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Editorial on the Research Topic

Extreme precipitation events: Spatio-temporal connections,

forecasting, generation, impact analysis, vulnerability and risk

assessment

Extreme precipitation events (EPEs) have shown a significant increase in magnitude

and frequency in various parts of the world. In the past decades, extreme precipitation has

caused wide-ranging impacts on various sectors of society, leading to increased risk and

vulnerability while decreasing resilience and adaptive capacity. Unfortunately, the

frequency of EPEs is increasing and is estimated to even intensify in the future (Ali

and Mishra, 2018). During the past decades, studies have used various approaches to

understand the mechanism behind the formation of EPEs, their spatio-temporal

characteristics, their impacts on various sectors of society, and ways to prevent

adverse impacts (Singhal and Jha, 2021). On this vital research topic of Extreme

Precipitation Events, 12 articles were accepted and published. Out of these, nine

articles can be categorized under two broader themes: 1) understanding of

mechanisms behind the generation of EPEs, and 2) challenges in urban and semi-

urban areas due to increasing influences of anthropogenic activities on EPEs. The

remaining three articles focus on various other aspects of extreme precipitation events.

Some parts of the world have been more prone to increased incidence of EPEs than

others. One such region is Central Asia, where atmospheric processes and weather

systems of different scales have significantly influenced the nature of extreme

precipitation events. In this regard, Chen et al. assessed the mechanism behind the
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unusually long duration of the rainy period in China during the

2020 Meiyu precipitation front. They found a meridional

migration of the 2020 abnormal Meiyu rain belt from June to

July, leading to extreme rainfall. Further, to better comprehend

the characteristics of heavy precipitation occurring due to the

Autumn Continuous Rain (ACR) in China, Yang et al. analysed

daily precipitation data to assess the spatiotemporal variations in

ACR and constructed a conceptual model including the factors

such as sea surface temperature, arctic vortex and sub-tropical

high. In another study, Wu et al. studied the dual-core southwest

vortex and how the circulation process is affected by the release of

latent heat and the local topography. They concluded that the

release of latent heat significantly influenced the formation of the

Dual-Core Southwest Vortex (DCSWV). At the same time, the

topography of the Tibetan Plateau affected the location and

duration of DCSWV in China. Similarly, Cao et al. explained

the reasons behind increased EPEs over Central China by

studying the moisture supply and water vapor transport

throughout Europe and Asia. The authors used decomposed

water vapor flux divergence with the Barnes filter and synoptic

methods in different precipitation events. Further, Dong et al.

investigated the characteristics and formation of two banded

strong radar echoes over the Sichuan Basin of China in view of

two vortices coupling.

Urban hydrology is an important research subject, especially

in the context of climate change and extreme precipitation. Due

to expanding anthropogenic influences, the world is witnessing

abrupt changes in the hydrological and meteorological

characteristics in various urban and semi-urban regions of the

world. In this context, Singhal et al. developed a framework for

generating impact-based forecasts by analysing extreme

precipitation forecasts of 2017–2020 and estimated the

impacts on various sectors of population, economy, and

agriculture in a semi-urban region of northern India.

Alongside this, the authors suggested corresponding

preventive actions to mitigate the severity of the impacts. In

another study, Davis et al. addressed the growing issue of urban

flooding in India by setting up a Weather Research and

Forecasting (WRF) model for the city of Bangalore, India. The

authors used the hydrologic model PCSWMM to provide high-

resolution flood forecasts using 6-h rainfall forecasts before the

event. Further, Tian et al. used weather radars to obtain high-

resolution and high-accuracy quantitative precipitation

estimates. The authors used a deep neural network to improve

the accuracy of rainfall estimates by includingmeteorological and

geographical factors as covariates. Liu et al. analysed the rainfall

trend taking into account the change in the categories of rain

gauges from rural to urban. The authors applied an approach of

dynamic sampling to find that the total annual and maximum

daily precipitation has increased in the past 30 years in the

Yangtze River basin of China.

Along with the aforementioned contributions, this

Research Topic includes other significant articles focussing

on various aspects of extreme precipitation, risk assessment

and mitigation. For instance, Li et al. performed

32 experiments to find out the effect of porous fiber

material (PFM) on the surface runoff and peak flow under

the conditions of extreme precipitation in the Huaibei basin of

China. Results show that PFM increases the water holding

capacity and, as a result, reduces the risk of droughts and

floods in the region. Tiwari et al. reviewed how the land

surface plays a role in tropical cyclone intensification. The

article reports about the advancement in the improved

prediction of the north Indian Ocean Tropical Cyclone due

to advancement in the atmospheric model and air-sea coupled

models, and satellite-era. Wang et al. reproduced supercell

precipitation by assimilating lightning data into the WRF

model. The authors show that the assimilation of lightning

data enhances the range and intensity of precipitation

forecasts and compensates for the unavailability of

observation data during supercell growth.
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An observed fact is proposed that the 2020 record-breaking Meiyu over the
Yangtze–Huaihe River Basin (YHRB) is characteristic of significant subseasonal
variation. The anomalously enhanced rainfall experiences a southward retreat from the
northern YHRB in June to the southern YHRB in July. The meridional shift of abnormal
rainbelt is closely related to the different anomalous Meiyu front circulations. The first stage
features a warm Meiyu front with an extremely strong northward transport of warm-and-
wet air, whereas a cold front forms with a convergence between the strong northeasterlies
and southwesterlies in July. Another significant subseasonal variation of the 2020 Meiyu is
that the Meiyu rainfall evolves in a periodic quasi-biweekly oscillation (QBWO). On the scale
of the QBWO, the cold air activities over East Asia contribute significantly to Meiyu; each
intense southward invasion of cold air corresponds well to the enhancement of Meiyu
rainfall. However, the location of the western Pacific subtropical high, the subtropical East
Asia summer monsoon (SEASM), and the intensity of the East Asia subtropical westerly jet
exhibit opposite QBWO characteristics in June and July. For an increasing (decreasing) of
Meiyu rainfall, the western Pacific subtropical high marches northward (retreats
southward), the subtropical East Asia summer monsoon weakens (strengthens), and
the East Asia subtropical westerly jet accelerates (decelerates) in June. The opposite holds
true in July. Further analyses reveal that the filtered cyclone over Northeast China benefiting
the southward intrusion of cold air is associated with the eastward propagation of a wave
train over the mid-high latitudes in June, whereas it arises from both the westward
propagation of a wave train over the mid-high latitudes and the northward propagation of
cyclonic circulation from the tropics in July.

Keywords: 2020 long-persisting meiyu, subseasonal variation, quasi-biweekly oscillation, East Asia summer
monsoon systems, wave trains over the mid-high latitudes
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INTRODUCTION

Severe rainstorms and devastating floods severely hit southern Japan
and the Yangtze–Huaihe River Basins (YHRB) in China in the early
summer of 2020. The rainy period is the well-knownMeiyu inChina
(also called Baiu in Japan and Changma in Korea), a typical episode
in the progression of East Asia summer monsoon (EASM) (Tao and
Chen, 1987; Yihui andChan, 2005). Climatologically,Meiyu starts in
mid-June and ends in mid-July. However, by the monitoring of
China National Climate Center, 2020 Meiyu persists from June 1 to
August 1 with an earlier onset and a later ending. The long duration
and the accumulated Meiyu precipitation around the Yangtze River
Basins both broke the record since 1961 (Gan, 2020; Ding et al.,
2021). The anomalously enhanced Meiyu precipitation causes great
losses of life and property.

In each summer, the date when Meiyu begins/ends and the
Meiyu precipitation amount are the most important issue
concerned by meteorological, hydrological, and other services
in such regions affected byMeiyu as China, Japan, and Korea. The
mechanism and prediction of Meiyu have always been the hot
topic (Ninomiya, 1984; Chen and Yu, 1988; Kodama, 1992;
Webster et al., 1998; Huaqiang and Yongfu, 1999; Yihui and
Chan, 2005; Huang et al., 2011; Yim et al., 2015; Li et al., 2019;
Ding et al., 2020).

The onset/ending time, evolution, rainfall amount, and extreme
weather events during the Meiyu season are all intimately related to
the circulation components of the EASM regime. Generally, the
Meiyu rainbelt is anchored over the region of the zonally elongated
quasi-stationary Meiyu front. The front is formed by the interaction
between the warm-and-wet air masses from the tropics and the cold-
and-dry air masses from the mid-high latitudes. To the south of the
Meiyu front, southwesterly winds along the northwestern flank of
the western Pacific subtropical high (WPSH) supply abundant
warm-and-wet air to the Meiyu regions. The northerly winds in
the western part of low troughs or in the eastern high ridges over the
mid-high latitudes at the middle and lower tropospheres reinforce
cold-and-dry airmasses intruding into the north ofMeiyu front. The
persistent confrontation of warm and cold air contributes to the
quasi-stationary rain belt (Ninomiya, 1984; Ding, 1992; Ninomiya,
2000; Ding, 2007). Variations of location and intensity of any
circulation component of the EASM system could exert influence
directly on Meiyu rainfall. For example, the northward shift of the
East Asia subtropical westerly jet (EASWJ) to the north of the South
Asian High in the upper troposphere and the poleward jump of the
ridge line of the WPSH in a zonal shape would modulate the onset
and ending time of Meiyu season (Tao and Chen, 1987; Yimin and
Guoxiong, 2004; Zhang and Guo, 2005; Zhang et al., 2006; Xuan
et al., 2011; Liu et al., 2019). The EASWJ anchors theMeiyu rainband
by steering transient eddies and creating convective instability and
adiabatic updrafts (Sampe and Xie, 2010; Chowdary et al., 2019;
Chowdary et al., 2021). Zhou and Yu (2005) found that
southwestward extension of the WPSH and southward shift of
the EASWJ over East Asia are favorable for enhanced rainfall
over the middle and lower reaches of the Yangtze River, whereas
the northwestward extension of WPSH and an eastward shift of the
EASWJ contribute to anomalous water vapor transports to the
Huaihe River valley. In addition to warm and moist air affected

by circulation in the tropics and subtropics, cold air intrusion
associated with the mid-high latitude systems plays an equally
important role in Meiyu rainfall (Lau et al., 2000; Ding et al.,
2020). He et al. (2007) proposed that the frequent activity of the
Northeast Cold Vortex, a crucial circulation system over Northeast
Asia, is advantageous to more Meiyu rainfall.

The forecast of Meiyu and the associated rainstorms remains
challenging, as Meiyu precipitation is characterized by multi-time
scale variabilities. Significant differences exist in the influencing
factors and the physical mechanisms of Meiyu’s interdecadal,
interannual, and subseasonal variations (Ding et al., 2020). On
the interannual timescales, external forcings such as El
Niño–Southern Oscillation over the Pacific Ocean (Wang et al.,
2009; Kosaka et al., 2011; Zhu et al., 2013), sea surface temperature
(SST) anomalies over the IndianOcean (IO) (Xie et al., 2009;Wang
et al., 2013; Xie et al., 2016; Takaya et al., 2020), Kuroshio SST front
over the East China Sea (Xu et al., 2018), and snow cover of the
Tibetan Plateau (Ge et al., 2014; Liu et al., 2014) have been verified
to exert important impacts on Meiyu rainfall through air–sea
coupling or atmospheric teleconnections. The Madden–Julian
Oscillation (Li et al., 2018), the intraseasonal oscillation of
EASM (Chen et al., 2015; Li et al., 2015; Song et al., 2016), and
the summer North Atlantic Oscillation (NAO) (Bollasina and
Messori, 2018; Liu et al., 2020) are viewed as crucial factors that
modulate the subseasonal variation of Meiyu rainfall.

Considering the significant extremity, 2020 Meiyu is termed as a
super Meiyu. The characteristics and the mechanisms of 2020 super
Meiyu have been extensively examined (Li et al., 2020; Liu andDing,
2020; Takaya et al., 2020; Ding et al., 2021; Guo et al., 2021; Niu et al.,
2021; Pan et al., 2021; Zhou et al., 2021). Quite a few studies attribute
the excessive rainfall over YHRB to an enlarged WPSH caused by
the persistent warming over the tropical IO (Takaya et al., 2020;
Ding et al., 2021; Niu et al., 2021; Pan et al., 2021), as well as a La
Niña-like SST anomaly forcing in the equatorial Pacific (Pan et al.,
2021). However, few details in the subseasonal variability of the
2020 Meiyu have been reported. As a matter of fact, a number of
studies based on historical data showed that Meiyu is characterized
by low-frequency oscillations with periods of 30–60 and
10–20 days [quasi-biweekly oscillation (QBWO)] (Lau and Li,
1984; Liang and Ding, 2012; Ding et al., 2020). Therefore, this
study focuses on the characteristics of the subseasonal variation in
2020 Meiyu rainfall.

The rest of this paper is organized as follows. The data and
methods are introduced in Data and Method. The Results and
Analysis describes the characteristics and cause of the meridional
migration of the 2020 abnormal Meiyu rainbelt from June to July
and reveals a QBWO feature of daily Meiyu rainfall intensity and
the corresponding atmospheric circulation characteristics. The
Conclusions and Discussions contain some concluding remarks
and a discussion of the results.

DATA AND METHODS

Data
To identify the characteristics of Meiyu rainfall over YHRB in
2020, we used the daily rainfall data at 2,417 meteorological
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stations from 1961 to 2020 provided by the National
Meteorological Information Center in China. The
representative stations for monitoring Meiyu are 277

observation stations over YHRB according to China National
standard GB/T 33671–2017. The daily circulation data at 02:00,
08:00, 14:00, and 20:00 Beijing local time in 2020 with a

FIGURE 1 | (A) Interannual variations of standardized anomalies of total precipitation of June–July averaged at 277 observation stations over Meiyu monitoring area
in China from 1961 to 2020. Value in 2020 is labeled. (B) Daily (bars) and 3-day moving mean (curve) precipitation averaged at 277 observation stations over Meiyu
monitoring area in China from June 1, 2020, to July 31, 2020.

FIGURE 2 | Accumulated precipitation (shaded inA–C, unit: mm) and anomaly percentage of precipitation (shaded inD–E, unit: %) in June–July (A,D), June (B,E),
and July (C,F) in 2020 over 2,417 stations of China. Contours inA–C are climatological mean precipitation of more than 200 mmwith intervals of 200 mm. Climatology of
precipitation is calculated from 1981 to 2010.
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horizontal resolution of 1° × 1° is derived from the fifth generation
of European Centre for Medium-Range Weather Forecasts
(ECMWF ERA-5) atmospheric reanalysis data (Hersbach
et al., 2020).

METHODS

The start and end dates of Meiyu are defined in the China
national standard (GB/T 33671–2017) and released by China

FIGURE 3 | (A) Composites of original values (contours, unit: dagpm) and anomalies (shaded, unit: dagpm) of 500-hPa geopotential heights averaged from June 1
to June 30, 2020. Purple solid and dashed lines are 2020 and climatological 588-dagpm contour of 500-hPa geopotential heights, respectively. (B) Composite
anomalies of 200-hPa geopotential heights (shaded, unit: dagpm) averaged from June 1 to June 30, 2020. Black solid and dash lines are 2020 and climatological 30 m s-1

contour of 200-hPa zonal winds, respectively. Red solid and dash lines are 2020 and climatological 1,252-dagpm contour of 200-hPa geopotential heights,
respectively. (C) Composite anomalies of 925-hPa air temperature (shaded, unit: °C) and winds (unit: m s-1 ). Only anomaly winds value exceeding 0.05 significance level is
shown by vectors. (D) Vertical section of composite anomalies of meridional winds (unit: m s-1) averaged over East Asia along 105oE–135oE. Crossed area in each panel
denotes anomalies exceeding 0.05 significance level.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 7991044

Chen et al. The Subseasonal Variation of 2020 Meiyu Rainfall in China

10

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


National Climate Center. The 277 observation stations over
YHRB in China are representative for monitoring Meiyu
(Supplementary Figure S1). The daily Meiyu intensity is
defined as the precipitation averaged over all the
monitoring stations. The daily circulation is calculated by

averaging the values four times in a day. The climatological
mean state of each circulation variable is defined by the
arithmetic mean of 1981–2010. Anomalies of variables are
calculated as differences between the original data and the
climatic means. The local wavelet power spectrum (Torrence

FIGURE 4 | As in Figure 3 but for composite analysis from July 1 to July 31, 2020. (A) Composites of original values (contours, unit: dagpm) and anomalies
(shaded, unit: dagpm) of 500-hPa geopotential heights averaged from June 1 to June 30, 2020. Purple solid and dashed lines are 2020 and climatological 588-dagpm
contour of 500-hPa geopotential heights, respectively. (B) Composite anomalies of 200-hPa geopotential heights (shaded, unit: dagpm) averaged from June 1 to June
30, 2020. Black solid and dash lines are 2020 and climatological 30 m s-1 contour of 200-hPa zonal winds, respectively. Red solid and dash lines are 2020 and
climatological 1,252-dagpm contour of 200-hPa geopotential heights, respectively. (C) Composite anomalies of 925-hPa air temperature (shaded, unit: °C) and winds
(unit: m s-1). Only anomaly winds value exceeding 0.05 significance level is shown by vectors. (D) Vertical section of composite anomalies of meridional winds (unit: m s-1)
averaged over East Asia along 105oE–135oE. Crossed area in each panel denotes anomalies exceeding 0.05 significance level.
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and Compo, 1998) and the noise power spectrum analysis
(Schulz and Mudelsee, 2002) are applied to show the
significant timescale of the daily averaged Meiyu rainfall in
2020. The QBWO component of each variability is extracted
by the Lanczos bandpass filter (Trenberth, 1984), retaining
fluctuations with a period of 8–16 days.

RESULTS AND ANALYSIS

Subseasonal Variation of the Anomalous
2020 Meiyu Rainbelt
The 2020 Meiyu is labeled by a rarely long duration and record-
breaking precipitation accumulation (Figure 1). Statistically, the
total Meiyu amount reaches the extreme value with a

standardized anomaly of 3.46, well breaking the record since
1961 (Figure 1A). The super 2020 Meiyu is mainly attributed to
the frequent rainstorm processes with the severest intensity of
approximately 38 mm at per Meiyu monitoring station.
Removing the high-frequency weather signals within 3 days,
there are seven peaks of heavy rainfall processes during the
whole rainy season (Figure 1B). The Meiyu season persists in
the whole of June and July of 2020 with extensively positive
rainfall anomalies over the YHRB (Figure 2). The heaviest
accumulated Meiyu precipitation is more than 800 mm, with
the anomaly percentage exceeding 100% along the middle and
lower reaches of the Yangtze River (Figures 2A–D). A robust
subseasonal variation of the anomalous rainband is detected that
the anomalous precipitation center shifts southward from June to
July (Figures 2B, C, E, F). In the first stage, the northern edge of

FIGURE 5 | (A) Local wavelet power spectrum of series of daily averaged precipitation from June 1, 2020, to July 31, 2020, in Figure 1B using Morlet wavelet
analysis (thick red contour encloses regions of greater than 95% confidence for a red-noise process). (B) Noise power spectrum analysis of series of daily mean
precipitation in Figure 2B (dashed red line is for red noise spectrum). Solid blue/red line is for 95/90% confidence level for spectrum. (C) as in (B) but for series of
precipitation in June 2020. (D) as in (B) but for series of precipitation in July 2020. (E) as in (B) but for series of daily 3-day moving mean averaged precipitation in
Figure 2B. (F) as in (B) but for series of daily number of rainstorm (daily rainfall ≥ 50 mm) stations. (G) as in (B) but for series of daily number of heavy rainstorm (daily
rainfall ≥ 100 mm) stations.
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precipitation over 200 mm extends to 35oN over East China, far
exceeding the northern boundary of the climatological 200-mm
contour. The two above-normal rainbands occur along the
Huaihe and Yangtze River Basin, respectively (Figure 2E). In
the later period, although the northern edge of rainbelt maintains
over 35oN in agreement with the march of climatological rainbelt,
the total rainfall amount over the Yangtze River Basin and the
Jiang Nan Area is much heavier with anomalies exceeding the
climate mean by 200% (Figure 2F).

As a typical stage of the EASM, Meiyu precipitation is a
product of the interactions of circulation systems over the
tropical, subtropical, and mid-high latitudes (Ninomiya, 1984;
Tao and Chen, 1987; Ding, 1992; Yihui and Chan, 2005; Ding,
2007; Ding et al., 2018). The common Meiyu circulation pattern
includes the WPSH in a zonal shape with warm and moist air
transport in its northwestern flank, blocking-type circulation at

the high latitudes and a low trough at the middle latitudes tending
to carry cold and dry air. Owing to the necessity of good dynamic
lifting conditions, the Meiyu rainbelt is generally located at the
right entrance of the upper-level jet and the left exit of the lower-
level jet. The typical circulation background summarized above
applies for the 2020 Meiyu but cannot explain its extremity.
Composite circulation anomalies in June and July show the
possible cause of the extremely heavy and persistent Meiyu
rainfall (Figures 3, 4). During the whole Meiyu season, the
anomalous anticyclone over the western North Pacific
(WNPAC) induces the westward and northward expansion of
WPSH (Figures 3A, 4B). Correspondingly, the lower-level
southwesterly winds in the northwestern flank of the WNPAC
accelerate the transport of warm-and-wet air into the YHRB
(Figures 3C, 4C). As is known that the WNPAC could be
maintained by the local air–sea interaction in the western

FIGURE 6 | (A) Interannual standardized anomalies of intensity of quasi-biweekly (8–16 days) oscillation (QBWOI) of precipitation of June and July (bars) from 1961
to 2020. Red dotted line is tendency of interannual series from 1961 to 2020. Solid lines are tendency of interannual series of 1961–1979 and 1982–2020. Red/black
dotted line represents enhanced/decreased tendency. R2 in left side of line is coefficient of determination of tendency of time span from 1961 to 2020. R2 in right side is
that of time span of 1961–1979 and 1982–2020. Value in 2020 is labeled. (B) as in (A) but for June. (C) as in (A) but for July.
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Pacific ocean or the “relay” role of the tropical Indian Ocean
during El Niño decaying summers (Xie et al., 2009; Xie et al.,
2016). By analyzing the evolutions of SST anomaly (SSTA) over
the Indo and Pacific Ocean from 2020 January to July
(Supplementary Figure S2), it is found that the basin-wide
tropical IO warming persists from the winter to early summer
of 2020 and a quick phase transition of an El Niño-like SSTA
pattern over the equatorial central Pacific in the winter of 2020 to
a La Niña-like SSTA pattern in the equatorial eastern Pacific in
early summer. In agreement with Pan et al. (2021), both the warm
SST anomaly forcing in the tropical Indian Ocean and the La
Niña-like SST anomaly in the equatorial Pacific contribute to the
formation and maintenance of the WNPAC. Additionally, the
upper-level jet maintains at the climatological position with a
much stronger intensity, favoring the persistence of 2020 Meiyu
(Figures 3B, 4B). The vertical circulation structure illustrates a
stronger baroclinicity with southerly anomalies at the lower
troposphere and northerly anomalies at the higher levels over
the subtropics, boosting the classical monsoon circulation and
promoting the above-normal ascending motion over the Meiyu
region (Figures 3D, 4D).

Despite the similarity of the atmospheric circulation
anomalies in June and July, there exist distinct differences,
which are responsible for the subseasonal variation of the
anomalous 2020 Meiyu rainbelt location (Figures 3, 4). In
June, the quasi-barotropic positive geopotential height
anomalies (GHAs) associated with anticyclonic anomalies
(ACA) and negative GHAs related to cyclonic anomalies (CA)
cover the South China Sea-western Pacific and the northern Asia
continent, respectively, presenting a meridional dipole pattern.
The positive GHAs of this dipole pattern, that is the WNPAC,
contribute to the enhancement, northward expansion, and
westward (eastward) extension of WPSH [South Asian High
(SAH)], favoring the dynamic conditions for the abundant
Meiyu rainfall over the YHRB and inducing the northward
march of the anomalous rainbelt (Figures 3A,B). Although
the quasi-barotropic negative GHAs of the dipole pattern over
Northeast Asia and West Siberia favor the anomalous cold air
accumulation in the high latitudes (Figure 3A−C), northerly
anomalies to the north of theMeiyu rainbelt are relatively weak in
June (Figures 3C,D), indicating the weak southward intrusion of
cold air to the north of Meiyu front. The enhanced Meiyu is
mainly attributed to the energetic northward warm-and-wet air
transport from the lower latitudes (Figures 3C,D). The front edge
of significantly abnormal lower-level southwesterly wind extends
northward to 34°N. The dominance of the abnormally warm air
suggests a warm Meiyu front feature.

Comparatively, in July, a meridional tripole seesaw pattern of
anomalous circulation appears with positive GHAs (ACA) over
the South China Sea-western Pacific, negative GHAs (CA) at the
middle latitudes over Asia, and positive GHAs (ACA) at the high
latitudes, resembling the Pacific–Japan pattern (Nitta, 1987) or
the East Asia–Pacific pattern (Ronghui and Yifang, 1989; Huang
and Sun, 1992) (Figure 4). Positive GHAs at the high latitudes
centered over Northeast Asia and West Siberia indicate more
active blocking highs over the mid-high latitudes. Positive GHAs
at the lower latitudes cause an intensification and a westward

(eastward) extension of the WPSH (SAH). With the obstruction
of negative GHAs over the Sea of Japan–North China and the
southward migration of the western WNPAC over the South
China Sea, the 588-dagpm contour of WPSH features a weak
northward expansion, and the ridge line of the western WPSH
obviously retreats to the south of the climatological position in
July (Figures 4A,B). This large-scale abnormal circulation is
favorable for the southward shift of the rainband in July. In
contrast to that, in June, the quasi-barotropic CA structure moves
southward and maintains to the north of the Meiyu front.
Accordingly, the anomalous northerly winds in the western
flank of the CA bring cold-and-dry air into the YHRB and
converge with the warm-and-moist air from the lower
latitudes (Figures 4C,D). In this stage, the southward
intrusion of cold air is remarkably enhanced, favoring the
formation of a cold Meiyu front.

The 2020Meiyu begins with a rapid northward march into the
Huaihe River basin and experiences a meridional swing with the
above-normal rainbelt from the northern YHRB in June to the
southern YHRB in July. The two different structures of the Meiyu
front regime are responsible for the subseasonal variation of the
Meiyu rainband location. The enhanced Meiyu over the northern
YHRB in June is primarily due to the extremely vigorous activity
of northward warm air transporting moisture, whereas the
abnormally abundant Meiyu over the southern YHRB in July
is attributed to the significantly southward intrusion of cold air
and the intimate meeting of anomalous cold and warm.

Quasi-Biweekly Oscillation of 2020 Meiyu
Characteristics of the Quasi-Biweekly Oscillation of
2020 Meiyu
Since the 2020 Meiyu has witnessed an obvious subseasonal
variation (Figure 1B), we further investigated the subseasonal
variability of mean Meiyu intensity using the period analysis
methods. The Morlet wavelet analysis reveals that two significant
periods dominate the 2020 Meiyu rainfall processes: 2–4 and
8–16 days (Figure 5A). The former is a high-frequency oscillation
associated with synoptic transient eddies. The range of 8–16 days,
about 2 weeks, is classified as an important low-frequency
fluctuation time window on the subseasonal scale. In other
words, the QBWO is significant in 2020 Meiyu intensity. The
same results can be obtained in the noise power spectrum analysis
of the daily Meiyu precipitation (Figure 5B−D). Both period
windows of 2–4 and 8–16 days are obviously exceeding the red
noise spectrum and the 90% confidence level, except that the
range of 8–16 days in June is less than the 90% confidence level.
After filtering out the high-frequency signal by the 3-day moving
average of daily precipitation, the period of 8–16 days notably
exceeds the 95% confidence level and acts as the primary period of
Meiyu precipitation during 2020 June–July (Figure 5E).
Considering that the 2020 Meiyu is attributed to frequent
heavy rainfall processes, the period analyses were also
conducted to the daily number of a rainstorm (daily rainfall ≥
50 mm) and heavy rainstorm (daily rainfall ≥ 100 mm) stations
(Figure 5F−G). The period of 2 and 4 days and approximately
2 weeks are all above the noise thresholds for the rainstorm

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 7991048

Chen et al. The Subseasonal Variation of 2020 Meiyu Rainfall in China

14

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


events. For rainstorms, 2 and 4 days associated with the high-
frequency variation are much more evident, whereas, for the
heavy rainstorm events, the QBWO is the most significant low-
frequency component, by far exceeding the 95% confidence level.
Therefore, rainfall variabilities with 8–16 days are a crucial period
for the alarming 2020 Meiyu, especially for the severe rainstorm
events, which require more attention when producing the
medium and extended range forecast of rainfall.

The QBWO of Meiyu has been investigated by previous
studies (Lau and Li, 1984; Liang and Ding, 2012; Ding et al.,
2020). How much is the contribution of the QBWO component
to the total rainfall amount? How strong is the QBWO of 2020
Meiyu? The intensities of the QBWO of Meiyu precipitation
(QBWOI) are defined by calculating the variance of the daily
series of 8–16-day Lanczos filter value of daily total precipitation
over Meiyu monitoring regions for a specified period. For
example, the QBWOI in June–July is referred to as the
variance of the daily 8–16-day Lanczos filter precipitation
averaged over 277 observation stations from June 1 to July 31,
2020. It is found that the QBWO component can explain 22% of
the total variability of the 2020 Meiyu when calculating the
variance contribution. The past 60 years have witnessed an
obvious increasing tendency of the standardized QBWOI in
both June and July since 1961, which passes the 95%
confidence level (Figure 6A). A closer look finds a turning
point in the early 1980s for the tendency of the QBWOI in
both June and July using the Manner–Kendall test. From 1961 to
1979, the QBWOI in June–July, especially in June (Figure 6B), is
characterized by a significantly decreasing tendency. In contrast,

since 1981, the QBWOI is obviously intensified in June–July,
especially in July (Figure 6C). The QBWOI in June–July of 2020
is abnormally high with a standardized anomaly of 1.54, ranked at
the sixth place in history. Specially and interestingly, the QBWOI
in July is markedly stronger than normal with a standardized
anomaly of 3.16 and breaks the record, although the QBWOI in
June is weaker than normal. It is noted that the significant
subseasonal characteristic of QBWO is also presented in some
other extreme Meiyu rainfall events such as 1998, 1999, and 2016
(Figure 6A).

Cause of the Quasi-Biweekly Oscillation of 2020Meiyu
The QBWO mainly modulates the daily rainfall intensity of the
super Meiyu in 2020. The QBWOI of Meiyu rainfall in July even
broke the record. How does the QBWO of the Meiyu rainfall
happen? As Meiyu rainfall is closely associated with the EASM
atmospheric circulation systems, we conducted the spectrum
analyses of specific atmospheric circulation systems, including
the position of the WPSH ridge line at 120°E, the southern
boundary of cold air over East Asia (the latitude of the 564
dagpm at 500-hPa geopotential heights averaged along
105°E–135°E), the intensity of subtropical East Asia summer
monsoon (SEASM) (the average 925-hPa meridional winds
over the region of 110°E–120°E, 25°N–35°N, defined as China
National Meteorological trade standard QX/T 394–2017), and the
intensity of EASWJ (the average 200-hPa zonal winds over the
region of 120°E–160°E, 35°N–45°N). All of these EAMS
variabilities exhibit a significant QBWO as Meiyu rainfall doe
(Figure 7).

FIGURE 7 | Noise power spectrum analysis of series of daily index of western Pacific subtropical high (WPSH) ridge (A), south boundary of cold air over East Asia
(B), intensity of subtropical East Asia summermonsoon (SEASM) (C), and intensity of upper-level East Asia subtropical westerly jet (D) in June and July 2020 (dashed red
line is for red noise spectrum).
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The daily variation of the 8–16-day filtered Meiyu
precipitation underlines seven precipitation processes with
peaks occurring on June 3, 13, 21, and 28 and July 7, 18, and
28 and corresponding to the abundant Meiyu rainfall phases,
respectively (Figure 8). They are named as the first to the seventh
round of precipitation processes. The peak/valley of precipitation
is referred to as the fifth/first phase of each round. By listing the
behaviors of the EASM atmospheric circulation systems
associated with the first to the seventh round of precipitation
processes during the whole 2020 Meiyu (Table 1), it is found

unexpectedly that only the southern boundary of the cold air
activity over East Asia corresponds well to the Meiyu rainfall for
all the seven processes. When the QBWO component of Meiyu
reaches the peaks, the cold air over East Asia invades southward
at best (in five processes) or is on the march of the southward
invasion (in two processes). The correlation coefficient (CC) of
the 8–16-day Lanczos filtered Meiyu precipitation and the
latitudes of the southern boundary of cold air over East Asia
from June 1 to July 31 is -0.79. The highly negative correlation
indicates that the southward invasion of cold air over East Asia is

FIGURE 8 | 8-16-day Lanczos filter value (solid curves, left axes) and daily original value (dashed curves, right axes) of Meiyu precipitation, WPSH ridge, southern
boundary of cold air over East Asia, intensity of SEASM, and intensity of upper-level East Asia subtropical westerly jet from June 1, 2020, to July 31, 2020 (numbers of “1,”
“3,” “5,” and “7” denote different phases of four processes of QWBO component during 2020 Meiyu season).

TABLE 1 | Behaviors of some ESAMS associated with first to seventh round of precipitation processes during 2020 Meiyu.

First Second Third Fourth Fifth Sixth Seventh

WPSH ridge Valley Peak Peak Northward
march

Valley Southward
retreat

Valley

South boundary of cold air over East Asia Valley Valley Southward
invasion

Valley Valley Valley Southward
invasion

Intensity of SEASM Valley Enhancement Valley Weakening Peak Peak Enhancement
Intensity of upper-level East Asia subtropical
westerly jet

Peak Enhancement Enhancement Peak Valley Weakening Weakening
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well conducive to Meiyu rainfall. By contrast, the other EASM
circulation systems have a weaker relationship with the Meiyu
rainfall. Three peaks of QBWO rainfall witness the enhancement
or peaks of the SEASM with CC = 0.55 between the filtered
intensity of the SEASM and Meiyu rainfall in July while
corresponding to the weakening or valleys of SEASM in the
first, third, and fourth processes. Besides, the features of the
meridional shift of the WPSH ridge and the intensity of the
upper-level East Asia subtropical westerly jet during the peak
phases of the QBWO rainfall in June are nearly opposite to those
in July. The CCs of the QBWO component of the WPSH ridge
(the intensity of the upper-level East Asia subtropical westerly jet)
with the QBWO rainfall increase up to 0.45 (0.42) in June and
decrease down to -0.40 (-0.31) in July. It suggests that the WPSH
ridge at 120°E marches northward, and the upper-level East Asia
subtropical westerly jet intensifies when the rainfall enhances in
June, whereas the reverse applies in July.

To further clarify the QBWO of the atmospheric circulation
favorable for the super Meiyu, the composite evolution of the
EASM atmospheric circulation systems in the second to third and

the fifth to sixth rounds is presented in Figures 9−12. The
composite 8–16-day filtered circulations show almost opposite
evolution patterns in the first to fourth phase to the fifth to eighth
phase in June and July 2020, respectively (Figure 9–12). The
filtered circulation pattern at phase 5 that corresponds to the peak
phase of precipitation is contrary to that at phase 1.

In June, the increasing (decreasing) of rainfall on the 8–16-day
time scale is accompanied by a northward march (southward
retreat) of the WPSH and a southward intrusion (northward
diminishing) of the cold air over Northeast Asia (Figure 9). At the
peak phase (phase 5), a cyclonic circulation at 500 and 925 hPa
occurs over Northeast China. The 588-dagpm contour at 500 hPa
shifts northward to the Yangtze River valley, and the 564-dagpm
contour arrives at the southernmost location. The meeting of the
cold vortex andWPSH contributes to the intensification of Meiyu
precipitation. The reverse is true for valley phase 1. The cyclone
over Northeast China at phase 5 can be traced back to the cyclonic
circulation west of Lake Baikal at phase 1, which is embedded in a
wave train over the mid-high latitudes. At phase 1, the wave train
is featured with high pressure/anticyclonic winds over the Ural

FIGURE 9 | Composite 8–16-day Lanczos filtered 500-hPa height (shaded, unit: dagpm) and 925-hPa winds (only filter value exceeding 1 m s-1 is shown by
vectors). Marks of C/A denotes cyclonic/anticyclonic filtered circulation) corresponding to eight evolution phases of QWBO rainfall in second and third rainfall processes.
Red lines denote 564- and 588-dagpm contours at unfiltered 500-hPaGHs.A–H correspond to the eight phases of the composite evolution of QWBO component of the
the second to third rainfall processes.
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Mountains, low pressure/cyclonic winds west of Lake Baikal, high
pressure/anticyclonic winds over Northeast China, and low
pressure/cyclonic winds over the North Pacific east of Japan.
With the enhancement of rainfall, the wave train moves
southeastward. At phase 5, the wave train with the opposite
sign to phase 1 takes place at the troposphere (Figure 9).

The eastward propagating wave train might be related to the
EASWJ. Although the EASWJ cores persist over the latitudes of
30–40°N, benefiting the stationary rainbelt, its intensity exhibits a
significant QBWO (Figure 10). The intensity of the EASWJ
reaches the maximum with the positive filtered zonal wind
over North China–Japan at phase 5, whereas the EASWJ belt
broke with the negative filtered zonal wind over North
China–Japan at phase 1. The enhancement of the EASWJ is
favorable for the ascending motion, thereby enhancing Meiyu
rainfall. On the other hand, it might contribute to the eastward
propagating of the wave train as a waveguide.

As in June, broad filtered cyclonic winds at 925 hPa
accompanied with a trough over Northeast Asia at 500 hPa
favor a southward intrusion of cold air from the mid-high

latitudes at the peak phase of Meiyu rainfall in July; the
opposite holds true for the valley phase (Figure 11). At phase
5, over the broad low pressure in Northeast Asia, two cyclone
centers are found north of Lake Baikal and over Northeast China.
The cyclone center to the north of Lake Baikal originates from the
northwestward propagation of the low pressure/cyclone over the
Aleutian Islands at phase 1 carried by a wave train at the mid-high
latitudes. The distribution of the wave train centers in July are
distinct from those in June (Figures 9, 11), and it comprises high
pressure/anticyclonic winds north of the Ural Mountains, broad
low pressure/cyclonic winds over Northeast China, and high
pressure/anticyclonic winds over the Aleutian Islands. Another
cyclone center over Northeast China might arise from the
combination of the westward propagation of the wave train
over mid-high latitudes and the northwestward propagation of
the cyclonic circulation over the Philippine Sea at phase 1. As the
cyclonic circulation over the Philippine Sea marches northward
and slightly westward, an anticyclone from the tropics gradually
takes its place, inducing the westward extension of the WPSH.
Because of the northward migration of the cyclone along the East

FIGURE 10 |Composite 8–16 days Lanczos filtered 200-hPa zonal winds (shaded, unit: m s-1) corresponding to eight evolution phases of QWBO rainfall in second
and third rainfall processes. Red lines denote 30 and 40 m s-1 contours at unfiltered 200-hPa zonal winds. A–H correspond to the eight phases of the composite
evolution of QWBO component of the the second to third rainfall processes.
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Asia coast, the WPSH around 120°E retreats southward as Meiyu
rainfall increases. Remarkably different from that in June, at
phase 5, the southwest winds favorable for warm and wet air
transport over southern China are more vigorous tomeet with the
northwest winds carrying cold and dry air from the north. The
two flows contribute to an obvious lower pressure over southeast
China, causing the WPSH to retreat to the southernmost
(Figure 11). The westward propagation of the wave train over
the mid-high latitudes of Eurasia is contrary to that in June, which
may be related to that of the EASWJ weakened markedly from
June to July. A contrary evolution of the intensity of the EASWJ
associated with Meiyu rainfall stands out in July, as shown in
Figure 12. At the peak phase of rainfall, the EASWJ weakens with
the broad negative filtered zonal wind over East Asia, possibly
related to the westward propagation of the wave activities on the
scale of the QBWO.

To summarize, the evolutions of the EASM atmospheric
circulation systems on the scale of 8–16 days in June and July
both well capture the QBWO component of the 2020 Meiyu

rainfall but exhibit two different ways. In addition to the opposite
propagation of the wave train over the mid-high latitudes of
Eurasia, the WPSH ridge, SEASM, and EASWJ exhibit opposite
evolution behaviors in June and July.

CONCLUSIONS AND DISCUSSIONS

The super 2020 Meiyu onsets earlier and ends later than
normal, with an extremely long duration of 62 days.
Persistent rainfall accompanied with frequent heavy
rainstorms brings a record-broking Meiyu event and causes
devastating floods over the YHRB. The Meiyu rainfall is closely
related to the anomalous EASM atmospheric circulation
systems with westward and northward WPSH, evident
expansion of the EASWJ and SAH, and the accelerated
lower-level southwesterly flows.

When closely examining the characteristics of the Meiyu
rainbelt migration, it is found that the centers of positive

FIGURE 11 | As in Figure 9 but for fifth and sixth rainfall processes. A-H correspond to the eight phases of the composite evolution of QWBO component of the the
second to third rainfall processes.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 79910413

Chen et al. The Subseasonal Variation of 2020 Meiyu Rainfall in China

19

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


FIGURE 12 | As in Figure 10 but for fifth and sixth rainfall processes. A–H correspond to the eight phases of the composite evolution of QWBO component of the
the second to third rainfall processes.

FIGURE 13 | Schematic diagram for explanation for abnormal Meiyu rainbelt in June (A) and July (B) 2020 (solid blue/dashed red cycle and blue/red letter A/C
denote anticyclonic/cyclonic anomaly).
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rainfall anomalies experience a southward retreat from June to
July. The above-normal rainband was located over the northern
YHRB in 2020 June and retreated southward to the southern
YHRB in July. To better understand the rainbelt migration, the
anomalous large-scale circulation patterns are illustrated in
Figure 13. In June, extremely vigorous northward warm-and-
wet air transported by the abnormal southwesterlies associated
with the WPSH motivates a warm Meiyu front, anchoring the
Meiyu rainbelt over the northern YHRB (Figure 13A). By
comparison, in July, the significant northeast wind anomalies
linked with the CA over the Sea of Japan–North China and the
ACA over Northeast Asia induce cold air to invade into the lower
latitudes and to converge with the abnormal southwesterlies in
the northwestern flank of the ACA over the western Pacific. The
intimate merging of cold and warm air is favorable for the Meiyu
front formation and the rainbelt over the southern YHRB
(Figure 13B).

During all the 2020 Meiyu season, no matter in June or July
2020, it is identified that an extremely strong WNPAC persists
and induces abundant Meiyu rainfall over the YHRB. Consistent
with Pan et al. (2021), the SSTA pattern over the Indo-Pacific
ocean with a basin-wide IO warming persisting from the winter to
early summer of 2020 and a quick phase transition of an El Niño-
like SSTA pattern over the equatorial central Pacific in the winter
to a La Niña-like SST pattern in the equatorial eastern Pacific in
the early summer is a great contributor to the formation and
maintenance of the WNPAC. However, the explanation for the
subseasonal southward shift of theWNPAC over the South China
Sea favorable for the meridional migration of the 2020 Meiyu
rainbelt from June to July needs to be explored in our further
studies.

Another significant subseasonal variation of the 2020 Meiyu
precipitation is that the Meiyu rainfall evolves in periodic
oscillations of approximately 2 weeks (8–16 days).
Interestingly, the QBWO intensity of Meiyu rainfall, especially
in 2020 July, has witnessed an obvious increasing tendency since
the early 1980s. The QBWO intensity of Meiyu rainfall in 2020
July ranks first place since 1960.

Consistent with theMeiyu rainfall, the circulation systems also
exhibit a QBWO feature. Pieces of evidence show that each

southward intrusion of cold air over East Asia corresponds
well to the increase of Meiyu precipitation on the scale of
QBWO. However, other systems such as the WPSH, SEASM,
and EASWJ behave in different and even contrary ways between
June and July 2020. The results are unexpected and require more
investigation of the details. When Meiyu rainfall enhances to the
peaks, the WPSH marches northward (retreats southward), the
SEASM weakens (strengthens), and the EASWJ accelerates
(decelerates) in June (July) 2020. Moreover, the filtered
cyclone over Northeast China available for the southward
intrusion of cold air from the mid-high latitudes for Meiyu
precipitation arises in different ways. In June, the cyclone is
attributed to the eastward propagation of a wave train over the
mid-high latitudes, whereas that in July is the result of the joint
effect of the westward propagation of a wave train over the mid-
high latitudes and the northward propagation of the cyclonic
circulation from the tropics. Circulations at the peak phase of
Meiyu rainfall on the scale of QBWO are summarized in
Figure 14.

This study describes the characteristics and cause of the
meridional migration of the 2020 Meiyu rainbelt from June to
July and reveals a QBWO feature of daily Meiyu rainfall amount
and the corresponding atmospheric circulation characteristics. The
external forcings driving the subseasonal variation of the abnormal
rainbelt and the QWBO variability require further investigations.
Given that the QBWO intensity of Meiyu exhibits significant
interannual and interdecadal variations, the influencing factors
(e.g., the global SSTA), the associated physical processes, and the
contribution to the prediction of Meiyu are still open questions.
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Research on the Characteristics and
Influence Factors of Autumn
Continuous Rain in Qinghai Province
Hanwei Yang1,2, Hongyan Shen3, YueMa4, Yawei Yang1,2, XiaojuanWang5* andGuolin Feng6

1Shanghai Climate Centre, Shanghai, China, 2Key Laboratory of Cities Mitigation and Adaptation to Climate Change in Shanghai,
Shanghai, China, 3Qinghai Climate Centre, Qinghai, China, 4Shanghai Jiading District Meteorological Bureau, Shanghai, China,
5Changshu Institute of Technology, Suzhou, China, 6National Climate Center (China), Beijing, China

Using daily precipitation data of national meteorological stations in Qinghai Province and
reanalysis data, the main patterns of autumn continuous rain (ACR) are extracted, and key
SST areas and circulation factors are searched for to analyze the possible effects on the
seasonal and sub-seasonal predictability of ACR in Qinghai Province. The factors with
strong precursors mainly include sea surface temperature (SST), Arctic vortex, and
subtropical high. The influence of oceanic factors on ACR is relatively independent,
while there is an interaction between atmospheric circulation factors. The precursors in
spring are from the equatorial east-central Pacific for the main pattern with consistent
precipitation distribution, and the Indian Ocean for the pattern with “saddle type”
distribution. SST anomalies from the Pacific and Indian Oceans force different
circulation patterns that can enhance meridional circulation over Europe-Asia and lead
to different precipitation pattern of ACR. The signals from the Arctic vortex and subtropical
high in June to July are indicative for ACR. The southward, westward and strong Arctic
vortex, together with the south-westward extension of subtropical high over the Atlantic
and Pacific can promote more ACR in Qinghai Province. Under the SST forcing and
configuration of high and low latitude circulation, the meridional circulation continues to be
weak, and the latitudinal circulation to be enhanced over the Eurasia in the early period, and
the circulation pattern changes from type-W to type-C, which lead to positive anomaly of
ACR in Qinghai Province.

Keywords: autumn continuous rain, main patterns of rainfall, sea surface temperature anomaly, atmospheric
circulation, predictable factors

INTRODUCTION

Autumn continuous rainfall (lasting for days or even more than 10 days, ACR) in Qinghai province has
the characteristics of high frequency and long persistency, which is one of the dominant meteorological
disasters in Qinghai Province (Shi, 2003). It comes along with the harvest of highland barley, spring
wheat, rape and other plateau crop in Qinghai Province. ACR not only adversely affects autumn harvest
works, but also easily cause food crops to go moldy (Yuan and Yan, 2017). In addition, the lasting lower
temperatures alongwithACRwill lead to the delay of crop fertility or growth (Fu et al., 2004). Thus, it has
important practical significance to guide agricultural production, effectively avoid disaster form ACR,
and increase the meteorological disaster prevention and mitigation capacity by carrying out prediction
research to strengthen the short-term climate prediction ability of ACR in Qinghai province.
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ACR is always the study focus of many researchers. Some good
research results have obtained in internal structure of cloud, the
definition, climate characteristics and physical mechanism of
ACR. Toit (2010) found that large concentrations of raindrops
having diameters of less than 0.5 mm were observed in a few
thousand feet above the ground by Doppler radar observation.
Through the study on the relationship of the sunshine duration
and cloud cover, the new Qinghai ACR monitoring index was
revised, and space-time distribution and intensity change
characteristics were analyzed (Li, et al., 2018). Sun et al.
(2016) analyzed the climate characteristics of ACR in China,
and found that the cumulative frequency is larger in upper and
middle reaches of Yangtze River, and with the increase of
strength, the region of greater value move toward the
southwest from the southeast of China. In Qinghai, its climate
characteristics of spatial-temporal variation was analyzed by Ma
(2008), showing that the occurrences frequency of ACR is slowly
decreasing, and it is more in southeast than northwest. In
synoptic scale forecasting, A continuing heavy rain process
occurred in west of Sichuan Basin from 22 September 2008 to
27 September 2008 was analyzed and predicted in wave-packet
propagation diagnosis method, and concluded that the evolution
of wave packet is meaningful for prediction (Xiao, et al., 2010). In
short-term climatic forecasting, it is found that subtropical high
over western Pacific and SST in the equatorial central and eastern
Pacific has important effects on ACR in northwest of China by the
study on typical cases occurred in 2000 and 2001 (Lin and Zhang,
2003). Based on the theory of isentropic potential vorticity,
diagnostic analysis is carried out on a continuous rainfall
process occurring in northwest of China in late May 2005 by
Cheng et al. (2007), thinking that the continuous rainfall process
is caused by continuous plateau low vortex and cold air separated
from the north, and the positive vorticity area of isentropic
surface is closely related to the precipitation area, which can
be used as an important predictor.

However, in the forecasting and prediction of ACR in Qinghai
Province, most of the previous studies focused on the synoptic scale
(Xu et al., 2010). In the short-term climate prediction of ACR, the
objective forecasting methods and tools is lacked. On the other
hand, it is also a lack of in-depth understanding of the formation
mechanism of ACR and intuitive conceptual model is still not given.
Therefore, in this work, we use the daily precipitation data observed
from 50 national meteorological stations in Qinghai Province to
extract the main rainfall modes of ACR in Qinghai Province to
analyze its spatial-temporal variation characteristic. The key SST
areas and circulation factors related to ACR are then searched for to
analyze their influence and indicative significance on ACR, and
furthermore construct the conceptual model of impact factors. This
study will expand the understanding of the mechanism of ACR in

highland areas and lay a solid foundation for the development of a
combined dynamical-statistical prediction method.

Data and Method
The quality controlled daily precipitation data from 2000 stations
sorted out by National Climate Center (NCC) of China for 1961-
2017 were used, from which 50 stations with good continuity in
Qinghai Province were selected for analysis. The monthly mean
geopotential height formNCEP/NCAR reanalysis from 1,000 hPa
to 10 hPa (2.5 ° × 2.5 °, Kalnay et al., 1996), and monthly SST
reanalysis data (2 ° × 2 °) from NOAA were selected. The SST and
atmospheric circulation indices were extracted from the dataset of
142 circulation indices. The dataset is treated by the Climate
Diagnostics and Prediction Division of NCC and widely used in
research and monitoring/prediction work, including global
subtropical high indices (strength, area and position indices),
Arctic vortex indices (strength, area and position indices) in
difference continent, SST indices in global key oceanic regions,
ocean-atmosphere oscillation indices, circulation pattern indices,
and other forcing indices (sea ice, snow cover). Details of the
indices used can be found in the Supplementary Material.

ACR refers to the disaster of long-lasting cloudy and rainy
weather with high air humidity, which affects crop ripening,
harvesting, drying and other farming activities. Following the
local meteorological disaster standard of Qinghai Province, the
ACR events can be classified to light level and heavy level
(Table 1). In this work, the ACR is defined including both
light and heavy event as the process rainy days (D) ≥ 5 days,
sunshine hours per day (S) < 2.5 h, the process precipitation (P) ≥
10 mm, as well as rainless days (d) < 2 days.

We use the empirical orthogonal function (EOF) (Shi, 2009) to
extract the main rainfall modes of ACR in Qinghai Province.
Regression, correlation, partial correlation and anomaly analyses
(Wei, 2007) were used to analyze the impact on seasonal and sub-
seasonal precipitation of ACR. The square root of the coefficient
of determination was used in the regression analysis to be tested
according to the significance test of the correlation coefficient.

THE MAIN RAINFALL PATTERNS OF ACR
IN QINGHAI PROVINCE

Based on the definition of ACR events, we count the number of
station with ACR occurrence in each month from 1961 to 2017
(Table 2). During the period of 1961–2017, there were 2,157
stations of ACR, all of which occurred in August-November.
Among them, it was most frequent in August-September,

TABLE 1 | ACR disaster lever and its classified factors.

No Disaster level Classified factors

1 Light D ≥ 5, S ≤ 2.5, p ≥ 10, and d < 2
2 Heavy D ≥ 10, S ≤ 2.5, p ≥ 20, and d < 3

Note: D - process Rainy Day (unit: day) P - process Precipitation (unit: mm).
S - Sunshine Hours per day (unit: hour) D–Rainless Day (unit: day).

TABLE 2 | The number of occurred stations in each month of ACR in Qinghai
Province.

Month Frequency (station) Percentage (%)

August 898 41.6
September 982 45.5
October 274 12.7
November 3 0.1
Total 2,157 100
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reaching 898 (41.6%) and 982 (45.5%) stations respectively, and
reaching nearly 90% accumulated. It was less frequent in October,
with only 274 stations, accounting for 12.7%. It rarely occurred in
November, with only 3 stations, accounting for 0.1%. Therefore,
August-September is the time of high incidence of ACR in Qinghai
Province, and the analysis below is mainly for this time period.

Using daily precipitation observations from 50 national
meteorological stations in Qinghai Province, the anomaly of
regional average continuous rainfall and rainday from August
to September 1961-2017 are calculated (Figure 1). Similar
variations are found in the time series of rainfall and rainday
on both interannual and interdecadal scales. The correlation
coefficient between the time series of rainfall and rainday in
Qinghai Province reaches 0.97.

On the interdecadal scale, the amount of rainfall and the
number of rainday in Qinghai Province have positive anomaly
from the 1960s to the mid-1980s and from the beginning of the
21st century to the 2010s. While from the mid-1980s to the end of
the 21st century, they have negative anomaly. On the interannual
scale, the interannual variation of ACR is large, and there is
obvious interannual difference.

The EOF analysis is conducted to extract the main rainfall
patterns of ACR in Qinghai Province from 1961 to 2017. The
explained variances of the first two modes reach 35.8 and 11.0%
respectively, and the cumulative explained variance is 46.8%. It is

tested that the first two modes of EOF analysis can pass the North
test (North et al., 1982), meaning that the both modes are
independent.

Mode EOF1 (Figure 2A) shows a spatial-consistent
distribution pattern, which characterizes the main spatial
pattern of ACR, and is similar to its climatic mean state. Also,
the variation characteristics of its temporal coefficient
(Figure 2C) is similar to those of the rainfall anomaly
(Figure 1A), and the correlation coefficient between them can
reach 0.95, i.e., the spatial distribution pattern of EOF1 can
basically characterize its average condition.

Mode EOF2 (Figure 2B) is the second main mode after the
climatic mean state, showing a “saddle-shaped” spatial
distribution pattern. Two types of precipitation distribution
are formed when coupled with the phase of time coefficients,
namely southern rainfall type and East-West rainfall type.

Based on the distribution of EOF1 (Figure 2A), the anomalous
center of ACR is located in the southeastern part of the Qinghai
Province. The concerned domain is designated according to the
spatial distribution (Figure 3) of the year-to-year variability by
standard deviation (STD) > 30mm. It can be found that its
precipitation anomaly (Figure 1C) is similar with the region’s,
with the correlation coefficient reaching 0.94. Therefore, the
rainfall of ACR can represent the temporal variations, which
can be used to analyze the relationship between ACR and

FIGURE 1 | Regional average precipitation anomaly (A), unit: mm), rainday anomaly (B), unit: day) and concerned domain (C), unit: mm) average precipitation
anomaly of ACR from August to September during 1961-2017.
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ocean/atmospheric circulation, and exploring its seasonal and
subseasonal predictability.

The Relationship Between ACR and SST
The oceanic forcing acts as one of the important driving factors
affecting the occurrence and development of ACR in Qinghai
Province. The temporal coefficients of the main rainfall patterns
and the time series of ACR anomaly are correlated with SST and

oceanic indexes from the ocean/circulation index dataset during
the same and the previous period, respectively. To single out the
effect of one factor on ACR, partial correlation analysis is also
conducted and control variables are extracted by excluding
factors of the same class. The key SST areas that influence the
main rainfall distribution patterns are extracted, and their
relationships are discussed to exploring their indicative effect.

The Relationship Between ACR and SST
During the Same Period
A regression analysis was conducted using the temporal
coefficients of the main modes of ACR on SST during the
same period, respectively (Figures 4C–F). The key SST area
for consistent precipitation distribution (EOF1) is located in
the equatorial eastern central Pacific, and the relationship is
significantly negatively correlated, i.e., the negative SST
anomaly (La Niña event) in the equatorial eastern central
Pacific is favorable to positive anomaly of ACR in Qinghai.
The key SST region of “saddle-type” precipitation distribution
(EOF2) is mainly located in the Indian Ocean, and presenting a
significant negative correlation, i.e., the higher SST, especially in
the western and southeastern Indian Ocean, is favorable to more
ACR Qinghai during the same period.

FIGURE 2 | Main modes and their time coefficients of ACR from 1961 to 2017. (A): EOF1; (B): EOF2; (C): PC1; (D): PC2.

FIGURE 3 | Standard deviation of ACR in Qinghai Province during 1961-
2017 (unit: mm).
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The SST indices are selected from the index dataset, and correlated
with the time series of ACR anomaly in August, September, and
August-September from 1961 to 2017, respectively (Table 3). The
SSTs of the same period in different areas have different indications
for the sub-seasonal rainfall of ACR. The key area influencing the
ACR in August is mainly from the tropical Indian Ocean, which
shows a significant positive correlation between the TIOD with the
rainfall of ACR. In September, the key areas shift to the PacificOcean,
including NINO A and the Kuroshio region, both of which show a
significant negative correlation. From the result of partial correlation,
the correlation coefficients by excluding the influence for each other

do not change, meaning that the effects from the equatorial eastern
central Pacific and tropical Indian Ocean on ACR are independent.

The Relationship Between ACR and SST
During the Previous Period
Figures 4A,B shows the regression of EOF1 temporal coefficients on
earlier global SST. It can be found that the early ocean signal in spring
mainly comes from the equatorial central-east Pacific and the tropical
central Indian Ocean. In summer, the precursor of the equatorial
central-east Pacific narrows to the central region, and the Indian

FIGURE 4 | Regressions on global SST in spring (A,D), summer (B,E) and August-September (C,F) of PCs during 1961–2017. (A–C): PC1; (D–F): PC2; +: pass
the significant level of 0.05).
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Ocean signal weakens. These relationships all show a significant
negative correlation, i.e., the lower SST in the early period favorsmore
precipitation in the main pattern of the consistent pattern of ACR.
For EOF2 (Figures 4D,E), the precursory signal for the “saddle-type”
precipitation distribution is mainly located in the Indian Ocean, and
it can last from spring to summer. In addition, there is also some
gradually weakening signal in the Kuroshio region from spring to
summer.

The SST of tropical Indian Ocean in spring is indicative to
the ACR in August-September. A positively correlated
relationship is found between TIOD index and ACR.
However, in sub-seasonal scale, the relationship from
global SST is different. It is similar for ACR in August with
a stronger signal in the tropical Indian Ocean, which can be
advanced to the southern Indian Ocean in april and shift to
the tropical Indian Ocean in May. While, the indicative signal
of ACR in September appears in the equatorial east-central
Pacific Ocean. Especially in March-April, the SST in NINO
region shows a significant negative correlation with it. In
addition, under the influence of SST, Southern Oscillation
is also one of the indicative signals of the September ACR with
significant positive correlation (Table 4). After excluding the
influence from other oceans, the partial correlation coefficient
can also pass the 0.05 significance level. Thus, the signals from
tropical Indian Ocean and the equatorial east-central Pacific
Ocean are with indicative significance and independence in
the previous period.

Influence Mechanism of SST on ACR
The SST anomaly in the equatorial eastern central Pacific and the
tropical Indian Ocean correspond to precipitation pattern of
EOF1 and EOF2 respectively, and their precursor signals can
be advanced to spring. In order to explore the impact of SSTs on
the ACR, composite analysis is conducted by extracting typical

years with STD >1.7 of PC1 (1967, 1971, 1981, and 2017) and
PC2 (1963, 1968, 1973, 1979, and 2014).

Consistent with the correlation analysis, a strong La Niña
event can be found from spring to September for EOF1
(Figure 5A). The SST anomaly in the equatorial eastern
central Pacific will cause anomalous circulation over the
middle and high latitudes of Eurasia, forming a strong
positive anomaly over Europe and negative anomaly over
Asia (Figure 5C). This circulation pattern will strengthen
the meridional circulation over the Eurasian. At the same
time, the negative anomaly of SST is strong enough to extend
to Equatorial Western Pacific, and causing a weak and easterly
western Pacific subtropical high (WPSH) by weakening the
Hadley circulation. Thus, it forms a warm advection over the
main rainfall region of the ACR in Qinghai Province
(Figure 6A), and brings water vapor from Indian Ocean
(Figure 6C) to leading the precipitation pattern of EOF1.

For the precipitation pattern of EOF2, the consistent
negative anomaly of SST is also can be found in the
tropical Indian Ocean (Figure 5B). The circulation
anomaly caused is different with a La Niña event, forming
a “+, -, +,-” pattern over the middle and high latitudes of
Europe-Asia-Pacific (Figure 5D). This circulation pattern can
also strengthen the meridional circulation over the Eurasian,
especially the cyclonic circulation anomaly formed over north
of Qinghai Province. Under this circulation pattern, water
vapor from the Indian and Pacific Oceans mainly affects the
eastern part of China and cannot be transported to Qinghai
Province. The precipitation pattern of EOF2 is mainly due to
the cyclonic circulation anomaly, which forms a cold
advection over Qinghai Province and brings water vapor
from the Arctic (Figures 6B–D).

Therefore, the enhanced meridional circulation is necessary to
cause the ACR in Qinghai. However, SST anomalies from the

TABLE 3 | Correlation and partial correlation coefficients between ACR and the oceanic indexes in the same period from 1961 to 2017.

No Oceanic index Aut.-Sep Aut Sep.

1 SST anomaly in NINO A region —— —— −0.28 (−0.28)
2 SST anomaly in Kuroshio region —— —— −0.28 (−0.28)
3 TIOD index —— 0.28 (0.28) ——

Note: The partial correlation coefficient is indicated in parentheses. Only the correlation coefficients passing the 0.05 significance level are presented.

TABLE 4 | Correlation and partial correlation coefficients between ACR and ocean indexes during the previous period from 1961 to 2017.

ACR Ocean
index

Mar.-May Jun.-jul Mar. Apr. May Jun. Jul.

Aug.-Sep TIOD index 0.28 — — — 0.28 (0.24) — (0.25) —

SIOD index — — — 0.31 (0.28) — — —

Aug. TIOD index — 0.31 (0.35) — — 0.26 (0.25) 0.33 (0.35) 0.27 (0.31)
SIOD index — — — 0.26 — — —

Sep. NINO SST index in region 1 + 2 — — −0.27 (−0.28) — — — —

NINO SST index in region 3 — — −0.33 (−0.30) — — — —

NWP warm pool index — — −0.32 (−0.30) — — — —

SOI 0.27 — — 0.28 — — —

Note: The partial correlation coefficient is indicated in parentheses. Only the correlation coefficients that passed the 0.05 significance level test are represented in the table.
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Pacific and Indian Oceans force different circulation patterns that
lead to different precipitation pattern of ACR.

IMPACT OF ATMOSPHERIC CIRCULATION
ON ACR IN QINGHAI PROVINCE

The atmospheric circulation configuration between high and
low levels, north and south latitudes forced by SST anomaly
are the direct factors leading to the ACR anomaly. Similar to
the SST, the possible impact on seasonal and sub-seasonal
ACR of atmospheric circulation is analyzed to explore their
indicative effects.

The Relationship Between ACR and
Atmospheric Circulation During the Same
Period
A regression analysis was conducted using the temporal coefficients
of the main modes of ACR with the 500hPa geopotential height field
during the same period. The key area, which can affect the consistent
pattern of ACR by causing the change of the trough and ridge over
Qinghai Province, is located in the middle and high latitudes of the
upper Eurasian continent showing a significant positive correlation
(Figure 7A). The remote correlation wave train with significant

correlation to the “saddle type” precipitation distribution pattern are
located at middle and high latitudes, forming “-, +, -, +, -” from
Central Asia to the west coast of North America, and this wave train
plays an important role in the “saddle type” distribution of ACR
(Figure 7B).

The atmospheric circulation that have important influence
on ACR in the same period mainly come from subtropical
high (No. 1–8) and high latitude circulation and remote
correlation circulation pattern (No. 9–11) in the northern
hemisphere (Table 5), and presenting different characteristics
in seasonal and sub-seasonal scale. In August, the ACR is
mainly positively correlated with the Pacific subtropical high
pressure, especially over the eastern Pacific Ocean, while in
September it is negatively correlated with the northern
boundary of subtropical high over the North American-
Atlantic.

The relationships between the high latitude circulation/remote
correlation circulation pattern in the northern hemisphere and
the ACR are mainly reflected in the seasonal scale, including the
area of the polar vortex over the Atlantic-Europe (negative
correlation), the Pacific Transition Pattern (PT) remote
correlation circulation pattern (positive correlation), and
C-type circulation over the Atlantic-Europe (positive
correlation). Therefore, The circulation configuration with
strong subtropical high over the Pacific, southward subtropical

FIGURE 5 | Composite analysis of SST and geopotential height in 500 hPa for EOF1 (A,C) and EOF2 (B,D). (A,B): SST anomaly, unit: °C; (C,D): geopotential
height, contour line: geopotential height, shading: geopotential height anomaly, unit: gpm).
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FIGURE 6 | Composite analysis of temperature advection in 700 hPa and integrated moisture flux anomaly (1000 hPa–300 hPa) for EOF1 (A,C) and EOF2 (B,D).
(A,B): temperature advection, unit: 10−5 °C/s; (C,D): integrated moisture flux anomaly, vector: moisture transport anomaly, unit: kg/s−1•m−1; shading: convergence and
divergence anomaly field of moisture, unit: 10−5kg/s−1•m−2).

FIGURE 7 | Regressions on 500 hPa geopotential height field of temporal coefficients of ACR in August-September during the 1961–2017 period.(A): PC1; (B):
PC2; +: pass the significant level of 0.05).
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TABLE 5 | Correlation and partial correlation coefficients between ACR and atmospheric circulation indexes in the same period from 1961 to 2017.

No Atmospheric circulation index Aug-sep Aug. Sep.

1 Subtropical High Area index over the Eastern Pacific —— 0.32 (0.40) ——

2 Subtropical High Area index over the Pacific —— 0.28 (0.36) ——

3 Subtropical High Intensity index over the Eastern Pacific —— 0.34 (0.41) ——

4 Subtropical High Intensity index over the Pacific —— 0.30 (0.37) ——

5 Ridge Line of Subtropical High over the Eastern Pacific 0.34 (0.37) —— ——

6 Northern boundary of Subtropical High over the northern hemisphere —— 0.31 (0.34) ——

7 Northern boundary of Subtropical High over the Atlantic -0.41 (-0.41) —— −0.43 (−0.41)
8 Northern boundary of Subtropical High over the North American-Atlantic -0.41 (-0.41) —— −0.43 (−0.41)
9 Area index of the Arctic vortex over the Atlantic-Europe -0.27 —— −0.37 (−0.28)
10 Pacific Transition Pattern (PT) 0.28 —— (0.31) ——

11 C-type circulation over the Atlantic-Europe 0.30 (0.26) —— ——

Note: The partial correlation coefficient is indicated in parentheses. Only the correlation coefficients that passed the 0.05 significance level test are represented in the table.

FIGURE 8 | Regressions on 500hPa geopotential height fields during the previous period of PC1 (A,B) and PC2 (C,D) from 1961 to 2017. (A,C): March-May;
(B,D): June-July; +: pass the significant level of 0.05.
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high over the North American-Atlantic, lower area of polar
vortex over the Atlantic-Europe, positive phase of PT
circulation over the western Pacific, and the C-type circulation
dominating the Atlantic-Europe, is conducive to the transmission
and stable maintenance of the trough and ridge from upstream to
the downstream Qinghai, leading to more ACR.

After excluding the influence from each other of the key
atmospheric circulation factors, the partial correlation coefficients
of subtropical high has improved, and other’s decreased. Therefore,
subtropical high pressure is probably the most important circulation

factor, which interacts with other circulation factors, and thus affects
the ACR.

The Relationship Between ACR in Qinghai
Province and Atmospheric Circulation
During the Previous Period
The areas significantly correlated with PC1 in the 500hPa
geopotential height field in spring are mainly located over the
North American continent at middle and high latitudes, which

TABLE 6 | Correlation and partial correlation coefficients between ACR and atmospheric circulation indexes in previous period from 1961 to 2017.

No Atmospheric
circulation

index

Mar.-May Jun.-jul Mar. Apr. May Jun. Jul.

1 Ridge line of subtropical high over the Atlantic — — — — — −0.28 (−0.33) —

2 Northern boundary of Subtropical High over the Pacific — — — — −0.27 (−0.29) — —

3 Ridge point of subtropical high over the western Pacific — — — — −0.29 (−0.31) — —

4 Area index of the Arctic vortex over the Asia — — — −0.27 (−0.30) — — —

5 Area index of the Arctic vortex over the Atlantic-Europe — — — — — 0.33 (−0.26) —

6 Intensity index of the Arctic vortex over the Asia — — — — — — 0.30
7 Latitudinal position of Arctic vortex center — −0.28 — — — — -0.27
8 Intensity index of the Arctic vortex center — 0.29 — — — — —

9 AO index — — — — — −0.29 (−0.25) —

10 Meridional Circulation Index over Eurasia −0.35 (−0.35) −0.29 −0.34 (−0.36) — — −0.33 (−0.26) —

11 Latitudinal Circulation Index over Asia — — — — — — 0.29
12 Meridional Circulation Index over Asia − −0.28 — -0.26 (-0.27) — −0.31 (−0.26) —

13 W-type circulation pattern over Atlantic-Europe — 0.28 — — — 0.26 —

14 E-type circulation pattern over Atlantic-Europe — -0.30 — — — −0.32 (−0.25) —

Note: The partial correlation coefficient is indicated in parentheses. Only the correlation coefficients that passed the 0.05 significance level test are represented in the table.

FIGURE 9 | Diagnostic model of ACR in Qinghai Province.
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show significant negative correlations. By in June-July, these areas are
shifted eastward and located over the northern Atlantic Ocean. In
addition, the geopotential height over the Arctic in June-July shows a
significant positive correlation with the EOF1 (Figures 8A,B).

In spring, the key areas of EOF2 in 500hPa geopotential height
field are located in the Eurasia, showing a “saddle type”
distribution with negative correlation. In June-July, the
correlation circulation pattern is adjusted, and the areas shift
to the upstream area of Qinghai Province and the Arctic, both of
which show significant negative correlation (Figures 8C,D).

On seasonal and sub-seasonal time scales, the indications of
atmospheric circulation in previous period for ACR are relatively
similar. The predictable factors can be divided into four categories:
subtropical high, Arctic vortex/Oscillation, Eurasian meridional/
latitudinal circulation and Atlantic-Europe circulation pattern
(Table 6). The earlier Subtropical high and Arctic vortex/
Oscillation in June-July are the main factors affecting the ACR. It
is favorable tomoreACRunder the circulation configuration in June-
July like: the location of the center of the Arctic vortex is southward
and strong; the area of the Arctic vortex is large in the Atlantic-
Europe region and small in the Asian region; the AO shows negative
phase; the subtropical high is southward and the westward extension
over western Pacific; in Eurasia, themeridional circulationweaks, and
the latitudinal circulation strengthens; in Atlantic-Europe, it is
dominated by the latitudinal westerly circulation pattern (W-type).
From the result of partial correlation analysis, different key circulation
factors are interacting with each other, just like the same period.

Obviously, subtropicalHigh, Arctic vortex, and circulation pattern
over Atlantic-Eurasian are the key factors affecting on ACR in
Qinghai Province. The position and intensity of subtropical high
especially over west Pacific and north Indian Ocean influenced by
sea-air oscillation both in Pacific Ocean and IndianOcean will lead to
anomaly of water vapor transport (Chao and Zhou, 2014; Li et al.,
2014). Arctic vortex, and circulation pattern over Atlantic-Eurasian
forcing by SST anomaly in Pacific Ocean and Indian Ocean (Calvo
et al., 2009; Gu et al., 2017) with teleconnection wave train will lead to
anomaly of clod/warm advection and the structure of atmospheric
baroclinicity (Lin and Zhang, 2003).

CONCLUSION AND DISCUSSION

ACR precipitation mainly appears in the consistent type and
“saddle-type” distribution across the Qinghai Province. SST and
atmospheric circulation are important indicators of both seasonal
and sub-seasonal rainfall of ACR. Since the ACR often occurs
spanning the high summer and early autumn, the impacts on
ACR from SST and atmospheric circulation vary.

In general, the significant factors for ACR include SST, Arctic
vortex, subtropical high, Atlantic-Europe circulation pattern and
Eurasian meridional/latitudinal circulation (Figure 9). The influence
of oceanic factors on ACR is relatively independent, while there is an
interaction between atmospheric circulation factors. In spring, the
indicative signals appeared in the equatorial central eastern pacific
and the tropical Indian Ocean, with the former corresponding to
consistent precipitation and the latter corresponding to “saddle-type”
precipitation. In terms of sub-seasonal precipitation, the tropical

IndianOcean and the equatorial central eastern pacific correspond to
ACR in August and September, respectively. In the tropical Indian
Ocean, its early signal can be advanced to the southern Indian Ocean
in april, and it transfers to the tropical Indian Ocean in May. SST
anomalies from the Pacific and Indian Oceans force different
circulation patterns that can enhance meridional circulation over
Europe-Asia and lead to different precipitation pattern of ACR. In
June-July, the indicative signal for ACR comes from subtropical high
and Arctic vortex/Oscillation. Under the north-south circulation
configuration, the meridional circulation continues to be weak, and
the latitudinal circulation strengthens in Eurasia, and it is dominated
by the latitudinal westerly circulation pattern in Atlantic-Europe,
which is favorable to more ACR in Qinghai Province.

In this work, the main patterns of ACR are extracted, and the
possible impact is analyzed to explore the indication of global SST and
atmospheric circulation on seasonal and sub-seasonal precipitation of
ACR. This is only a basic work. The underlyingmechanisms effecting
onACRof each factors are still not clear enough, and need specialized
research to explore the dynamic and thermal process in the future.
Besides, to carry out quantitative and refined short-term climate
prediction on seasonal and sub-seasonal scales, it is necessary to
further integrate the diagnostic analysis and the dynamical model,
effectively revise the dynamicalmodel using key factors from SST and
atmospheric circulation, and carry out combined dynamical-
statistical forecast tests (Feng et al., 2013) to improve the ability of
short-term climate prediction on seasonal and sub-seasonal
precipitation of ACR.
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Effects of Topography and Latent Heat
on the Evolution of a Mesoscale
Dual-Core Southwest Vortex Over
Sichuan Basin, China
Zhenzhen Wu1,2, Haiwen Liu3*, Kelvin T. F. Chan1,2,4, Kaijun Wu3, Wenlong Zhang5 and
Donghai Wang1,2

1School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory
(Zhuhai), Zhuhai, China, 2Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen
University, Zhuhai, China, 3Department of Aviation Meteorology, Civil Aviation University of China, Tianjin, China, 4Key Laboratory
of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, 5Institute of Urban Meteorology, CMA, Beijing,
China

The southwest vortex (SWV), a low-pressure system bringing severe rainfall in southwest
China, is one of the most important synoptic systems in China. Using both the National
Centers for Environmental Prediction Final (NCEP-FNL) operational global analysis dataset
and the Weather Research and Forecasting (WRF) model simulation, a sophisticated SWV
with dual-core structure (DCSWV) over the Sichuan Basin in 2010 was studied. The DCSWV
system consisted of two cores, one near Leshan City (named “C1”) and another near
Langzhong City (named “C2”). The high-resolution WRF model reproduced the life cycle of
the DCSWV well. The diagnostic analysis of the vorticity budget indicated that the stretching
and tilting terms played important roles in the development stage of “C1”, while the
stretching and vertical advection of vorticity were the major contributors to the formation
and development stage of “C2”, which implied the importance of moisture convergence and
ascending motion. Sensitivity experiments showed that the DCSWV was closely associated
with the release in latent heat as well as the effect of topography. The great release in latent
heat provided significantly positive feedback to the DCSWV system, which was decisive to
the formation and development stages of “C2”. The topography of the Tibetan Plateau and
the Yun-Gui Plateau affected the location and duration of the DCSWV.

Keywords: southwest vortex, dual-core structure, numerical simulation, latent heat, topography

INTRODUCTION

Sichuan Basin (SCB), a fertile expanse with low hills and plains almost entirely encircled by
mountains, is located in the east of Tibetan Plateau (TP), west of Wu Mountain, north of Yun-Gui
Plateau, and south of Daba Mountains, China (Figure 1A). In such complex terrain conditions, a
mesoscale southwest vortex (SWV) is often observed over the SCB. Statistically, the severity of heavy
precipitation caused by the SWV ranks the second in China, while precipitation from the tropical
cyclones ranks the first (Wang et al., 1996). Therefore, the comprehensive understanding on the
SWV is necessary, especially in the summer time.

Typically, the SWV is a cyclonic low-pressure system with significant baroclinic structures and
complex temperature–humidity characteristics (Ye and Gao, 1979; Lu, 1986) between 700 and 850 hPa
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levels (Kuo et al., 1986; Lu, 1986). The air near the SWV is nearly
moist adiabatic (Wang et al., 1993). The vorticity peaks at about
750 hPa (Feng et al., 2016). The vortex circulation in a strong SWV
system is deep, which can extend up to 100 hPa (Chen et al., 1998).

With the rapid development of high-resolution reanalysis dataset,
a new structure of SWV was first discovered by Zhou et al. (2017).
They found that the SWV appeared with “double-yolk” or dual-core
structure (DCSWV) sometimes. In other words, a big SWV
embodied two small vortices. Later, Wu et al. (2018) further gave
a strict definition of the DCSWV: two small coexisting vortices
should be enclosed by the isohypse of the SWV, while their core
centers should be within the southwest China (26–33° N, 100–108°

E). Different from the conventional SWV, the DCSWV has two
warm and moist centers, as well as two strong updrafts. It is
accompanied by intensive precipitation centers, which brings
wider rainfall range and greater influence to the regions (Zhou
et al., 2017; Wu et al., 2018).

However, previous studies about the DCSWV only
preliminarily revealed its structural characteristics (Zhou et al.,

2017; Wu et al., 2018). The physical processes responsible for the
initiation and intensification of the DCSWV are yet to be
comprehensively explored. Previous studies suggested that the
latent heat and topography can largely contribute to the initiation
and intensification of the typical SWV (Ye and Gao, 1979; Ye,
1981; Wu and Chen, 1985; Chen and Dell’Osso, 1984; Kuo et al.,
1986; Lu, 1986; Wang and Orlanski, 1987; Raymond and Jiang,
1990; Kuo et al., 1988; Fu et al., 2010; Jiang et al., 2012; Li et al.,
2017). How about their roles in the DCSWV? How do they
contribute to the initiation and intensification of the DCSWV? To
address these, a typical DCSWV event, which occurred on July
16–17, 2010 over the SCB, is chosen, and the vorticity budget
diagnostic is employed to investigate which physical processes are
responsible for the initiation and intensification of the DCSWV.

The paper is organized as follows. The data and methodology
are described in the Data and methodology section. In the
Overview of the DCSWV event on July 16–17, 2010 section, an
overview of the case study based on observation is presented. The
simulated evolution of the DCSWV and the possible impacts of
latent heat and topography on the DCSWV is discussed in the
Modeling simulation and possible mechanisms of the evolution of
the DCSWV section. Finally, the Summary and discussion section
gives a summary and discussion.

DATA AND METHODOLOGY

Data and model design
The 6-hourly National Centers for Environmental Prediction
Final operational global analysis (NCEP-FNL) with the
horizontal resolution of 1.0° × 1.0° was used to investigate the
large-scale circulation associated with the DCSWV.

The Advanced Research Weather Research and Forecasting
(WRF-ARW) model Version 3.6.1 (Skamarock et al., 2008) was
applied to performmodel simulations. The horizontal resolutions of
the outer and inner domains were 30 and 10 km, with 284 × 397 and
218 × 280 grid points, respectively. There were 30 vertical levels, and
the model top was set at 50 hPa. The model domain configurations
are shown in Figure 1. The FNL data were used as the initial and
boundary conditions. In the control simulation (hereafter CTL), the
following physics and parameterization schemes were employed,
which had been largely used for simulating the extreme precipitation
and synoptic systems near the TP (Liu et al., 2019; Qin and Zou,
2019) the WRF single-moment three-class microphysics scheme
(Hong et al., 2004), the Rapid Radiative Transfer Model longwave
radiation scheme (Mlawer et al., 1997), the Dudhia shortwave
radiation scheme (Dudhia, 1989), the Monin–Obukhov surface
layer scheme (Janjić, 2002), the Noah land surface scheme (Ek
et al., 2003), and the Kain–Fritsch cumulus scheme (Alapaty et al.,
2012) in both domains. The 5-h model spin-up time had been tested
to be optimal for simulating the DCSWV. Therefore, all the
simulations started from 12:00 UTC July 16, 2010 and continued
for 30 h.

Two sensitivity experiments were designed to investigate the
effects of latent heat and topography on the DCSWV. In the first
experiment (NOLH), the latent heat was turned off (i.e., set
“cu_physics = 0” and “no_mp_heating = 1” in the WRF

FIGURE 1 | (A) Two domains (D01–D02) used in the Weather Research
and Forecasting (WRF) simulations and (B) the modified topography (m,
shaded) for D02 in the NOTER experiment. The Tibetan Plateau, Yungui
Plateau, and Sichuan Basin are marked. Two blue boxes indicate the
areas of the NOTER experiment.
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namelist), while all other progresses of physics and
parameterizations remained the same as those in the CTL
experiment. The second experiment (NOTER) is similar to the
CTL experiment, but the terrain heights in the west of the SCB
including the TP (26°–40°N, 84.5°–105°E) and the south of the SCB
including the Yun-Gui Plateau (22°–30°N, 96°–111°E) were set to
500m (Figure 1B).

In addition, the high-resolution CMORPH global
precipitation analyses data and the Japan’s second
Multifunctional Transport Satellite (MTSAT-2) IR1
brightness temperature data were used to examine the
convective activities, which further confirmed the existence
of the DCSWV. The CMORPH precipitation data (1-hourly,
0.1° × 0.1°) combined the National Oceanic and Atmospheric
Administration/Climate Prediction Center morphing
technique dataset with hourly gage rainfall data from about
30,000 automatic weather stations (Pan et al., 2012). This
precipitation product had been widely used in the
mesoscale research field (Shen et al., 2013). The brightness
temperature data (hourly, 0.05° × 0.05°) is obtained from
Japan’s second Multifunctional Transport Satellite (MTSAT-
2) IR1 instrument (Takeuchi et al., 2007).

METHODS

The evolution of the SWV can be represented by vorticity
effectively (Fu et al., 2010; Feng et al., 2020), the diagnosis of
vorticity budget was used here to probe into the detailed evolution
process from a single-core SWV to the DCSWV. According to
Zhang (1992), the vorticity equation can be written as Eq. 1:
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The local time rate of change of vorticity was abbreviated as
TOT. The HAV is the horizontal advection term of the absolute
vorticity, which includes relative vorticity and planetary vorticity.
The VAVdenotes the vertical advection term of vorticity. The STR,
TIL, and RES are the stretching term, tilting term, and residual
term effect due to friction, respectively. ζ is the relative vorticity, ω
is the vertical velocity in the pressure coordinates, ∇ � z

zx
�i + z

zy
�j is

the horizontal gradient operator,f is the Coriolis parameter, and β
is the meridional derivative of the Coriolis parameter.

Latent heat release is crucial to the generation and development
of the SWV (Ye, 1981; Kuo et al., 1986; Wang and Orlanski, 1987;
Kuo et al., 1988; Fu et al., 2010). To investigate the effect of the
diabatic heating in the genesis process of the DCSWV from a single
SWV, the atmospheric apparent heat source (Q1) is calculated using
Eq. 2 from Yanai et al. (1973):

Q1 � Cp
⎡⎣zT
zt

+ V · T + ( p

p0
)R/Cp

ω
zθ

zp
⎤⎦ (2)

where Cp is the specific heat of dry air at constant pressure, T is
the temperature, V is the horizontal wind vector, p0 is 1,000 hPa,

R is the gas constant, ω is the vertical velocity in pressure
coordinates, and θ is the potential temperature.

OVERVIEW OF THE SOUTHWEST VORTEX
WITH DUAL-CORE STRUCTURE EVENT ON
JULY 16–17, 2010
At 12:00 UTC July 16, 2010, a typical DCSWV event occurred
over the SCB. This event lasted about 14 h and dissipated at 06:00
UTC July 17, 2010. The DCSWV resulted in more than 100-mm
24-hourly accumulated precipitation in 51 cities. In Bazhong
City, 1.92 million people were affected, and direct economic
losses were about 910 million RMB (Wang and Zhang, 2011).

To investigate the life span of the DCSWV, Figure 2 shows
the 6-hourly geopotential height and wind field using the
NCEP-FNL from 12:00 UTC July 16 to 06:00 UTC July 17,
2010. At 12:00 UTC July 16 in Figures 2A,B, a low-pressure
system within the isolines of 3,108-gpm was observed over
southwest China. The center of this typical mesoscale SWV
was near Leshan City (29°N, 104°E), marked as “C” in Figure 2.
Meanwhile, a tropical low was located in the west of the South
China Sea and brought southerlies wind from the ocean to the
SCB. At 18:00 UTC July 16 in Figures 2C,D, the DCSWV
appeared, which satisfied the criteria for a typical SWV
reported by Lu (1986). A sub-mesoscale low-pressure
vortex, marked as “C2” in Figures 2C,D, emerged near
Langzhong City (31.5°N, 106°E). At the time, there were two
vortices, “C1” and “C2”, coexisting over the SCB. Both vortices
were embedded by the 3,108-gpm isotypes. It was apparent
that the sub-mesoscale SWV “C1” and “C2” were born from
the single-core “C”. Based on the criteria of Orlanski (1975),
two mesoscale vortices “C1” and “C2” were regarded as the
meso-β-scale vortex. The dual-core structure of SWV became
more obvious at 00:00 UTC July 17 (Figures 2E,F). The
DCSWV was mature and presented a typical double-yolk
structure. It gradually moved to the northeast along with
the southerly airflow, extending its influence beyond the
SCB. At 06:00 UTC July 17 in Figures 2G,H, the dual-core
structure disappeared and turned into a single-core structure.
The center of the core was marked as “C3” in Figure 2.

The evolution of precipitation distribution associated with
the DCSWV was prominent. At 12:00 UTC July 16, the
precipitation center was located in the northeast of the
center of SWV “C” (Figure 3A). At 18:00 UTC July 16, the
intensity of precipitation was stronger, and there were obvious
precipitation centers below the DCSWV (Figure 3B). Six
hours later, two significant precipitation maxima
(>100 mm) appeared in the west of “C1” and the east of
“C2” (Figure 3C). Two precipitation maxima further
demonstrated the existence of the DCSWV and provided
better atmospheric thermal conditions. Compared with the
typical SWV, the influence range of two rain belts
accompanying DCSWV was wider. At the 06:00 UTC July
17, the precipitation decreased remarkably (Figure 3D). The
rain belt shifted to the east, and the two vortices dissipated and
transformed to a single-core “C3”.
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FIGURE 2 | Spatial distributions of the 700 hPa geopotential height (gpm, contours) and wind field (m s−1, arrows) at (A,B) 12:00 UTC July 16, (C,D) 18:00 UTC
July 16, (E,F) 00:00 UTC July 17, and (G,H) 06:00 UTC July 17. C, C1, C2, and C3 denote the southwest vortices (SWVs), and the brown dots represent their centers
(the same in the following figures, if applicable).
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The hourly MTSAT-2 brightness temperature also indicated
the evolution of the two meso-β-scale vortices (Figure 4).
Observations showed that the organized cloud clusters were
located near two meso-β-scale vortices. At 12:00 UTC July 16,
the convective cloud clusters were mainly located in the western
part of vortex “C” (Figure 4A). Six hours later, accompanying
the formation of two vortices, mesoscale convective cloud
clusters were observed in their eastern part (Figure 4B). At
00:00 UTC July 17 (Figure 4C), the cloud clusters were also
located near two vortices. Following the eastward movement of
two meso-β-scale vortices, convective cloud clusters also moved
to the downstream region. The precipitation and cloud clusters,
thus, both demonstrated the dual-core structure of SWV.

Aplanetarywave troughwas observed fromLakeBaikal to the SCB
(not shown), which favored the formation of the SWV (Kuo et al.,
1986). There was an area of high pressure over the SCB at 200 hPa
(not shown), demonstrating that SWV with a dual-core structure was
similar with the typical SWV, which was usually visible in the lower
troposphere at 700 and 850 hPa (Kuo et al., 1986; Lu, 1986).

Figure 5 showed the vertical cross sections of the
pseudoequivalent potential temperature and relative vorticity over
the central points of the SWVs along the lines was shown in
Figure 4. At 12:00–18:00 UTC July 16 (Figures 5A, B), the
shallow positive vorticity in the lower troposphere indicated that
DCSWVwas a shallow weather system in the initiation stage. At 00:
00 UTC July 17 (Figure 5C), in the mature stage, two positive
relative vorticity centers were observed as the “C1” and “C2”. The
positive vorticity extended upward from the low level. The slightly
westward-tilted “C1” was deeper than “C2”, where the vorticity
extended from the surface to 200 and 400 hPa, respectively. The
vorticity of the two vortices both peaked at 700 hPa. Six hours later,
in the dissipating stage, “C1” and “C2” transformed to “C3”, which
was likely the succession of “C2” (Figure 5D). The results ofFigure 6
agree well with Figure 5. Two distinct centers of upward motion
were observed over “C1” and “C2” from 18:00 UTC July 16 to 00:00
UTC July 17, which extended from surface to about 100 hPa.
Besides, the nearly saturated relative humidity around the “C1”
and “C2” demonstrated the moist features of the DCSWV.

FIGURE 3 | Spatial distributions of the 700 hPa geopotential height (gpm, contours) and the pre-6-h accumulated precipitation (mm, shaded) at (A) 12:00 UTC July
16, (B) 18:00 UTC July 16, (C) 00:00 UTC July 17, and (D) 06:00 UTC July 17.
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MODELING SIMULATION AND POSSIBLE
MECHANISMSOF THE EVOLUTIONOF THE
SOUTHWEST VORTEX WITH DUAL-CORE
STRUCTURE

Modeling results
To quantify the capability of the WRF model in simulating the
evolution of DCSWV, the FNL data were first gridded as the
domain 2 ofWRFmodel. The correlation coefficients between the
WRF (simulated variables in domain 2) and the FNL data,
including the 700 hPa geopotential height, U-component of
wind, and V-component of wind at 18:00 UTC July 16 and
00:00 UTC 17 July 17, 2010 were calculated (Table 1). The
correlation coefficients of the geopotential height were up to
0.87. Meanwhile, those of the U-component and the
V-component of winds reached 0.83 and 0.86, respectively. All
of them were statistically significant at the 99% confidence level.
These indicated that the WRF simulations could well capture the
evolution of DCSWV.

The evolution of the DCSWV was divided into five stages
(Figure 7). At the first stage (16:00 UTC July 16), the single-core
stage, the typical SWV, vortex “C”, was enclosed by the 3,108-
gpm isoline (Figure 7A). At the second stage (17:00 UTC July 16),
the DCSWV initiation stage, the 3,108-gpm isoline extended
northward, and the vortex “C2” appeared northeast of “C1”.
The simulated positions “C1” were basically consistent with the
observation, while “C2” was located in the south of the observed
“C2” (Figure 7B). The warm and moist southwest and southeast
flows near the east of the TP led to the unstable stratification
(Figure 8B) and upward movement (not shown) in the lower
troposphere of “C1” and “C2”. It was worth noting that “C1”
formed at higher topography, and “C2” formed in the SCB.
Whether the topography had a significant impact on the
formation of “C2” will be tested in the Topography effect
section.

At the third stage (18:00–22:00 UTC July 16), the DCSWV
intensification stage (Figures 7C, D), a typical DCSWV was
developing. Two cores were embedded in the 3,108-gpm

FIGURE 4 | Spatial distributions of the 700 hPa geopotential height (gpm, contours) and Japan MTSAT-2 infrared temperature (°C, shaded) at (A) 12:00 UTC July
16, (B) 18:00 UTC July 16, (C) 00:00 UTC July 17, and (D) 06:00 UTC July 17. The blue lines are used to intercept the cross sections in Figures 5, 6.
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isohypse, which was consistent with the observation (Figure 5B).
The two obvious lower-tropospheric positive vorticity centers, as
well as warm and moist conditions, facilitated the initiation and
intensification of the DCSWV (Figure 5B, Figures 8C,D).

At the fourth stage (23:00 UTC July 16 to 02:00 UTC July 17),
the mature stage, the structure of the DCSWV became more
obvious (Figures 7E,G). The northeasterly to the north of
DCSWV and the southwesterly to the south of DCSWV
brought “C1” and “C2” closer. Two corresponding positive
vorticity centers exhibited a double-yolk structure (Figures 8E,G).

At the fifth stage (03:00 UTC July 17 to 04:00 UTC July 17), the
DCSWV entered into the decay stage. The typical pattern of two
closed SWVs gradually disappeared, while the vorticity of “C2”

gradually weakened at 03:00 UTC July 17 (Figure 8H). After 1 h,
“C1” and “C2” dissipated and became a single-core vortex “C3”.
Only a single strong positive vorticity center was observed. In the
entire process, the DCSWV lasts for about 11 h from initiation to
dissipation.

Main factors of influencing the evolution of
the southwest vortex with dual-core
structure
Vorticity budget
Since the vorticity budget is an effective measurement to analyze
the development of the SWV (Fu et al., 2014; 2017), the vorticity

FIGURE 5 | Vertical cross sections of the pseudoequivalent potential temperature (K, contours) and relative vorticity (10−5 s−1, shaded) at (A) 12:00 UTC July 16,
(B) 18:00 UTC July 16, (C) 00:00 UTC July 17, and (D) 06:00 UTC July 17. The black areas at the bottom of the figures represent the topography (the same in the
following figures).
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budget for the DCSWV was calculated to study the relative
importance of each term in the vorticity budget equation to
the DCSWV. The key region of SWVs was defined as an area
within the radius of 1° from the center of the vortex. As shown in
Figure 9, the regional averaged vorticity budgets for key regions
“C”, “C1”, “C2”, and “C3” were examined, respectively. At 16:00
UTC July 16 (the single-core stage of SWV), the moisture
divergence (Figure 10) and vertical motion dominated the key
region of “C”. Under these favorable conditions, the convergence-
related STR and VAV terms were the main contributions of the
positive vorticity budget of “C”. From 17:00 to 23:00 UTC July 16
(the formation of the DCSWV), due to intensified convection
(Figure 9C), the convection-related TIL term transported the
positive vortex from the lower troposphere to the upper level,
which increased from −8.5 × 10−9 to 7.2 × 10−9s−2, acting as the

second contribution of cyclonic vorticity “C1” at 700 hPa. At the
same time, convergence and ascending motion intensified
rapidly, while the convection around the key region of “C1”
was active (Figure 9C). The convergence-related STR acted as
the main contribution to the cyclonic vorticity of “C1” at
700 hPa, and convective-related TIL was the second
contribution (Figure 9A). These terms resulted in the
increase in the total vorticity budget (TOT). This feature
suggested that the STR and TIL terms played important
roles in the development of “C1”. After 23:00 UTC 16 July,
the “C1” within DCSWV entered the mature stage, and the
HAV and TIL terms were favorable to the increase in cyclonic
vorticity “C1”. With the evolution of the vortex, after 01:00
UTC July 17, the HAV term increased rapidly and maintained
the cyclonic vorticity in the vortex region together with the TIL

FIGURE 6 | Vertical cross-section of the vertical velocity (Pa s−1, shaded) and the relative humidity (%, contours) at (A) 12:00 UTC July 16, (B) 18:00 UTC July 16,
(C) 00:00 UTC July 17, and (D) 06:00 UTC July 17.
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term. At 04:00 UTC July 17, the DCSWV dissipated and
transformed to “C3”. Terms of HAV and TIL were the
main contributions to “C3” cyclonic vorticity.

The TOTs of “C2” were smaller than those of “C1” on the
whole (Figures 9A, B). At 16:00 UTC July 16 (the initiation stage
of the DCSWV), the STR term mainly increased the cyclonic
vorticity of “C2” within the key region of the DCSWV
(Figure 9B). Moreover, the vertical upward movement was

enhanced in the “C2” key region (not shown), and the term
VAV became a second contributor to “C2” development. From
17:00 to 23:00 UTC July 16 (during the initiation and
intensification stages of the DCSWV), the terms of STR and
VAV were the main contributions to the vorticity tendency of
“C2”. During the DCSWVmature stage (23:00 UTC July 16 to 02:
00 UTC July 17), “C2” evolved rapidly (Figure 9B), and its
cyclonic vorticity increased because of the terms of TIL and HAV.

FIGURE 7 |Modeling simulated 700 hPa geopotential height (gpm, contours), wind field (m s−1, arrows), and terrain height (m, shaded) from the control simulation
(CTL) experiment inside Domain 02 at (A) 16:00 UTC July 16, (B) 17:00 UTC July 16, (C) 18:00 UTC July 16, (D) 22:00 UTC July 16, (E) 23:00 UTC July 16, (F) 00:00
UTC July 17, (G) 02:00 UTC July 17, (H) 03:00 UTC July 17, and (i) 04:00 UTC July 17. The red dots denote the centers of SWVs. The red lines indicate the transects of
the cross sections in Figure 8.
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After 03:00 UTC July 17, the TIL term decreased gradually,
leading to the negative TOT and dissipating of “C2”.

Overall, moisture convergence and vertical motion were evident
within the key region of the DCSWV. As a result, the convergence-
related STR and the VAV term related to ascending motion could
increase the DCSWV cyclonic vorticity. However, the STR and TIL
terms played important roles in the development stage of “C1”,

while the STR and VAV terms were the main positive contributors
to the formation and development stages of “C2”.

Latent heat release effect
There were obvious water vapor convergence and convection
activities in the key area before the formation of the DCSWV
(Figures 9C,D). As the previous studies suggested, latent heat

FIGURE 8 | Vertical cross sections of the pseudoequivalent potential temperature (K, contours) and relative vorticity (10−5 s−1, shaded) from the CTL experiment at
(A) 16:00 UTC July 16, (B) 17:00 UTC July 16, (C) 18:00 UTC July 16, (D) 22:00 UTC July 16 (E) 23:00 UTC July 16, (F) 00:00 UTC July 17, (G) 02:00 UTC July 17, (H)
03:00 UTC July 17, and (i) 04:00 UTC July 17.

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 82760110

Wu et al. Dual-Core Southwest Vortex

45

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


release can largely contribute to the formation and development
of SWV (Ye, 1981; Kuo et al., 1986; Wang and Orlanski, 1987;
Raymond and Jiang, 1990; Kuo et al., 1988; Fu et al., 2010; Li et al.,
2017). In order to explore the influence of latent heat release
on the evolution of the DCSWV, we calculated Q1, relative
vorticity, and regional mean precipitation in the key region
(Figures 9C,D).

It is well known that water vapor flux has an important
role in the release of latent heat. Figure 10 showed the vertical
integration of water vapor fluxes from 1,000 to 300 hPa by the
CTL experiment. As shown in Figure 10, the DCSWV formed

at 17:00 UTC July 16, with one water vapor channel from the
South China Sea to the key area of “C1”, which provided
sufficient moisture to trigger convection and release lots of
convective condensation latent heat. Since 19:00 UTC July 16,
two southerly water vapor channels from the Bay of Bengal
and the South China Sea converged and ascended over the key
region of the DCSWV, which further enhanced water vapor
convergence and ascending motion, releasing more latent
heat to warm the lower and middle troposphere in the key
region of “C1”. The process increased the vorticity between
850 and 700 hPa (Raymond and Jiang, 1990), which
promoted the DCSWV significantly (Figure 9C). The
positive feedback between the enhanced latent heat and
the vorticity of “C1” indicated that latent heat release played
an important role in the development of “C1”. After 23:00 UTC
July 16, “C1” within the DCSWV reached the mature stage, with a
Q1 maximum center located in the middle and lower troposphere
over the key region, which was conducive to the obvious positive
vorticity center at 850–700 hPa. With the decreasing water vapor
transportation from the Bay of Bengal, moisture convergence and
ascending motion became weaker, leading to a weaker positive

FIGURE 9 | Regionally averaged vorticity budget terms (units: 10−9 s−2) for (A) C, C1, C3, and (B) C2 at 700 hPa, and time–pressure sections of apparent heat
source Q1 (K day−1, shaded), relative vorticity (10−5 s−1, black contours), and regional mean precipitation over the key region (mm, blue line) from 16:00 UTC July 16 to
04:00 UTC July 17 in the CTL experiment for (C) C, C1, C3, and (D) C2. HAV, VAV, STR and TIL denote horizontal advection of vorticity, vertical advection of vorticity,
stretching, and tilting, respectively. The local time rate of change of vorticity is abbreviated as TOT. Vertical gray solid lines mark the start and end time of the SWVs.

TABLE 1 | List of the correlation coefficients of the 700 hPa geopotential height,
700-hPa U-component of wind, and 700-hPa V-component of wind between
the control simulation (CTL) run (Domain 02) data and FNL data.

Variables 18:00 UTC July 16 00:00 UTC July 17

Geopotential height 0.87 0.87
U-component of wind 0.83 0.85
V-component of wind 0.86 0.86
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vorticity. One hour later, the vortex “C1” dissipated and
transformed to “C3”.

Compared with “C1”, Q1 maximum over the key area of
“C2” was mainly located at the 700–200 hPa (Figures 9C,D).
Before 17:00 UTC on July 16, when “C2” had not yet formed,
the key area was warm and moist (Figure 8A) due to the
influence of the southeasterly wind. A strong upward motion
also existed at the same time. These favorable physical
conditions were beneficial to trigger convective activities.
The associated latent heat then warmed the regional
atmosphere, which was favorable to increase the vorticity
in the lower troposphere and form “C2” in the DCSWV.
After 23:00 UTC July 16, “C2” entered the mature stage.
Similar to “C1”, precipitation and Q1 enhanced rapidly
near the key area of “C2” due to the moisture
transportation and accumulation from the Bay of Bengal
and the South China Sea (Figure 10). Meanwhile, an obvious
positive vorticity center appeared as the vorticity was enhanced in
the lower layer. This indicated that latent heat release also played an
important role in the development stage of “C2”. Finally, the
DCSWV dissipated at 04:00 UTC July 17 as latent heat release
weakened (Figure 9D).

The above analyses showed that the latent heat release played
an important role in the overall evolution of the DCSWV.
During the evolution of DCSWV, a large amount of water
vapor from the ocean converged into its key area making the
lower troposphere warm and wet (Figures 8, 10). These
conditions, combined with the remarkable ascending motion
caused by moisture convergence, could trigger convection, as
well as the convective condensational latent heat release,
resulting in the production of cyclonic vorticity, and the
formation and development of the DCSWV. Therefore, a
favorable circulation related to the DCSWV occurred
through the positive feedback from the increased latent heat
associated with convective activities.

To further verify the importance of latent heat release on the
DCSWV, the NOLH experiment was performed, and the results
were compared with CTL run. At 18:00 UTC on July 16, a shallow
SWV core (marked as “C”) at 700 hPa was observed over the SCB
in the NOLH experiment (Figure 11C). The NOLH results
showed weaker pseudoequivalent potential temperature and
relative vorticity than those in the CTL results (not shown).
Q1 and rainfall over the key area of “C” were also weak
(Figure 12) because the latent heat release was turned off,

FIGURE 10 | Vertical integration of water vapor fluxes from 1,000 to 300 hPa (shadings and arrows, unit: kg m−1 s−1) by the CTL experiment at (A) 16:00 UTC July
16, (B) 17:00 UTC July 16, (C) 19:00 UTC July 16, and (D) 03:00 UTC July 17.

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 82760112

Wu et al. Dual-Core Southwest Vortex

47

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


which was consistent with our speculation. Moreover, a dual-core
structure as the DCSWV could not be found in the NOLH
experiment (Figure 11). It means that the positive feedback of
latent heat release on the vortex disappeared, making it difficult to
develop the SWV “C” and further trigger another core like “C2”.
With lack of positive feedback mechanism without latent heat
release, DCSWV could not be formed. Therefore, the release of
latent heat was the important and decisive factor in the formation
and maintenance of the DCSWV.

Topography effect
Previous studies have documented that the formation and
development of the SWV is influenced by the complex
topography of the TP (Ye and Gao, 1979; Wu and Chen,
1985; Lu, 1986; Jiang et al., 2012). To investigate the
contribution of terrain on the evolution of the DCSWV,
NOTER experiment was conducted (Figure 13). Compared
with the CTL run with topography, the NOTER experiment
exhibited a similar DCSWV pattern with different location

FIGURE 11 | The 700 hPa geopotential height (gpm, contours) and wind field (m s−1, arrows) for the NOLH experiment at (A) 16:00 UTC July 16, (B) 17:00 UTC
July 16, (C) 18:00 UTC July 16, (D) 22:00 UTC July 16 (E) 23:00 UTC July 16, (F) 00:00 UTC July 17, (G) 02:00 UTC July 17, (H) 03:00 UTC July 17, and (i) 04:00 UTC
July 17.

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 82760113

Wu et al. Dual-Core Southwest Vortex

48

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


and duration. The simulated southwesterly and southeasterly winds
were stronger than those in the CTL run. The strong southerlies is
the key factor to the formation of SWV (Li et al., 2017). The strong
cyclonic wind shear formed because of the southwest and southeast
airflow over the region where the terrain was removed. Strong
convergence also occurred in the lower troposphere. Different
from the CTL run, the “C1” and “C2” in the NOTER
experiment appeared almost simultaneously at 19:00 UTC July
16. Moreover, the size of the DCSWV was significantly larger
due to the stronger southerlies with the absence of topography
influence of the TP and the Yun-Gui Plateau (Figures 7, 13).

Before the generation of the DCSWV, the positive vorticity in the
key region of the DCSWV was mainly contributed by the STR and
VAV terms (Figure 14A). The intense convergence and vertical
motions were conducive to the convection, which favor the
associated latent heat warming the atmosphere rapidly
(Figure 14B). As shown in Figure 14A, terms of VAV and
HAV were the main positive contributions to the formation of
the DCSWV at 20:00 UTC July 16, while HAV and TIL terms were
beneficial to its maintenance until 00:00 UTC July 17. During the
evolution of the DCSWV, Q1 warmed the surrounding atmosphere
in the middle and upper layers (Figure 14B). Compared with the
CTL run (Figures 9C,D and Figure 14), the Q1 and precipitation
were weaker, and the duration of the DCSWV was shorter (lasting
about 5 h) in the NOTER experiment.

To sum up, although the lateral friction in the TP and Yun-Gui
Plateau were not the decisive factors for the formation of the
DCSWV as latent heat, the topographical forcing and dynamical
instability could influence the location, size, and duration of the
DCSWV.

SUMMARY AND DISCUSSION

The DCSWV is difficult to be recognized with coarse
observations, partly because its spatial and temporal scales are
too small to be captured. Therefore, this study used the NCEP-
FNL dataset and the WRF model to investigate and simulate the
evolution of the DCSWV, as well as examine the influence of
latent heat release and topography on the DCSWV. The major
conclusions are summarized below:

1) The observed SWV occurred from 12:00 UTC July 16 to 06:00
UTC July 17, 2010. Two rain belts and cloud clusters were observed
near the SWV “C1” and “C2”, which further confirmed the presence of
the DCSWV. Meanwhile, a westerly trough was observed from Lake
Baikal to the SCB, which was favorable for the formation of vortexes.
Besides, this DCSWV was most visible in the lower troposphere with
two centers at 700 and 850 hPa, and the precipitation brought by the
DCSWV had a more severe and extensive impact on the local region
compared with a typical single SWV.

2) The DCSWV could be divided into five stages, with a lifetime
of 11 h from gestation to dissipation. In the gestation stage of the
DCSWV, the lower troposphere was warm and wet, indicating that
the atmosphere was unstable. In the development and mature stage,
the DCSWV had two obvious relative vorticity centers horizontally,
“C1” and “C2”, whichwas similar to the “double-yolk” structure, and
it should be noted that “C1” was deeper and stronger than “C2”.
These two cores both had warm and moist vertical structures along
with two clear centers of upward motion.

3) The vorticity budget showed that the contribution terms to the
initiation and intensification of “C1” and “C2” were different. The
STR and TIL terms were the main positive contributors to the

FIGURE 12 | Time–pressure sections of apparent heat source Q1 (K day−1, shaded), relative vorticity (10−5 s−1, black contours), and regional mean precipitation in
the key region of C (mm, blue line) from 16:00 UTC July 16 to 04:00 UTC July 17 by the NOLH experiment.
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intensification of “C1”, while the STR and VAV terms played
important roles in the initiation and intensification of “C2”,
which implied the importance of moisture convergence and
ascending motion. In fact, abundant water vapor was transported
by southerlies from the Bay of Bengal and the South China Sea to the
key region of the DCSWV. Abundant water vapor flux benefited the
strongermoisture convergence and upwardmotion, which led to the
release in convective latent heat that increased lower-troposphere
vorticity. These thermodynamic conditions were favorable to the
evolution of the DCSWV. Such positive feedback was good for the

intensification stage of “C1” and decisive to the initiation and
intensification stages of “C2.” Furthermore, NOLH and NOTER
experiments showed that topographical forcing and dynamical
instability were insufficient to maintain the DCSWV without
latent heat, while the TP and Yun-Gui Plateau topography could
influence the location, size, and duration of the DCSWV.

This study gives details of the possible mechanism of the
DCSWV using dynamic diagnosis and WRF simulation to a
typical DCSWV case, which is helpful to weather forecasters to
learn more about the DCSWV. Although the individual case is

FIGURE 13 | 700 hPa geopotential height (gpm, contours) and wind field (m s−1, arrows) for the NOTER experiment at (A) 16:00 UTC July 16, (B) 17:00 UTC July
16, (C) 18:00 UTC July 16, (D) 22:00 UTC July 16 (E) 23:00 UTC July 16, (F) 00:00 UTC July 17, (G) 02:00 UTC July 17, (H) 03:00 UTC July 17, and (i) 04:00 UTC
July 17.
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representative, the sample size is limited. Therefore, more cases of
the DCSWV, as well as the wave instability and other forcing factors
will be worth further study over the SCB to clarify the common
physical characteristics of the DCSWV in more detail.
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Drought and floods frequently occurred in the Huaibei plain, which was the main factor that
restricted agricultural development. We conducted rainfall experiments, which aimed to
explore the impacts of porous fiber material (PFM) on the farmland water cycle processes
and soil water storage capacity. In this study, we designed two types of rainfall intensities, 4
PFM volumes, 4 growth periods of winter wheat, and a total of 8 experimental groups and
32 rainfall events to evaluate the effects. The result showed that PFM had significantly
affected the soil water circulation in the grain-filling period, and the peak flow and runoff
decreased maximumly compared with other periods. However, the effect of PFM on
surface runoff was slighter in the fallow period, and the peak flow or runoff decreased with
the PFM volumes increased (R2 = −0.92, −0.99). In the 100 and 50mm/h rainfall intensities,
PFM decreased the average values of runoff by (55.2–59.6%) and (57.2–90.2%), reduced
peak flow by (62.2–68%) and (64.2–86%), and increased the stable infiltration rate by
(13.4–14.3%) and (26.6–41.3%), respectively. After the rainfall experiments ended for 1 h,
the surface soil water rapidly infiltrated into PFM, whichmade the water-storage capacity of
PFM groups higher than the control groups by 0.2–11% Vol. Subsequently, PFM
increased the water-holding capacity by 0.3–2.3% Vol in the 10–70 cm depth from the
heading period to the fallow period. It had a positive relationship between the PFM volumes
and the average values of soil water content (R2 = 0.8, 0.84). In general, PFM could
increase infiltration, reduce runoff, and improve the water-storage capacity to alleviate soil
water deficit and the risk of farmland drought and floods. It has an excellent application
effect in long-duration rainfall.

Keywords: porous fiber material, infiltration, runoff, water-holding capacity, water-storage capacity
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INTRODUCTION

Farmland drought and floods frequently occurred globally
because the rainfall events were distributed unevenly in time
and space. Meanwhile, the change of land use mode and over-
development of cultivated land reduces the soil water-holding
capacity and aggerates the disaster risk (Karamage et al., 2020;
Winkler et al., 2021). Scholars successively studied the effect of
porous materials on the water cycle of agricultural farmland (such
as straw returning, biochar, and rock wool), aimed to improve the
soil structure, increase water-retention capacity, and enhance risk
resistance (Saffari et al., 2021; Zhao et al., 2019). Based on the
above study, we assumed that the rock wool could redistribute soil
water, enhance the water storage capacity, change the soil runoff,
and improve the infiltration mechanism of farmland (Cai et al.,
2020) (Figure 1). Finally, porous fiber material (PFM) reduces the
occurrence of farmland drought and flood events and increases
risk resistance. Therefore, we conducted extreme rainfall events to
explore the impacts of rock wool materials on farmland soil
infiltration, runoff, and water-holding capacity.

In the farmland water cycle processes, porosity is considered
an important parameter, and it directly influences the soil water
distribution and water-holding capacity. At the same time, soil
porosity drives themigration of energy andmaterials and changes
the infiltration and runoff mechanism (Helalia, 1993; Huang
et al., 2021; Du et al., 2021; Wasko and Nathan, 2019). But

the infiltration and runoff of farmland were complex hydrological
phenomena; it was the interactive result of rainfall and soil
management measures (Yu et al., 2021). Based on the above
cognition, porous materials could improve the soil porosity and
increase the water-absorbing capacity, water-holding capacity,
and water-storage capacity (Sun et al., 2021). Some soil
parameters (such as soil porosity and water conductivity)
change after the porous materials are embedded in the soil,
benefiting the infiltration, and effectively reducing runoff and
soil erosion. The internal structural characteristics of porous
materials make it easy to absorb and retain water and
ultimately achieve a more effective utilization of precipitation
(Li et al., 2019; Raimondi and Becciu, 2021).

At present, most scholars have explored the impacts of porous
materials on the soil structure (such as the soil porosity, bulk
density, water conductivity, etc.) (Humberto, 2017; Dong et al.,
2019; Dunkerley, 2021) and revealed its mechanism that the
probers materials were how to influence the infiltration process
and soil water-holding capacity (Li et al., 2019; Ahmadi et al., 2020;
Chen et al., 2020; Yang et al., 2021). Although traditional porous
materials increased the infiltration and water-retaining capacity,
there were the following defects: blocking soil pores, compacting
soil during the application, limiting the improvement range of
water-holding capacity (Pu et al., 2019; Zhang F. B. et al., 2019),
which would aggravate the soil erosion of farmland in some
extreme rainfall events (Werdin et al., 2021; Li et al., 2020). The

FIGURE 1 | PFM embedding in the farmland increases soil porosity, which benefits the increase of infiltration and the reduction of runoff. (A–D) represent the
changes of soil water content in the different scenarios, respectively.
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PFM is mainly composed of hydrophilic rock wool, which has
stability, high porosity, pressure resistance, and water retention.
PFM could quickly absorb water and drain water, which benefits
the distribution of water and nutrients on the board uniformly
(Bougoul and Boulard, 2006; Titouna and Bougoul, 2013; Choi and
Shin, 2019). Because rock wool could regulate the proportion of
water, nutrient, and gas in the plant roots’ environment, it has been
widely used in soilless culture (Savvas and Gruda, 2018). At the
same time, the field observation experiments conducted at the
woodland and farmland, which confirmed PFM had significant
effects on regulating soil water distribution and increasing
infiltration (Gu et al., 2020; Lv et al., 2020; Gu et al., 2021; Lv
et al., 2021). The above study preliminarily proved that PFM could
improve the soil water-holding capacity and had good application
in preventing drought and floods disasters (De-Ville et al., 2017).
However, most studies were indoor simulation tests of a single
factor and a single process, which was difficult to indicate the effect
of porous materials on farmland water circulation processes (Pu
et al., 2019; Cai et al., 2020; Libutti et al., 2021). In addition, the
study about PFM mainly focused on soilless cultivation and green
roofs. However, scholars paid little attention to its influence on
hydrological characteristics such as farmland soil infiltration and
runoff yield processes under extreme rainfall events.

The soil in Huaibei Plain is lime concretion black soil, which
has low organic matter content, heavy texture, and poor air

permeability. Drought and floods frequently occurred because
of the poor soil structure, which was the main factor that
restricted agricultural development (Liu. et al., 2017; Bi et al.,
2020; Wang et al., 2021). To solve the above problems and extend
the utilization of the PFM, we explored the effect of PFM on the
infiltration and runoff yield by rainfall experiments. The purposes
of this paper are as follows: 1) discovering the impacts of PFM on
soil infiltration and runoff; and 2) analyzing the influences of
PFM on the water retention capacity of the soil.

STUDY AREA

The experiments were conducted at Wudaogou Hydrological
Station (117°21′E, 33°09′N) in Bengbu City, Anhui Province,
China. The hydrological station is in the Huai River Basin and
Huaibei plain (Figure 2). The area experiences a north
subtropical and warm temperate semi-humid monsoon climate
zone, which is hot and rainy in summer and dry and cold in
winter. According to the station data records, the annual average
air and surface temperature were 14.7 and 17.9°C, respectively.
The annual average precipitation was 890 mm from 1963 to 2017
in this region (Bi et al., 2020; Gou et al., 2020). The maximum
rainfall intensity was about 92.4 mm/h, which occurred on June
29, 1997. The main crops include wheat, maize, peanut, soybean,
and others. The soil in this region is mainly lime concretion black
soil. The effective soil depth is approximately 100 cm, and the soil
porosity is about 49.7%.

MATERIAL AND METHODS

Experiment Design
In this study, we set up three factors: two rainfall intensities, four
PFM volumes, and four growth periods of winter wheat. Eight
experimental groups were designed based on the above factors.
The concrete design is shown in Table 1.

PFM Volume
The increased goal of soil water-holding capacity was set by 0, 5,
10, and 15%, so the PFM volumes were designed to V1 = 0m3, V2 =
1.08m3, V3 = 2.16m3, and V4 = 3.24 m3, respectively. The size of
PFM in A2, A3, A4 experimental plots was 0.75 × 0.45×0.4 × 8m3

(length × width × height × block), 1.2 × 0.45×0.4 × 10m3, and 3 ×
0.45×0.4 × 6m3, respectively (Figure 3), and B2, B3, B4
experimental groups were the same as A2, A3, A4 groups,
respectively. PFM volumes can be expressed as (Lv et al., 2020):

δ � V1

V0
×
β1 − β0
β0

× 100%

V0 � L × D × H

where δ represents the theoretical increase (%) of soil water-
holding capacity; V1 indicates the PFM volumes in different
experimental plots (m3); V0 indicates the total volume (m3) of
the effective depth of the experimental plot; β1 and β2 are PFM
and soil porosity (%), respectively; L, D, and H represent the

FIGURE 2 | The location of the experiment site and its terrain.
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length, width, and effective soil depth of the experimental plots,
respectively.

Rainfall Intensity
We have referred to the annual rainfall records of the
experimental station, and two rainfall intensities were set as
P1 = 100 mm/h and P2 = 50 mm/h according to the Grading
Standards for Rainfall of China and annual rainfall records,
respectively. The rainfall amount of a single experiment was
designed to be 150 mm, and the rainfall duration was set as
1.5 and 3 h, respectively.

Growth Periods
We have referred to the water requirement of winter wheat in the
Huaibei area, so rainfall experiments were conducted at the
heading period (3.24–3.26), the blooming period (4.14–4.17),
the grain-filling period (5.8–5.10), and the fallow period
(6.8–6.10), respectively. The artificial rainfall was set as the
average annual rainfall amount, ensuring that winter wheat
grows normally before regreening.

Experimental Plot
The size of experimental plots is 5.3 × 3.8 m2 with a 3°slope in the
north-south direction. The experimental plots and corresponding

devices include a rainfall device, wind dodger, water-stop sheep,
channel, rain cover, water tank, and water moisture sensor. PFM
was embedded in the 30–70 cm depth. Three water sensors were
buried in the 20, 40, 60 cm depth in the center of experimental
plots, respectively (Figure 1).

Date Monitoring
We monitored the variation of soil water content at 8:00 every
day. Subsequently, we started rainfall experiments when the soil
water content reached 25.0 ± 2.0% Vol at a depth of 20 cm.
During rainfall, we recorded the start time of runoff and
measured the runoff flow rate at intervals of 5 min. After the
rainfall ended, we monitored the variation of soil water content
every 1 h for a total of 6 h.

Date Processing
Data were analyzed in SPSS, Excel, and Origin. The
significance of the effects of the PFM on the runoff process
and water-holding capacity were tested by ANOVA (p < 0.5).
Finally, we evaluated the impact of PFM on the farmland water
cycle by comparing the variation of stable infiltration rate and
runoff process.

We could get the cumulative infiltration and infiltration
processes according to the runoff processes when we ignored

TABLE 1 | Scenarios designed and their corresponding experimental plots.

Experimental plots PFM volume (m3) Rainfall intensity (mm/h) Growth period

A1 V1 100 Heading period
B1 V1 50
A2 V2 100 Blooming period
B2 V2 50
A3 V3 100 Grain-filling period
B3 V3 50
A4 V4 100 Fallow period
B4 V4 50

FIGURE 3 | Location of the porous-fiber module in plots and their direction of the slope. A1, A2, A3, and A4 are the experimental plots under 100 mm/h rainfall
intensity; B1, B2, B3, and B4 are the experimental plots under 50 mm/h rainfall intensity; the arrow represents the direction of slope, A1~A4 plots have the same direction
of the slope; B2-B4 plots are the same as the B1 plot.
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evaporation and the interception by plants. Subsequently, the
soil infiltration processes of the experimental plots were fitted
by the Philip model and obtained the stable infiltration rate.
Finally, we used the R2, Nash–Sutcliffe efficiency (NSE)
coefficient, and relative deviation (RE) between the stable
infiltration rate and the minimum infiltration rate to
evaluate the performance of the Philip model (Sun et al.,
2019; Duan et al., 2021).

I(t) � A × t + S × t0.5

where I(t) represents the theoretical cumulative infiltration
amount during the rainfall process, mm; A represents the
stable infiltration rate, mm/min; t is the rainfall time, min; S
represents a parameter defined as sorptivity, mm/(min0.5). BothA
and S were determined by the least-square method.

RESULTS

PFM Increase Infiltration
The Philip model was used to fit the infiltration processes when
we ignored the plant interception, the R2 values were more than
0.997 between the stable infiltration rate and the minimum
observed infiltration rate, and the Nash–Sutcliffe efficiency
(NSE) coefficient values were above 0.993, and the RE values
were mostly less than 10% (except the A1 and B1 groups), so the
correlation was excellent (Table 2). In general, PFM increased the
stable infiltration rate by 5.2%, 9.2%, under 100 and 50 mm/h
rainfall intensity, respectively, so the PFM increased the stable
infiltration rate of experimental plots (Figure 4).

PFM increased the stable infiltration rate. The stable infiltration
rate of all PFM groups increased by 12.7–61%, compared with the

TABLE 2 | The stable infiltration rate under different growth periods of different experimental plots and evaluation index of fitting performance.

Growth
period

Group A R2 NSE RE Group A R2 NSE RE

Heading period A1 1.58 0.999 0.999 13.50% B1 0.61 0.998 0.997 20.90%
A2 1.58 0.999 0.999 1% B2 0.82 0.999 0.999 6.30%
A3 1.54 0.999 0.999 −0.40% B3 0.77 0.999 0.999 5.40%
A4 1.56 0.999 0.999 −0.40% B4 0.83 0.999 0.999 3.30%

Blooming period A1 1.23 0.999 0.996 16.30% B1 0.49 0.997 0.993 17.30%
A2 1.53 0.999 0.999 1.80% B2 0.79 0.999 0.999 14.90%
A3 1.5 0.999 0.999 1.80% B3 0.66 0.999 0.999 3.70%
A4 1.4 0.999 0.999 0.10% B4 0.79 0.999 0.999 3.20%

Grain-filling period A1 1.46 0.999 0.998 22.70% B1 0.66 0.998 0.997 27.20%
A2 1.65 0.999 0.999 1.70% B2 0.83 0.999 0.999 0.80%
A3 1.66 0.999 0.999 1.40% B3 0.79 0.999 0.999 -0.20%
A4 1.66 0.999 0.999 2% B4 0.83 1 1 0%

Fallow period A1 1.06 0.999 0.998 0.60% B1 0.53 0.998 0.996 22%
A2 1.34 0.999 0.999 5.30% B2 0.59 0.999 0.998 13.20%
A3 1.36 0.999 0.999 9.60% B3 0.68 0.999 0.999 2.70%
A4 1.49 0.999 0.999 4.90% B4 0.78 0.999 0.999 8.30%

FIGURE 4 | Variations in stable infiltration rate in different rainfall intensity and growth periods. (A) and (B) in the picture represent the experimental plots under 100
and 50 mm/h rainfall intensity, respectively.
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control plots, respectively (except the A1 plot in the heading stage).
The minimum infiltration rate by observing increased with the PFM
volumes increased too (R2 = 0.61.0.73). In different growth periods of
winter wheat, PFM significantly influenced the variation of stable
infiltration rate in the fallow period, and the stable infiltration rate
increased with the PFM volumes increased (R2 = 0.87.0.99), and the
stable infiltration rate of the A2, A3, and A4 plots increased by 26.6,
28.7, and 40.6%, respectively, compared with the A1 control plot. In
the same way, B2, B3, and B4 groups with the PFM increased by 12.7,
29, and 48.3%, respectively, compared with the B1 control plot. But in
the grain-filling period, the range of increase rate only was 13–26.8%
when PFM was embedded in the soil.

Analyzing the effect of PFM on infiltration processes from the
different rainfall intensities, the increased range of stable
infiltration rate after PFM embedding was 13.4–14.3%
compared with the A1 control plot under 100 mm/h rainfall
intensity, and the stable infiltration rate of PFM experimental
groups increased 26.6–41.3% under the 50 mm/h rainfall
intensity, compared with the B1 control group. To sum up, we
concluded that PFM has excellent applicability under low-
intensity or long-duration rainfall.

PFM Decrease Runoff
In general, PFM reduced the runoff volume by 24.1–100%
during the rainfall experiment, compared with the control
group, respectively (except the A1 plot at the heading period).
Total runoff volumes decreased with the PFM volumes
increased (R2 = 0.61.0.74) (Figures 5, 6). Analyzing the
impact of PFM on runoff from the growth periods, the
runoff volume was the following: the fallow period > the
blooming period > the heading period > the grain-filling
period. PFM significantly affected runoff during the grain-
filling period, and it decreased 77.2–100% at the maximum. In

addition, the runoff volumes of PFM groups reduced by
24.1–82.7%, respectively, in the fallow period, compared
with the control group, and it comes significantly negatively
correlated with the PFM volumes (R2 = -0.92, -0.99). In the
100 mm/h rainfall intensity, the runoff volume in A2, A3, and
A4 groups reduced by 9.9–10.7 mm on average, compared with
the A1 control group, respectively, and B2, B3, and B4 groups
decreased (15.8–24.8) mm in 50 mm/h (Figure 5). PFM has a
better application to reduce the runoff in low-intensity and
long-duration rainfall.

PFM changes the start time of runoff, but it is not a single
variation trend like delaying or moving up. Analyzing the impact
of PFM on the start time of runoff from the different growth
periods, the start time of runoff was the following: the fallow
period < the blooming period < the heading period < the grain-
filling period (Table 3). In the fallow period, PFM delayed the
start time of runoff by 10–55 min compared to the control group
(except that the B3 group was earlier than the B1 group by 5 min).
In addition, the start time of runoff in the grain-filling period was
delayed 27.7–42.1 min compared to other periods, respectively. In
the 100 mm/h rainfall intensity, the start time of runoff was
7.5–12.5 min in advance at the PFM experimental plots,
compared with the control group. But it had a different
change trend under the 50 mm/h rainfall intensity; the runoff
volumes of B2 and B4 groups were delayed but the B3 group was
advanced, compared with the B1 group.

PFM could improve the water absorption capacity of the soil
and reduce peak flow. In total, PFM reduced the peak flow by
24.8–100%, respectively (Figures 7 and 8), and it had a positive
relationship between the peak flow and the PFM volumes (R2 =
0.63.0.81). In different growth periods, the peak flow was as
follows: the fallow period > the blooming period > the heading
period > the grain-filling period. The decrease of peak flow was
the largest in the grain-filling period, reaching 88.6–100%, but it
was only 29.1–58.8% in the fallow period. In the different rainfall
intensity, the peak flow of the A1 group was higher than the B1
group by 24.2%, and B2, B3, and B4 experimental groups
increased 29.3, 51.9, and 206.4% by comparing with the A2,
A3, and A4 experimental groups, respectively. In Figure 7, we
could find that the peak flow of runoff positively correlates with
the PFM volumes (R2 = 0.63.0.81), which confirmed PFM had the
practical application ability to reduce the risk of farmland flood
disaster.

FIGURE 5 | Observed runoff in different plots and growth periods under
100 mm h−1 (left) and 50 mm h−1 (right) rainfall intensities. A1, A2, A3, and A4
are the experimental plots under 100 mm h−1 rainfall intensity; B1, B2, B3, and
B4 are the experimental plots under 50 mm h−1 rainfall intensity.

FIGURE 6 | Observed cumulative runoff in different PFM volumes under
100 mm h−1 and 50 mm h−1 rainfall intensities.
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PFM Increase the Soil Water-Holding
Capacity
PFM could change the distribution of soil water and improve the soil
water-holding capacity. In this rainfall experiment, we found that the
average soil water content increased by 0.4–2.3%Vol in the 10–70 cm
depth, and significantly it had a positive relationship between the soil
water content with the PFM volumes (R2 = 0.8 and 0.84, p < 0.5)
(Figure 9). According to the experimental result, the variation range of
soil water content by 25.2–30.9%Vol in the 10–30 cm depth (p < 0.1),
and the average soil water content of B2 and B4 groups increased but
the B3 group reduced by comparing with the B1 groups. Comparing
with the 10–30 cm depth, the soil water content had a different
variation trend that initially strengthened and subsequently weakened
with the PFM volumes increase in the 30–50 cm depth. At the same
time, A2, A3, A4, and B2, B3, B4 groups increased by (1.6–2.5% Vol)
and (4.5–6.8%Vol) by comparing with the control group, respectively
(p < 0.5). In the 50–70 cm depth, PFM reduced the soil water content
by 0–2.2% Vol (except the B4 group increased by 1% Vol), and the
relationship between each other passed the significance test (p < 0.5,
except the A3 and B3 group).

The impact of PFM on soil water-holding capacity was related to
the growth period of the winter wheat (Figure 10). The soil water
content of the control groups initially decreased and lastly increased as
the growth periodwent and reached aminimumvalue of 30.8%Vol in
the grain-filling period. From the heading period to the fallow period,
the increment of soil water content was 0–3.4% Vol in the PFM
experimental groups compared with the control groups, respectively.
Overall, although in the same condition, the soil water content of B2,

B3, and B4 groups were lower than the A2~A4 groups by 0.5–2%Vol
(except that the B4 group was higher than the A4 group in the
blooming to grain-filling period), the increment of soil water content
was higher than the A2, A3, and A4 groups by 0.5–2.6% Vol
compared to the respective control groups, respectively.

PFM Increase the Soil Water-Storage
Capacity
PFM could increase the soil water storage capacity. After the
rainfall experiment ended, PFM increased the soil water content
by 0.3–9.8% Vol (except that the A4 group decreased by 2.1%
Vol). After rainfall ended for 6 h, the water content of PFM
internal increased 0–35.1% Vol (except the B2 plot reduced by
16% Vol, compared to the B1 group), and the rising trend mainly
occurred in 0~1 h (Figure 11). The soil water content of PFM
experimental plots was higher than the control group by 0.2–11%
Vol (except that A4 decreased by 1.8% Vol), respectively.

Within 6 h after the rainfall ended, the soil water infiltrated
downward rapidly in the depth of 10–30 cm, and the decreased
range in the PFM groups was 2.2–10.7% Vol compared with the
control group. In the 30–70 cm depth of soil, soil water content
decreased slower or even increased by comparing with the surface
soil (Figure 12). In detail, PFM changed the water distribution in
whole plots, and reduced the soil water content by 5.3% Vol and
2.1% Vol on average in the 10–30 cm and 30–50 cm depth of soil,
respectively. Although the soil water content in PFM experimental
groups had the same variable trend, the decrement was only by 1.1%
Vol in the depth of 50–70 cm. So, in a short time after rainfall, the
variation range of soil water content decreased with the increase of
soil depth. The difference in soil water content shrank between 30
and 70 cm depth when PFM was embedded in the soil. The soil
water-storage capacity improved by 0.2–11% Vol in whole plots
(except the A3 group was lower than the control group by 1.8%Vol).

DISCUSSION

Porous Fiber Materials Influence the
Infiltration and Runoff
The infiltration process of farmland was deeply influenced by
some factors such as soil type, rainfall intensity, and initial water

TABLE 3 | Start time of runoff in different experimental stages and plots.

Experimental
plots

Time A1 A2 A3 A4 B1 B2 B3 B4

Jointing period T 55 10 20 5 20 60 15 125
ΔT 0 −45 −35 −50 0 40 −5 105

Blooming period T 25 10 10 15 40 55 15 55
ΔT 0 −15 −15 −10 0 15 −25 15

Grain-filling period T 55 55 65 50 75 140 25 —

ΔT 0 0 10 −5 0 65 -50 —

Fallow period T 5 15 15 20 20 30 15 75
ΔT 0 10 10 15 0 10 -5 55

Average T 35 22.5 27.5 22.5 38.8 71.3 17.5 85
ΔT 0 −12.5 −7.5 −12.5 0 32.5 −21.3 46.3

T represents the start time of runoff,ΔT represents the variation between the control groups and the PFM experimental groups,— represents no runoff andwater fully infiltrated into the soil.

FIGURE 7 | Variation of the peak flow in different PFM volumes under
100 mm h−1 and 50 mm h−1 rainfall intensities.
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content (Humberto, 2017; Dong et al., 2019; Dunkerley, 2021).
PFM increased the farmland infiltration rate, which was similar to
the research results that some porous materials (such as
biochar, straw, and PAM) applied in the farmland (Abrol
et al., 2016; Wang et al., 2017). Porous fiber materials
changed some soil physical and hydrological characteristics

such as soil porosity, water conductivity, aggregate stability,
and that the materials including huge pores could provide
sufficient space for water storage during rainfall, which
benefits the soil infiltration rate increased and reached
stable infiltration faster (Gholami et al., 2019; Yu et al.,
2021). In the early stage of a rainfall event, the PFM water

FIGURE 8 | Surface runoff process under different conditions. (A-D) The booting period, the blooming period, the grain-filling period, and the fallow period under
100 mm/h rainfall intensity, respectively. (E-H) The booting period, blooming period, grain-filling period, and fallow period under 50 mm/h rainfall intensity, respectively; *
represents a significant difference in streamflow between the PFM and the control plot at α = 0.05; ** represents significant difference between the PFM and the control
plots at α = 0.01; NS, no significant difference at α = 0.05.
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content was often lower than the soil water content in the same
depth, which would make soil water suction in the PFM groups
higher than the control groups during rain. PFM would
actively absorb the free water when the soil pore saturated
during the long-duration rain because the difference in
potential energy, and the water absorption capacity of
hydrophilic rock wool increases with the irrigation time
increase, so it can enhance the effect on the infiltration
process in a long duration rainfall (Lv et al., 2021).
Subsequently, the infiltration rate would reach a stable value
faster, which is the reason why the RE values of the control
group are higher than the PFM groups.

Some researchers confirmed that green roofs filled with porous
materials could reduce the runoff and the peak flow because the
free water in the soil permeated into the porous materials and
stored in the drainage layer during rainfall (Stovin., 2010).
Similarly, porous materials should have the same advantages
in the farmland, and Patrick and Vikas thought it could

improve some soil structure parameters (such as porosity,
texture, and particle size distribution), which benefited by
reducing the surface runoff (Abrol et al., 2016; Nyambo et al.,
2018; Li et al., 2019). However, biochar was easy to be washed off
by runoff or block the soil pores in some extreme rainfall events,
which led to the intensification of farmland floods (Peng et al.,
2016). But PFM does not have the above shortcomings in
practical application due to the difference in its layout mode
(Yu et al., 2021). In nature, the formation and growth of surface
runoff depend more on the relationship between rainfall intensity
and soil infiltration rate (Zhao X. et al., 2014; Werdin et al., 2021).
We have explained why the PFM could affect the infiltration
process, so PFM inevitably reduced runoff when the rainfall
intensity was stable.

PFM affected the starting time and processes of runoff. The
effects of different PFM volumes on the start time of runoff were
not a single variation trend during the rain, which was different
from Zhou et al. in the biochar application (Zhou et al., 2020).

FIGURE 9 | Variations of soil water content in different depths. (A-D) The different depths of the soil, * represents a significant difference in streamflow between the
PFM and the control plots at α = 0.05; ** represents a significant difference between the PFM and the control plots at α = 0.01; NS represents no significant difference at α
= 0.05.
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FIGURE 10 | Variations in soil water content in different growth periods and depths. (E-H) represent the different periods; a, b, c, d indicate the significant difference
between the different depths at 0.05; (A-C) indicate the significant difference between different PFM volumes. PFM increases the soil water-storage capacity.

FIGURE 11 | Redistributions of soil and PFM water content in experimental plots from 1 to 6 h after rainfall (The letters (A) and (B) in the top left corner represent
PFM and experimental plots, respectively.
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The start time of runoff increased with the increase of biochar
amount, this is mainly because biochar in the surface soil could
absorb water and quickly respond to the infiltration processes, and
delay the formation of runoff. However, PFM was difficult to
respond to the formation of surface runoff in time due to the
30–70 cm depth of layout. Similarly, biochar could increase the
water-holding capacity, which meant that the initial water content
of the PFM groups before rainfall was higher than the control
group. The porous materials have huge pores that can store water
in rainfall and release water in drought, which made the soil water
retain a high level, and directly affect the start time of runoff or
even in advance like the B3 group (Razzaghi et al., 2020).
Subsequently, surface soil water content would reach the
threshold required for runoff faster, and the wetting front
moved further down, finally, the surface runoff was accelerated
to be formed (Song and Wang, 2019; Zhang J. L. et al., 2019;
Rascon-Ramos et al., 2021), but it might be inappropriate in short-
duration rain (Choi and Shin, 2019). PFM would actively absorb
the free water to alleviate the flood disaster risk in long-duration
rainfall after the soil water is closed to saturation, or the soil suction
is less than 75 cm (Lv et al., 2021), so it has the different varied
trend after the rainfall ended for 1 h under the 100 mm/h and
50mm/h rainfall intensity. Therefore, the applicability of PFM

embedding is better under continuous or long-duration rainfall
(Figure 8).

The effect of PFM on runoff has a significant variation in the
grain-filling period because the raindrops damaged the surface
aggregate structure and promoted soil erosion (Ao et al., 2019;
Ahmadi et al., 2020). In addition, the collapse plants absorbed a
large amount of raindrops’ energy and slowed down the above
process. Meanwhile, winter wheat consumed large amounts of
water for grouting, which made the initial soil water content
lower than other periods and delayed the start time of runoff on a
large scale (Zhang J. L. et al., 2019). The raindrop kinetic energy
directly made soil particles separate in the fallow period, and the
part of soil particle washed and taken away by runoff, another was
precipitated on the soil surface to form a sealing plane, and
reduced the infiltration rate and accelerated the formation and
growth of runoff (Sadeghi et al., 2016; Yao et al., 2018).

The farmland runoff is usually uncertain in time and space
in the natural rainfall because of the interaction of some
factors such as the initial water content, rainfall intensity, and
surface roughness. PFM embedding might cause a slight
negative impact during short-duration rainfall. The
application on farmland drainage is better in continuous
rainfall events.

FIGURE 12 | Redistributions of soil water content in experimental plots at 10–70 cm depth from 1 to 6 h after rainfall ended (The letters (A-D) in the top left corner
represent the different depths of soil).
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Porous Materials Influence the Soil
Water-Holding Capacity and the
Water-Storage Capacity
PFM increases the soil water-holding capacity and changes soil
water distribution, the same as the results of other studies. For
example, rock wool embedding in the forest land could
increase the soil water content by 29.29% after a long-
duration drought (Gu et al., 2020). The key to the above
phenomenon was porous materials could fully absorb water
during rainfall and increase soil water-storage capacity
(Mollinedo et al., 2015). After the rainfall ended, soil water
infiltrated, evaporated, or absorbed by the roots and gradually
decreased to the unsaturated. At that time, the soil suction was
much higher than PFM, which made PFM continuously release
water to alleviate soil water deficit (Gu et al., 2020; Lv et al.,
2021).

After the rainfall experiments, the water rapidly exchanged
between the PFM and the surrounding soil on a large scale
because of the various potential energy (Lv et al., 2021). The
surface soil water decreased quickly, but the deep soil
changed slowly. The water absorption capacity of
hydrophilic rock wool increased with irrigation time
(Choi and Shin, 2019). The surface and deep soil water
infiltrated the PFM from vertical and horizontal
directions. PFM water content increased rapidly by
0–35.1% Vol under 100 mm/h rainfall intensity after the
rainfall ended for 1 h and remained stable at high levels
because of the different matrix suction and the geopotential
conditions (Lv et al., 2020). PFM had sufficient infiltration
time under the long-duration rainfall, so it significantly has
the better appliance effects under the 50 mm/h, which
benefits the improvement of the soil water storage (Choi
and Shin, 2019; Kołodziej et al., 2020). In general, the
variation of soil moisture is an exponential downward
trend during the long-dated observation. The mutations of
soil water occasionally might occur after rainfall in some
time because the soil exists in the heterogeneous mixture in
the local area, which makes the soil hydraulic characteristics
different; therefore, the B1 group rises significantly after
rainfall.

PFM has evenly arranged fiber composition (one-way or cross),
improving infiltration processes, and water-holding capacity. Rock
wool material could naturally and continuously penetrate, buffer, and
discharge rainwater and effectively achieve rainwater absorption and
utilization (Wanko et al., 2016). However, the roots of winter wheat
are generally short and mainly distributed in the surface soil
(Nosalewicz and Lipiec, 2014; Figueroa-Bustos et al., 2018), and it
is difficult to root into the PFM, so we analyzed the effect of PFM on
soil water-holding capacity from the variation of soil water content. In
detail, PFM steadily water to supply soil after rain and led to decreased
hydraulic conductivity and increased soil water suction, further
alleviating soil water deficit (Bougoul et al., 2005). In this process,
the diffusion ability in vertical and horizontal directions gradually
decreased from the center of the PFM embedding position to the
surrounding, and shrank the gap of the soil water content in the
vertical and improved the water-holding capacity (Gu et al., 2020).

PFM acted as an intermediate medium to redistribute water of
the surrounding in the 30–70 cm depth, which would also affect
the water exchange at other depths, and adjusted the water
potential difference to improve the water-holding capacity, this
was similar to that PFM plays a role in regulating the root of the
environment in the soilless culture (AcuA et al., 2013; Graceson
et al., 2013; Narzari et al., 2017).

In summary, PFM can effectively increase soil infiltration,
reduce runoff, and improve soil water storage capacity. Although
porous fiber materials are currently used in soilless culture, they
can adjust the proportion of water, fertilizer, and air in crop roots,
which benefits plant growth well (Savvas and Gruda, 2018). In
general, the expense of PFM restricted its application on a large
scale at present, and the average price of a PFM ranges from
¥1,000 to ¥2,000 m−3, so we can use it in intensive agriculture or
economic crop planting. At the same time, we must realize that
PFM cannot create water or reduce the soil water consumption of
farmland. It only plays a role in enhancing soil water storage
capacity to delay drought events. To effectively achieve the
drought disaster risk reduction in the extremely dry years,
improving the soil water content may be necessary through
PFM embedding and irrigation system interaction.

CONCLUSION

PFM influences soil infiltration and water exchanging by
establishing a hydraulic connection with the surrounding
soil. Based on the above assumptions, we experimented with
the growth period of winter wheat to explore the effects of PFM
embedding on the farmland water cycle processes. The result
showed that PFM could absorb a large amount of free water in
saturated soil during rain. Subsequently, it increased the soil
infiltration rate and reduced the runoff. After rainfall, PFM
could regulate the water redistribution and improve water-
holding capacity to alleviate soil water deficit. The above
effects increased with the PFM volumes increased. In
general, the expense of PFM restricted its application on a
large scale at present, and the average price of a PFM ranges
from ¥1,000 to ¥2,000 m−3, so we can expand the application to
intensive agriculture and economic crops in the farmland.
Furthermore, we believe that PFM will have excellent
application effects in soil and water conservation, sponge
city, green roof, potting, etc.
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Potential Use of Extreme Rainfall
Forecast and Socio-Economic Data
for Impact-Based Forecasting at the
District Level in Northern India
Akshay Singhal, Ashwin Raman and Sanjeev K. Jha*

Indian Institute of Science Education and Research Bhopal, Bhopal, India

Due to the increase in extreme rainfall events in India, there is an urgent need for prior
communication of the expected impacts and appropriate responses in order to mitigate
the losses of lives and damage to property. Extreme rainfall events cause numerous
casualties, damage to property and infrastructure and vast displacement of people.
Hence, the development of an approach where the rainfall forecasts are well analyzed,
associated risks are identified, and the probable impacts are clearly communicated to
relevant stakeholders is required. In this study, we aim to develop a framework for
generating the impact-based forecasts (IBF) and associated warning matrices over the
selected districts of eastern Uttar Pradesh, India, by integrating the rainfall forecasts and
the socio-economic characteristics such as population, economy and agriculture. The
selected districts lack proper infrastructure, have poor socio-economic conditions and
have been historically prone to frequent extreme rainfall. The basic idea is to estimate the
impacts that could occur over various sectors of population, economy and agriculture and
suggest appropriate actions in order to mitigate the severity of the impacts. To this end, we
identify the vulnerable districts based on the frequency of the number of extreme rainfall
forecasts (ERFs) in the past four years (2017–2020) and the nature of socio-economic
conditions. We selected three vulnerable districts based on the expected impacts,
i.e., Shravasti (high category), Gorakhpur (medium category) and Jaunpur (low
category) and subsequently, the corresponding IBFs are generated. Furthermore, a
warning matrix is created for each district which provides updated information
regarding the potential risk for a district a few days in advance. This study is significant
since it identifies the different levels of potential impact over multiple sectors of society,
presents a framework to generate impact-based forecasts and warnings, informs about
the expected impacts, and suggests mitigation actions to reduce potential damage and
losses.
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1 INTRODUCTION

India has witnessed an increase in extreme rainfall events during
the summer monsoon season, which is expected to intensify in
the future (Goswami et al., 2006a; Mukherjee et al., 2018; Singhal
and Jha, 2021a; Singhal et al., 2022). Extreme rainfall cause
damage to property and infrastructure, numerous casualties
and vast displacement of people. The increase in the extreme
rainfall also means an increase in the total seasonal rainfall during
the monsoon season, thus leading to frequent floods (Pattanaik
and Rajeevan, 2010). Floods incur huge losses of life and economy
over different parts of the country. According to an estimate,
floods caused due to extreme rainfall amounts to economic losses
of around 3 billion USD per year in India, which is around 10% of
the global economic losses (Roxy et al., 2017). In addition, they
constitute the maximum share of mortality (46.1%) among all the
extreme weather events in India (Ray et al., 2021). This happens
despite the fact that various Quantitative precipitation Forecasts
(QPFs) are available in many regions of the world, and the
majority of extreme rainfall events are forecasted. The QPFs,
obtained from the Numerical Weather Prediction (NWP)
models, help in predicting the possible rainfall amount over a
certain region a few days in advance (Froude, 2010; Verdin et al.,
2016; Jha et al., 2018). In the recent decades, QPFs have shown
improvement both in the quality and quantity of information
(availability of lead-times) mainly due to advancement in
technology, availability of real-time data and increased
capability of computer simulations.

One of the main reasons for the losses in life and property
despite the availability of QPFs is that the QPFs rarely include
warnings about the potential impacts they may have over a certain
region or over a certain population. Even if the warnings are
included, they lack proper communication to the general public
(Basher, 2006; Uccellini and Ten Hoeve, 2019). Several methods
have been utilized for communicating the consequences of high
impact weather events in the past. The methods include interviews
(Bostrom et al., 2018; Tozier de la Poterie et al., 2018), surveys
(Morss et al., 2018; Potter et al., 2018), experience-based decisions
(Casteel, 2018; Losee and Joslyn, 2018), social media analysis (Rossi
et al., 2018) etc. However, the communications are mostly based on
theoretical and subjective responses of the exposed population
themselves. Recently, it has been emphasized that along with the
QPFs, the nature of impact which may be caused due to extreme
rainfall such as area and number of people exposed, regions
expected to flood, damage to trees or infrastructure must also
be communicated (Pittore et al., 2017). In the same line, at the
Third UNWorld Conference on Disaster Risk Reduction in 2015,
the Sendai Framework for Disaster Risk Reduction recommended
include multi-hazard early warning systems and rapid disaster risk
information by 2030 (WMO, 2015). Various national and regional
rainfall forecasting agencies have started issuing risk-based
warnings, which include both the probability of occurrence and
the degree of potential impacts arising from the extreme rainfall
(Weyrich et al., 2018; Silvestro et al., 2019). Such an approach in
which the forecast information is provided on the basis of the
potential impact of the event is termed as Impact-Based
Forecast (IBF).

IBF is an integrated framework that includes hazard, exposure
and vulnerability data for identifying risks and enabling decision-
making. The overall objective of IBFs is to add scientific information
to severe weather warnings to promote timely response and reduce
losses of lives. A more effective and user-friendly warning comprises
the information regarding “What the weather will do” instead of
“What the weather will be” (Kaltenberger et al., 2020). They are
expected to include the specific social, economic and environmental
impacts of hazard in the warning to enable people to adapt and
mitigate the possible adverse consequences (WMO, 2015; Kox et al.,
2018). Previous studies suggest that IBF improves the understanding
of forecasts for the general public as it bridges the gap between the
raw QPFs, its related warnings and potential impacts (Potter et al.,
2018; Taylor et al., 2019). Moreover, it facilitates people to take
timely defensive measures against the impending extreme rainfall
(Casteel, 2016). However, providing IBFs can be challenging atmany
levels. For instance, a significant number of resources in terms of
time, money and workforce is required to combine the produced
weather informationwith the exposure and vulnerability prevalent at
the ground level. Regular updates of the socio-economic status of the
region must be kept so that the IBFs are consistently accurate. Socio-
economic developments such as urbanization and population
growth are expected to influence the exposure and vulnerability
of many regions across the world, especially in hazard-prone regions
(Winsemius et al., 2015; Jongman, 2018). Consequently, large
datasets of socio-economic progress are required to be processed
under changing scenarios for multiple sectors. Nevertheless, greater
precision of QPFs, greater availability of data and lead-times (LT)
provide new opportunities for enhancing IBFs (Silvestro et al., 2019).

The topic of IBF is still in its early stage and has started to gain
momentum in recent years. Worldwide, few studies have explored
the utility of IBFs in the case of various extreme weather hazards. For
instance, Silvestro et al. (2019) used a multi-model ensemble
approach to design an impact-based flash-flood probabilistic
forecasting system in northwestern Italy. Sai et al. (2018) explored
the use of color-codes in developing impact-based forecasts of floods
among a flood-exposed community in a district of Bangladesh.
Mendis (2021) developed a warning matrix as a tool of IBF to
relate the risk of heavy rain hazards in Sri Lanka. Otieno et al. (2014)
used a predictivemodel and observed satellite rainfall as a covariate to
estimate flood impacts on exposed communities in a river basin of
Kenya. In India, to the best of our knowledge, the potential use of
QPFs and socio-economic data for IBFs is lacking. With the rise in
events of extreme rainfall, there is a need to develop an approach in
Indiawhere theQPFs are analyzed, associated risks are identified, and
the probable impacts are estimated. Once the risks and potential
impacts are identified, proper communication to local stakeholders is
crucial so that the impending impacts are mitigated at the ground
level (Reddy et al., 2021).

In this study, we aim to develop impact-based forecasting
approach by integrating the available QPF and the local socio-
economic data over the districts of the eastern part of Uttar
Pradesh, India. The basic idea is to estimate the possible impacts
that could be caused due to potential extreme rainfall over various
social and economic sectors such as local population, marginalized
groups, agriculture and economy and subsequently suggestmitigation
actions. The deterministic rainfall forecast data from the National
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Centre for Medium-Range Weather Forecasting (NCMRWF)
available for the period of 2017–2020 is used as the rainfall
forecasts in the study. The socio-economic data is collected from
various state and national agencies. The number of extreme rainfall
events calculated for each district is correlated with the corresponding
spatial maps created using the socio-economic data. The IBFs are
generated on the combined basis of the frequency of the extreme
rainfall and the nature of the socio-economic condition of the district.
Furthermore, warningmatrices are formed for the vulnerable districts,
which provide information regarding the overall risk probability of a
district in the case of an extreme rainfall event. This study is significant
since it identifies the different levels of potential impact over multiple
sectors of society and issues impact-based warnings to reduce
probable damage and losses.

The rest of the paper is organized as follows. Section 2
describes the study area and dataset. The methodology is
explained in Section 3. Results are presented in Section 4.
Discussions are dealt with in Section 5, followed by
conclusions in Section 6.

2 STUDY AREA AND DATASET

2.1 Study Area
The study area includes thirty-two administrative districts of the
eastern part of Uttar Pradesh located in the Ganga River Basin of
India. Figure 1A shows the location of the state of Uttar Pradesh in

India along with the selected districts, and Figure 1B shows the
expanded view of the selected districts. The districts are located
between 23°53′N to 28°24′N latitude and 80°30′E to 84°38′E
longitude. The area is one of the most densely populated regions
of India, with agriculture being the predominant source of livelihood
for the majority of the population. The climate of the region is
generally hot and humid, with much of the rainfall occurring during
the summer monsoon season (June to September). The region has
poor infrastructure, poor drainage facilities etc., due to which
extreme rainfall events often lead to flash floods and
waterlogging. Moreover, the presence of the Ganga River is also
one of the reasons for frequent inundation of the region when heavy
rainfall occurs in the upper parts of Uttarakhand. The main reason
for selecting the region as our study area is that it faces a high rate of
mortality of humans and livestock and annual displacement of a vast
population each year due to extreme rainfall. Moreover, the socio-
economic conditions of the population are generally poor with a low
literacy rate. Hence, the availability of reliable forecasts along with
their proper interpretation and subsequent guidelines can mitigate
the losses of lives and annual displacement of a vast population.

2.2 Datasets Used
This study uses two kinds of data: 1) quantitative precipitation
forecast data and 2) socio-economic data. The forecast data is
obtained from the NWP model of NCMRWF, which is the
premier weather forecast center of India. It provides rainfall
forecasts in real-time by performing medium-range global

FIGURE 1 | The study area map showing (A) the state of Uttar Pradesh in India; (B) the expanded view of the districts in Uttar Pradesh (East) selected as the study
area along with the names of key districts for this study which are prone to frequent extreme rainfall forecasts.
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assimilation. The data is downloaded from the TIGGE data portal
after interpolation (at the TIGGE portal itself) at 0.5° × 0.5° spatial
grid resolution for the years 2017–2020. The temporal resolution of
the data is 24 h, along with a lead time of 5 days. Moreover, various
socio-economic data such as population density (total population,
female population, children population), net sown area, gross
domestic product (GDP), airports, percentage of population
below the poverty line and number of homeless people are
collected for each district. These datasets are collected from
various secondary sources, such as the census handbooks of each
district and primary census data. The handbooks are available at the
website of the census of India (www.censusindia.gov.in).

3 METHODOLOGY

In this study, we use the integrated approach of using the
QPFs (along with lead-times) and the relevant socio-

economic data for generating the IBFs. The overall
approach of generating the IBFs can be divided into three
steps, as shown in Figure 2.

3.1 Processing of Rainfall Forecast
The available rainfall forecast is gridded in nature which must be
calculated at the district level to make it suitable for this study. To
this end, we use the method of area-weighted average to estimate
the rainfall forecast in each of the districts (Jha et al., 2018; Singhal
and Jha, 2021b; Singh et al., 2021). The area-weighted average
method involves three steps:

(a) Estimating the area (Ai) based on the portion of the rainfall
forecast grid that overlaps with the sub-district,

(b) Multiplying the area (Ai) with the rainfall forecast value (Ri)
on that grid,

(c) Divide the result of area*precipitation (Σ(Ai*Ri)) by the value
of total area (A = Σ(Ai)).

FIGURE 2 | The methodological framework applied to generate IBFs and warning matrices in the study.
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The above steps are demonstrated in Supplementary Figure
S1A which shows the estimated area based on the portion of the
rainfall forecast grid for all the districts in the study area. An
expanded view of one of the districts is presented in
Supplementary Figure S1B, in which many rainfall grids
overlap. We select five grids to demonstrate the working of
area-weighted average. Let us suppose that the area of overlap
is estimated as A1, A2, . . . A5 and the rainfall forecast for each of
those areas as R1, R2, R3, . . . R5. In that case, the area-weighted
rainfall for the district would be calculated using Eq. 1.

District rainfall � (P*
1A1+P*

2A2+P*
3A3+P*

4A4+P*
5A5)/

× (A1+A2+A3+A4+A5) (1)
Next, the obtained rainfall time-series is used to identify

extreme rainfall forecasts (ERFs) for each district based on two
predefined thresholds of 70 and 100 mm (Goswami et al., 2006b;
Salio et al., 2015; Panda et al., 2016). The idea is to select
precipitation thresholds that can cause a significant impact in
the region (or any region). Generally, a rainfall of more than 70
and 100 mm per day usually will cause serious impacts in most
districts of India. We select two thresholds different in magnitude
to take into account the possible diversity in results. Moreover,
ERFs at the three lead-times (LT_1, LT_3 and LT_5) are obtained
at each of the two percentile thresholds.

Obtaining results using three lead times will allow to
understand how the likelihood of probable impacts and their
severity may change with an increase (or decrease) in the
lead times.

3.2 Analysis and Identification of Vulnerable
Districts
In this step, we plot spatial maps of the ERFs at various lead-times
showing their spatial distribution in the study area (shown in
Supplementary Figure S2). We also plot the spatial maps
corresponding to the various socio-economic indicators
(shown in Supplementary Figure S3). The idea here is to
visually analyze the extent of possible impacts that could occur
in a district based on the integrated effects of the magnitude of
ERF and the prevalent socio-economic conditions at the ground.
The combined effect determines the likelihood and severity of the
impact for each district. For instance, if a district with high
population density is forecasted to face extreme rainfall, the
likelihood and the severity of the impact (mortality, injuries or
displacement) could be much higher than that of a district with
low population density. Similarly, a district having an airport
facility is likely to be impacted in case of extreme rainfall more
severely than a district with no airport. Subsequently, the
vulnerable districts are identified to generate the warning
matrices and the impact-based forecasts.

3.3 Generation of Warning Matrices and
Impact-Based Forecasts
After the vulnerable districts are identified, a color-coded
warning matrix is issued as an advisory for the potential

impacts much before the extreme rainfall has taken place, as
shown in Supplementary Figure S4. The advantage of such
warning matrices is that they can be updated depending
upon the change in risk and likelihood of impact. For
instance, the 5-day lead time (LT_5; 5 days before an
extreme rainfall) could advise for a “low” likelihood but
“high” severity of the impact of extreme rainfall
(Supplementary Figure S4A). In this case, the target
group must be informed about the impending extreme
rainfall. Subsequently, both the likelihood and impact may
change for the 3-day lead time (LT_3) to “medium”
(Supplementary Figure S4B). Then, the target group
must be given appropriate warnings regarding the
potential impacts. Furthermore, for the 1-day lead time
(LT_1), the likelihood and impact may change to “high,”
meaning there is a greater possibility of the occurrence of
extreme rainfall leading to severe impacts (Supplementary
Figure S4C). Finally, an integrated warning matrix must be
issued, which takes into account the warnings of all the
individual matrices as shown in Supplementary Figure
S4D. At this stage, meaningful dos and don’ts must be
conveyed to the local stakeholders. Finally, impact-based
forecasts must be issued in the form of a warning message for
each sector which informs about the extent of the impact, its
severity and possible mitigation measures.

4 RESULTS

In this section, we use the QPF from NCMRWF to determine
the districts that have received the maximum ERFs (with
various lead-times) during the years 2017–2020 (Section
4.1). Then, we evaluate the potential vulnerability of the
districts using the corresponding socio-economic data of
the districts (Section 4.2). Further, we select three days
when the magnitude of forecasted rainfall in the district was
highest. For each of the three days, one district is selected
(belonging to different categories of impact) to generate the
warning matrix and IBFs (Section 4.3). For brevity, we
present the results using three lead times (lead times 1, 3
and 5).

4.1 Analysis of the Extreme Rainfall
Forecasts
In this section, we analyze the spatial distribution of ERFs to
identify the districts which have been forecasted to face the
maximum number of extreme rainfall during 2017–2020
(see Supplementary Figure S2). Supplementary Figures
S2A–F depicts the spatial distribution of ERFs greater than
100 and 70 mm for the LT_1, LT_3 and LT_5, respectively.
Results from both the forecast thresholds show that the
distribution of ERFs is quite heterogeneous over the region;
however, the frequency in a few districts is higher. Using the
results, we identify the districts which show a higher
number of ERFs. To this end, we put a threshold on the
number of ERFs issued; for instance, at least five ERFs must
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be issued above the threshold of 100 mm, and ten ERFs
above the 70 mm threshold. We observe that the district
Shravasti has received the maximum ERFs in the past four

years, followed by Kushinagar and Maharajganj. A total of
nine districts are identified whose names are listed in
Table 1.

TABLE 1 | Districts observed to receive frequent ERFs during 2017–2020.

District LT_1 (100 mm) LT_3 (100 mm) LT_5 (100 mm) LT_1 (70 mm) LT_3 (70 mm) LT_5 (70 mm)

Balrampur 4 6 3 8 12 10
Deoria 4 7 7 16 13 10
Gorakhpur 0 2 6 6 9 11
Kaushambi 2 7 7 8 10 8
Kushinagar 7 13 10 20 25 20
Maharajganj 4 10 9 15 22 20
Pratapgarh 0 7 6 2 9 9
Sant Ravidas Nagar 1 5 6 4 7 12
Shravasti 16 19 18 20 29 31

FIGURE 3 | A bivariate choropleth map showing the combined effect of the number of ERFs with the total population density (Panels (A1–A3)), female population
density (Panels (B1–B3)) and children population density (Panels (C1–C3)) at three lead times and 100 mm threshold.
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4.2 Identification and Analysis of Vulnerable
Districts
In this section, we perform a combined analysis of the spatial
distribution of ERFs (during 2017–2020) and the socio-economic
conditions to identify the broader reasons and potential impacts
over the districts in case of extreme rainfall.

4.2.1 Based on Impacts on Population

Figure 3 shows the bivariate choropleth map representing the
total population density (Figures 3A1–A3), female population
density (Figures 3B1–B3), and children population density
(Figures 3C1–C3) with the number of ERFs at the 100 mm
threshold for the three lead times. The aim here is to

FIGURE 4 | A bivariate choropleth map showing the combined effect of the number of ERFs with the poor population (Panels (A1–A3)) and homeless population
(Panels (B1–B3)) across the districts at three lead times and 100 mm threshold.

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8461137

Singhal et al. Impact-Based Forecasting in Northern India

74

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


understand the combined influence of the socio-economic
characteristics and the occurrence of the ERFs on the
potential impacts of respective districts. Higher population
density along with a larger number of ERFs in a district would
mean that a larger percentage of the population is vulnerable to
adverse impacts and vice-versa. Results from LT_1
(Figure 3A1) shows that there exists a belt of districts from
Kushinagar to Prayagraj which may face adverse impacts of
extreme rainfall due to the combined effect of large population
density and a large number of ERFs. Moreover, Figures
3B1–B3 shows the spatial distribution of the adverse
impacts faced by the female population among the districts.
Results show that the spatial distribution is quite similar to
that observed for the impacts on the total population. Further,
in the case of impacts over children population (see
Figure 3C1), the number of districts showing a high
probability of impacts become less in number and are
relatively scattered in distribution. Further, the results have
generally been similar across all three lead times, with minor
variations among the districts. The results obtained using
70 mm rainfall as the threshold is presented in
Supplementary Figure S5. We observe that the patterns are
similar to those obtained using 100 mm as the threshold.
Highly vulnerable districts are located in clusters, while
those which are less vulnerable are relatively scattered.

4.2.2 Based on Impacts on Marginalized Groups
Figure 4 shows the bivariate choropleth map representing the
combined influence of the percentage of population below the
poverty line (Figures 4A1–A3) and the percentage of the
homeless population (Figures 4B1–B3) of each district
along with the frequency of ERFs at the 100 mm rainfall
threshold. Figure 4A1 represents the spatial distribution of
the districts where the poor population may face adverse
consequences due to the extreme rainfall events for LT_1.
Results from LT_1 show that a large proportion of the poor
population in the northern side of the districts (district Sitapur
to Maharajganj) may face adverse impacts. Moreover, we
notice that a few districts in the southern part (Sonbhadra
and Kaushambi) may also face negative consequences. Further,
in the case of impacts over the homeless population (see
Figures 4B1–B3), we observe a significantly larger number
of vulnerable districts. Results show that the homeless
population living towards the western side of the region
(district Sitapur to Prayagraj) may face larger impacts in
case of extreme rainfall events. However, with the increase
in lead times, we find that the probability of impact in a few
districts is low. Further, the results obtained using 70 mm
rainfall as the threshold is presented in Supplementary
Figure S6.

4.2.3 Based on Impacts on Agriculture and Economy
Figure 5 shows the bivariate choropleth map representing the
combined influence of the net sown area (Figures 5A1–A3)
and the amount of GDP contribution (Figures 5B1–B3) of
each district along with the frequency of ERFs at the 100 mm
rainfall threshold. Results from Figure 5A1 show that there

are multiple districts scattered across the region having
relatively large net sown areas with a high probability of
facing the adverse impacts of extreme rainfall for LT_1.
Among them, districts such as Sitapur, Gonda and
Barabanki show a high probability of impact across all
three lead times. Further, in the case of GDP contribution,
we find that the prominent districts which generally have a
greater contribution of GDP in the region face a larger
probability of impacts. For instance, Figure 5B1 shows that
the important economic centers in the region such as
Faizabad, Prayagraj and Kushinagar have a larger
probability of facing adverse impacts. However, the district
of Lucknow (capital of the state of Uttar Pradesh) is expected
to face considerably less impact. The results obtained using
70 mm rainfall as the threshold is presented in
Supplementary Figure S7. In addition, six districts of the
study area (Sultanpur, Prayagraj, Gorakhpur, Lucknow,
Varanasi and Kushinagar) have the facility of airports. Of
these districts, we observe that Gorakhpur and Kushinagar
have frequently faced ERFs in the past years. Hence, any
warning or forecast must include information about the likely
delay/cancellation of flights so that the passengers may
accordingly modify their travel.

4.3 Generation of Impact-Based Warnings
and Forecasts
In this section, we select three days when extreme rainfall was
forecasted over the majority of the districts of the study area.
Figure 6 shows the distribution of rainfall for three selected
days (13th July 2019; 24th September 2020 and 25th
September 2020). For each of the three days, one district is
selected (belonging to a different category of impact). The
selected districts are Shravasti (category-high), Gorakhpur
(category-medium) and Jaunpur (category-low). More
details about the three selected dates, along with the
forecasted magnitude of rainfall, are presented in Table 2.
Consequently, we generate the impact-based forecasts and the
color-coded warning matrices for the districts along with
appropriate actions to mitigate the potential adverse
consequences.

4.3.1 Sample Impact-Based Forecast for “High”
Category Impact
Table 3 shows a sample of the IBF generated for the district
Shravasti under the “high” category of impact based on the
magnitude of forecasted rainfall. The district is forecasted to
receive extreme rainfall (with high magnitude), which puts it
into the “high” category of impact. Moreover, results suggest
that the income of a large percentage of the population in the
district lies below the poverty line and could be highly
vulnerable to an extreme rainfall event. Along with the
general impacts that could occur (water-logging on streets,
flooding in low-lying areas), the impacts of extreme rainfall on
poor populations are also considered in the IBF. Alongside,
possible responses are suggested based on the expected degree
of impact.
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4.3.2 Sample Impact-Based Forecasting for “Medium”

Category Impact
A sample IBF is generated for the district of Gorakhpur under the
“medium” category of impact for the date 24th September 2020,
as presented in Table 4. A larger number of poor socio-economic
parameters in the district make it more vulnerable (compared to

district Shravasti) in case extreme rainfall occurs. However, in the
present case, the magnitude of rainfall forecast is not as high (as in
the case of Shravasti); hence the impacts are not expected to be
too severe. Along with the general impacts that are expected
during extreme rainfall, a large proportion of homeless people in
the district are expected to be adversely impacted. Moreover, a

FIGURE 5 | A bivariate choropleth map showing the combined effect of the number of ERFs with net sown area (Panels (A1–A3)) and total GDP contribution
(Panels (B1–B3)) across the districts at three lead times and 100 mm threshold.
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large percentage of the net sown area means that standing and/or
harvested crops could face damage, while the facility of an airport
suggests that a number of flights might get delayed during the

time of heavy downpour. Possible responses/mitigation measures
are suggested in Table 4 to minimize the overall impact of the
hazard.

FIGURE 6 |Maps showing the spatial distribution of rainfall for three selected days. Panels (A–C) shows the distribution on 13th July 2019, Panels (D–F) on 24th
September 2020 and Panels (G–I) on 25th September 2020 for each of the three lead times, respectively.

TABLE 2 | Details about the three dates of extreme rainfall forecast, districts selected and category of expected impact.

Date District selected Lead time
1 (mm)

Lead time
3 (mm)

Lead time
5 (mm)

Range of
forecasts (mm)

Category of
impact

13th July 2019 Shravasti 309.78 420.34 288.4 288.4–420.34 High
24th September 2020 Gorakhpur 90 91 178 90–178 Medium
25th September 2020 Jaunpur 29 62 69 29–69 Low
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4.3.3 Sample Impact-Based Forecasting for “Low”

Category Impact
A sample IBF is generated for the district of Jaunpur under the
“low” category of impact for the date 25th September 2020, as
shown in Table 5. The district has a significant population that is
homeless. Also, the net sown area in the district is comparatively
higher. Since the magnitude of forecasted rainfall is not high
(29–62mm), minor impacts such as water-logging and
inundation of crops are expected on the day. The suggested
responses against the expected impacts may mitigate any
adverse consequences due to the extreme rainfall.

4.3.4 Sample Warning Matrix for the Selected Districts
The corresponding sample warning matrices for the selected
districts are shown in Figure 7. Here, the magnitude of ERF
determines the severity of impact while the likelihood of
occurrence increases with each lead time (given that the
magnitude does not sharply decrease). In the case of the
district Shravasti (Figure 7A), we observe that the ERF in
each of the three lead-times is consistently high in magnitude
(see Table 2). The high magnitude of ERF means that the impacts
could also be ‘high’ in severity. Moreover, results show that the

magnitude of ERF does not decrease across the three lead-times
(in fact, it increases in LT_1 as compared to LT_5); hence the
likelihood of the extreme rainfall is expected to increase with the
lead-times. In the case of Gorakhpur (Figure 7B), we observe that
there is a sharp decrease in the magnitude of ERF in the lead-
times that follow LT_5 (see Table 2). This suggests that the
severity of impact could be low on the actual date of the extreme
rainfall, and hence, the category of impact falls to “medium”
(LT_1and LT_5) from “high” (LT_5). Moreover, the likelihood of
occurrence increases from “low” to “high” as the forecasts in the
lead-times approach the actual day of extreme rainfall. In the case
of Jaunpur, we observe that the magnitude of ERF is the lowest
among the three selected districts. Also, results show that there is a
sharp decrease in the magnitude in LT_5 (compared to the other
two lead-times). The likelihood of the occurrence of extreme
rainfall is more in LT_5 (as compared to LT_3); however, due
to the sharp decrease in the magnitude, the likelihood reduces to
“low” in LT_1.

4.4 Verification of the Forecast Data
In this section, we verify the occurrences of the extreme rainfall
event as represented by the QPF from NCMRWF using the

TABLE 3 | A sample IBF generated for the district Shravasti.

Date of extreme rainfall 13th July 2019
Name of the district Shravasti

Category of impact High

Major socio-economic challenge High percentage of population below the poverty line
Sample Forecast Extreme rainfall accumulations between 288 to 420 mm are expected in the district on 13th July 2019 resulting in flooding of

streets and houses in the low-lying areas
Impacts expected • Low-lying areas of the district may face flash floods

• Trees may get uprooted and fall on roads
• Local colonies and unpaved roads may be flooded
• Water-logging on major roads may lead to traffic congestion
• High percentage of poor population in the district may face damage to kutcha (temporary) houses
• Stagnant water around homes may lead to unhygienic living conditions (outbreak of mosquito-borne diseases)

Response suggested • People must avoid unnecessary movement at least for the next 2 days
• Unfamiliar roads must not be taken as there could be uncovered sinkholes and/or potholes
• People having kutcha homes should be relocated to shelter homes (or permanent homes)

Color codes Very low: no severe hazard expected Low: be aware Medium: be prepared High: take action

TABLE 4 | A sample IBF generated for the district Gorakhpur.

Date of extreme rainfall 24th September 2020
Name of the district Gorkhpur

Category of impact Medium

Major socio-economic challenge Significant part of population is homeless; consist of high net sown area; has the facility of airport
Sample Forecast Extreme rainfall accumulation between 90–178 mm is expected in the district on 24th September, 2020 resulting in damage to

standing/harvested crops and flooding of roads in some (low-lying) areas
Impacts expected • Bad weather may cause flights to be delayed

• High risk of mortality or injury to homeless people
• Standing crops may be inundated; harvested crops may get spoilt
• Water-logging on major roads may lead to traffic congestions
• Stagnant water around homes may lead to unhygienic living conditions (outbreak of mosquito-borne diseases)

Response suggested • People must avoid unnecessary movement on the day
• Homeless population must take shelter under some permanent structures
• Arrangements to remove excess water from the crop fields must be kept ready; harvested crops must not be kept in open

Color codes Very low: no severe hazard expected Low: be aware Medium: be prepared High: take action
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Integrated Multi-Satellite Retrievals for GPM (IMERG) data.
IMERG is a widely used satellite-derived rainfall product used
as the observation data to validate ground truth (Prakash et al.,
2018; Das et al., 2022). To this end, we randomly selected four
districts from the study area and plotted the time-series (by
using a temporal window) of both the forecast from NCMRWF
and the IMERG rainfall for a particular extreme rainfall event,
as shown in Supplementary Figure S8. From the Figure, we
observe that the ERF for the district Kushinagar coincides
reasonably with the corresponding IMERG data for the first
lead time (Supplementary Figure S8A). However, it does not
coincide well with the other two lead times. Moreover, for the
district, Unnao, the forecast and the observation lines match
well for all the three lead times, while for the district Jaunpur,
they do not match in either of the three lead times. Again, for
the district Gorakhpur, the curves match well in LT_1 but fail
in the other two lead times. Overall, results suggest that while
the forecast data offered moderate accuracy in the study, it is
still inadequate to be used by the end-users in its raw form. We
suggest that post-processing methods could be applied to

improve the accuracy of the forecast data before using it for
operational purposes such as IBF.

5 DISCUSSION

The study focuses on an approach to generate sample warning
matrices as well as IBFs for the districts of eastern Uttar Pradesh
based on rainfall forecasts and socio-economic conditions.
Analysis of the frequency of ERFs in the past four years
(2017–2020) show that the districts located in the eastern
margin (such as Shravasti, Maharajganj, Kushinagar, Deoria
etc.) have been more vulnerable to events of extreme rainfall.
These districts are weak in infrastructure, have poor drainage
systems and consist of relatively higher population density which
makes a larger population vulnerable to mortality, injuries and
displacement in the case of extreme rainfall.

Specifically, we observe that Gorakhpur has a high proportion
of the female population in the study area, and it has also received
frequent ERFs with high magnitude. This suggests that the female

TABLE 5 | A sample IBF generated for the district Jaunpur.

Date of extreme rainfall 25th September 2020
Name of the district Jaunpur

Category of impact Low

Major socio-economic challenge Significant part of the population is homeless; consist of high net sown area
Sample Forecast Extreme rainfall accumulation of 29–62 mm is expected in the district on 25th September, 2020 resulting in water-logging of

streets and low-lying houses
Impacts expected • Water-logging in some minor streets leading to increased travel times

• Standing crops may be inundated; harvested crops may get spoilt
• Stagnant water around homes may lead to unhygienic living conditions (outbreak of mosquito-borne diseases)

Response suggested • Vehicles must be driven carefully without rush
• Homeless population must take shelter under some permanent structures
• Arrangements to remove excess water from the crop fields must be kept ready; harvested crops must not be kept in open

Color codes Very low: no severe hazard expected Low: be aware Medium: be prepared High: take action

FIGURE 7 | Sample warning matrices for the selected days and the selected districts based on the rainfall magnitude of the three lead times. (A) shows the sample
warning matrix for the district Shravasti, (B) shows for the district Gorakhpur while (C) shows it for the district Jaunpur
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population of the district are highly exposed to extreme rainfall.
In case of exposure to children population, we observe that the
districts which have high children density have not been issued
regular ERFs. This indicates that the children population in the
region are less exposed to events of extreme rainfall in
comparison to the female population. Furthermore, we find
that the poor population among the districts have been highly
exposed to ERFs. Population in districts such as Bahraich,
Shravasti and Kaushambi are poor, and results show that these
districts have been highly prone to ERFs in the past years. The
concerned authorities must take into account the vulnerability of
the poor population while issuing the warnings and IBFs,
specifically for these districts.

In terms of impacts on agriculture and the economy, we
observe that ERFs of high magnitude have been significantly
issued in districts where the net sown area is large. For instance, in
some districts where the severity of impact is expected to be
“medium” (district Gorakhpur) or “low” (district Jaunpur),
several ERFs have been issued in the past. Farmers and other
stakeholders must be warned about the possible losses in case of
extreme rainfall, and mitigation measures must be advised. Our
results show that the GDP is high in the district of Kushinagar
which is observed to be highly vulnerable to ERFs. Kushinagar is
known to be a major Buddhist tourist spot and a hub of the sugar
industry in Uttar Pradesh. Weather warnings and IBFs must
include the possible impacts that tourists may face along with
appropriate travel advisories before and during extreme rainfall
occurs. Moreover, sugarcane farmers could be notified and
warned of the incoming rainstorm so that their crops
(standing or harvested) do not get damaged. Suitable
communication must be made to industry owners and staff
regarding the expected timing and duration of the extreme
rainfall so that they can adjust their working hours.
Furthermore, we selected three days when the ERF was
highest in the study area, and one district is selected for each
of those days to generate the IBF and warning matrix. The
districts are purposely selected in such a way that they show
varied categories of impact due to the extreme rainfall. For
instance, the district Shravasti is expected to have a “high”
category of impact on 13th July 2019; district Gorakhpur is
expected to have a “medium” category of impact on 24th

September 2020; and the district Jaunpur is expected to have
“low” category of impact on 25th September 2020. Since the
expected impact on the district Shravasti is “high,” it means that
the forecasted extreme rainfall may cause large destruction in the
district. The corresponding IBFs includes all the possible
implications by taking into account the socio-economic
conditions of the district. Appropriate responses to all the
impacted stakeholders must be conveyed. Moreover, the
district Gorakhpur is under the ‘medium’ category, which
means that the approaching extreme rainfall can cause serious
impacts flooding, especially in the low-lying regions. Improper
communication of mitigation responses can lead to mortalities
and injuries. Furthermore, the “low” category of impact (such as
in Jaunpur) is not expected to cause widespread damage. Such
forecast means that the traffic (especially during the rush hour)
may get congested due to waterlogging on roads. Overall, the

study deals with the identification of expected impacts and
appropriate communication of mitigation responses to the
affected population, which is crucial to reduce the widespread
destruction that may be caused by the increased events of extreme
rainfall in the region.

6 CONCLUSION

The study demonstrates, for the first time, the integration of
the NWP forecast and the socio-economic data to forecast the
possible impacts over a region in case of an extreme rainfall
event. Results show that the population in some districts, such
as Shravasti and Kaushambi, are relatively poor, and the
districts have been highly vulnerable to ERFs in the past
years. Warnings and IBFs for these districts must include
the possible impacts and responses in order to mitigate the
severity of the impact. Moreover, we selected three days (with
three lead-times) when the magnitude of ERF was highest in
the region. For each of the three days, one district is selected to
generate a sample of an IBF and warning matrix. The IBF
informs about the category of impact expected on the day
(either very low, low, medium or high) along with the expected
impacts based on the category of impact. The magnitude of the
forecast and the socio-economic condition of the district
determines the extent of possible impacts. Precautionary
actions are suggested to the relevant stakeholders to
mitigate the adversity of the impact. Furthermore, a
warning matrix is issued, which provides information
regarding the “likelihood” of occurrence of the extreme
rainfall and the expected severity of impact. The warning
matrix is formed on the basis of estimations of rainfall in
the various lead-times. Generally, the likelihood increases as
the day of extreme rainfall approaches and the severity of
impact are determined by the consistency in magnitude of lead
time forecasts. Overall, the study provides a novel approach to
generate impact-based forecasts along with warning matrices
which can benefit the meteorological agencies and emergency
service providers significantly to communicate crucial weather
information to the local population in order to mitigate
adverse impacts.

6.1 Limitations and Future Challenges
The present work aims to generate IBFs and warning matrices at
the district level. Future studies may perform impact-based
forecasting at more local levels such as sub-districts, following
the work of Reddy et al. (2021) to provide a better understanding
to policymakers and district administrators. Moreover, fine-
resolution forecast datasets can be used to understand the
probability and severity of impacts at the local levels. Different
forecast datasets available from various NWP models and
Weather Research and Forecasting (WRF) models can also be
used to substantiate the findings and consequently provide
reliable probabilities of impacts. Furthermore, statistical
weighting methods can be used to assign weights to the socio-
economic variables which may differ with each district. Several
other socio-economic variables (such as the percentage of elderly
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people, the road network density etc.) can also be used to broaden
the scope of the study. Furthermore, post-processing of the
forecast data may be explored to improve the accuracy of the
forecast data (and reduce the false-alarm rate) before using it to
generate IBFs.
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Numerical weather prediction (NWP) models such as the Weather Research and
Forecasting (WRF) model are increasingly used over the Indian region to forecast
extreme rainfall events. However, studies which explore the application of high-
resolution rainfall simulations obtained from the WRF model in urban hydrology are
limited. In this paper, the utility of a model coupling framework to predict urban floods
is explored through the case study of Bangalore city in India. This framework is used to
simulate multiple extreme events that occurred over the city for the monsoons of years
2020 and 2021. To address the uncertainty from the WRF model, a 12-member
convection permitting ensemble is used. Model configurations using Kain Fritsch and
WSM6 parameterization schemes could simulate the spatial and temporal pattern of the
selected event. The city is easily flooded with rainfall events above a threshold of 60mm/
day and to capture the response of the urban catchment, the Personal Computer Storm
Water Management Model (PCSWMM) is used in this study. Flood forecasts are created
using the outputs from the WRF ensemble and the Global Forecasting System (GFS). The
high temporal and spatial resolution of the rainfall forecasts (<4 km at 15-min intervals), has
proved critical in reproducing the urban flood event. The flood forecasts created using the
WRF ensemble indicate that flooding and water levels are comparable to the observed
whereas the GFS underestimates these to a large extent. Thus, the coupled
WRF–PCSWMM modelling framework is found effective in forecasting flood events
over an Indian city.

Keywords: WRF, flood forecasting, PCSWMM, urban flooding, extreme events, NWP, prediction, high resolution

INTRODUCTION

The sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC) observes that
human-induced warming is increasing at 0.2°C per decade which will lead to an inevitable increase of
1.5°C in the global temperature (Allen et al., 2018). This would imply a substantial increase in the
occurrence/intensity of extreme events which is evident from the rising numbers of extreme events in
cities. (Shastri et al., 2015; Paul et al., 2016; Paul et al., 2018; Roxy et al., 2017). Floods in the rapidly
urbanising India have devastating effects on the property due to the unplanned growth of its cities.
The problem of urban flooding is critical because of the fast responses of these catchments to extreme
rainfall and shorter times of concentration, (Awol et al., 2021). High intensity rainfall events and
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inadequate storm water infrastructure, results in a huge amount
of flood runoff in cities in a short period of time (Mondal and
Mujumdar, 2015; Rupa and Mujumdar, 2019). Implementation
of traditional structural flood mitigation measures such as
detention ponds, levees, pump-sump systems, and culverts is
difficult to execute in densely populated urban areas. With the
inevitable increase in urban floods in the near future, the World
Meteorological Organization (WMO) encourages a shift to non-
structural measures such as real time flood forecasting and early
warning systems to minimize flood impact (World
Meteorological Organization, 2011). The Hydromet Alliance
group launched at the United Nations Framework Convention
on Climate Change (UNFCCC) Conference of the Parties in 2019
(COP 25) focuses on the development of reliable weather, climate,
and hydrological (hydromet) services which will help in the
installation of early warning systems (Houmann, 2016)
worldwide.

Numerical weather prediction (NWP) models represent the
atmosphere as a dynamic fluid and solve for its behaviour
through the use of mechanics and thermodynamics and play an
important role in early warning systems. Regional Climate Models
(RCMs) (which are also NWP models) are used to resolve region
specific weather patterns using real time weather data available at a
coarse resolution from global NWPmodels. A dynamic downscaling
approach is used to generate forecasts that can provide reliable
information at a scale that resolves local interactions between
topography and synoptic phenomena, which then can be applied
in hydrologic models (Thayyen et al., 2013; Patel et al., 2019).

The Weather Research and Forecasting (WRF) model, a
commonly used RCM, has been used in several studies over the
Indian region to simulate extreme rainfall events (Sahoo et al., 2014;
Chawla and Mujumdar, 2015; Chevuturi et al., 2015; Chawla et al.,
2018; Mohandas et al., 2020; Kadaverugu et al., 2021; Kirthiga et al.,
2021). Rainfall being a result of many atmospheric processes over
different scales, is the most difficult process to be captured by the
WRFmodel. Uncertainty in initial and boundary conditions, physics
schemes, and sensitivity of the model concerning configuration of
the domain size and grid spacing are themain contributing factors to
the model performance (Arnold et al., 2012; Liu et al., 2012; Sun
et al., 2014). Although many studies have shown that the best
combination of physics schemes can be determined for a region,
it is difficult to identify the characteristics of future rainfall events as
the current rise in global temperature has led to unprecedented
changes (Tian et al., 2017). In order to consider the uncertainties
associated with the selection of physics schemes, it is a commonly
accepted practice to generate an ensemble with multiple model runs
(Ji et al., 2012). An ensemble generated using a combination ofWRF
model setups with a grid resolution less than 4 km is referred to as a
convection permitting ensemble. This resolution limits the errors
from the physics scheme that parameterizes the convective process
and improves interactions between different processes of the WRF
model (Clark et al., 2016).

With increasing computational power, there is an increase in
the resolution of products from NWP models. Outputs from the
Global Forecasting System (GFS, an operational weather forecast
model), are currently available at a high resolution of 25 km as
compared to the earlier resolutions of 100 and 50 km. Few studies

in the Indian region have explored the utility of such NWP
products for hydrological modelling of river basins. Singh et al.
(2021) compared different NWP products at a common grid of
0.5° to evaluate the hydrological parameters in five major river
basins in India. Goswami et al. (2018) used a NWP product at
17 km resolution over the Narmada basin during the southwest
monsoon period and found that the rainfall estimates had
location specific biases. Studies outside India have
demonstrated the success of flood models coupled with
weather forecast models like WRF in forecasting floods in
urban catchments (Sikder et al., 2019). Real time prediction of
the urban flood was demonstrated for Milano, Italy, by Ravazzani
et al. (2016) where the WRF model was coupled with a spatially
distributed rainfall-runoff model. A study on Can Tho city in
Vietnam indicates the effects of urbanization on the local
precipitation using the WRF model coupled with a land use
model (Huong and Pathirana, 2011). Over the Indian region
similar studies have been conducted over river basins.

Dhote et al. (2018) used WRF model output for forecasting a
heavy rainfall event 3 days prior to its occurrence over the North-
Western Himalayas. Asghar et al. (2019) compared the
applications of WRF forecast against the GCM products and
concluded that the WRF model outputs perform better over the
transboundary Chenab River. Coupling of high-resolution
hydrologic models with WRF model outputs reduce
uncertainties associated with the localization of rainfall driven
flood responses in catchments with complex terrain and short
response time (Yucel et al., 2015). Flood forecasting systems have
been developed for the coastal cities of Mumbai and Chennai by
coupling WRF forecasts with the integrated MIKE 11, MIKE 21,
andMIKE FLOODmodel (Ghosh et al., 2019; Ghosh et al., 2022).
There are no such studies conducted for inland catchments with
complex topography with hydrology governed by lakes which
acts as storage structures. An experiment is designed to examine
the additional value in improving flood forecasts by using the
WRF model as compared to using the coarser resolution NWP
products (like GFS) over Bangalore city in India. A loosely
coupled modelling framework is used for the experiment with
rainfall forecasts from the WRF ensemble being fed into the
PCSWMM hydrological model to create flood forecasts.

Bangalore city has faced an increase in severe flood events over
the last decade due to an increase in rainfall intensities, an
increase in developed areas, and the associated changes in the
land surface properties (Mujumdar et al., 2021). Research groups
in the CSIR-4PI [Council of Scientific and Industrial Research
(CSIR) Fourth Paradigm Institute] have worked on the
generation of high resolution rainfall forecasts from the WRF
model over Bangalore city and at a ward scale over Karnataka
(Rakesh et al., 2015; Rakesh et al., 2021; Mohapatra et al., 2017;
Sahoo et al., 2020b; Bhimala et al., 2021). An ensemble of WRF
Forecasts is developed for the Bangalore city in this paper and is
used in the hydrologic model to create flood forecasts at storm
water drains. Forecasts generated 6 h prior to the event are fed
into a detailed hydrological model, the Personal Computer Storm
Water Management Model (PCSWMM), built using high
resolution datasets. The specific objectives of the study are:
evaluation of rainfall forecasts from a convection permitting
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WRF ensemble and assessment of flood forecasts from the
hydrological model using the WRF ensemble output. The
outputs from the WRF model are evaluated against the output
from the GFS, which is used for forcing the WRF model. In this
paper, we evaluate the skill of a WRF ensemble (developed using
multiple physics parameterization schemes) to capture the spatial
and temporal distribution of the heavy rainfall event and the
consequent urban flooding. The best performing ensemble
members are identified using error indices and a subset of the
initial ensemble is fed into the detailed PCSWMM model

developed over Bangalore city. The calibrated and validated
flood model is then used to obtain flood forecasts for inputs
from the WRF ensemble and the GFS output.

DATA AND METHODS

Study Area
Bangalore city is geographically located between 12.75°N-13.17°N
and longitude 77.42°E–77.75°E, covering 709 km2. The

FIGURE1 | Study area and data used for development, calibration and validation ofWRF and PCSWMMmodels. (A–D), WRFmodel domain configuration used for
simulating extreme rainfall events over Bangalore city (A), Location of automatic rain gauges overlain over the digital elevation model (DEM) (B), Location of water level
sensors with storm water drainage network, valley boundaries and lakes used for the development of the hydrological model (C) and Spatial map of observed rainfall for
20–21 October 2020 heavy rainfall event along with observed water levels represented as the percentage of flow depth with respect to drain depth (D).
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administrative boundary of the Bruhat Bengaluru Mahanagara
Palike (BBMP), a city level governing body is selected for
demarcating the study area. Figure 1A shows the location of
the study area within the atmospheric model. The city is located at
the southern part of the Deccan plateau and the elevation ranges
from 896 to 673 m (MSL) towards the south west Bangalore. The
natural topography divides the city into three outwardly draining
watersheds—Hebbal (HB) valley, Koramangala-Chellaghatta
(KC) valley, and Vrishabhavathi (VV) valley. The undulating
terrain facilitates creation of a large number of lakes across the
city (188 lakes approx.), which are interconnected through
natural drains. Figures 1B,C show the high-resolution datasets
used in the flood model development. The region receives rainfall
from both south-west (from June to September) and north-east
(from October to December) monsoon. The extreme
precipitation events over Bangalore city have high spatial
variability. The spatial distribution of the rainfall observed for
the extreme event considered for the study is shown in Figure 1D.
The extreme rainfall threshold over Bangalore city is identified as
60 mm/day (Mohapatra et al., 2017). It was observed that about
55% of rain gauge stations recorded rainfall more than 60 mm
and the heavy rainfall was mainly localized to Vrishabhavathi
valley region. The maximum values from critical water level
sensors are expressed in terms of drain depth as shown in
Figure 1D.

Description of the Atmospheric Model
The atmospheric model used in the study is the WRF model
which is used widely over the Indian region for creating short
range rainfall forecasts. The WRF model version 3.6 (Skamarock
et al., 2008) creates high resolution weather forecasts for a specific
region. The dynamic core of the model solves the compressible
non-hydrostatic Euler equations and the physical processes,
which cannot be resolved to the model grid are represented
empirically using parameterization schemes. The initial and
boundary conditions required for the WRF model are
generated from the Global Forecast System (GFS) which is a
global weather forecast model maintained by the National Centre
for Environmental Prediction (NCEP, 2015). The three hourly
forecasts of climate variables at a horizontal resolution of 0.25° ×
0.25° are given as an input to the model.

Description of the Hydrological Model
An urban flood model is useful in the assessment, study, and
forecasting of flood conditions for reliable flood mitigation
measures (Qi et al., 2021). In this study, the flood model used
is the PCSWMM model (based on the United States
Environmental Protection Agency’s SWMM5 model), which is
a dynamic rainfall runoff model designed to simulate single and
long-term events specifically for urban areas (Rossman, 2005;
CHI, 2020). PCSWMM provides tools for 1D and 2D analysis of
rainfall runoff process and also has the ability to model storm
water source technologies (low impact development) to manage
water quality and quantity. It facilitates modelling with the
implementation of graphical user interface and GIS
(Geographic Information System) enabled tools which make
visualization and processing easier. PCSWMM can represent

natural systems in urban regions as it can incorporate lakes
and tanks using the storage unit feature. The model accounts
for the hydrological processes that produce runoff from the urban
catchments which include time-varying rainfall, evaporation,
infiltration and helps in modelling the generation and
transportation of runoff through a system of pipes, channels,
and storage structures. The flowchart of the PCSWMM model
methodology is shown in Supplementary Figure S1. The choice
of hydrological modelling platform depends on the hydrological
characteristics of the study areas and the data available. Bangalore
is an inland catchment with a complex terrain with around 244
lakes acting as storage structures within the city and flooding is
monitored via the water level in the storm water drains which
were constructed based on the natural drainage within the city.
The PCSWMM model is most suitable for modelling urban
catchments with fast responses and connections between lakes
and storm water drains. Hence, the PCSWMM modelling
platform has been used for the study.

Coupling of Atmospheric and Hydrologic
Model
WRF and PCSWMM models are one-way coupled with the
rainfall forecasts from the high-resolution grid of the
atmospheric model being forced into the hydrologic model to
generate flood forecasts at predefined locations within the city.
The forcing conditions which are generated at 18 UTC prior to
the day of the event are selected for the model run. The coupled
model cycle (as shown in Figure 2) is completed before 06 UTC
of the event date.

On test runs using different initial conditions, it is observed
that the forecast boundary condition generated closest to the
event gives a significantly improved result. After running the
model, the rainfall variable is extracted from the WRFmodel grid
at a high spatial and temporal resolution. A script using NCAR
Command Language (NCL) and NetCDF Operators (NCO)
commands are used to convert the coordinates and to extract
time series files corresponding to grids nearest to the locations of
the stations with the observed Automatic Rain Gauge (ARG)
network (National Centers for Environmental Prediction, 2019;
Zender, 2008; Zender, 2014). The time series of the rainfall
forecast is provided as an input to the rain gauge locations
using a Matlab code (Matlab, 2010). The spatial distribution of
rainfall from these rain gauges within the sub-catchments are
specified in the PCSWMM model using the Thiessen polygon
(Akhter and Hewa, 2016) weighted method. After simulation, the
flood model forecasts water levels at sensor locations distributed
in the storm water drain network. Figure 2 shows the broad
framework of model coupling.

Experiment Design Using the WRF Model
The WRF model comprises of three nested domains, with the
outermost domain of 9 km resolution covering the Indian region
with the adjacent oceans, the intermediate domain covering the
southern part of India at a resolution of 3 km, and the innermost
domain centered over the city of Bangalore with a resolution of
1 km as shown in Figure 1A. The WRF model takes 12 h to
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FIGURE 2 | Flowchart representing the methodology of coupling of the atmospheric and hydrologic model. Operational GFS data is used to run the WRF model to
generate high resolution rainfall forecasts. The data corresponding to the locations of the observed network is extracted and given as an input to the PCSWMM flood
model to forecast water levels at critical sensor locations.

TABLE 1 | WRF model configuration and physics scheme.

Domain 1 Domain 2 Domain 3

Horizontal grid 9 km 3 km 1 km

Time steps 45 s 15 s 5 s

Number of grids 325 271 325

Vertical levels 38 terrain-following sigma (σ) coordinates

Shortwave radiation Dudhia (Dudhia, 1989)

Longwave radiation Rapid radiative transfer model (Mlawer et al., 1997)

Land surface model Thermal diffusion model (Dudhia, 1996)

Planetary boundary layer Boulac (Bougeault and Lacarrere, 1989)

Urban surface physics Single layer urban canopy model (Chen et al., 2011)

Land use Advanced wide field sensor (AWiFS) (Gharai, 2018)

Topography Shuttle radar topography mission V3 (Farr et al., 2007)
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complete 30 h of simulation. Therefore, the forecast conditions
generated by the Global Forecast Model (GFS) at 18 UTC the
previous day is selected for the event. The model configuration
used here has 38 vertical levels and the model top is kept at a
constant pressure surface of 50 hPa. The details of the WRF
model configuration are shown in Table 1.

The land use land cover dataset in the United States Geological
Survey (USGS) set of static data comprising of albedo, green
fraction, land use land cover is replaced with a recent version of
the dataset from the Indian Space Research Organization (ISRO)
(2018-2019). The LULC data generated by the National Remote
Sensing Centre (NRSC), ISRO, was derived from the Indian
satellite IRS-P6, Advanced Wide Field Sensor (AWiFS) and is
compatible with WRF pre-processing system. Many studies have
demonstrated the improvement in the model outcomes, using
this dataset over the Indian region (Kar et al., 2014; Sahoo et al.,
2020a; Gupta et al., 2021), and also over the Bangalore region
(Sahoo et al., 2020b). Navale and Singh (2020), Golzio et al.
(2021) have demonstrated the significant impact of variation in
topography on the fine scale pattern of rainfall generated by the
WRF model over complex topography. The default topography
dataset is the Global Multi-resolution Terrain Elevation Data
(GMTED) (Danielson and Gesch, 2011) which has a resolution of
900 m (30 s).

This is replaced with the latest version of the Shuttle Radar
Topography Mission (SRTM) dataset made available by the
National Aeronautics and Space Administration (NASA). The
NASA SRTM version 3 is a recently released version of the high
resolution 30 m SRTM data which was void-filled using the
GMTED 2010 data and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Global Digital
Elevation Model Version 3.

An ensemble of forecast scenarios is generated using a
combination of convective and microphysics parameterization
schemes that were used in the past studies over Bangalore city
(Mohapatra et al., 2017; Bhimala et al., 2021; Rakesh et al., 2021;
Sarkar and Himesh, 2021). The city having a complex terrain,
may benefit from the high-resolution simulations as
demonstrated by earlier studies. The simulations are carried
out for each ensemble member, for 30 h and the model
outcomes are recorded at a 15-min interval. The first 6 h are
treated as spin-up and the 24 h corresponding to the rainfall event
are used for analysis.

Studies have shown that certain processes that contribute to
convection can only be captured when the resolution of the
numerical model is below 2 km (Iriza et al., 2016). To
understand this in detail, the rainfall forecasts obtained from
both the domains—3 and 1 km are used in the study. It is also
observed in the experimental test runs that different physics
parameterization scheme combinations simulated the heavy
rainfall event at both resolutions. The most commonly used
convective parameterization schemes are the Kain Fritsch and
the Betts Miller Janjic (BMJ) scheme. Kain Fritsch is a scheme
that uses the Convective Available Potential Energy (CAPE)
removal method to detect the onset of convection (Kain and
Fritsch, 1993; Kain, 2004). BMJ scheme is an adjustment type
scheme that generates deep and shallow convection (Janjić, 1994).

The Grell Freitas scheme is a recently added convective scheme to
the WRF model and has shown good performance over the
Cauvery catchment region in Karnataka (Sarkar and Himesh,
2021). The three convective parameterization schemes chosen are
based on the previous work done over Bangalore city by CSIR-4PI
(Mohapatra et al., 2017; Bhimala et al., 2021; Rakesh et al., 2021;
Sarkar and Himesh, 2021).

The microphysics (MP) scheme is responsible for heat and
moisture flux within the atmosphere and gives the surface
resolved rainfall. The WRF Single-Moment 6-class scheme
(WSM6) is a scheme with ice, snow, and graupel processes
suitable for high-resolution simulations. The WRF Double-
Moment 6-class scheme (WDM6), has been developed by
adding a double-moment treatment for the warm-rain process
into the WSM6 scheme. Mohapatra et al. (2017) compared
simulations of the WRF model for localised and non-localised
urban extreme rainfall events over Bangalore city. The study
concludes that the WRF model has a tendency to underestimate
the magnitude of non-localized or uniformly distributed heavy
rainfall events. This has been attributed to the incorrect treatment
of cloud droplet size by the WSM6 scheme and the study suggests
using the WDM6 scheme, as it has a better representation of
physical processes.

Combinations using two microphysics schemes, three
convective parameterization schemes, and two different
resolutions result in a 12-member ensemble. The details of the
ensemble are given in Table 2. In order to quantify the additional
value provided by the rainfall forecasts from the WRF ensemble,
the rainfall variable from the GFS is extracted. The time series for
the locations of the ARG network is extracted from the
corresponding grids of the GFS. The hydrological model is
forced using the rainfall values from both the GFS and the
WRF ensemble.

Calibration and Validation of the PCSWMM
Model
The development of the flood model for Bangalore city is
completed using high density storm water drainage network,
lakes data, and ARG network as shown in Figures 1B,C. The
digital elevation model of 10 m resolution (as shown in
Figure 1B) is procured from the National Remote Sensing
Centre (NRSC), India. The details of the administrative
boundaries and lakes used in the model are provided by
Bruhat Bengaluru Mahanagara Palike (BBMP) and Regional
Remote Sensing Centre (RRSC) (Hebbar et al., 2018) as shown
in Figure 1C. The percentage imperviousness of sub-catchments
is calculated using the Land Use Land Cover (LULC) map for the
year 2020 provided by the Bengaluru Development Authority
(BDA). The details of the input data to the PCSWMMmodel are
given in Supplementary Table S1. The datasets for the model
setup., viz., nodes, drains, storage tanks, ARG locations, and sub-
catchments are processed, connected and imported from ArcGIS
(version 10.3) to PCSWMM. The runoff is computed at the sub-
catchment level after accounting for various losses and the flow
from the sub-catchment outlets is routed kinematically through
storm water drainage channels. More details on urban flood
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model development for Bangalore city are given in Mujumdar
et al. (2021).

The three valleys are independent of each other with different
outlet points and in their response to rainfall events. Hence the
valleys are calibrated and validated separately for different rainfall
events. The observed water level data at some sensors because of
blockage to the flow, shows fluctuations and rise in water depth
irrespective of rainfall. The water level sensors are selected for
calibration and validation based on the availability of the
observed water level data with no unaccounted flow and
continuity of the data in the time period. The PCSWMM
model developed over Bangalore city is calibrated using a
recent heavy rainfall event that occurred on 8, 9 September
2020 (Supplementary Figure S2A).

The model output is verified against water level data at a high
temporal resolution of 15 min. The parameters considered for the
calibration of the model include sub-catchment properties which
are width, Manning’s roughness coefficient, and percentage
imperviousness, properties of the storm water network, viz.,
the slope and roughness coefficient of the conduits. The model
is further validated for a heavy rainfall event on 5, 6 November,
2020 (Supplementary Figure S2B). Calibration and validation of
the model is demonstrated here for a sensor located in the Hebbal
valley, a catchment towards the northern side of Bangalore city.
The performance indices for the calibration and validation of the
model are as shown in Supplementary Table S2. The model is
seen to perform well and is used to generate flood water levels for
the rainfall forecasts from theWRFmodel ensemble and the GFS.

Event Description
Bangalore city receives rainfall from both south-west (from June
to September) and north-east (from October to December)
monsoon. The model coupling framework discussed
(Figure 2), is used to simulate extreme events over the region
for the monsoons of years 2020 and 2021(Supplementary
Figures S3–S6). An extreme rainfall event that occurred on 20
and 21 October 2020, is selected for a detailed demonstration of
this framework. The spatial pattern of this particular event had
spatial characteristics similar to the mean return levels of annual
maximum precipitation with a 10-years return period
(Supplementary Figure S7).

The southwest monsoon in the year 2020 was prolonged due
to unseasonal weather systems that occurred in the Arabian sea
and the Bay of Bengal (IMD, 2020). The onset of the north east
monsoon season was delayed by 3 weeks. The heavy rainfall event
marked the end of the southwest monsoon of 2020 over
Bangalore city. This event occurred between the depression
over the Arabian Sea (17–19 October 2020) and the
depression over Bay of Bengal (22–24 October 2020).

The city received heavy rainfall throughout on 20 and 21
October 2020 and a daily rainfall maximum of 124.5 mm was
observed at Kengeri station in Raja Rajeshwari Nagar located in
the Vrishabhavathi valley (Supplementary Figure S8). In the
event of a flood, water levels at the sensors that exceed 75% of the
drain depth are assumed to be critical as per the alert system
followed by the urban flood model during flooding (Mujumdar
et al., 2021). The five sensors which were identified as critical at
the time of the observed event is then selected and studied here.
The maximum water level from these sensors is expressed in
terms of the percentage of drain depth which shows the level of
water relative to the drain depth at each location. The details of
the water level sensors such as location, depth of drain, and
observed water level data for the 20–21 October 2020 event at
critical sensors (>75% drain depth) are given in Supplementary
Table S3 (Supplementary Figure S9).

Performance Indices for Rainfall Forecasts
The skill of the WRF model presented here is evaluated by
comparing the simulated and observed rainfall at a high
resolution of 15 min. The performance indices are used to
analyze spatial and temporal errors across the observational
network. To calculate categorical indices, the variable values
are considered in a non-probabilistic manner. Categorical
statistics are computed from the elements in the contingency

TABLE 2 | List of physics combinations for the 12-member WRF ensemble.

S. no. Scenario name Microphysics
parameterization scheme

Cumulus
parameterization scheme

Resolution (km)

1 WSM6KF3 WSM6 Kain Fritsch 3
2 WSM6KF1 WSM6 Kain Fritsch 1
3 WSM6GF3 WSM6 Grell Freitas 3
4 WSM6GF1 WSM6 Grell Freitas 1
5 WSM6BMJ3 WSM6 Betts Miller Janjic 3
6 WSM6BMJ1 WSM6 Betts Miller Janjic 1
7 WDM6KF3 WDM6 Kain Fritsch 3
8 WDM6KF1 WDM6 Kain Fritsch 1
9 WDM6GF3 WDM6 Grell Freitas 3
10 WDM6GF1 WDM6 Grell Freitas 1
11 WDM6BMJ3 WDM6 Betts Miller Janjic 3
12 WDM6BMJ1 WDM6 Betts Miller Janjic 1

TABLE 3 | Contingency table for the calculation of categorical indices.

Model/Observed Rain (R) No rain (N)

Rain (R) RR (Hits) RN (False alarms)
No Rain (N) NR (Misses) NN (Correct negatives)
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table (Wilks, 2006) as shown in Table 3. Hits refer specifically to
those grids which show rainfall. For a sample threshold value of
40–60 mm, the values are calculated accordingly. If the observed
grid is showing a value between 40 and 60 mm and the
corresponding model grid is showing a value in the same
range, it is a Hit.

If the model grid is showing a value lesser than 40 mm it is a
Miss. If the model grid is showing a value greater than 60 mm it is
a false alarm. If the value in the observed grid doesn’t fall within
this range and the same is calculated for themodel grid, then it is a
correct negative.

The Critical Success Index (CSI), also known as the Threat
Score, describes the overall skill of the simulation relative to the
observation. The CSI value ranges from 0 to 1, where 0 indicates
no skill and 1 indicates perfect skill. It measures the fraction of
observed and forecast events that were correctly predicted. It does
not distinguish the source of the forecast error. It is described as
shown in Eq. 1.

CSI � hits(hits +misses + false alarms) (1)

Some additional indices that are calculated using the contingency
table are accuracy, bias score (BS), probability of detection (POD)
and Hiedke Skill Score (HSS) the details of which are provided in
the supplementary document (Supplementary Table S4).

The categorical indices are obtained based on the spatial
distribution patterns from the observed rainfall. Continuous
and categorical indices are calculated in comparison with the
observed data and the ensemble members performing better are
identified. The rainfall time series for each station is provided as
an input to the PCSWMM model and the model is run with the
best performing subset of the WRF ensemble. The 3-h time series
from the GFS were also given as an input to the PCSWMM
model. The water levels at various locations are compared and
analyzed for performance evaluation against the observed data.

RESULTS AND DISCUSSSION

The performance of theWRF ensemble is assessed for the selected
event using categorical indices. The best performing members are
then selected as a subset and used in hydrological modelling. The
additional value from the high resolution WRF model output (3
and 1 km at 15 min intervals) as compared to the GFS data
(25 km at three hourly intervals) is quantified in this section.

Verification of Spatial Distribution
gridded data is plotted using the ArcGIS software after
accumulating rainfall, 08:30 a.m. to 21 October 08:30 a.m.
2020 (ESRI, 2020). It can be observed that the microphysics
scheme plays a significant role in the amount of rainfall simulated
from Figure 3. Scenarios using the WSM6 scheme (Figures
3A–F) have forecasted a higher quantity of rainfall as
compared to those with WDM6 (Figures 3G–L). The single-
moment microphysics scheme predicts the total mass
concentration of hydrometeors (liquid or solid water particles

that may be suspended or fall through the atmosphere) whereas
double moment schemes include the prediction of total number
concentration (number of particles per volume). Cloud
Condensation Nuclei (CCN) and number concentration are
the two additional variables predicted in the double moment
scheme. This scheme is selected because it has a better physical
representation of the processes. However, some studies have
shown that in certain regions the simulation of CCN has
resulted in an overall decrease in the rainfall quantity (Li
et al., 2008). Also, the performance of the double moment
scheme is dependent on the accuracy of a large number of
microphysics processes than the single moment scheme (Lim
and Hong, 2010).

The convective parameterization (CP) scheme details the sub-
grid processes associated with convective clouds and operates
only on individual columns where the scheme is triggered and
provides the convective component of rainfall. Among the
convective schemes selected for the study, Kain Fritsch gives
better spatial representation in comparison to the observed
rainfall (Figures 3A,D,G,K). The location of the event is well
simulated by the Kain Fritsch scheme across domains and
microphysics schemes.

The comparison of results for 1 and 3 km shows no significant
pattern to determine the better performance among the two
domains. The 1 km domain performs better for the WSM6
microphysics scheme whereas, the 3 km domain performs
better for the WDM6 scheme. A similar observation was made
in a comparison study by the Korean Meteorological Agency
which observes that both WSM6 and WDM6 underestimate
convective events in spite of WDM6 predicting realistic rain
drop size and relative humidity due to a dependence on grid
resolution (Min et al., 2015). However, for a combination of
certain physics schemes - WSM6KF (Figures 3A,D) and
WDM6GF (Figures 3H,K), both the domains offer a fair
representation of the spatial pattern. More events need to be
considered in order to understand the combined impact of grid
resolution and microphysics schemes. Out of the 12 forecast
scenarios, 10 indicate the occurrence of a heavy rainfall event for
the given time period within the city (Figures 3A–I,K).

Categorical Indices
The categorical indices are calculated for the 12 simulations
created for the heavy rainfall event that occurred on 20–21
October 2020. For each simulation, the indices are calculated
for different rainfall thresholds—20, 40, 60, 80, 100, and 140 mm
as shown in Supplementary Figures S10A,B. Capturing the
location of the rainfall, plays an important role in flood
forecast and therefore the ensemble members which capture
the location of the rainfall range gives higher CSI values. For
example, the rainfall in the range of 40–60 mm lies in the central
part of the city and the members WSM6GF1, WSM6BMJ3, and
WSM6KF1 capture it with the highest CSI values
(Supplementary Figure S10B). The heavy rainfall range
(>60 mm) for this event occurs towards the south western side
of Bangalore city, and although there is a general underestimation
from the ensemble, some scenarios, viz., WSM6KF3, WSM6KF1,
andWDM6KF3 predict the location accurately (Figures 3A,D,J).
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FIGURE 3 | Spatial distribution of 24 h accumulated rainfall (mm) from WRF ensemble, Global Forecast System (GFS) data and observed rainfall. (A–N), Spatial
distribution of 24 h accumulated rainfall (mm) from WRF ensemble simulations WSM6KF3 (A), WSM6GF3 (B), WSM6BMJ3 (C), WSM6KF1 (D), WSM6GF1 (E),
WSM6BMJ1 (F), WDM6KF3 (G), WDM6GF3 (H), WDM6BMJ3 (I), WDM6KF1 (J), WDM6GF1 (K), WDM6BMJ1 (L), the Global Forecast System (GFS) data (N), and
observed (M), over the Bangalore city for the period 0300 UTC 20 October to 0300 UTC 21 October 2020. The heavy rainfall quantities (>60 mm/day) is well
represented by the WRF ensemble and it can be seen from (A–L) that the extreme rainfall pattern is reflected in the WRF ensemble output as compared to the GFS. The
three columns correspond to the three convective parameterization schemes selected for the study—Kain Fritsch, Grell Freitas, and Betts Miller Janjic. The first two rows
show the results from WSM6 microphysics schemes and the next two rows present the results from WDM6.
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The WSM6KF3 configuration of the WRF ensemble is also
validated across four heavy rainfall events from the monsoons
of 2020 and 2021—September 8–9, October 20–21 for the year
2020 and November 4–5, October 11–12 for the year 2021. The
spatial verification and categorical metrics calculated across
these events for different rainfall thresholds are included in
the supplementary material (Supplementary Figures S3–S6,

S11; Supplementary Tables S4, S5). On an average, the model
setup has a better performance than a random/chance forecast
for a rainfall threshold of 60 mm as can be seen by the positive
value of Hiedke Skill Score (Supplementary Figure S11).
Based on the spatial distribution of rainfall and categorical
indices, the ensemble members with better model
performance are identified and used in the flood forecast

FIGURE 4 | Comparison of rainfall time series from the selected forecast scenarios for rain gauge locations. (A–C), Comparison of rainfall time series from the WRF
forecasts, GFS forecasts and Observed rainfall for ARG locations in Koramangala-Chellaghatta valley (A), Vrishabhavathi valley (B), and Hebbal valley (C). (D),
Comparison of 15-min maximum rainfall from eachmember of the ensemble with the 15-min maximum value from observed ARG network. TheWRF ensemble is able to
capture the intensities of the event as compared to the GFS.
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model. The members identified to be given as an input to the
hydrological models are—WSM6KF3, WSM6KF1,
WSM6GF3, WSM6GF1, WDM6KF3, and WSM6BMJ3. The
time series of this subset is further verified at locations
adjacent to the critical water level sensors in the
hydrological model.

Verification of Temporal Distribution
The 15-min time series data corresponding to the automatic rain
gauges is extracted from the above-mentioned WRF ensemble
subset and is provided as an input to the PCSWMM model. The
time series for six ensemble members at three critical locations
(one representative of each valley) are examined here as shown in
Figure 4. The GFS data extracted for the location is also shown in
Figure 4. It can be seen for all valleys, that the 15-min maximum
value of the observed time series is captured.

For Koramangala-Chellaghatta (KC) valley, maximum values
and the temporal patterns of rainfall at 15 min are captured by the
ensemble member, for Vrishabhavathi (VV) valley the patterns
are captured with lesser intensity and in Hebbal valley, a slight
overestimation is noted as shown in Figures 4A–C. The GFS data
(red bar graphs shown on the inverted axis in Figures 4A–C)
consistently underestimates the daily rainfall value at all three
locations and the timing of the peak occurs after the rainfall event
at some locations.

TheWRFmodel is able to capture the intensities of the rainfall
albeit with a temporal shift. This could be due to the fact that the
single layer urban canopy physics option used may not capture
the heat exchanges that happen within the city. Opting for a
multi-layer urban canopy model and incorporating detailed
representation of urban land use classes in future studies may
improve the timing of the prediction (Holt and Pullen, 2007;
Salamanca et al., 2011; Jandaghian and Berardi, 2020). The WRF
model output is captured at every 15 min as against the 3-h time
interval of the input GFS data. The 15-min maximum value for
the rainfall forecast from each WRF ensemble member is
compared against the observed data. Even the lower
performing members of the ensemble, WDM6KF1, and
WDM6BMJ1 based on the spatial verification shown in
Figures 3K,L have captured a maximum value of 17.88 and
25 mm respectively, as compared to the observed value of 24 mm.

Most ensemble members capture the 15-min maxima with a
variation of not more than 10 mm. This implies that irrespective
of the spatial and temporal displacements of the simulated
rainfall, the maximum intensity is fairly well captured by the
WRF model ensemble. The maximum from the GFS is 30 mm in
a 3-h interval which is very low in comparison to the values from
the WRF ensemble. From this section, it can be concluded that
three hourly rainfall forecasts from GFS fail to capture the
temporal variability and intensity of the observed rainfall.

Comparison of PCSWMM Model Output
TheWRF ensemble members are selected based on their ability to
simulate the spatial distribution and location of heavy rainfall
(>60 mm/day), and the forecasted rainfall is given as inputs to the
hydrological model. Prediction of water levels in urban flooding
situations requires accurate sub-hourly intensity/values of rainfall

to be given as an input to the flood models. The data extracted at
rain gauge locations from the nearest grids in the WRF model is
given as input to the PCSWMM model. The spatial plot of the
PCSWMM input data is shown in Figure 5. The spatial
distribution of rainfall is improved by downscaling the GFS
data as visible in Figures 5A–H in terms of extent and
intensity, and similar improvement can be observed for water
level forecasts.

The critical water level sensors in Vrishabhavathi,
Koramangala-Chellaghatta, and Hebbal valley are selected for
the analysis based on the observed water level depth during the
storm event (>75% of drain depth). The plots also show the
outputs from PCSWMM for these sensor locations across
Bangalore city (Figures 5A–G) and the peak water level
depths at those locations are expressed in terms of the
percentage of the drain depth covered. The PCSWMM model
simulation outputs for the three hourly rainfall time series from
the GFS data are also shown in Figure 5G.

The spatial distribution of the rainfall forecasts has a
significant impact on the water level peak forecasts as can be
seen from Figures 5A–F. For Koramangala-Chellaghatta and
Hebbal valley, the WRF model forecasts are performing better
than the GFS data forecasts. For the critical sensors in
Vrishabhavathi valley, which had the highest recorded water
levels (exceeds the drain depth by 122 and 21%), the values
are underestimated by both the WRF ensemble and GFS data.
The flood model responds well to all sources of rainfall input
(Observed, WRF ensemble, and GFS data) and the variation in
the water level correlates with rainfall intensities. The error in
predicting the location of the heavy rainfall threshold (above
60 mm/day) impacts the forecasts of the flooding locations from
the hydrological model.

It can be observed that water level peaks are being captured at
certain locations in spite of a general underestimation in the
rainfall forecasts. This can be attributed to the fact that the sub
hourly rainfall intensity which is a strong indicator of the
extremity of the event is captured to a larger extent by the
WRF downscaled forecasts. It can be observed in Figure 4C
that the 15-min maximum rainfall from observed sensors which
is 24 mm is fairly captured by all members of the ensemble.

A spatial shift in the simulated rainfall can be observed in
certain ensemble members towards the southern side of
Bangalore (shown Figures 5C,D), which is reflected in the
simulated water depths. The spatial distribution of rainfall has
improved to a greater extent using the WRF ensemble forecasts,
Also, the forecasted water levels are closer to the observed data
and higher than the GFS data forecasts.

Verification of Flood Forecasts From
PCSWMM
The high spatial and temporal intensity of the urban flood that
occurred following the heavy rainfall event on 20–21 October
2020 is captured fairly by the PCSWMM model. The observed
rainfall data from the ARGs is given as an input and the flood
model output (Input_ARG_Rainfall) is compared with the water
level sensor data and flood forecast values from the WRF
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ensemble and GFS data as shown in Figures 6A,B. It can be
observed from Figure 6A the water level forecast from the WRF
ensemble provides a good indication of high water levels and
shows a high variability when compared with forecasts from the
GFS data as shown in Figures 6A,B. Similar result can be

observed for sensors in Vrishabhavathi valley (Supplementary
Table S6). From extensive field visits and ground scenario
comparisons, it is observed that certain obstructions in the
form of debris from sewage flow, including solid waste and
tree/plant growth, cause the water in the storm water drains to

FIGURE 5 | Rainfall forecasts fromWRF ensemble members and GFS forecast and the corresponding water level forecasts. (A–F), Spatial variability in rainfall and
corresponding flood forecasts from WRF ensemble member WSM6KF3 (A), WSM6GF3 (B), WDM6KF3 (C), WSM6KF1 (D), WSM6GF1 (E), WSM6BMJ3 (F), (G,H)
Spatial variation in rainfall and corresponding flood forecasts from GFS (G), and Observed ARGs (H). The red boxes indicate the forecasted water levels at critical
locations by the model represented as percentage of drain depth occupied by water. The water level forecasts show similarity with the observed water levels which
are better than the forecasts using GFS.
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FIGURE 6 | Comparison of water level at critical water level sensor locations. (A,B), Comparison of forecasted water level using WRF ensemble forecasts, GFS
forecasts and observed rainfall with observed water levels at water level sensor location in Vrishabhavathi valley (A) and Koramangala-Chellaghatta valley (B) at 15-min
interval. The water level is captured fairly using WRF forecasts than GFS forecasts. (C,D), comparison of forecasted water levels from WRF ensemble members(3 h
averaged) and GFS forecasts at three hourly intervals at water level sensor location in Vrishabhavathi valley (C), and Koramangala-Chellaghatta valley (D).
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rise resulting in outliers in the observed water level sensors data as
shown in Figure 6B. It can be seen from Figure 6B, that the flood
forecast is not able to capture the peak value (2.2 m) which maybe
a result of external factors and not the rainfall event. Excluding
the outlier value, the maximum water level (0.9 m) is reflected in
the flood forecasts generated using the WRF ensemble.

Based on observations made for Vrishabhavathi Valley, it can
be observed from Supplementary Table S6, that the model
performs well in predicting water level peaks for all valleys. As
shown in Supplementary Table S6, 50 and 16.7% of the ensemble
members indicate flooding (>75% drain depth) for Koramangala-
Chellagatta and Vrishabhavathi valley respectively which is useful
for early warning and disaster preparedness. The average
percentage drain depth obtained from the flood forecast using
WRF ensemble is 63 and 70 for Vrishabhavathi and
Koramangala-Chellagatta valley, respectively.

The WRF forced PCSWMM model output was further
averaged to 3 h to match with the resolution of the GFS data
The results shown in Figures 6C,D, indicate that the WRF
ensemble captures the variability with a slight underestimation
in the flood peak. Flooding in urban areas is majorly caused by
high-intensity short duration rainfall which leads to saturation of
the available pervious area and overwhelming of the drainage
capacity. When using the forecast from the GFS data as rainfall
input, with an interval of 3 hmost of the rainfall infiltrates and the
soil is not saturated enough to produce an overland flow that can
contribute to an increase in the water level. This results in the
water levels remaining unchanged throughout the hydrological
model run (Figure 6). The high-resolution rainfall forecasts from
the WRF ensemble produce the flood peaks more effectively than
the GFS data as shown in Figure 7. The hydrological model
simulation when forced with global forecast at 3-h intervals, is not
able to accurately represent the hydrology specially of an urban
area and thus highly underestimates the flood magnitude.

CONCLUSION

The rising number of extreme events in Indian cities is a serious
concern with the high population density and unplanned growth,
making them suffer huge economic losses in the aftermath of

such an event. As per the recent IPCC reports, the increase in the
global temperature is bound to bring about unprecedented
changes which cannot be predicted by analyzing historical
data. The impact of recent urban floods highlights the
requirement for the development of a high-resolution flood
forecasting system for Indian cities. The nature of the urban
flood demands a system built using high resolution data to
capture the sub-hourly intensities occurring for short
durations, as, such rainfall events are known to cause
extensive damage. The city of Bangalore has a high-density
network of automatic rain gauges and water level sensors. The
data is made available at a 15-min temporal resolution; hence the
city is used as a case study to evaluate a real time flood forecasting
system. In this context, the real time forecast data at a resolution
of 25 km from the Global Forecast System model—is used to as a
boundary condition to drive the WRF model. As Bangalore
covers an area of 765 km2, climate data at 25 km maybe
insufficient to resolve interactions with local topography and
adequately forecast convective systems that may cause extreme
rainfall events and urban flooding as a consequence. Hence, a
popularly used RCM, the WRF model, is used to dynamically
downscale real time climate information to a high resolution of 3
and 1 km. As WRF model outputs contain some uncertainty
associated with the complexity of the rainfall generation process,
a combination of 12 model configurations, with different physics
schemes are used for the experiment.

The PCSWMMmodelling platform is used to study the urban
hydrology, using high resolution datasets to obtain water level
observations in open channel drains. The model was calibrated,
validated, and run for real time scenarios and have been able to
effectively capture the points of flooding for the selected extreme
events. This urban flood model is used for flood forecasting by
using rainfall data from the WRF model and GFS data. The
additional value brought about by using the WRF model is
evaluated by comparing the flood forecasts from GFS data
with the observed.

The present study reveals that the high-resolutionWRFmodel
is able to provide additional value in terms of characteristics of the
rainfall pattern and sufficient variability in the water level pattern
as compared to the 25 kmGFS data. The accumulated rainfall and
its location are found to be sensitive to the choice of convective

FIGURE 7 | Comparison of maximum water level at critical water level sensor locations. (A,B), Comparison of water level between maximum value from WRF
ensemble forecast, GFS forecast and observed data at sensor location in Koramangala-Chellaghatta valley (A), and Vrishabhavathi valley (B). The bias between theWRF
ensemble and the GFS is 0.68 and 0.32 m. The flood maximum value is predicted by the WRF ensemble at both locations.
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and microphysics parameterization schemes. Model simulated
rainfall is noted to be closer to the observed rainfall in the case
when the microphysics scheme is WSM6 and the convective
parameterization scheme is Kain Fritsch.

Ten out of the twelve members of the WRF ensemble, forecast
an extreme rainfall event within the city. The GFS data shows a
rainfall event but fails to capture any rainfall above 60 mm/day
which is the threshold for flooding in Bangalore city (Mohapatra
et al., 2017). Six out of twelve members are successful in capturing
the location and spatial distribution of the event and are used as
an input for the calibrated PCSWMM model (Supplementary
Figure S2).

The spatial and temporal resolution of the rainfall input plays
an important role in the urban flood event analysis. The dense
spatial and temporal network used for verification of the
performance of the forecasting framework is a novelty of the
work. It can be seen that the flood model outputs using the WRF
ensemble data have more variability as compared to the runs
using the GFS data as an input. The inability to capture the
extreme rainfall features and the coarse temporal resolution of the
GFS data has caused the water level output to be both spatially
and temporally unvaried. The WRF ensemble aids in the model
performance for flood forecasts with the ensemble water level
peaks being much closer to the observed than GFS data
(Figure 7). The flood peak appears 6–8 h in advance as
compared to the observed which may be due to inadequate
representation of urban heat island effect within the model
(Paul et al., 2018).

The study demonstrates the first ever integrated
application of a high-resolution numerical weather model
coupled with a detailed hydrological model to capture a
recent urban flood event over an Indian city. The urban
catchment considered for the study is a lake based inland
catchment and can serve as a model for other cities with
similar urban hydrology. While the Bangalore city is a highly
gauged or data rich study area that facilitates urban flood
forecasting studies, the study framework can be adaptable for
any city by giving inputs that reflect extreme rainfall events.
The best performing member of the modelling framework
(WSM6KF3) has been tested for various events and the
performance across events have been included in the
supplementary section for the sake of brevity
(Supplementary Figures S3–S6, S11, Supplementary
Tables S4, S5). The WSM6KF3 member has been tested
for four heavy rainfall events from the monsoons of 2020
and 2021—September 8, 9; October 20, 21; 2020: November 4,
5; October 10, 11; 2021. The combined categorical indices
have been added to the supplementary material
(Supplementary Figure S11). On an average, the model
setup has a better performance than a random/chance
forecast for rainfall threshold above 60 mm as can be seen
by the positive value of Hiedke Skill Score (Supplementary
Figure S11A).

The WRF model ensemble is being improved continuously to
reduce inconsistencies and errors in the initial conditions. The
current physics ensemble selected for the study needs to be
calibrated further in order to develop an ensemble with each

member equally likely to predict a convective storm one to 3 days
in advance. The accuracy of the ensemble can be further
improved by assimilation of the observed network data. The
one-way coupled framework has certain limitations as the
feedback of surface hydrology variables such as lateral water
flow and soil moisture to the atmospheric model are not
considered. The lack of a two-way feedback mechanism also
leads to the separation of the rainfall process from the land
surface hydrological processes.

The modelling framework is designed to generate short range
forecasts for the city of Bangalore. Continuous assessment of the
operational runs of this framework can be used to develop
medium range and long-range flood forecasts. Operational
forecasts from the flood forecasting framework aids in
building climate resilience for the city if and when these urban
feedbacks are considered into regional planning processes
(Gonzalez et al., 2021). The accuracy of the modelling
framework can be further improved to include future sources
of climate data—localised climate zones, data assimilation, higher
resolution LULC and DEM. It can also be utilised for future
climate scenarios if uncertainties from corresponding future land
use land cover prediction datasets that will be used in the
hydrological models is quantified.
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Heavy precipitation tends to cause mountain torrents, urban waterlogging and other
disasters. It poses a serious threat to people’s life and property safety. Therefore, real-time
quantitative precipitation estimation is especially important to keep track of precipitation
changes and reduce negative impacts. However, high-resolution and high-accuracy
quantitative precipitation estimation is a challenging task due to the complex spatial
and temporal variability of microphysics in precipitation processes. Previous studies have
focused only on small-scale radar reflectivity factors above rain gauges and did not pay
enough attention to the contribution of covariates to model performance. Meteorological
and geographical factors play an important role in rain process, so these factors are taken
into account during our research. In this study, a quantitative precipitation estimation
model that can employ multi-scale radar reflectivity factors and fuse meteorological and
geographical factors is proposed to further improve precipitation accuracy. In addition, we
propose the muti-scale self-attention (MS-SA) module that can further utilize information at
multiple spatial scales to improve the accurate precipitation estimation. The proposed
model reduced the root mean square error of precipitation estimation by 83.8% compared
to the conventional Z-R relationship that correlates the rainfall and radar reflectivity factors,
i.e., Z � aRb, and by 43.7, 24.6, and 22.7% compared to the back propagation neural
network (BPNN), convolutional neural network (CNN), and convolutional neural network
with the addition of meteorological factors and geographical factors as covariates in the
proposed model, respectively. Therefore, we can conclude that multi-scale radar
reflectivity factors fused with meteorological and geographical factors can produce
more accurate precipitation estimation.

Keywords: precipitation estimation, weather radar, deep learning, multi-scale, meteorological factors, geographical
factors
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INTRODUCTION

Rainfall is a fundamental part of the natural water cycle and is
necessary for the continuation of all life in nature. In recent years,
as global warming has intensified, the atmosphere contains higher
levels of water vapor and the frequency and intensity of heavy
precipitation events have increased significantly (Groisman et al.,
2005; Cremonini and Tiranti, 2018; Giang, 2021; Zhao et al.,
2021). This inevitably leads to natural disasters such as floods and
has many indirect negative effects on human social activities such
as transportation and agriculture (Iwashima and Yamamoto,
1993; Ramos et al., 2005; Sun and Huang, 2011; Lee et al.,
2014; Wu J. et al., 2020; Paxton et al., 2021). Therefore,
quantitative precipitation estimation (QPE) based on weather
radar with high spatial and temporal resolution can be of great
help for decision makers to make timely and correct decisions
with great reference value, which in turn also plays an important
role in mitigating urban flash floods and warning extreme
weather (Morin and Gabella, 2007; Germann et al., 2009;
Chen and Chandrasekar, 2015; Gou et al., 2018; Lu et al.,
2019). Real-time and high-precision QPE is also continuously
studied by meteorologists as an important topic (Sadeghi et al.,
2019; Wu H. et al., 2020). Rain gauges are a direct means of
measuring rainfall and their measurements are often used in QPE
as a label for the ground truth value at a fixed location. However,
rain gauge networks suffer from low spatial density, uneven
distribution, inconsistent historical recording periods, and high
costs in the task of measuring the depth of precipitation in a
certain area (Fan et al., 2021). Therefore, rainfall measurements in
a certain region based only on rain gauges are not spatially
representative. Weather radar, as an indirect means of
measuring rainfall, is commonly used to observe the spatial
structure characteristics of microscopic particles in the high-
dimensional space of precipitation and rainfall fields.
Furthermore, in the business of Radar Quantitative
Precipitation Estimation (RQPE), weather radar has the
advantages of high spatial and temporal resolution, wide
geographical coverage, and real-time data transmission (Berne
and Krajewski, 2013; Tian et al., 2020). It should be noted that its
performance depends on the physical model of the raindrop size
distribution and the relationship established by the radar
parameters and the physical model. Thus, due to the above-
mentioned advantages of radar, and the nature of the spatial
distribution of the radar network, it is able to count and model
extreme weather and the natural hazards it causes on both spatial
and temporal scales. This compensates for the deficiencies of the
rain gauge network (Yang et al., 2004; Delrieu et al., 2009;
Germann et al., 2009). However, estimating precipitation by
radar is a complex process, which is mainly caused by the
complex spatiotemporal motion and variation of microscopic
particles in the precipitation process, as well as the poor
measurement accuracy due to multiple error sources in the
radar measurement process (Berne and Krajewski, 2013; Chen
et al., 2019). The traditional quantitative precipitation estimation
(QPE) algorithm uses the relationship between weather radar
echo intensity and rainfall intensity, i.e., the Z-R relationship
where Z is the radar echo intensity, R is the rainfall intensity, to

invert the rainfall amount of a rainfall field (Legates, 2000;
Rosenfeld and Ulbrich, 2003; Barros and Prat, 2009). The
empirical coefficients a and b in the Z-R relationship are
influenced by many environmental factors, such as weather
conditions, geography, etc. It is fundamentally influenced by
the spectral characteristics of raindrop size. Therefore, the
range and environment to which a fixed Z-R relationship can
be adapted is greatly limited. The same Z-R relationship can
produce great errors in different areas, especially in mountainous
areas and under strong convective weather. Previous studies have
mainly focused on increasing the accuracy of the Z-R relationship
and trying to break out of this dilemma. Alfieri et al. (2010)
considered the Z-R relationship to be closely related to time and
they improved it to be constantly updated with time. Specially,
they took all available Z-R relationship pairs for each time step to
correct the parameters and then adjusted the power law equation
to convert the radar reflectivity factor measurements into rainfall
rates. Wu et al. (2018) suggested that the echo top height can
reflect the stage of storm development and the intensity of
precipitation system. Therefore, a new dynamic Z-R
relationship for RQPE was established using echo top-height
classification, and better performance was obtained in
comparison experiments with different seasonal precipitation
events. However, although previous studies have considered
the effects of independent time and space on the Z-R
relationship and calibrated it, or dynamically adjusted the
empirical coefficients a, b by grouping reflectivity and
precipitation, none of them have addressed the essential
problem of the Z-R relationship. The Z-R relationship, as an
ideal model that is difficult to satisfy, cannot capture the spatial
and temporal variability in the rainfall process well, and because
of the Z-R relationship generally operates on independent lattice
points and does not take into account the spatial correlation
between regions. It is difficult to meet the demand of the
meteorological community for high-quality QPE. All these
dilemmas have been solved in our study, and the model
proposed in our study can be more adaptable to the complex
geographical and climatic environments. In addition, our model
can provide more accurate precipitation estimation than the Z-R
relationship and its derivative methods.

The rapid development of machine learning, especially deep
learning in recent years has advanced the research of QPE in the
meteorological community (Teschl et al., 2006; Gagne et al., 2014;
Kühnlein et al., 2014; Sorooshian et al., 2016; Beusch et al., 2018;
Chen et al., 2020; Min et al., 2020; Zhang et al., 2020; Wu et al.,
2021). In the era of big data, machine learning has great potential
for parsing the underlying patterns of huge data without
assuming any physical relationships. And deep learning, with
the powerful learning ability of deep neural networks for complex
nonlinear relationships in nature, has broadened the applicable
field of machine learning and realized numerous applications. In
addition, deep neural networks have powerful adaptive and fault-
tolerant capabilities. Therefore, the deep neural network is a new
option for improving the accuracy of QPE (Wu et al., 2021). Shin
et al. (2019) evaluated the applicability of random forests,
stochastic gradient augmentation models, and extreme
learning machine methods to QPE and used multivariate
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combinations as inputs. The results show that the approach based
on machine learning performs better than the model with Z-R
relationship and resolves the time lag between the radar data and
ground observations, and the accuracy is improved by an
appropriate combination of multiple input variables. The
overall performance of their proposed three models is
8.18 mm/h, 8.38 mm/h, 7.91 mm/h for root mean square error
(RMSE) values, respectively. Sivasubramaniam et al. (2018)
developed a nonparametric prediction model, the K-nearest
neighbor regression estimator, and demonstrated that the
inclusion of air temperature as an additional covariate for
model significantly improved prediction results in cold air
with an improvement of 15% in RMSE compared to radar
precipitation rate as a single predictor in model. Chen et al.
(2019) designed a two-stage neural network for estimating
precipitation intensity and inversion of satellite radar profiles,
respectively. They demonstrated that the machine learning
approach can better detect changes in precipitation
microphysical processes. Moreover, Chen et al. (2020) also
proposed a data fusion framework based on a multilayer
perceptron model with machine learning. The results indicate
that the machine learning model is more flexible and can fuse
multiple data sources. In addition, the data fusion framework can
better capture precipitation intensity. However, although the
previous studies used covariate or multiple data sources fusion
models proved the validity, they considered only in one
dimensional space and did not use two-dimensional data. In
other words, they ignored the role of the spatial structure of
variables on rainfall estimation during the rainfall process.

In addition to using traditional machine learning methods,
Sadeghi et al. (2020) used a U-Net convolutional architecture
with infrared information and geographic information as input to
verify that adding latitude and longitude information to infrared
information can improve real-time precipitation estimation.
Then, for RMSE, mean absolute error (MAE) and correlation
coefficient (CC), their models were more accurate in summer
(winter) than the comparison model, i.e., PERSIANN-CCS
(Hong et al., 2007), by 20% (10%), 21% (16%) and 140%
(38%), respectively. Wu H. et al. (2020) analyzed the
advantages and disadvantages of rainfall gauges and satellite
products in rainfall operations. Moreover, they used deep
learning methods to model the spatial and temporal
correlations of these two sensors. Their CNN-LSTM model
provides more accurate rainfall estimates. Specifically, their
model outperformed the comparative models (CNN, LSTM,
and MLP) with a 17.0 and 14.0% reduction in RMSE and
MAE, respectively, and an increase in correlation coefficient
from 0.66 to 0.72. It demonstrates the importance of capturing
the spatiotemporal correlation of precipitation. A multi-model,
multi-task precipitation estimation depth model was proposed by
Moraux et al. (2019). The model uses an encoder-decoder as the
main framework, and combines multiple modalities and multiple
scales in a multitasking manner to suppress the respective errors
and improve accuracy. More specifically, it estimates
precipitation amount with a MAE of 0.605 mm/h and a RMSE
of 1.625 mm/h for instantaneous rates. Furthermore, Moraux
et al. (2021) also investigated combining different precipitation

measurement modes to improve the accuracy of QPE. They
combined well the inputs of three modes, rainfall gauge, radar
and infrared satellite imagery, on the basis of the original model
and obtained the best accuracy. The results show that RMSE
decreases to 1.488 mm/h for rainfall estimates. Then, they
demonstrate that building deep learning methods on basis of
traditional methods is highly promising in the field of
meteorology. Previous deep learning-based approaches have
demonstrated the effectiveness of deep learning models in
rainfall estimation operations. In addition, multiple sources of
two-dimensional data were widely adopted as model inputs.
However, considering that the input features can intermingle
with information unrelated to rainfall, their model lacks the
ability to adaptively adjust the proportion of weights to the
features. In our study, we achieve a non-uniform distribution
of weights and combine multi-scale information through a multi-
scale self-attention module.

Previous studies have focused only on radar reflectivity
factors at small-scales, while rainfall is the result of the
interaction of complex weather systems at multiple scales
(Zhang M. et al., 2021). Inspired by this, we believe that
large scale radar reflectivity factors can also provide valid
information for rainfall estimation, so we adopt multi-scale
rainfall field information as the observations for the model,
i.e., covering different ranges of rainfall fields centered on the
rainfall collection points. In addition, although previous
studies have used additional inputs as covariates, such as
temperature (Sivasubramaniam et al., 2018). However, they
ignored the influence of the spatial structural characteristics of
the covariates on rainfall, so we used meteorological and
geographic factors in two dimensions as covariates to
establish their association with rainfall at the spatial scale.
Finally, we also designed a multi-scale self-attention module,
which helps our model to focus on factors that contribute to
rainfall estimation and suppress noise. To the best of our
knowledge, this has not been considered in previous studies,
and our study demonstrates the effectiveness of this module.
However, the process of this study also has some
shortcomings. Since the radar detection process is affected
by ground clutter, biological clutter, etc., the preprocessing
scheme used in this study may not completely eliminate the
influence of clutter, and this problem will be gradually
improved in future studies.

In summary, a multi-scale neural network is built in this study
to improve the accuracy of QPE by employing rain gauge and
weather radar, with rain gauge data as labels, high spatial and
temporal resolution radar data as the main input, and
meteorological factors and elevation as covariates. The more
accurate the quantitative rainfall estimates are, the better they
can help meteorologists in their deeper study of weather systems
and assist relevant managers in making more precise and timely
warnings to minimize damage caused by natural disasters. The
structure of this paper is presented as follows. “DATA AND
METHODOLOGY” describes the data areas sampled and the
detailed processing of the data set, as well as our specific scheme
design, design ideas, evaluation metrics and information criteria.
The “RESULTS” section discusses our experimental results and
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conclusions. Finally, we summarize our work in
“CONCLUSION” section.

DATA AND METHODOLOGY

Data and Preprocessing
The data were obtained from the Shijiazhuang Meteorological
Station Z9311 Doppler Weather Radar and 17 National Weather
Stations (NWSs) from June to September 2017 to 2019. The
Shijiazhuang domain spans two geomorphic units, the North
China Plain and the Taihang Mountains, with a complex
topography of elevated terrain in the west and flat terrain in
the east. The climate is characterized by an uneven spatial and
temporal distribution of rainfall, with significant seasonal and
regional differences in the trend of precipitation, and a rainy
seasonmostly in summer. The DopplerWeather Radar completes
a body sweep every 6 min to obtain the radar reflectivity factors
and the corresponding latitude and longitude for nine different
elevation angles in all directions, with a volumetric sweep of
VCP21. The NWSs record minute-by-minute meteorological
elements, including barometric pressure, temperature,
humidity, rainfall and other data. The study area was taken
from longitude 113.5°–115.5° and latitude 37.0°–39.0°. The
study area and NWSs are shown in Figure 1.

This study is an estimation of precipitation with radar
reflectivity factors as the main input and meteorological and
geographical factors as covariates, where temperature e and
humidity are used for meteorological factors and elevation is
used for geographical factors. Since the radar detection process is
influenced by clutter and the radar reflectivity factors of a single
elevation angle cannot completely express the real situation of

cloud masses in a certain range, we use combined reflectivity.
Furthermore, as the radar reflectivity factors of low elevation
angles are more closely related to the precipitation, the combined
reflectivity factors with maximum radar reflectivity factors of
0.49°, 1.40°, and 2.38° elevation angles are considered. In addition,
we calculate the average reflectivity intensity of all radar echo
images and sort them from smallest to largest, take the average
reflectivity intensity of the smallest 0.1% number of radar echo
images as background noise, and denoise the remaining radar
echo images to some extent. The radar reflectivity factors need to
be matched with the precipitation amount. Considering the delay
of precipitation, the sum of the precipitation amount 6 min after
the current moment is taken as the rainfall label of this moment.
According to the first law of geography (Wasko et al., 2013), the
correlation between the neighboring grids and the grid to be
estimated decays with increasing distance, so the spatial matching
of the radar reflectivity factors and precipitation is performed
based on the latitude and longitude of the NWSs, and the grid
points closest to the NWSs are selected as the center of the
reflectivity. Specifically, considering that the radar reflectivity
factors closer to the NWSs are more correlated with the
precipitation values and the completeness of rainfall field
information at long distances, multi-scale information is fed
into our network.

Finally, as shown in Figure 2, the radar reflectivity factors
centered at the NWSs in the ranges of 50 km, 25 km, 12.5 km are
taken as the input radar reflectivity factors. The spatial resolution
of the radar reflectivity factors is 0.005°, i.e., the grid points are
0.5 km away from each other, and the temporal resolution is
6 min. For the meteorological factors used in this study,
temperature and humidity are used as covariates. Considering
that the temporal resolution of the radar reflectivity factors is

FIGURE 1 | Elevationmap of Shijiazhuang city. Themap shows the distribution of radar stations (yellow pentagons) and 17 NWSs (pink circles) and the extent of our
study area.
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6 min, while the temporal resolution of the meteorological
elements is 1 min. Therefore, a temporal matching operation is
performed on both data by taking the average of the
meteorological factors for a total of 6 min above and below
the current moment as the value of the current moment.
Specifically, the meteorological factors in the range are
interpolated according to the spherical model using Ordinary
Kriging interpolation based on the meteorological factor data
from the NWSs, and then temporally and spatially matched with
the radar reflectivity factors, which are jointly used as inputs. The
detail process of Kriging is as follows (Oliver and Webster, 1990):

E � ∑n
i�1
λiz(xi) (1)

where E is the estimation of meteorological factors in certain
areas, λi is the proportion of weights for each sampling point and
z(xi) is the data of the real meteorological factors recorded at the
sampling sites. The sampling sites in this experiment are NWSs.

Geographical and topographical factors are constant
influencing factors of rainfall (Liu et al., 2018; Sadeghi et al.,
2020; Sønderby et al., 2020). Therefore, according to the digit
elevation model of Shijiazhuang city, the elevation values in grid
form are obtained according to the spatial resolution of 0.005°,
and then the spatial matching operation is performed to cut
multi-scale with the NWSs as the center.

To evaluate the model more accurately, we divided the data set
into a training set and a test set in a ratio of 8:2. The training set is
used to help the model fit the relationship between the radar
reflectivity factors and precipitation, and the test set is used to
verify their relationship. For the partitioning of the dataset,
random partitioning will lead to an uneven spatial and
temporal distribution of the dataset. Therefore, the data set is
classified according to the latitude and longitude coordinates of
the NWSs and the month. Finally, they are randomly divided into
training and test sets in the ratio of 8:2.

Methodology
Baseline Model
Traditional methods usually rely on converting the radar
reflectivity factors to rainfall through a nonlinear relationship
between the radar echo intensity and rainfall intensity (Z-R
relationship). Models based on the Z-R relationship are also
widely used in QPE models. The specific equation for the Z-R
relationship is:

Z � aRb (2)
where Z is the radar echo intensity, R is the rainfall intensity, and
a and b are the empirical coefficients. The Z-R relationship is
mainly influenced by the spectral characteristics of the rainfall. In
addition, the Z-R relationship is influenced by many factors such
as geography, meteorological conditions, and hydrology.
Parameters a and b will be adjusted to suit different
conditions according to these factors (Tian et al., 2020).

Therefore, according to the equation of the relationship
between radar reflectivity factor and its physical quantity
dBZ � 10lgZ, the Z-R relationship is rewritten as:

lgR � 1
10b

dBZ − 1
b
lga (3)

Then, we fit the values of the parameters a, b using a linear
regression model. Finally, the value of a takes the value of 1.91
and the value of b takes the value of 0.578.

Model Architecture
It is well known that precipitation is a complex process, which is
closely related to meteorological factors and influenced by
geographical factors. Therefore, only considering the radar
reflectivity factors cannot accurately fit the relationship with
precipitation intensity, and the inclusion of covariates is
particularly important. In this study, meteorological factors
(temperature and humidity) and geographical factors

FIGURE 2 | The graph of the weather station in the figure represents the NWS, and the three red triangles represent the boundaries of the sampling ranges for the
small-scale input, the medium-scale input, and the large-scale input. The sampling area is a rectangular area centered on the NWS at a horizontal resolution of 0.005°.
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(elevation) are mainly used as covariates. In addition, an attention
mechanism among multiple scales is introduced in this study.
With this mechanism, the module not only focuses on the most
relevant influences near the site, but also takes into account the
spatial variability on a large scale to produce more accurate
estimation.

In contrast to the single-scale input of the model in previous
studies, our model called MS-FCVNet uses a multi-scale input
centered on NWSs. In detail, small-scale images have a small
sensory field, focusing on the variation in details of rainfall
fields around the station. Large-scale images have a wide range
of sensory fields, focusing on the overall spatial structure of
weather conditions. And Medium-scale images mainly play a
transitional effect, linking the spatial information of large scale
and small scale, and providing the necessary spatial change
information. In terms of model structure, the model includes
Hybrid Dilated Convolution (HDC), pooling layer, fully
connected layer, and multi-scale self-attention modules
(MS-SA). The model structure is shown in Figure 3, and
the details of the modules and their specific functions will
be explained in detail below.

Hybrid Dilated Convolution
HDC consists of a number of dilated convolutions (Wang
et al., 2018a). Dilated convolution mainly involves adding
empty holes, i.e., zero pixels, to the feature mapping of the
convolution kernel for the purpose of expanding the receptive
field. Ordinary convolution generally achieves the purpose of
expanding the receptive field by adding a pooling layer, which
leads to the loss of detailed information. Compared to ordinary
convolution, dilated convolution can improve the resolution of
the sampled image without increasing the number of
parameters to achieve dense feature extraction in deep
CNNs. For an ordinary convolution kernel of size K, the
corresponding dilated convolution kernel size is
K + (K − 1)p(R − 1), where R is the dilation rate when we

sample the feature map. Taking the two-dimensional dilated
convolution as an example, the process can be expressed as the
following equation:

⎧⎨⎩ f [l]i,j � ∑S−1
m�0

∑S−1
n�0

w[l]
m,nx

[l−1]
(m−S//2)pr+i,(n−S//2)pr+j + b[l]

x[l]
i,j � g(f[l]

i,j)
(4)

where f is the feature points extracted from the convolution
kernel after the convolution operation, S is the length of the
convolution kernel, and w is the weight of the convolution
kernel. x is the position of the sampled points, b is the bias,
and g is the activation function. However, simply stacking the
dilated convolutions will lead to a grid effect, i.e., the pixel
points on the sampled final feature map will view the
information of the original feature map in the form of a
grid. This will lead to discontinuities in local information,
weakening spatial correlation and not conducive to capturing
the spatial information of the image. Therefore, HDC is used
to build the network in this study. Specifically, different
dilation rates are used for several phase-consecutive
dilation convolution kernels in HDC. The main purpose is
to compensate for the holes caused by a series of
convolutions, so that the pixel points of the sampled
feature map can sample a complete region of the original
feature map. For a number of N convolution layers, the
convolution kernel size of each layer is K, and its void rate
is [r1, r2, ..., rn], and its maximum dilation rate needs to
satisfy the following equation:

Mi � max[Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri] (5)
where ri is the dilation rate of layer i and Mi is the maximum
dilation rate of layer i. With HDC, it can achieve a wider field of
perception without losing local information and capture more
global information. Figure 4 shows the specific configuration of
our HDC, where we take 1, 3, and 5 as consecutive dilation rates.

FIGURE 3 | The MS-FCVNet model receives information input from three scales, undergoes multi-scale feature extraction and fusion, and finally outputs the
predicted values through a fully connected layer.
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Multi-Scale Self-Attention Modules
In our study, we consider that the large-scale radar reflectivity
factors will contain more complete meteorological information,
such as the overall condition of the cloud mass and the
meteorological conditions near the site will be much more
important compared to the distant ones. To balance the
consideration of large-scale images and small-scale images
centered on the site, we design the MS-SA. Its model structure
is shown in Figure 5.

The design of MS-SA is based on the non-local block
module. The essence of the non-local block module is to
capture the global spatio-temporal characteristics for each
pixel point on the image, assign different weights, and
finally aggregate them at each location to enrich the spatio-
temporal characteristics (Wang et al., 2018b). The input is xi,

i ∈ Smpn. Smpn is the set of all pixel points in the image, if the
input is spatio-temporal sequence then i ∈ Stpmpn. The default
input in this paper is the image. conv K, conv Q, conv V are
three different feature mappings, and we use 1*1 convolution
operation to implement them in the model. The result of the
input after conv K, conv Q, i.e., the Key module and Query
module are multiplied to get the global pixel similarity score
between any two pixels in the global pixel, which is expressed
as fi,j � (WQpxi)Tp(Wkpxj). The expression can be simplified
as f � QTpK. The similarity score is then transformed into the
weight score of the global information for each pixel point by
the softmax function. The output of each location is
represented by zi, which is the weighted sum of the global
information.

zi � Wz
⎛⎝ 1
C(x) ∑mpn

j�1
fi,jpV(xj)⎞⎠ + xi (6)

i is the index of the input and output points, j is the index of the
global sampling points, C(x) is the normalization factor, andWz

is the weight fraction of the global location with respect to
location i. V is also a mapping operation on the input, i.e., the
Value module, and multiplying the two results is the input of each
location after non-equal distribution of weights. The addition of
the input as the residual term in the formula can make the non-
local block module more stable.

To take full advantage of the multi-scale input of the model,
MS-SA receives two inputs, i.e., a small-scale feature map xM and
a large-scale feature map xL. The small-scale feature map with
feature mapping conv Q is used as the Query module, and the
large-scale feature map with feature mapping conv K and conv V
is used as the Key and Value modules. Multiplying the Query
module and Key module is the xM and xL pixel-by-pixel
similarity scoring matrix Gi,j � (WQp(xM)i)Tp(WKp(xL)j).
Each row of the similarity matrix is the similarity score of
each position of xM relative to all positions of xL, and each
column of the matrix is each position of xM. After the softmax
function, the elements in xL that are similar to xM will be given
higher weights. These elements, after a series of previous
convolution operations, will gather more spatial information
that is not originally available in the small-scale relative to the
elements of xM, especially the edge positions. It can also be
interpreted as allowing the small-scale range near the site to learn
the spatial information of the wider region and gather in the
center. It not only takes into account the spatial information of
the larger area but also emphasizes the key information of the
small area near the site. As Figure 6 shows the evaluation process
of similarity between multiple scales, the spatial information of
the central region of the large-scale image has higher similarity
with the spatial information of the small-scale image compared
with the spatial information of the remaining location regions in
the large-scale image. This is because the small-scale image is
cropped from the central region of the large-scale image. The
feature map processed by the multi-scale attention mechanism
not only takes into account the spatial information of large
regions but also emphasizes the key information of small
regions near the site. The output of each position is

FIGURE 4 | HDC with expansion rates of 1, 3, and 5.
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represented by zi, which is the result of a preliminary fusion of
small-scale and large-scale information:

zi � Wz
⎛⎝ 1
C(x) ∑mpn

j�1
Gi,jpV((xL)j)⎞⎠ (7)

To make the module more stable, the inputs are often
connected at the end of the model as a shortcut. However,
since there are features on an image that are beneficial for
precipitation estimation and features that are not useful for
precipitation estimation, a simple summation does not

effectively utilize the features that are beneficial for
precipitation estimation. Therefore, the model needs to have
the ability to adaptively assign weights to each location. To
solve this problem, we design a feature fusion module as a
mask branch. Combining the input xM and the output z in
the channel direction after aggregating large-scale spatial
information, learning spatial information by convolution
operation, then feature mapping and adjusting the number of
channels by convolution conv θ with a convolution kernel size of
1, and finally activation by sigmoid function to be used as the
assigned weights ζ .

FIGURE 5 | The model receives inputs at two different scales and undergoes different convolution operations to generate the Query block, Key block and Value
block, respectively. The weighted feature maps are generated by the Query and Key modules, and then multiplied with the Value module to generate the attention-
passed feature maps. Finally, the final feature map is generated by mask branching.

FIGURE 6 | The center region of the large-scale image (right) is convolved with respect to the upper left corner region of the small-scale image (left) and the upper left
corner region of the small-scale image for similarity scoring. Since the small-scale image is cropped from the large-scale image, the same parts are given more weight in
the similarity evaluation by the attention mechanism.
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Ri � ζpzi + (1 − ζ)p(xM)i (8)

Fully Connected Layer
The role of the fully-connected layer is to map the distributed
high-level features extracted by the model to the target space.
Each element of each layer in the fully connected layer is
associated with all elements of the previous layer and has a
strong fitting capability. The final layer of the fully connected
layer outputs the predicted rainfall estimates.

Pooling Layer
The pooling layer mainly plays the role of reducing the
dimensionality of the input feature vectors in this study.
Pooling is divided into average pooling and maximum
pooling, and we use maximum pooling.

y[l+1]
i,j � max

1≤m≤f ,1≤n≤f
(x[l]

m,n) (9)

m, n are the coordinates of the pixel points of the convolution
kernel, x is the position of the sampled points in the lth layer, and
y is the result of the feature extraction in the (l + 1)th layer.

Loss Function
In the training process, the loss function we use is a weighted
combination of mean square error (MSE) and mean absolute
error (MAE). The specific reason is that in experiments, MSE is
usually used as the loss function because MSE can better reflect
the error between the true and predicted values. However, in
QPE, anomalous values are inevitably generated due to strong
convective weather and the influence of clutter. In addition to
this, there is the problem of skewed distribution of rainfall data. If
a single MSE is used as a loss function, it will cause the model to
trend towards underestimating the evaluation of rainfall in heavy
rainfall situations, as well as paying more attention to the
anomalous values. The specific equation is:

Loss � apMSE + bpMAE (10)
where a, b are the weight parameters of MSE and MAE. After
a series of experiments, we take the case where a is 1 and b is 10
to achieve the best training effect. In addition to this, during
the training process, we use the gradient descent method to
update the errors and get the optimal results based on the
analysis of the experimental results in the time and space
dimensions. Finally, the model has a learning rate of 0.0001, a
batch size of 8, a training epoch of 100, and an optimization
algorithm using Adam.

Evaluation Metrics

RMSE �
�������������
1
N

∑N
i�1
(Gi − Ri)2

√√
(11)

MAE � 1
N

∑N
i�1
|Gi − Ri| (12)

CC � ∑N

i�1(Gi − �Gi)(Ri − �Ri)�������������∑N

i�1(Gi − �Gi)2√ ������������∑N

i�1(Ri − �Ri)2√ (13)

whereN is the number of samples in the dataset, G is the ground
truth value, and R is the model estimation. �G is the mean of the
ground truth value and �R is the mean of the model estimation.
The goal of our study is to make the larger the CC value, the
smaller the values of RMSE and MAE, which represent the
excellence of the model.

Information Criteria
In addition, Since we will compare different models with different
input variables and parameters in the RESULTS section, we use
the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC) (Akaike, 1974; Burnham and
Anderson, 2016; Kuha, 2016) which are typically penalized
likelihood criteria used to compare non-nested models and
can be used to measure the complexity and fit of individual
models.

AIC is defined as:

AIC � −2 lnL + 2k (14)
where L is the maximum likelihood of the model and k is the
number of parameters required to fit the model to the nonlinear
relationship.

BIC is defined as:

BIC � −2lnL + k lnN (15)
where the parameters L and k are defined in the same way as in
the above equation. The parameter N is the number of samples
used for the fit.

The AIC mainly depends on the accuracy of the first model
and the number of parameters of the second model. When the
number of parameters of the models used for comparison is
similar, the higher the accuracy of the model, the lower the AIC
value. When the difference in the accuracy of the models used for
comparison is small, the simpler the model structure is, the lower
the AIC value is. Therefore, the lower the AIC, the better the
model performance. BIC additionally takes into account the
sample size.

RESULTS

In this study, to show the superiority of MS-FCVNet, we compare
it with the baseline model (Z-R model), the BPNN network
(Rongrui and Chandrasekar, 1997), the CNN (1) network
(Tian et al., 2020), and the CNN (2) network. It is worth
noting that CNN (1) and CNN (2) have the same network
structure, the only difference between them is the input to the
network. We only use radar reflectivity factors as input for CNN
(1). In contrast, we not only use single radar reflectivity factors as
input, but also multivariate inputs for CNN (2). In detail, it takes
the radar reflectivity factors as the main variable and temperature,
humidity and elevation as covariates, in order to make the inputs
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of the models used for comparison closer to MS-FCVNet and to
make the differences in the experimental results more dependent
on the enhancement brought by our model structure itself.

Figure 7 shows the distribution of the predicted values of the
models relative to the ground truth value. The horizontal axis of
each graph is the ground truth value and the vertical axis is the
estimated rainfall value predicted by the model. The more
accurate the model predicts, the more the dots in the graph
are clustered on the y � x axis. Figure 7A shows the distribution
of the predicted values of the Z-R relationship. It is obvious that
the distribution is very scattered, so it expresses that the predicted
values of Z-R relationship differs significantly from the ground
truth value and the traditional method does not fit the
relationship between radar reflectivity factors and rainfall well
compared to the deep learning method. Among the deep learning
methods, as shown in Figure 7B, the distribution of the
estimation predicted by BPNN performed more concentration
compared to Z-R relationship, which proves the effectiveness of
deep learning in fitting the radar reflectivity factors to the rainfall.
In contrast, Figures 7C,D display that the performance of the
BPNN is slightly less than that of the two CNN networks, which
shows that rainfall has a strong spatial correlation, and the CNN
captures this spatial structure that is ignored by the BPNN. For
both CNN networks, Figure 7D reveals that the CNN (2)

network that adds temperature, humidity and elevation as
covariates gives more accurate rainfall values than CNN (1)
which simply uses the radar reflectivity factors as input,
indicating the correlation between rainfall and meteorological
and geographic environments. Finally, Figure 7E shows that our
proposed model can predict the rainfull that are more
concentrated and closer to the y � x axis, i.e., closer to the
ground truth value than other models and proves the
superiority of our model.

Table 1 shows the comparison of the Z-R, BPNN, CNN (1),
CNN (2) andMS-FCVNet under the same evaluationmetrics and
information criteria. The first column of the table is the names of
models. The second to the fifth columns of the table are the inputs
to the model, which are the radar reflectivity factors, temperature,
humidity, and elevation, respectively. The sixth column shows the
selection of MS-SA moudle. The last five columns are the
evaluation metrics RMSE, MAE, CC and information criteria
AIC, BIC. Their specific meanings have been discussed in
Evaluation Metrics Chapter and Information Criteria
Chapter respectively. Lower RMSE, MAE values and higher
CC values represent better performance of the model. The
lower the AIC,BIC, the better the model can balance model
complexity and accuracy. The experimental results show that
the RMSE and MAE values of Z-R are higher and the CC values

FIGURE 7 | Distribution of model (A) Z-R relationship, (B) BPNN, (C) CNN (1), (D) CNN (2) and (E) MS-FCVNet estimation in the test set relative to the ground
truth value.
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are lower, indicating that the fixed Z-R are more restricted and
the predicted values are more different from the ground truth
value. Considering that deep neural networks and simple linear
regression, i.e., the computational process of Z-R relationship, are
not comparable in terms of the number of parameters, the AIC,
BIC of the Z-R relationship is not considered. The RMSE and
MAE values of BPNN are lower than those of Z-R relationship,
indicating that the estimation values of BPNN are closer to the
ground truth and more concentrated in distribution. In addition,
the CC values of BPNN are higher than the Z-R relationship,
indicating that the predicted values of BPNN are more correlated
with the rainfall. However, compared to the result of the CNN
networks which shown in the 4th and 5th rows of the table, the
performance of the BPNN is lower than the CNN networks. CNN
can capture the spatial information of rainfall fields that BPNN
cannot learn and the results demonstrate the influence of spatial
correlation in the rainfall process on rainfall estimation and the
correctness of using two-dimensional data input in our model.
Comparing CNN (1) and CNN (2) networks, CNN (2), i.e., CNN
network with covariates, has lower RMSE, MAE and higher CC
than CNN (1). It indicates that the rainfall estimates of CNN
network with covariates are more accurate and the necessity of
the covariates during the precipitation estimation. The focus is on
the ablation experiments of MS-FCVNet, i.e., rows 6th to 21st of
Table 1. We consider the individual and combined cases of
covariate inputs to the model and the changes brought by the
addition of MS-SA to the network. Rows 6th to 9th in the table
indicate the performance of the model is improved when adding
temperature, humidity, and elevation as covariates alone, which is
consistent with the findings of other researchers (Shu et al., 2007;
Zhang Y. et al., 2021), indicating the relevance of meteorological
factors, geographic factors, and precipitation. As shown in rows
10th to 13th of Table 1, when the combination of temperature,

humidity and elevation were entered as covariates, the model
performed better in some pairings than when they were added
separately. It demonstrates that the interconnection of
meteorological and geographical factors had an enhancing
effect on the correct estimation of the model by adverse or
noisy factors of rainfall. Row 14th of the table demonstrates
that our model with the addition of the MS-SA module, there is a
deterioration in the performance of our model with the radar
reflectivity factors alone as an input compared to the model
without the addition of the MS-SA module. This may be because,
in the absence of covariate constraints, more features with less
correlation with precipitation are extracted from the large-scale
radar reflectivity factors. And the MS-SA module condenses the
features extracted at large-scales into small-scales, which leads the
model to focus on more features that are not conducive to
precipitation estimation and has a bad effect on the estimation
of rainfall. In contrast, the pairing with the MS-SA module
produced better performance when meteorological factors
were available as covariates. When elevation alone is added as
a covariate, as shown in row 17th, the model performance is
worse than that without the MS-SA module. The possible reason
is that the addition of elevationmakes themodel more sensitive to
areas with complex terrain, such as near stations in the
southwestern region of Shijiazhuang, while the aggregation
characteristics of the MS-SA module would make the model
more insensitive to precipitation characteristics in flat terrain in
the eastern region, and without the meteorological factors, the
model will be even less effective. Figure 8 shows the comparison
of RMSE values, MAE values and CC values for the model with
and without MS-SA, using only geography as a fixed covariate.
We selected the three most southwestern sites 53693, 53698,
53795 and the three most northeastern sites 53699, 54621, 54701
for comparison experiments to test our conjecture. Figure 8A

TABLE 1 | The scores of Z-R, BPNN, CNN (1), CNN (2) and MS-FCVNet under evaluation metrics RMSE, MAE, CC at the 6-minute scale and information criteria AIC, BIC.
The bold text is the optimal level of the evaluation index.

Model dBZ T H E MS-SA RMSE MAE CC AIC(103) BIC

Z-R √ 2.63 0.840 0.722 / /
BPNN √ 0.640 0.289 0.748 46575.980 105250.350
CNN (1) √ 0.562 0.264 0.766 40443.567 89458.270
CNN (2) √ √ √ √ 0.549 0.249 0.796 40443.501 89392.440
MS-FVNet √ 0.463 0.220 0.819 44151.519 98218.340

√ √ 0.459 0.211 0.842 44153.220 98195.361
√ √ 0.458 0.219 0.836 44153.220 98195.361
√ √ 0.451 0.212 0.841 44153.171 98146.272
√ √ √ 0.461 0.225 0.821 44154.961 98213.429
√ √ √ 0.446 0.206 0.830 44154.863 98114.503
√ √ √ 0.453 0.207 0.846 44154.891 98192.792
√ √ √ √ 0.454 0.209 0.847 44156.648 98176.199
√ √ 0.482 0.240 0.823 45992.660 102961.961
√ √ √ 0.442 0.209 0.838 45994.136 102714.731
√ √ √ 0.449 0.207 0.840 45994.187 102765.799
√ √ √ 0.463 0.218 0.841 45994.271 102849.361
√ √ √ √ 0.461 0.205 0.844 45995.985 102840.107
√ √ √ √ 0.448 0.207 0.843 45995.901 102755.734
√ √ √ √ 0.446 0.211 0.838 45995.887 102741.181
√ √ √ √ √ 0.424 0.201 0.861 40223.388 87141.007
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shows the lower RMSE values of the model with MS-SA added in
the more complex topography in the southwest, and the lower
RMSE values of the model without MS-SA in the plain area in the
northeast. We can find that with the inclusion of the MS-SA
module, the maximum overestimation of precipitation estimation
by the model can be reduced in regions with complex topography,
and the minimum underestimation of precipitation estimation
can bemitigated. It is shown in Figure 8B that the inclusion of the
MS-SA module in the model reduces the overall degree of error
for areas with complex topography. From Figure 8C, it can be
understood that model which includes theMS-SAmodule usually
correlate with the true value of rainfall to a greater extent than the
model without the MS-SA module. This is consistent with our
hypothesis. Compared with Z-R relations, BPNN, CNN (1) and
CNN (2), our model performs best with temperature, humidity,
and elevation as covariates and with the addition of the MS-SA
module. In addition, the RMSE is reduced by 8.42%, the MAE is
reduced by 8.63%, and the CC is improved by 3.41% compared to
the case without the inclusion of any covariates as well as the MS-
SA module. According to the comparison of AIC and BIC of all
compared models, it can be found that the AIC and BIC values of
CNN (1) and CNN (2) are lower than those of BPNN, which
indicates that BPNN stacking too many fully connected layers

sacrifices the complexity of the model, but does not improve the
accuracy too much. In addition, although our model performs
well under most combination of input variables and MS-SA
modules relative to the normal CNN networks, i.e., CNN
(1),CNN (2) under other evaluation metrics, it sacrifices too
much model complexity, which leads to high AIC,BIC. Finally,
only the MS-FCVNet with the addition of temperature, humidity,
and elevation as covariates and MS-SA has lower AIC, BIC than
the other comparison models, indicating that our final model
sacrifices model complexity but brings greater accuracy
improvement. It is worth mentioning that the performance
improvement of MS-FCVNet over the CNN model with the
inclusion of meteorological factors and geographical factors is
significant, which demonstrates the superiority of our model
structure.

Figure 9 shows the performance of MS-FCVNet and the
comparison model at 17 NWSs, 6-min scales, respectively. The
horizontal axis of Figure 9 represents the 17 NWSs, and the
vertical axis shows the three evaluation metrics RMSE, MAE, and
CC. Considering that the coefficients a, b in the Z-R relation have
a small adaptation range and are influenced by geographic
environment and weather conditions, we use different
empirical coefficients a, b for the experiments located at 17

FIGURE 8 |Model incorporation of elevation and MS-SA modules for (A) RMSE scores, (B) MAE scores (C) CC scores at the southwestern Shijiazhuang NWSs
53693, 53698, 53795 and the northeastern NWSs 53699, 54621, 54701.
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NWSs. From Figure 9A, we can see that the RMSE of Z-R
relationship is less stable and has larger errors compared to other
machine learning and deep learning algorithms. The BPNN,
although better than the Z-R relationship in RMSE evaluation,
still generally performs worse than the CNN network that can
capture the spatial structure features on each NWS. The RMSE
values of CNN (1) and CNN (2) networks have unbalanced
performance levels across sites. MS-FCVNet performs optimally
on each NWS with a stable RMSE values between 0.1 mm/6 min

and 0.8 mm/6 min, which shows that MS-FCVNet overestimates
and underestimates the rainfall to a much lesser extent than the
other methods. Figure 9B shows the evaluation of MAE values
for each model at each station, which is generally consistent with
the results of RMSE values. The MAE values of MS-FCVNet are
stable between 0.1 mm/6 min and 0.4 mm/6 min. Although the
MAE values are high at station 53680, they are still lower than the
other methods at this station, indicating that MS-FCVNet is
lower than the other methods in terms of overall error. Figure 9C

FIGURE 9 | MS-FCVNet scores for (A) RMSE, (B) MAE, (C) CC at 17 NWSs.
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shows the performance of the model in terms of correlation
coefficient. The CC values of MS-FCVNet ranges from 74 to 93%,
and although there are some fluctuations in the evaluation of the
CC at each station, it is still generally better than other methods,
indicating the strong correlation between the estimated value of
MS-FCVNet and the real value of precipitation.

The performance of the model in strong convective weather is
also an indicator that many studies have focused on (Zhang et al.,
2020). Figure 10 shows the time series line plot of the model and
the true rainfall values for the NWS during a period of heavy

rainfall on 12 August 2018. The horizontal coordinate is time and
the vertical coordinate is the estimated and true rainfall of the
model. Both the Z-R relationship and the BPNN have severe
overestimated and underestimated performance in the time
series. The Z-R relationship produces a positive deviation of
10 mm/6 min in the rainfall prediction at 13:00 on 12 August
2018, which severely overestimates the rainfall value, indicating
the inaccuracy of the Z-R relationship in prediction during heavy
rainfall. The rainfall estimate of BPNN reaches a negative
deviation of 3.2 mm/6 min at the 13:00 moment on 12 August

FIGURE 10 | Estimated values of models (A) Z-R relationship, (B) BPNN, (C) CNN (1), (D) CNN (2), (E)MS-FCVNet versus ground truth for the rainfall period from
11:30 to 13:18 on 12 August 2018.
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2018, and differs significantly from the true value at all other
moments, with an average deviation of 0.63 mm/6 min. The
overestimation and underestimation of rainfall values
predicted by the CNN (1) network are smaller than those of
the Z-R relationship and the BPNN, but the bias values are still
higher than those of the CNN (2) network at most moments,
which demonstrates the effectiveness of the model’s inclusion of
covariates in reducing the bias values. The rainfall estimates of the
MS-FCVNet network are close to those of the CNN (2) network.
Although there are overestimates and underestimates, but overall,
the estimation of MS-FCVNet are closer to the true values than
the CNN network. Specifically, the positive deviation of our
model’s predicted values relative to the true rainfall values
does not exceed 0.19 mm/6 min and the negative deviation
does not exceed 0.25 mm/6 min.

CONCLUSION

In this study, we use deep learning techniques to demonstrate the
effectiveness of multi-scale radar reflectivity factors, as well as
meteorological and geographic factors as covariates in QPE. In
addition, we developed an MS-SA module for better combining
factors that favor precipitation estimation in the multi-scale, with
some suppression of unfavorable factors. In particular, we have
the following innovations and conclusion:

• Multi-scale deep learning networks are able to make accurate
prediction of rainfall. Compared with deep learning networks
with single-scale inputs, the large-scale feature maps in multi-
scale can learn the complete rainfall field information over a
wide region that also have an impact on rainfall gauges, and in
addition, the small-scale feature maps can learn spatial
information with stronger correlation with precipitation near
the rainfall gauges. Therefore, multi-scale inputs can provide
more accurate predictions for QPE.

• Temperature, humidity, and elevation as covariates can
improve the QPE accuracy. Precipitation is a complex
process, and there are many factors affecting precipitation,
including meteorological and geographic factors. In addition,
the spatial correlation of meteorological and geographic factors
is considered to strengthen the spatialmodeling capability of the
model. In this study, two-dimensional meteorological and
geographical factors were used as covariates to capture their
spatial characteristics, and the validity was experimentally
demonstrated.

• The multi-scale self-attentive module MS-SA is a new module
we propose to better integrate factors that favor precipitation

estimation in different scales and suppress irrelevant factors. It
also can integrate covariates with radar reflectivity to constrain
each other, reduce errors andmakemore accurate precipitation
estimation. The experimental results further demonstrate the
importance of multi-scale integration.

• The experimental results show thatMS-FCVNet has a RMSE of
0.424mm per 6min for precipitation estimation, which is the
best performance among Z-R, BPNN, CNN with only radar
reflectivity factors as input and CNN with covariates involved,
and maintains good performance in different geographical
locations as well as time series.

The method proposed in this paper, especially the MS-SA
module, is not lightweight enough and requires higher
computational effort than the general method, which is also a
future research direction. However, in general, our proposed
model offers the possibility of more accurate estimation for
QPE in operations.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

KS designed the experiments and performed the experiment. LZ
and YF prepared the data. SC and LY guide the experiment. WT
led the writing of the manuscript. All authors discussed the
analysis and results and contributed to the manuscript.

FUNDING

This research was supported by the National Natural Science
Foundation of China (Grant number 42175157 and 41875027),
the National Key Research and Development Program of China
(Grant number 2021YFE0116900) and the Shijiazhuang
Meteorological Bureau (Grant No. SJZQXJHT 2019-45).

ACKNOWLEDGMENTS

The authors acknowledge Shijiazhuang City for providing
Doppler radar data and weather station data.

REFERENCES

Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE
Trans. Autom. Contr. 19 (6), 716–723. doi:10.1109/tac.1974.1100705

Alfieri, L., Claps, P., and Laio, F. (2010). Time-dependent Z-R Relationships
for Estimating Rainfall Fields from Radar Measurements. Nat. Hazards
Earth Syst. Sci. 10 (1), 149–158. doi:10.5194/nhess-10-149-2010

Barros, A. P., and Prat, O. P. (2009). Exploring the Transient Behavior of Z–R
Relationships: Implications for Radar Rainfall Estimation. J. Appl. Meteorol.
Climatol. 48 (10), 2127–2143. doi:10.1175/2009jamc2165.1

Berne, A., and Krajewski, W. F. (2013). Radar for Hydrology: Unfulfilled Promise
or Unrecognized Potential? Adv. Water Resour. 51, 357–366. doi:10.1016/j.
advwatres.2012.05.005

Beusch, L., Foresti, L., Gabella, M., and Hamann, U. (2018). Satellite-
Based Rainfall Retrieval: From Generalized Linear Models to

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 90886915

Tian et al. Multiscale Quantitative Precipitation Estimation Model

115

https://doi.org/10.1109/tac.1974.1100705
https://doi.org/10.5194/nhess-10-149-2010
https://doi.org/10.1175/2009jamc2165.1
https://doi.org/10.1016/j.advwatres.2012.05.005
https://doi.org/10.1016/j.advwatres.2012.05.005
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Artificial Neural Networks. Remote Sens. 10 (6), 939. doi:10.3390/
rs10060939

Burnham, K. P., and Anderson, D. R. (2016). Multimodel Inference. Sociol.
Methods Res. 33 (2), 261–304. doi:10.1177/0049124104268644

Chen,H., Chandrasekar, V., Cifelli, R., andXie, P. (2020). AMachine Learning System for
Precipitation Estimation Using Satellite and Ground Radar Network Observations.
IEEE Trans. Geosci. Remote Sens. 58 (2), 982–994. doi:10.1109/tgrs.2019.2942280

Chen, H., Chandrasekar, V., Tan, H., and Cifelli, R. (2019). Rainfall Estimation
from Ground Radar and TRMM Precipitation Radar Using Hybrid Deep
Neural Networks. Geophys. Res. Lett. 46 (17-18), 10669–10678. doi:10.1029/
2019gl084771

Chen, H., and Chandrasekar, V. (2015). The Quantitative Precipitation Estimation
System for Dallas–Fort Worth (DFW) Urban Remote Sensing Network.
J. Hydrol. 531, 259–271. doi:10.1016/j.jhydrol.2015.05.040

Cremonini, R., and Tiranti, D. (2018). TheWeather Radar Observations Applied to
Shallow Landslides Prediction: A Case Study from North-Western Italy. Front.
Earth Sci. 6. doi:10.3389/feart.2018.00134

Delrieu, G., Braud, I., Berne, A., Borga, M., Boudevillain, B., Fabry, F., et al. (2009).
Weather Radar and Hydrology. Adv. Water Resour. 32 (7), 969–974. doi:10.
1016/j.advwatres.2009.03.006

Fan, Z., Li, W., Jiang, Q., Sun, W., Wen, J., and Gao, J. (2021). A Comparative Study
of Four Merging Approaches for Regional Precipitation Estimation. IEEE
Access 9, 33625–33637. doi:10.1109/access.2021.3057057

Gagne, D. J., McGovern, A., and Xue, M. (2014). Machine Learning Enhancement
of Storm-Scale Ensemble Probabilistic Quantitative Precipitation Forecasts.
Weather Forecast. 29 (4), 1024–1043. doi:10.1175/waf-d-13-00108.1

Germann, U., Berenguer, M., Sempere-Torres, D., and Zappa, M. (2009). REAL-
Ensemble Radar Precipitation Estimation for Hydrology in a Mountainous
Region. Q.J.R. Meteorol. Soc. 135 (639), 445–456. doi:10.1002/qj.375

Giang, P. Q. (2021). Prediction of the Variability of Changes in the Intensity and
Frequency of Climate Change Reinforced Multi-Day Extreme Precipitation in
the North-Central Vietnam Using General Circulation Models and Generalized
Extreme Value DistributionMethod. Front. Earth Sci. 8. doi:10.3389/feart.2020.
601666

Gou, Y., Ma, Y., Chen, H., and Wen, Y. (2018). Radar-derived Quantitative
Precipitation Estimation in Complex Terrain over the Eastern Tibetan
Plateau. Atmos. Res. 203, 286–297. doi:10.1016/j.atmosres.2017.12.017

Groisman, P. Y., Knight, R. W., Easterling, D. R., Karl, T. R., Hegerl, G. C., and
Razuvaev, V. N. (2005). Trends in Intense Precipitation in the Climate Record.
J. Clim. 18 (9), 1326–1350. doi:10.1175/jcli3339.1

Hong, Y., Gochis, D., Cheng, J.-t., Hsu, K.-l., and Sorooshian, S. (2007). Evaluation
of PERSIANN-CCS Rainfall Measurement Using the NAME Event Rain Gauge
Network. J. Hydrometeorol. 8 (3), 469–482. doi:10.1175/jhm574.1

Iwashima, T., and Yamamoto, R. (1993). NOTES AND CORRESPONDENCE : A
Statistical Analysis of the Extreme Events : Long-Term Trend of Heavy Daily
Precipitation. J. Meteorol. Soc. Jpn. 71 (5), 637–640. doi:10.2151/jmsj1965.71.
5_637

Kuha, J. (2016). AIC and BIC. Sociol. Methods Res. 33 (2), 188–229. doi:10.1177/
0049124103262065

Kühnlein, M., Appelhans, T., Thies, B., and Nauß, T. (2014). Precipitation
Estimates from MSG SEVIRI Daytime, Nighttime, and Twilight Data with
Random Forests. J. Appl. Meteorol. Climatol. 53 (11), 2457–2480. doi:10.1175/
jamc-d-14-0082.1

Lee, T., Shin, J., Park, T., and Lee, D. (2014). Basin Rotation Method for Analyzing
the Directional Influence of Moving Storms on Basin Response. Stoch. Environ.
Res. Risk Assess. 29 (1), 251–263. doi:10.1007/s00477-014-0870-y

Legates, D. (2000). Real-Time Calibration of Radar Precipitation Estimates. Prof.
Geogr. 52 (2), 235–246. doi:10.1111/0033-0124.00221

Liu, W., Zhang, Q., Fu, Z., Chen, X., and Li, H. (2018). Analysis and Estimation of
Geographical and Topographic Influencing Factors for Precipitation
Distribution over Complex Terrains: A Case of the Northeast Slope of the
Qinghai–Tibet Plateau. Atmosphere 9 (9), 349. doi:10.3390/atmos9090349

Lu, Y., Jiang, S., Ren, L., Zhang, L., Wang, M., Liu, R., et al. (2019). Spatial and
Temporal Variability in Precipitation Concentration over Mainland China,
1961–2017. Water 11 (5), 881. doi:10.3390/w11050881

Min, X., Ma, Z., Xu, J., He, K., Wang, Z., Huang, Q., et al. (2020). Spatially
Downscaling IMERG at Daily Scale Using Machine Learning Approaches Over
Zhejiang, Southeastern China. Front. Earth Sci. 8. doi:10.3389/feart.2020.00146

Moraux, A., Dewitte, S., Cornelis, B., and Munteanu, A. (2021). A Deep Learning
Multimodal Method for Precipitation Estimation. Remote Sens. 13 (16), 3278.
doi:10.3390/rs13163278

Moraux, A., Dewitte, S., Cornelis, B., and Munteanu, A. (2019). Deep Learning for
Precipitation Estimation from Satellite and Rain Gauges Measurements.
Remote Sens. 11 (21), 2463. doi:10.3390/rs11212463

Morin, E., and Gabella, M. (2007). Radar-Based Quantitative Precipitation
Estimation over Mediterranean and Dry Climate Regimes. J. Geophys. Res.
112 (D20). doi:10.1029/2006jd008206

Oliver, M. A., and Webster, R. (1990). Kriging: a Method of Interpolation for
Geographical Information Systems. Int. J. Geogr. Inf. Syst. 4 (3), 313–332.
doi:10.1080/02693799008941549

Paxton, A., Schoof, J. T., Ford, T. W., and Remo, J. W. F. (2021). Extreme
Precipitation in the Great Lakes Region: Trend Estimation and Relation
with Large-Scale Circulation and Humidity. Front. Water 3. doi:10.3389/
frwa.2021.782847

Ramos, M. H., Creutin, J.-D., and Leblois, E. (2005). Visualization of Storm
Severity. J. Hydrol. 315 (1-4), 295–307. doi:10.1016/j.jhydrol.2005.04.007

Rongrui, X., and Chandrasekar, V. (1997). Development of a Neural Network
Based Algorithm for Rainfall Estimation from Radar Observations. IEEE Trans.
Geosci. Remote Sens. 35 (1), 160–171. doi:10.1109/36.551944

Rosenfeld, D., and Ulbrich, C. W. (2003). Cloud Microphysical Properties,
Processes, and Rainfall Estimation Opportunities. Radar Atmos. Sci. A
Collect. Essays Honor David Atlas, Meteorol. Monogr. 30, 237–258. doi:10.
1007/978-1-878220-36-3_10

Sadeghi, M., Asanjan, A. A., Faridzad, M., Nguyen, P., Hsu, K., Sorooshian, S., et al.
(2019). PERSIANN-CNN: Precipitation Estimation from Remotely Sensed
Information Using Artificial Neural Networks–Convolutional Neural
Networks. J. Hydrometeorol. 20 (12), 2273–2289. doi:10.1175/jhm-d-19-
0110.1

Sadeghi, M., Nguyen, P., Hsu, K., and Sorooshian, S. (2020). Improving Near Real-
Time Precipitation Estimation Using a U-Net Convolutional Neural Network
and Geographical Information. Environ. Model. Softw. 134, 104856. doi:10.
1016/j.envsoft.2020.104856

Shin, J.-Y., Ro, Y., Cha, J.-W., Kim, K.-R., and Ha, J.-C. (2019). Assessing the
Applicability of Random Forest, Stochastic Gradient Boosted Model, and
Extreme Learning Machine Methods to the Quantitative Precipitation
Estimation of the Radar Data: A Case Study to Gwangdeoksan Radar, South
Korea, in 2018. Adv. Meteorol. 2019, 1–17. doi:10.1155/2019/6542410

Shu, S.-J., Wang, Y., and Xiong, A.-Y. (2007). Estimation and Analysis for
Geographic and Orographic Influences on Precipitation Distribution in
China. Chin. J. Geophys. 50 (6), 1482–1493. doi:10.1002/cjg2.1168

Sivasubramaniam, K., Sharma, A., and Alfredsen, K. (2018). Estimating Radar
Precipitation in Cold Climates: the Role of Air Temperature within a Non-
parametric Framework. Hydrol. Earth Syst. Sci. 22 (12), 6533–6546. doi:10.
5194/hess-22-6533-2018

Sønderby, C. K., Espeholt, L., Heek, J., Dehghani, M., Oliver, A., Salimans, T., et al.
(2020). Metnet: A Neural Weather Model for Precipitation Forecasting. ArXiv,
abs/2003.12140.

Sorooshian, S., Hsu, K., Gao, X., Tao, Y., and Ihler, A. (2016). A Deep Neural
Network Modeling Framework to Reduce Bias in Satellite Precipitation
Products. J. Hydrometeorol. 17 (3), 931–945. doi:10.1175/jhm-d-15-0075.1

Sun, W., and Huang, Y. (2011). Global Warming over the Period 1961-2008 Did
Not Increase High-Temperature Stress but Did Reduce Low-Temperature
Stress in Irrigated Rice across China. Agric. For. Meteorol. 151 (9),
1193–1201. doi:10.1016/j.agrformet.2011.04.009

Teschl, R., Randeu, W. L., and Teschl, F. (2006). “Weather Radar Estimates of
Rainfall Adjusted to Rain Gauge Measurements Using Neural Networks,” in
The 2006 IEEE international joint conference on neural network proceedings.
doi:10.1109/IJCNN.2006.247242

Tian, W., Yi, L., Liu, W., Huang, W., Ma, G., and Zhang, Y. (2020). Ground
Radar Precipitation Estimation with Deep Learning Approaches in
Meteorological Private Cloud. J. Cloud Comp. 9 (1). doi:10.1186/s13677-
020-00167-w

Wang, P., Chen, P., Ye, Y., Ding, L., and Cottrell, G. (2018a). “Understanding
Convolution for Semantic Segmentation,” in IEEE Winter Conference on
Applications of Computer Vision (WACV), 1451–1460. doi:10.1109/wacv.
2018.00163

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 90886916

Tian et al. Multiscale Quantitative Precipitation Estimation Model

116

https://doi.org/10.3390/rs10060939
https://doi.org/10.3390/rs10060939
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1109/tgrs.2019.2942280
https://doi.org/10.1029/2019gl084771
https://doi.org/10.1029/2019gl084771
https://doi.org/10.1016/j.jhydrol.2015.05.040
https://doi.org/10.3389/feart.2018.00134
https://doi.org/10.1016/j.advwatres.2009.03.006
https://doi.org/10.1016/j.advwatres.2009.03.006
https://doi.org/10.1109/access.2021.3057057
https://doi.org/10.1175/waf-d-13-00108.1
https://doi.org/10.1002/qj.375
https://doi.org/10.3389/feart.2020.601666
https://doi.org/10.3389/feart.2020.601666
https://doi.org/10.1016/j.atmosres.2017.12.017
https://doi.org/10.1175/jcli3339.1
https://doi.org/10.1175/jhm574.1
https://doi.org/10.2151/jmsj1965.71.5_637
https://doi.org/10.2151/jmsj1965.71.5_637
https://doi.org/10.1177/0049124103262065
https://doi.org/10.1177/0049124103262065
https://doi.org/10.1175/jamc-d-14-0082.1
https://doi.org/10.1175/jamc-d-14-0082.1
https://doi.org/10.1007/s00477-014-0870-y
https://doi.org/10.1111/0033-0124.00221
https://doi.org/10.3390/atmos9090349
https://doi.org/10.3390/w11050881
https://doi.org/10.3389/feart.2020.00146
https://doi.org/10.3390/rs13163278
https://doi.org/10.3390/rs11212463
https://doi.org/10.1029/2006jd008206
https://doi.org/10.1080/02693799008941549
https://doi.org/10.3389/frwa.2021.782847
https://doi.org/10.3389/frwa.2021.782847
https://doi.org/10.1016/j.jhydrol.2005.04.007
https://doi.org/10.1109/36.551944
https://doi.org/10.1007/978-1-878220-36-3_10
https://doi.org/10.1007/978-1-878220-36-3_10
https://doi.org/10.1175/jhm-d-19-0110.1
https://doi.org/10.1175/jhm-d-19-0110.1
https://doi.org/10.1016/j.envsoft.2020.104856
https://doi.org/10.1016/j.envsoft.2020.104856
https://doi.org/10.1155/2019/6542410
https://doi.org/10.1002/cjg2.1168
https://doi.org/10.5194/hess-22-6533-2018
https://doi.org/10.5194/hess-22-6533-2018
https://doi.org/10.1175/jhm-d-15-0075.1
https://doi.org/10.1016/j.agrformet.2011.04.009
https://doi.org/10.1109/IJCNN.2006.247242
https://doi.org/10.1186/s13677-020-00167-w
https://doi.org/10.1186/s13677-020-00167-w
https://doi.org/10.1109/wacv.2018.00163
https://doi.org/10.1109/wacv.2018.00163
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Wang, X., Girshick, R., Gupta, A., and He, K. (2018b). “Non-
Local_Neural_Networks,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 7794–7803. doi:10.1109/CVPR.2018.00813

Wasko, C., Sharma, A., and Rasmussen, P. (2013). Improved Spatial Prediction: A
Combinatorial Approach.Water Resour. Res. 49 (7), 3927–3935. doi:10.1002/wrcr.20290

Wu, H., Yang, Q., Liu, J., and Wang, G. (2020a). A Spatiotemporal Deep Fusion
Model for Merging Satellite and Gauge Precipitation in China. J. Hydrol. 584,
124664. doi:10.1016/j.jhydrol.2020.124664

Wu, J., Han, Z., Xu, Y., Zhou, B., and Gao, X. (2020b). Changes in Extreme Climate
Events in China under 1.5 °C–4 °C Global Warming Targets: Projections Using
an Ensemble of Regional Climate Model Simulations. J. Geophys. Res. Atmos.
125 (2), 106. doi:10.1029/2019jd031057

Wu, W., Zou, H., Shan, J., and Wu, S. (2018). A Dynamical Z-R Relationship for
Precipitation Estimation Based on Radar Echo-Top Height Classification. Adv.
Meteorol. 2018, 1–11. doi:10.1155/2018/8202031

Wu, Y., Tang, Y., Yang, X., Zhang, W., and Zhang, G. (2021). Graph Convolutional
Regression Networks for Quantitative Precipitation Estimation. IEEE Geosci.
Remote Sens. Lett. 18 (7), 1124–1128. doi:10.1109/lgrs.2020.2994087

Yang, D., Koike, T., and Tanizawa, H. (2004). Application of a Distributed
Hydrological Model and Weather Radar Observations for Flood
Management in the Upper Tone River of Japan. Hydrol. Process. 18 (16),
3119–3132. doi:10.1002/hyp.5752

Zhang, C., Wang, H., Zeng, J., Ma, L., and Guan, L. (2020). Short-TermDynamic Radar
Quantitative Precipitation Estimation Based on Wavelet Transform and Support
Vector Machine. J. Meteorol. Res. 34 (2), 413–426. doi:10.1007/s13351-020-9036-7

Zhang, M., Li, W., Bi, X., Zong, L., Zhang, Y., and Yang, Y. (2021a). Synergistic
Modulations of Large-Scale Synoptic Patterns and Local-Scale Urbanization

Effects on Summer Rainfall in South China. Front. Clim. 3. doi:10.3389/fclim.
2021.771772

Zhang, Y., Chen, S., Tian, W., and Chen, S. (2021b). Radar Reflectivity and
Meteorological Factors Merging-Based Precipitation Estimation Neural
Network. Earth Space Sci. 8 (10). doi:10.1029/2021ea001811

Zhao, R., Chen, B., and Xu, X. (2021). Intensified Moisture Sources of Heavy
Precipitation Events Contributed to Interannual Trend in Precipitation Over
the Three-Rivers-Headwater Region in China. Front. Earth Sci. 9. doi:10.3389/
feart.2021.674037

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Tian, Shen, Yi, Zhang, Feng and Chen. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 90886917

Tian et al. Multiscale Quantitative Precipitation Estimation Model

117

https://doi.org/10.1109/CVPR.2018.00813
https://doi.org/10.1002/wrcr.20290
https://doi.org/10.1016/j.jhydrol.2020.124664
https://doi.org/10.1029/2019jd031057
https://doi.org/10.1155/2018/8202031
https://doi.org/10.1109/lgrs.2020.2994087
https://doi.org/10.1002/hyp.5752
https://doi.org/10.1007/s13351-020-9036-7
https://doi.org/10.3389/fclim.2021.771772
https://doi.org/10.3389/fclim.2021.771772
https://doi.org/10.1029/2021ea001811
https://doi.org/10.3389/feart.2021.674037
https://doi.org/10.3389/feart.2021.674037
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Impact of Water Vapor on the
Development of a Supercell Over
Eastern China
Hao Wang1*, Zeyong Hu1, Peng Liu2 and Feimin Zhang2

1Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Chinese Academy of
Sciences, Lanzhou, China, 2Key Laboratory of Climate Resource Development and Disaster Prevention of Gansu Province,
College of Atmospheric Sciences, Lanzhou, China

In this study, the impact of water vapor on the improvement of precipitation simulation in a
supercell event over eastern China is investigated by assimilating lightning data into the
weather research and forecast (WRF) three-dimensional variational system. The results
indicate that the vertical distribution of vapor plays a crucial role in convection precipitation
simulation. The WRF alone fails to capture the vertical distribution of vapor, especially at
higher altitudes, and vapor simulation is often weak in WRF. Assimilation of lightning data
enhances the range and intensity of precipitation forecasts; assimilation of pseudo water
vapor transformed from lightning data improves the convection intensification and updraft
height of supercells by rectifying the vertical moisture profile. Lightning data assimilation
can efficiently compensate for the paucity of observations during supercell growth, and the
benefits of lightning data assimilation are concentrated in areas where lightning data is
accessible. Further, the importance of microscale water vapor variations, which can be well
represented by assimilating pseudo-water vapor, in representing the supercell’s range and
intensity is highlighted.

Keywords: supercell forecast, lightning, data assimilation, pseudo water vapor, modelling

1 INTRODUCTION

Supercells are strong convective storms with deep and continuous rotating updrafts (Davies-Jones,
2015), accompanied by high-impact weather, such as strong winds, local rainstorms, hails,
downbursts, and even tornadoes (Thompson et al., 2003; Bluestein et al., 2019; van Den Broeke
2020; Montopoli et al., 2021), which can cause loss to life and property. Despite major advances in
numerical weather prediction, supercell forecast remains challenging due to their local, abrupt, high-
intensity, small-scale, fast moving speed, brief lifetime, and other characteristics. It is challenging to
comprehend the occurrence and evolution of supercells and increase the forecasting performance.

In the current stage, because of the insufficient physical details of mesoscale weather, especially for
cumulus-scale processes, as well as the limitation of model resolution and parameterization,
assimilation of different types of observation data to improve the model’s initial conditions is a
primary approach for improving the mesoscale weather system forecast performance. In general,
radar data, which can capture finer features of mesoscale weather, are assimilated into the model to
improve mesoscale weather simulation and forecasting in operating systems and can be applied to
nowcasting systems (Yang et al., 2012). Assimilating satellite data can effectively improve the
prediction performance of the general circulation models (Bauer et al., 2015). However, conventional
observations have coarse spatial and temporal resolutions and are influenced by clouds and aerosols;
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radar observations generally represent local information in a
lower atmosphere and are easily influenced by terrain height;
satellite radiances are assimilated in the models as their
contributions to the forecast improvement are generally better
for atmospheric temperature than for precipitation, and the
associated effects are limited to the lower atmosphere owing to
their source being the upper atmosphere. Therefore, for supercells
with shorter (several hours) lifecycle convection systems, how to
achieve maximum improvement effects by data assimilation
needs to be further explored in both technical and theoretical
aspects.

Lightning can identify areas of deep, mixed-phase convection
because it is an important phenomenon that occurs within
thunderstorm clouds (Mansell et al., 2007). Studies have
indicated that assimilating lightning data is a promising
approach to improve forecasts of severe convective
precipitation events. For instance, based on an empirical
lightning-convective rainfall relationship, Pessi and Businger

(2009) showed that the assimilation of lightning data generally
improved the simulation of the evolution of a winter storm.
Lightning data assimilation can reproduce the observed cold
pools during forecast initialization (Mansell et al., 2010). The
results of Fierro et al. (2012) showed that the assimilation of
lightning data can significantly improve the forecast of tornado
outbreaks with respect to the timing and structures of convection
(Qie et al., 2014). showed that the representation of convection is
markedly improved when lightning data are assimilated.

Lightning data are non-conventional observations; they are
generally assimilated into a model by transforming them into
other model variables, such as temperature and moisture. Studies
have suggested that lightning data can be assimilated into a model
by transforming the data into vertical velocity (e.g., Gan et al.,
2021), proxy radar reflectivity (e.g., Yang et al., 2015; Chen et al.,
2020), ice-phase particles or graupel content (e.g., Allen et al.,
2016; Wang et al., 2018; Chen et al., 2019; Kong et al., 2020), and
rainfall. The relationship between lightning and model variables

FIGURE 1 | Observed radar reflectivity (unit: dBZ) at (A) 1000 UTC, (B) 1100 UTC, (C) 1200 UTC, and (D) 1300 UTC on 9 August 2021.
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is not universal and is sensitive to storm location and climatic
state. When vertical velocity, proxy radar reflectivity are used as a
proxy variable of lightning, they are easily influenced by local
climate and convective intensity, thus may not suitable for
lightning data assimilation.

In general, the assimilation of lightning data has a shorter
impact time on the forecast because it lacks the adjustment for the
water vapor environment. Our recent results suggest that
lightning data can be transformed into pseudo water vapor
observations (Liu et al., 2021a; Liu et al., 2021b) and has been
proven to be a potential approach to improve the forecast
performance of convection. Therefore, investigating the water
vapor characteristics of convective system by assimilating
lightning data with the correct vapor condition could be a
potential approach to improve supercell forecasts. The
Lightning Mapping Imager (LMI) onboard FengYun-4A (FY-
4A) geostationary satellites continuously measures the total
lightning activity on high spatial and temporal resolution
(Yang et al., 2017). LMI is able to effectively detect lightning

events that occur during severe convective events over China (Liu
et al., 2020; Chen et al., 2021).

In this study, the lightning data were assimilated into the
weather research and forecasting (WRF) model by transforming
it into pseudo water vapor observations to reproduce supercell
precipitation. The impact and mechanism of lightning data
assimilation were also investigated, focusing on the effects of
water vapor on the forecast improvement of supercells. We
primarily addressed two issues: 1) what changes in water
vapor in supercells after lightning data assimilation? Second,
what is the mechanism for the improvement of the
representation of the supercell? Understanding these issues can
be beneficial for deepening our understanding of convection
processes.

Two numerical experiments were conducted on a supercell
event in eastern China. The next section introduces the model,
data, and experimental design as well as gives an overview of a
supercell event. The validation of the lightning data assimilation
against observations is presented in Section 3. The impact of

FIGURE 2 | Background of general circulation of supercell at 1200 UTC 9 August in terms of (A) geopotential height (blue contours, unit: gpm) and temperature
(shaded colors, unit: °C) at 500 hPa, (B) specific humidity (shaded colors, unit: g kg−1) andwind (vectors, unit: m s−1) at 750 hPa, (C) convective available potential energy
(shaded colors, unit: J kg−1) and near-surface wind (vectors, unit: m s−1), and (D) near-surface temperature (shaded color, unit: °C) and dew temperature (green
contours, unit: °C). The black box denotes the regions where the supercell was active.
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lightning data assimilation on the forecast is discussed in Section
4. The concluding remarks are presented in the final section.

2 INTRODUCTION OF WEATHER, DATA,
AND METHODS

2.1 Overview of the Supercell Case
The supercell case selected in this study occurred near Beijing
City in eastern China, which was active from 1000 UTC to
1300 UTC on 9 August 2021, with a maximum wind speed of
21 m s−1 and a maximum gust of 29 m s−1, accompanied by
heavy rainfall (over 30 mm h−1) and hail. The strongest
precipitation occurred at 1200 UTC, with an in situ
observed maximum hourly precipitation of 34.4 mm.
Figure 1 shows the evolution of radar reflectivity from 1000
UTC to 1300 UTC. Results show that this was a typical
supercell weather case, with the characteristics of high
intensity (the strongest echo lasts for 50 dBZ), high speed
(speed of approximately 30 km h−1), and a small range (the
range of echo intensity exceeding 45 dBZ is approximately
30 km), and it moved from north to south.

Figure 2 shows the synoptic weather situation at 1200 UTC on
August 9, when the supercell was the strongest. The supercell
occurred at a trough extending to the southeast at 500 hPa, with
obvious cold advection (Figure 2A). At 750 hPa (Figure 2B), a
cyclonic vortex is active in the supercell’s northeastern direction,
facilitating the passage of warm, moist air from southern China
and maintaining unstable stratification. The near-surface data
showed that (Figures 2C,D), in the region of Beijing city, cold dry
air from the northwest and warm moist air from the southeast
met, promoting the accumulation of convective unstable energy
with high convective available potential energy.

2.2 Model, Data, and Experiment Design
An advanced research version of the weather research and
forecasting (WRF ARW) model (Skamarock et al., 2008) version
4.2 was employed to simulate this case. Two domains in a two-way
nested procedure were used, with grid spacing of 9 and 3 km
(Figure 3A), and the innermost domain covers the main activity
region of this supercell. A terrain-following (η) vertical coordinate
system was adopted in this study, including 50 vertical levels. The
physical parameterization scheme includes the Kain-Fritsch
cumulus scheme (Kain 2004; for the “d01” domain only); the
rapid radiative transfer model (Iacono et al., 2008) for longwave
radiation and the Dudhia scheme for shortwave radiation; the Noah
land surface scheme (Chen and Dudhia 2001); the ACM2 planetary
boundary layer scheme (Pleim 2007); and the revised fifthMesoscale
Model (MM5) surface layer scheme (Jiménez et al., 2012).

The initial and boundary conditions were derived from the
Global Forecast System (GFS), with a temporal resolution of 3 h
and a horizontal resolution of 0.25° × 0.25°. Observations used in
this study include atmospheric soundings, LMI lightning data
from the FY-4A geostationary satellite, in-situ observed
precipitation, and radar reflectivity image products. The data
were obtained from the China Meteorological Administration
(CMA). The ERA5 reanalysis data were used to analyze the
synoptic weather conditions, as shown in Figure 2. Note that
the simulation and observation data were interpolated at the same
grid resolution during the comparison.

The “control” experiment (referred as CTL) simulates from 0600
UTC 9 August to 1200 UTC 9 August 2021 without any data
assimilation, whereas the “lightning data assimilation” experiment
(referred as LDA) simulates pseudo water vapor created from FY-4A
lightning data. In the lightning data assimilation experiment,
assimilation was performed only in the innermost domain. The
pseudo-water vapor between the lifting condensation level (LCL)

FIGURE 3 | (A)Configuration of the two nested weather research and forecasting (WRF) simulation domains in Lambert conformal projection, and the terrain height
(shaded colors, unit: m). (B) The accumulated lightning frequency (colored cross signs) from 0,830 to 0900 UTC 9 August and the height of cloud top (gray shaded
colors, unit: km). The black and red dots in panel (A) represent in-situ observed surface and sounding stations.
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and cloud top was first derived from the lightning frequency and then
assimilated using the three-dimensional variational (3DVAR) system.
The lightning frequency accumulated over 30min from 0,830 to 0900
UTC. In the assimilation widow, when the observed lightning
frequency per grid cell exceeds zero, then the relative humidity of
the column in the background field less than 90% will be adjusted to
90%. The adjusted relative humidity field constitutes a three-
dimensional pseudo-water vapor observation (Liu et al., 2020). The
assimilationwindowwas set from0,830 to 0900UTC, and thefirst 3 h
were regarded as the model spin-up period and thus excluded.

Figure 3B shows the accumulated lightning frequency in the
assimilation window from 0,830 to 0900 UTC, as well as the height
of the cloud top derived from the FY-4A satellite. The data from FY-
4A satellite indicated that the supercell is accompanied by vigorous
convection, with a mean cloud top above 15 km. More importantly,
several lightning events within the supercell were captured using the
FY-4A satellite. Because atmospheric sounding data are only
available at 0000 UTC and 1200 UTC, lightning data effectively
compensates for the lack of observation during this time period and
may be useful in improving the model’s initial conditions.

FIGURE 4 | Hourly precipitation from (A–C) 0,900 to 1000 UTC (D–f) 1,000 to 1100 UTC, and (G–I) 1,100 to 1200 UTC in (A,D,G) observations (B,E,H) control
experiments, and (C,F,I) assimilation experiment.
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The prediction performance of supercell precipitation is
evaluated using forecast skill scores, including equitable threat
score (ETS), the probability of detection (POD), false alarm ratio
(FAR), and frequency bias (FBI) (Clark et al., 2010). The forecast
skill scores are computed by hits (correct forecast of an event),

misses (observed but not forecast event), false alarms (forecast but
not observed event), and correct negatives (correct forecast of
nonevent). Forecast skill scores are defined as follows:

ETS � hits − chance
hits +misses + false alarms − chance

(1)

POD � hits
hits +misses

(2)

FAR � false alarms
hits + false alarms

(3)

FBI � hits + false alarms
hits +misses

(4)

where,

chance � (hits +misses) · (hits + false alarms)
hits +misses + false alarms + correct negatives

(5)

The larger ETS, POD and smaller FAR, the better of the forecast
skills. ETS = 1, POD = 1 and FAR = 0 indicate a perfect forecast,
while ETS = 0, POD = 0 and FAR = 1 stand for no forecast skill. FBI
>1 indicates wet bias and FBI <1 indicates dry bias.

FIGURE 5 |Comparison of equitable threat score (ETS) for hourly precipitation between different experiment at the threshold of (A) 1 mm, (B) 3 mm, and (C) 5 mm.
The gray and blue bars indicate control experiment and assimilation experiment, respectively.

TABLE 1 | Forecast skill scores of accumulative precipitation forecast at different
thresholds for the control experiment (CTL) and the lightning assimilation
experiment (LDA), respectively.

Precipitation
threshold

Period
(UTC)

POD FAR FBI

CTL LDA CTL LDA CTL LDA

1.00 mm/h 09:00–10:00 0.17 0.17 0.00 0.00 0.17 0.17
10:00–11:00 0.00 0.50 1.00 0.00 0.00 0.50
11:00–12:00 0.00 0.82 1.00 0.00 0.00 0.82

3.00 mm/h 09:00–10:00 0.33 0.33 0.00 0.00 0.33 0.33
10:00–11:00 0.00 0.33 1.00 0.00 0.00 0.33
11:00–12:00 0.00 0.50 1.00 0.00 0.00 0.50

5.00 mm/h 09:00–10:00 0.50 0.50 0.00 0.00 0.50 0.50
10:00–11:00 0.00 0.33 1.00 0.00 0.00 0.33
11:00–12:00 0.00 0.33 1.00 0.25 0.00 0.44

FIGURE 6 |Comparison of radar reflectivity (shaded color, unit: dBZ) and wind at 5 km above ground level (vectors, unit: m s−1) at 1200 UTC 9 August between (A)
control experiment and (B) assimilation experiment. The black line will be used for cross-section in Figures 9C,D.
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3 RESULTS

3.1 Improvement in Supercell and Its
Precipitation Forecast by Assimilating
Lightning Data
To evaluate the supercell and its precipitation forecast
improvement by assimilating lightning data, Figure 4
compares the spatial distribution of hourly precipitation

between simulations and observations at 0,900–1000 UTC,
1,000–1100 UTC, and 1,100–1200 UTC. The observation
result shows that the observed hourly precipitation
gradually strengthened from 0,900 UTC−1200 UTC in
Beijing City (Figures 4A,D,G). Although the control-run
accurately predicted the position of the observed
maximum precipitation, the precipitation was
underestimated (Figures 4B,E,H). The maximum
precipitation, precipitation range, and their evolution are
better portrayed and are closer to observations with the
incorporation of lightning data (Figures 4C,F,I), implying
that by incorporating lightning data into the model, the
model’s performance at simulating supercell precipitation
can be improved.

Figure 5 depicts the performance of the precipitation forecast
following lightning data assimilation using an ETS. Table 1
compares the forecast skill scores of POD, FAR and FBI
between the CTL experiment and LDA experiment. The result
indicates that although the forecast performances were
comparable between the two experiments during 0,900–1000
UTC, the control run achieved no forecast skill at different
thresholds during 1,000–1100 UTC and 1,100–1200 UTC.
With the assimilation of lightning data, the ETS and POD
becomes larger at almost all times of the respective threshold,
the FAR becomes smaller and FBI closes 1, indicating that
lightning data assimilation outperforms the control run.
Moreover, the forecast improvement of lightning data
assimilation is most obvious for the 1 mm threshold, followed
by the 3 and 5 mm thresholds.

FIGURE 7 |Comparison of in-situ soundings at 1200 UTC 9 August between (A) observations and (B) simulations. The solid and dash lines in panel (B) represents
control experiment and assimilation experiment, respectively.

TABLE 2 | The root mean squared error (RMSE) of temperature and relative
humidity in control experiment (CTL) and lightning data assimilation
experiment (LDA).

RMSE (T, °C) RMSE (RH, %)

CTL 3.79 36.54
LDA 3.01 15.12

TABLE 3 | Comparison of pressure of lifting condensational level (PLCL, unit: hPa)
and convective available potential energy (CAPE, unit: J kg−1) between in-situ
sounding and simulations of control experiment (CTL) and lightning data
assimilation experiment (LDA).

PLCL (hPa) CAPE (J kg−1)

Obs 917 8
CTL 902 134
LDA 950 39
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Furthermore, Figure 6 compares the simulated radar
reflectivity between the two experiments at 1200 UTC 9
August when the observed supercell convection was the
strongest. The result shows that the two simulations
accurately simulated the location of the observed radar
reflectivity (Figure 1C), and the simulated wind fields are
similar to the ERA5 reanalysis. Compared to the control
experiment, the simulated radar reflectivity with the
assimilation of lightning data has a bigger extent and
intensity, which is closer to observations made. In addition,
the forecast improvement is positioned mainly within the
supercell itself, indicating that the range of influence of
lightning data assimilation is limited.

3.2 Mechanism of Improving Supercell by
Assimilating Lightning Data
The above results indicate that compared to the control run,
the assimilation of lightning data evidently improves the
range and intensity of the precipitation simulation. Due to
satellite-based lightning data is transformed to pseudo water
vapor in the assimilation experiment, which means that
assimilation of lightning data presumably has a direct
impact on moisture conditions.

To better understand the causes of improvement in the
supercell event simulation, Figure 7 compares the skew-T
sounding results at 1200 UTC 9 August between observations
and simulations. The observed result shows that (Figure 7A) a
shear line is obvious in the lower atmosphere, where northeastlies
exist below 850 hPa and southwestlies exist in a higher
atmosphere, providing suitable dynamic conditions for the
development of supercells. In addition, the atmosphere
between 700 hPa and 500 hPa was almost saturated, suggesting
that precipitation formed mainly in these layers. It is also notable
that the dew depression (temperature minus dew temperature) is
small above 500 hPa, suggesting that clouds are vigorous in

higher atmosphere. A comparison of the simulation results in
Figure 7B indicates that the assimilation of the lightning data
improves the representation of the thermodynamic structure of
the entire atmosphere when the supercell is active. Noticeable
improvement is evident, especially in atmospheres above
500 hPa, where the simulated dry bias in the control run is
alleviated by the incorporting lightning data. Figure 7 also
indicates that the most pronounced simulation discrepancies
between the two experiments are the thermodynamic
structures in the upper troposphere. The assimilation of
lightning data reduces the RMSE of temperature and relative
humidity (Table 2). The assimilation of lightning data results in a
wetter environment at higher altitudes, which encourages the
formation of precipitation.

Further comparison of the convective quantities in Table 3
also indicates that, assimilation of lightning data produces weaker
convective available potential energy (CAPE) and lower lifting
condensation level (LCL) that are closer to observations.

To further examine the improvement in moisture in the
supercell by assimilating lightning data, Figure 8 compares the
spatial distribution of relative humidity at 300 hPa between the
control and assimilation experiments. The results indicate that
assimilating lightning data amplifies the range and intensity of
humidity in the vicinity of the supercell center (Beijing City). In
addition, changes in the assimilation experiment are located
within the supercell itself (Figure 8C), indicating that
assimilating pseudo-water vapor can increase the water vapor
content in the supercell.

Furthermore, the vertical cross-section of the simulated
relative humidity and radar reflectivity between the control
and assimilation experiments (Figure 9) indicates that the
simulated relative humidity and radar reflectivity are very
similar below 6 km; however, the assimilation of lightning data
produces a more humid atmosphere and stronger radar
reflectivity above 6 km. In general, the cumulonimbus top is
approximately 12–15 km, which illustrates that this supercell is

FIGURE 8 | Comparison of relative humidity (unit: %) at 300 hPa at 0900 UTC 9 August between (A) control experiment, (B) assimilation experiment, and (C)
differences between control experiment and assimilation experiment. The solid lines represent cross-section in Figures 9A,B.
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high and deep, while control experiment simulates a lower
supercell height, and assimilation improves the supercell’s
convection height. Observational studies have indicated that
the maximum cumulus cloud base in eastern China can reach
up to approximately 2,500 m in summer (Liu et al., 2016),
implying that lightning data assimilation changes the
thermodynamic profile in the whole cumulonimbus, i.e., it
improves the supercell vertical structure and intensity.

A comparison of Figure 7−9 indicates that the simulation
improvement of the supercell by assimilating lightning data
occurs in the higher troposphere, and the simulation
improvement of moisture is most distinct, which improves
the convection intensity and updraft height. In other words,
pseudo-water vapor assimilation improves the simulation of
convection intensity and updraft height by enhancing the
water vapor content and vertical distribution, especially in
the upper part of the supercell, which is more favorable for
convection development due to near-saturated water vapor
conditions.

4 DISCUSSION

Currently, either ground-based or satellite-based lightning observation
systems, mainly observe the location of lightning and the intensity of
discharge radiation. Therefore, lightning observations, which are not
model variables, are difficult to assimilate directly into numerical
models. A suitable lightning proxy variable is crucial for the
assimilation of lightning observations. Studies have indicated that
vertical velocity (Gan et al., 2021), ice-phase particles or graupel
content (Qie et al., 2014), and proxy radar reflectivity (Wang et al.,
2014; Chen et al., 2020) can be used as lightning proxy variable for
lightning assimilation. Papadopoulos et al. (2005) and Mansell et al.
(2007) used lightning data to adjust the water vapor content in
convective parameterization scheme to active convection. However,
this lightning data assimilation method relies on convective
parameterization scheme, and is not applicable to convective-scale
assimilation. Based on a Nudging method, an empirical formula was
proposed to increase thewater vapor content at the location of lightning
occurrence (Fierro et al., 2015, 2016; Federico et al., 2019; Torcasio et al.,

FIGURE 9 | Height vs. position cross-section of (A,B) relative humidity (unit: %) and (C,D) radar reflectivity (unit: dBZ) at 1000 UTC 9 August in (A,C) control
experiment and (B,D) assimilation experiment.
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2021); although this is also an effectiveway to improvemodel’smoisture
field, however, uncertainties exist because of the empirical formula is not
suitable for different climatic state and convective intensities. Results of
our study indicate that, assimilating lightning data by transforming it to
pseudo-water vapor within clouds is an effective approach to improve
supercell prediction. Specifically, it is emphasized that suitable water
vapor conditions in upper atmosphere are also important for convective
system development. In theory, when water vapor is used as a lightning
proxy variable, it requires a relative longer spin-up period because of the
initialization of convection through the physical parameterization
scheme, which can be seen in the limited improvement of lightning
data assimilation in the first forecasting hour.

The framework proposed in this study is expected to be useful for
understanding the role of water vapor in the upper atmosphere in the
development of a supercell. Although the findings of this study are
based on only one case study, when compared to the findings of other
studies, it is affirmative that assimilating lightning data can distinctly
improve the water vapor in convections. Long-term verification or
additional cases are undoubtedly required to acquire more reliable
results. Besides, assimilation ofwater vapor in combinationwith other
proxy variables (vertical velocity, ice-phase particles, etc.) could be the
potential way to improve supercell simulation.

5 CONCLUSION

Based on the assimilation of lightning data derived from FY-4A
satellite, this study investigates the potential benefit of water
vapor characteristics and their associated changes in convective
scale event (supercell). Furthermore, the mechanism of
improving supercell simulation by assimilation was also
investigated. The major results are summarized as follows:

The mesoscale model generally fails to reproduce precipitation
during convection events. In this case, the vertical distribution of
water vapor has prominent biases in both its intensity and
location. These biases can be rectified by assimilating lightning
data if they are readily transformed into pseudo water vapor.
Therefore, assimilating lightning data has potential benefits for
convection forecasting in the numerical weather prediction.

Forecast improvement of supercells by assimilating satellite-
based lightning data is most prominent for thermodynamic
profiles in the atmospheres above 3 km (700 hPa), with the
maximum improvement above 7 km (400 hPa). In particular, the
improvement in the moisture profile is most distinct, which means
that lightning data can effectively detect the bottom of convective
clouds, assimilation of satellite data can improve the vertical profile
of the convective system, and improve the forecasting of the supercell
accordingly.

Satellite-based lightning data offers abundant moisture
information. Assimilation of lightning data can considerably
improve the range and intensity of convective scale
precipitation simulations. These improvements are obvious in
regions where lightning data are available, demonstrating that the
effects of lightning data assimilation are localized.

In the early stage of a thunderstorm, lightning can be detected by
satellite. In our case, the lightning data is assimilated when supercell
was developing; therefore, assimilating lightning data by
transforming lightning to pseudo-water vapor is a potential
approach for improving the forecast of convective weather events
from its genesis stage to strongest stage, such as supercells. The
forecast improvement is closely related to the improvement of water
vapor content and its vertical distribution, which implies that
moisture in the upper level of a convection event is important,
and assimilating lightning data by transforming it into pseudo water
vapor observation can rectify the moisture bias in the upper level.
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As a result of the fast growth of remote sensing and data assimilation technology, many
global land use land cover (LULC) and climate reanalysis data sets have been used to
advance our understanding of climate and environmental change. This paper investigates
the precipitation variations of the Yangtze Delta Megalopolis by using precipitation
reanalysis data under conditions of dynamic urban sprawl. Compared with current
precipitation characteristic analyses, which are often based on a limited number of
ground rainfall stations, the approach followed in this study comprises a grid-based
statistical method using large sets of samples with a uniform distribution and a same
representative grid area. This novel approach of dynamic sampling is applied in this study
to overcome the temporal and spatial inconsistency of stationary sampling. This approach
allows to examine the impact of urbanization on regional precipitation characteristics. The
Yangtze Delta Megalopolis (YDM) region, one of the most developed regions in China, was
selected as a case study to evaluate the impact of urbanization on subsequent
precipitation features. The results reveal that the annual total precipitation (TP) and the
maximum daily precipitation (MDP) in both urban and non-urban areas of the YDM region
generally have increased during the past 30 years. Hence, the region has become
increasingly humid. Extrema of annual MDP and TP show obvious spatial
characteristics, in which most maxima are located in the southern part of YDM while
minima are more concentrated in the northern part. This newly developed approach has
potentials for application in studies where underlying surface features exhibit rapid
alterations. The findings of this case study provide relevant information for planning
and design of regional water resources management, flood risk management, and
planning of the urban drainage system of the YDM region.
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INTRODUCTION

The impact of climate change and associated anthropogenic
activities on the alteration of the urban hydrological regime
and meteorological characteristics are an emerging and
challenging subject of current urban hydrological research.
The World Bank reported that the global air temperature in
the middle of this century will rise by 2°C and reach 4°C by the
end of the century, compared to the pre-industrial level in the
18th century (Potsdam Institute for Climate Impact Research and
Climate Analytics, 2013). This will lead to an increase in the
frequency and intensity of extreme rainfall, heat waves, and
consequently, of droughts and floods. There is scientific
consensus attributing global warming and more frequent
climate extremes to human activities (IPCC et al., 2013a; IPCC
et al., 2021b; Zhang et al., 2022). In the past 100 years
(1908–2007), the climate change pattern observed in China
was similar to the global one (Ding et al., 2006). Its average
surface temperature increased by 1.1°C, slightly higher than the
global average for the same period. The average annual rainfall
showed an upward trend in the past 50 years, especially in the
middle and lower reaches of the Yangtze River basin and the
southeast of China. Both the frequency and intensity of climate
extreme events have increased (Zhang et al., 2022; Ding et al.,
2006; The State Council Information Office of the People’s
Republic of China, 2008; National Development and Reform
Commission (NDRC), 2013).

Since the 1980s, China’s economy has grown sharply, and the
level of urbanization has risen drastically (Liu et al., 2021). The
nominal gross domestic product (GDP) expanded 274 times from
367.87 billion CNY in 1978 to 100.88 trillion CNY in 2020, while
the urban population percentage climbed from 17.92 to 63.89%.
Although the level of urbanization is a critical indicator of social
and economic development, the rapid urbanization in the last two
decades has triggered a series of social-ecological-environmental
processes, resulting amongst others into the occurrence of urban
rain islands, urban heat islands, urban dust domes, and urban
canyon effects (Central Committee of the Communist Party of
China (CPC), 2014; Ding, 2018; Zhang et al., 2014). Compared
with natural vegetation coverage, the urban heat island effect and
dust cover effect aggravate variations in the regional spatial
distribution of rainfall, resulting in a marked increase in
rainfall peaks in built zones and downwind areas (Shepherd,
2005; Goddard Space Flight Center, 2012). The increase of
impervious surfaces reduces evapotranspiration and
infiltration, shortens the time of concentration, and increases
the runoff coefficient (Zhang et al., 2014; Schueler, 1995; Federal
Interagency Stream Restoration Working Group (FISRWG),
1989; Fletcher et al., 2013; Zhao et al., 2013; He et al., 2003).
The changes of urbanization to the underlying surface have
exacerbated the occurrence of extreme rainfalls, floods, and
droughts (Research Council, 2008; Yu et al., 2014).

The Yangtze River Delta (YRD) has experienced rapid
urbanization in the past decades and has become one of the
most developed regions in China, forming the world-renowned
Yangtze Delta Megalopolis (YDM) (Fang, 2019; Yu et al., 2021).
While rapid development brought prosperity to the YDM, it also

caused drawbacks challenging its livability, such as foggy haze
(Meng et al., 2015; Liu et al., 2020), heat waves (Huang et al., 2008;
Huang and Lu, 2015), and heavy precipitation (Fu et al., 2017;
Ding, 2018). In the past decade, the intensity and frequency of
extreme rainfall events and the resulting flood disasters exceeded
the stationary reference standards for both urban drainage and
flood control systems in the region (Wang et al., 2015; Xu et al.,
2019; Xu et al., 2020). Extreme rainfall and snow destroy
infrastructure services such as housing, transportation,
communications, and electricity, threatening city safety. The
impact of urbanization on regional and extreme rainfall has
received extensive attention. Most of the studies on the impact
of urbanization on urban rainfall are based on ground rain gauge
stations (Table 1). The statistical rigor and hence the effectiveness
of the methods applied are dependent on the availability of
reliable and representative urban precipitation data. These are
often limited as they require a dense gauge station network to
achieve true urban coverage. In addition, these studies rarely
consider urbanization as a dynamic phenomenon influencing the
environment of the observation sites, such as a change of the
underlying surface conditions due to urban densification and
expansion. This hinders the exploration of the temporal variation
of rainfall characteristics, which makes such an analysis
inconsistent in time and space.

It is common practice to examine the temporal and spatial
distribution of urban precipitation using precipitation data from
visible ground weather stations. Hu (2015) examined the
characteristics of rainstorm-induced hazards in Beijing City
and the effect of urbanization based on precipitation data
derived from 20 precipitation gauge stations. Using
precipitation data from 170 precipitation stations of Shanghai
City, Chow and Chang (1984) plotted the isohyets of average
annual precipitation, average wet season precipitation, and
average dry season precipitation to analyze the relationship
between precipitation distribution and city development.
Significant urban rainfall islands were detected in the central
region of Shanghai City based on the hourly precipitation of 11
precipitation stations by Ding (2018), who found that the
maximum hourly precipitation occurred in the city center and
gradually decreased from the city center to the suburbs. Fang et al.
(2012) analyzed the daily precipitation at Baoshan Station in
Shanghai and showed that the number of rainy days gradually
decreased from 1971 to 2010, whilst the intensity and frequency
of short-duration rainfall increased. The domain size, number of
precipitation stations, and average density of research
concentrating on differences in urban precipitation at different
spatial scales are shown in Table 1. By dividing the domain area
by the number of precipitation stations, the average density of
precipitation stations was computed. The spatial scale of the study
areas varied widely, ranging from cities to countries, natural river
basins to the worldwide river system. Station network density
ranged from 10.91 km2 per station to 51,612.9 km2 per station,
with an average of 7,182.56 km2 per station. Some scholars were
overly optimistic in their assessment of site precipitation trends as
regional trends, while others cautioned that site precipitation
characteristics merely represent gauge station precipitation
trends (Fang et al., 2012; Şen, 2014). The spatial distribution
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of precipitation stations employed in most research was
excessively sparse when compared to the World
Meteorological Organization’s (WMO) suggested minimum
densities of precipitation stations (10–20 km2 per station in
urban areas) (World Meteorological Organization, 2008a;
Chacon-Hurtado et al., 2017). When the density of
precipitation stations is excessively high, the results of
statistical analysis may be equivocal according to the large
sample principle of statistical analysis, which states that the
larger the sample size, the more they tend to their true value.

In a study spanning several decades, it is not uncommon that
initially non-urban areas, or upwind/downwind zones, gradually
become urban areas as a result of urban expansion. As a result, the
weather stations in these shifting areas have transitioned from
rural to urban stations. Many studies have used the existing
underlying surface to differentiate between urban and non-urban
areas when detecting precipitation trends without taking into
account the passive changes in the site background environment
generated by urbanization: for example, in Hu (2015), Hand and
Shepherd (2009), Chen et al. (2016), and Kishtawal et al. (2010).
Some researchers have noted that when cities grow, the
classification of certain weather stations changes from non-
urban to urban. To assess the impact of small and fragmented
urban areas on precipitation along the Dutch West coast, Daniels

et al. (2016) used land use data and geostrophic wind direction
with a record length of 59 years for every 10 years to dynamically
divide precipitation sites into rural and urban categories. By using
remotely sensed image analysis, Zhang et al. (2021) discovered
that land use and anthropogenic heat flow produced by
urbanization had a considerable impact on the consistency of
surface weather station data. Yu et al. (2022) identified urban and
rural stations by using a method that combined a circular buffer
and the percentage of urban area within the buffer to explore the
shift pathways of the light and heavy precipitation associated with
urbanization in the Yangtze River Delta region. Due to the
availability of LULC data, there was no extra station
identification for precipitation before 1980 and after 2015. In
addition, the categories of stations were considered static in a few
analyses, for example, the case analyzing the effect on sample size.
Once the category of a rain gauge station being affected by urban
expansion alters, it is often accompanied by a modification of the
features of the domain that the rain station represents. This may
lead to a loss of consistency in the rainfall data observed before
and after the change (Dahmen and Hall, 1990; World
Meteorological Organization, 2008b). If a trend analysis is
performed directly on those precipitation stations while
ignoring the change in their categories, the applicability of the
precipitation characteristic data will be considerably reduced.

TABLE 1 | Summary of the characteristics of the case study on precipitation.

Author Study area Size of the area
(km2)

Number of stations Density of stations
(area in km2

per station)

Hu (2015) Beijing City 16,410 20 820.5
Chow and Chang (1984) Shanghai City 6,340.5 170 37.3
Ding (2018) Shanghai City 6,340.5 11 576.41
Fang et al. (2012) Shanghai City 6,340.5 1 6,340.5
Chen et al. (2016) Nanjing City 6,587.02 71 92.77
Deng (2017) Hefei City 7,266 9 807.33
Gao et al. (2016) Jiangsu Province 107,200 68 1,576.47
Wang et al. (2003) Zhejiang Province 105,500 63 1,674.6
Luo et al. (2020) Anhui Province 140,100 81 1,729.63
Su et al. (2021) Yunan Province 394,100 125 3,152.8
Yang et al. (2014) Taihu Lake Basin 36,895 27 1,366.48
Han et al. (2015a), Han et al. (2015b) Yangtze River Delta 95,400 16 5,962.5
Sang et al. (2013) Yangtze River Delta 210,700 58 3,632.76
Wang et al. (2016) Yangtze River Delta 95,400 24 3,975
Cao et al. (2018) Yangtze River Delta 99,600 56 1,778.57
Pei et al. (2018) Yangtze River Delta 104,985 16 6,561.56
Wang et al. (2020) Yangtze River Delta 95,400 14 6,814.29
Yu et al. (2022) Yangtze River Delta 301,700 126 2,394.44
Becker et al. (2006) Yangtze River Basin 1,800,000 36 50,000
Li et al. (2015), Zhang et al. (2016)) Mainland China 9,600,000 186 51,612.9
Yu et al. (2007) Mainland China 9,600,000 588 16,326.53
Yu et al. (2014) Mainland China 9,600,000 752 12,765.96
Zhou et al. (2008) China 9,600,000 626 15,335.46
Huff (1975) St. Louis area 5,500 225 24.44
Burian and Shepherd (2005) Houston metropolitan area 3,350 53 63.21
Diem and Mote (2005) Atlanta metropolitan area 101,788 30 3,392.93
Hand and Shepherd (2009) Oklahoma City 5,625 14 401.79
Daniels et al. (2016) Dutch West Coast 5,300 60 88.33
Caloiero et al. (2018) Southern Italy 85,000 129 658.91
Paul et al. (2018) Mumbai City 600 55 10.91
Westra et al. (2013) Globe 149,000,000 8,326 17,895.75
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The purpose of this study is to describe and demonstrate a
novel method based on a statistical analysis of remotely sensed
data sets to overcome the sampling sufficiency challenge in
rainfall trend analysis in terms of size and representativeness
which acknowledges the dynamic nature of the surface area due
to urbanization. The YDM region was selected as a case study as it
experienced rapid expansion of its built area and frequent heavy
precipitation events in recent decades.

STUDY AREA AND DATA

The Yangtze River Delta is one of the most developed regions in
China. The growth rate of its economic and urban development is
ahead of the national average (Yu et al., 2021). The “Development
Plan for the Yangtze Delta Megalopolis” was issued by the
Chinese central government as one of the national strategies
in 2016, in order to strengthen the coordination and cooperation
in cross-city/regional development and enhance the international
competitiveness of Chinese cities. The Yangtze Delta
Megalopolis, located downstream of the Yangtze River Basin,
has a land area of approximately 2.12 ×105 km2, and
accommodates 26 cities, i.e. Shanghai, nine cities in Jiangsu
Province (Nanjing, Wuxi, Changzhou, Suzhou, Nantong,
Yancheng, Yangzhou, Zhenjiang, and Taizhou), eight cities in
Zhejiang Province (Hangzhou, Ningbo, Jiaxing, Huzhou,
Shaoxing, Jinhua, Zhoushan, and Taizhou), and eight cities in
Anhui Province (Hefei, Wuhu, Maanshan, Tongling, Anqing,
Chuzhou, Chizhou and Xuancheng) (Figure 1) (National
Development and Reform Commission of the People’s
Republic of China (NDRC), 2016). At the end of 2019, its

registered population had reached 132.6 million, accounting
for 9.47% of China’s population and 1.73% of the global
population. Its nominal GDP in 2019 was 19.71 trillion CNY,
accounting for 19.98% of China’s GDP and 3.55% of the global
GDP, respectively.

Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS) was jointly released by the University of
California, Santa Barbara (UCSB) Climate Hazards Center and
the United States Agency for International Development
(USAID) in 2015 (Funk et al., 2015). This data set is based on
the fusion of ground station and satellite-based remotely sensed
data. Ranging from 1981 to near-present, it completely covers the
YDM with a resolution of 0.05°×0.05° (approximately 5.6 km at
the equator, less than 5 km in the YDM). Bai et al. (2018) assessed
the accuracy of CHIRPS compared with rain gauges over
mainland China and concluded that CHIRPS had a better
performance in rainy areas than in arid or semi-arid areas.
Tang et al. (2019) conducted a series of hydrological
simulations using the Soil and Water Assessment Tool
(SWAT) forced with different precipitation products in the
Lancang River Basin. CHIRPS performed well in both the
whole basin and sub-basins on the daily and monthly scales.
Catholic University of Louvain (UCLouvain) has produced
Global Land Cover (ESA-CCI-LC), a global land cover data
product based on data obtained from the European Space
Agency’s (ESA) Climate Change Initiative (CCI) (Defourny
et al., 2017; Copernicus Climate Change Service, 2020;
European Space Agency (ESA), 2015). With a horizontal
resolution of 300 m and a time resolution of a year, this data
collection follows the land cover categorization system (LCCS)
defined by the United Nations (UN) Food and Agriculture

FIGURE 1 | The study area of the Yangtze Delta Megalopolis, China. Terrain tiles by Stamen Design (Terrain Classic Contributors, 2021) are used as a background.
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Organization (FAO) (Gregorio and Jansen, 2000). On the
premise of ensuring the availability of data in the YDM
region, and after comparing the time series lengths and
temporal and spatial resolution of the current available
precipitation/land cover data, the CHIRPS data set as the daily
precipitation data source was selected for this study. This allowed
taking advantage of the high spatial resolution of 5 km as well as
the long time coverage from 1981 to the present. ESA-CCI-LC
was chosen as the basic land cover data in this study since it has a
horizontal resolution of 300 m and a yearly time resolution from
1992 to the present.

METHODOLOGY

Generation of Dynamic Regions
The original boundary of the YDM was extended about 10 km
outwards. Then, the extended YDM was divided into grids with
the same size and location as the land use and precipitation data
grids. The spatial coordinate reference system (CRS) used for grid
creation was EPSG:32650; the affine transformation was set by
defining the limits (west, south, east, north), length, and width,
with parameters of 340,000, 3,065,000, 1,060,000, 3,875,000,
5,000, and 5,000, respectively. In the study area YDM, a total
of 9,698 effective grids with a horizontal resolution of 5 km ×
5 km were created (Figure 2). The gridding method provides the
advantages of a large sample size, uniform distribution, and the
same cell area, as shown in Figure 2.

To compare the impact of urbanization on regional
precipitation, the ESA-CCI-LC data set was binarized/
converted into land use maps with two classes of urban/built-
up and non-urban/built-up based on the class value of the land
cover being equal to 190 or not (190 for urban areas). All grids of

the urban/built-up class were designated as urban region, the
others were deemed non-urban region in the YDM region
(Supplementary Figure S1). To ensure that the land use maps
matched the precipitation data grid, they were resampled at a
horizontal resolution of 5 km × 5 km. Supplementary Figure S1
depicts the 2020 binarized land use map.

The annual land use maps for urban and non-urban regions
from 1992 to 2020 were generalized by the binarization
approach to characterize the evolution dynamics of
urbanization. After binarization, the grid number of urban
and non-urban regions was counted year by year using the land
use map. Figure 3 presents the trend of the grid number over
time. Supplementary Figure S2 depicts the temporal and
spatial distributions of urban construction in the YDM
from 1995 to 2015.

Statistics of Precipitation
Using the yearly MDP as an example, the following statistical
approach was developed for the above-mentioned year-by-
year change of the gridded precipitation. Assuming that the
dynamic area has n grids in the xth year, the following matrix
can be used to express all of the precipitation sample values for
that year:

Px
daily,cell �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,1 p1,2 / p1,j / p1,n
p2,1 p2,2 / p2,j / p2,n
..
. ..

.
1 ..

.
1 ..

.

pi,1 pi,2 / pi,j / pi,n
..
. ..

.
1 ..

.
1 ..

.

pm,1 pm,2 / pm,j / pm,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

FIGURE 2 | Fishnets in the YDM.
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where pi,j is the precipitation of the jth grid on the ith day of
the xth year, in millimeters; m is the total number of
days in a year, which is 365 for an average year and 366 for a
leap year.

The first statistic was taken on the above matrix Px by
extracting the maximum value of each column. These maxima
represent the annual MDP of each grid in the xth year, which
can be expressed as the vector:

Px
max ,cell � { pmax ,1, pmax ,2, . . . , pmax ,j, . . . , pmax ,n } (2)

where pmax,j is the annual MDP of the jth grid the xth year, in
millimeters. The extraction was conducted using the Google
Earth Engine platform, the outputs of which were exported
locally for subsequent use (Gorelick et al., 2017).

Then, in Px
max,cell, the 0 values were removed as they

represent a cell without precipitation, and the second
statistic can be performed on the remaining. A variety of
characteristic values can be chosen, such as the maximum
value, the average value, the median, and so on, to meet specific
demands. In this study the maximum, 75th percentile, 50th
percentile (median), 25th percentile, and minimum as
characteristic values, have been used which are recorded as
Px
max,max, Px

max,75%, Px
max,50%, Px

max,25%, and Px
max,min,

respectively.
Assuming t – the total number of years, the time series of

the characteristic values of the MDP can be constructed as
follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pmax ,max � { P1
max ,max,P

2
max ,max, . . . ,P

x
max ,max, . . . ,P

t
max ,max }

Pmax ,75% � { P1
max ,75%,P

2
max ,75%, . . . ,P

x
max ,75%, . . . ,P

t
max ,75% }

Pmax ,50% � { P1
max ,50%,P

2
max ,50%, . . . ,P

x
max ,50%, . . . ,P

t
max ,50% }

Pmax ,25% � { P1
max ,25%,P

2
max ,25%, . . . ,P

x
max ,25%, . . . ,P

t
max ,25% }

Pmax ,min � { P1
max ,min,P

2
max ,min, . . . ,P

x
max ,min, . . . ,P

t
max ,min }

(3)
Taking out the max:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pmax � { P1
max,P

2
max, . . . ,P

x
max, . . . ,P

t
max }

P75% � { P1
75%,P

2
75%, . . . ,P

x
75%, . . . ,P

t
75% }

P50% � { P1
50%,P

2
50%, . . . ,P

x
50%, . . . ,P

t
50% }

P25% � { P1
25%,P

2
25%, . . . ,P

x
25%, . . . ,P

t
25% }

Pmin � { P1
min,P

2
min, . . . ,P

x
min, . . . ,P

t
min }

(4)

The time series constructed above has been used to conduct a
precipitation trend analysis by adopting a probabilistic analysis
strategy with percentile statistics (Stensrud and Yussouf, 2007; Du
and Chen, 2010; IPCC, 2021b). Meanwhile, a decadal average was
performed to smooth out the fluctuations of the yearly statistics
and highlight their trends (Akrami et al., 2014). To investigate the
linear correlation for the time series between urban and non-
urban regions, the Pearson correlation coefficient (PCC) and
corresponding significance p-value were calculated by using the
linregress function provided by the SciPy library (Taylor, 1990;
Virtanen et al., 2020). The overall agreement was quantified using
modified Kling-Gupta efficiency (KGE) (Gupta et al., 2009; Kling
et al., 2012). The Mann-Kendall test supported by
pyMannKendall was implemented to determine the trends of
statistics (Yue and Wang, 2004; Hussain and Mahmud, 2019).

The statistical method comparable to annual MAP was made
for finding total annual precipitation. Here, in Eq. 2 max was
substituted to calculate the sum precipitation on a grid,

Px
sum,cell � { psum,1, psum,2, . . . , psum,j, . . . , psum,n } (5)

where psum,j is the total annual precipitation of the jth grid in the
xth year, in millimeters.

RESULTS AND DISCUSSION

Annual Maximum Daily Precipitation
As shown in Figure 3, the number of sampling grids exhibit a
gradual increase in the urban region over time with a decrease in
the non-urban region. It is to be expected that an expansion of the
sampling regions will result in higher maxima and lower minima

FIGURE 3 | Temporal variations of the sampling grid number for urban and non-urban regions in the YDM. The sum of the grid numbers of urban region and non-
urban region always equals to 9,698.
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of daily precipitation than the unchanged sampling cells. To
investigate how a change in sample size for the urban region
affects the results, we compared the precipitation statistics for the
expanding and unchanged urban regions using grids from 1992
to 2020. It follows from the results that these effects are too small
(fall within the noise range) to be of particular concern for MDP
in the urban regions before 2010 (Supplementary Figure S3).
The interquartile ranges show a minor shift downwards from
2010 to 2020. These shifts are also quantitatively reflected in the
MK values (Table 2). The effects of the reduced sampling cells are
negligible in the non-urban regions (Supplementary Figure S4).
Kling-Gupta efficiency coefficient (KGE) values reveal a similar
pattern of all five quantiles of the annual MDP between the
changing urban and non-urban regions and their unchanging
parts, with values greater than 0.902 (Supplementary Table S1).
In addition, the difference in sample size between urban and non-
urban regions may also affect the results. We resampled an equal
number of sampling cells from the non-urban region, equivalent

to the number of sampling cells in the urban region, and extracted
its five-number summary. After repeating 1,000 times, we found
that the difference between the urban region and resampled non-
urban regions was positively related to the difference between the
urban and non-urban regions (Figures 4A–E). The extreme
values of MDP amplified/decreased by the large sampling cells
in the non-urban region. This amplification/decrease complicates
an analysis of the relationship of precipitation extremes between
the urban and non-urban regions, especially minima. As for the
other three quartiles, they show great stability, irrespective of the
sample size. Although the sample size matters, the difference in
sample size disturbed the extrema of MDP slightly as well as
strengthened the interquartile law under the context of a large
sample strategy adopted in this study. Previous studies were
hindered due to the limited number of ground stations and
their representativeness (Sang et al., 2013; Han et al., 2015a;
Han et al., 2015b; Wang et al., 2016; Cao et al., 2018; Pei et al.,
2018; Wang et al., 2020; Yu et al., 2022). This limitation

TABLE 2 | The MK trend test for annual MDP in different percentiles of the YDM from 1992 to 2020.

Region Metric Minimum 25% Medium 75% Maximum

Urban (changing) MK value 3.240 4.062 3.512 3.205 3.120
p-value p < 0.01 p < 0.001 p < 0.001 p < 0.01 p < 0.01

Urban (unchanged) MK value 5.360 5.138 4.016 3.789 2.874
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.01

Non-urban (changing) MK value 6.700 4.418 4.357 3.655 1.948
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p ≥ 0.05

Non-urban (unchanged) MK value 6.700 4.319 4.281 3.690 1.948
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p ≥ 0.05

FIGURE 4 | The annual MDP in the YDM from 1992 to 2020. (A) maximum, (B) 75th percentile, (C) median, (D) 25th percentile, and (E) minimum represent the
yearly changes. The boxplot of decadal averages is shown in (F).
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exacerbated after applying complex category identification of
these stations (Diem and Mote, 2005; Yu et al., 2022). High-
resolution reanalysis data such as CHIRPS provides a promising
solution.

The distribution of MDP has recognizable spatial
characteristics within each year interval, but there is no
unified feature between the years (Figure 5). However,
Figures 6A,B depict that most of the maxima of MDP are
located south of 31°N and most of the minima are located

north of 31°N for both urban and non-urban regions, which
may be related to topography and landform (Supplementary
Figure S7). This is in line with observations of more heavy
precipitation in the southern part of YRD reported in
previous work (Sang et al., 2013; Han et al., 2015a; Wang
et al., 2016).

Figures 4A–E show that the five quantiles of the yearly MDP
increased to varying degrees in both the urban and non-urban
regions. The percentiles of 25, 50, and 75% exhibit stable

FIGURE 5 | The distribution of annual MDP in the YDM at quinquennial intervals from 1995 to 2020.
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characteristics, ignoring the complexities of extrema that are
influenced by the differences in sampling cells between urban
and non-urban regions. All six time series in the MK trend test
revealed a significant increasing trend, with five out of six (25%
quantile and median of the annual MDP in the urban region and
the 25%, median, and 75% in the non-urban region) meeting the
significance level of 0.001 (Table 2). The distribution of difference
for 10-year period averages of annual MDP in the YDM between
the 1990s and 2010s is illustrated in Figure 7. In the past three
decades, most cells have experienced an increase in annual MTP
of decadal average. This increasing trend is uniform and
significant for both urban and non-urban regions. If the non-
urban region that is relatively less affected by human activities is
regarded as a baseline, this explicitly indicates that the YDM
climate change may be playing a dominant role in the trend
variations of annual extreme precipitation. However, the yearly
MDP in the YDM’s urban region is rising which may lead to a
growing risk of urban flooding (Yu et al., 2022). This is in line
with the observed increase in the frequency of flooding of many
urban areas in recent years, as well as the higher economic losses

caused by floods in the YDM. Figure 8 depicts a significant rise in
economic losses due to urban flooding in the YDM region from
2006 to 2020 (Ministry of Water Resources of the People’s
Republic of China (MWR), 2021). In addition, these results
differ from previous studies on the impact of urbanization on
hourly precipitation, which have shown a correlation between
rapid urbanization and more extreme precipitation events (sub-
daily) in urban areas (Liang and Ding, 2017; Ding, 2018; Jiang
et al., 2020; Wang et al., 2021). In the comparison of these studies,
this may be affected by data sources (station-/ non-station- based
and the number of stations), statistic methods, and sizes and
locations of case domains. And/or, it may be recommended that
there are critical temporal resolutions greater than 3 h and less
than 24 h in YDM, which separate these rules.

The Pearson correlation coefficient (PCC) and its p-value, as
well as the Kling-Gupta efficiency coefficient (KGE) were used to
assess the correlation between annual MDP of various quantiles
across the urban and non-urban regions (Table 3). The line plots
fluctuate similarly in the five quantiles of annual MDP in the
urban and non-urban regions (Figures 4A–E), with values of

FIGURE 6 | The distribution of yearly precipitation extrema in the YDM from 1995 to 2020 for (A)maxima of MDP, (B) minima of MDP, (C) maxima of TP, and (D)
minima of TP.
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PCC and KGE lying between 0.588–0.978 and 0.563–0.964,
respectively (Table 3). The non-urban region has a
significantly lower annual MDP than the urban region for the
lowest, whereas the other quantiles in the non-urban region are

generally higher than the urban region, with the maximum being
the most significant. In both urban and non-urban regions, the
75th percentile, median, and 25th percentile of annual MDP are
very close, and their PCC and KGE values are both above 0.9.
According to the findings, there is a significant positive
correlation between annual MDP in urban and non-urban
areas, with the correlation in the middle three quantiles being
significantly stronger than the correlation in the extreme
quantiles. The yearly MDP of the urban region matches well
with the non-urban region, with the middle three quantiles
showing a better fit than the extreme quantiles. The yearly
MDP fluctuation features in urban and non-urban locations
are similar, with no significant differences, according to the
strong correlation coefficients and satisfactory fitting methods.

The box plot’s interdecadal variations reveal a gradual increase in
the 10-year period averages of annual MDP in both urban and non-
urban areas from the 1990s to the 2010s (Figure 4F). Except for the
lowest percentile, non-urban regions’ yearly MDP percentiles are
greater than those in urban areas. Using the median as an example,
in the 1990s, the decadal averages in urban and non-urban regions
are nearly identical (76.99 and 76.61 mm), but in the 2010s, the
averages grow to 91.53 and 95.53mm, respectively, with percentage
increases of 18.89 and 24.70%. Comparing theMK values of the 25th
percentile, median, and 75th percentile inTable 2, the increase of the
values in the non-urban region are greater than those in the urban
region. Regardless of the impact of the sample size, this may be due
to land cover and atmospheric humidity changes caused by urban
expansion and human activities. Lu et al. (2019) found that the
increase in the recurrence levels of annual MDP of non-urban
stations is higher than that of urban stations considering the
urbanized impacts. The non-urban areas with woodland, rainfed
croplands, and grassland as the main underlying surface, which are
the dominant land covers of precipitationsheds, may provide more

FIGURE 7 | The distribution of precipitation difference for 10-year period averages in the YDM between the 1990s and 2010s for (A) MDP and (B) TP.

FIGURE 8 | Historical flood loss in Jiang-Zhe-Hu-Wan region. Jiang,
Zhe, Hu, and Wan are the abbreviations of Jiangsu Province, Zhejiang
Province, Shanghai City, and Anhui province, respectively.

TABLE 3 | Correlation and fitting of the annual MDP in different percentiles
between urban and non-urban regions of the YDM during 1992–2020.

Metric Minimum 25% Medium 75% Maximum

PCC 0.588 0.978 0.967 0.939 0.703
p-value <0.001 <0.001 <0.001 <0.001 <0.001
KGE 0.563 0.964 0.959 0.922 0.592
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favorable conditions for the generation of stronger heavy
precipitation or heavier rainstorm centers at a daily scale (Keys
et al., 2012). However, evapotranspiration is weakened in urban
areas due to the loss of green vegetation. In comparison with the
natural ground cover, the evapotranspiration decreases from 40 to
30% of the precipitation as the impervious surface area increases in
urban areas (Federal Interagency Stream Restoration Working
Group (FISRWG), 1989; Ellison et al., 2017). This process will
result in a drop of atmospheric water vapor content, so the
precipitation possibly decreases in the precipitationshed’s sink
zone (Keys et al., 2012; Luo and Lau, 2019).

Annual Total Precipitation
An estimate of the impact of sample size changes on TP was
conducted. Supplementary Figure S6 shows that the
quantiles of TP for the decreasing non-urban regions are
almost the same as those extracted from the unchanged

region. The good fit reflected by these KGEs close to 1 are
presented in Supplementary Table S1. Supplementary
Figure S5 depicts that in the growing urban regions with
more sampling cells the ranges of TP have expanded in
certain years resulting from an increase of their extremes
compared to the unchanged urban region. The interquartile
ranges are a little bit narrowed due to the downward shift in
the upper quartiles in the 2010s. Compared to the unchanged
urban region, the MK values for percentiles of 25, 50, and 75%
in the changing urban regions decrease as well (Table 4).
Considering the large difference in sample size between non-
urban and urban regions, Figures 9A–E reflect that this
difference has little effect on the 25th percentile, median,
and 75th percentile. There is a significant influence on most
extrema, but the relative magnitude of TP extrema in urban
and non-urban areas is rarely affected. Similar to annual
MDP, impacts of sample size changes on annual TP are very

TABLE 4 | The MK trend test for annual TP in different percentiles of the YDM during 1992–2020.

Region Metric Minimum 25% Medium 75% Maximum

Urban (changing) MK value 5.468 7.890 4.878 2.294 2.862
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.05 p < 0.01

Urban (unchanged) MK value 6.426 8.359 5.605 2.950 2.122
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.01 p < 0.05

Non-urban (changing) MK value 6.484 10.090 4.995 3.350 2.591
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.01

Non-urban (unchanged) MK value 6.484 9.749 4.587 3.140 2.583
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.01 p < 0.01

FIGURE 9 | The annual TP from 1992 to 2020 in the YDM. Yearly fluctuations of (A) maximum, (B) 75th percentile, (C) median, (D) 25th percentile, and (E)
minimum. (F) boxplot of decadal averages.
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limited, in contrast, the characteristics in the interquartile
ranges are pretty stable under the large sample strategy.

Figure 10 depicts the spatial characteristics of the
coordinated increase in annual TP from northern to
southern of the YDM, which is valid for all years. They
coincide with the contour map of the average annual
precipitation released by the Ministry of Water Resources
(Bureau of Hydrology, Ministry of Water Resources and

Nanjing Hydraulic Research Institute, 2006). A similar spatial
distribution of average annual precipitation was obtained using
TRMM 3B43 (Cao et al., 2018). Compared with annual MDP,
the extrema of annual TP are more obviously concentrated in a
certain small area. The maxima gather in the southern part and
most minima are crowded into the northern part. The annual
summary consolidates the spatial features and eliminates the
randomness of daily precipitation.

FIGURE 10 | The distribution of annual TP in the YDM at quinquennial intervals from 1995 to 2020.
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The five quantiles of the annual TP increase to varying degrees in
both the urban and non-urban regions, as shown in Figures 9A–E. A
significant rising trend is observed of the MK values of the lower,
median, and upper quartiles of annual TP in both urban and non-
urban regions. Except for the upper quartile in rural areas, the other
five time series have a confidence level of 99.9% (Table 4). Of the
10 years averages, all sampling grids in YDM have witnessed the
growth of TP from the 1990s to the 2010s (Figure 10). The observed
rising trend in the annual TP in the YDM region reveals that regional
water resources are more abundant in the 2010s than in the 1990s, as
stated in China’s “National Assessment Report on Climate Change”
(Lin et al., 2006). The significant increase in the amount of water
resources in the YDM region will aid in resolving the contradictions
between rapid economic development and rising water demands
from industrial production, domestic water and ecological water
requirements in urban areas, and rainfed agriculture water needs in
non-urban areas.

The line charts fluctuate similarly in the five quantiles of
annual TP in the urban and non-urban regions (Figures
9A–E). They are highly correlated and have a good fit with
PCC and KGE of the middle three quartiles that are greater
than or equal to 0.960 and 0.809, respectively (Table 5).
Combined with the increasing trend, high correlation, and
good agreement between urban and non-urban regions,
climate change has impacted these features in the YDM.

The box plot’s interdecadal changes reveal that yearly TP in
urban and non-urban areas grows from the 1990s to the 2010s, after
remaining relatively consistent during the 1990s and 2000s
(Figure 9F). Except for the lowest percentile, the non-urban
percentiles of the annual TP are greater than the urban
percentiles. Using the median as an example, from 1990 to 2010,
the decadal averages of annual TP in urban and non-urban regions
grows from 1,214.39 mm and 1,251.09 mm to 1,379.18mm and
1,456.61 mm, with increases of 13.57 and 16.43%, respectively. MK
values of the 25th percentile, median, and 75th percentile of annual
TP in the non-urban region are greater than those in the urban
region. This is similar to the annual MDP with a slightly smaller
difference between urban and non-urban regions. The non-urban
region, with woods, rainfed croplands, and grassland as the primary
land uses of precipitationsheds, is more likely to provide more
favorable formation conditions for large-scale precipitation than
the urban region.

CONCLUSION

This study provides a statistical method using grid-based
precipitation characteristics to demonstrate a novel approach

of dynamic sampling area to effectively address the limited
representative space of ground precipitation sites in dynamic
urban areas. The temporal and spatial inconsistency of static
sampling, which is caused by urban growth, has effectively
been addressed by this novel approach resulting in figures
which are based on hundreds of thousands of sampling grids.
In non-urban areas, the density of their fundamental data has
surpassed the WMO suggested density, while in urban areas,
it is very close to the required value (World Meteorological
Organization, 2008a; Chacon-Hurtado et al., 2017). The
statistics gathered by the newly created approach in this
study are more in line with the requirements of large
samples for statistical analysis as compared to traditional
site-based research. What’s more, this method is flexible in
the sense that the resolution of the reanalyzed product can be
adjusted according to requirements.

Applying the foregoing methodologies for the analysis of
precipitation features and trends in the YDM region revealed
that:

(i) In the context of the large-sample strategy, the
spatiotemporal changes of the sampling cells interfere
with the limited extrema and have little effect on the laws
within the interquartile ranges in the YDM.

(ii) The annual TP and MDP in the YDM region’s urban and
non-urban areas both show a considerable upward trend,
mainly due to climate change. They demonstrate that the
region’s water supplies are expanding and that the risk of
urban waterlogging is increasing.

(iii) Most maxima of annual MDP and TP are located in the
south of YDM, while the minima are located in the north.
Geographical differences affect the spatial distribution
characteristics of precipitation in the YDM.

(iv) The increase in annual MDP and TP in the non-urban
regions is greater than in the urban regions. It indicates that
the land cover categories woods, grassland, and rainfed
agricultural land may play a positive role in the
formation of precipitationsheds’ sink zones.

Despite the rapid improvement of precipitation reanalysis
products, their spatial and temporal resolution remains a
limitation. Both horizontal and temporal resolution of
existing products are insufficient for a more precise and
accurate analysis of precipitation characteristics in
urban areas.

To improve the current study, future work should concentrate
on the following aspects:

(i) The impact of urbanization on its downwind areas. The
contribution of the influence of urbanization at a scale of
a megalopolis on precipitation on its downwind areas to
the precipitation of non-urban areas needs further
investigation.

(ii) Due to a lack of attribution analysis of precipitation change, it is
difficult to differentiate between the increase of precipitation in
the YDM region which is affected by anthropogenic activities
and by global climate change. Therefore, an attribution analysis

TABLE 5 | Correlation and fitting of the annual TP in different percentiles between
urban and non-urban regions of the YDM during 1992–2020.

Metrics Minimum 25% Medium 75% Maximum

PCC 0.821 0.960 0.970 0.961 0.925
p-value <0.001 <0.001 <0.001 <0.001 <0.001
KGE 0.772 0.954 0.885 0.809 0.789

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 91706913

Liu et al. Rainfall Increases in YDM

141

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


based on a statistical or deterministic study still needs to be
considered in future work.
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The characteristics and
formation mechanism of
double-band radar echoes
formed by a severe rainfall
occurred in the Sichuan Basin
under the background of two
vortices coupling
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During 29–30 UTC June 2013, a severe rainfall event with a long and narrow

region of strong precipitation occurred in the central of the Sichuan Basin (SCB).

Under the combined influence of a Tibetan Plateau vortex (TPV) and a

southwest vortex (SWV), two banded strong radar echoes existed and

developed simultaneously over the SCB. The analysis reveals that the vertical

wind shear (VWS) caused by the circulations of the TPV and the SWV was the

dominant factor of the formation and development of the radar echoes over the

SCB. During the coupling period of the two vortices, the SWV provided

abundant water vapor at the middle and lower levels over the SCB and the

updrafts of the two vortices break through that formed deep convection, which

made the precipitation in the SCB reach the maximum intensity. The

enhancement of horizontal vorticity caused by the baroclinicity and the

secondary circulation related to the two vortices created conditions for the

formation of the double-band radar echoes. The matching degree of water

vapor and heating conditions accompanying the circulation of the two vortices

could affect the developments of convective storms and precipitation.

KEYWORDS

the Tibetan plateau vortex, the southwest vortex, coupling, vertical wind shear, radar
echoes
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1 Introduction

The formation and development of Tibetan plateau vortices

and southwest vortices (TPSWVs), as well as the rainstorms and

flood disasters caused by them, have always been an important

topic concerned by meteorologists. Tao (1980) earlier revealed

that typhoons, fronts, and cyclonic vortices (mainly the Tibetan

Plateau vortices (TPVs) and the southwest vortices (SVWs) (Xiao

et al., 2017)) moving eastward from the Tibetan Plateau and its

downstream areas were the main triggering systems of extreme

heavy precipitation events in China. TPSWVs might cause high-

impact and severe weather events, such as heavy rains,

thunderstorms, and windstorms over the Sichuan Basin (SCB)

and its surrounding areas (Luo et al., 1993; Qian and Jiao, 1997).

After years of research, many aspects about TPSWVs have been

recognized, including the weather situation of rainstorms caused

by the TPVs (Gao and Yu, 2017), water vapor conditions of

TPSWVs (Pan et al., 2011; Yue and Li, 2016), the role of

Mesoscale Convective Systems (MCSs) in the rainstorms

caused by SVWs (Hu et al., 2014), the role of Tibet plateau

shear line in the formation of the rainstorms caused by SVWs

(Hao et al., 2016), and the energy budget of TPVs (Dong and Li,

2015; Fu et al., 2015). The Tibetan plateau vortex (TPV) and the

southwest vortex (SWV) usually developed independently, but

there were also weather events in which they appeared

simultaneously over the SCB or its surrounding areas. Chen

et al. (2004) and Zhao and Wang (2010) studied the interaction

mechanism when the two vortices appeared simultaneously and

pointed out that the coupling of the two vortices was an

important inducement to trigger heavy precipitation in the

SCB. Zhou et al. (2014) used radar mosaic reflectivity data to

analyze the characteristics of radar echoes in the SCB under the

influence of a TPV and a SWV, which helped us to further

understand the relationship between the two vortices and the

formation and development of mesoscale convective systems.

Heavy rains are the main meteorological disaster caused by

TPVs or SVWs. Over the course of about 50 years of research,

meteorologists tried lots of methods including theoretical

derivation (Yeh and Gao, 1979), weather analysis (Huang

et al., 2010; Zhao et al., 2011), numerical simulation (Liu and

Li, 2014), multi-source data (Du et al., 2013; Li and Deng, 2013;

Ni et al., 2017), andmulti-diagnosis (Huang et al., 2011; Song and

Li, 2016) to establish the relationships between the development

of the two vortices and heavy rains in order to make

breakthroughs in the prediction of related heavy precipitation.

Precipitation regions caused by TPVs or SVWs were more

frequent on the east or southeast side of the vortex (Li et al.,

2015). Jiang et al. (2014) and Yang et al. (2017) found that heavy

rains mostly appeared in the right front side of the forward

direction of the vortex center mainly because the positive

vorticity advection transported by the vortex to this region

stimulated the upward motion of the airflow. However, in the

actual forecast, the uncertainty of the region and intensity of

precipitation caused by a vortex is great. The main reason for this

situation is that we do not know enough about the relationships

between the occurrence and development of the two vortices and

the convective systems in their circulation. Chen et al. (2011)

established the connection between MCSs and a SWV by using a

numerical simulation method, which promoted our

understanding of the interaction between the SWV and MCSs.

Nevertheless, little is known about how the variation of

convective intensity, distribution characteristics, and

development are related to the TPSWVs.

The strong convective precipitations caused by the TPSWVs

are closely related to the development of mesoscale convective

systems in the circulation of the two vortices. In recent years, with

the development of the new generation weather radar network of

ChinaMeteorological Administration (CMA), we have made lots

FIGURE 1
Observations used in this study and the topographic feature
of the SCB and its surrounding areas. The location of the sounding
sites (WJ, MS, YB, and CQ) is marked by the black triangles. The
locations of selected ground-based S-band Doppler radar
sites (MY, CD, YB, and NC) are marked by the red asterisks. The
locations of AWS sites are too many (about 1,500 sites) to be
marked. The area highlighted by the dotted box is the DWCPO.
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of achievements in the study of mesoscale convective systems. In

many research conclusions, it has become a consensus that

environmental vertical wind shear (VWS) plays an important

role in the occurrence and development of convective systems.

Zhang et al. (2012) believed that among the environmental

elements conducive to the occurrence of convective systems,

the convective available potential energy (CAPE) only needed to

reach moderate intensity, but large deep VWS was required.

Klemp (1987) used numerical simulation methods to verify that

VWS was the main source of vorticity in the early stage of

convective systems development, and also the important

dynamic factors for the splitting and renewal of convective

storms during the middle and late development periods.

Previous studies have pointed out the distribution of

precipitation region and given the mechanism explanation

when the SWV or the TPV developed alone. As introduced

above, precipitation regions influenced by the SWV or the TPV

were closely related to its circulation. However, when the two

vortices were coupled, the intensity and distribution of

precipitation would change significantly. Considering that the

interaction of the circulations of the vortices during the coupling

period might be an important factor leading to the change of

precipitation region and the development of MCSs was closely

related to the enhancement of rainfall intensity, the relationship

between the two vortices and convective systems was established

by VWS based on a strong precipitation event over the SCB, and

the effects of the atmospheric dynamic and thermodynamic fields

of the two vortices and terrain were investigated. The aim of our

work is to reveal the new characteristics of the location of

precipitation region when the two vortices were coupled and

the mechanism that causes such new characteristics. The results

will provide reference for the prediction of strong precipitation of

the two vortices. The data and methods utilized in this work are

introduced in Section 2. The relationships between the two

vortices’ circulations and the convective storms over the SCB

are analyzed in Section 3. In Section 4, we analyze the new

characteristics, formation and development mechanism, and fine

radar echo structures of precipitation related to the two vortices.

A summary and discussion are given in Section 5.

2 Data and methods

The data used and their functions mainly include:

1) The geographical location and motion path of the two

vortices and the characteristic of the winds, temperature, and

humidity were analyzed by using the ERA5 reanalysis hourly data

(Hersbach et al., 2020) with a horizontal resolution of 0.5°*0.5°

during June–July 2013.

2) The structure and variation of radar echoes were analyzed

by using the radar mosaic reflectivity (RMR) data and the radar

mosaic combination reflectivity (RMCR) data with a horizontal

resolution of 1 km*1 km and 6 min temporal interval. The RMR

data were derived from raw data observed by four CMA

operational S-band (10 cm) Doppler radars located at

Mianyang (MY), Chengdu (CD), Nanchong (NC), and Yibin

FIGURE 2
Topographic feature of the SCB and its surroundings and motion path of the two vortices (the red arrows represent the TPV motion path at
500 hPa and the purple arrows represent the SWV motion path at 700 hPa). The area highlighted by the dotted box indicates the DWCPO.
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(YB) (Figure 1) during 28–30 UTC June 2013. The RMR data

could make up for the limitation of single radar detection range

(Xiao and Liu, 2006) and improve the data quality in the complex

terrain area so that it is more suitable for the analysis and

research of mesoscale weather systems in a larger spatio-

temporal range.

3) The intensity and distribution of precipitation were

studied by using the data observed by the automatic weather

system (AWS) with more than 1,500 stations in SCB and its

surrounding areas during 28–30 UTC June 2013.

4) The data observed by sounding sites located at Wenjiang

(WJ), Mingshan (MS), YB, and Chongqin (CQ) (Figure 1) on

29 UTC June 2013 were used to analyze the atmospheric

stratification for the formation and development of the

convective systems over the SCB. The intensive observation

experiment of the southwest vortex in Sichuan Province was

conducted by the Institute of Plateau Meteorology from late June

to early August.

VWS is an important condition for the formation and

development of mesoscale convective systems. The main

activity heights of TPVs and SVWs are 500 hPa and 700 hPa,

respectively. The change of the position of the two vortices can

form VWS zones with different intensity and distribution over

the SCB. Therefore, the magnitude of VWS is an important

connection between the development of the two vortices and the

formation and development of convective systems over the SCB.

VWSV1 �
∣∣∣∣∣∣ �V500 − �V700

∣∣∣∣∣∣, (1)

VWSV2 �
∣∣∣∣∣∣ �V400 − �V850

∣∣∣∣∣∣, (2)

where VWSV1 and VWSV2 are the magnitude of the VWS vector

of 500–700 hPa and 400–850 hPa, respectively (unit: m/s), and �V
is the wind vector.

VWSV1 and VWSV2 were used to measure the influence of

the two vortices on the magnitude and distribution of VWS and

the depth of VWS over the domain where convection and

precipitation occurred (DWCPO). As can be seen from

Figure 1, DWCPO is a sub-region of the SCB.

3 Influence of the two vortices’
circulations on the occurrence and
development of convection over
the SCB

3.1 Overview of the two vortices

At 0000 UTC 29 June 2013, the TPV was generated in Gande

County, Guoluo Tibetan Autonomous Prefecture, Qinghai

Province. Meanwhile, the SWV was generated in Daocheng

County, Ganzi Prefecture, Sichuan Province. After the

formation of the two vortices, they moved towards the SCB.

In the following 12 h, the positions of the two vortices

experienced a process of rapid proximity from distance to

coupling of their circulations over the SCB. At 1800 UTC

29 June, the intensity of the SWV gradually weakened and

disappeared in the northern part of the SCB 12 h later.

Compared with the SWV, the TPV stayed over the SCB for a

long time. The center of the TPV entered the SCB at 1800 UTC

30 June and kept wandering in the central and northern part of

the SCB. In the following 48 h, its position moved less, and

disappeared to the northern part of the SCB at 0000 UTC 2 July

(Figure 2). Considering the research focus of this paper and the

integrity of observation data, the research period was determined

as the period of simultaneous existence of the two vortices (from

0000 UTC 28 June to 0600 UTC 30 June 2013).

3.2 Influence of the two vortices’
development on VWS over the SCB

From June to July, southerly winds prevailed at 700 hPa and

westerly winds prevailed at 500 hPa over the SCB and its

surrounding areas, and there was a cyclonic transition from

northerly winds to southerly winds over the SCB (figures

omitted). Therefore, an obvious region of VWS was formed in

the central and western parts of the SCB, with a magnitude of

about 7.5 m/s. When the VWS reached a certain intensity, it

would become a favorable factor for genesis of convective

systems over the SCB.

At 0000 UTC 29 June 2013, the TPV was initially generated,

and the westerly airflow to the south of the TPV center was

obviously strengthened. The westerly winds showed cyclonic

transition from the west side to the east of the SCB at

500 hPa. The direction of the changed winds tended to be

consistent with the direction of the southerly winds at

700 hPa, which was not conducive to the enhancement of

VWSV1 over the SCB (Figure 3B). Hence, the increase of

VWSV1 over the DWCPO was mainly due to the increase of

wind velocity at 500 hPa and 700 hPa. At 0000 UTC 29 June, the

centers of the two vortices moved to 102°E. At this time, winds at

500 hPa did not increase significantly over the DWCPO, but the

cyclonic shift of winds direction moved east to 106°E, which

made the VWSV1 over the DWCPO was significantly

strengthened only by the larger angle of the wind vectors

between 500 hPa and 700 hPa. The maximum VWSV1

increased to about 12.5 m/s, and the region with large value of

the VWSV1 showed an obvious north-south distribution

(Figure 3C). At 1200 UTC 29 June, the centers of the two

vortices moved rapidly toward the SCB, and the circulation

fields of the two vortices tended to be coupled, resulting in

the gradual decrease of VWSV1 over the DWCPO (Figure 3D).

Based on the formation time and position changes of the two

vortices, the research period could be divided into stages Ⅰ, Ⅱ, and
Ⅲ, as indicated in Figure 4. In stage Ⅰ, before the two vortices
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generated, large average VWSV2 and small average VWSV1 were

observed over DWCPO (from 0000 UTC 28 June to 0000 UTC

29 June 2013). The two vortices moved towards the SCB, and the

VWS over the DWCPO was gradually strengthened due to the

change of the position of the two vortices in stage Ⅱ (from

0000 UTC 29 June to 1200 UTC 29 June 2013). Convective

systems over the DWCPO developed rapidly during the period

from two vortices coupling to decoupling in stage Ⅲ (from

1200 UTC 29 June to 0600 UTC 30 June 2013).

The average VWSV1 over the DWCPO ranges from 7 m/s to

8.5 m/s in stage Ⅰ (Figure 4), which was close to the average value

of June and July. The average VWSV2 was about 14 m/s, much

larger than the average VWSV1. At the early phases of the two

vortices, the distance between the centers of the two vortices was

about 600 km (in stage Ⅱ). As the two vortices moved slowly, the

distance between the two vortices became smaller. The cyclonic

shear zone of westerly winds over the DWCPO moved eastward

due to the movement of the TPV at 500 hPa, and the angle of

wind vectors between 700 hPa and 500 hPa layers increased,

resulting in a rapid increase of the average VWSV1 over the

DWCPO from 2100 UTC 28 June to 1200 UTC 29 June 2013.

Meanwhile, both the average VWSV1 and the average VWSV2

had an increasing trend, and the VWS of the whole atmosphere

was relatively consistent. The deep VWS created good conditions

for the occurrence of convection over the DWCPO. As the

distance between the two vortices rapidly approached, the

circulations of the two vortices tended to be coupled, which

was the main reason for the rapid decline of the average VWSV1

and the average VWSV2 in stage Ⅲ.

3.3 Influence of VWS on the development
of precipitation echoes

As can be seen from Figure 3, at 1200 UTC 29 June 2013, the

VWSV1 over the DWCPO reached its maximum with the

FIGURE 3
(A–D)Horizontal winds (m/s; the blue vectors represent winds at 500 hPa and the green vectors represent winds at 700 hPa) and VWSV1 (m/s;
color shading) over the DWCPO from 1800 UTC 28 June to 1200 UTC 29 June 2013 at 6-h intervals. The inserted boxes (dotted boxes) indicate the
DWCPO.
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FIGURE 4
Time series of average VWSV1(m/s; purple solid line) and average VWSV2(m/s; blue solid line) over the DWCPO from 0000 UTC 28 June to
0600 UTC 30 June 2013 at 1-h intervals and the horizontal distance (km; black dotted line) between the centers of the two vortices from 0000 UTC
29 June to 0600 UTC 30 June 2013 at 6-h intervals. The time windows of stages Ⅰ, Ⅱ, and Ⅲ are also marked.

FIGURE 5
(A–D) RMCR (dBZ; color shading) from 1130 to 1730UTC 29 June 2013 at 2-h intervals and topographic feature (km; gray shading). The inserted
boxes (dotted boxes) indicate the DWCPO.
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changes of the positions of the two vortices, and the strong VWS

region presented an obvious north-south zonal distribution. In

the following hours, the VWS gradually weakened, the zonal

distribution gradually disappeared, and the large value center was

mainly in the southern part of the SCB. The above distribution

characteristics and intensity changes of VWSV1 were highly

consistent with the development of radar echoes over the

DWCPO during this period (Figure 5). At 1130 UTC 29 June

2013, radar echoes began to form over the DWCPO, and the

radar echoes presented a north-south zonal distribution from the

northern part of Yunnan province to the central part of Sichuan

Province near 105°E, corresponding to the large value belt of

VWSV1. About 15 convective storms developed at the same time,

with the scale less than 50 km and the central intensity generally

exceeding 50 dBZ (Figure 5A). About 2 hours later, the relatively

dispersed convective cells gradually joined into one piece,

presenting an obvious north-south zonal distribution feature

(Figure 5B). During this period, the intensity and scale of the

convective cells increased continuously. With the weakening of

the strong VWS over the DWCPO and the retention of the large

value center in the southern part of the SCB, the strong radar

echoes mainly developed in the southern part of the SCB, and the

area of the strong echoes gradually exceeds that in the central and

northern part of the SCB (Figure 5C). It is worth mentioning that

with the weakening of the zonal feature of VWSV1, the zonal

feature of the strong radar echoes over the SCB also gradually

disappeared, and the strong echoes diffused to the east of the SCB

(Figure 5D). In conclusion, VWS was an important condition for

the occurrence and development of convective storms over the

SCB and had a good indication for the intensity and distribution

of radar echoes.

4 Characteristics of convective
storms and precipitation over/in the
SCB under the interaction of the two
vortices

4.1 Spatial and temporal distribution of
convection and precipitation

The change of position of the two vortices created good VWS

conditions for the occurrence of convective storms over the SCB

in stage II. During the following 6 h after 1200 UTC 29 June were

the period of the strongest convective storms and precipitation

over/in the SCB.

As shown in Figure 6, in stage II, the intensity of radar echoes

over the SCB was weak, with the meridian average intensity

generally lower than 25 dBZ, and the east-west scale of the echoes

was small. With the passage of time, the radar echoes over the

SCB gradually moved eastward, with a small change in intensity

but a significant increase in zonal scale. Since the development of

convective storms was closely related to the magnitude of VWS,

although the circulations of the two vortices had affected the

weather in the SCB, the development of convective storms over

the SCB was generally weak because the intensity of VWSV1 had

not reached its maximum.

The center of strong precipitation was mainly concentrated

near 102°E and 104.5°E from 0600 to 1200 UTC 29 June 2013,

and the meridional average 6-h accumulated precipitation was

less than 5 mm. The accumulated precipitation value from

0000 to 0600 UTC 29 June was negligible. In stage Ⅲ, the

changes of radar echoes and precipitation characteristics over/

in the SCB could be divided into three phases. The early phase

was from 1,200 to 1800 UTC 29 June. During this phase, due to

the maximum VWS over the SCB, the convective storms

developed rapidly, and the mean meridian RMCR reached

about 35 dBZ between 104° and 105°E. The region of strong

radar echoes increased rapidly, and the east-west position moved

less. At the same time, the precipitation intensity reached its

peak, and the meridian average accumulated precipitation

between 104° and 105°E was about 40 mm over a 6-h period.

The middle phase was from 1800 to 2400 UTC 29 June. In this

phase, with the weakening of VWSV1 over the SCB and the

gradual disappearance of zonal distribution characteristics, the

concentrated strong north-south echoes’ region over the SCB

began to develop eastward. As this strong echo region was not

strictly along the south-to-north direction, no obvious double

strong echoes’ structure could be seen in Figure 6, but an obvious

FIGURE 6
Temporal variation of the average RMCR (dBZ; color shading)
from 0000 UTC 29 June to 0600 UTC 30 June 2013 at 1-h
intervals and the average accumulated precipitation in 6-h (mm;
color lines) observed by AWS in the SCB. The gray shading in
the lower portion indicates the topography of the SCB and its
surroundings along the 30°N.
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bimodal structure can be seen in the precipitation curve during

this phase (yellow curve in Figure 6). The maximum value of

precipitation was obviously weaker than the previous period. The

late phase was from 0000 to 0600 UTC 30 June. During this

phase, the precipitation in the SCB was mainly controlled by the

TPV as the SWV moved northward. Although the precipitation

bimodal structure still existed, the precipitation intensity

weakened significantly. In Section 4.3, the suppression effect

of the TPV on convection will be discussed in detail. This

suppression effect made radar echoes stratification appear in

certain areas of the SCB and precipitation intensity decreased

significantly.

4.2 Mechanism of double-band radar
echoes formation and its relationship with
precipitation in the SCB

Hydrostatic instability, water vapor in lower atmosphere,

convective triggering conditions, and VWS are the four main

factors for the occurrence of severe convective weather events. As

can be seen from Figure 7, at 1200 UTC 29 June, the hydrostatic

instability at the WJ site was the highest. Convection inhibition

(CIN for short) played a dominant role from 900 hPa to 100 hPa

and CAPE only 8.89 J/kg. K-index, SI-index, T850-500, and other

convective indexes were not prominent, and the situation at the

MS site with similar location was similar (figures omitted). The

CAPE at the YB site located at the southern end of the convective

zone reached 1,641.98 J/kg, while CIN was only about 40 J/kg

because it was in the strong convective region. At the same time,

K-index, SI-index, and T850-500 showed that the atmospheric

stratification at the YB site were very conducive to the occurrence

and development of convective storms. The CAPE at the CQ site

was even higher than YB, reaching 1955.87 J/kg, which provided

good environmental conditions for the development of radar

echoes moving eastward over the SCB during the middle and late

phases of stageⅢ. In conclusion, strong convection occurred and

developed in the middle of the SCB due to both strong VWS and

unstable atmospheric stratification.

Among the four factors that influenced the occurrence of

strong convection, the water vapor at low levels and VWS were

closely related to the development of the two vortices, while the

FIGURE 7
Skew T-logp diagrams over (A) the WJ site, (B) the YB site, and (C) the CQ site at 1200 UTC 29 June 2013.
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trigger condition and atmospheric stratification were related to

the spatial thermal environment of the SCB.

As the night fell on June 29, the temperature of the near

surface layer of the SCB was lower in the west and higher in the

east due to the different radiation cooling. According to the

temperature anomaly field (Figure 8), at the same altitude, the

maximum temperature difference in the east–west temperature

anomaly centers of the SCB was 6 K. The boundary between

positive and negative values of near-surface temperature

anomalies was just near 105°E, which was consistent with the

region where double-band echoes occurred (Figures 5A–C). At

1200 UTC 29 June, the center of SWV was located in the

southwest of the SCB, while the center of TPV was still in the

northeast of the plateau and did not move into the SCB. At this

time, the airflow movement in the middle and lower layers of the

SCB were mainly influenced by the circulation of the SWV,

leading to the prevailing easterly airflows below 800 hPa in the

eastern part of the SCB. The airflows showed obvious upward

movement in the central part of the SCB, and the strong part of

its ascending branch was located near 105°E (Figure 8A).

The convergence of warm and cold airflow near the surface

layer and strong upward movement were good trigger conditions

for the occurrence of convection. In combination with unstable

atmospheric stratification, abundant water vapor in the lower

layer, and deep VWS, all conditions for the occurrence of strong

convection near 105°E over the SCB were available. In the

following 6 h, with the enhancement of radiative cooling in

the western mountains of the SCB, the confrontation between

the cold and warm air near 105°E was maintained, and with the

coupling effect of the two vortices moving into the SCB, the

vertical movement of the atmosphere over the SCB developed

particularly deep (Figures 8B,C). At 0000 UTC 30 June, the

confrontation of near-surface temperature and the development

of deep convection over the SCB disappeared gradually due to

FIGURE 8
Vertical cross section of wind vectors (combined zonal wind and tenfold vertical velocity) and temperature space anomaly (K; color shading)
along the 30°N. The gray shading indicates the topography along the 30°N. Heuristic diagrams (green curved vectors) indicating horizontal vorticity
(+ and -) are alsomarked. The two blue dotted lines indicate the east andwest boundary of the DWCPO. Thewhite dotted line divided the DWCPO to
the east and west regions. (A) 1200 UTC 29 June 2013, (B) 1500 UTC 29 June 2013, (C)1800 UTC 29 June 2013, and (D) 0000 UTC 30 June
2013. (E)Vertical cross section of the difference of temperature anomalies between the east and west regions of the DWCPO from 0000 UTC
29 June to 1500 UTC 29 June 2013 at 1-h intervals.
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solar radiation and the weakening of the SWV. It is worth

mentioning that by comparing the circulation over the SCB

dominated by the SWV (Figure 8A) and that dominated by

the TPV (Figure 8D), it can be found that the strong vertical

movement over the SCB under the influence of the SWV is

mainly below 600 hPa, while above 500 hPa under the influence

of the TPV.

The westerly winds above 500 hPa on the south side of the

TPV cooled and descended in the eastern part of the SCB, while

the easterly winds below 700 hPa on the north side of the SWV

heated and rose in the central part of the SCB, forming an

obvious secondary circulation over the SCB in coordination with

deep VWS. Before the two vortices coupled, the secondary

circulation was particularly obvious, which shows an obvious

horizontal vortex tube rotating clockwise over the SCB

(Figure 8A). Klemp (1987) pointed out that the horizontal

vortex tube tilted by the updraft rising and the vorticity

couplet formed were an important dynamic mechanism for

the generation and development of convective storms. It was

also the main reason for the formation of many mesoscale

convective cell cores in the north-south zonal convective

systems over the SCB.

In order to reveal the role of the secondary circulation, we

analyze the vertical and horizontal vorticity associated with the

secondary circulation.

zζ

zt
� M+N+P+R+S, (3)

M� −[u zζ
zx

+v(β+ zζ

zy
)], (4)

N� −ω zζ

zp
, (5)

P� −(ζ+f ) · �V , (6)

R � −(zω
zx

zv
zp

− zω

zy
zu
zp

). (7)

From the first to the last term on the right (Eq. 3) are the

horizontal advection term (M), vertical advection term (N),

horizontal divergence term (P), tilting term (R), and friction

term (S), respectively.

After magnitude analysis, the horizontal vorticity of the

P-coordinate system can be simplified into the following

formula (Eq. 8, 9):

ζx � zw
zy

+ pg
RdT

zv
zp

∝
zv
zp
, (8)

ζy � −zw
zx

− pg
RdT

zu
zp

∝ − zu
zp

. (9)

ζy is the main horizontal vorticity over the DWCPO during the

gradual coupling process (Figure 9). The positive region of ζy
experienced a process from strengthening up to weakening

subsidence from 0600 UTC 29 June to 0000 UTC 30 June

(Figures 9A1–D1). When the secondary circulation was

strong, the positive horizontal vorticity below 600 hPa had

obvious convergence uploading characteristics and the vortex

tube uploading was unidirectional (Figure 9B1), which indicated

that the circulation of the SWV could actively affect the TPV,

while the TPV had no obvious influence on the SWV.

The north-south vortex tubes caused by the secondary

circulation tilted under the action of updraft, resulting in the

transformation of horizontal vorticity to vertical vorticity. It

could be seen from Figures 9A2–D2 that the large value

distribution of R was consistent with that of ζy and the large

value of ζy was mainly distributed in the central and western

regions of the DWCPO at 0600 UTC 29 June (Figure 9A2). At the

same time, the large value region of R presented an obvious

north-south zonal distribution, which was consistent with the

distribution characteristics of strong radar echo in this period.

The distribution of ζy had little change at 1200 UTC 29 June

(Figure 9B2), but the large value region of R presents a double-

band distribution structure similar to the strong radar echoes.

Based on Figure 9A2 and Figure 9B2, it was found that the

formation of the double-band structure of radar echoes was

closely related to the distribution of the R value.

It was worth noting that the ζy positive region near 800 hPa

had two significant high value centers at 0600 UTC 29 June

(Figure 9A1). After 6 h, the two large value centers strengthened

and connected (Figure 9B1). Considering that the transformation

from horizontal vorticity to vertical vorticity could enhance the

local convection intensity, the distribution characteristics of the

ζy positive value may be the key factor for the development of

strong echo region from single-band distribution to double-band

distribution.

With the proximity of the two vortices, the intensity of ζy and

R over the DWCPO region gradually weakened

(Figure 9C2–D2), which was consistent with the weakening of

the intensity of the secondary circulation in this period.

Due to the relatively fixed location of the large value region of

VWS formed by the circulations of the two vortices, the

occurrence and development region of strong convection over

the SCB was relatively fixed too. In terms of precipitation, it was a

long and narrow heavy precipitation belt from YB in the south to

MY in the north. The north-south scale of the heavy precipitation

belt was more than 300 km, but its east-west width was only

about 50 km (Figures 10A1–D1).

After the generation of the first band echo formed by the rain

area seen on radar, many convective cells with a scale less than

10 km were gradually formed not far from its east side, and these

convective cells gradually connect north and south to form a new

band echo (Figures 10A2–D2). Generally, after a convective

storm developed to the mature phase, the colder air at mid-

levels would pass through the updraft region and descended,

which resulted in strengthening the strength of the near-surface

cold pool at the back of the mature storm, then cutting off the

warm and wet air in the middle and lower layers of the old

convective storm, and triggering a new one at the front of the
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FIGURE 9
(A1–D1) Vertical cross section of vorticity vectors (combined ζy and tenfold vertical vorticity) and the zonal mean (28°N-32°N) of ζy (10−3s−1;
color shading) from 0600 UTC 29 June to 0000 UTC 30 June 2013 at 6-h intervals. The gray shading indicates the zonal mean (28°N-32°N) of the
topography. (A2–D2) Horizontal vorticity (10−3s−1; vector) and the positive tilting term (10−8s−2; color shading) over the DWCPO from 0600 UTC
29 June to 0000 UTC 30 June 2013 at 6-h intervals.
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surface cold pool. This is the main mechanism for the alternation

of old and new convective storms (Rotunno et al., 1988). In

contrast, there was a double-band echoes in which old and new

convective storms coexist over the SCB.

Therefore, we believe that the main reasons for the

coexistence of double-band radar echoes are as follows:

1) The formation and coexistence of the double-band radar

echoes mainly occurred in the early phase of stage Ⅲ, when the

VWS over the SCB reached the maximum, and then the two

vortices coupled over the SCB. The strong updraft near the

centers of the two vortices ran through the 700–500 hPa

layers, making the updraft over the SCB extend from the near

surface to 200 hPa. The updraft was dominant, leading to the

weakening of horizontal motion of parcels in the vicinity of the

convective cell, which enabled almost all the CAPE of the

environment east of the old cell to be converted to kinetic

energy of vertical motion, enabling the rapid development of

the new cell.

2) From the simplified equation of vorticity in the x–z plane

obtained by ignoring geostrophic deflection force (Eq. (10),

Houze (1993)), it can be seen that the change of vorticity is

mainly generated only baroclinically and is redistributed by

advection in the x–z plane. As can be seen from Figures

8A–C, the temperature difference between the east and west

sides of the near-surface region where convection storms

occurred over the SCB leaded to the enhancement of

baroclinicity, which resulted in the enhancement of horizontal

vorticity of the airflows (Figure 8A). This was balanced by the

clockwise vertical shear caused by the secondary circulation near

the surface so that the parcels at the front of the convective storm

had no predisposition toward either negative or positive vorticity,

thus forming a new convective storm in the front of the old one.

Rotunno et al. (1988) called it the “optimal” mode of air parcels’

movement in convective regions.

ξt � −Bx − uξx − ωξz , (10)

where ξt represents the time variation of vorticity, Bx is the

baroclinic generation term of horizontal vorticity, and uξx and

ωξz are vorticity advection terms in x and z directions,

respectively.

ξt caused by baroclinicity was closely related to the

temperature difference. We divided the DWCPO into east and

west regions along 105°E and used the difference of temperature

anomalies between the east and west regions (DTAEW) to

measure the baroclinicity. As shown in Figure 8E, the large

DTAEW mainly occurred at 6–15 on June 29, which was

consistent with the formation of double-band echoes. In the

vertical direction, the large center of the DTAEW mainly

appeared in the near-surface layer (950 hPa) and slowly

moved up to 800 hPa over time, which was consistent with

FIGURE 10
(A1–D1) Precipitation intensity in the DWCPO (mm/hour, color dots) from 1200 UTC 29 June to 1500 UTC 29 June 2013 at 1-h intervals.
(A2–D2) As in (A1–D1) but for the RMCR (dBZ; color shading). (A3–D3) Vertical cross section of the meanmeridional RMR (dBZ; color shading) from
1200 UTC 29 June to 1500 UTC 29 June 2013 at 1-h intervals.
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the upward movement of the large center of the temperature

anomaly in the eastern part of the SCB. From 1200 UTC 29 June,

the intensity of the secondary circulation and the DTA near the

surface decreased synchronously; with the weakening of the

DTAEW and the secondary circulation, the double-band

signature of the radar echoes disappeared too.

3) As shown in Figures 8A–C, due to reasons such as the

terrain of SCB, the eastern front of the colder airflows to the west

of 105°E had been relatively fixed, coupled with a strong upward

motion when the two vortices coupling made it hard for the

colder airflows at mid-levels to pass through the updraft area and

descend to strengthen the cold pool. The old convective storm

continued to develop because the warm and moist airflows at the

lower level would not be cut off by the cold pool. As shown in

Figures 10A3–D3, the new convective storm was independently

generated about 20 km to the east of the old one, and there was an

obvious boundary between the two strong echoes formed by the

old and new convective storms.

Different from the old band echo, the new band echo had a

relatively short lifetime, weak intensity, and faster moving speed,

resulting in small local accumulated precipitation. This explained

why there was no obvious double-band distribution of accumulated

precipitation in the same period of time (Figures 10A1–D1).

4.3 Formation conditions and
characteristics of radar echoes
stratification

At 1700 UTC 29 June, the east-west width of the strong echo

over the SCB increased rapidly (Figure 5D), and the intensity

gradually weakened. The main reason for this phenomenon was

that the position of the SWV at 700 hPa was north and its

intensity was weakened, which weakened the strong VWS over

the SCB and the deep updraft caused by the coupling of the two

vortices. However, the TPV was still strong at this time. From the

perspective of specific humidity and temperature in the TPV

circulation, the part of the circulation to the west of the center of

the TPV was wetter and warmer than the part to the east of the

center of the TPV because it was closer to the Tibetan plateau.

According to Figures 11A,B, the humidity (temperature) of the

part east of the center of the TPV was about 2 g/kg (2 k) lower

than that of the part west of the center of the TPV. The southerly

winds to the south of the TPV at 500 hPa brought the cold and

dry airflows around the vortex circulation into the center of the

TPV. The dry-cold advection formed an obvious dry-cold layer

wedged into the TPV circulation between 600 hPa and 500 hPa

(Figures 11C,D). Due to the existence of this cold and dry layer,

FIGURE 11
(A) Horizontal winds (m/s; vectors) and specific humidity (g/kg; color shading) obtained from ERA5 at 500 hPa at 1900 UTC 29 June 2013. The
inserted boxes (blue dotted boxes) indicate the DWCPO. (B) As in (A) but for horizontal winds (m/s; vectors) and temperature (K; color shading). (C)
Vertical cross section of wind vectors (combined zonal wind and tenfold vertical velocity) and space anomaly of specific humidity (g/kg; color
shading) along the 29°N. The gray shading indicates the topography along the 29°N. The two blue dotted lines indicate the east and west
boundary of the DWCPO. (D) As in (C) but for wind vectors (combined zonal wind and tenfold vertical velocity) and space anomaly of temperature
(g/kg; color shading).
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there were obvious stratification of specific humidity and air

temperature over the southern part of the SCB. The boundary

between the warm and wet layer in the upper part and the warm

and wet layer in the lower part was just between 600 hPa and

500 hPa.

The stratification of temperature and specific humidity was

the main reason for the stratification of radar echoes over the

SCB in the vertical direction. During this period, the SWV was

located to the north of the SCB and gradually weakened and

disappeared. From the southern section of the SCB (29°N), the

easterly winds and the vertical motion dominated by the SWV in

the lower layer were very weak. The temperature and humidity

field and circulation field dominated by the TPV over the SCB

were mainly characterized by temperature and humidity

stratification and strong vertical motion mainly concentrated

at levels above 500 hPa (Figures 11C,D). The formation of these

features requires the weakening and the northward movement of

the SWV. If the SWV was strong, the deep and strong upward

motion when the two vortices were coupled would rapidly

transport the warm and wet airflows in the lower layer to the

middle and high layers, and it was difficult to establish the

stratification phenomenon of specific humidity and

temperature. In addition, the strong VWS and easterly winds

would limit the convective storms over the SCB to a relatively

fixed area, and it was difficult to form the stratification

phenomenon of radar echoes. Therefore, only when the TPV

dominated the SCB, it was beneficial to establish the stratified

structure of temperature and humidity over the SCB.

At 1600 UTC 29 June, the double-band echoes over the SCB

gradually widened and moved eastward, especially for the strong

echoes region in the south of the SCB (Figure 5C). The air

temperature near 500 hPa over the SCB was significantly lower

than the surrounding area, and the cooling air and downdraft

would inhibit the development of convection below 500 hPa,

which was consistent with the research conclusion of Qiu et al.

(2015). As shown in Figure 12A, the top height of strong echoes

between 104.4° and 105°E in the southern part of the SCB was

about 5 km (500–600 hPa), which was consistent with the

boundary of temperature and humidity stratification

(Figure 11C). The updraft dominated by the TPV combined

with the relatively warm and humid air resulted in condensation

of water vapor above 500 hPa, which resulted in enhanced radar

echoes. In combination with the strong radar echoes restricted by

dry and cold air at the middle and low levels, radar echo

stratification was formed (Figures 12A–D).

The temperature and humidity stratification caused by the

TPV was mainly concentrated in the east region of its center, so

the suppression effect of the TPV on the strong radar echoes at

middle and low levels mainly occurred in this region. As shown

in Figure 12A, near 104.5°E, strong echoes could develop from

FIGURE 12
(A–D) Vertical cross section of RMR (dBZ; color shading) along 29°N from 1600 to 1900 UTC 29 June 2013 at 1-h intervals.
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surface to altitude of up to 10 km, but the phenomenon of

“cutting” of echoes by temperature and humidity stratification

became particularly obvious in the area east of 104.5°E. In the

middle and late phases of stage Ⅲ, the phenomenon of echo

stratification would continue to exist (Figures 12B–D). The

strong easterly echoes were continuously suppressed by the

stratification of temperature and humidity, and the intensity

gradually decreased (Figure 12D).

The existence of echo stratification indicated that the

development height of convection might be limited. As a result,

the precipitation intensity in the SCB was obviously lower than that

in the early phase of stageⅢ. The echo over the SCB dominated by

the TPV was larger in area, weaker in intensity, and faster in

movement. Meanwhile, the stratification of temperature and

humidity and the cold air descending east of the vortex center

limited the height of echoes development in this region. Therefore,

the intensity of precipitation in the SCB dominated by the TPV

weakened significantly after the SWV weakened and disappeared.

5 Summary and discussion

Based on ERA5 re-analysis data, RMR/RMCR data,

radiosonde data, and precipitation from AWS observations,

we analyzed a special severe precipitation event in the SCB on

29 and 30 UTC June 2013 under the background that the TPV

and the SWV coupling. The main conclusions are as follows:

1) The changes of the positions of the two vortices could

cause strong VWS over the SCB. Strong VWS was a necessary

condition for the development of convective storms over the

SCB. The intensity and distribution characteristics of VWS

dominated the development and distribution of convective

storms and precipitation over/in the SCB to some extent.

2) The vorticity associated with the secondary circulation

caused by the two vortices was positive. The negative vorticity

caused by baroclinicity just neutralizes the positive vorticity at

low level of the SCB so that as the parcel rose above the

boundary layer, it had no predisposition toward either

negative or positive vorticity, and it thus rose vertically.

Combined with the relatively fixed boundary between cold

and warm air masses, the old and new convective storms

could exist and develop simultaneously, and finally formed

the double-band echoes seen on radar.

3) The dry and cold advection on the east side of the vortex

center made the temperature and humidity over the SCB form a

stratified structure when the TPV dominated the circulation over

the SCB. The colder air, downdraft, and the hydrothermal

stratification structure in the east of the vortex center inhibit

the convection in the middle and lower layers so that the radar

echoes formed an obvious stratified structure in the

corresponding regions.

4) The precipitation was strongest in the SCB mainly when

the two vortices couple. During this period, water vapor was

transported over the SCB by the SWV and converged to the

vortex center, and the deep convection caused by the coupling of

the two vortices was conducive to the development of strong

precipitation. The TPV dominated the precipitation in the SCB

after the two vortices decoupled, and would suppress the

convective height in some regions, which made the rainfall

area expand, but the precipitation intensity decreases

significantly.

It is rare for the SWV and TPV to appear over the SCB and its

surrounding areas at the same time, but the coupling of the two

vortices is very easy to cause extreme heavy precipitation events.

Different from the weather process related to the SWV or TPV

alone, it is extremely difficult to forecast the precipitation area

caused by the vortex under the interaction of the two vortices,

because the heavy precipitation does not occur in the usual area

(southeast to the vortex center). Cheng et al. (2016) explained the

cause of the distribution of the precipitation area related to the

two vortices from the perspective of frontogenesis. This paper

further revealed the relationship between the two vortices and the

convective systems to explain the formation mechanism of the

precipitation area.

Because the two vortices usually need to cooperate with other

weather systems to cause a strong precipitation process, it is

necessary to study the role of the two vortices in a heavy

precipitation process. In particular, how the developments of

the two vortices affect the occurrence and development of

mesoscale convective systems that can produce heavy rainfall

deserves further study.

VWS plays an important role in the development of tropical

cyclone (TC). Li (1990) earlier revealed that VWS in the lower

troposphere had an inhibitory effect on the generation of

tropical cyclones (TCs), and the magnitude of this inhibitory

effect might be correlated with the strength of VWS (Zeng et al.,

2006; Fu et al., 2019). Both the TPV and the SWV have a warm-

core structure similar to TC. In particular, the TPV has been

proved to have dynamic and thermal structures similar to

tropical cyclone-like vortices (Li and Yang, 1998). Therefore,

the effect of VWS on the two vortices may be similar to that of

TCs. The difference is that both the southwest vortex and the

plateau vortex are shallow systems (the vertical thickness is only

2–3 km). Therefore, the effect of VWS at different heights on

shallow systems needs further study. At the same time, in the

period of the two vortices coupling, the VWS is small because

the circulation of the two vortices tends to be consistent. How

the smaller VWS affects the development of low vortexes in the

period of the two vortices coupling requires further research in

the future.

As this study dealt with one event, the mechanism of the two

vortices and the relationship between the vortices and the convective

system revealed in this paper may not be necessarily applicable to

other similar events. We need to analyze more similar weather

processes in future work to reveal the general and special laws of

heavy rainfall under the background of coupling of two vortices.
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The appraisal of tropical cyclones
in the North Indian Ocean: An
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This study aims to provide a comprehensive and balanced assessment of recent

scientific studies on the evolution, temporal variability and prediction of tropical

cyclones (TCs), focusing on the North Indian Ocean (NIO). The involvement of

earth’s components in TC genesis and intensification has been elaborated in a

confined way. The advancement of multidisciplinary approaches for

comprehending the TCs is highlighted after a brief description of the

involvement of oceanic, atmospheric, and land surface processes. Only a

few studies illustrate how land surface plays a role in TC intensification;

however, the role of latent heat flow, moisture, and convection in

cyclogenesis is well documented. Despite two to 3 decades of advancement

and significant development in forecasting techniques and satellite products,

the prediction of TC’s intensity, dissipation, track, and landfall remains a

challenge. The most noticeable improvements in NIO TC’s prediction have

been achieved in the last couple of decades when concord techniques are

utilized, especially the data assimilation methods and dynamical coupled

atmosphere-ocean regional models. Through diverse methodologies,

algorithms, parameterization, in-situ observational data, data mining,

boundary layer, and surface fluxes, significant research has been done to

increase the skills of standalone atmospheric models and air-sea coupled

models. However, some crucial issues still exist, and it is suggested that they

should be addressed in future studies.

KEYWORDS

tropical cyclone, north indian ocean, track, intensity, numerical weather prediction

1 Introduction

Tropical cyclone (TC) is a broad term for a non-frontal synoptic scale low-pressure

system that develops over the warm tropical oceans with organized convective processes

(Wang and Wu, 2004). Upper ocean heat content (UOHC) and sea surface temperature

(SST) are primary oceanic components that make favourable conditions for convection,
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which results in the development of a low-pressure area (Tiwari

et al., 2021). TCs have a horizontal scale of hundreds to thousand

kilometres extending throughout the troposphere’s height

(Wang et al., 2012). TCs are demarcated by different names

in various oceanic basins such as “typhoon” (Western Pacific),

“hurricane” (Atlantic and Eastern Pacific), and “tropical cyclone”

(north Indian Ocean). The World Meteorological Organization

and India Meteorological Department (IMD) have classified the

TCs over the north Indian Ocean (NIO) with 3-min maximum

sustained wind (MSW) speed (Table 1); however, the criterion

for MSW differs for different regions. A low-pressure area with

MSW 31–50 km/h is characterized as depression followed by

deep depression (51–62 kmph), cyclonic storm (CS, 63–88 km/

h), severe cyclonic storm (SCS, 89–117 km/h), etc. (Table 1).

The NIO, with a coastline of ~7,516 km, is accountable for

6–8% of TCs that develop over the globe dominated by the Bay of

Bengal (BoB) (Das et al., 2014; Espejo et al., 2016; Mohapatra,

2016; Gupta et al., 2019; Mohanty et al., 2019). The NIO shows a

bimodal distribution of TCs activities over the BoB and Arabian

Sea (ARB) basins. The primary peak lies in the post-monsoon

season (October-December) and another in the pre-monsoon

season, i.e., April-June. The trend of the propagation of NIO TCs

is northwestwards. Therefore, most of the BoB TCs cause

devastation on the eastern coast of India (Gupta et al., 2019;

Nadimpalli et al., 2021). Since the last decade, an increase in the

frequency of pre-monsoon intense ARB TCs have been observed,

and they mostly showed north-eastward propagation (Sriver,

2011; Wang et al., 2012). Thus, it is crucial to understand the

synoptic and mesoscale circulations that help in the TC genesis

and evolution.

Usually, the TC activities in the BoB are approximately four

times higher than in the ARB (Deshpande et al., 2021). However,

recent studies have reported an increasing trend of very intense

ARB TCs in the changing climate scenario due to the rise in the

ARB SST (Sriver, 2011; Wang et al., 2012; Gupta et al., 2019).

Deshpande et al. (2021) observed a significant change in the

frequency, duration, and intensity of the ARB and BoB CS and

VSCS during 1982–2019. The frequency of ARB CS has increased

by 52% in the recent epoch (2001–2019), whereas the frequency

of BoB CS showed a decrease in the same period. The year

2019 was the most active period for NIO, with 5 TCs in the ARB

and three in the BoB (Deshpande et al., 2021). Figure 1

demonstrates the monthly frequency of NIO TCs taken from

the IMD data for a period of 130 years (1891–2020). 49.8% of the

NIO TCs were formed in the post-monsoon season, while 28.9%

were in the pre-monsoon season. The overall contribution of

these 6 months was approximately 80%.

Figure 2 depicts the decadal frequency and trend of NIO TCs

for three seasons: March-May (MAM), June-September (JJAS),

and October-December (OND), as well as the annual period

from 1891 to 2020. The MAM TCs (Figure 2A) has declined

slightly, with a trend value of −0.004 and an average of 10 TCs

each decade. Above a 90% confidence level, the Mann-Kendal

test confirms that the trend is not significant. With a mean of

14.5 TCs per decade, JJAS (Figure 2B) has shown a significant

decreasing trend (above 90% confidence level). However, with an

average of 25.2 TCs each decade, the OND season has shown an

increasing trend (not significant at 90% confidence level)

(Figure 2C). With a trend value of −0.159 and 50.5 TCs per

decade, yearly NIO TCs have demonstrated a decreasing trend

(not significant above 90% confidence level) (Figure 2D).

Furthermore, Figure 3 shows the decadal frequency of ARB

TCs for the same seasons and duration as Figure 2. 34 TCs were

identified for the MAM season, with a slightly declining trend

from 1891 to 2020. In the JJAS and OND seasons, 39 and 59 TCs

were formed with an increasing trend, showing a ratio of 1:

1.74 for the ARB and OND seasons. In the recent 2 decades

(2001–10 and 2011–20), the number of ARB TCs for OND has

more than doubled. Over the last 4 decades, the frequency of

yearly TCs has monotonically increased, with an overall

increasing trend.

Mondal et al. (2021) examined the characteristics of BoB TCs

from 1982 to 2020 in the context of the El Nino Southern

Oscillation (ENSO). They reported that TC activities have

increased during ENSO years, with some shifts in their

genesis locations. The majority of the TCs were developed

TABLE 1 North Indian Ocean tropical cyclone intensity scale by IMD
based on 3-min average maximum sustained wind speed.

Category Maximum
Sustained wind Speed

Depression D 31–50 km/h

Deep Depression DD 51–62 km/h

Cyclonic Storm CS 63–88 km/h

Severe Cyclonic Storm SCS 89–117 km/h

Very Severe Cyclonic Storm VSCS 118–165 km/h

Extremely Severe Cyclonic Storm ESCS 166–220 km/h

Super Cyclonic Storm SuCS >220 km/h FIGURE 1
Annual cycle of NIO TCs frequency from 1891 to 2020 using
IMD data.
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FIGURE 2
Decadal frequency of NIO TCs and their trends during 1891–2020 for the seasons (A) MAM, (B) JJAS, (C) OND, and (D) Annual.

FIGURE 3
Decadal frequency of ARB TCs during 1891–2020 for the seasons (A) MAM, (B) JJAS, (C) OND, and (D) Annual.
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between 5o and 15oN. During La Nina (El Nino) conditions,

almost two-thirds of TCs were headed eastward (westward). The

TCs of La Nina years were found to have a longer lifespan than

those of El Nino. La Nina years had an average of 8.92 annual

TC days, which was twice as many as El Nino years (4.51 days).

In recent years, studies have been carried out to understand

the dynamics and thermodynamics of TCs’, physics of the

numerical weather prediction (NWP) models including

boundary layer parameterizations, and vortex initialization to

improve the TC forecast eventually to prevent devastations and

huge losses. The intense TCs cause unfair losses of lives,

infrastructure, and agriculture, especially near the coastal

region (Figure 4). Therefore, it cannot be ignored that with

the advancement in the TC forecast, there will be a significant

reduction in the loss of lives. Few recent perfidious TCs like

Amphan (2020), Fani (2019), Hudhud (2014), and Phailin

(2013), due to very to extremely severe intensity, resulting in

a loss of $6-7 billion. It extended the space of forecast

improvement to the numerical models and forecasting

community (Gupta et al., 2019).

In this review article, following with the Introduction, the

authors provide an overview of the role of earth’s components

associated with TC genesis and intensification in section 2.

Section 3 focuses on multidisciplinary approaches to study the

TC. Revolution in NIO TCs prediction in the satellite era is

discussed in section 4. Concluding remarks are given in the last

section.

2 Earth’s components and
cyclogenesis

A TC is a very complex phenomenon resulting from the

steady-state changes in the composite environment. A

low-pressure area develops over the ocean and concentrates

into depression and deep depression with favourable

conditions intensifying into a TC expanding in the

troposphere. Usually, after the landfall, it again concentrates

into a depression (Chauhan et al., 2021). Therefore, analysis

of all the environmental components contributing to TC

activities would be helpful to develop a better understanding

of the TC formation and precisely forecast its characteristics such

as intensity, eye formation, track, landfall, heavy rainfall, storm

surge, etc.

2.1 Role of ocean

Awarm ocean with a low-pressure system is the niche for the

formation of TCs. However, the thermal gradient of the NIO

consisting of BoB and ARB gives rise to many furious TCs.

Several studies have been done to understand the dynamics and

thermodynamics of the ocean involved in the TCs’ formation

(Webster et al., 2005). In addition, there are studies done in the

past to understand the impact of TC on the BoB region. The

findings from the studies confirm the rise in the NIO SST (Tiwari

et al., 2021). Mishra et al. (2020) reported a strong role of ARB

warming on increasing weather extremes. In addition to this, a

study by Mohanty et al. (2012) confirms the role of SST in

increasing the number of SCS in the ARB. Also, there are recent

studies done so far to understand the ocean’s role in TC

formation and its activities. For example, Prakash and Pant

(2017) studied the dominant role of mixed layer heat budget

in TC genesis. The study’s findings confirmed the reduction in

the magnitude and diurnal periodicity of the net surface heat

fluxes interconnected with the cloud cover during the cyclone.

On the other hand, Patwardhan and Bhalme (2001) and Jadhav

and Munot (2009) identified a significant decrease in the trend of

FIGURE 4
Various characteristics of a TC those can make severe impacts on lives and property.
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TC frequency seasonally despite increasing SST in recent

decades. Therefore, to simulate the accurate TC obtaining a

realistic SST is a big challenge to researchers. However, there

are studies conducted to do sensitivity experiments of models to

get realistic SST. SST obtained through satellite corresponds to

TC (Mandal and Mohanty, 2010; Mohanty et al., 2019). While

few contrasting studies (Demaria and Kalpana, 1994) reveal that

SST has a relatively less impact on the intensification and

propagation of TC after the formation. Bhatla et al. (2020)

mentioned that global warming had increased the upper

troposphere temperature and also the SST. This rise in SST

could be a reason for intense TCs (Chauhan et al., 2021). Another

study by Frank and Young (2007) also confirmed the role of SST

in the formation and increased intensity of TC.

A 28-years (1990–2017) mean SST in the pre-monsoon

(AMJ) and post-monsoon (OND) seasons over the NIO has

been shown in Figures 5A,B using the Hadley Centre Global Sea

Ice and Sea Surface Temperature (HadISST) data. The pre-

monsoon season is associated with boreal summer, and thus

the SST in this season was relatively high (Figure 5A). Southeast

ARB was warmer than other regions, and most of the intense

ARB TCs formed over this region. Due to the Indian Summer

Monsoon Rainfall season from June to September, the SST

during the post-monsoon becomes low but sufficient to

conceive TCs (Figure 5B). Central to south-east BoB was

comparatively warm, and most of the intense BoB TCs

developed over this region.

Other oceanic subsurface parameters play a vital role in

modifying the TCs genesis and other characteristics. Tropical

Cyclone Heat Potential (TCHP), currents, and eddies over the

warm oceans help in the TC’s rapid intensification (RI).

Moreover, a trace of eddies formation near TC tracks could

assess the RI phase (Jangir et al., 2020). Lin et al. (2013) also

mentioned the role of TCHP and eddy currents in the TC’s RI. A

spatial demonstration of TCHP over the BoB during the life of

VSCS Titli is shown in Figure 6. A cyclonic system like VSCS Titli

that encounter the TCHP and eddy currents are more disastrous

during the landfall and further inland progression. Mawren and

Reason (2017) and Patnaik et al. (2014) also mentioned the

contribution of eddies in the TC intensification over the NIO. In

addition, there are sparse studies carried out using the oceanic

numerical models to understand and forecast the TC. For

example, Das et al. (2014) used Princeton Ocean Model

(POM) to study the thermodynamics of oceans over BoB.

2.2 Role of atmosphere

TC is always a concern for meteorologists because it results

from synoptic and mesoscale interactions accompanied by other

natural phenomena like strong winds, heavy rainfall, and storm

surge. Likewise, ocean components other essential factors of the

weather system that contribute to the formation of TCs are

Coriolis force, vorticity, low vertical wind shear, moisture and

FIGURE 5
The mean SST (oC) over the NIO during 1990–2017 for (A)
April-June (AMJ) and (B)October-December (OND). The SST data
was obtained from Hadley Centre Global Sea Ice and Sea Surface
Temperature dataset.

FIGURE 6
Spatial distribution of tropical cyclone heat potential (KJ/cm2)
over the BoB valid for 10 October 2018 during the life of a very
severe cyclonic storm Titli. The data was obtained from the
National Remote Sensing Centre- Indian Space Research
Organisation, India.
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moist convection. Moreover, in tropical regions, moist

convection dominates the process of transporting mass,

energy, and momentum through the atmosphere (Kumar

et al., 2017). Albert et al. (2022) reported a 0.58 correlation

between power dissipation index (PDI) and SCS category TCs

from 1979 to 2019. They also found that relative humidity at

600 hPa, positive relative vorticity at 850 hPa, and reduced

outgoing longwave radiation at 500 hPa have significantly

contributed to the NIO’s increased TC frequency. Balaji et al.

(2018) used the accumulated cyclone energy (ACE) metric to

analyze TC activities over the NIO from 1981 to 2014 and

observed an increasing trend in recent years. SST, UOHC,

atmospheric water vapour, and the genesis potential index

(GPI) were all strongly associated with the growth and

variability of ACE. According to Duan et al. (2021), the lower

and middle troposphere’s relative humidity and vertical wind

shear are the two key contributors to TC genesis. The

combination of these two variables drives the bimodal

seasonal cycle of TCs’ in both the ARB and the BoB. Tiwari

et al. (2021) investigated the characteristics of post-monsoon

season TCs’ over the BoB from 1979 to 2018 using various

metrices such as ACE and PDI. They also used correlation and

principal component analysis on the VSCS, SCS, and CS category

TCs, taking into account SST, vertical wind shear, MSW,

minimum sea level pressure (MSLP), relative vorticity, and

specific rainwater content, among other parameters and

revealed that relative vorticity is the most influential among

all the controlling elements that impact the final intensity of the

BoB TCs’. A study by Chan (2005) explained the importance of

the baroclinic process in the TC. However, the energy and heat

transfer through convection modifies the temperature gradient

and vertical wind shear (Osuri et al., 2010). Again, the

representation of dynamical changes in the NWP model is a

big challenge. However, this has been further improved with

satellite products that help to develop the better initial vortex

position and structure of TC in the NWP models.

Further to confirm the data dependencies for position and

structure of TC, Courtney et al. (2019) used different best-track

datasets from IMD and Joint Typhoon Warning Center (JTWC)

to analyze the intensity of VSCS Hudhud. They found different

results with both the dataset as underestimation in one and

overestimation in other due to different criteria of sources for

MSW. Mohanty et al. (2020) portray the impact of dry air

intrusion on the ESCS Fani caused by asymmetric wind. This

dry air significantly impacts the vortex initialization that affects

the structure, landfall, and TC intensity. However, few studies

focused on improving the vortex initialization by using better

satellite and reanalysis data (Nadimpalli, 2020a; Nadimpalli,

2020b). In addition to SST, atmospheric high temperature and

diabatic heating also plays a dominant role in the evolution of the

intensity and determining the track of TC (Singh and Bhaskaran,

2020). Henceforth, many studies confirmed the direct correlation

between seasonal changes and TC formation. Therefore, the NIO

favours the formation of more intense BoB TCs in the post-

monsoon season and less frequent but intense ARB TCs in the

pre-monsoon season (Nadimpalli et al., 2021).

2.3 Role of land surface

The land is a sink for TCs, and they get energetic when

crossing the lands (Pattanayak and Mohanty, 2010).

Advancements in data assimilation techniques have improved

the forecast skills of the NWP models in wide ranges during pre-

and post-monsoon seasons. Also, land surface features have

helped to enhance the mesoscale features such as drying,

precipitation, and deep convection. It further helps in better

representation of Land Surface Models (LSM), Land use and

Land Cover (LULC), soil moisture and other parameters (Osuri

et al., 2017). Raju et al. (2011) progressively showed the

importance of land data assimilation in improving the TC’s

intensity prediction through better representation of boundary

layer flux exchange. Rajesh et al. (2017) confirmed the same

conclusion of the role of the land surface in mesoscale moist

convection. Scholarly articles indicate the inland role in a TC,

whereas the “Brown Ocean” concept was also introduced,

indicating the role of wetland in mimicking the ocean to fuel

moisture to the TC intensification over the many regions across

the world (Andersen and Shepherd, 2017). Nair et al. (2019)

reported the role of LULC change, soil moisture, heat flux in the

intensification of TC over land. Mohanty et al. (2001) mentioned

in the Indian Ocean Experiment (INDOEX) that deep offshore

plume-like structure resulting from diurnal variability and

topography heterogeneity plays a vital role in modulating the

local and large-scale circulation patterns. Chang et al. (2009) have

signified the role of soil condition before the storm in predicting

the landfalling storm. Kishtawal et al. (2012) analyzed the role of

change in soil bulk density and change in land features over the

decay of the TCs and post-landfall intensity changes. However,

there are very few studies to evaluate the role of land in TC’s

intensification and weakening. Also, the forecast of accurate

landfall and post-landfall intensification is a question of

debate. Henceforth, many studies suggested the use of

improved land force parameters for better prediction of TCs

(Mohanty et al., 2001; Corsaro and Toumi, 2017; Rajesh et al.,

2017).

3 Multidisciplinary approaches
addressing the cyclones

3.1 Numerical modelling (standalone
models)

In numerical models of the earth’s climate system and

mesoscale weather events, the atmosphere, ocean, land, and
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cryosphere, among other elements, are mathematically

represented. One of the best examples of such models is NWP

models, which have been the mainstay of operational weather

prediction for the last 2 decades or so. As new modelling

algorithms, parameterization schemes, and faster computing

resources become available, NWP is a complex and

specialized field that is constantly evolving. The NWP models

cover both hydrostatic and non-hydrostatic assumptions. The

conservation of momentum, conservation of mass, conservation

of energy, the first law of thermodynamics, equation of state, and

the relationship among pressure, temperature, and density are all

addressed in the fundamental governing equations of NWP

models, and some of them are shown below:

dV

dt
+ fk × V � −∇Ø + σ

Ps

zØ
zσ

∇Ps + F (1)

∇.(Ps V) + z

zσ
(Ps σ) + zPs

zt
� 0 (2)

zØ
zσ

� −RT
σ

(3)

Eq. 1, 2, and 3 are the horizontal momentum equation,

continuity equation, and hydrostatic equation, respectively.

Here, V is the horizontal wind velocity, Ps is the surface

pressure, T is the temperature, and σ, Ø are the diagnostic fields.

Thus, a set of partial differential equations that explain the

dynamic and thermodynamic processes in the earth’s

atmosphere are used to generate the prediction or forecast.

The equation set and model performance are highly

influenced by the horizontal and vertical grid structure, initial

and boundary conditions, and model domain.

There are various numerical models with different

resolutions for predicting and projecting TCs worldwide,

including NWP models, regional climate models (RCMs), and

global climate models (GCMs) (Table 2). However, due to

inaccurate vortex initialization of TCs, incomplete

representation of complex physical processes, error in

parameterization, and coarse resolution of the models, there

are biases in the predictions of TC intensity, genesis and

landfall that are still a challenge for forecasters (Chen et al.,

2020). Osuri et al. (2012) performed numerical experiments to

improve the TC intensity prediction by assimilating satellite-

derived wind data. Further research improves uncertainty in the

NWP system in predicting heavy rainfall associated with TC

through Doppler Weather Radar (DWR) data assimilation

(Mohanty et al., 2014). An example of TC simulation using

the WRF model is provided in Figure 7. Simulated MSLP

(Figure 7A) and surface wind at 10-m height (Figure 7B)

during a VSCS Titli (2018) over the BoB was captured well by

the model that shows the model’s potential to predict the TC’s

over the region.

The prediction skill of the NWP model is highly reliable on

the exactness of the initial state of the atmosphere. The

conventional measurements like Sonde, Pilot, Profiler, Airep,

Buoy, Ship, etc., have benefited the weather predictions,

including the tropical belt but to a lesser extent (Guerbette

et al., 2016). However, space-borne sensors provide

continuous data at a high spatiotemporal resolution over

sparse areas, mainly oceans. TCs are one of the deadliest

natural hazards over the tropical regions to predict in terms

of location and intensity to mitigate the devastation (Kumar and

Shukla, 2019). The forecasting of severe weather events highly

depends on moisture distribution and pre-convection

environment transportation (Sieglaff et al., 2009). Though

various conventional and satellite observations are routinely

assimilated in the NWP model to produce a precise estimate

of the initial model state (Montmerle et al., 2007), the use of

satellite radiances perform an important role in the present

operational data assimilation system (Kelly and Thépaut,

2007; Zupanski, 2013).

Due to a notable diversity in the observations, the Earth

system modelling and its evaluation using satellite data have

become challenging. Previous studies suggested that assimilation

of clear-sky or cloud-cleared radiance assimilation from

Microwave (MW) and Infrared (IR) sensors have improved

the temperature and moisture analysis (Madhulatha et al.,

2018). Zou et al. (2013) assimilated the Advanced Technology

TABLE 2 Details on the weather and climate models in brief.

Types
of numerical
models

Example Major purposes

Numerical weather
prediction models

Weather Research and Forecasting (WRF) model, Hurricane Weather
Research and Forecasting (HWRF) model

Real-time prediction of cyclones over the various oceans

Regional climate models
(RCMs)

Conformal Cubic Atmospheric Model (CCAM) from Commonwealth
Scientific and Industrial Research Organisation, RegCM from
International Centre for Theoretical Physics, REMO model from Max
Planck Institute for Meteorology, etc.

o Simulation of regional climate using the global climate model’s
output as input to a high-resolution (fine grids) climate model
o RCMs encompass a larger number of atmospheric, oceanic, and land
elements than weather models

Global climate models
(GCMs)

Norwegian Earth System Model (NorESM1-M), GFDL Earth System
Model Version 4.1 (GFDL-ESM 4.1) from Geophysical Fluid Dynamics
Laboratory, Canadian Earth System Model (CanESM2), etc.

o GCMs can be used to produce climate projections
o Provide data for RCM’s input forcings.
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Microwave Sounder (ATMS) radiances in the HWRF model to

analyze its influence on track and intensity forecasts. They

suggested a consistently positive impact on model predictions.

The accuracy in predicting severe weather events by numerical

models can be further improved by incorporating precipitation

and cloud affected radiances from MW sensors (Madhulatha

et al., 2018). In practice, it is difficult to separate the effect of

cloud and precipitation in the temperature and moisture

observations, therefore the assimilation of such data in the

NWP models is still a significant challenge (Kumar and

Shukla, 2019).

In the assimilation of clear-sky radiances, a large amount of

information is discarded due to the non-linearity of the system,

spatial and temporal discontinuity of the clouds and

precipitation, and limitations in the model dynamics. Also,

most of the data assimilation techniques forcefully transform

the nonlinear processes into the linearized form (Ohring and

Bauer, 2011; Kumar and Shukla, 2019). To avoid these difficulties

to some extent, many agencies use the clear-sky IR/MW radiance

in operational forecasts (Madhulatha et al., 2018). As a result, the

clear sky radiance from different MW sensors has shown a

positive impact on the NWP model forecasts.

Ice and precipitation-affected radiances have amassive potential

to improve accuracy (Ohring and Bauer, 2011; Zupanski, 2013;

Kumar and Shukla, 2019). Modification in observation thinning and

quality control allowed Zhu et al. (2016) to assimilate all-sky satellite

radiances in the Grid-point Statistical Interpolation (GSI) analysis

system and evaluate the outputs over the clear-sky approach. The

FIGURE 7
Spatial distribution of (A) MSLP and (B) 10-m surface wind during the life of cyclone Titli (2018) over the ARB using the high-resolution WRF
model.

TABLE 3 Advantages and disadvantages of different methods over one another.

Approaches Strength Weakness Best suited for

Numerical
modelling

Provides a reliable confidence on real-time TCs’ prediction Large computational resources require
for the numerical simulations

Operational forecasting, e.g., real-time
prediction of TCs’ at IMD

Coupled models Provide a better understanding of oceanic surface and sub-
surface processes involved in cyclogenesis, which the
standalone atmospheric models do not provide

Substantial requirement of computational
resources and computation time.

Cyclone related research and study of
various parameters like tropical cyclone heat
potential

Statistical approach Relatively less computational resources require Less confidence on medium-range
weather forecasting

Probabilistic analysis of cyclones

Machine learning
methods

o Relatively less computational resources require Less confidence on cyclone prediction
compared to numerical modelling
approach

Probabilistic study and projection of
cycloneso Useful to address the complexity involved between TC

predictors, which the statistical methods get failed to
resolve

Observational
datasets

Provide best possible records of meteorological parameters o Data is rarely available over the remote
locations

Play critical role in the real-time prediction
of cyclones

o Inconsistency in data continuity
o Association of instrumental error
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all-sky assimilation system provided more realistic brightness

temperature (TB) results and cloud water analysis increments.

Yang et al. (2016) analyzed the impact of clear-sky and all-sky

AMSR2 radiances in predicting Hurricane Sandy. All-sky

AMSR2 assimilation experiment showed the improved forecast of

MSLP, cloud distribution, and warm-core structure compared to

clear-sky radiance because more precipitation/cloud-affected data

was assimilated through all-sky radiance around hurricane core

areas. Assimilation of MW radiometers measured radiances in

cloudy and rainy areas has shown recent progress in the

humidity analysis (Yang et al., 2016; Zhu et al., 2016). Previously,

Guerbette et al. (2016) showed the sensitivity of the Sondeur

Atmosphérique du Profil d’Humidité Intertropicale par

Radiométrie (SAPHIR) sounder within cloud systems to solid

precipitating hydrometeors. Singh et al. (2013) compared the

NWP model simulated radiances from SAPHIR using input

profiles retrieved from Atmospheric Infra-Red Sounder (AIRS)

data and radiosonde profiles. Singh et al. (2013) found good

agreement between SAPHIR and Microwave Humidity Sounder

(MHS) TB. A representation of SAPHIR TB during the cyclone

Ockhi (2017) over the NIO is also demonstrated in Figure 8.

3.1.1 A NIO TC simulation instance with
standalone WRF model

We have performed the simulation of TC Titli (2018) over

the BoB basin of NIO using the WRF model. The initial and

boundary conditions were taken from the “final analysis”

product of the National Centers for Environmental

Prediction (NCEP). The model simulation was started at

00 UTC on 9 October 2018, for a period of 120 h, and the

results were compared to the “best-track” data from the IMD.

The model simulation of cyclone Titli’s genesis point was

southwest of the observed location. The simulated storm

crossed the observed track three to four times within the

first 24 h (Figure 9). Then it proceeded continually on the

left side of the observed track and made landfall on India’s east

coast about 6 h later, to the southwest of the actual landfall

region. Further, we evaluated the mean absolute error in

simulated TC’s track (Figure 10A) and intensity errors (in

terms of MSW; Figure 10B) to the IMD best-track data

(Figure 10). The model performed excellently for the first

24 h, with a track error of less than 50 km (Figure 10A).

However, the model began to exhibit substantial errors

FIGURE 8
An overview of the brightness temperature dataset obtained from the 6-channels of SAPHIR, Megha-Tropiques satellite during the life of a very
severe cyclonic storm Ockhi (29 November 2017–6 December 2017) over the NIO.
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(more than 100 km) after 30 h of lead time and continued to do

so until the simulation was completed. Similarly, the model

produced a reasonably good intensity simulation with a 1-day

lead time (Figure 10B). The model showed a relatively large

error (underprediction) at 30 and 36 h and an overestimation

in the TC’s intensity simulation from 42 h onwards. Except for

a few steps, the intensity error was less than or close to

five hPa. In general, the model has demonstrated the ability

to address the characteristics of NIO TC, while improved

techniques such as 4DVar data assimilation can produce

more accurate results.

The performance of the WRF model over the NIO is

analogous to those of other basins. For example, Islam et al.

(2015) reproduced Typhoon Haiyan’s track movement and

strength over the West Pacific Ocean. The model performed

well in the track simulation, but it significantly underestimated

the intensity simulation. Tiwari et al. (2019) used theWRFmodel

to simulate super typhoon Maysak over the Northwest Pacific

Ocean, and the model provided reasonable results compared to

observations.

3.2 Coupled models (two-way or
three-way)

It is noticed that atmosphere, ocean, and land all together

have a role in the TC genesis through the exchange of fluxes that

ultimately affect TC intensification and track changes. Moreover,

it is confirmed by Mohanty et al. (2001) that land-air-sea

interaction has a significant impact on the regional circulation

pattern. There is a developed strong feedback teleconnection,

interaction and feedback between the regional and global scale

features. Recent research mentioned the importance of the air-

sea interface for intensity prediction. Following the same, there

are many studies over the influence of air-sea interaction on TC

physical activity and its simulation. It is well established that air-

sea moisture difference and surface entropy flux increase the

intensity and hence destructiveness. Single standalone models

used for the TC forecasts are more biased and inaccurate due to

the unrealistic feedback in the model. Such static SST is provided

in the NWP models, with a high probability of biases in the

results (Bender and Ginis, 2000; Bender et al., 2007). Henceforth,

coupled models emerged as a helping tool to the modelling

community in improving the predictability skills of the model.

Many studies have been done so far to test the predicting skills of

coupled ocean-atmosphere models over NIO and other oceans.

For example, the sensitivity experiment of the HWRF-POM/

HYCOM coupled ocean-atmosphere model was conducted to

demonstrate the predicting skills of these widely used regional

models (Mohanty et al., 2019). Another study using WRF-

ROMS demonstrated the benefits of a coupled atmosphere-

ocean model for obtaining realistic simulations of atmospheric

and oceanic parameters under the extreme weather conditions

associated with a very intense cyclone such as TC Phailin

(Prakash and Pant, 2017). There are more studies observed

using coupling between ocean-atmosphere but three ways

coupled models are significantly less explored. However, few

studies demonstrated the usefulness of the inclusion of realistic

land surface features has the potential to improve the predicting

skills of models.

3.3 Statistical approach

Studies show that using a statistical approach is a

challenge. The statistical models and methods have

limitations in TC prediction beyond 24 h over a

heterogeneous environment like NIO (Mohanty and Gupta,

1997; Gupta, 2006). However, these methods are not far

behind in contributing to the improvement in TC forecast.

Statistical approaches are used to correct the data, fill the gaps

for data, bias correction, downscaling, and many more ways to

explore the correlation between environmental drivers and

TC activity. A study was conducted by Lee et al. (2020) using

the statistical downscaling approach to investigate the TC’s

frequency, and the result indicates that future TCs will be

more devastating (more intense). Data used in NWPmodels is

always a hindrance in the TC forecast. Statistical approaches

help improve the quality of input data for initial and boundary

conditions and post-processing.

3.4 Machine learning methods

Orthodox statistical models often fail to address the

nonlinear and complex relationship between TC predictors

(Demaria et al., 2005; Lee et al., 2015; Wang et al., 2015). To

FIGURE 9
Observed (IMD best-track) and simulated (WRF) tracks of TC
Titli (2018) over the NIO initialized at 00 UTC 2018–10-09 using
the input forcings from the NCEP 1o × 1o final analysis product.
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solve such challenges, the concept of machine learning is being

used to explore the observational datasets to improve the TCs

forecast skills (Chen et al., 2020). It also helps to improve the

uncertainties in the NWP models by enhancing the pre-

processing, i.e., refining the initial condition of a model

through data assimilation techniques. Artificial intelligence, a

part of machine learning, is a new development to the current

century. According to their applications, we can divide the

machine learning algorithms into three categories: feature

selection, clustering, and regression (Chen et al., 2020).

Richman et al. (2017) applied the support vector regression

(SVR) method to an initial predictor pool to reduce the TC

seasonal prediction errors. Alemany et al. (2019) proposed a fully

connected recurrent neural network to predict the TCs trajectory.

Their method successfully predicted the hurricane’s track up to

120 h with reduced error.

3.5 Observational datasets

Once the TC approaches the land, the automatic weather

station (AWS) and conventional observations such as sonde,

pilot, profiler, airep, buoy, ship, and doppler weather radar

data are relevant for TC prediction. Because conventional

observations over the ocean are unavailable, satellite data are

being used and have shown to be significant for studying and

understanding TC characteristics (Jaiswal et al., 2017).

Microwave scatterometers have been effective in studying

cyclogenesis in its early phases (Sharp et al., 2002). The use

of a sea-winds scatterometer has been valuable in

understanding tropical disturbances (Sharp et al., 2002; Li

et al., 2003). Jaiswal and Kishtawal (2011) and Jaiswal et al.

(2013) applied the scatterometer derived surface wind. They

used a wind pattern matching based technique that relied on

the availability of a cyclonic disturbance during the satellite

overpass.

Apart from conventional observations, the reanalysis products

from the European Centre for Medium-Range Weather Forecasts

(ERA-I, ERA-40, and ERA-5, and others), National Centers for

Environmental Prediction—National Center for Atmospheric

Research, Modern-Era Retrospective Analysis for Research and

Applications, etc., are widely used in many kinds of literature to

study the TCs, such as Evan et al. (2006); Balaji et al. (2018); Duan

et al. (2021); Tiwari et al. (2021); Ranji et al. (2022); etc.

FIGURE 10
6-hourly (A) track error (km) and (B) intensity error (m/s) in terms of MSW for the simulation of TC Titli initialized at 00 UTC 2018–10-09 using
WRF model. The outputs are validated against the IMD best-track data.
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3.6 Intercomparison of strength and
weakness of various approaches

The numerical modelling approach is demarcated as best

suited for operational forecasting; however, the coupled models

are best to perform the cyclone related research (Table 3).

3.7 Performance comparison of various
approaches

The simulation of cyclone Phailin induced storm surge and

inundation was carried out by means of ADvanced CIRCulation

(ADCIRC) model by Kumar et al. (2015). Phailin made landfall

on 12 October 2013 at Odisha (east coast of India). Within a few

days of landfall, the model-simulated inundation extent

corresponded closely with field surveys at Ganjam, Odisha.

Furthermore, the model nicely simulated the temporal

evolution of the surge residual based on measurements from a

tide gauge in Paradip. However, the model slightly

underestimated the magnitude compared to observations,

which might be attributed to the model’s paucity of wave

setup and uncertainty in wind and pressure parameters. More

or less a similar kind of study was performed by Murty et al.

(2014) by implementing a coupled wave + surge hydrodynamic

modeling system to simulate storm surge caused by cyclone

Phailin. The coupled model setup provides a realistic

representation of the dynamic interaction of currents, waves,

tides, and wind, which is important for operational forecasts.

Saxby et al. (2021) compared the performance of a regional

convection-permitting atmosphere-ocean coupled model,

i.e., the Met Office Unified Model atmosphere-only

configuration and three-dimensional dynamical ocean model

for the simulations of BoB TCs. Results showed that the

atmosphere-only configuration produced stronger TCs than

the coupled configuration; however, both model

configurations reasonably represented the TC dynamics.

Sahoo et al. (2019) evaluated the impact of cyclone Phailin’s

strong winds and heavy rainfall on the power distribution

network. The data from the tailored WRF model was found

to be highly effective in managing power distribution and

transmission networks in electric power grids. A thorough

inspection of the results reveals that the atmospheric model

fared well to capture power line tripping time. This study’s

overall knowledge offers a greater scope for developing a

framework for efficient power network planning operations,

resource allocation, and disaster preparedness. Kumar et al.

(2017) evaluated the WRF model with nested domains

(horizontal resolutions of 27 and 9 km for outer and inner

domains, respectively) to simulate cyclone Phailin. Compared

to the domain-1 simulation, the cyclone’s intensity was well

simulated in domain-2. In the domain-2 simulation, the average

root mean square error and standard deviations of surface wind

and MSLP were significantly lower. The track of cyclone Phailin

was also well demonstrated by domain-2 simulation with respect

to IMD best-track observation.

4 Current status of the NIO cyclones
prediction

Many studies in recent years have shown remarkable

advances in NIO cyclones’ track prediction; nonetheless,

intensity prediction and rapid intensity prediction remain a

crucial challenge for researchers and the scientific community.

This section discusses the literature on the current status of NIO

TCs, covering characteristics such as genesis, track,

intensification, landfall, rainfall, and so on.

4.1 Status of cyclones genesis, track,
intensification, and RI

For NIO cyclones real-time prediction, the IMD in New

Delhi introduced some in-house global and limited area NWP

models (Mohapatra et al., 2014, Mohapatra et al., 2013; Mohanty

et al., 2015; Nadimpalli et al., 2020a). IMD employed the Quasi-

Lagrangian model as a TC operational model with a coarser

resolution and only 16 vertical levels in the twenty-first century’s

first decade. Under the auspices of the ‘Forecast Demonstration

Project of Landfalling TCs,’ some prestigious research centres

and academic institutes in India also provide real-time TC

forecasts to IMD for official usage (Mohapatra et al., 2011;

Nadimpalli et al., 2020a). Since 2007, some operational centres

have adopted the WRF model for real-time TC prediction.

Adapting such mesoscale models like WRF and HWRF for

the NIO region has been a significant development in recent

years. Some works of literature such as Kanase and Salvekar

(2015); Mahala et al. (2021); Osuri et al. (2012); Pattanayak et al.

(2012a), and Raju et al. (2011) conducted dedicated simulations

to determine the optimal parameterization scheme set up within

theWRFmodel for the NIO region. TheWRFmodel was used by

Osuri et al. (2013) to simulate 17 NIO TCs. The TCs movement

had an eastward and sluggish bias. Track errors ranged from

113 to 375 kmwith a model resolution of 27 km. Pattanayak et al.

(2012b) and Mohanty et al. (2013) found better results with the

HWRF model for TCs’ track prediction and improved intensity

prediction over the BoB. Nadimpalli et al. (2020a) evaluated the

forecasts from WRF and HWRF models in a quasi-operational

setup for 10 BoB TCs from 2013 to 2017. Both models performed

well for forecasts up to 30 h; however, HWRF generated more

accurate results for longer forecasts.

Vinodhkumar et al. (2022) studied the climatology of NIO

cyclone RI behaviour from 1990 to 2019. If the MSW speed of a

cyclone increases by 15.4 m/s or greater in 24 h, it is classified as RI.

During the time period given above, 46 NIO cyclones had the RI
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feature, with a considerable increase beginning in the year 2000. The

post-monsoon season proved more favourable for RI TCs. While

around 70% of RI TCs migrated north-westward or westward,

eastern states of India (Tamil Nadu, and Andhra Pradesh) are more

vulnerable to RI TCs. A possible cause behind the increase in the RI

TCs over the NIO could be the higher moisture and SST over the

cyclogenesis locations than the non-RI TCs (Nadimpalli et al.,

2021). Munsi et al. (2021) used the WRF model to perform

three-dimensional variational-Ensemble Kalman Filter data

assimilation for three cyclones over the NIO: Fani, Ockhi, and

Luban. To investigate the RI of these TCs, upper-air observations,

radiometer wind, and radiance data were assimilated. In all cases,

the model framework correctly simulated the RI.

4.2 Status of cyclones landfall and rainfall

Osuri et al. (2013) reported the WRF model to be more

efficient in predicting the landfall location than the other

attributes. Govindankutty et al. (2010) showed a positive

impact of assimilating the conventional and Doppler weather

radar radial wind assimilation on the intensity and rainfall

distribution of NIO TCs. Sandeep et al. (2017) assimilated the

Doppler weather radar wind profiles in the 3DVar and Hybrid

3DVar mode and found a minimal improvement in the TC’s

zonal and meridional winds simulation. Gopalakrishnan and

Chandrasekar (2018) performed the assimilation of satellite-

derived winds, satellite radiance, and conventional

observations with 3DVar and four-dimensional variational

(4DVar) mode for the first time over the NIO for 4 TCs. The

4DVar experiments revealed better results than 3DVar in terms

of track and intensity and rainfall prediction.

5 Conclusion

This study has provided the literature review on the climatology

and recent progress in the tropical cyclone (TC) prediction over the

North Indian Ocean (NIO) along with various methods to study

them. Although the authors have tried to include as many aspects as

possible, some studies could have been missed because of the rapid

advancement of this research area. Several important facets of TC

have been discussed, including the earth’s components and

multidisciplinary approaches for TC prediction. In recent years,

a rise in the NIO sea surface temperature, especially in the Arabian

Sea, has been a primary factor for the genesis of highly intense TCs.

Along with SST, vertical profiles of tropical cyclone heat potential in

the ocean also affect the TC formation and intensification. A direct

correlation of TC frequency with seasonal changes successfully

claims the genesis of intense Arabian Sea (Bay of Bengal) TCs in

the pre-monsoon (post-monsoon) season. At India Meteorological

Department in New Delhi, operational forecasting of the NIO TCs

is mainly being done by numerical modelling systems, including

Weather Research and Forecasting and Hurricane Weather

Research Forecasting models. Recent studies have shown

significant improvements in TCs prediction with the

assimilations of remote sensing observations. However, the

improvement in the intensity and rapid intensity prediction of

NIO cyclones is still of major concern. There is sufficient literature

on three-dimensional variational (3DVar) data assimilations; very

few studies on four-dimensional variational (4DVar) data

assimilations over the NIO region are available. Being a more

accurate technique, further scientific development with the

4DVar data assimilation method for NIO TCs prediction is on

high priority in the present scenario.
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Water vapor flux divergence under the terrain-following coordinate system is

decomposed into slow and fast manifolds with the adoption of the Barnes filter

method and the synoptic approach based on the Helmholtz theorem in this

study. The performances and applications of both methods are evaluated in

precipitating events over the Xinjiang province in Chinawhen traditional analysis

fails to capture the evolutions of extreme precipitations caused by multi-scale

systems and complicated terrains. A blizzard with a short duration under weak

moisture environments and a persistent torrential rainfall event with abundant

water vapor in the summer are selected as test examples for comparative

analysis of the relationships between water vapor divergence and precipitation

characteristics with the adoptions of both traditional synoptic diagnosis and two

decompositionmethods. It is found that divergent areas of the total water vapor

flux divergence at the middle and high levels are blocked by false convergence

at the low levels as the precipitation weakens in both cases, which leads to the

failure of traditional synoptic diagnoses. Meanwhile, the two decomposition

methods can provide superior indicators for extreme precipitation, especially

before rainfall decreases or terminates. The synoptic approach performs better

than the Barnes filter method as the latter sharply decreases in accuracy as the

complexity of the flow fields and moisture conditions increase. Remedies for

relieving this problem are proposed before being used for further applications.
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extreme precipitation, flow decomposition, Helmholtz theorem, Barnes filter,
moisture flux divergence
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1 Introduction

The recently published IPCC AR6 report presents a full and

systematic evaluation of extreme weather events. It shows that

severe precipitation increases 7% in intensity when the

temperature increases 1°. Furthermore, the variability of

torrential rainfall events is studied and seen well-related to

global climate warming in the form of non-linear processes

(IPCC, 2021; Zhang et al., 2021). Compared to regions at the

same latitudes, Central Asia is more sensitive to global climate

change for its complicated terrains and unevenly distributed

hydrological sources (Yin et al., 2014; Li et al., 2015; Hu et al.,

2016; Jiang et al., 2020). Featuring in scarce precipitation, Central

Asia is experiencing an increase in the occurrence of extreme

rainfall and has been vulnerable to extreme precipitation in

recent years (Deng et al., 2014; Huang et al., 2014, 2015; Hu

et al., 2014, 2017; Malsy et al., 2015; Zhao et al., 2016; Zhang et al.,

2017). Increased extreme precipitation may help solve the limited

water availability problem, but introduce floods and secondary

disasters (Knapp and Coauthrs., 2008) at the same time. Severe

droughts and floods threaten human lives and constructions of

the Silk Road Economic Belt. Xinjiang province, the key area of

the Silk Road Economic Belt, has suffered 45 local rainstorms and

floods every year in average for the past 10 years (Wang and

Wang, 2021). Apart from complicated terrains and soil types,

dominant weather systems of different scales are also responsible

for the sudden and extreme precipitations in both summer and

winter (Ma et al., 2021). Anomalous precipitation is directly

related to the moisture supply and can be represented by water

vapor transport which is well studied and widely used globally or

over East Asia (Ding, 1994; Trenberth et al., 1995; Zhou and Yu,

2005; Gao et al., 2017, 2021; Qin et al., 2021). Hu et al. (2021)

studied the water vapor transport of the summer half-year from

1979 to 2018, the results showed that water vapor from the North

Atlantic Ocean, Europe, and the Mediterranean Sea contributes

to northern Xinjiang’s extreme precipitation, while water vapor

from the Arabian Sea, the Arabian Peninsula, and the Indian

Peninsula contribute to extreme precipitation over southern

Xinjiang. By far, a detailed comprehension of the relationship

between water vapor transport by different scales of motions and

extreme precipitation over the Xinjiang province is deficient and

should be an issue of considerable urgency.

Multi-scale flows coexist in the real atmosphere. In other

words, real weather events can be seen as a combination of slow

manifolds and fast ones from the perspective of phase space

(Leith, 1980; Lorenz, 1980, 1986; Daley, 1991). Slow manifolds

follow basic physical principles with high predictability, while

fast ones contain randomness and thus are hard to forecast.

However, the fast manifold motions and their interaction with

slow ones are the direct reason for the initiation of most severe

weather events. For climatic studies, the slow manifold covers

systems of planetary scale and large-scale ones (Hasselmann,

1976). Most climate numerical models are constructed by

eliminating fast manifolds which coexist as perturbations over

the slow ones. For synoptic studies, the slow manifold serves as

the background for the fast one which includes flows of sub-

synoptic, mesoscale, and convective scales. There are three types

of approaches to decompose slow and fast manifolds which are:

the statistical method (Seager et al., 2010), synoptic analysis, and

dynamic one. Barnes filter (Barnes, 1973) is a classical statistical

method which has been broadly used in diagnosing typhoons,

cyclones, and Meiyu fronts (Doswell, 1977; Gomis and Alonso,

1990; Xu et al., 2017; Xue et al., 2018; Zou et al., 2018; Ma et al.,

2021), the mathematical procedure is direct and efficient, but the

physical basis is not solid, especially for a specific case study. The

synoptic analysis approach is based on the Helmholtz theorem by

decomposing horizontal velocity into rotational and divergent

flow components (Hawkins and Rosenthal, 1965; Dimego and

Bosart, 1982; Ullah et al., 2020, 2021). The latter is the fast

manifold which is directly linked to vertical motions and is

responsible for severe weather. Applications of this physically

solid method are wide in both atmospheric and oceanic motions.

However, the accuracy and efficiency for mesoscale diagnosis in a

limited domain limits this method in climatic or large-scale

applications (Renfrew et al., 1997). Xu et al. (2011) designed

an integral method with the adoption of Green’s function for

limited areas of arbitrary shapes. The dynamic analysis approach

approximates primitive equations to different extents and can be

divided into geostrophic and balanced types (Allen, 1991; Xu,

1992). This is the most solid physical approach but at the same

time is extremely complicated for numerical computations. High

resolution dataset outputs frommesoscale models add difficulties

to the applications of the dynamic analysis approach.

The intensity of the net water vapor advection or water vapor

flux divergence in the lower troposphere is the core factor to

judge the precipitation intensity, which is also the key factor in

the analysis and forecast of large-scale rainstorm (Sun, 2017),

therefore, water vapor flux divergence is critical in a rainstorm,

and many case studies have confirmed the effectiveness of its

decomposed components (Zhou and Zhang., 2016; Ma et al.,

2022; Wu et al., 2022). Ma et al. (2022) analyzed the

decomposition of water vapor flux divergence and its

application to a Blizzard event over Ili Valley in Central Asia

from 30 Nov to 1 Dec, 2018. Cao et al. (2022b) analyzed the

decomposed components’ application to rainstorms caused by

Typhoon Rumbia in 2018, and Wu et al. (2022) researched

persistent extreme precipitation events in the post-flood

season over Hainan Island from 16 to 18 Oct, 2020. The

results of those cases showed that the decomposed water

vapor flux divergence can better interpret which components

play more important roles during extreme precipitation. This is

useful for further applications in rainfall predictions. The main

purpose of this study is to decompose water vapor flux

divergence with the Barnes filter and synoptic methods in

different precipitation events to see their performances when

traditional analysis fails to identify the evolution of extreme
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FIGURE 1
(A)Wind vector and equivalent temperature (shaded, units: (K) and (B)water vapor flux (vector, unit: g cm−1 hPa−1 s−1) and its divergence (shaded,
unit: 10−7 g cm−2 hPa−1 s−1) at 700 hPa at 12 UTC 30 November 2018, (C) geopotential (solid contours, unit: gpm), temperature (dashed contours,
unit: K), and relative vorticity (shaded, unit: 10−4 s−1) at 500 hPa and (D) water vapor flux (vector, unit: g cm−1 hPa−1 s−1) and its divergence (shaded,
unit: 10−7 g cm−2 hPa−1 s−1) at 850 hPa at 00UTC on 15 Jun, 2021. Twelve hour-accumulated observed rainfall (E) and simulated results (F) at
00UTC on 1 Dec, 2018. (G) and (H) are the same as (E) and (F) correspondingly except for at 00UTC on 16 June, 2021. Units aremm. (I) Terrain heights
in the unit of m. The blue and red rectangular regions in Figures 1F,H are the target domains for the following analysis.
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precipitations over the Xinjiang province. Quantitative

comparisons of these two methods in two severe precipitations

distinct in synoptic and hydrological backgrounds, terrain heights

ranging from 500 m to 4,000 m, and durations are performed with

the hope to seize useful information for severe precipitation

forecasts from decomposed manifolds. The traditional synoptic

analysis and numerical configurations for the two real cases are

presented in Section 2, followed with brief derivations of these two

decomposition approaches. In Section 3, the decomposed slow

manifolds by the Barnes filter and synoptic methods are analyzed

compared to the original water vapor flux divergence and to each

other. Further decomposition of the moisture parameter is carried

out with the hope to seize the dominant signal for precipitations.

Conclusions and short discussions are presented in Section 4.

2 Methodology

2.1 Observational analysis

From 0000 UTC onNovember 30 to 0000 UTC onDecember

2, 2018, the passage of cold front over the Ili River Valley with

complicated plains, mountains, and valleys (blue domain in

Figure 1I) in northern Xinjiang triggered a blizzard of short

duration. The Ili River Valley is under the control of the warm

and humid southwest airflow in front of the trough at 700 hPa

(Figure 1A). There is a weak west water vapor channel at 700 hPa

(Figure 1B), which transports water vapor from Lake Balkhash to

the Ili River Valley. However, the negative Qall areas are small,

and it is distributed alternately with the stronger divergence. Seen

from the Qall pattern, it is not favorable for severe precipitation in

the near future.

From 0000 UTC on June 15 to 0000 UTC on June 15, 2021, a

persistent torrential rainfall event occurs in the Hotan Region of

southern Xinjiang with flat lands (red domain Figure 1I). The

Central Asia vortex is the dominant large-scale system at 500 hPa

(Figure 1C). The easterly and northerly water vapor channels

transport moisture flux from the Arctic Ocean and the Siberian

marshes to the southern Xinjiang basin through the gap between

the Altay Mountains and the Tianshan Mountains and it is

blocked by the Kunlun Mountains in the south. There is

visible Qall in the Hotan area (Figure 1D). Abundant moisture

exists in this summer case, but negative Qall centers are not closely

correlated to rainfall belts.

In a short conclusion, the winter case is characterized with a

cold front and weak moisture flux, while the summer case is with

the Central Asia vortex and abundant moisture.

2.2 Modeling system and configuration

Numerical simulations for the two events are performed by

using the Weather Research and Forecasting modeling system

(Skamarock et al., 2008). The background field and lateral

boundary conditions of the rainfall process are the European

Centre for Medium-Range Weather Forecasts (ECMWF)

ERA5 hourly data with the horizontal resolution of

0.25°×0.25°. Physical parameterization schemes adopted in the

two simulations are described in Table 1. Seen from the similarity

of the pattern and intensity of the precipitation in both cases in

Figures 1E–H, the two simulations reproduced the two events

well. Validity of the other parameters are performed and

described in our previous study (Ma et al., 2021).

2.3 Flow decomposition approaches

2.3.1 Barnes filter
The Barnes band-pass filter is constructed on the basis of the

Barnes objective analysis scheme (Maddox, 1980) and is used to

smooth parameters such as geopotential height and wind fields

(Xu et al., 2017; Xue et al., 2018). First, each grid point is assigned

a first-guess value

AG(i, j) � ∑k�N
k�1

wkAk/ ∑k�N
k�1

wk (1.1)

where wk � exp(−r2k/4c) is the weight function, rk is the distance
between the station kth and the grid (i, j) and c is a prescribed

constant. Second, the first-guess field is corrected according to

A(i, j) � AG(i, j) + ∑k�N
k�1

w′
kEn/ ∑k�N

k�1
w′

n (1.2)

where Ek � Ak − AGk is the difference (or error) between the

observation and first-guess field at the station kth and w′
n �

exp(−r2k/4cλ) with 0< λ< 1.
The horizontal velocity field v and specific humidity q can

thus be partitioned into mean and disturbed components,

respectively, expressed in Eqs. 1.3, 1.4. Selecting filter

parameters c1 � 270, c2 � 400, g1 � 0.3, g2 � 0.4 in the winter

case, the reciprocal of the maximum response difference r is 3.6,

the filter parameters c1 � 310, c2 � 840, g1 � 0.3, g2 � 0.4 are

selected in the summer case, and the maximum response

difference reciprocal r is 1.95. The response functions for the

summer and winter cases are calculated and depicted in Figure 2.

v � �v + v′ (1.3)
q � �q + q′ (1.4)

2.3.2 Synoptic decomposition method based on
the Helmholtz theorem

According the Helmholtz theorem, a horizontal velocity field

v can be partitioned into rotational and divergent components

represented by stream function ψ and velocity potential χ,
respectively, as follows:
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v � vr + vd (2.1)
vr � k ×∇ψ (2.2)
vd � ∇χ, (2.3)

where k is the unit vector in the vertical direction and ∇ is the

horizontal gradient operator. There are analytical solutions

for Eqs. 2.1, 2.2, 2.3 in unlimited domains or global situations.

But for the limited domain, the accurate solutions are

thoroughly studied for decades (Sangster, 1960; Lynch,

1989; Chen and Kuo, 1992a, 1992b; Xu et al., 2011).

Recently a hybrid method is designed and applied for

computing the stream function and velocity potential for

complex flow fields over mesoscale domains (Cao et al.,

2022a), and it is adopted in the following calculation.

2.3.3 Decomposition of water vapor flux
divergence

Water vapor flux divergence under the terrain-following

coordinate system (denoted by Qall), and its three

components: flow divergence, moisture convection term by

non-divergent or slow manifold, and moisture convection

term by divergent or fast manifold (denoted as Qdiv, QS, and

QF, respectively) are re-derived as:

Qall � ∇ · (qv)∣∣∣∣p � (zxqu)∣∣∣∣p + (zyqv)∣∣∣∣η − [(zpqu)(zxp)∣∣∣∣η
+ (zpqv)(zyp)∣∣∣∣η] (3.1)

Qdiv � (q∇ · v)∣∣∣∣p � qzxu
∣∣∣∣
η
+ qzyv

∣∣∣∣η − q[(zpu)(zxp)∣∣∣∣η
+ (zpv)(zyp)∣∣∣∣η] (3.2)

QS � (vS · ∇q)∣∣∣∣
η

� uSzxq
∣∣∣∣
η
+ vSzyq

∣∣∣∣
η
− uS(zpq)(zxp)∣∣∣∣η − vS(zpq)(zyp)∣∣∣∣η

(3.3)
QF � (vF · ∇q)∣∣∣∣p

� uFzxq
∣∣∣∣
η
+ vFzyq

∣∣∣∣
η
− uF(zpq)(zxp)∣∣∣∣η − vF(zpq)(zyp)∣∣∣∣η (3.4)

Here, v ≡ (u, v) is the horizontal velocity field, q is specific

humidity, with S denoting slow manifold, F denoting fast

manifold in the superscript, x, y, and p denoting the partial

derivatives in the x, y, and p directions, respectively, and

subscript η denoting the terrain-following coordinate

system. The subscript B in QB
S and QB

F represents the

Barnes filter, H in QH
S and QH

F represents synoptic

decomposition based on the Helmholtz theorem. The following

chain rules (Gerrity, 1972) are used in the aforementioned

derivation:

TABLE 1 Model scheme settings.

Physical scheme Winter snowfall event Summer rainfall event

cloud microphysics scheme Thompson (Thompson et al., 2004) WRF Single-Moment 6-class scheme (Hong and Lim, 2006)

longwave and shortwave radiation scheme RRTMG, RRTMG (Iacono et al., 2008) RRTMG, RRTMG (Iacono et al., 2008)

planetary boundary layer scheme Yonsei University scheme (Hong et al., 2006) Yonsei University scheme (Hong et al., 2006)

surface layer scheme Mellor-Yamada-Janjic (Eta) TKE scheme (Janjić, 1994) MM5 similarity (Jiménez et al., 2012)

land-surface processes Noah Land Surface Model (Chen and Dudhia, 2001) Noah Land Surface Model (Chen and Dudhia, 2001)

FIGURE 2
The band-pass filter response functions of (A) rainfall in 2021 and (B) snowstorm in 2018. The orange line and blue line are for the low-pass
filters used to define te bandpass filter represented by the green line, the numbers in the upper right corner of the figure represent filter parameters.
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FIGURE 3
Domain averaged (A) Qall, (B) Qdiv, (C) QB

S and (D) QH
S in the unit of 10−7 g cm−2 hPa−1 s−1 in the winter case from 1200UTC 30 November to

0730UTC 1December with the target domainmarked by a blue rectangular region in Figure 1F. (E–H) are the same except for the summer case from
1700UTC 14 to 0900UTC 16 June with the target domain marked by a red rectangular region in Figure 1H. The green curves represent the 30-min
accumulated precipitation (right y-axis, units: mm).
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zpA � (zηA)(zpη) (3.5)
(zsA)

∣∣∣∣
η
� (zsA)

∣∣∣∣p + (zpA)(zsp)∣∣∣∣η (3.6)

Here, A represents any variable. The subscript s represents

the horizontal direction (x or y).

3 Moisture flux divergence analysis

Qdiv shares similar quantities and evolving patterns with Qall at

all levels. However, neither of them presents divergent signals

before the precipitation weakens. In winter snowstorms of short

durations, the divergence regions at the middle levels seen in Qall

(Figure 3A) are blocked by large convergence at the middle and

low levels (Figure 3B). In the summer case with persistent rainfall,

divergent signals presented by Qall (Figure 3E) show up after the

precipitation reaches itsmaximum, and the divergence is weaker in

Qdiv (Figure 3F). Large convergent regions in Qall and Qdiv are also

blocked at the middle levels as rainfall ends. Therefore, though

occupying the largest magnitude in Qall, Qdiv fails to identify the

weakening or ceasing of precipitation in both torrential events.

In both winter and summer events presented in Figure 3, Qdiv

(Figures 3B,F) shares the evolving patterns as Qall (Figures 3A,E)

at all levels with dominant quantities compared to the other two

components. However, neither of them in both events discloses

the divergent signals before precipitation weakens, as shown by

the green curves. To be specific, the large divergent regions of Qall

(Figure 3A) after 20 UTC Nov. 30 above the middle levels are

blocked by large convergent areas at lower levels which have

resulted from negative values in Qdiv (Figure 3B). Meanwhile, the

convergent signals presented by Qall (Figure 3E) and Qdiv

(Figure 3F) still occupy low and middle levels over the target

domain for around 6 h after the precipitation reaches its

maximum. Furthermore, as the rainfall ends, there is still

large convergent Qdiv transporting downward which

contradicts with the precipitating characteristics. Therefore,

though occupying the largest magnitude in Qall, Qdiv fails to

identify the weakening or ceasing of precipitation in both

torrential events.

QB
S in both events (Figures 3C,G) present strong convergence

as precipitation increases, and abruptly change to divergence

before precipitation weakens. QH
S (Figures 3D,H) performs

slightly better compared to QB
S (Figures 3C,G) in both the

winter event with uniform divergence at lower levels since

20 UTC Nov. 30, and the summer event with small

convergent areas before rainfall increases since 21 UTC June

15. As a short conclusion, the decomposed QS by both the Barnes

filter and synoptic methods are useful for depicting the

precipitating evolutions during the winter and summer events,

while the latter performs better.

However, the accuracy between the reconstructed velocity

and the initial one in winter is much lower than the summer case

mainly due to the fact that the wind field is more complicated in

the short duration snowstorm. The deviations of the

reconstructed zonal and meridional wind component by the

synoptic method and Barnes filter to their corresponding

initial one over the target domain are investigated. In the

winter, meridional differences by the synoptic method

(Figure 4A) keep a uniform vertical distribution with a small

magnitude of the same order as in the summer, while those by the

Barnes filter (Figure 4B) are tremendously amplified with

maximum centers after a snowstorm. Zonal differences by the

synoptic method (Figure 4C) show a uniform distribution

vertically, while those by the Barnes filter (Figure 4D) with

the same magnitude but increase evidently as the rainfall

intensifies in the summer. The power spectral density of the

vertical velocity in the summer event (Figure 4F) is evidently less

complicated than that in the winter (Figure 4E) event. Therefore,

the capability for accurately reconstructing the complex flow field

may be a reason for the better performance of the synoptic

method over the Barnes filter in both summer and winter events.

Another possible reason for the worse situation by the Barnes

filter in the winter event may due to the less abundance but more

variable moisture. The moisture is thus decomposed by the

Barnes filter with the same response function in Figure 1B to

further decompose q into slow and fast manifold components as

follows:

q � qm + q′ (4.1)

Substituting Eq. 4.1 into Eq. 3.3 leads to:

QS
B � (vS · ∇q)B � QSm

B +QSd
B +QFm

B

QSm
B � uSzxq

m
∣∣∣∣
η
+ vSzyq

m
∣∣∣∣
η
− uS(zpqm)(zxp)∣∣∣∣η

− vS(zpqm)(zyp)∣∣∣∣η
QSd

B � uSzxq
d
∣∣∣∣
η
+ vSzyq

d
∣∣∣∣
η
− uS(zpqd)(zxp)∣∣∣∣η − vS(zpqd)(zyp)∣∣∣∣η

QFm
B � uFzxq

m
∣∣∣∣
η
+ vFzyq

m
∣∣∣∣
η
− uF(zpqm)(zxp)∣∣∣∣η

− vF(zpqm)(zyp)∣∣∣∣η
Here, the subscript B denotes the Barnes filter, the superscript m

denotes mean, and d denotes disturbance. QB
S is the moisture

convection term by non-divergent or slow manifold based on the

Barnes filter, QB
Sm is the mean component of the moisture

convection term by non-divergent or slow manifold based on

the Barnes filter, QB
Sd is the disturbed component of the moisture

convection term by non-divergent or slow manifold based on the

Barnes filter, QB
Fm is the mean component of the moisture

convection term by divergent or fast manifold based on the

Barnes filter.

Compared to the weak convergence in QB
S (Figure 3C)

when a snowstorm weakens, the decomposed mean

component of QB
Sm (Figure 5A) keeps uniform divergence

as precipitation ceases. It can be seen from QB
Sd (Figure 5B)

that the false convergence signal is resulted from q’. This can
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be seen vividly in the distributions of q (Figure 5E) and its

decomposed components (Figures 5F,G). However, both QB
Sm

and QB
Sd in the summer event remain uniformly divergent as

precipitation ceases and convergent as it increases, as shown

in Figures 5C,D with q and its components keeping the same

signals (Figs. omitted). This proves the necessity of further

decomposing q especially for the winter event with

complicated flow patterns.

4 Conclusion and discussions

In the research of extreme precipitation climate events, the

method of decomposing the influence of water vapor flux

divergence (Qall) into climatic and large-scale systems has

been mature. For extreme precipitation weather events, similar

ideas are adopted to separate the influence of synoptic and sub-

synoptic scale weather systems represented by slow and fast

FIGURE 4
Domain averagedmeridional wind residual by using (A) the synoptic method, (B) the Barnes filter in winter case, zonal wind residual by using (C)
the synoptic method, and (D) the Barnes filter in summer case. The target domains are marked by blue and red rectangular regions in Figures 1F,H,
respectively. Unit is m s−1. Power spectral density of the vertical velocity at the height of 12 km (E) along 44.5°N in the winter case, and (F) 37.2°N in the
summer case. Unit is m2· s−2.
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FIGURE 5
Domain averaged (A)QB

Sm, (B)QB
Sd in the unit of 10−7 g cm−2 hPa−1 s−1, (E) q, (F) qm, and (G) q’ at η=0.9558 (shaded, unit: 10−4 kg kg−1) at 2330 UTC

on 30 Nov in winter case. Domain averaged (C) QH
Sm, (D) QH

Sd in the unit of 10−7 g cm−2 hPa−1 s−1 in summer case.
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manifolds, respectively, in this study with the purpose to better

forecast precipitation.

The statistical Barnes filter method and the synoptic

decomposition approach are adopted by dividing Qall under

the terrain-following coordinate system into three

components, i.e., Qdiv, QS, and QF. These components

represent flow divergence, moisture convection term by slow

and fast manifolds. A blizzard process with a short duration and

weak moisture and a persistent rainstorm event with abundant

water vapor are investigated with both traditional synoptic

analysis and decomposition methods. The main results are as

follows:

(1) Qdiv, which is directly related to the convergence and divergence

of the large-scale velocity field, always occupies the biggest

magnitude in Qall. During the periods of intensification and

weakening of extreme precipitation events, Qall at the middle

and lower levels converges which contradicts to the ceasing of the

precipitation. Vertical distributions that show the divergent

signals of mid-to-high-level Qall are blocked at the middle and

high levels.

(2) Although QS, which represents specific humidity

transportation by large-scale motions, only accounts for

10% in Qall, visible divergent regions at the middle and

low levels can be seen before precipitation weakens.

(3) In the persistent rainfall event, QS obtained by the Barnes

filter and synoptic method show similar temporal and

spatial evolutions better than Qall. In the short-term

snowfall event, QS obtained by the Barnes filter

presents a false convergence signal when the snow is

about to end. There are two possible reasons for this

deficiency. One is the evident low accuracy of

reconstructed flow field by the Barnes filter which may

be caused by the complexity of the original velocity field.

The other reason is the increased discrete error

introduced by differentiating weak moisture. By further

decomposing specific humidity into its mean and

disturbance components, the latter problem is partially

relived.

The two decomposition methods can provide superior

indicators for the prediction of extreme precipitation weather

events, especially the decrease and termination of precipitation.

However, the accuracy of the Barnes filter method is more related

to the complexity of flow fields as well as the moisture conditions.

In the future, this research will combine these two scale

decomposition methods with high-resolution numerical

models, and carry out research on other material transport

and aggregation such as dust in other parts of the earth.
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