CI)

1 month, n (%) 3 months, n (%) 1 month, n (%) 3 months, n (%)

Ischemic stroke 85

(1.07%)

26

(0.63%)

1.7

(1.1–2.6)*

113

(1.4%)

34

(0.8%)

1.7

(1.2–2.5)*

79

(1.0%)

14

(0.9%)

1.1

(0.6–1.9)

107

(1.4%)

19

(1.3%)

1.18

(0.6–1.7)

Intracerebral

hemorrhage

6

(0.08%)

0

(0.0%)

N/A 8

(0.1%)

0

(0.0%)

N/A 9

(0.1%)

0

(0.0%)

N/A 8

(0.1%)

0

(0.0%)

N/A

Subarachnoid

hemorrhage

4

(0.05%)

0

(0.0%)

N/A 5

(0.06%)

0

(0.0%)

N/A 6

(0.08%)

0

(0.0%)

N/A 5

(0.06%)

0

(0.0%)

N/A

Guillain-Barré

syndrome

1

(0.01%)

2

(0.05%)

N/A 1

(0.01%)

2

(0.05%)

N/A 1

(0.01%)

1

(0.07%)

N/A 1

(0.01%)

1

(0.07%)

N/A

Multiple sclerosis 1

(0.01%)

0

(0.0%)

N/A 1

(0.01%)

1

(0.02%)

N/A 1

(0.01%)

2

(0.1%)

N/A 1

(0.01%)

2

(0.1%)

N/A

Myasthenia gravis 1

(0.01%)

0

(0.0%)

N/A 1

(0.01%)

0

(0.0%)

N/A 1

(0.01%)

0

(0.0%)

N/A 1

(0.01%)

0

(0.0%)

N/A

Narcolepsy 0

(0.0%)

0

(0.0%)

N/A 0

(0.0%)

0

(0.0%)

N/A 0

(0.0%)

0

(0.0%)

N/A 0

(0.0%)

0

(0.0%)

N/A

6 months, n (%) 12 months, n (%) 6 months, n (%) 12 months, n (%)

Alzheimer’s

disease

4

(0.05%)

1

(0.02%)

N/A 7

(0.09%)

3

(0.07%)

N/A 4

(0.05%)

0 N/A 7

(0.09%)

0

(0.0%)

N/A

Parkinson’s

disease

0

(0.0%)

0

(0.0%)

N/A 2

(0.03%)

4

(0.1%)

N/A 1

(0.01%)

0 N/A 3

(0.04%)

3

(0.2%)

N/A

Ischemic stroke 128

(1.6%)

39

(0.9%)

1.7

(1.2–2.4)*

145

(1.8%)

58

(1.4%)

1.3

(1.0–1.8)

121

(1.5%)

23

(1.6%)

1.0

(0.6–1.5)

139

(1.8%)

28

(1.9%)

0.9

(0.6–1.4)

Intracerebral

hemorrhage

10

(0.1%)

0

(0.0%)

N/A 11

(0.14%)

1

(0.02%)

N/A 10

(0.1%)

0

(0.0%)

N/A 11

(0.1%)

0

(0.0%)

N/A

Subarachnoid

hemorrhage

5

(0.06%)

0

(0.0%)

N/A 7

(0.09%)

0 N/A 5

(0.1%)

0

(0.0%)

N/A 7

(0.1%)

0

(0.0%)

N/A

Guillain-Barré

syndrome

1

(0.01%)

2

(0.05%)

N/A 1

(0.01%)

2

(0.05%)

N/A 1

(0.01%)

1

(0.07%)

N/A 1

(0.01%)

1

(0.07%)

N/A

Multiple sclerosis 1

(0.01%)

2

(0.05%)

N/A 1

(0.01%)

2

(0.05%)

N/A 1

(0.01%)

2

(0.1%)

N/A 1

(0.01%)

2

(0.1%)

N/A

Myasthenia gravis 1

(0.01%)

0

(0.0%)

N/A 1

(0.01%)

0

(0.0%)

N/A 1

(0.01%)

0

(0.0%)

N/A 1

(0.01%)

0

(0.0%)

N/A

Narcolepsy 0

(0.0%)

0

(0.0%)

N/A 0

(0.0%)

0

(0.0%)

N/A 0

(0.0%)

0

(0.0%)

N/A 0

(0.0%)

0

(0.0%)

N/A

Statistical analyses were only conducted for diseases with ≥ 4 cases in each group.

*Statistically significant RR (p < 0.05) are highlighted in bold.
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χ
2 = 177.6, p < 0.0001). After exclusion of those treated with

intravenous thrombolysis, the RR of intracerebral hemorrhage
remained elevated after 12 months (RR = 4.4, 95%CI 1.6–11.5).
There were too few cases to carry out meaningful statistics after
1–6 months.

Multiple Sclerosis and Other Auto-Immune
Disorders
The frequency of new-onset multiple sclerosis did not differ
significantly between COVID-19 positive and COVID-negative
individuals (in- and outpatients combined), nor separately
across in- and outpatients (Table 2 and Supplementary Table 3).
There was also no significant difference in multiple sclerosis
rates between COVID-19 positive inpatients and influenza
inpatients (Table 3), and there were not enough cases to conduct
meaningful statistics in pneumonia inpatients.

Among 43,375 COVID-19 individuals, one developed
Guillain-Barré syndrome within 1 month (0.002%) and two
(0.005%) within 3 months. One individual (0.002%) developed
myasthenia gravis one through 12 months, and none (0.0%)
developed narcolepsy (Tables 2, 3). There were not enough cases
to conduct meaningful comparisons between groups.

DISCUSSION

Key findings from this population-based cohort study covering
roughly half of Denmark’s population include an increased
frequency of new-onset neurodegenerative and cerebrovascular
(but not neuroimmune) disorders in COVID-19 positive
compared to COVID-negative individuals. However, when
comparing the frequencies of these disorders after COVID-19
with those after influenza and community-acquired pneumonia,
we found no significant differences, except for ischemic stroke.

Neurodegenerative Diseases
Alzheimer’s disease was 3.4 times more frequent and Parkinson’s
disease was 2.2 times more frequent in COVID-19 positive
than COVID-negative individuals, 12 months after a COVID-
19 test. These findings should be considered in light of the
prolonged temporal course and the complex pathophysiology of
these disorders, including a possible role for neuroinflammation:
it is hypothesized that the body’s innate response and
subsequent inflammatory processes can induce a toxic cycle
of accumulating β-amyloid and alpha-synuclein peptides (the
pathologic hallmarks of Alzheimer’s and Parkinson’s diseases)
(22–26). In support of this, unexpectedly high amounts of β-
amyloid peptides have been discovered in brain autopsies of
young deceased patients with COVID-19 (27). Other factors
such as fatigue, depression, and anxiety after COVID-19
may also contribute to the development of neurodegenerative
disorders (20, 28–34). Moreover, it is uncertain if the risk of
Alzheimer’s disease and Parkinson’s disease differs after COVID-
19 compared to after influenza and bacterial pneumonia. Finally,
the scientific focus on long-term sequelae after COVID-19 may
have led to increased recognition by clinicians and hence earlier
diagnosis, perhaps explaining some of the observed increase in
neurodegenerative diagnoses.

Cerebrovascular Disorders
Ischemic Stroke
New-onset ischemic stroke was 2.3 times more frequent in
COVID-19 positive than COVID-negative outpatients after 3
months. Ischemic stroke was also 1.7 times more frequent in
COVID-19 inpatients compared to influenza inpatients in the
early and subacute phases after a positive test, as supported by
previous retrospective studies (albeit with shorter observation
periods) (5, 35). Ischemic stroke was also 2.7 times more frequent
in COVID-19 inpatients compared to bacterial pneumonia
among the elderly. In our study, the overall incidence of ischemic
stroke in COVID-19 positive inpatients (1.8%) is well in line with
previously reported data (0.4-2.7%) (36–39). Of note, age-specific
stratifications showed that the relative risk for ischemic stroke
was highest amongst patients between 40 and 59 years. A recent
study of 37,379 Medicare fee-for-service beneficiaries aged ≥65
years diagnosed with COVID-19 (36) and a multi-center study
involving a further 423 patients (40) similarly found an increase
in ischemic stroke among younger patients when compared to
population studies before the pandemic.

Increased rates of ischemic stroke in COVID-19 patients
may occur for several reasons. In line with an inflammatory
etiology, there were minimal differences in cerebrovascular
events between COVID-19 positive and community-acquired
pneumonia inpatients in our study, except for elderly patients,
who generally have a weaker inflammatory response (41).
It is unknown if the increased risk of thromboembolic
events in COVID-19 patients can be directly attributed to
unique properties of the virus, or if it is a consequence
of a more pronounced inflammatory state (41). Moreover,
given the association of COVID-19 with cardiac disorders,
includingmyocarditis, arrhythmias, heart failure, andmyocardial
infarction, cardiac embolism is also a potential mechanism (42–
44). It should be noted that COVID-19 patients had a slightly
higher rate of certain pre-existing risk factors for ischemic
stroke, including hypercholesterolemia, diabetes mellitus, and
hypertension, as have previously been reported (3, 45). However,
even when these cerebrovascular risk factors were excluded from
analysis, the COVID-19 population maintained a higher risk of
ischemic stroke. Finally, factors such as immobilization during
hospital admission may increase stroke risk as well (44).

Intracerebral and Subarachnoid Hemorrhage
The 1-month incidence of intracerebral hemorrhage among
COVID-19 inpatients was 0.1%, similar to previously published
studies (46). The frequency was 4.8 times higher in COVID-
19 positive compared to negative outpatients. There was,
however, no excess risk compared to patients with influenza or
community-acquired bacterial pneumonia. Some authors have
argued that a subset of intracerebral hemorrhages may be due
to hemorrhagic conversion of ischemic events, particularly after
anticoagulation therapy (47–49). In two recent studies, 76% (25
of 33) and 60% (6 out 10) of patients developed intracerebral
hemorrhage after low- or high-dose anticoagulation therapy (47,
48). Besides anticoagulation, a systematic review of 94 studies
found that older age, mechanical ventilation and extracorporeal
membrane oxygenation also increased the risk of intracranial
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hemorrhage in COVID-19 patients (46). In our study, the risk
of intracerebral hemorrhage remained elevated after removal of
patients who received intravenous thrombolysis, indicating an
independent COVID-19 related risk.

In our study of over 43,000 COVID-19 patients, only four
individuals developed subarachnoid hemorrhage within the first
month, and 10 within 12 months. This does not represent
an excess risk compared to COVID-negative individuals and
patients with influenza or bacterial pneumonia. Our results
confirm findings from another large study with 85,645 COVID-
19 patients, in which 86 developed SAH, without an excess risk
compared to COVID-negative patients (50).

Auto-Immune Neurological Diseases
Guillain-Barré Syndrome
In our study, only two patients developed GBS. In a study of
1,200 COVID-19 patients from Italy (51) and a study of 3,927
COVID-19 patients from India, there were five cases of GBS
each, (52) which appears to be an order of magnitude higher
than our data. Another epidemiologic study showed that the
incidence of GBS was lower during the pandemic than the
corresponding months in the four preceding pre-pandemic years
(53). However, precautionary measures intended to reduce the
risk of COVID-19 transmission might also have reduced the rate
of other infectious diseases associated with GBS (54).

Multiple Sclerosis
In the COVID-19 positive population, 14 of 43,375 individuals
developed MS 12 months after a positive test, which did not
represent an excess risk. Cases of multiple sclerosis after COVID-
19 infection or vaccination have been reported, (55–59) but to
our knowledge, no study has yet investigated the incidence of
multiple sclerosis after COVID-19.

Myasthenia Gravis and Narcolepsy
In the COVID-19 cohort, only one individual developed
myasthenia gravis, and none were diagnosed with narcolepsy,
12 months after a positive test. Only a few cases of new-onset
myasthenia gravis following COVID-19 have been reported, (60,
61) and to our knowledge, none of narcolepsy. Based on our
findings, it appears that COVID-19 does not increase the 1-year
risk of myasthenia gravis or narcolepsy. It must, however, be
kept in mind that the median age of new-diagnosed narcolepsy
patients is 12 years (62). Given the inclusion criteria of adults
≥18 years, we may have missed a possible association between
COVID-19 and narcolepsy. Longer follow-up studies in larger
and younger COVID-19 populations are needed to exclude
subsequent risks of myasthenia gravis and narcolepsy.

Strengths and Limitations
The strengths of this study include the large population and
wide catchment area, constituting half of the Danish population.
We were able to include all individuals irrespective of age, sex,
ethnicity, lifestyle, and socioeconomic background without loss-
to-follow-up. Sensitivity analyses showed no differences in rates
of clinical work-ups utilizing cerebral PET-FDG-18 and SPECT
for diagnoses of neurodegenerative disorders, nor in the rates of
risk factors for auto-immune disorders.

Given the nature of aggregated data, several caveats need to be
considered. First, we could not adjust for potential confounders
such as socioeconomic, lifestyle, pre-existing comorbidities, and
length of hospitalization. Instead, we stratified analyses by age,
sex, smoking status and pre-existing comorbidities.

Second, we only captured a subset of the Danish population’s
absolute number of tested individuals, because only COVID-
19 tests performed in hospital facilities are registered in the
Danish electronic health record system, and not those performed
in the community setting (including over-the-counter antigen
tests or PCR tests from private providers and the primary care
sector). Altogether, we captured∼20% of the COVID-19 positive
(17) and 40% of the COVID-negative (18) population in the
Capital Region and Region Zealand (which together correspond
to roughly half the population in Denmark).

To assess the representativeness of our study population,
we compared the frequencies of neurological diseases in
our COVID-negative population with those of the general
Danish population. We found that the prevalence or incidences
of Alzheimer’s disease, Parkinson’s disease, narcolepsy, and
intracerebral hemorrhage were representative of the Danish
and other Western populations (Supplementary Table 7) (63).
However, the prevalence of ischemic stroke, subarachnoid
hemorrhage, and GBS were higher than previous reports from
Denmark (64–66). While these results may be surprising, they
are in line with a recent Danish study of 23,688 individuals
that showed an increase in ischemic stroke in the pandemic
period from March 13, 2020 – February 28, 2021, (67) and
another showing increasing rates of GBS from 2019 to 2020
(68). The incidence of multiple sclerosis was also higher than
the reported yearly incidence in the Danish population, (69)
and may be accounted for by the younger population in the
Greater Copenhagen area (18) and, possibly, by greater air
pollution in urban areas (70–72). Altogether, however, these
figures suggest that our study cohorts are representative of the
general Danish population.

Given the attention on COVID-19 in the medical community,
the frequency of neurological diagnoses may have been increased
during the pandemic, thereby artificially increasing the numbers
in our study. Conversely, we may have missed the diagnosis of
some neurologic cases given the nature of aggregated data from
electronic health records and the one-year follow-up duration
which arguably is too short to detect longer-term changes, as
might be the case for multiple sclerosis after Ebstein-Barr virus
infection (73).

CONCLUSION

In this population-based study covering ∼50% of the Danish
population, we found support for an increased risk of
neurodegenerative disorders (i.e., Alzheimer’s disease and
Parkinson’s disease) and cerebrovascular disorders (i.e., ischemic
stroke and intracerebral hemorrhage), in COVID-19 patients
compared to individuals tested negative for COVID-19. While
the risk of ischemic stroke was increased with COVID-19
compared to influenza, reassuringly, most neurological disorders
do not appear to be more frequent after COVID-19 than after
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influenza or community-acquired bacterial pneumonia. Future
nationwide registry-based studies of pre-and post-pandemic
disease rates with full nationwide follow-up are required to
confirm these observations.
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Objectives: Fatigue is a frequent and often disabling symptom in patients with post-

COVID syndrome. To better understand and evaluate the symptom of motor fatigue in

the context of the post-COVID syndrome, we conducted treadmill walking tests to detect

the phenomenon of motor fatigability or to evaluate whether evidence of organic lesions

of the motor system could be found, similar to patients with multiple sclerosis.

Method: Twenty-nine non-hospitalized patients with post-COVID syndrome completed

the Fatigue Scale for Motor and Cognitive Function (FSMC) questionnaire to determine

the trait component of subjective fatigue before they were tested on a treadmill walking

at a moderate speed for up to 60min or until exhaustion. During the walking test oxygen

uptake, ventilation and acceleration data of both feet were collected. To determine motor

performance fatigability, the Fatigue Index Kliniken Schmieder (FKS) was calculated using

the attractor method.

Results: The average walking duration was 42.7 ± 18.6min with 15 subjects stopping

the walking test prematurely. The FSMC score revealed a severe cognitive (37.6 ± 8.2)

and motor (37.1 ± 7.8) fatigue averaged over all subjects but only two subjects showed

an FKS above the normal range (>4), representing performance fatigability. There was

no significant correlation between subjective fatigue (FSMC) and FKS as well as walking

time. Absolute values of oxygen uptake and ventilation were in the normal range

reported in literature (r = 0.9, p < 0.05), although eight subjects did not produce a

steady-state behavior.

Conclusion: Almost all patients with post-COVID syndrome and subjectively severe

motor fatigue, did not show motor fatigability nor severe metabolic anomalies. This is

argued against organic, permanent damage to the motor system, as is often seen in MS.

Many of the patients were - to our and their own surprise - motorically more exertable

than expected.

Keywords: post-COVID-syndrome, gait analysis, attractor method, motor fatigability, motor fatigue
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INTRODUCTION

While in the beginning, the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) was thought to be a viral airway
infection, lasting rarely longer than 14 days in mild cases, it is
now realized that a considerable number of patients have long-
lasting symptoms (1, 2). Post-COVID syndrome has arrived in
the mainstream of medicine and is challenging the health system
(3). Many patients were advised during the acute phase to stay
at home in quarantine and not to visit their general practitioner.
Many patients felt left alone with their disease and in the first few
months of 2020, symptoms of post-COVID have been primarily
described, exchanged, and advocated in patients’ forums and
social media. This encouraged publications stating that post-
COVID is the first patient-made disease (4). Symptoms have
been described and empathically shared on social media. This
might have contributed to the fact that post-COVID syndrome
has been taken up by scientists and later by health professionals
and politicians for debate (5).

The first publications focused on the symptomatology,
with most often cited symptoms of fatigue, myalgia, dyspnea,
headache, sleep disturbances, cognitive disturbances (“brain
fog”), and post-exertional fatigue (6). Symptomatology seems
to be independent of the seriousness of the primary infection
(1, 2). Patients are often on sick leave for months, and some
of them have difficulties returning to work (3). Six months
after the primary infection, an online survey showed that 22%
were still not working and 45% required a reduced working
schedule (7). Prevalence rates of symptoms and time course
during the first 7 months have been elaborately described
(7). The precise pathophysiology remains poorly understood
(8). There seems to be no correlation between the degree
of symptoms and biomarkers [like CRP, interleukin, etc. (6)],
albeit there is evidence that they are linked to chronic
(possibly autoimmune) inflammations (9). While publications
on symptoms and prevalence rates grow rapidly, the precise
etiology in individual patients and in single case studies and the
contributing psychosocial risk factors remain obscure.

A different disease, in which fatigue is very prominent and
often the most devastating symptom, is multiple sclerosis (MS).
In the field of MS, discrimination between fatigue and fatigability
has been introduced (10) and has been shown to be extremely
helpful (11). Fatigue represents the subjective sensation of the
patient, while fatigability represents the change in performance,
which can be measured (10). In addition, state fatigue represents
the short-lasting, momentary condition often depicted by a visual
analog scale. Trait fatigue reflects a long-lasting condition, often
regarding the last 4 weeks. It is most often captured in one of
the many fatigue scales (12). Besides motor and cognitive fatigue,
there is a third category termed emotional (or psychosocial)
fatigue (13).

The advantage of the new terminology is that fatigability
can be measured and observed. Many patients with MS, who
suffer from motor fatigability, show increasing weakness during
exhaustion, for instance, increasing foot drop or proximal
weakness, which might also cause increasing spasticity or ataxia.
If it is very prominent, the neurologist can observe motor

fatigability by comparing the gait of the exhausted patient
with his normal gait. More sophisticated are measurements
using motion-sensitive (IMU) sensors fixed to the ankle in
combination with an attractor-based evaluation (14–16). This
change in gait performance is not found in, e.g., depressive
disorders (17) and is interpreted as a demonstration of an organic
lesion of the central nervous system, possibly comparable to a
use-or activity-dependent conduction block (18). The correct
discrimination between organic and psychological causes of
fatigue and fatigability is helpful to define the best therapy in
individual cases of MS.

Besides a sophisticated gait analysis, we also investigated
oxygen uptake and ventilatory data to document an adequate
load for the treadmill test for each individual patient. At the
same time, these parameters allow the identification of a potential
insufficient ventilatory capacity as a potential consequence
of SARS-CoV-2 infection. Oxygen uptake during submaximal
continuous exercise will initially increase monoexponentially
from a resting state (∼3.5 ml/min/kg) until it finally settles in
a steady state (after ∼3min) when exercising at a constant,
moderate load (walking speed) (19). The resulting intensity was
proven to be suitable for gait exercises in a rehabilitative context
(20). Normal values for oxygen consumption for a constant
walking load on a treadmill for a common range of 3–6 km/h
correspond to about 8–18 ml/min/kg when at a steady-state
load (21). This corresponds comparably with minute ventilation
(L/min), which facilitates an increased oxygen exchange. At light
intensities, as defined above, a turnover of 25–40 L/min can be
expected as the increase is predominantly due to adjustments to
the tidal volume (22).

Motor fatigue is a very prominent finding in patients with
post-COVID syndrome (7). The aim of our study was a first
attempt to disentangle organic components of motor fatigue. We
did not imply that we can rule out other potential phenomena
like endothelial, mitochondrial, or other dysfunctions. In early
2021, our first approach was to exclude one potential mechanism
of organic dysfunction knowing that this might not be the
only or last option. To be more specific, the intention was
to investigate whether we can identify changes in gait pattern,
oxygen consumption, and ventilation during physical exertion
as indications of an organic failure. We evaluated rather mildly
affected patients – none of them had been hospitalized during the
acute infection – suffering frommotor fatigue after being infected
with SARS-CoV-2 in an exertional test on a treadmill.

MATERIALS AND METHODS

Patient Demographics and Medical History
The inclusion criteria of our study were the diagnosis of SARS-
CoV-2 (proven or suspected), initially non-hospitalized post-
COVID syndrome, subjective fatigue, being able to walk on a
treadmill without holding the side rails, and sick leave before
admission for several months. A total of 29 patients with post-
COVID syndrome, 24 women and five men, were included in
the study between May 2021 and February 2022 during their
rehabilitation at the Kliniken Schmieder Konstanz (Germany).
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Patients were aged 47.6 (± 10.02) years and weighed 80 (± 18.92)
kg. Most of our patients had a thorough cardiac and pulmonary
investigation without any pathological finding, which might have
explained their symptoms or sick leave before they were referred
to our rehabilitation clinic. The majority of our patients were
able to dress and bath themselves. They could follow their
training schedule and attend the sessions on their own and did
not rely on support from nurses (Barthel Index >70). Most
of them had been referred to a rehabilitation setting by the
Berufsgenossenschaft (the organization responsible for diseases
and accidents caused by or during work), by their pension fund,
by their health insurance company, or by their neurologist or
general practitioner due to protracted sick leave. All patients
suffered from a SARS-CoV-2 infection during the first month
of 2020 (first wave), during the end of 2020/beginning of 2021
(second wave), or during spring 2021 (third wave). Twenty-five
patients had been tested with a polymerase chain reaction (PCR)
test during the course of the disease. None had been hospitalized
during the acute phase. All of them were on sick leave before
being admitted to our clinic. The average duration of sick leave
was 8.75 (± 6.2) months. Twelve patients had returned to work
after the period of acute illness, and nine had deteriorated at
some stage and were unable to continue their work. Six had been
continuously on sick leave since their acute phase. The study
was approved by the local ethical committee of the University
of Konstanz (Germany) under the RefNo: 44/2021. All of the
participants filled out and signed informed consent.

Equipment
To acquire the raw data for the gait analyses, an inertial sensor
(IMU) from RehaWatch (Magdeburg, Germany) was attached
to each ankle of the patient with adhesive tape. The sensor
was located directly above the lateral malleoli. Technically,
the sensor works as a triaxial accelerometer with up to 16G
(1G = 9.81 m/s2), a triaxial gyroscope with up to 2,000◦/s, and
a magnetometer. The raw data were collected with a sampling
rate of 500Hz with the corresponding RehaGait app (version
1.3.14; Hasomed, Magdeburg, Germany) to be saved internally
for later use.

To conduct the ventilatory measurements, a mobile
spirometry device (VO2Master, Vernon, Canada) with its
associated app (version 0.22.10) was used. With this instrument
(weight: 320 g; 200 g unit & 120 g mask), it was possible to
determine the oxygen uptake as well as the ventilation breath-
by-breath using a mask while walking. For all test sessions, the
mouthpiece M, with a ventilation range of 15–180 L/min, was
chosen. The walking tests were conducted on an HP COSMOS
treadmill (model locomotion 150/50 DE med) equipped with a
security harness.

Study Design and Clinical Setting
The study was undertaken as a prospective study in a
neurological inpatient rehabilitation clinic. The clinic has the
capacity for about 240 patients. The largest patient group
encompasses patients with MS. The first patients with post-
COVID-syndrome were admitted at the beginning of 2021.
The therapeutic team consists of physiotherapists, occupational
therapists, psychologists, speech pathologists, sports scientists,
and vocational trainers. Patients stay for 4–5 weeks in the
clinic. There is no acute neurological department, no intensive
care, or early rehabilitation phase in our hospital. The test
protocol was structured in three stages: First, all patients
underwent a preliminary medical interview, followed by a
ramp test, to determine the load level for the subsequent
walking test, which had to be performed a few days later
(see Figure 1).

Fatigue Scale (FSMC)
The Fatigue Scale for Motor and Cognition (FSMC) has been
developed and introduced by Penner et al. (12). It is a
questionnaire containing 20 items, which are answered on a
Likert scale from one to five. The questionnaire is well evaluated
compared to healthy people and is commonly used in patients
withMS.Motor and cognitive fatigue can be separately evaluated;
ranges are given for normal values (no fatigue), light motor and
cognitive fatigue (>22 and >22, respectively), moderate motor
and cognitive fatigue (>27 and >28), and severe motor and

FIGURE 1 | Overview of test protocol consisting of three parts: clinical interview, ramp test and walking test.
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cognitive fatigue (>32 and >34). Values are also given for the
overall fatigue (>43; >53; >63).

Ramptest
To determine an adequate exertion for the walking (performance
fatigability) test, a ramp test on a treadmill was performed prior
to a separate day. Once the participants were fixed with the
security harness, they were allowed to familiarize themselves
with the treadmill at a self-chosen speed for 5min. Afterward,
they started to walk at 1.0 km/h with 1% inclination for half a
minute when the speed was increased by 0.3 km/h every further
30s. The walking test was either stopped as soon as the subjects
claimed that they could not walk any further or when amaximum
speed of 7.8 km/h was attained. Holding the side rails was not
allowed to ensure free walking. The onset of physical activity
from a resting condition is always linked to rapid and sensitive
adaptations of the physiological systems. The increased energetic
expenditure must be compensated accordingly. Sports science
literature separates three intensity zones that can be determined
spirometrically: regenerative, extensive, and intensive activity.
The transitions from one intensity to another are defined
by ventilatory threshold 1 (VT 1 or AerT) and ventilatory
threshold 2 (VT2 or AnT) (20, 23). These thresholds can be
detected by analyzing the respiratory gases and ventilation. VT1
correlates with the first lactate threshold, which is accompanied
by the bicarbonate buffering of protons (H+). The increased
release of carbon dioxide, also known as excess CO2, leads
to an over-proportional increase in ventilation, which can be
detected in the collected (breath-by-breath) spirometry data.
Because this inflection point is not always easy to detect, a
graphical determination is, even today, still preferred over full
computational methods like the one provided by Orr et al. (24).
The best known is certainly the V-Slope method (25), which
draws regression lines, one in the lower and one in the steeper
part of the ventilation-speed relationship. Once the best fit is
determined relying on the R2 of each regression line, VT 1, the
representative speed at VT 1 can be set at the intersection of
both lines. The current test was always performed under medical
supervision. Only subjects with spirometric data showing a
clear VT1 were invited to participate in the performance
fatigability test.

Continuous Walking Test (Performance Fatigability

Test)
In order to adequately expose the patients to physical activity
in the present study, an extensive continuous walking exercise
was chosen to assess whether any motor fatigability symptoms or
metabolic abnormalities occur. The test was undertaken within
1 week after the ramp test, with a walking speed set one step
above where VT1 was detected (= VT1 + 0.3 km/h) and a
treadmill inclination of 1%. By determining this workload level,
the energy is predominantly derived from aerobic metabolism.
This is to ensure that the intensity is sufficiently low so that
a large number of metabolites (e.g., lactate) do not accumulate
in the working muscles. It has been reported that this can
promote a negative affective valence by increasing the effort
perception (load-induced soreness), which can lead to an early

termination of the test session (26). Subjects were instructed to
walk until they felt they could no longer withstand the effort
or for a maximal time of 60min. To collect all motoric and
metabolic raw data, the participants were equipped with an
inertial measurement unit (IMU)-sensor attached to each ankle
and a spirometer, as described earlier. The walking behavior was
always visually observed, supported by a video recording from
the back, and eventually, potential abnormalities, as well as the
cause of termination, were written down. Spirometry and IMU
data were collected throughout the entire session. The test was
also performed under medical supervision. Since patients had
been already familiarized with the treadmill in the first session
(ramp test), the treadmill accelerated to the predetermined speed
shortly after the start.

Data Analysis
For the final assessment of fatigue, as well as performance
fatigability and spirometric measures, the recorded raw data
were further processed. FSMC scores were evaluated as described
by Penner et al. (12). To interpret the behavior of respiratory
variables, oxygen uptake (ml/min/kg) and minute ventilation
(L/min) were evaluated. To provide an informative statement
about motor patterns and gait behavior, algorithms of the
attractor method (15) were applied.

Attractor Method (Kinematic Analysis)
The attractor method allows the analysis of human movements,
especially cyclic motions like walking, running, cycling, or skiing.
The approach was first described in 2013 (15) and is still being
further developed to this day (16, 27–29). In this regard, it
represents a feasible application in which handy IMU sensors
can be used to capture motion data and evaluate it with respect
to its development over time. In addition to applications in
the context of sports (30–32), the attractor method has been
established especially in rehabilitative diagnostics (14, 33–37).
Attractors, a kind of average value of the covered gait cycles,
are calculated minute by minute in order to subsequently rank
them in relation to each other. In this way, modifications of two
measured events can be evaluated not only with respect to the
motion pattern itself (deltaM) but also concerning the motion
accuracy (deltaD) (15, 38). In 2014, a specific application of
these parameters, the so-called Fatigue Index Kliniken Schmieder
(FKS or deltaF), was developed for the diagnosis of motor
performance fatigability (14, 39). In the original methodology
for determining the FKS (39), deltaM and deltaD were first
calculated between the initial and final minute of a multi-
minute walk test (for example the 6-min walking test) to finally
multiply both values to deltaF. Recently, it was suggested to
compare the last minute with the second minute, instead of
the first, in order to obtain a more stable assessment (40).
The so-called transient effect causes much larger oscillations
at the beginning of a walking session, which eventually settle
down after a short time (28). The established threshold for the
occurrence of motor performance fatigability is deltaF ≥4 (39).
In the present study, the FKS was determined as a parameter for
motor performance fatigability for the continuous walking test,
comparing the gait behavior of the last minute before termination
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and the second minute after the start of the test. For all fatigue
indexes ≤4, the gait pattern can be assumed to be within the
normal range.

Metabolic Assessment
Throughout the entire measurement, oxygen and ventilation
data were collected via a portable spirometer (see above) on
a breath-by-breath basis. First, an Augmented Dickey-Fuller
test (41, 42) was performed for each data set (walking session)
to check if it showed a clear steady-state signature. For each
session, oxygen uptake and minute ventilation from the third
minute after the start [respecting the initial fast component
phase, see (19)] were analyzed. Subsequently, mean oxygen
uptake (ml/min/kg) and ventilation (L/min) of the steady state
[3min until termination of effort] were determined for each
case and checked with a paired sample t-test and a correlation
analysis (IBM SPSS Version 28) if they are in accordance
with literature-based norm values (21). In the context of
our gait exertions, oxygen uptakes between 8–18 ml/min/kg
(21) and minute ventilation of 20–40 L/min (22) can be
expected (speed-dependent).

RESULTS

Fatigue Scale for Motor and Cognition
(FSMC)
The FSMCMotor, FSMCCognitive, and FSMCTotal scores in
16 completely returned questionnaires averaged 37.1 ± 7.8
(= severe motor fatigue), 37.6± 8.2 (= severe cognitive fatigue),
and 74.7± 14.9 (= severe total fatigue), respectively.

Performance on the Treadmill
After assessing their ventilatory threshold (VT1), all rehabilitants
participated in a motor performance fatigability test for a
maximum of 60min walking on a treadmill. The average walking
time was 42.74 ± 18.6min, with 14 patients reaching the
full duration of 60min. The shortest walking time was 9min.
Walking speed averaged 5.1 ± 1 km/h with a range of 1.9 to
6.4 km/h. The walked time (in min) of the fatigability test did
not show a statistically significant correlation (p > 0.05) to
subjective fatigue, operationalized using the FSMC [including
only complete datasets (n = 16), see Fatigue Scale for Motor and
Cognition (FSMC)].

Metabolic Analyses
Compared to an expected steady state of oxygen consumption
and ventilation (see Figure 2, blue line), the results of the
Augmented Dickey-Fuller tests revealed that eight rehabilitants
out of 29 (27%) had a non-steady-state behavior (orange line)
in both, their oxygen as well as ventilation, data (one example
is shown in Figure 2). Looking solely at descriptive results,
absolute values of oxygen uptake, in participants with a steady
state, were 14.17 (± 3.2) ml/kg/min, and ventilation was 37.5
(± 7.8) L/min. For both, the statistical analyses showed that
there is no significant difference (p = 0.16) as well as a high
correlation (r = 0.9, p < 0.001) to the values provided in
literature (21, 22).

Fatigue Index Kliniken Schmieder (FKS)
The FKS is a sensitive measure to capture motor performance
fatigability (17, 39). From all participating patients, attractors
of their gait tests were calculated and the respective FKS
was determined according to the attractor method algorithm
(Figure 3). The findings show that all individuals, with only two
exceptions (subjects 14 and 18), are well below the cutoff of FKS
≥4. Thus, motor performance fatigability cannot be attested in
94% of all cases. The attractor analysis (FKS in m/s2) during the
fatigability test did not show a statistically significant correlation
to subjective fatigue, operationalized using the FSMC [including
only complete datasets (n = 16), see Fatigue Scale for Motor and
Cognition (FSMC)].

DISCUSSION

The purpose of the present study was to investigate, whether
changes in gait behavior, oxygen consumption, and ventilation
during walking on a treadmill, as potential indications of
an organic failure, can be observed. In all, except for two,
initially non-hospitalized patients with post-COVID-syndrome
complaining of serious motor fatigue [FSMCMotor averaged
37.1 ± 7.8 (= severe Fatigue)], we found no gait abnormalities
during walking till exhaustion; suggesting no organic lesion
in the central motor system comparable to those found in
patients with MS. The latter had also been reported in a
previous study for patients with depression (17). Thus, this
marks a striking difference from the common finding of motor
fatigability in patients with MS (14, 39). We argue that this is
an important outcome to begin to disentangle the complex,
prominent and frequent phenomenon of fatigue in post-COVID
syndrome. We were very much surprised that almost half of
our patients were able to walk for 1 h on the treadmill at a
fairly good speed around 5 km/h. Patients themselves were
surprised that they managed to walk faster and longer than
expected. Some of them complained about the backdrop the
next day. Others did not experience the backdrop they had
expected. From patients with MS, we know that fatigability
while walking manifests at a particular localization in the
nervous system where a focal infection caused a focal lesion
which partially regenerated but left behind a “locus resistenciae
minoris” – a weak point in the motor control system. When
a patient is brought to his personal limit, such as walking
at an unusually high speed, the latent lesion increases the
weakness and causes a failure. Our study is in line with the
hypothesis that a very careful neurological examination at
rest might predict whether the patient will show fatigability
during exertion or not. If there is no slight abnormality at
rest, there might be no “locus resistance minoris” – no weak
point, which gives way to fatigability during exertion. Finding
no fatigability like that in MS does not exclude other potential
organic causes like endothelial dysfunction, mitochondrial
dysfunction, persisting inflammation, autoimmunity, or
dysregulation of specific cytokines (6). It is the first step to
disentangling the conundrum of post-COVID syndrome (8).
Symptoms may also be related to psychosocial stress, trauma,
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FIGURE 2 | Oxygen consumption curves of two subjects. Subject 13 (blue) showed a normal oxygen kinetic, increasing from rest and leveling off until the walking

session was stopped at the maximal time of 60min. Subject 12 (orange) had to stop after approximately 17min. It is visible that the VO2 consumption was steadily

rising for subject 12.

FIGURE 3 | Overview of all rehabilitants’ FKS. Cutoff value <4 [based on (42)] defines no present performance fatigability. Only two patients lay above this critical value.

or maladaptive coping style (43, 44). In contrast, common
practice identification of an organic cause does not exclude
psychological or psychiatric comorbidities and vice versa. In
many neurological diseases, organic and psychogenic factors
are both present and relevant and might exaggerate each
other (45).

The described motor-related findings are also underlined by
the fact that a normal oxygen and ventilation behavior was
established in the majority of the patients. After the initial
exercise-induced increase, a steady-state behavior was observed,
which showed that these subjects were able to perform the
specified exercise without respiratory difficulties. Exceptions
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(“drift”) from this behavior (see Figure 2, orange line) were
only observed in persons who dropped out of the test markedly
prematurely. Even though these data might be associated with the
early dropout of the exercise, the absolute values of oxygen uptake
and ventilation were within normal limits as it was demonstrated
by the statistical tests compared to the literature. Also, based on
the emotional expressions of early quitters, stress- or anxiety-
related increase must be considered. In future studies, this
could be assessed by questionnaires beforehand to determine the
predisposition and afterwards to evaluate the actual occurrence
of anxiety or negative expectations.

Describing what the phenomenon of fatigue in post-COVID is
not like does not tell us what it is. However, it is the first step and
the first approach to characterizing the complex phenomenon of
fatigue. There is an obvious and broad discrepancy between the
very frequent subjective complaints about fatigue and missing
objective data of performance fatigability corroborating the
complaints of the patients. The discrepancy between subjective
complaints of the patients and missing objective deficits made
some people claim that fatigue in post-COVID syndrome
resembles or equals myeloencephalitis/chronic fatigue syndrome
(ME/CFS). The subjective-objective cognitive mismatch in
ME/CFS caused even a comparison to the functional cognitive
disorder spectrum [(46) cited from (47)]. Fatigue, pain, and
excessive interoceptive monitoring in ME/CFS may produce a
shift from externally directed attention to subjective complaints,
resulting in perceiving cognitive and motor tasks as extremely
effortful (46).

Since there does not exist anymotor, and only a fewmetabolic,
potentially unspecific, anomalies emerging in our patient sample,
we expect that psychosocial factors may be contributing or
driving forces in the course of the disease for the patients.
However, this can only be confirmed on the basis of future
studies. The test design will be extended in order to allow a
deeper investigation of the metabolic processes: Here, lactate
measurements will be used as a marker for anaerobic energy
utilization as well as heart rate data to gain insights into the acute
response of the cardiovascular system. Furthermore, cooperative
groups from the Schmieder Clinics as well as the University of
Konstanz will conduct investigations on cognitive, emotional,
and endocrine function or combined effects. Structured clinical
interviews and neuroimaging (fMRI) will be used in our group to
assess psychosomatic and psychiatric comorbidities.

We are optimistic that patients will not permanently suffer
from fatigue when participating in adequate and intense exercise
and cognitive behavioral training. Cognitive behavioral therapy
will be a central component in our patient management
besides individually tailored exercise and training. This might
be even helpful in those patients in whom an organic trigger
is identified. All of our patients were not initially hospitalized
and represent a group of initially “mildly affected” patients.
Thus, our observations and conclusions cannot be generalized
to all post-COVID-19 patients and certainly not to those who
had been ventilated in an intensive care unit. In those patients,
one might often expect organic deficits, particularly concerning
pulmonary and cardiac function or the central and peripheral
nervous system.

CONCLUSION

Initially, non-hospitalized patients with post-COVID syndrome
should be examined with a holistic and multidisciplinary
approach. After exclusion of cardiac and pulmonary deficits,
patients in our sample with prominent fatigue did not show
any signs of motor performance fatigability like patients with
MS. This implies that we did not find signs of a lesion of
the central motor system despite the prominent complaint of
motor fatigue. It was not clear whether mild anomalies in
ventilation were caused by metabolic or psychogenic alterations.
Additional investigation of lactate and heart rate data will be
helpful. Nevertheless, the test procedure used here has proven
to be very useful for detecting motor and metabolic changes
during physical exertion in patients complaining about fatigue.
We assume that psychiatric and psychosomatic comorbidities
may be involved in many initially non-hospitalized patients
with post-COVID-syndrome.
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Objectives: To identify neurological aspects of Coronavirus disease 2019 (COVID-19)

and to investigate COVID-19 infected patients with and without olfactory dysfunction in

relation to polymerase chain reaction (PCR) assay results for severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2) in the cerebrospinal fluid (CSF).

Methods: PubMed and EMBASE databases were searched until March 26, 2021, for

observational studies with COVID-19 patients that had performed CSF PCR assay due

to the neurologic symptom and reported anosmia status.

Results: Initially, 2,387 studies were identified;167 studies performed SARS-CoV-2 CSF

PCR assay, of which our review comprised 45 observational studies that conducted

CSF PCR assay for SARS-CoV-2 in 101 patients and reported anosmia status in

55 of 101 patients. Central and peripheral neurological manifestations observed in

COVID-19 patients were diverse. The most common neurological diagnoses were

Guillain-Barré syndrome (GBS) and its variants (24%), followed by encephalopathy (21%).

The SARS-CoV-2 PCR assay was positive in only four CSF samples, of which two

patients had olfactory dysfunction while the others did not.

Conclusions: The neurological spectrum of COVID-19 is diverse, and direct

neuroinvasion of SARS-CoV-2 is rare. The neuroprotection against SARS-CoV-2 in

COVID-19 patients with anosmia is controversial, as an equal number of patients with

and without olfactory dysfunction had positive CSF PCR results for SARS-CoV-2 in our

study, and further studies are required to provide more insight into this topic.

Keywords: COVID-19, SARS-CoV-2, anosmia, cerebrospinal fluid, neuroinvasion

INTRODUCTION

The olfactory nerve connects the nasal cavity to the central nervous system (CNS) and provides
a neuroinvasive shortcut to respiratory neurotropic viruses (1). The detection of severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) in the olfactory nerve and CNS of patients
with coronavirus disease 2019 (COVID-19) suggests that SARS-CoV-2 has neuroinvasive potential
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via the olfactory pathway (2). Although SARS-CoV-2
neuroinvasion is uncommon, CNS viral transmission poses
a significant threat to life (3).

Previous animal studies have demonstrated that respiratory
neurotropic viral invasion induces apoptosis of olfactory receptor
neurons (ORNs), preventing the viral transmission to the
olfactory bulb and the CNS (4, 5). Although the exact mechanism
underlying COVID-19 related anosmia is unclear, human and
animal studies have shown that anosmia is a consequence of
a host defense mechanism against viral invasion involving the
damage of olfactory epithelium might provide neuroprotection
(2, 5–9). Furthermore, anosmia is frequently seen in milder
forms of COVID-19 with a lower mortality rate (10, 11).
Therefore, neuroprotection is anticipated in COVID-19 patients
with anosmia.

Understanding the underlying mechanism and prognostic
value of COVID-19-related anosmia will aid better patient
management since olfactory dysfunction is often associated
with several neurological disorders (12). This systematic review
aimed to compile studies involving COVID-19 patients with
neurological manifestations who have undergone polymerase
chain reaction (PCR) testing for SARS-CoV-2 in cerebrospinal
fluid (CSF) and reported the patient’s anosmia status for
identifying neurological aspects of COVID-19 and exploring the
COVID-19 infected patients with or without anosmia in relation
to their CSF PCR assay results.

METHODS

Eligibility Criteria
The observational studies related to CSF analysis of COVID-
19 patients with neurological symptoms were included. Target
patients were COVID-19 patients diagnosed based on either
positive SARS-CoV-2 PCR or serologic testing who had a
neurological manifestation and have undergone SARS-CoV-2
CSF PCR testing to identify COVID-19-related neurological
disorders. Studies that conducted CSF PCR assay for SARS-
CoV-2 but did not report information on the status of
anosmia were excluded. The study covered primary, retrievable
scientific literature available in English. Collected data were each
patient’s sex and age distribution, SAR-CoV-2 CSF PCR assay,
neurological presentation, treatment, and outcome. Therefore,
studies that did not report these data properly were also excluded.

Search Strategy
We conducted a broad literature search of databases such
as EMBASE and PubMed until March 26, 2021, following
preferred reporting items for systematic reviews and meta-
analysis (PRISMA) checklist (13) for studies that performed
CSF PCR assay for SARS-CoV-2 in COVID-19 patients using
population search terms “SARS-CoV-2” or “COVID-19” and
intervention search terms “brain” or “cerebrospinal fluid”
or “anosmia”.

Study Selection
Two independent authors screened studies based on the titles and
abstracts. Any studies relevant to the CSF analysis of patients with

COVID-19 were advanced to the second stage of the review. Full
texts were reviewed using the eligibility criteria mentioned above
in the second screening. Any disagreement between the authors
was resolved by discussion.

Risk of Bias Assessment
The Joanna Briggs Institute (JBI) critical appraisal checklist was
used to assess the risk of bias in each included study (14).

Data Extraction and Analysis
Two authors independently collected the data items included
in the study design for each eligible study. For evaluating
neurological aspects of COVID-19, individual patient data
on neurological presentation, treatment, and outcomes were
collected. The data items included individual’s age and sex
distribution, CSF PCR assay result, anosmia status, COVID-
19-related neurological symptoms, neurological diagnosis,
treatment, and outcomes. Each COVID-19 patient’s data
with neurological manifestations who had undergone CSF
PCR testing for SARS-CoV-2 to identify COVID-19-related
neurological disorders was summarized to characteristics, clinical
presentation, SARS-CoV-2 PCR assay results, neurological
diagnosis, treatment, and outcomes.

RESULTS

Study Selection
In total, 2,387 studies were identified through a literature search
after removing duplicates. After preliminary screening based on
the titles and abstracts, a total of 379 studies related to CSF
analysis of COVID-19 patients with neurological symptoms were
included; among them, 167 studies (44%) that conducted PCR
tests for SARS-CoV-2 in CSF were selected for full-text review.
A total of 122 studies that conducted CSF PCR assay for SARS-
CoV-2 but did not report information on the status of anosmia
were excluded. Thus, only 45 articles that met the inclusion
criteria were included in our study (15–59). A flow diagram of
the study selection process is shown in Figure 1.

Risk of Bias
Overall, the risk of bias in the included studies was low except
for three studies (15, 21, 57). The summary of JBI critical
appraisal results for case reports and case series can be seen in
Supplementary Tables 1, 2.

Participants and Characteristics of Studies
The total number of participants was 104, while the SARS-CoV-
2 CSF PCR testing was performed on only 101 patients. Table 1
shows the characteristics of the 101 participants included in the
review. More than 63.4% (64/101) were men. The mean age was
57 ± 16.37 years. The number of men and women infected with
COVID-19 increased with age. COVID-19 infected patients of
both sexes, predominantly in the 60–79 age group (Figure 2).

Neurological Aspects of COVID-19
Clinical Presentation
The neurological symptoms observed in COVID-19 individuals
were diverse. Themost common COVID-19-related neurological
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FIGURE 1 | PRISMA flowchart.

symptoms were smell disorder, taste disorder, headache, myalgia,
altered consciousness, related paresis, and related cognitive and
behavioral disturbances.

Neurological Diagnosis
The neurological diagnosis made after the neurological and
radiological examination was localized to CNS (61.39%),
peripheral nervous system (32.67%), or both (5.94%). In a study
comprising 30 participants, six patients were diagnosed with
two neurological disorders (57). The most common neurological
diagnosis included Guillain-Barré syndrome and its variant
(24%), followed by encephalopathy (21%) (Table 1).

Treatment and Outcomes
Information on the therapeutic management of COVID-
19 was available for only 69 patients, including one
patient who did not require medical treatment. In most
cases, therapeutic management of COVID-19 patients
involved combinational therapies. Common treatments
included steroids administration (n = 32/69), intravenous
immunoglobulin infusion (n = 28/69), hydroxychloroquine
(n = 18/69), and plasma exchange (n = 11/69). Other
medications used in the management of COVID-19 patients
are shown in Table 1. The administration of medications
resulted in neurological improvement in most patients.
There were 63 non-fatal cases, five fatal cases, and one
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TABLE 1 | Characteristics of studies included in the review.

References Total case Age/sex SARS-CoV-2

diagnostic

CSF PCR LOS Neurological diagnosis Treatment Outcome

Case report

Andriuta et al. (15) 2 NR/F NPS Neg Yes Encephalopathy NR NR

NR/M NS Neg NR Encephalopathy NR Unawaken

Assini et al. (16) 2 55/M OPS Neg Yes Polyradicoloneuritis Idrossichlorochine, arbidol,

L/R, IVIG

Non-fatal

60/M NPS Neg NR Polyradicoloneuritis HCQ, ART, Tocilizumab,

IVIG

Non-fatal

Atakla et al. (17) 1 41/M NPS Neg Yes GBS IVIG, AZ, chloroquine Non-fatal

Bigaut et al. (18) 2 43/M NPS Neg Yes GBS IVIG Non-fatal

70/F NPS Neg Yes GBS IVIG Non-fatal

Bodro et al. (19) 2 25/M NPS Neg No Encephalitis AC, antibiotics Non-fatal

49/M NPS Neg No Encephalitis AC, antibiotics Non-fatal

Canavero et al. (20) 2 25/F NPS Neg Yes Post-infectious demyelinating

myelitis

Steroid Non-fatal

69/M NPS Neg NR Encephalomyelitis CF, AC, L/R, HCQ, steroid,

IVIG

Non-fatal

Casez et al. (21) 1 96/F Serology Neg Yes Encephalitis NR NR

Cebrián et al. (22) 1 74/F NPS Pos No Headache NSAIDs, CF, HCQ, L/R Non-fatal

Chakraborty et al. (23) 1 59/F NPS, OPS Neg No Acute transverse myelitis Steroids and antipyretics Fatal

Chan et al. (24) 1 58/M OPS Neg No GBS IVIG Non-fatal

Chauffier et al. (25) 1 47/M NPS Neg No Encephalopathy No medical treatment Non-fatal

Chaumont et al. (26) 1 69/M BAL Neg Yes Meningoencephalitis AC, HCQ, AZ Non-fatal

Chow et al. (27) 1 60/M NPS Neg Yes Acute transverse myelitis Steroid Non-fatal

Civardi et al. (28) 1 72/F NPS Neg Yes GBS IVIG, HCQ, Doxycycline Non-fatal

Cohen et al. (29) 1 45/M NPS Neg Yes Parkinson’s disease Steroid, biperiden Non-fatal

Corrêa et al. (30) 1 51/F NS Neg Yes Enecephalomyeloradiculitis Steroid, PE, azathioprine Non-fatal

De Gennaro et al. (31) 2 42/M NPS Neg No Cranial neuritis Remdesivir, sedatives,

curare, IVIG

Non-fatal

67/M NPS Neg No Cranial neuritis Antibiotics, anesthetic,

noradrenalin, IVIG

Non-fatal

Demirci Otluoglu et al.

(32)

1 48/M CSF Pos Yes Encephalomyelitis HCQ, Favipiravir,

P/T,levetiracetam, steroid,

AC

Non-fatal

Dijkstra et al. (33) 1 44/M NPS Neg Yes Myoclonic syndrome Steroid and IVIG Non-fatal

(Continued)
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TABLE 1 | Continued

References Total case Age/sex SARS-CoV-2

diagnostic

CSF PCR LOS Neurological diagnosis Treatment Outcome

Fadakar et al. (34) 1 47/M NPS, OPS Pos No Cerebellitis L/R Non-fatal

Grimaldi et al. (35) 1 72/M NPS Neg No Encephalitis IVIG, steroid,

benzodiazepines

Non-fatal

Gutiérrez-Ortiz et al.

(36)

2 50/M OPS Neg Yes Miller fisher syndrome IVIG Non-fatal

39/M OPS Neg NR PNC Acetaminophen Non-fatal

Helbok et al. (37) 1 68/M Serology Neg Yes GBS Steroid, IVIG, PE Non-fatal

Huber et al. (38) 1 21/F Serology Neg Yes Myasthenia gravis IVIG and pyridostigmine Non-fatal

Le Guennec et al. (39) 1 69/M TA Neg Yes Status epilepticus Levetiracetam and IVIG Non-fatal

Lim et al. (40) 1 55/F NPS Neg Yes Psychotic disorder Benzodiazepine,

antipsychotic

Non-fatal

Moore et al. (41) 1 28/M NPS Neg Yes Multiple sclerosis Steroid Non-fatal

Muccioli et al. (42) 1 47/F NPS Neg Yes Encephalopathy Tocilizumab Non-fatal

Naddaf et al. (43) 1 58/F Serology Neg No GBS HCQ, zinc, steroid, PE Non-fatal

Novi et al. (44) 1 64/F CSF Pos Yes ADEM Steroid with OPT, IVIG Non-fatal

Oguz-Akarsu et al. (45) 1 53/F NPS Neg No GBS PE, HCQ, AZ Non-fatal

Palao et al. (46) 1 29/F Serology Neg Yes Multiple sclerosis Steroid with OPT Non-fatal

Pascual-Goñi et al. (47) 2 60/F NPS Neg Yes Encephalopathy Thiamine, pyridoxine, HCQ,

AZ

Non-fatal

35/F NPS Neg NR Encephalopathy Thiamine and pyridoxine Non-fatal

Riva et al. (48) 1 NR/M Serology Neg Yes GBS IVIG Non-fatal

Umapathi et al. (49) 2 59/M NPS Neg No ADEM Low molecular weight

heparin, IVIG

Non-fatal

73/M NPS Neg NR Encephalopathy Interferon-beta 1b, L/R,

steroid

Fatal

Vandervorst et al. (50) 1 29/M NPS Neg Yes Encephalitis HCQ, nebivolol, amlodipine,

antipsychotic,

benzodiazepines

Non-fatal

Zanin et al. (51) 1 54/F Pos; swab unclear Neg Yes Brain & spine demyelinating

lesions

ART, HCQ, antiepileptics,

steroid

Non-fatal

Zhou et al. (52) 1 26/M NS, OPS Neg No MOG-IgG-MD Steroid with OPT Non-fatal

Zoghi et al. (53) 1 21/M Serology Neg No Central demyelinating brain injury PE, antibiotics, AC Non-fatal

Case series

Cao et al. (54) 5 49/M NPS/TA Neg NR Encephalitis Steroid and PE Non-fatal

56/M NPS/TA Neg NR Encephalitis Steroid and PE Non-fatal

61/M NPS/TA Neg NR Encephalitis Steroid and PE Non-fatal

(Continued)
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TABLE 1 | Continued

References Total case Age/sex SARS-CoV-2

diagnostic

CSF PCR LOS Neurological diagnosis Treatment Outcome

37/M NPS/TA Neg NR Encephalitis Steroid and PE Fatal

77/F NPS/TA Neg Yes Encephalitis Steroid and PE Fatal

Delorme et al. (55) 4 72/M NPS Neg Yes Encephalopathy IVIG Non-fatal

66/F NPS Neg NR Encephalopathy IVIG and steroid Non-fatal

60/F NPS Neg NR Encephalopathy Steroid, antidepressants Non-fatal

69/M NPS Neg Yes Encephalopathy Levetiracetam, sedative,

IVIG, steroid

Non-fatal

Manganotti et al. (56) 4 72/M NPS Neg Yes GBS HCQ, antivirals, steroid,

tocilizumab

Non-fatal

72/M NPS Neg Yes GBS HCQ, L/R, steroid Non-fatal

49/F NPS Neg Yes GBS HCQ, L/R, steroid Non-fatal

76/M NPS Neg Yes GBS HCQ, antivirals, steroid,

tocilizumab, antibiotics,

fluconazole

Non-fatal

Neumann et al. (57) 30 81/M NPS Neg NR TIA NR NR

25/F NPS Neg NR CVST NR NR

48/F BAL Neg NR Encephalitis-HSV-1 NR NR

73/F NPS Neg NR Suspected post-stroke

movement disorder

NR NR

63/M BAL Neg NR Miller fisher syndrome NR NR

58/M BAL Neg NR Encephalopathy with Seizure NR NR

75/F NPS Neg Yes Encephalopathy DD limbic

Encephalitis

NR NR

66/M NPS, BAL Neg NR Intracranial hemorrhage NR NR

56/M OPS, BAL Neg NR Encephalopathy, CIP NR NR

41/F OPS Neg NR Osmotic demyelination

syndrome

NR NR

68/M BAL Neg NR Seizure NR NR

64/M OPS, BAL Neg NR Encephalopathy, CIP NR NR

57/M OPS, BAL Neg NR Status epilepticus NR NR

75/M OPS, BAL Neg NR Encephalopathy, CIP NR NR

47/M OPS, BAL Neg NR Encephalopathy, CIP NR NR

50/M OPS, BAL Neg NR Seizure NR NR

51/M OPS, BAL Neg NR Encephalopathy NR NR

65/F OPS Neg NR Encephalopathy NR NR

45/M OPS Neg NR Unclear headache NR NR

68/F OPS Neg NR Encephalopathy NR NR

(Continued)
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TABLE 1 | Continued

References Total case Age/sex SARS-CoV-2

diagnostic

CSF PCR LOS Neurological diagnosis Treatment Outcome

81/M OPS, BAL Neg NR Encephalopathy NR NR

48/M OPS Neg Yes UVN NR NR

58/F OPS Neg NR UANP NR NR

80/M OPS Neg Yes Encephalopathy NR NR

70/M OPS, BAL Neg NR CIP, Ischemic stroke NR NR

76/F OPS, BAL Neg NR Prolonged coma NR NR

79/F OPS, BAL Neg NR GBS and encephalopathy NR NR

28/F OPS Neg NR Ischemic stroke NR NR

68/M OPS Neg NR Seizures NR NR

86/F OPS Neg NR GBS NR NR

Perrin et al. (58) 5 71/F NPS Neg NR Encephalopathy Levetiracetam and steroid Fatal

64/M NPS Neg NR Encephalopathy L/R, benzodiazepine,

steroid, IVIG

Non-fatal

53/F NPS Neg NR Encephalopathy HCQ Non-fatal

51/M NPS Neg NR Encephalopathy HCQ Non-fatal

67/M NPS Neg Yes Encephalopathy HCQ, steroids Non-fatal

Toscano et al. (59) 5 77/F NPS Neg NR GBS IVIG Non-fatal

23/M NPS Neg NR GBS IVIG Non-fatal

55/M NPS Neg NR GBS IVIG Non-fatal

76/M NPS Neg Yes GBS IVIG Non-fatal

61/M Serology Neg Yes GBS IVIG and PE Non-fatal

AC, acyclovir; ADEM, Acute disseminating encephalomyelitis; ART, antiretroviral therapy; AZ, azithromycin; BAL, Bronchoalveolar lavage; CF, ceftriaxone; CIP, critical illness polyneuropathy; CSF, cerebrospinal fluid; CVST, Cerebral venous

sinus thrombosis; DD, differential diagnosis; GBS, Guillain-Barré syndrome; HCQ, hydroxychloroquine; HSV, herpes simplex virus; IVIG, intravenous immunoglobulin; LOS, loss of smell; L/R, lopinavir and ritonavir; MOG-IgG-MD, myelin

oligodendrocyte glycoprotein- antibody-mediated disease; NPS, nasopharyngeal swab; NS, nasal swab; NSAIDs, Non-steroidal anti-inflammatory drug; OPS, oropharyngeal swab; OPT, oral prednisolone tapering; PCR, polymerase

chain reaction; PE, plasma exchange; PNC, Polyneuritis cranialis; P/T, piperacillin and tazobactam; SARS-CoV-2, severe acute respiratory syndrome coronavirus-2; TA, tracheal aspirate; TIA, Transient ischemic attack; UVN, Unilateral

Vestibular Neuritis.

NR denotes data not reported in the studies, F means female, M means male, Pos means positive, and Neg means negative.
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FIGURE 2 | Age and sex distribution of COVID-19 patients who underwent CSF PCR assay for SARS-CoV-2. The number of men and women infected with

COVID-19 who developed severe neurological manifestations and underwent CSF PCR assay for SARS-CoV-2 increased as the age of the individuals increased. The

impact of COVID-19 was higher in patients aged 60-70 years old of both sexes. In addition, there were more COVID-19 infected men than COVID-19 infected women

of all ages. COVID-19, coronavirus disease 2019; CSF, cerebrospinal fluid; PCR, polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome

coronavirus-2. NR denotes that the ages of two males and one female were not reported.

patient did not regain consciousness even after sedation
was discontinued.

SARS-CoV-2 PCR Assay Results
Patients were confirmed to be COVID-19 positive when tested
positive in PCR assay from nasopharyngeal swab or nasal swab
(50/101), oropharyngeal swab (14/101), bronchoalveolar lavage
(5/101), tracheal aspirate (1/101), or a combination of them
(20/101). The PCR assay was positive in one study, but the
swab used was not specified (51). Two patients were confirmed
COVID-19 positive with the presence of SARS-CoV-2 in CSF
(32, 44), and in eight patients with negative PCR test, COVID-19
infection was diagnosed with the presence of anti-SARS-CoV-2
in serum (Table 1) (21, 37, 38, 43, 46, 48, 53, 59).

CSF PCR assay for SARS-CoV-2 was positive for only four
(3.96%) patients (22, 32, 34, 44) and negative in 97 (96.04%)
patients (15–21, 23–31, 33, 35–43, 45–59). Of the 101 patients,
information on the status of anosmia was available in 55 patients
(51 patients had negative CSF PCR results, while four had positive
CSF PCR results). Out of 51 patients with negative CSF PCR
results, 38 had smell disorder, while 13 had no nasal symptoms.
Meanwhile, two of the four patients with positive CSF PCR
results for SARS-CoV-2 had olfactory dysfunction, while the
other two did not (Table 1).

DISCUSSION

This systematic review identified studies that performed CSF
PCR assay for SARS-CoV-2 in COVID-19 positive patients and
reported anosmia status to identify the common neurological
manifestations associated with COVID-19 and to analyze the
interrelation between CSF PCR results and anosmia. The
neurological manifestations of COVID-19 are diverse. There was
an equal number of patients with and without olfactory disorders
who had positive CSF PCR results for SARS-CoV-2.

COVID-19 can trigger other autoimmune neurological
complications such as neuromyelitis optica spectrum disorders
or multiple sclerosis (30, 41, 46), which should be identified
and treated promptly (44). In addition, COVID-19 patients
with olfactory disorders and other severe neurological symptoms
should be examined for possible neurodegenerative disease when
suspected of having one (29).

In our study, ∼4% of the participants had positive CSF
PCR assay for SARS-CoV-2, similar to the finding of one
study, which showed positive results in 6% of the participants,
indicating SARS-CoV-2 neuroinvasion is a rare occurrence (3).
However, negative CSF PCR results for SARS-CoV-2 may be
due to delayed immune-mediated neurological damage after
viral clearance (51, 53). Furthermore, the sensitivity decreases if
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FIGURE 3 | Possible mechanisms of neuroinvasion of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) via the olfactory pathway. SARS-CoV-2 can

enter the central nervous system (CNS) through the olfactory system in one of two ways: directly through the cerebrospinal fluid (CSF) by crossing the channels

created by olfactory ensheathing cells (OECs) (purple straight line) or through olfactory receptor neurons (ORNs). Since ORNs lack angiotensin-converting enzyme-2

(ACE-2), viruses are hypothesized to be transferred from sustentacular (SUS) cells, which contain ACE-2, either directly to mature ORNs (mORNs) or to stem cells

(also containing ACE-2), which can then transfer the virus to immature ORNs (iORNs) during ORN regeneration process, where infected iORNs could grow into

infected mORNs. The pink dotted line represents the hypotheses. Viruses can directly enter the CNS from ORN through ACE-2-independent mechanisms (green

straight line) using factors such as neurolipin-1. The blue straight line represents the regeneration of ORNs and SUS cells from stem cells.

samples are tested after a long period of symptom onset, giving
negative results (43, 58). In addition, according to our review,
only 44% of the published articles on CSF studies performed
CSF PCR assay for SARS-CoV-2 in COVID-19 infected patients
who experienced neurological symptoms. Therefore, despite the
procedural and logistical complexity, the authors suggest an early
collection of CSF samples, performing CSF PCR assay for SARS-
CoV-2, detecting anti-neuronal autoantibodies, and using 18 F-
fluorodeoxyglucose positron emission tomography in suspected
cases could aid in the diagnosis and management of the patients,
notably in magnetic resonance imaging negative cases (35, 51).
Although the additional financial concern associated with the
CSF PCR assay cannot be avoided, there were cases of testing
positive in CSF PCR assay despite being negative in a nasal
PCR or rapid COVID-19 test (32, 44). In addition, cost-effective
studies in other neurotropic viruses have shown that the CSF
PCR assay is cost-effective; similar studies in COVID-19 are
required (60). Furthermore, a negative CSF PCR assay does
not rule out the presence of the virus in the CNS; therefore,
further studies of SARS-CoV-2 antibodies are required (57).
Moreover, a recent study has shown that SARS-CoV-2 retrograde
neuroinvasion via the olfactory route causes neuroinflammation
(9). The detection of SARS-CoV-2 in the olfactory epithelium and
various radiological findings in patients with COVID-19 suggests
that despite the rarity of SARS-CoV-2 neuroinvasion via the
olfactory system, it should not be overlooked (9, 21, 39, 61).

Similar to other respiratory neurotropic viruses, the direct
neuroinvasion of SARS-CoV-2 in COVID-19 patients could
occur mainly in two ways: damage to the olfactory epithelium

or diffusion through the olfactory ensheathing cell (OEC) (1, 2)
(Figure 3). Although ORNs of humans do not express SARS-
CoV-2 entry proteins, factors other than angiotensin-converting
enzyme-2 may be involved in a viral entry, such as neurolipin-1,
which is highly expressed in ORNs (62–64) or SARS-CoV-2 can
have non-neuronal mechanism (6, 9, 63). The neuronal and non-
neuronal damage of the olfactory epithelium are responsible for
the mechanism of loss of smell observed in COVID-19 patients
(6, 7, 9). Nevertheless, viruses that are rapidly transported to the
olfactory bulb before being affected by ORN apoptotic actions
may invade the CNS (5).

In addition, viruses as small as 100nm can also diffuse via
the channels formed by OEC gaining direct access to the CSF
(1, 65). The size of SARS-CoV-2 ranges from 60 to 140 nm (66).
Additionally, direct infection of the OEC can release viruses
into these channels and subsequently transport the virus to the
olfactory bulb (1). Thus, SARS-CoV-2 with a smaller size can
utilize this mode of viral transmission.

Studies analyzing the olfactory mucosa of COVID-19 patients
with and without anosmia are required to acknowledge that
apoptosis of ORNs is the cause of COVID-19-related anosmia.
Future studies with a larger sample size involving nasal brush
sampling method and CSF PCR assay can be performed on
COVID-19 patients to determine whether apoptosis of ORNs
could provide neuroprotection in COVID-19 patients with
anosmia (9).

This study has several limitations. Olfactory mucosa biopsy is
required to effectively analyze the association between apoptosis
of ORNs with anosmia and neuroprotection. However, few
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studies were included in this analysis. Because the biopsy
is an invasive procedure, it is rarely done in patients with
COVID-19 only for research purposes (9), unlike animal studies.
Additionally, studies that determine whether apoptosis of ORNs
occurs in COVID-19 patients experiencing anosmia and SARS-
CoV-2 CSF PCR assays are not available. For these reasons,
the study design for analyzing the hypothesis was only feasible
with observational studies. Though the risk of bias assessment
showed an overall low risk, fundamental bias from the study
design cannot be fully excluded. The findings from this review are
not directly comparable with the results from other neurotropic
viruses till these unanswered issues are solved. The number
of patients with positive CSF PCR results did not differ by
anosmia status, which may be related to the limited sample
size and non-standard CSF PCR assay procedures. The CSF
PCR assay is not commonly performed in COVID-19 patients
with neurological manifestation. In this study, among COVID-
19 patients with neurological manifestation, only 44% of patients
underwent PCR assay for SARS-CoV-2 in the CSF to identify
COVID-19 related neurological disorders. Though anosmia is
common in COVID-19 patients, underreporting issues cannot
be ignored, and because of limitation to our methodology,
the neurological manifestations observed in individuals with
COVID-19 cannot be generalized. Similarly, the possibility
of an indirect mechanism of neuroinvasion of SARS-CoV-
2 should not be overlooked. We could not investigate the
neurological aspects of different strains of SARS-CoV-2 in
COVID-19 infected patients and geographical and temporal
relationships, particularly those concerning olfactory alteration,
because information about the SARS-CoV-2 strain along with
geographical and temporal information was not available in
the included studies. Future studies with proper sample sizes
involving definitive methods such as the nasal mucosa sampling
method could provide a clear answer to the association between
apoptosis of ORNs with anosmia and neuroprotection.

CONCLUSION

The neurological spectrum of COVID-19 is wide. Direct
neuroinvasion of SARS-CoV-2 via the olfactory route is
uncommon. Although previous experimental models of

respiratory neurotropic viruses have demonstrated that
apoptosis of the olfactory nerve blocks its neuroinvasive ability,
this remains controversial in the case of SARS-CoV-2, since at
present, human evidence is too scare limiting any conclusion to
be drawn about the protection role of virus’ olfactory mucosa
invasion toward CNS invasion. More research with definitive
methods is required to study the neuroprotective potential of
ORN apoptosis in COVID-19 patients.
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Neuropsychiatric phenotype of
post COVID-19 syndrome in
non-hospitalized patients
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Lea Deterding4, Nora Bernsdor�1, Franz Hermsdorf1,

Ines Kunis1, Andrea Bräsecke1, Sabine Herzig2,

Matthias L. Schroeter2, Angelika Thöne-Otto2,

Ste� G. Riedel-Heller5, Ulrich Laufs3, Hubert Wirtz4,

Joseph Classen1 and Dorothee Saur1

1Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany,
2Max-Planck-Institute of Human Cognitive and Brain Sciences & Clinic for Cognitive Neurology,

University of Leipzig Medical Center, Leipzig, Germany, 3Department for Cardiology, University of

Leipzig Medical Center, Leipzig, Germany, 4Department of Pneumology, University of Leipzig

Medical Center, Leipzig, Germany, 5Institute of Social Medicine, Occupational Health and Public

Health, University of Leipzig Medical Center, Leipzig, Germany

The post COVID-19 syndrome (PCS) is an emerging phenomenon worldwide

with enormous socioeconomic impact. While many patients describe

neuropsychiatric deficits, the symptoms are yet to be assessed and defined

systematically. In this prospective cohort study, we report on the results of

a neuropsychiatric consultation implemented in May 2021. A cohort of 105

consecutive patients with merely mild acute course of disease was identified

by its high symptom load 6 months post infection using a standardized

neurocognitive and psychiatric-psychosomatic assessment. In this cohort, we

found a strong correlation between higher scores in questionnaires for fatigue

(MFI-20), somatization (PHQ15) and depression (PHQ9) and worse functional

outcome as measured by the post COVID functional scale (PCFS). In contrast,

neurocognitive scales correlated with age, but not with PCFS. Standard

laboratory and cardiopulmonary biomarkers did not di�er between the group

of patients with predominant neuropsychiatric symptoms and a control

group of neuropsychiatrically una�ected PCS patients. Our study delineates

a phenotype of PCS dominated by symptoms of fatigue, somatisation

and depression. The strong association of psychiatric and psychosomatic

symptomswith the PCFS warrants a systematic evaluation of psychosocial side

e�ects of the pandemic itself and psychiatric comorbidities on the long-term

outcome of patients with SARS-CoV-2 infection.

KEYWORDS

COVID-19, post COVID-19 syndrome, MFI-20, PCFS, neuropsychiatric disorders
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Introduction

According to the British guidelines, the post COVID-19

syndrome (PCS) is defined as a constellation of symptoms

which develops following a severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection and persists for more

than 12 weeks, while not being explained by an alternative

diagnosis (1). Neurological symptoms affecting patients during

the acute course of COVID-19 are common and diverse

including neuromuscular, cerebrovascular or inflammatory

manifestations (2). In contrast, chronic neurological sequelae are

less well defined (3). In the UK, a study analyzing retrospective

data from over 200.000 patients reported that 12.8% with

COVID-19 received a new neurological or psychiatric diagnosis

during the first 6 months after initial infection (4). In

hospitalized patients, post COVID-19 sequelae were detected

in 80%, with a higher risk associated with treatment in the

intensive care unit [ICU, (5–7)]. This observation appears to

suggest a relationship between the severity of the COVID-19

manifestation and subsequent neuropsychiatric symptom load.

However, even young patients who were not hospitalized for

COVID-19 and asymptomatic individuals frequently describe

neurological and psychiatric sequelae such as anosmia, fatigue,

impaired concentration or memory problems months after

the infection (8–10). In a meta-analysis covering 39 studies

investigating acute and chronic symptoms following an infection

with SARS-CoV-2, fatigue presented as the most common

symptom in patients with PCS (44%), while anosmia was

reported by 10% of the patients (11).

Since the neurobiological substrates underlying the

neuropsychiatric manifestations of PCS are largely unknown,

an accurate description of the clinical presentation is essential

to better understand this syndrome. While many studies

describe the symptoms reported by the patients, a systematic

and objective characterization of the neuropsychiatric PCS

phenotype is still pending. In this prospective study, we present

a cohort of 105 consecutive patients from our neurological

post COVID-19 consultation examined by a standardized

neuropsychiatric assessment. Our main aim was to better

understand which neurological, cognitive, psychiatric and

psychosomatic symptoms mostly affect the functional long-

term outcome of patients with SARS-CoV2 infection. In

addition, a control cohort allowed us to compare clinical data,

as well as laboratory and cardiopulmonary biomarker profiles

between patients with and without neuropsychiatric symptoms.

Methods

In May 2021, we implemented an interdisciplinary

outpatient clinic for patients suffering from health complaints

after a documented infection with SARS-CoV-2, proven by PCR

testing. These patients were referred by their general practitioner

and primarily seen by an internal medicine specialist. During

the initial contact, a thorough cardiopulmonary assessment,

standard cardiopulmonary biomarkers (Table 1), SARS-CoV-2

PCR testing on nasopharyngeal swab samples, IgG antibody

testing against the spike protein (receptor binding domain,

RBD) and nucleocapsid (NC) to confirm the immunological

response to the SARS-CoV-2 infection, and the Post COVID

Functional Scale (PCFS) were performed. Additionally, several

self-questionnaires, including the Multidimensional Fatigue

Inventory (MFI-20), Patient Health Questionnaires 9 and 15

(PHQ-9, PHQ-15), the Generalized Anxiety Disorder scale

7 (GAD-7) were used as a basic psychiatric-psychosomatic

assessment. When scores in the self-questionnaires were

above predefined cut-offs (see below) or the patients reported

neuropsychiatric symptoms, a neurological consultation was

offered to the patients, if the symptoms were not explained by

an alternative diagnosis. In order to further assess the reported

deficits possibly associated with PCS, a full neurological

examination and neurocognitive testing was performed

(Figure 1A). The neurocognitive tests were conducted by a

trained medical assistant (IK). All individuals gave their written

consent for the scientific use of their data.

Post COVID functional scale (PCFS)

The five-point PCFS was introduced to monitor the

functional long-term effects of COVID-19 (12). Even though it is

currently not validated, several groups have found an association

between a high PCFS score and treatment in the intensive care

unit or need for oxygen supplementation during the acute course

of illness (13). In an observational study, 70.5% of the analyzed

COVID-19 patients described a fully recovered functional status

six month after the acute infection (14). For our study, we

translated the PCFS into German (Supplementary Figure 1). The

PCFS was applied twice, at the initial contact and again at

the neurological consultation by the neurologist. In case of

discrepancies, the value of the second PCFS was used as primary

functional outcome measure.

Multidimensional fatigue inventory
(MFI-20)

The MFI-20 is a self-questionnaire and consists of five

subscales covering different domains of fatigue, i.e., general

fatigue, physical fatigue, reduced activity, reduced motivation

and mental fatigue. The subscores in each domain range from 4

to 20, with higher scores indicating higher levels of fatigue. The

MFI-20 was validated in various clinical and healthy cohorts (15)

and has since been widely used to assess the severity of fatigue.

Currently, there are no strict cut-off values (16). For descriptive

statistics, we included (i) the exact values of the subscores for
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TABLE 1 Descriptive statistics.

Range Total cohort Controls Study cohort p–value

n 219 55 105

Female (n, %) 142; 64.5 28; 50.9 69; 66

Age (median, IQR;[years]) 49; 36.75–58.25 56; 48–68.5 44.5; 34–55.75 <0.001

Time post infection [months] 7; 5–9 9;6–10 6; 4–8 <0.001

BMI (median, IQR) 26.1; 23.1–30.2, NA 1 27.6; 24.1–29.7; NA 1 25.6; 22.8–30.7 0.52

Psychiatric premorbidities

Total (n, %) 30; 13.6 4; 7.3 16; 15.1

Depression (n) 22 3 14

Anxiety (n) 5 1 1

PTSD (n) 3 0 1

Cardiopulmonary biomarkers

RR syst (median, IQR; [mmHg]) 140; 129.8–155; NA 4 145; 130.2–157.5; NA 1 140; 128–151; NA 3 0.06

RR dist (median, IQR; [mmHg]) 85; 78–93; NA 4 82.5; 79.3–91.5; NA 1 85; 78.5–94.5; NA 3 0.74

LVEF (median, IQR; [%]) 62; 58–66; NA 41 63; 59–65; NA 6 62; 59–66; NA 30 0.87

FEV1 (median, IQR; [%]) 97.1; 89.85–105.6; NA 101 95.8; 90.2–109.25; NA 36 96.5; 91–105.35; NA 39 0.68

Laboratory biomarkers

HbA1c (median, IQR; [%]) 5.5; 5.2–5.7; NA 2 5.6; 5.3–5.8;NA 1 5.4; 5.2–5.6; NA 1 0.006

GFR (CKDEPI; median, IQR; [ml/min/1.73 m2) 86; 74–98.25 78; 69–90 87.5; 75–100 0.006

IL−6 (median, IQR; [pg/ml]) 1.75; 1.75–1.75; NA 2 1.75; 1.75–1.75; NA 1 1.75; 1.75–1.75 0.19

CRP (median, IQR; [mg/l]) 1.12; 0.62– 2.39; NA 1 1.1; 0.68–1.6; NA 1 1; 0.52–2.48 0.46

Ferritin (median, IQR; [µg/l]) 98.45; 40.65– 200; NA 2 124; 49.3–259.8; NA 1 96.9; 40.7–182.5 0.58

Self–questionnaires

MFI−20 (median, IQR) 20–100 63; 50–75.25 42; 29.5–51.5 71; 61–81.75 <0.001

PHQ−9 (median, IQR) 0–27 8; 4–12 3; 1–4.5 10.5;8–14 <0.001

PHQ−15 (median, IQR) 0–30 12; 7–16 5; 3–7 14; 10–18 <0.001

GAD−7 (median, IQR) 0–21 6; 3–9 2; 0–4 7; 5–11 <0.001

PCFS 0–4 2;1–2 0;0–1 2;2–3 <0.001

Immune status

Anti–nucleocapside (median, IQR; [S/CO]) 1.4; 1.1–2.3; NA 10 1.4; 1.1–2.325; NA 3 1.4; 1.4–2.6; NA 1 0.36

Anti–RBD (median, IQR; [AU/ml]) 3763; 571–12502; NA 7 5256; 2148–14666; NA 2 2250; 376.2–10273; NA 1 0.0046

BAU/ml (median, IQR) 1243; 85.9–1759; NA 15 746.4; 356–1895; NA 6 465; 66–1464; NA 4 0.012

RR syst, systolic blood pressure; RR diast, diastolic blood presure; LVEF, left ventricular ejection fraction, FEV1, forced exspiratory volume; GFR (CKDEPI), Glomerular filtration

rate (Chronic Kidney Disease Epidemiology Collaboration); MFI−20, Multidimensional Fatigue Inventory; PHQ9 and 15, Patient Health Questionnaire 9 (depression module) and

15 (somatisation module); GAD−7, Generalized anxiety disorder scale; anti–RBD, antibodies against receptor binding domain; BAU/ml, binding antibody units per milliliters; IQR,

interquartile range; NA, not available.

each patient. (ii) the number of domains, where the result was

above the third quartile considering the mean values in the

general population (16) and (iii) the total value in the MFI-20.

Patient health questionnaire-9 (PHQ-9)

The PHQ9 is a short and reliable self-questionnaire, scoring

each of the nine DSM-IV criteria for depressive disorders. The

score ranges between 0 to 27 with higher values indicating more

severe depressive symptoms. Scores from 10 had a sensitivity of

88% and a specificity of 88% for major depression (17), making

it a sufficient tool in detecting depressive disorders. Accordingly,

in our study, scores from 10were used as indicator for a clinically

relevant depression.

Patient health questionnaire-15
(PHQ-15)

The PHQ15 self-questionnaire is the somatisation

module of the PHQ and consists of 13 questions regarding

somatoform disorders and two questions from the depressive

disorders module asking about sleep disorders and lack

of energy (18). The score ranges between 0 to 30 with

Frontiers inNeurology 03 frontiersin.org

87

https://doi.org/10.3389/fneur.2022.988359
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lier et al. 10.3389/fneur.2022.988359

FIGURE 1

Study design and description of study cohort. (A) Flowchart of patient distribution. (B) Age between cohort and control. (C–E) Comparison of

antibody levels between cohort and control. (E) Concentration of neutralizing antibodies (binding antibody units per milliliter (BAU/ml) tended to

be higher in the control (p = 0.012). While the concentration of anti–nucleocapside antibodies did not di�er, the control group had significantly

higher concentrations of antibodies against the receptor binding domain (anti–RBD; p = 0.0046), however possible vaccination–associated

influences were not examined.

higher values indicating a more severe somatisation.

Significant correlations of health anxiety with illness

behavior were described (19). The questionnaire was

validated in different cohorts with scores of 5, 10 and

15 representing cut-off values for low, medium and high

somatic symptom severity (18). In our study, scores of 10

or more were considered as an indicator for a relevant

somatisation disorder.

Generalized anxiety disorder scale 7
(GAD-7)

The GAD7 is a self-questionnaire and screening tool for

general anxiety disorder (GAD) but also for panic, social anxiety

and PTSD. It consists of seven items which describe the most

important diagnostic criteria for GAD after the DSM-IV. The

score ranges from 0–21 with higher values indicating a more
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severe disorder. Using a cut-off score of 10, it had a sensitivity

value of 0,89 and a specificity value of 0,82 for diagnosing GAD

(20). Accordingly, in our study we used a cut-off score of 10 as

an indicator for GAD.

Clinical examination and neurocognitive
screening

The clinical examination includes a full neurological status

with testing of cranial nerves, motor, sensory and coordination

functions. Neurocognitive screening consists of questions to test

orientation, memory (number span forward/backward, delayed

recall of three words), abstract thinking, language and praxis.

The neurocognitive screening was mainly used to obtain a test-

independent impression of the cognitive level of the patients.

Sni�n’ sticks 12-identification test
(SIT-12)

The SIT-12 is a test of nasal chemosensory performance. It

consists of a battery of odorant-filled pens. Due to COVID-19-

associated hygiene standards, these pens were used to create a

line of two centimeters on a neutral fragrance strip. The patients

were then asked to smell 3 cm in front of both nostrils and to

identify the correct odorant from a list of four descriptors. The

odorants are selected to be applicable to the general European

population (21). Validated in several countries, a Danish study

detected a mean identification score of 11 out of possible 12

among normosmic healthy adult participants (22). In our study,

we used a cut-off value < 9 as an indicator for hyposmia.

Montreal cognitive assessment (MoCA)

The MoCA is a brief cognitive screening tool with high

sensitivity and specificity to detect a mild cognitive impairment

(23). The score ranges between 0 to 30, with higher values

indicating better performance.We used the original cut-off score

of < 26 as indicator for cognitive impairments. When deficits

were detected during testing, elements were repeated during the

neurocognitive exploration in order to verify the deficit.

Trailmaking test (TMT) A and B

The TMT consists of two parts, where the participant is

instructed to connect a set of 25 dots as quickly as possible

while still maintaining accuracy. In TMT A, the dots depict the

numbers 1 to 25 and the participant is supposed to connect

the numbers in the right order without lifting the pen from

the paper. This version is used to examine cognitive processing

speed. In TMT B, the participant is asked to alternate between

numbers from 1 to 13 and letters from A to L. This part is used

to examine executive functioning (24). The time is stopped with

a clock in seconds. In our study, we used a modified version

for younger populations and applied cut-off values adapted for

age and education (25). A percentile ranking <16 was judged

as abnormal.

Semantic verbal fluency test

The semantic verbal fluency test is a short test of verbal

executive functioning. In the standard versions of the test,

participants are given 1min to produce as many unique words

as possible within a semantic category. The participant’s score

in each task is the number of unique correct words within

1min. In our study, we used the category “animal” and applied

age and education adapted cut-off scores as suggested by

Aschenbrenner et al. (26). Again, a percentile ranking <16 was

judged as abnormal.

Statistical analyses

Statistical analyses were performed using R (Version 4.1.2,

http://www.R-project.org). Parameters were tested for normal

distribution using Shapiro-Wilk test. For normally distributed

data, parametric tests such as t-test and Pearson correlation

were used. In case of non-parametric data or extreme outliers,

we used non-parametric tests such as Mann-Whitney-U-test

or Spearman correlation. To adjust the p-value for multiple

comparison, post-hoc Bonferroni correction was performed if

needed. A p-value <0.05 was considered significant.

Results

From May to December 2021, 219 consecutive patients

visited our interdisciplinary post COVID outpatient clinic. Of

these, 105 individuals (48%, female n = 69, 66%) with a

median age of 44.5 years were transferred to the neurological

consultation based on the scores in the initial self-questionnaires

or their complaints. This group formed the principal study

cohort. 55 individuals (25%, female n = 28, 51%) with a

median age of 56 years showing no deficits in the psychiatric-

psychosomatic self-questionnaires assessed during the first

consultation acted as control cohort for the parameters outside

the neuropsychiatric assessment (Table 1). The remaining 59

patients did not want a neurological consultation despite (single)

scores in the self-questionnaires were above the predefined cut-

offs (Figure 1).
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Cardiopulmonary and laboratory
biomarkers

While cardiopulmonary and inflammatory markers such as

the left ventricular ejection fraction (LVEF), forced exspiratory

volume (FEV1) or C-reactive proteine (CRP) did not differ,

renal function and HbA1c differed significantly between both

groups, a phenomenon which we attributed to the younger

median age of the principal cohort (Table 1, Figure 1). All

PCR testings for SARS-CoV-2 were negative at the time of

admission. In the total post COVID-19 outpatient cohort, RBD-

antibodies were positive in 92.2% and NC-antibodies in 56.2%,

demonstrating seropositivity in most patients. Interestingly, the

study cohort had significantly lower levels of RBD-antibodies

and concentrations of neutralizing antibodies (binding antibody

units per milliliters, BAU/ml; Table 1, Figures 1C–E). However,

since the levels of NC-antibodies decrease with time after

infection, whereas the levels of anti-RBD antibodies increase, a

vaccination-related effect on anti-RBDmust be considered. This,

however, was not examined systematically, since the vaccination

status was not documented during the whole study period.

Functional outcome in the study cohort

94.3% (n= 99) of the study cohort were home-isolated with

no or mild symptoms during the acute course of infection. The

median time of consultation was 6 months post infection (IQR

4–8). Notably, 89% of the patients were younger than 60 (n

= 93). Two thirds of the patients referred to the neurological

consultation were women, who were significantly younger than

the men in our cohort (female median age = 43, IQR 34–52,

male median age= 49.5, IQR 38–57; p= 0.046). However, none

of the tests or questionnaires displayed a significant difference

between male and female patients (Supplementary Table 1). The

median PCFS in our study cohort was 2, reflecting slight to

moderate functional limitations in everyday life. The number of

pre-COVID morbidities and the number of medications taken

by the patient correlated significantly with the PCFS (ρ = 0.28,

p = 0.003). At the time of consultation, 27.6% of the patients

were still out of work due to persisting symptoms after the

SARS-CoV-2 infection (Table 2). Furthermore, 60% made use

of rehabilitation measures such as neurocognitive training or

psychological support or somatic rehabilitation.

Clinical neurological examination

The clinical neurological examination was unremarkable in

two thirds of the patients. Mild pallhypaesthesia or hearing

deficits were detected in the remainder, with no clear links to

the SARS-CoV-2 infection (Table 3). One patient suffered from

critical illness neuromyopathy as a direct result of the intensive

TABLE 2 Demographic and clinical data of the study cohort with

neurological consultation.

Comorbidities Mean (Max;NA)= 1.65 (6;1)

Medications Mean (Max;NA)= 1.72 (10;2)

Education [years] Median(IQR)= 13;13–16

Acute COVID−19 features

No/mild symptoms 94.3% (n= 99)

Hospitalization (non–ICU) 2.86% (n= 3)

ICU care 0.95% (n= 1)

Unknown 1.9% (n= 2)

Functional outcome

Sick leave 27.6% (n= 29)

Part–time job 9.5% (n= 10)

Full–Time Job 39.05% (n= 41)

Unemployed 1.9% (n= 2)

Retired 5.7% (n= 6)

Unknown 16.2% (n= 17)

Treatment

No aftercare 33.3% (n= 35)

Neurocognitive training 30.48% (n= 32)

Psychosomatic support 25,7% (n= 27)

Rehabilitation 9.5% (n= 10)

Unknown 6.67% (n= 7)

ICU, intensive care unit.

care medicine during the acute course of the disease. Regarding

olfaction, < 9 correctly identified odors in the SIT-12 were

detected by 15.6% (n = 17) of the patients, indicating mild to

more severe olfactory deficits.

Psychiatric-psychosomatic
self-questionnaires

As prespecified by our experimental design, the study

cohort revealed significantly higher scores in all psychiatric-

psychosomatic self-questionnaires compared to the control

cohort (Table 1, Figures 2A–E). A persistent exhaustion since

the infection was the most often reported symptom. Eighty

four patients (80%) of our study cohort described symptoms

in at least four domains of fatigue tested in the MFI-20.

Furthermore, there was a strong significant correlation of the

overall results in the MFI-20 with the PCFS (ρ = 0.66, p <

0.001; Figure 2F). In contrast to the existing literature (16),

there was no association of fatigue with age or a specific gender

(Supplementary Figure 2). A positive correlation with the PCFS

was also seen for the scores in the somatisation module PHQ-

9 (Figure 2G), the depression module PHQ-15 (Figure 2H) and

the anxiety module GAD-7 (Figure 2I). Analyzing the subgroup

who did not receive hospitalization (n = 99) did not change

these results (Supplementary Table 1).
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TABLE 3 Neurological examination and neurocognitive testing of the study cohort (N = 105).

Test Median (IQR;NA) Min–Max Cut–off Pathologic tests n (%)

Neurostatus

Non-descript 22 (21)

Pallhypaesthesia 16 (15.24)

Critical illness myopathy 1 (0.95)

Other sensory deficits 5 (4.7)

SIT−12 Hyposmia 10 (9–11;4) 3–12 <9 17 (15.6)

Bed side test

Number sequence forward 6 (5–6;42) 3–8 <5 2 (1.9)

Number sequence backward 4 (4–5;44) 3–6 <4 10 (9.5)

Delayed recall 3(2–3;42) 0–3 <3 25 (23.8)

MoCA 27 (25–28) 16–30 26 37 (35.2)

#Visuospatial 4(4–5) 1–5 <5 59 (56.2)

#Language 5(4–5) 2–5 <4 7 (6.7)

#Phonemic fluency <1 56 (53.3)

#Alertness 6(5–6) 3–6 <5 7 (6.7)

#Abstraction 2(2–2) 0–2 <2 21 (20)

#Memory 4(3–5) 0–5 <4 48 (45.7)

#Orientation 6(6–6) 5–6 <5 0 (0)

Semantic fluency [words] 24.5 (20–29;3) 10–43 age– and education adapted 15 (14.3)

Trailmaking

TMT A [seconds] 31 (23–39.75;3) 14–89 age– and education adapted 32 (30.5)

TMT B [seconds] 54 (44–74;4) 22–160 age– and education adapted 29 (27.2)

MFI−20 72 (61–82) 40–97 no validated cut–off

#1 General fatigue 16 (14–19; 4) 9–20 no validated cut–off

#2 Physical fatigue 16 (13–17; 4) 5–20 no validated cut–off

#3 Reduced activity 15 (12–17; 4) 6–20 no validated cut–off

#4 Reduced motivation 14 (12–17; 4) 6–20 no validated cut–off

#5 Mental fatigue 11 (8–14; 4) 4–19 no validated cut–off

SIT−12, Sniffin’ Sticks−12 identification test; MoCA, Montreal cognitive assessment; in the subtest of phonemic fluency, a number of words <11 was used as cut–off. MFI−20,

Multidimensional Fatigue Inventory; IQR, interquartile range; NA, not available.

Neurocognitive testing

35.2% of the patients of our study cohort showed slight

impairments in the MoCA when applying our predefined cut-

off value (Table 3). Deficits were detected for memory, letter

fluency and visuospatial functions. However, we frequently

noted that similar tasks could often be performed flawlessly

and with greater ease during the clinical neurocognitive

exploration. While 56 patients failed the letter fluency test

in the MoCA, only 11 of them showed relevant deficits in

the additional semantic verbal fluency test. Furthermore, 17

patients failed the MoCA memory task, while demonstrating

an error-free delayed recall on clinical examination. Errors

in orientation, abstraction, alertness and language were rarely

relevant (Table 3). While results in the neurocognitive testing

correlated with age (Figures 3A–D), they did not correlate with

the PCFS (Figures 3E–H).

Discussion

In this study, we describe the neuropsychiatric phenotype of

the PCS in a prospective cohort of patients 6 months after an

acute SARS-CoV-2 infection that did not require hospitalization.

Despite favorable cardiopulmonary recovery, most patients

still suffered from slight to moderate functional limitations in

everyday life. Functional outcome highly correlated with the

symptoms of fatigue, depression and somatisation, while no

correlation was found with the neurocognitive scores.

All patients of our study cohort underwent a systematic

neuropsychiatric assessment. Except for hyposmia in about

15% of the patients, the clinical neurological examination

remained unremarkable for COVID-19 associated deficits.

However, many patients reported difficulties in memory or

attention. Neurocognitive testing detected slight neurocognitive

impairments in about one third of the patients. However,
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FIGURE 2

Psychiatric–psychosomatic assessment. (A–E) The study cohort revealed significantly higher test results in all psychiatric–psychosomatic

self–questionnaires when compared to the neuropsychiatrically una�ected control cohort (all p-values < 0.001). (F–I) Significant correlations of

the Post COVID Functional Scale (PCFS) with the total scores of the MFI–20 (Fρ = 0.66, p < 0.001), PHQ–9 (Gρ = 0.59, p < 0.001) and PHQ–15

(Hρ = 0.56, p < 0.001) and GAD–7 (Iρ = 0.4, p < 0.001) in the total cohort (N = 219).

discrepant results between the neurocognitive testing and

the clinical examination were frequent, suggesting some

degree of invalidity in our testing (e.g., low sensitivity for

cognitive impairments only affecting high-level performance)

and/or functional symptom load in the patients. Our results

are in line with a recent study of home-isolated patients

with neuropsychiatric complaints in which slight cognitive

impairments in the MoCA were also found in one third of

the patients about 6 months after the infection (27). Using the

Mini-Mental State Examination, a large-scale study on multi-

organ assessment in non-hospitalized individuals showed no

differences compared to a matched control cohort (28). In

addition, neuroimaging biomarkers for vascular brain damage

and atrophy in that study did not differ between the groups.

In contrast to the prominent complaints, formal neurocognitive

testing in our study and others has not clearly revealed

severe persistent neurocognitive deficits as part of the PCS.

Rather, the mild severity of neurocognitive impairments was

contrasted with the observation of severe symptoms of fatigue,

depression and somatisation which correlated with functional

outcome in the PCFS. This suggests that mainly psychiatric and

psychosomatic symptoms influence the long-term outcome after

a SARS-CoV-2 infection. However, one needs to emphasize,

that especially the PHQ-15 covers multiple physical complaints,

which might not be detectable by the internal assessment.

Hence, it does not necessarily explain a psychiatric cause for

these symptoms.

Regarding the pathogenesis of neuropsychiatric

manifestations of COVID-19, several studies point to a

potential neurotropism of SARS-CoV-2 (29). The virus enters

human cells via the angiotensin-converting enzyme 2 receptor

which is widely expressed throughout the central nervous

system (CNS). However, in autopsy samples with a short

post mortem interval, SARS-CoV-2 was only detected in the

olfactory mucosa, but not in the olfactory sensory neurons

or the parenchyma of the olfactory bulb (30), suggesting an
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FIGURE 3

Neurocognitive assessment in the study cohort (N = 105). Upper row, correlation with age: Significant correlations of the MoCA (A ρ = −0.34, p

< 0.05), time [in seconds] in the Trail making test A (B ρ = 0.44, p < 0.05) and Trail making test B (C ρ = 0.44, p < 0.05) with age. Correlation of

number of correct words in the semantic fluency task with age did not stay significant after adjustment for multiple comparisons (D ρ = −0.21, p

= 0.34). Lower row, correlation with post COVID functional scale (PCFS): Not significant correlations of the MoCA (E ρ = −0.06, p = 1), time [in

seconds] in the Trail making A (F ρ = 0.2, p = 0.33) and Trail making B (G ρ = 0.08, p = 1) and the number of correct words in the semantic

fluency task (H, ρ = −0.2, p = 0.2) with the PCFS.

effective barrier preventing the entry into the CNS. In this

regard, analyses of the cerebrospinal fluid (CSF) of patients

with COVID-19 and neurological symptoms suggest that

direct CNS infection seems to be rare, given that classical

signs of intrathecal CSF inflammation are typically missing

and SARS-CoV-2 PCR testing usually remains negative (31).

Against this background, persistence of the virus in the

CNS therefore seems to be an unlikely explanation for the

long-term neuropsychiatric symptoms. Alternative hypotheses

include a persistent disruption of the blood-cerebrospinal

fluid barrier (31), an ongoing immune-mediated inflammation

(32–34) or a disrupted microcirculation (35). However, most

studies were performed in ex vivo experimental settings or

in autopsy samples of patients with SARS-CoV-2 infection,

making assumptions on the potential long-term effects in

the living brain difficult. Considering the absence of elevated

inflammatory biomarkers and missing evidence for persistent

virus or viral antigens due to the negative SARS-CoV-2 PCR

testing in our cohort, a chronic inflammation driven by the

virus itself seems unlikely. While we detected differences

in RBD-antibody levels between the neuropsychiatric and

the control cohort, the significance of this finding remains

unclear. This is because RBD-antibody levels are also induced

by vaccination. This conclusion was supported by the fact

that the levels of IgG-antibodies against the nucleocapsid

did not differ between the neuropsychiatric and the control

group. Therefore, we did not find evidence for an enhanced

or diminished infection-associated immune response in

patients with neuropsychiatric symptoms. In line with that,

other studies found no difference of antibody levels in

individuals with confirmed COVID-19 with and without PCS

(32, 36).

In the light of a missing distinct neurobiological substrate

of the neuropsychiatric PCS, psychiatric and psychosocial

factors need to be considered. Whiteside et al. (37) examined

54 outpatient patients 6 months after the acute SARS-CoV-

2 infection. They found that formal cognitive performance

correlated with mood and anxiety, but neither with the

severity of the acute disease nor with the cognitive complaints,

pointing to the importance of psychological distress for

cognitive performance. This is also in line with a meta-

analysis examining psychiatric symptoms after infections with

other coronaviruses (SARS and MERS). Fifteen percent of the

recovered patients described sleep disorders, emotional lability,

impaired concentration and fatigue. However, it was not possible

to distinguish between an actual pathophysiologic response to

the virus infection and the general effects of the pandemic (38).

Even a remarkable number of patients who, contrary to their
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belief, had not even had contracted a SARS-CoV-2 infection,

suffered from symptoms of PCS (39). This finding suggests

that PCS could be attributed to the negative effects of the

pandemic itself, i.e., the increased psychosocial burden, social

isolation and existential fears. Most of the patients who came

to the neuropsychiatric consultation described their concerns

about limitations at work, social anxiety and worries about

long-term consequences of the infection. For some of them,

psychological distress seems to be exacerbated by public and

social media coverage of post-COVID symptoms. Interestingly,

our principal study cohort was significantly younger than

the control group. While we scientifically cannot explain the

age difference based on our data, socioeconomic factors as

discussed above could be a reason for the higher sensitivity for

complaints after a Covid-19 infection. The overrepresentation

of women in our cohort is consistent with results found in

multiple studies where female sex was associated with an

increased risk of developing symptoms of PCS such as fatigue

and cognitive impairments (5, 40). That women may have a

higher risk of developing PCS may correspond to the fact

that women tend to carry a larger share of the burden of the

pandemic than men (41). One needs to discuss the relation of

the symptoms of PCS to the psychosocial environment and a

weakened psychosocial resilience due to pre-existing psychiatric

comorbidities or long-term psychological stress factors, such as

single parenting, fear of job loss, and financial difficulties which

may affect more women than men. In line with a predominantly

psychosocial origin of PCS, in our cohort, premorbid depression

was more frequent in the study than in the control cohort.

Future studies will need to evaluate the role of psychosocial

factors in the pathogenesis of PCS more systematically and in

more detail.

Irrespective of the underlying cause of PCS, it is evident

that the large number of patients who are still unable to

return to their work or activity level before the pandemic

poses a severe socioeconomic problem. While reliable numbers

of post COVID-19 cases recognized as occupational diseases

are still lacking, insurance companies report record numbers

in requests (42, 43). Therefore, long-term programs are

needed to provide support independently of the underlying

cause of persisting symptoms after COVID-19. It seems

likely that symptom management will be less successful

when based solely on biological rather than incorporating

psychosocial concepts of illness. Fortunately, first studies

show that the reported cognitive deficits may regress over

time (44) and are less likely to appear in vaccinated

patients (45).

The rapidly increasing case numbers around the world due

to the predominance of the omicron variant might be both, a

challenge and a chance. While higher case numbers could mean

even more patients suffering from long-term symptoms, the

social significance of an infection may decrease, as it becomes

more common to become infected by SARS-CoV-2.

Limitations

There are certain limitations to our study, which we would

like to address. First, since our control group also suffered

from symptoms due to the SARS-CoV-2 infection, we did

not test a healthy control group. Therefore, strict conclusions

on the influence of the pandemic itself on neuropsychiatric

symptoms remain hypothetical. Secondly, our neurocognitive

tests did not allow for the detection of subtler cognitive

impairments, in particular those only affecting high-level

performance in daily life. Therefore, the contribution of slight

cognitive impairments to PCS might be underestimated in

our study and future studies should put a particular emphasis

on the detection of subtle, but still functionally relevant

neurocognitive deficits. This consideration must not neglect the

discrepancy between the findings in the clinical neurocognitive

testing and the psychiatric-psychosomatic assessment. Thirdly,

we did not examine biomarkers for neurodegeneration and

brain injury in blood or cerebrospinal fluid. However,

although we cannot rule out permanent neuronal injury

in individual cases, the results of our neurological and

neurocognitive examinations do not indicate persistent organic

brain dysfunction.

Conclusions

In this article, we present a prospective cohort of mainly

non-hospitalized patients about 6 months after the acute

SARS-CoV-2 infection who present with a clinical phenotype

dominated by symptoms of depression, somatisation and

fatigue. The strong association of the severity of these

symptoms with the PCFS underlines the functional importance

of these symptoms for long-term outcome after an infection

with SARS-CoV-2. Although we did not focus on the

mechanisms underlying the neuropsychiatric manifestations

of PCS, our findings provide indirect evidence to suggest

that PCS is strongly influenced by psychosocial consequences

of the pandemic itself and by premorbid psychiatric and

psychosomatic comorbidities.
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German translation of post COVID functional scale. (A) Flowchart. (B)

Patient questionnaire. Following the instructions given by Klok et al., (12),

the PFCS is used to assess recovery after the SARS–CoV−2 infection.
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Cross-sectional analysis of
clinical aspects in patients with
long-COVID and post-COVID
syndrome

Hannah Schulze, Jeyanthan Charles James, Nadine Trampe,

Daniel Richter, Thivya Pakeerathan, Nadine Siems,

Ilya Ayzenberg, Ralf Gold and Simon Faissner*

Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany

Objective: Regarding pathogenesis, clinical manifestations, at-risk individuals,

and diagnostic methods for stratifying patients for therapeutic approaches, our

understanding of post-COVID syndrome is limited. Here, we set out to assess

sociodemographic and clinical aspects in patients with the long-COVID and

post-COVID syndrome.

Methods: We performed a cross-sectional analysis of patients presenting

at our specialized university hospital outpatient clinic. We assessed patients’

clinical presentation, fatigue, symptoms of depression and anxiety, and

impairment of smell.

Results: A total of 101 patients were included (73.3% female), of whom 78.2%

had a mild course of COVID-19. At presentation, 93.1% su�ered from fatigue,

82.2% from impaired concentration, and 79.2% from impaired memory, 53.5%

had impaired sleep. The most common secondary diagnosis found in our

cohort was thyroid disease. Fatigue analysis showed that 81.3% of female

and 58.8% of male patients had severe combined fatigue. Female gender was

an independent risk factor for severe fatigue (severe cognitive fatigue OR =

8.045, p = 0.010; severe motor fatigue OR = 7.698, p = 0.013). Males su�ered

frommore depressive symptoms, which correlated positively with the duration

of symptom onset. 70.3% of patients with anamnestic smell impairment had

hyposmia, and 18.9% were anosmic.

Interpretation: Most long-COVID patients su�ered from severe fatigue, with

the female sex as an independent risk factor. Fatigue was not associated

with symptoms of depression or anxiety. Patients with long-COVID symptoms

should receive an interdisciplinary diagnostic and therapeutic approach

depending on the clinical presentation.

KEYWORDS

COVID-19, post-COVID syndrome, fatigue, smell disorder, depression, anxiety, SARS-

CoV-2
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Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2) has led to a global pandemic. A “standard

course” with specific disease phases has not yet been identified.

The SARS-CoV-2 infection can be divided into three phases

(1): During the acute phase, active viral replication and the

initial host response occur. This phase can be accompanied

by clinical manifestation but can also be asymptomatic or

clinically inapparent in 67% (2). The acute phase can last days

to weeks (3). Two to five weeks after the host’s acute infection

and virus elimination, hyperinflammation may occur in some

patients, even in organ systems unaffected by the virus. This

disease entity is subsumed as a multisystemic inflammatory

syndrome andmay present with gastrointestinal, cardiovascular,

dermatologic, pulmonological, and neurologic symptoms (4).

Up to 87.4% of patients having recovered from Coronavirus

Disease 2019 (COVID-19) experience symptoms that persist

for a protracted period from the fourth week after primary

infection (1, 5), summarized as long-COVID (after the fourth

week) or post-COVID syndrome (after the twelfth week). There

is growing evidence that a substantial number of patients still

suffer from persisting symptoms months after the acute phase

of the disease. The spectrum of symptoms of long-COVID

and the post-COVID syndrome is wide, ranging from fatigue,

depression, and neuropsychological deficits such as memory

or word-finding disorders to myopathies, muscle weakness, or

sleep disturbances, amongst others (5–7). Until now, it remains

incompletely understood which factors might predispose to

the development of the post-COVID syndrome and whether it

indeed is a new unique entity.

Mechanisms of the post-COVID syndrome are still under

investigation. Causal factors are thought to include an

immune system imbalance that persists long after the disease,

leading to the release of pro-inflammatory cytokines such

as Tumor Necrosis Factor α (TNF-α), Interferon-1β (IFN-

1β), and nitrogen metabolites such as inducible Nitric Oxide

Synthase (iNOS), driving the expression of pro-inflammatory

Abbreviations: ACE-2-Receptor, Angiotensin-Converting Enzyme 2

Receptor; ART, Automatic Real-Time; CDC, U.S. Centers for Disease

Control and Prevention; CFS, Chronic Fatigue Syndrome; CI, Confidence

Interval; COPD, Chronic Obstructive Pulmonary Disease; COVID-19,

Coronavirus Disease 2019; DNA, Deoxyribonucleic Acid; FSMC, Fatigue

Scale for Motor Function and Cognition; GPCR-A, G Protein-Coupled

Receptor A; HADS, Hospital Anxiety and Depression Scale; ICU, Intensive

Care Unit; IFN-1β, Interferon 1 β; iNOS, Inducible Nitric Oxide Synthase;

ME, Myalgic Encephalomyelitis; OR, Odds ratio; PEM, Post-Exertional

Malaise; pRNFL, peripapillary Retinal Nerve Fiber Layer; SARS-CoV-2,

Severe Acute Respiratory Syndrome Coronavirus 2; SD-OCT, Spectral-

Domain Optical Coherence Tomography; SD, Standard Deviation; TNF-α,

Tumor Necrosis Factor α; WHO, World Health Organization.

microglia in the central nervous system, among others (8).

Pathophysiological considerations also include the formation of

a subset of exhausted T cells and dedifferentiated monocytes

observed in patients with neurological manifestations of

COVID-19 (9) or anti-idiotypic antibodies (10).

Initial cross-sectional studies of patients who have

experienced COVID-19 disease and have persistent symptoms

show that patients who develop post-COVID syndrome usually

have a mild course of the disease and suffer primarily from

mood swings, fatigue, and perceived cognitive impairment

(11). Until now, it remains elusive whether there might be

sociodemographic characteristics or certain comorbidities

driving the risk of developing the post-COVID syndrome.

In this cross-sectional non-interventional study of patients

with the long-COVID and post-COVID syndrome, we

characterized patients with COVID-19 disease who presented to

our specialized university hospital neurological outpatient clinic

regarding sociodemographic variables and clinical phenotype

with a focus on fatigue, symptoms of depression, anxiety, and

impairment of smell. First, we wanted to characterize patients

with long-COVID regarding sociodemographic variables,

secondary diseases, symptoms following COVID-19, and their

duration. Second, we performed a psychometric quantification

of fatigue and depressive symptoms in patients with long-

COVID and post-COVID syndromes to assess whether fatigue

and affective symptoms might be associated with the severity

of COVID, age, sex, and prior psychiatric disorders. Those

data may help to better understand neurological manifestations

of long-COVID syndrome and to guide directions for

therapeutic approaches.

Methods

Patients were included after having written informed

consent to participate. The study was conducted in accordance

with the Helsinki Declaration of 1975 and was approved by

the local ethics committee of Ruhr-University Bochum (20–

6827; 21–7423). Patients have been recruited at our specialized

neurology long-COVID clinic at the Ruhr-University Bochum,

St. Josef Hospital. Patients were recruited from January 2021

onwards. All patients were examined by an experienced, board-

certified senior neurology consultant. Patients presented after

a referral from a resident specialist or general practitioner.

Only patients with long-COVID or post-COVID syndromewere

recruited for the study. We included n= 101 patients older than

18 years. The COVID-19 infection was at least 2 months before

the presentation. The majority of patients presented more than

3 months after infection (87/98 patients, 88.8%). To understand

the long-term effects of a mild or moderate disease, only patients

with a moderate disease corresponding to less than six points

in the World Health Organization (WHO) clinical progression

scale were included (12). Demographic data, disease duration,
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symptoms, family history, medication history, and previous

therapies were recorded.

Assessment of cognitive and motor
fatigue

We performed the Fatigue Scale for Motor Function

and Cognition (FSMC) to objectively measure fatigue

symptoms. The FSMC is a self-report measure developed

to characterize motor and cognitive fatigue symptoms into

mild, moderate, and severe fatigue in patients with Multiple

Sclerosis. It is also available in German (13). Patients who

did not fill out all the items of the FSMC were excluded

from the analysis. Accordingly, 36 patients were excluded

from the evaluation, and the questionnaires of 65 patients

were analyzed.

Hospital anxiety and depression scale

Psychometrics of affective symptoms were performed using

the German version of the self-reported Hospital Anxiety and

Depression Scale (HADS-D), consisting of a questionnaire with

14 items (14). Depression and anxiety symptoms are measured

by seven items each, and the two subscales are interpreted

independently. Twelve incomplete questionnaires had to be

removed (n= 89 analyzed).

Odor testing

The odor testing was performed using Sniffin’ Sticks

(15, 16). An experienced examiner performed the test. The

correct identification of 13 odors or more was considered

normosmia, 8 to 12 odors indicated hyposmia, and seven or

fewer were considered anosmia (17).

Statistical analysis

Data were presented as shown in the respective figure

legends. We compared demographics, clinical characteristics,

and outcomes between patients with univariate analysis using

appropriate nonparametric tests (Mann-Whitney–U test, Chi-

squared test). Furthermore, we applied twomultivariable logistic

regression models to calculate odds ratios (OR) and the

corresponding 95% confidence intervals (CI) for each outcome

of severe motor or cognitive fatigue. A value of ≥32 points in

the motor subscale of FSMC and ≥34 points in the cognitive

subscale of FSMC was used as a cut-off to indicate severe

motor or cognitive fatigue, respectively. Statistical analysis

was performed with GraphPad Prism (version 9.2.0) and

SPSS 27.0 for Mac. P < 0.05 was defined as the level of

statistical significance.

Results

Sociodemographic characteristics and
comorbidities

We included 101 patients, and the proportion of female

patients was 73.3% (n = 74). The mean age of the total cohort

was 50.2 years (range 19–84; Supplementary Figure 1). The time

from the onset of COVID symptoms to presentation to our

outpatient clinic averaged 220.1 days (SD: 118.26, Range: 60–

554, n= 98). At the presentation time, 83.0% of patients lived in

a partnership. Only 2.7% of patients were in education or had no

vocational degree at the presentation time. 58.8% were on sick

leave and unable to work (Table 1).

The most common secondary diagnosis was thyroid

disease (29.7%), with a proportion of 33.8% among females

compared to a proportion of 18.5% in males (Figure 1). Thyroid

disorders were followed by psychiatric or psychosomatic

secondary diagnoses with a total proportion of 17.8%

(females 20.3%, males 11.1%). Among the psychiatric or

psychological history of patients included, depression was

the most common pre-existing condition (16/101, 15.8%),

followed by adjustment disorder (2/101, 2,0%), condition

after borderline personality disorder (1/101, 1.0%), condition

after narcotic abuse (1/101, 1,0%), anxiety disorder (1/101,

1,0%), post-traumatic stress disorder (1/101, 1,0%) and panic

disorder (1/101, 1.0%). Some patients had more than one

diagnosis. 14.9% of patients reported memory impairment,

and 13.9% reported concentration impairment before the

onset of COVID infection. Rheumatologic/autoimmune

secondary diagnoses were reported by 11.9%. Pre-existing

rheumatologic or autoimmunologic conditions included

psoriasis (2/101; 1.0%), Bechterew’s disease (1/101, 1.0%),

Hashimoto’s thyroiditis (4/101, 4.0%), psoriatic arthritis (1/101,

1.0%), rheumatoid arthritis (1/101, 1.0%), multiple sclerosis

(2/101, 2.0%), fibromyalgia syndrome (1/101, 1.0%), and

unspecified rheumatological disease requiring treatment (1/101,

1.0%). Some patients had more than one preexisting condition

from the rheumatological or autoimmunological spectrum. The

leading cardiovascular risk factors were arterial hypertension,

with a proportion of 32.7%, and obesity (12.9%).

The majority of patients had a mild
course of COVID-19

To understand whether the initial severity of the course

of COVID-19 might have influenced the risk of developing

long-COVID, we assessed the severity of COVID-19 using
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TABLE 1 Sociodemographic data.

Total Male Female

Number of patients 101 27 (26.7%) 74 (73.3%)

Age (years)

Median 51 54 50.5

Mean 50.2 52.7 49.3

SD 12.9 14.2 12.4

Range 19–84 19–77 24–84

The time between symptom onset and presentation to the outpatient clinic (days) n= 98 n= 25 n= 73

Median 201 214 184

Mean 220.1 225.4 218.3

SD 118.3 101.4 124.1

Range 60–554 72–492 60–554

Marital status

Cohabitation/permanent partnership/married 73/88 (83.0%) 22/25 (88.0%) 51/63 (81.0%)

Single/divorced/widowed 15/88 (17.0%) 3/25 (12.0%) 12/63 (19.0%)

Highest degree

Completion of compulsory basic secondary schooling 5/46 (10.9%) 2/13 (15.4%) 3/33 (9.1%)

General certificate of secondary education 13/46 (28.3%) 3/13 (23.1%) 10/33 (30.3%)

Technical college entrance qualification 9/46 (19.6%) 1/13 (7.7%) 8/33 (24.2%)

General qualification for university entrance 19/46 (41.3%) 7/13 (53.8%) 12/33 (36.4%)

Highest professional qualification

No training completed/still in training 2/75 (2.7%) 1/19 (5.3%) 1/56 (1.8%)

Completed vocational training 51/75 (68.0%) 9/19 (47.4%) 42/56 (75.0%)

Completed university education 22/75 (29.3%) 9/19 (47.4%) 13/56 (23.2%)

Professional situation prior to COVID-19 infection

Training/further education/retraining 1/82 (1.2%) – 1/61 (1.6%)

Employment (full-time) 56/82 (68.3%) 16/21 (76.2%) 40/61 (65.6%)

Employment (part-time) 11/82 (13.4%) – 11/61 (18.0%)

Early retirement 2/82 (2.4%) 1/21 (4.8%) 1/61 (1.6%)

Jobseeker – – –

Housewife/houseman 2/82 (2.4%) – 2/61 (3.3%)

Retirement 9/82 (11.0%) 4/21 (19.0%) 5/61 (8.2%)

Incapacitated 1/82 (1.2%) – 1/61 (1.6%)

The professional situation at the time of the presentation

Training/further education/retraining 1/52 (1.9%) – 1/37 (2.7%)

Employment (full-time) 21/52 (40.4%) 8/15 (53.3%) 13/37 (35.1%)

Employment (part-time) 11/52 (21.2%) – 11/37 (29.7%)

Early retirement 1/52 (1.9%) – 1/37 (2.7%)

Jobseeker 3/52 (5.8%) 1/15 (6.7%) 2/37 (5.4%)

Housewife/houseman 3/52 (5.8%) – 3/37 (8.1%)

Retirement 10/52 (19.2%) 5/15 (33.3%) 5/37 (13.5%)

Incapacitated 2/52 (3.8%) 1/15 (6.7%) 1/37 (2.7%)

Sick leave at the time of presentation 20/34 (58.8%) 5/10 (50.0%) 15/24 (62.5%)

the WHO clinical progression scale. The WHO progression

scale ranges from 0 to 10, with a score of 1–3 representing

a mild course, 4–5 a moderate disease, 6–9 a hospitalized

severe disease [Intensive Care Unit (ICU) treatment], and

ten representing death due to COVID-19 (12). During the

acute phase of infection, 86 had a WHO clinical progression

scale score ≤3, with the majority having a score of 2,

indicating that patients were symptomatic and independent
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FIGURE 1

Comorbidities, self-reported cognitive impairment, and cardiovascular risk factors prior to acute COVID-19 infection. Data were derived from a

self-questionnaire, covering previous comorbidities from various organ systems as well as the most important cardiovascular risk factors.

Impairment of cognition or concentration was self-assessed by patients. Di�erences between females and males were analyzed using a

nonparametric two-tailed Mann-Whitney test, which showed no di�erences.

(78.2%; Supplementary Table 1). 14.9% of the patients had a

score >3 and were thus hospitalized. 4.0% were treated in the

ICU. There was no difference in the severity of COVID-19

disease depending on gender (Supplementary Figure 2A). We

also found no association between age and COVID severity

(r = 0.08, p= 0.43; Supplementary Figure 2B).

Symptoms during acute infection and at
the time of presentation

The most common symptoms reported during acute

infection were taste disorders (67.3% of patients) and odor

disturbances (65.3%). This was followed by exhaustion/fatigue

(63.4%), cephalgias (51.2%), arthralgias (49.5%), and myalgias

(46.5%) (Table 2). The frequency of reported symptoms

changed until the time of presentation. Now, more than

90% of patients reported that they suffered from fatigue

(93.1%). Moreover, a large proportion of patients reported

impaired concentration (82.2%) and memory (79.2%). Sleep

disturbances, only present in 28.7% of patients during the acute

phase of COVID-19, increased to 53.5% at the presentation

time. Impairment of smell and taste decreased to 34.7 and

27.7%, respectively.

Women are more severely a�ected by
motor fatigue

Fatigue is one of the most prominent symptoms reported

by patients following COVID-19. To differentiate between

cognitive and motor fatigue, we took advantage of the FSMC.

Incomplete questionnaires of individuals in our cohort of

101 patients were excluded. A total of 56 of 65 patients

(86.2%) whose questionnaires could be evaluated had an FSMC

sum score of ≥43 and, thus, at least mild fatigue symptoms

(Figure 2A). Women had significantly higher total FSMC scores

than men (p < 0.05; n = 48). This was reflected in a higher
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TABLE 2 Symptoms during acute COVID-19 infection and after recovery/at time of presentation.

Symptom Acute COVID-19 infection At the time of the presentation

Total

n = 101

Male

n = 27

Female

n = 74

Total

n = 101

Male

n = 27

Female

n = 74

Exhaustion 64 (63.4%) 19 (70.4%) 45 (60.8%) 94 (93.1%) 23 (85.2%) 71 (96.0%)

Concentration impairment na na na 83 (82.2%) 19 (70.4%) 64 (86.5%)

Memory impairment na na na 80 (79.2%) 17 (63.0%) 63 (85.1%)

Sleep disorders 29 (28.7%) 7 (25.9%) 22 (29.7%) 54 (53.5%) 10 (37.0%) 44 (59.5%)

Odor disturbance 66 (65.3%) 11 (40.7%) 55 (74.3%) 35 (34.7%) 4 (14.8%) 31 (41.9%)

Myalgia 47 (46.5%) 8 (29.6%) 39 (52.7%) 33 (32.7%) 4 (14.8%) 29 (39.2%)

Headache 52 (51.2%) 11 (40.7%) 41 (55.4%) 31 (30.7%) 6 (22.2%) 25 (33.8%)

Arthralgia 50 (49.5%) 12 (44.4%) 38 (51.4%) 28 (27.7%) 5 (18.5%) 23 (31.1%)

Taste disorders 68 (67.3%) 14 (51.9%) 54 (73.0%) 28 (27.7%) 4 (14.8%) 24 (32.4%)

Muscle weakness 26 (25.7%) 11 (40.7%) 15 (20.3%) 23 (22.8%) 7 (25.9%) 16 (21.6%)

Paraesthesia 10 (9.9%) 3 (11.1%) 7 (9.5%) 18 (17.8%) 4 (14.8%) 14 (18.9%)

Vertigo 13 (12.9%) 2 (7.4%) 11 (14.9%) 18 (17.8%) 2 (7.4%) 16 (21.6%)

Racing heart 20 (19.8%) 4 (14.8%) 16 (21.6%) 17 (16.8%) 3 (11.1%) 14 (18.9%)

Alopecia 10 (9.9%) 1 (3.7%) 9 (12.2%) 12 (11.9%) 2 (7.4%) 10 (13.5%)

Chest pain 23 (22.8%) 5 (18.5%) 18 (24.3%) 13 (12.9%) 5 (18.5%) 8 (10.8%)

Diarrhea 25 (24.8%) 4 (14.8%) 21 (28.4%) 8 (7.9%) 1 (3.7%) 7 (9.5%)

Nausea 20 (19.8%) 4 (14.8%) 16 (21.6%) 7 (6.9%) - 7 (9.5%)

Loss of appetite 22 (21.8%) 6 (22.2%) 16 (21.6%) 5 (5.0%) - 5 (6.8%)

Skin rash 9 (8.9%) 3 (11.1%) 6 (8.1%) 5 (5.0%) 2 (7.4%) 3 (4.1%)

Dysphagia 9 (8.9%) 1 (3.7%) 8 (10.8%) 4 (4.0%) - 4 (5.4%)

Vomiting 4 (4.0%) 1 (3.7%) 3 (4.1%) 1 (1.0%) - 1 (1.4%)

Impairment of concentration and memory were not evaluated for the acute phase.

na, not available.

proportion of 81.3% of female patients with severe total fatigue

compared to 58.8% of males (n = 17). The differentiation

between cognitive and motor fatigue showed that cognitive

fatigue did not depend on sex (p = 0.12, Figure 2B), whereas

motor fatigue was significantly more pronounced in females

than in males (p < 0.05; Figure 2C).

We then applied two logistic regression models to calculate

odds ratios (OR) and the corresponding 95% confidence

intervals (CI) for both fatigue sub-scores (cognitive and motor

fatigue), with gender as the predictor. A value of 34 points for

the subscale of cognitive fatigue and a value of 32 points for the

subscale of motor fatigue was used as a cut-off to indicate severe

fatigue, respectively. We adjusted for demographics (age, sex),

preexisting conditions, and COVID-19 severity score according

to WHO. For both outcomes (severe motor/ severe cognitive

fatigue), the female sex was the only significant and independent

predictor in this model. Women in our analysis had an 8-fold

increased risk of suffering from severe fatigue (OR = 8.045, p

= 0.010 for severe cognitive fatigue; OR = 7.698, p = 0.013 for

severe motor fatigue; Table 3).

To understand whether age might influence fatigue, we

correlated it with age and fatigue, which showed no correlation

(r = 0.15, p = 0.22; Figure 2D). We hypothesized that the

duration of symptom onset to the time of presentation might be

associated with reduced fatigue. However, the severity of fatigue

was not influenced by the period between acute infection and

time of presentation in women (FSMC total r = 0.07; p = 0.66)

or men (r= –0.14; p= 0.62; Figures 2E,F).

Depressive symptoms in males correlate
with duration since symptom onset

To detect symptoms associated with depression or anxiety,

we performed the HADS-D (89 patients with fully completed

questionnaires included). Scores ≤7 correspond to normal

findings, 8–10 to suspicious findings, and scores >10 to

pathological findings. 17/89 patients (19.1%, 14.9% female,

31.8% male) had pathological HADS regarding depressive

symptoms. 21/89 (23.6%, 22.4% female, 27.3% male) of the

patients had pathological HADS regarding anxiety symptoms

(Figure 3A). There was no gender-specific difference. Likewise,

there was no significant correlation with age (r = 0.03, p = 0.78
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FIGURE 2

Females are a�ected by more severe motor fatigue. Fatigue was assessed using the FSMC score. (A) The majority of patients had severe fatigue

(81.3% females, 58.8% males). Females were a�ected more severely compared to males (p < 0.05). This e�ect was driven by motor fatigue since

(B) cognitive fatigue was not dependent on sex (p = 0.12). (C) Females were a�ected by more severe motor fatigue (p = 0.02). (D) Total fatigue

using the FSMC was not depending on age (r = 0.15, p = 0.22; n = 65). (E) The latency between onset of COVID-19 and presentation did not

a�ect the severity of total fatigue, cognitive fatigue or motor fatigue in females (total: r=0.07, p = 0.66; cognitive: r=0.07, p = 0.66; motor: r =

–0.03, p = 0.84) or f) males (total: r = −0.14, p = 0.62; cognitive: r = –0.14, p = 0.61; motor: r = –0.16, p = 0.56). n = 65 total, n = 48 females, n

= 17 males. Data are shown as mean ± standard deviation (SD) (A–C) or mean with a 95% confidence interval (D–F). Data were analyzed using a

two-tailed Mann–Whitney U-test (A–C) and nonparametric two-tailed Spearman correlation (D–F). * p < 0.05.

for depression, r = –0.09, p = 0.41 for anxiety). To understand

whether a preexisting psychiatric or psychosomatic comorbidity

might be a driving factor in the severity of depressive or anxious

symptoms, we stratified patients according to comorbidities.

In both females and males, the proportion of patients with

preexisting psychiatric or psychosomatic comorbidity was lower

compared to unaffected patients. Preexisting psychiatric or

psychosomatic comorbidity did not affect depressive or anxious

symptoms in females or males (Figures 3B,C). We then analyzed

whether latency might be a driving factor in developing

depressive or anxious symptoms. In females, both the severity of

depressive symptoms (r= 0.16, p= 0.21) and anxious symptoms

(r = 0.18, p = 0.14) did not depend on the latency from

symptom onset to presentation (Supplementary Figures 3A,C).

In males, however, we found a significant positive correlation

of depressive symptoms with a duration from symptom

onset (r = 0.47; p = 0.03; Supplementary Figure 3B), while

anxious symptoms were not affected by latency (r = 0.20,

p= 0.38).

Impaired smell persists over time and is
independent of age

Impairment of smell is one of the major symptoms of

COVID-19 and was reported in 34.7% of our cohort at the time

of presentation. To understand the severity of smell impairment,

we performed Sniffin’ Sticks on those individuals in our cohort

who had anamnestic indications of an olfactory disorder (n

= 37; female n = 28, male n = 9). The majority of patients

presented with a certain degree of impaired smell, while most

patients (70.3%) were categorized as being hyposmic (8–12

recognized odors) and a smaller proportion of 18.9% as being

anosmic (Figure 4B). There was no gender-specific difference

(Figure 4A). Age had no effect on smell (r = –0.09, p =

0.59). Moreover, we found no effect on the latency from the

acute phase of COVID-19 regarding smell (r = –0.12, p =

0.46; Figure 4C). We also correlated the severity of COVID-19

according to the WHO clinical progression scale with smell,

showing a modest trend that more severely affected patients
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TABLE 3A Odds ratios calculated by multivariable logistic regression

model for the outcome of severe motor fatigue.

Variable OR 95% CI P-value

Age 1.030 0.963–1.101 0.396

Female sex 7.698 1.547–38.295 0.013

Smoker 4.377 0.417–45.980 0.219

Hypertension 2.017 0.203–20.050 0.549

Diabetes 0.129 0.001–32.559 0.468

Cardiovascular disease 1.047 0.040–27.428 0.978

Cerebrovascular disease 5,013,837.486 NA 0.999

History of malignancy 966,938,006.822 NA 0.999

COPD 5,720,968.178 NA 0.999

Psychiatric or

psychosomatic disease

0.828 0.106–6.464 0.857

Obesity 7.275 0.037–1,428.730 0.461

Thyroid disease 36,666,183.950 NA 0.999

Autoimmune disease 0.607 0.084–4.401 0.621

Any other disease 3.705 0.231–59.509 0.355

COVID-19 severity

(WHO)

1.445 0.624–3.345 0.390

Hyperreflective lesions 471,385,404.061 NA 0.999

Significant findings are highlighted in bold.

might be more impaired regarding smell compared to mildly

affected patients (r= –0.21, p= 0.20; Supplementary Figure 4).

Discussion

Long-COVID or post-COVID syndrome is discussed both

from a scientific point of view and increasingly in the lay media

due to potential effects on many patients with multidimensional

implications. Here we show that leading symptoms in the

post-acute phase were fatigue, impaired concentration, and

subjectively impaired memory. The most common secondary

diagnosis found in our cohort was thyroid disease. Most patients

with long-COVID initially had a mild disease course of COVID-

19; nevertheless, most patients were affected by severe fatigue,

not influenced by depressive symptoms or symptoms of anxiety.

Females had an 8-fold increased risk of both cognitive and

motor fatigue.

Fatigue is one of the most important symptoms found

in patients with long COVID, with a prevalence of 44%

in a systematic review of 39 studies (18). Other symptoms

include sleep disorder (33%), dyspnea (40%), cough (22%),

as well as cognitive impairment (15%), anxiety (34%), and

depression (32%). Those alterations have a significant personal

impact since 57% of patients reported a decreased quality

of life (18). Fatigue is seen in several conditions and can

also be chronic. According to the U.S. Centers for Disease

TABLE 3B Odds ratios calculated by multivariable logistic regression

model for the outcome of severe cognitive fatigue.

Variable OR 95% CI P-value

Age 1.055 0.987–1.128 0.113

Female sex 8.045 1.641–39.445 0.010

Smoker 2.840 0.273–29.521 0.382

Hypertension 0.712 0.095–5.353 0.742

Diabetes 0.127 0.000–113.610 0.552

Cardiovascular disease 2.015 0.104–39.008 0.643

Cerebrovascular disease 4,280,764.102 NA 0.999

History of malignancy 1.900 0.113–31.999 0.656

COPD 16,884,340.377 NA 0.999

Psychiatric or

psychosomatic disease

0.717 0.092–5.579 0.751

Obesity 7.935 0.010–6,195.442 0.542

Thyroid disease 47372545.524 NA 0.999

Autoimmune disease 0.479 0.068–3.372 0.460

Any other disease 4.430 0.297–66.023 0.280

COVID-19 severity

(WHO)

1.193 0.507–2.810 0.686

Hyperreflective lesions 447,271,914.738 NA 0.999

Significant findings are highlighted in bold.

Control and Prevention (CDC), the following mandatory

and optional criteria must be met to establish a diagnosis of

chronic fatigue syndrome (CFS) or myalgic encephalomyelitis

(ME) (19): 1. Patients are limited by fatigue for more than

six months. They cannot carry out their usual daily activities

due to abnormal fatigue. 2. There is a so-called stress

intolerance, also called post-exertional malaise (PEM). This

means that physical, cognitive, or emotional stress leads to a

decomposition of the initial symptoms. 3. patients with CFS

do not have a restful sleep. Optional diagnostic criteria include

difficulty concentrating, memory impairment, and orthostatic

intolerance. The etiology and pathogenesis of CFS have not

been conclusively clarified (20). Among others, neuroinfectious

and consecutive neuroimmunological processes are discussed

as potential origins of CFS. Epstein-Barr virus, human

herpesvirus 6, enteroviruses, Borna disease virus, Borrelia

burgdorferi, Coxiella burnetii, Candida albicans, Mycoplasma

pneumonia, and retroviruses are considered possible causative

agents (21). Cytokine levels might induce CFS, particularly

IL-1β (22), oxidative stress, and mitochondrial dysfunction

(23). Moreover, pathophysiological alterations in Long-

COVID include cerebrovascular dysregulation with persistent

cerebral arteriolar vasoconstriction, small fiber neuropathy

and related dysautonomia, respiratory dysregulation, and

chronic inflammation (24). Also discussed is autoimmune

pathophysiology with the formation of autoantibodies against

vasoregulatory G protein-coupled receptors in patients with
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FIGURE 3

The severity of symptoms of depression or anxiety was not dependent on age or psychiatric comorbidity. We performed a HADS to assess

symptoms of depression and anxiety. Scores were regarded as: 0–7 = negative, 8–10 = indi�erent, >10 = positive. (A) The majority of patients

had a negative or indi�erent HADS regarding depressive symptoms (85.1% females, 68.2% males) or symptoms of anxiety (77.7% females, 72.7%

males). (B) The severity of depressive symptoms was not a�ected by a previous psychiatric or psychosomatic disease in females (n = 14 with

comorbidity, n = 53 women without comorbidity) or (C) males (n = 3 men with comorbidity, n = 19 men without comorbidity). Data are shown

as mean ± standard deviation (SD). Data were analyzed using a nonparametric two-tailed Kruskal-Wallis test.

FIGURE 4

Impairment of smell is not a�ected by duration from symptom onset. The smell was assessed using Sni�n’ Sticks
®
. The following thresholds

were used: 0–7 = anosmia, 8–12 = hyposmia, >12 = normosmia. (A) Most patients su�ered from hyposmia (71.4% females, 66.7% males), while

there was no di�erence depending on gender. (B) Impaired smelling was not associated with age (r = –0.09, p = 0.59; n = 37 with all 16 odors

tested. None of the patients recognized all 16 odors, while the maximum number of odors detected was 14 out of 16. (C) Duration (days) from

symptom onset of acute COVID-19 infection to presentation to our clinic did not correlate (r = –0.12, p = 0.46, n = 40; the result of the test in

percent because of varying total number of odors tested). (A) Data are shown as mean ± standard deviation (SD) and (B,C) mean with 95%

confidence interval. Data were analyzed using (A) nonparametric two-tailed Mann-Whitney U test or (B,C) nonparametric two-tailed Spearman

correlation.
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CFS (25). Recently, the first report of BC007, a DNA aptamer

drug with high affinity to G-protein-coupled receptors (GPCR-

AAbs), showed the functional inactivation of GPCR-antibodies

within 48 h after administration, leading to improvement of

fatigue, taste, and retinal capillary microcirculation over four

weeks in one patient (26).

One possible explanation for the development of fatigue

is that patients might be more affected by affective disorders.

In line with our findings, Calabria et al. found that in a

group of 136 patients with cognitive complaints following

COVID-19 infection, 82.3% reported fatigue, especially severe

motor fatigue. Interestingly, elevated levels of apathy, anxiety,

and executive dysfunction in neuropsychiatric measures and

executive and attentional difficulties on cognitive tests were

predictors of fatigue (27). Using the HADS, we found evidence

of depressive symptoms in 19.1% of the patients, although we

did not find any correlation with psychiatric or psychosomatic

comorbidities, gender, or age. However, males were more

likely to suffer from depressive symptoms the longer the

latency was between acute infection and presentation in

our clinic. One explanation might be that the persistence

of long-COVID symptoms might have induced a depressive

state. These data support the notion that patients with

persistent long-COVID symptoms should receive diagnostic

and therapeutic help to reduce the risk of developing an

affective disorder. Using transcranial sonography, we found

that patients with a hypoechogenic brainstem raphe structure

have a 3.9-fold (95% CI 1.2–12.1) increased risk of depressive

symptoms, presumably arguing for increased susceptibility

to developing depressive symptoms following a stressful

event such as COVID (28). Transcranial sonography could,

therefore, be used to identify patients at risk of developing

depressive symptoms following COVID. Moreover, data about

neuropsychological deficits and fatigue are controversial.

Using a comprehensive neuropsychological battery, including

standardized and computerized cognitive tests and the MFIS

scores (total score and cognitive fatigue score), another

group failed to detect reliable neuropsychological predictors of

cognitive fatigue in post-COVID patients (29).

Hyposmia and anosmia are often reported in patients with

acute COVID-19 and during follow-up. While 65.3% of patients

in our cohort reported impaired smell during the acute infection,

the frequency dropped to 34.7% at the presentation time.

In the majority of patients tested, we found some degree of

hyposmia. Moreover, 70.2% (33/47) of patients who did not

report having persistent hyposmia were tested to have impaired

smell (hyposmia or anosmia). Interestingly, smell impairment

did not correlate with age, which could have been explained

by unknown preceding neurodegeneration or be a sign of

reduced regeneration in older individuals. Qualitative changes

in smell can persist for several months and even occur as late-

onset symptoms months after full recovery (30). However, smell

recovers in >90% of patients after six months (31).

There are several limitations to our study which need to be

addressed. First, we recruited patients from our outpatient clinic.

This might have induced a referral and selection bias, e.g., since

patients with more severe depressive symptoms might not have

been able to make an appointment, potentially underestimating

the risk of COVID-associated affective disorders. On the other

hand, patients with only mild long-COVID symptoms might

have been missed because they did not see the need for a

consultation. Another drawback is the missing control group,

which should be recruited from patients without sequelae

following COVID-19 and healthy, age-matched subjects.

Moreover, we assessed patients only at one time

point; hence, follow-up studies are needed to understand

the dynamics of alterations over time. Age-related

neurodegeneration, which might have influenced, for

example, hyposmia, was not taken into account. Moreover,

we did not evaluate cognitive function systematically

in this cohort, which should be addressed in further

studies. The strength of the data presented here is the

sufficiently large number of patients investigated and the

conclusive acquisition of data, including socioeconomic and

clinical data.

Whether long-COVID is a distinct disease entity with

unclear pathophysiology or a spectrum of prolonged viral

infection remains unclear. The scientific and media attention

induced by COVID-19 almost pushes us to consider symptoms

in the post-acute phase as a separate disease entity. However,

a critical appraisal of the literature also implies that at least

part of the symptoms in the post-acute phase of SARS-CoV-

2 infection, namely fatigue, might be a spectrum of CFS with

SARS-CoV-2 virus as another virogenic etiology. Persisting

alteration of smell, however, seem to be rather specific to

SARS-CoV-2 infection.

In summary, we provide a holistic picture of patients with

long-COVID presenting in a specialized neurology university

hospital setting and show that patients with long-COVID

syndrome and mild disease are affected by severe fatigue, with

an 8-fold increased risk in women. Further studies, including

larger sample sizes, control groups, and longitudinal designs,

are needed to better understand the dynamics of long-COVID

over time.
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Epidemiological, clinical, and radiological studies have provided insights into

the phenomenology and biological basis of cognitive impairment in COVID-

19 survivors. Furthermore, its association with biomarkers associated with

neuroinflammation and neurodegeneration supports the notion that it is a

distinct aspect of LongCOVID syndrome with specific underlying biology.

Accounting for the latter, translational studies on SARS-CoV-2’s interactions

with its hosts have provided evidence on type I interferon dysregulation, which

is seen in neuroinflammatory and neurodegenerative diseases. To date, studies

attempting to describe this overlap have only described commonmechanisms.

In this manuscript, we attempt to propose a mechanistic model based on

the host-virus interaction hypothesis. We discuss the molecular basis for a

SARS-CoV-2-associated neurocognitive disorder (SAND) focusing on specific

genes and pathways with potential mechanistic implications, several of which

have been predicted by Vavougios and their research group. Furthermore,

our hypothesis links translational evidence on interferon-responsive gene

perturbations introduced by SARS-CoV-2 and known dysregulated pathways

in dementia. Discussion emphasizes the crosstalk between central and

peripheral immunity via danger-associated molecular patterns in inducing

SAND’s emergence in the absence of neuroinfection. Finally, we outline

approaches to identifying targets that are both testable and druggable, and

could serve in the design of future clinical and translational studies.

KEYWORDS

SARS-CoV-2, cognitive impairment, tauopathy, type I interferon signaling, host-virus

interaction, dementia
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Introduction

Cognitive impairment secondary to COVID-19 is now

a recognized, health concern. It emerges as part of the

LongCOVID spectrum, without a clearly defined cause (1).

Clinical, pathological and radiological manifestations of this

SARS-CoV-2 associated neurocognitive disorder (SAND) have

outlined its significant overlap with neurodegenerative dementia

(2), which extends to biomarkers in some individuals to include

biomarkers consistent with neurodegenerative diseases such as

Alzheimer’s disease (AD), including beta amyloid oligomers

(Aβ), tau, neurofilament light chain (Nfl) and others (3, 4).

Towards this end, several recent translational studies have

confirmed overlap on themolecular level of contributing biology

between COVID-19 and AD disease, with innate immunity at

its epicenter (5–12). Collectively, these studies point toward

type I interferon signaling, a pathway contested by SARS-CoV-2

(13), as the potential culprit. Furthermore, interferon responsive

genes such as those in the ISG, OAS, and IFITM families,

dysregulated by SARS-CoV-2, have recently and independently

emerged as key players in AD (9, 14, 15). To date, studies

attempting to summarize the evidence on this overlap have not

attempted to explore their synthesis towards an etiopathogenic

mechanism emerging from host-virus interactions.

This review aims to outline emerging evidence on the genes

and pathways that could define SAND on the molecular level.

We aim to go beyond a presentation of potential mechanisms,

presenting them instead through the evolution of host-virus

interactions, the mobilization of innate immunity, and the

consequences of both.

The viral lifecycle: Kinase
recruitment and tauopathy

The first specificmechanistic indication that the intracellular

lifecycle of SARS-CoV-2 may be linked with neurodegeneration,

and specifically with tauopathies, came from a brain organoid

infection model; SARS-CoV-2 neuroinfection was quiescent,

causing neuronal apoptosis with hyperphosphorylated tau as

its hallmark (16). A possible explanation for these findings is

that SARS-CoV-2-dependent perturbations in kinases such as

FYN (10) and GSK3 (17, 18) during their recruitment as part

of the virus’ lifecycle could escalate to increasing downstream

tau hyperphosphorylation and oligomerization, as seen in other

RNA viruses, i.e. DENV (19) and HIV-1 (20). In the setting of

the human central nervous system (CNS), the mechanism of

tau hyperphosphorylation and oligomerization, however, may

not require subsequent de novo infection. Rather, increasing

evidence suggests that transsynaptic spread of tau (21, 22),

amyloid oligomers (8), and viral particles via extracellular

vesicles (5) may sustain a neuroinflammatory process from an

infected hub and this may evolve to or enhance pre-existing

neurodegeneration in its connected network (23, 24).

The combination of anosmia, cognitive impairment, and

limbic degeneration in some individuals suggests a link between

SAND and neurodegenerative dementia (25) and with tau

pathology specifically (26). In humans, significant differences in

peripheral markers of age-related neurodegeneration, including

specific forms of phosphorylated tau or p-tau have been

identified both in COVID-19 patients (27) and survivors in the

post-COVID-19 setting over 6 months follow up (28). Notably,

these changes appear linked with proinflammatory cytokines,

however not all data show that these are persistent (3) and there

is still much to learn about the biological underpinnings that

may continue to contribute.

Taken together, both phenomenology, biomarkers, and

underlying genes potentially recruited by SARS-CoV-2 indicate

that tauopathy may be a plausible mechanism by which the

CNS is affected. Notably, the transmission of tau seeds via

peripheral sites to the CNS via exosomes and their neurotoxicity

has been previously observed in P. Aeruginosa pneumonia

(29), furthermore indicating that systemic infection may affect

the CNS even in the absence of neuroinfection. Considering

that tau can activate type I interferon signaling as seen in

neurodegenerative disease in the absence of infection (30),

tau transmission during SARS-CoV-2 infection could be seen

as a canonical alarmin/pathogen-associated molecular pattern

(PAMP) (31–33), which can readily lead to a detriment for the

recipient cell.

The host response: Type I interferon
response, amyloid beta, and cognitive
impairment

Type I interferon (IFN-1) perturbations are an established

hallmark of Alzheimer’s disease, mediating neuroinflammatory

synapse loss (14, 34). During SARS-CoV-2 infection, IFN-I

pathways are among the first activated pathways between host

and pathogen, a finding confirmed by multiple translational

studies (13, 35). From then on, the interaction between IFN-

I signaling, a canonical response to infection (36), and SARS-

CoV-2’s immunoevasion stratagems are highly complex (37).

As a primary event, SARS-CoV-2’s lifecycle may be effectively

disrupted by a pre-established IFN-I cellular milieu (38). On

the contrary, delayed type I responses in the nasal epithelial

have been shown to enhance SARS-CoV-2 permissiveness (39).

Correspondingly, inborn errors in IFN-I may render carriers

specifically vulnerable to SARS-CoV-2, as they correspond to

differentially perturbed IFN-I responses (40, 41). Adding to the

complexity of this interaction is SARS-CoV-2’s armamentarium

of proteins that target IFN-I responses (42). Notably, these same

targets of virus-host protein interactions also play a central
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role in neuroinflammation and neurodegeneration, for example

in TBK1 (42, 43), KPNA2/Karyopherin (44, 45), and alpha-

synuclein, among others.

Further dissection of the IFN-I signalosome reveals specific

genes that are key players in both innate immune responses and

AD. In recently published work by Vavougios and colleagues

(46), disrupted proteostasis and trained immunity pathways

were among overlapping molecular pathways that are common

across different tissues in AD. This work suggested that IFN-

1 has a specific relationship with unique signaling cascades,

focusing on the IFN response to antiviral effectors, such as

the interferon-inducible transmembrane (IFITM) and the 2
′
-

5
′
-oligoadenylate synthase (OAS) family genes in both AD

and COVID-19 (15). The specific relationship of perturbed

IFN-I signaling to both AD and COVID-19, focuses on

interferon responsive antiviral effectors, such as IFITMs and

OASs, which are interferon stimulated (ISGs) gene families that

provide cellular-level defense against intracellular pathogens.

Dysfunctions of IFITMs and OASs on a pathway level not

only have the potential to abrogate antiviral activity, but several

studies suggest this dysfunction enables these factors to act as

pro-viral factors (47–49). Vavougios and colleagues found that

IFN-I signatures containing members of these ISG families are

common in neurons, peripheral immune cells, and microglia

affected by COVID-19 or by AD (10, 15, 33, 50, 51).

The relationship of both gene families, as well as other

ISGs such as MX and IFITs (10, 15), and IFN-I signaling as

a nexus for both COVID-19 and AD has been corroborated

by others in various experimental and model system settings

(6, 7, 9, 11–13, 52–54). Gamma secretase activity in response to

viral infection has also been shown to be functionally linked with

type I and type II interferon responses in peripheral immune

cells; gamma secretase is involved in the production of the

beta-amyloid protein (55). Lastly, IFN1 signaling in AD-related

microglia was shown to upregulate IFITM3, which in turn

modulates gamma secretase processing. The antigenic stimulus

for this cascade of molecular events was nucleic acid (NA)-

enriched neuritic plaques, and notably, microglia may not then

distinguish viral from endogenous NAs (14, 49). This suggests

that as an innate immunity protein, IFITM3 may canonically

intercept SARS-CoV-2 (56), with its upregulation concomitantly

building up to both increased beta amyloid production (14) and

fed-forward IFN-I upregulation (34). Notably, such interactions

have also been observed with the structurally similar IFITM2 in

modulating the host’s type I interferon signaling.

Taken together, these events show that IFN-I signaling

dysregulation secondary to SARS-CoV-2 infection may be

relayed by endothelial cells (7, 11, 54) to microglia, priming

them (57) and may potentially result in upregulation of IFITMs

and increased presence of beta amyloid production (57). If this

priming is successful in restricting SARS-CoV-2, as heralded

by S1 – Aβ1−42 interactions (58), neuroinflammation but not

neuroinvasion would be expected to predominate. Notably,

S1 itself has been shown to function as a danger-associated

molecular pattern (DAMP) for microglia, furthermore inducing

neuroinflammatory phenotypes (32, 57), indicating that Roy et

al.’s (49). HSV-1 model of AD pathogenesis may also provide

some context to consider for SARS-CoV-2 (59). Furthermore,

in the same model, the transmission of tau seeds as observed

elsewhere (29) would also fit our current understanding of

tau and Aβ as Type I interferon stimulants, as observed in

neurodegenerative disease (30).

SARS-CoV-2 associated neurocognitive
disorder as innate immunity’s pyrrhic
victory

Regardless of the specific pathogen or PAMP (33) involved,

IFN1 signaling canonically induced as an innate immunity

response is a firmly recognized inducer of cognitive impairment

(34, 55, 60). Specific molecular events that may account for

this relationship involve increased beta amyloid production,

proinflammatory microglial activation, and impaired neuronal

homeostasis (14, 34, 49, 60). SARS-CoV-2 introduction to this

system is an immunogenic challenge with potential advanced

capabilities to modulate IFN-I signaling, subverting it to its

favor processes that enable evasion of the immune system (13).

An example of this proposed mechanism can be found in

the amyloidogenic interaction between N and alpha-synuclein

(aSyn), where N functions as a scaffold for aSyn aggregation (61).

The abrogation of aSyn would arrest its function as a canonical,

neuron-specific IFN-I modulator (62); the aggregation of aSyn

however would in turn activate IFN-I by a (presumably) non-

canonical pathway, observed in neurodegenerative disease (63).

This sterile proinflammatory signal could be relayed centrally

from infected microvascular endothelia or olfactory epithelial

cells, to be intercepted primarily by microglia (7, 11, 57).

Aside from aSyn specifically, interactions between SARS-CoV-2

proteins and other proteopathic seeds. Notably, as per a previous

model proposed by Vavougios et al. (15), the neuroanatomical

premise of this concept is supported by imaging data indicating

tandem degeneration of entorhinal cortex and hippocampi

(25) and murine models of intranasal administration of

SARS-CoV-2 that develop late onset proteinopathy, even

after viral clearance (57, 59). Furthermore, our model’s main

premise, i.e. the capability of SARS-CoV-2 protein fragments to

induce amyloidogenesis and subsequent neuroinflammation is

confirmed in at least one in vitromodel (64).

Lytic replication or multiple infected sites may not

be required for cognitive impairment to manifest, along

with molecular events similar to those of neurodegenerative

dementias. Successful restriction via IFN-I and feed-forward

signaling is still impacting the CNS, fully capable of establishing

neuroinflammation, proteinopathy, and microgliosis in the

absence of a pathogen (57, 59, 64) building up to synapse

loss (34, 49). From an immune perspective, however, this
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destruction proximal to an infected site successfully walls off

an invading pathogen, being informed by both IFN-I and

exosomal tau, here functioning as evidence of viral latency

(16, 20, 21). Of note, once initiated, the overproduction of

beta amyloid was shown to enhance the capability of native

molecules to activate microglia and initiate IFN-I cascades (49).

This notion indicates that both different pathogens targeting

IFN-I (55), Danger-associated molecular signals (DAMPs) (32)

and self-DAMPs (34, 49), accumulated by failing organelles

and defects in proteostasis and mitochondrial homeostasis, may

readily activate this pathogenetic mechanism in the absence of

an exogenous immune challenge. Considering that IFN-I may

be targeted by the viral lifecycle and successfully suppressed,

second-order or non-canonical as described herein activation

of IFN-I by the very same “captured” molecules (i.e. aSyn, tau,

Aβ) would serve as a failsafe. Notably, the sterile enhancement

of microglial IFN-I cascades has been previously shown (34,

49, 62, 63) indicating that their enhancement in the setting

of SARS-CoV-2 (61, 65) infections may require proteins or

DAMPs rather than a complete virion—a concept that would

account for the persistence of neuroinflammation past virus

clearance (59).

Conclusions

The SARS-CoV-2 pandemic has provided a forum to

better understand the contributions of recurrent and agnostic

immunity in response to some pathogen exposure rather than

specific exposure and its relationship to AD-specific biology

(22). AD is a complex disease, and likely has a number of factors

that contribute to later life risk. There are many outstanding

questions and in future studies, SAND-related contributions

should be considered within the potential limitations.

As a standalone syndrome, the SARS-CoV-2 associated

neurocognitive disorder (SAND) poses an interesting question:

is the salience of COVID-19, increased population exposure, and

potent induction of IFN-I the true culprit? Prior to SARS-CoV-

2, HIV-1 and its Tat protein had been shown to intersect with

both tau and beta-amyloid and potentially engage with the AD

molecular pathology (20), and a correspondingHIV-1 associated

neurocognitive dysfunction (HAND) associated with infection.

SAND, much like HAND before it, indicates the long-standing

impact of a pathogen may be as impactful for the individual as

the native infection, when inflammation is either unmitigated,

self-propagating, or both.

While these emerging links between neuroinflammation,

neurodegeneration, and COVID-19 represent a growing body of

literature, it is important to underscore that the natural history

of cognitive, functional, and behavioral defects in individuals

experiencing long-term neurological sequelae is unknown.

There are many unanswered questions about the linkage, and

it is important to understand whether translational models

and clinical radiological entities represent a clear, mechanistic

continuum. Furthermore, it is not yet known if COVID-19’s

effects on cognition represent lasting or transient impairments.

It is also not known why some individuals experience long-

term impact on their cognition, function, and behavior, while

others do not. COVID-19’s effect on cognition should also be

consideredmultifactorial, considering its implication in vascular

damage to the brain and sleep-related complaints affecting

survivors (66). Furthermore, the introduction of vaccines may

provide information on how these biological underpinnings

interact with one another.

In this review, we offer a potential model for SAND

following the trail of host-virus interactions and combining it

with the dual roles of proteopathic seeds as DAMPs/PAMPs and

IFN-I signaling and propose a framework to further extend these

findings to linkages with neurodegenerative disease. Building

upon previous works from Vavougios et al. and others, this

manuscript outlines a potential opportunity to formulate a

working, testable hypothesis on SAND with implications on

cognitive impairment and other dementias. Furthermore, as

we have previously indicated, we outline targets that are both

testable and druggable (51), and could serve in the design of

future clinical and translational studies.

The global research and clinical communities must continue

to work together to uncover the answers to these, as well as

other, questions on the intersection of COVID-19, the brain,

and neurodegeneration.
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Substance P (SP) has been a great interest for scientists due to its unique properties

and involvement in various physiological and pathological phenomenon. It took

almost a century for the current understanding of this peptide so far. Its role in brain

and gut were initially discussed and later on it was widely studied and observed

in cardiovascular system, asthma, traumatic brain injury, immune response,

vasodilation, behavior, inflammation, arthritis, cancer, airway hyper responsiveness

and respiratory disorders. Involvement of SP in sudden perinatal death and

COVID-19 has also been discussed which shed light on its vital role in respiratory

rhythm regulation and initiation of cytokine storming in COVID-19. This article will

provide a comprehensive overview of the researches done to understand the basic

functions and involvement of SP in di�erent processes of cell and its association

with various diseases. This article describes the historical and scientific journey of

SP from its discovery until today, including its future perspectives.

KEYWORDS

Substance P, COVID-19, lung inflammation, respiratory disorders, cytokine storming

1. Historical background

In the years 1930/31, the Swedish postgraduate student Ulf Svante von Euler (1905–1983,

Nobel Prize for Physiology or Medicine 1970) isolated in the laboratory of Henry Hallett

Dale (1875–1968, Nobel Prize for Physiology or Medicine 1936) in London a biological

active extract from the intestine of animals (1, 2). For pharmacological studies, this

extract was available as a “stable dry powder.” The P from the word “powder” was

used to identify the substance and has remained part of the name “Substance P” (SP)

until today. The peptide chemical group of Susan E. Leeman isolated the substance

from the hypothalamus and in 1971 determined the structure to be an undecapeptide

with the sequence Arg–Pro–Lys–Pro–Gln–Gln–Phe–Phe–Gly–Leu–Met–NH2 (3). The total

synthesis was also performed by the Leeman group (4).

In 1976 was a special year for SP researchers. The meanwhile world-famous physiologist

and pharmacologist U. S. von Euler had invited to a Nobel Symposium in Stockholm.

The symposium covered the state of knowledge of SP at that time: history, chemistry,

mechanisms, distribution, and pharmacology. One focus was on the effect of SP on

sensory nerve endings and pain. Pioneering work on this had been done by Fred Lembeck
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(1922–2014), who investigated the effect of SP on afferent systems

as early as 1953. His paper in Stockholm (5), and other papers,

confirmed the hypothesis that SP is a transmitter in primarily

sensory afferent neurons and plays an important role in the pain

process. Peter Oehme, one of the authors of this contribution,

together with Ulf Svante von Euler at the Nobel Symposium 1976.

Two papers at the symposium concerned the effect of SP on

tracheobronchial tissue (6, 7). In these, the presence of SP was

demonstrated in both nerve fibers and endocrine cells of guinea

pig tracheobronchial tissue. At the same time, a strong effect on

bronchial tone was found for SP, in vivo as well as in vitro. The

effect observed was 45 times stronger than the effect of histamine.

In his paper, Peter Oehme hypothesized that different information

is encoded in the SP molecule (8): a direct effect on smooth muscle,

sensory nerves, etc., and an indirect effect through modulation

of other transmitter systems, e.g., acetylcholine. For both effects,

different parts of the SP sequence were discussed by Oehme

(Figure 1).

2. Pharmacological actions of
Substance P

2.1. Pain threshold

After returning from Stockholm, Peter Oehme started

investigations on the action of SP on pain threshold in the Institute

for Drug Research (IWF) of the Academy of Sciences in Berlin-

Friedrichsfelde, which he founded in 1976. His investigations using

the hot plate technique onmice yielded surprising results (9). It was

shown that the SP effect depends on the initial condition of the test

animals. It was found that SP has an analgesic effect on mice with

a short reaction time to pain stimuli. On mice with a long reaction

time, SP has a hyperalgesic effect. Both lead to a normalization of

reaction time. Subsequent studies from the Oehme group revealed

that the analgesic effect component is assigned to the C-terminal

SP domain, whereas the hyperalgesic effect component is assigned

to the N-terminal SP domain (10). This dual effect of SP was in

accordance with the model presented by Oehme at the Stockholm

SP Congress in 1976.

2.2. Stress reactions

Interesting findings also followed from the studies on “SP-

action on behavior” carried out jointly by Oehme and Karl Hecht’s

group. In a series of stress models (immobilization, noise, electric

footshocks, etc.), it was found in rats that SP is able to normalize

the disturbances such as “decrease in learning,” “loss of deep sleep

and REM sleep,” “increase in blood pressure and heart rate” (11,

12). Clinical studies conducted by Karl Hecht’s group on patients

with stress-induced sleep disorders with nasal SP application also

showed positive results. Overall, it appeared that the N-terminus

was relevant for the anti-stress effect, whereas the C-terminus was

relevant for the acute effects, such as spasmogenic effect. Therefore,

the term “regulatory peptide” (Regulide) was proposed for SP by

Oehme and Hecht (12).

2.3. Pharmacological e�ects on chroma�n
cells

Since there is an increase of catecholamines in plasma under

stress, the interaction of SP with the aminergic system was

investigated by the Oehme group. In adrenal slices, which contain

chromaffin cells as well as endings of the splanchnic nerve, the

electrically stimulated release of acetylcholine was investigated

in addition to the release of noradrenaline. SP inhibited both

electrically stimulated acetylcholine release and nicotinic release

of norepinephrine (13). SP thus has both a presynaptic and a

postsynaptic target.

For a more in-depth investigation of postsynaptic attack,

studies were performed on isolated chromaffin cells with Bruce

Livett (Melbourne) (14) to understand the modulation of synaptic

transmission in these cells. This showed that SP has two effects.

At first, it inhibits cholinergically induced catecholamine release,

and second, it counteracts nicotine-induced desensitization of

catecholamine release. Thus, SP can both inhibit excessive release

and counteract too rapid depletion of release. Therefore, two

separate points of attack are provided. Overall, SP is thus able to

modulate synaptic transmission and act in the sense of the above-

mentioned “Regulide” (15). It is the N-terminal tetrapeptide that

inhibits both presynaptic acetylcholine release and postsynaptic

norepinephrine release, thus modulating synaptic transmission in

multiple ways. This is consistent with its role as an essential nucleus

for the “anti-stress effect” of SP. These effects are independent of

the NK 1 receptor. Apparently, the target for this modulation are

the polyphosphoinositides (16).

2.4. Pharmacological e�ects on mast cells

Since it was known from the literature that SP can release

histamine from peritoneal mast cells and that SP is released from

sensory nerves upon antidromic stimulation, the Oehme group,

in cooperation with the Pharmacological Institute of University

College in London (UCL), began studies on modulation of

synaptic transmission in mast cells. At first, SP, SP fragments and

analogs were injected into the forearms in self-experiments. Later,

volunteers from UCL joint the experiments. As expected, there was

a dose-dependent redness and swelling on the forearms in these

experiments. This was to be suppressed by antihistamines. N- and

C-terminal SP fragments were ineffective. This implied that the

entire SP molecule was necessary for histamine release from mast

cells (17). Identical structure-activity relationships were shown on

isolated peritoneal mast cells (18). These findings were considered

significant for understanding the role of SP in the pathophysiology

of inflammatory processes in various tissues, particularly in the

bronchial tract.

Another study by Theoharides TC discusses the impact of

the coronavirus (SARS-CoV-2) on the body, specifically focusing

on the role of mast cells in the development of pulmonary

symptoms and long-term complications in patients with COVID-

19. The study suggested that activating mast cells can lead to the

release of multiple proinflammatory cytokines, which can damage

the lungs and contribute to pulmonary edema, inflammation,
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FIGURE 1

Model for di�erent information in Substance P sequences (8).

and thromboses. Additionally, it suggested that many patients

who have recovered from or had mild symptoms of COVID-19

may experience diffuse, multiorgan symptoms months after the

infection, similar to those presented by patients diagnosed with

mast cell activation syndrome (MCAS). The study concluded that it

is important to suspect, evaluate, and address MCAS in any patient

with COVID-19 who experiences chronic multiorgan symptoms

and suggests that blocking mast cells and their mediators, such as

the natural flavonoid luteolin, could be useful in preventing and

managing symptoms during the COVID-19 pandemic (19).

3. SP-actions in the respiratory tract

The action of SP in the respiratory tract played only a minor

role at the SP symposia following the Stockholm SP conference.

At the 1983 SP conference hosted by David Powell in Dublin,

local release of SP in the bronchial tract of guinea pigs by

various chemical irritants was reported (20). This SP release was

associated with mucosal edema and bronchospasm. In 1984, the

symposium on “Substance P—metabolism and biological actions,”

initiated by Chris Jordan and Peter Oehme, in conjunction with

the 9th IUPHAR International Congress of Pharmacology, was held

in Maidstone (UK). In the review lecture by Bengt Pernow on

“Substance P: present status and future prospects,” the function of

SP in sensory nerves was discussed in detail. However, a crucial

statement by Bengt Pernow was: “Although there is now strong

evidence that SP is an important factor in the development of

neurogenic inflammation, the mechanism by which SP exerts its

biological effects is not clear” (21).

Starting in 1987, Peter Oehme focused his group’s work in this

area and formed a joint working group with the Research Institute

of Lung Disease and Tuberculosis in Berlin Buch. First of interest

was the known bronchospastic effect of SP. As expected, SP1–

11 showed a pronounced dose-dependent constrictor effect at the

basal tone of the isolated guinea pig trachea (22). The C-terminal

heptapeptide SP5–11 also caused a dose-dependent contraction

FIGURE 2

Proposed mechanism of Substance P in the respiratory tract (SP,

spinal ganglion; Ly, lymphocyte; MP, macrophage; MM, mucous

membrane; MCA, mucociliary activity; BV, blood vessels; SM,

smooth musculature; SMG, mucous gland; PC II, pneumocyte type

II; SUR, surfactant; SyG, sympathetic ganglion; Hi, histamine; LT,

leukotrienes; Monoc., monocytes; PMN, polymorphonuclear

neutrophils; CNS, central nervous system; 5-HT serotonin) (22).

of the isolated tracheal preparation. In contrast, the N-terminal

tetrapeptide SP1–4 showed no constrictor effect. The contraction

elicited by acetylcholine was significantly attenuated. Thus, the

same picture emerged as in other pharmacological studies. The C-

terminal has a direct effect; mediated via the NK 1 receptor. The

N-terminal tetrapeptide has an indirect protective effect against

the acetylcholine effect. This is mediated via a different target.

Phosphatidylinositols have been discussed in this context. Figure 2

shows the mechanism of SP in the respiratory tract (22).

Since SP also acts on immunocompetent cells in the bronchial

tract, it was of interest to determine whether differences also exist

between the N- and C-terminal SP fragments. The studies were

performed on spleen cell cultures frommice andmononuclear cells

from rat lymph nodes (23). SP and the N-terminal sequences SP1–4
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and SP1–7 were capable of secreting lymphokines with chemotactic

properties for granulocytes and lymphocytes. The maximum of

the dose-response curves was between 10–10 and 10–11, but the

C-terminal fragments SP6–11, SP7–11, SP8–11, and SP9–11 were

unable to induce lymphokines to be expressed.

Therefore, Oehme’s group had planned to investigate both

antagonists for the NK-1 receptor and N-terminal SP sequences for

their therapeutic or preventive utility, primarily for the respiratory

tract. In addition, capsaicin was of interest because of its influence

on bronchial hyperreactivity (24). However, things were to turn out

differently. With German unification, there were serious changes

for both the Institute for Drug Research of the Academy of Sciences

and the Research Institute for Lung Diseases and Tuberculosis.

This led to the end of the research work on SP oriented

on the bronchial tract in both institutes (25). A summary on

pharmacological effects of SP can be found in the Sitzungsberichte

der Akademie der Wissenschaften der DDR, newly published

by de Gryuter Verlag (26), and in Reflections on Substance

P-Research (27).

4. Role of SP in the first defense line of
the respiratory tract

In 2021 saw the first contact between Peter Oehme and Riffat

Mehboob. This was triggered by an event of the Leibniz Society of

Sciences in Berlin with the chairman of the Drug Commission of

the GermanMedical Association,Wolf-Dieter Ludwig, on the topic

“What is the status of COVID-19” (28). An important statement

of this meeting was that the next battle against Corona is to be

fought in the respiratory tract. This statement prompted Peter

Oehme to survey the literature in this direction. In doing so,

Peter Oehme came across a paper by Riffat Mehboob on the

importance of the NK 1 receptor in the therapy of COVID-19

(29). In particular, this work reported on the use of the NK-1

antagonist Aprepitant, in combination with dexamethasone, for the

therapy of severe COVID courses. Riffat Mehboob proposed SP

as a possible factor responsible for initiation of cytokine storming

after getting infected with any foreign agent such as corona

virus. Neurokinin-1 Receptor (NK-1R) antagonist, Aprepitant, was

suggested as a potential drug for the treatment by inhibiting the

receptor. Some evidences and commonalities were provided by

her is support of this theory of SP involvement in respiratory

tract infections including COVID-19 e.g., symptoms in COVID-

19 infection and SP nociception, airway hypersensitivity/asthma

in both phenomenon, variable patterns of COVID-19 disease

severity in different age groups which is also addressed by

SP theory, high death rate in COVID-19 patients having co-

morbidities of diabetes, hypertension and cardiac disorders, viral

load correlates with SP secretion and hence, its proposed that SP

may be the trigger for cytokine storming during such inflammation.

Aprepitant is NK-1R antagonist that has been approved for the

treatment of chemotherapy-induced vomiting for a number of

years (29).

A review by Karamyan VT suggested that inflammation was

a major cause of complications from COVID-19, and studies had

focused on pro-inflammatory cytokines and the “cytokine storm”

as a mechanism to explain the severity of the disease. More

FIGURE 3

Mechanisms involved in the development of COVID-19 infection by

which SP-induced inflammation is implicated. Increased BBB

permeability and immune cell cytokine release are caused by SP’s

binding to the NK-1R on endothelial cells (28).

recently in 2021, the article suggested that peptide bradykinin, its

dysregulated signaling, or “bradykinin storm,” had emerged as a

primary mechanism to explain COVID-19-related complications.

The article also suggested that two closely related vasoactive

peptides, SP and neurotensin, were also likely to have driven

microvascular permeability and inflammation and been responsible

for the development of COVID-19 pathology. It also postulated that

in addition to ACE and neprilysin, peptidase neurolysin (Nln) was

also likely to have contributed to accumulation of bradykinin, SP

and neurotensin, and progression of the disease. In conclusion, it

was proposed that “vasoactive peptide storm” may have underlain

the severity of COVID-19 and that simultaneous inhibition

of all three peptidic systems could have been therapeutically

more advantageous than modulation of any single mechanism

alone (30).

The immune reaction kills the virus to protect the host

cells, but if it continues unchecked, it is known as cytokine

storming, whichmay be lethal (Figures 1–3). Patients with COVID-

19 infection may develop acute respiratory distress syndrome

(ARDS) because immune cells continuously release inflammatory

mediators (Figure 3). Therefore, the pathogen itself is not doing

much damage, but cytokine storming is the main offender.

Additionally, if restricted, illness severity could be reduced (31, 32).
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The immune system-stimulating effects of SP could cause a

cytokine storm. The inflammatory pathways and, hence, the

cytokine storming may both be stopped if its receptor is suppressed

by aprepitant. When exposed to a toxic stimulus, SP is the

first to react and acts as a quick defense mechanism to ensure

survival. Comparing them to controls, NK-1R defective mice were

shown to exhibit less pulmonary inflammation (33). Immune

cells secrete SP, which has endocrine, paracrine, and autocrine

effects (34). It can activate cells that are far away, such as

smooth muscle cells, endothelium cells, lymphatics, white blood

cells and fibroblasts. It interacts with NK-1R, stimulates the

immunological and endocrine systems to produce inflammatory

mediators in the airway tracts (35). It is also found on the cardio-

ventilatory regulatory centers and phrenic nuclei, which regulate

the diaphragm and respiration. It is concentrated in the brainstem

nuclei that mediate respiratory regulation (36). Once formed, the

SP/NK1-R complex starts a signaling chain that results in the

production of IP3 and diacylglycerol (DAG) (37). The activation

of NF-kB by macrophages and other immune cells results in the

production of inflammatory mediators and the release of pro-

inflammatory cytokines (38).

The study by Bellis et al., studied Neprilysin receptors in

treating COVID-19. The study explained that SARS-CoV-2 disease

causes ACE2 down-regulation and related decrease in angiotensin

II degradation, which can lead to a “cytokine storm” and acute

lung and cardiovascular injury. The researchers observed that

current treatments, such as remdesivir and renin angiotensin

system antagonists, have not been shown to be effective in reducing

inflammation related to COVID-19. They suggested that neprilysin

(NEP) may be an interesting target for preventing organ injury

in COVID-19 patients, as it is involved in the degradation of

molecules that prevent organ injury (39). NEP is involved in

downregulation of SP and reduces inflammation (28) and supports

the hypothesis discussed in this study.

The main symptom of COVID-19 is respiratory disease, but it

is also becoming apparent that the disease affects multiple systems

in the body, including the central nervous system (CNS) through

the olfactory nerve and/or enteric nervous system. Neurological

symptoms have been linked to a proinflammatory response in

the CNS, caused by the ACE2 receptor being expressed in the

brain, which ultimately leads to neuroinflammation. A study have

shown that increased expression of TRPV1, a nonselective cation

channel, leads to an increase in proinflammatory molecules such

as substance P and IL-6, which are associated causing “cytokine

storm” with more severe disease (40).

5. SP in ventilatory responses

SP has a major role in cardio-respiratory rhythm generation

and control evidenced through previous study (35, 38) including

ours conducted in University of Milan, Milan, Italy (41–44). They

have an impact on how people react to ventilation since they are

expressed in several brainstem regions. In a previous study, Riffat

Mehboob and Anna Maria Lavezzi at the Lino Rossi Research

Center, University of Milan, Italy, found that the increased

expression of SP in the brainstem tissues of control infants as

compared to infants who had experienced sudden infant death

syndrome (SIDS), suggested that SP/NK-1R may be regulating the

ventilatory regulation in newborns (41). In a related investigation,

the brainstem nuclei of victims showed a marked reduction in SP

andNK-1R binding. Due to a failure in cardiorespiratory regulation

brought on by this altered SP expression, SIDS may result (45). In

unexpected fetal fatalities, SP expression was increased (41, 43) and

sudden adult death (46).

These findings may be correlated with mortalities in COVID-

19 patients due to respiratory complications. SP also serves as a

neuromodulator and vasodilator, contractions of smooth muscles

in upper airways, increased excitatory potential by neurons,

enhanced saliva production and a higher vascular permeability

(38, 47). It may also lead to bronchoconstriction in pathological

conditions (28, 47). Another study of Riffat Mehboob has discussed

the fact that the gene encoding SP, TAC-1 has un-conventional

networking properties such as it is singleton gene, has small protein

interaction network and the members of tachykinin family have

conserved aminoacyl sequences. These properties are responsible

for vulnerability of TAC-1 gene and shows that it is a very important

gene, any mutation in this gene may lead to fatal consequences

as there will be no other gene copy to compensate its functions.

These fatal outcomes may be sudden death due to respiratory

failures. The other members of these gene pathway should also be

explored (44).

SP and serotonin innervate the medullary motoneurons

involved in upper respiratory tract (48) and laryngeal afferent

system (38). In the bronchopulmonary C fibers of the respiratory

tracts, SP, the most prevalent neuropeptide, and neurotransmitter,

is found. It guards the lungs against any harm from irritating

substances that are inhaled. The central nervous system

(CNS) reacts to nociceptive stimuli by releasing nitric oxide,

prostaglandins, and SP from the respiratory epithelium, as well

as bronchoconstriction, cough, hypotension, sleep apnea, and

mucus secretions in the lungs (48). NK-1R mRNA was found to be

raised in broncho-alveolar lavage fluid (25), sputum samples (49)

and lung tissue (50), in a study conducted on asthmatic patients.

SP/NK-1R binding and the resulting interactions are also vital for

the regulation of airway hyper responsiveness (AHR) (51).

An example of extreme hypersensitivity of the bronchial tract

is SIDS when exposed to irritants, e.g., the cigarette smoke of

the mother (41, 52). In this regard, immunohistochemical studies

were published by Lavezzi et al. (41) and Mehboob et al. (42) in

2011 and 2017. These showed downregulated SP expression for

SIDS-risk newborns in such brainstem areas that are important for

respiratory regulation. This confirms earlier research by Oehme’s

group on infants at increased risk of SIDS, where a correlation

between mean respiratory failure and low SP plasma levels was

shown in the first 5 months of life. This has been discussed

as an indication of delayed maturation of respiratory control

mechanisms (45, 53). Vice versa, Mehboob and Lavezzi (43)

questioned whether the minimal probability of healthy neonates

and infants to become ill after corona infection is also related to the

SP system. Fiona Bright from Australia discussed the abnormalities

in the brainstem nuclei may be responsible for cardiorespiratory

failure and hence SIDS (52, 54, 55). According to Mehboob et al.,

a fetus’s brainstems exhibit very little SP expression. On the other

hand, it is increased for newborns and lowered for kids and adults

in controls. While the opposite results in unexpected fatalities (42).
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6. SP/NK-1R, its relation to trigeminal
ganglion, latency during corona virus
infection

Another innovative idea for coronavirus latency during

infection was put out by Riffat Mehboob. If we consider that the

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

virus is operating through the trigeminal ganglion (TG), which is

the principal location for other latent viruses, she has highlighted

the possibility of latency in SARS-CoV-2 virus infection. According

to her, SP/NK-1R pathway is the key player in inflammation

during COVID-19 infection as it may directly affect the ventilatory

responses (48). The immune cells, along with other cells in the

airways and the lung’s epithelial lining, are impacted by the

excessive secretion of SP by TG neurons (28). Corona virus may

have a less unlikely chance of going latent and controlling the

release of different TG peptides, including SP, by entering the TG

via the trigeminal nerve in the eyes, nose, and mouth but the

possibilities cannot be ruled out. The corona virus might be latent

or quiescent in TG and could reactivate at any time. The patient

could develop an infection as a result and experience no symptoms.

After the initial infection, a virus’ latency may be broken within the

cell (56). Despite blood antibodies to the virus being present, the

viral genome may stay in the host cell after primary infection and

may be reactivated by any stressor (57).

The mesencephalic trigeminal nucleus and the TG in the

brainstem both include some of the primary afferent neurons of the

trigeminal nerve. The ocular (V1), maxillary (V2), and mandibular

(V3) nerves are the three branches that make up the TrN. Each

gives each of their distinct head regions innervation (58). The

nociceptors, which are the free nerve ends of the trigeminal sensory

afferents, are activated by pain or any other unpleasant stimulus,

such as SARS-CoV2. These C-fiber sensory nerve fibers can be

myelinated or not, and their cell bodies are found in the TG (42,

58). The trigeminal spinal caudalis (Vc) nucleus of the brainstem

receives these impulses via afferent fibers. Here, they connect with

the second order neurons that send signals to the thalamus and the

limbic and somatosensory cortices. Trigeminal afferent neurons’

activity can be altered by inflammation of orofacial tissues that the

TrN innervates, leading to ectopic firing and increased sensitivity

to painful stimuli. Numerous mediators, including neurotrophic

factors or neuropeptides at nerve ends, such SP, CGRP, and

serotonin, induce sensitization. TG and TrN’s SP and CGRP

levels rise in response to painful stimuli, including nerve damage

(59). Nicotinic stimulation of polyphosphoinositide turnover in rat

adrenal medulla slices was studied by Minenko et al. (60) and the

influence of adrenal demedullation on stress-related behavior in

wistar rats was investigated by Roskte et al. (61), in the same year.

One of the stress related parameters measured was SP in addition

to blood pressure, pain sensitivity, endogenous opiod system etc.

A study by Henri et al., used computational methods to identify

potential drug candidates that can bind to the nucleoprotein N

of SARS-CoV-2, the virus that causes COVID-19. The researchers

used a new model of N, which was built using an existing model

and refined by molecular dynamics simulations. The predicted

drug candidates were neuropeptides, such as substance P (1–7)

and enkephalin, which bind to a large site on the C-terminal or

N-terminal β-sheet of N. The study also found that some variants

of N, such as BA4 and BA5, also have large binding sites. The

binding sites of the predicted drug candidates were then tested

using surface plasmon resonance experiments. The study found

that the drugs likely impede RNA binding to N, which could inhibit

viral replication. The study suggested that these neuropeptides may

play a role in the symptoms of long COVID-19 and that drugs

targeting N may help reduce the risk of brain fog and stroke.

This link of neuropeptides involved in COVID-19 supports our

hypothesis (62).

7. Neurologic manifestations post
COVID-19 and role of SP

Clinical manifestations of COVID-19 are variable and

hence the neurological symptoms such as anosmia, ageusia,

central hemorrhage, infarction also vary depending on age and

comorbidities (63). Patients with long COVID-19 infection

may experience post-intensive care syndrome, post-viral fatigue

syndrome, permanent organ damage and long COVID syndrome

(64, 65). Central nervous system disorders in COVID-19 are more

than anticipated so far. Peripheral nerves and skeletal muscles

are affected to a lesser extent. In majority of the cases, there is no

direct attack of the virus toward vulnerable structures, explaining

the possibility that why nervous system manifestations manifest

favorably to immune suppression (66).

SP is also involved in post COVID olfactory dysfunction.

Schirinzi et al., research study investigated the activity of two

inflammatory pathways, SP and Prokineticin-2 (PK2), within the

olfactory neurons (ONs) of patients to understand the mechanisms

of persistent olfactory dysfunction (OD) post-COVID-19. The

study collected ONs from 10 patients with persistent post-

COVID-19 OD and 10 healthy controls using non-invasive

brushing. Gene expression levels of SP, Neurokinin receptor 1,

Interleukin-1β (IL-1β), PK2, PK2 receptors type 1 and 2, and

Prokineticin-2-long peptide were measured in ONs by Real Time-

PCR and correlated with residual olfaction. Immunofluorescence

staining was also performed to quantify SP and PK2 proteins.

The results showed that patients with OD had increased levels

of both SP and PK2 in ONs compared to healthy controls,

with the latter being proportional to residual olfaction. This

study provides preliminary evidence that both SP and PK2

pathways may have a role in persistent post-COVID-19 OD.

The sustained activation of SP, lasting months after infection’s

resolution, might foster chronic inflammation and contribute to

hyposmia, while the PK2 expression could instead support the smell

recovery (67).

As the research on COVID-19 infections continued to

evolve, various possible meachnisms of virus attack on CNS

was suggested. One such mechanism was angiotensin-converting-

enzyme-2 receptor as a potential modulator of coronavirus related

CNS damage and suggested that it damages the cerebrovascular

endothelium and brain parenchyma, the latter predominantly in

the medial temporal lobe, resulting in apoptosis and necrosis

(68). Neurons and glial cells express ACE2 receptors in the

CNS, and recent studies suggest that activated glial cells

contribute to neuroinflammation and the devastating effects of
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SARS-CoV-2 infection on the CNS. The SARS-CoV-2-induced

immune-mediated demyelinating disease, cerebrovascular damage,

neurodegeneration, and depression are some of the neurological

complications (69). We have also proposed a novel theory that

coronavirus may stimulate nociceptive pathways after entering

the trigeminal ganglion of the brainstem where it trigers the

release of SP. SP binds to Neurokinin-1 Receptor and initiate

cytokine storming in lungs leading to complications related to

COVID-19 infection. Virus may also become latent in trigeminal

ganglion (70).

Evidence of possible routes of SARS-CoV-2 neuroinvasion

through systemic circulation and crossing the blood-brain barrier

making its way to the central nervous system is still lacking

(71). Pathophysiology and neurological manifestations of COVID-

19 post infection was discussed by Bobker et al. with focus

on headache. Many variations in the neurological symptoms of

patients were observed and more researches were suggested for

better understanding (71). Persistent post-COVID-19 OD is an

unknown syndrome that could lead to neurological complications.

Because of the potential long-term neurological consequences,

persistent olfactory dysfunction (OD) is one of the most common

and concerning problems of long-term COVID-19. OD patients

had higher amounts of SP than controls. There is preliminary

evidence that SP pathways may play a role in chronic post

COVID-19 OD, making both of them potential therapeutic

targets (72).

8. Future aspects

The conclusion in one of our previous paper (28), “actually

it is not the virus that is fatal and causing mortalities, but

the cytokine storming activated and initiated by SP is bringing

the disaster,” we believe this situation with COVID-19 could be

explained by the historical views of Rudolf Virchow (1821–1902),

Robert Koch (1843–1910), Max von Pettenkofer (1818–1901), and

Oscar Liebreich (1839–1908) on the proper control of epidemics

(26, 73). At the end of these discussions, in conjunction with

the cholera epidemics of the time, was the statement that the

germ is not the disease, but that disease germ, vector, and human

mutually influence each other and must, therefore, be considered

equally (74).

While contaminated water was the main vector for the cholera

epidemics in former times, air is the main vector for the corona

pandemics today. The air vector is certainly a multi-layered

problem. In addition to viruses as pathogens, the air today contains

a large number of pollutants that must be taken seriously. It is

significant for the further scientific work that air and respiratory

tract are closely related. The findings presented in this paper show

that the neuropeptide SP has a defense function in the respiratory

tract (75).

At this point, here are some perspective thoughts connected

with the goal of linking Substance P research more closely with

research on corona diseases. A first thought is that the viruses (or

pollutants) entering via the respiratory tract are to be understood

as stressors. The respiratory tract has the task to recognize these

stressors as such to organize the local defense, to impede or

block further penetration and, if possible, to destroy the stressors.

In this context, the respective state of the immune system is

certainly decisive for the subsequent outcome. From the findings

of Mehboob et al. (28, 43, 47, 72), and the Oehme group (45, 53), it

is clear that the different infection rates for COVID-19 infections

or the frequencies of sudden death infant syndromes correlate

with the SP plasma level. In addition, from the experience of the

current corona epidemic, children are equally likely to become

infected with corona but are much less likely to develop corona

than adults. In addition, the extensive studies by Oehme and

Hecht (see Section 2.2) on experimental animals and humans show

that there is a clear relationship between stress sensitivity and SP

levels: Low SP levels = high stress sensitivity (12, 28). It would

be useful to follow up on these findings and investigate in adult

Corona-infected individuals whether the frequency of transition

from infection to disease correlates with SP levels in plasma or

bronchial lavage.

A second thought: it has been demonstrated by Mehboob et al.

(28, 76) for Aprepitant that this SP antagonist, in combination

with dexamethasone, improves symptomatology in severe corona

course. This finding is explained by a reduction in cytokine

storming triggered by SP in the deeper pulmonary alveoli.

However, the primary response of coronavirus occurs in the upper

nasopharynx. Here, SP (antidrome) is also released to trigger

defense processes. Since these local processes determine to a

large extent the further course of the infection, they should be

investigated in depth. Of particular interest would be whether

N-terminal dipeptides, especially Lys-Pro, are cleaved from SP1–

11 by enzymatic cleavage during this local SP release. For this

dipeptide, both stress-protective effects (see Sections 2.2 and 2.3)

and positive effects in the respiratory tract (see Section 3) have

been demonstrated. In addition, Lys-Pro was found to stimulate

nerve fiber growth in tissue culture (74). Therefore, a Lys-Pro

derivative was also applied for a patent with the indication “wound

healing” (77).

Drug repurposing, the process of identifying existing drugs that

can be used to treat new conditions, has several potential benefits

for COVID-19 treatment development. These include shorter

development time, reduced costs, and faster regulatory approval.

A study by Egieyeh et al., used computational methods to predict

drugs from the Drug Bank that may bind to the SARS-CoV-2 spike

protein on the human ACE2 receptor and inhibit the protein-

protein interaction required for infection. The predicted drugs,

which include peptide-based drugs like Sar9Met (O2)11-Substance

P and BV2, may have potential for treating COVID-19 and have

already been investigated for other indications such as ARDS and

viral infections. The study also explored the current and proposed

pharmacological uses of the predicted drugs, finding that some

have been investigated for treatment of acute respiratory distress

syndrome (ARDS), viral infection, inflammation, and angioedema,

as well as stimulation of the immune system and enhancement

of antiviral agents against influenza virus. Similar computational

study can also be performed on SP/NK1R to test its potential in

treating COVID-19 (78).

To prevent and contain this epidemic, it is imperative

that new medicinal approaches be developed. A novel class

of medications called NK-1R antagonists has antidepressant,
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antiemetic, and anxiolytic effects. Aprepitant, Rolapitant,

Casopitant, Netupitant, Maropitant, and Fosaprepitant are a few

examples of NK-1R inhibitors (79). In 2003, the FDA approved

aprepitant as the first NK-1R antagonist (80). It could be a

part of a viral respiratory disease therapy plan. In a phase 2

trial (VOLCANO-1) for the treatment of persistent refractory

cough, orvepitants had dramatically reduced the symptoms

(81). It is well established that NK-1R antagonists have an

anti-inflammatory effect on rats, and that SP and NK-1Rs are

both increased during the inflammatory processes (82). It may

be advantageous to pharmacologically suppress SP-signaling in

COVID-19 infection. The use of NK-1R antagonists may be

advised to alleviate SP-related symptoms. In patients with viral

myocarditis, SP-receptor antagonism may also be suggested

as a treatment approach (83). Riffat Mehboob and her team

just completed a randomized clinical trial in which they saw

very encouraging patient outcomes for COVID-19 treatment.

There were two arms; one received standard treatment and the

other received the NK-1R antagonist, aprepitant, in addition.

Both groups also received dexamethasone treatment. 52 patients

were placed in control group A and 67 patients were placed

in intervention group B out of a total 119 patients who were

randomly assigned to both of these arms. Before and after the

intervention, blood parameters examined in both groups. Patients

who received a combination of aprepitant and dexamethasone

medication demonstrated improved clinical results, laboratory

findings, and decreased levels of the inflammatory marker C-

reactive protein (76). Here, we propose that the pathogenesis of

COVID-19 infection brought on by SARS-CoV-2 is mediated

by SP/NK-1R. As in other airway infections, it might be

brought on by cytokine storming exacerbating the inflammatory

pathways. Corticosteroids, antibiotics, purified intravenous

immunoglobulins, and anti-cytokine therapy should all be used

together as part of the suggested treatment plan (84). Overall,

further contact between SP and corona research would be

enlightening and could promote greater collaboration between

environmental and medical research.

9. Conclusions

SP release from trigeminal nerve as a consequence of

a nociceptive stimulus is directly related to the respiratory

complications in COVID-19 and other respiratory illnesses. It

causes an increased inflammation and must be blocked by

using Aprepitant, a neurokinin 1 receptor antagonist along with

glucocorticoid, dexamethasone. Dexamethasone will activate the

enzyme neutral endopeptidase which is responsible for degradation

of SP and Aprepitant may block the NK-1R. Hence, the cytokine

storm will be inhibited by blocking this pathway and the disease

progression too. This therapeutic strategy may be effective as a

successful clinical trial was conducted on COVID-19 patients in

Pakistan by Riffat Mehboob and her team (76). These findings

urge for more investigation on this drug, further clinical trials

in other countries and a drug should be formulated based

on this strategy. It will be a new and effective treatment

for COVID-19.

Overall, this summarized review urges further research into

this magical regulatory peptide (regulide) which can be used as

treatment strategy for various diseases by maintaining an optimal

balance and regulation of this peptide within plasma. We can

foresee future of treatments into peptides and peptide researches

and should be investigated on priority basis.
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