

[image: image]





FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual articles in this ebook is the property of their respective authors or their respective institutions or funders. The copyright in graphics and images within each article may be subject to copyright of other parties. In both cases this is subject to a license granted to Frontiers. 

The compilation of articles constituting this ebook is the property of Frontiers. 

Each article within this ebook, and the ebook itself, are published under the most recent version of the Creative Commons CC-BY licence. The version current at the date of publication of this ebook is CC-BY 4.0. If the CC-BY licence is updated, the licence granted by Frontiers is automatically updated to the new version. 

When exercising any right under the CC-BY licence, Frontiers must be attributed as the original publisher of the article or ebook, as applicable. 

Authors have the responsibility of ensuring that any graphics or other materials which are the property of others may be included in the CC-BY licence, but this should be checked before relying on the CC-BY licence to reproduce those materials. Any copyright notices relating to those materials must be complied with. 

Copyright and source acknowledgement notices may not be removed and must be displayed in any copy, derivative work or partial copy which includes the elements in question. 

All copyright, and all rights therein, are protected by national and international copyright laws. The above represents a summary only. For further information please read Frontiers’ Conditions for Website Use and Copyright Statement, and the applicable CC-BY licence.



ISSN 1664-8714
ISBN 978-2-8325-2505-0
DOI 10.3389/978-2-8325-2505-0

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is a pioneering approach to the world of academia, radically improving the way scholarly research is managed. The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share and generate knowledge. Frontiers provides immediate and permanent online open access to all its publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-access, online journals, promising a paradigm shift from the current review, selection and dissemination processes in academic publishing. All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service to the scholarly community. At the same time, the Frontiers journal series operates on a revolutionary invention, the tiered publishing system, initially addressing specific communities of scholars, and gradually climbing up to broader public understanding, thus serving the interests of the lay society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interactions between authors and review editors, who include some of the world’s best academicians. Research must be certified by peers before entering a stream of knowledge that may eventually reach the public - and shape society; therefore, Frontiers only applies the most rigorous and unbiased reviews. Frontiers revolutionizes research publishing by freely delivering the most outstanding research, evaluated with no bias from both the academic and social point of view. By applying the most advanced information technologies, Frontiers is catapulting scholarly publishing into a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers journals series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area.


Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers editorial office: frontiersin.org/about/contact





The genetics of head and neck squamous cell carcinoma

Topic editors

Gengming Cai – Fujian Medical University, China

Tao Cai – National Institute of Dental and Craniofacial Research (NIH), United States

Ousheng Liu – Central South University, China

Lianming Liao – Fujian Medical University, China

Juan Wang – Guilin Medical University, China

Yunxia Lv – Second Affiliated Hospital of Nanchang University, China

Jianjun Xiong – Jiujiang University, China

Yuanxiu Chen – Howard University, United States

Citation

Cai, G., Cai, T., Liu, O., Liao, L., Wang, J., Lv, Y., Xiong, J., Chen, Y., eds. (2023). The genetics of head and neck squamous cell carcinoma. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-2505-0





Table of Contents




TGF-β Signaling Pathway-Based Model to Predict the Subtype and Prognosis of Head and Neck Squamous Cell Carcinoma

Lian Zheng, Zhenjie Guan and Miaomiao Xue

Suberoylanilide Hydroxamic Acid (SAHA) Treatment Reveals Crosstalk Among Proteome, Phosphoproteome, and Acetylome in Nasopharyngeal Carcinoma Cells

Huichao Huang, Ying Fu, Yankun Duan, Ye Zhang, Miaolong Lu, Zhuchu Chen, Maoyu Li and Yongheng Chen

Systemic Analysis on the Features of Immune Microenvironment Related to Prognostic Signature in Head and Neck Squamous Cell Carcinoma

Kaixin Su, Zekun Zhou, Qiao Yi, Junjie Liu, Tiao Luo, Xinyan Cui and Haixia Zhang

Necroptosis is Related to Anti-PD-1 Treatment Response and Influences the Tumor Microenvironment in Head and Neck Squamous Cell Carcinoma

Qiwei Wang, Fang Wang, Yinan Zhao and Guolin Tan

A Nomogram for Predicting the Risk of Bone Metastasis in Newly Diagnosed Head and Neck Cancer Patients: A Real-World Data Retrospective Cohort Study From SEER Database

Chao Huang, Jialin He, Zichuan Ding, Hao Li, Zongke Zhou and Xiaojun Shi

TMED2/9/10 Serve as Biomarkers for Poor Prognosis in Head and Neck Squamous Carcinoma

Wen Gao, Zhe-Wen Zhang, Hong-Yi Wang, Xin-Di Li, Wei-Ting Peng, Hao-Yu Guan, Yu-Xuan Liao and An Liu

A Novel Signature of Necroptosis-Associated Genes as a Potential Prognostic Tool for Head and Neck Squamous Cell Carcinoma

Jing Huang, Hongqi Huo and Rong Lu

The Effects of Mesenchymal Stem Cells on Oral Cancer and Possible Therapy Regime

Tong Yang, Shuai Tang, Shan Peng and Gang Ding

BTC as a Novel Biomarker Contributing to EMT via the PI3K-AKT Pathway in OSCC

Ting Shen, Tianru Yang, Mianfeng Yao, Ziran Zheng, Mi He, Mengying Shao, Jiang Li and Changyun Fang

Identification of Molecular Targets and Potential Mechanisms of Yinchen Wuling San Against Head and Neck Squamous Cell Carcinoma by Network Pharmacology and Molecular Docking

Biyu Zhang, Genyan Liu, Xin Wang and Xuelei Hu

Long-Noncoding RNA MANCR is Associated With Head and Neck Squamous Cell Carcinoma Malignant Development and Immune Infiltration

Jianfei Tang, Mingyan Bao, Juan Chen, Xin Bin, Xinghuanyu Xu, Xiaodan Fang and Zhangui Tang

Predicting AURKA as a novel therapeutic target for NPC: A comprehensive analysis based on bioinformatics and validation

Chaobin Huang, Lin Chen, Yiping Zhang, Liyan Wang, Wei Zheng, Fengying Peng and Yuanji Xu

A novel anoikis-related gene signature predicts prognosis in patients with head and neck squamous cell carcinoma and reveals immune infiltration

Hao Chi, Puyu Jiang, Ke Xu, Yue Zhao, Bingyu Song, Gaoge Peng, Bingsheng He, Xin Liu, Zhijia Xia and Gang Tian

Characterization of tumor immune microenvironment and cancer therapy for head and neck squamous cell carcinoma through identification of a genomic instability-related lncRNA prognostic signature

Lijun Jing, Yabing Du and Denggang Fu

The prognostic value of MicroRNAs associated with fatty acid metabolism in head and neck squamous cell carcinoma

Xiaojing Wang, Yue Zhao, Dorothee Franziska Strohmer, Wenjin Yang, Zhijia Xia and Cong Yu

Poor prognosis, hypomethylation, and immune infiltrates are associated with downregulation of INMT in head and neck squamous cell carcinoma

Kun Cui, Xi Yao, Zhengbo Wei, Yujia yang, Xinli Liu, Zhongheng Huang, Huimin Huo, Jinping Tang and Ying Xie

The expression and methylation of PITX genes is associated with the prognosis of head and neck squamous cell carcinoma

Yaqiong Zhao, Jie Zhao, Mengmei Zhong, Qian Zhang, Fei Yan, Yunzhi Feng and Yue Guo

High expression of MARVELD3 as a potential prognostic biomarker for oral squamous cell carcinoma

Ke Huang, Yucheng Meng, Jiyuan Lu, Lingdan Xu, Shiqi Wang, Huihui Wang and Zhaoqing Xu

m7G-related lncRNAs are potential biomarkers for predicting prognosis and immune responses in patients with oral squamous cell carcinoma

Xuefeng Wang, Wei Dong, Yanbo Zhang and Feng Huo

Developing a pyroptosis-related gene signature to better predict the prognosis and immune status of patients with head and neck squamous cell carcinoma

Dan Liu, Liu-Qing Zhou, Qing Cheng, Jun Wang, Wei-Jia Kong and Su-Lin Zhang



		ORIGINAL RESEARCH
published: 02 May 2022
doi: 10.3389/fgene.2022.862860


[image: image2]
TGF-β Signaling Pathway-Based Model to Predict the Subtype and Prognosis of Head and Neck Squamous Cell Carcinoma
Lian Zheng1, Zhenjie Guan2* and Miaomiao Xue3*
1Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
2Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
3Department of General Dentistry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Edited by:
Ousheng Liu, Central South University, China
Reviewed by:
Shang Xie, Peking University, China
Junji Xu, Capital Medical University, China
* Correspondence: Zhenjie Guan, gzj18339972757@163.com; Miaomiao Xue, mmxue001@163.com
Specialty section: This article was submitted to Cancer Genetics and Oncogenomics, a section of the journal Frontiers in Genetics
Received: 26 January 2022
Accepted: 31 March 2022
Published: 02 May 2022
Citation: Zheng L, Guan Z and Xue M (2022) TGF-β Signaling Pathway-Based Model to Predict the Subtype and Prognosis of Head and Neck Squamous Cell Carcinoma. Front. Genet. 13:862860. doi: 10.3389/fgene.2022.862860

Background: Although immunotherapy with immune checkpoint therapy has been used to treat head and neck squamous cell carcinoma (HNSCC), response rates and treatment sensitivity remain limited. Recent studies have indicated that transforming growth factor-β (TGF-β) may be an important target for novel cancer immunotherapies.
Materials and methods: We collected genomic profile data from The Cancer Genome Atlas and Gene Expression Omnibus. The least absolute shrinkage and selection operator method and Cox regression were used to establish a prognostic model. Gene set enrichment analysis was applied to explore biological functions. Tracking of indels by decomposition and subclass mapping algorithms were adopted to evaluate immunotherapy efficiency.
Result: We established a seven TGF-β pathway-associated gene signature with good prediction efficiency. The high-risk score subgroup mainly showed enrichment in tumor-associated signaling such as hypoxia and epithelial-mesenchymal transition (EMT) pathways; This subgroup was also associated with tumor progression. The low-risk score subgroup was more sensitive to immunotherapy and the high-risk score subgroup to cisplatin, erlotinib, paclitaxel, and crizotinib.
Conclusion: The TGF-β pathway signature gene model provides a novel perspective for evaluating effectiveness pre-immunotherapy and may guide further studies of precision immuno-oncology.
Keywords: TGF-β, head and neck squamous cell carcinoma, subtype, gene model, prognosis
INTRODUCTION
Head and neck squamous cell carcinoma (HNSCC), originating from the oral cavity, oropharynx, larynx, and hypopharynx and displaying rapid progression, has become a significant human health problem (Siegel et al., 2020; Wang Z. et al., 2021; Jia et al., 2021). More than 600,000 new cases of HNSCC are diagnosed worldwide annually (Siegel et al., 2020). With high malignancy, rapid progression, and poor prognosis, HNSCC has become the sixth most common cancer worldwide. The first choice for HNSCC treatment is still surgical salvage, followed by postoperative chemo-and/or radiotherapy (Shibata et al., 2021). The recurrence rate following HNSCC treatment is high at 25–50%, depending on the location of the tumor, the clinical stage and grade and HPV infection status (Ho et al., 2014). Treatments of patients with locally advanced HNSCC remains great challenge (Ang et al., 2014). In recent years, some patients with cancer have benefited from immunotherapy (Naidoo et al., 2021). Indeed, immunotherapies have been approved and widely used for recurrent and metastatic HNSCC; however, only a relatively small subset of patients, approximately 15–20%, truly benefit from this approach (Lee et al., 2020). Therefore, exploring the immune microenvironment and immune resistance mechanisms is crucial and provides support for evidence-based treatment decisions. Overall, exploring the genome and microenvironment of HNSCC might provide clues for identifying biomarkers predicting the effectiveness of immunotherapy. microenvironment. studies have demonstrated that esophageal adenocarcinoma cells and xenograft tumors can be resistant to trastuzumab and pertuzumab by activating TGF-β signaling, which induces epithelial-mesenchymal transition. Thus, block TGF-β signaling can increase the anti-tumor efficacies of trastuzumab and pertuzumab in esophageal adenocarcinoma cells and xenograft tumors (Ebbing et al., 2017; Ebbing et al., 2019; Steins et al., 2019). Thus, targeting the TGF-β pathways may benefit from chemical resistance. As TGF-β pathway-associated genes are important in the response to tumor therapies, modulating TGF-β-associated pathway activities and expression of related genes may greatly impact tumor malignant abilities. TGF-β comprises a family of growth factors, which play crucial roles in development, fibrosis, and cancer progression (Nüchel et al., 2018). TGF-β binding activates type II and then type I receptors, that in turn activate an increase of SMAD signals activation (Petiti et al., 2018; Lähde et al., 2021). Studies have demonstrated that high cancer-associated fibroblast infiltrated gastric cancer is associated with immunosuppressive microenvironment regarding to TGF-β alterations (Liu et al., 2021). TGF-β is also involved in tumor metabolic and immune microenvironment. The TGF-β inhibition can also promotes tumor cell death thus obtaining an effective anticancer immunotherapy immune response (Huang et al., 2021). TGF-β family genes are crucial immune suppression genes in head and neck cancer. These genes were associated with decreased survival probability of head and neck cancer (Budhwani et al., 2021). This suggesting that TGF-β associated pathway have potential become an attractive target for future cancer therapy.
In this study, we comprehensively examined TGF-β-associated genes and related immune infiltration in HNSCC, evaluating their clinical significance in predicting prognosis and evaluating therapies effectiveness.
MATERIALS AND METHODS
Data Collection
Flowchart of the study protocol of TGF-β-related characteristics related to the prognosis of HNSCC is listed in Figure 1. We used open datasets from The Cancer Genome Atlas (TCGA) (https://cancergenome.nih.gov/) and Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases, including the GSE65858, GSE75538 and GSE117973 chip datasets. The TGF-β mRNA expression status and correlating tumor immune microenvironment evaluation indicators in HNSCC and corresponding normal tissues were analyzed through the SangerBox database (http://sangerbox.com/Tool). We identified the p value as 0.001, with a fold change of 1.5.
[image: Figure 1]FIGURE 1 | The workflow of TGF-β pathway signature-associated HNSCC prognosis analysis.
Data Preprocessing
RNA-seq data from TCGA HNSCC and GEO HNSCC with unreliable and incomplete clinical data were removed. The clinical statistical information of HNSCC patients after data pretreatment is shown in Table 1.
TABLE 1 | The clinical information of HNSCC patients from different cohorts.
[image: Table 1]Prognostic Risk Model Construction Based on TGF-β Pathway Genes
To construct the TGF-β associated prognostic model, we downloaded HNSCC transcriptional data from public database. All selected data were screened and selected with complete gene expression information and clinical information. We applied 54 TGF-β -related genes, univariate survival analysis and Lasso Cox multivariate analysis to determine the risk score of seven key genes. High and low risk groups are divided by selecting the best threshold. Therefore, we determined that λ = 0.0086 would obtain the optimal model. In addition, we selected seven genes at λ = 0.0086 as targets for the next step. The final 7-gene signature formula is as follows: risk score = 0.0003 ∗ BCAR3-0.062 ∗ ID2 + 0.112 * NOG +0.009∗ SERPINE1 + 0.177 SLC20A1 + 0.106 ∗ THBS1-0.351 ∗ TR IM33.
The HNSCC RNA-seq data from TCGA were identified as the training set. We adopted univariate Cox proportional risk regression to construct and predict a TGF-β-associated gene model (54 in total). Overall survival data were analyzed by using the R package survival COXPH function. We defined the threshold for filtering as p < 0.05. In this study, we selected five genes with hazard ratios (HRs) larger than one and two genes with HRs less than 1.
Univariate and Multivariate Cox Regression Analyses
Univariate Cox regression analyses of the correlation between TGF-β-associated gene expression and HNSCC clinical prognosis information were carried out by Cox proportional hazards regression analysis. Genes with p < 0.05 were considered significant. Determination of genes in the TGF-β-specific module closely related to prognosis in HNSCC were explored.
Cox Regression Analysis
We utilized the R software package glmnet for least absolute shrinkage and selection operator (LASSO) Cox regression analysis to determine the greatest impact on the prognosis of HNSCC. LASSO applies an L1-regularization penalty, ρ, to estimate a penalized precision matrix to illustrate indicators with the highest contribution (Love et al., 2016). In the LASSO model, the minimum criterion (λ) based on 10-fold cross validations and 1,000 iterations is chosen. The selected genes were then included in a multivariate Cox regression model, and those gene sets with the best prognostic value were identified by positive selection and reverse elimination methods.
Prognosis Prediction of TGF-β-Associated Genes
To determine correlations between TGF-β-associated gene expression and HNSCC prognosis, we applied the Wilcoxon test and divided HNSCC patients into two subgroups based on TGF-β expression level. The optimal cutoff point for gene expression was obtained based on the R package “survminer” (cutoff = −0.007). The threshold is −0.007, in which the groups with a risk score greater than −0.007 were high risk groups, and those with a risk score less than −0.007 was identified as low risk groups We used Kaplan-Meier curves to evaluate the prognostic value of various clinical features through the R package ‘survminer’ (CRAN.R-project.org/package = survminer). This method has been described in a previous study (Alcala et al., 2019; Zhuang et al., 2020).
Somatic Mutation Analysis
To evaluate somatic mutations in HNSCC, we applied the package TCGA biolinks in R and downloaded mutation annotation files. Somatic single-nucleotide polymorphisms and indels in tumor samples were called using the MuTect2 (http://www.broadinstitute.org/cancer/cga/mutect) pipeline Genome Analysis Toolkit (GATK; Broad Institute, Cambridge, MA, United States). We counted differences in the number of mutant genes in the samples. Furthermore, we screened out genes with mutation frequencies greater than three and used the chi-square test to screen genes with significantly high-frequency mutations in each subtype, with a selection threshold of p < 0.05.
Gene Set Enrichment Analysis (GSEA)
GSEA was performed to examine different biological processes with GSEA software (http://software.broadinstitute.org/gsea). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for hierarchical analysis for high- and low-risk groups of HNSCC patients. The R package clusterProfiler (https://guangchuangyu.github.io/software/clusterProfiler) (v3.14.0) was employed to process the KEGG and GO analyses. We identified the number of random sample permutations as 1,000, and enriched gene sets with a nominal p < 0.05 and 25% cutoff on false discovery rate (FDR) were defined as significant.
Immune Infiltration Scores Estimation
We applied the “ESTIMATE” R package to assess overall immune infiltration indicators based on the medium scores of ImmuneScore, StromalScore, and ESTIMATEScore (Ghatalia et al., 2019). We also calculated the proliferation score of all cells. These proliferation scores were obtained from previous study (Thorsson et al., 2018).
Tumor Immune Dysfunction and Exclusion (TIDE)
The TIDE algorithm was used to link individual immunotherapy responses with the TIDE web tool (Netherlands Cancer Institute, Amsterdam, Netherlands, available from http://shinyapps.datacurators.nl/tide/). TIDE is used to estimate the spectrum and frequency of small insertions and deletions (indels) generated in a pool of cells by genome editing tools such as CRISPR/Cas9, TALENs and ZFNs. In this study, we applied TIDE to estimate the likelihood of immunotherapy response.
Cell Culture and Quantitative Real-Time Reverse Transcriptase–Polymerase Chain Reaction
The human nasopharyngeal carcinoma cell NPC and human immortalized nasopharyngeal epithelial cell NP69 were purchased from FuHeng (Shanghai, China). The cell line NP69 was cultured in KM medium, and the cell line NPC was cultured in Dulbecco’s modified Eagle medium supplemented with 10% fetal bovine serum (ThermoFisher Scientific, Waltham, MA, United States). Cell lines were grown at 37 °C in a humidified incubator containing 5% CO2.
Total RNA was extracted from NP69 and NPC cells using TRIzol reagent (Invitrogen Life Technologies, Waltham MA, United States), followed by reverse transcription according to the manufacturer’s instructions (Takara, Japan). The specific quantitative primers used are listed in Supplementary Table S1. Samples were assessed by quantitative real-time reverse transcriptase–polymerase chain reaction (qRT-PCR) using an Agilent Mx3005P using SYBR qPCR Mix (MQ10201s, Monad Biotech, Wuhan, China). Human glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an endogenous control. Relative expression levels were defined according to the 2−ΔΔCt method. Each experiment was performed in triplicate.
Statistical Analysis
We calculated correlations with the Pearson correlation coefficient, and differences between subgroups were determined by the Wilcoxon test or Kruskal–Wallis test. The data are expressed as means ± SD. A two-tailed p-value less than 0.05 was defined as statistically significant.
RESULTS
Univariate and Multivariate Risk Analyses of the Training Set
The workflow of this study is depicted in Figure 1. To select proper protective factors and risk factors, we applied TCGA-HNSCC datasets as a training set; GSE65858, GSE75538, and GSE102995 were used as external independent validation datasets. These datasets were obtained from GEO database, which were used for verified the accuracy of the model.
Risk Model Construction and Validation
We adopted LASSO Cox regression to obtain the change trajectory of each independent variable, as illustrated in Figure 2A. The expression levels of the identified seven genes in human nasopharyngeal carcinoma cell NPC and human immortalized nasopharyngeal epithelial cell NP69 are shown in Figure 2B. We applied 10-fold cross-validation techniques to avoid performance bias with all prediction methods (Figure 2C). We also calculated the risk score for each sample in the dataset TCGA-HNSCC according to the TGF-β expression level and plotted the risk score distribution of the samples, as shown in Figure 2D. The different expression of seven different signature genes with the increase of risk value was assessed. High expression of BCAR3, NOG, SERPINE1, SLC20A1, and THBS1 was identified as a risk factor associated with a high risk score. Conversely, high expression of ID2 and TRIM33 was associated with low risk, constituting a protective factor (Figure 2D). Furthermore, we used the R software package and receiver operating characteristic (ROC) curve analysis to evaluate prognostic factors. We analyzed the classification efficiency for prognosis prediction, and areas under the curve (AUCs) at 1, 3 and 5 years were 0.64, 0.65, and 0.55, respectively, as indicated in Figure 3C. An AUC = 0.64 at 1 year was the most reliable indicator for survival prediction with this 7-gene model (Figure 2E). To further investigate clinical prognosis between the high- and low-risk score subgroups, we applied the R package “survminer” with the cutoff = -0.007. The Kaplan-Meier curve indicated that the difference between the high-and low-risk score subgroups was highly significant (p < 0.0001) (Figure 2F). In total, 318 samples were assigned to the high-risk group and 199 to the low-risk group. We downloaded validation datasets such as GSE65858, GSE75538, and GSE102995 and applied the same gene models and coefficients. As the GSE65858 dataset lacked NOG gene expression, we used a six-gene model in further validation. The results of the three external validation datasets were highly consistent with those of the training sets. Overall, the high-risk score subgroup had a poorer prognosis than the low-risk score subgroup (Figures 2G–I). The forest plot showed that TGF-β signaling pathway-associated gene-based characteristics might be major risk factors for HNSCC (HR = 2.069, 95%CI = 1.582–2.698, p < 0.001) (Figure 2I).
[image: Figure 2]FIGURE 2 | Construction and validation of the TGF-β-associated prognostic risk score model. (A) The trajectory of each selected gene in TGF-β pathways. (B) Expression levels of hub genes in human nasopharyngeal carcinoma cell NPC and human immortalized nasopharyngeal epithelial cell NP69 by qRT-PCR. (C) The confidence interval of each lambda. (D) Correlations and distribution of risk score, survival time and survival status and expression levels of the seven selected genes. (E) The classification efficiency of prognostic prediction for HNSCC at 1 year, 3 years, and 5 years. (F) The survival curve between high- and low-risk scores of the seven-gene signature. (G) The survival curve between high- and low-risk score subgroups in GSE65858. (H) The survival curve between high- and low-risk score subgroups in GSE755538. (I) The survival curve between high- and low-risk score subgroups in GSE117973. (J) Forest plots of risk scores in different datasets.
[image: Figure 3]FIGURE 3 | The TMB and somatic mutation information between high- and low-risk score subgroups. (A) TMB score between the high- and low-risk subgroups showed no significant difference. (B) The number of mutated genes between the high- and low-risk subgroups was not significantly different. (C) Mutation characteristics of significantly mutated genes in the subgroups.
Comparison of Molecular Profile Mutations
To gain insight into the mutational mechanisms of HNSCC, we calculated the tumor mutation burden (TMB) as the number of somatic mutations for each patient. However, patients in the high- and low-risk score subgroups showed no significant difference in TMB (p = 0.07) (Figure 3A) or number of mutated genes (p = 0.067) (Figure 3B). Given a set of mutational signatures, we calculated the presence of somatic mutations to reveal signatures for these five genes (TP53, CDKN2A, SYNE1, PKHD1L1, and PEG3) and found nonsense mutations and missense mutations to be the most common mutations. In addition, the most frequent genetic lesion in HNSCC was in TP53, followed by CDKN2A, SYNE1, PKHD1L1, and PEG3 (Figure 3C).
Clinical Signatures Between Different Risk Score Subgroups
In further investigating clinical signatures between the high- and low-risk score subgroups, we determined that there was no significant difference in T stage (p = 0.62), N stage (p = 0.84), M stage (p = 0.39), sex (p = 0.62), or age (p = 0.98) (Supplementary Figure 1A-F). In contrast, a significant difference in grade was observed (p = 0.00045) (Supplementary Figure 1G). In addition, we further analyzed overall survival as related to the clinical signature between these two subgroups. The Kaplan mire curve revealed a significant difference for male sex (p < 0.0001) (Figure 4A), age over 65 years (p = 0.0023) (Figure 4B), younger and equal to 65 years old (p = 0.00044) (Figure 4C), T1-T2 stags (p = 0.031), T3-T4 stages (p < 0.0001) (Figure 4E), N1 stage (p = 0.0078) (Figure 4F), M0 stage (p < 0.0001) (Figure 4G), M1-M2 stages (p = 0.037) (Figure 4H), grade 1–2 (p = 0.0053) (Figure 4I), and grade 3–4 (p = 0.00083) (Figure 4J). Overall survival analysis showed no significant difference between the high- and low-risk score subgroups for female sex e and N0 stage (Figure 4L).
[image: Figure 4]FIGURE 4 | The difference in clinical signature-based prognosis between high- and low-risk score subgroups in TCGA-HNSC. (A–L) The overall survival comparison between the high- and low-risk score subgroups with regard to female, male, age >65, age ≤65, T1-T2, T3-T4, N0, N1, M0, MI-MII, G I-II, and G III-IV. (M) Correlations between clinical features and risk score through univariate regression analysis. (N) Correlations between clinical features and risk score through multivariate regression analysis.
Clinical Signature Independent Validation
To assess the independence of the clinical signature as a prognostic factor, we applied multivariate analyses and the Cox proportional hazards regression model and determined that clinical characteristics such as age (p = 0.022, HR = 1.4 (1.05.1.88)), stage (p = 0.002, HR = 2.16 (1.34.3.5)) (Figure 4M and N), and risk score type were significantly associated with prognosis. Overall, the seven-gene signature model has good predictive value for HNSCC.
Signaling Pathway Enrichment Analysis
When analyzing signaling pathway enrichment, we found that the high-risk score subgroup was enriched in hypoxia and EMT pathways (Figure 5A). To deeply explore prognosis-associated biological pathways, we obtained 13 positively correlating genes. The heatmap in Figure 5B illustrated that the expression level of these genes in the high- and low-risk score subgroups. GO classification includes biological process (GO-BP), cell component (GO-CC), and molecular function (GO-MF) categories. We identified 10 pathways as enriched in BP annotations (Figure 5C), seven in CC annotations (Figure 5D) and three in MF annotations (Figure 5E). KEGG analysis showed six biological signaling pathways to be involved in HNSCC regulation (Figure 5F).
[image: Figure 5]FIGURE 5 | The TGF-β pathway gene-based high-risk score subgroup is related to tumor-associated biological signaling pathways. (A) The “HALLMARK” term enrichment plot between the high- and low-risk score subgroups. (B) The heat map shows the most correlating gene expression levels in the subgroups. (C) The enrichment ratio of the top ten gene ontologies through GO-BP analysis. (D) The enrichment ratio of the top ten gene ontologies through GO-CC analysis. (E) The enrichment ratio of the top ten gene ontologies through GO-MF analysis. (F) The enrichment ratio of the top ten gene ontologies through KEGG analysis.
Immune Cell Infiltration and Inflammatory Features
To investigate the relationship between risk score and immune cell infiltration and inflammatory characteristics in patients with HNSCC, we evaluated three immune microenvironment scores, namely, the stromal score, immune score, and ESTIMATE score, and found that the stromal score (Figure 6A) and ESTIMATE score (Figure 6B) were significantly higher in the high-risk group than in the low-risk group. Conversely, no significant difference was found for the immune score (Figure 6C). Moreover, immune cell infiltration evaluations indicated significant differences in the proportions of 11 types of immune cells in the subgroups (Figures 6D,E). Among them, the proportions of resting memory CD4+ T cells, resting NK cells, M0 macrophages and activated mast cells in the low-risk group were significantly lower than those in the high-risk group, whereas proportions of natural B cells, memory B cells, CD8+ T cells, follicular helper T cells, activated NK cells, regulatory T cells and resting mast cells were significantly higher in the low-risk group.
[image: Figure 6]FIGURE 6 | Immune-associated evaluations between high- and low-risk score subgroups. (A) The stromal score was greatly higher in the high-risk score subgroup. (B) There was no significant difference in immune score between the high- and low-risk subgroups. (C) The immune score was markedly higher in the high-risk score subgroup. (D) The immune cell distribution in the high- and low-risk subgroups. (E) Comparisons of involved immune cells between the two subgroups. (F) Heat map landscape of clinical feature distribution in the high- and low-risk score subgroups. (G) Correlations between ssGSEA scores of seven immune-associated genes. (H) Score comparisons of immune-associated genes between the high- and low-risk subgroups.
To probe inflammatory activity associated with risk scores, we examined relationships between seven metagene clusters, whereby differences represent different inflammatory and immune responses. The characteristics based on the TGF-β pathway were explored, and detailed information on these metagenes is provided in Figure 6F.
To verify the gene expression details observed, gene set variation analysis (GSVA) was utilized to calculate scores for the corresponding clusters of seven metagene clusters. Our results showed that the risk score correlated positively with IgG, LCK and MHC-II and with IgG, interferon and MHC-I (Figure 6G). At the same time, we compared differences of these seven scores in the high- and low-risk subgroups and found that IgG and LCK scores were significantly higher in the latter but that interferon and MHC-I scores were significantly higher in the former (Figure 6H).
Difference in Clinical Effect Between High- and Low-Risk Score Subgroups After Immunotherapy and Chemical Therapy
To evaluate potential differences in clinical effects between immunotherapy and chemotherapy, we adopted TIDE software and found that the high-risk score subgroup had a markedly higher TGF-β response (p = 3.4e-23) (Figure 7A), proliferation score (p = 0.038) (Figure 7B), wound healing score (p = 0.016) (Figure 7C), and exclusion score (p = 1.2 e-21) (Figure 7D) compared with low-risk score subgroup. However, macrophage regulation (Figure 7E) and dysfunction (Figure 7F) showed no significant difference between the subgroups. The TIDE prediction therapy survival curve suggested that the FALSE group had a better prognosis (p = 0.021) (Figure 7G), and the TIDE score was much higher in the high-risk score group than in the low-risk score group (p = 5.7e-14) (Figure 7H).
[image: Figure 7]FIGURE 7 | Differences in immunotherapy and clinical efficiency. (A) The TGF-β response was much higher in the high-risk score group than in the low-risk score group. (B) The proliferation score was slightly higher in the high-risk score subgroup. (C) There was no significant difference in macrophage regulation between the two subgroups. (D) The wound healing score was higher in the high-risk score subgroup. (E) Overall survival time prediction between true and false immunotherapies based on TIDE analysis tools. (F) The TIDE score was significantly higher in the high-risk score subgroup. (G) The dysfunction score was not significantly different between the two subgroups. (H) The exclusion score was much higher in the high-risk score subgroup. (I) Low-risk score subgroup patients might be more sensitive to anti-PD1 immunotherapy. (J) Box plots of the estimated IC50 for cisplatin showed that the high-risk score subgroup had a lower IC50 level. (K) Box plots of the estimated IC50 for erlotinib showed that the high-risk score subgroup had a lower IC50 level. (L) The box plots of estimated IC50 for paclitaxel showed that the high risk score subgroup had a lower IC50 level. (M) Box plots of the estimated IC50 for crizotinib showed that the high-risk score subgroup had a lower IC50 level.
We further analyzed differences in immunotherapy and chemotherapy among different subtypes of immune molecules. Subclass mapping was used to compare the similarity between the high-low risk subgroups in our TCGA-HNSC dataset and immunotherapy patients in the GSE78220 dataset: the lower the p value, the higher the similarity. For TCGA-HNSC, the low-risk score group was more sensitive to PD1 treatment (Figure 7I). This result was consistent with the TIDE results, indicating that low-risk group patients will benefit more from immunotherapy. The results also showed that the high-risk score subgroup was more sensitive to the traditional chemotherapy drugs cisplatin (p = 0.69e-10) (Figure 7J), erlotinib (p = 0.0017) (Figure 7K), paclitaxel (p = 3.4e-11) (Figure 7L) and crizotinib (p = 8.3e-08) (Figure 7M). Overall, this risk score model provides a novel basis for HNSCC patient treatment options.
DISCUSSION
TGF-β is involved in many biological functions in epithelial, endothelial, and neural tissues, in the immune system, and in wound repair (Massagué, 2012). TGF-β is a multifunctional cytokine, and its receptors play a crucial role in cancer initiation and progression through a range of activities in the regulation of cell proliferation, differentiation, apoptosis, and migration (Gencer et al., 2017). After activation of TGF-β signaling, TGF-β-associated ligands bind to corresponding receptors I and II (de la Cruz-Merino et al., 2009) and then transfer extracellular signals to nuclear components through canonical TGF-β pathways, such as the TGF-β/Smad pathway, and noncanonical TGF-β pathways, such as the p38/mitogen-activated protein kinase (MAPK) pathway, GTP pathway, PI3K/AKT pathway, and NF-κB pathway (Patil et al., 2011; Bataller et al., 2019; Chang and Pauklin, 2021; Choi et al., 2021; Hou et al., 2021). TGF-β has often been implicated in carcinogenesis, and studies have demonstrated that TGF-β has both oncogenic and tumor-suppressive functions in cancer regulation mechanisms (Yu and Feng, 2019; Belitškin et al., 2021). The antitumor ability of TGF-β functions occur through cytostatic and proapoptotic effects (Ahmadi et al., 2019). Inactivation of the antitumor function of TGF-β might lead to cancer initiation. Overexpression of TGF-β might have immunosuppressive effects on tumoral cells (Tsai et al., 2018), thus facilitating tumor progression in various cancers (Shao et al., 2018). Studies have reported that TGF-β pathway-associated genomic alterations account for approximately 40% of cancers (Korkut et al., 2018). TGF-β also play an important role in create an immunosuppressive tumor microenvironment. TGF-β signaling also reported play key role in mediating fibroblast phenotypic transformation through NOX4 in related to Human papillomavirus associated HNSCC patients (Wang et al., 2022). The TGF-β associated genes function as important tumor-microenvironment factors, and have been reported that activate the increased expression of the EMT transcription factor Slug in HNSCC (Ingruber et al., 2022).
In the present study, we demonstrated that in HNSCC, TGF-β-associated genes are related to a high TMB. Based on 54 TGF-β pathway-related genes, we constructed a 7-gene prognostic risk model, which exhibited stable robustness in internal and external validation sets. Furthermore, this model was to well predict HNSCC prognosis.
Immunotherapies can provide great benefit to patients who respond. Immunotherapeutics, such as immune checkpoint inhibitors, are considered to stimulate immune-mediated anticancer reactivity by interrupting the immune inhibitory pathway. Immunotherapies may result in long-term tumor regression, but the overall response rates are limited, especially for solid tumors (Baysal et al., 2021). HNSCC is an immunosuppressive disease, and immune checkpoint inhibitors are emerging as a promising therapy for patients with HNSCC. Studies have reported that recurrent/metastatic HNSCC has a better response to combination and single treatments, such as cetuximab/platinum/5-FU, pembrolizumab/platinum/5-FU or pembrolizumab alone. Nivolumab also shows better efficacy than other single agents (Wang H. et al., 2021; Hsieh et al., 2021), and cetuximab has an established role in HNSCC treatment (Hsieh et al., 2021).
In general, the discovery of predictive biomarkers and prognosis-related gene models may provide novel clues regarding presurgical and immunotherapy efficiency decision-making processes for individual patients.
In this study, we adopted GSEA to analyze pathways in high- and low-risk subgroups, among which tumor-related pathways were more enriched in the former, such as hypoxia and the EMT pathways. We calculated and functionally annotated genes associated with risk. Through TIDE and submap mapping analyses, we found that the low-risk group may be more suitable for immunotherapy and that the high-risk group is more sensitive to cisplatin, erlotinib, paclitaxel and crizotinib, as based on IC50 analysis.
In conclusion, our findings demonstrate that a TGF-β-associated gene-based prediction model has good efficiency for HNSCC clinical immunotherapy decision making and prognosis prediction.
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Suberoylanilide hydroxamic acid (SAHA), a famous histone deacetylase (HDAC) inhibitor, has been utilized in clinical treatment for cutaneous T-cell lymphoma. Previously, the mechanisms underlying SAHA anti-tumor activity mainly focused on acetylome. However, the characteristics of SAHA in terms of other protein posttranslational modifications (PTMs) and the crosstalk between various modifications are poorly understood. Our previous work revealed that SAHA had anti-tumor activity in nasopharyngeal carcinoma (NPC) cells as well. Here, we reported the profiles of global proteome, acetylome, and phosphoproteome of 5–8 F cells upon SAHA induction and the crosstalk between these data sets. Overall, we detected and quantified 6,491 proteins, 2,456 phosphorylated proteins, and 228 acetylated proteins in response to SAHA treatment in 5–8 F cells. In addition, we identified 46 proteins exhibiting both acetylation and phosphorylation, such as WSTF and LMNA. With the aid of intensive bioinformatics analyses, multiple cellular processes and signaling pathways involved in tumorigenesis were clustered, including glycolysis, EGFR signaling, and Myc signaling pathways. Taken together, this study highlighted the interconnectivity of acetylation and phosphorylation signaling networks and suggested that SAHA-mediated HDAC inhibition may alter both acetylation and phosphorylation of viral proteins. Subsequently, cellular signaling pathways were reprogrammed and contributed to anti-tumor effects of SAHA in NPC cells.
Keywords: suberoylanilide hydroxamic acid (SAHA), proteome, acetylome, phosphoproteome, multi-omics, nasopharyngeal carcinoma (NPC)
INTRODUCTION
Histone deacetylases (HDACs) modulate gene expressions epigenetically via affecting protein acetylation status under diverse situations, thus playing key roles in pathophysiological processes (Shahbazian and Grunstein, 2007). Since HDACs as well as protein acetylation contribute to tumorigenesis, specific inhibitors (HDACi)-targeted HDACs have become a promising approach to treat tumors (Wagner et al., 2010). Suberoylanilide hydroxamic acid (SAHA, vorinostat), a member of the HDACi family, has been used clinically as first-line therapy for refractory cutaneous T-cell lymphomas (CTCL) (Duvic et al., 2007; Marks and Breslow, 2007). In addition to CTCL, more and more research studies have unveiled that SAHA also deploys anti-tumor activities in many other tumors, such as lung cancer, breast cancer, and ovarian cancer as well as head and neck tumors (Munster et al., 2001; Komatsu et al., 2006; Konstantinopoulos et al., 2014; Xu et al., 2014; Wu et al., 2015). However, SAHA’s anti-tumor property toward NPC cells is still elusive.
Protein posttranslational modifications (PTMs) are universal means to maintain fundamental biological functions in the body, including but not limited to gene expression, signal transduction, and cell proliferation (Blixt et al., 2004; Krueger and Srivastava, 2006; Hoffman et al., 2008). Phosphorylation, acetylation, methylation, glycosylation, and ubiquitination are common PTMs. The contribution of PTMs to tumorigenesis and progression has been well reported (Sheehan et al., 2005; Krueger and Srivastava, 2006). Phosphorylation refers to the attachment of the phosphoryl group on the target amino acid and is highly regulated, which is considered the most abundant PTM in eukaryotes. The opposing process is dephosphorylation, and the balance between them is critical for many cellular processes in biology. For example, protein phosphorylation activates or deactivates almost half of the enzymes present in Saccharomyces cerevisiae, thereby regulating their functions (Oliveira and Sauer, 2012; Tripodi et al., 2015; Vlastaridis et al., 2017). On the other hand, acetylation describes the process that transfers acetyl moiety from acetyl-CoA to its amino groups in lysine residues, which is enzymatically reversible and is tightly regulated by metabolism-dependent mechanisms. Acetylation and deacetylation interplay is the key to lots of important cellular processes. Thus, malfunctioning of this machinery can result in severe conditions such as cancer, neurodegenerative diseases, and cardiovascular disorders (Drazic et al., 2016). It also has been revealed that acetylation and phosphorylation are closely linked and affect each other. Habibian and Ferguson (2018) reported that HDACi regulated crosstalk between acetylation and phosphorylation in the treatment of cardiac disease. Previous works showed that tau protein underwent acetylation, phosphorylation, and ubiquitination in the development of neurodegenerative diseases (Park et al., 2018). Some studies revealed that both acetylation and phosphorylation occurred in p53 and regulated its activity and stability. For example, phosphorylation of p53 at Ser15 and Ser46 leads to the acetylation of p53 at Lys 382, which in turn induced cell apoptosis and cell cycle arrest (Kishi et al., 2001).
In view of the extensive mediated roles of PTMs and the close relationship between acetylation and phosphorylation, it is reasonable to explore the potential property of SAHA’s anti-tumor activity in NPC cells via PTMs and the crosstalk among diverse protein modifications. Moreover, knowing the characteristics of SAHA in NPC cells is also consistent with the paradigm of precise medicine, which is the integral strategy in healthcare (Golubnitschaja et al., 2013; Seredin et al., 2018). In the current work, we combined TMT labeling, antibody affinity enrichment, and high-resolution LC-MS/MS approaches to quantitatively compare the global proteome, phosphoproteome, and acetylome in 5–8 F cell line with/without SAHA treatment. In addition, bioinformatic-based systematic analyses were applied to investigate the crosstalk among these three protein modifications. Collectively, we demonstrated that SAHA treatment dramatically regulated global proteome, phosphoproteome, and acetylome in the 5–8 F cell line. Moreover, our results showed that some key signaling pathways and cellular metabolic processes as well as widespread protein–protein interactions were modulated upon SAHA treatment via altering phosphorylation and acetylation. Overall, this study provided a novel insight into how SAHA exerted biological functions in NPC cells and presented the scientific data for effectively predictive and personalized treatment of NPC patients.
MATERIALS AND METHODS
Cell Culture
Cells were all purchased from the American Type Culture Collection and cultured as previously described. Briefly, 5–8 F and HNE3 cells were cultured in an RPMI-1640 medium containing 10% fetal bovine serum (FBS) and 1% penicillin and streptomycin in a humidified environment at 37°C and 5% CO2.
Co-Immunoprecipitation (Co-IP) and Immunoblotting
NPC cells were harvested and whole-cell lysates (WCLs) were prepared with NP40 buffer (50 mM Tris–HCl, pH 7.4; 150 mM NaCl; 1% NP-40; and 5 mM EDTA) supplemented with 20 mM β-glycerophosphate and 1 mM sodium orthovanadate. WCLs were then sonicated, centrifuged, and pre-cleared with Sepharose 4B for 1 h. Pre-cleared samples were incubated with indicated antibodies overnight and protein A/G agarose for 1 h at 4°C. Agarose beads were washed extensively, and samples were eluted with SDS-PAGE loading buffer at 95°C for 10 min. The precipitated proteins were analyzed by SDS-PAGE and immunoblotting.
The following primary antibodies were commercially obtained: pan anti-acetyl-lysine (Kac) antibodies (PTM Biolabs, 1:3,000 working dilution), LMNA (Proteintech, 10298-1-AP; 1:1,000 working dilution), p-LMNA ser390 (Affinity, AF3753; 1:1,000 working dilution), WSTF (Cell Signaling Technology, 2,152; 1:1,000 working dilution), phosphoserine monoclonal antibody (ImmunoWay, 5B12; 1:1,000 working dilution), protein A/G agarose (Santa Cruz Biotechnology, sc-2003), and ACTB (Sigma-Aldrich, A5441; 1:10,000 working dilution). ImageJ software (version 1.45s) was used to quantify the gray value of the Western blot results. The Western blot image was digitized to calculate mean ± SD with Student’s t-test (p < 0.05).
Protein Extraction and Digestion
Cells were harvested, then washed with ice-cold PBS, and lysed by incubation in SDS lysis buffer. After quantification, protein digestion was performed according to the filter-aided sample preparation (FASP) procedure. Briefly, 200 ug proteins were reduced with 100 mM DTT, and then 200 ul UA buffer (8 M Urea and 150 mM Tris–HCl, pH 8.0) was added. The mixture was then loaded into a Microcon Ultracel YM-10 filtration device and centrifuged at 14,000 × g for 15 min. The concentrates were then diluted with 200ul UA buffer and centrifuged at 14,000 × g for 15 min. After centrifugation, the concentrates were alkylated in 100ul IAA (50 mM IAA in UA) for 30 min in dark. After centrifuged for 10 min, the concentrates were washed twice with UA buffer and twice with 100 mM NH4HCO3. Subsequently, trypsin solution (8 μg trypsin in 40 μl NH4HCO3 buffer) was added to the filter, and proteins were incubated at 37°C overnight. Tryptic peptides were collected by centrifugation followed by an additional wash with elution solution (70% ACN and 0.1% formic acid). Finally, the peptide mixture was desalted with a C18-SD Extraction Disk Cartridge, and the peptide concentration was assayed by measuring absorbance at 280 nm.
Tandem Mass Tagging Labeling
Three control samples and three SAHA-treated samples (100 μg, each) were labeled by TMT 6-plex reagents (Thermo Fisher Scientific) with TMT126, TMT127, TMT128, TMT129, TMT130, and TMT131, respectively. Each sample was combined with its respective 6-plex TMT reagent and incubated for 1 h at room temperature. Then, hydroxylamine was added to the sample and incubated for 15 min to quench the reaction. Equal amounts of each TMT-labeled sample were combined in new microcentrifuge tubes and lyophilized in a SpeedVac concentrator.
Phosphorylated and Acetylated Peptide Enrichment
Phosphopeptide enrichment was performed as described by Larsen et al. Briefly, lyophilized peptides were re-suspended in DHB buffer [3% w/v DHB, 80% v/v ACN, and 0.1% v/v trifluoroacetic acid (TFA)]. Then, titanium dioxide beads (GL Sciences, Japan) were added, and the mixture was agitated for 40 min. TiO2 beads were recovered by centrifugation and washed three times with washing buffer I (30% ACN and 3% TFA) and three times with washing buffer II (80% ACN and 0.3% TFA). Last, the phosphopeptides were eluted with elution buffer (5% NH4OH/50% ACN), followed by lyophilization and MS analysis.
Prior to acetylated peptide enrichment, anti-lysine acetylation (Kac) antibody beads (PTM Biolabs, Inc., Hangzhou) were washed twice with ice-cold PBS. To enrich Kac peptides, 5 mg tryptic peptides of Kac were dissolved in NETN buffer (100 mM NaCl, 1 mM EDTA, 50 mM Tris–HCl, and 0.5% NP-40, pH 8.0) and incubated with pre-washed antibody beads (Catalog No. PTM-104, PTM Biolabs, Inc., Hangzhou) in a ratio of 15 ml beads/mg protein at 4°C overnight with gentle shaking. The beads were washed four times with NETN buffer and twice with ddH2O. The bound peptides were eluted from the beads with 0.1% TFA. The eluted peptides were collected and vacuum-dried followed by LC-MS/MS analysis.
LC−ESI−MS/MS Analysis by Q-Extractive MS
Peptides were dissolved in solvent A (0.1% FA), and loaded onto a Thermo Scientific EASY column (C18 column, 5 μ m, 100 μ m × 2 cm, Thermo Scientific). Peptide separation was performed using a reversed-phase analytical column (C18 column, 75 μ m × 250 mm, three μ m, Thermo Scientific). The gradient was comprised of an increase from 0% to 55% solvent B (0.1% FA in 98% ACN) for 220 min, 55%–100% for 8 min, and then holding at 100% for the last 12 min, at a constant flow rate of 250 nl/min on an EASY-nLC 1000 UPLC system. The eluted peptides were analyzed using the Q Exactive™ hybrid quadrupole-Orbitrap mass spectrometer (Thermo Scientific). A data-dependent procedure was one MS scan (m/z range of 350–1800) followed by 10 MS/MS scans for the top 20 precursor ions. Dynamic exclusion was enabled with an exclusion duration of 30 s. Automatic gain control (AGC) was set at 3e6 to prevent overfilling of the ion trap. The peptides were detected in the Orbitrap at a resolution of 70,000. Peptides were selected for MS/MS using the NCE setting as 29, and ion fragments were detected at a resolution of 17,500.
MS Data Analysis
MS/MS spectra were searched using Mascot 2.2 (Matrix Science) embedded in Proteome Discoverer 1.4 against the UniProt human FASTA (released on 5/5/2018). For protein identification, the following options were used: peptide mass tolerance, 20 ppm; MS/MS tolerance, 0.1 Da; enzyme, trypsin; missed cleavage, two; fixed modifications, carbamidomethyl (C); variable modifications, TMT 6-plex (N-term), TMT 6-plex (K), oxidation (M), and phosphorylation (S/T/Y); and false discovery rate (FDR) ≤ 0.01. Proteome Discoverer 1.4 was used to extract the peak intensity of each expected TMT reporter ion from the fragmentation spectrum. Only spectra in which all quant channels are present were used for quantification. The score threshold for peptide identification was set at 1% FDR and with a phosphorylated and acetylated site probability cutoff of 0.75. Student’s t-test was used to evaluate the statistical significance, and FDR was calculated. The criteria for significant abundance changes were the abundance ratios ≥1.2 and the p-value ≤ 0.05.
Bioinformatic Analysis
Gene Ontology (GO) term association and enrichment analysis were performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The Encyclopedia of Genes and Genomes (KEGG) database was used to identify enriched pathways by the Functional Annotation tool of DAVID against the background of Homo sapiens. The InterPro database was researched using the Functional Annotation tool of DAVID against the background of Homo sapiens. A manually curated CORUM protein complex database for human was used for protein complex analysis. To construct a protein–protein interaction network, the STRING database system was used. Functional protein interaction networks were visualized using Cytoscape. When performing the bioinformatic analysis, the corrected p-value of 0.05 was considered significant. Also, all the detailed description of bioinformatic analysis is listed in Supplementary Information.
RESULTS
Suberoylanilide Hydroxamic Acid Treatment Changes the Proteome Profile in Nasopharyngeal Carcinoma Cells
It has been reported that SAHA altered the global proteome in several kinds of cancers to deploy anti-tumor activity (Wu et al., 2013; Garmpis et al., 2017). Since the 5–8 F cell line is one of the representative models used to study the molecular events of NPC metastasis, we chose it to perform multiple omics toward SAHA treatment. In our previous study, the maximum H3Kac signal was detected at 6 μM and 24 h of SAHA treatment. Since the cell viability was still nearly 80% when treated at 6 μM for 24 h, this condition was applied for all the following experiments in NPC cells (Huang et al., 2020). In the current study, 6,391 proteins were quantified in the 5–8 F cell line upon SAHA treatment. Among the 6,391 quantified proteins, 454 were up-regulated and 217 were down-regulated with 1.2 change folds.
To illustrate the functions of the differentially expressed proteins (DEPs), comprehensive bioinformatics analyses were performed via Gene Ontology (GO) analysis, protein domain analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis (Figures 1A–E). For the molecular function (MF) category, the DEPs were highly enriched in binding, catalytic activity, and structural molecule activity (Figure 1A). The analysis of the cellular compartment (CC) displayed those proteins that are involved in cell part, organelle, and protein-containing complex and were enriched toward SAHA treatment (Figure 1B). Biological process (BP) analysis revealed that DEPs were mainly associated with cellular process, metabolic process, biological process, and cellular component organization (Figure 1C).
[image: Figure 1]FIGURE 1 | Functional enrichment cluster analysis of quantified global proteome. (A) Molecular function. (B) Cellular compartment. (C) Biological process. (D) Protein domain analysis. (E) KEGG pathway enrichment analysis of differentially expressed proteins. (F) Protein–protein interaction network of proteome. The global view and representative MAPK pathway are displayed.
The protein-specific structural domain is one of its major functional characteristics. Consequently, we investigated the enriched domains of quantified proteins upon SAHA induction (Figure 1D). We found that those domains related to ubiquitin-conjugating enzyme active site, nucleotide binding, histone H1/H5 domain, and RNA recognition motif domain were highly enriched. To further explore the relevant pathways regulated by SAHA treatment, KEGG pathway analysis was performed. As shown in Figure 1E, spliceosome, endocytosis, and ubiquitin-mediated proteolysis pathways were the three most robustly enriched ones in response to SAHA stimulation, indicating the function of SAHA in regulating these signaling pathways.
Finally, we established the protein–protein interaction network via the STING database and visualized by Cytoscape software (Figure 1F). The global network of PPI and the highly enriched MAPKinase signaling pathway were presented. MAPK signaling, which regulates gene expression, cellular growth, and survival, plays a vital role in tumorigenesis. It has been demonstrated that its dysregulation may lead to abnormal cell proliferation and resistance to apoptosis (Bruzzese et al., 2011; Citro et al., 2019). This result indicated that the MAPK signaling pathway might be a potential target of SAHA in NPC cells.
Suberoylanilide Hydroxamic Acid Treatment Changes the Acetylome Profile in Nasopharyngeal Carcinoma Cells
Given that SAHA is a pan HDAC inhibitor, we suspected that it altered protein acetylation in NPC cells. To this end, we performed quantitative acetylomics toward SAHA treatment in 5–8 F cells by combination of TMT labeling, antibody enrichment of acetylation, and LC-MS/MS analysis. Altogether, 441 lysine acetylation sites located in 298 proteins were identified, of which 333 sites located in 228 proteins were quantified. Within these quantified acetylation sites, 32 sites distributed on 26 proteins were upregulated and 47 sites distributed on 45 proteins were downregulated upon SAHA treatment (fold change >1.2 or < -1.2). Also, top ten acetylated sites and corresponding proteins upon SAHA stimulation were concluded (Table 1).
TABLE 1 | Top ten acetylated sites and corresponding proteins with the highest fold changes in acetylome upon SAHA treatment in 5–8 F cells.
[image: Table 1]To understand the features of these acetylated proteins, integrated bioinformatics analyses in combination with motif analysis, GO category analysis, KEGG pathway, and protein–protein interaction analysis were conducted. As shown in Figure 2A, we studied the amino acids located around acetylated sites via a motif analysis approach. In total, six motifs were robustly enriched: KacL, EKac, Kac**R, KacF, KacL, and KacW (Kac refers to acetylated lysine, and * refers to the random amino acid site). These six motifs differed in abundance and KacL, EKac, and Kac**R comprised approximately 66% of all quantified peptides (Figure 2B). SAHA altered histone acetylation, which had a great impact on chromatin remodeling and epigenetics (Kim and Kaang, 2017). Accordingly, distribution of acetylated proteins across chromosomes was analyzed, which demonstrated that these proteins were mainly located at No.11 and No.14 chromatins (Figure 2C). The results suggested that SAHA preferred to acetylate specific motifs of proteins distributed at certain chromatins in NPC cells.
[image: Figure 2]FIGURE 2 | Motif analysis of the identified acetylation peptides in SAHA-treated cells. (A) Sequence logo of acetylated motifs. (B) Number of identified peptides containing acetylated lysine in each motif. (C) Distribution of acetylated proteins across chromosomes. The red dashed line corresponds to p = 0.05, and the peptide sites (dots)above this threshold are shown in different colors according to their motifs. The bars indicate the total number of acetylated sites in each chromosome. U, undetermined.
When the GO database was applied to analyze these acetylated proteins, we found that the proteins mainly participated in regulation of RNA splicing process, ribonucleotide triphosphate metabolic process, and purine ribonucleotide triphosphate metabolic process with biological process (BP) category analysis (Figure 3A, top panel). In terms of the molecular function (MF) category, chromatin DNA binding, nuclear receptor transcription coactivator activity, and nucleosome binding were the top three items (Figure 3A, middle panel). Also, as shown in cellular component (CC) analysis, these acetylated DEPs mainly involved in spliceosome complex, catalytic step 2 spliceosome, and mitochondrial protein complex (Figure 3A, bottom panel). These results revealed that SAHA may regulate RNA splicing process, metabolic-related process, and chromatin DNA-binding activity to play anti-tumor activities in NPC cells.
[image: Figure 3]FIGURE 3 | Functional enrichment analysis of quantified acetylated proteins. (A) GO enrichment analysis. (B) KEGG pathway analysis. (C) Heatmap diagram of a two-way hierarchical clustering. The red and blue colors indicate the expression level of proteins in terms of normalized ratio. Upper color labeling shows total proteome samples in red and acetylome in green. The distance of hierarchical clustering was measured using the Euclidean method. (D) Protein–protein interaction network of acetylome clustered in the representative MYC and EGFR pathway.
Next, the KEGG pathway was conducted to have a look into the associated cellular signaling toward SAHA treatment. Totally, based on the criteria, i.e., p < 0.05 and FDR <0.05, the DEPs took part in 30 prevalent cellular signaling pathways (Figure 3B). Among them, MYC, EGFR, mRNA splicing, G2M checkpoint, oxidation phosphorylation, and TCA cycle were mainly enriched pathways, which were closely associated with cell proliferation, cellular metabolism, and cell cycle processes. It has been well characterized that these notable processes are hallmarks of cancer (Hanahan and Weinberg, 2011). These results hinted that SAHA may modulate these tumor-associated signaling pathways via protein acetylation to display treatment functions in NPC cells.
In Figure 3C, we clustered the differentially expressed acetylated proteins via two-way hierarchical clustering, which clearly displayed the patterns of the acetylated and global proteins in response to SAHA treatment. Taking advantage of the STING database, the PPI network was studied. Representative protein–protein interactions of MYC and EGFR signaling pathways are shown in Figure 3D. In the MYC signaling pathway, there were 14 sites that exhibited a decrease at the acetylation level upon SAHA treatment, while four sites were increased. For the EGFR signaling pathway, there were 15 proteins quantified to be acetylated, six of which were upregulated and nine were downregulated (Figure 3D). Taken together, the results retrieved from the acetylome data suggested that SAHA acetylated proteins mainly located at specific chromatins, further regulated downstream genes and cellular processes to exert anti-tumor effects in NPC cells.
Crosstalk Between Global Proteome and Acetylome in Nasopharyngeal Carcinoma Cells
According to the whole proteome and acetylome data from 5–8 F cells upon SAHA treatment, the crosstalk between these two modifications was analyzed. In total, 126 proteins were quantified by proteome and acetylome, including 14 DEPs (Figures 4A, B). Subsequently, these 14 DEPs were selected for two-way hierarchical clustering analysis (Figure 4C). The protein–protein interaction analysis was studied to unveil the functional relationship between these two profiles, and the representative interacted proteins are displayed in Figure 4D. Together, these analyses indicated a complex relationship between proteome and acetylome, which synergistically determined the fate of SAHA in NPC cells.
[image: Figure 4]FIGURE 4 | Functional analysis between proteome and acetylome. (A) Overlap of total proteins between acetylome and proteome. (B) Overlap of differentially expressed proteins between acetylome and proteome. (C) Heatmap diagram of a two-way hierarchical clustering. Diagram consists of the 14 most differentially expressed proteins in the global proteome and acetylome. The red and blue colors indicate the expression level of proteins in terms of normalized ratio. Upper color labeling shows total proteome samples in red and acetylome in green. The distance of hierarchical clustering was measured using the Euclidean method. (D) Protein–protein interaction network of differentially expressed proteins between acetylome and proteome.
Suberoylanilide Hydroxamic Acid Treatment Changes the Phosphoproteome Profile in Nasopharyngeal Carcinoma Cells
Phosphorylation is one of the most important PTMs and is believed to take part in the processes of cancer progression (Krueger and Srivastava, 2006). In a previous study, we demonstrated that SAHA regulated the phosphorylation of p53 and Rb1 in NPC cells; hence, protein phosphoproteome toward SAHA stimulation was investigated here.
Classification and enrichment analysis based on GO revealed that the DEPs in phosphoproteome were mainly associated with RNA-related processes in the biological process (BP) category, such as RNA localization process, nucleobase-containing compound transport process, establishment of the RNA localization process, and RNA/mRNA transport process. The cellular component (CC) category revealed that DEPs were primarily in chromosome, including chromosome centromeric region, condensed chromosome, and heterochromatin. For the molecular functional (MF) category, mRNA binding, histone binding, modification-dependent protein binding, and RNA polymerase binding were highly enriched (Figure 5A).
[image: Figure 5]FIGURE 5 | Functional enrichment cluster analysis of quantified phosphorylated proteins. (A) GO enrichment analysis. (B) KEGG pathway analysis. (C) Distribution of phosphorylated proteins across chromosomes. The number above each bar indicated the total number of phosphorylated proteins in each chromosome. The red bar refers to upregulated proteins; the blue bar refers to downregulated proteins. (D) Protein–protein interaction network of phosphoproteome. Both global network and representative mRNA export processes are displayed.
To further study the related cellular signaling of phosphorylated DEPs, we conducted signaling analysis via the KEGG database. In total, 30 significant cellular pathways were detected under the criteria p < 0.05 and FDR <0.05 (Figure 5B). It showed that cell cycle and mRNA splicing-related signaling pathways were robustly affected, which included G2M checkpoint pathway, M phase, mitotic spindle pathway, and pre-mRNA/mRNA splicing pathway. Intriguingly, SUMOylation-related signaling was enriched in the SAHA-induced phosphoproteome profile, which is consistent with the previous study that SAHA regulated protein sumoylation to implement biological functions.
Then, distribution of phosphorylated proteins across chromosome was also studied. The result presented that enhanced phosphorylated proteins were mainly gathered in No.16 and No.2 chromatins, while decreased phosphorylated proteins were mostly located at No.11 and No.19 chromatins (Figure 5C). The protein–protein interaction network of phosphorylated proteins was also established. The overview network and the representative mRNA export process are presented in Figure 5D. The result uncovered that SAHA boosted some proteins’ phosphorylation levels (RANBP2, POM121, NUP214, SRSF10, and RNPS1) while reduced the phosphorylation state of others (SRSF5, NUP210, NUP188, NUP98, NUP107, NUP133, and SMG6) (Figure 5D). Taken together, our results indicated that SAHA may manipulate the phosphorylation of some critical molecules to regulate pivotal signaling pathways, leading to the therapeutic roles in NPC cells.
Crosstalk Between Phosphoproteome and Acetylome in Nasopharyngeal Carcinoma Cells
It was reported that each protein modification can crosstalk with one or more other modifications to affect cellular functions (Hunter, 2007). As the most prominent two PTMs, phosphorylation and acetylation were demonstrated that linked closely with each other. To this point, we compared the acetylation and phosphorylation data from 5–8 F cells treated with SAHA, and 46 proteins were identified, which were both acetylated and phosphorylated (Figure 6A). From the scatterplot, the connection ratio is 0.0319, which meant the two protein modifications were not directly linked overall (R2 = 0.0319, Figure 6B).
[image: Figure 6]FIGURE 6 | Crosstalk analysis between phosphoproteome and acetylome. (A) Overlap of total proteins between acetylome and phosphoproteome. (B) Correlation between acetylome and phosphoproteome. (C) Protein–protein interaction network between acetylome and phosphoproteome. (D) GO enrichment analysis between acetylome and phosphoproteome.
To better understand the relationship between these two protein modifications, we conducted the interaction network of proteins. The overall diagram of protein interaction is presented in Figure 6C. Then, through clustering these proteins, we found out that both acetylated and phosphorylated proteins take part in regulating prevalent biological processes, such as gene expression, epigenetics, chromatin organization, chromatin assembly, and disassembly processes (Figure 6D). For molecular functional (MF) analysis, mRNA binding, histone binding, chromatin DNA binding, and histone acetyltransferase activity were the mostly clustered items. Subsequently, the proteins detected were mainly located in chromosome, nuclear periphery, heterochromatin, and acetyltransferase complex (Figure 6D). The compressive analyses suggested that SAHA mediated both protein acetylation and phosphorylation to regulate cellular processes, further deployed inhibitory roles in NPC cells.
Validating the Phosphorylated and Acetylated Proteins by Suberoylanilide Hydroxamic Acid Treatment in Nasopharyngeal Carcinoma Cells
Based on raw quantitative MS data, we listed top ten sites that underwent both phosphorylation and acetylation and corresponding proteins upon SAHA stimulation in NPC cells (Table 2). Williams syndrome transcription factor (WSTF) and lamin A protein (LMNA) were the top proteins in our analysis, both of which had been reported to involve in tumorigenesis and development. Given that, we examined the phosphorylation and acetylation levels of the two proteins to further confirm our results. Using Western blotting analysis, we showed that SAHA treatment induced the accelerated phosphorylation signals of LMNA at the Ser390 site, while its acetylation status at K270/311 was declined in different NPC cell lines, including 5–8 F and HNE3 cells (Figures 7A, B). Similar results were observed in WSTF protein, as shown in Figure 7C, and demonstrated that the phosphorylation signals of Ser349/158 were improved and acetylation levels of K1335 were reduced in SAHA-treated cells (Figures 7C, D), which were consistent with the quantitative MS analysis. The representative MS2 spectrum of WSTF and LMNA proteins are presented in Figure 7E. Taken together, these results demonstrated that SAHA may elicit anti-tumor activity in NPC cells via regulating both phosphorylation and acetylation of WSTF and LMNA at specific residues.
TABLE 2 | Top ten sites that underwent both acetylation and phosphorylation with fold changes and corresponding proteins upon SAHA treatment in 5–8 F cells.
[image: Table 2][image: Figure 7]FIGURE 7 | Validation of the key phosphorylated and acetylated proteins by SAHA. (A,B) Immunoblot analysis of LMNA phosphorylation and acetylation in NPC cells with or without SAHA treatment. NPC cells (HNE3 and 5–8 F) were treated with or without SAHA (6 μM) for 24 h; WCLs were precipitated with anti-LMNA or control antibodies; precipitated proteins and WCLs were analyzed by immunoblotting with indicated antibodies. Protein levels of LMNA are shown in (A), and the statistical analysis of all samples is shown in (B). * denotes p < 0.05, ***denotes p < 0.001. Error bars represent ± SD of triplicate experiments. (C,D) Immunoblot analysis of WSTF phosphorylation and acetylation in NPC cells with or without SAHA treatment. NPC cells (HNE3 and 5–8 F) were treated with or without SAHA (6 μM) for 24 h; WCLs were precipitated with anti-WSTF or control antibodies; precipitated proteins and WCLs were analyzed by immunoblotting with indicated antibodies. Protein levels of WSTF are shown in (C), and the statistical analysis of all samples is shown in (D). ***denotes p < 0.001. Error bars represent ± SD of triplicate experiments. (E) Mapping and quantification of LMNA and WSTF phosphopeptides. Representative MS2 spectrum derived from LMNA and WSTF containing serine phosphorylation sites.
DISCUSSION
NPC is a malignant tumor of the head and neck with poor prognosis. Although great progress has been made in treatment, especially in radiotherapy, the 5-year overall survival rate is still low due to the recurrence and metastasis (Cao et al., 2011). It is urgent to develop predictive prevention and personalized medicine for NPC patients (Cheng and Zhan, 2017). SAHA has been demonstrated to implement anti-tumor effect in various cancers, including NPC (Huang et al., 2020). However, the underlying mechanisms of its anti-tumor activity are still not well clear. In the current work, we utilized a TMT-based quantitative proteomic method, which integrated the data from proteome, acetylome, and phosphoproteome, to study the anti-tumor effect of SAHA in NPC cells.
Since SAHA belongs to the deacetylase inhibitor family, we performed acetylome in 5–8 F cells. The quantitative acetylation data revealed that 333 acetylated sites in 228 proteins were detected following SAHA treatment. From these acetylated sites, 32 sites of 26 proteins were upregulated and 47 sites of 45 proteins were downregulated. These apparently changed proteins that took part in a variety of biological functions, of which MYC and EGFR pathways ranked the top two enriched pathways (Figure 3B).
MYC is one of the most highly amplified oncogenes, whose deregulation is commonly found on the path to cancer, including myeloma, head and neck tumors, lymphoma, and breast cancer (Dang, 2012). In addition, MYC was shown to participate in several types of small molecular inhibitor resistance. It demonstrated that K-Ras conferred SAHA resistance by upregulating HDAC6 and MYC expression in colon cancer cells (Wang et al., 2016a). Wajana L et al reported that MYC controlled the sensitivity of gastric cancer upon HDAC inhibitors via directly regulating MCL1 and eIF4E gene transcription (Labisso et al., 2012). Other groups also elucidated that MYC inhibitors and HDAC inhibitors, such as SAHA, may have cross effects to fight against cancers. A combination of these two kinds of inhibitors might be a promising therapeutic choice for cancer patients (Allen-Petersen and Sears, 2019). Consistent with these research studies, our present results uncovered that SAHA treatment significantly altered the acetylation level of the MYC pathway in 5–8 F cells, which might be one of the principles of SAHA to play roles in NPC cells. Moreover, our study provided useful resources to further investigate the cross effects between HDAC inhibitors and MYC inhibitors.
The epidermal growth factor receptor (EGFR) exerts critical functions in epithelial cell physiology, which belongs to the ErbB family of receptor tyrosine kinases (RTKs) (Schlessinger, 2014). Its deregulation, such as mutation and/or overexpression, was reported in different types of human cancers, including head and neck cancer. Thus, EGFR signaling is a promising therapeutic target. He et al (2019) revealed that TSA, an HDAC inhibitor, decreased the EGFR-Arf1 signaling to inhibit cell migration and invasion in SCCHN. Citro et al (2019) demonstrated that SAHA, in combination with gefitinib, displayed synergistic anti-tumor activities in SCCHN cell lines via disturbing EGFR receptor expression. These reports supported our finding that SAHA treatment may alter critical molecules’ acetylation in EGFR signaling, which contributed to the anti-tumor effect of SAHA in NPC cells.
Protein functions are mediated by a number of PTMs, which subsequently manipulate key cellular processes (Swaney et al., 2013). Phosphorylation and acetylation are the two most prevalent PTMs in the eukaryotic proteome (Kim et al., 2006). In the present study, we performed the global proteome, acetylation, and phosphorylation in 5–8 F cells following SAHA stimulation. Our results showed that in addition to the well-established effects on protein acetylation, SAHA also regulated global proteome and phosphorylation. Considering the growing evidence that indicated the link between acetylation and phosphorylation, it is reasonable to analyze the crosstalk among global proteome, acetylation, and phosphorylation toward SAHA stimulation in NPC cells. According to our data, SAHA treatment directly altered protein acetylation and phosphorylation, and the overlap between the two modifications was mainly related to gene expression, chromatin organization, chromatin assembly, mRNA binding, and histone binding processes. Moreover, we identified and validated WSTF and LMNA, which were both acetylated and phosphorylated proteins upon SAHA treatment in NPC cells.
Williams syndrome transcription factor (WSTF), which is a transcription factor and tyrosine kinase, had been reported to involve in cancer development. Previous studies showed that both acetylation and phosphorylation at specific sites of WSTF regulated its oncogenic functions, either inhibitory or stimulatory (Wang et al., 2016b; Liu et al., 2020a). Here, we showed for the first time that SAHA modulated phosphorylation at Ser349/158 and acetylation at K1335 of WSTF, which may result in the anti-tumor effects of SAHA in NPC cells. Lamin A (LMNA) protein, belonging to the lamins family, is a nuclear lamina structural protein determining the nuclear shape and size. In addition, it has been revealed that the expression and function of LMNA were aberrant in several cancers, such as colorectal cancer, liver cancer, brain cancer, and breast cancer (Liu and Ikegami, 2020). Meanwhile, lamins were thought to involve in many cellular processes, including transcriptional regulation, DNA damage response, and cell cycle regulation (Liu et al., 2020b). Similar to many other proteins, PTMs, for example, phosphorylation and acetylation, affected LMNA function. Evidence suggested that phosphorylation of LMNA at specific sites, such as Ser22, and Ser392, mainly regulated gene transcription. In the present study, we reported that SAHA increased phosphorylation of LMNA at the S390 site, while declined its acetylation of K270/311 residues in NPC cells. In agreement with our study, Peter C et al found that phosphorylation and acetylation were synergistic coupling in response to EGF stimulation, and H3 phosphorylation can affect the efficiency of acetylation reactions (Cheung et al., 2000). To obtain a deeper insight into the anti-tumor activity of SAHA in NPC cells, how phosphorylation and acetylation of WSTF and LMNA interact will be investigated in the future.
CONCLUSION
In this study, taking the advantages of TMT labeling, TiO2 enrichment, acetylated antibody enrichment, and high-resolution LC-MS/MS, we presented a large-scale quantitative analysis of the global proteome, acetylome, and phosphoproteome in NPC cells in response to SAHA treatment. Our work provided a precious database that will contribute to the development of predictive and personalized practice in NPC. Furthermore, our study investigated the underlying mechanisms of SAHA’s anti-tumor activity and indicated that SAHA may serve as a novel therapy for NPC patients.
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Background: Head and neck squamous cell carcinoma’s tumor immune microenvironment (TIME) plays an important role in tumorigenesis and progression, but its clinical significance remains unclear. Therefore, the TIME needs to be better understood in order to improve the response of diagnosis and therapy.
Methods: The gene expression and clinical data of 569 HNSCC patients were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Immune-related genes (IRGs) from the ImmPort database were used for immunotyping of HNSCC patients, and independent GEO datasets were used for subtype verification and comprehensive molecular identification.
Results: The patients were divided into three subtypes (C1, C2, and C3) related to different gene expression profiles. The three subtypes showed widely different patterns in tumor genetic distortion, immune cell composition, cytokine profile, and so on, verifying that the immune-enhanced C2 subtype was associated with better prognosis. In addition, the stroma-deficient C1 subtype may be more efficient for the immune response than the C3 subtype. Furthermore, using WGCNA on the IRGs of those three subtypes, we found two C2-positive gene modules closely related to infection- and immune-associated pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, and the two modules had 22 common pathways.
Conclusion: This study improves the power for prognosis prediction and develops new therapeutic strategies to stratify HNSCC patients into clinically significant groups through TIME-related prognostic signature.
Keywords: bioinformatics, immune microenvironment, prognosis, clinically significant groups, head and neck squamous cell carcinoma
INTRODUCTION
Head and neck squamous cell carcinoma (HNSCC) is a kind of squamous cell carcinoma that occurs in the nasal cavity, lips, mouth, salivary glands, and/or throat (Ferlay et al., 2019). It ranked 6th place among all common cancers worldwide, and the overall survival rate has not improved in decades (Bray et al., 2018). HNSCC morbidity varies depending on patient age, gender, geographical region, and risk factors associated with tumor progression (Okami, 2016; Szewczyk et al., 2018; Cardin et al., 2019). HNSCC currently adopts a comprehensive treatment that combines surgery, radiotherapy, chemotherapy, and target therapy. However, this approach does not come with a satisfactory outcome (Johnson et al., 2020). The cells in the tumor microenvironment (TME) contain tumor cells, immune cells, and stromal cells that play vital roles in judging tumor stage and treating HNSCC (Curry et al., 2014; Plzák et al., 2019; Wang et al., 2019).
HNSCC is a predominantly immunosuppressive and highly heterogenous tumor, which is confirmed by a multi-omics study (Bhat et al., 2021). The immune cells in the TME are involved in tumorigenesis and development, which may also trigger or decide the tumor development stage (Solomon et al., 2018). Immune escape has been identified as a cancer marker (Oliva et al., 2019). In addition, tumor-associated macrophages and myeloid-derived suppressor cells (MDSCs) within HNSCC tissues have a great influence on the immune escape mechanisms of cancer cells, and they are verified to show a marked correlation with the prognostic outcome for patients (Chen et al., 2017a; She et al., 2018). At present, the precise molecular mechanism of TIME cells in regulating HNSCC development is largely unclear. Further analysis and understanding of the TIME will contribute to a more accurate classification of patients based on their TIME and will help better observe overall survival rates and improve therapy responsiveness.
The role of the TIME in HNSCC has been studied previously, but this idea has not been considered in daily clinical practice, and this may be related to the deficient samples, insufficient evidence, and excessive data fitting in many studies. Therefore, comprehensive detection of all tumor phenotypes along with global immune profiles through high-throughput sequencing technology is necessary. In this bioinformatics analysis, we use the ImmPort immune-related genes and TCGA gene expression data and clinical information to establish HNSCC immune subtypes. Subsequently, GEO data are imposed to subtype verification and comprehensive molecular identification. This work aimed to examine the differences in TIME phenotypes, together with the related clinical implications within HNSCC.
MATERIALS AND METHODS
HNSCC Datasets and Preprocessing
The NCBI GEO (https://www.ncbi.nlm.nih.gov/geoprofiles/) and TCGA (https://cancergenome.nih.gov/) databases were used to obtain RNA-seq data and clinical information within HNSCC. The 500 HNSCC samples (Supplementary Table S1) were obtained from the TCGA database in accordance with the criteria below: 1) follow-up data were available; 2) the gene expression data in HNSCC were accessible; and 3) genes whose expression quantities were more than 0 within every sample occupied over 30% among all genes discovered from the immune gene set (Rooney et al., 2015; Charoentong et al., 2017). 270 HNSCC samples (Supplementary Table S1) obtained via the GEO GSE65858 dataset were enrolled in the external validation cohort (Wichmann et al., 2015). In addition, the Illumina platform was used to analyze RNA-seq data. Moreover, single-nucleotide polymorphism (SNP), together with fragments per kilo base of gene per million fragments mapped with upper quartile normalization (FPKM-uq), was obtained via the TCGA Data Portal.
Collection of Immune-Related Data and Immune Score Analysis
The scores for six immunocyte types within HNSCC were obtained via the Timer database (https://cistrome.shinyapps.io/timer/) (Li et al., 2017). For all samples within 13 metagenes, their scores were decided by the average log2-transformed levels of all genes in that metagene (Safonov et al., 2017). In addition, the score of each sample in the immune-related pathway was calculated using the R package GSVA according to the expression level of each associated gene for each sample in the 28 immune pathways (Bindea et al., 2013). Moreover, the R package estimate was adopted to calculate both stromal and immune scores (Becht et al., 2016).
Determination of HNSCC Subtypes According to IRGs
The IRGs were searched using the ImmPort database (https://immport.niaid.nih.gov), and then samples were selected that had both the expression profile and the clinical follow-up for this study. Next, the immune gene set with the highest expression level was extracted from the spectrum, and the top 50% of MAD (Median Absolute Deviation) genes were further screened.
Consistent clustering was performed using the ConsensusClusterPlus package (Wilkerson and Hayes, 2010), and the molecular subtypes were screened on the basis of expression patterns of IRGs. The Kolmogorov–Smirnov test was applied to identify those highly expressed genes within certain subtypes. Multiple testing was performed using Bonferroni correction. A false discovery rate (FDR) was calculated through the Benjamini–Hochberg approach, and genes whose FDR values were less than 0.05 were identified as significantly upregulated. Thereafter, the 100 most significantly upregulated genes were screened from every subtype for principal component analysis (PCA) so as to differentiate the diverse molecular subtypes (Chen et al., 2017b).
Analysis of the Gene Co-Expression Network
The WGCNA R package was used in determining the common pathways involved in those six gene modules (Langfelder and Horvath, 2008). In the scale-free co-expression network, the node log (k) and the connection degree k showed negative correlations with node probability log (P(k)), with the correlation coefficient of >0.8. This study converted the expression matrix to the adjacency matrix and then to the topological matrix. The topological overlap matrix (TOM, unsigned type) was used to construct the WGCNA network and detect modules. The power β was 6, the minimum size of a module was 30, and the threshold height of branch merge was 0.25. In addition, the clusterProfiler in the R package was used for KEGG pathway analysis at the threshold of FDR <0.05. Then, Cytoscape 3.7.1 was applied in visualizing genes showing significant correlation (Kohl et al., 2011).
Verification of Three Subtypes Associated With Immune Status
For validating those three subtypes associated with immune status discovered based on the TCGA cohort, all genes within co-expression gene modules (turquoise and yellow) showing tight correlation with the C2 subtype were chosen, and associations of genes with modules were determined. In addition, those GEO cohort–derived cancer samples were divided according to those featured genes at a coefficient of correlation of >0.5. In addition, for the validation set, their gene expression data were adopted for classifying samples through the support vector machine (SVM). Moreover, to better validate those three subtypes associated with immune status, 270 samples with normalized data were obtained based on the GSE65858 dataset, followed by SVM classification.
Statistical Methods
Associations of clinical variables with subtypes were determined through Fisher’s exact test or chi-square test. The FDR of the Benjamini–Hochberg method was obtained to correct multiple testing. Survival curves for those three immune subtypes were compared by the Kaplan–Meier method and log-rank test. A difference of p < 0.05 (two-tailed) indicated statistical significance. Both gene expression levels and immune scores were compared across diverse HNSCC subtypes through Student’s t-test. In multiple testing, the false-positive rate was reduced through FDR correction. Statistical analysis was conducted using R software (version 3.5.3, http://www.R-project.org).
RESULTS
Construction of Three Immune Gene–Based Clusters Within HNSCC
For the 939 IRGs, their gene expression patterns were utilized for examining HNSCC subtypes based on the TCGA cohort. To be specific, all cancer samples were classified as k (k = 2, 3, 4, 5, 6, 7, 8, 9, and 10) distinct subtypes by the use of ConsensusClusterPlus. In line with CDF curves regarding consensus score, k = 3 resulted in the best division (Figures 1A, B). In addition, SigClust analysis revealed significant consensus clusters (k = 3) upon pairwise comparisons (Figure 1B). Moreover, the difference in the distribution of expression between C1 and C2 subtypes was not significant, but those between C1 and C3 subtypes, and between C2 and C3 subtypes, were significant (p < 0.05). Therefore, those three sample clusters were isolated, and then the 500 HNSCC cancer samples collected based on the TCGA cohort were divided into three molecular subtypes according to the entire expression profiles of immune genes (Figure 1C).
[image: Figure 1]FIGURE 1 | Identification of immune-associated subtypes of HNSCC in the TCGA cohort. (A) Cumulative distribution function (CDF) curves of consensus scores based on different subtype numbers (k = 2–10) and the corresponding colors are represented. (B) CDF Delta area curve of all samples when k = 3. (C) Consensus score matrix of HNSCC samples when k = 3 (1 = C1, 2 = C2, and 3 = C3). (D) Principal component analysis (PCA) of the gene expression profile of the upregulated genes. (E) Gene expression heatmap analysis of the top 100 genes that were significantly upregulated in each subtype.
Characterizations of the Three Subtypes Within the TIME
The Kolmogorov–Smirnov test was utilized to analyze those upregulated IRGs for every molecular subtype relative to others (FDR <0.05). Of those 939 IRGs, 95 for the C1 subtype, 437 for the C2 subtype, and 333 for the C3 subtype remarkably increased in their expression. Thereafter, those 100 most significantly upregulated genes were screened in every subtype to perform PCA (Figure 1D). As revealed by PCA, all the aforementioned genes might be divided into three subtypes. To better identify the expression profiles of genes in every subtype, the 100 most significant genes screened from every subtype were analyzed by the heat map (Figure 1E), which revealed different expression profiles for those upregulated genes selected from every subtype.
Subtype Clinical Features
To investigate the clinical significance of the TIME, this study analyzed numerous clinical features such as gender, age, grade, stage, tumor, node, metastasis (TNM) classification, smoking status, and HPV status among those three subtypes. The results showed that a different distribution in T stage was found among the three subtypes (Figure 2B) and that patients with T1 were significantly higher in C2 than those in the other two groups. Moreover, the significance of grade among those three subtypes (Figure 2F; Supplementary Table S2) revealed remarkably increased proportions of grade 1 for the C1 subtype and grade 3 for the C2 subtype (p < 0.001 upon log-rank test). In addition, this study estimated the distributions of smoking status among three subtypes (Figure 2H), which suggested markedly increased proportions of non-smokers for the C2 subtype and smokers for the C3 subtype (p < 0.01). Moreover, the study showed that more HPV-positive tumor patients were found in C2 than in the other two groups (Figure 2I). In addition, differences in the distributions of gender, age (threshold of 60), stage, N, and M classification were not significant (p > 0.05) (Figures 2A,C–E,G; Supplementary Table S2).
[image: Figure 2]FIGURE 2 | Factor analysis of three HNSCC subtypes based on clinical characteristics: age (A), T staging ratio (B), N staging ratio (C), M staging ratio (D), stage ratio (E), histological grade ratio (F), gender ratio (G), smoking history (H) and HPV status (I) distribution in the three HNSCC subtypes.
HNSCC Immunogenicity
In order to analyze the relationship between three subtypes and immunity, the scores for 13 types of immune metagenes, components of tumor immunity, and six types of infiltrating immunocytes, together with 28 immune-associated pathways, were determined. As a result, a majority of metagenes showed overexpression within the C2 subtype, whereas a downregulation was seen within the C1 and C3 subtypes (Figures 3A, 4A). In addition, the C2 subtype had markedly increased immune and stromal scores, but these characteristics were much lower in other subtypes (Figures 3B, 4B). In addition, scores for those six types of infiltrating immunocytes were remarkably increased for the C2 subtype (Figures 3C, 4C). Among those 28 immune-associated pathways, the C2 subtype had evidently increased scores relative to others, with the only exception of neutrophils- and plasmacytoid dendritic cell (DC)–associated immune pathways (Figures 3D, 4D). Collectively, the C2 subtype had the most upregulated immune signature of not only the other subtypes but also normal tissue, which indicates its superior immune profile.
[image: Figure 3]FIGURE 3 | Immune profiles of the three HNSCC subtypes in the TCGA cohort. (A) Scores of 13 types of immune metagenes in the three HNSCC subtypes are displayed. (B) Tumor stroma scores, the immune scores, and the ESTIMATE scores of the three HNSCC subtypes are displayed. (C) Scores of six types of immune infiltrating cells among the three HNSCC subtypes are shown. (D) Scores of 28 groups of immune related pathways across three subtypes are shown.
[image: Figure 4]FIGURE 4 | Multiple immune scores of the three HNSCC subtypes in the TCGA cohort. (A) Expression scores of 13 types of metagenes of the three HNSCC subtypes. (B) Boxplots indicating the tumor stroma scores, the immune scores, and the ESTIMATE scores of the three HNSCC subtypes. (C) Scores of six types of immune infiltrating cells of the three HNSCC subtypes. (D) Scores of 28 immune-related pathways of the three HNSCC subtypes.
Clinical Relevance of Three Molecular Subtypes in Prognosis Prediction
The high tumor relapse and progression rates have resulted in a dismal prognosis for HNSCC. In line with differently expressed immune profiles, the relationship between HNSCC prognosis and those three subtypes was explored. The K–M curves revealed that differences in overall survival (OS) were significant among three subtypes of HNSCC cases in the TCGA cohort (p = 0.0072, Figure 5A). Among them, the C3 subtype showed the poorest prognosis, whereas the C2 subtype displayed more favorable prognosis (Figure 5A). To explore the associations between patient prognosis and immune signature, this study compared OS among the three subtypes. The results suggested that the C2 subtype, the immune-enhanced subtype that showed greater immune scores, exhibited superior prognosis (Figure 5B–D, C1 vs. C3, p = 0.0098, C2 vs. C3, p = 0.00044, and C2 vs. C1, p = 0.35).
[image: Figure 5]FIGURE 5 | Survival analysis of the three HNSCC subtypes. (A) KM curve of OS prognosis of three subtypes. (B) Prognosis difference KM curve of C1 and C2. (C) Prognosis difference KM curve of C1 and C3 (D) Prognosis difference KM curve of C2 and C3.
Gene Mutation Frequencies Among Three Molecular Subtypes
We then analyzed the mutation genes for three subtypes to gain further insight into some biomarkers related to HNSCC immunogenicity. First of all, Mutsig2 (Pickering et al., 2014) was utilized to identify genes with significant mutations at the threshold of FDR<0.05. A total of 32 genes with significant mutation frequencies were obtained. Figure 6 exhibits the distributions of silent mutations, missense mutations, framework insertion or deletion, framework shift, nonsense mutation, splice sites, and other non-synonymous mutations of the top 22 genes with significant mutation frequencies in the three subtypes (Figure 6A). As revealed by our observations, the C2 subtype had a markedly decreased proportion of mutations among the three most significant genes (CDKN2A, TP53, and FAT1) compared with other subtypes. Furthermore, it was discovered that over half of these mutation sites were C > T. The SNP mutation distributions of all samples are displayed in Figures 2C, 6B).
[image: Figure 6]FIGURE 6 | Mutation analysis for the three subtypes of HNSCC. (A) Somatic landscape of HNSCC cohort. (B) Distribution of the gene with a higher mutation frequency in different mutation types and the change of nucleotide sites.
Analysis of the Gene Co-Expression Network
For better examination of candidate markers related to the TIME in HNSCC, expression data for 865 IRGs of three subtypes were collected. Then, Pearson’s correlation coefficient was utilized to calculate the distance among diverse transcripts. For the sake of constructing a scale-free network, this study set the β value of 6 (Figures 7A, B). According to TOM, the genes were clustered by average-linkage hierarchical clustering in accordance with hybrid dynamic cut tree criteria, with a minimal gene number of 30/module. When the gene module was determined by the dynamic shear approach, this study calculated the eigengenes in every module and conducted corresponding clustering analysis. Finally, six modules covering 865 IRGs with differential expressions were discovered by WGCNA (Figure 7C). Genes in the gray module could not be clustered in the other modules. Supplementary Table S3 shows the transcript statistics for every module. Altogether, 805 transcripts were classified into five co-expression modules. Subsequently, this study determined the associations of eigengenes within the six modules with those three subtypes (Figures 7D–F). As a result, the turquoise and yellow modules showed a positive correlation with the C2 subtypes but a negative correlation with the C1 and C3 subtypes. In addition, the green module showed a positive correlation with the C1 subtype, but negative correlation with the C2 and C3 subtypes. The blue and brown modules displayed a positive correlation with the C3 subtype but a negative correlation with the C1 subtype.
[image: Figure 7]FIGURE 7 | Weighted gene co-expression network analysis (WGCNA) of differentially expressed immune-related genes in the three HNSCC subtypes in the TCGA cohort. (A, B) Analysis of network topology for various soft thresholding powers. (C) Hierarchical cluster tree displaying seven modules of co-expressed genes. (D) Heatmap showing the correlation between feature vectors of six modules and three HNSCC subtypes. (E,F) Gene significance (y-axis) vs. module membership (x-axis) plotted for yellow module (E) and turquoise module (F) in the TCGA dataset.
Moreover, KEGG pathway enrichment analysis was conducted to illustrate the biological functions of genes in the turquoise and yellow modules that showed a positive correlation with the C2 subtype. The yellow module was primarily enriched into 33 pathways (the top 10 are displayed in Figure 8A), including antigen processing and presentation, EB virus, and herpes simplex virus type 1 infection. At the same time, the turquoise module was primarily enriched into 57 pathways (the top 10 are displayed in Figure 8B), including certain immune-associated pathways such as an interaction between cytokine and cytokine receptor and T-cell differentiation. Afterward, this study visualized the network of relationships regarding those enriched pathways within the two modules. According to Figure 8C, the turquoise and yellow modules were mainly enriched into 22 common pathways (Supplementary Table S4), which suggested that genes within these two modules had parallel regulatory processes.
[image: Figure 8]FIGURE 8 | Functional analysis of gene modules significantly related to subtypes C2. KEGG enrichment analysis results of genes in the yellow module (A) and the turquoise module (B). Intersection network of enrichment pathways between the two modules (C).
External Validation for Three Subtypes
Based on the abovementioned co-expression gene modules (turquoise and yellow), altogether 314 featured genes that had a correlation coefficient of > 0.5 were acquired and their expression profiles were then collected into the training set and samples were classified by the SVM, which achieves an accuracy rate of 100% in classification. For better validation of those three subtypes, this study classified 270 samples by the use of the SVM. Among them, 89 samples were classified into the C1 subtype, 102 into the C2 subtype, and 79 into the C3 subtype.
According to our results, for those 13 immune metagenes, their expression distributions within three subtypes were examined (Figure 9A). A majority of metagenes showed high expression within the C2 subtype. In addition, the C2 subtype had an evidently increased immune score and stromal scores relative to those in other subtypes (Figure 9B). Scores of the immune-associated pathways among the samples were further analyzed, as presented in Figure 9C. It was discovered that the C2 subtype had remarkably increased scores relative to those of other subtypes, as verified by results from the training set. Last, differences in OS and progression-free survival (PFS) for HNSCC cases were significant among three subtypes (p = 0.018 for OS, p = 0.033 for PFS, Figures 9D, E). Cases in the C3 subtype showed the poorest prognosis, whereas those in C2 subtype displayed the most favorable prognosis, as verified by the abovementioned results from the training set. The abovementioned findings indicated that the presence of an immune-enhanced subtype within HNSCC showed significant differences compared with the other two subtypes.
[image: Figure 9]FIGURE 9 | Immune profiles and survival analysis of three HNSCC subtypes in the validation set. (A) Scores of 13 types of immune metagenes in the three HNSCC subtypes are displayed. (B) Tumor stroma scores, the immune scores, and the ESTIMATE scores in the three HNSCC subtypes are displayed. (C) Scores of 28 immune-related pathways across the three HNSCC subtypes are shown. (D) KM curve of OS prognosis of three subtypes. (E) KM curve of PFS prognosis of three subtypes.
DISCUSSION
HNSCC represents a highly aggressive form of cancer, and it ranks among the top causes of cancer-related deaths. HNSCC genesis and progression is closely related to the infiltration and modification of immune cells and immune escape in the tumor microenvironment (Miyauchi et al., 2019). This work comprehensively analyzed the three subtypes of HNSCC microenvironment based on the global immune genes and explored the corresponding clinical relevance through the use of TCGA-derived data.
With an increased immune profile, the C2 subtype had elevated immunocyte infiltration scores, and they exhibited positive correlation with signatures of multiple types of immune-related cells and pathways when compared with C3. The abundant stroma in the tumor microenvironment could be conducive to the growth and metastasis of tumor cells, which also influences the antitumor immune effect (Hamidi and Ivaska, 2018). Therefore, the C1 subtype may be a stroma-deficient type, which may be more efficient for the immune response than the C3 subtype. Therefore, the immune-enhanced subtype might co-exist with the relative immune-decreased subtype within the TIME of HNSCC, and there were significant differences in the expression profiles of metagenes, immune infiltration scores, immune component scores, as well as immune-associated pathways (Veigas et al., 2021).
For HNSCC cases, their prognostic outcome showed a positive correlation with the increased expression of immune-related cells and markers, such as macrophages and NK cell–associated molecules (Qian and Pollard, 2010; Bisheshar et al., 2020). M2 macrophage signatures are associated with favorable prognosis in HNSCC (Chen et al., 2019; Bouaoud et al., 2021). In addition, OX40 + plasmacytoid dendritic cells were enriched in the TME of HNSCC and generated specific CD8+ T cell responses to inhibit tumor growth (Poropatich et al., 2020). The STAT3-VSIR axis is an immune microenvironment marker that works by decreasing CD4 helper T-cell activity and is thus associated with poorer survival (Xu et al., 2020). Targeting CD276 can also eliminate HNSCC stem cells in a CD8+ T cell–dependent manner (Wang et al., 2021).
Our study further investigated the relationship between immune types and pathological types, clinical stages, and smoking. The recurrent tumors of HNSCC with poor therapeutic response and detrimental prognosis have an immunosuppressive TIME (Watermann et al., 2021). Active smoking in HNSCC may have a remarkable immunosuppressive effect. Suppression of T-cell chemotaxis may be a key factor in the relationship between smoking and TIME (de la Iglesia et al., 2020). In addition, T1 patients who have a good prognosis were more in immune-enhanced patients than in other pathological types that are consistent with K–M survival analysis.
We identified the candidate targets and related pathways for those three subtypes within the TIME through WGCNA. To be specific, C2 was mainly enriched into the virus infection– and immune-associated pathways. These results indicate that genes from turquoise and yellow modules potentially have a parallel effect on the TIME of HNSCC, which were also related to 22 common pathways in the KEGG database. Viruses such as HPV and EB are factors that promote HNSCC. Previous research indicated that HPV-positive HNSSCs showed the highest levels of immune cell infiltration compared to other HNSSC types (Mandal et al., 2016). Single-cell RNA-seq analysis showed that helper CD4+ T cells and B cells in HNSCC of HPV-positive and HPV- negative patients are relatively divergent (Cillo et al., 2020). Tumor infiltrating B cells increased in HPV-positive HNSCC patients compared to HPV-negative patients, and their specific phenotype and localization contributed to overall survival in the TIME (Ruffin et al., 2021). Virus-related HNSCC may show a higher response to immunotherapy in clinical trials (Perri et al., 2020). Notably, innate immunity is vital for the modulation of HNSCC genesis and progression (McCormick et al., 2016). Moreover, HNSCC progression is suggested to induce the adaptive immune response (Wondergem et al., 2020). Thus, it is important to classify related molecular mechanisms on the basis of the TIME in HNSCC, which may contribute to identifying new chemopreventive targets for the treatment of HNSCC.
Mutations in chromatin modifier genes are an important mechanism of oncogenesis. The mutations in TP53, CDKN2A, and FAT1 genes reported in prior works are found to be tightly associated with HNSCC development (Coombes et al., 2003; Eriksen et al., 2005). The TP53 mutation is a central site in many cancers and is commonly detected in HNSCC. TP53 is frequently linked with poorer survival and a more aggressive form of cancer (Vousden and Prives, 2005). Otherwise, there is a similar association between TP53 and other high-rate genes in HNSCC. For example, TP53 and CDKN2A have co-mutations in throat squamous cell carcinoma and oral squamous cancer (Todorova et al., 2015). CDKN2A is a basic gene within the cell cycle, also called p16, which is directly involved in the regulation of the cell cycle and negatively regulates cell proliferation and division. Once CDKN2A deletion or mutation occurs, it will lead to malignant cell proliferation and participate in tumor formation. FAT1 encodes a protocaladherin, which is very frequently mutated in many human cancers, especially squamous cell carcinomas (SCCs) (Dotto and Rustgi, 2016). Recently, it has been confirmed that the loss of FAT1 function promotes tumorigenesis, development, invasion, and metastasis by inducing mixed epithelial-to-mesenchymal transition (EMT) status in human squamous cell carcinoma (Pastushenko et al., 2021). These three types of gene mutations are less likely to occur in the immune-enhanced subtype, indicating a better survival rate.
Certain limitations should be noted in this work. First of all, further studies should enroll a larger number of clinical features and treatment characteristics for HNSCC patients to carry out subgroup analysis so as to explore the influencing factors and their impact on the phenotypes of the HNSCC microenvironment. Second, only the NCI cohort was adopted in external validation, which may lead to one-sided results, together with a high false-positive rate. Third, the differential expression of IRGs should be further examined in the three subtypes to reveal the immune escape mechanisms of HNSCC and to provide a molecular and pathological foundation for individualized targeted immunotherapy.
Taken together, the immune microenvironment phenotypes in HNSCC can be divided into three molecular subtypes according to the possible mechanisms of immune escape within HNSCC. These three molecular subtypes have different immune features, mutations of oncogenes, and prognosis for patients. In addition, some functional pathways can trigger microenvironment phenotype formation. The abovementioned findings further confirm that the HNSCC immune heterogeneity could support and predict the prognosis of HNSCC patients. The concept can also shed more light on the development of a new personalized treatment of HNSCC through the immune microenvironment to monitor patients.
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The latest research suggesting that necroptosis plays a vital role in immune response. However, the influence of necroptosis on tumor microenvironment (TME) remodeling and immunotherapy is still unclear. We analyzed the variations in the expression of 26 necroptosis-related molecules in HNSCC and the influence of genome changes. We investigated HNSCC samples and determined that there are two necroptosis phenotypes in HNSCC cancer, and there are significant differences in cell infiltration characteristics and survival in different necroptosis phenotypes. We used the single‐sample gene set enrichment analysis to measure the level of necroptosis in patients with NecroticScore, we confirmed that the NecroticScore can predict the prognosis of HNSCC patients and the response to immunotherapy. Patients with a high NecroticScore are more sensitive to immunotherapy and have a better prognosis. Our study suggests a significant correlation between the expression imbalance of necroptosis-related molecules and suggests necroptosis plays an important role in modeling the TME. In addition, we construct a risk prediction model which could stratify patients with HNSCC and predict patient prognosis according to this necroptosis-related molecules. In conclusion, evaluating necroptosis modification patterns contributes to enhancing our understanding of TME and can guide more effective immunotherapy strategies.
Keywords: necroptosis, PD1 = programmed cell death protein 1, the tumor immune microenvironment, head and necek squamous cell carcinoma, immunephenotype
INTRODUCTION
Head and neck squamous cell carcinoma morbidity was the seventh highest in the world in 2018 (890,000 new cases and 450,000 deaths) (Bray et al., 2018). HNSCC has a high rate of metastasis and recurrence is likely due to the interactions of immune cells infiltration which make up the tumor microenvironment (TME). Studies proved that the tumor microenvironment plays a key role in immunotherapy responsiveness (Curran et al., 2010). Although the immunological therapy of the programmed death 1 (PD-1) immune-checkpoint inhibitors has greatly influenced the treatment of squamous-cell carcinoma of the head and neck, there are some HNSCC patients who benefit from anti–PD-1 antibodies therapy (Chow, 2020). Considering the economic burden for patients and the individual heterogeneity of the HNSCC tumor, it is necessary to develop comprehensive therapy targets and economical treatment plans.
Necroptosis is a caspase-independent death program. Necroptosis is triggered by toll-like receptor 3 and 4 agonists, tumor necrosis factor, certain viral infections, the T cell receptor, and the compromised activity of the protease caspase-8 (Newton and Manning, 2016). In recent research, intervening necroptosis-related molecules such as receptor-interacting protein kinase 3 (RIPK3) will enhance the response to immunotherapy (Um et al., 2020). In addition, there was a significantly positively correlation between pMLKL status and some immune signatures like PD-L1 expression. Patients with high pMLKL-positive expression were significantly associated with an increased copiousness of CD8+  T cell infiltration and a longer overall survival (OS) (Lomphithak et al., 2021). Moreover, Yatim N. et al. (Yatim et al., 2015) found that the necroptosis process was associated with NF-κB signaling, which activated CD8+ T cells to kill tumor cells. These studies have profoundly expanded our comprehension of the mechanism of necroptosis-related molecules anti-tumor effect.
However, previous research focused only on one or two necroptosis-related molecules; the necroptosis process and immune therapy reaction are the effects from factors interaction with complex network. Presently, there is no integrated study on HNSCC cancer immunity and HNSCC tumor microenvironment of necroptosis-related molecules, so the regulation mechanism of necroptosis in HNSCC cancer is still indistinct. Therefore, it is necessary to analyze the necroptosis-related gene expression pattern of HNSCC cancer and to explore the relationship between numerous necroptosis-related molecules and immune infiltration in the tumor microenvironment. In our study, we detected the expression heterogeneity of 26 necroptosis-related genes in HNSCC cancer. We concentrated on discovering the potential advantages of immunotherapy for treating HNSCC cancer. We integrated these necroptosis-related genes with HNSCC immunity and tumor microenvironment. Our results showed that necroptosis exerts crucial influence on the tumor immune infiltration. We established a system to evaluate this called NecroticScore, which measures the expression rate of necrotic molecules and immune status in HNSCC. We validated that the NecroticScore is a reliable prognostic value for HNSCC cancer and could guide immunotherapy treatment. We also constructed and validated necroptosis-related molecules prognostic signatures that may help to predict individual odds of death and help clinicians manage patients with HNSCC cancer.
METHODS AND MATERIALS
The workflow of our research included TCGA database and GEO database (GSE65858). We collected 26 necroptosis-related genes from previous studies (Frank and Vince, 2019; Robinson et al., 2019; Tonnus et al., 2021). Based on the expression level of 26 necroptosis-related genes, we used “ClassDiscovery” package in R to analyze datasets (Qin et al., 2020). Single‐sample gene set enrichment analysis (ssGSEA) in R package GSVA was used to construct a system to evaluate the score of the expression of 26 necroptosis-related genes in HNSCC patient. This system was named NecroticScore. We validated distribution differences of NecroticScore in HNSCC and further valuated the predictive capacity of NecroticScore for the prognosis and immunotherapy effect in HNSCC patients. The pathway enrichment analysis of this necroptosis-related molecules was performed with package “clusterProfiler” (Yu et al., 2012). HNSCC cell line CAL-27 and normal nasopharyngeal epithelial cell line (NP69) were used to assay quantitative real-time PCR. All statistical analyses used R (https://www.r-project.org/).
RESULT
Enrichment Functions Analysis in 26 Necroptosis-Related Molecules
We collected 26 necroptosis-related molecules from existing studies (Frank and Vince, 2019; Robinson et al., 2019; Tonnus et al., 2021). The 26 molecules are HSP90AA1, SLC25A5, CAPN1, TYK2, VDAC2, CHMP3, CHMP1B, PYGL, STAT6, VDAC1 MACROH2A1, GLUD1, CHMP1A, GLUD2, PLA2G4B, IFNA21, TICAM2, TRAF2, PPID, MAPK9, ZBP1, PLA2G4C, IRF9, TLR3, TRAF5, and JAK3. We used GO analysis to reveal that necroptosis-related genes were mainly enriched in actions such as ESCRT complex, phosphatidylcholine binding, programed necrotic cell death, and necroptotic process (Figures 1A–C). KEGG enrichment analysis validated that 26 necroptosis-related genes were associated with Necroptosis and NOD-like receptor signaling pathway (Figure 1D).
[image: Figure 1]FIGURE 1 | Enrichment functions analysis in 26 necroptosis-related molecules. (A) CC analysis for 26 necroptosis-related genes. (B) MF analysis for 26 necroptosis-related genes. (C) BP analysis for 26 necroptosis-related genes. (D) KEGG enrichment analysis for 26 necroptosis-related genes.
Transcriptome Analysis Revealed Necroptosis is Associated With Survival in HNSCC
To further understand the mechanism of necroptosis regulator integration in HNSCC cancer, we collected a total of 501 head and neck squamous cell carcinoma samples from The Cancer Genome Atlas (TCGA) database (Supplementary Table1). We identified two unique modification patterns by using the R package “ClassDiscovery”, named Clust2_C1 (170 cases), Clust2_C2 (331 cases). We used thermogram to analyze expression level of necroptosis genes. We found necroptosis molecules in Clust2_C1 had a higher expression level compared to Clust2_C2 (Figure 2A). We used HNSCC-TGCA survival cohort to analyze the different curves in survival model between the two subtypes of necroptosis; we found Clust2_C1 (131cases) OS provides a particularly significant survival advantage while Clust2_C2 (253cases) has poor prognosis (Figure 2B) (log-rank, p = 0.028). According to the necroptosis-related genes, we analyzed GSE65858 dataset by the same method of R package, dividing 267 patients into Clust_C1 (113cases) and Clust_C2 (154cases) stratifications. The Kaplan-Meier curve (OS) also displayed a significant difference of survival proportion among the two kinds of necroptosis phenotypes (log-rank, p = 0.0066) (Figure 2C). This result suggested that poor prognosis for patients may be linked to low expression of necroptosis-related genes. Tumor mutational burden (TMB) was considered a promising indicator for good prognosis (Chalmers et al., 2017). We displayed the somatic mutations of the nine necroptosis genes with the highest mutation frequency in HNSCC by a waterfall diagram, but we found there was no significant differences in these genes among the two clusters (Figure 2D).
[image: Figure 2]FIGURE 2 | Transcriptome analysis revealed necroptosis is associated with survival in HNSCC. (A) The synthetic thermogram displays the correlation between the two types of necroptosis and the expression variance of the 26 necroptosis-related molecules (Meta-cohort), C1 (170cases), C2 (331cases), “1” means dead, “0” means alive, “fustat” means survival status. (B) The Kaplan-Meier plot displays significant differences of survival rate among the two kinds of necroptosis phenotypes in the TCGA database. C1 (131cases) was better than C2 (253cases). Unit of Time (years). (C) The GSE65858 Kaplan-Meier plot displays significant differences of survival rate among the two kinds of necroptosis phenotypes. C1 (113cases) was better than C2 (154cases). Unit of Time (years). (D) The waterfall plot displays the nine necroptosis molecules somatic mutations with mutation frequency in HNSCC.
NecroticScore is a Predictive Factor for Survival and Stratifies the Immunophenotype and HPV Status
The single-sample gene set enrichment analysis (ssGSEA) in R package GSVA was used to construct a system to evaluate the score which represents the levels of necroptosis-related genes in both TCGA dataset and GSE65858 dataset; we named it NecroticScore. We found C1 NecroticScore was significantly higher than C2 in both TCGA and GSE65858 datasets (Figures 3A–B). In addition, our results show that the NecroticScore can effectively classify necroptosis phenotypes in HNSCC cancer patients. We summarized 384 patients in the TCGA cohort according to their NecroticScore and divided it into high or low group by method of the optimal cut-off value from the R package “Survminer”; we found NecroticScore was a prognostic factor to head and neck squamous cell carcinoma (log-rank, p = 0.035, Figure 3C). To further verify this, we plotted a Kaplan-Meier curve to observe the correlation between the NecroticScore and the stratification of HNSCC patients in the GSE65858 database. The result also showed NecroticScore was a prognostic factor to GEO cohort (log-rank, p < 0.0001, Figure 3D). In addition, our study revealed the patients with HPV (+) HNSCC have better overall survival than HPV (−) HNSCC (Ang et al., 2010); interestingly, we found NecroticScore in group HPV (+) was higher than HPV (−) in TCGA cohort (p = 0.036; Figure 3E). In the external immunotherapy cohort (Yang S. Y. C. et al., 2021), the group of high-sensitive to immune checkpoint inhibitors (ICIs) response had a significantly higher NecroticScore than the low sensitive group (p = 2.55e-11, Figure 3F) by the optimal cut-off value. We also found the high NecroticScore group had a longer survival time (log-rank, p = 0.047; Figure 3G).
[image: Figure 3]FIGURE 3 | NecroticScore is a predictive factor for survival and stratifies the immunophenotype and HPV status. (A–B) NecroticScore in TCGA and GSE65858 dataset. (C) The Kaplan-Meier plot displays significant differences of survival rate among the high-NecroticScore and low-NecroticScore in the TCGA database, high (140cases), low (244cases), Unit of Time (years). (D) The Kaplan-Meier plot displays significant differences of survival rate among the high-NecroticScore and low-NecroticScore in the GSE65858 database, high (114cases), low (153cases) Unit of Time (years). (E) NecroticScore in TCGA dataset among the group of HPV (+) and HPV (−). (F) NecroticScore in Low-sensitive and High-sensitive group from external immunotherapy cohort (p value =2.55e-11). (G) The Kaplan-Meier plot exhibited a significant statistic p value of overall survival rate among the two NecroticScore groups in the external immunotherapy cohort. Unit of Time (months).
NecroticScore Influences the Tumor Immune Microenvironment in HNSCC
To detect the relationship between the immune infiltration outlook of multi-immune cell types and NecroticScore, we divided tumor samples from TCGA dataset into two group. We calculated the relative immune cell infiltration levels of single sample by R package GSVA, and used gene signatures expressed by immune cell populations to individual cancer samples (Bindea et al., 2013; Barbie et al., 2009). We found the infiltration levels of the C1 group were significantly higher than the C2 group (Figure 4A). Similarly, we also found a significant difference between groups of immune infiltration level in GSE65858 database (Figure 4B). Considering the HNSCC individual variability and complexity for anti-PD-L1-treatment, we used NecroticScore to explore the mechanism of the effect of it on immune checkpoint inhibitors in head and neck squamous cell carcinoma. We summarized data on eight related immune checkpoint genes (CD247, CD274, PDCD1, PDCD1LG2, TNFRSF9, TNFRSF4, CTLA4, and TLR9) from existing studies (Ramos-Casals et al., 2020; Huang et al., 2021; van de Donk et al., 2021), and found they have significant differential expression between high and low NecroticScore group (Figure 4C). We also further detected the correlation between NecroticScore and eight related immune checkpoint genes expression. We found NecroticScore was positively correlated with eight Immune checkpoint genes expression (Figures 4D–K) (CD274: r = 0,42, p = 2.98e-23; PDCD1: r = 0.61, p = 4.14e-53; CD247: r = 0.56, p = 4.01e-42; PDCD1LG2: r = 0.30, p = 1.17e-11; CTLA4: r = 0.56, p = 1.06e-42; TNFRSF9: r = 0.45, p = 2.04e-26; TNFRSF4: r = 0.39, p = 3.57e-19; TLR9: r = 0.09, p = 0.039).
[image: Figure 4]FIGURE 4 | NecroticScore influences the tumor immune microenvironment in HNSCC. (A) Enrichment of each immune cell type infiltrating in high-score (C1) and low-score (C2) groups; from TCGA; the asterisk represents the different p values (* < 0.05; ** < 0.01; *** < 0.001, **** < 0.0001), C1 (170case), C2 (331cases). (B) Enrichment of each immune cell type infiltrating in high-score (C1) and low-score (C2) groups; from GSE65858; the asterisk represents the different p values (* < 0.05; ** < 0.01; *** < 0.001, **** < 0.0001), C1 (115cases), C2 (155cases). (C) Differential expression of Immune checkpoint genes in C1 and C2 groups; from TCGA cohort; the asterisk represents the different p values (* < 0.05; ** < 0.01; *** < 0.001, **** < 0.0001), C1 (170case), C2 (331cases). (D–K) Correlation between NecroticScore and CD274, PDCD1, CD247, PDCD1LG2, CTLA4, TNFRSF9, TNFRSF4, and TLR9.
To quantify the proportions of immune cells and tumor cells we used “ESTIMATE” R package to calculate the score of stromal and immune cells in head and neck squamous cell carcinoma samples. We set the score name to ESTIMATEScore, ImmuneScore, StromalScore, and TumorPurity, which were specific values in order to evaluate the correlation coefficient between the two groups. We found ESTIMATEScore, ImmuneScore, and StromalScore was higher in C1 cluster than C2 cluster, however, C1 cluster had lower TumorPurity than C2 (Figures 5A–B). We also found NecroticScore was positively correlated with ESTIMATEScore, ImmuneScore, and StromalScore, but negatively correlated with TumorPurity (Figure 5C). We detected the verification correlation between NecroticScore and immune cell type by CIBERSORT algorithm (Newman et al., 2015); the landscape of immune cell infiltration is similar to GSVA, and we plotted a combined heat map to display the above results (Figure 5D).
[image: Figure 5]FIGURE 5 | NecroticScore influences the tumor immune microenvironment in HNSCC. (A) ESTIMATEScore, ImmuneScore, and StromalScore in C1 and C2 groups; from TCGA; the asterisk represents the different p values (* < 0.05; ** < 0.01; *** < 0.001, **** < 0.0001), C1 (170cases), C2 (331cases). (B) TumorPurity in C1 and C2 groups; from TCGA; p = 7.63e-15, C1 (170cases), C2 (331cases). (C) The bubble plot displays the correlation between the NecroticScore and four score types of TME. Red bubbles mean a positive correlation, blue means a negative correlation, the color depth and color size indicate the intensity of the correlation. With the bubble color redder, the positive correlation is higher. (D) Complex-heatmap showing the profile in the HNSCC-TCGA cohort, with the top panel showing the expression of genes involved in immune checkpoint targets and the bottom panel showing the enrichment level of 24 microenvironment cell types. ESTIMATEScore, ImmuneScore, StromalScore, TumorPurity, and Clust2 were annotated at the top of the heatmap, NecroticScore was annotated at the bottom of the heatmap.
Construction and Verification of the Necroptosis-Related Molecules Risk Prediction Model
Several studies reported that some necroptosis-related molecules were biomarkers for prognostic (Gong et al., 2019; Lim et al., 2021). In order to select the most likely candidate prognostic necroptosis-related genes, we performed the LASSO algorithm to identify a set of 26 necroptosis-related genes (Figures 6A–B). The lambda-min value equals 17 necroptosis-related genes and lambda-1se value equals 9 necroptosis-related genes. Considering the convenience of testing, we selected nine necroptosis-related genes (TRAF5, SLC25A5, VDAC1, PLA2G4B, CAPN1, TYK2, TICAM2, TLR3, and ZBP1) to construct a prediction risk model. We used “Predict” function to calculate risk score; the boxplot showed risk score range in two groups (0 equals alive, 1 equals death), we found risk score was higher in group death than group alive (Figure 6C). Then we divided HNSCC-TCGA cohort patients into two score groups named high-risk and low-risk according to the median of risk score; the Kaplan–Meier analysis results showed that the high-score group had significantly higher mortality than the low-score group (Figure 6D). Receiver operating characteristic (ROC) curve analysis was performed to assess the sensitivity and specificity of this risk prediction model (Figure 6E). We calculated the AUC result to validate the precision of the established risk prediction model (Figure 6F) (1 year AUC = 0.71, 3 years AUC = 0.71, 5 years AUC = 0.65). Moreover, the validation cohort was performed by GSE65858; we used multivariate Cox regression analyses to test the above nine necroptosis-related genes. The results reflected TRAF5, SLC25A5, and ZBP1 in patients with HNSCC cancer were associated with survival and could be an important predictor for overall survival (p = 0.002, HR = 2.05; p = 0.016, HR = 2.08; p = 0.049, HR = 0.65; Figure 6G). We also divided patients into high-risk and low-risk score groups according to the median risk score; the Kaplan–Meier analysis results indicated that nine necroptosis-related genes in patients with HNSCC cancer were associated with poor survival (Figure 6H). To validate TRAF5, SLC25A5, and ZBP1 as important predictors of overall survival in TCGA cohort, we plot risk Kaplan–Meier curve according to their expression. We found higher expression of TRAF5 and ZBP1 was associated with good survival (Figures 6I–J), However, higher expression in SLC25A5 predicted bad survival (Figure 6K); in addition, the quantitative real-time PCR assay showed SLC25A5 was up regulated in HNSCC cell line (Figure 6L), indicating this could be a carcinogenesis gene in necroptosis-related molecules.
[image: Figure 6]FIGURE 6 | Construction and verification of the necroptosis-related molecules risk prediction model. (A) 1000-time cross-validation for tuning parameter selection in the LASSO model; TCGA cohort. (B) LASSO coefficient profiles of 26 necroptosis-related genes; TCGA cohort. (C) Risk score range in two groups (0 equals alive, 1 equals death); TCGA cohort. (D) Datasets assigned to high-risk and low-risk groups based on the risk score. Kaplan–Meier curve for the HNSCC-TCGA cohort, high risk (192cases), low risk (192 cases) Unit of Time (years). (E) Receiver operating characteristic (ROC) curve (AUC = 0.74); TCGA cohort. (F) TIME-ROC curve in HNSCC-TCGA cohort. (G) Plot in multivariate Cox regression and some parameters of the nine necroptosis-related genes signature in GSE65858 database (Concordance index = 0.61, log rank p = 0.00417). (H) HNSCC patients in high-risk and low-risk groups based on the risk score. Kaplan–Meier curve for the GSE65858 cohort, high risk (134cases), low risk (133 cases), Unit of Time (years). (I) HNSCC patients in high-risk and low-risk groups based on the expression of TRAF5. Kaplan–Meier curve for the TCGA cohort, high risk (235cases), low risk (149 cases), Unit of Time (years). (J) HNSCC patients in high-risk and low-risk groups based on the expression of ZBP1. Kaplan–Meier curve for the TCGA cohort, high risk (177cases), low risk (207 cases), Unit of Time (years). (K) HNSCC patients in high-risk and low-risk groups based on the expression of SLC25A5. Kaplan–Meier curve for the TCGA cohort, high risk (234cases), low risk (150 cases), Unit of Time (years). (L) SLC25A5 expression in normal nasopharyngeal epithelial cell line (NP69) cell line and HNSCC cell line (CAL-27), quantitative real-time PCR assay, **p < 0.01.
DISCUSSION
An increasing number of studies have validated the crucial role of necroptosis in tumor immunity, but the whole mechanism of necroptosis genes in HNSCC is still unclear. In our study, we collected necroptosis-related molecules, analyzed data from TCGA and GSE65858 of head and neck squamous cell carcinoma, and defined two types of necroptosis in HNSCC; our results showed that there were effective differences in the survival rates and immune cell infiltration level in this clusters. Previous research (Aaes et al., 2016) showed that cross-priming and proliferation of CD8+ T cells will trigger necroptotic tumor cells enhanced antitumor immunogenicity. In addition, authors believed that necroptotic tumor cells serve as potent immunizers in a prophylactic tumor vaccination model, which is an essential step in confirming that the cell death type is immunogenic (Galluzzi et al., 2017). Furthermore, genes involved in type I IFN response were substantially enriched in necroptotic molecules-sufficient tumor cells, whereas necroptotic molecules absence limited the induction of type I IFN response–relevant genes in tumor cells (Yang Y. et al., 2021), and type I IFNs have been certified to play a critical role in the functions of antitumor and immunity (Demaria et al., 2019). This illustrated that necroptotic molecules will trigger type I IFN responses and remold the tumor microenvironment (TME). We constructed a set of scoring systems named NecroticScore to better classify the expression of necroptosis genes in HNSCC patients and to assess the level of necroptosis. According to the NecroticScore, we divided patients into two groups. Our results revealed that almost all immune cell infiltration levels of the high-NecroticScore group were significantly higher than the low-NecroticScore group. Our study calculated that NecroticScore is reliable for the assessment of HNSCC necroptosis-related genes and the prediction of the prognosis of patients. Our results showed NecroticScore is positively correlated with ESTIMATEScore, ImmuneScore, StromalScore, and, notably, negatively correlated with TumorPurity. These detections indicated a significant correlation between NecroticScore and the tumor immune microenvironment. Our results demonstrated high NecroticScore forecasted high sensitivity to immune checkpoint inhibitors (ICIs) response. In addition, we found NecroticScore was higher in the HPV (+) group than HPV (−) group, combining previous results, that support the conclusion of higher infiltration of B cell in HPV (+) HNSCC and lower infiltration of CD8 T cell in HPV (−) HNSCC (Cillo et al., 2020). Therefore, we believed NecroticScore could classify the immunophenotype of HNSCC, predict the prognosis of HNSCC patients, and promote the medication effects.
Our study also found a meaningful correlation between NecroticScore and immune checkpoint expression. CHUN, N et al. (Chun et al., 2021) found activation of the necroptosis-related molecules synergizes with anti-PD1 administration to destroy checkpoint blockade-resistant murine melanoma in murine melanoma. A clinical trial (Topalian et al., 2012) proved to be more effective in the treatment of anti-PD1 antibodies, which were strongly associated with higher expression of PD-L1 and PD-1 checkpoints. In our study, the high NecroticScore group had the higher immune checkpoint molecular expression than low NecroticScore group. Moreover, NecroticScore was positively related with eight immune checkpoint genes and predicted the overall survival in the immunotherapy cohort. Therefore, we speculate a combination of necroptosis and immune checkpoint has great feasibility. We hope our research will contribute to the promotion of new combined therapeutic strategies and serve as the basis for future immunotherapeutic agents.
Given that there is no accuracy of some existing prognostic necroptosis-related signatures in HNSCC cancer, we constructed a predictive model according to necroptosis-related genes and conducted stratification analysis of the overall survival rate for HNSCC patients based on the risk score obtained from the “Predict” function formula in R software. We found that the p‐value in the two groups was statistically significant. The validation results showed accuracy and sensitivity of the risk model. So, we do believe this model based on reliable data algorithm will facilitate clinical diagnosis and promote therapy method in HNSCC patients. In addition, we found TRAF5, SLC25A5. and ZBP1 could be important predictors of OS in HNSCC cancer. JIAO, H et al. (Jiao et al., 2020) found ZBP1 could trigger RIPK3-dependent necroptosis and inflammation, which could underlie the development of chronic inflammation. TRAF5 and SLC25A5 were molecules that participate in the signaling cascade downstream of TNFα leading to necroptosis, termed ESCRT complex (Nikoletopoulou et al., 2013). A combination of both the risk Kaplan–Meier curve and quantitative real-time PCR assay indicated that SLC25A5 could play a role in carcinogenesis. However, the specific effects of SLC25A5 in HNSCC cancer have not been reported in research. So, further research is needed.
We recognize some limitations of our research. As collecting fresh clinical sample information for the treatment of patients with HNSCC is difficult, external validations have not been implemented. There is still a lack of research on the specific mechanism of the necroptosis-related molecules involved; further analysis of cellular and molecular assays need to be conducted. But we compensated for this shortcoming through punctilious analysis and using the reliable data algorithm. Moreover, our laboratory is conducting further research on this subject.
CONCLUSION
In general, our study suggests that necroptosis plays an important role in tumor microenvironment remodeling, highlighted the associations of the necroptosis-related molecules with changes in the immunological tumor microenvironment in HNSCC, established the normative quantification of the necroptosis genes expression in HNSCC cancer, identified distinct HNSCC cancer immunophenotypes, and may promote HNSCC cancer immunotherapy in the future. We also constructed and validated a necroptosis-related molecules prognostic signature, which proved to have significant value in predicting the overall survival time of HNSCC patients.
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Background: Bone metastasis (BM) is one of the typical metastatic types of head and neck cancer (HNC). The occurrence of BM prevents the HNC patients from obtaining a long survival period. Early assessment of the possibility of BM could bring more therapy options for HNC patients, as well as a longer overall survival time. This study aims to identify independent BM risk factors and develop a diagnostic nomogram to predict BM risk in HNC patients.
Methods: Patients diagnosed with HNC between 2010 and 2015 were retrospectively evaluated in the Surveillance, Epidemiology, and End Results (SEER) database, and then eligible patients were enrolled in our study. First, those patients were randomly assigned to training and validation sets in a 7:3 ratio. Second, univariate and multivariate logistic regression analyses were used to determine the HNC patients’ independent BM risk factors. Finally, the diagnostic nomogram’s risk prediction capacity and clinical application value were assessed using calibration curves, receiver operating characteristic (ROC), and decision curve analysis (DCA) curves.
Results: 39,561 HNC patients were enrolled in the study, and they were randomly divided into two sets: training (n = 27,693) and validation (n = 11,868). According to multivariate logistic regression analysis, race, primary site, tumor grade, T stage, N stage, and distant metastases (brain, liver, and lung) were all independent risk predictors of BM in HNC patients. The diagnostic nomogram was created using the above independent risk factors and had a high predictive capacity. The training and validation sets’ area under the curves (AUC) were 0.893 and 0.850, respectively. The AUC values of independent risk predictors were all smaller than that of the constructed diagnostic nomogram. Meanwhile, the calibration curve and DCA also proved the reliability and accuracy of the diagnostic nomogram.
Conclusion: The diagnostic nomogram can quickly assess the probability of BM in HNC patients, help doctors allocate medical resources more reasonably, and achieve personalized management, especially for HNC patients with a potentially high BM risk, thus acquiring better early education, early detection, and early diagnosis and treatment to maximize the benefits of patients.
Keywords: head and neck cancer, nomogram, risk, bone metastasis, SEER
INTRODUCTION
According to the latest GLOBOCAN 2020 compiled by the International Agency for Research on Cancer, head and neck cancer (HNC) is the seventh most prevalent malignant tumor globally. There were approximately 932,000 new HNC patients worldwide in 2020, of which 467,000 patients had died (Sung et al., 2021). Although in the past 40 years, with the continuous developments in detection and treatment technologies, the 5-years survival rate of HNC has grown from 54.1% to 66.8%, but it still cannot meet the needs of patients for a more extended survival period (Guo et al., 2021). The incidence of distant metastases from HNC ranges from 8.9–13.8%, and distant metastases is one of the main challenges that restrict the successful treatment of HNC patients (Lee et al., 2012; Duprez et al., 2017). Among them, bone metastasis (BM) is the second most prevalent type of distant metastases after lung metastasis, accounting for about 15–39% of all distant metastases’ patients, which leads to a poor prognosis and seriously affects life quality of those patients (Suzuki et al., 2020). Since the previous studies have shown that more than 90% of the histological types of HNC were related to squamous cell carcinomas (SCC), even under the best systemic treatment, the median overall survival (OS) of patients with metastatic SCC was only 10.1 months (Mourad et al., 2017), while patients with multi-organ or polyostotic metastases had a median survival time of fewer than 5.7 months (Suzuki et al., 2020). According to reports, the proportion of HNC patients who died of distant metastases was about 15–20%, but the autopsy series of observations revealed distant metastases was 3–4 times greater than those described in the clinical series (Duprez et al., 2017). Early diagnosis of BM is essential to avoid skeletal-related events with altered performance status and reduce the chance of receiving adequate systemic treatment. In the actual treatment process, due to the insidious nature of distant metastases, most of them were easily overlooked or missed, making many patients already have advanced metastasis with skeletal-related events by the time they arrive at the hospital and need to take adequate systemic treatment. Therefore, effective prediction of the risk of distant metastases in HNC patients is essential to ensure the best benefit for patients.
Currently, the prognosis of HNC patients with BM and the OS prediction of HNC patients have been described (Carvalho et al., 2005; Mourad et al., 2017; Chi et al., 2021). However, to our knowledge, there are few studies based on big data to explore which factors cause BM in HNC patients and to establish effective risk prediction models to predict the risk of BM in newly diagnosed HNC patients, which is crucial in the intervention and treatment of early BM. Therefore, we developed a diagnostic nomogram model based on the SEER database for predicting the risk of BM in HNC patients, aiming to assist clinicians to manage HNC patients better, detect and intervene in BM early, and effectively prolong the survival period of HNC patients, especially those who are at a greater risk of developing BM.
METHODS
Database
The SEER database is a cancer database based on nearly 30% of the population of the United States of America. It includes demographic and clinical pathology information on cancer incidence and survival rates from 18 cancer registries (Lin et al., 2018). After obtaining permission to access the research data with reference number 16336-Nov 2020, we gained the SEER database. The included patients were those diagnosed as HNC with or without BM from 2010 to 2016 in the SEER database obtained through SEER Stat 8.3.9.2 [Incidence-SEER 18 Regs Custom Data (with additional treatment fields), November 2018 Sub (1975–2016 varying)]. The SEER database is an open-access database, and the data information obtained is anonymous and de-identified; therefore, the ethics committee’s approval and the informed consent of the patients do not apply to this study. Moreover, this study was conducted and reported following the STROCSS 2019 criteria (Riaz et al., 2019).
Patient Selection
The following were the criteria for inclusion: (1): HNC was the first or primary tumor; (2); the patient’s ICD-O-3 histological type was clear; (3); distant metastases (bone, liver, brain, and lung) was evident, especially bone; (4); complete follow-up data. Meanwhile, the following were the exclusion criteria: (1): HNC was not the first or primary tumor; (2); unclear histological classification; (3); information about distant metastases (bone, liver, brain, and lung), race, tumor grade, T stage, N stage, insurance status, and marital status was unknown; (4); the survival time was less than 1 month. Finally, a total of 39,561 HNC patients were enrolled in this study.
Variable Definitions
From the SEER database, we retrieved 13 characteristics that may be related to the development of BM in HNC patients. Age, sex, race, insurance status, and marital status were among the demographic characteristics studied. Age was divided into ≥60 and <60 (Han et al., 2021; Sarfraz et al., 2021; Tadros et al., 2021; Zhou et al., 2021), sex was divided into male and female; race was divided into black, white, and other; single, unmarried or domestic partner, widowed, separated, and divorced were classified as the unmarried group, while the insured/no specifics, insured, and any Medicaid were classified as the insured group. Tumor features included tumor grade (I, II, III, and IV), T stage (T1, T2, T3, and T4), N stage (N0, N1, N2, and N3); the histological type was divided into SCC and other. Distant metastases (bone, liver, brain, and lung) were divided into present and absent.
Statistical Analysis
SPSS (version 22.0) and R software (version 4.0.3) were used to conduct all statistical analyses in this study. Furthermore, a p-value <0.05 was considered to be statistically different. These included 39561 patients were randomly separated into a training set (n = 27693, 70%) and a validation set (n = 11868, 30%) in a 7:3 ratio using R software. We used the training set to evaluated the independent risk predictors of BM in HNC patients, constructed a diagnostic nomogram model, and verified the constructed nomogram using the validation set. Specifically, we used the training set to perform univariate logistic analysis in SPSS to determine the risk factors related to BM. The variables with a p-value <0.05 in the univariate logistic regression analysis were further incorporated into the multivariate logistic regression analysis to determine the independent risk predictors of BM in HNC patients. Then, those independent risk predictors were used to construct a diagnostic nomogram model using R software, and the corresponding score assignment of independent risk predictors was obtained (Supplementary Table S1). After that, a calibration curve was constructed to show the diagnostic nomogram’s correction ability. Then, a receiver operating characteristic (ROC) curve was performed, and the area under the curve (AUC) was used to indicate the diagnostic nomogram’s discrimination. Furthermore, we used the previously obtained scores assigned to independent risk predictors to calculate the patient’s total score and draw ROC curves by SPSS and R software to gain and compare the AUC of each independent risk factor and the diagnostic nomogram. Finally, a decision curve analysis (DCA) was constructed to assess the diagnostic nomogram’s clinical applicability utility.
RESULTS
Baseline Characteristics
According to our inclusion and exclusion criteria, 39,561 HNC patients from 2010 to 2015 were finally included in the study, with 27,693 patients in the training set and the remaining 11,868 patients in the validation set. The goal of the study was to explore and verify independent risk predictors of BM in HNC patients. Patients in the training set showed male and white bias characteristics, accounting for 73.3% and 82.9% of the total patients, respectively. The majority of patients were insured (95.5%), while age and marital status had no significant difference. The primary common histological type of HNC patients was SCC (90.1%), and the top three primary sites were oral cavity (38.0%), larynx (24.0%), and oropharynx (18.1%). The most prevalent tumor grade, T stage, and N stage were grade II (48.8%), T2 (29.2%), and N0 (50.7%), respectively. At the same time, patients with distant metastases accounted for a small number of patients. The baseline information for all patients is shown in Table 1.
TABLE 1 | The clinical and pathological characteristics of the 39,561 individuals with head and neck cancer who were enrolled in our retrospective cohort analysis.
[image: Table 1]Identification of Independent Risk Predictors of Bone Metastasis in HNC Patients
Of the 39,561 HNC patients, 332 (0.8%) patients were diagnosed with BM, while 39,229 (99.2%) HNC patients were diagnosed without BM. Univariate logistic analysis was performed by incorporating the 13 variables. The results showed that race, insurance status, histological type, primary site, tumor grade, T stage, N stage, and distant metastases (brain, liver, and lung) were associated with the development of BM in HNC patients (p < 0.05) (Table 2). Then, based on the variables mentioned above, multivariate logistic regression analysis revealed that race, primary site, tumor grade, T stage, N stage, and distant metastases (brain, liver, and lung) were independent risk predictors of BM in HNC patients (Table 2). In other words, black HNC patients with nasopharynx lesion, grade III, T4 stage, and N3 stage, and distant metastases (brain, liver, and lung) had a high risk of BM.
TABLE 2 | The logistic regression analysis of independent risk factors of bone metastasis in head and neck cancer patients in our retrospective cohort study.
[image: Table 2]Establishment and Verification of the Diagnostic Nomogram for BM in HNC Patients
The above eight independent risk variables obtained from multivariate logistic regression analysis were used to create a diagnostic nomogram. (Figure 1). By assigning values to related variables and calculating the total score of patients, the probability of BM in HNC patients was obtained. The training and the validation sets’ calibration curves showed a relatively similar agreement between the actual probability of BM and the predicted results (Figure 2). The AUC values of the training and the validation sets’ ROC curves were 0.893 and 0.850, respectively (Figure 3). At the same time, ROC curves also revealed that in the training and validation sets, the AUCs of all independent risk predictors were lower than that of the diagnostic nomogram (Figure 4). Furthermore, DCA curves demonstrated that the diagnostic nomogram had a high clinical application value and was an effective tool for evaluating and diagnosing the risk of BM in newly diagnosed HNC patients (Figure 5).
[image: Figure 1]FIGURE 1 | The nomogram was used to predict the risk of bone metastasis in head and neck cancer patients. Each independent risk factor predicting the occurrence of BM in an individual patient is located on the left side of the nomogram, and its corresponding point is located on the variable axis above, with a line drawn upward to the point axis to determine the number of points assigned to each independent risk factor. A total point line is located at the bottom of the nomogram, and the points corresponding to each independent variable are summed to give a total point. Then, a vertical line is drawn from the total point scale to the BM axis to obtain the probability of BM. For example, a patient of white race has no distant metastasis (liver, brain, lung), and the primary site is in the oropharynx with N1 stage, T4 stage, and Grade III. The corresponding total points of this patient’s is 1 (white race) + 16 (no lung metastasis) + 16 (no liver metastasis) + 16 (no brain metastasis) + 13 (oropharynx site) + 40 (N1 stage) + 48 (T4 stage) + 53 (Grade III) = 203, and this patient’ corresponding risk possibility of BM is 0.016.
[image: Figure 2]FIGURE 2 | The training and the validation sets’ calibration curves of the constructed nomogram in our study were used to predict the risk of bone metastasis in head and neck cancer patients. Grey line denotes ideal; black line logistic calibration; dotted line apparent.
[image: Figure 3]FIGURE 3 | The training (A) and the validation (B) sets’ receiver operating characteristic (ROC) curve and area under the curve (AUC) of the constructed nomogram were used to predict bone metastasis of head and neck cancer patients.
[image: Figure 4]FIGURE 4 | Comparison of the area under the receiver operating characteristic curve between the constructed nomogram and the independent predictors in the training (A) and test sets (B). Moreover, the AUC’s results built by SPSS software show that the combined model had the highest AUC in the training (A) and test sets (B), which showed that the constructed nomogram had excellent predictive ability in predicting the probability of bone metastasis in patients with head and neck cancer.
[image: Figure 5]FIGURE 5 | The training and the validation sets’ decision curve analysis (DCA) of the nomogram in our study for predicting bone metastasis in head and neck cancer patients. Black line denotes none; grey line all; dotted line nomogram.
DISCUSSION
HNC patients’ OS rate and survival time increase as diagnosis and treatment technology improve. However, due to the inherent malignancy of HNC, the prolongation of its survival period inevitably increases the risk of distant metastases. For such distant metastases, there is currently no effective treatment. According to the study of Calhoun et al., the average time from the diagnosis of any part of the distant metastases to the death of the patient was 4.3–7.3 months, and 86.7% of those patients would die within 12 months (Calhoun et al., 1994), while Bhandari and Jain proposed that the survival time did not exceed 8 months (Bhandari and Jain, 2013). Bone metastasis is involved in approximately 2–4% of HNC patients and 20–40% of HNC patients with distant metastases, making it one of the three most prevalent types of distant metastases (Pietropaoli et al., 2000). However, the low incidence of distant metastases and the lack of obvious early symptoms in most patients is easy to overlook or miss. By the time apparent symptoms appeared, such as those causing extreme pain, pathological fractures, and spinal cord compression, the patient was likely to have progressed to an advanced stage or to have developed multisite metastasis, thus lost the best treatment chance and failed to prolong OS even with radiotherapy and chemotherapy (Peters et al., 2015). Meanwhile, BM is prone to the thoracolumbar spine, and once paraplegia occurs, it will seriously affect the survival quality of patients (Bhandari and Jain, 2013).
Suzuki et al. analyzed the specific pattern of BM in head and neck squamous cell carcinoma (HNSCC) and concluded that patients with bone exclusive and single BM had a considerably higher median survival time than multiple organs and polyostotic metastases significantly (Suzuki et al., 2020). Sakisuka et al. also showed that early single BM in HNC had a longer survival time than those with multiple BM (Sakisuka et al., 2021). Thus, effective early prediction and intervention for distant metastases in HNC patients is expected to lead to better survival. Although the use of 18F-FDG PET/CT has dramatically improved the chances of detecting distant metastases, especially lung and bone metastases, the high cost limits its practical implementation, and the number of patients who can benefit is also limited. Deurvorst et al. used 18F-FDG PET/CT to screen distant metastases in 190 HNC patients with high-risk distant metastases. The results showed only a 12% positive detection rate, with sensitivity and negative predictive values of 46.2% and 82.6%, respectively. It could be seen that in HNSCC patients with high-risk distant metastases, 18F-FDG PET/CT exhibited a low sensitivity and a high negative predictive value for the detection of distant metastases in long-term follow-up (Deurvorst et al., 2018). The use of genomics and proteomics techniques and radiomics to evaluate the molecular characteristics of the primary tumor can also help predict the occurrence of BM (Han et al., 2021).
However, using these biomarkers to clinical decision-making right away is difficult and impractical, especially for newly diagnosed HNC patients (de Bree et al., 2018). In addition, Duprez et al. concluded that HPV negativity, positive lymph nodes, extra-nodal extension, increased N grade, and advanced tumor stage were associated with the development of distant metastases (Duprez et al., 2017). Other studies have shown that increased T grade, lesions located in the oropharynx, hypopharynx, and supraglottic, lymph nodes larger than 6 cm, local tumor recurrence, or second primary tumor were also risk factors for distant metastases in HNC patients (de Bree et al., 2000; Loh et al., 2005; Peters et al., 2015). The different conclusions reached in these studies may also be related to the bias in patient selection and the small sample size.
However, no studies have developed a diagnostic model for the risk of BM in newly diagnosed HNC patients, meaning that the risk of BM in individual patients cannot be assessed by integrating all independent BM-related risk indicators. In order to address this issue, we used a population-based database to identify independent risk predictors for BM in HNC patients and created a diagnostic nomogram based on demographic and tumor features to assess and predict the risk of BM in those newly diagnosed HNC patients. The discriminatory power of the diagnostic nomogram had been proved to be higher than that of any single predictor, indicating the importance of using an integrated diagnostic model. The present study identified race, primary site, tumor grade, T stage, N stage, and distant metastases (brain, liver, and lung) as independent risk predictors of BM development by analyzing 39,561 HNC patients from the SEER database. Furthermore, based on these eight risk factors obtained, we constructed a diagnostic nomogram to predict BM’s risk in HNC patients. According to reports, only a limited percentage of patients were diagnosed with BM simultaneously as the initial diagnosis of HNC, and most patients were found BM only when there were more obvious skeletal-related events in the subsequent course of the disease. The median time between confirmed BM and the initial diagnosis of HNC was approximately 11.5 months, leading to the progression of the distant metastases and the loss of treatment opportunities (Peters et al., 2015). With this nomogram, it is possible to predict the risk of BM for each newly diagnosed HNC patient simultaneously by simply assigning a value to a specific patient based on the variable information on the nomogram and calculating the total score, thus allowing for early intervention and individualized management of the risk, rather than waiting until the onset of typical skeletal-related events to intervene.
As in previous studies, age and gender were not risk factors for BM in HNC patients (Duprez et al., 2017). In contrast, the T and N stages at initial diagnosis were strongly associated with the probability of developing distant metastases. Specifically, a lower T stage was associated with a reduced prevalence of distant metastases, while a higher T stage was associated with a lower distant control rate of distant metastases. Lymph node-positive patients had a lower distant control rate than lymph node-negative patients (Duprez et al., 2017). Similar conclusions were obtained in our study, especially in HNC patients with the N3 stage, probably because cancer cells can invade surrounding tissues, capillaries, and lymphatic vessels, have more robust growth potential, and thus predisposing them to early metastasis. Our study identified the primary site as independent BM-related risk predictors in HNC patients, which showed that tumor biology features played an important role in disease progression and were linked to the onset and progression of BM. Kotwall et al. performed autopsies on 832 HNC patients and found the distant metastases’ prevalence in the hypopharynx HNC were as high as 60% (Kotwall et al., 1997). Our study also found that the larger tumor grade at the initial presentation, brain, lung, and liver metastases were independent risk factors for BM in HNC patients. Patients with grade IV cancer had the highest rate of distant metastases at the time of diagnosis (Kotwall et al., 1997). Although we found that HNC patients with brain, lung, and liver metastases were at higher risk for BM, the complex mechanisms behind this are still not well understood, and studies on whether metastases occur sequentially have not been reported and whether metastases from other sites contribute to the development of BM synergistically is also worthy of further study. Furthermore, while race as a risk factor for distant metastases is not as intuitive as the primary site, histology type, T stage, and N stage, the race is a risk factor for distant metastases in other cancers with some specificity. For example, white patients with HNC or thyroid cancer are more likely to develop BM than black patients. In contrast, Asian and Pacific Islander lung cancer patients have a higher probability of BM than whites, which may be related to socioeconomic status and specific biological factors, such as the high prevalence of SCC in white patients (Schwartz et al., 2003; Tong et al., 2020; Xu et al., 2020; Chi et al., 2021).
Our study has several advantages; first, to our knowledge, this is the first diagnostic nomogram used to predict the BM of HNC patients. The model was constructed based on a population with a sufficiently large enough sample size to cover almost all kinds of HNC, guaranteeing the representativeness and clinical value of the study results. Second, by performing ROC analysis on the independent risk factors with the constructed diagnostic nomogram, we found that the discriminative power of any independent risk factors was inferior to the integrated diagnostic nomogram, showing the superiority of the integrated predictive power of the diagnostic nomogram. Then, compared with the genetic and molecular level markers associated with BM, the independent risk factors identified in our study were readily available in daily practice, allowing for easy manipulation and personalized prediction.
However, our research inevitably has several limitations. First, the limited number of HNC-BM patients (n = 332) may cause potential errors. Secondly, it is a retrospective study, and selection bias is inevitable. Then, although it contains several of the most common metastatic sites in HNC patients, it lacks information on the order and severity of metastases and other critical locations of potential metastases, such as skin and pleura, which are also common metastatic sites for HNC. Finally, more data from other research centers for external verification will improve the applicability and accuracy of our diagnostic nomogram.
CONCLUSION
In conclusion, our study showed that race, primary site, tumor grade, T stage, N stage, and distant metastases (brain, liver, and lung) were independent risk factors for BM in HNC patients. The diagnostic nomogram constructed using the above risk factors could quickly determine the probability of BM in newly diagnosed HNC patients, assist doctors in providing personalized management of HNC patients, especially in HNC patients with potentially high-risk BM, and conduct better early education, early detection, and early diagnosis and treatment, to maximize the benefits of patients.
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Background: Head and neck squamous carcinoma (HNSC) is one of the most common malignant tumors with high incidence and poor prognosis. Transmembrane emp24 structural domain (TMED) proteins are involved in protein transport and vesicle budding processes, which have implicated various malignancies’ progression. However, the roles of TMEDs in HNSC, especially in terms of development and prognosis, have not been fully elucidated.
Methods: We applied TIMER 2.0, UALCAN, GEPIA 2, Kaplan-Meier plotter, GEO, The Human Protein Atlas (HPA), cBioPortal, Linkedomics, Metascape, GRNdb, STRING, and Cytoscape to investigate the roles of TMED family members in HNSC.
Results: Compared with normal tissues, the mRNA expression levels of TMED1/2/4/5/7/8/9/10 were significantly increased in the TCGA HNSC dataset. And we combined GEPIA 2 and Kaplan-Meier Plotter to select TMED2/9/10 with prognostic value. Then we detected the levels of mRNA in the GEO HNSC database and the protein expression in HPA. It was found that the mRNA and protein expression levels of TMED2/9/10 were increased in HNSC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that TMED2/9/10 and their co-expressed genes promoted the malignant behavior of tumors by participating in biological processes such as intracellular transferase complex, protein transport, focal adhesion, intracellular protein processing. Single-cell analysis and immune infiltration analysis suggested that immune responses of cancer-associated fibroblasts and endothelial cells might be associated with prognosis. Finally, the transcription factors-genes network and protein-protein functional interaction network pointed to genes such as X-box binding protein 1 (XBP1) and TMED7, which might cooperate with TMED2/9/10 to change the progression of HNSC.
Conclusions: Our study implied that TMED2/9/10 and related genes mightjointly affect the prognosis of HNSC, providing specific clues for further experimental research, personalized diagnosis strategies, and targeted clinical therapy for HNSC.
Keywords: head and neck squamous carcinoma, TMED, biomarkers, prognosis, bioinformatics analysis
INTRODUCTION
Head and Neck Squamous Carcinoma (HNSC) is the most common head and neck region malignancy, mainly from the mucosal epithelium of the oral cavity, pharynx, and larynx (Bhat et al., 2021). Unfortunately, HNSC patients were usually diagnosed at an advanced stage due to the small size of HNSC lesions and the lack of effective indicators for early detection of tumor development. Therefore, this carcinoma currently has a 5-year survival rate less than 65% (Miller et al., 2016). At the same time, not only the characteristics of HNSC prone to recurrence and metastasis but also the dramatic decrease in the quality of life of patients seriously threatens the overall survival (Osazuwa-Peters et al., 2018; Saada-Bouzid et al., 2019). Therefore, we urgently need to develop new biomarkers for early screening and diagnosis to improve patient prognosis.
Transmembrane emp24 structural domain (TMED) proteins, also known as p24 proteins, are associated with bidirectional transport processes between the endoplasmic reticulum and the Golgi apparatus. According to previous studies, abnormal expression of TMED proteins with related pathways was closely associated with poor prognosis in many diseases, such as non-alcoholic fatty liver, multiple myeloma, diabetes, Alzheimer’s disease, strong chordoma, osteoarthritis (Wang et al., 2012; Hou et al., 2017; Shin et al., 2019; Ge et al., 2020; Yang J. et al., 2021; Huang et al., 2021). For instance, TMED2 was expressed higher in sphere-shaped clones (SCs) and might play a role in cancer cell proliferation; the increased expression of TMED2 was significantly related to unfavorable outcomes in patients with breast cancer (Sial et al., 2021). TMED3 played a role in promoting the progression and development of lung squamous cell carcinoma, liver cancer, and breast progression (Zheng et al., 2016; Pei et al., 2019; Xie et al., 2021), and TMED8 methylation was a novel predictive and prognostic feature for patients with high-risk neuroblastoma (Liu and Li, 2021). Besides, the high expression of TMED9 might promote the proliferation of cancer cells by inhibiting autophagy and predict poor prognosis in hepatocellular carcinoma (HCC) and colon cancer (Schwarz and Allikmets, 2019; Ju et al., 2021). In addition, downregulated Golgi-endoplasmic reticulum (ER) traffic mediators TMED2 and TMED10 were related to positive prognosis in Prostatic cancer (PCa) (Chen and Hu, 2019). Therefore, TMED proteins might serve as prognostic markers to predict tumor prognosis. Current studies have found that the expression level of TMED2 in HNSC was up-regulated and related to different cancer stages, races, genders, and ages (Sial et al., 2021). Nevertheless, the potential prognosis value of the TMED family has not been fully elucidated in HNSC.
In this study, we first examined the expression level of the TMED family in HNSC tissues and their prognostic value. With the above analyses, we identified TMED2/9/10 as diagnosis and prognosis biomarkers for HNSC. Further, we performed expression-related gene analysis, GO and KEGG enrichment analysis, single-cell analysis, and immune infiltration analysis of TMED2/9/10 to elaborate on their physiological and immune functions. Based on the functional interaction of TMED proteins, we discovered other potential prognostic molecular biomarkers and validated the role of these genes in HNSC progression. Our experimental results may provide research directions for future studies of molecular biomarkers of HNSC development and prognosis, leading to new diagnosis and treatment modalities based on risk stratification.
MATERIALS AND METHODS
TIMER 2.0
TIMER 2.0 (http://timer.cistrome.org/) is The Cancer Genome Atlas (TCGA) database visual portal for the analysis of gene expression differences between tumor and normal tissues and the association between gene expression and immune infiltration (Li et al., 2020). We used the “Gene_DE” module in TIMER 2.0 to analyze the differential TMED expression between HNSC and normal tissues. Moreover, the “Gene” module and “Correlation” module was used to obtain correlation analysis between TMED2/9/10 and immune cell infiltration levels in HNSC (Immune Infiltrates: Cancer-associated fibroblasts, Endothelial cells, B cells). These analyses were performed using the TCGA HNSC dataset (n = 520) by spearman analysis, and differences with a p-value < 0.05 were considered statistically significant. The gene expression levels were displayed with log2 RSEM.
UALCAN
UALCAN (http://ualcan.path.uab.edu/index.html) is a comprehensive web tool based on TCGA database (Chandrashekar et al., 2017). “TCGA Gene analysis” module was used to analyze mRNA levels of the TMED2/9/10 in HNSC patients and healthy individuals and their correlation with clinicopathological parameters, including age, gender, tumor grade, lymph node metastasis, TP53 mutation status, and cancer stage. These analyses were performed using the TCGA HNSC dataset (n = 520), with p-values < 0.05 considered statistically significant results.
Kaplan-Meier Plotter
Kaplan-Meier Plotter (http://kmplot.com/analysis) was used to analyze the correlation between the mRNA expression of the TMED family and overall survival in HNSC patients (Nagy et al., 2021). We can perform pan-cancer analysis by selecting the “Pan-cancer RNA-seq” module. According to high versus low expression, the patient sample (n = 499) was divided into two groups. The result was assessed by Kaplan-Meier overall survival charts, expressed as risk ratios, 95% confidence intervals, and calculated log-rank p-value.
GEPIA 2
GEPIA 2 (http://gepia2.cancer-pku.cn/) provides an in-depth analysis of gene expression data based on TCGA and Genotype-Tissue Expression (GTEx) data (Tang et al., 2019). This study used the “Survival Analysis” module to analyze the relationship between TMED genes and Overall Survival (OS) in HNSC patients. The relevant parameters were set as follows: Group Cutoff = Median, add Hazards Ratio (HR) and 95% Confidence Interval, Axis Units = Months. Moreover, we used the “Similar Genes Detection” module to explore the top 1000 genes that have related expression patterns with TMED2/9/10.
The Human Protein Atlas
The Human Protein Atlas (HPA, https://www.proteinatlas.org/) is an online database that represents protein expression by immunohistochemical staining techniques (Uhlen et al., 2017). We compared TMED2/9/10 protein expression levels in normal and tumor tissues by using the “TISSUE” and “PATHOLOGY” modules. The protein expression scores were based on manually scored immunohistochemical data, including staining intensity (Not detected, Low, Medium or High). The following tissue information was used in this study: patient ID: 2615, male, 17 years old, tonsil (T-61100), normal tissue, NOS (M-00100); patient ID: 2513, male, 27 years old, tonsil (T-61100), normal tissue, NOS (M-00100); patient ID: 2608, male, 51 years old, skeletal muscle (T-13000), head and neck (T-Y0000), squamous cell carcinoma, NOS (M-80703).
cBioPortal
cBioPortal (https://www.cbioPortal.org/) is a repository of cancer genomics datasets from the TCGA database for genomics analysis (Gao et al., 2013). Based on the TCGA HNSC dataset (Nature 2015, 279 total samples), the “Query” module was analyzed for mRNA levels of TMED2/9/10 with Genomic Profiles set to Mutations, Structural Variant, Putative copy-number alterations from GISTIC and mRNA expression Z-score relative to all samples (log RNA Seq V2 RSEM). The case set is complete samples (279). Mutation data were obtained from whole-exome sequencing. The mutation rate of TMED2/9/10 in HNSC compared to normal tissues and expression Heatmap of TMED2/9/10 was detected.
LinkedOmics
LinkedOmics (http://www.linkedomics.org/) is a TCGA database visual web portal for genomics analysis (Vasaikar et al., 2018). The LinkedOmics database was used to identify TMED2/9/10 co-expressed genes, and the number of positive/negative genes was counted separately. We used the Pearson correlation coefficient to analyze the TMED2/9/10 data (n = 517) from the RNAseq of TCGA (HNSC), resulting in 20163 related genes.
Metascape
Metascape (http://metascape.org/) is an open database for studying the functions between genes of interest, using the GO and KEGG databases for pathway enrichment analysis (Zhou et al., 2019). We used Metascape to perform pathway enrichment analysis of TMED2/9/10 and co-expressed genes. Studies were carried out with the default parameters of minimal overlap = 3, minimal enrichment = 3, and p-value cutoff = 0.01.
GRNdb
GRNdb (http://www.grndb.com/) is a gene regulatory network database that provides a reliable way to predict transcription factors associated with genes (Fang et al., 2021). In this study, the “Exact Search” module was used to reveal the upstream regulatory transcription factors of TMED2/9/10 and hub genes in HNSC, as well as to explore the expression levels of TMED2/9/10 and hub genes in different cells. The NES (Normalized Enrichment Score for TF-target pair) value = ALL.
Search Tool for the Retrieval of Interacting Genes and Cytoscape
The STRING database (http://string-db.org/) is an accessible online database to predict PPI information with parameters set to Network Type = physical subnetwork, Required score = 0.900, Size cutoff = no more than ten interactions (Szklarczyk et al., 2021). STRING drew a protein network to discover the interactions between TMED2/9/10 and other proteins, and the results were visualized in Cytoscape software. The obtained PPI network was analyzed by cytoHubba plugin with parameters set to Hubba nodes = Top 10 nodes ranked by degree. (Version: Cytoscape_v3.9.0) (Shannon et al., 2003; Chin et al., 2014).
Microarray Data
The Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) is an online gene expression database containing high-throughput microarray and next-generation sequence functional genomic datasets (Barrett et al., 2013). Two HNSC datasets (GSE13601 and GSE89923) were retrieved and downloaded from the GEO database. GSE13601 contains gene expression profiles of patients with oral tongue squamous cell carcinoma (n = 37) and patients with normal mucosa (n = 20); Platforms: Affymetrix Human Genome U95 Version 2 Array (Estilo et al., 2009). GSE89923 contains gene expression profiles of patients with oral squamous cell carcinoma (n = 57) and normal human gingival epithelial cells (n = 33); Platforms: Affymetrix Human Genome U95 Version 2 Array (Woo et al., 2017).
Statistical Analysis
GEO dataset was downloaded using R language GEOquery package as an external validation (Davis and Meltzer, 2007), and the data was normalized by Limma package “normalizeBetweenArrays” function to obtain the expression of TMED2/9/10 in normal head and neck tissues and HNSC (Bolstad et al., 2003; Ritchie et al., 2015). The rank-sum test was used for this analysis. The statistical analysis of the survival data was completed with the survivor R package, and the visualization was carried out with the survminer R package. The correlation analysis was done by using the Spearman method. “ggplot2” package of R software (Version:3.3.3) was used for data visualization (Maag, 2018).
RESULTS
Defining the TMED Family in HNSC
The TIMER 2.0 database was used to analyze 10 genes in the TMED family and to assess the expression levels of each gene in HNSC tissues and normal tissues (∗ p-value < 0.05, ∗∗ p-value < 0.01, ∗∗∗ p-value < 0.001). The results showed that TMED3 expression was down-regulated in HNSC tissues and the expression level of TMED6 was extremely low both in HNSC tissues and normal tissues. Nevertheless, the expression of the other eight genes in HNSC tissues was elevated significantly higher than normal tissues (Figure 1). In addition, we obtained the same results from UALCAN (Figure 2). The p-value for expression of the TMED family in HNSC versus normal tissues was statistically significant in TIMER 2.0 and UALCAN (p-value < 0.05) (Table 1).
[image: Figure 1]FIGURE 1 | Expression levels of the TMED family in different types of tumor tissues and normal tissues from the TIMER 2.0 database. (* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001).
[image: Figure 2]FIGURE 2 | Expression levels of the TMED family in HNSC patients based on UALCAN database. (A) TMED1; (B) TMED2; (C) TMED3; (D) TMED4; (E) TMED5; (F) TMED6; (G) TMED7; (H) TMED8; (I) TMED9; (J) TMED10. (***, p-value < 0.001)
TABLE 1 | The p-value for expression of the TMED family in HNSC versus normal tissues in TIMER 2.0 and UALCAN.
[image: Table 1]Prognostic Value of TMED 2/9/10 in HNSC
To better understand the prognostic value of the TMED family in HNSC, we investigated the relationship between the TMED family expression and OS in HNSC patients through the GEPIA 2 (Supplementary Figure S1). By using the GEPIA 2, the results showed that HNSC patients with high TMED2/9/10 expression had a worse prognosis than those with low expression (p-value < 0.05) (Figure 3A–C), while other members of the TMED family were not statistically significant in survival analysis (Supplementary Figure S1). Therefore, we considered TMED2/9/10 as prognostic markers for HNSC. Moreover, we analyzed its survival value by performing survival curves in the Kaplan-Meier Plotter database. We also found that the higher expression levels of TMED2/9/10 were closely connected with worse prognosis, which indicated the significant prognostic value in HNSC (p-value < 0.05) (Figures 3D–F). Additionally, we affirmed the diagnostic value of TMED2/9/10 in HNSC patients with the help of the receiver operating characteristic curve (AUC >0.5) (Figures 3G–I). Surprisingly, when we combined three genes as a new biomarker, its diagnostic value became more significant (AUC = 0.847) (Figure 3J). The above results suggested that the expression level of TMED2/9/10 had the capacity to serve as potential diagnostic biomarkers in HNSC diagnosis.
[image: Figure 3]FIGURE 3 | The prognostic value of TMED2/9/10 in HNSC patients based on (A–C) the GEPIA 2 database and (D–F) Kaplan-Meier Plotter database. The diagnostic value of (G) TMED2, (H) TMED9, (I) TMED10 and (J) the combination of TMED2/9/10 in HNSC patients.
Further Validation of TMED2/9/10 Expression Levels
To further validate the role of TMED2/9/10 in HNSC, we explored the mRNA expression levels by using the GEO dataset. We found that TMED2/9/10 in HNSC also showed high expression in the GEO dataset (GSE13601 and GSE89923) (Figures 4A,B). Moreover, we analyzed the protein expression levels of TMED2/9/10 by using the immunohistochemistry (IHC) data from the HPA database. The results showed that the protein expression levels of TMED9 and TMED10 were significantly different in normal head and neck tissues and HNSC, which was consistent with the above results (Figures 4D,E). However, the difference of TMED2 in normal head and neck tissues and HNSC was not significant, which may be due to data heterogeneity, resulting in the difference of protein expression levels of TMED2 from the above results (Figure 4C).
[image: Figure 4]FIGURE 4 | The mRNA expression levels between tumor and non-tumor tissues in head and neck squamous cell carcinoma (HNSC) patients in the GEO dataset including (A) GSE13601; (B) GSE89923 (***, p-value < 0.001). Protein expression levels of TMED2/9/10 in normal head and neck tissues and HNSC of The Human Protein Atlas. (C) TMED2; (D) TMED9; (E) TMED10.
Correlations Between the Expression Levels of TMED2/9/10 and Clinicopathological Features in HNSC
The above data indicated that TMED2/9/10 were up-regulated in HNSC tissues and had an excellent prognostic value on HNSC. Therefore, we further examined the association between TMED2/9/10 and clinicopathological features in HNSC. It was found that TMED2/9/10 were significantly associated with age, gender, cancer grade, TP53 mutation status, lymphatic metastasis, and cancer stage from UALCAN (Table 2).
TABLE 2 | The relationships between TMED2/9/10 expression and clinicopathological features of HNSC patients in UALCAN.
[image: Table 2]Co-Expression and Genetic Alteration of TMED2/9/10 in HNSC.
From the CbioPortal database, the results displayed that the mRNA change rates of TMED2/9/10 in HNSC were 4%, 7%, and 10%, respectively (Figure 5A). To better interrogate the relationship between TMED2/9/10 and HNSC, we explored co-expressed genes related to TMED2/9/10 using data from TCGA HNSC patients. Among them, TMED2 had 10,154 positively correlated genes and 10,009 negatively correlated genes, TMED9 had 9,508 positively correlated genes and 10,655 negatively correlated genes, and TMED10 had 9,712 positively correlated genes and 10,451 negatively correlated genes. Five significant genes positively correlated with TMED2/9/10 and five significant genes negatively correlated with TMED2/9/10 were shown in the form of Heatmaps, respectively (Figures 5B–D). In addition, Venn diagrams indicated 52 genes co-expressed by TMED2/9/10 (Figure 5E).
[image: Figure 5]FIGURE 5 | (A) Expression levels of TMED2/9/10 in cBioPortal database in HNSC. (B–D) Heatmap analysis of genes associated with TMED2/9/10 expression. (E) Intersection co-expression genes of TMED2/9/10.
Enrichment Analysis of TMED2/9/10 in HNSC
To further explore the function of TMED2/9/10 in HNSC, we used GO and KEGG analysis on TMED2/9/10 and co-expressed genes by the Metascape. GO function annotation results showed that TMED2 was mainly involved in transferase complex intracellular, protein transport, Golgi membrane, protein modification by small protein conjugation (Figure 6A); TMED9 was mainly involved in endoplasmic reticulum lumen, cell-substrate junction, extracellular matrix (Figure 6B); TMED10 was mainly involved in intracellular protein transport, focal adhesion, Golgi membrane (Figure 6C); Co-expressed genes were mainly involved in endoplasmic reticulum lumen, envelope vesicles, and bone morphogenesis (Figure 6D). KEGG pathway analysis indicated that TMED2 was enriched in regulation of endocytosis, protein processing in the endoplasmic reticulum, and Yersinia infection pathway (Figure 6E); TMED9 was enriched in focal adhesion, protein processing in the endoplasmic reticulum protein processing in the cell, focal adhesion, and protein processing in the endoplasmic reticulum (Figure 6F); TMED10 was enriched in intracellular protein processing in the endoplasmic reticulum, focal adhesion (Figure 6G); co-expressed genes in the protein processed in the endoplasmic reticulum, phagosome, pathogenic Escherichia coli infection, and focal adhesion (Figure 6H).
[image: Figure 6]FIGURE 6 | GO analysis of (A) TMED2, (B) TMED9, (C) TMED10 and (D) co-expression genes. KEGG pathway enrichment analysis of (E) TMED2, (F) TMED9, (G) TMED10, and (H) co-expression genes.
Gene TMED/2/9/10 Expression Profiling in HNSC
To distinguish the enrichment and expression level of TMED2/9/10 in the different cell types of HNSC, a single-cell analysis was conducted by the GRNdb database. The t-SNE plots showed eight-cell types based on the HNSC single-cell dataset (Figure 7A). The expression levels of TMED2/9/10 were significantly increased in cancer-associated fibroblasts (CAFs), endothelial cells and B cells (Figures 7B–D).
[image: Figure 7]FIGURE 7 | Expression analysis and single-cell analysis of genes TMED/2/9/10 in HNSC. (A) Distinguishing TMED2/9/10 enrichment and expression levels in different cell types of HNSC based on single-cell data. The t-SNE plots showed the expression levels in each cell of HNSC of (B) TMED2, (C) TMED9, and (D) TMED10.
Correlation Between TMED2/9/10 Expression and Immune Cell Infiltration.
To further explore the roles played by CAFs, endothelial cells and B cells in HNSC, we used TIMER 2.0 to investigate the association of TMED2/9/10 with various immune infiltrates in human cancers. The analysis showed that TMED2/9/10 were positively correlated with the level of immune infiltration of CAFs and endothelial cells in HNSC (Figures 8A–H). However, the multiple immune infiltration analysis results showed that TMED2/9/10 were not associated with the level of immune infiltration of B cells in HNSC (Supplementary Figure S2). So, we speculated that TMED2/9/10 might be involved in the immune infiltration process through CAFs and endothelial cells playing crucial roles in immune-oncology interactions.
[image: Figure 8]FIGURE 8 | Correlation of TMED2/9/10 expression with immune infiltration levels in HNSC. (A–D) TMED2/9/10 expression was significantly positively related to infiltrating levels of cancer-associated fibroblast. (E–H) TMED2/9/10 expression had significant positive correlations with infiltrating levels of the endothelial cells.
Potential Upstream Regulatory Factor Targets of TMED2/9/10 in HNSC
To predict transcription factors that might play a regulatory role in the prognosis of HNSC, GRNdb was used to reveal the upstream regulatory transcription factors of TMED2/9/10. After the transcription factors-genes network analysis, we obtained transcription factors related to TMED2 and TMED10. The potential upstream transcriptional regulators predicted by TMED2 were XBP1, cAMP-responsive element-binding protein 3 (CREB3), cAMP-responsive element-binding protein three like 2 (CREB3L2), ETS transcription factor ELK3 (ELK3), ETS variant transcription factor 6 (ETV6), and RNA polymerase II subunit A (POLR2A). The potential upstream transcriptional regulators predicted by TMED10 were XBP1, CREB3, CREB3L2, ETS transcription factor ELK4 (ELK4), ETV6, nuclear receptor subfamily 3 group C member 1 (NR3C1), BCL2 associated transcription factor 1 (BCLAF1), and lysine demethylase 5A (KDM5A). Among the above regulators, the common transcriptional regulators were XBP1, CREB3, CREB3L2, and ETV6 (Figure 9).
[image: Figure 9]FIGURE 9 | Predicted potential upstream regulatory transcription factors of TMED2/9/10 in HNSC based on Gene Regulatory Network database (GRNdb). TF: transcription factor.
Analysis of TMED2/9/10 Through Correlation Heatmap and PPI Network
By constructing a correlation heatmap combining the TMED family in HNSC tissues, we found some positive correlations between TMED2/9/10. The results contributed to our insight into the prognostic impact of TMED2/9/10 versus HNSC patients (Figure 10A). The PPI network constructed by STRING showed genes having tight interactions with TMED2/9/10. By analyzing the association scores ranked by MCC method (Supplementary Table S1), we selected the ten highest-scoring hub genes: TMED7, COPI coat complex subunit beta 1 (COPB1), COPI coat complex subunit beta 2 (COPB2), COPI coat complex subunit gamma 2 (COPG2), COPI coat complex subunit gamma 1 (COPG1), coatomer protein subunit alpha (COPA), ARCN1, COPE, TMED3, and COPI coat complex subunit zeta 2 (COPZ2) (Figure 10B). By further exploring these 10 hub genes in immune infiltration using the TCGA-HNSC cohort in TIMER 2.0, we found that TMED7 expression levels showed a statistically significant positive correlation with CAFs and endothelial cells infiltration levels, which suggested that the hub gene TMED7 might play a role in the immune regulation of HNSC (Figures 10C–E).
[image: Figure 10]FIGURE 10 | Co-expression and PPI of TMED genes in HNSC. (A) Heatmap of the TMED family proteins correlations in HNSC. (B) Protein-protein interaction network of TMED2/9/10, and the top 10 genes among them. (C–E) TMED7 expression had significant positive correlations with infiltrating levels of fibroblast and endothelial cells.
DISCUSSION
Several studies have shown that the TMED proteins were involved in malignant tumors development. TMED2, as a critical factor in cell proliferation and differentiation, was found to exhibit cell-type-specific roles in cancer (Xiong et al., 2010; Shi-Peng et al., 2017). TMED3 was identified as a new prognostic biomarker because its expression was increased in the high-stage and -grade cohorts compared to the low-stage and -grade cohorts in renal cell carcinoma (Ha et al., 2019). Recent studies proposed the idea of TMED8 as a methylated gene regulating energy metabolism in neuroblastoma, which meant TMED8 could be used as a new target for therapy, drug development, and prediction of survival (Liu and Li, 2021). Also, highly expressed TMED9 significantly affected vascular invasion and poor prognosis in patients with hepatocellular carcinoma (Yang Y.-C. et al., 2021). Besides, it has been confirmed that isolated small peptides derived from the extracellular domain of TMED10 could treat cancers with abnormal TGF-β signaling activity by antagonizing TGF-β signaling (Nakano et al., 2017). However, the role of the TMEDs in HNSC has not been fully elucidated. To better explore the effect of the TMED family in HNSC, we picked out TMED2/9/10 for an in-depth study. We addressed the importance of TMED2/9/10 in HNSC from the perspectives of its expression in tumor tissues, prognostic value, expression-related genes, GO and KEGG enrichment analysis, single-cell analysis, and immune infiltration analysis, respectively.
In this study, we found that in HNSC tissues, the expression levels of TMED1/2/4/5/7/8/9/10 were significantly higher than those in normal tissues (Figure 1). In addition, we validated the expression levels of the TMED family in primary tumor and normal tissue in UALCAN (Figure 2). These results in UALCAN also showed us that the expression levels of TMED1/2/4/5/7/8/9/10 in patients were higher. Not only did the above results in TIMER and UALCAN prove the differential expression of the TMED family members, but also many studies explained the abnormalities of the TMED family in tumors. It was reported earlier that increased proliferation and invasion of ovarian cancer cells were positively correlated with ectopic expression of TMED2 (Shi-Peng et al., 2017). Because TMED3 was abnormally elevated in tumor samples from prostate cancer patients, it has also been identified as a potential drug target (Vainio et al., 2012). Evidence showed that the up-regulation of TMED5 in cervical cancer cells promoted malignant behavior and nuclear autophagy, affecting the progression of malignant tumors (Yang et al., 2019). Interestingly, elevated TMED2 and TMED9 expression levels in breast cancer patients were identified as poor prognostic factors (Lin et al., 2019; Ju et al., 2021). Therefore, the elevation of TMED proteins may significantly contribute to the proliferation and migration of cancer cells, thereby aggravating cancer progression. Furthermore, we performed survival curve analysis by GEPIA 2 and Kaplan-Meier Plotter successively to assess the clinical value of the TMED family. We first performed survival curve analysis of the TMED proteins with the GEPIA 2 database and found that TMED2/9/10 could be used as a prognostic marker for HNSC (Figures 3A–C). To ensure this inference, we performed a survival curve analysis in Kaplan-Meier Plotter for TMED2/9/10 (Figures 3D–F). The double-checked results indicated that highly expressed TMED2, TMED9, and TMED10 had a worse prognosis for patients with HNSC. In addition, we verified the diagnostic value of TMED2/9/10 in HNSC with the receiver operating characteristic curve. The result showed that the AUC values of TMED2/9/10 were greater than 0.5 (Figures 3G–I). Moreover, the combination of TMED2/9/10 held higher AUC values in the receiver operating characteristic curve (AUC = 0.847) (Figure 3J). Therefore, significantly elevated expression of TMED2, TMED9, and TMED10 in HNSC patients was considered a reliable diagnostic criterion. Meanwhile, the combination of TMED genes was a potential diagnostic biomarker in the future. To validate the result reliability, we compared TMED2/9/10 expression levels between normal tissues and HNSC tissues by using the GEO dataset as external validation. TMED2/9/10 were up-regulated in HNSC tissues than normal tissues (p < 0.001) (Figures 4A,B). Besides, we utilized the HPA database for IHC data to better validate our conclusions. The results indicated that the expression levels of TMED9 and TMED10 were significantly up-regulated in HNSC (Figures 4D,E), while there was no significant difference in TMED2 (Figure 4C). The above results suggested that the TMEDs might contribute to the development of HNSC.
TMED2/9/10 were significantly associated with critical clinicopathological features such as age, cancer grade, lymphatic metastasis, and cancer stage (Table 2). Thus, the result provided a new perspective on the relationship between clinicopathological features and prognosis. To better understand the function of TMED2/9/10 in HNSC, we first detected the mutation rates of TMED2/9/10 and found that the results were 4%, 7%, and 10%, respectively (Figure 5A). Hou et al. found an increased probability of non-alcoholic fatty liver disease in mice with heterozygous mutations in the TMED2 Hou et al. (2017). Therefore, we conjectured those TMED2/9/10 mutations might contribute to tumor development. Although TMED2/9/10 have higher mutation rates in HNSC, the relationship between them remains unclear, which deserves further exploration. To better explore the function of TMED2/9/10, we explored genes associated with TMED2/9/10 expression and studied their roles in the body. We excavated 5 genes most closely associated with TMED2/9/10 positive and negative, respectively, and found 52 genes co-expressed by TMED2/9/10 (Figures 5B–E). Afterward, we performed GO and KEGG analysis of the top thousand and co-expressed genes associated with TMED2/9/10 expression. GO enrichment analysis showed that the functions of TMED2/9/10 as well as co-expressed genes were mainly concentrated in the transferase complex, endoplasmic reticulum, intracellular protein transport cavity, cell-substrate, focal adhesion as well as coated vesicle (Figures 6A–D). KEGG enrichment analysis indicated that TMED2/9/10 and co-expressed genes were mainly involved in endocytosis, protein processing in the ER, focal adhesion pathway, focal adhesion, and phagosome (Figures 6E–H). The analysis results of these expression-related genes validated the function of TMED2/9/10. It has been demonstrated that during chorioallantois attachment, TMED2 functioned as a critical factor regulating the localization of fibronectin and vascular cell adhesion molecule 1 (VCAM1) (Hou and Jerome-Majewska, 2018). A study found that the cell biological mechanism of misfolded protein cargo entrapment was related to the targeting of TMED9 to the small molecule BRD4780 (Dvela-Levitt et al., 2019). In addition, membrane contact between the ER—Golgi intermediate compartment (ERGIC) and the ER-exit site (ERES) mediated by TMED9 constituted the occurrence of autophagosomes (Li et al., 2021). The transmembrane protein TMED10 was recently identified as a protein channel mediating vesicle translocation and secretion of termed cytosolic leaderless proteins (cytosolic proteins lacking a signal peptide) (Nguyen and Debnath, 2020; Zhang et al., 2020). TMED3, as an intracellular transporter, was knocked down to induce abnormalities in apoptosis-related proteins in lung squamous cell carcinoma (LUSC) cells. At the same time, TMED3 knockdown was involved in the regulation of LUSC cell function, for example, inhibition of proliferation, reduction of colony formation, induction of apoptosis and reduction of migration (Xie et al., 2021). These results suggest that TMED2/9/10 may cause the development or deterioration of HNSC by regulating vesicle trafficking or strengthening endocytosis.
In single-cell analysis, we first distinguished different cell types of the head and neck cancer ecosystem in Figure 7A. Interestingly, we found significantly higher expression levels of TMED2/9/10 in both CAFs, endothelial cells and B cells (Figures 7B–D). The results of the single-cell analysis of TMED2/9/10 implied its relationship with specific immune responses. Recently, it has been shown that TMED2 overexpression was negatively correlated with CD8+ T immune cell levels in HNSC, suggesting that TMED2 might initiate tumor development by altering the levels of immune infiltration in the tumor microenvironment (Sial et al., 2021). Also, Sun et al. found that TMED2 was required for cellular interferon (IFN) responses to viral DNA. MITA (mediator of IRF3 activation, also known as STING) had a vital role in the innate immune response to cytoplasmic viral dsDNA. Interestingly, TMED2 could bind to MITA, stabilize dimerization of MITA, and promote MITA translocation from the ribosome to the ER and the Golgi after viral infection. Moreover, the knockdown of TMED10 did not disrupt TMED2-mediated immune responses Sun et al. (2018). Therefore, we investigated whether TMED2/9/10 expression correlated with immune infiltration levels in HNSC. Our findings suggested that there was a strong positive relationship between TMED2/9/10 expression levels and infiltration levels of CAFs and endothelial cells (Figure 8), and TMED2/9/10 were not associated with the immune infiltration levels of B cells in HNSC (Supplementary Figure S2). According to previous studies, we knew that HNSC stroma was rich in infiltrating CAFs, with the highest concentrations accumulating near the invasive front of the tumor (Markwell and Weed, 2015). The adaptability of HNSC-CAF with myofibroblast characteristics led to the spread of extracapsular tumor cells, increased invasion, and lymph node metastasis (Marsh et al., 2011). At the same time, endothelial cells could vascularize the growing tumor mass and promote tumor cell invasion (Markwell and Weed, 2015). It has been found that after direct contact between endothelial cells and HNSC cells, the Notch ligand Jagged1 induced by mitogen-activated protein kinase (MAPK) in cancer cells activated the Notch signaling pathway in adjacent endothelial cells, ultimately promoting the formation of the capillary blastema (Zeng et al., 2005). In a word, microenvironmental rearrangements mediated by CAFs and endothelial cells have both direct and indirect effects on HNSC invasion. The high expression of TMED2/9/10 in immune cells validates the vital role of the TMED family in immunity.
The transcription factor-gene network showed the components closely related to TMED2/9/10 and HNSC (Figure 9). Among them, CREB3 was associated with the overall survival of HNSC patients and could be used as a prognostic biomarker for HNSC (Bornstein et al., 2016). Interestingly, our study found that the contribution of X-box binding protein-1 (XBP-1) to cancer provided new sights for this study. Abnormal accumulation of misfolded proteins in the endoplasmic reticulum (ER) led to ER stress. A compensatory mechanism called the unfolded protein response (UPR) was activated by cells responding to ER stress (Shajahan et al., 2009). XBP1 was an essential component of the UPR signaling pathway. XBP1 maintained proteostasis by stimulating the expression of chaperones and protein degradation machinery in the ER (Zhong et al., 2021). However, abnormal activity of XBP1 affected normal cell proliferation, apoptosis, metastasis, and ultimately tumorigenesis and tumor progression (Shi et al., 2019). Therefore, precise treatment against XBP1 may become a therapeutic direction for HNSC in the future.
We identified a positive correlation between TMED2, TMED9, and TMED10 (Figure 10A). Interestingly, genetic and biochemical experiments have shown that the stability of TMED proteins could be regulated by other family proteins: knockout or deletion of a TMED protein led to reduced or absent expression of TMED proteins from different subfamilies. For example, Denzel et al., when interrogating changes in the liver of mice heterozygous for the null mutation of TMED10, they found that the deletion of TMED10 not only resulted in developmental arrest before blastocyst formation but also decreased the expression of TMED9 and TMED3 proteins that interacted with them Denzel et al. (2000). So, it was evident that a complex network regulated the function of TMED2/9/10. To better combat HNSC, we should take advantage of the potential network of TMED2/9/10 at the same time. By using PPI network analysis, we identified hub gene TMED7 that was significantly associated with both TMED2/9/10 (Figure 10B). Similarly, we found strong positive correlations between infiltration levels of CAFs and endothelial cells and TMED7 expression in HNSC (Figures 10C–E). In particular, TMED7 could inhibit the Toll-like receptor 4 (TLR4) signaling pathway (Doyle et al., 2012). TLRs are important factors in the immune response, which can recognize invading pathogens and activate inflammatory responses. A previous study showed that TLR4 was aberrantly expressed in cancer cells, affecting the tumor microenvironment. To our surprise, there was evidence indicating that high expression of TLR4 was associated with poor prognosis in HNSC (Hu et al., 2021). Therefore, we hypothesized that activation of TMED7 could improve the prognosis of HNSC patients. In Supplementary Figure S1, we assessed the effect of the expression level of TMED7 on the prognosis of HNSC using the GEPIA 2 database. Although this result is not statistically significant, the trend of the survival curve is compatible with our inference. These pieces of evidence demonstrated that the hub gene TMED7 based on TMED2/9/10 could alter HNSC prognosis through immune infiltration. It reminds us that TMED2/9/10, as well as related genes, can be used as biological targets of HNSC.
Taken together, our results suggested that TMED2, TMED9, and TMED10 were significantly up-regulated in HNSC patients, and their upregulation was inversely correlated with HNSC prognosis. At the same time, we validated the above conclusions using GEO dataset and HPA database. Then, we used GO and KEGG enrichment analysis to elaborate in-depth on the functions of TMED2/9/10 and co-expressed genes. In addition, the results of the single-cell analysis and immune infiltration analysis also revealed that TMED2/9/10 affected the development of HNSC through immune cells. And the hub gene TMED7 and the transcription factor XBP1 were also expected to be potential prognostic markers and therapeutic targets for HNSC. So, we can infer that the transcription factor XBP1 might regulate the expression of TMED2/9/10, disturb their functions, boost immune cell infiltration, thereby promoting abnormal invasion of cancer cells and leading to poor prognosis of HNSC.
Regrettably, this study had some limitations. First, our selected sample data were confined to the TCGA and GEO databases, and further HNSC cohorts should be recruited in the future to confirm the results. Second, further experimental studies are required to validate the function of TMED2/9/10 at the cellular level. Finally, we still need to further explore the mechanism that TMED2/9/10 affect the prognosis of HNSC patients to provide more possibilities for clinical treatment.
CONCLUSION
In conclusion, in this study, TMED2/9/10 and related genes entered our horizons as potential prognostic biomarkers, and the intersection of their functions helped researchers understand the pathogenesis of HNSC and provided a new approach for the treatment and prognosis of HNSC. At the same time, we analyzed the potential clinical value of the TMED family in the pathogenesis and development of HNSC and its associated oncogenic signaling pathways, providing clues for multi-target and TMED2/9/10-mediated targeted therapy. Finally, our in-depth exploration of TMED2/9/10 functions and immune infiltration allowed us better to understand the specifically expressed genes in HNSC patients, facilitating us to predict the survival of HNSC patients by the related genes. The above results supported targeting TMED2/9/10 as a new strategy for diagnosing and treating HNSC. However, the value of this conclusion for the prognosis of HNSC patients still needs further validation.
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Background: Head and neck squamous cell carcinoma (HNSCC) arises from squamous cells in the oral cavity, pharynx and larynx. Although HNSCC is sensitive to radiotherapy, patient prognosis is poor. Necroptosis is a novel programmed form of necrotic cell death. The prognostic value of necroptosis-associated gene expression in HNSCC has not been explored.
Material and Methods: We downloaded mRNA expression data of HNSCC patients from TCGA databases and Gene Expression Omnibus (GEO) databases, and compared gene expression between tumor tissues and adjacent normal tissues to identify differentially expressed genes (DEGs) and necroptosis-related prognostic genes. A model with necroptosis-related genes was established to predict patient prognosis via LASSO method and Kaplan-Meier analysis. GSE65858 data set (n = 270) from GEO was used to verify the model’s predictive ability. Gene set enrichment analyses, immune microenvironment analysis, principal component analysis, and anti-tumor compound IC50 prediction were also performed.
Results: We identified 49 DEGs and found 10 DEGs were associated with patient survival (p < 0.05). A risk model of 6-gene signature was constructed using the TCGA training data set and further validated with the GEO data set. Patients in the low-risk group survived longer than those in the high-risk group (p < 0.05) in the GEO validation sets. Functional analysis showed the two patient groups were associated with distinct immunity conditions and IC50.
Conclusion: We constructed a prognostic model with 6 necroptosis-associated genes for HNSCC. The model has potential usage to guide treatment because survival was different between the two groups.
Keywords: risk score, prognosis, squamous cell carcinoma, necroptosis, immune, tumor
INTRODUCTION
Head and neck squamous cell carcinomas (HNSCC) arise from squamous cells in oral cavity, pharynx, and larynx. Although HNSCC is sensitive to radiotherapy, patient prognosis is poor. The most common risk factors for HNSCC include smoking, alcohol consumption and human papilloma virus infection (Fakhry et al., 2008). The treatment of HNSCC is integrated and multimodal including surgery, radiotherapy, chemotherapy, and most recently immonotherapy. Patients with HNSCC still suffer from poor survival in spite of the progress in new treatment strategies. To improve patient survival, new prognostic models are needed for precision medicine in addition to identification of novel therapeutic targets.
Necroptosis is another mode of regulated cell death mimicking apoptosis and necrosis. Necroptosis is associated with a range of pathological conditions and diseases, including cancer. It is mediated by Fas, TNF, and LPS and death receptors (Vanden Berghe et al., 2014). Binding of ligands and rceptors activates Receptor-interacting protein kinase-3 (RIP3 or RIPK3), which phosphorylates and activates mixed lineage kinase domain-like (MLKL) (Sun et al., 1999). Phosphorylated MLKL translocates to cellular membranes, and ruptures cellular membranes, leading to cell swelling and release of intracellular components (Dondelinger et al., 2014; Hildebrand et al., 2014; Wang et al., 2014). Another characteristic of necroptosis is inhibition of caspase-8.
A plethora of evidences has shown that necroptosis is associated to tumors. Downregulation of RIPK3 was reported in several cancers. For example, RIP3 expression was reduced in breast cancer (Koo et al., 2015). RIP3 expression was also decreased in colorectal cancer and was an independent prognostic factor of survival. Overexpression of RIP3 proliferation of colorectal cancer cells in vitro (Feng et al., 2015). In acute myeloid leukemia, RIP3 expression was again reduced in most samples. In DA1-3b leukemia cells, overexpression of RIP3 induced necroptosis (Nugues et al., 2014). Li et al. (2020) reported that necroptosis was associated with survival of HNSCC patients (Li et al., 2020). Although necroptosis plays an important role in patient survival of a variety of tumors, the role of necroptosis in HNSCC remains unclear.
The present study aimed to explore the potential roles of necroptosis-related genes on the survival of HNSCC patients and developed a risk-score model with necroptosis-related gene expression levels. The results might also further our understanding of necroptosis in HNSCC.
MATERIALS AND METHODS
Database
The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/repository) is a public funded project that aims to discover major cancer-causing genomic alterations. In the present study RNA sequencing (RNA-seq) data of tumor tissues of 487 HNSCC patients and 42 matched normal tissues was downloaded from TCGA database. Specifically expression data of 67 necroptosis-associated genes was used for analysis (Supplementary Table S1). An independent data set was downloaded from the GEO database (GSE65858, n = 270) (https://www.ncbi.nlm.nih.gov/geo/) to validate the prognostic model based on TCGA database.
Our study did not require ethical approval because we used information freely available in the public domain.
Identification of Different Expression Genes
Expression of necroptosis-related genes between tumor tissues and adjacent normal tissues was compared to identify DEGs by using the “linear models for microarray data (limma)” R package available from the Bioconductor project (www.bioconductor.org). Limma is a popular package for analyzing microarray and RNA-seq data. We calculated the ratios for all genes between samples to determine the fold-change (FC) in expression between groups. DEGs were defined as |log2FC|>1. The false discovery rate (FDR) was set to be below 0.05.
A protein-protein interaction (PPI) network of DEGs were developed utilizing the STRING database (https://string-db.org/). The STRING database integrates all known and predicted associations between proteins, including both physical interactions as well as functional associations. The Gene Ontology (GO) was used to describe the biological processes (BPs) and molecular functions (MFs) of the necroptosis-related genes. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to perform functional annotation mapping of genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to brose genome maps (Huang et al., 2007). R-package ‘GOplot’ was used to provide a deeper insight into expression data and generate plots.
Risk Signature Establishment
Patients’ clinical data was downloaded from TCGA. The univariate Cox proportional hazard regression analysis was used for screening of prognostic genes. Least absolute shrinkage and selection operator (Lasso) regression was conducted with 10-fold cross-validation and a p value of 0.05.
After identification of potential prognostic genes, the risk score was calculated as follow:
[image: image]
Where X is coefficient and Y is gene expression level.
Using the median risk score as the cutoff point, we divided the patients into either the low-risk group or the high-risk group (Meng et al., 2019; Hong et al., 2020). Overall survival (OS) was evaluated by Kaplan-Meier method using the log-rank test to find difference between the two groups. We performed Principal Component Analysis (PCA) in R package using the prcomp function. T-distributed stochastic neighbor embedding (t-SNE) was used for data exploration and embedding high-dimensional data for visualization. The 1-, 3-, and 5-year time-dependent receiver operating characteristics (ROC) curves were plotted in R package using the “survival,” “survminer” and “timeROC” functions. We used univariate Cox regression and multivariable Cox regression to explore whether patient and tumor characteristics (age, gender, grade of tumor differentiation, and TNM stage) and the calculated risk scores were independent risk factors. The rms package was employed to fit regression model and depict nomograms for the 1-, 3-, and 5-year OS.
The risk score model was validated with the HNSCC GEO dataset (GSE65858).
Gene Set Enrichment Analyses
Genes that might have an association with the development of HNSCC were identified by GSEA. GSEA was performed by using the fast preranked gene set enrichment analysis (fgsea) package. KEGG gene sets in GSEA database were downloaded. A FDR value < 0.05 was considered to be statistically significant.
Analysis of Tumor Microenvironment and Immune Checkpoints
The CIBERSORT, EPIC, MCPcounter, QUANTISEQ, TIMER, and XCELL algorithms were used to assign cell types of TME of the patients and analyze the immunological characteristics (http://timer.cistrome.org/) (Hong et al., 2020). TME scores and immune checkpoint activation were compared between the two groups with ggpubr R package.
Prediction of Treatment Response
pRRophetic R package was used for prediction of drug response as indicated by half-maximal inhibitory concentration (IC50) according to Genomics of Drug Sensitivity in Cancer (GDSC) (Geeleher et al., 2014).
RESULTS
Identification of Different Expression Genes and Functional Analysis
The workflow of DEG identificatin is shown in Figure 1. We compared the expression levels of 67 necroptosis-related genes between 487 tumor samples and 42 adjacent normal samples from the HNSCC patients and identified 49 DEGs (p < 0.05). Necroptosis-related genes are listed in Supplementary Table S1. Among 49 DEGs, 42 were upregulated and 7 were downregulated in the tumor tissues (Figure 2A). Interactions of the 49 DEGs were revealed by PPI analysis (Figure 2B). Figure 2C shows the associations between the necroptosis-related genes.
[image: Figure 1]FIGURE 1 | Flow diagram of the study.
[image: Figure 2]FIGURE 2 | Expressions and interactions of 67 necroptosis-related genes in the normal and tumor tissues. (A) Heatmap of necroptosis-related genes. (B) Gene interactions revealed by PPI. (C) Gene correlation network (Red and blue lines indicate positive and negative association respectively). *p < 0.05; **p < 0.01; ***p < 0.001, tumor vs. normal tissues.
GO enrichment analysis and KEGG pathway analysis showed that these DEGs were related to extrinsic apoptotic signaling pathway, TNF signaling pathway, necroptosis, and apoptosis (Figures 3A–C) (Supplementary Table S2).
[image: Figure 3]FIGURE 3 | Functional analysis of differentially expressed genes (DEGs). (A) GO enrichment barplot (longer bars indicate more enriched genes, and redness means the differences between the low-risk and the high-risk groups). (B) KEGG pathway bubble graph (bigger bubbles mean more enriched genes, and redness means the differences between the low-risk and the high-risk groups; q-values were adjusted p-values). (C) Circular plot of KEGG pathways. Left: Downregulation gene expression is indicated by green color and upregulation gene expression by red color. Right: Genes are linked via color ribbons to their function (p < 0.05 for all).
Model Construction and Validation
Univariate Cox regression analysis showed that six necroptosis-related genes were correlated with OS (p < 0.05 for all) (Figure 4A). Then we constructed a six-gene prognostic signature by LASSO regression analysis (Figures 4B–D). Results of the Lasso regression showed the model had good predictive performances. Figure 4 shows the first-rank value of Log (λ). The six genes are Fas-associated protein with death domain (FADD), Anexelekto (AXL), heat shock protein 90-alpha (HSP90AA1), BCL2 Interacting Protein 3 (BNIP3), amyloid precursor protein (APP), and cyclin-dependent kinase inhibitor 2A (CDKN2A).
[image: Figure 4]FIGURE 4 | Establishment of prognostic signature. (A) Ten prognostic genes with p values. (B) Heat map of gene expression. (C) LASSO analysis with 10-fold cross-validation identified 6 prognostic genes. (D) Coefficient profile plots of 6 prognostic genes.
The risk score formula was set up as follow (Hong et al., 2020): risk score = FADD × (0.0037) + AXL × (0.0131) + CDKN2A × (−0.0105) + HSP90AA1 × (0.0009) + BNIP3 × (0.0201) + APP × (0.0009).
The distribution of risk scores and survival times were compared between the low-risk group and the high-risk group. Figure 5 shows the high-risk group had the worse prognoses in both training and validation sets.
[image: Figure 5]FIGURE 5 | Prognosis assay in the training and validation sets. (A,B) Risk score of the training and validation sets. (C,D) Survival comparison of the low-risk and the high-risk groups in the training and validation sets. (E,F) The heat map of clinicopathological characteristics and expression of 6 genes. (G,H) Survival curves of the low-risk and the high-risk groups in the training and validation sets. (I–L) PCA and T-NSE plots of the low-risk and the high-risk groups of the training and validation sets.
Construction of Nomogram
A nomogram was established on the basis of the results of the multivariate analysis in the development cohort, which identified risk score, age, tumor grade, and tumor stage to be independent prognostic factors. The hazard ratios (HR) of these factors are shown in Figures 6A–E.
[image: Figure 6]FIGURE 6 | Nomogram of the model. (A–D) Univariate and multivariate Cox analyses of clinicopathological characteristics and risk score with overall survival (OS) in the training and validation sets. (E) The nomogram that integrated the risk score, age, and tumor stage to predict OS. (F) The calibration curves for OS. (G,H) The ROC curves of the low-risk and the high-risk groups of the training and validation sets.
Assessment of Risk Model
The discriminative power of whether the constructed nomogram could correctly predict the probability of OS was quantified using the area under the time-dependent ROC curves (AUC). In the training set, 1-, 3-, and 5-year AUCs were 0.639,0.653 and 0.582 respectively; and they were 0.651,0.586, and 0.597 respectively in the validation set (Figures 6F,G).
Gene Set Enrichment Analysis
GSEA identified 20 enriched pathways (Supplementary Table S3). The top pathways included basal cell carcinoma, pentose phosphate pathway, hedgehog signaling pathway, pentose phosphate pathway, small cell lung cancer, focal adhesion, extracellular matrix–receptor (ECM-receptor) interaction pathway, TGF-beta signaling pathway, renal cell carcinoma, glycolysis gluconeogenesis, and WNT signaling pathway. Most of them are associated to tumor development and metastasis and were enriched in the high-risk group. On the other hand, seven pathways enriched in the low-risk group were related to immunity, such as transendothelial migration of leukocyte and NK cell-mediated cytotoxicity (Figure 7A). Therefore the two groups had distinct pathways.
[image: Figure 7]FIGURE 7 | Tumor immune microenvironment. (A) Top 10 pathways by GSEA analysis. (B,C) The heat maps and bubble chart of immune cells. (D) The ssGSEA scores of immune functions of the low-risk group and the high-risk group. (E) The comparison of immune and stromal scores between the low-risk group and the high-risk group. (F) The expression of 34 checkpoints of the low-risk group and the high-risk group. (G) Twelve targeted and immunotherapeutic drugs with significantly lower IC50 for the low-risk group compared to the high-risk groups.
Cold and Hot Tumors
Immunotherapy is promising for solid tumors. Immune cell infiltrates are crucial for host immune reaction. The infiltration of immune cells was estimated by several algorithms. As shown in Figures 7B,C, more immune cells were observed in the low-risk group, including naïve B cells, memory B cells, CD8+ T cells, naive CD4+ T cells, memory resting CD4+ T cells, activated dendritic cell and activated mast cells (Supplementary Table S4). In addition, all of the 13 immune-related pathways had higher activity in the low-risk group (Figure 7D).
Figures 7D,E show both immune score and microenvironment score were higher in the low-risk group. Besides, the immune checkpoint (IC) expression, including CTLA-4, PD-1, LAG-3, and TIGIT was lower in the low-risk group (Figure 7F). This indicated that tumors of the low-risk group were more sensitive to immunotherapy (hot tumor) and tumors of the high-risk group were more resistant to immunotherapy (cold tumor) (Figure 7G).
Finally, we found IC50 of the anti-tumor compounds was usually lower in the low-risk group, such as Bosutinib, a dual kinase inhibitor of both the BCR-ABL and Src tyrosine kinases.
DISCUSSION
We assessed the prognostic value of expression of 10 necroptosis-related genes in a retrospective analysis of 487 patients with HNSCC in TCGA database. Our results show that HNSCC patients could be groups into either high-risk group or low-risk group by a calculated score based on the 6 genes. Patients in the high-risk group were associated with worse OS.
Among 6 necroptosis-related genes, five are associated with a higher risk of HNSCC. They include FADD, AXL, HSP90AA1, BNIP3, and APP genes. FADD is an adaptor protein that noncovalently associates with the death domain of the cytoplasmic region of Fas (Chinnaiyan et al., 1995). FADD can promote survival of osteosarcoma cells (Hollomon et al., 2020). AXL is a receptor tyrosine kinase, that is, activated by Gas6. AXL promotes epithelial-to-mesenchymal transition and cancer progression. It is also associated with anti-tumor drug resistance (Wu et al., 2014; Gay et al., 2017; Boshuizen et al., 2018). AXL was supposed to be a target of cancer therapy (Dang et al., 2009; Mullen et al., 2011). HSP90AA1 is a highly conserved molecular chaperon in evolution (Condelli et al., 2019). HSP90AA1 is expressed in tumors and can activates many oncogenic proteins, thereby stimulating cancer cell survival, proliferaton, and invasiveness (Eustace et al., 2004; Chehab et al., 2015). HSP90AA1 is also a potential molecular target in cancer therapy.
BNIP3 is a stress sensor protein (Bruick, 2000). BNIP3 interacts with anti-apoptotic proteins, including E1B 19 kDa protein and Bcl2. BNIP3 was found to play an important role in carcinogenesis (Vijayalingam et al., 2010). BNIP3 expression is upregulated by hypoxia and in a variety of cancers (Sowter et al., 2003; Giatromanolaki et al., 2004; Leo et al., 2006; Shaida et al., 2008; Burton and Gibson, 2009). APP is most abundant in neurons and abnormal processing of APP is associated to senile dementia. Surprisingly several cancers have abnormal APP expression (Takagi et al., 2013). Lim et al. (2014) reported that APP knockdown reduced breast cancer cell growth (Lim et al., 2014).
The only gene that was associated with low risk of death was CDKN2A. CDKN2A encodes for tumor suppressor protein p16INK4a, which is often inactivated in cancer (Witcher and Emerson, 2009) (Alevizos et al., 2012). Veganzones et al. (2015) reported that approximately 90% of HPV-negative HNSCC tumors exhibited low expression of DKN2AC, mainly due to gmutations, loss of heterozygosity, and hyper-methylation of the gene promoter (Veganzones et al., 2015). In addition, CDKN2A loss-of-function in patients with non-small cell lung cancer had inferior OS when treated with immune checkpoint blockade (ICB) when compared to wild-type patients (Gutiontov et al., 2021).
Immune checkpoints (ICs) ensure the maintenance of immune homeostasis by regulating the time course and intensity of immune responses. However, receptor-based signaling cascades from ICs play a negative regulatory role in T cells, allowing tumors to evade immune surveillance by inducing immune tolerance. Immune checkpoint inhibitors (ICIs) block checkpoint proteins from binding with their partner proteins, allowing T cells to kill cancer cells. Immune checkpoint inhibitors are approved to treat a variety of cancer types, including head and neck cancer. Human tumors evade immune attack in tumor tissue and different immune profiles predict different outcomes of immunotherapy (Hui and Chen, 2015; Bonaventura et al., 2019; Pérez-Romero et al., 2020). Effective anti-PD-1/-L1 therapy depends on lymphocyte infiltration (“hot tumors”). In contrast, “cold tumors” lacks T cells infiltration. Pembrolizumab and nivolumab that target PD-1 could improve OS of patients with recurrent HNSCC(Ferris et al., 2016; Seiwert et al., 2016). We found patients in the high-risk group were characterized by higher expression of ICs, suggesting that necroptosis-related gene expression might guide immunotherapy. We also found IC50 of several anti-tumor agents was lower in the low-risk groups. For example, Bosutinib, a dual kinase inhibitor of both the BCR-ABL and Src tyrosine kinases and is used in the therapy of Philadelphia chromosome-positive chronic myelogenous leukemia, has lower IC50 in the low-risk group.
By our model, we found pathways such as focal adhesion, basal cell carcinoma, hedgehog signaling and WNT signaling (Kumar et al., 2021) were enriched in the high-risk group. These pathways are associated with tumor development. In the low-risk group, most of the enriched pathways were related to immunity, including leukocyte transendothelial migration and NK cell-mediated cytotoxicity. These may explain why the local immune signatures are different between the two groups, which might predict prognoses and response to immunotherapy.
Our study has some limitations. First, this was a retrospective study based on databases, which may have some inherent biases. Second, although our nomogram was externally validated, the validation database contained a small sample size. Third, the conclusion needs to be validated using other populations.
In conclusion, we established a novel necroptosis-associated gene signature for prognosis of HNSCC. The established signatures reflected that necroptosis would be associated with responses to targeted therapy and immunotherapy of HNSCC. However, our study was susceptible to the inherent biases of the retrospective study. The potential of this signature in predicting patient survival and treatment responses need to be validated in future tests.
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Mesenchymal stem cells (MSCs) are characterized by self-renewal, rapid proliferation, multipotent differentiation, and low immunogenicity. In addition, the tropism of MSCs towards injured tissues and tumor lesions makes them attractive candidates as cell carriers for therapeutic agent delivery and genetic material transfer. The interaction between tumor cells and MSCs in the tumor microenvironment plays an important role in tumor progression. Oral cancer is one of the most common malignant diseases in the head and neck. Although considerable improvements in the treatment of oral cancer were achieved, more effective and safer novel agents and treatments are still needed, and deeper studies on the etiology, pathology, and treatment of the oral cancer are desirable. In the past decades, many studies have reported the beneficial effects of MSCs-based therapies in the treatment of various diseases, including oral cancers. Meanwhile, other studies demonstrated that MSCs may enhance the growth and metastasis of oral cancer. In this paper, we reviewed the research progress of the effects of MSCs on oral cancers, the underlying mechanisms, and their potential applications in the treatment of oral cancers.
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1 INTRODUCTION
MSCs are a class of non-hematopoietic stem cells belonging to the mesoderm, with the characteristics of self-renewal, high proliferation, multi-directional differentiation potential. It has been demonstrated that one of the possible sources of MSCs is the blood vessel wall, which is a type of perivascular cells. This provides a great potential for its involvement in tissue regeneration (da Silva Meirelles et al., 2008). Many studies have been conducted to validate the use of MSCs in bone regeneration and nerve regeneration (Liau et al., 2020; Fu et al., 2021). MSCs exhibit chemotactic properties similar to immune cells in response to tissue injury and inflammation. MSCs can release various bioactive factors, such as immunosuppressive molecules, growth factors, chemokines, and complement components to regulate the inflammatory process and create a balanced inflammatory and regenerative microenvironment in damaged tissues, thereby treating various degenerative and inflammatory diseases (Shi et al., 2018). Because of their inherent ability to migrate and colonize into tumor tissues, MSCs were reported to closely interacted with tumor and tumor cells. It was shown that interleukin (IL)-12-expressing MSCs could inhibit the growth of tumor in a model of mouse renal cell carcinoma (Gao et al., 2010), and in a mouse melanoma brain metastasis model, intracarotid administration of oncolytic herpes simplex virus-armed MSCs significantly prolonged the survival of mice (Du et al., 2017). Thus, MSCs are attracting increasing interest in the field of oncology.
Oral cancer is one of the most common malignant tumors of the head and neck, often occurring in the middle-aged and elderly population and more than 90% of oral cancer are oral squamous cell carcinoma (OSCC) (Choi and Myers, 2008). Over the past decades, the incidence of oral cancer has been on a gradual increase. Smoking, excessive alcohol consumption as well as betel nut chewing, are the main causative factors of oral cancer. In addition, it cannot be ignored that the number of young patients suffering oral cancer also has been increasing. According to public reports, the number of new oral cancer cases and patients of new deaths reached 377,000 and 177,000, respectively, worldwide in 2020 (Chai et al., 2020; Grigolato et al., 2021; Sung et al., 2021).
A growing number of studies have demonstrated the beneficial effects of MSCs-based therapies in the treatment of various diseases, including oral cancers. However, some other studies showed that MSCs may enhance the growth and metastasis of oral cancer. The exact role of MSCs’ effects on tumor, i.e., whether MSCs could exert tumor-suppressive effects or, conversely, whether they favor tumor growth, has not been fully elucidated, and some concerns, including the mechanisms responsible for these phenomenons remain to be not yet clear. To better serve the discovery of potential strategies for the treatment of oral cancer, we reviewed the effects of MSCs on oral cancer, the underlying mechanisms, and MSCs’ potential applications in the treatment of oral cancer.
2 DISCOVERY AND CHARACTERIZATION OF MESENCHYMAL STEM CELLS
Originated from the mesoderm and firstly found in bone marrow, MSCs can be isolated from multifarious post-natal tissues, including adipose, umbilical cord, umbilical cord blood, amniotic fluid, and other tissues (Whiteside, 2018; Almeida-Porada et al., 2020; Tavakoli et al., 2020). Apart from these tissues, MSCs have also been isolated from dental tissues, including dental pulp, dental follicle, apical papillae, periodontal ligament, and gingiva (Shi and Gronthos, 2003; Pierdomenico et al., 2005; Janjanin et al., 2008; Lindroos et al., 2008; Sonoyama et al., 2008). MSCs are positive for CD105, CD90, CD73, CD146, CD29, STRO-1, but are negative for CD14, CD34, CD45 (Lei et al., 2014; Hung et al., 2015; Ji et al., 2016). Under suitable inductive medium, MSCs are capable of differentiating into osteoblasts, adipocyte, chondrocytes, and many other cells (Whiteside, 2018).
MSCs are localized throughout the adult body as a small population in the stroma of the tissue concerned, and the micro-environment protect their self-renewal potential and undifferentiated state (Urbanek et al., 2006; Wang et al., 2011). Upon tissue injury or inflammation insult, MSCs are activated and leave their ecological niche and migrate to the site of injury, inflammation and tumors, where they are able to secrete various cytokines, chemokines, and growth factors that closely interact with the inflammatory environment and the tumor environment (TME), respectively (Sun et al., 2014).
Compared to embryonic stem cells, MSCs are related with fewer ethical issues, and have emerged as one of the most promising cell therapy tools due to their excellent biological properties, such as relatively simple cell isolation procedure, high potential for expansion, low immunogenicity, pluripotency, and the ability to secrete mediators that support tissue transformation or replacement (McLeod and Baylis, 2006; Caulfield and Ogbogu, 2011; Widdows et al., 2014; Kariminekoo et al., 2016; Musiał-Wysocka et al., 2019). With the accumulation of data about the interaction between MSCs and tumor cells, MSCs have been demonstrated the natural anti-tumor functions, which is the basis for intensive research for new methods using MSCs as a tool to inhibit tumor growth and invasion, although the dualistic role of MSCs on tumors still exists.
3 INTERACTION BETWEEN MESENCHYMAL STEM CELLS AND TUMORS
The interaction of MSCs and malignant tumors provides new clinical ideas for the treatment of malignant tumors. However, the promotive or inhibitory effects of MSCs on tumors are still inconclusive. It is shown that the normal tissue microenvironment, whose stability is usually maintained by MSCs, is subsequently changed to TME once a tumor develops and the in vivo homeostasis is disrupted, and TME also could be remodeled by MSCs of normal tissue origin (Whiteside, 2018). Interactions between MSCs and tumors in TME are described in Figure 1.
[image: Figure 1]FIGURE 1 | Interaction between MSCs and tumors in TME. Upon tumorigenesis, tumors secrete relevant chemokines, cytokines and growth factors to attract MSCs, after which MSCs undergo a series of phenotypic and functional changes and secrete relevant bioactive factors to act on neighboring cells, thus exerting tumor-promoting or suppressive effects. Abbreviations: CCL2 and 5, CC-chemokine ligands 2 and 5; CXCL12 and 16, chemokine ligands 12 and 16; HGF, hepatocyte growth factor; α-SMA, α-smooth muscle actin; FSP, fibroblast surface protein; SDF-1, stromal-derived factor 1; IP-10, IFN-γ-inducible protein 10. This figure was created by using Figdraw.
Some chemokines, cytokines and growth factors in TME have strong chemotactic effects on MSCs, such as CC-chemokine ligands 2 and 5, chemokine ligands 12 and 16, platelet-derived growth factor (PDGF)-AB, vascular endothelial growth factor (VEGF), hepatocyte growth factor and tumor necrosis factor (TNF)-α (Ponte et al., 2007; Shi et al., 2017). It is reported that after exposure to tumor cell-conditioned medium (CM), bone marrow derived MSCs (BMSCs) acquired a myofibroblast phenotype, which characterized by increased expression of α-smooth muscle actin, fibroblast surface protein, vimentin and stromal-derived factor 1, thereby promoting the growth of tumor cells (Mishra et al., 2008). After co-culture with VEGF, MSCs acquired a lymphatic phenotype and an endothelial cells phenotype characterized by the expression of von Willebrand factor, VEGF receptors 1 and 2, vascular endothelial-keratin, and vascular cell adhesion molecule-1, which promote vascular and lymphatic angiogenesis, ultimately lead to regional lymph node metastasis (Oswald et al., 2004; Conrad et al., 2009). These effects are also verified by the study that the BMSCs-mediated tumor promotion is associated with enhanced angiogenesis induced by the secretion of pro-angiogenic factors. In a study of colorectal cancer, Huang et al. (2013) found that MSCs-derived IL-6 could activate Akt and ERK pathways in endothelial cells through upregulation of endothelin-1 in cancer cells, which subsequently enhanced tropism and angiogenesis to tumors. Stromal-derived factor-1α secreted by BMSCs promotes the invasion of squamous cell carcinoma by activating nuclear factor-κB (Chung et al., 2006; Rehman and Wang, 2008; Xu et al., 2019). The epithelial-mesenchymal transformation (EMT) is a key factor in the migration and invasion of malignant tumors. The morphology and phenotype of cancer cells post-EMT are altered and acquire the ability to metastasize to distant sites. Tumor-derived MSCs secrete large amounts of IL-6 and IL-8 to stimulate M2 macrophage polarization, which enhances the EMT of gastric cancer, thus promoting migration and invasion of tumor (Dominici et al., 2006; Li et al., 2019b). MSCs have been reported to favor tumor growth due to immunosuppression, and Djouad et al. (2003) demonstrated that soluble factors produced by MSCs exert immunosuppressive effects by mediating the inhibition of lymphocyte proliferation by CD8+ regulatory cells, and further identified the tumor growth-promoting effect of MSCs in a study of B16 melanoma.
In contrast with the above results, a growing number of studies have identified a dual role of MSCs for tumor progression. Pakravan et al. (2017) demonstrated that exosomes derived from BMSCs were able to downregulate the expression of VEGF in breast cancer cells, thereby inhibiting vascular growth. It is reported that interferon (IFN)-γ, IFN-γ-inducible protein 10, IFN-1β, IL-6, IL-8, and TNF-α appear to play an important role in the inhibitory effect of MSCs on tumor cells (Tomchuck et al., 2008). MSCs may inhibit tumor progression by means of cell fusion. Wang et al. (2012b) successfully inhibited the progression of esophageal cancer by inhibiting tumor cells growth and increasing apoptosis by fusing human umbilical cord MSCs with esophageal cancer cells. Human BMSCs derived extracellular vesicles can promote apoptosis or necrosis and inhibit the proliferation of tumor cells in hepatocellular carcinoma, ovarian cancer and Kaposi’s sarcoma by activating cell cycle negative regulators (Bruno et al., 2013).
Given the complex interactions between MSCs, tumor cells, and TME, no simple factor by itself can determine the fate of tumor, and further studies are needed to better understand the special functions of MSCs in the TME before these cells become valuable tools in cancer therapy.
4 EFFECTS OF MESENCHYMAL STEM CELLS ON ORAL CANCER
In recent years, there have been gradually increasing studies on the relationship between the MSCs and oral cancer, and in these studies, it was found that, on the one hand, MSCs have an inhibitory effect on oral cancer, while on the other hand, MSCs can promote the progression of oral cancer. In addition, the effects of MSCs derived from different sources on oral cancer were not consistent. The effects of different MSCs on oral cancer are shown in Table 1.
TABLE 1 | Effects of MSCs on oral cancers.
[image: Table 1]4.1 Dental Tissues Derived Mesenchymal Stem Cells (DMSCs)
Ji et al. (2016) showed that gingival tissue derived MSCs (GMSCs) inhibited the growth of tongue squamous cell carcinoma (TSCC) cell lines CAL27 and WSU-HN6 in vitro, and the soluble factors in CM of GMSCs played a key role in this process by inducing apoptosis of tumor cells. GMSCs could upregulate the expression of the apoptotic associated genes Bax, cleaved poly ADP-ribose polymerase, cleaved caspase-3, and downregulate the proliferation related genes, including Bcl-2, phosphorylation extracellular signal-regulated kinase 1/2, cyclin dependent kinase 4, cyclin D1, proliferating cell nuclear antigen and survivin, which indicating that GMSCs could inhibit the growth of tongue TSCC by activating the JNK signaling pathway. In addition, subcutaneous injection of GMSCs in nude mice model significantly inhibited the growth of tumors.
As mentioned earlier, MSCs can influence tumor progression by regulating intra-tumor angiogenesis. Anti-angiogenic therapy may be a possible treatment strategy of tumors in the future. Liu et al. (2022) treated TSCC CAL27 cells with exosomes derived from human deciduous exfoliated teeth by direct multi-point intratumor injection and found that the tumor volume was significantly smaller than that of the control group. Further experiments showed that exosomes from human deciduous exfoliated teeth downregulated VEGF-A expression through miR-100-5p and miR-1246, which significantly reduced the generation of microvasculature around TSCC.
Dental pulp stem cells (DPSCs)-derived CM induced apoptosis in tumor cells, inhibited the proliferation of TSCC cells AW13516 by enhancing the expression of p16, enhanced the invasion, adhesion, and multidrug resistance of AW13516 by upregulating angiopoietin-2, epidermal growth factor, macrophage-stimulating factor, PDGF-AA, PDGF-BB, TNF-α, and IL-2, downregulating the anti-inflammatory cytokines TNF-β1, and pro-inflammatory cytokine IL-4 (Raj et al., 2021a).
Based on Ki-67 assays, Raj et al. (2021b) indicated the dual effect of MSCs on tumors. DPSCs-CM inhibited the proliferation of TSCC cells AW13516 at 50% and 100% concentrations and promoted the proliferation at a 20% concentration. Several growth factors, including VEGF, hepatocyte growth factor, angiopoietin-2, transforming growth factor (TGF)-α, stem cell factor, erythropoietin, colony-stimulating factor, fibroblast growth factor, and PDGF-BB, and pro-inflammatory cytokines, TNF-α and IL-8, may play a dominant role in promoting the proliferation of tumor cells.
4.2 BMSCs
4.2.1 Promotional Effects of BMSCs on Oral Cancer
Human BMSCs inhibited the proliferation of TSCC cells HSC-3, but promoted the invasion of tumor cells by upregulating the expression of the C-C Motif Chemokine 5. In addition, BMSCs-induced production of type I collagen after interaction with HSC-3 is associated with poor prognosis in TSCC cells patients (Salo et al., 2013).
Human BMSCs-CM was demonstrated to promote the expression of periostin, and further contribute to CAL27 progression through the activation of the phosphoinositide 3-kinase /Akt/mammalian target of rapamycin signaling pathway. In a murine model of TSCC, the authors found that BMSCs promoted tumor growth, invasion, metastasis and enhanced the expression of periostin in tumor tissues. After co-cultured with BMSCs-CM, CAL27 cells’ expressions of Snail, Twist, N-cadherin and vimentin were significantly increased, and the expression of E-cadherin was significantly decreased, which suggests that BMSCs could promote EMT of TSCC cells (Liu et al., 2018).
A series of in vitro and in vivo experiments showed that C-X-C chemokine receptor 2 expressed by BMSCs combined with IL-8 expressed by CAL27 promoted the migration of BMSCs to the tumor stroma. The TGF-β/rat sarcoma virus/rapidly accelerated fibrosarcoma/extracellular signal-regulated kinase pathway activated by BMSCs promoted EMT of TSCC, thereby promoting its proliferation, migration and infiltration (Meng et al., 2020).
4.2.2 Inhibitory Effects of BMSCs on Oral Cancer
By using hamsters OSCC model, Bruna et al. (2018) demonstrated that systematic administration of allogeneic BMSCs did not aggravate the progression of precancerous lesions. On the contrary, administration of BMSCs at the hypoplasia stage of precancerous lesions inhibited tumor growth, whereas only a small proportion of lesions transformed to OSCC by applying BMSCs at the papilloma stage.
Xie et al. (2019) demonstrated that human BMSCs could transfer microRNA-101-3p to human TSCC cells TCA8113 via exosomes, and collagen type X alpha 1 chain is negatively regulated by microRNA-101-3p as its target gene. By down-regulating collagen type X alpha 1 chain, microRNA-101-3p could inhibit the proliferation, invasion and migration of TCA8113 cells. Subcutaneous injection of human BMSCs-microRNA-101-3p in nude mice revealed a significant reduction in tumor volume and weight, confirming the inhibitory effect of BMSCs derived microRNA-101-3p on tumor growth in vivo.
Bagheri et al. (2021) demonstrated that human BMSCs-CM exhibited a time-dependent inhibitory effect on TSCC cells CAL27, which showed the lowest cells viability after 72 h of co-culture with BMSCs-CM. The decrease of proliferation marker proliferating cell nuclear antigen, anti-apoptotic marker BCL-2 and Ki67 positive cells at 24 and 72 h of co-culture indicated that BMSCs-CM decreased the proliferation of CAL27 cells and increased apoptosis.
Another study demonstrated that 3 weeks after oral tissue injection of human OSCC (moderately differentiated tumor of buccal mucosa) in nude mice, direct intra-tumor injection of mice-derived BMSCs in combination with cisplatin revealed an inhibition of tumor growth and an increase in the lifespan of the mice, these effects may be due to BMSCs’ promotion of cisplatin distribution for better anti-cancer action and increased apoptosis of tumor cells (Zurmukhtashvili et al., 2020).
4.3 Other Mesenchymal Stem Cells
Among the applications of MSCs for cancer treatment, adipose tissue derived MSCs (AMSCs) have received increasing attention due to the advantages of relatively easy collection and production. Sinha et al. (2020) demonstrated that after co-culture with human TSCC cell HSC-3, AMSCs did not induce proliferation, migration, and invasion of tumor cells, which providing preliminary evidence that AMSCs may have more suitable properties for tumor therapy relative to other types of MSCs. Because there are relatively few studies on interaction of AMSCs and tumors, more studies are needed before further applications.
In a study of human amniotic membrane MSCs (HAMCSs)-derived CM, its promoting effect on TSCC cells CAL27 was demonstrated after a 24 h of co-culture with human HAMSCs-CM, manifested by an increase in CAL27 cell viability. After 72 h of co-culture, the increased expression of proliferating cell nuclear antigen indicated that HAMSCs-CM promoted the proliferation of CAL27, and the results of flow cytometry showed a decrease in the number of apoptotic CAL27 cells (Bagheri et al., 2021).
Chen et al. (2019) demonstrated that rat oral mucosa malignancy-derived MSCs can inhibit the proliferation of T cells and promote the apoptosis of T cell through soluble factors and intercellular contacts, whereas T cell migration was not affected. The immunosuppressive effect of MSCs on T cells is enhanced with increasing tumor malignancy. The higher the number of MSCs at the tumor sites, the higher the proliferative status of tumor cells, showing that tumor-derived MSCs play an important role in the malignant progression of oral mucosa.
Increased expression of microRNA-8485 in exosomes derived from human oral leukoplakia with dysplasia and oral cancer (species not specified) derived-MSCs promotes the proliferation, migration and invasion of SCC15 cells in vitro and reduces the expression of the oncogene p53 (Li et al., 2019a). Ji et al. (2021) showed that OSCC-derived MSCs promoted the migration and invasion of OSCC cell lines CAL27 and WSU-HN6. With a significant decrease in E-cadherin, alpha E catenin and a significant increase in N-cadherin, OSCC-MSCs may promote OSCC metastasis through EMT. Further experiments showed that upregulation of CPNE7, a calcium-dependent phospholipid -binding protein in tumor-derived MSCs, promotes phosphorylation of p65 and IκBα as well as nuclear translocation of p65, which activates the NF-κB pathway, promotes the expression of IL-8, and thus promotes tumor metastasis.
5 TREATMENT OF ORAL CANCER
5.1 Current Status of Oral Cancer Treatment
The treatment of oral cancer depends mainly on the severity of the disease. OSCC is the most common type of oral cancers with a poor prognosis and a high recurrence rate (Satija et al., 2009) and a huge potential for regional metastasis even in the early stages (Vargas-Ferreira et al., 2012). A proportion of OSCC can be detected at an early stage, but current treatment modalities adversely affect patients physically and psychologically, severely affecting their quality of life. Most OSCC is not detected until advanced stage, by which time the survival rate of patients has been markedly reduced. Among the many treatment modalities, surgical treatment is the main modality for oral cancer. When the primary tumor is large and incomplete resection or signs of infiltration are suspected, radiation adjuvant therapy is administered after surgery. Molecularly targeted therapy with cetuximab added to postoperative radiotherapy, targeting the epidermal growth factor receptor, has been approved for the treatment of OSCC. Docetaxel, cisplatin and 5-fluorouracil and other anticancer drug-induced chemotherapy are usually used as induction therapy before surgery or alone or in combination with radiotherapy after surgery. Combined surgery-radiotherapy has become the standard procedure for the treatment of advanced oral cancer (Colevas et al., 2018). In recent years, antitumor immunotherapies such as the programmed death-1 inhibitor, which block tumor immunosuppressive signals and enhance antitumor immune responses by targeting the programmed death-1/ programmed death-ligand 1 pathway, have played an important role in recurrence and metastasis oral cancer (Cramer et al., 2019).
Although currently available treatment strategies include excision of malignant tissue in combination with radiotherapy and chemotherapy, the 5-years survival rate is still about 50% (Sasahira et al., 2014). The ultimate goal of surgery is to remove the tumor tissue, but inadequate removal has a high chance of causing recurrence (Brennan et al., 1995). The oral cavity as a functional organ of mastication, speech, and articulation, surgery may lead to serious aesthetic and functional problems, as well as psychological trauma for the patient. Radiotherapy can cause altered taste, dysphagia, dry mouth, and hypothyroidism, causing temporary or permanent damage to healthy tissues. Chemotherapy can also lead to severe systemic reactions such as nausea, vomiting, hair loss, infection and diarrhea, which can seriously affect patients’ health and quality of life. Therefore, it is particularly important to find new methods for the treatment of oral cancer.
As previously mentioned, MSCs can inhibit tumor progression in multiple ways, such as inhibition of angiogenesis, suppression of cell proliferation and metastasis, induction of apoptosis, cell cycle arrest, inflammatory infiltration, and regulation of oncogenes. In light of these studies on MSCs, there has been increasing interest in MSCs-based cancer therapy in recent years, and advanced approaches to modify MSCs to become powerful and precise targeting tools for killing cancer cells rather than normal healthy cells have been continuously explored.
5.2 Mesenchymal Stem Cells in the Treatment of Oral Cancer
As important participants in TME remodeling, the interaction between MSCs and tumors begins at the early stage of tumor growth, MSCs are attracted to the tumor sites and interact with surrounding cells, undergoing phenotypic and functional changes and secreting a variety of bioactive factors that can significantly alter the growth, proliferation, and apoptosis of neighboring cells, thereby affecting tumor progression. As mentioned earlier, MSCs show both promoting and inhibiting effects on oral cancer, therefore, their mechanisms should be further explored before applying MSCs to the treatment of oral cancer. In addition, circumventing the promotive effects of MSCs on oral cancer and making full use of the effects of MSCs on oral cancer, such as homing and inhibition, and using them as therapeutic drug carriers or MSCs to directly inhibit tumors would be beneficial to discover the potential applications of MSCs for oral cancer treatment.
Both wild-type MSCs as well as modified MSCs have been used for the treatment of oral cancer, as shown in Table 2. MSCs can be used as carriers for delivery of therapeutic proteins or anticancer drugs, and are genetically modified to over-express several anti-tumor factors, such as IL, IFN, pro-drugs, oncolytic viruses, pro-apoptotic proteins, anti-angiogenic agents and growth factor antagonists (Shah, 2012). MSCs can selectively migrate and aggregate at the tumor sites, thus exerting a therapeutic effect, improving therapeutic efficacy and reducing systemic toxicity.
TABLE 2 | MSCs-mediated treatment of oral cancers.
[image: Table 2]Unlike cell therapies, MSCs derived secretomes can be better evaluated for their safety, dosage and potency. Secretomes, aside from avoiding the inconveniences of administering living proliferating cells, show other additional advantages, including cheaper, safer, and more practical for clinical use. For instance, exosomes derived from MSCs, one of the secretomes, have been evaluated for their potential to be used as drug delivery vehicles (Eiro et al., 2021). The treatments of different MSCs on oral cancer are shown in Table 2.
5.2.1 Direct Application of Mesenchymal Stem Cells
Isolated from gingival tissues, GMSCs possessed the properties of easy isolation, rapid expansion, profound immunomodulatory and anti-inflammatory functions, making them potential source for stem cell-based therapy (Ji et al., 2016). GMSCs can inhibit the growth of oral cancer cells in vitro and in vivo by altering the microenvironment of surrounding oral cancer cells, suggesting that GMSCs have potential applications in the treatment of oral dysplasia and oral cancer (Ji et al., 2016).
MSCs can influence tumor progression by regulating intra-tumor angiogenesis. Anti-angiogenic therapy may be a possible treatment strategy of tumors in the future. Liu et al. (2022) treated TSCC CAL27 cells with exosomes derived from human deciduous exfoliated teeth by direct multi-point intratumor injection and found that the tumor volume was significantly smaller than that of the control group. Further experiments showed that exosomes from human deciduous exfoliated teeth downregulated VEGF-A expression through miR-100-5p and miR-1246, which significantly reduced the generation of microvasculature around TSCC.
Up to date, the influence of BMSCs on cancer remains uncertain. Some studies have shown that BMSCs promote cancer progression, whereas others show that BMSCs suppress cancer progression, and also some studies found BMSCs have no significant impact on cancer progression (Barcellos-de-Souza et al., 2013; Gao et al., 2016; Mi and Gong, 2017; Wu et al., 2019; Zhang et al., 2019). By establishing an animal model, Bruna et al. (2017) showed that the administration of BMSCs at the precancerous stage (papilloma stage) reduced the proliferation rate of OSCC tumors and increased the apoptosis rate, thereby stopping tumor growth and preventing epithelial dedifferentiation of OSCC. Zurmukhtashvili et al. (2020) established an OSCC model in mice and demonstrated that intratumorally injected BMSCs reduce inflammation, increase micro-vascularization, and minimize hypoxia of OSCC tissues. Moreover, combined treatment with cisplatin leads to higher apoptotic activity and reduced tumor tissue growth.
5.2.2 As Drug Delivery Vehicles
GMSCs exhibit the capability to encapsulate and release anticancer drugs without any genetic changes. Coccè et al. (2017) demonstrated by in vitro experiments that GMSCs can efficiently bind three important antitumor drugs and then release them in active form: paclitaxel, doxorubicin, and gemcitabine, thereby significantly inhibiting the growth of TSCC cell SCC154, indicating that MSCs-mediated drug delivery systems have potential applications in the field of oral oncology.
Zhou et al. (2021) showed that OSCC recruits DPSCs through the CXCL8-CXCR2 axis. They used DPSCs membranes (DPSCM) modified with metal-organic framework nanoparticles (MOFs) to create a novel nanoparticle, MOF@DPSCM, which can effectively deliver antitumor drugs to target OSCC. MOF@DPSCM carries doxorubicin (DOX) can induce the death of CAL27 cells and block the growth of CAL27 tumor. The data suggests that this novel MOF-DOX@DPSCM nanoparticle is a potential targeted drug delivery system that can be used for OSCC.
Sun et al. (2020) used MSCs membrane-encapsulated oxygen-carrying perfluorocarbon and sonosensitizer verteporfin to develop a novel biomimetic sonosensitizer, named M/LPV/O2, which could induce cancer cell death by increasing uptake cancer cells and stimulating intracellular reactive oxygen species production under hypoxic conditions. M/LPV/O2 can accumulate in oral tumor, relieved hypoxia, and effectively inhibited tumor. In addition, exhibiting minimal systemic side effects, M/LPV/O2 can successfully maintain oral function without causing aesthetic problems.
5.2.3 Expression of Anti-Tumor Factors by Gene Modification
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising target that can selectively induce apoptosis in cancer cells. Demonstrating in vitro that human GMSCs can migrate to TSCC cell lines (TCA8113 and CAL27), Xia et al. (2015) used GMSCs as a cellular vector and transduced with full-length TRAIL (GMSCs with full-length TRAIL; GMSCFLT), and found that GMSCFLT induced massive necrosis and apoptosis of tumor cells by co-culture with TCA8113 and CAL27, respectively. In addition, further antitumor assays using GMSCFLT tail vein injection into nude mice significantly inhibited the growth of TSCC. These data confirmed the tumor suppressive effect of gene therapy vectors TRAIL-expressing GMSCs.
Previous studies demonstrated the inhibitory effect of IFN-β gene-modified MSCs on breast, pancreatic and prostate cancers (Kidd et al., 2010; Ling et al., 2010; Wang et al., 2012a). Du et al. (2019) constructed IFN-β gene-modified GMSCs (GMSCs/IFN-β), and found that GMSCs/IFN-β inhibited the proliferation of CAL27 cells in vitro. Through in vivo experiments, they showed that GMSCs/IFN-β expressed high levels of IFN-β, which significantly inhibited tumor growth. Further experiments demonstrated that GMSCs/IFN-β inhibited the growth of TSCC xenografts by suppressing cell proliferation and inducing apoptosis. In addition, GMSCs are genetically modified to release other cytokines, such as IFN-γ, IL-2, IL-12, and IL-24 (Matsuzuka et al., 2010; Zhang et al., 2013; Yang et al., 2014; You et al., 2015), to achieve antitumor effects.
As previously mentioned, exosomes from human BMSCs with upregulated miR-101-3p may serve as a promising new direction for the development of oral cancer therapeutics. Human BMSCs can transfer microRNA-101-3p to human TSCC cells TCA8113 via exosomes to negatively regulate the collagen X-type α1 chain of the target gene, thereby inhibiting the proliferation, invasion and migration of TCA8113 cells (Xie et al., 2019).
Oral potentially malignant disorders are usually asymptomatic clinical lesions that appear prior to OSCC (Wang et al., 2019). Put mice genetically modified BMSCs-derived extracellular vesicles (EVs) highly expressing microRNA-185 (BMSCs-EVs-miR-185) pasted on oral potentially malignant disorders induced with dimethylbenzanthracene, and found that BMSCs-EVs-miR-185 could attenuate the inflammatory condition and reduce the dysplasia in the lesion tissue. In addition, BMSCs-EVs-miR-185 may inhibit disease progression by suppressing proliferation, angiogenesis and promoting the activation of the Akt pathway to increase apoptosis of tumor cells.
6 CONCLUDING REMARKS
Currently, MSCs are used in clinics for anti-inflammatory therapy, tissue regeneration, graft-versus-host response, autoimmune diseases and gene transfection. In addition, MSCs-based tumor therapy is promising, as MSCs can migrate directionally to target tissues to exert their own effects, and can also exert the effects of therapeutic factors by means of gene transfection and secretion of several kinds of factors, presenting the anti-tumor effects.
Under normal conditions, MSCs maintain a stable internal environment in tissues, and once a tumor develops, the normal tissue microenvironment is subsequently changed to a TME. Tumor-secreted cytokines and growth factors, such as PDGF-AB, VEGF, hepatocyte growth factor, IL-8, etc., can recruit local and distant MSCs, and MSCs can also influence tumor progression by affecting angiogenesis, regulating immunity, inducing apoptosis, inhibiting or promoting proliferation, invasion, migration, etc. As mentioned above, MSCs from different tissues have different effects on oral tumors, including those from normal, precancerous and cancerous tissues, which provide a new perspective for further exploration of oral cancer progression and treatment. At the same time, administration of different doses of MSCs may also produce different results. In addition, it seems that different results can be obtained by using different cancer models and by different routes of administration of MSCs at different times of cancer progression. Notably, anticancer treatment can also affect the recruitment of MSCs.
However, since most of the currently available evidence is obtained through non-human xenografts, the literature supporting the direct use of MSCs for the treatment of cancer patients is still insufficient and their safety remains a major consideration, and more research must be conducted to provide evidence and improve the therapeutic efficacy of MSCs in cancer treatment. These cells have great potential to revolutionize existing cancer therapies.
AUTHOR CONTRIBUTIONS
TY designed the study, searched literature, analyzed data and wrote the article. ST and SP searched literature and analyzed data. GD designed the study, wrote the article and supervised the study.
FUNDING
This work was supported by grants from the Natural Science Foundation of Shandong Province (No.ZR2021MH051 to GD), the National Natural Science Foundation of China (No.81570945 to GD), and the Postgraduate Education Quality Improvement Plan of Shandong Province (No. SDYAL21150 to GD).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Almeida-Porada, G., Atala, A. J., and Porada, C. D. (2020). Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. Mol. Ther. - Methods & Clin. Dev. 16, 204–224. doi:10.1016/j.omtm.2020.01.005
 Bagheri, R., Bitazar, R., Talebi, S., Alaeddini, M., Etemad-Moghadam, S., and Eini, L. (2021). Conditioned Media Derived from Mesenchymal Stem Cells Induces Apoptosis and Decreases Cell Viability and Proliferation in Squamous Carcinoma Cell Lines. Gene 782, 145542. doi:10.1016/j.gene.2021.145542
 Barcellos-de-Souza, P., Gori, V., Bambi, F., and Chiarugi, P. (2013). Tumor Microenvironment: Bone Marrow-Mesenchymal Stem Cells as Key Players. Biochimica Biophysica Acta (BBA) - Rev. Cancer 1836 (2), 321–335. doi:10.1016/j.bbcan.2013.10.004
 Brennan, J. A., Mao, L., Hruban, R. H., Boyle, J. O., Eby, Y. J., Koch, W. M., et al. (1995). Molecular Assessment of Histopathological Staging in Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 332 (7), 429–435. doi:10.1056/nejm199502163320704
 Bruna, F., Arango-Rodríguez, M., Plaza, A., Espinoza, I., and Conget, P. (2017). The Administration of Multipotent Stromal Cells at Precancerous Stage Precludes Tumor Growth and Epithelial Dedifferentiation of Oral Squamous Cell Carcinoma. Stem Cell. Res. 18, 5–13. doi:10.1016/j.scr.2016.11.016
 Bruna, F., Plaza, A., Arango, M., Espinoza, I., and Conget, P. (2018). Systemically Administered Allogeneic Mesenchymal Stem Cells Do Not Aggravate the Progression of Precancerous Lesions: a New Biosafety Insight. Stem Cell. Res. Ther. 9 (1), 137. doi:10.1186/s13287-018-0878-1
 Bruno, S., Collino, F., Deregibus, M. C., Grange, C., Tetta, C., and Camussi, G. (2013). Microvesicles Derived from Human Bone Marrow Mesenchymal Stem Cells Inhibit Tumor Growth. Stem Cells Dev. 22 (5), 758–771. doi:10.1089/scd.2012.0304
 Caulfield, T., and Ogbogu, U. (2011). Stem Cell Research, Scientific Freedom and the Commodification Concern. EMBO Rep. 13 (1), 12–16. doi:10.1038/embor.2011.232
 Chai, A. W. Y., Lim, K. P., and Cheong, S. C. (2020). Translational Genomics and Recent Advances in Oral Squamous Cell Carcinoma. Seminars Cancer Biol. 61, 71–83. doi:10.1016/j.semcancer.2019.09.011
 Chen, Y., Wang, X., Fang, J., Song, J., Ma, D., Luo, L., et al. (2019). Mesenchymal Stem Cells Participate in Oral Mucosa Carcinogenesis by Regulating T Cell Proliferation. Clin. Immunol. 198, 46–53. doi:10.1016/j.clim.2018.12.001
 Choi, S., and Myers, J. N. (2008). Molecular Pathogenesis of Oral Squamous Cell Carcinoma: Implications for Therapy. J. Dent. Res. 87 (1), 14–32. doi:10.1177/154405910808700104
 Chung, C. H., Parker, J. S., Ely, K., Carter, J., Yi, Y., Murphy, B. A., et al. (2006). Gene Expression Profiles Identify Epithelial-To-Mesenchymal Transition and Activation of Nuclear Factor-Κb Signaling as Characteristics of a High-Risk Head and Neck Squamous Cell Carcinoma. Cancer Res. 66 (16), 8210–8218. doi:10.1158/0008-5472.Can-06-1213
 Coccè, V., Farronato, D., Brini, A. T., Masia, C., Giannì, A. B., Piovani, G., et al. (2017). Drug Loaded Gingival Mesenchymal Stromal Cells (GinPa-MSCs) Inhibit In Vitro Proliferation of Oral Squamous Cell Carcinoma. Sci. Rep. 7 (1), 9376. doi:10.1038/s41598-017-09175-4
 Colevas, A. D., Yom, S. S., Pfister, D. G., Spencer, S., Adelstein, D., Adkins, D., et al. (2018). NCCN Guidelines Insights: Head and Neck Cancers, Version 1.2018. J. Natl. Compr. Canc Netw. 16 (5), 479–490. doi:10.6004/jnccn.2018.0026
 Conrad, C., Niess, H., Huss, R., Huber, S., von Luettichau, I., Nelson, P. J., et al. (2009). Multipotent Mesenchymal Stem Cells Acquire a Lymphendothelial Phenotype and Enhance Lymphatic Regeneration In Vivo. Circulation 119 (2), 281–289. doi:10.1161/circulationaha.108.793208
 Cramer, J. D., Burtness, B., and Ferris, R. L. (2019). Immunotherapy for Head and Neck Cancer: Recent Advances and Future Directions. Oral Oncol. 99, 104460. doi:10.1016/j.oraloncology.2019.104460
 da Silva Meirelles, L., Caplan, A. I., and Nardi, N. B. (2008). In Search of the In Vivo Identity of Mesenchymal Stem Cells. Stem Cells 26 (9), 2287–2299. doi:10.1634/stemcells.2007-1122
 Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., et al. (2003). Immunosuppressive Effect of Mesenchymal Stem Cells Favors Tumor Growth in Allogeneic Animals. Blood 102 (10), 3837–3844. doi:10.1182/blood-2003-04-1193
 Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., et al. (2006). Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 8 (4), 315–317. doi:10.1080/14653240600855905
 Du, L., Liang, Q., Ge, S., Yang, C., and Yang, P. (2019). The Growth Inhibitory Effect of Human Gingiva-Derived Mesenchymal Stromal Cells Expressing Interferon-β on Tongue Squamous Cell Carcinoma Cells and Xenograft Model. Stem Cell. Res. Ther. 10 (1), 224. doi:10.1186/s13287-019-1320-z
 Du, W., Seah, I., Bougazzoul, O., Choi, G., Meeth, K., Bosenberg, M. W., et al. (2017). Stem Cell-Released Oncolytic Herpes Simplex Virus Has Therapeutic Efficacy in Brain Metastatic Melanomas. Proc. Natl. Acad. Sci. U.S.A. 114 (30), E6157–e6165. doi:10.1073/pnas.1700363114
 Eiro, N., Fraile, M., Fernández-Francos, S., Sánchez, R., Costa, L. A., and Vizoso, F. J. (2021). Importance of the Origin of Mesenchymal (Stem) Stromal Cells in Cancer Biology: "alliance" or "war" in Intercellular Signals. Cell. Biosci. 11 (1), 109. doi:10.1186/s13578-021-00620-6
 Fu, J., Wang, Y., Jiang, Y., Du, J., Xu, J., and Liu, Y. (2021). Systemic Therapy of MSCs in Bone Regeneration: a Systematic Review and Meta-Analysis. Stem Cell. Res. Ther. 12 (1), 377. doi:10.1186/s13287-021-02456-w
 Gao, P., Ding, Q., Wu, Z., Jiang, H., and Fang, Z. (2010). Therapeutic Potential of Human Mesenchymal Stem Cells Producing IL-12 in a Mouse Xenograft Model of Renal Cell Carcinoma. Cancer Lett. 290 (2), 157–166. doi:10.1016/j.canlet.2009.08.031
 Gao, Y., Zhou, Z., Lu, S., Huang, X., Zhang, C., Jiang, R., et al. (2016). Chemokine CCL15 Mediates Migration of Human Bone Marrow-Derived Mesenchymal Stem Cells toward Hepatocellular Carcinoma. Stem Cells 34 (4), 1112–1122. doi:10.1002/stem.2275
 Grigolato, R., Accorona, R., Lombardo, G., Corrocher, G., Garagiola, U., Massari, F., et al. (2021). Oral Cancer in Non-smoker Non-drinker Patients. Could Comparative Pet Oncology Help to Understand Risk Factors and Pathogenesis?Crit. Rev. Oncology/Hematology 166, 103458. doi:10.1016/j.critrevonc.2021.103458
 Huang, W.-H., Chang, M.-C., Tsai, K.-S., Hung, M.-C., Chen, H.-L., and Hung, S.-C. (2013). Mesenchymal Stem Cells Promote Growth and Angiogenesis of Tumors in Mice. Oncogene 32 (37), 4343–4354. doi:10.1038/onc.2012.458
 Hung, B. P., Hutton, D. L., Kozielski, K. L., Bishop, C. J., Naved, B., Green, J. J., et al. (2015). Platelet-Derived Growth Factor BB Enhances Osteogenesis of Adipose-Derived but Not Bone Marrow-Derived Mesenchymal Stromal/Stem Cells. Stem Cells 33 (9), 2773–2784. doi:10.1002/stem.2060
 Janjanin, S., Djouad, F., Shanti, R. M., Baksh, D., Gollapudi, K., Prgomet, D., et al. (2008). Human Palatine Tonsil: a New Potential Tissue Source of Multipotent Mesenchymal Progenitor Cells. Arthritis Res. Ther. 10 (4), R83. doi:10.1186/ar2459
 Ji, X., Sun, T., Xie, S., Qian, H., Song, L., Wang, L., et al. (2021). Upregulation of CPNE7 in Mesenchymal Stromal Cells Promotes Oral Squamous Cell Carcinoma Metastasis through the NF-Κb Pathway. Cell. Death Discov. 7 (1), 294. doi:10.1038/s41420-021-00684-w
 Ji, X., Zhang, Z., Han, Y., Song, J., Xu, X., Jin, J., et al. (2016). Mesenchymal Stem Cells Derived from Normal Gingival Tissue Inhibit the Proliferation of Oral Cancer Cells In Vitro and In Vivo. Int. J. Oncol. 49 (5), 2011–2022. doi:10.3892/ijo.2016.3715
 Kariminekoo, S., Movassaghpour, A., Rahimzadeh, A., Talebi, M., Shamsasenjan, K., and Akbarzadeh, A. (2016). Implications of Mesenchymal Stem Cells in Regenerative Medicine. Artif. Cells, Nanomedicine, Biotechnol. 44 (3), 749–757. doi:10.3109/21691401.2015.1129620
 Kidd, S., Caldwell, L., Dietrich, M., Samudio, I., Spaeth, E. L., Watson, K., et al. (2010). Mesenchymal Stromal Cells Alone or Expressing Interferon-β Suppress Pancreatic Tumors In Vivo, an Effect Countered by Anti-inflammatory Treatment. Cytotherapy 12 (5), 615–625. doi:10.3109/14653241003631815
 Lei, M., Li, K., Li, B., Gao, L.-N., Chen, F.-M., and Jin, Y. (2014). Mesenchymal Stem Cell Characteristics of Dental Pulp and Periodontal Ligament Stem Cells after In Vivo Transplantation. Biomaterials 35 (24), 6332–6343. doi:10.1016/j.biomaterials.2014.04.071
 Li, W., Han, Y., Zhao, Z., Ji, X., Wang, X., Jin, J., et al. (2019a). Oral Mucosal Mesenchymal Stem Cell-derived E-xosomes: A P-otential T-herapeutic T-arget in O-ral P-remalignant L-esions. Int. J. Oncol. 54 (5), 1567–1578. doi:10.3892/ijo.2019.4756
 Li, W., Zhang, X., Wu, F., Zhou, Y., Bao, Z., Li, H., et al. (2019b). Gastric Cancer-Derived Mesenchymal Stromal Cells Trigger M2 Macrophage Polarization that Promotes Metastasis and EMT in Gastric Cancer. Cell. Death Dis. 10 (12), 918. doi:10.1038/s41419-019-2131-y
 Liau, L. L., Looi, Q. H., Chia, W. C., Subramaniam, T., Ng, M. H., and Law, J. X. (2020). Treatment of Spinal Cord Injury with Mesenchymal Stem Cells. Cell. Biosci. 10, 112. doi:10.1186/s13578-020-00475-3
 Lindroos, B., Mäenpää, K., Ylikomi, T., Oja, H., Suuronen, R., and Miettinen, S. (2008). Characterisation of Human Dental Stem Cells and Buccal Mucosa Fibroblasts. Biochem. Biophysical Res. Commun. 368 (2), 329–335. doi:10.1016/j.bbrc.2008.01.081
 Ling, X., Marini, F., Konopleva, M., Schober, W., Shi, Y., Burks, J., et al. (2010). Mesenchymal Stem Cells Overexpressing IFN-β Inhibit Breast Cancer Growth and Metastases through Stat3 Signaling in a Syngeneic Tumor Model. Cancer Microenviron. 3 (1), 83–95. doi:10.1007/s12307-010-0041-8
 Liu, C., Feng, X., Wang, B., Wang, X., Wang, C., Yu, M., et al. (2018). Bone Marrow Mesenchymal Stem Cells Promote Head and Neck Cancer Progression through Periostin-Mediated Phosphoinositide 3-kinase/Akt/mammalian Target of Rapamycin. Cancer Sci. 109 (3), 688–698. doi:10.1111/cas.13479
 Liu, P., Zhang, Q., Mi, J., Wang, S., Xu, Q., Zhuang, D., et al. (2022). Exosomes Derived from Stem Cells of Human Deciduous Exfoliated Teeth Inhibit Angiogenesis In Vivo and In Vitro via the Transfer of miR-100-5p and miR-1246. Stem Cell. Res. Ther. 13 (1), 89. doi:10.1186/s13287-022-02764-9
 Lu, S., Fan, H., Zhou, B., Ju, Z., Yu, L., Guo, L., et al. (2012b). Fusion of Human Umbilical Cord Mesenchymal Stem Cells with Esophageal Carcinoma Cells Inhibits the Tumorigenicity of Esophageal Carcinoma Cells. Int. J. Oncol. 40 (2), 370–377. doi:10.3892/ijo.2011.1232
 Matsuzuka, T., Rachakatla, R. S., Doi, C., Maurya, D. K., Ohta, N., Kawabata, A., et al. (2010). Human Umbilical Cord Matrix-Derived Stem Cells Expressing Interferon-β Gene Significantly Attenuate Bronchioloalveolar Carcinoma Xenografts in SCID Mice. Lung Cancer 70 (1), 28–36. doi:10.1016/j.lungcan.2010.01.003
 McLeod, C., and Baylis, F. (2006). Feminists on the Inalienability of Human Embryos. Hypatia 21 (1), 1–14. doi:10.1111/j.1527-2001.2006.tb00961.x
 Meng, L., Zhao, Y., Bu, W., Li, X., Liu, X., Zhou, D., et al. (2020). Bone Mesenchymal Stem Cells Are Recruited via CXCL8‐CXCR2 and Promote EMT through TGF‐β Signal Pathways in Oral Squamous Carcinoma. Cell. Prolif. 53 (8), e12859. doi:10.1111/cpr.12859
 Mi, F., and Gong, L. (2017). Secretion of Interleukin-6 by Bone Marrow Mesenchymal Stem Cells Promotes Metastasis in Hepatocellular Carcinoma. Biosci. Rep. 37 (4). doi:10.1042/bsr20170181
 Mishra, P. J., Mishra, P. J., Humeniuk, R., Medina, D. J., Alexe, G., Mesirov, J. P., et al. (2008). Carcinoma-associated Fibroblast-like Differentiation of Human Mesenchymal Stem Cells. Cancer Res. 68 (11), 4331–4339. doi:10.1158/0008-5472.Can-08-0943
 Musiał-Wysocka, A., Kot, M., and Majka, M. (2019). The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell. Transpl. 28 (7), 801–812. doi:10.1177/0963689719837897
 Oswald, J., Boxberger, S., Jørgensen, B., Feldmann, S., Ehninger, G., Bornhäuser, M., et al. (2004). Mesenchymal Stem Cells Can Be Differentiated into Endothelial Cells In Vitro. Stem Cells 22 (3), 377–384. doi:10.1634/stemcells.22-3-377
 Pakravan, K., Babashah, S., Sadeghizadeh, M., Mowla, S. J., Mossahebi-Mohammadi, M., Ataei, F., et al. (2017). MicroRNA-100 Shuttled by Mesenchymal Stem Cell-Derived Exosomes Suppresses In Vitro Angiogenesis through Modulating the mTOR/HIF-1α/VEGF Signaling axis in Breast Cancer Cells. Cell. Oncol. 40 (5), 457–470. doi:10.1007/s13402-017-0335-7
 Pierdomenico, L., Bonsi, L., Calvitti, M., Rondelli, D., Arpinati, M., Chirumbolo, G., et al. (2005). Multipotent Mesenchymal Stem Cells with Immunosuppressive Activity Can Be Easily Isolated from Dental Pulp. Transplantation 80 (6), 836–842. doi:10.1097/01.tp.0000173794.72151.88
 Ponte, A. L., Marais, E., Gallay, N., Langonné, A., Delorme, B., Hérault, O., et al. (2007). The In Vitro Migration Capacity of Human Bone Marrow Mesenchymal Stem Cells: Comparison of Chemokine and Growth Factor Chemotactic Activities. Stem Cells 25 (7), 1737–1745. doi:10.1634/stemcells.2007-0054
 Raj, A. T., Kheur, S., Bhonde, R., Mani, V. R., Baeshen, H. A., and Patil, S. (2021a). Assessing the Effect of Human Dental Pulp Mesenchymal Stem Cell Secretome on Human Oral, Breast, and Melanoma Cancer Cell Lines. Saudi J. Biol. Sci. 28 (11), 6556–6567. doi:10.1016/j.sjbs.2021.07.029
 Raj, A. T., Kheur, S., Khurshid, Z., Sayed, M. E., Mugri, M. H., Almasri, M. A., et al. (2021b). The Growth Factors and Cytokines of Dental Pulp Mesenchymal Stem Cell Secretome May Potentially Aid in Oral Cancer Proliferation. Molecules 26 (18), 5683. doi:10.3390/molecules26185683
 Rehman, A. O., and Wang, C.-Y. (2008). SDF-1α Promotes Invasion of Head and Neck Squamous Cell Carcinoma by Activating NF-Κb. J. Biol. Chem. 283 (29), 19888–19894. doi:10.1074/jbc.M710432200
 Salo, S., Bitu, C., Merkku, K., Nyberg, P., Bello, I. O., Vuoristo, J., et al. (2013). Human Bone Marrow Mesenchymal Stem Cells Induce Collagen Production and Tongue Cancer Invasion. PLoS One 8 (10), e77692. doi:10.1371/journal.pone.0077692
 Sasahira, T., Kurihara, M., Yamamoto, K., Ueda, N., Nakashima, C., Matsushima, S., et al. (2014). HuD Promotes Progression of Oral Squamous Cell Carcinoma. Pathobiology 81 (4), 206–214. doi:10.1159/000366022
 Satija, N. K., Singh, V. K., Verma, Y. K., Gupta, P., Sharma, S., Afrin, F., et al. (2009). Mesenchymal Stem Cell-Based Therapy: a New Paradigm in Regenerative Medicine. J. Cell. Mol. Med. 13 (11-12), 4385–4402. doi:10.1111/j.1582-4934.2009.00857.x
 Shah, K. (2012). Mesenchymal Stem Cells Engineered for Cancer Therapy. Adv. Drug Deliv. Rev. 64 (8), 739–748. doi:10.1016/j.addr.2011.06.010
 Shi, S., and Gronthos, S. (2003). Perivascular Niche of Postnatal Mesenchymal Stem Cells in Human Bone Marrow and Dental Pulp. J. Bone Min. Res. 18 (4), 696–704. doi:10.1359/jbmr.2003.18.4.696
 Shi, Y., Du, L., Lin, L., and Wang, Y. (2017). Tumour-associated Mesenchymal Stem/stromal Cells: Emerging Therapeutic Targets. Nat. Rev. Drug Discov. 16 (1), 35–52. doi:10.1038/nrd.2016.193
 Shi, Y., Wang, Y., Li, Q., Liu, K., Hou, J., Shao, C., et al. (2018). Immunoregulatory Mechanisms of Mesenchymal Stem and Stromal Cells in Inflammatory Diseases. Nat. Rev. Nephrol. 14 (8), 493–507. doi:10.1038/s41581-018-0023-5
 Sinha, S., Narjus-Sterba, M., Tuomainen, K., Kaur, S., Seppänen-Kaijansinkko, R., Salo, T., et al. (2020). Adipose-Derived Mesenchymal Stem Cells Do Not Affect the Invasion and Migration Potential of Oral Squamous Carcinoma Cells. Ijms 21 (18), 6455. doi:10.3390/ijms21186455
 Sonoyama, W., Liu, Y., Yamaza, T., Tuan, R. S., Wang, S., Shi, S., et al. (2008). Characterization of the Apical Papilla and its Residing Stem Cells from Human Immature Permanent Teeth: a Pilot Study. J. Endod. 34 (2), 166–171. doi:10.1016/j.joen.2007.11.021
 Sun, L., Xu, Y., Zhang, X., Gao, Y., Chen, J., Zhou, A., et al. (2020). Mesenchymal Stem Cells Functionalized Sonodynamic Treatment for Improving Therapeutic Efficacy and Compliance of Orthotopic Oral Cancer. Adv. Mat. 32 (48), 2005295. doi:10.1002/adma.202005295
 Sun, Z., Wang, S., and Zhao, R. C. (2014). The Roles of Mesenchymal Stem Cells in Tumor Inflammatory Microenvironment. J. Hematol. Oncol. 7, 14. doi:10.1186/1756-8722-7-14
 Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 71 (3), 209–249. doi:10.3322/caac.21660
 Tavakoli, S., Ghaderi Jafarbeigloo, H. R., Shariati, A., Jahangiryan, A., Jadidi, F., Jadidi Kouhbanani, M. A., et al. (2020). Mesenchymal Stromal Cells; a New Horizon in Regenerative Medicine. J. Cell. Physiology 235 (12), 9185–9210. doi:10.1002/jcp.29803
 Tomchuck, S. L., Zwezdaryk, K. J., Coffelt, S. B., Waterman, R. S., Danka, E. S., and Scandurro, A. B. (2008). Toll-like Receptors on Human Mesenchymal Stem Cells Drive Their Migration and Immunomodulating Responses. Stem Cells 26 (1), 99–107. doi:10.1634/stemcells.2007-0563
 Urbanek, K., Cesselli, D., Rota, M., Nascimbene, A., De Angelis, A., Hosoda, T., et al. (2006). Stem Cell Niches in the Adult Mouse Heart. Proc. Natl. Acad. Sci. U.S.A. 103 (24), 9226–9231. doi:10.1073/pnas.0600635103
 Vargas-Ferreira, F., Nedel, F., Etges, A., Gomes, A. P. N., Furuse, C., and Tarquinio, S. B. C. (2012). Etiologic Factors Associated with Oral Squamous Cell Carcinoma in Non-smokers and Non-alcoholic Drinkers: a Brief Approach. Braz. Dent. J. 23 (5), 586–590. doi:10.1590/s0103-64402012000500020
 Wang, F., Yu, M., Yan, X., Wen, Y., Zeng, Q., Yue, W., et al. (2011). Gingiva-derived Mesenchymal Stem Cell-Mediated Therapeutic Approach for Bone Tissue Regeneration. Stem Cells Dev. 20 (12), 2093–2102. doi:10.1089/scd.2010.0523
 Wang, G.-X., Zhan, Y.-A., Hu, H.-L., Wang, Y., and Fu, B. (2012a). Mesenchymal Stem Cells Modified to Express Interferon-β Inhibit the Growth of Prostate Cancer in a Mouse Model. J. Int. Med. Res. 40 (1), 317–327. doi:10.1177/147323001204000132
 Wang, L., Yin, P., Wang, J., Wang, Y., Sun, Z., Zhou, Y., et al. (2019). Delivery of Mesenchymal Stem Cells-Derived Extracellular Vesicles with Enriched miR-185 Inhibits Progression of OPMD. Artif. Cells, Nanomedicine, Biotechnol. 47 (1), 2481–2491. doi:10.1080/21691401.2019.1623232
 Whiteside, T. L. (2018). Exosome and Mesenchymal Stem Cell Cross-Talk in the Tumor Microenvironment. Seminars Immunol. 35, 69–79. doi:10.1016/j.smim.2017.12.003
 Widdows, H., Marway, H., and Johnson, S.-L. (2014). “Commodification of Human Tissue,” in Handbook of Global Bioethics ed . Editor H. ten Have ( Springer), 581–598.
 Wu, D.-M., Wen, X., Han, X.-R., Wang, S., Wang, Y.-J., Shen, M., et al. (2019). Bone Marrow Mesenchymal Stem Cell-Derived Exosomal MicroRNA-126-3p Inhibits Pancreatic Cancer Development by Targeting ADAM9. Mol. Ther. - Nucleic Acids 16, 229–245. doi:10.1016/j.omtn.2019.02.022
 Xia, L., Peng, R., Leng, W., Jia, R., Zeng, X., Yang, X., et al. (2015). TRAIL-expressing Gingival-Derived Mesenchymal Stem Cells Inhibit Tumorigenesis of Tongue Squamous Cell Carcinoma. J. Dent. Res. 94 (1), 219–228. doi:10.1177/0022034514557815
 Xie, C., Du, L.-Y., Guo, F., Li, X., and Cheng, B. (2019). Exosomes Derived from microRNA-101-3p-Overexpressing Human Bone Marrow Mesenchymal Stem Cells Suppress Oral Cancer Cell Proliferation, Invasion, and Migration. Mol. Cell. Biochem. 458 (1-2), 11–26. doi:10.1007/s11010-019-03526-7
 Xu, M., Wei, X., Fang, J., and Xiao, L. (2019). Combination of SDF-1 and bFGF Promotes Bone Marrow Stem Cell-Mediated Periodontal Ligament Regeneration. Biosci. Rep. 39 (12), BSR20190785. doi:10.1042/bsr20190785
 Yang, X., Du, J., Xu, X., Xu, C., and Song, W. (20142014). IFN-γ-Secreting-Mesenchymal Stem Cells Exert an Antitumor EffectIn Vivovia the TRAIL Pathway. J. Immunol. Res. 2014, 1–9. doi:10.1155/2014/318098
 You, Q., Yao, Y., Zhang, Y., Fu, S., Du, M., and Zhang, G. (2015). Effect of Targeted Ovarian Cancer Therapy Using Amniotic Fluid Mesenchymal Stem Cells Transfected with Enhanced Green Fluorescent Protein-Human Interleukin-2 In Vivo. Mol. Med. Rep. 12 (4), 4859–4866. doi:10.3892/mmr.2015.4076
 Zhang, X., Sai, B., Wang, F., Wang, L., Wang, Y., Zheng, L., et al. (2019). Hypoxic BMSC-Derived Exosomal miRNAs Promote Metastasis of Lung Cancer Cells via STAT3-Induced EMT. Mol. Cancer 18 (1), 40. doi:10.1186/s12943-019-0959-5
 Zhang, X., Zhang, L., Xu, W., Qian, H., Ye, S., Zhu, W., et al. (2013). Experimental Therapy for Lung Cancer: Umbilical Cord-Derived Mesenchymal Stem Cell-Mediated Interleukin-24 Delivery. Curr. Cancer Drug Targets 13 (1), 92–102. doi:10.2174/156800913804486665
 Zhou, D., Chen, Y., Bu, W., Meng, L., Wang, C., Jin, N., et al. (2021). Modification of Metal-Organic Framework Nanoparticles Using Dental Pulp Mesenchymal Stem Cell Membranes to Target Oral Squamous Cell Carcinoma. J. Colloid Interface Sci. 601, 650–660. doi:10.1016/j.jcis.2021.05.126
 Zurmukhtashvili, M., Machavariani, A., Dugashvili, G., Grdzelidze, T., Gogilashvili, K., Menabde, G., et al. (2020). Mesenchymal Stem Cell Transplantation Attenuates Growth of Chemotherapy Treated Oral Squamous Cell Carcinoma in an Animal Model. J. Oral Pathol. Med. 49 (7), 655–664. doi:10.1111/jop.13006
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Yang, Tang, Peng and Ding. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 01 July 2022
doi: 10.3389/fgene.2022.875617


[image: image2]
BTC as a Novel Biomarker Contributing to EMT via the PI3K-AKT Pathway in OSCC
Ting Shen1,2,3†, Tianru Yang1,2,3†, Mianfeng Yao1,2,3, Ziran Zheng1,2,3, Mi He1,2,3, Mengying Shao1,2,3, Jiang Li1,2,3* and Changyun Fang1,2,3*
1Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
2Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
3Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
Edited by:
Jianjun Xiong, Jiujiang University, China
Reviewed by:
Jozsef Dudas, Innsbruck Medical University, Austria
Mohammad Islam, University of Dundee, United Kingdom
* Correspondence: Jiang Li, 18670353686@163.com; Changyun Fang, fangcy@csu.edu.cn
†These authors have contributed equally to this work
Specialty section: This article was submitted to Cancer Genetics and Oncogenomics, a section of the journal Frontiers in Genetics
Received: 14 February 2022
Accepted: 02 May 2022
Published: 01 July 2022
Citation: Shen T, Yang T, Yao M, Zheng Z, He M, Shao M, Li J and Fang C (2022) BTC as a Novel Biomarker Contributing to EMT via the PI3K-AKT Pathway in OSCC. Front. Genet. 13:875617. doi: 10.3389/fgene.2022.875617

Purpose: Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors of the head and neck, while metastasis is the main cause of OSCC-related death. There is an urgent need to explore novel prognostic biomarkers and identify biological targets related to metastasis in OSCC treatment.
Methods: Analysis of differential expression was performed using datasets in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Immunohistochemistry (IHC) was conducted to assess the expression of betacellulin (BTC) in OSCC. SCC4 and CAL27 cells were used for in vitro experiments, in which CCK-8, transwell assays, and wounding healing assays were performed to verify the biological functions of BTC. The role of BTC in EMT was analyzed by EMT score and Western blot.
Results: Through the analysis of the mRNA expression profile data from TCGA database in OSCC, we found that only low expression of BTC was significantly correlated with a poor prognosis in OSCC patients. The results of IHC assays and TCGA databases showed that the expression level of BTC was related to the tumor stage, histological grade, and metastasis status. In vitro analysis showed that overexpression of BTC significantly suppressed the proliferation and migration of OSCC cells. Furthermore, we confirmed that BTC could affect EMT through the PI3K-AKT signaling pathway.
Conclusion: The overexpression of BTC suppresses the proliferation, migration, and EMT of OSCC cells via the PI3K-AKT pathways, leading to a better prognosis in OSCC. BTC may be used as a novel molecular marker to assess the prognosis of OSCC patients.
Keywords: betacellulin, oral squamous cell carcinoma, proliferation, migration, EMT—epithelial to mesenchymal transformation
INTRODUCTION
Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors of the head and neck (Siegel et al., 2018). OSCC is known for its high morbidity, mortality, and poor prognosis, with a five-year survival rate of only 60% (Siegel et al., 2012). With rapid improvements in its diagnosis and comprehensive treatment, the incidence of OSCC has declined, but the overall survival rate has only increased by 5% in the past 20 years (Chinn and Myers, 2015). OSCC has high rates of metastasis and recurrence, which greatly affect the patient prognosis and survival (Busso-Lopes et al., 2021). Therefore, it is crucial to find biomarkers and therapeutic targets for diagnosis and prognosis evaluation. However, to date, there is no clear biological target that can be used as a risk factor for OSCC metastasis and recurrence.
Epithelial–mesenchymal transition (EMT) is a cellular process wherein cells lose the morphology of the epithelial cell type and acquire the characteristics of mesenchymal cells. In OSCC, EMT is related to tumor cell migration and metastasis (Thompson et al., 2005; Lee et al., 2006; Krisanaprakornkit and Iamaroon, 2012). Recent studies have examined EMT-induced pathways that play oncogenic roles in OSCC, such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, Wnt pathway, Notch pathway, and transforming growth factor-β (TGF-β)/Smad pathway (Xu et al., 2015). Recently, some second-generation sequencing data helped us further determine the relationship between OSCC and Akt phosphorylation (Chen et al., 2015). Phosphatidylinositol 3‐kinase (PI3K) activates AKT via the phosphorylation of membrane inositol lipids (Chen et al., 2016). Various studies have shown that PI3K-AKT pathway components are upregulated in different human malignancies (Agarwal et al., 2013; Zhang et al., 2016).
Betacellulin (BTC), the ligand of the epidermal growth factor receptor (EGFR, also known as ERBB1 and HER1), is a kind of epidermal growth factor that can promote β-cell regeneration (Dahlhoff et al., 2014; Rush et al., 2018; Lee et al., 2020). In previous studies, the overexpression of BTC was found to be related to a variety of cancers, including pancreatic cancer and breast cancer, and was associated with reduced survival (Olsen et al., 2018; Lee et al., 2020). However, the correlation between the expression of BTC and survival in OSCC, which would indicate its clinical significance, is still unknown.
In our study, we systematically analyzed the mRNA data of OSCC patients in TCGA database and screened out the differentially expressed gene BTC, which is related to the metastasis and prognosis of OSCC patients. According to the clinical data collected from our hospital and in vitro functional studies, we found that BTC may play a vital role in inhibition of OSCC progression as a tumor-suppressor gene. Furthermore, we demonstrated that BTC deficiency induces the proliferation, migration, and EMT of OSCC cells via the PI3K-Akt pathways, leading to a poor prognosis in OSCC. BTC may be used as a novel molecular marker to assess the prognosis of OSCC patients.
MATERIALS AND METHODS
Ethics, Human Tissues, and Cell Lines
This study complies with the Declaration of Helsinki and was approved by the Medical Ethics Committee of the Second Xiangya Hospital of Central South University. All clinical tissue samples used for immunohistochemistry (IHC) and real-time PCR were obtained from OSCC patients who underwent surgical treatment at the Stomatological Center of the Second Xiangya Hospital of Central South University from 2013 to 2015. All patients did not receive radiotherapy and chemotherapy before and after surgery. The pathological characteristics of OSCC patients are shown in Table 1. The OSCC cell lines SCC4 and CAL27 were obtained from the Center for Molecular Medicine, Xiangya Hospital, Central South University (Changsha, China).
TABLE 1 | Association between the clinicopathological variables and BTC expression in 38 OSCC patients.
[image: Table 1]Cell Culture
SCC4 and CAL27 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)/high glucose containing 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin. The cells were cultivated in a humidified 5% CO2 incubator.
The Cancer Genome Atlas (TCGA) Database and GSE Dataset (GSE138206)
TCGA (https://tcga-data.nci.nih.gov/tcga/) is a public database, and the use of its datasets does not require ethical approval. The GSE dataset (GSE138206) was downloaded from the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138206). In this study, the mRNA expression profile data and clinical follow-up data for bioinformatics analysis were downloaded from TCGA database HNSCC dataset (only the data of 330 OSCC samples and 32 matched normal oral mucosa samples were retained) and GEO database (GSE138206). Among the 330 OSCC patients, 260 patients had complete clinical follow-up data, which could be used for further survival analysis and Cox regression analysis. Based on N grade and M grade, we further divided these 260 OSCC patients into the metastasis-positive group (n ≥ 1 or M = 1) and the metastasis-negative group (N = 0, M = 0).
Bioinformatics Analysis
In this work, only genes with a false discovery rate (FDR) < 0.05 and |log2 FC| ≥1 were selected as differentially expressed genes (DEGs) (Szklarczyk et al., 2011). Gene set enrichment analysis (GSEA) was performed with Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets (c2) or oncogenic signature gene set (c6) collections of the Molecular Signature Database v7.0 (Mootha et al., 2003; Subramanian et al., 2005). To further explore the mechanisms underlying BTC-mediated EMT, protein–protein interaction (PPI) network analysis was performed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) (version 11.0, https://www.string-db.org/cgi/input?sessionId=bX0xOZT5Yfvc&input_page_show_search=on) (Patil and Nakamura, 2005).
IHC
Formalin-fixed paraffin-embedded (FFPE) tissues were embedded in paraffin. We used BTC as the primary antibody (Proteintech, Wuhan, China). Methods experiment was conducted according to histological and immunohistochemical analysis in our last study (Yao et al., 2020). The score for each slide was calculated on the basis of staining intensity and the percentage of positive cells. Immunostaining intensity was divided into four grades: 1, negative; 2, weak; 3, moderate; and 4, strong. The percentage of positively stained cells was also divided into four grades: 1, <5%; 2, 5–35%; 3, 35–75%; and 4, >75%.
RNA Extraction and Real-Time PCR Assay
For RNA extraction, cells were plated in a six-well plate in advance. When the cells were allowed to grow to 80–100% confluence, the medium was removed, and the cells were washed with PBS. Then, 1 ml TRIzol (Invitrogen, Carlsbad, CA) was added to each well for 5 min at room temperature. The complementary DNA synthesis and quantitative real-time polymerase chain reaction were performed as described previously (Yao et al., 2020). The reverse transcription was performed according to the manufacturer’s protocol for the PrimeScript RT reagent kit (Takara, Japan). Also, GAPDH was used to normalize the expression. The primers used for real-time PCR were as follows: BTC: F: 5′-CCTGGGTCTAGTGATCCTTCA-3′, R: 5′-CTTTCCGCTTTGATTGTGTGG-3’; GAPDH: F: 5′-GTCTCCTCTGACTTCAACAGCG-3′, R: 5′-ACCACCCTGTTGCTGTAGCCAA-3′.
Semiquantitative real-time PCR was performed using the SYBR Premix Ex Taq II kit (Bio-Rad, California, United States) on a Bio-Rad PCR system.
Plasmid Transfection
293T cells in good condition and the logarithmic growth phase were used for lentivirus packaging. The cell density was controlled at approximately 80% during transfection. High-quality plasmids (PMD2.g, PAX2, Flag-plvx-sbp, and Flag-plvx-sbp-btc) were used for transfection. Puromycin was added for selection, 3 and 4 days after transfection.
Western Blotting
A 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel was prepared the night before the experiment. The cells were plated in a six-well plate in advance, and when they reached 80% confluence, they were used for protein extraction. The original medium was removed, and the cells were washed twice with PBS. Then, 1X SDS was added, and the lysate was collected with a cell scraper and transferred to a 1.5-ml EP tube. The tube was placed at 100°C for 5 min, and the protein concentration was assessed. The same amount of total protein (20 μg per well) was separated by 15% SDS-PAGE at 80 V for 30 min and then 120 V for 60 min. Then, the proteins were transferred onto polyvinylidene fluoride membranes (Merck Millipore) at 300 mA for 60 min. Skim milk was applied to seal the blots, and the following primary antibodies were applied at 4°C overnight: AKT, pAKT (Ser 473), pAKT (Thr 308) E-cadherin, N-cadherin, vimentin (1:1000, Cell Signaling Technology, Shanghai, China), and BTC (1:1000, Proteintech, Wuhan, China). After washing three times with PBST, the secondary antibody was applied for 1 h at room temperature, and after washing three times with PBST again, the bands were visualized utilizing enhanced chemiluminescence (ECL) reagents (Pierce, United States).
Wound Healing Assay
The cells were seeded in a six-well plate at 25–30% confluence and were cultured at 37°C and 5% CO2. After 3 days, a confluent cell monolayer (95–100%) was ensured, and the medium was removed from the culture dishes and washed with PBS two times. A sterile P-200 pipette tip was used to scratch the cell monolayer in a straight line in the center of the dishes. Then, the dishes were cleaned with PBS, followed by adding 2ML DMEM. Defining exact positions and focal planes, image acquisition was taken throughout 0–36 h. Quantitative data analysis was performed with Open-source software (ImageJ/Fiji).
Transwell Cell Migration/Invasion Assay
The Matrigel was prepared at 4°C. Transwell inserts (BD Bioscience, San Jose, CA) with a filter of 8 μm were prepared for transwell cell migration/invasion assay. Matrigel of 50 μL was coated or uncoated downside surface of the transwell membrane and incubated at 37°C for 30 min for gelling. A total of 5 × 104 cells were seeded into the upper chamber with or without Matrigel, and 500 μL complete medium was added to the lower chamber. After 24-h or 48-h incubation, the cells were fixed with methanol and stained with crystal violet. Then, cells on the top surface of the membrane were wiped off. Four random fields were photographed in a phase-contrast microscope using 10 × objective. Quantitative data analysis was performed with Open-source software (ImageJ/Fiji).
CCK-8 Assay
CCK-8 Kit was applied to evaluate cell proliferation ability (KeyGEN BioTECH, Jiangsu, China). A total of 3 × 103 cells were seeded in 96-well plates with 100 μL medium for each well. After 24, 48, 72, and 96 h, the medium in each well was removed, and then 10 μg CCK-8 solution and 100 μL medium were added into the well for 1 h in a dark environment. After that, absorbance was measured at 450 nm using a PerkinElmer’s EnSpire Multilabel Plate Reader.
Statistical Analysis
All analyses were performed with SPSS 25.0 (SPSS Inc., United States), R (Version 4.0.3), and GraphPad Prism (version 8.0, GraphPad Software, Inc., United States). Statistical significance was determined by Student’s t-test and analysis of variance comparisons. Overall survival was assessed using the Kaplan–Meier method, and the differences in survival between the groups were compared using log-rank tests. The effect of clinicopathological factors on survival was determined with univariate and multivariate Cox proportional hazards models. Data from three independent experiments are presented as the mean ± SD. Differences with a p-value of <0.05 were considered statistically significant. *, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001, respectively.
RESULTS
Screening Out Genes Related to the Prognosis of OSCC
Through the analysis of the mRNA expression profile data in TCGA database, we found that a total of 4,626 differentially expressed genes (DEGs) were identified between 330 OSCC samples and 32 matched normal tissue specimens. Among these DEGs, 3,027 genes were upregulated in OSCC tumor tissues, whereas 1,599 genes were suppressed (Figure 1A). To further screen out the metastasis-related genes involved in OSCC, 260 patients with complete clinical follow-up data from TCGA database were divided into a metastasis-positive group (n = 146) and a metastasis-negative group (n = 113). After differential mRNA expression analysis, 43 DEGs were screened out, among which 25 genes showed low expression and 18 genes were highly expressed in the metastasis-positive group (Figures 1B,C). Furthermore, multivariate regression analysis revealed that BTC, IFNK, CCBE1, NKX2.2, VGLL2, and AC022075.2 were independent prognostic factors of OSCC among 43 DEGs (Figure 1D). Furthermore, BTC, the only tumor-suppressor gene with the largest fold change among IFNK, CCBE1, NKX2.2, VGLL2, and AC022075.2, was selected for further study, and the low expression of BTC was significantly correlated with the poor prognosis (in terms of OS) of OSCC (Figure 1E). These results indicate that BTC might be a promising biomarker for OSCC development.
[image: Figure 1]FIGURE 1 | DEGs in OSCC. (A,B) Volcano plots were constructed using FC values and FDRs. The red points in the plot represent the overexpressed mRNAs, and the blue points indicate the downregulated mRNAs with statistical significance. (A) DEGs between normal and tumor tissues. (B) DEGs between metastasis-positive and metastasis-negative tumor tissues. (C) Hierarchical clustering analysis of mRNAs that were differentially expressed between metastasis-negative and metastasis-positive tissues. The normalized expression levels in the heatmaps are colored from blue to red in ascending order. (D) Multivariate Cox regression analysis according to gene expression. (E) Kaplan–Meier survival curves were performed to show the prognosis of patients with high and low expression of BTC through the analysis of the mRNA expression profile data of 260 OSCC tumor samples from TCGA database.
Low Expression of BTC Promotes the Development of OSCC
To further validate the role of BTC in the malignant progression of OSCC, we used IHC assays to examine the expression of BTC in 38 tissues of OSCC patients and their paired normal samples. The results showed that the expression level of BTC was remarkably lower in OSCC tissues than normal samples. In particular, the BTC expression level was significantly decreased in the lymph nodes with metastatic cancer of OSCC tissues when compared to tumor specimens (Figures 2A,B). Moreover, mRNA expression of BTC was in accordance with the results of IHC after examining 5 OSCC and paired normal samples (Figure 2C). The low expression of BTC was significantly correlated with the poor prognosis (in terms of their paired normal samples) of OSCC (Figure 2D). Furthermore, we analyzed the associations between the clinicopathological variables and BTC expression in 38 OSCC patients, and we found that the BTC expression was related to histological grade, N classification, tumor stage, and metastasis (Table 1). Through Cox proportional hazards models, we found that the low expression of BTC was an independent risk factor for prognosis in OSCC (Table 2). To further verify these results, we analyzed the expression profile data of 330 OSCC samples and 32 normal oral mucosa samples from TCGA database and found that compared to that in normal tissues, the BTC expression level in tumor tissues was low (Figures 2E,F). Furthermore, we analyzed the correlation between BTC expression and the clinical prognosis-related factors of the patients. BTC expression showed a significant correlation with patient age, tumor stage, histological grade, and lymph metastasis status (Figures 2G–L), especially in patients with lymph metastatic OSCC whose BTC levels were significantly reduced. Altogether, these results indicate that BTC may play a vital role in the malignant progression of OSCC, especially in metastasis.
[image: Figure 2]FIGURE 2 | BTC expression is correlated with clinicopathological parameters in OSCC patients. (A) Representative images of immunohistochemical staining and (B) immunoreactive score of BTC in human normal mucosa samples, OSCC tissue samples, and metastatic LN samples. The experiment was repeated three times independently. Results are shown as mean ± SD. T-test, n = 38. (C) mRNA expression of BTC in normal and tumor tissues was detected by RT-PCR. (D) Kaplan–Meier survival curves of 38 patients from our department. (E–L) Analysis of 330 OSCC samples from TCGA database and 32 pairs of OSCC samples selected from TCGA database showed the comparison of (E,F) BTC expressed in tumor tissues and normal tissues. Correlation analysis with BTC expression and (G) age, (H) histological grade, (I) sex, (J) T category, (K) tumor stage, and (L) LN metastasis status. *p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001.
TABLE 2 | Statistical analyses of clinicopathological features associated with survival in 38 OSCC patients with the multivariate Cox proportional hazards models.
[image: Table 2]BTC Expression Was Positively Related to the Proliferation, Migration, and Invasion of OSCC Cells In Vitro
In order to explore the biological function of BTC in OSCC, we stably overexpressed BTC in SCC4 and CAL27 OSCC cells by lentivirus (Figure 3A). The CCK-8 assay indicated that overexpression of BTC significantly decreased cell proliferation as compared to control groups (**p < 0.01) (Figures 3B,C). Moreover, the effects of BTC on regulation of OSCC cell migration were determined by a wound healing assay. As shown in Figure 3D, the ability of cell migration was obviously inhibited after overexpression of BTC in SCC4 and CAL27 cells. In addition, the transwell assay exhibited a consistent tendency in which SCC4 and CAL27 cell migration and invasion were reduced in the overexpressed BTC group (Figures 3E,F). Collectively, these results suggest that upregulation of BTC alleviated cell growth, migration, and invasion in OSCC.
[image: Figure 3]FIGURE 3 | Overexpression of BTC inhibits the proliferation, migration, and invasion of OSCC cell lines. (A) Cancer cell transfectants of the BTC-expressing vector and empty vector control were identified in SCC4 and CAL27 cells by Western blot. (B,C) Overexpression of BTC inhibited cell proliferation, as indicated by the CCK-8 assay, in CAL27 and SCC4 cells. (D) Wound healing assay showed that overexpression of BTC inhibited CAL27 and SCC4 cell migration. (E,F) Transwell assays showed that the migration and invasion abilities of CAL27 and SCC4 cells were impaired after overexpression of BTC.
Loss of BTC Expression Induces Epithelial and Mesenchymal Transition Changes
Emerging studies have shown that EMT is an essential process that contributes to tumor invasion and metastasis in OSCC (Pastushenko and Blanpain, 2019; Chen et al., 2020). Therefore, we investigated the role of BTC in EMT of OSCC. We divided OSCC patients in TCGA database into two groups (BTC low-expression group and BTC high-expression group). As shown in Figure 4A, the BTC high-expression group had significantly decreased EMT scores when compared to BTC low-expression group. Through GSEA, the function of BTC was mainly enriched to EMT-related processes, such as tight junctions, focal adhesion, adherens junctions (Figure 4B). Moreover, whether in TCGA database or the GEO dataset (GSE 138206), we found that 17 EMT-related markers were differentially expressed between BTC low- and high-expression groups, among which 11 genes (AGER, CDH2, FH1, MMP2, SNAI1, SNAI2, TWIST 1, TWIST 2, VIM, ZEB1, and ZEB2) were related to epithelial functions and 6 genes (EPCAM, MAL2, CLDN4, CDH1, CDH3, and ST14) were associated with mesenchymal ability (Figure 4C). We also found that the expression of BTC was correlated with the expression level of multiple EMT markers, such as E-cadherin (R = 0.4, p < 0.001) (Figure 4D), N-cadherin (R = −0.39, p < 0.001) (Figure 4E), and vimentin (R = −0.43, p < 0.001) (Figure 4F).
[image: Figure 4]FIGURE 4 | (A) Comparison of EMT scores in normal and tumor (in BTC low- and high-expression groups) tissue. (B) TCGA and GSEA showed highly regulated genes in patients with high-BTC expression versus those with low-BTC expression. (C) Heatmap of EMT marker expression in the BTC high- and low-expression groups. (D–F) Relationship between BTC and EMT markers, such as E-cadherin, N-cadherin, and vimentin. (G) PPI network analysis and Western blot analysis. The PPI network of the DEGs was constructed using STRING. The network nodes represent different proteins. The edges represent protein–protein associations, and the line thickness indicates the strength of the supporting data. (H) Protein expression level of EMT-related markers and the PI3K-AKT signaling pathway after overexpression of BTC in SCC4 and Cal27 cells.
BTC May Inhibit the Progression of OSCC by Inhibiting the PI3K-AKT Pathway
To investigate the mechanisms underlying BTC-mediated EMT, we used STRING to construct a PPI network and found that BTC is a hub gene that can interact with AKT in the protein regulatory network of OSCC (Figure 4G). To further explore whether BTC regulated the EMT process via the PI3K-AKT signaling pathway in OSCC cells, Western blot analysis was performed to show that upregulation of BTC inhibited the activation of PI3K and the phosphorylation of AKT in ser473 and thr308. Furthermore, the suppression of PI3K-AKT signaling was accompanied by the altered protein expression of EMT-related markers, among which the expression of E-cadherin was significantly upregulated, whereas the expression of N-cadherin and vimentin was significantly downregulated (Figure 4H).
DISCUSSION
The current treatment for OSCC, especially for patients with metastasis, is still not satisfactory (Liu et al., 2021). Therefore, looking for genes related to the progression and metastasis of OSCC and exploring the mechanisms that affect the progression and metastasis of OSCC are of great significance for assessing the prognosis of OSCC patients, improving their treatment effects, and improving survival rates. In this study, we found that the lack of BTC affects EMT through the PI3K-AKT signaling pathway, leading to enhanced OSCC cell proliferation and metastasis.
In this study, we first screened out the BTC gene which was related to the progression and metastasis of OSCC through bioinformatics methods. Furthermore, we found that BTC's low expression was related to metastasis (Table 1) and poor prognosis (Figure 1E). Through Cox proportional hazards models, we found that BTC expression was an independent risk factor for OSCC (Table 2). These results suggest that BTC may play a role of tumor-suppressor gene in the progression and metastasis of oral cancer. These results were different from the previous studies, for example, Huotari et al. (1998) reported that BTC could induce a β-cell-like phenotype in unrelated cells by simulating β-cell proliferation and could also stimulate the proliferation of some cancer cells. But some scholars also found that: sequential and gamma-secretase-dependent processing of the betacellulin precursor generates a palmitoylated intracellular-domain fragment that inhibits cell growth (Stoeck et al., 2010). This difference may be related to the source of different tissues among different tumors.
EMT is a process wherein cells lose their morphology of the epithelial cell type and attain the characteristics of mesenchymal cells (Chen et al., 2015). Due to the low expression of E-cadherin and the increase in N-cadherin, adhesion reduction between OSCC cancer cells during tumor progression induces invasion and metastasis (Brabletz, 2012; Craene and Berx, 2013). In our work, we reported that overexpression of BTC could significantly decrease cell proliferation, migration, and invasion of OSCC. We also found that through GSEA, multiple genes in the BTC low-expression group were enriched in the EMT process, and the expression of BTC was obviously associated with EMT markers, such as E-cadherin, N-cadherin, and vimentin. These results illuminate that BTC may inhibit OSCC progression by regulating EMT. Furthermore, to investigate the mechanisms by which BTC regulates EMT, we found that BTC is a hub gene that interacts with AKT in the protein regulatory network of OSCC. Abundant evidence has suggested that PI3K-AKT signaling is crucial to the proliferation and survival of cancer cells with its intrinsic features of carcinogenesis. PI3K-AKT signaling is altered in approximately 30.5% of HNSCC patients (Lui et al., 2013; Lakshminarayana et al., 2018). The induction of PI3K-AKT signaling pathway components has been reported to induce the acceleration of EMT in OSCC (Wang et al., 2020; Wang and Chen, 2021). In the present study, we revealed that overexpression of BTC in OSCC could inhibit the phosphorylation of AKT by inhibiting PI3K. Meanwhile, the expression of E-cadherin was significantly upregulated, while the expression of N-cadherin and vimentin was significantly downregulated. These results indicated us that BTC may inhibit the EMT process related to OSCC progression and metastasis through the PI3K-AKT signaling pathway.
So far, the mechanism of BTC-regulated cell survivals and EMT has been poorly understood. As a ligand of EGFR, the affinity of BTC to EGFR could affect cell growth and therapy resistance in various cancers (Fan et al., 2020; Zhao et al., 2020). Furthermore, direct repression of BTC was previously reported to induce the negative regulation of EGFR-mediated survival signaling during EMT (Meyer-Schaller et al., 2018). On the contrary, we found that upregulation of BTC could inhibit cell proliferation and EMT-mediated metastasis in OSCC, which might be due to the endogenous differences between distinct tumor types. Additionally, previous studies have reported that PI3K-AKT signaling pathways could be suppressed after downregulation of EGFR in glioma, pancreatic cancer, and non-small cell lung cancer. (Milton et al., 2020; Han and Wang, 2022; Wang et al., 2022). The level of p-AKT was decreased after treatment of an EGFR antagonist (JMR-132) in ovarian cancers. Our study has found that BTC may suppress EMT in OSCC cells by downregulating the PI3K-AKT signaling. The aforementioned evidence suggests that BTC might regulate EGFR-related targets in OSCC, especially PI3K-AKT signaling. However, the role of BTC on EGFR regulation was blurred in OSCC and still needs to be further discovered.
In conclusion, low expression of BTC was associated with metastasis and poor prognosis in OSCC patients. Low expression of BTC induces the proliferation, migration, and EMT of OSCC cells via the PI3K-AKT pathways. BTC may be used as a novel molecular marker to assess the prognosis of OSCC patients.
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Head and neck squamous cell carcinoma (HNSCC) represents one of the most malignant and heterogeneous tumors, and the patients have low 5-year survival. Traditional Chinese medicine (TCM) has been demonstrated as an effective complementary and/or alternative therapy for advanced malignancies including HNSCC. It has been noted that several herbs that are used for preparing Yinchen Wuling San (YWLS) have anti-tumor activities, whereas their mechanisms of action remain elusive. In this study, network pharmacology and molecular docking studies were employed to explore the underlying mechanisms of action of YWLS against HNSCC. The 58 active ingredients from six herbs used for YWLS and their 506 potential targets were screened from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and SwissTargetPrediction database. A total of 2,173 targets associated with HNSCC were mainly identified from the DisGeNET and GeneCards databases. An active components-targets-disease network was constructed in the Cytoscape. Top 20 hub targets, such as AKT1, EGFR, TNF, ESR1, SRC, HSP90AA1, MAPK3, ERBB2, and CCND1, were identified by a degree in the protein–protein interaction (PPI) network. Gene functional enrichment analysis showed that PI3K-AKT, MAPK, Ras, TNF, and EGFR were the main signaling pathways of YWLS in treating HNSCC. There were 48 intersected targets such as EGFR, AKT1, and TNF that were associated with patients’ outcomes by the univariate Cox analysis, and most of them had increased expression in the tumor as compared to normal tissues. The area under curves of receiver operating characteristic indicated their diagnostic potential. Inhibition of these survival-related targets and/or combination with EGFR or AKT inhibitors were promising therapeutic options in HNSCC. The partial active components of YWLS exhibited good binding with the hub targets, and ADME analysis further evaluated the drug-likeness of the active components. These compounds and targets identified in this study might provide novel treatment strategies for HNSCC patients, and the subsequent work is essential to verify the underlying mechanisms of YWLS against HNSCC.
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INTRODUCTION
Head and neck cancer (HNC) is one of the most common and aggressive human malignancies worldwide and is also one of the most lethal causes of death (Johnson et al., 2020). HNC is characterized by the heterogeneity of primary sites where the tumor originates, including the oral cavity, nasopharynx, oropharynx, larynx, tongue, and hypopharynx (Rasmussen et al., 2019). HNC is understood to be primarily comprised of squamous cell carcinoma, accounting for greater than 90% of cases. Genetic heterogeneity, alcohol consumption, and tobacco abuse are considered the leading carcinogens. Infection with human papillomavirus (HPV) (Chaturvedi et al., 2011) and Epstein–Barr virus (Chien et al., 2001) are also known causes of HNC formation. The standard treatments for HNC with advanced stages are surgery, radiation therapy, chemotherapy, and chemoradiotherapy. The advancement in molecular targeted therapy and immunotherapy has provided promising therapeutic options for patients with metastatic or recurrent HNC (Casasola, 2010). However, the poor outcome of these therapies has not been improved in recent years (Siegel et al., 2022). Therefore, the identification of novel prognostic biomarkers or effective therapeutics is an urgent need.
Most patients with head and neck squamous cell carcinoma (HNSCC) are diagnosed at advanced stages and have a 40–50% 5-year survival rate when receiving standard therapies (Gregoire et al., 2010). The survival of recurrent or metastatic HNSCC was even worse with median overall survival (OS) of 1 year (Argiris et al., 2017). Meanwhile, potentially life-threatening complications or side effects caused by most therapies for HNSCC patients, such as swallowing trouble, nerve damage, dry mouth, substantial toxicity, and hearing loss, are big challenges to be solved (Johnson et al., 2020). Clinical studies have shown that traditional Chinese medicine (TCM) was effective in treating HNSCC and its complications, such as Poria cocos (PC) and Atractylodes macrocephala koidz (AMK) (Meng et al., 2018; Cheng et al., 2021). In addition, it has been reported that Artemisiae scopariae herba (ASH) and Wuling San have anti-tumor efficacy (Lu, 2012). For example, they can be used to decrease chemoradiotherapy-induced diarrhea and ascites (Qu et al., 2016). Yinchen Wuling San (YWLS) prescription is a traditional Chinese medicine from Synopsis of Golden Chamber and consists of six herbal materials including Artemisiae scopariae herba (ASH, Chinese name: Yinchen), Poria cocos (PC, Chinese name: Fuling), Alisma orientale (AO, Chinese name: Zexie), Atractylodes macrocephala koidz (AMK, Chinese name: Baizhu), Polyporus umbellatus (PU, Chinese name: Zhuling), and Cinnamomi ramulus (CR, Chinese name: Guizhi) (Yao et al., 2016). Thus, these Chinese herbs might be potential alternatives or complements for HNSCC. However, the biochemical active components and anti-tumor mechanism of YWLS are unclear and need to be explored.
Network pharmacology as a novel analytical approach has been widely used to predict pharmacological action and potential mechanisms of TCM through integrating drug targets, diseases, and their targets into biomolecular networks (Li and Zhang, 2013) (Sun et al., 2021). In this study, network pharmacology was employed to screen active ingredients of YWLS and their potential targets and to explore the action mechanisms of YWLS against HNSCC. Furthermore, the molecular interactions of identified components with their possible targets were predicted by molecular docking studies. The present study might provide underlying mechanisms of YWLS against HNSCC, and the found targets and therapeutic clues are expected to be validated in further experiments. An analysis workflow of this study is illustrated in Figure 1.
[image: Figure 1]FIGURE 1 | The workflow of this study.
METHODS AND MATERIALS
Screening of Active Ingredients of Yinchen Wuling San Prescription
YWLS is a common traditional Chinese prescription that includes six herbs: ASH, PC, AO, AMK, CR, and PU. These herbs contain a variety of compounds with the effects of anti-inflammatory, antioxidant, immune regulation, and anti-tumor. ASH has been demonstrated to induce KB epithelioid cell apoptosis through elevated mitochondrial stress and caspase activation mediated by the MAPK-stimulated signaling pathway (Cha et al., 2009). The active ingredients of these herbs were screened from the TCMSP database (http://lsp.nwu.edu.cn/tcmsp.php) (Ru et al., 2014) with parameters of drug-like properties (DL) ≥ 0.18 and oral bioavailability (OB) ≥ 30%. The available pharmacological targets of these ingredients in each herb were obtained from the SwissTargetPrediction database (http://www.swisstargetprediction.ch/) (Daina et al., 2019) since it covers more targets than the TCMSP database. Additionally, unpredicted known targets for active ingredients were added based on published literature. The UniProt database (https://www.uniprot.org/) was used to standardize gene names and target information.
Identification of Potential Targets of Head and Neck Squamous Cell Carcinoma
The DisGeNET (Pinero et al., 2015) and GeneCards (Fishilevich et al., 2017) databases were employed to screen pathological targets of HNSCC. The potential HNSCC-related targets were obtained by merging the two database-derived targets after deleting duplicates. In addition, YWLS and HNSCC-related targets were intersected by the Venn diagram.
Protein–Protein Interaction Network and Topological Analysis
To investigate potential interactions among intersecting targets of YWLS and HNSCC, the PPI network was obtained using the STRING database (Szklarczyk et al., 2021) and visualized in Cytoscape (version 3.8.0) (Shannon et al., 2003). The densely connected modules in the network were identified using the Molecular Complex Detection (MCODE) plugin (Bader and Hogue, 2003) with the default parameters (“Degree Cutoff = 2,” “Node Score Cutoff = 0.2,” “K-Core = 2,” and “Max. Depth = 100.”). The CytoNCA plugin (Tang et al., 2015) was used to calculate the nodes with the highest degree. The hub genes were retrieved by degree using the cytoHubba plugin (Chin et al., 2014).
GO and Kyoto Encyclopedia of Genes and Genomes Enrichment Analysis
To interrogate the potential functions of these intersecting targets of YWLS and HNSCC, gene functional enrichment analysis including biological process (BP), molecular function (MF), and cellular components (CC) was performed using the clusterProfiler package (Yu et al., 2012). The pathway referenced from the Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) was also investigated. Moreover, among these targets, the KEGG pathways of the targets of each herb and immune-related targets involved were also investigated. Additionally, the important targets that were involved in the significantly enriched pathways were visualized in the pathway maps using the Pathview R package (Luo and Brouwer, 2013).
Construction of Active Compounds of Yinchen Wuling San Prescription–Head and Neck Squamous Cell Carcinoma Disease Regulatory Network
In order to illustrate the regulatory network of all active compounds of YWLS and their corresponding targets and HNSCC-related targets, the compound–disease regulatory network was generated by Perl and visualized using the Cytoscape software (Shannon et al., 2003).
Prognostic Effect of Intersecting Targets in Head and Neck Squamous Cell Carcinoma Patients
Gene expression profiles measured by Fragments Per Kilobase of transcript per Million mapped reads (Log2 (FPKM+1)) and clinical information of HNSCC patients were acquired from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). The expression matrix of intersecting targets in each HNSCC patient was extracted. The expression levels of these genes between normal and cancerous tissues were compared using Wilcoxon tests and illustrated as a heatmap by the pheatmap R package. To determine their prognostic utility, univariate Cox regression analysis was employed to screen overall survival (OS)-related genes.
An independent HNSCC dataset (GSE42743, n = 103) (Lohavanichbutr et al., 2013) was used to validate the survival-related target expression pattern in tumor and normal tissues.
Molecular Docking
The overlapped genes of the top 20 hub targets and the genes that have a prognostic effect were searched in the RCSB PDB database (https://www.rcsb.org), and their available 3D protein conformations with resolutions less than 3Å as determined by X-ray crystal diffraction were used. The structures of the selected active ingredients of YWLS were downloaded from the PubChem database (SDF.files). SybylX-2.0 software was used to perform energy minimization and optimize geometry in the Tripos force field. SybylX-2.0 software was applied for molecular docking studies. We processed proteins as follows: removing the co-crystalized ligand and water molecules from the structure, adding the H atoms, and fixing the terminal. The Surflex-Dock (SFXC) docking mode was applied, and the obtained total scores usually indicate the binding force.
It is widely believed that the total score >4.0 indicates that the docking ligands have certain binding activity with the target, the total score >5.0 indicates good binding activity, and the total score >7.0 indicates strong binding activity (Lohning et al., 2017). Meanwhile, export the protein and small-molecule docking file and import the file into PyMOL to visualize the results.
Absorption, Distribution, Metabolism, and Excretion Analysis of Active Molecules
To evaluate potential active ingredients with good ADME characteristics, pharmacokinetic properties, drug-likeness, and medicinal chemistry friendliness of these molecules were predicted using the SwissADME database (http://www.swissadme.ch/) (Daina et al., 2017).
RESULTS
Active Ingredients of Yinchen Wuling San Prescription
A total of 58 active ingredients of YWLS with OB ≥ 30% and DL ≥ 0.18 were acquired in the TCMSP database (Table 1). There were 11 compounds from PU, 10 compounds from AO, 15 compounds from PC, 7 compounds from AMK, 7 compounds from CR, and 13 compounds from ASH, respectively. We noted that CR and AO share the sitosterol ingredient, CR and ASH have the same ingredient beta-sitosterol, and CR and PU share the peroxyergosterol ingredient. Cerevisterol and ergosta-7,22E-dien-3beta-ol were the same compounds from PU and PC.
TABLE 1 | Active components of YWLS.
[image: Table 1]Target Prediction of Active Ingredients of Yinchen Wuling San Prescription
The targets of these active ingredients in YWLS were predicted in the SwissTargetPrediction database, and 506 potential targets were obtained after the duplicate deletion (Supplementary Table S1). Among these targets, a total of 131 targets are immune-related genes, which are mainly categorized into cytokines and their receptors, BCR signaling pathway, antimicrobials, natural killer cell cytotoxicity, and TCR signaling pathway, suggesting that active components of YWLS might act through modulating immune response (Supplementary Table S1). Furthermore, the most enriched GO terms and KEGG pathways of these immune-related genes are the same. Some signaling pathways related to immune regulation including T cell receptor, VEGF, and Fc epsilon RI signaling corroborated the conjecture (Supplementary Figure S1A, B).
Disease-Related Targets Prediction of Head and Neck Squamous Cell Carcinoma
The keywords “head and neck carcinoma” and “head and neck squamous cell carcinoma” were used to search in DisGeNET and GeneCards databases. A total of 2,173 potential pathological targets related to HNSCC were acquired (Figure 2A, Supplementary Table S2). The related targets of HNSCC and active ingredients of YWLS were intersected using the Venn diagram, and 212 disease- and ingredient-related targets were obtained (Figure 2B). The genes corresponding to these targets were further confirmed by the UniProt database (Table 2).
[image: Figure 2]FIGURE 2 | Construction of compound-target-disease network. (A). Screening of head and neck squamous cell carcinoma related targets from DisGeNET and GeneCards databases. (B) The Venny plot of 212 potential targets. (C) The active component-target-disease network. The red diamond represented the disease; the light green rectangle represented intersecting targets; the light purple diamond represented YWLS; the orange triangle represented active compounds (C1, MOL000359; AO1, MOL002464; AO2, MOL000862; P1, MOL000279; P2, MOL000282; PU1, MOL000796; PU2, MOL000820; PC1, MOL000273; PC2, MOL000276; PC3, MOL000280; PC4, MOL000285, PC5, MOL000287; PC6, MOL000290; PC7, MOL000291; PC8, MOL000292; AMK1, MOL000072; AMK2, MOL000033; A1, MOL000358; ASH1, MOL000354; ASH2, MOL004609; ASH3, MOL005573; ASH4, MOL007274; ASH5, MOL008039; ASH6, MOL008040; ASH7, MOL008041; ASH8, MOL008043; ASH9, MOL008045; ASH10, MOL008046; and ASH11, MOL000098). The edges represented the connection among active components, targets, and disease.
TABLE 2 | The 212 intersecting potential targets of HNSCC and YWLS.
[image: Table 2]Construction of the Compound–Disease Regulatory Network
The ingredient-target-disease interaction network was established using Perl and constructed via Cytoscape (Figure 2C), and 242 nodes and 2,640 edges constituted the network. Active compound cerevisterol had the most nodes. (22e,24r)-ergosta-6-en-3beta,5alpha,6beta-triol and polyporusterone E ranked as the secondary and tertiary central nodes, respectively, suggesting they might be the most efficacious components against HNSCC with multiple effects by interacting with different targets (Supplementary Figure S1C, Supplementary Table S3).
PPI Network Analysis
The PPI analysis was performed to investigate the potential interactions of 212 targets. Four significant modules, AKT1, EGFR, TNF, and CYP3A4, were identified in the whole network (Figure 3A). The AKT1 module contained 45 nodes and 342 edges, the EGFR module had 34 nodes and 411 edges, and the TNF module comprised 34 nodes and 97 edges. CYP3A4, CYP2C9, and CYP1A1 were the top three nodes of the CYP3A4 module, which belong to the most common drug-metabolizing enzymes (DME) that contribute significantly to the elimination pathways of new chemical entities (Di, 2014). Furthermore, the top 20 targets ranked by degree in the network were regarded as the hub genes (Figure 3B). Among them, AKT1, EGFR, and TNF were the top 3 hub genes according to the degree. These hub genes might have important implications for the pathogenesis of HNSCC. AKT1 can restrict the invasive capacity of HNC cells through the EGFR-PI3K-AKT-mTOR signaling axis (Brolih et al., 2018) and was involved in acquired cetuximab resistant HNSCC (Zaryouh et al., 2021). Meanwhile, EGFR has been reported as anti-tumor target due to its important role in cell proliferation and survival (Burtness, 2005). Moreover, TNF signaling plays a tumor-promoting role by inducing suppressive tumor immune microenvironment and apoptosis resistance in HNSCC (Sandra et al., 2002; Jackson-Bernitsas et al., 2007; Lu et al., 2011). Blockades of these targets represent potential therapeutics for tumors including HNSCC.
[image: Figure 3]FIGURE 3 | The protein–protein network of 212 intersecting targets. (A) Four modules (EGFR, AKT1, TNF, and CYP3A4) were identified from the whole PPI network. (B) The top 20 Core targets are determined by the degree. Color represented the target degree.
Functional Enrichment Analysis
To investigate the biological functions of 212 potential targets, GO terms analysis showed that they were mainly involved in the biological processes of response to oxidative and chemical stress, peptidyl-serine/tyrosine modification, and protein kinase B signaling pathway. Membrane raft and microdomain, focal adhesion and cell-substrate junction, and protein kinase complex were the main cellular components. Protein kinase activity, growth factor binding activity, and nuclear receptor and ligand-activated transcription factor activity are the top molecular functions (Figure 4A). The pathways referenced from the KEGG database indicated that these targets were enriched in various signaling pathways related to human malignancies, including PI3K-AKT, Ras signaling, MAPK signaling, chemical carcinogenesis, EGFR tyrosine kinase inhibitor resistance, ErbB signaling, and FoxO signaling pathways (Figure 4B). In addition, most of the KEGG pathways that the targets of each herb from YWLS were involved in the similar pathways (Supplementary Table S4). The targets involved in PI3K-AKT and EGFR tyrosine kinase inhibitor resistance were mapped in the pathway (Figures 4C, D). EGFR-targeting inhibitors, such as cetuximab, have been used to treat HNSCC, however, only a small subset of patients showed responsiveness. This might imply that the targets of active ingredients in YWLS are involved in drug resistance (Grandis et al., 1997).
[image: Figure 4]FIGURE 4 | GO and KEGG enrichment analysis. (A) The top 10 enriched GO items of BP, CC, and MF. (B) The top 30 enriched KEGG pathways. (C) The important target genes were mainly distributed in the PI3K-AKT pathway. (D) The important target genes were mainly distributed in the EGFR tyrosine kinase inhibitor resistance pathway.
Correlation of Intersected Target Expression With Patients’ Overall Survival
To determine the clinical relevance of 212 intersecting targets in HNSCC patients, the univariate Cox regression analysis showed that 48 targets were significantly correlated with patients’ outcomes (Figure 5A). Among these survival-related targets, high expression of CYP2D6, FLT3, LCK, CASR, ABCB1, and ESR1 were linked to better survival, suggesting they might act as protective factors, whereas increased expression of the other 42 targets were associated with unfavorable prognosis, indicating they might be risk genes. As for the top 20 hub genes, 7 genes were found to be related to decreased survival in HNSCC patients. For example, patients with high AKT1 and EGFR expression had decreased survival, which was consistent with a previous report (Burtness, 2005).
[image: Figure 5]FIGURE 5 | Associations of intersecting targets with patients’ outcomes, normal and tumor samples. (A) The forest plot represented the associations of intersecting targets with patients’ outcomes. (B) Heatmap of intersecting targets expression in normal vs. tumor samples. (C) Principal component analysis showed a distinct expression pattern of intersecting targets in normal vs. tumor samples. (D) Expression of 48 survival-related targets in normal vs. tumor samples (Wilcox test, ***: <0.001; **: <0.01; and *: <0.05). (E) AUC values of ROC analysis for 48 survival-related targets. (F) The top 7 targets that AUC values greater than 0.9.
The principal component analysis (PCA) showed that the expression pattern of 212 intersecting genes in the normal tissues was distinct from those in tumor samples (Figure 5B). As illustrated in Figure 5C, most of these genes had increased expression in tumor tissues than in normal tissues and showed evident expression pattern. In addition, 33 survival-related genes were observed to be elevated in tumor tissues, whereas 4 genes (RBP4, ABCB1, SCNA, and MAPT) showed increased expression in normal tissues (Figure 5D). The distinct expression pattern of survival-related targets was verified in an independent HNSCC cohort (GSE42743, Supplementary Figure S2A), and most of these targets were increased in tumors as compared to normal tissues (Supplementary Figure S2B). Receiver operating characteristic (ROC) was performed to further evaluate the diagnostic capacity of these 48 genes in separating normal from tumor samples. The area under the curve (AUC) of ROC ranged from 0.47 to 0.96 (Figure 5E). The top 7 AUCs >0.9 (AURKA, PLK1, PLAU, MMP14, HSP90B1, SERPINE1, and CDK4) are visualized in Figure 5F, indicating they may be promising targets for anti-HNSCC therapy.
Molecular Docking
Molecular docking is a powerful structure-based approach to characterize the binding behavior of small molecules in the target proteins and elucidate fundamental interactions at the atomic level (Meng et al., 2011). We found that 8 genes were overlapped between 20 hub genes and 48 survival-related genes, including AKT1, EGFR, PPARG, CCND1, SRC, CASP3, HSP90AA1, and ESR1. EGFR inhibitors including gefitinib, erlotinib, and lapatinib have shown limited therapeutic efficacy for HNSCC patients due to tumor resistance (Cohen et al., 2003; Soulieres et al., 2004). Inhibition of AKT1/2/3 with cetuximab has been reported as a promising therapeutic strategy for acquired cetuximab resistance in HNSCC patients (Zaryouh et al., 2021). Activation of SRC, one of the non-receptor tyrosine kinase protein family, promotes cell survival, proliferation, and invasion in various human malignancies including lung, colon, and prostate cancer (Dehm and Bonham, 2004). Several SRC-targeting inhibitors have been in clinical trial phases. For instance, dasatinib was approved to treat chronic myeloid leukemia (Breccia et al., 2013), whereas SRC-based therapy for HNSCC is limited (Lang et al., 2018). Overlapped genes were selected to complete molecular docking with their predicted 11 ingredients of YWLS. Among these ingredients, 10 ingredients had comparable binding scores with the selected target proteins excluding MOL000279 (Table 3 and Figures 6A–J). The docking score of MOL000862 with EGFR was 7.10, suggesting this molecule might interact well with the EGFR protein. Molecular dockings of MOL000285 and MOL005573 in PPARG and MOL008039 and MOL000796 in ESR1 also exhibited high performance. A similar high predicted binding potential was seen in AKT1 with MOL000354, MOL008041, MOL000098, and MOL008046. SRC protein with MOL000354, MOL008040, and MOL008041 showed high binding capacity. The data implied that these compounds might be potential drugs for HNSCC.
TABLE 3 | Molecular docking of active components with their related targets.
[image: Table 3][image: Figure 6]FIGURE 6 | Molecular docking of active compounds in core targets. (A) Alisol B 23-acetate-EGFR. (B) Eupalitin-EGFR. (C) Isoarcapillin-EGFR. (D) Isorhamnetin-EGFR. (E) Quercetin-EGFR. (F) Demethoxycapillarisin-AKT1. (G) Eupatolitin-AKT1. (H) Isorhamnetin and AKT1. (I) Quercetin-AKT1. (J) Polyporenic acid C-TNF.
Absorption, Distribution, Metabolism, and Excretion Prediction Analysis
The pharmacokinetics, drug-likeness, and medical chemistry features of 10 active compounds were predicted using SwissADME and were compared to reference clinical drugs for HNSCC patients including methotrexate, hydroxycarbamide, and erlotinib. Gastrointestinal absorption, blood–brain barrier permeability, uptake, and drug-likeness of most compounds were comparable to the current clinical drugs. The five liver drug enzymes in Table 4 are CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4. Whether a compound is a substrate of P-gp is the key to evaluating its efflux activity through the biofilms (Montanari and Ecker, 2015). The occurrence of typical multidrug resistance is closely related to drug efflux mediated by multidrug resistance proteins of the ABC transporter family (Locher, 2009). For example, P-gp (P-glycoprotein), ABCB1, and MDR1 (Chen et al., 1986). The drug-likeness index is whether the following requirements are met: Lipinski, Ghose, Veber, Egan, Muegge, and if two or more indexes are satisfied, the drug-likeness is good (Daina et al., 2017). Except for MOL000862, other active ingredients conformed to over two drug-likeness indicators. Among them, MOL008040 can penetrate the blood–brain barrier while MOL008039, MOL008041, and MOL000098 may cause the ache. MOL000285 is a P-gp substrate with low gastrointestinal absorption.
TABLE 4 | The ADME analysis of active components.
[image: Table 4]DISCUSSION
HNC is the sixth most prevalent human cancer worldwide, which originates from the head and neck sites including the lips, pharynx, larynx, and tongue (Puram and Rocco, 2015). Rare specific diagnostic and prognostic-related markers for patients with HNC have been identified due to genetic heterogeneity and tumor diversity (Hammerman et al., 2015). Although there are current advancements in combined treatments for HNC patients, especially for metastatic and/or recurrent patients, the HNC patients’ outcomes have not changed much in recent years. Complications or side effects also aggravated the deterioration in patients’ life quality. Identification of safe and effective drugs to treat HNC is an urgent need. TCM that has been used as an alternative or complementary therapy in human malignancies showed high safety and efficacy.
In this study, we investigated the main active ingredients of YWLS and their potential mechanisms in treating HNSCC through network pharmacology and molecular docking studies. In the component-target-disease network, cerevisterol, (22e,24r)-ergosta-6-en-3beta,5alpha,6beta-triol, polyporusterone E, genkwanin, and polyporenic acid C were the top 5 components that have relatively high degrees, which were 228, 119, 113, 108, and 105, respectively. This suggests that they might be the main active ingredients for treating HNSCC. Cerevisterol and (22e,24r)-ergosta-6-en-3beta,5alpha,6beta-triol belong to steroids. Studies have found that steroids have anti-inflammatory, immunomodulatory (Calpe-Berdiel et al., 2007), and anti-cancer activities (Imanaka et al., 2008) in breast (Grattan, 2013), gastric (De Stefani et al., 2000), and lung (Mendilaharsu et al., 1998). An epidemiological study indicated that cancer risk reduction was positively correlated with plant sterol intake (Grattan, 2013). Cerevisterol has been reported to inhibit DNA polymerase alpha (Mizushina et al., 1999) and act as a potent inhibitor of NF-kappa B signaling activation (Kim et al., 2008). It was revealed that the transcription factor NF-κB is constitutively expressed in HNSCC tissues, which results in cancer cell proliferation, survival, invasion, metastasis, and poor survival of patients (Monisha et al., 2017). This indicated that cerevisterol might be a promising drug candidate to treat HNSCC, but further in vitro and in vivo experiments’ validation are necessary. Polyporusterone E which is isolated from PU belongs to cytotoxic steroids. Pharmacological studies showed that steroids exert anti-tumor effects mainly by preventing cancer cell proliferation and inducing cancer cell apoptosis (XiaoMei et al., 2017). Polyporusterone E has a dose-independent inhibitory effect in the cell proliferation of leukemia L-1210 (Ohsawa et al., 1992). As one of the major non-glycosylated flavonoids in many herbs, genkwanin exhibited a variety of pharmacological functions, such as anti-inflammatory, chemopreventive, and antibacterial activities. It exerted an anti-inflammatory effect by the regulation of the miR-101/MKP-1/MAPK signaling pathway and the downregulation of proinflammatory mediators such as TNF-a, IL-1B, and IL-6 (Gao et al., 2014). Polyporenic acid C is one of the lanostane-type triterpenoids, and it can induce cell apoptosis in human lung cancer cells through the death receptor-mediated apoptotic pathway and is a promising agent for lung cancer therapy (Ling et al., 2009). These data implied that the active ingredients might be the potential candidates against HNSCC.
We intersected the potential targets of active ingredients of YWLS and HNSCC-related genes. Four modules named AKT1, EGFR, TNF, and CYP3A4, respectively, were identified in the PPI network of the overlapped genes. Additionally, AKT1, EGFR, and TNF are the top 3 hub genes ranked by degrees. AKT1 is one of the serine-threonine protein kinase families and is a downstream target of phosphoinositide 3-kinase (PI3K). It was a key regulator in various cell processes including cell proliferation, survival, and angiogenesis in normal and tumor cells (Vivanco and Sawyers, 2002). Activated AKT was a frequent event in many cancers such as HNSCC (Marquard and Juecker, 2020). Constitutively phosphorylated AKT and elevated kinase activity were observed in a large fraction of HNSCC (Amornphimoltham et al., 2004), suggesting AKT signaling represented a clinically relevant target. Several AKT-targeting inhibitors have been developed. An AKT inhibitor, capivasertib (AZD5363), showed significant responses in patients with tumors that carried AKT1 E17K mutation (Kalinsky et al., 2021). Two distinct AKT inhibitors, ATP-competitive and allosteric inhibitors, are in clinical development, while the allosteric inhibitor MK-2206 has failed in single-agent activity in many clinical trials (Jsb and Uba, 2017). Another inhibitor, miransertib (ARQ 092), showed promising anti-tumor effects in early phase studies (Harb et al., 2015). We noted that AKT1 is a potential target for several active ingredients from AO, PU, and CR.
Increased EGFR expression, amplification, and low frequencies of single nucleotide variations/indels have been observed in HNSCC (Xu et al., 2017; Liu et al., 2020). The overexpression of EGFR is associated with decreased survival for patients (Rubin Grandis et al., 1998). The activation of EGFR acted as a stimulator of Ras-Raf-MAPK, PI3K/AKT/mTOR, and JAK-STAT signaling pathways that promote carcinogenesis through increased cell proliferation and survival (Zimmermann et al., 2006). Targeted therapy that is directed toward EGFR for HNSCC has attracted interest. Current anti-EGFR therapeutic strategies are to target the extracellular domain of the receptor with monoclonal antibodies such as cetuximab and panitumumab (Troiani et al., 2016) and the intracellular domain using tyrosine kinase inhibitors (TKIs) such as gefitinib, erlotinib, osimertinib, and afatinib (Fasano et al., 2014). However, the low rates of response or resistance are the main challenges (Chong and Jaenne, 2013). Recently, a crucial semisynthetic derivative of artemisinin named dihydroartemisinin (DHA) combined with osimertinib showed in vitro and in vivo cytotoxicity in HNSCC (Chaib et al., 2019). This might lead to a novel strategy of EGFR inhibitors combined with TCM due to less than 5% of HNSCC patients carrying EGFR mutations. EGF-stimulated recycling of EGFR can induce AKT phosphorylation through activating downstream signaling. EGFR and AKT1 have been revealed to play a synergistic tumor-promoting role to aggravate tumor progression in human lung cancer (Nishimura et al., 2015). In addition, TNF signaling has been shown to act as a tumor accomplice in HNSCC by decreasing tumor cell apoptosis or promoting an immune-suppressive tumor microenvironment (Sandra et al., 2002; Lu et al., 2011). For example, TNF-α was proved to promote invasion and metastasis by the NF-κB pathway in oral squamous cell carcinoma (Tang et al., 2017). TNF-α can also inhibit apoptosis by activation of AKT serine/threonine kinase in HNSCC (Sandra et al., 2002). It was noted that several ingredients of YWLS might target these proteins simultaneously to result in inhibitory effects in HNSCC, but further verification will make it convincing.
The KEGG pathway analysis indicated that these 212 targets were mainly enriched in PI3K-AKT, MAPK, RAS, EGFR tyrosine kinase inhibitor resistance, ErbB, PD-L1 expression, PD-1 checkpoint pathway in cancer, and TNF signaling pathways. Previous reports demonstrated that activation of these pathways is highly correlated with cell proliferation, survival, and metastasis in HNC carcinogenesis (Tang et al., 2017) (Marquard and Juecker, 2020) and drug resistance (Picon and Guddati, 2020). These pathways are potential therapeutic targets for HNSCC patients such as EGFR and PI3K/AKT signaling. Accordingly, pathway analysis indicated that the targets of each herb in YWLS were enriched in these signaling pathways. We found that increased expression of 42 genes was associated with decreased survival, which was consistent with previous evidence, such as EGFR, AKT1, SERPINE1, HSP90AA1, HSP90B1 (Fan et al., 2020), PLAU (Li et al., 2021), MAP2K1 (Jain et al., 2019), and CCND1 (Feng et al., 2011). Among these survival-related genes, 33 genes had higher expression in tumor tissues than in normal tissues like EGFR, AKT1, and HSP family genes, suggesting they could serve as diagnostic markers to distinguish normal from tumoral samples. An independent verification analysis has shown the consistent expression pattern of these targets in tumors versus normal tissues. In addition, ROC analysis showed that the AUC values of AURKA, PLK1, PLAU, MMP14, HSP90B1, SERPINE1, and CDK4 genes are greater than 0.9, exhibiting good performance. Several survival-related genes have been reported to be pharmacologic targets for solid tumors including HNSCC. CDK4/CDK6 inhibitors have been approved to treat breast and small cell lung cancer (Riess et al., 2021). CDK 4/6/7 inhibitors for HNSCC have been in preclinical and clinical applications. For example, palbociclib and ribociclib specifically inhibit CDK4 and CDK6, and abemaciclib selectively targets CDK4. CCND1 mutations and CDKN2A/B were the predictive biomarkers of response. Dual inhibition of EGFR and MAPK/CDK4/6 prevented oesophageal squamous cell carcinoma (OSCC) progression (Zhou et al., 2017). Therapeutic targeting of MAP2K1 in the MAPK pathway was a promising strategy for EGFR inhibitor (erlotinib)-resistant HNSCC patients (Jain et al., 2019). It was reported that Aurora kinases were potential targets to overcome EGFR inhibitor resistance in HNSCC, indicating that Aurora kinase A (AURKA) blockade might be a promising approach (Kim and Bandyopadhyay, 2021). PLK1 inhibitor could induce pyroptosis in OSCC to elevate cisplatin chemosensitivity (Wu et al., 2019). Inhibition of apoptosis signaling through BCL-xL and MCL-1 in HNSCC was a potential therapeutic option (Ow et al., 2020). These findings elucidated that the combination therapy with EGFR inhibitors might synergistically enhance the anti-HNSCC capacity and attenuate the resistance to EGFR therapy, and further experimental work is needed to verify this hypothesis.
The molecular docking study was used to validate the interactions between eight survival-related hub targets and their possible active components of YWLS. The compounds showed good binding scores with the corresponding targets such as AKT1, EGFR, PPARG, ESR1, and SRC. The ADME analysis was conducted to further assess the drug potentials of these compounds for HNSCC patients. Partial components exhibited comparable pharmacological characteristics with current clinical agents. These data indicated that these compounds might be used as potential therapeutic drugs to treat HNSCC.
CONCLUSION
In summary, the potential therapeutic targets of active ingredients of YWLS for treating HNSCC were predicted by the network pharmacology studies, and molecular docking predicted the interactions between the active compounds and the related targets, and the drug-likeness properties of these compounds were further evaluated by the ADME analysis. The underlying mechanism of YWLS against HNSCC might be associated with PI3K-AKT, MAPK, and EGFR signaling pathways. These compounds might provide novel treatment strategies for HNSCC themselves or in combination with current molecular targeted therapies, and further verification by subsequent experiments is imperative.
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Recent studies have demonstrated an important role for mitotically associated long non-coding RNA (MANCR) in carcinogenesis and cancer progression, but its function has not been elucidated in head and neck squamous cell carcinoma (HNSCC). In this study, we identified differentially expressed MANCR from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases across 24 cancer types and included 546 HNSCC patients. Furthermore, high expression of MANCR was verified in HNSCC cell lines and tissue by using real-time quantitative PCR (RT-qPCR) analysis. The Kaplan–Meier analysis showed a worse prognosis with higher levels of MANCR for HNSCC. The univariate Cox regression and multivariate Cox regression analyses revealed that MANCR was a high-risk factor in patients with HNSCC. Thereafter, we carried out the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. It was indicated that MANCR participates in axonogenesis and ECM-receptor interaction. Further enrichment analysis demonstrated that the expression of MANCR was positively correlated with the T gamma delta (tgd) cells, neutrophils, and Th1 cells, and negatively correlated with the infiltration of B cells, CD8 T cells, and T cells in HNSCC. In addition, in vitro experiments showed that knockdown of MANCR in HNSCC cells markedly inhibited cell proliferation, migration, and invasion. We find that MANCR was elevated in HNSCC and promoted the malignant progression of HNSCC. MANCR may serve as a potential biomarker in prognostic implications for HNSCC patients. The positive correlation between MANCR and immune infiltration cells may provide novel therapeutic targets and personalized immune-based cancer therapy for HNSCC.
Keywords: MANCR, LncRNA, HNSCC, immune infiltration, bioinformatics analysis, cancer
INTRODUCTION
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, and seriously endangers human health (Johnson et al., 2020). The global incidence of HNSCC continues to rise. According to the Global Cancer Statistics 2020, about 878,348 new cases were diagnosed and 444,347 deaths occurred due to HNSCC (Sung et al., 2021). At present, surgery combined with adjuvant radiation and chemotherapy is the main and effective treatment method for HNSCC (Cramer et al., 2019). Even though advancements in treatment strategies were made in recent years, the five-year overall survival rate is only around 50% (Szturz et al., 2020). The poor prognosis in HNSCC can be mainly attributed to late-stage diagnosis, local recurrence, and distant metastasis. Therefore, it is important to figure out new biomarkers for clinical application, which may benefit the development of the diagnosis and therapy of HNSCC.
Long non-coding RNAs (lncRNAs) are defined as a type of broad transcripts that do not encode proteins or peptides with a length longer than 200 nucleotides (Quinn and Chang, 2016; Statello et al., 2021). Presently, numerous studies revealed the important functions of lncRNAs in diseases, especially cancers (Bhan et al., 2017). Mitotically associated long non-coding RNA (MANCR) is a newly identified lncRNA which was reported to be involved in various cancers. Upregulation of MANCR is significantly related to the poor prognosis of breast cancer via affecting the stability of the genome, leading to DNA damage and cell division defects (Tracy et al., 2018). In hepatocellular carcinoma, MANCR could promote the tumor cell proliferation process by regulating miR-122a (Zhang et al., 2019). The downregulation of MANCR could inhibit mantle cell lymphoma proliferation by interacting with RUNX2 (Wen et al., 2019). A study reported that the upregulation of MANCR has the ability to enhance EMT-related functions. For example, BET inhibitor JQ1 could directly act on MANCR to inhibit the migration and invasion of prostate cancer cells (Nagasawa et al., 2020). The dysregulated expression levels of MANCR were reported in thyroid carcinoma, gastric carcinoma, and esophagus cancer (Yao et al., 2019; Huang et al., 2020; Fan and Wang, 2021), thus enhancing tumor malignant development. However, with regard to HNSCC, few studies have focused on the potential function of MANCR in diagnosis and prognosis. As far as we know, there is no research on systematically evaluating the function of MANCR in HNSCC by the bioinformatics approach. Hence, we used lncRNA expression profiles of HNSCC from our previous study, combined with bioinformatics analysis and experiments for investigating the expression, clinical significance, and biological behavior influence of MANCR in HNSCC.
MATERIALS AND METHODS
Data Collection and Bioinformatics Analysis
The lncRNA expression profiles and data were obtained from our previous study (Fang et al., 2020). A total of 546 HNSCC cases and their information were downloaded from The Cancer Genome Atlas (TCGA) database (http://cancergenome.nih.gov) and the GEO database (GSE97251). Genotype-Tissue Expression (GTEx) clinical pan-cancer data were downloaded from an online website (https://gtexp.ortal.org/home/datasets). A Venn analysis was used by the R software package (v3.3.3). Related clinicopathological data were obtained from TCGA, including TN stage, clinical stage, histologic grade, smoking, and alcohol history.
Survival Prognosis Analysis
We used Xiantao tools to analyze disease-specific survival (DSS) and overall survival (OS) of MANCR in HNSCC patients. A receiver operating characteristic (ROC) curve analysis was used to evaluate diagnostic potential. Subgroup analyses were used to predicate the OS of HNSCC patients related to MANCR expression and clinical information. Univariate and multivariate Cox regression analyses were used to explore potential risk factors in patients with HNSCC by different characteristics such as T and N stages, clinical stage, histologic grade, age, gender, radiation therapy, race, lymphovascular invasion, lymph node neck dissection, primary therapy outcome, and MANCR expression, with the hazard ratio (HR), 95% confidence interval (CI), and log-rank p-value. All the survival plots were visualized by the survminer package (version 0.4.9). Based on the potential value characteristics of multivariate Cox regression, we selected these characteristics to construct a nomogram for predicting the OS of HNSCC patients, and the accuracy of the prediction model was evaluated by the matched degree of the calibration curve and line of 1-, 3-, and 5-year OS.
Clinical Specimen Collection
All the 49 pairs of HNSCC and adjacent normal tissues were collected from patients who had undergone surgical resection at Xiangya Stomatological Hospital, Central South University (Changsha, China), and were enrolled in this study for RT-qPCR analysis. The extracted adjacent normal tissues were at least ≥2 cm away from the primary tumor. All patients did not undergo surgery, radiotherapy, or chemotherapy before. All samples were evaluated by two different pathologists for a clear pathological diagnosis, and tissues are stored at −80°C for total RNA extraction. All samples were obtained with written informed consent, and the operation was approved by the Ethics Committee of Xiangya Stomatological Hospital of Central South University.
RNA Extraction and RT-qPCR Analysis
According to the manufacturer’s instructions for the TRIzol reagent (Invitrogen, United States) and cDNA synthesis kit (Vazyme, China), the total RNA of tissues was extracted and reversely transcribed into cDNA. Following the manufacturer’s instructions of the ChamQ Universal SYBR qPCR Master Mix (Vazyme, China), PCR amplification was performed to detect the lncRNA expression level by using the real-time PCR system (Applied Biosystems, United States). GAPDH was used as an endogenous control gene for normalization. Relative primer sequences were synthesized by Sangon Biotech (Shanghai, China), and all the primer sequences were as follows: GAPDH forward primer:5′-CTGCCAACGTGTCAGTGGTG-3’; reverse primer: 5′-TCAGTGTAGCCCAGGATGCC-3’; MANCR forward primer: 5′-GCAGACAGATTCAGCACCAGGAG-3’; reverse primer: 5′-CCACCATGCCAGGCCGAAAC-3’. The 2−ΔΔCT method was performed to calculate differences in MANCR expression levels between samples.
Cell Culture and Transfection
The HNSCC cell lines (Cal27, SCC9, and HN30) were cultured in Dulbecco’s Modified Eagle Medium (DMEM; BI, Spain) containing 10% fetal bovine serum (FBS; BI, Spain), 100 U/mL penicillin, and 100 μg/ml streptomycin; the human oral keratinocyte cell (Hok) was cultured in Minimum Essential Medium α (MEM-α, BI, Spain) containing 10% FBS, 100 U/mL penicillin, and 100 μg/ml streptomycin, and both of these cells were maintained in a humidified incubator at 37°C, 5% CO2 conditions.
The lncRNA Smart Silencer targeting MANCR (si-MANCR) and negative controls (NC) were obtained from RiboBio Corporation (Guangzhou, China). Smart Silencer sequences comprise three antisense oligonucleotides (ASOs) and three siRNAs. The targeting sequences of si-MANCR were as follows: ASO sequences, 5′-CAATCAAAAGACGGCTTTA-3’; 5′-CTCAATCACCACAATTGCA-3’; 5’ -TCACCACAATTGCAATCAA-3’; siRNA sequences, 5′-AAATGGCAAGTTTCGGCCTG-3’; 5’ -ACATCCACTCACCACTCGCT-3’; 5′-CTCCTTTCTTACATATCCAC-3’. The transfection reagent mixture was prepared according to the manufacturer’s instructions of the riboFECT CP Transfection Kit: 120 μl 1×riboFECTCP Buffer, 5 μl 20 μm Smart Silencer solution, and 12 μL riboFECT CP Reagent. Cells grown at 30%–50% confluence were transfected with si-MANCR and NC mixture, respectively, for 48 h. After 48h, the transfected cells will be collected for efficiency detecting by RT-qPCR and for further experiments.
Cell Proliferation Assay
After 48 h of transfection, Cal27 and SCC9 cells were seeded in 96-well-plates (1 × 104 cell/well) for cell viability detection by using a Cell Counting Kit-8 (CCK-8, Dojindo, Japan). Transfected cells were incubated for 0, 24, 48, and 72 h. The mixture of 10 μl CCK8 solution and 100 μl medium was added to each well and cultured for another 2 h at 37°C at different time points (24 h, 48 h, and 72 h). The OD value at 450 nm was measured by using microplate reader (BioTeK, United States).
Migration and Invasion Assay
The migrative and invasive capacity of SCC9 and Cal27 cells was assayed by using a 24-well transwell chamber (BD Biosciences, United States). The transfected SCC9 or Cal27 cells were harvested and suspended in serum-free DMEM, and then 100 μl cell suspension (1×105 cells) was added into the upper chamber with pre-coated Matrigel (BD Biosciences, United States) for the invasion assay, whereas for the migration assay, the upper chamber should contain uncoated-Matrigel, then 600 μl DMEM with 20% FBS was added into the lower chamber. After 48 h of incubation, the residual medium in the upper chamber should be tenderly removed. The invasive and migrative cells in the lower membrane surface were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet. After washing with PBS, the number of stained cells on the lower membrane surface was counted in five randomly selected fields under a light microscope (Leica, German) and the photos were analyzed by ImageJ software (version.1.8.0).
Function and Gene Set Enrichment Analysis
The TCGA HNSC data were used for Pearson correlation analysis of differently expressed genes (DEGs) which were related to MANCR. |log2(FC)| > 2 and p < 0.05 were regarded as the cut-off criteria and the expression was visualized by the R software package (ggplot2, v3.3.3). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with the R software package (clusterProfiler) were used to analyze the biological process (BP), cellular component (CC), molecular function (MF), and related potential signaling. The cut-off criterion is P < 0.05 and enrichment score > 1.5. GSEA is a practical tool used to assess the trend in the distribution of genes of a predefined gene set. Then, we used the GSEA analysis to explore potential pathways in high- and low-MANCR groups of DEGs by applying the R software package clusterProfiler (version 3.6.3). In detail, the enriched standard was p-value (q-value) < 0.25, adjusted p < 0.05, and |normalized enrichment score| > 1.
Immune Cell Infiltration Analysis
To assess immune cells infiltration scores in HNSCC from TCGA database, we performed the single-sample gene enrichment analysis (ssGSEA). We used the GSVA R package to compare normalized MANCR expression level data and different immune cell signatures, and the specific enrichment scores of 24 immune cells were calculated and exhibited. Furthermore, the correlations between MANCR and immune cell infiltration levels were revealed by Spearman’s rank correlation test and Wilcoxon’s rank-sum test (P < 0.05).
Statistical Analysis
All data were shown as mean ± standard deviation (SD). GraphPad Prism 9.0 was used to analyze the experimental result. The clinical implication of MANCR was analyzed by the Wilcoxon rank sum test. A prognostic analysis was performed by the Kaplan–Meier survival analysis and Cox univariate and multivariate analyses. Student’s t-test was used to evaluate the pairwise differences between the groups. p < 0.05 was considered a statistically significant difference. The R software package (ggplot2, v3.3.3) was from Xiantao tools (https://www.xiantao.love/).
RESULTS
Expression of MANCR in Various Cancers Including HNSCC
We first used TCGA and the GTEx pan-cancer database to evaluate the expression level of MANCR in various cancer types. The result showed that MANCR expression was elevated in 17 cancers, namely, BLCA, COAD, DLBC, ESCA, GBM, HNSC, KICH, KIRP, LAML, LIHC, OV, PAAD, PCPG, SKCM, TGCT, YHYM, and UCEC, and downregulated in seven cancers, namely, CESC, KIRC, LGG, LUAD, READ, STAD, and THCA (Figure 1A). Then, we further confirmed the high expression level of MANCR in HNSCC by the Venn analysis (Figure 1B). Particularly, high MANCR expression was observed in HNSCC tissues compared with normal tissues from TCGA database (Figure 1C). The ROC curve was generated to assess the ability of MANCR to differentiate HNSCC from normal tissues. The AUC area was 0.816 (95% CI = 0.772–0.860) (Figure 1D). We also used RT-qPCR to validate the expression levels of MANCR in HNSCC tissues. The result showed that MANCR was highly expressed in HNSCC samples compared with the adjacent tissues (Figure 1E). Moreover, the high expression of MANCR was significantly associated with the N stage (p = 0.006) (Table 1).
[image: Figure 1]FIGURE 1 | MANCR expression level in pan-cancers including HNSCC. (A) Different expression levels of MANCR in most cancer types from TGCA and GTEx data (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001). (B) Venn analysis of previous lncRNA expression profiles, TCGA, and GEO databases. (C) MANCR expression of HNSCC tumor samples and adjacent normal samples from TCGA data (***p < 0.001). (D) ROC curve for MANCR expression in TCGA HNSCC. (E) RT-qPCR result of MANCR expression in 49 HNSCC tumor tissues and adjacent normal tissues. Data were shown as mean ± SD (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
TABLE 1 | Information on HNSCC patients and association with MANCR expression.
[image: Table 1]Association Between MANCR Expression and Prognosis
According to TCGA database of 546 HNSCC patients, the clinical correlation of MANCR expression was analyzed. The Wilcoxon rank sum text showed that MANCR expression was elevated in both HNSCC patients who underwent lymph node neck dissection and poor OS (Figure 2A). Furthermore, the Kaplan–Meier curve and log-rank test was used to evaluate the prognosis and clinicopathological parameters of MANCR expression in HNSCC patients. The results suggested that upregulation of MANCR was significantly associated with a poor OS (p = 0.042) and DSS (p = 0.041) in patients with HNSCC (Figure 2B). In addition, the subgroup analysis exhibited the correlation between MANCR expression and the OS of HNSCC patients with different characteristics (Figure 2C). In patients with lymph metastasis, with histologic grades Ⅳ, at the T4 stage, with clinical stages Ⅳ, and smoking patients, high MANCR expression predicated poor prognosis.
[image: Figure 2]FIGURE 2 | MANCR expression and prognosis correlation in HNSCC: (A) high expression level of MANCR was associated with lymph node neck dissection and poor OS. (B) Kaplan–Meier curves showed the overall survival and disease-specific survival in high- and low- MANCR expression of patient groups. (C) Subgroup analysis including the TN stage, clinical stage, histologic grade, smoking, and alcohol history. Data were shown as mean ± SD (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
Prognostic Value of MANCR Expression in HNSCC
Next, we evaluated the potential prognostic value of MANCR by univariate and multivariate Cox regression. Multivariate Cox regression of the OS indicated that radiation therapy, lymph vascular invasion, and primary therapy outcome were independent risk factors in patients with HNSCC, while the upregulation of MANCR did not exhibit statistical significance (Figure 3B). In particular, univariate Cox regression of OS suggested that high MANCR expression level was a high-risk factor in patients with HNSCC (p = 0.042) and it was associated with shorter survival (HR = 1.044) (Figure 3A). Therefore, we constructed a prognostic nomogram by the levels of expression of MANCR, radiation therapy, primary therapy outcome, N stage, M stage, and lymph vascular invasion to further predict individual survival probability (Figure 4A). The calibration curve of our model indicated that the established lines of survival at different time points (1, 3, and 5 years) highly matched with the ideal line (Figure 4B). The concordance (C-index) of our prognostic nomogram reached 0.716 (0.688–0.743), suggesting that the model had a reliable potential to predict OS.
[image: Figure 3]FIGURE 3 | Univariate (A) and multivariate (B) Cox regression analyses of clinicopathological parameters and overall survival (p < 0.05 was regarded as significant).
[image: Figure 4]FIGURE 4 | Role of MANCR in predicting the prognosis of HNSCC patients. (A) Nomogram. (B) Calibration curve at different time points.
Correlation and Enrichment Analyses
To further explore the potential function and mechanism of MANCR in HNSCC development, we identified 224 differentially expressed genes (DEGs) in total by correlation analysis from TCGA database (|log2(FC)| > 2, p < 0.05) (Figure 5A). In particular, as the heat map showed, 19 genes were most significantly related to MANCR expression (Figure 5B). Next, we used GO and KEGG enrichment analyses to reveal the top 10 GO and KEGG terms in MANCR (Figure 5C). With regard to the GO analysis, MANCR was significantly and mainly associated with axonogenesis (BP), neuronal cell body (CC), and receptor-ligand activity (MF). The KEGG analysis suggested that neuroactive ligand-receptor interaction, Ras signaling pathway, and cell adhesion molecules were markedly enriched. In addition, we performed significant GSEA to explore potential pathways related to MANCR. The result showed that the most differentially enriched pathway is the activation of lymphocyte-mediated immunity. Other significant enriched pathways also included the activation of adaptive immune response based on somatic recombination of immune receptors built from immunoglobin superfamily domains, cellular processes involved in reproduction in multicellular organisms, gated channel activity, humoral immune response, immune response-regulating signaling pathway, positive regulation of lymphocyte activation, and regulation of immune effector processes (Figure 5D).
[image: Figure 5]FIGURE 5 | Differentially expressed genes (DEGs) in different MANCR expression samples and functional cluster analysis. (A) Volcano map of DEGs showed that 19 genes were upregulated and 205 genes were downregulated respectively (|log2FC| >2, adjusted p-value < 0.05). (B) Heat map showed that 19 genes were most significantly related to MANCR expression. (C) Significantly enriched GO and KEGG annotations of MANCR-related genes. (D) Enrichment gene analysis by GSEA in HNSCC.
Correlation Between Immune Cell Infiltration and MANCR Expression
Based on the immune correlation from the results of the GSEA analysis, we explored the correlation between MANCR expression and immune cell infiltration by the Spearman and Pearson analysis. According to TCGA database and the ssGSEA algorithm, we find that MANCR expression was markedly positively correlated with T gamma delta (tgd) cells, neutrophils, and Th1 cell infiltration, whereas significantly negatively correlated with B cells, CD8 T cells, and T cell infiltration (Figure 6A). The independent sample t-test showed enrichment scores of those immune cells’ infiltration in the MANCR expression cohort (Figure 6B), and the Wilcoxon rank-sum test confirmed that tgd cells (Spearman r value = 0.464, P < 0.001), neutrophils (Spearman r value = 0.217, P < 0.001), and Th1 cells’ (Spearman r value = 0.197, P < 0.001) infiltration levels were higher in the MANCR-high expression group, while B cells (Spearman r value = −0.325, P < 0.001), CD8 T cells (Spearman r value = −0.261, P < 0.001), and T cells’ (Spearman r value = −0.249, P < 0.001) infiltration levels were higher in the MANCR-low expression group (Spearman r value = −0.325, P < 0.001) (Figure 5C).
[image: Figure 6]FIGURE 6 | Correlation of MANCR expression with immune cell infiltration in HNSCC. (A) Lollipop indicates the correlation between MANCR expression and immune cells subsets. (B) Enrichment scores of tgd cells, neutrophils, Th1 cells, T cells, CD8 T cells, and B cell immune cells with MANCR expression. (C) Spearman analysis revealed the expression distribution of tgd cells, neutrophils, Th1 cells, T cells, CD8 T cells, and B cells in low and high MANCR samples. Data were shown as mean ± SD (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
MANCR Knockdown Inhibited Malignant Behavior in HNSCC Cells
Finally, we further evaluated and validated MANCR expression in different HNSCC cell lines, and the RT-qPCR result showed that MANCR was highly expressed in Cal27, SCC9, and HN30 cell lines compared with Hok cells (Figure 7A). After that, we used the lncRNA Smart Silencer to knock down the cellular level of MANCR in Cal27 and SCC9 cell lines. The knockdown efficacy was confirmed by RT-qPCR, and we observed that MANCR expression levels in Cal27 and SCC9 cells were markedly repressed after transfection compared with the negative control (NC) and blank group (Figure 7B). CCK-8 assay showed that the knockdown of MANCR significantly inhibited the proliferation ability in both SCC9 and Cal27 (Figure 6C). The transwell assay was performed to verify that the migration and invasion ability of Cal27 and SCC9 cells were markedly decreased after MANCR knockdown (Figure 6D). Therefore, our findings indicated that MANCR may act as an oncogene and enhance HNSCC malignant progression.
[image: Figure 7]FIGURE 7 | Biological effect of MANCR on HNSCC cells. (A) Expression of MANCR in SCC9, Cal27, HN30, and Hok cells. (B) Knockdown efficiency was evaluated by RT-qPCR. (C) Proliferation of Cal27 and SCC9 cells was examined by the CCK-8 assay. (D) Transwell assays were performed and indicated the invasion ability of Cal27 and SCC9 cells. (E) Migration ability of Cal27 and SCC9 cells were also examined by the transwell assay (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
DISCUSSION
Previous studies have demonstrated that MANCR is highly expressed in gastric cancer and breast cancer and correlated with poor patient prognosis (Tracy et al., 2018; Yao et al., 2019). However, the expression pattern of MANCR in HNSCC patients and its prognostic values are still elusive. Here, by data mining analysis from TCGA and the GTEx database, the upregulation of MANCR was observed in 17 types of tumor tissues compared with adjacent normal tissues, including HNSCC. Next, the analysis of the ROC curve showed that the AUC of MANCR was more than 0.816, indicating its potential role in diagnosis. We further validated the MANCR expression level in HNSCC patients by using qPCR. This observation suggested that MANCR might serve as a novel oncogene in HNSCC.
Based on the analysis through various tools, the upregulation of MANCR was found to predict poor prognosis such as low DSS and low OS. Our results also showed that HNSCC patients with higher MANCR expression were correlated with higher T stages, higher clinical stage, and shorter overall survival. In addition, univariate and multivariate Cox regression analyses proved that MANCR expression could be used as a high-risk factor of prognosis in HNSCC patients. These results support the values of MANCR as a biomarker in HNSCC prognosis.
The GO and KEGG enrichment analyses were extensively associated with peripheral nerves and the extracellular matrix (ECM) for highly expressed genes, such as axonogenesis, neuronal cell body, neuroactive ligand-receptor interaction, collagen-containing extracellular matrix, and ECM-receptor interaction. Existing evidence shows that these processes and structures affect the initiation, progression, therapy, and prognosis of cancers in various aspects. Researchers reported that patients with densely innervated tumors suffer from increased metastasis and poor prognosis as compared to those with less innervated tumors in HNSCC (Bakst et al., 2019; Alkhadar et al., 2020). For example, studies have reported that exosomes from HNSCC tumors could induce axonogenesis by the exosome-packaged axonal guidance molecule, ephrin B1 (Madeo et al., 2018), which could promote the metastasis and progression of cancer (Grelet et al., 2022). The change in the ECM structural constituent in the tumor microenvironment has a significant effect on the invasion and proliferation of advanced HNSCC. For instance, researchers reported that HAS3 has been shown to produce hyaluronan and subsequently contribute to HNSCC cell proliferation (Twarock et al., 2011). In addition, under the impact of the ion channel TMEM16A, the HNSCC cell was found to be closely related to the decrease in sensitivity to cisplatin and the enhancement of tumor development (Godse et al., 2017). The aforementioned results showed that MANCR is closely related to malignant cell behavior. Further analyses verified that MANCR knockdown suppressed HNSCC cell proliferation, invasion, and migration. These results suggest that MANCR may play a crucial role in the occurrence and development of HNSCC; hence, it is reasonable to speculate that MANCR may be a promising therapeutic target for HNSCC.
Immune cells are important subsets of the tumor microenvironment (TME) and it may be possible, through crosstalk with tumor cells of HNSCC, to induce immune evasion and immune surveillance (Elmusrati et al., 2021). Many studies have shown that tumor immune cell infiltration can affect the prognosis of cancer patients (Li et al., 2016; Sokratous et al., 2017). Further GSEA suggested that the genes of high MANCR expression were mainly enriched in lymphocyte-mediated immunity for HNSCC. To gain further insight into the mechanism of MANCR in HNSCC development, we performed the correlation between MANCR expression and immune cell infiltration. Our work indicated that the transcription levels of MANCR were closely correlated with various levels of immune infiltration in HNSCC. There is a significantly positive relationship between MANCR expression levels and infiltration levels of tgd cells, neutrophils, and Th1 cells, whereas negative correlations between the infiltration levels of B cells, CD8+ T cells, and T cells. Numerous studies have confirmed that tgd cells within tumors possess high cytotoxic activity in cancer and are related to improvement outcomes (Paul and Lal, 2016). However, the functions and prognostic role of tumor-infiltrating tgd cells in patients with HNSCC are controversial. Lu et al. (2020)reported that a high abundance of intratumoral tgd cells favors better prognosis in HNSCC. In contrast, Bas et al. (2006) reported that patients with HNSCC had a significantly increased proportion of tgd cells, particularly in patients with recurrent or metachronous second primary HNSCC, implying their tumor promoter roles in HNSCC tumorigenesis Bas et al. (2006). Consistently, our study revealed that high MANCR expression is positively correlated with tgd cells. It is hypothesized that the positive effect of the tgd cell may be partially attributed to its ability to induce an immunosuppressive tumor microenvironment and inhibit antitumor adaptive T cell immunity, which may promote tumor progression (Fleming et al., 2017). In addition, a high density of neutrophils was found in tumor tissues and cooperated with pro-tumor response and the level was associated with poor survival time in HNSCC (Li et al., 2019). In contrast to the immune surveillance role of lymphocytes in the TME, other immune cells may promote tumor growth and metastasis by favoring the TME. Tumor-infiltrating B cells in HNSCC have the potential to contribute to antitumor immunity in many ways including presenting tumor antigens to CD4+ T cells which were correlated with increased survival (Ruffin et al., 2021). The greater accumulation of CD8+ T lymphocytes in the TME was generally associated with an improved prognosis for HNSCC (Fridman et al., 2012; Nguyen et al., 2016). Taken together, our findings indicated that MANCR might be involved in the regulation of HNSCC immunity. Therefore, comprehensive studies on the association of tumor-infiltrating immune cells, immunomodulators, and MANCR in HNSCC are needed.
CONCLUSIONS
Overall, our research exhibited that MANCR was elevated in HNSCC and it promoted the malignant progression of HNSCC. It may serve as a potential biomarker in prognostic implications for HNSCC patients. The positive correlation between MANCR and immune infiltration cells may provide novel therapeutic targets and personalized immune-based cancer therapy for HNSCC.
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This study comprehensively explored the clinical function of Aurora kinase A (AURKA) gene in nasopharyngeal carcinoma (NPC) and analyzed its potential as a therapeutic target in cancer. Data were downloaded from GEO, STRING, GTEx, and CellMiner databases, and subjected to multiple bioinformatic analyses, including differential expression analysis, WCGNA, gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), miRNA-hub gene regulatory network analysis, immune cell infiltration, and drug sensitivity analysis. In-depth analysis of AURKA gene expression in NPC and its corresponding clinicopathological features was performed to explore its potential as a therapeutic target. Moreover, AURKA gene expression in NPC was validated by qRT-PCR in 21 NPC tissues and 17 normal nasopharyngeal epithelial tissues. AURKA was highly expressed in NPC tissues. Enrichment analysis of AURKA and its co-expressed hub genes indicated their oncogenic role in NPC and their potential involvement in cancer-promoting processes through histone kinase activity and microtubule motility activity, cell cycle, and p53 signaling pathways. AURKA high expression group had greater infiltration of neutrophils, macrophages M2, and dendritic cells resting and less infiltration of T cells CD4+ naïve and T cells γδ. Drug susceptibility analysis found that dacarbazine, R-306465, vorinostat, and other antitumor drugs that act on the cell cycle were closely related to AURKA. qRT-PCR verified the high expression of AURKA in NPC tissues (p < 0.05). We confirmed upregulation of AURKA in NPC tissues. Our results support an oncogenic role of AURKA in the context of NPC, and indicate its potential role as a novel therapeutic target.
Keywords: AURKA, nasopharyngeal carcinoma, therapeutic targets, cell cycle, immune infiltration
INTRODUCTION
Nasopharyngeal carcinoma (NPC) is the most common head and neck malignancy originating from the nasopharyngeal epithelium, predominantly in the fossa of Rosenmüller (Kamran et al., 2015; Chua et al., 2016; Yosra et al., 2019). Globally, newly-diagnosed NPC accounted for 0.7% of all cancer diagnoses in the year 2020, with 133,354 cases (Sung et al., 2021). Radiation therapy is the first-choice treatment for early NPC. However, post-radiotherapy 5-years survival rate of patients with advanced NPC is only 50%, owing to local recurrence and distant metastasis (Kong et al., 2010). Despite some progress in the research on the therapeutic targets for NPC, the improvement in 5-years survival rate is less than satisfactory (Wu et al., 2015). Further research on the pathogenesis of NPC and the identification of key causative genes are key imperatives to unravel novel therapeutic targets and improve the prognosis of NPC patients.
A series of cell function experiments and in vivo studies in mouse models by Zhao et al. revealed that circTMTC1 promotes NPC deterioration through the miR-495-MET-eIF4G1 axis (Zhao et al., 2022). Zhu et al. found a close association between ALDH1B1 expression and prognosis of locally-advanced NPC (Zhu et al., 2022). In addition, studies have suggested that p38γ is a key oncogene and an important therapeutic target for NPC (Yin et al., 2022), and that Circ_0028007 promotes NPC progression by adsorbing miR-656-3p and increasing ELF2 expression (Ma and Li, 2022). These findings indicate that targeted therapy for NPC is a promising area for further research. However, there is a need for in-depth characterization of the specific mechanisms of these findings.
Aurora kinase A (AURKA) (also referred to as AIK, STK7, and PPP1R47) is a protein-coding gene that is widely expressed in multiple tissues. High expression of AURKA has been reported in various tumors (Yan et al., 2016; Wu et al., 2018; Wang-Bishop et al., 2019; Yi et al., 2021). Most notably, studies have explored the biological function of AURKA in human cancers, such as diffuse large B-cell lymphoma, glioblastoma, gastric, cervical, colorectal, and liver cancers (Shen et al., 2019; Liu et al., 2021; Mesquita et al., 2021; Nguyen et al., 2021; Wang and Sun, 2021; Wu et al., 2021). In addition, inhibition of AURKA was shown to result in a significant reduction of GPX4 and induction of ferroptosis in tumor cells (Gomaa et al., 2019). Therefore, we chose AURKA as the research object and explored the potential functions and mechanisms of AURKA through various analyses.
Despite AURKA has been shown to be an oncogene in many cancers, till date, the role of AURKA in NPC is not well characterized. At present, the targeted therapy of nasopharyngeal carcinoma has entered a bottleneck period, and overcoming it has become a clinical focus and difficulty. Therefore, in-depth study of the potential mechanism of AURKA in NPC is crucial, which may open up a new direction for targeted therapy of NPC. This study provides important support for exploring the clinical function of AURKA in NPC and its potential as a new therapeutic target.
MATERIALS AND METHODS
Sample collection and preprocessing
Thirty-eight tissue samples, including NPC (n = 21) and normal nasopharyngeal epithelium (n = 17) were obtained from patients at the Fujian Cancer Hospital between June 2019 and December 2020. None of the study participants had received any treatment prior to nasopharyngoscopy. Written informed consent was obtained from all subjects. The Biomedical Ethics Committee approved this study at the Fujian Cancer Hospital (No. SQ 2019-068-01). The study procedures complied with the principles of the Declaration of Helsinki. The patient’s pathological staging and typing was according to the American Joint Committee on Cancer (AJCC) classification criteria.
Date download and processing
The NPC expression profiling datasets GSE12452 (Dodd et al., 2006; Sengupta et al., 2006; Hsu et al., 2012) and GSE13597 (Bose et al., 2009)were downloaded from the GEO (https://www.ncbi.nlm.nih.gov/geo/) database using the GEOquery package of R software (version 4.0.3, http://r-project.org/) (Meltzer and Davis, 2007). The GSE12452 dataset includes data of 31 tumor samples and 10 normal samples, and the GSE13597 dataset includes data of 25 tumor samples and 3 normal samples. The limma package was used to perform data normalization on the GSE12452 and GSE13597 datasets (Ritchie et al., 2015).
Screening of differentially expressed genes
Tumor and normal samples were screened for DEGs in the GSE12452 and GSE13597 datasets using the limma package (p < 0.05, |log2FC|>1). The intersection of these DEGs was obtained. The AURKA gene was selected as the research object. The expression of AURKA in GSE12452 and GSE13597 was plotted using the ggpubr (https://CRAN.R-project.org/package=ggpubr) package, and the discrimination efficiency of AURKA in the two datasets was analyzed using the ROCR package (Sing et al., 2005). Finally, the expression of AURKA in human tissues was detected in the GTEx database.
Analysis of AURKA correlation
We divided tumor samples into high- and low-expression groups based on median AURKA expression, and the limma package was used to screen the DEGs (p < 0.05, |log2FC|>1). The 3D principal component analysis (PCA) plots were drawn using the scatterplot3d package (Mächler and Ligges, 2003) to show the similarity between the two sets of samples. The heatmap and ggplot2 packages were used to draw heat map and volcano map, respectively, to show the overall expression and differential expression of AURKA-related genes.
WCGNA
We first performed a co-expression network analysis of genes using the R package WGCNA (Langfelder and Horvath, 2008) and then performed network construction and module identification by topological overlap metric (TOM). Finally, the genes in the most significant modules were intersected with the previously analyzed DEGs to identify the hub genes.
Functional enrichment analysis
We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on hub genes using the cluster profile package (Yu et al., 2012). In addition, gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed on the gene expression matrix using the clusterProfiler package and the GSVA package (Hnzelmann et al., 2013), respectively.
PPI interaction network, miRNA-hub gene regulatory network analysis
The STRING protein-protein interaction database was used to analyze the interaction relationship of the hub genes. After the software exported the results, the core genes were further screened using the CytoHubba plugin in Cytoscape (Chin et al., 2014). In addition, Hub gene-miRNA regulation analysis was performed by Networkanalyst (http://www.networkanalyst.ca/NetworkAnalyst), and miRNA-target gene prediction was performed based on the minimum number of network connections. The miRNA-hub gene regulatory network was drawn by Cytoscape software.
Immune infiltration and correlation analysis
The proportions of 21 immune cells in the dataset samples were predicted by CIBERSORT (http://CIBERSORT.stanford.edu/) (Newman et al., 2015) and the LM22 eigengene matrix. We assessed the abundance of 21 immune cells in the GSE12452 dataset through the CIBERSORT package. The samples were divided into high and low expression groups based on the median AURKA expression. Finally, by integrating AURKA expression information, the correlation between AURKA and immune infiltrating cells was assessed using Pearson correlation coefficient (p < 0.05).
Drug sensitivity analysis
The mRNA expression profile and drug activity data of the AURKA gene were downloaded from the CellMiner database (https://discover.nci.nih.gov/cellminer/). The correlation between AURKA and compound sensitivity was assessed by Pearson correlation analysis (p < 0.05).
qRT-PCR validation of the expression of AURKA
AURKA expression in 21 NPC and 17 normal tissues was verified through qRT-PCR. The clinical data for qRT-PCR of patients with NPC in our institution was shown in Supplementary Table S1. The primers of AURKA are listed in Supplementary Table S2 and were synthesized by BioSune (Shanghai, China). The internal reference gene was 18S-rRNA. We used RTIII All-in-One Mix and dsDNase (Monad Biotech Co., Ltd., Shanghai, China) to reverse-transcribe 1 µg of total RNA into cDNA. The qRT-PCR validation was performed on the StepOnePlus Real-Time PCR System (Applied Biosystems, Thermo Fisher Scientific Co., Ltd., US) using Hieff® qPCR SYBR® Green Master Mix, High Rox (Yeasen, Biotechnology Co. Ltd., Shanghai, China). The reaction system was: 95 °C for 10 min, then 41 cycles of 95°C for 15 s and 60°C for 1 min, last 95°C for 15 s.
RESULTS
Data preprocessing and gene screening
The gene expression matrix for the GSE12452 and GSE13597 datasets before and after normalization are presented as box plots (Figures 1A–D). After preprocessing the data, we used the limma package to perform differential analysis on GSE12452 and GSE13597 gene expression data. Finally, 731 DEGs were identified in the GSE12452 dataset, and 1,096 DEGs were identified in the GSE13597 dataset. After screening, AURKA was found to be differentially expressed in both datasets.
[image: Figure 1]FIGURE 1 | Box diagram before and after standardization of GSE12452 and GSE13597 datasets. (A–B) Box diagrams before standardization of GSE12452 and GSE13597; (C–D). Box diagrams after standardization of GSE12452 and GSE13597. Blue represents tumor samples, and red represents normal samples. NPC, nasopharyngeal carcinoma; GEO, Gene Expression Omnibus.
AURKA expression detection and functional analysis
After selecting AURKA as the target gene, we compared the expression of AURKA between tumor samples and normal samples in the GSE12452 and GSE13597 datasets. The results showed significantly greater expression of AURKA in tumor tissues compared with normal tissues (p < 0.05) (Figures 2A,B). On receiver operating characteristic (ROC) curve analysis, the AUC of the GSE12452 group and GSE13597 group was 0.939 and 0.893, respectively. This showed that the two groups were well-differentiated (Figures 2C,D). Subsequently, we detected the expression of AURKA in human tissues through the GTEx database and found that its expression was highest in the testis (Figure 2E).
[image: Figure 2]FIGURE 2 | Expression detection of AURKA gene (A,B). Violin plot showing the expression of AURKA gene in GSE12452 and GSE13597 datasets; (C,D). ROC curve showing that the two groups have a high degree of discrimination, with an AUC of 0.939 in the GSE12452 group and 0.893 in the GSE13597 group; (E). Expression of AURKA in human tissues.
Tumor samples were divided into high- and low-expression groups based on the median expression level of AURKA. The results of PCA indicated obvious clustering in the two groups (Figures 3A,B). Subsequently, based on the differential analysis of high- and low-AURKA expression groups, 1,095 DEGs were identified in the GSE12452 dataset and 1,130 DEGs were identified in the GSE13597 dataset (Figures 3C–F).
[image: Figure 3]FIGURE 3 | Differential expression after grouping by AURKA. (A–B). 3DPCA cluster diagram of AURKA high and low expression groups; (C–D). Volcano plots of DEGs; red represents up-regulated DEGs and blue represents down-regulated DEGs. Grey indicates genes with no differential expression; (E–F). Heat map of the DEGs; red represents up-regulation, and blue represents down-regulation. AURKA, Aurora kinase A; PCA, principal component analysis; DEGs, differentially expressed genes.
WGCNA analysis and functional analysis
To further identify the hub genes in the high and low AURKA groups, we performed WGCNA co-expression network analysis on GSE12452 and GSE13598 tumor samples. By associating module eigengenes with grouping information, we identified 12 feature modules in GSE12452, of which 4 were significantly positively correlated, and 8 were significantly negatively correlated (Figures 4A– B). Seventeen feature modules were identified in GSE13597, including 9 significant positive correlation modules and 8 significant negative correlation modules (Figures 4C– D). The larger the correlation coefficient of the module, the greater its correlation with AURKA expression. Then, we selected the most relevant MEblue modules in GSE12452 and GSE13597, respectively, and intersected the modules’ genes with the previous DEGs. Finally, 36 hub genes were obtained (Figures 4E–F).
[image: Figure 4]FIGURE 4 | WGCNA co-expression network analysis. (A–B). WGCNA analysis of tumor samples in the GSE12452 data set. A total of 12 significantly correlated modules were obtained, among which MEblue showed the strongest correlation with high expression of AURKA; (C–D). WGCNA analysis of tumor samples in the GSE13597 data set. A total of 17 significantly correlated modules were obtained, among which MEblue showed the strongest correlation with high expression of AURKA; (E). Venn diagram results of genes and differential genes of the most significant related modules in WGCNA. A total of 36 hub genes were identified. WGCNA, Weighted Gene Co-Expression Network Analysis; TOM, Topological overlap matrix; ME, Module eigengene; AURKA, Aurora kinase A.
GO analysis revealed a close relation of these 36 hub genes with histone kinase activity, microtubule motor activity, and motor activity (Figure 5A). KEGG analysis showed that the pathways enriched by hub genes mainly included the cell cycle, p53 signaling pathway, Oocyte meiosis, and Human T-cell leukemia virus 1 infection (Figure 5B). Using the Pathview package, we identified hsa04110: cell cycle pathway as having the most significant enrichment. The results of GO and KEGG enrichment analysis related to the hub genes are shown in Supplementary Tables 3–4.
[image: Figure 5]FIGURE 5 | Function enrichment analysis of Hub genes. (A). GO enrichment analysis. The color of the columns indicates the corrected p value; longer column indicates higher number of enriched genes; (B). KEGG enrichment analysis; the annotation is the same as before; (C). The most significantly enriched pathway in the KEGG pathway has04110: cell cycle pathway map display; red represents the degree of enrichment of genes, and the darker the shade, the more up-regulated the gene is in the pathway; the darker the shade of green color, the more obvious is the down-regulation of the gene. GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
The pathways enriched by GSEA mainly involved FISCHER_DREAM_TARGETS, DODD_NASOPHARYNGEAL_CARCINOMA_DN, KINSEY_TARGETS_OF_EWSR1_FLII_FUSION_UP, SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_A6 (Figures 6A–I). The GSVA enrichment results mainly included KUMAMOTO_RESPONSE_TO_NUTLIN_3A_DN, FINETTI_BREAST_CANCER_KINOME_RED, GO_NEGATIVE_REGULATION_OF_CELL_CHEMOTAXIS_TO_FIBROBLAST_GROWTH_FACTOR, etc. (Figure 7A). On further analysis of the expression and enrichment pathways of AURKA, we found that AURKA had the highest correlation with REACTOME_CONDENSATION_OF_PROMETAPHASE_CHROMOSOMES (Figure 7B). The results of GSEA of the top 20 NES of Hub genes are shown in Supplementary Table S5.
[image: Figure 6]FIGURE 6 | GSEA enrichment analysis of Hub genes. (A–I). Top 9 pathways enriched for hub genes. The larger the NES value, the more genes are enriched in the pathway. GSEA, gene set enrichment analysis; NES, normalized enrichment score.
[image: Figure 7]FIGURE 7 | GSVA analysis of the Hub genes. (A). Heatmap showing differential pathway heatmap quantified by GSVA. Red represents high enrichment, and blue indicates the opposite; (B). Correlation of AURKA gene with differential pathways. Larger points are more relevant. GSVA, gene set variation analysis; AURKA, Aurora kinase (A).
PPI network and miRNA-target gene regulatory network
We constructed a PPI network from the String database to unravel the potential links between the 36 hub genes. On setting the minimum interaction score at 0.4, only 33 of the 36 hub genes were found to interact with the other gene pairs (Figure 8A). The PPI network consisted of these 33 eigengenes and 358 edges, with an average node degree of 19.9. We then further identified the most relevant genes in the PPI network using the Cytohubba plugin. Cytohubba detected the following 15 genes that could be considered as hubs: KIF23, CDK1, CDC20, CCNB1, BUB1B, EX O 1, MCM10, PBK, TTK, UBE2C, RRM2, CEP55, MAD2L1, NCAPG, and KIF11 (Figure 8B).
[image: Figure 8]FIGURE 8 | Analysis of the Hub gene regulation. (A). The hub gene establishes the PPI regulatory network. (B). The Cytohubba plugin further screened fifteen core genes; (C). The miRNA-hub gene regulatory network regulates the hub gene predicted according to the Networkanalyst database. PPI, Protein-Protein Interaction Networks.
Subsequently, we predicted the potential miRNAs regulating the 36 hub genes through the Networkanalyst database. The screening condition was “Trim current network to a minimum connected network.” The final sub-network contained 33 nodes, 171 edges, and 33 seeds (Figure 8C).
Immune infiltration and correlation analysis
To investigate the link between AURKA and immune cell infiltration, we calculated the proportion of these 21 cells infiltrating the tumor microenvironment using the CIBERSORT algorithm. Figure 9A exhibits a panoramic view of immune cell infiltration in the tumor microenvironment of NPC. As seen in the violin plot (Figure 9B), the infiltration of macrophages M2, neutrophils, and dendritic cells resting were relatively more in the AURKA high-expression group. In contrast, T-cell CD4+ naïve and T-cell γδ infiltration were less. Correlation analysis showed a positive correlation of AURKA expression with neutrophils, macrophages M2, and dendritic cells resting and negative correlation with T cell CD4+ naïve and T cell γδ cells (Figure 9C).
[image: Figure 9]FIGURE 9 | Immune infiltration correlation analysis. (A). Panorama of immune cell infiltration in 21 tumor samples; (B). Violin plot comparing immune cell infiltration between AURKA high and low expression groups; (C). Correlation diagram of AURKA gene expression and immune cell infiltration. AURKA, Aurora kinase (A).
Sensitivity analysis of drugs
The relationship between the AURKA gene and drug response was assessed by Pearson correlation analysis. In order of relevance, we selected the top 16 drugs that showed the strongest association with AURKA. We found negative correlation of AURKA with isotretinoin, AMG-176, XL-147, R-306465, CB-839, S-63845, megestrol acetate, AZD-5991, LGH-447, 6-Mercaptopurine, dacarbazine, S-64315, vorinostat, and allopurinol, and a positive correlation of AURKA with TAK-931 and SB-1317 (Figure 10A-P). Supplementary Table S6 shows the correlation between AURKA and drugs based on CellMiner.
[image: Figure 10]FIGURE 10 | Drug sensitivity analysis. (A–P). The top 16 drugs (or small molecule compounds) correlate with the most significant AURKA gene expression. AURKA, Aurora kinase A; NCI, National Cancer Institute.
Tissue verification results of AURKA
Through qRT-PCR, the expression of AURKA was found to be significantly higher in cancer tissues compared to normal tissues (Wilcoxon rank-sum test, p < 0.05) (Figure 11).
[image: Figure 11]FIGURE 11 | qRT-PCR validated AURKA expression in NPC tissue (n = 21) and normal nasopharyngeal epithelial tissue (n = 17). *p < 0.05. AURKA, Aurora kinase A; NPC, nasopharyngeal carcinoma.
DISCUSSION
Globally, an estimated 380,000–550,000 people die from head and neck cancer (HNC) every year (Khetan et al., 2019). NPC is one of the most common HNCs, accounting for 23.8% of all cases (Bray et al., 2018). Local radiation, surgery, other combination therapies, and concurrent chemotherapy can help achieve good disease control. However, 20%–30% patients develop local recurrence or distant metastasis (Pan et al., 2016), and these patients have a poor prognosis (median survival time: approximately 20 months) (Wei and Sham, 2005). Therefore, exploration of the specific mechanisms and key genes involved in NPC recurrence and metastasis is a key imperative to provide new ideas for identifying novel therapeutic targets.
Last few years have witnessed rapid progress in the research on NPC. However, no definite therapeutic targets and mechanism have been identified for treatment of this disease. AURKA has been shown to be highly expressed in certain malignant tumors and is potentially involved in the prophase of mitosis to promote G2/M transition (Katsha et al., 2015). Furthermore, AURKA has been shown to promote tumor progression and drug resistance by activating oncogenic signaling pathways and inhibiting the key tumor suppressor functions of p53 and TAp73 (Katsha et al., 2017; Wang et al., 2017; Wang-Bishop et al., 2019). However, the role of AURKA in NPC is not well characterized. We conducted comprehensive analysis of AURKA to illustrate its clinical significance and potential role in NPC.
We explored the potential role of AURKA in NPC evolution by analyzing tumor tissues and normal tissues in the GSE12452 and GSE13597 datasets. The AURKA gene was found to be differentially expressed in both datasets. Therefore, we chose AURKA as the research object and analyzed its potential functions and mechanisms using various bioinformatics methods. Our analysis revealed significant overexpression of AURKA in NPC tissues. The results of ROC curve analysis indicated that the high- and low-AURKA expression groups were highly discriminative. This indicates that AURKA plays an important role in the evolution of NPC.
Interestingly, similar results have been obtained in other studies. Upregulation of AURKA has been reported in various cancers, including neuroblastoma, lymphoma, colorectal, ovarian and prostate cancers (Lens et al., 2010; Willems et al., 2018). AURKA has been found to interact with various substrate proteins during DNA replication, such as the tumor suppressor gene p53, heterochromatin protein 1γ (HP1γ), histone H3, and HDAC6. Functional diversity makes AURKA an important drug target (Mou et al., 2021). We performed a drug sensitivity analysis on AURKA. In order to rank our top 16 antitumor drugs with the strongest associations, 14 of them were inversely associated with AURKA. Through analysis, it was found that AURKA may be an important drug target of dacarbazine, R-306465 and vorinostatz. KEGG analysis showed that the pathway with the most enriched genes was the cell cycle pathway. We speculate that interfering with the cell cycle of tumor cells by drugs can inhibit the development of tumors. Among them, dacarbazine mainly acts on inhibit the synthesis of purine, RNA and protein in the G2 phase, and it also affects the synthesis of DNA, which can inhibit the division of tumor cells. Both R-306465 and vorinostat were histone deacetylase (HDAC) inhibitors that exert tumor suppressive effects by inducing cell differentiation, cell regulation, and blocking the cell cycle. Therefore, we speculate that these three AURKA-related drugs can be applied to the treatment of NPC.
To further identify the hub genes in the high- and low-AURKA groups, we performed WGCNA co-expression network analysis on GSE12452 and GSE13598 tumor samples, respectively. Ultimately, we focused on 36 hub genes. Functional enrichment analysis of these hub genes indicated their potential involvement in the deterioration of NPC via histone kinase activity, microtubule motility activity, and cell cycle, p53 signaling pathway. Our findings are consistent with previous reports which showed that AURKA promotes the G2/M transition by regulating centrosome microtubule elongation and interacting with histone H3 during DNA replication (Giet et al., 1999; Kinoshita et al., 2005; Katsha et al., 2015; Mou et al., 2021).
Moreover, AURKA has been shown to participate in cancer-promoting processes by regulating the cell cycle and activating oncogenic signaling pathways, including p53 (Saiprasad et al., 2014; Mar et al., 2015; Vilgelm et al., 2015; Katsha et al., 2017; Wang et al., 2017; Wang-Bishop et al., 2019; Wang et al., 2021). Our findings are similar to those described above. In addition, we performed GSEA and GSVA to study the enriched gene set and key pathways. The results showed that GSVA enriched pathways mainly included chromosome condensation in the prophase and metaphase of the cell cycle. The GSEA was mainly enriched in nasopharyngeal carcinoma-related pathways. We speculate that AURKA is a promising molecular target for NPC therapy.
Subsequently, we investigated the role of AURKA in NPC by immune infiltration correlation analysis and drug sensitivity analysis. Correlation analysis of immune infiltrating cells showed that tissues with high AURKA expression had greater infiltration of neutrophils, macrophages M2, and dendritic cells resting, but less infiltration of T cell CD4+ naïve and T cell γδ. The tumor microenvironment can induce the polarization of macrophages towards the M2 phenotype (Mantovani et al., 2002; Ma et al., 2010). M2 macrophages directly inhibit CD4+ T cell-mediated tumor killing through cell-cell contact or release TGF-β and IL-10 and accelerate lymphatic tumor metastasis (Kurahara et al., 2011). High infiltration of M2 macrophages predicts poor tumor prognosis. T cell γδ cells are immune cells that kill cancer cells and tumor stem cells and recognize cancer antigens. Less infiltration of T cell γδ in tumor tissue predicts poor prognosis. Taken together, we found that high AURKA expression may predict poor prognosis in NPC.
Some limitations of our study should be considered while interpreting the results. First, further experiments are required to verify the biological mechanism of AURKA. Second, this study lacked corresponding clinical correlation studies, which are essential to determine the potential role of AURKA as a novel therapeutic target. In addition, the batch-to-batch variation that cannot be avoided and removed may be created during data analysis. Finally, this study has a relatively small sample size and lacks tissue samples with early stage in NPC, and tissue samples should be increased to further analyze the correlation of AURKA expression with clinical characteristics and prognosis.
CONCLUSION
This study comprehensively explored the potential molecular mechanisms and functional roles of AURKA in the evolution of NPC through a variety of databases and bioinformatics analysis methods. We verified that AURKA is highly expressed in NPC tissues. Most importantly, the current analysis supports an oncogenic role of AURKA in the context of NPC, which may be a potential therapeutic target. Our research points out a new direction for molecular targeted therapy for NPC. Nevertheless, the specific mechanism and molecular targets of AURKA in NPC still need further experimental verification.
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Background: Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive disease with a poor prognosis for advanced tumors. Anoikis play a key role in cancer metastasis, facilitating the detachment and survival of cancer cells from the primary tumor site. However, few studies have focused on the role of anoikis in HNSC, especially on the prognosis.
Methods: Anoikis-related genes (ANRGs) integrated from Genecards and Harmonizome portals were used to identify HNSCC subtypes and to construct a prognostic model for HNSCC patients. Also, we explored the immune microenvironment and enrichment pathways between different subtypes. Finally, we provide clinical experts with a novel nomogram based on ANRGs, with DCA curves indicating the potential clinical benefit of the model for clinical strategies.
Results: We identified 69 survival-related HNSCC anoikis-related DEGs, from which 7 genes were selected to construct prognostic models. The prognostic risk score was identified as an independent prognostic factor. Functional analysis showed that these high and low risk groups had different immune status and drug sensitivity. Next risk scores were combined with HNSCC clinicopathological features together to construct a nomogram, and DCA analysis showed that the model could benefit patients from clinical treatment strategies.
Conclusion: The predictive seven-gene signature and nomogram established in this study can assist clinicians in selecting personalized treatment for patients with HNSCC.
Keywords: anoikis, model, bioinformatics, prognosis, HNSCC
INTRODUCTION
Currently, HNSCC is the sixth most common cancer worldwide and the most common malignancy occurring in the head and neck region (Sung et al., 2021), usually originating from the mucosal epithelium of the oral cavity, pharynx and larynx. Frequent loss or gain of chromosomal regions in HNSCC patients, making them characterized by genetic instability (Raj et al., 2022). Therefore, HNSCC progresses rapidly, and once distant metastases are detected a median survival of 3.3–3.9 months is predicted (Duprez et al., 2017). Unfortunately, however, distant metastases occur in up to 15% of patients. Therefore, there is an urgent need for more novel biomarkers to predict the prognosis of patients with early stage HNSCC so that clinical interventions can be taken in time to delay the progression of the disease.
Anoikis is a form of programmed cell death, which is essential for the survival of tumor cells after detachment from the extracellular matrix (ECM) (Xiao et al., 2019; Zhou et al., 2022). The generation of anoikis resistance in aggressive tumor cells has been identified as a key factor in tumor progression (Berezovskaya et al., 2005; Kim et al., 2012; Yu et al., 2022). However, few studies have focused on the association between the anoikis process and distant metastasis of HNSCC.
Therefore, in this study, we focused on exploring the prognostic value of ANRGs in HNSCC and developed a prognostic scoring model based on ANRGs. Further to explore the differences in tumor microenvironment of patients under this risk score typing.
MATERIALS AND METHODS
Gene expression and clinical data acquisition
Gene expression profiles of 270 HNSCC tissues and 504 HNSCC tissues with 44 normal adjacent tissues were obtained from Gene Expression Omnibus (GSE65858) data portal and The Cancer Genome Atlas (TCGA-HNSC) databases, respectively.
Acquisition of anoikis-related genes
A total of 316 anoikis-related genes (ANRGs) were downloaded from the GeneCard database (Rebhan et al., 1997) (https://www.genecards.org/) and Harmonizome portals (Rouillard et al., 2016). Further, 253 differentially expressed genes (DEG) were identified in TCGA-HNSC cohort via the “limma” R package, comparing the expression of 316 ANRGs between tumor tissues and adjacent normal tissues.
Consensus clustering
Consensus clustering was applied to identify distinct anoikis-related patterns relating to the expression of anoikis regulators by the k-means method. Thereafter, Uniform Manifold Approximation and Projection (UMAP) was used to validate the reliability of clustering with the R package “ggplot2”.
Functional enrichment analysis
We downloaded “c2. cp.kegg.v7.4. symbols.gmt” from the MSigDB database to carry out GSVA analysis. The “GSVA” R package was used to perform GSVA enrichment analysis (Hanzelmann et al., 2013).
Development and validation of prognostic signatures based on anoikis-related genes
Univariate Cox regression analysis was performed to screen for genes associated with survival, followed by least absolute shrinkage and selection operator (LASSO) regression analysis using the R package “glmnet”, and the penalty regularization parameter λ was determined by tenfold cross-validation. Subsequently, a multivariate Cox regression model was used to identify the central genes and calculate their corresponding coefficients. Seven ANRGs were selected to construct risk signatures based on the best lambda values and corresponding coefficients. The risk score of the new ANRG signature for each patient was calculated as follows. RiskScore = e^(…. Corresponding coefficient + …. + LTF expression), with Coefi and Expi representing the risk coefficient and expression level of each gene, respectively. Kaplan-Meier (KM) survival curves and time-dependent receiver operational feature (ROC) curve analyses were made to assess the predictive capacity of the model.
In summary, seven anoikis-related DEGs closely related to OS were identified using univariate Cox regression and LASSO analysis in GSE65858 cohort, and validated in TCGA-HNSC cohort.
Relationship between risk score and immune cell infiltration
CIBERSORT and ssGSEA R scripts were used to quantify the relative proportion of infiltrating immune cells (Newman et al., 2015). We used CIBERSORT to estimate the proportion of immune cell types between the low-risk and high-risk groups. The sum of all estimated immune cell type scores in each sample equals 1. Meanwhile, spearman rank correlation analysis was applied to explore relationships between risk score values and immune infiltrating cells.
Construction and evaluation of a predictive nomogram
Clinicopathological characteristics and risk scores were used to construct the nomogram. The calibration plot was performed for an internal validation to verify the accuracy. Time-C index was used to validate the predictive performance of the nomogram. Decision curve analysis (DCA) was performed to assess the clinical net benefit (Vickers et al., 2008).
Tumor immune single cell hub database
The Tumor Immune Single-Cell Hub (TISCH; http://tisch.comp-genomics.org) is alarge-scale online database of single-cell RNA-seq focused on the TME (Sun et al., 2021). This database was used to systematically investigate the TME heterogeneity invarious data sets and cell types.
Statistical analysis
Statistical analyses were performed using R software v4.1.3. p-values < 0.05 were considered statistically significant and FDR (false discovery rate) q < 0.05 was considered statistically significant.
RESULTS
Identification of prognosis-related anoikis-related genes
A total of 358 anoikis-related genes were obtained from Genecards and Harmonizome portals. Then we got 316 ANRGs via Venn plot (Figure 1A). Then, 253 DEGs were found in HNSCC samples compared to normal adjacent tissues. We combined the TCGA-HNSC cohort with the GSE65858 cohort to remove the batch effect and obtained the new “HNSC-GSE65858” cohort, a total of 14,490 genes were retained. Univariate Cox regression analysis revealed 179 of 253 ANRGs were associated with survival (km < 0.05), of which 69 genes were statistically different (p < 0.05, km < 0.05). Univariate Cox regression analysis revealed 179 of 253 ANRGs were associated with survival (km < 0.05), of which 69 genes were statistically different (p < 0.05, km < 0.05). The forest plot shows the top 33 ANRGs (p < 0.01) (Figure 1B). 24 genes were associated with poor prognosis except for FASLG, CEACAM5, ERBB2, KL, CDKN2A, LTF, EPHB6 and CCR7. Meanwhile, the network plot shows more clearly the relationship between the expression levels of the top 33 genes of rank (Figure 1C). As chromosome regions are frequently lost or gained in HNSCC patients (Raj et al., 2022), we downloaded CNV data from TCGA database to further explore how these anoikis-related genes are altered on chromosomes and where each is located on the chromosome (Figures 1D,E). As shown in Figure 1E, the most significant altered “gain” of FADD and CTTN was located on chromosome 11, while CDKN2A was mainly “loss” and located on chromosome 9.
[image: Figure 1]FIGURE 1 | Characteristics and differences of anoikis-related regulators in HNSCC. (A) 316 anoikis-related genes identified from GSE65858 and TCGA-HNSCC cohort. (B) The forest plot shows the top 33 ANRGs (p < 0.01) via the univariate Cox regression analysis. (C) Network diagram showed the correlations between the top 33 ANRGs. (D) Copy number variations (CNVs) and of 33 ANRGs in TCGA-HNSCC. (E) Chromosome region and alteration of ANRGs.
Using the 33 anoikis-related genes for the consistent clustering of Head and neck squamous cell carcinoma molecular subgroups
To better understand the role of anoikis-related genes in HNCSS, we used 33 prognosis-related DEGs (p < 0.01) for Consensus Clustering by using the Consensus Cluster Plus R software package. As shown in Figure 2A, when k = 3, The cohort could be well classified into three subtypes. Overall survival analysis showed a significant difference in prognosis between the three subtypes (p < 0.01) (Figure 2B). UMAP and tSNE were used to test the accuracy of this clustering. The results showed that the three clustering subtypes could be well identified at k = 3 (Figures 2C,D). Heat map of ANRGs expression and corresponding clinicopathological features of three subtypes indicated LTF might be a factor of good prognosis. (Figure 2E). In addition to exploring the overall distribution of 33 ANRGs in the clusters, given the more significant differences between cluster B and cluster A, we applied the GSVA package to focus on the differential enrichment of KEGG pathways between clusters B and A (Figure 2F; Supplementary Figure S1). Cluster B, the least prognostic group, is mainly involved in the ECM receptor interaction and Focal adhesion pathways, which are key pathways for tumor cells to escape their original growth environment and colonize new anchor sites. Finally, the venn plot demonstrates the differential distribution of ANRGs among the three subtypes, with the three genes FAM3D, UPK18, and KRT19 differing significantly among the subgroups (Figure 2G).
[image: Figure 2]FIGURE 2 | Subgroups of HNSCC related by anoikis-related genes. (A) Consensus matrix for k = 3 was obtained by applying consensus clustering. (B) Overall survival of three subtypes (p < 0.001) (C,D) UMAP and tSNE distinguished three subtypes based on the expression of ANRGs. (E) Heat map of ANRGs expression and corresponding clinicopathological features of three subtypes. (F) GSVA analysis focused on the differential enrichment of KEGG pathways between clusters B and A (G) Venn plot exhibited intersections between differential ANRGs.
Gene expression and immune infiltration in three subtype clusters
Boxplot was used to show the expression patterns of anoikis-related genes in the three subgroups. It can be seen that FASLG, CEACAM5, ERBB2, CDKN2A, LTF, EPHB6, and CCR7 are significantly less expressed in cluster B than in cluster A or cluster C; other significant ANRGs show high expression patterns. Because of the association with overall survival, these differential genes may be key molecules affecting the prognosis of HNSCC patients as well as potential targets for targeted therapy (Figure 3A). Besides, the level of immune cell infiltration also differed significantly (Figure 3B), with the proportion of activated CD4, CD8, and B lymphocytes in cluster B being significantly lower than in the other two subtypes.
[image: Figure 3]FIGURE 3 | Gene expression and immune infiltration patterns in three subtype clusters. (A) ANRGs expression in three subtype clusters. (B) Immune infiltration patterns in three subtype clusters.
Construction and validation of a anoikis-related prognosis signature with good performance
To explore the clinical value of anoikis-related genes, we used 69 ANRGs (p < 0.05) involved in Lasso-penalized Cox analysis (Figures 4A,B). The final risk score based on the seven-ANRG signature is called “ANRGscore”, and the correlation coefficients are shown in Supplementary Supplementary Table S1. The prognostic index (PI) = (0.547 * expression level of MTDH) + (0.496* expression level of BAK1) + (0.422* expression level of PRDX4) + (0.368* expression level of IKZF3) + (0.326* expression level of FN1) - (0.45* expression level of ERBB2)—(0.157* expression level of LTF). The time-dependent ROC curves for OS at 1, 3, and 5 years exhibited good predictive performance with this model (Figures 4C,D). The K-M curves showed that patients in the high-risk group indicated a poorer prognosis, which was also observed in TCGA-HNSC validation cohort (Figures 4E,F). DCA curve in TCGA-cohort demonstrated that this model is a guide for clinical application and may benefit HNCSS patients both in OS and PFS (Figures 4G,H). The risk score was significantly different among the three previous subtypes (Figures 4I,J), Alluvial diagram showing the changes of anoikis-related clusters, ANRGscore and living status.
[image: Figure 4]FIGURE 4 | Identify anoikis-related prognosis signature. (A) LASSO analysis with 10-fold cross validation identified seven prognostic anoikis-related genes. (B) Coefficient profile plots of seven prognostic anoikis-related genes. (C,D) The time-dependent ROC curves for OS at 1-, 3-, and 5-years. (E,F) The K-M curves showed the different prognosis in subtype risk group. (G) DCA curve demonstrated the clinical net-benefit with constructed model in validation TCGA-HNSC cohort. (I) Risk score in 3 clusters established before (J) Alluvial diagram of subtype and living status.
Gene set enrichment analysis and immune activity with different risk score
The immune microenvironment plays an important role in the development of tumorigenesis and in the response to immunotherapy. To this end, we further explored the tumor microenvironment (TME) landscape of HNSCC patients in high- and low-risk groups. CIBERSORT R script was used to quantify the relative proportion of infiltrating immune cells. Firstly, ranking of HNSCC through risk score from lowest to highest, showing the proportion of different immune cells corresponding to risk score (Figure 5A). The proportion of activated Mast cells increased gradually with increasing risk score (R = 0.21) (Figure 5B). Moreover, activated Mast cells accounted for a larger proportion of the immune cell component in HNSCC patients (Figure 5C). This suggested that Mast cell activation may be an important reason for the poor prognosis of HNSCC patients (Gorzalczany and Sagi-Eisenberg, 2019). The correlation between immune cells in HNSCC patients may provide clues for a better understanding of the composition of the immune microenvironment in specific types of tumors (Figure 5D). The seven gene signature used to construct the ANRGscore model has different expression patterns between high and low risk groups and is closely associated with multiple immune cell infiltrations (Figures 5E,F). In addition, by estimatescore of the expression profile, we obtained the stromal score, immune score of the high and low risk groups (Figure 5G). In the end, with “pRRophetic” R package, we explored the potential sensitivity of high-risk group and low-risk group to clinical drugs (Supplementary Table S2; Supplementary Figure S2).
[image: Figure 5]FIGURE 5 | The immune microenvironment of HNSCC tissues at different risk score. (A) The relative proportion of infiltrating immune cells with different risk score. (B) The correlation analysis between risk score and the proportion of activated Mast cells in HNSCC tissues. (C) Immune cell component between high-risk group and low-risk group. (D) Correlation between immune cells. (E) Heatmap showing the expression patterns of seven hub ANRGs. (F) Correlation between immune cells and seven hub ANRGs. (G) Estimate score of the expression profile in high-risk group and low risk group.
Establishment of a prognostic nomogram for Head and neck squamous cell carcinoma patients
Considering the influence of clinicopathological factors on the prediction model, we combined the ANRGscore model with clinical information to construct the nomogram (Figure 6A). The calibration plot showed the validation of the nomogram (Figure 6B). The cumulative hazard curve also showed a progressive increase in overall survival risk for patients with high scores of HNSCC patients in the nomogram (Figure 6C). Decision Curve Analysis (DCA) is a simple method for evaluating clinical predictive models, diagnostic tests, and molecular markers, and is often used to clinically evaluate whether a strategy will benefit patients. The nomogram exhibited as a good method for predicting short- and long-term survival of HNSCC patients (Figure 6D). The forest plot shows that in the nomogram, riskScore and T stage are the main influencing factors (Figure 6E). These results suggest that the nomogram with risk scores based on ANRGs can be used as an effective method to predict patient prognosis in clinical practice.
[image: Figure 6]FIGURE 6 | Nomogram for HNSCC patients. (A) Nomogram plot based on ANRGscore and clinicopathological factors. (B) Calibration plot for the validation of the nomogram. (C) Cumulative hazard curve represented the probability of survival over time progression. (D) DCA curves of the nomogram for 1-, three- and five- year OS in HNSCC patients (E) Forest plot summary of multivariable Cox regression analyses of the clinical features as well as risk score in HNSCC patients.
Correlation analysis of anoikis-related genes and Tumor immune microenvironment
We used the single cell dataset HNSC_GSE103322 from the TISCH database to analyze the expression of seven ANRGs in TME. In the GSE103322 dataset, there are 20 cell clusters and 11 medium cell types, and the distribution and number of various cell types are shown (Figure 7A). BAK1 is mainly expressed in malignant cells and immune cells (CD4Tconv, CD8T, and CD8Rex), while it is expressed at lower levels in Fibroblasts and Myofibroblasts. ERBB2 and FNA1 were expressed in malignant cells and stromal cells (Fibroblasts, Myofibroblasts and Myocyte), but almost not in immune cells. IKZF3 was only detected at expression levels in immune cells. Ltf was almost not detected in tme. MTDH and PRDX4 were expressed in tme High expression was found in a variety of cells, MTDH was mainly expressed in immune cells and PRDX4 was mainly expressed in malignant and stromal cells (Figures 7B,C).
[image: Figure 7]FIGURE 7 | ANRGs Expression in HNSC TME-associated cells. (A) Annotation of all celltypes in GSE103322 and the percentage of each cell type (B,C) Percentages andexpressions of BAK1, ERBB2, FN1, IKZF3, LTF, MTDH, PRDX4.
DISCUSSION
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive disease (Bhat et al., 2021). The rapidly progressive disease makes it difficult to improve the prognosis of patients with aggressive HNSCC through a single targeted route or drug therapy in a timely manner (Johnson et al., 2020). Therefore, the construction of predictive models using metastasis-associated genes may provide important tools for early intervention. However, the number of such markers is not enough. Thus, there is an urgent need to screen for more biomarkers with high predictive performance to be included in the candidate list.
Anoikis is a programmed cell death that occurs when cells separate from the correct extracellular matrix, thereby disrupting the attachment of integrins (Taddei et al., 2012). It is a key mechanism for preventing dysplastic cells from growing or attaching to an inappropriate matrix (Li et al., 2021). Anoikis prevents detached epithelial cells from settling elsewhere and is therefore essential for tissue homeostasis and development (Bakir et al., 2020).
Normally, when normal epithelial cells detach, they lose critical survival factors and undergo a programmed cell death called anoikis (Nirmala and Lopus, 2020), while HNSCC metastatic tumor cells gain anoikis resistance, which allows them to begin curating away from the primary lesion (Braunholz et al., 2016; Liao et al., 2017; Shen et al., 2017). Owing of the fact that anchorage-dependent growth and epithelial-mesenchymal transition, two features associated with anoikis resistance, are critical steps in tumor progression and metastatic spread of cancer cells, anoikis dysregulation is now of particular interest to the scientific community (Talukdar et al., 2018; Corbet et al., 2020; Ye et al., 2020; Yoon and DeNicola, 2021; Yu et al., 2022). Multiple pathways can lead to the acquisition of anoikis resistance in HNSCC (Dey et al., 2015), and these highlight the concept of targeting anoikis-related genes to overcome HNSCC progression and metastasis (Kumar et al., 2010). Polygenic analysis reflects the complex interplay of various parameters affecting anoikis resistance in tumor pathology. Thus, this polygenic approach may allow characterization of tumor biology to support clinical decision making in the era of precision medicine in cancer.
In this study, we identified robust risk score features containing seven genes, namely IKZF3, BAK1, MTDH, FN1, PRDX4, ERBB2, and LTF. Previous studies have described certain associations between genes and the tumorigenesis and pathogenesis of cancer. For example, Xichuan Li et al. indicated that IKZF3 (Aiolos) could reduce the expression of many adhesion-related genes, thereby disrupting ECM integrity (Li et al., 2014). Similarly, via suppressing the expression level of PRDM1 in lung cancer, Aiolos promoted anoikis resistance and distant metastasis in vivo (Zhu et al., 2017). Besides, MiR-125b promotes PCa xenograft tumor growth by targeting pro-apoptotic genes such as BAK1 (Shi et al., 2011)。Lance S Terada et al. identified Aiolos as an epigenetic driver of lymphocyte mimicry in aggressive cancers, linking the development of immune cells to metastatic behavior (Terada and Liu, 2014). MTDH is overexpressed in hepatocellular carcinoma and is strongly associated with tumor metastasis. MTDH could induce autophagy, which leads to anoikis resistance and a key factor for metastasis (Zhu et al., 2020). Besides, MTDH-dependent anoikis resistance is activated by the PI3K/Akt pathway, and anoikis resistance is obtained by inhibiting caspase-3 activation and activating CXCR4 expression levels (Zhou et al., 2014), targeting MTDH can limit PDAC metastasis (Suzuki et al., 2017). Recently, a study suggested that FN1 promotes cellular aggregate formation conferring anoikis resistance to tumor cells (Han et al., 2021), and that pretreatment of exosomes with anti-FN1 antibodies attenuates the invasive ability of fibroblasts (Shafiq et al., 2021). PRDX4 is overexpressed in a variety of tumor tissues (Jia et al., 2019), and inhibits anoikis resistance through the β-catenin/ID2 pathway, thereby promoting the growth and metastasis of hepatocellular carcinoma cells (Wang et al., 2019). Lactoferrin (LTF) can induce anoikis in infected enterocytes (Sherman and Petrak, 2005), which may be a potential target to inhibit the development of metastasis in HNSCC. ERBB2 blocks anoikis in breast cancer cells by downregulating the pro-apoptotic proteins Perp and Bim in a Mek-dependent manner (Reginato et al., 2003; Khan et al., 2016)
Sample classification based on predefined gene expression profiles is a proven method. Borrowing from this approach, HNSCC patients were classified according to the expression of anoikis-related genes, which were expressed significantly differently in the subgroups, accompanied by significantly different prognosis, suggesting that our ten-gene signature can effectively identify the prognosis of patients. Thus, it will facilitate clinicians to make different treatment strategies. The DCA curve also implies that the nomogram constructed based on the ten-gene signature can benefit HNSCC patients at 1, 3, and 5 years.
Tumor immune microenvironment (TME) has a significant impact on tumor metastasis process and targeted therapy efficacy. We analyzed the proportion of 22 immune cell types in different subtypes. In the high-risk group with poor survival, the level of infiltration of activated Mast cells was significantly upregulated, suggesting its crucial role in the development of HNSCC. In addition, each of the seven risk genes, especially FN1, which had the highest correlation coefficient with Macrophage M0 and activated Mast cells. Therefore, FN1/activated Mast cells axis might be a interesting pathway.
Although our riskScore and the nomogram constructed based on it have better predictive performance, given the heterogeneity between cells, anoikis studies performed at the single-cell level may more accurately reflect the impact of ANRGs on the progression and prognosis of HNSCC patients. In addition, the limited amount of data in this study requires a larger sample size for the calibration of the prediction model.
In summary, our seven-gen model is able to well predict the survival in HNSCC patient, and the nomogram based on the model can help physicians develop personalized HNSCC treatments in clinical practice. Future studies on the molecular mechanisms associated with this feature and prospective randomized clinical trials will be clinically important and may provide a roadmap for precision medicine.
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Head and neck squamous cell carcinoma (HNSCC) represents one of the most prevalent and malignant tumors of epithelial origins with unfavorable outcomes. Increasing evidence has shown that dysregulated long non-coding RNAs (lncRNAs) correlate with tumorigenesis and genomic instability (GI), while the roles of GI-related lncRNAs in the tumor immune microenvironment (TIME) and predicting cancer therapy are still yet to be clarified. In this study, transcriptome and somatic mutation profiles with clinical parameters were obtained from the TCGA database. Patients were classified into GI-like and genomic stable (GS)-like groups according to the top 25% and bottom 25% cumulative counts of somatic mutations. Differentially expressed lncRNAs (DElncRNAs) between GI- and GS-like groups were identified as GI-related lncRNAs. These lncRNA-related coding genes were enriched in cancer-related KEGG pathways. Patients totaling 499 with clinical information were randomly divided into the training and validation sets. A total of 18 DElncRNAs screened by univariate Cox regression analysis were associated with overall survival (OS) in the training set. A GI-related lncRNA signature that comprised 10 DElncRNAs was generated through least absolute shrinkage and selection operator (Lasso)-Cox regression analysis. Patients in the high-risk group have significantly decreased OS vs. patients in the low-risk group, which was verified in internal validation and entire HNSCC sets. Integrated HNSCC sets from GEO confirmed the notable survival stratification of the signature. The time-dependent receiver operating characteristic curve demonstrated that the signature was reliable. In addition, the signature retained a strong performance of OS prediction for patients with various clinicopathological features. Cell composition analysis showed high anti-tumor immunity in the low-risk group which was evidenced by increased infiltrating CD8+ T cells and natural killer cells and reduced cancer-associated fibroblasts, which was convinced by immune signatures analysis via ssGSEA algorithm. T helper/IFNγ signaling, co-stimulatory, and co-inhibitory signatures showed increased expression in the low-risk group. Low-risk patients were predicted to be beneficial to immunotherapy, which was confirmed by patients with progressive disease who had high risk scores vs. complete remission patients. Furthermore, the drugs that might be sensitive to HNSCC were identified. In summary, the novel prognostic GILncRNA signature provided a promising approach for characterizing the TIME and predicting therapeutic strategies for HNSCC patients.
Keywords: head and neck squamous cell carcinoma, genomic instability (GI), long non-coding RNA (IncRNA), tumor immune environment, therapy
INTRODUCTION
Head and neck squamous cell carcinoma (HNSCC) represents a highly heterogeneous and malignant epithelial-derived tumor occurring in the tongue, oral cavity, nasopharynx, oropharynx, larynx, sinus, salivary gland, and thyroid gland (Siegel et al., 2022). It is estimated that heavy alcohol use, tobacco consumption, and viral infection such as Epstein–Barr virus and human papillomavirus are the main carcinogenic factors (Dhull et al., 2018). The complexity of genetic etiology is the enabling cause of HNSCC tumorigenesis. Current treatment modalities for HNSCC patients include surgery, radiation therapy, chemotherapy, and targeted therapy, while the risk of recurrence is high (Marur and Forastiere, 2016). Early cancer screening for HNSCC is impotent for the population without symptoms (Witek et al., 2017). Most patients are diagnosed at advanced stages which leads to a poor prognosis. Insufficient early diagnostic approaches and deficiency in the clinical use of specific prognostic markers posed an urgent need to identify effective signatures and develop new therapies.
Cell malignant transformation is controlled by many aspects such as genomic instability (GI). GI, including chromosomal instability, microsatellite instability, and epigenetic instability, is characterized by the accumulation of somatic mutations, which are caused by the defects in the process of cell division that may include mutations in DNA damage repair genes or mistakes in DNA replication (Negrini et al., 2010). Although GI increases genetic diversity to accommodate evolution, growing evidence demonstrated that GI acts as one of the major driving determinants during tumorigenesis which occurs in almost human cancers (Yang et al., 2020). Genome-wide profiling has revealed a high burden of genomic mutations in HNSCC that promote substantial inter- and intra-tumoral heterogeneity (Cancer Genome Atlas Network, 2015). Alternations in oncogenic drivers and tumor suppressors are involved in cancer development and treatment response. Carcinogens related to HNSCC such as tobacco exposure, alcohol intake, and ionizing irradiation can accelerate the mutations that lead to DNA repair deficiency and dysfunctional genomic stability pathways. The most frequently amplified regions in HNSCC are on chromosomes 3q, 5p, and 8q (Walter et al., 2013; Cancer Genome Atlas Network, 2015; Hayes et al., 2015). Loss regions are gathered on 3p, 5q, 13q, and 21q. Many driver genes in HNSCC, such as anti-apoptotic kinase protein kinase C (PIK3CA), transcription factors TP63 and SOX2, and telomerase TERT, MYC, FHIT, and CSMD1, are located in these areas (Ma et al., 2009). Loss of FHIT gene expression is linked to decreased survival in HNSCC (Tai et al., 2004). Mutant PIK3CA promotes cell survival and growth by enhancing cyclin D activity and attenuating the apoptotic process (Samuels et al., 2005). Small molecular inhibitors have been developed by targeting patients with wild or mutant PIK3CA. Patients with PIK3CA mutations showed sensitivity to the mTOR/PI3K inhibitor BEZ-235 (Lui et al., 2013), and patients with wild-type PIK3CA were sensitive to PI3K/mTOR inhibitors in combination with MEK inhibitors in preclinical models (Mohan et al., 2015). Thus, GI has been regarded as an evolving hallmark of cancer, and emerging studies have identified its critical role in diagnostic and prognosis implications (Suzuki et al., 2003; Negrini et al., 2010). Aberrant regulation and modification at transcriptomic and epigenetic levels also correlated with GI. The construction of prognostic biomarkers based on the GI signature in HNSCC has been reported (Chen et al., 2021). The tumor microenvironment (TME), especially the tumor immune microenvironment (TIME), attracted rising attention recently because it acts as an important player to shape a unique niche nourishing the malignant properties of tumor cells and affecting response to therapies (Huang et al., 2019). Mutations induced by GI were increased within the TME compared to cells under standard culture conditions, and hypoxic conditions also contributed to mutagenesis (Bindra and Glazer, 2005), suggesting the TME can be an indispensable inducer of GI in cancer cells (Chan et al., 2009; Bizzarri and Cucina, 2014; Sonugur and Akbulut, 2019). It was convinced that hypoxia is a major factor leading to GI, and increased reactive oxygen species can induce single- and double-strand DNA breaks which promote the translocations, deletions, and amplifications in tumor cells (Degtyareva et al., 2013; Helleday and Rudd, 2022). This might indicate the possibility of GI-based signature having implications in reflecting the TME and determining treatment, while current evidence is relatively limited.
Long non-coding RNAs (lncRNAs) represent the transcripts that are longer than 200 nucleotides which do not encode proteins and regulate gene expression at transcriptional, RNA processing, translational, and post-translational levels (Statello et al., 2021), and they were demonstrated to be involved in tumor cell survival, proliferation (Huarte, 2015) and genomic instability (Liu, 2016). Mounting lncRNAs have been identified to promote GI through regulating DNA repair-related gene expression or DNA damage-linked proteins, such as CUPID1, CUPID2, and DDSR1 (Polo et al., 2012; Betts et al., 2017). Ritu Chaudhary et al found that LINC00460 was abundant in HNSCC tissue and associated with poor patient survival (Chaudhary et al., 2020). Several lncRNA-based signatures showed prognostic effect (Liu G. et al., 2018; Wang et al., 2021) and correlated with TIME landscape (Cao et al., 2022; Li et al., 2022). However, rare studies have reported GI-related lncRNAs potentials in predicting TIME and therapies in HNSCC.
In the present study, we attempted to interrogate transcriptomic profiles and somatic mutation data of patients with HNSCC to develop a GI-associated lncRNAs prognostic signature for characterizing the TIME landscape and predicting therapeutic selection.
MATERIALS AND METHODS
Data acquisition and pro-processing
The somatic mutation dataset of 502 patients with HNSCC (VarScan version), the transcriptome profiling based on RNA-seq data (counts), and clinical characteristics was downloaded from the Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). Gene transfer format (GTF) files from the Ensembl database (http://asia.ensembl.org) were employed to convert the Ensembl IDs to gene symbols. mRNA and LncRNAs names were standardized from the HUGO gene nomenclature committee database. A total of 499 patients with complete survival information and somatic mutation were delivered for further analysis. These patients were randomly divided into the training set (n = 250) and validation set (n = 249) using the “caret” package. The clinicopathological characteristics of the patients in this study were displayed in Supplementary Table S1.
Identification of genome instability-related lncRNAs
The lncRNA expression profiles of HNSCC patients were extracted and combined with somatic mutation profiles. The cumulative counts of somatic mutations for each patient were calculated. The top 25% of patients within mutation cumulative counts were defined as genomic instability-like (GI, n = 127) group, and the bottom 25% of patients were classified as genomic stable-like (GS, n = 123) group. The differentially expressed lncRNAs were subsequently determined by comparing the mean expression of lncRNAs between GI- and GS-like groups through the Wilcoxon rank-sum test using limma package (Ritchie et al., 2015). The lncRNAs with Log|Fold Change| > 1.0 and false discovery rate (FDR) < 0.05 were considered as differentially expressed GI-related lncRNAs (GILncRNAs).
Hierarchical clustering analysis
The expression matrix of lncRNAs was normalized through Z-score analysis. Patients were divided into two clusters by hierarchical clustering analyses using “sparcl,” “pheatmap” and “limma” packages based on the expression of the differentially expressed GILncRNAs. The somatic mutations counts were compared, and the cluster with higher mutations was regarded as a GI cluster, whereas the other was considered as a GS cluster (p < 0.05, Mann–Whitney U test).
Differentially expressed GILncRNA and mRNA co-expression network
To explore the functional mRNA potential co-expressed GILncRNAs, the Pearson correlation analysis was performed based on the lncRNA and mRNA expression levels using the “limma” package. The top 10 mRNAs co-expressed with each GILncRNA were selected according to the Pearson correlation coefficient. The co-expression network of mRNAs and GILncRNAs was illustrated by Cytoscape.
Functional and pathway enrichment analysis
Functional enrichment analysis of the GILncRNAs co-expressed genes was performed using the clusterProfiler package (Wu et al., 2021) to identify Gene Ontology (GO) term categories, including biological process (BP), cellular competent (CC), molecular function (MF). The pathway referenced from the Kyoto Encyclopedia of Genes and Genomes (KEGG) was also scrutinized. A p value <0.05 was considered statistically significant.
Development and validation of the GInLncRNA-related prognostic signature
The overall survival (OS)-related GILncRNAs were determined using univariate Cox regression analysis in the training set. To avoid overfitting, OS-related GILncRNAs with p value < 0.05 were selected by the least absolute shrinkage and selection operator (LASSO) regression with a 10−fold cross−validation using the glmnet package. The GILncRNA-related prognostic signature was constructed using stepwise multivariate Cox stepwise regression analysis. The minimum number of GILncRNAs that comprised of the optimal signature was determined by the Akaike information criterion (AIC) (Vrieze, 2012). The patient’s GILncRNA signature risk score was calculated based on the corresponding GILncRNA signature lncRNA expression levels multiplied by their Cox regression coefficient. The formula for computing GILncRNAs is as follows:
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where “i” represents the signature lncRNA, Coefi is the lncRNA regression coefficient, “A” represents the lncRNA expression value, and “n” represents the number of lncRNAs. Patients with HNSCC were classified into high- and low-risk groups according to the median GILncRNAs score. The prognostic utility of the signature was evaluated by a log-rank test and visualized using the Kaplan–Meier curve. The model discrimination performance was assessed by the receiver operating characteristic (ROC) curve analysis using the timeROC package.
Two external HNSCC datasets GSE41613 (n = 97) (Zhao et al., 2022) and GSE42743 (n = 103) (Lohavanichbutr et al., 2013) were employed to validate the independently predictive accuracy of GILncRNAs signature. In the GSE41613 set, 21 patients were excluded from this study because they did not succumb to HNSCC. The raw CEL files were downloaded from the GEO database. These two sets (n = 179) were normalized and combined following the removal of batch effects by limma and affy packages. Patients were divided into high- and low-risk groups using the same setting.
Prognostic utility of the GILnRNA signature for patients with different clinicopathological features
To verify whether the GILncRNA signature is a prognostic indicator that is independent of the known clinicopathological features, univariate and multivariate Cox regression analyses were implemented in the training, validation, and whole HNSCC sets. Furthermore, a subgroup analysis was conducted to determine the prognostic efficacy of the signature in the entire HNSCC set with different clinicopathological features including age (≤65 and >65), gender (female and male), tumor grade (G1, G2, and G3–4), tumor stage (I–II and III–IV), pathological N stages (N0 and N1–N3), pathological M stage (M0), and pathological T stages (T1–2, T3, and T4). Patients with each type of clinicopathological parameter were stratified into high- and low-risk groups based on the median risk score. The survival differences between high- and low-risk groups were calculated using the log-rank test and Kaplan–Meier curve.
Cell composition analysis by multiple immune deconvolution algorithms
To quantify the differences in cell decomposition between patients within high- and low-risk groups, infiltrating cell types in each sample were quantified using multiple immune deconvolution approaches including quantification of the Tumor Immune contexture from human RNA-seq data (quanTIseq) (Finotello et al., 2019); microenvironment cell populations-counter MCPCounter (Becht et al., 2016), TIMER (Li et al., 2016), Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) (Newman et al., 2015), XCell (Aran et al., 2017), and EPI (Racle et al., 2017) based on bulk RNA-seq data. The faction of infiltrating cell types including immune cells between high- and low-risk groups was compared using the Wilcoxon test.
Characterization of the GILncRNA signature defining the tumor immune microenvironment
The proportions of immune signatures between high- and low-risk patients were quantified by a single sample gene set enrichment analysis (ssGSEA) score. Immune signatures totaling 29 cell types, functions, and pathways, were obtained as described previously (He et al., 2018).
Furthermore, the tumor immune microenvironment was characterized by immune scores and stromal scores which were calculated using the Estimation of STromal and Immune cells in MAlignant Tumor tissues using the Expression data (ESTIMATE) algorithm (Yoshihara et al., 2013). Tumor purity was also assessed based on the ESTIMATE score using a fitted formula as previously described (Yoshihara et al., 2013).
Immunophenoscore analysis
In recent years witnessed immunotherapy represented by immune checkpoint inhibitors (ICIs) has made remarkable leaps forward in solid tumors. Immunophenoscore (IPS, https://tcia.at/) is an aggregated scoring system based on the expression of the major determinants of tumor immunogenicity including MHC molecules, immunomodulators, effector cells, and suppressor cells (Charoentong et al., 2017) using a random forest approach. The IPS was calculated on a 0–10 scale. IPS was a powerful predictor of response to anti-PD-1 and anti-CTLA-4 antibodies treatment. To compare the responsiveness to ICIs treatment, the IPS levels between high- and low-risk groups were compared using the Wilcoxon test.
In addition, the expressions of programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), TIGIT, TIME3, LAG3, CD274, and B7-H4 between high- and low-risk groups were also compared using the Wilcoxon test.
Prediction of chemotherapeutic response using the GILncRNA signature
Chemotherapy remains the standard treatment for human cancers including HNSCC. To identify the chemicals that are potential responsiveness to patients, the half maximal inhibitory concentration (IC50) of each chemical from the GDSC database (Yang et al., 2013) in both groups was predicted and compared using pRRophetic R package (Geeleher et al., 2014).
RESULTS
Genomic instability-related lncRNA identification in HNSCC
To identify the GI-related lncRNAs in patients with HNSCC, the somatic mutation profile generated by VarScan2 was downloaded and patients were ranked by the cumulative counts of somatic mutations. Patients within the top 25% somatic mutations were divided into genomic instability (GI)-like group, and the bottom 25% somatic mutated patients were classified into genomic stable (GS)-like a group. The differentially expressed lncRNAs were determined between GI- and GS-like groups using the limma package. A total of 67 lncRNAs were found to be down-regulated, while 132 lncRNAs expressions were up-regulated in the GI-like group using |LogFC| > 1 and p < 0.05 as the cutoff points (Supplementary Table S2). The top 20 differentially expressed lncRNAs in GI- and GS-like groups were shown in Figure 1A. Unsupervised clustering was performed to assess the underlying molecular physiology of patients in GI- and GS-like groups based on these differentially expressed lncRNAs expression. It revealed high diversity within or between these two groups (Figure 1B), suggesting clustering may not clearly delineate the GI-GS distinction. Accordingly, the frequency of total mutations in the GI-like group was notably higher than that of the GS-like group (Figure 1C). Ubiquilin 4 (UBQLN4), a key regulator of DNA damage repair and over-expression in aggressive tumors (Jachimowicz et al., 2019), was significantly increased expression in GI-like vs. GS-like groups (Figure 1D). LncRNAs have been implicated in regulating gene expression at multiple levels such as chromatin structure (Statello et al., 2021). Differentially expressed lncRNA-related coding mRNAs were identified by co-expression network analysis (Supplementary Figure S1). Gene function enrichment analysis indicated that these genes are involved in cell differentiation, transmembrane transport, ion channel activity, and transport activity (Figure 1E). Focal adhesion, ECM-receptor interaction, morphine addiction, and nicotine addiction were the most enriched signaling pathways (Figure 1F), which have been related to cell differentiation, survival, migration, proliferation, and carcinogens during tumorigenesis (Bao et al., 2019).
[image: Figure 1]FIGURE 1 | Identification of genomic instability-related lncRNAs in HNSCC. (A) Heatmap pf expression of the top 20 differentially expressed lncRNAs in GI-like and GS-like groups. (B) Unsupervised clustering of 499 HNSCC patients based on the expression patterns of 199 genomic instability-related lncRNAs. (C) Somatic mutation counts in the GI-like and GS-like groups. (D) UBQLN4 expression level in the GI-like and GS-like groups. (E) GO terms analysis of the differentially expressed lncRNA-related gene coding mRNAs. (F) KEGG pathway analysis of the differentially expressed lncRNA-related gene coding mRNAs.
Generation of GI-related lncRNA prognostic signature
To test the prognostic role of GI-related lncRNAs in HNSCC, 499 patients with clinical survival time were randomly divided into a training set (n = 250) and an internal validation set (n = 249). Among 199 differentially expressed lncRNAs, 18 lncRNAs were found to be correlated with patients’ OS through univariate Cox regression analysis in the training set (Figure 2A). Elevated expression of four lncRNAs (LINC00402, RFPL1S, LINC00861, and TTTY14) and reduced LINC02587 in the GS-like group were predicted to be protective factors, while decreased GPR1-AS and AGA-DT expression were risk factors for HNSCC patients. The remaining lncRNAs were up-regulated in GI-like groups that were associated with unfavorable survival (Figure 2A). Lasso-Cox regression analyses were conducted to screen independent prognostic lncRNAs that were used to develop the GI-related lncRNAs signature. As shown in Figure 2B, 10 survival-related lncRNAs constituted the final GI-related lncRNA signature (GILncRNAs) as follows:
[image: Figure 2]FIGURE 2 | Development of genomic instability-related prognostic signature. (A) Identification of overall survival-associated GI-related lncRNAs in the training set in HNSCC. (B) The lncRNAs and their coefficients of the prognostic signature were developed by Lasso-Cox regression analysis. (C) The Kaplan–Meier curve of patients in high- and low-risk groups in the training set. (D) The correlation of the number of patients’ deaths with risk scores. (E) The correlation of the number of patients’ overall survival with risk scores. (F) The expression of lncRNAs comprised the signature in the high- and low-risk groups in the training set. (G) Time-independent receiver operating characteristic curve of the signature in the training set calculated by the area under the curve.
GILncRNAs = RFPL1S * (−0.0038) + AGA-DT * (−0.0052) + GPR1-AS * (−0.0331) + PCDH10-DT * (0.0151) + LINC01711 * (0.0027) + LINC0183 * (0.0042) + LINC01807 * (0.0032) + CASC20 * (0.0030) + LINC00861 * (-0.0038) + LINC02587 * (0.0359).
The risk score for the individual patient in the training set was calculated, and patients were divided into low- and high-risk groups using the median risk score as the cutoff value. Kaplan–Meier curve analysis showed that patients with high risk scores were reduced overall survival as compared to those patients with low risk scores (p < 0.001, Figure 2C). The number of deaths increased along with risk score rises (Figures 2D,E). These lncRNAs that comprised the signature showed differential expression in high- and low-risk groups (Figure 2F). The robustness of the GILncRNAs signature was evaluated using a time-dependent ROC curve. The area under the curve (AUC) of the signature was 0.73 in the training set (Figure 2G), indicating the predictive performance was satisfactory.
Validation of the GILncRNA signature in validation sets
Since the signature was established based on the limited number of patients, internal validation set and external independent HNSCC sets (GSE41613 and GSE42743) from the GEO database were used to verify the predictive capability of the GILncRNAs signature. Patients were classified into high- and low-risk groups using the same scheme as that in the training set. In the validation set, decreased OS was observed in patients with high risk scores in contrast to those who have low risk scores (p = 0.03, Figure 3A). A markedly shorter OS was seen in the entire HNSCC combined with the training and validation sets (p < 0.001, Figure 3B). The AUCs of the signature in the validation set and entire HNSCC set was 0.64 (Figure 3C) and 0.67 (Figure 3D), respectively, suggesting it has a moderate capacity for monitoring prognosis.
[image: Figure 3]FIGURE 3 | Internal and external validation of the prognostic signature. (A) The Kaplan–Meier curve of patients in high- and low-risk groups in the internal validation set. (B) The Kaplan–Meier curve of patients in high- and low-risk groups in the entire HNSCC validation set. (C) Time-independent receiver operating characteristic curve of the signature in the internal validation set calculated by the area under the curve. (D) The time-independent receiver operating characteristic curve of the signature in the entire HNSCC validation set is calculated by the area under a curve. (E) The Kaplan–Meier curve of patients in high- and low-risk groups in the external HNSCC validation set (GSE41613 and GSE42743). (F) The time-independent receiver operating characteristic curve of the signature in the external HNSCC validation set (GSE41613 and GSE42743) is calculated by the area under the curve.
To test the predictive accuracy of GILncRNAs signature in independent external datasets, patients in high-risk group have better OS as compared to those in the low-risk group (p = 0.008, Figure 3E). The AUC of the signature in this validation set was 0.65 (Figure 3F), implying that the signature also has medium performance in predicting patients’ OS in an array-based platform.
Prognostic utility of the GILncRNA signature for patients with different clinicopathological features
It has been widely known that tumor progression has tightly correlated with patients’ clinical features. Clinical stratification analysis was implemented including age (>65 and ≤65), gender, pathological tumor node metastases system (TMN), tumor stage (I–II and III–IV), and grade (I, II, and III–IV). We found that patients with high risk scores had an unfavorable OS rate than patients with low risk scores in these clinicopathological features, suggesting the GILncRNAs signature was a reliable prognostic indicator (Supplementary Figure S2A–O).
Regulation of N6-methyladenosine (m6A) messenger RNA methylation regulators and oncogenic drivers by the GILncRNA signature
Dysfunction of m6A mRNA methylation regulators was involved in mediating lncRNAs metabolism and cancer progression (Wang T. et al., 2020). Increasing reports have demonstrated the crucial functions of m6A regulators in impairing the CD8+ T cell anti-tumor effect and increasing the resistance to anti-PD-1 therapy (Zhang et al., 2020; Guo et al., 2021). The m6A writer RBM15, and readers (YTHDC2, YTHDF2, YTHDC1, YTHDF1) were up-regulated in patients with low-risk scores, while reduced eraser FTO expression was observed in the high-risk group (Supplementary Figure S3A). For instance, FTO plays an oncogenic role in lung squamous cell carcinoma by decreasing m6A levels and mRNA stability of MZF1 (Liu J. et al., 2018). What’s more, the somatic mutation profiles were assessed and plotted (Supplementary Figure S3B). The frequencies of the oncogenic drivers including tumor suppressor 53 (TP53) and CDKN2A mutations were increased in high-risk patients (Supplementary Figure S3C, D).
Cell composition analysis by multiple immune deconvolution algorithms
Cell composition that infiltrated patients matters in anti-tumor immunity. Multiple deconvolution algorithms were used to quantify the infiltrating various cells in the TME of HNSCC patients. The fractions of different infiltrating cells between high- and low-risk groups were compared in the training (Supplementary Figure S4A), internal validation set (Supplementary Figure S4B), and entire TCGA set (Supplementary Figure S4C). Among these infiltrating immune cells, we found that the fraction of total T cells were elevated in patients within the low-risk group in the training and validation sets that calculated using MCPCounter (Figure 4A), suggesting enhanced anti-tumor activities in this group. This was evidenced by a raising immune score (Figure 4B). The frequency of CD8+ T, natural killer (NK), and B cells was also notably increased in the patients with low-risk scores across the training and validation sets (Figures 4C–E). CD8+ T and NK cells were the main players in killing tumors, and the higher cytotoxicity score convinced this hypothesis (Figure 4F). Moreover, central/effector memory CD8+ T cells were supposed to be functional tumor-reactive T cells for anti-tumor immunotherapies (Klebanoff et al., 2005) and were observed to be higher in the low-risk group (Figures 4G,H). Cancer-associated fibroblasts (CAFs) are considered one of the most abundant and key factors that have diverse functions in the TME (Sahai et al., 2020). Six fibroblast markers (Costa et al., 2018) [fibroblast activation protein (FAP), integrin b1 (ITGB1), a-smooth muscle actin (aSMA), fibroblast-specific protein-1 (FSP-1), platelet-derived growth factor receptor b (PDGFRB), and caveolin-1 (CAV1)] have been used to delineate CAFs subtypes which were linked to immunosuppression and resistance to immunotherapy in breast cancer (Kieffer et al., 2020). Elevated infiltrating CAFs were seen in patients with high risk scores (Figure 4I), indicating that CAFs might play a cancer-promoting role in tumorigenesis. To further investigate the heterogeneity of CAFs defined by the signature, we found that FDGFRB, FAP, CAV1, aSMA, and ITGB1 were increased expression in patients with high risk scores, while FSP-1 was down-regulated (Supplementary Figure S4D). Patients were classified into three subtypes (Cluster A, B, and C) based on the expression of these markers using the ConsensusCluster package (Seiler et al., 2010) (Supplementary Figure S4E). Patients in Cluster C had better survival as compared to patients in clusters A and B (Supplementary Figure S4F). Furthermore, Cluster C has lower risk scores vs. Cluster A and B (Supplementary Figure S4G). These data suggested high-risk patients have the suppressive TIME as compared to patients in low-risk group (Supplementary Figure S4J). In summary, the GILncRNAs signature was an indicator of the TIME landscape.
[image: Figure 4]FIGURE 4 | Infiltrating cell type analysis using multiple deconvolution algorithms. (A) Total T cells infiltrated in patients of the high- and low-risk groups in training and validation sets (left to right: training, internal, entire HNSCC sets). (B) Immune score of patients in the high- and low-risk groups in training and validation sets (left to right: training, internal, entire HNSCC sets). (C) CD8+ T cells infiltrated in patients of the high- and low-risk groups in training and validation sets (left to right: training, internal, entire HNSCC sets). (D) Natural killer cells infiltrated in patients of the high- and low-risk groups in training and validation sets (left to right: training, internal, entire HNSCC sets). (E) B cells infiltrated in patients of the high- and low-risk groups in training and validation sets. (left to right: training, internal, entire HNSCC sets). (F) Cytotoxicity scores of patients in the high- and low-risk groups in training and validation sets (left to right: training, internal, entire HNSCC sets). (G) Central memory CD8+ T cells infiltrated in patients of the high- and low-risk groups in training and validation sets (left to right: training, internal, entire HNSCC sets). (H) Effector memory CD8+ T cells infiltrated in patients of the high- and low-risk groups in training and validation sets (left to right: training, internal, entire HNSCC sets). (I) Cancerassociated fibroblasts infiltrated in patients of the high- and low-risk groups in training and validation sets (left to right: training, internal, entire HNSCC sets). (J) Microenvironment scores of patients in the high- and low-risk groups in training and validation sets (left to right: training, internal, entire HNSCC sets).
Characterization of the GILncRNA signature-related tumor immune microenvironment
To further characterize the TIME defined by the GILncRNA signature, the proportions of 29 immune signatures in patients between the high- and low-risk groups were quantified by ssGSEA score. We found that increased infiltrated immune cells and enhanced functional immune-associated signatures in the low-risk group as compared to the high-risk group (Figure 5A), such as CD8+ T cells, APC-related co-stimulatory and co-inhibitory signals, tumor-infiltrating lymphocytes (TILs), checkpoint inhibitors, and cytolytic activity, suggesting patients in the low-risk group have hot immune reactive activities in anti-tumor immunity. Patients in the low-risk group showed increased immune scores and microenvironment scores estimated using the ESTIMATE algorithm (Supplementary Figure S4H), while higher tumor purity was found in the high-risk group in contrast to that in the low-risk group (Figure 5B). Previous studies showed that CXCR3-expressing activated T cells were involved in the growing recruitment of infiltrating effector T cells in the TME through interaction with its receptors CXCL9, CXCL10, and CXCL11 (Groom and Luster, 2011). We found that CXCR3 and its receptors significantly increased expression in patients within the low-risk group (Figure 5C). It has been demonstrated that increased IFNγ-expressing CD8+ T cells that infiltrated the TME are an important marker of the responsiveness to immune checkpoint inhibitors (ICIs) based immunotherapies and can also promote to up-regulation of PD-1/PD-L1 expression (Karachaliou et al., 2018). This was confirmed that the expression of T helper/IFNγ signatures including IFNG, IFNGR1, IFNGR2, STAT1, JAK1, and JAK2 were markedly increased in the patients within the low-risk group as compared to the patients within the high-risk group (Figure 5D). This was consistent with the evidence that more IFNγ release can induce apoptosis of lung cancer cells through activating the JAK-STAT1 pathway (Song et al., 2019). In addition, T helper cell response signatures such as CD8A, GZMA, TBX21, GATA3, and PRF1 were elevated expression in the low-risk group (Figure 5E). Down-regulation of co-stimulatory (Figure 5F) and co-inhibitory (Figure 5G) immune modulator expression was seen in patients with high risk scores which contributes to confirming the truth of the reduced cytotoxic phenotype of T cells, particularly CD8+ T cells, in the TME.
[image: Figure 5]FIGURE 5 | Tumor immune microenvironment analysis using 29 immune signatures through ssGSEA. (A) The immune signatures between high- and low-risk groups. (B) Tumor purity in high-and low-risk groups. (C) T cell response signatures expression in high- and low-risk groups. (D) T helper/IFNγ signatures expression in high- and low-risk groups. (E) Cytotoxic signatures expression in high- and low-risk groups. (F) Co-stimulatory signatures expression in high- and low-risk groups. (G) Co-inhibitory signatures expression in high- and low-risk groups. (H) Immunophenoscore levels in high- and low-risk groups. (I) Risk scores in patients with complete remission or progressive disease.
Immunophenoscore analysis
Increased expression of immune checkpoint molecules such as PD-1, and CTLA-4 in the low-risk group (Figure 5G) prompted us to investigate the patients’ response to ICIs therapy. Patients in the low-risk group had higher IPS levels than that in the high-risk group according to anti-PD-1 and/or anti-CTLA-4 therapies (Figure 5H). Furthermore, interrogation of the predictive potential of GILncRNAs signature for patients receiving clinical treatments indicated that the risk scores were significantly higher in the disease progressive patients than in complete remission patients (Figure 5I), showing its capacity in predicting treatment response for HNSCC.
Prediction of chemotherapeutic response by the GILncRNA signature
To explore the potential responsiveness of patients to chemicals/drugs that might be used to treat HNSCC based on the IC50 data. We noted that 40 chemicals were predicted to have low IC50 patients in the high-risk group compared to those in the low-risk group, suggesting patients were more sensitive to these chemicals/drugs (Figure 6A). Meanwhile, 18 chemicals showed higher IC50 in patients within the high-risk group, meaning they might be potentially effective for treating HNSCC (Figure 6B). Further verification of these identified chemicals in anti-HNSCC in vitro and in vivo is warranted.
[image: Figure 6]FIGURE 6 | Identification of potential therapeutic drug response to HNSCC patients. (A) Drugs that are potentially sensitive to the patients in the high-risk group. (B) Drugs that are potentially sensitive to the patients in the low-risk group.
DISCUSSION
Head and neck cancer (HNC) is one of the most death-causing malignancies that arise from the lip, oral cavity, nasopharynx, oropharynx, tongue, and larynx tissues (Sung et al., 2021). HNC is mainly comprised of HNSCC, accounting for over 90% of patients. Most patients were diagnosed at advanced or metastatic stages leading to poor outcomes (Siegel et al., 2022). Emerging therapies including molecular targeted therapy, immunotherapy, and combination therapy with standard treatments improved patients’ life quality and extended survival. The small fraction of patients that show responsiveness to immunotherapy limited its benefit in most cases owing to the suppressive tumor microenvironment (Economopoulou et al., 2016). HNSCC is understood to be synergistic and driven by the mutations in many oncogenes and tumor suppressor genes (Carson et al., 2011). GI is the hallmark of HNSCC and the inducer of these mutations, indicating that GI plays a crucial role in mediating TME. However, there are rare consistent prognostic biomarkers for HNSCC due to high heterogeneous genomics and complex etiology (Beck and Golemis, 2016; Yang et al., 2020). Studies have revealed that lncRNAs hold potential in the pathogenesis, diagnosis, prognosis, and targeted treatment of patients with HNSCC by promoting DNA damage and regulating the cell cycle (Guglas et al., 2017; Wang Y. et al., 2020; Jiang et al., 2022; Li et al., 2022), while the role of GI-associated with lncRNAs in the prediction of TIME and therapeutics for HNSCC has not been systematically assessed.
In this study, we profiled genome-wide somatic mutations of HNSCC from the TCGA database and identified the top 25% and bottom 25% number of mutations as GI- and GS-like groups. GI-related lncRNAs were determined by differentially expressed lncRNAs. Correlation analysis identified lncRNA-related protein-coding genes, and these genes were tightly enriched in several KEGG pathways that are involved in tumorogenesis and disease progression (Bao et al., 2019). Since previous studies have demonstrated that these lncRNAs were involved in the tumorigenesis of various cancers, this might indicate that they are key mediators in the pathogenesis of HNSCC. Among the lncRNAs included in the signature, LncRNA LINC01711 was demonstrated to promote the occurrence and development of esophageal squamous cell carcinoma through increasing cell proliferation, migration, and invasion by the miR-326/FSCN1 axis (Xu et al., 2021). Elevated LINC01711 expression in bladder cancer was found to be associated with decreased survival (Du et al., 2021). In addition, LINC01711 expression was positively correlated with TGF-β1, a key factor in the TGF-β signaling pathway (Lee et al., 2005). These data suggested that LINC01711 might play a tumor-promoting role in HNSCC development. lncRNA cancer susceptibility 20 (CASC20) was reported to serve as a tumor promoter by promoting the metastasis of human gastric cancer cells by the miR-143-5p/MEMO1 molecular axis (Shan et al., 2022). LINC01843 increased expression in patients and correlated with poor survival in lung adenocarcinoma (Li et al., 2020; Zheng et al., 2021) and colon cancer (Zhou et al., 2018). LINC00861 had an inhibitory function in cervical cancer cells by regulating PTEN/AKT/mTOR signaling pathway (Liu et al., 2021). The remaining lncRNAs functions in HNSCC need further clarification. Thus, we developed 10 survival-associated GI-related lncRNAs constituted prognostic signature that has robust survival stratification capacity in the training set using LASSO-Cox regression analysis, which was validated in the external and entire TCGA HNSCC sets. In addition, the signature has emphasized the evident applicability of predictive utility in the external set combined from two HNSCC cohorts. This suggested that the GILncRNAs signature showed as a superior indicator for monitoring patients’ survival. The calculation of predictive performance showed its reliable and stability in RNA-seq and array-based platforms. Yun Chen et al reported a genomic instability associated with lncRNA prognostic signature that shows potential for survival prediction of patients with HNSCC, while it was not validated in an external HNSCC set, and the applicability of the signature was not investigated (Chen et al., 2021). Our signature retained the comparable performance and holds superior capability to reflect the TIME. Clinical stratification analysis further validated the prognostic value of GILncRNAs signature in patients with different characteristics. These data suggested that the signature was potentially implicated in clinical practice, whereas validation in multi-center derived HNSCC cohorts is required.
Studies have shown that TME is of the major players in tumor progression and inducers of genomic instability in tumor cells (Sonugur and Akbulut, 2019). Growing evidence indicated that oncogenesis is characterized by defects in the immune system as tumor cells could evade immunosurveillance resulting from the accumulation of genetic mutations and cancer heterogeneity (Economopoulou et al., 2016). Immunotherapy including ICIs targeting PD-1/PD-L1 and CTLA-4 in HNSCC has shown as potential therapeutics in HNSCC, while TIME affects the responsiveness and resistance of treatment. Infiltrated cell types in the TME between high- and low-risk groups were detected by multiple deconvolution algorithms. We found that cytotoxic elements such as CD8+ T cells and NK cells were notably increased in patients with low-risk scores. Increasing infiltration of total T cells, especially CD8+ T cells acted as the main killer of anti-tumor immunity of solid tumors (Lanitis et al., 2017). CXCR3-expressing activated T cells played an important role in the recruitment of effector T cells, and we found that its receptors and ligands were up-regulated in low-risk patients. This was convinced that high infiltrated central/effector CD8+ T cells in patients with low-risk scores. Emerging concepts show that co-stimulatory and co-inhibitory molecules have a pivotal role in T-cell activation, differentiation, and effector function (Chen and Flies, 2013). The expression of these inhibitory and inhibitory molecules such as CD40, ICOS, PD-1, CTLA-4, PD-L1, and TIGIT was elevated in the patients within the low-risk group. This might mean increased T-cell tumor-reactive activation in the low-risk patients. Immunotherapy targeting PD-1/PD-L1 and CTLA-4 may be effective for this subset of patients stratified by the GILncRNA signature. Patients with low-risk scores showing high IPS levels confirmed the notion. We did observe high risk scores in patients with the stable disease compared to CR patients. Recent studies have shown that CAFs are associated with anti-PD-1 immune checkpoint inhibitors treatment (Costa et al., 2018; Kieffer et al., 2020). CAFs subpopulations have diverse functions in TIME and modulating response to treatments in HNSCC patients (Obradovic et al., 2022). We found that CAFs were highly infiltrated in patients with high risk scores. To investigate the heterogeneity of CAFs in patients defined by the signature, patients were classified into three subtypes (Cluster A, B, and C), and Cluster C with decreased survival had higher risk scores as compared to the other two subtypes. Among the signatures that marked CAFs, the expression of five markers (FAP, ITGB1, aSMA, PDGFRB, and CAV1) was elevated in patients with risk scores. These data supported that the signature could characterize the TIME status and predict cancer therapies.
m6A is one of the most prevalent drivers in modifying the mRNAs and lncRNAs by affecting RNA metabolism (Yue et al., 2015). Several m6A regulators were differentially expressed between the high- and low-risk group including writers, erasers, and readers. Decreased methyltransferases METTL14 can promote the malignant attribute of glioblastoma stem cells while suppressing the demethylase FTO plays the opposite role (Cui et al., 2017). Reduced FTO expression and increased METTL14 expression were observed in the low-risk group, suggesting m6A might be involved in regulating lncRNAs in both groups. In addition, the frequency of oncogenic drivers such as TP53 and CDKN2A was higher in the high-risk group, which might be a contributor to progressive tumors. Identification of novel therapies is still an urgent need for patients with HNSCC. We found that some chemicals that might be sensitive to patients in a high- or low-risk group based on expression-based prediction. Some of these drugs have been used in treating cancers including HNSCC. Docetaxel/paclitaxel-containing schemas showed as a promising beneficial therapy for recurrent and/or metastatic HNSCC (Catimel et al., 1994; Shin and Lippman, 1999), and low IC50 of docetaxel was seen in high-risk patients. Parthenolide was reported to treat oral cancer cells by inducing apoptosis (Yu et al., 2015), and we found that it is sensitive to high-risk patients. Bexarotene might be effective in patients with high risk scores, and its anti-HNSCC efficacy was evidenced by targeting the PPARγ/RXRα heterodimer oral cancer preclinical test (Rosas et al., 2022). Further validation of these identified drugs could consolidate the findings.
There are some limitations in our study that need to be cautious when interpreting the results. Although the robust GILncRNAs signature was generated and validated based on the retrospective datasets, it still needs to be validated in multiple sets, particularly in a clinical setting. The underlying mechanisms of the difference in TME and drug effectiveness predicted by the signature require further in vitro and in vivo studies.
CONCLUSION
In conclusion, a reliable genomic instability-related lncRNA prognostic signature was developed and validated for patient survival stratification using RNA-seq and array-based datasets. The TIME landscape of HNSCC patients in low- and high-risk groups was characterized by relatively comprehensive approaches, and the signature also provided the feasibility of the potential responsiveness to targeted immunotherapy. Several drugs that were sensitive to patients with HNSCC were identified. Our findings provided a robust prognostic signature and helped gain a deeper understanding of the TIME landscape for HNSCC, which could facilitate the development of novel cancer therapeutics.
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Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer in humans globally. In addition to smoking and drinking, genetic and epigenetic changes also play a big role in how HNSCC starts and grows. MicroRNAs are short, non-coding RNAs that control cell differentiation and apoptosis by interfering with gene expression. In addition, microRNAs in HNSCC have been shown to affect the clinical behaviors of HNSCC in amazing ways. Moreover, metabolic reprogramming is a key part of cancer and is needed for cancer to turn into a tumor and grow. But it is still not clear what effect microRNAs related to fatty acid metabolism have on the prognosis of HNSCC patients. We downloaded the data of HNSCC patients from the TCGA database and obtained the genes associated with fatty acid metabolism according to the GSEA database. Then, the microRNAs associated with fatty acid metabolism genes were matched. Finally, fatty acid metabolism gene-associated microRNAs for calculating risk scores and then building multifactorial Cox regression models in patients with HNSCC. Heatmap analysis showed that microRNAs involved in fatty acid metabolism were significantly different in HNSCC patients than in healthy controls. A total of 27 microRNAs associated with fatty acid metabolism were screened by univariate Cox analysis (p < 0.05). Using lasso regression, 18 microRNAs substantially linked with the prognosis of HNSCC patients were identified and included in risk scores. The ROC curves demonstrate that risk scores derived from microRNAs involved in fatty acid metabolism can accurately predict the prognosis of HNSCC patients at 1, 3, and 5 years. Moreover, we discovered that 11 microRNAs included in the risk score properly distinguished the prognosis of HNSCC patients. This paper indicated that microRNAs involved with fatty acid metabolism are strongly linked to the prognosis of HNSCC patients. It also indicated that reprogramming of fatty acid metabolism in tumor tissues may play an important role in HNSCC cancer.
Keywords: fatty acid metabolism, MicroRNAs, head and neck squamous cell carcinoma, prognostic, risk score
INTRODUCTION
Head and neck squamous cell carcinoma (HNSCC), one of the most prevalent malignancies in the world, is a cancer of the squamous epithelium that lines the head and neck organs, such as the oral cavity, larynx, hypopharynx, oropharynx, nasopharynx, paranasal sinuses, nasal cavity, and salivary glands with poor outcomes and survival rates (Shiah et al., 2021). However, palliative care is being considered as a systematic therapy for patients with recurrent or spread HNSCC. This places a huge burden on society and the healthcare system. So, it is important to find useful prognostic and predictive biomarkers linked to the clinical prognosis of HNSCC in order to improve the overall survival rate.
In the last 10 years, it has been shown that microRNAs play an important role in the development of HNSCC cancer and its spread (Qiu et al., 2021; Shiah et al., 2021; Yang et al., 2019; Yu et al., 2019). This makes them good candidates for biomarkers that can predict the biological activity of HNSCC. Reprogramming of metabolic pathways ensures the survival and proliferation of cancer cells in a nutrient-deficient environment (Pavlova and Thompson, 2016; Soltani et al., 2021). Changes in tumor cell metabolism and immunosuppression have big effects on how tumors grow. A lot of research has been done on how they control and take over the metabolic reprogramming of immune cells and the tumor microenvironment to keep growing tumors from being attacked by the immune system (Pacella et al., 2018; Siddiqui and Glauben, 2022; Wu L. et al., 2020). A previous study found the inactivation of receptor-interacting protein kinase 3 (RIPK3) in tumor-associated macrophages (TAMs) reprograms fatty acid metabolism via the ROS-caspase1-PPAR pathway, which accelerated HCC development (Wu L. et al., 2020). TAMs can live in places where there is not enough food or oxygen, change their metabolism to become pro-tumorigenic or suppress the immune system, and help tumors grow by turning on the FAS and PPAR pathways (Gajewski et al., 2013; Wu L. et al., 2020).
Lipid metabolism, particularly fatty acid synthesis, is a critical physiological process that turns nutrients into metabolic intermediates for membrane formation, energy storage, and the creation of signaling molecules. A major metabolic characteristic of cancer cells is altered lipid metabolism (Hao et al., 2019). Furthermore, changing lipid availability influences cancer cell motility, angiogenesis development, metabolic symbiosis, immune surveillance evasion, and cancer medication resistance. The reprogramming of fatty acid metabolism in tumor tissues has attracted a lot of attention as a possible cancer therapeutic target (Pacella et al., 2018; Wu J. Y. et al., 2020; Wu L. et al., 2020). Recently, the relevance of tumor metabolism in HNSCC and its surrounding environment has gained more attention. However, there is no study on the predictive value of microRNAs involved in fatty acid metabolism in HNSCC. So, we did this study to find out how well certain microRNAs involved in the metabolism of fatty acids can predict the outcome of HNSCC.
METHODS AND MATERIALS
Database
The RNA-sequencing transcriptome data and clinical data on patients with HNSCC and a matched normal group were extracted from the TCGA database (https://tcga-data.nci.nih.gov/tcga/). Ninety-two fatty acid metabolism-related genes were downloaded from the GeneCards (https://www.genecards.org/), including ABCD1, ABCD2, ACAA2, ACAD9, ACADL, ACADM, ACADS, ACADVL, ACAT1, ACSL1, ACSL3, ACSL4, ACSL5, ACSL6, ACSM1, ACSM2A, ACSM2B, ACSM3, ACSM4, ACSS1, ACSS2, ACSS3, CPT1A, CPT1B, CPT2, CRAT, CROT, ECHS1, ETFA, ETFB, ETFDH, HADH, HADHA, HADHB, HSD17B10, PEX11G, PEX13, PEX14, SLC25A20, ACAT2, ACAA1, EHHADH, ACOX3, ACOX1, ACADSB, GCDH, ACSBG1, ACSBG2, CPT1C, ECI1, ECI2, CYP4A11, CYP4A22, ADH1A, ADH1B, ADH1C, ADH7, ADH4, ADH5, ADH6, ALDH2, ALDH3A2, ALDH1B1, ALDH7A1, ALDH9A1, ACACA, ACACB, ACLY, FASN, MCAT, OLAH, OXSM, MECR, PPT1, PPT2, ELOVL1, ELOVL2, ELOVL3, ELOVL4, ELOVL5, ELOVL6, ELOVL7, HSD17B12, HACD2, HACD1, HACD4, HACD3, TECR, ACOT4, ACOT2, ACOT1, ACOT7 (collect and download from GeneCards). MicroRNAs related to these 92 genes were retrieved for further investigation.
This research didn’t have to acquire ethical approval for our study because we used information that was already in the public database.
Bioinformatics analysis
The expression of fatty acid metabolism-related microRNAs in tumor tissues and matched normal tissues was compared to detect DEGs using the R package (“pacman”, “limma”, “edgeR”, “pheatmap”) in R (https://www.r-project.org/, version R 4.2.1). The ratios for all fatty acid metabolism-related microRNAs were computed between samples to measure the fold-change (FC) in expression between groups. DEG was determined using the following criteria: A false discovery rate (FDR) < 0.05 and a |log2FC| value greater than 1.0 are necessary. The expression of these fatty acid metabolism-related microRNAs was then visualized using vioplot and heatmap.
The univariate Cox regression analysis was used to screen for fatty acid metabolism-related microRNAs associated with HNSCC patients’ outcome (p < 0.05). Using 10-fold cross-validation and a p-value of 0.05, Least Absolute Shrinkage and Selection Operator (LASSO) regression was conducted. After identifying possible prognostic genes, the risk score was determined using the risk score formula. By using the median risk score as the dividing line, we classified the patients as either low-risk or high-risk. Using the Kaplan-Meier technique and the log-rank test, the overall survival (OS) between the two groups was determined. Risk scores are represented graphically after separating high and low risk categories. Risk scores are represented graphically. Using the “survival,” “survminer,” and “timeROC” functions of the R package, the 1-, 3-, and 5-year time-dependent receiver operating characteristics (ROC) curves were shown. Using microRNAs associated with fatty acid metabolism that were filtered by lasso regression, multivariate Cox regression models were built, and forest plots were generated. The univariate Cox regression and multivariable Cox regression were used to explore whether the risk score based on fatty acid metabolism-related microRNAs and characteristics of patient and tumor (age, gender, grade of tumor differentiation, and TNM stage) were independent risk factors and to construct prognostic Norman diagrams based on the above characteristics. The log-rank test of the Kaplan–Meier analysis was used to generate a survival curve to compare subgroup survival. Using the immunoscore website (https://bioinformatics.mdanderson.org/estimate/disease.html), we immunoscore all genes, filter for differential genes, and locate intersections with differential genes based on risk score. Analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG), Disease Ontology (DO), and Gene Ontology (GO) for functional annotation of DEGs based on the immunoscore and risk score. These DEGs were also used for analysis of the correlation between genes and immune cells and immune function.
RESULTS
Identification of fatty acid metabolism related MicroRNAs
MicroRNAs related to fatty acid metabolism were extracted according to TargetScan, and the top 30 genes were displayed by heatmap (Figure 1A). Demonstration of up-and down-regulated microRNAs by volcano plot (Figure 1B). Using univariate Cox analysis, 27 microRNAs related to fatty acid metabolism were screened and shown as forest maps (Figure 1C). In addition, using the STRING database (https://string-db.org/), a protein-protein interaction (PPI) network of DEGs was constructed to reveal the interactions of the 92 metabolism-related genes (Figure 1D).
[image: Figure 1]FIGURE 1 | MicroRNAs associated with fatty acid metabolism in the HNSCC and matched normal tissues. (A)Heatmap of fatty acid metabolism-related microRNAs. (B) Volcano map of fatty acid metabolism-related microRNAs. (C) Univariate Cox regression analysis of fatty acid metabolism-related microRNAs. (D) Fatty acid metabolism-related microRNAs interactions revealed by PPI.
Fatty acid metabolism related MicroRNAs based risk score construction
These 27 microRNAs were screened using lasso regression, and a total of 18 microRNAs (hsa-let-7c-3p, hsa-miR-1-3p, hsa-miR-1229-3p, hsa-miR-1251-3p, hsa-miR-1251-5p, hsa-miR-1267, hsa-miR-1268b, hsa-miR-1286, hsa-miR-129-5p, hsa-miR-1304-3p, hsa-miR-1304-5p, hsa-miR-1323, hsa-miR-135b-3p, hsa-miR-148a-3p, hsa-miR-148b-3p, hsa-miR-150-5p, hsa-miR-16-1-3p, hsa-miR-181c-5p) were filtered (Figures 2A,B). The risk score was constructed by these 18 microRNAs. The results of the ROC curve and survival curve showed the risk score can better differentiate the prognosis of HNSCC patients (Figures 2C,D). The distribution of risk scores and survival times were compared between the low-risk and high-risk groups. (Figures 2E–H). In addition, survival analysis of these 18 genes demonstrated that 11 of them (hsa-let-7c-3p, hsa-miR-1229-3p, hsa-miR-1267, hsa-miR-1268b, hsa-miR-1286, hsa-miR-135b-3p, hsa-miR-148a-3p, hsa-miR-148b-3p, hsa-miR-150-5p, hsa-miR-16-1-3p, hsa-miR-181c-5p) distinguished between HNSCC patient risk categories well (Figure 3).
[image: Figure 2]FIGURE 2 | Risk score based on fatty acid metabolism-related microRNAs. (A) LASSO analysis with 10-fold cross-validation identified fatty acid metabolism-related microRNAs. (B) Coefficient profile plots of fatty acid metabolism-related microRNAs. (C) The ROC curves of the low-risk and high-risk groups of the risk score. (D) Survival curves of the low-risk and high-risk groups of the risk score. (E) Risk score of the HNSCC patients. (F) Survival comparison of the low-risk and high-risk groups in HNSCC patients. (G) PCA plot of the low-risk and high-risk groups. (H) t-SNE plot of the low-risk and the high-risk groups.
[image: Figure 3]FIGURE 3 | MicroRNAs associated with fatty acid metabolism that comprise the risk score. (A) Multivariate Cox regression analysis of fatty acid metabolism-related microRNAs. (B–L) The overall survival comparison between the high- and low-risk score subgroups with regard to 11 fatty acid metabolism-related microRNAs.
Construction of a nomogram based on risk score and clinical characteristics
The results of univariate Cox regression analysis indicated age, stage (T, N) and risk score are risk factors for HNSCC patients (Figure 4A). Moreover, multivariate Cox regression analysis revealed that risk score, age, and tumor stage (N) are independent prognostic risk factors for HNSCC patients (Figure 4B). Based on age, gender, grade, stage, and risk score, a nomogram was developed (Figure 4C), and the calibration curve indicates that the Norman plot provides a better fit (Figure 4D).
[image: Figure 4]FIGURE 4 | Risk score based fatty acid metabolism-related microRNAs. (A) Univariate Cox analysis of risk factors. (B) Multivariate Cox analysis of risk factors. (C) The nomogram integrated the risk score, age, gender, grade, and stage to predict OS. (D) The calibration curves for nomogram.
Enrichment and immune function correlation analysis based on intersection genes
Analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Disease Ontology (DO), and the Gene Ontology (GO) for functional annotation of DEGs using intersection genes between immunoscore and risk score. According to the KEGG analysis, the intersection genes were mostly enriched in “Primary immunodeficiency,” “Neuroactive ligand-receptor interaction,” “Intestinal immune network for IgA production,” “Hematopoietic cell lineage,” “Salivary secretion,” “Malaria,” “Fat digestion and absorption,” and “Staphylococcus aureus infection” (Figures 5A,B). According to the GO analysis, the intersection genes were mostly enriched in “B cell proliferation”, “B cell differentiation”, “B cell activation”, “cell killing”, “killing of cells of other organism”, “regulation of B cell proliferation”, “lymphocyte proliferation”, “leukocyte proliferation”, “mononuclear cell proliferation”, “mononuclear cell differentiation”, “lamellar body”, “collagen trimer”, “axon terminus”, “external side of plasma membrane”, “neuron projection terminus”, “integrator complex”, “anchored component of membrane”, “neuronal cell body membrane”, “cell body membrane”, “terminal bouton”, “hormone activity”, “carbohydrate binding”, “immunoglobulin binding”, “receptor ligand activity”, “signaling receptor activator activity” (Figures 5C,D). Finally, according to the DO analysis, the intersection genes were mostly enriched in “upper respiratory tract disease”, “chronic lymphocytic leukemia”, “endocrine organ benign neoplasm”, “allergic rhinitis”, “nasal cavity disease”, “nose disease”, “rhinitis”, “glomerulosclerosis”, “focal segmental glomerulosclerosis”, “obesity”, “seminoma”, “overnutrition” (Figures 5E,F). To demonstrate the relationship between intersection genes and immunological function, the immunocorrelation analysis (Figures 6A,B), immunodifferential analysis (Figures 6C,D), and gene and immune cell correlation analysis (Figure 7) were constructed using intersection genes.
[image: Figure 5]FIGURE 5 | Functional enrichment analysis of intersection genes. (A,B) KEGG enrichment analysis. (C,D) GO enrichment analysis. (E,F) DO enrichment analysis.
[image: Figure 6]FIGURE 6 | Immune function analysis. (A,B) The heatmap of immunocorrelation analysis. (C,D) Immune differential analysis and functional differential analysis between the high- and low-risk score subgroups.
[image: Figure 7]FIGURE 7 | Correlation analysis of genes with immune cells and immune function in HNSCC.
DISCUSSION
The reprogrammed metabolism of tumor cells results in changed metabolite levels in the tumor ecotone. Current research focuses on the effect of these metabolic modifications on the activity of immune cell compartments in the microenvironment. Consequently, it is essential to study and identify the multiple potential metabolic targets that impact tumor development. Thus, metabolic imbalance and transformation are regarded as hallmarks of cancer. Cancer cells have a very dynamic metabolism and continually alter how they use nutrients as fuel in and around the tumor (Elia et al., 2021). Reprogramming metabolic pathways enables cancer cells to survive and multiply in an environment deficient in nutrients (Wu et al., 2019). Aerobic glycolysis, enhanced glutamine absorption, and accelerated ab initio synthesis of fatty acids are a few of these modifications. It has been demonstrated that cancer cell-derived metabolites contribute to the hostile tumor microenvironment (Anderson et al., 2017).
Current research focuses on the effect of these metabolic modifications on the activity of immune cell compartments in the microenvironment. Immune cell metabolic reprogramming is a novel cancer characteristic that alters immune cell function by interfering with critical transcriptional and post-transcriptional activation mechanisms (Pavlova and Thompson, 2016). Numerous studies have examined the substantial consequences of altered tumor cell metabolism and immunosuppression on tumor development. Immunotherapeutic research is now concentrating on how tumor cells alter the function of immune cells and seize control of immune cells in order to shield developing tumors from immunological invasion. Decades of research have been devoted to the study of cancer biology, and several characteristics that characterize the growth of cancer have been identified. The substantial influence of cancer cell metabolic changes and suppressive immunity on tumor development has been the subject of much investigation. Focus has been placed on the development of innovative immunotherapeutic techniques due to the immune cells’ functional manipulation and takeover by cancer cells to shield the expanding tumor from immunological invasion (Siddiqui and Glauben, 2022). As part of the tumor microenvironment, several cell types and soluble chemicals (metabolites or cytokines) play a role in supporting tumor spread (TME). Infiltrating immune cells are critical in the fight against cancer, and metabolic flipping of immune cells has been shown to alter activation, differentiation, and polarization from a tumor suppressor to an immunosuppressive phenotype. Recent immunometabolism research has focused on how polarization impacts the metabolism of tumor-associated macrophages (TAMs) (Siddiqui and Glauben, 2022). For fast energy expenditure, activated pro-inflammatory macrophages rely on glycolysis, whereas alternatively activated macrophages favor fatty acid oxidation (Biswas and Mantovani, 2012). In colon cancer, fatty acids, particularly unsaturated fatty acids, drive myeloid cells of bone marrow origin to develop into a m2-like phenotype with a potent inhibitory potential, according to previous research (Wu et al., 2019).
Fatty acid synthesis is an important cellular process that makes lipids, which can then be used to make membranes or ATP. However, lipid metabolism is a sign that a disease is getting worse, and it may be very important for some types of cancer to get worse. Increased quantities of fatty acids generated and accumulated by several solid tumors have been documented to provide a tumor microenvironment rich in fatty acids. In malignancies of the prostate, colon, ovary, liver, and lung, genes involved in adipogenesis have been identified as being activated (Swinnen et al., 2006). There is additional evidence that the propensity for fatty acid metabolism alters in breast cancer subtypes with differential RARRES1 expression. In breast cancer, the state of hormone receptors coincides with alterations in lipid metabolism (Camarda et al., 2016; Yamashita et al., 2017).
Previous study has shown a potential relationship between fatty acid metabolism and tumor development and patient prognosis. However, fatty acid metabolism-related microRNAs in HNSCC and how they affect a patient’s prognosis is not clear. The results of this paper revealed that microRNAs involved in fatty acid metabolism were considerably altered in HNSCC tumor tissues compared to healthy controls. Through univariate Cox regression analysis, we found that 27 of these differentially expressed microRNAs are linked with HNSCC patient prognosis (p < 0.05). We utilized lasso regression to identify microRNAs that have great strongly linked with the prognosis of HNSCC patients and used them to create risk scores. The results of ROC and survival curve data demonstrated that the risk score has a better prognosis distinction for HNSCC patients. Furthermore, survival analysis of these microRNAs revealed that 11 of them (hsa-let-7c-3p, hsa-miR-1229-3p, hsa-miR-1267, hsa-miR-1268b, hsa-miR-1286, hsa-miR-135b-3p, hsa-miR-148a-3p, hsa-miR-148b-3p, hsa-miR-150-5p, hsa-miR-16-1-3p, hsa-miR-181c-5p) discriminated effectively between HNSCC patient risk groups. However, the function of these genes in HNSCC remains unclear. A recent study found that PSMC2 promotes gastric cancer progression by targeting hsa-let-7c-3p to increase the level of RPS15A, which then activates the mTOR pathway (Liu et al., 2022). This indicates that hsa-let-7c-3p may regulate biological processes such as cancer and development. Previous study found human mirtronic microRNAs are reported to be differently regulated in several cancer cell lines and tumors. In particular, hsa-miR-1229-3p was specifically increased in metastatic pancreatic and gastric cancer cell lines (Butkyte et al., 2016). Although studies of hsa-miR-1268b in tumors have not yet been reported, hsa-miR-1268b can be involved in a-linolenic acid metabolism (Gao et al., 2018). Since a-linolenic acid metabolism can regulate sugar, lipid, and protein metabolism, we theorized that hsa-miR-1268b may affect the tumor microenvironment by regulating fatty acid metabolism. Despite the fact that hsa-miR-135b-3p can identify human ovarian cancer tissue from normal tissue (Wang et al., 2014), its role in controlling the metabolism of the tumor microenvironment is unknown. Prior research demonstrated that hypoxia downregulation of hsa-miR-148a-3p led to the overexpression of its two target genes, ITGA5 and PRNP, which was a factor in colorectal cancer patients’ tumor development and poor prognosis (Nersisyan et al., 2021). Our research demonstrates that hsa-miR-148a-3p properly distinguishes the prognosis of HNSCC patients. In addition, a screening of differentially expressed miRNAs in gastric cancer showed hsa-miR-148a-3p, hsa-miR-148b-3p, and hsa-miR-363-3p as having the greatest number of target genes, three microRNAs were significantly overrepresented in numerous cancer-related pathways, including the “Wnt signaling route,” the “MAPK signaling pathway,” and the “Jak-STAT signaling pathway” (Luo et al., 2015). Overexpression of hsa-miR-150-5p accelerated the passage of human cervical cancer cells from G0/G1 to S phase, resulting in a considerable increase in cell proliferation (Oboshi et al., 2020). In addition, the overexpression of hsa-miR-150-5p was linked to an increased risk of Chronic lymphocytic leukemia (Casabonne et al., 2020). Previous study suggested that hsa-miR-181c-5p may participate in DNA methylation control in HPV-16-induced HNSCC(Sannigrahi et al., 2018). Our findings indicate that hsa-miR-181c-5p is a regulatory gene associated with fatty acid metabolism and predicts the prognosis of HNSCC. We speculated hsa-miR-181c-5p may alter the prognosis of HNSCC by influencing DNA methylation associated with fatty acid metabolism. Until now, the neoplastic and metabolic roles of hsa-miR-1267, hsa-miR-1286, and hsa-miR-16-1–3p are unknown.
In conclusion, acid metabolism-related microRNAs may play a role in the progression of HNSCC. Although there has been much research on HNSCC related microRNAs, there has been little on its reprogramming of fatty acid metabolism and microRNAs that regulate fatty acid metabolism. Moreover, the enrichment analysis of KEGG, GO, and DO revealed that interconnection genes were predominantly in fatty acid metabolism-related pathways, including fat digestion and absorption, obesity, and overnutrition, as well as immune-related pathways, including B cell proliferation, B cell differentiation, B cell activation, cell killing, killing of other organisms’ cells, regulation of B cell proliferation, lymphocyte proliferation, leukocyte proliferation, mononuclear cell proliferation, and regulation of B cell proliferation. So, in the future, more emphasis should be directed to HNSCC metabolic reprogramming, particularly changes in fatty acid metabolism and the accompanying microRNA regulatory network, which may reveal new immunotherapeutic targets for the treatment of HNSCC.
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Background: Indiolethylamine-N-methyltransferase (INMT) is a methyltransferase responsible for transferring methyl groups from methyl donor SAM to its substrate. S-adenosyl-l-methionine (SAM), obtained from the methionine cycle, is a naturally occurring sulfonium compound that is vital to cellular metabolism. The expression of INMT is down-regulated in many tumorous tissues, and it may contribute to tumor invasion and metastasis. Nevertheless, the expression of INMT and its relationship to methylation and immune infiltrates in head and neck squamous cell carcinoma (HNSC) remains a mystery. Thus, we evaluated expression, clinicopathological features, prognosis, several critical pathways, DNA methylation, and immune cell infiltration for the first time.
Methods: Analysis of the clinicopathological characteristics of INMT expression, several tumor-related bioinformatics databases were utilized. In addition, the role of INMT expression was analyzed for prognosis. Several INMT-related pathways were enriched on the LinkedOmics website. In addition, we have analyzed the methylation of INMT in HNSC in detail by using several methylation databases. Lastly, the relationship between INMT gene expression and immune infiltration was analyzed with ssGSEA, Timer, and TISIDB.
Results: In HNSC, mRNA and protein levels were significantly lower than in normal tissues. The low expression of INMT was statistically associated with T stage, histological grade, gender, smoking history, and alcohol consumption. HNSC patients with low INMT expression have a poorer OS (overall survival) compared to those with high levels of expression. In addition, the multivariate analysis revealed INMT expression to be a remarkable independent predictor of prognosis in HNSC patients. An analysis of gene enrichment showed that several pathways were enriched in INMT, including the Ras signaling pathway, the cGMP-PKG signaling pathway, and others. Moreover, methylation patterns of INMT detected in a variety of methylation databases are closely associated with mRNA expression and prognosis. Finally, INMT was significantly correlated with immune infiltration levels.
Conclusion: HNSC with low levels of INMT exhibits poor survival, hypomethylation, and immune infiltration. For HNSC, this study presented evidence that INMT is both a biomarker of poor prognosis and a target of immunotherapy.
Keywords: Indiolethylamine-N-methyltransferase, head and neck squamous cell carcinoma, low expression, poor prognosis, methylation, immune infiltration
INTRODUCTION
Around 700,000 cases of head and neck squamous cell carcinoma (HNSC) occur worldwide annually (Siegel et al., 2020). The 5-year overall survival (OS) for HNSC patients has remained at 60%, despite the advancing treatment (Chi et al., 2015). When determining the prognosis of patients with HNSC, the TNM classification system considers tumor size, location, and metastatic status. A treatment strategy is then developed (Lydiatt et al., 2017). The TNM system is not without its flaws, however, as patients with the same stage of cancer react to treatments differently (Budach and Tinhofer, 2019). As a result of HNSC’s high degree of heterogeneity, biomarkers must be stable, reliable, and broad-spectrum (O’Sullivan et al., 2013). As a consequence, HNSC requires useful therapeutic targets or identification of potential prognostic biomarkers.
DNA methylation is one of the most important epigenetic modifications (Baylin and Jones, 2016), the nucleic acid sequence does not change, and the gene expression can be inherited, playing key roles in the regulation of gene expression, genomic imprinting, X chromosome inactivation, and tumorigenesis (Jones and Baylin, 2007; Smith and Meissner, 2013). DNA methylation is catalyzed by a family of DNA methyltransferases (Dnmts) that transfer a methyl group from S-adenyl methionine (SAM) to the fifth carbon of a cytosine residue to form 5 mC (Moore et al., 2013). As an essential amino acid, methionine is found in the diet of mammals. It is converted to the principal cellular methyl donor, S-adenosylmethionine (SAM, also known as AdoMet), by the transfer of adenosine from ATP to the methionine sulfur. Methionine adenosyltransferase (MAT) is responsible for catalyzing this reaction (Kaiser, 2020). SAM is a naturally arising sulfonium compound that is essential for cellular metabolism. SAM has been shown to slow the progression of several types of human tumors over the last few decades (Ansorena et al., 2002; Lu and Mato, 2008; Martinez-Lopez et al., 2008). Indolethylamine-N-methyltransferase (INMT) is a methyltransferase that transfers one or more methyl groups from the methyl donor S-adenosyl-l-methionine (SAM) to the substrate (Axelrod, 1962; Herman et al., 1985; Thompson and Weinshilboum, 1998). It is, therefore, demonstrated that INMT contributes to the detoxification of selenium compounds and that it is involved in the regulation of the tryptophan metabolic pathway (Kuehnelt et al., 2015). Researchers found that INMT levels were lower in lung, meningioma, and prostate cancers (Kopantzev et al., 2008; Larkin et al., 2012; Schulten et al., 2016); however, the role of INMT in cancer is unclear.
The purpose of this article is to investigate the role of INMT in HNSC and its potential prognostic value. In the first step of the process, we gathered comprehensive gene expression data, clinical information, and prognostic information about HNSC patients from TCGA as well as other sources. The second step was to analyze protein expression, protein-protein interactions, and functional enrichment in HNSC using various related databases. Moreover, we used several methylation databases to analyze the methylation of INMT in HNSC in detail. Finally, the tissue microenvironment of tumor cells plays an important role in tumor development, which led us to explore the relationship between immune cells and INMT in the immune microenvironment of HNSC. Based on the results of this study, INMT may be utilized as either an indicator of prognosis or a therapeutic target for HNSC.
MATERIALS AND METHODS
Data acquisition and processing
Our study consists of extracting RNA-Seq expression data and clinical information associated with INMT in HNSC from the TCGA official website (Tomczak et al., 2015). So, 502 HNSC samples, as well as 44 adjacent normal tissue samples, were retained for analysis. To further analyze gene expression data obtained through RNA-Seq, the FPKM generated workflow data was converted to TPM format, and a log2 conversion was performed. Genomic information on INMT was also collected from selected samples, including TNM stage, clinical stage, histological grade, age, sex, smoking history, drinker, and radiation therapy. The mRNA expression data were presented as mean ± standard deviation. A Pearson correlation analysis was also utilized to determine the association between INMT expression levels and immune checkpoint gene expression. Since the research was conducted using data obtained from TCGA, it was not necessary to obtain Ethics Committee approval for this research. As a final step, gene expression profiles of GSE30784 were acquired from the Gene Expression Omnibus (GEO) database (Edgar et al., 2002) to further verify that INMT was downregulated in HNSC tissues.
Analyze on the TIMER website
TIMER (Li et al., 2017) is a web server that performs analyses of gene expression and immunological cells that infiltrate tumors of a variety of cancer types. Based on analyses of TIMER, we assessed whether INMT is differentially expressed in a variety of tumor types as compared to normal tissues. As part of our study, we explored the association between INMT and six immune infiltrating cells of the tumor as well as 16 molecular markers of immune cells.
Kaplan-Meier Plotter database analysis
The Kaplan-Meier plotter (Nagy et al., 2018) is an open, intuitive online tool that can be used to perform prognostic analysis in multiple cancer tissues. Based on the Kaplan-Meier plotter website, a link between clinical outcomes and INMT expression in HNSC was first assessed. The level of INMT expression within related immune cell subsets was then utilized for prognostic analysis. A hazard ratio (HR) based on 95% confidence intervals (CIs) was calculated along with the log-rank p-value.
Indiolethylamine-N-methyltransferase protein expression, functional enrichment analysis, and protein-protein interaction networks
UALCAN’s website makes it easy to analyze publicly available cancer data, such as protein expression, by providing easy-to-use tools such as CPTAC (Edwards et al., 2015; Chandrashekar et al., 2017). Using UALCAN, we examine the expression of INMT proteins throughout CPTAC.
Using the LinkFinder module on the LinkedOmics website (Vasaikar et al., 2018), the differentially expressed genes associated with INMT were analyzed from the TCGA HNSC dataset, and Pearson correlation coefficients were utilized to determine the correlation between the results, which were represented in a volcano plot and heat map, respectively. An analysis of Gene Ontology (biological processes, cellular components, and molecular functions) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using Gene Set Enrichment Analysis (GSEA) is performed by Link Interpreter. Furthermore, we employed the GEPIA database (Tang et al., 2017) to visualize heat maps showing the top 50 genes positively and negatively associated with INMT, respectively.
Protein-protein interactions (PPI) of INMT-binding proteins were analyzed on the STRING database (Szklarczyk et al., 2011) with parameters like the meaning of edges of the network (“evidence”), active sources of interaction (“experiments”), the minimum needed score for an interaction study [“Low confidence (0.150)”], and the maximum number of interactions to be calculated (“no more than 50 interactors”). Afterward, the information about 50 INMT-binding proteins with experimental evidence was identified from the interaction network. The intersection analysis of INMT-co-expressed genes and INMT-interacted genes was performed using an interactive Venn diagram viewer. Utilizing the Timer, we investigated the link between INMT expression and the common genes identified through intersection analysis.
Methylation and expression analysis of Indiolethylamine-N-methyltransferase
Researchers have found that DNA methylation is a significant epigenetic mechanism capable of governing gene expression and influencing cancer cell behavior. UCSC Xena is a genome-based database (Goldman et al., 2020), and we used this database for the analysis of INMT methylation and expression. After that, we analyzed methylation levels of INMT on both HNSC and paracancerous normal tissues using UALCAN and DiseaseMeth version 2.0 (Xiong et al., 2017). Additionally, using MEXPRESS (Koch et al., 2015), INMT expression was correlated with DNA methylation status in our study. Finally, we performed a multivariate survival analysis using MethSurv (Modhukur et al., 2018) to determine the distribution of CpG islands.
Immune infiltration analysis
In the study conducted by Bindea et al. (2013), the marker genes were extracted from 24 immune cells. To determine the amount of tumor-infiltrating immune cells, single-sample GSEA (ssGSEA) (Finotello and Trajanoski, 2018) was initially employed using HNSC mRNA TPM data from the TCGA.
Spearman correlation was applied to establish the correlation between INMT and these 24 types of immune cells. A database called TISIDB is available for analyzing tumor-immune cell interaction (Ru et al., 2019), and we also investigated the relation of INMT expression and methylation to the presence of tumor-infiltrating lymphocytes using this platform.
Statistical analysis
We used the R (V 3.6.3) and R package ggplot2 to display the expression differences to conduct statistical analyses. Comparing HNSC tissues and adjacent normal tissues were accomplished using paired t-tests and Mann-Whitney U-tests. To investigate the relationship between clinicopathological features and INMT expression, Mann-Whitney U-test, Fisher’s test, Chi-Squared test, and logistic regression were employed. With the pROC package (V 1.17.0.1), INMT expression was assessed for diagnostic accuracy using ROC curves. To assess the effect of INMT on survival, Kaplan-Meier and log-rank tests were performed using the survminer package (V 0.4.9). To estimate the risk of death, we performed multivariate and univariate analyses using Cox proportional hazard models. In multivariate Cox regression analysis, variables with p < 0.15 in univariate Cox regression are included in the analysis. As a result of the Cox regression models, the independent prognostic factors acquired from the multivariate analysis were employed to develop nomograms, each predicting the probability of survival at 1-, 3-, and 5-years. Based upon the RMS package (V 6.2-0), we created nomograms containing important clinical characteristics as well as calibration plots. We calculated the discrimination of the nomogram utilizing a concordance index (C-index). Our study employed two-tailed statistical tests with a significance level of 0.05 or less.
RESULTS
Abnormally low level of Indiolethylamine-N-methyltransferase expression in head and neck squamous cell carcinoma
Initially, we utilized the TIMER website to probe the mRNA expression of INMT. INMT mRNA expression was significantly lower in multiple human cancers, specifically in HNSC, in comparison with their respective normal tissues (Figure 1A). After that, we selected dataset GSE30784 (Chen et al., 2008) from the HNSC database to identify differentially expressed genes (DEGs). Comparing samples of 167 HNSC patients with low INMT with 62 samples of patients with high INMT. The analysis identified 3630 DEGs that covered 1898 upregulated genes and 1732 downregulated genes as statistically significant between the two cohorts (|Log2-fold change| > 1, adjusted p-value < 0.05). We still found that INMT was down-regulated in the differentially expressed genes identified (Figure 1B).
[image: Figure 1]FIGURE 1 | Variations in the expression levels of INMT between malignancies and the mRNA and protein expression levels in HNSC. (A) The expression level of INMT in multiple tumors derived from TCGA data in TIMER. Note: *p < 0.05, **p < 0.01, ***p < 0.001. (B) Volcano plots of the DEGs in GEO. (C,D) Differential levels of INMT mRNA expression in HNSC. (E) The expression level of INMT protein according to CPTAC.
The INMT expression data from TCGA were further analyzed to demonstrate the mRNA and protein expression of INMT in HNSC. Unpaired data analysis illustrated that the mRNA expression of INMT was statistically lower in HNSC samples (n = 502) as compared with normal samples (n = 44) (Figure 1C, 1.411 ± 0.83 vs. 2.255 ± 1.26, p < 0.001). Additionally, an analysis of paired data indicated that the levels of mRNA expression of INMT in HNSC tissues (n = 43) were statistically lower than those in adjacent normal tissues (n = 43) (Figure 1D, 1.391 ± 0.944 vs. 2.263 ± 1.274, p = 0.002).
As a final step, we analyzed CPTAC with UALCAN to analyze the expression of INMT protein. It was found that the protein expression of INMT in HNSC was significantly lower than in normal tissues (Figure 1E, p < 0.05).
Association with Indiolethylamine-N-methyltransferase expression and clinicopathological variables
Firstly, a Mann-Whitney U-test was conducted to develop an understanding of the link between the INMT expression and clinical-pathological characteristics of HNSC tissues. According to Figures 2A–K, decreased INMT was remarkably correlated with T stage (p = 0.02), histological grade (p = 0.02), gender (p = 0.01), smoker (p = 0.02), and alcohol history (p = 0.02). The expression of INMT did not correlate statistically significantly with other clinical-pathological characteristics, including N stage, M stage, clinical stage, age, and radiation therapy. As a result of using the Fisher exact test, as well as the chi-square test (Supplementary Table S1), similar results were obtained. Additional analysis revealed that the AUC value for INMT was 0.703 (CI: 0.620–0.786) (Figure 2K). Furthermore, univariate logistic regression of INMT expression (Table 1) further demonstrated that INMT expression was also closely associated with clinical-characteristics, including histologic grade [Odds Ratio (OR) = 1.660, CI: 1.096–2.530, p = 0.017], Gender (OR = 1.637, CI: 1.099–2.451, p = 0.016), smoker (OR = 1.874, CI: 1.220–2.906, p = 0.004), alcohol history (OR = 1.598, CI: 1.092–2.347, p = 0.016), but not T, N, and M stages, clinical stage, age, radiation therapy. At a cutoff of 2.328, INMT had a sensitivity, specificity, and accuracy of 45.5,85.7 and 82.4%, respectively. The negative predictive value was 94.7%, and the positive predictive value was 21.7%. Collectively, these results suggest that INMT may serve as a biomarker for poor prognosis in HNSC.
[image: Figure 2]FIGURE 2 | Clinical pathological characteristics correlated with INMT mRNA expression levels using the TCGA dataset. INMT mRNA expression was statistically related to T stage (A), histologic grade (E), gender (F), smoke (H), and alcohol history (I). Nonetheless, no statistical association was discovered between the expression levels of INMT and N stage (B), M stage (C), clinical stage (D), age (G), and radiation therapy (J). ROC analysis of INMT in HNSC (K).
TABLE 1 | The association between INMT expression and clinical-pathological characteristics (logistic regression).
[image: Table 1]Short overall survival is associated with low mRNA expression of Indiolethylamine-N-methyltransferase
Kaplan-Meier curves and Kaplan-Meier plots were utilized to investigate the relationship between INMT mRNA expression and the overall survival (OS) of patients with HNSC. Kaplan-Meier survival analysis of the TCGA-HNSC data set uncovered that patients with low INMT expression had a worse overall survival than those with high INMT expression (HR = 0.72, CI: 0.55–0.94, p = 0.017; Figure 3A). Similarly, the Kaplan-Meier Plotter result indicated that low INMT expression was related to worse overall survival in HNSC (HR = 0.62, CI: 0.47–0.83, p = 0.0002; Figure 3B).
[image: Figure 3]FIGURE 3 | The prognostic significance of INMT expression in HNSC. (A) A survival curve for OS based on TCGA data; (B) A survival curve for OS based on Kaplan-Meier Plotter; (C,D) Univariate and multivariate Cox analyses of INMT and pathological characteristics; (E) A nomogram incorporating INMT and other prognostic factors for HNSC utilizing TCGA data; (F) The calibration curve of the nomogram.
Based on a Cox regression model, univariate analysis of OS identified that poor OS was strongly associated with INMT expression (p = 0.017, CI: 1.059–1.81), M stage (p = 0.002, CI: 0.078–0.572), radiation therapy (p = 0.002, CI: 1.203–2.212) (Supplementry Table S2; Figure 3C). However, at multivariate Cox regression analysis, INMT expression (p = 0.007, CI: 1.129–2.151), T stage (p = 0.005, CI: 0.406–0.855), N stage (p = 0.025, CI: 0.492–0.954), M stage (p = 0.024, CI: 0.078–0.836), and radiation therapy (p < 0.001, CI: 1.417–2.813) could independently predict adverse OS (Supplementary Table S2; Figure 3D). In addition, this study found that patients with low INMT expression have a 1.559 times greater risk of adverse OS than those with elevated INMT expression (Figure 3D).
Considering the results discussed previously, INMT mRNA may serve as an independent prognostic indicator for HNSC. Based on a multivariate Cox regression analysis of TCGA data, an OS prediction model was developed. We constructed a nomogram of OS that incorporates INMT as well as other prognostic factors, including T stage, N stage, M stage, and radiation therapy (Figure 3E). The higher the point on the nomogram, the worse the prognosis. According to the calibration curve, the performance of INMT was evaluated, and the C-index of the OS was 0.660 (Figure 3F). Overall, this nomogram may be a more accurate predictor of survival than individual prognostic factors for patients with HNSC.
Functional inference of Indiolethylamine-N-methyltransferase in head and neck squamous cell carcinoma
In the LinkedOmics web portal, a LinkFinder module was available to investigate the co-expression pattern of INMT in TCGA-HNSC to provide knowledge about INMT’s biological function. As depicted in Figure 4A, 10,950 genes (dark red dots) positively correlate with INMT, whereas 5,433 genes (dark green dots) negatively correlate with INMT. The diagrams in Figures 4B,C illustrate heat maps of the top 50 genes positively and negatively associated with INMT, respectively. In addition, the top 50 genes with a high probability of becoming low-risk markers in HNSC, 43/50 of which had a favorable hazard ratio (HR) should be noted. Contrary to this, we found 40 of the top 50 genes to have unfavorable HR among the top 50 negatively remarkable genes (Figure 4D).
[image: Figure 4]FIGURE 4 | The co-expression genes for INMT in HNSC are derived from the LinkedOmics. (A) All the significantly associated genes with INMT were distinguished by the Pearson test in the HNSC cohort. (B,C) Heat maps depicting the 50 most significant genes positively and negatively associated with INMT in HNSC. Genes that are positively related are outlined in red, whereas genes that are negatively related are outlined in blue. (D) Survival map of the 50 most significant genes positively and negatively related to INMT in HNSC.
Analysis of the KEGG pathways indicated enrichment in riboflavin metabolism, dilated cardiomyopathy, renin-angiotensin system, hematopoietic cell lineage, cGMP-PKG signaling pathway, Ras signaling pathway, and so on (Supplementary Figure 1A). In addition, GO term annotation revealed that co-expressed genes of INMT were primarily related to organ growth, regulation of metal ion transport, B cell activation, etc., with the biological process (Supplementary Figure 1B), a protein complex involved in cell adhesion, platelet dense granule, sarcoplasm, etc., with the cellular components (Supplementary Figure 1C), and extracellular matrix structural constituent, nucleotide receptor activity, purinergic receptor activity, etc., with the molecular function (Supplementary Figure 1D).
To further explore the internal mechanism underlying the INMT gene’s involvement in tumorigenesis, the STRING website was utilized to explore the PPI network analysis. With the help of experimental evidence, Figure 5A visualized the interaction network of 50 INMT-binding proteins. We also screened out the common genes such as GNA13, GNA15, and GNG7 by comparing the top 50 co-expressed genes with the top 50 interacted genes (Figure 5B). Furthermore, the level of INMT expression was strikingly positively associated with that of GNA13 (r = 0.371, p = 1.82e-17), GNG7 (r = 0.659, p = 1.61e−62) and negatively associated with that of GNA15 (r = −0.333, p = 3.27e−14) (Figure 5C).
[image: Figure 5]FIGURE 5 | An analysis of INMT-related genes based on PPI networks. (A) A network visualization for INMT-binding proteins was created using the STRING database. (B) An intersection analysis was performed between co-expressed genes and genes that interacted with INMT. (C) INMT expression correlates with screened genes including GNA13, GNA15, and GNG7.
Expression of Indiolethylamine-N-methyltransferase is related to its methylation
Various methods were used to investigate the correlation between INMT expression levels and their methylation status to elucidate the abnormal downregulation mechanisms found in HNSC tissues. Using the UCSC Xena database, we first examined the DNA methylation levels of the INMT in HNSC. INMT mRNA expression is related to DNA methylation (Figure 6A). As shown in Figure 6B, the results of the UALCAN analysis indicated that INMT had a trend of higher methylation levels in normal head and neck samples than in HNSC samples (p = 9.52E-08). As in the case of DiseaseMeth version 2.0, the methylation of INMT in paracancerous normal tissues was greater than that in HNSC tissues (p = 4.70E-11; Figure 6C). Moreover, through MEXPRESS database, we identified eleven methylation sites (cg18285819, cg13134297, cg22007110, cg03012028, cg21110092, cg25936815, cg09797340, cg26586843, cg18873686, cg04749372, cg00194277) in the DNA sequences of INMT that were positively related to their expression levels. Conversely, only one methylation site (cg27345762) was negatively correlated with INMT expression levels (Figure 6D). Third, we presented heatmaps of the differentially methylated regions associated with INMT (Supplementary Figure 2A). Interestingly, we were able to validate the two predicted methylation sites (cg04749372 and cg00194277) using the Methsurv database. cg04749372 was detected in the open sea region and 1stExon region, and cg00194277 was detected in the open sea region and 3′ UTR region (Supplementary Figure 2A). As we continued to use Methsurv, we found that cg18589624, located in the TSS1500 region and open ocean, was associated with a poor prognosis (Supplementary Figure 2B).
[image: Figure 6]FIGURE 6 | Methylation analysis of INMT. (A) Heatmap illustrating the correlations between INMT mRNA and methylation in HNSC as determined by UCSC Xena. (B) Methylation was assessed via UALCAN. (C) DiseaseMeth version 2.0 was used to determine methylation. (D) Methylation of the INMT DNA sequence related to gene expression was visualized utilizing MEXPRESS. A blue line in the plot illustrates the expression of INMT. On the right, you can see Pearson’s coefficients of correlation and p values for methylation sites and query gene expression.
Association between Indiolethylamine-N-methyltransferase with immune infiltration level
As both KEGG and GO enrichment analyses illustrated that INMT may be involved in the tumor immune response, employing the TIMER, we first investigated the association between INMT expression and the six types of tumor-infiltrating immune cells. Pearson correlation analysis (Figure 7A) confirmed that there were significant positive associations between INMT expression and all six types of immune cells. Additionally, we utilized ssGSEA to assess the interrelation between INMT and 24 immune cell subsets in HNSC and found that INMT is strongly correlated with B cells, CD8+T cells, Cytotoxic cells, DC, Eosinophils, iDC, Macrophages, Mast cells, NK CD56bright cells, NK cells, pDC, T cells, T helper cells, Tem, TFH, Th1 cells, Th17 cells, Th2 cells, TReg (Supplementary Figure 3A). INMT exhibits a close negative correlation with Tgd (Supplementry Figure 3A). As well, similar results were also achieved using the TISIDB database (Figure 7B; Table 2). The TISIDB database was also examined to determine the interrelation between INMT methylation and 28 types of tumor-infiltrating lymphocytes (TILs). The data shown in Supplementary Figure 3B and Table 2 show that INMT methylation was significantly positively related to 27 kinds of immune cells, except for CD56dim NKT cells. We then examined how INMT expression correlates with tumor-infiltrating immune cell gene marker levels in HNSC samples by examining the TIMER website. As shown in Table 3, INMT levels in HNSC tissues were strongly associated with fourteen immune cells’ all markers (B cells, CD8+ T cells, dendritic cells, M2 macrophages, monocytes, neutrophils, T general cells, T exhaustion cells, TAMs, Tfhs, Th1s, Th2s, Th17s, and Tregs).
[image: Figure 7]FIGURE 7 | The relationship between the INMT level and immune infiltration level in HNSC. (A) Analysis of the correlation between INMT expression and the levels of immune cell infiltration in HNSC tissues using the TIMER database. (B) Relationship between expression of INMT and 28 types of TILs across human heterogeneous cancers. (C) Relationship between INMT expression and the gene levels of more than 40 common immune checkpoints in HNSC.
TABLE 2 | Tumor lymphocyte infiltration in HNSC is related to INMT expression and methylation, respectively (TISIDB).
[image: Table 2]TABLE 3 | The relevance between INMT and the biomarkers of immune cells in HNSC was analyzed utilizing the Timer platform.
[image: Table 3]Immune checkpoint inhibitors (ICIs), a novel approach to cancer immunotherapy, have already been shown to improve the outcomes of many types of cancer patients (Pardoll, 2012; Topalian et al., 2015). We then investigated the association between the expression of the INMT gene and the expression of over 40 common immune-control genes. A noteworthy finding was that INMT expression is related to almost 41 immune checkpoint markers in HNSC, including PDCD1, CTLA4, CD160, CD200, and so on (Figure 7C). The data presented here indicate that PD-1 (PDCD1) and CTLA4, two biomarkers used to evaluate immune-checkpoint inhibitor efficacy (Pardoll, 2012), showed a highly significant correlation with INMT expression in HNSC.
The last analysis is performed in HNSC using Kaplan-Meier plotters to explore the association between INMT expression and the prognosis of eight immune cells. In addition, we identified that patients with low INMT levels in enriched B cells (p = 0.0019), CD4+ memory T cells (p = 0.0036), CD8+ T cells (p = 4.3e-05), macrophages (p = 0.015), regulatory T-cells (p = 0.0039), type 1 T-helper cells (p = 0.0014), type 2 T-helper cells (p = 0.001) had a worse prognosis (Supplementary Figure 4). Hence, these findings strongly demonstrate that the INMT gene might contribute to tumor immunity.
DISCUSSION
Even though significant progress over the past few years, there is continued evidence of increased morbidity and mortality associated with HNSC. To improve the survival rate of HNSC patients, it is imperative to make an accurate prediction of prognosis. Thus, HNSC needs useful therapeutic targets or the identification of potential biomarkers of prognosis. The purpose of this article is to examine the role of INMT as a potential marker in HNSC as well as its potential prognostic value.
INMT belongs to a large class of N-methyltransferases that utilize SAM as a methyl donor. SAM is used by INMT to transfer methyl groups to the nitrogen of substrates containing indolyl alkyl amino groups and, subsequently, to create SAH. During the past decade, the antiproliferative, proapoptotic, and antimetastatic properties of SAM have been extensively studied in pan-cancer. SAM has been demonstrated to induce cell cycle arrest, inhibit the migration and invasion of two HNSC cell lines (oral Cal-33 and laryngeal JHU-SCC-011), and modulate through the main signaling pathways such as AKT, β-catenin, and SMAD (Mosca et al., 2020). According to the Gene Cards database (Safran et al., 2021), NNMT is an important paralog of INMT. Expression of NNMT on ovarian cancer cells supported migration, proliferation, growth, and metastasis in vivo. In cancer-associated fibroblasts (CAFs), the expression of NNMT was associated with depletion of SAM and a reduction in histone methylation, resulting in alterations in gene expression (Eckert et al., 2019).
Evidence suggests that the expression of INMT is reduced in several cancers (Kopantzev et al., 2008; Larkin et al., 2012; Schulten et al., 2016). As a result of pan-cancer analysis, we also discovered that different expressions of INMT were observed in various types of tumors (Figure 1A). Research has shown that when INMT is overexpressed in prostate cancer cells, INMT inhibits cell proliferation and induces apoptosis by activating MAPK, TGFβ, and Wnt signaling pathways (Jianfeng et al., 2022).
Another study examined the role of PTEN in endometrial cancer and found that deregulation of the INMT gene is linked to the absence of PTEN (Lian et al., 2006). The current study found that INMT is downregulated in HNSC at both the mRNA level and the protein level (Figures 1C–E). Taken together, we hypothesized that INMT may also act a crucial part in the initiation, progression, and metastatic phases of HNSC.
There is a correlation between reduced INMT expression and several clinical parameters including T stage, histologic grade, gender, smoking status, and alcohol consumption (Figure 2) as well as poor overall survival (Figures 3A,B). In addition, the multivariate analysis further indicates that INMT expression was an independent predictor of prognosis in HNSC patients (Figures 3C–F; Table 1; Supplementary Tables S1, S2). Hence, INMT downregulation occurs in nearly all HNSC samples, contributing to their progression. In terms of its potential as a prognostic marker, INMT warrants further clinical investigation.
To discover more about the role of INMT in HNSC, path enrichment analysis was carried out using the LinkedOmics database. The enrichment analysis revealed that low INMT expression was enriched in pathways and biological functions that were related to tumorigenesis, such as the Ras, cGMP-PKG signaling pathways, and so on (Figure 4). Cellular receptors, such as RTKs and GPCRs, activate classic Ras signaling (Rauen, 2013). It is known that Ras-GTP stimulates a wide range of downstream effectors, although the best known of these are the MAPK, the PI3K (Rodriguez-Viciana et al., 1994; Pacold et al., 2000), and the Ral pathways (Rebhun et al., 2000). The PI3K/AKT and Raf/MAPK/ERK pathways are frequently mutated in cancer, resulting in aberrant activation of signaling pathways (Yang et al., 2019; Guo et al., 2020). Cancer cells, particularly those of the breast and colon, have been identified to be susceptible to the cyclic GMP (cGMP)/protein kinase G (PKG) cascade (Browning et al., 2010; Fallahian et al., 2011; Wen et al., 2015). The HNSC cells also express essential components of the cGMP-PKG signaling axis (Tuttle et al., 2016).
We screened out the common members of INMT, such as GNA13, GNA15, and GNG7, by comparing INMT-top50_co-expressed genes with INMT-interacted genes (Figure 5B). According to a recent study, GNA13 expression is associated with drug resistance and tumor-initiating phenotypes in HNSC (Rasheed et al., 2018). In addition, recurrent DNA hypermethylation and reduced protein expression in the GNG7 gene have been reported in HNSC (Hartmann et al., 2012).
CpGs methylation in promoter regions is usually regarded as a repressive mark because it inhibits gene expression. In response, we looked online database for DNA methylation patterns that might explain INMT’s downregulation in HNSC. In comparison with adjacent normal samples, HNSC samples exhibited hypomethylation of INMT. Recent studies suggest, however, that they can also act as activation marks, depending on their location and density along gene structures (Jones, 2012; Yang et al., 2014), as methylation of gene bodies and CpG-poor sites has been observed in active genes (Shenker and Flanagan, 2012). Although the mechanism underlying transcription elongation remains unclear, it appears to be related to structural requirements (Jones, 2012). By analyzing 542 human transcription factors (TFs) with methylation-sensitive SELEX (systematic evolution of ligands by exponential enrichment), a paper on the impact of cytosine methylation on DNA binding specificities published in Science in 2017 (Yin et al., 2017), they discovered that numerous TFs favor CpG-methylated regions. The majority of these belong to the extended family of homeodomains. Based on structural analysis, methylcytosine specificity depends on hydrophobic interactions with the 5-methyl group of methylcytosine. Combined with this paper and by querying the Gene Cards database, we speculated that the promoter methylation of INMT in HNSCC can positively regulate the expression of INMT, which may be related to the binding of transcription factors such as SCRT2 and NR2F1.
Tumor-infiltrating lymphocytes (TILs) are stromal cells that are capable of enhancing and maintaining an immunosuppressive microenvironment, stimulating immune escape, and consequently promoting tumor progression (Callahan and Wolchok, 2019; Demaria and Vivier, 2020; Yu et al., 2020). In the Golgi apparatus and vesicles, INMT is mainly involved in protein processing and cellular secretion. Through cell secretion, tumor cells can alter the tumor microenvironment. Tissue immunotherapy is critically impacted by the complexity and diversity of immune cell infiltration in the tumor microenvironment (Jianfeng et al., 2022). Our study revealed that INMT is closely linked to the tumor microenvironment, as an enzyme crucial to tryptophan metabolism. Upon comprehensive analysis of the results obtained in Timer, ssGSEA, and TISIDB, it can be seen that INMT expression was positively correlated with the infiltration of B cells, CD8 + T cells, Eosinophils, Macrophages, Mast cells, NK cells, pDC, T cells, T helper cells, Tem, Tfh, Th1 cells, Th17 cells, Th2 cells, and Treg (Figures 7A,B; Supplementary Figure 3A; Table 2). After correction for cell purity, INMT showed a positive interrelation with the majority of immune cell markers (Table 3). The findings of this study suggest that INMT is associated with the immune infiltration of HNSC. Specifically, the INMT level was significantly correlated with several markers of T helper cells (Th1, Th2, Tfh, and Th17) in HNSC. Consequently, it may have contributed to the poor prognosis of HNSC through the recruitment and regulation of immune cells. In addition, Mutations of p53 causing hotspots are often immunogenic, eliciting intratumoral T cell responses. INMT and p53 can be combined to form targeted anticancer immunotherapies (Chasov et al., 2021).
In summary, we demonstrated for the first time that downregulated INMT is strongly associated with clinicopathological characteristics, poor prognoses, varied pathways, DNA methylation, and immune cell infiltration in HNSC. As a result, this study provides valuable insights into further research on tumor therapy in HNSC. This research is part of a larger project, which will include validation in a prospectively enrolled study population.
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Background: The PITX gene family, comprising PITX1, PITX2, and PITX3, is critical in organogenesis and has been evolutionary conserved in animals. PITX genes are associated with the advanced progression and poor prognosis of multiple cancers. However, the relationship between the PITX genes and head and neck squamous cell carcinoma (HNSC) has not been reported.
Methods: We used data from The Cancer Genome Atlas (TCGA) to analyze the association between PITX mRNA expression and clinicopathological parameters of patients with HNSC. The prognostic value of PITX genes was evaluated using the Kaplan-Meier plotter. Multivariate Cox analysis was used to screen out prognosis-associated genes to identify better prognostic indicators. The potential roles of PITX1 and PITX2 in HNSC prognosis were investigated using the protein-protein interaction (PPI) network, Gene Ontology (GO) analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The correlation between PITX1 and PITX2 expression or methylation and immune cell infiltration was evaluated using the tumor-immune system interaction database (TISIDB). MethSurv was used to identify DNA methylation and its effect on HNSC prognosis.
Results: PITX genes expression was correlated with different cancers. PITX1 and PITX2 expression was lower in the patients with HNSC. In HNSC, PITX1 expression was significantly related to the clinical stage, histologic grade, and N stage, while PITX2 expression was only significantly related to the histologic grade. The high expression of PITX3 was significantly related to the histologic grade, T stage, and N stage. Survival analysis revealed that PITX genes had prognostic value in HNSC, which was supported by multivariate Cox analysis. PPI network and enrichment analysis showed that the genes interacting with PITX1 and PITX2 belonged predominantly to signaling pathways associated with DNA binding and transcription. Of the CpG DNA methylation sites in PITX1 and PITX2, 28 and 22 were related to the prognosis of HNSC, respectively. Additionally, PITX1 and PITX2 expression and methylation was associated with tumor-infiltrating lymphocytes (TILs).
Conclusion: The PITX genes were differentially expressed in patients with HNSC, highlighting their essential role in DNA methylation and tumor-infiltrating immune cell regulation, as well as overall prognostic value in HNSC.
Keywords: PITX gene family, HNSC, DNA Methylation, prognosis, Bioinformatic analysis
INTRODUCTION
Head and neck squamous cell carcinoma (HNSC) is the most common cancer of the head and neck. It originates from the squamous epithelium of the oral cavity, oropharynx, larynx, and hypopharynx (Solomon et al., 2018). It is the sixth most common cancer worldwide, with an incidence of ∼600,000 new cases each year, which is predicted to rise to 1.08 million new cases per year by 2030 (an increase of 30%) (Bray et al., 2018; Ferlay et al., 2019; Jiang et al., 2022). The early symptoms of HNSC are not obvious, meaning that the majority of patients are diagnosed at later stages of the disease, which is a serious threat to human health. At present, HNSC is primarily treated using resection, radiation, and systemic therapy; however, these strategies may lead to complications and poor long-term outcomes (Solomon et al., 2018). Accordingly, the 5-years survival rate for patients with HNSC remains less than 50%. Abnormal gene expression may be involved in tumorigenesis and is associated with the prognosis of HNSC patients (Zhang and Gao, 2021). In the past decade, elucidation of the molecular genetic landscape of HNSC has revealed new opportunities for therapeutic intervention, with a particular focus on immunotherapy. For instance, the immune checkpoint inhibitor pembrolizumab has been trialed as a first-line systemic treatment of HNSC (Saâda-Bouzid et al., 2017). Besides, detailed evaluation of the molecular characteristics of HNSC and immune profiling suggest that the inclusion of prognostic and predictive biomarkers in clinical studies may overcome the obstacles of targeted therapy and prolong the survival time of patients with HNSC (Oliva et al., 2019; Johnson et al., 2020). Hence, effective prognostic indicators for HNSC are urgently needed.
The PITX gene family belongs to the group of homeobox genes, which are highly conserved in all animals through evolution. To date, three PITX paralogs have been identified in mammalian cells: PITX1, PITX2, and PITX3 (Tran and Kioussi, 2021). Due to the early expression of PITX genes during embryonic development, their role has been mainly studied in the context of tissue and organ formation (Angotzi et al., 2008). PITX1 plays a role in pituitary development and hindlimb tissue configuration (Lanctôt et al., 1999). Meanwhile, PITX2 regulates the development of the pituitary, the face, teeth, skeletal muscle, the heart, and the intestine (Shih et al., 2007). Finally, PITX3 monitors dopaminergic neuronal function in the substantia nigra and during lens development. Recently, the PITX genes were shown to be involved in tumorigenesis. The expression of PITX activators is deregulated in some human malignancies, including hepatocellular carcinoma (Tai et al., 2016), lung cancer (Chen et al., 2007), prostate cancer (Poos et al., 2022), and cutaneous malignant melanoma (Osaki et al., 2013). PITX1 has been reported as a candidate tumor suppressor gene and a possible biomarker for predicting the chemical sensitivity of HNSC in humans (Takenobu et al., 2016). A recent study of PITX2 and an adjacent long non-coding RNA (lncRNA) methylation site, showed that hypermethylation was associated with improved survival in an HNSC cohort (Sailer et al., 2016). Moreover, PITX3 DNA methylation has proved to be an independent prognostic biomarker for overall survival (OS) in patients with HNSC and could potentially assist with risk-group assignment and subsequent treatment stratification (Sailer et al., 2017b). However, the role of PITX gene expression and methylation in the infiltration of immune cells into the tumor and the prognosis of HNSC has not been described.
Here, we used a bioinformatics approach to elucidate the relationship between PITX genes and the oncologic characteristics of patients with HNSC as well as assess their ability to predict the prognosis of HNSC. We used The Cancer Genome Atlas (TCGA) to analyze the expression of different PITX transcription factors in patients with HNSC, in order to determine their expression pattern, potential mechanism of action, DNA methylation status, and their relationship with immune infiltration and the prognosis of HNSC.
MATERIALS AND METHODS
Raw data acquisition and processing
TCGA has profiled and analyzed a large collection of clinical and molecular data from over 10,000 tumor patients across 33 different tumor types (Weinstein et al., 2013; Colaprico et al., 2016). Transcriptome RNA sequencing (RNA-seq) data were extracted from TCGA (https://portal.gdc.cancer.gov/) for 33 cancers, which included: adrenocortical carcinoma (ACC); bladder urothelial carcinoma (BLCA); breast invasive carcinoma (BRCA); cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC); cholangiocarcinoma (CHOL); colon adenocarcinoma (COAD); lymphoid neoplasm diffuse large B-cell lymphoma (DLBC); esophageal carcinoma (ESCA); glioblastoma multiforme (GBM); head and neck squamous cell carcinoma (HNSC); kidney chromophobe (KICH); kidney renal clear cell carcinoma (KIRC); kidney renal papillary cell carcinoma (KIRP); acute myeloid leukemia (LAML); brain lower grade glioma (LGG); liver hepatocellular carcinoma (LIHC); lung adenocarcinoma (LUAD); lung squamous cell carcinoma (LUSC); mesothelioma (MESO); ovarian serous cystadenocarcinoma (OV); pancreatic adenocarcinoma (PAAD); pheochromocytoma and paraganglioma (PCPG); prostate adenocarcinoma (PRAD); rectum adenocarcinoma (READ); sarcoma (SARC); skin cutaneous melanoma (SKCM); stomach adenocarcinoma (STAD); testicular germ cell tumors (TGCT); thyroid carcinoma (THCA); thymoma (THYM); uterine corpus endometrial carcinoma (UCEC); uterine carcinosarcoma (UCS) and uveal melanoma (UVM). RNA-seq data from 502 HNSC tissues and 44 normal tissues were downloaded from TCGA. The RNA-seq data and the corresponding patient clinical information (Workflow Type: HTSeq-FPKM) were acquired using the UCSC Xena tool (https://xenabrowser.net/datapages/). The level 3 HTSeq-FPKM data were transformed to log2 for the following analysis.
Survival analysis and PITX genes expression
The Kaplan-Meier plotter (http://kmplot.com/analysis/index.php?p=service) is an online drawing tool used to evaluate the influence of 54,685 genes on survival by mining information from 10,471 samples. In this study, we used the Kaplan-Meier plotter to determine the prognostic value of PITX gene expression levels in predicting OS and relapse free survival (RFS) of patients with HNSC. A difference was considered statistically significant when the p-value was < 0.05. Univariate Cox proportional hazard regression analysis was conducted to screen the differentially expressed PITX genes significantly associated with OS of HNSC. Then, the differentially expressed PITX genes with a p-value of less than 0.1 were further identified by multivariate Cox proportional hazard regression. Genes with a p-value of less than 0.05 (according to the multivariate Cox proportional hazard regression analysis) were identified as prognosis-related genes.
Analysis of the biological function of PITX genes
GeneMANIA is a flexible web interface used to construct protein-protein interaction (PPI) networks, generate hypotheses on gene function, and explore gene lists, while prioritizing genes (Warde-Farley et al., 2010). In this study, we used GeneMANIA to visualize the gene network and predict the functions of the co-expressed PITX1 and PITX2 genes. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of co-expressed genes were performed using the “ClusterProfiler” package (V 3.14.3) and visualized using the “ggplot2” package (V 3.3.3) (Xu et al., 2012).
DNA methylation of prognosis-associated PITX1 and PITX2 genes
The MethSurv database (https://biit.cs.ut.ee/methsurv/) was used to analyze the DNA methylation sites of PITX1 and PITX2 in TCGA. Moreover, the prognostic value of PITX1 and PITX2 CpG methylation sites was evaluated using OS as the survival outcome measure.
Tumor-immune estimation resource (TIMER) database analysis
TIMER 2.0 (http://timer.comp-genomics.org/) is a web server used for the analysis of infiltrating immune cells and their clinical impact (Li et al., 2020). In this study, the “gene” module was used to evaluate the relationship between PITX gene expression and immune cell infiltration. We chose PITX1 or PITX2 as input, while B cells, CD8+ T cells, CD4+ T cells, neutrophils, macrophages, and dendritic cells (DCs), were selected as the immune cell types (Li et al., 2016).
Tumor-immune system interaction database (TISIDB) analysis
TISIDB (http://cis.Hku.hk/TISIDB/) is an online web integrated repository portal for tumor-immune system interactions (Ru et al., 2019). In this study, we used the TISIDB to determine the relationships between the abundance of tumor-infiltrating lymphocytes (TILs) and the expression or methylation of PITX1 and PITX2 across human cancers. Based on the gene expression profile, the relative abundance of TILs was inferred using gene set variation analysis. The correlations between the expression and methylation of PITX1 and PITX2 genes and TILs were measured using Spearman’s test.
Statistical analysis
All statistical analysis were performed using R software (V 4.2.0) (https://www.r-project.org/) and the R package ggplot2 was used to visualize gene expression differences. The Wilcoxon rank-sum test was used to determine the differences between tumor tissues and adjacent normal tissues. The associations between PITX gene expression and clinicopathological parameters were measured using the Student’s t-test.
RESULTS
The expression of PITX gene family members in different cancers
To understand whether the expression of PITX genes correlates with cancer, we evaluated PITX1, PITX2, and PITX3 mRNA expression in different human tumors (33 cancer types) and adjacent normal tissues using TCGA data. The results showed that PITX1 mRNA expression was associated with BLCA, BRCA, CESC, CHOL, COAD, ESCA, HNSC, KIRC, LIHC, LUAD, LUSC, PAAD, PRAD, READ, and UCEC (Figure 1A). The expression of PITX2 was linked to BLCA, BRCA, CESC, CHOL, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, READ, THCA, and UCEC (Figure 1B). The expression of PITX3 was related to BLCA, BRCA, CHOL, COAD, ESCA, KICH, KIRC, KIRP, LIHC, LUSC, PRAD, STAD, THCA, THYM, and UCEC (Figure 1C). Low expression of PITX1 (p < 0.001, Figure 1D) and PITX2 (p < 0.05, Figure 1E) was observed in HNSC tumor tissues compared with normal tissues in unpaired specimens. Meanwhile, the expression of PITX3 was higher in HNSC than in normal samples, but this difference was not statistically significant (p > 0.05, Figure 1F).
[image: Figure 1]FIGURE 1 | Expression of PITX genes in HNSC and normal tissue. (A) PITX1, (B) PITX2, and (C) PITX3 expression levels in different tumor types from TCGA. (D) PITX1, (E) PITX2, and (F) PITX3 expression difference in unpaired HNSC samples. p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.
Expression of PITX genes and clinicopathological characteristics of HNSC patients
The clinicopathological characteristics of 502 patients with HNSC are summarized in Table 1. Roughly half of the HNSC patients were over 60 years old (51.1%) and had stage IV cancer (55.7%). The PITX1 expression was significantly related to the clinical stage (stage I vs. stage II, p < 0.05, Figure 2A), histologic grade (G1 vs. G4, G2 vs. G4, G3 vs. G4, p < 0.05, Figure 2D), and N stage (N1 vs. N2, p < 0.05, Figure 2J) of HNSC. However, no relationship was detected between PITX1 expression and HNSC T stage (p > 0.05, Figure 2G) or M stage (p > 0.05, Figure 2M). The PITX2 expression was only significantly related to the histologic grade of HNSC (G1 vs. G3, p < 0.05, Figure 2E). No correlations were detected between PITX2 expression and HNSC clinical stage (p > 0.05, Figure 2B), T stage (p > 0.05, Figure 2H), N stage (p > 0.05, Figure 2K), or M stage (p > 0.05, Figure 2N). The PITX3 mRNA expression was significantly related to the histologic grade (G1 vs. G3, p < 0.05, Figure 2F), T stage (T2 vs. T4, T3 vs. T4, p < 0.05, Figure 2I), and N stage (N1 vs. N3, p < 0.05, Figure 2L) of HNSC. Meanwhile, no correlations were detected between PITX3 expression and the HNSC clinical stage (p > 0.05, Figure 2C) or M stage (p > 0.05, Figure 2O).
TABLE 1 | Clinical characteristics of the HNSC patients (from TCGA).
[image: Table 1][image: Figure 2]FIGURE 2 | Relationship between PITX genes and clinicopathological parameters in patients with HNSC. The expression of PITX1, PITX2, and PITX3 markedly correlated with (A–C) clinical stage, (D–F) histologic grade, (G–I) T stage, (J–L) N stage, and (M–O) M stage. p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Prognostic value of PITX mRNA expression in HNSC patients
Next, we assessed the prognostic value of differentially expressed PITX genes in the context of HNSC. The correlations between different PITX genes and clinical outcomes were analyzed using the Kaplan-Meier plotter (Figure 3). We found that mRNA levels of PITX1 were significantly correlated with RFS but not with OS in all HNSC patients. HNSC patients with higher PITX1 mRNA levels PITX1 had better RFS [hazard ratio (HR) = 0.67 (0.5–0.89), p = 0.0053]. PITX2 expression was, however, significantly correlated with OS [HR = 1.54 (1.1–2.16), p = 0.011] but not with RFS. The expression of PITX3 was associated with RFS but not with OS. In contrast to PITX1, higher PITX3 mRNA levels were associated with poorer RFS in patients with HNSC [HR = 6.06 (2.45–14.98), p = 9.3e−06].
[image: Figure 3]FIGURE 3 | Kaplan-Meier survival curves for HNSC prognostic PITX genes. Kaplan-Meier survival curves for PITX1 showing (A) OS and (B) RFS; Kaplan-Meier survival curves for PITX2 showing (C) OS and (D) RFS; Kaplan-Meier survival curves for PITX3 showing (E) OS and (F) RFS.
Next, univariate Cox regression analysis revealed that PITX1 and PITX2 co-expression was significantly correlated with OS. Subsequently, multivariate Cox regression analysis indicated that PITX1 (HR = 0.832, p < 0.05) and PITX2 (HR = 1.149, p < 0.05) exhibited independent prognostic values for HNSC (Table 2).
TABLE 2 | Univariate and multivariate Cox analysis of PITX gene expression for determining HNSC prognosis.
[image: Table 2]PITX1 and PITX2 PPI network and enrichment analysis
Using GeneMANIA, we conducted a PPI network analysis of PITX1 and PITX2 to explore the potential interactions. We found that the PITX genes interacted with genes involved in the binding of activating transcription factors, the regulation of transcription regulatory region DNA binding, the regulation of DNA binding, skeletal system development, RNA polymerase II-specific DNA-binding transcription factor binding, and positive regulation of DNA binding (Figure 4A).
[image: Figure 4]FIGURE 4 | The network and functional enrichment analysis of PITX1 and PITX2. (A) The protein-protein interaction (PPI) network for PITX1 and PITX2 (generated using GeneMANIA). The functions of PITX1, PITX2, and co-expressed genes were predicted by performing (B) GO and (C) KEGG analysis.
The functions of PITX1, PITX2, and the associated co-expressed genes were predicted by performing GO and KEGG analysis. GO enrichment analysis predicts the functions of target host genes based on biological processes, cell components, and molecular functions. We found that the pattern specification process, regionalization, anterior/posterior pattern specification, transcription regulator complex, DNA-binding transcription activator activity RNA polymerase II-specific, DNA-binding transcription activator activity, DNA-binding transcription factor binding, and RNA polymerase II-specific DNA-binding transcription factor binding were markedly associated with PITX1 and PITX2 alterations in HNSC (Figure 4B and Supplementary Table S1). The corresponding genes are known to be associated with DNA-binding transcription.
KEGG analysis can define the pathways related to the functions of altered PITX1 and PITX2 genes, and the associated co-expressed genes. Twelve pathways related to the functions of PITX1 and PITX2 alterations in HNSC were found (Figure 4C and Supplementary Table S2), including Human T-cell leukemia virus1 infection, Hippo signaling pathway, Wnt signaling pathway, Human papillomavirus infection, and so on.
DNA methylation in promoter regions of PITX1 and PITX2
The results of GO and KEGG analysis showed that PITX1, PITX2, and the associated genes were mainly enriched for DNA transcription-related functions. Therefore, the promoter methylation level of PITX1 (Figure 5) and PITX2 (Figure 6) were analyzed by MethSurv; the prognostic value of methylation at each CpG site was assessed individually. We found that cg02037307 of PITX1 had the highest level of DNA methylation (Figure 5A). In addition, among the 29 CpGs in the PITX1 promoter region, 11 had significant prognostic value for patients with HNSC, based on Kaplan-Meier survival analysis (Figure 5B); data for the remaining 18 CpGs are shown in Supplementary Figure S1. PITX2 has 65 CpGs in the promoter region, of which cg26831119 had the highest level of methylation (Figure 6A). Nineteen of these CpGs had a significant prognostic value for HNSC, according to the Kaplan-Meier survival analysis (Figure 6B); data for the remaining 46 CpGs are shown in Supplementary Figure S2.
[image: Figure 5]FIGURE 5 | DNA methylation of PITX1 and HNSC prognosis. (A) The DNA methylation of PITX1 was determined using MethSurv; (B) The prognostic values of CpGs in PITX1, based on Kaplan-Meier survival analysis. Red to blue: high expression to low expression.
[image: Figure 6]FIGURE 6 | DNA methylation of PITX2. (A) The DNA methylation of PITX2 was determined using MethSurv; (B) The prognostic values of CpGs in PITX2, based on Kaplan-Meier survival analysis. Red to blue: high expression to low expression.
The expression and methylation levels of PITX1 and PITX2 correlate with immune infiltration in HNSC
TIMER 2.0 is a tool for analyzing the associated between specific genes and immune infiltration. We used TIMER 2.0 to investigate the correlation between the expression of PITX1 and PITX2 and the infiltration levels of immune cells in HNSC. The expression of PITX1 was significantly correlation with tumor-infiltrating CD8+ T cells (Rho = −0.15, p = 8.56e−04), CD4+ T cells (Rho = 0.166, p = 2.22e−04), macrophages (Rho = −0.248, p = 2.36e−08), and DCs (Rho = −0.207, p = 3.83e−06) (Figure 7A). Additionally, a correlation between PITX2 expression and macrophage infiltrations (Rho = 0.1, p = 2.69e−02) was observed (Figure 7B).
[image: Figure 7]FIGURE 7 | TIMER analysis of correlations between PITX1 and PITX2 expression and immune cell infiltration in HNSC. (A) Correlations between PITX1 expression and immune cell infiltration were evaluated using TIMER. (B) Correlation between PITX2 expression and immune cell infiltration levels using TIMER.
TILs can independently be used to predict sentinel lymph node positivity and cancer prognosis (Warde-Farley et al., 2010). Therefore, we used TISIDB to further explore the relationship between TIL numbers and the expression or methylation of PITX1 and PITX2. We found that the expression of PITX1 was associated with 16 immune cell subtypes in HNSC (Figure 8A and Table 3). The strongest associations with PITX1 expression involved T helper (Th)17 cells (r = 0.307, p = 1.04E−12), activated CD8+ T cells (Act_CD8, r = 0.207, p = 1.9E−06), immature (i) DCs (r = 0.196, p = 6.83E-06), natural killer T (NKT) cells (r = −0.223, p = 2.74E−07), regulatory T cells (Tregs) (r = −0.216, p = 6.91E−07), and central memory CD4+ T cells (Tcm_CD4, r = −0.214, p = 8.55E−07) (Figure 8B). The expression of PITX2 was associated with nine immune cell subtypes in HNSC (Figure 8C and Table 3). Among these, activated B cells (Act_B, r = −0.163, p = 0.000195), activated CD4+ T cells (Act_CD4, r = −0.161, p = 0.00023), immature B cells (Imm_B, r = −0.158, p = 0.000294), NKT cells (r = −0.154, p = 0.000413), Th17 cells (r = −0.136, p = 0.0019), and Act_CD8 (r = −0.133, p = 0.00243) displayed the strongest correlations with PITX2 expression (Figure 8D).
[image: Figure 8]FIGURE 8 | TISIDB analysis of correlations between PITX1 and PITX2 expression and immune cell infiltration across human cancers. (A) The relationship between PITX1 expression and 28 types of TILs across various human cancers. (B) The top six TILs displaying the strongest Spearman’s correlation with PITX1 expression in HNSC. (C) The relationship between PITX2 expression and 28 types of TILs across various human cancers. (D) The top six TILs displaying the strongest Spearman’s correlation with PITX2 expression in HNSC. Act_CD8, activated CD8+ T cells; Tcm_CD8, central memory CD8+ T cells; Tem_CD8, effector memory CD8+ T cells; Act_CD4, activated CD4+ T cells; Tcm_CD4, central memory CD4+ T cells; Tem_CD4, effector memory CD4+ T cells; Tfh, T follicular helper cells; Tgd, gamma delta T cells; Th1, type 1 T helper cells; Th17, type 17 T helper cells; Th2, type 2 T helper cells; Treg, regulatory T cells; Act B, activated B cells; Imm_B, immature B cells; Mem_B, memory B cells; NK, natural killer cells; CD56bright, CD56bright NK cells; CD56dim, CD56dim NK cells; MDSC, myeloid derived suppressor cells; NKT, natural killer T cells; Act DC, activated dendritic cells; pDC, plasmacytoid DCs; iDC, immature DCs; Mast, mast cell.
TABLE 3 | The expression and methylation levels of PITX1 and PITX2 correlate with ITLs.
[image: Table 3]In addition, the methylation level of PITX1 and PITX2 had a significant impact on the prognosis of HNSC. We analyzed the correlation between TILs and the methylation level of PITX1 and PITX2 using the TISIDB. Our results showed that the methylation level of PITX1 was associated with 28 types of TILs in HNSC (Figure 9A and Table 3). Follicular helper T (Tfh) cells (r = 0.478, p < 2.2E−16), Tregs (r = 0.475, p < 2.2E−16), myeloid-derived suppressor cells (MDSCs) (r = 0.458, p < 2.2E−16), NKT cells (r = 0.442, p < 2.2E−16), Th1 cells (r = 0.437, p < 2.2E-16), and macrophages (r = 0.425, p < 2.2E-16) were most strongly correlated (r > 0.3) with PITX1 methylation (Figure 9B). PITX2 methylation was associated with 22 immune cell subtypes in HNSC (Figure 9C and Table 3). Among these TILs, Act_B (r = 0.477, p < 2.2E−16), Imm_B (r = 0.431, p < 2E−16), Th17 cells (r = 0.371, p < 2.2E−16), Act_CD4 (r = 0.368, p < 2.2E-16), Act_CD8 (r = 0.357, p < 2.2E−16), and effector memory CD8+ T cells (Tem_CD8, r = 0.343, p = 1.02E−15) were most strongly correlated with PITX2 methylation (Figure 9D). These results imply that the methylation level of PITX1 and PITX2 could serve as a regulator of immune cell infiltration into HNSC tumors.
[image: Figure 9]FIGURE 9 | TISIDB analysis of correlations between PITX1 and PITX2 methylation and immune cells infiltration across human cancers. (A) The relationship between PITX1 methylation and 28 types of TILs across various human cancers. (B) The top six TILs displaying the strongest Spearman’s correlation with PITX1 methylation in HNSC. (C) The relationship between PITX2 methylation and 28 types of TILs across various human cancers. (D) The top six TILs displaying the strongest Spearman’s correlation with PITX2 methylation in HNSC. Act_CD8, activated CD8+ T cells; Tcm_CD8, central memory CD8+ T cells; Tem_CD8, effector memory CD8+ T cells; Act_CD4, activated CD4+ T cells; Tcm_CD4, central memory CD4+ T cells; Tem_CD4, effector memory CD4+ T cells; Tfh, T follicular helper cells; Tgd, gamma delta T cells; Th1, type 1 T helper cells; Th17, type 17 T helper cells; Th2, type 2 T helper cells; Treg, regulatory T cells; Act B, activated B cells; Imm_B, immature B cells; Mem_B, memory B cells; NK, natural killer cells; CD56bright, CD56bright NK cells; CD56dim, CD56dim NK cells; MDSC, myeloid derived suppressor cells; NKT, natural killer T cells; Act DC, activated dendritic cells; pDC, plasmacytoid DCs; iDC, immature DCs; Mast, mast cells.
DISCUSSION
The dysregulation of the PITX gene family has been reported in various types of cancer (Tran and Kioussi, 2021). Although the role of PITX genes in the initiation and prognosis of certain cancers has been partially demonstrated (Zhang et al., 2021), further bioinformatic analysis of their involvement in HNSC need to be performed. To the best of our knowledge, this study was the first attempt to investigate the oncological characteristics and prognostic value of different members of the PITX gene family in HNSC.
In the present study, we demonstrated that the expression of the PITX gene family in HNSC is related to some clinicopathological features, including pathologic types and histologic grade (according to TCGA). We also found that the expression of PITX genes correlated with the prognosis of patients with HNSC. OS and RFS are commonly used as primary end points to assess prognostic value of a particular marker (Jabbour et al., 2018). Our bioinformatic analysis showed that PITX1 expression was decreased in patients with HNSC, which correlated with relatively poor RFS. Moreover, the Student’s t-test values indicated that PITX1 was significantly associated with tumor stage, histologic grade, and N stage, which are related to cancer progression. Univariate/multivariate Cox regression analysis results also indicated that the expression of PITX1 could be an independent prognostic factor for HNSC. Collectively, these results revealed that PITX1 may perform well as a prognostic predictor for HNSC.
PITX1 acts as a tumor suppressor gene in various human cancers (Kolfschoten et al., 2005). It was reported that the downregulation of PITX1 expression might contribute to the progression of cutaneous malignant melanoma by promoting cell proliferation (Osaki et al., 2013). In lung cancer, PITX1 expression was also decreased, with 62% of lung cancer patients displaying no evidence of PITX1 expression. Moreover, the lack of PITX1 mRNA expression was associated with a higher tumor grade (Chen et al., 2007). The low PITX1 expression in HNSC may therefore be correlated with a worse prognosis. In our study, the expression of PITX2 in patients with HNSC was lower than that in normal tissues; however, its expression was not correlated with tumor histologic stage, T stage, N stage, M stage, or RFS. In addition, PITX3 was proven to be associated with HNSC and serve as an independent prognostic biomarker (Sailer et al., 2017b). Consistently, we found that PITX3 may be positively correlated with the occurrence and development of HNSC. The higher expression of PITX3 in HNSC was associated with higher G and T stages and poorer RFS (Holmes et al., 2016). The high expression of PITX3 in HNSC may therefore also lead to poor prognosis. PPI network and functional enrichment analysis showed that the high expression of PITX1 and PITX2 was mainly associated with DNA binding, regulation and transcription, transcription factor activation, and RNA polymerase II-specific processes. Dysregulation or mutation of DNA-binding proteins has been implicated in the development and progression of various types of diseases, including cancer (Shiroma et al., 2020). We also found that PITX1 and PITX2 co-expression was strongly associated with the myocyte enhancer factor 2A (MEF2A), while PITX2 expression alone was closely functionally related to pituitary-specific positive transcription factor 1 (POU1F1). A promoter- and cell-specific functional interaction between PITX2 and MEF2A was previously reported, which is involved in the regulation of oral epithelial cells (Toro et al., 2004). MEF2A may also promote the transcriptional activity of other factors, thus promoting stem-like properties of oral squamous cell carcinoma and playing an important role in the development of HNSC (Wang et al., 2022). Moreover, PITX2 plays a crucial role in embryogenesis, ontogenesis, growth, and development via the Wnt/beta-catenin and POU1F1 pathways (Zhang et al., 2018).
DNA methylation is the most common epigenetic marker that usually acts as a transcriptional repressor and contributes to tumor progression (Meng et al., 2015; Zhou et al., 2020). DNA methylation can directly affect the interaction between DNA-binding proteins with their cognate sites (Zhu et al., 2016). It has been reported that DNA methylation plays an important role in the etiology, pathogenesis, and prognosis of HNSC (Zhou et al., 2018). Thus, we were interested in investigating the interaction between DNA methylation and DNA-binding proteins in the context of HNSC. Our MethSurv database analysis revealed that PITX1 and PITX2 expression was strongly correlated with DNA methylation. Our study found that the expression of PITX1 and PITX2 was significantly lower in HNSC tumors, compared to normal tissues, which was related to PITX1 and PITX2 hypermethylation. A recent bioinformatics analysis showed that high PITX1 expression was related to DNA methylation and poor prognosis in lung adenocarcinoma (Song et al., 2018). The DNA methylation level of PITX2 was also associated with the risk of occurrence and progression of lung cancer (Dietrich et al., 2012). PITX2 DNA methylation was proven to serve as a prognostic biomarker for patients with HNSC (Sailer et al., 2017a).
Cancers are inextricably linked with the immune response. The immune system acts as an external tumor suppressor but conversely can also promote cancer occurrence, development, and progression (Vesely et al., 2011). We therefore explored the potential relationship between PITX genes and immunity, focusing on the tumor microenvironment, tumor immune infiltration, and immune cell DNA methylation. As for tumor immune infiltration, PITX1 and PITX2 expression was positively correlated with the infiltration of Th17 cells and Act_CD8+ T cells, but negatively correlated with NKT cell infiltration. A recent clinical trial has shown that tumor immune cell infiltration is correlated with the sensitivity to immunotherapy and HNSC prognosis (Zhang et al., 2020). In tumors of the oral cavity, outcomes appear to improve with an increase in tumoral or stromal CD8+ T cell numbers (Oguejiofor et al., 2015). Individuals with more genetic defects affecting NKT cells had a higher risk of developing cancer and these inherited defects were associated with tumor immune microenvironment subtypes, recruitment of TILs, and clinical outcomes (Xu et al., 2019). Besides, we found that the methylation level of PITX1 and PITX2 was associated with various TILs in HNSC. DNA methylation plays a key role in TIL differentiation and plasticity, which can be associated with favorable or poor prognoses in many types of cancer (Zeiner et al., 2018; Merino et al., 2019; Renaude et al., 2020). Therefore, we speculate that the correlations that we have observed may help reveal the mechanism by which PITX1 and PITX2 regulate the function of immune cells in HNSC.
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Objectives: Tight junction-associated marvel proteins (TAMP) is a transmembrane protein whose members are associated with tight junctions between cells and epithelial remodeling. MARVEL domain containing 3 (MARVELD3) is one of the members of the TAMP. MARVELD3, as a novel tight junction protein involved in bicellular tight junction assembly, has attracted growing attention in the field of oncology. This study aimed to investigate the prognostic role of MARVELD3 and to determine how it functions in tumorigenesis in oral squamous cell carcinoma (OSCC), thus providing additional data to help the guidance of clinical practice.
Materials and Methods: RNA-seq data and relevant clinical information were obtained from TCGA. Bioinformatics means used in this study included differential gene expression analysis, KM survival curve analysis, univariate and multivariate Cox regression analyses, nomogram analysis, ROC curve analysis, methylation level analysis, gene function enrichment analysis, and immune cell infiltration analysis.
Results: MARVELD3 was significantly higher expressed in OSCC tissue than in normal tissue, and the overall survival of the high expression group was significantly lower than that of the normal group. Univariate and multivariate Cox regression analyses showed that MARVELD3 could serve as an independent contributing factor to poor OSCC prognosis. The nomograms and ROC curves supported the results above. Its expression was negatively correlated with DNA methylation sites. Analysis of PPI networking and gene functional enrichment showed that MARVELD3 was involved in the functional activities of DNA and RNA and was associated with immune cell infiltration.
Conclusion: The high expression of MARVELD3 is associated with poor prognosis in OSCC, and MARVELD3 could be recognized as a novel independent prognostic factor for OSCC.
Keywords: MARVELD3, TAMP, prognostic biomarker, oral squamous cell carcinoma, immune infiltration
INTRODUCTION
Oral squamous cell carcinoma (OSCC) is the most prevalent oral malignant tumor worldwide, with a five-year survival rate of only 50% (Manzano-Moreno et al., 2021). At present, the main treatment methods for OSCC are mainly surgery, chemotherapy, and radiotherapy. The major causes of high mortality are high tumor invasion, lymph node involvement, poor response to therapy, and early local recurrence (Cierpikowski et al., 2021). To be able to effectively improve the survival rate and improve prognosis in patients with OSCC, there is an urgent need to look for a potential biomarker. This marker can be used as a diagnostic indicator as well as a prognostic indicator. The Tight junction Associated Marvel Proteins (TAMP) are transmembrane proteins. The TAMP family consists of occludin, tricellulin (also called MARVELD2), and MARVEL domain containing 3 (MARVELD3) (Heymans et al., 2021). Its members are associated with tight junctions between cells and epithelial remodeling. Most studies focus on the connection function between epithelial cells and the role of epithelial mesenchymal cells in transformation (Kojima et al., 2011). Studies have confirmed that tricellulin is identified as the first marker of tricellular tight junction in epithelial cells. Its loss affects the tight binding of the tricellular tight junction as well as the barrier function of the epithelial cells (Ikenouchi et al., 2005; Ikenouchi et al., 2008). At the same time, Steed et al. found that normal expression of MARVELD3 is not necessary for the formation of functionally tight junctions, but it is a decisive factor in epithelial paracellular permeability properties (Steed et al., 2009). Some literature has also found that MARVELD3 is involved in the process of promoting cell migration by EMT in hepatocellular carcinoma cells, and it inhibits the occurrence and progression of this process through the NF-κB signaling pathway (Li et al., 2021). Some scholars have shown that MARVELD2 and MARVELD3 are included in the genes that are highly correlated with the close connection of epithelial tumor cells (Kohn et al., 2014). In addition to this, studies have shown that MARVELD3 has two isoforms and has a broad tissue distribution. MARVELD3 functions as a regulator of epithelial cell proliferation, migration, and survival in human colon and pancreatic cancer cells, but the role it plays in OSCC is unclear (Li et al., 2021). In addition to that, previous studies have found that MARVEL domain-containing 1 (MARVELD1) could inhibit tumor cell proliferation and enhance the sensitivity to chemotherapeutic drugs in hepatocellular carcinoma (Zhang et al., 2019). So, we suspect that MARVELDs may have a different expression in OSCC than in normal tissue. With the development of bioinformatics analysis technology and the establishment and improvement of various databases, we have studied this problem. This study conducted in-depth analysis of MARVELDs expression in OSCC and assessed their potential value as prognostic biomarkers, providing a new method for guiding clinical work and effectively and accurately assessing the long-term prognosis of OSCC patients.
MATERIALS AND METHODS
Data collection and processing
The Cancer Genome Atlas (TCGA) database was utilized to collect the data on gene expression profiles of 329 samples with OSCC and 32 non-OSCC normal tissue samples. The RNA-seq data and the corresponding clinical information were downloaded from TCGA. Transcripts per million reads (TPM) format of RNA-seq data (from TCGA), through Toil process standardization, were downloaded from UCSC XENA (https://xenabrowser.net/datapages/). Log2 fold change (log2FC) was calculated to further compare mRNA expression levels between tumor and normal samples.
Survival and statistical analyses
Through data analyses, the samples were divided into high-expression and low-expression groups according to the median expression level of MARVELDs. At the same time, Kaplan-Meier survival analysis was performed using the R package (survive, version 0.4.9 and survival, version 3.2.10). The KM curve was plotted to effectively assess the relationship between the expression level of MARVELDs and the overall survival of patients.
Univariate and multivariate Cox regression analyses
To investigate whether the expression level of MARVELD3, gender, age, tumor stage (T stage), lymphatic involvement grade (N stage), lymph vascular invasion, and histologic grade were independent risk factors for oral squamous cell carcinoma, univariate and multivariate Cox regression analyses were utilized. We used the R package (survival, version 3.2.10) for data processing and set Hazard ratios (HR) and 95% confidence intervals. The significance threshold was set as p < 0.05.
Construction of nomograms and ROC curves
Constructing nomograms were allowed to predict the prognosis of patients with oral squamous cell carcinoma based on age, gender, TNM, clinical grade, and MARVELD3 expression levels. The ROC curves were plotted using the R package (pROC, version 1.17.0.1 and ggplot2, version 3.3.3) to assess the diagnostic value of MARVELD3.
MARVELD3 methylation level analysis
For the gene methylation data, we used Illumina Human Methylation 450 array methylation chip data and the RNA-Seq data of the level 3 HTSeq-FPKM format downloaded from the Head and Neck Squamous Cell Carcinoma (HNSC) project in TCGA. Data with no clinical information were discarded. Samples that belonged to oral cancer sites (such as alveolar ridge, base of tongue, buccal mucosa, floor of mouth, hard palate, oral cavity, and oral tongue) were retained, while others (such as hypopharynx, larynx, lip, oropharynx, and tonsil) were discarded. Methylation results were visualized using the R package (ggplot2, version 3.3.3).
MARVELD3-related gene function enrichment analysis
Statistical analysis of gene-gene correlations was performed using spearman correlation by the R package (stat, version 3.6.3). |Cor spearman|≥0.4 and p-spearman<0.05 were set as the filter criteria. Besides, the GeneMANIA (http://genemania.org) and the STRING database (https://cn.string-db.org/) (Szklarczyk et al., 2019) were used to analyze the protein-protein interaction (PPI) networks and to look for relevant signaling pathways and functional similarities. Based on the top 50 relevant genes found, the R package (org.Hs.eg.db, version 3.10.0 and clusterProfiler, version 3.14.3) (Yu et al., 2012) were used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to screen and evaluate potential gene functions correlated with MARVELD3.
Immune cell infiltration analysis
In this study, the R package (GSVA package, version 1.34.0) (Hänzelmann et al., 2013) was used to analyze the 24 types of immune cells in OSCC.
RESULTS
Clinical characteristics of oral squamous cell carcinoma
There were 329 primary OSCC samples and 32 normal samples downloaded from TCGA. Clinical information includes tumor stage (T stage), lymphatic involvement grade (N stage), distant metastases grade (M stage), clinical stage, radiation therapy, primary therapy outcome, gender, race, age, histologic grade, anatomic tumor subdivision, smoker, alcohol history, lymphovascular invasion, lymphnode neck dissection, overall survival (OS) event, disease special survival (DSS) event, and progress free interval (PFI) event (Table 1).
TABLE 1 | Clinical characteristics of OSCC patients.
[image: Table 1]MARVELD expression in oral squamous cell carcinoma patients
Through the analyses of the data from the TCGA database, the results showed that the expression levels of MARVELD1 and MARVELD3 were significantly higher than those of normal tissues (Figures 1A,B). There was no statistical difference in the expression level of MARVELD2 compared to normal tissue. Then, through KM survival analysis, the relationships between the expression levels of MARVELDs and the overall survival of OSCC patients were analyzed. According to the KM survival curves, the high expression of MARVELD3 was significantly associated with the worse overall survival in OSCC patients (Figure 1E). There were no significant correlations between the expression levels of MARVELD1 and MARVELD2 with worse overall survival (Figures 1C,D). The results suggested that the high expression of MARVELD3 was associated with the poor prognosis of OSCC and that MARVELD3 may be considered an oncogene for OSCC.
[image: Figure 1]FIGURE 1 | The MARVELDs expressions and survival analysis in OSCC. (A) Differential expression analysis of MARVELDs in non-paired samples of OSCC patients. (B) Differential expression analysis of MARVELDs in paired samples of OSCC patients. (C–E) K-M survival curves of the associations between MARVELDs expressions and overall survival.
Diagnostic value of MARVELD3 in oral squamous cell carcinoma
Based on the results above, we selected MARVELD3 for further in-depth analysis. The results of the univariate Cox regression analysis showed that the high expression of MARVELD3 was a contributing factor to the poor prognosis of OSCC. The results of multivariate Cox regression analysis showed that the high expression of MARVELD3 was an independent prognostic factor for poor OSCC prognosis (Figure 2A). In addition, to be able to predict the survival probability of patients at 1, 3, and 5 years, we constructed nomogram analysis including factors such as age, gender, TNM stage, clinical stage, etc. (Figure 2B). At the same time, we used the ROC curves to evaluate the diagnostic value of MARVELD3 (Figure 2C). The result of the ROC curves showed that the area under the curve (AUC) of MARVELD3 was 0.808, which indicated a considerable diagnostic value. Combined with the above analyses, MARVELD3 may be an unfavorable factor for survival in OSCC patients and an independent predictor of poor prognosis for OSCC.
[image: Figure 2]FIGURE 2 | Diagnostic value of MARVELD3 in OSCC. (A) Univariate and multivariate Cox regression analyses. HR > 1 indicates disadvantageous factors, and HR < 1 indicates protective factors. Red dots are risk factors. (B) The nomograms were developed by integrating the MARVELD3 expression with key clinical characteristics. (C) The diagnostic value of MARVELD3 expression was evaluated using the ROC curve.
MARVELD3 methylation level analysis
Our analysis showed that the DNA methylation levels were inversely correlated with the expression of MARVELD3 in four methylation sites (cg09326345, cg19311153, cg004477917, and cg18468219) (Figure 3).
[image: Figure 3]FIGURE 3 | MARVELD3 methylation level analysis. (A–D) Correlation of MARVELD3 expression with methylation sites of cg09326345, cg19311153, cg004477917, and cg18468219.
MARVELD3 correlation interactive networks analysis
Gene correlation analyses were performed and the top 50 relevant genes were presented (Figures 4A,B). In addition, PPI network analysis was plotted using the GeneMANIA database and the STRING database (Figures 4C,D). Among them, the related proteins are mainly related to the tight junction, leukocyte transendothelial migration, and cell adhesion molecules.
[image: Figure 4]FIGURE 4 | MARVELD3 correlation interactive networks. (A–B) Top 50 genes related to MARVELD3 expression. (C) Network diagram of 20 genes associated with MARVELD3. (D) Protein-protein interaction (PPI) network analysis of 11 interacting proteins correlated with MARVELD3.
Functional enrichment analysis of MARVELD3
The biological functions of the genes associated with the expression of MARVELD3 were analyzed by GO and KEGG. The results showed that there was a range of functions related to the expression of MARVELD3, such as RNA splicing via transesterification reactions, RNA splicing via transesterification reactions with bulged adenosine as nucleophile, DNA recombination, RNA localization, nuclear chromatin, and catalytic activity acting on RNA, etc. (Figures 5A,B).
[image: Figure 5]FIGURE 5 | GO/KEGG enrichment analysis. (A) Network visualization of GO/KEGG enrichment analysis. (B) Bubble plot of GO/KEGG enrichment analysis.
The correlation between MARVELD3 expression and immune cell infiltrations in oral squamous cell carcinoma
Based on the above results, we further explored the relationship between the MARVELD3 expression and immune cell infiltration. Data downloaded from TCGAs related to 24 types of immune cells. The results showed that the expression level of MARVELD3 was inversely correlated with the infiltration level of various immune cells such as B cells, T cells, and DC cells (Figure 6).
[image: Figure 6]FIGURE 6 | The correlation of MARVELD3 with 24 types of immune cells in OSCC.
DISCUSSION
OSCC is a common malignancy in the human oral cavity, and its prognosis is mostly poor, which significantly affects the overall survival rate of patients. The incidence tends to increase year by year. The clinical outcome and prognosis of OSCC remains dismal; more than 50% of patients die of this disease or complications within 5 years (Lo et al., 2003). Lip, oral cavity, and oropharynx combined were responsible for about 447,751 new cancer cases with an estimated 228,389 deaths in 2018, which accounts for 2.4% of all cancer deaths. In addition to this, head and neck cancer is the fourteenth in terms of incidence but the thirteenth in terms of mortality (WHO, 2020). It is important to look for a potential biomarker that can diagnose, predict the prognosis of OSCC, and serve as a therapeutic target.
In this study, we found that the expressions of MARVELD1 and MARVELD3 were significantly higher in OSCC than in normal tissues. Further studies found that high expression of MARVELD3 correlated significantly with poor overall survival in patients. In addition, univariate and multivariate Cox regression analyses showed that MARVELD3 could be served as an independent predictor of poor prognosis for OSCC. The clinical predictive and diagnostic value of MARVELD3 were further evaluated by the nomograms and the ROC curve, and the results also confirmed the potential value of MARVELD3. Moreover, MARVELD3 was inversely correlated with methylation sites, which was consistent with the characteristics of the oncogene.
Members of the TAMP family are predominantly transmembrane proteins. The functions of transmembrane proteins are ensuring the interaction of tight junctions (TJs) strands between adjacent cells (Heymans et al., 2021). The major TJ proteins are classified according to their physiological role in enabling or preventing paracellular transport. MARVELD3 is linked to a multitude of TJ-associated regulatory and scaffolding proteins (Günzel and Fromm, 2012). By exploring the associated gene functions of MARVELD3 in OSCC, the results suggested that its underlying biological function may be related to RNA splicing via transesterification reactions, RNA splicing via transesterification reactions with bulged adenosine as nucleophile, DNA recombination, RNA localization, nuclear chromatin, and catalytic activity acting on RNA. Through PPI network analysis, we found that MARVELD3 and the claudins (CLDNs) family were closely related. CLDNs are a family of at least 27 transmembrane proteins (Krause et al., 2008; Bhat et al., 2020). Structurally and functionally, CLDNs are commonly used for intercellular adhesion, maintaining cell polarity, and playing a role in barrier function (Hashimoto and Oshima, 2022). Alternatively, overexpression of CLDNs has also been reported to increase aberrant localization and function in gastric, lung, prostate, ovarian, colorectal, and breast cancers, promoting metastasis and progression (Tabariès and Siegel, 2017). These evidences further validated the research value of MARVELD3 high expression in tumor tissues. Coincidentally, in the squamous epithelium of the oral cavity, cancer may occur when the dynamic structure of TJs localized in its tissues changes. At the same time, scholars have studied that the loss of claudin-7 (CLDN7) expression is associated closely with invasion and lymph metastasis. It is an unfavorable prognostic factor in patients with OSCC (Yoshizawa et al., 2013). This finding further illustrates the abnormality in the expression of genes associated with cell tight junctions in OSCC, thus providing evidence for our research.
The results of immune cell infiltration analysis showed that MARVELD3 was inversely correlated with a variety of immune cells including DCs, T cells, neutrophils, and B cells. Studies have reported similar situations (Li et al., 2016). We speculate that this phenomenon may be explained by the inability of the immune system in OSCC patients to recognize MARVELD3 enough. It cannot be recognized as a reliable antigen and aggregated to it. At the same time, this also meant that with the upregulation of MARVELD3 expression, OSCC would not have a strong host immune response. Interestingly, according to our findings, the expression of MARVELD3 was positively correlated with NK CD56bright cells. Natural cytotoxicity, mediated by natural killer (NK) cells plays an important role in the inhibition and elimination of malignant tumor cells (Koo et al., 2013). The phenotype of NK cells is defined by their CD56 expression and lack of CD3 expression, of which CD56bright and CD56dim subpopulations can be divided according to the membrane density of CD56. CD56bright cells mediate low cytotoxicity, CD56dim mainly exerts strong cytotoxicity, and CD56bright may be a precursor to CD56dim (Cooper et al., 2001; Bauernhofer et al., 2003; Watanabe et al., 2010; Dowell et al., 2012). We speculated that this may be that the high expression of MARVELD3 stimulates the conversion of CD56bright to CD56dim, resulting in the phenomenon that MARVELD3 is positively correlated with it. But still, the mechanism by which MARVELD3 is negatively correlated with immune cell infiltration needs to be further studied. Anyway, the relationship between the high expression of MARVELD3 and the clinical characteristics of OSCC obtained in this study may provide evidence for such studies. For OSCC patients in the process of postoperative recovery, doctors can detect the expression of prognostic markers such as MARVELD3 to timely grasp their situation and make correct and reasonable treatment measures, so as to effectively improve the survival status of OSCC patients. However, there are limitations to our study. The underlying molecular mechanism of MARVELD3 in OSCC immune infiltration has not been thoroughly studied. Meanwhile, the reason and mechanism of MARVELD3 overexpression in OSCC have not been thoroughly studied, and the reason for the differential expression between MARVELD1,2,3 is not clear. Therefore, more research needs to be included to explore the underlying molecular mechanism of MARVELD3 in OSCC. Therefore, more researches are needed in the future and our research group will continue to focus on this topic.
CONCLUSION
In conclusion, our preliminary findings revealed that the high expression of MARVELD3 was strongly and positively correlated with the poorer prognosis in OSCC, and MARVELD3 could serve as a novel independent prognostic factor in OSCC.
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Among head and neck cancers, oral squamous cell carcinoma (OSCC) is the most common malignant tumor. N-7-methylguanosine (m7G) and lncRNAs are both related to the development and progression of tumors. Therefore, this study aims to explore and establish the prognostic signal of OSCC based on m7G-related lncRNAs. In this study, RNA sequencing transcriptome data of OSCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Therefore, m7G-related lncRNAs were identified as differentially expressed in OSCC. Then, univariate Cox regression analysis and LASSO regression analysis were conducted to evaluate the prognostic significance of differentially expressed lncRNAs. Consequently, the abovementioned lncRNAs were assigned five OSCC patient risk scores, with high-risk and low-risk patients assigned to each group. Different signaling pathways were significantly enriched between the two groups as determined by set enrichment analysis (GSEA). Multivariate Cox regression analysis confirmed the factors used to construct the nomogram model. Then, the prognosis of the nomogram model was evaluated. Consequently, high-risk individuals had higher immune infiltration levels. According to the results of a study that evaluated the sensitivity of different risk subgroups to antitumour drugs, the high-risk group had a high sensitivity to doxorubicin. By performing real-time polymerase chain reaction (RT‒PCR), we verified the expression of these five m7G lncRNAs. Therefore, the model based on five m7G-related lncRNAs was able to predict the overall survival rates of OSCC patients and guide their treatment. It can also spur new ideas about how to prevent and treat OSCC.
Keywords: oral squamous cell carcinoma, immune signature, treatment, N-7-methylguanosine, lncRNAs
INTRODUCTION
Among the various types of head and neck squamous cell carcinoma, oral squamous cell carcinoma (OSCC) is by far the most common (Bray et al., 2018; Chow 2020). Although surgery can be an effective treatment for OSCC, the 5-year survival rate for OSCC is only 60% (Bray et al., 2018). Cancer survival rates are low due to immune escape and tumor metastasis (Parmar et al., 2021). When patients have OSCC with tumor metastases, they usually need neck lymph node dissection, which is more difficult to perform. Postoperative dysfunction is also likely to result from the enlarged surgical area and further affect the prognosis (Romer et al., 2019). It is not possible to detect OSCC or assess metastatic disease early using new techniques, as well as a model to predict the prognosis of patients, is another concern (Mishra 2012; Nikitakis et al., 2018). Therefore, it is a challenge for oral clinicians to reduce the mortality of OSCC by developing new diagnosis and treatment strategies (Khurshid et al., 2018).
Long noncoding RNAs (lncRNAs) are a subset of RNAs that are longer than 200 nucleotides (Spizzo et al., 2012). Despite the fact that lncRNAs do not encode proteins, certain studies have shown that lncRNAs interact with chromatin, protein, and RNA to perform a variety of tasks in cell biology (Begolli et al., 2019). Studies conducted in the past have implicated a number of lncRNAs in the development and outcome of oral squamous cell carcinoma (Li et al., 2017; Huang et al., 2020; Meng et al., 2021). RNA modification plays an important role in the transcription and posttranscriptional regulation of gene expression (Weiße et al., 2020). RNA methylation is a reversible posttranslational modification that affects many biological processes in epigenetics, such as RNA stability, localization, mRNA translation and translocation (Ha et al., 2019). There has been great interest recently in N-7-methylguanosine (m7G), one of the most common RNA modifications (Pandolfini et al., 2019). Recent studies have shown that m7G-related lncRNAs are closely related to the prognosis of tumors (Ming and Wang. 2022; Sun et al., 2022; Zhao et al., 2022). However, there are no reports about m7G-related lncRNAs and OSCC.
Here, our study identified five prognostic risk models associated with lncRNAs related to m7G. Based on the results of this model, it is possible to independently predict the prognosis and survival of OSCC patients. Finally, the potential immunotherapy and drug sensitivity prediction of this model are developed.
MATERIALS AND METHODS
Information on oral squamous cell carcinoma
RNA transcriptome data of 404 tumor samples and 54 normal samples were obtained (https://portal.gdc.cancer.gov/), as well as clinical information on patients with OSC. The clinical information included age, sex, race, smoking, alcohol, pathologic stage, stage N, stage T, and tumor grade. To reduce statistical bias, we excluded patients with no survival information or a survival time of less than 3 months from further evaluation.
Identification of m7G-related lncRNAs
After reading and summarizing the published literature, 23 m7G regulatory factors were identified. The m7G regulatory factors include METTL1, WDR4, NSUN2, DCP2, DCPS, NUDT10, NUDT11, NUDT16, NUDT3, NUDT4, NUDT4B, AGO2, CYFIP1, EIF4E, EIF4E1B, EIF4E2, EIF4E3, GEMIN5, LARP1, NCBP1, NCBP2, NCBP3, EIF3D, EIF4A1, EIF4G3, IFIT5, LSM1, NCBP2 L, and SNUPN (Rong et al., 2022). A total of 16,773 lncRNAs were obtained in the OSCC data set of TCGA. We constructed a coexpression network of m7G methylation regulatory factors and lncRNAs by using the “igraph” package in the R program, and the conditional screening was (Pearson R)>0.3, p < 0.001. These lncRNAs are significantly related to the m7G methylation regulator (m7GR) and have been identified as m7G methylation-related lncRNAs.
Differential expression analysis
Differentially expressed genes (DEGs) were detected between normal and tumor tissue samples by FDR 0.05 and |log2FC| > 2. According to the descending value of |log2FC|, the expression data of upregulated DEGs and downregulated DEGs were used, and R 4.1.2 was used to perform two-way hierarchical clustering analysis.
Analyses of univariate cox regression and LASSO regression
To identify lncRNAs with prognostic significance, univariate Cox regression analysis was performed on tumor samples and the control group. By using LASSO regression, a m7G-related lncRNA prognostic model (m7G-LncM) for OSCC patients was constructed using the R package glmnet. The steps for calculating the LASSO regression model’s risk score are as follows: [image: image]
Ei is the expression value of the i gene in the model, and βi is the coefficient calculated by LASSO. According to this equation, we calculated the risk score of each OSCC patient. Patients were divided into high-risk and low-risk groups based on their median risk scores. Risk scores were compared to the overall survival rate (OS) at 1, 3 and 5 years using the receiver operating characteristic (ROC) curve, which was used to determine the area under the curve (AUC). To further demonstrate that the risk model of m7G-related lncRNAs has the ability to distinguish tumor patients, the “Limma” and “scatterplot3D” packages in R were used to conduct principal component analyses (PCA) on the genes associated with risk and the lncRNAs associated with m7G.
An oral squamous cell carcinoma predictive nomogram
An independent prognostic factor included in the nomogram was screened using univariate and multivariate Cox regression (Wang et al., 2021). In accordance with the results of the univariate and multivariate Cox regressions, the probability of 1-, 3- and 5-year OS of OSC patients was evaluated with the “RMS” R package. The C-index and calibration curve were used to assess the nomogram’s capacity for prediction and discrimination. Decision curve analysis (DCA) was used to evaluate the net benefits of patients with OSCC under different threshold probabilities. The completion of DCA depends on two packages (stdca and dca).
Immune cell infiltration
For the score calculation of immune cell infiltration, ssGSEA was carried out with the gsva software package to calculate immune cell scores and assess immune-related pathways (p < 0.05) (Chen et al., 2022).
Mutation burden analysis
After obtaining the nucleotide variation data of OSCC, the genetic mutation burden of OSCC samples was analysed by Perl software. In OSCC patients with elevated and low risks for tumor mutation, the “limma” software package was used to analyze the difference in tumor mutation burden. Last but not least, all OSCC patients were grouped according to tumor mutation burdens and survival analysis was combined with the previously analysed high- and low-risk groups. With the survival and survminer R packages, we conducted survival analysis of mutation burden analysis.
Gene set enrichment analysis
To explain the differential signaling pathways between the high-risk group and the low-risk group of OSCC patients, we further understood the biological functions of these pathways. The method used in this study was Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
Analysis of oral squamous cell carcinoma immunotherapy and screening of potential drugs
Based on the large-scale drug screening data in the database of cancer drug sensitivity genomics (GDSC) (https://cancerrxgene.org), this study combined with this genome analysis is beneficial to systematically identify the tumor response to chemotherapy drugs. In addition to calculating the maximum inhibitory concentration (IC50) of commonly used chemotherapy drugs for OSCC, an evaluation of its clinical utility was conducted. The R package used in this operation is “pRRophetic.” An analysis of Wilcoxon symbolic rank tests was carried out to compare the differences in IC50 between the high-risk and low-risk groups. For the data result, a block diagram is created by “pRRophetic” and “ggplot2” (Geeleher et al., 2014).
LncRNAs in oral squamous cell carcinoma tissues analysed using quantitative real-time PCR
This study was conducted with tissues kindly provided by the Department of Stomatology of the Affiliated Hospital of Chengde Medical University. Medical ethics approval was obtained for sample acquisition. A total of three nontumor oral tissues and three OSCC tissues were obtained in October 2022 and stored at −80°C. Total RNA was isolated with TRIzol reagent, and quantitative real-time fluorescence quantitative PCR (qRT‒PCR) was performed with primers from Suzhou Genewiz Company and premix from SYBR Master Mix. The results were analysed using the 2−ΔΔCt method, and each sample test was repeated three times. Supplementary Table S1 contains details about the primer sequences.
RESULTS
Differentially expressed m7G-related lncRNAs
First, according to Pearson correlation criteria, m7G-related lncRNAs were screened between 404 OSCC patients and 54 normal tissues. There were 1302 lncRNAs in total. In Figure 1A, the lncRNAs related to the m7G gene are shown as a network diagram. A total of 206 long noncoding RNAs differed in expression between the original cancerous tissue and normal tissue according to a differential gene expression analysis (Figure 1B), of which 36 genes were downregulated and 170 genes were upregulated (Figure 1C).
[image: Figure 1]FIGURE 1 | m7G-related lncRNAs in patients with oral squamous cell carcinoma (OSCC). (A) The coexpression network map between m7G and lncRNAs in OSCC. (B) Volcano plots of differentially expressed m7G-related lncRNAs between normal and tumor tissues. (C) Heatmaps of differentially expressed m7G-related lncRNAs between normal and tumor tissues.
Identification of prognostic m7G-related lncRNAs in patients with oral squamous cell carcinoma
Univariate Cox regression was applied to 206 differentially expressed lncRNAs, and 11 m7G-related lncRNAs were identified (Figure 2A). To demonstrate this network of risk types related to the m7G regulator and lncRNAs, a Sankey diagram was constructed. (Figure 2B). Then, 11 m7G-related lncRNAs were subjected to Lasso regression to obtain five m7G-related lncRNAs. According to five m7G-related lncRNAs (Figures 2C,D), the prediction signal (figure) was constructed, and the risk coefficient of each lncRNA was obtained. The formula calculates the risk score as follows: AC108488.3*(−0.635)+AL133444.1*(0.683)+AC007128.1*(1.056)+AL359091.4* (0.382)+AL162413.1*(0.004). In addition, according to the model of all genes, m7G-related genes, m7G all-related lncRNAs and five m7G-related lncRNAs, PCA was conducted in this study. High-risk vs. low-risk differences among five m7G-related lncRNAs were the most obvious among the five (Figures 2E–H). As a result, the model we built is capable of distinguishing people at high and low risk.
[image: Figure 2]FIGURE 2 | Construction of the five prognostic m7G-related lncRNAs in OSCC. (A) Univariate Cox regression screening of m7G-related lncRNAs in OSCC. (B) Sankey diagram of OSCC. (C,D) Lasso regression was used to obtain five m7G-related lncRNAs in OSCC. (E) PCA of all genes in OSCC. (F) PCA of m7G-related genes in OSCC. (G) PCA of m7G-related lncRNAs in OSCC. (H) PCA of five m7G-related lncRNAs in OSCC.
According to the coefficient value of lncRNAs, it can be judged whether a lncRNA is a risk or a protection. Following the risk score, each OSCC sample from TCGA was divided into two low- and high-risk groups (Figure 3), using Kaplan-Meier survival curves to reflect the relationship between the risk score and survival rate. As shown in Figure 4A, there was a significant difference between the two groups (p < 0.001). The risk curve and graph indicate that the number of deaths increases obviously with increasing risk score (Figure 3A). This study showed a good correlation between OSCC survival and risk score. In addition, the multitime ROC curve demonstrated that risk signatures accurately predicted OSCC survival rates at 1, 3, and 5 years (Figures 4B–D). These results indicate that these five m7G-related lncRNAs play an important biological role in the development of OSCC. Additionally, this study compared the clinical characteristics of high- and low-risk patients (Figure 5). The results There was no difference in any kind of clinical information among the different groups, except the status condition.
[image: Figure 3]FIGURE 3 | Risk assessment model in patients with OSCC. (A) Distribution of OSCC patients based on the risk score. (B) The survival status for each patient with OSCC. (C) Heatmap of five m7G-related lncRNAs in OSCC.
[image: Figure 4]FIGURE 4 | Survival analysis between the high- and low-risk groups and receiver operating characteristic (ROC) curve analysis of clinical and pathological characteristics. (A) Survival analysis of all OSCC patients between the high- and low-risk groups. (B–D) ROC curves reveal the predictive accuracy of 1-, 3-, and 5-year survival in OSCC.
[image: Figure 5]FIGURE 5 | Relationship between clinicopathological features and the risk score in OSCC. (A–E) Comparison of risk scores of clinicopathological features in OSCC. (F) Heatmap of the five m7G-related lncRNAs in low- and high-risk OSCC.
Construction and evaluation of the prognostic nomogram
As shown in Figure 6, considering the clinical information of OSCC patients (including age and sex) and m7G-related lncRNAs, univariate Cox regression (Figure 6A) and multivariate Cox regression (Figure 6B) were performed. Finally, three variables were included in this study as a nomogram to construct prognosis (Figure 6C). The calibration curve’s 1, 3, and 5-year predictions demonstrate that the development of the nomogram has some predictive value for the prognosis of OSCC (Figure 6E). In addition, OSCC prognosis is improved by the C index over other clinical information. In DCA, it can be seen that the nomogram has more clinical value for the prognosis of OSCC patients at 1, 3 and 5 years than other clinical stages (Figures 6F–H).
[image: Figure 6]FIGURE 6 | Construction and evaluation of nomogram prediction for the overall survival rate of OSCC patients. (A) Univariate Cox regression analyses in OSCC. (B) Multivariate Cox regression analyses in OSCC. (C) Nomogram prediction of overall survival in OSCC. (E) Calibration plots of the nomogram in OSCC. (D) C-index of the nomogram and clinical features in OSCC. (F–H) Decision curve analyses of the prognostic nomogram and clinical features for 1-, F-, G-, and 5-year (H) risk in OSCC.
Immune cell and immune function enrichment analysis
Regarding functional analysis, our study also examined 16 immune cells and 13 immune-related pathways for enrichment fraction and activities between low-risk and high-risk OSCC patients by single-sample genome enrichment analysis (ssGSEA). In patients with OSCC (Figure 7A), it was usually the high-risk subgroup that had high levels of immune cell infiltration, especially CD8+ T cells. Low-risk groups had downregulated APC coinhibition, cytolytic activity, and HLA response pathways. (Figure 7B).
[image: Figure 7]FIGURE 7 | Immune cell infiltration analysis and KEGG pathway analysis. (A) Immune cells between the low- and high-risk groups of OSCC patients. (B) Immune function between the low- and high-risk groups of OSCC patients. (C) KEGG mainly participated in m7G-related lncRNAs in OSCC.
Gene set enrichment analysis
According to the KEGG pathway analysis, the high-risk group did not have an enrichment in the signaling pathway, while chronic myeloid leukemia, dorsoventral axis formation, drug metabolism cytochrome p450 and the VEGF signaling pathway were enriched in the low-risk group (Figure 7C). This indicates that the signaling pathway and its related lncRNAs affect the occurrence, development and prognosis of OSCC, which is a mechanism worthy of further study.
Analysis of oral squamous cell carcinoma tumor mutation
Our first step in examining mutation differences between high-risk and low-risk groups was to examine mutation rates. The mutation frequency in the high-risk group (92.45%) was lower than that in the low-risk group (96.08%), according to the results (Figures 8A,B).In both groups, the most frequently mutated gene was TP53. In this study, we collected the somatic mutation data of OSCC and calculated the corresponding TMB score to study the potential role of OSCC tumor mutation load. It can be seen in Figure 8E shows that the mutation load in OSCC did not differ significantly between the high- and low-risk groups. With the median as the boundary point, patients were divided into “high TMB” and “low TMB” groups, and the results of survival analysis showed that there was no significant difference between the two groups (Figure 8C). It is possible, however, to determine the combined survival curve by combining tumor mutation load and risk score analysis. An interesting finding was that TMB and risk score were significantly correlated with OSCC survival (Figure 8D).
[image: Figure 8]FIGURE 8 | The mutational burden and survival analysis in OSCC based on five m7G-related lncRNAs. (A,B) Mutational signals of the high- and low-risk groups in OSCC. (C,D) Combined survival analysis of high- and low-mutation groups and high- and low-risk groups. (E) Grouped burden differences between high- and low-risk groups.
Oral squamous cell carcinoma immunotherapy analysis and drug screening
To better understand the individualized treatment of OSCC with drugs, this study used the drug analysis of the pRRophetic package to treat OSCC to obtain anticancer drugs sensitive to OSCC. A significant difference in doxorubicin sensitivity was seen between the high-risk and low-risk groups, as shown by Figure 9. This finding indicates that doxorubicin has a potential effect in the treatment of OSCC.
[image: Figure 9]FIGURE 9 | The estimated IC50 for doxorubicin was displayed for high- and low-risk groups in OSCC.
Quantitative real-time PCR validation of long non-coding RNAs
To further verify the expression levels of five m7G-related lncRNAs in nontumor oral tissues and OSCC tissues, the expression levels of the five lncRNAs in OSCC tissues all showed an upwards trend after RT‒qPCR (Figure 10). Further statistical analysis, however, indicated that only AL133444.1 and AL359091.4 showed significant differences between nontumor tissues and OSCC. The other three lncRNAs (AC108488.3, AC007128.1 and AL162413.1) did not show a statistically significant difference. This should be attributed to the small sample size in this study.
[image: Figure 10]FIGURE 10 | The qPCR analysis of five lncRNAs related to the m7G gene in normal tissue and OSCC. *p < 0.05, **p < 0.01 and ns No significance.
DISCUSSION
However, the prognosis of OSCC patients has been improved to some extent after surgery and chemotherapy. However, for advanced and metastatic OSCC patients, their prognosis is not rational. Therefore, it is urgent for OSCC patients to explore new prognostic markers. Additionally, lncRNAs have been linked to the development and treatment of cancer through biological mechanisms. Research has demonstrated that m7G-related genes play an important role in cancer development. Since then, m7G-related lncRNAs have been increasingly used in tumor research, but there are few reports on m7G-related lncRNAs in OSSC. Therefore, the potential interaction between m7G and lncRNAs should arouse our attention and reveal potential prognostic markers.
In this study, the m7G methylation complex NCBP2, NUDT4, EIF4E3, LARP1 and EIF4E2 were used to determine the lncRNAs related to prognosis. Then, five lncRNAs (AC108488.3, AL133444.1, AC007128.1, AL359091.4 and AL162413.1) were used to construct new prognostic signals of OSCC. Although some of these five lncRNAs have been reported in tumor research, there is still a lack of research in OSCC. Liu H et al. reported that the prognostic signal constructed by AC007128.1 and seven other lncRNAs can predict the prognosis of esophageal cancer patients. In addition, lncRNA AC0071288.1 was found to be upregulated in cells as well as tissues of esophageal squamous cell carcinoma, which is closely related to the poor prognosis of these patients (Zhang et al., 2021). Moreover, AC007128.1 can activate the MAPK/ERK and MAPK/p38 pathways in ESCC cells, leading to epithelial-mesenchymal transformation (Zhang et al., 2021). Lu et al. identified four pyroptosis-related lncRNAs by multivariate Cox regression analysis, including AC007128.1, thus constructing a prognostic risk model (Lu et al., 2022). Using this model, individualized risk assessments can be conducted and clinical treatment recommendations can be provided based on the level of lncRNA pyrophosphate. Using five m7G-related lncRNAs, a prognostic risk model was constructed that also provides insight into OSCC prognosis and treatment. Our study focused on RT‒PCR analysis of five lncRNAs from clinical samples. Using a small sample size, only AL133444.1 and AL359091.4 differed from nontumor samples in OSCC. Furthermore, we found that there were large differences in the expression levels of lnRNAs across samples in the same group. It is therefore necessary to conduct further clinical research on expanded samples to confirm the expression levels of these five lncRNAs in OSCC.
As an important parameter of tumor clinical pathology, the American Joint Commission on Cancer (AJCC) staging system is widely used in tumor evaluation (Giannis et al., 2021). The clinical features associated with tumor grade were not different among groups based on a risk score constructed from five m7G-related lncRNAs. It is important to note that the results above are based on a small number of possible patients with different tumor grades. However, there were significant differences between OSCC patients’ living conditions. Based on m7G-related lncRNAs, this result was in agreement with the prognosis of high- and low-risk OSCC patients. Compared with TNM staging, the 1-, 3- and 5-year prognosis AUC of the constructed risk signal is greater than 0.7, which indicates that the prognostic signal constructed by lncRNAs also has certain advantages. In this study, the prognostic model of the nomogram was constructed by multivariate logistic regression, and its combined factors included five lncRNAs, stage T and stage N. Calibration curves show that the nomogram is reliable for predicting and judging OSCC prognoses. At the same time, the C-index curve is above that of other pathological staging systems, which further indicates the advantages of the nomogram. In comparison with the OSCC prognosis model constructed by currently known lncRNAs, the evaluation index c-index of seven pyroptosis-related long noncoding RNAs in model construction was 0.6 (Li et al., 2017). We found some advantages with OSCC prognosis models based on m7G-related lncRNAs in our research. One such advantage was a C-index greater than 0.7 for 1–5-year prognosis predictions. Although DCA is widely used in tumor prognosis decision-making, the model of m7G-related lncRNAs is seldom used in tumor prognosis decision-making, and OSCC has never been reported. In this study, the DCA curve shows that the nomogram has certain value in clinical decision-making because the nomogram curve is higher than that of other pathological staging systems in a certain range.
During tumor growth and progression, the immune system plays a critical role. Among them, the existence of tumor-infiltrating lymphocytes is related to the improvement of the survival rate of head and neck squamous cell carcinoma (Almangush et al., 2020). CD8+ T-cell tumor invasion is significantly associated with better prognosis in HNSCC patients compared to patients without invasion. These findings are consistent with those of this study. Regarding the immune infiltration of OSCC, the score of CD8+ T cells in the high-risk group was lower than that in the low-risk group (Ogino et al., 2006). Therefore, CD8 is expected to be an important parameter to evaluate the prognosis of OSCC. Shimizu et al. reported that in patients with OSCC, CD8+ T cells can provide an evaluation index for tumor recurrence and prognosis in the invasion margin and surrounding stroma (Shimizu et al., 2019). Gu X et al. compared with the normal tongues of healthy people and found that the cytolytic activity of SCCOT patients was increased (Gu et al., 2019). In this paper, we found that patients with OSCC have higher cytolytic activity at high risk. Similar findings were reported by Tang Y et al. in a study that compared high-risk and low-risk HLA for head and neck cancer based on iron death-related lncRNAs (Tang et al., 2021).
In the prediction of chemotherapy drugs for OSCC patients based on m7G-related lncRNAs, doxorubicin’s IC50 was lower in the high-risk group. Based on this, the high-risk group exhibits more sensitivity to doxorubicin, which will provide a reference for the high-risk group. Doxorubicin is associated with nausea, vomiting, and blood cell dysfunction in OSCC patients. To improve the curative effect of doxorubicin, the dosage form is often modified (Moradzadeh Khiavi et al., 2019). Li et al. reported that doxorubicin encapsulated in biodegradable micelles degraded faster in tumors than in normal tissue (Li et al., 2017). Furthermore, this dosage form induces local sustained release of the active ingredient and inhibits tumor growth in OSCC, but the organ does not suffer any damage resulting from the treatment (Li et al., 2017). Laser near-infrared light was also found to regulate drug release behavior in doxorubicin after microneedle assembly was discovered (Xu et al., 2020). With this innovative system, tumors can be eliminated, and side effects can be minimized, making it a powerful method for treating OSCC clinically. It is therefore important to increase the curative effectiveness of drug therapy by changing the dosage form of doxorubicin for patients with OSCC.
A number of limitations were identified in this study, despite the fact that it shows that lncRNAs derived from m7G are capable of predicting OSCC patient prognosis. First, the samples of the prediction model were only from TCGA, and the sample size was small. A second problem with this model is that there are no biochemical experiments to prove how it functions, so it is necessary to clarify how m7G-related lncRNAs regulate the OSCC pathological process.
CONCLUSION
The aim of this study was to determine the best prognostic marker for OSCC patients based on five m7G-related lncRNAs. Therefore, we will provide a new idea and method for immunotherapy and individualized treatment of OSCC patients and reflect that five m7G-related lncRNAs may be therapeutic targets of OSCC in the future.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.
ETHICS STATEMENT
The studies involving human participants were reviewed and approved by this study was conducted with tissues kindly provided by the Department of Stomatology of the Affiliated Hospital of Chengde Medical University. Medical ethics approval was obtained for sample acquisition. The patients/participants provided their written informed consent to participate in this study.
AUTHOR CONTRIBUTIONS
FH designed the study. XW was responsible for preparation of the manuscript. YZ played an important role in the analysis of outcomes. WD revised the manuscript. All authors read and approved the final manuscript.
FUNDING
This project was funded by the Hebei Province Population and Family Planning Commission Technological Project (20211440 and 20200379).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.1013312/full#supplementary-material
REFERENCES
 Almangush, A., Leivo, I., and Mäkitie, A. A. (2020). Overall assessment of tumor-infiltrating lymphocytes in head and neck squamous cell carcinoma: Time to take notice. Acta Otolaryngol. 140 3, 246–248. doi:10.1080/00016489.2020.1720284
 Begolli, R., Sideris, N., and Giakountis, A. (2019). LncRNAs as chromatin regulators in cancer: From molecular function to clinical potential. Cancers (Basel) 11, 1524. doi:10.3390/cancers11101524
 Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 68 6, 394–424. doi:10.3322/caac.21492
 Chen, H., Zhao, J., Hu, J., Xiao, X., Shi, W., Yao, Y., et al. (2022). Identification of diagnostic biomarkers, immune infiltration characteristics, and potential compounds in rheumatoid arthritis. Biomed. Res. Int. 2022, 1926661. doi:10.1155/2022/1926661
 Chow, L. Q. M. (2020). Head and neck cancer. N. Engl. J. Med. 382 1, 60–72. doi:10.1056/NEJMra1715715
 Geeleher, P., Cox, N. J., and Huang, R. S. (2014). Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 15 3 (R47), R47. doi:10.1186/gb-2014-15-3-r47
 Giannis, D., Cerullo, M., Moris, D., Shah, K. N., Herbert, G., Zani, S., et al. (2021). Validation of the 8th edition American Joint commission on cancer (AJCC) gallbladder cancer staging system: Prognostic discrimination and identification of key predictive factors. Cancers (Basel) 13, 547. doi:10.3390/cancers13030547
 Gu, X., Boldrup, L., Coates, P. J., Fahraeus, R., Wang, L., Wilms, T., et al. (2019). High immune cytolytic activity in tumor-free tongue tissue confers better prognosis in patients with squamous cell carcinoma of the oral tongue. J. Pathol. Clin. Res. 5 4, 240–247. doi:10.1002/cjp2.138
 Ha, S., Zhou, H., Gautam, M., Song, Y., and Wang, C. (2019). Reduced ribosomal RNA expression and unchanged ribosomal DNA promoter methylation in oral squamous cell carcinoma. Mol. Genet. Genomic Med. 7 7, e00783. doi:10.1002/mgg3.783
 Huang, F., Xin, C., Lei, K., Bai, H., Li, J., and Chen, Q. (2020). Noncoding RNAs in oral premalignant disorders and oral squamous cell carcinoma. Cell. Oncol. 43 5, 763–777. doi:10.1007/s13402-020-00521-9
 Khurshid, Z., Zafar, M. S., Khan, R. S., Najeeb, S., Slowey, P. D., and Rehman, I. U. (2018). Role of salivary biomarkers in oral cancer detection. Adv. Clin. Chem. 86, 23–70. doi:10.1016/bs.acc.2018.05.002
 Li, S., Chen, X., Liu, X., Yu, Y., Pan, H., Haak, R., et al. (2017). Complex integrated analysis of lncRNAs-miRNAs-mRNAs in oral squamous cell carcinoma. Oral Oncol. 73 (1-9), 1–9. doi:10.1016/j.oraloncology.2017.07.026
 Lu, Z., Tang, F., Li, Z., Lai, Y., Lu, Z., Zhang, J., et al. (2022). Prognosis risk model based on pyroptosis-related lncRNAs for bladder cancer. Dis. Markers 2022 (7931393), 7931393. doi:10.1155/2022/7931393
 Meng, X., Lou, Q. Y., Yang, W. Y., Wang, Y. R., Chen, R., Wang, L., et al. (2021). The role of non-coding RNAs in drug resistance of oral squamous cell carcinoma and therapeutic potential. Cancer Commun. 41 10, 981–1006. doi:10.1002/cac2.12194
 Ming, J., and Wang, C. (2022). N7-Methylguanosine-Related lncRNAs: Integrated analysis associated with prognosis and progression in clear cell renal cell carcinoma. Front. Genet. 13 (871899), 871899. doi:10.3389/fgene.2022.871899
 Mishra, R. (2012). Biomarkers of oral premalignant epithelial lesions for clinical application. Oral Oncol. 48 7, 578–584. doi:10.1016/j.oraloncology.2012.01.017
 Nikitakis, N. G., Pentenero, M., Georgaki, M., Poh, C. F., Peterson, D. E., Edwards, P., et al. (2018). Molecular markers associated with development and progression of potentially premalignant oral epithelial lesions: Current knowledge and future implications. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 125 6, 650–669. doi:10.1016/j.oooo.2018.03.012
 Ogino, T., Shigyo, H., Ishii, H., Katayama, A., Miyokawa, N., Harabuchi, Y., et al. (2006). HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res. 66 18, 9281–9289. doi:10.1158/0008-5472.can-06-0488
 Pandolfini, L., Barbieri, I., Bannister, A. J., Hendrick, A., Andrews, B., Webster, N., et al. (2019). METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol. Cell. 74 6, 1278–1290. e1279. doi:10.1016/j.molcel.2019.03.040
 Parmar, A., Macluskey, M., Mc Goldrick, N., Conway, D. I., Glenny, A. M., Clarkson, J. E., et al. (2021006386). Interventions for the treatment of oral cavity and oropharyngeal cancer: Chemotherapy. Cochrane Database Syst. Rev. 12 12, CD006386. doi:10.1002/14651858.CD006386.pub4
 Romer, C. A. E., Broglie Daeppen, M. A., Mueller, M., Huber, G. F., Guesewell, S., and Stoeckli, S. J. (2019). Long-term speech and swallowing function after primary resection and sentinel node biopsy for early oral squamous cell carcinoma. Oral Oncol. 89, 127–132. doi:10.1016/j.oraloncology.2018.12.027
 Rong, J., Wang, H., Yao, Y., Wu, Z., Chen, L., Jin, C., et al. (2022). Identification of m7G-associated lncRNA prognostic signature for predicting the immune status in cutaneous melanoma. Aging (Albany NY) 14 12, 5233–5249. doi:10.18632/aging.204151
 Shimizu, S., Hiratsuka, H., Koike, K., Tsuchihashi, K., Sonoda, T., Ogi, K., et al. (2019). Tumor-infiltrating CD8(+) T-cell density is an independent prognostic marker for oral squamous cell carcinoma. Cancer Med. 8 1, 80–93. doi:10.1002/cam4.1889
 Spizzo, R., Almeida, M. I., Colombatti, A., and Calin, G. A. (2012). Long non-coding RNAs and cancer: A new frontier of translational research?Oncogene 31 43, 4577–4587. doi:10.1038/onc.2011.621
 Sun, J., Li, L., Chen, H., Gan, L., Guo, X., and Sun, J. (2022). Identification and validation of an m7G-related lncRNAs signature for prognostic prediction and immune function analysis in endometrial cancer. Genes. (Basel) 13, 1301. doi:10.3390/genes13081301
 Tang, Y., Li, C., Zhang, Y. J., and Wu, Z. H. (2021). Ferroptosis-Related Long Non-Coding RNA signature predicts the prognosis of Head and neck squamous cell carcinoma. Int. J. Biol. Sci. 17 3, 702–711. doi:10.7150/ijbs.55552
 Wang, Y., Yao, Y., Zhao, J., Cai, C., Hu, J., and Zhao, Y. (2021). Development of an autophagy-related gene prognostic model and nomogram for estimating renal clear cell carcinoma survival. J. Oncol. 2021 (8810849), 8810849. doi:10.1155/2021/8810849
 Weiße, J., Rosemann, J., Krauspe, V., Kappler, M., Eckert, A. W., Haemmerle, M., et al. (2020). RNA-binding proteins as regulators of migration, invasion and metastasis in oral squamous cell carcinoma. Int. J. Mol. Sci. 21, 6835. doi:10.3390/ijms21186835
 Zhang, S., Li, J., Gao, H., Tong, Y., Li, P., Wang, Y., et al. (2021). lncRNA profiles enable prognosis prediction and subtyping for esophageal squamous cell carcinoma. Front. Cell. Dev. Biol. 9 (656554), 656554. doi:10.3389/fcell.2021.656554
 Zhao, F., Dong, Z., Li, Y., Liu, S., Guo, P., Zhang, D., et al. (2022). Comprehensive analysis of molecular clusters and prognostic signature based on m7G-related LncRNAs in esophageal squamous cell carcinoma. Front. Oncol. 12 (893186), 893186. doi:10.3389/fonc.2022.893186
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Wang, Dong, Zhang and Huo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 04 January 2023
doi: 10.3389/fgene.2022.988606


[image: image2]
Developing a pyroptosis-related gene signature to better predict the prognosis and immune status of patients with head and neck squamous cell carcinoma
Dan Liu1†, Liu-Qing Zhou1,2†, Qing Cheng1,2†, Jun Wang1, Wei-Jia Kong1,2 and Su-Lin Zhang1,2*
1Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
2Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Edited by:
Yunxia Lv, Second Affiliated Hospital of Nanchang University, China
Reviewed by:
Shengrong Long, Wuhan University, China
Wei Cao, Shanghai Jiao Tong University, China
* Correspondence: Su-Lin Zhang, sulin_zhang@hust.edu.cn
†These authors have contributed equally to this work
Specialty section: This article was submitted to Cancer Genetics and Oncogenomics, a section of the journal Frontiers in Genetics
Received: 07 July 2022
Accepted: 05 December 2022
Published: 04 January 2023
Citation: Liu D, Zhou L-Q, Cheng Q, Wang J, Kong W-J and Zhang S-L (2023) Developing a pyroptosis-related gene signature to better predict the prognosis and immune status of patients with head and neck squamous cell carcinoma. Front. Genet. 13:988606. doi: 10.3389/fgene.2022.988606

Chronic inflammation may promote the incidence and development of neoplasms. As a pro-inflammatory death pathway, pyroptosis could induce normal cells to transform into cancerous cells, but the potential effect of pyroptosis in head and neck squamous cell carcinoma (HNSCC) remains unclear. This study developed and evaluated a pyroptosis-related gene signature to predict the prognosis and immune status of patients with HNSCC. The gene expression, mutation information, and clinical characteristics of HNSCC were extracted from TCGA to establish a comprehensive genome database (GEO). Based on LASSO Cox regression model, nine pyroptosis-related genes (TTLL1, TRIML2, DYNC1I1, KLHL35, CAMK2N1, TNFRSF18, GLDC, SPINK5, and DKK1) were used to construct a pyroptosis-related gene signature, which had good ability to predict the prognosis of HNSCC. Furthermore, the expression of nine pyroptosis-related genes in HNSCC and paracancerous tissues was detected by quantitative real-time PCR (qRT-PCR). The potential immunotherapeutic features and drug sensitivity prediction of this signature were also explored. Because pyroptosis regulators play an important role in HNSCC development and prognoses, further exploration might assist in identifying new biomarkers and predictors of prognosis to benefit clinical identification and management.
Keywords: pyroptosis, HNSCC, prognosis, TCGA, immune microenvironment
INTRODUCTION
Head and neck squamous cell carcinoma (HNSCC) is ranked the sixth most common cancer globally (Ferlay et al., 2019; Siegel et al., 2020). It accounts for about 3% of new cancer cases (Siegel et al., 2014) and is generally related to tobacco and alcohol consumption (Johnson et al., 2020; von Witzleben et al., 2020). HNSCC is the most common malignant tumor in the head and neck and develops in the mucosal epithelium of the oral cavity, pharynx, and larynx (Hashibe et al., 2007; Raj et al., 2022). Despite the huge progress in the screening, diagnosis, surgery, chemotherapy, radiotherapy, immunotherapy, and molecular-targeted agents, the clinical outcomes of patients with HNSCC are unsatisfactory, with most patients not being cured (Leemans et al., 2011). This poor prognosis is related to native invasion, neck lymph node metastases, and local recurrence (Warnakulasuriya, 2009; Shah et al., 2010). Currently, the TNM Classification of Malignant Tumors (TNM) stage of disease is the crucial prognostic factor for the overall survival of HNSCC patients (Specenier and Vermorken, 2018). However, the survival rate of HNSCC patients has not significantly improved, emphasizing the need for reliable predictive biomarkers (Biomarkers Definitions Working Group, 2001) and new treatment strategies (Takes et al., 2012; Van den Bossche et al., 2022). In addition, several studies have revealed that gene mutations and molecular pathological subtypes considerably impact the prognosis of HNSCC patients. Consequently, it is essential to identify innovative prognostic markers and treatment targets to improve the low survival rate of HNSCC patients.
Pyroptosis, referred to as cell inflammatory necrosis, is a procedural cell death (Frank and Vince, 2019). It mainly mediates inflammasome-activated caspases to act with caspase-1, causing continuous cell extension and rupture, leading to the release of cellular substances and eventually a strong inflammatory response (Rühl et al., 2018; Kist, 2021; Yu et al., 2021). Pyroptosis is related to numerous diseases and is considered a “double-edged sword” in cancers (Kolb et al., 2014; Wang et al., 2019a; Wang et al., 2021). Although the pyroptosis inflammatory response environment may accelerate tumor growth in different cancers, it may also promote tumor cell apoptosis (Wang et al., 2019b; Wu et al., 2021). Recently, the role of pyroptosis in tumors has received widespread attention, with pyroptosis now considered to promote tumor immunotherapy effects (Wang et al., 2020; Tan et al., 2021a; Tan et al., 2021b). In particular, the large number of bacteria and viruses in the oral cavity, pharynx, and larynx can increase the chance of infection, along with the occurrence of pyroptosis. Although pyroptosis-related genes (PRGs) have prognostic value in predicting the outcomes of HNSCC patients (Shen et al., 2021; Zhu et al., 2022), PRGs-mediated immune infiltration and drug sensitivity are unclear.
This study aimed to investigate the expression of apoptosis-related genes, prognosis, association with immune status, and the diversity of responses to immunotherapy in HNSCC.
MATERIALS AND METHODS
Date collection
Gene expression and clinical features of HNSCC samples were collected from the publicly available Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/).
Patients and samples
A total of 413 patients with HNSCC were enrolled, and the collected clinicopathological data included the patient’s age, gender, stage, survival, and TNM classification. Of 413 patients, 246 were alive, 167 were dead, 291 were aged ≤65 years, 121 were aged >65 years, and one was unknown. There were 101 females and 312 males, 285 patients were in grades I and II, 109 patients were in grades III and IV, and 19 patients were unknown. In total, 72 patients had stages I and II, 274 had stages III and IV, and 67 were unknown. There were 185 N0 and N1 patients, 152 N2 and N3 patients, and 76 patients were unknown, with 148 T0, T1, and T2 cases, 210 T3 and T4 cases, and 55 patients were unknown. There were 151 M0 patients, one M1 patient, and 261 patients were unknown. Differentially expressed PRGs in normal and HNSCC tissues were determined using R software and the Wilcoxon test.
Construction and validation of the prognostic pyroptosis-related gene signature
First, the differentially expressed genes (DEGs) in normal and HNSCC tissues were identified, then gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses were conducted. Cox univariate analysis and LASSO Cox regression were then applied to identify the prognostic-related genes using “glnet” R package (p < 0.05). Finally, nine PRGs were identified to construct the signature for prognostic PRG model development. The risk score of each patient was calculated based on the gene expression level associated with pyroptosis and the regression coefficient. HNSCC patients in TCGA cohort were then classified as low- and high-risk groups based on their median risk score. R Survminer package for survival analysis was used to determine the different OS, and the survival and time ROC R package was used to assess the predictive accuracy. Correlation analysis of immune cells in different software and drug sensitivity differences in high and low-risk groups was also performed.
Expression of pyroptosis-related genes in tissues by qRTPCR
A total of 20 matched HNSCC and paracancerous tissues were obtained from Wuhan Union Hospital. Pathologists histopathologically confirmed the diagnosis of all tissues. All patients had not received chemotherapy, radiotherapy, targeted drugs, immunotherapy, or Chinese herbal medicine. Patients were not diagnosed with malignancy at other sites or with other serious underlying diseases. The Ethics Committee of Wuhan Union Hospital authorised this research (No: 20220076). All patients signed the informed consent form before surgery. The specimens were removed and rapidly frozen in liquid nitrogen and stored in a low-temperature refrigerator at −80°C for subsequent studies. Total RNA was extracted with a RNeasy mini kit (Axygen, United States) according to the manufacturer’s instructions. cDNA was reverse transcribed by a PrimeScript RT reagent kit with gDNA Eraser (TaKaRa, Japan, Code No. RR047A). The RNA and cDNA of each sample were analyzed by a GeneQuant pro RNA Calculator to assess the concentrations and purity. Quantitative real-time PCR was performed with real-time SYBR Green PCR reagents (Q311-02, Vazyme, Nanjing, China) and the 7300 Real-Time PCR System (Applied Biosystems, Foster City, CA). The abundance of different transcripts was assessed in triplicates.
Statistical analysis
The data were analyzed using R (version 4.0.5) by Bioconductor packages. Derivation of prognostic signatures compared to different clinicopathological features of HNSCC was accessed using ROC curve analysis (Heagerty et al., 2000). The independent prognostic value of OS clinical features was assessed by Cox proportional risk regression analyses, and Kaplan-Meier was used to evaluate the survival analysis of HNSCC patients. The “limma R” package was used for differential analysis, whereas the “ConsensusCluster-Plus R”, “CIBERSORT”, and “ESTIMATE” R were used to analyze immune infiltration. The prediction model was constructed, applied, and validated using “timeROC R”, “survival R”, and “glmnet R” packages in HNSCC. In qRTPCR verification experimental, the relative expression was calculated based on the comparative Ct (2−ΔΔCT) method, and Student’s t-test (two-tailed) was utilized to assess the significance of gene expression differences in GraphPad Prism (version 8.0).
RESULTS
Genetic variation prognoses of pyroptosis regulators in HNSCC
Figure 1 presents a flow chart of this study scheme. Fifty-two PRGs were identified after merging GEO and TCGA databases. Of 506 samples, 380 had a mutation rate of 75.1%. It was found that only BAX, CHMP4A, CHMP4B, CYCS, ELANE, GSDME, HMGB1, IL18, CASP9, PJVK, and TNF had no mutations, and others showed mutations in HNSCC tissues (Figure 2A). Figure 2B demonstrates copy number variation (CVN) alterations on PRG chromosomes. Additionally, CNV changes were common in 39 genes, less focused on increasing copy number, and TP63 gain was the most significant. Furthermore, the number of copies increased by two-thirds (Figure 2C). To determine whether these genetic variations affect PRG expression in HNSCC, PRG expression was further analyzed in tumor and normal tissues, indicating that the expression of 39 genes was significantly different between normal and tumor specimens (Figure 2D). PRG expression deleted in CNV was higher in cancer samples than in normal tissues (Figures 2C, D). The previous results revealed that although PRG expressions in tumors and normal tissues are highly heterogeneous, CNV change may not be the dominant factor leading to PRG disturbance. Survival analysis was performed to determine the impact of these 52 PRRs on HNSCC patients’ prognosis, implying that 30 PRGs were significantly different, 16 PRGs were negatively related to prognosis, and 14 pyroptosis regulators positively linked to survival (Figure 3).
[image: Figure 1]FIGURE 1 | Study flow chart and scheme.
[image: Figure 2]FIGURE 2 | Expression and variation of pyroptosis regulators in HNSCC. (A) Mutation frequency of 52 PRGs for 506 HNSCC patients. (B) The location of PRGs on chromosomes in TCGA cohort. (C) Frequency of CNV alteration in PRGs. Green: missing frequency; red: amplified frequency. (D) The expressions of 52 pyroptosis regulatory factors differ between HNSCC and normal tissues. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent the median value. Tumor, red; Normal, blue. Statistically significant values are represented by asterisks corresponding to *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
[image: Figure 3]FIGURE 3 | Kaplan-Meier curve for OS of 30 pyroptosis regulators. (A–Z, A–D) The association between 16 pyroptosis regulators with positive regulation and 14 with negative regulation and survival.
Identification of the immune features and prognoses of each pyroptosis cluster
The expression of 52 PRGs in patients was clustered into two clusters using ConsensusClusterPlus package (Figures 4A–C), then principal component analysis (PCA) was performed to reveal the gene expression profile distribution between the two subtypes (Figure 4D). Furthermore, a heatmap showed PRG expression as well as clinical data, including age, project, gender, and survival status in clusters A and B. There was no significant difference in PRG expression between the clusters (Figure 4E), and there was no essential statistical diversity between clusters (Figure 4F). Besides, to investigate the immune spectrum of the pyroptosis clusters, we studied the location of 23 immune cells in each cluster, showing that the penetration of natural immune cells, including 13 immune cells, increased significantly (Figure 4G).
[image: Figure 4]FIGURE 4 | Identification of potential pyroptosis clusters in HNSCC. (A) Sample distribution between clusters. (B) Consensus clustering cumulative distribution function (CDF). (C) The relative variation of the area under CDF curve. (D) PC of TCGA according to PRG expression profiles. (E) The heatmap showing gene expression and clinical correlation between HNSCC clusters. (F) Kaplan-Meier analysis of different clusters of HNSCC patients. (G) Differential expression of immunocytes in HNSCC pyroptosis groups.
GO enrichment and KEGG pathway analyses
To further explore the potential biological processes and pathways that lead to the molecular heterogeneity between high- and low-risk groups, diversity analysis was conducted to confirm DEGs involved in OS risk features. GO enrichment analysis suggested that DEGs were principally involved in skin development, epidermis cell differentiation, epidermis development, and collagen-containing (Figures 5A, B). KEGG pathway analysis disclosed that DEGs were mainly enriched in cytokine-cytokine receptor interaction, human papillomavirus infection, and Pl3K-Akt signaling pathway (Figures 5C, D).
[image: Figure 5]FIGURE 5 | Results of GO and KEGG analyses. (A–D) GO and KEGG pathway analyses of DEGs between high- and low-risk groups.
Survival analysis and variance analysis in pyroptosis-related genes correlated with prognosis
According to the selected prognostic PRGs, patients were clustered into three clusters (Figure 6A), with a statistical difference between gene clusters in survival probability (p = 0.002) (Figure 6B). Furthermore, the heatmap showed the expression of PRGs and varied clinical data, as well as the survival rate, age, grade, and TNM in clusters A–C, withPRGs being higher in group C (Figure 6C). Considering that PRGs play a vital role in the immune response regulation, PRG expression was compared between different groups (Figure 6D). The distribution of Alluvial plots in different PRG clusters, gene clusters, treatment, and PRG-related clusters is displayed in Figures 7A–C. Univariate Cox regression analysis was performed on 34 DEGs to select the survival-related genes (Figure 7D). Nine genes (TTLL1, TRIML2, DYNC1I1, KLHL35, CAMK2N1, TNFRSF18, GLDC, SPINK5, and DKK1) were further analyzed using LASSO Cox regression (Figures 7E, F).
[image: Figure 6]FIGURE 6 | Survival analysis and variance analysis in pyroptosis-related genes correlated with prognosis. (A) Gene sample distribution of different clusters. (B) Different gene clusters in survival probability. (C) Gene expression and clinical correlation in different clusters showed in the heatmap clearly. (D) Differential expression of PRRs between the three groups. Asterisk represents the statistical p-value (*p < 0.05; **p < 0.01; ***p < 0.001).
[image: Figure 7]FIGURE 7 | Alluvial diagram showing the changes of risk, clusters, and fustat. (A) The changes in clusters, risk, and fustat shown in Alluvial diagram. (B) The risk scores of pyroptosis were compared between the two PRG groups. Blue box representation cluster A, orange box representation cluster B. (C) The risk scores of pyroptosis in three gene clusters were compared. The blue box represents cluster A, the orange box represents cluster B, and the green box represents cluster C. (D) LASSO regression in 34 PRGs. (E) LASSO regression of prognostic genes (F) cross-validation of LASSO regression.
Construction and validation of a predictive nomogram
Different molecular HNSCC subtypes are characterized by distinctive gene expression profiles and have different features in tumor progress, therapy, and prognosis. Therefore, based on PRGs in these three subtypes, we selected nine genes (TTLL1, TRIML2, DYNC1I1, KLHL35, CAMK2N1, TNFRSF18, GLDC, SPINK5, and DKK1) related to HNSCC prognosis and conducted a new prognostic feature for HNSCC using LASSO regression algorithm program and univariate Cox regression analysis. HNSCC patients were divided into low-risk and high-risk groups based on their median risk score. The risk status, age, gender, and stage were considered the final parameters in the nomogram (Figure 8A). Based on the calibration curve of OS nomograms, OS prediction conformed to the ascertained OS (Figure 8B). Overall, the above results confirm that the nomogram has a good predictive ability to predict the survival time of HNSCC patients.
[image: Figure 8]FIGURE 8 | Nomogram and calibration (A) Nomogram to predict the 1-, 3-, and 5-years overall survival rates of HNSCC patients. (B) The calibration plots of the nomogram.
Subsequently, a Kaplan-Meier analysis was performed of OS between the high-risk and low-risk teams with the training cohort, testing cohort, and all groups (Figures 9A–C). The area underneath ROC curve (AUCs) for survival times of 1, 3, and 5 years indicated that this gene signature performs well in predicting HNSCC survival (Figures 9D–F). With the increase in risk score, the risk of death increases, and the survival time reduces. The risk heatmap indicates that TRIML2, CAMK2N1, and DKK1 were upregulated in the high-risk cluster, suggesting their tumor-promoting role (Figures 10A–C).
[image: Figure 9]FIGURE 9 | Characteristics of the pyroptosis-related gene signature in training and testing cohorts. (A–C) Kaplan-Meier analysis of training and testing cohorts and all groups revealed that patients at high risk had poorer survival. (D–F) Risk model in ROC curves at 1, 3, and 5 years.
[image: Figure 10]FIGURE 10 | Kaplan–Meier and prognostic risk curves. (A) Train group. (B) Test group. (C) All groups. The dotted line indicates the personal inflection point of the risk score, and patients are divided into low- (green) and high-risk (red) groups. Red dots represent patients who are dead, and green dots represent those who are alive. As the risk score increased, numerous patients died. Colors from blue to red indicate low to high expression levels.
Expression of pyroptosis-related genes in tissues by qRTPCR
The information from database revealed that pyroptosis-related genes related to HNSCC prognosis. To verify the feasibility of the prognostic model, we measured the expression of genes in HNSCC tissues and paired normal paracancerous tissues by qRT-PCR. The primers utilized are presented in Table 1. Based on human paired HNSCC tissues obtained by surgery, we validated the differential expression of six risk genes included in the risk model by qRT-PCR assays. The differential analysis revealed that TRIML2, DYNC1I1, TRIML2, and TTLL1 was significantly upregulated in HNSCC tissues, while GLDC and TNFRSF18 were downregulated in HNSCC tissues (Figure 11). We validated the reliability of pyroptosis-related genes as prognostic markers for HNSCC using qRT-PCR experiments.
TABLE. 1 | Primer information for qRT-PCR.
[image: Table.. 1][image: Figure 11]FIGURE 11 | The expression of six pyroptosis-related genes in HNSCC and paracancerous tissues was measured by qRT-PCR. ∗∗∗p < 0:001and ∗∗∗∗p < 0:0001.
Immune characterization analysis and immune checkpoint prediction
Pearson correlation analysis was conducted to analyze the correlation between the nine genes (TTLL1, TRIML2, DYNC1I1, KLHL35, CAMK2N1, TNFRSF18, GLDC, SPINK5, and DKK1) associated with pyroptosis and twelve immune cell types (B cells naïve, M0 macrophages, resting mast cells, activated mast cells, monocytes, resting NK cells, neutrophils, plasma cells, CD8 T-cells, CD4 memory resting T-cells, follicular helper T-cells, and regulatory T-cells (Tregs). The comparison of high-risk and low-risk groups of the stromal, immune, ESTIMATE, and tumor purity scores in the Violin Plot indicated that only the immunescore was statistically significant (Figure 12).
[image: Figure 12]FIGURE 12 | Immune checkpoint analysis. (A) The expression of PRGs and immune cells between low- and high-risk groups. *p < 0.05, **p < 0.01; ***p < 0.001. (B) Violin plot for a stromal score, immune score, ESTIMATE score, and tumor purity score between high- and low-risk groups. (C–N) Correlation analysis of the risk model and immune cells infiltration.
Correlation analysis of immune cells in different software and differences in drug sensitivity between high-risk and low-risk groups
The highest 20 driver genes with the best mutation frequency of TP53 and TTN were considerably different between high (Figure 13A) and low-risk groups (Figure 13B). As the risk score increased, TMB value also increased but did not reach significance (p = 0:047) (Figure 13C). However, the relationship between TMB and risk score was insignificant (R = 0:08, p = 0:12) (Figure 13D). To determine if the risk score and chemotherapeutic efficacy are linked in treating HNSCC, we identified the relationship between risk scores and the sensitivity to sixty chemotherapeutic drugs. There was discernible variation in drug sensitivity among most types of chemotherapeutic medicines between the two groups (Figure 14A–P).
[image: Figure 13]FIGURE 13 | Tumor mutation burden (TMB) analyses. (A–B) The top 20 driver genes with the highest mutation frequencies in high and low pyroptosis score groups (C) Boxplot illustrates that TBM value in the high-risk group was not significantly higher (p = 0:42). (D) Scatter plots of correlation analysis of risk score and TBM value.
[image: Figure 14]FIGURE 14 | Comparison of drug sensitivity between high- and low-risk groups. (A–P) Drug sensitivity between high- and low-risk groups.
DISCUSSION
The incidence and mortality of HNSCC have recently increased, and HNSCC has become the foremost fatal malignancy in adults (Ferlay et al., 2019). However, traditional histopathological characteristics (stage, grade, and tumor size) might not meet the requirements of diagnoses and prognoses (Gatta et al., 2015; Sacco and Cohen, 2015; Ferlay et al., 2019). Therefore, it is necessary to explore new HNSCC biomarkers to fulfill the clinical necessities for the identification and prognosis of HNSCC. As lytic programmed death, pyroptosis is a crucial mechanism for HNSCC pathological development and has been widely researched in tumor models (Kist, 2021; Yu et al., 2021). Recent studies have revealed that pyroptosis is a new procedural cell death that plays an important role in tumor growth and therapy mechanisms (Kovacs and Miao, 2017), such as head and neck tumors (Wellenstein and de Visser, 2018; Cai et al., 2021; Yuan et al., 2021). Prognostic markers related to pyroptosis have been constructed for gastric and ovarian tumors with a good prognostic potential (Shao et al., 2021; Ye et al., 2021). However, the interaction of PRGs in HNSCC, as well as the potential ability to predict the prognosis of HNSCC patients and comprehensive analysis of PRG for prognosis prediction and targeted treatment in HNSCC patients, remain unclear.
The present study investigated the potential prognostic significance of PRGs and investigated the expression of PRGs in 413 HNSCC patients. Such patients were classified as high or low-risk based on their median risk score, with the risk model considerably differentiating the clinical features of low and high-risk HNSCC patients; hence, it was a good independent prognostic indicator. Notably, GO, KEGG, GSEA, and ssGSEA analyses revealed the varied immune status of the high and low-risk groups. Nine genes associated with HNSCC prognosis (TTLL1, TRIML2, DYNC1I1, KLHL35, CAMK2N1, TNFRSF18, GLDC, SPINK5, and DKK1) were used to construct a new prognostic signature for HNSCC by LASSO regression algorithm and univariate Cox regression.
Based on human paired HNSCC tissues obtained by surgery, we validated the differential expression of six risk genes included in the risk model by qRT-PCR assays. The differential analysis revealed that DYNC1I1, SPINK5, TNFRSF18, and TTLL1 was significantly upregulated in HNSCC tissues, while GLDC and TRIML2 were downregulated in HNSCC tissues. One research shows that DYNC1I1 gene expression was up-regulated and further led to activation of the AKT/ERK signaling pathway to promote hepatocellular carcinoma (HCC) progression (Liu et al., 2022). Daniel N Frank found that PINK5 variants confer susceptibility to non-syndromic Otitis media (OM). These variants potentially contribute to middle ear pathology through alteration of head and neck microbiota and facilitation of entry of opportunistic pathogens into the middle ear (Frank et al., 2021). P Vogel investigating the role of TTLL1 and polyglutamylation of tubulin in cilia and flagella should advance an understanding of the biogenesis and function of these organelles in mammals and have potential diagnostic and therapeutic applications (Vogel et al., 2010). Previous studies have shown TRIML2 knockdown oral squamous cell carcinoma (OSCC) cells showed decreased cellular proliferation by cell-cycle arrest at G1 phase and TRIML2 might play a significant role in tumoral growth (Hayashi et al., 2019). Detailed mechanisms need to be explored further. In summary, this gene signature was highly effective and a new means for predicting HNSCC prognosis.
Age, stage, and risk score were considerably related to OS by Cox regression analysis. Actually, a lot of predictive models are widely established and reported in many studies by univariate Cox regression and Lasso Cox regression analysis. Cao et al. (2017) identify a lncRNA prognostic signature model using the orthogonal partial least squares discrimination analysis (OPLS-DA) and 1.5-fold expression change criterion methods. (OPLS-DA) are powerful statistical modeling tools that provide insights into separations between experimental groups based on high-dimensional spectral measurements from NMR, MS or other analytical instrumentation (Blasco et al., 2015). LASSO Cox regression analysis is a method for variable selection and shrinkage in Cox proportional hazards model that constructs a penalty function to obtain a more refined mode. The lasso is a popular selection method in Cox regression, but its results depend heavily on the penalty parameter λ (Ternès et al., 2016).
Furthermore, high-risk patients determined based on this feature were confirmed to have a higher TMB. The TMB has become an important factor in disease progression and clinical relapse in HNSCC patients. A better understanding of the HNSCC biology, especially the interaction between cancer cells and their surrounding TME, may help identify new biomarkers, enabling patient stratification for clinical decision-making (Van den Bossche et al., 2022). Also, targeting PRGs may be a promising strategy for treating HNSCC. The invasive immune cell is a crucial component of TME (Wellenstein and de Visser, 2018), and most immune cells were positively correlated with the risk score, with variations in the composition of immune cell types between risk groups. Many studies have revealed that in the immune response, the state of the gene adjusts the function of immune cells (Chen et al., 2018; Shao et al., 2021). This risk model based on PRGs may be promising for the clinical prediction of prognoses and immunotherapeutic responses in HNSCC patients.
The combination of immunotherapy, chemotherapy, radiotherapy, and targeted medical help inhibit tumor progression through synergistic mechanisms and improve poor prognosis in cancer patients. Although tumor development is complex, the inflammatory response may be a relevant factor. Pyroptosis is a new type of cellular necrosis, and its characteristics are the release of many inflammatory factors. Chronic inflammatory reactions can result in native tissue damage and neoplastic lesions.
This study has many advantages. First, the prognostic signature accurately predicts the OS for HNSCC patients. Additionally, it is considerably related to TMB and immune infiltration, indicating its biomarker potential in HNSCC. Non-etheless, this study has some limitations. First, all information for the analysis was retrieved from online databases, implying that future in vivo and in vitro research is required to verify these results. Second, post-translational modifications play an important role in signal transduction and cellular function, but the translational modifications of these genes were not explored.
CONCLUSION
A nine pyroptosis-related gene signature was constructed to better predict the prognosis and immune status of patients with head and neck squamous cell carcinoma.
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