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Repetitive structures in biological sequences are emerging as an active focus of research and the unifying concept of “repeatome” (the ensemble of knowledge associated with repeating structures in genomic/proteomic sequences) has been recently proposed in order to highlight several converging trends.

One main trend is the ongoing discovery that genomic repetitions are linked to many biological significant events and functions. Diseases (e.g. Huntington’s disease) have been causally linked with abnormal expansion of certain repeating sequences in the human genome. Deletions or multiple copy duplications of genes (Copy Number Variations) are important in the aetiology of cancer, Alzheimer, and Parkinson diseases.

A second converging trend has been the emergence of many different models and algorithms for detecting non-obvious repeating patterns in strings with applications to in genomic data.

Borrowing methodologies from combinatorial pattern, matching, string algorithms, data structures, data mining and machine learning these new approaches break the limitations of the current approaches and offer a new way to design better trans-disciplinary research.

The articles collected in this book provides a glance into the rich emerging area of repeatome research, addressing some of its pressing challenges. We believe that these contributions are valuable resources for repeatome research and will stimulate further research from bioinformatic, statistical, and biological points of view.
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The Editorial on the Research Topic

Repetitive Structures in Biological Sequences: Algorithms and Applications

Repetitive structures in biological sequences are emerging as an active focus of research and the unifying concept of “repeatome” (the ensemble of knowledge associated with repeating structures in genomic/proteomic data) has been recently proposed in order to highlight several converging trends.

One main trend is the ongoing discovery that genomic repetitions are often linked to biologically significant events and functions. For example, an abnormal number of tandem repeating units both in coding and regulatory parts of the genome have been found to cause a series of diseases, including Huntington disease (MacDonald et al., 1993). There are indications of a link between tandem repeat expansion and certain forms of Amyotrophic Lateral Sclerosis (Renton et al., 2011).

Copy Number Variations and alterations (CNV/CNA), not necessarily in tandem, have been demonstrated to be one of the main sources of genomic variation in humans. These participate to phenotypic variation and adaptation and contribute to causing various diseases, including cancer, cardiovascular diseases, HIV acquisition and progression, autoimmune diseases, and Alzheimer’s and Parkinson’s diseases (Zhang et al., 2009).

Genome-wide identification of CNVs can be performed with array-based comparative genomic hybridization (aCGH), SNP arrays, and next generation sequencing (NGS). Although the experimental nature of these technologies is very different, the genomic profiles that they generate for CNVs identification are mathematically very similar. Several computational methods have been published in the last 10 years for segmenting these genomic profiles; however, much work still needs to be done, in particular for discovering CNV in low frequency subclones of cancer samples.

Intragenic tandem repeats polymorphisms may be involved in mis-regulations leading to protein toxicity through multiple pathways. Tandem repeats and CNV in Next Generation Sequencing (NGS) data are, however, difficult to detect and analyze, and devising effective detection algorithms is still a very open area of research (Treangen and Salzberg, 2012).

Repeating structures abound also in human proteins and they are a possible key to exploring sequence, structure, and function relationships. Inverted repeats are fingerprints of DNA hairpins and have been shown to contribute to chromosomal fragility in the human genome.

A second converging trend has been the emergence of many different models and algorithms for detecting non-obvious repeating patterns in strings with applications to genomic data collected in Hight Throughput assays (e.g., reads from NGS sequencing, or assembled genomes). A challenging aspect still to be explored is the full impact of evolutionary sequence divergence, and evolutionary selection over the origin and functional significance of repeating substructure. High divergence repetitions are harder to detect from the genomic background; however, they may give us more insight into the evolution of functional units in the genome. New modeling and algorithmic schemes are emerging to tackle these issues, focusing on the computational characterization of the individual entities involved in the repeatome. Borrowing methodologies from combinatorial pattern matching, string algorithms, data structures, data mining, machine learning, probability, and statistics, these new approaches overcome the limitations of the current approaches and offer an example of trans-disciplinary research.

In this Research Topic, we have collected four original research articles and six reviews spanning the full scope of the Topic.

NGS data are a common theme of three of the contributions. Tattini et al. give an overview of the challenges and the several approaches in the literature for detecting structural variants in the human genome using whole genome and whole exome sequencing data, pointing at major advantages and drawbacks of each approach. Narzisi and Schatz analyze the impact of small-scale repetitive sequences, in particular near-tandem repeats, on the discovery of DNA structural variations with the micro-assembly approach. Manconi et al. describe a GPU-based efficient pipeline for filtering reads obtained from Next Generation sequencing, in conjunction with read depth CNV detection methods.

Repetitive sequences both within a single genome and across multiple genomes cause several problems in building effective genomic databases that support efficient data mining on genomic data. Gagie and Puglisi survey advances in algorithmic techniques for taking advantage of repetitive sequences in indexing and searching genomic databases.

The study of tandem repeats in DNA sequences has been a very active area of research in the last decade. Anisimova et al. survey both computational and statistical approaches for TR detection and their application to sequence alignment, phylogenetic analysis, and benchmarking. Régnier and Chassignet develop new models for predicting the statistics of repetitions and show that the proposed model fits nicely data from a biological case study. Pellegrini gives an overview on the multi-faceted aspects of research on protein tandem repeats (PTR), including prediction algorithms, databases, early classification efforts, mechanisms of PTR formation and evolution, and synthetic PTR design, embracing both sequence and 3-dimensional structural aspects.

Transposable Elements (TE) are DNA subsequences that can replicate themselves via a series of biochemical mechanisms and are particularly abundant in mammalian genomes. Kannan et al. investigate the correlations between TE and long intergenic non-coding RNA genes (lincRNA), corroborating the hypothesis that TE have substantially contributed to the origin, evolution, and functional diversification of lincRNA genes.

Nigita et al. investigate computational aspects of RNA editing, which is a post-transcriptional alteration of expressed RNA sequences eventually affecting protein and ncRNA structure and function. This phenomenon is mostly associated with repetitive regions of RNA sequences.

Besides sequence and 3-dimensional structures, biological data are increasingly available in graphical form. Micale et al. describe a web-based tool (SPECTRA) to build and analyze PPI networks that capture tumor and tissue-specific interactions via integration of a variety of heterogeneous data repositories, thus allowing the comparative exploration of similarities/differences in tissue-specific processes.

This series of papers provides a glance into the rich emerging area of repeatome research, addressing some of its pressing challenges. We believe that these contributions are valuable resources for repeatome research and will stimulate further research from bioinformatic, statistical, and biological points of view.
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Structural variants are genomic rearrangements larger than 50 bp accounting for around 1% of the variation among human genomes. They impact on phenotypic diversity and play a role in various diseases including neurological/neurocognitive disorders and cancer development and progression. Dissecting structural variants from next-generation sequencing data presents several challenges and a number of approaches have been proposed in the literature. In this mini review, we describe and summarize the latest tools – and their underlying algorithms – designed for the analysis of whole-genome sequencing, whole-exome sequencing, custom captures, and amplicon sequencing data, pointing out the major advantages/drawbacks. We also report a summary of the most recent applications of third-generation sequencing platforms. This assessment provides a guided indication – with particular emphasis on human genetics and copy number variants – for researchers involved in the investigation of these genomic events.
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Introduction

Structural variants (SVs) are genomic rearrangements affecting more then 50 bp. The average SV size detected by the 1000 Genomes Project is 8 kbp (1000 Genomes Project Consortium et al., 2010), whereas a study based on tiling CGH array (Conrad et al., 2010) reports a four times larger value. SVs comprise balanced as well as unbalanced events, namely, variants altering the total number of base pairs in a genome. Thus, SVs include deletions, insertions, inversions, mobile-element transpositions, translocations, tandem repeats, and copy number variants (CNVs).

Several databases – e.g., the Database of Genomic Variants archive which reports structural variation identified in healthy control samples (DGVa1) – have been created for the collection of SVs data (Lappalainen et al., 2013). Public data resources have been developed with the purpose of supporting the interpretation of clinically relevant variants, e.g., dbVar2, or collecting known disease genes (OMIM3) hit by SVs.

Structural variants account for 1.2% of the variation among human genomes while single nucleotide polymorphisms (SNPs) represent 0.1% (Pang et al., 2010). Notably, unbalanced events provide 99.8% of the entries reported in dbVar (Lin et al., 2014). CNVs may result in benign polymorphic variations or clinical phenotypes due to gene dosage alteration or gene disruption (Zhang et al., 2009). Though the impact of SVs in human genomics was first recognized by their presence in healthy individuals (Zhao et al., 2013), two models account for their association to human disease. Rare large events (<1%, hundreds kbp) have been related to neurological and neurocognitive disorders (Sebat et al., 2007; Girirajan et al., 2013), whereas multicopy gene families, which are commonly copy number variable, contribute to disease susceptibility.

Next-generation sequencing technologies (NGS) have been revolutionizing genome research [for a survey of NGS tools from quality check to variant annotation and visualization, see Pabinger et al. (2014)] as well as the study of CNVs (Duan et al., 2013; Zhao et al., 2013; Samarakoon et al., 2014; Tan et al., 2014; Alkodsi et al., 2015; Kadalayil et al., 2015) and SVs on the whole (Alkan et al., 2011a), replacing microarrays as the leading platform for the investigation of genomic rearrangement (Pinkel et al., 1998; Snijders et al., 2001; Iafrate et al., 2004; Sebat et al., 2007). NGS platforms are based on various implementations of cyclic-array sequencing (Shendure and Ji, 2008; Shendure et al., 2011). They allow for the sequencing of millions of short (few hundreds bp) DNA fragments (reads) simultaneously and may process a whole human genome in three days at 500-fold less cost than previous methods (Voelkerding et al., 2009; Metzker, 2010).

The 1000 Genomes Project applied methods based on all of the four approaches available for the detection of SVs, reporting false discovery rates ranging from 10 to 89%, remarkable differences in terms of genomic regions discovered, size range, and breakpoint precision (Mills et al., 2011; Teo et al., 2012).

Overview of the Approaches

Four strategies for the detection of SV signatures that are diagnostic of different rearrangements have been reported in the literature (Figure 1; Table 1).
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FIGURE 1 | Signatures and patterns of SVs for deletion (A), novel sequence insertion (B), inversion (C), and tandem duplication (D) in read count (RC), read-pair (RP), split-read (SR), and de novo assembly (AS) methods.



TABLE 1 | A non-exhaustive summary of the tools/algorithms for the investigation of SVs, their input data (WGS, whole-genome sequencing; WES, whole-exome sequencing; CC, custom capture; AMS, amplicon sequencing), and their underling approach.
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Read-pair (RP) methods are based on the evaluation of the span and orientation of paired-end reads. Discordant pairs in which the mapping span and/or orientation of the read pairs are inconsistent with the expected insert size are collected. Several classes of SVs can be investigated by means of this approach. Read pairs mapping too far apart are associated to deletions while those found closer than expected are indicative of insertions. Furthermore, orientation inconsistencies can represent inversions and a specific class of tandem duplications.

Read-depth (or read count, RC) approaches assume a random (Poisson or modified Poisson) distribution in mapping depth and investigate the divergence from this distribution to highlight duplications and deletions (Magi et al., 2012). Sequencing of duplicated/amplified regions results in higher read depth while deleted regions show reduced read depth when compared to normal (e.g., diploid) regions.

Split-read (SR) methods allow for the detection of SVs with single base-pair resolution. The presence of a SV breakpoint is investigated on the basis of a split sequence-read signature breaking the alignment to the reference. A gap in the read is a marker of a deletion while stretches in the reference reflect insertions.

Theoretically, all forms of structural variation could be investigated by means of de novo assembly (AS) methods. De novo assembly refers to merging and ordering short fragments to reassemble the original sequence from which the short fragments were sampled (Earl et al., 2011). NGS data intrinsic characteristics, such as (short) read length, limit the use of AS approaches for variant investigation.

Moreover, a specific class of SV, mobile elements (ME) insertions, can be investigated exploiting discordant and clipped (DC) read information.

Read Count Methods

Read count is suitable for the investigation of CNVs. RC methods comprise four steps: RC data preparation, data normalization, SV regions identification, and copy number estimation. Reads mapping to windows/bins of fixed size are counted (Yoon et al., 2009; Magi et al., 2011) and the results are normalized for the mitigation of local GC content and mappability effects.

The correlation between local GC content and read coverage has been detected through the analysis of data from several platforms (Harismendy et al., 2009). Mappability bias is due to repetitive regions within the human genome (Miller et al., 2011).

A segmentation step is necessary to split RC signal into segments characterized by a constant DNA copy number. Algorithms conceived for aCGH data such as the circular binary segmentation (CBS) algorithm (Campbell et al., 2008; Miller et al., 2011) and those based on hidden Markov models (HMM) (Magi et al., 2010) are used with this scope.

Copy number estimation can be tackled by means of two strategies. Both assume that the sequencing process is uniform. Thus, the number of reads mapping to a genomic region is expected to be proportional to the number of times the regions appears in the DNA sample. Three methods (Campbell et al., 2008; Yoon et al., 2009; Magi et al., 2011) estimate DNA copy number of all the detected regions rounding the median RCs (normalized to copy number 2) to the nearest integer, while CNVnator (Abyzov et al., 2011) uses RC signal normalized to the genomic average for the regions of the same length.

A considerable number of methods for the detection of CNV in whole-genome sequencing (WGS) data have been reported in the literature, including CNVnator, CNAnorm, CNAseg, rSW-seq, cn.MOPS, JointSLM, ReadDepth, and BIC-seq (Ivakhno et al., 2010; Kim et al., 2010; Abyzov et al., 2011; Magi et al., 2011; Miller et al., 2011; Xi et al., 2011; Gusnanto et al., 2012; Klambauer et al., 2012). Recently, PSCC (Li et al., 2014) has been compared with SegSeq (Chiang et al., 2009) and ReadDepth (Miller et al., 2011).

CNV Detection from Whole-Exome Data

Due to the costs associated to WGS, the investigation of CNVs using whole-exome sequencing (WES) data is definitely an attractive perspective. Nevertheless, the sparse nature of the target and the non-uniform read-depth among captured regions make CNV detection from WES data awkward with respect to WGS [in particular, regarding the segmentation step as reported in Magi et al. (2013)].

Several tools have been reported in the literature for this purpose including ExomeCNV (Sathirapongsasuti et al., 2011), CoNIFER (Krumm et al., 2012), CNV-seq (Xie and Tammi, 2009), XHMM (Fromer et al., 2012), and recently EXCAVATOR (Magi et al., 2013) and CODEX (Jiang et al., 2015). Notably, the method developed by Bansal and co-workers (Bansal et al., 2014) allows for the analysis of NGS data generated from small subsets of the exome, namely custom capture (CC) data.

Amplicon Sequencing Data

Amplicon sequencing (AMS) techniques have been reported in the literature in particular for clinical applications (Desai and Jere, 2012; Beadling et al., 2013).

Amplicon sequencing data show different biases in respect of WES data (Boeva et al., 2014). Data normalization can be less effective due to the limited number of target regions. Furthermore, protocols involved in the preparation of amplicon libraries result in high depth of coverage at the expense of coverage homogeneity.

The first method designed for the investigation of CNV from AMS data is ONCOCNV. Duplicate sequences are not removed, while RC is performed assigning “each read to only one amplicon region, the one with which the read alignment has the maximum overlap” (Boeva et al., 2014).

Data are then normalized with respect to library size assuming a similar efficiency of PCR amplification for all the targeted regions. GC content and amplicon length biases are corrected by means of a local polynomial regression fitting. Principal component analysis (PCA) is employed to construct a baseline reflecting the technological bias in control samples. The baseline is calculated by means of the first three principal components (calculated from control samples data). In order to define a significant threshold to call a copy number change, the standard deviation of the normalized RCs for each amplicon region is calculated.

This procedure is applied to data from test samples keeping the residuals of the linear regression of normalized RCs over the baseline calculated for the control samples.

Segmentation of the resulting signal profile is performed with CBS method (Venkatraman and Olshen, 2007). A segmentation and clustering approach (SCA) is used to define the copy number state (neutral, gain, or loss) of the segmented regions.

Read-Pair Algorithms

As already mentioned, RP methods, as well as SR approaches, are suitable for the detection of several classes of SV including insertions of novel sequences and inversions. Notably, RP algorithms cannot detect the signatures of novel sequence insertions larger than the average insert size. Several tools based on the detection of SV signatures from clusters of read-pairs have been reported in the literature including BreakDancer, VariationHunter, PEMer, and GASV (Chen et al., 2009; Hormozdiari et al., 2009, 2011; Korbel et al., 2009; Sindi et al., 2009). Remarkably, PEMer can be exploited for the identification of linked insertions (Medvedev et al., 2010).

Clusters can be defined according to two strategies. The standard clustering strategy relies on two parameters: the minimum number of pairs with similar signature and the maximum value of the mean insert size standard deviation for a pair to be considered concordant. The maximum standard deviation value is fixed and events spanning the same locus, resulting in a small value of the insert size standard deviation, may be missed.

Distribution-based approaches, e.g., MoDIL (Lee et al., 2009), exploit the local distribution of all the mappings spanning a particular location on the genome. A read cluster is generated when the local distribution is shifted in respect to the typical insert size distribution. This approach allows for the detection of smaller events (e.g., compared with VariationHunter). The presence of two superimposed insert size distributions can be also detected, thus allowing for the discrimination of homozygous and heterozygous variants.

In the first implementations of the approach, e.g., BreakDancer (Chen et al., 2009), reads with multiple mappings were discarded. Thus, repetitive regions of the genome (including segmental duplications and copy-number amplifications) could not be investigated. Notably, BreakDancer allows for the identification of inter- and intra-chromosomal translocations. Tools such as MoDIL and VariationHunter or, more recently, CLEVER (Marschall et al., 2012) deal with multiple mapping reads [aligned, for instance, with mrFast (Alkan et al., 2009), Mosaik (Lee et al., 2014), BWA (Li and Durbin, 2010), or Bowtie (Langmead et al., 2009)]. CLEVER uses an insert size-based approach to build a graph with all reads and evaluates SV from maximal cliques. It is particularly well-tuned for the investigation of insertions and deletions of 50–100 bp.

Split-Read Approaches

Though SR methods were conceived for Sanger sequencing reads (Mills et al., 2006), algorithms such as Pindel, Splitread, and Gustaf (Ye et al., 2009; Karakoc et al., 2012; Trappe et al., 2014) use paired-end NGS reads to identify SVs (or indel) events. SR approaches take advantage of one-end anchored reads, namely those pairs in which “one end is anchored to the reference genome and the other end maps imprecisely owing to the presence of an underlying structural variant or indel breakpoint” (Karakoc et al., 2012). SR-based tools can be applied solely to unique reference regions.

Pindel uses pattern growth for optimal matching in target regions, exploiting reads mapped with SSAHA2 [Sequence Search and Alignment by Hashing Algorithm, Ning et al. (2001)], BWA, or Mosaik. It must be stressed that the latest version of Pindel integrates RP to the SR information (Lin et al., 2014). Splitread searches for clusters of split reads using balanced splits as seeds. Splitread can detect, at least in theory, deletions without size limitation, while for insertions the size spectrum depends on the sequencing library. Insertions shorter than the read length can be accurately identified but larger insertions can only be approximately characterized within the insert size (Karakoc et al., 2012). Splitread is suitable for WGS/WES reads aligned using mrsFAST (Hach et al., 2010) to discover indels, SVs, de novo events, and pseudogenes.

Recently, Socrates (a SR method designed for cancer genomics) was compared to several tools (Schröder et al., 2014), including BreakDancer, CLEVER, CREST (Wang et al., 2011), DELLY (Rausch et al., 2012), Pindel, and PRISM (Jiang et al., 2012).

Assembly Based Tools

De novo assembly allows – at least in principle – for the detection of all the forms of structural variation but the application of this approach is still challenging due to the limited length of NGS reads (Alkan et al., 2011a; O’Rawe et al., 2015).

AS methods were first exploited for Sanger sequencing data (characterized by read length between 300 and 1000 bp). The original string graph approach has been extended to de Bruijn graphs. The Assemblathon competition (Earl et al., 2011) produced a detailed comparison among de novo assemblers, including Phusion2 (Mullikin and Ning, 2003), SGA (Simpson and Durbin, 2010, 2012), Quake (Kelley et al., 2010), the first implementation of SOAPdenovo (Li et al., 2010; Luo et al., 2012), and ALLPATHS-LG (Gnerre et al., 2011), based on simulated data.

Two AS based callers have been reported in the literature for the investigation of SVs. Magnolya (Nijkamp et al., 2012) uses a Poisson mixture model (PMM) for CNV detection from contigs co-assembled from NGS sequencing data. The authors use an overlap-layout-consensus assembler to generate a contig string graph. Contig string graphs are characterized by nodes representing reads and edges representing an overlap. The final form of the graph is produced by transitive reduction – which removes redundant edges – and by unitigging (i.e., collapsing simple paths without branches) (Myers, 2005). In the resulting contig string graph, each node represents a collapsed set of reads called contig. Finally, the PMM approach for modeling read count is introduced to estimate the copy number of a contig. Once the model has been corrected for the presence of repetitive regions in the genome and prior knowledge on ploidy has been included, the model with the optimal number of Poisson distributions is selected by means of the lowest Bayesian information criterion. Integer copy numbers can be thus inferred by maximum a posteriori estimation. Remarkably, the method can be applied when no reference is available but – as already stressed – it is limited by the short read length typical of NGS platforms.

Cortex uses colored de Bruijn graphs with colors of both edges and nodes representing different samples and, possibly, reference sequences or known variants to assemble NGS reads. “The graph consists of a set of nodes representing words of length k (k-mers). Directed edges join k-mers seen consecutively in the input” (Iqbal et al., 2012). The package includes four algorithms for variant discovery. For example, the bubble calling algorithm may be exploited for the detection of variant bubbles in a colored de Bruijn graph from a single diploid individual. It must be stressed that using a reference genome aids the identification of variants while it is indispensable for the investigation of homozygous variant sites. Nevertheless, the sensitivity of the method decreases with the size of the variant. The tool has been extensively tested on human data.

Combined Methods

None of the aforementioned approaches is capable of capturing the full spectrum of SV events with high sensitivity and specificity. RC methods can accurately predict absolute copy numbers but the breakpoint resolution is often inadequate and events such as inversions and novel sequence insertions cannot be detected. On the other hand, RP and SR approaches show low sensitivity in repetitive regions. Several packages combining different approaches for the investigation of SVs have been reported.

Combining RC for the detection of large events and RP for accurate identification of breakpoints can reduce the number of false positive calls [SVDetect (Zeitouni et al., 2010), CNVer (Medvedev et al., 2010), GASVPro (Sindi et al., 2012), and inGAP-sv (Qi and Zhao, 2011)]. Genome STRiP (Handsaker et al., 2011) exploits RP, RC, SR, and population-scale patterns to detect genome structural polymorphisms.

Packages implementing RP and (local) AS have been also reported [NovelSeq (Hajirasouliha et al., 2010), HYDRA (Quinlan et al., 2010)] as well as tools exploiting SR and RC/RP such as SVseq, MATE-CLEVER, and PRISM (Zhang and Wu, 2011; Jiang et al., 2012; Marschall et al., 2013). PRISM was tested on simulated data and compared with Pindel, SVseq, Splitread, and CREST. Notably, DELLY is suitable for detecting copy-number variable deletion and tandem duplication events as well as balanced rearrangements such as inversions or reciprocal translocations (Rausch et al., 2012), while SoftSearch (Hart et al., 2013) is designed for WGS, WES, and CC data. Recently, LUMPY has been shown to be “especially pronounced when evidence is scarce, either due to low coverage data or low variant allele frequency” (Layer et al., 2014). LUMPY is designed to integrate signals rather then refining primary signal with a secondary one. Furthermore, the tool combines different types of evidence from multiple samples.

Detection of Mobile Elements

Mobile elements are repetitive DNA sequences that can change position within the genome (Lander et al., 2001). Due to this intrinsic characteristic, their detection is challenging. Latest estimates suggest that more than half of the human genome is repetitive or repeat-derived (de Koning et al., 2011). Though the DC approach can be ascribed to RP and SR methods, “the mates of the anchoring reads are then mapped to a custom but configurable library of known active ME consensus sequences” (Thung et al., 2014).

Among WGS tools, Tangram (Wu et al., 2014), a tool developed using Mosaik (Lee et al., 2014) alignments (though it may use alignments produced by other mappers), Next-Generation VariationHunter (Hormozdiari et al., 2010), Tea (Lee et al., 2012), RetroSeq eKeane:2013kq, and Mobster (Thung et al., 2014) have been reported in the literature.

Conclusion

Overall, all the approaches discussed are fairly limited with respect to repeated regions of the reference genome (Alkan et al., 2009, 2011b). The complete range of structural DNA variation cannot be investigated with a single tool (Mills et al., 2011), though combined methods may aid the discovery of SV. Three pipelines integrating different tools exploiting WGS data have been reported in the literature (Wong et al., 2010; Lam et al., 2012; Mimori et al., 2013). WES data can be exploited for the investigation of SVs by means of RC, SR, and RP methods – though with limitations due to the intrinsic sparseness of exomic data.

Each method for the detection of SVs shows advantages/drawback. RC methods are particularly well-suited for the investigation of a particular class of SV, namely CNV. Notably, RC can be used to predict absolute copy number. A major drawback of RC tools is the poor breakpoint resolution. Furthermore, they cannot distinguish tandem from interspersed duplications. SR algorithms can accurately predict SV breakpoint (down to single-base resolution) as well as AS methods. Finally, the RP and SR approaches can be applied for the investigation of the widest range of SV classes (i.e., deletions, inversions, novel sequence insertions, tandem duplications), though both cannot be exploited for the calculation of absolute copy number.

The advent of third-generation sequencing (TGS) technology may contribute to overcome these issues (Schadt et al., 2010; Niedringhaus et al., 2011; Pareek et al., 2011; Venkatesan and Bashir, 2011). TGS single-end reads, characterized by read length up to thousands base pairs, may boost AS methods and the application of mapping algorithms allowing for split alignment such as BWA (Li and Durbin, 2010), LAST (Kiełbasa et al., 2011) and BLASR (Chaisson and Tesler, 2012). Though TGS platforms rely on different chemistry, reads produced by platforms, such as PacBio RS (Kim et al., 2014) and Oxford Nanopore MinION (Bayley, 2015), show similar read length and base-calling accuracy (~85%) (Quail et al., 2012; Quick et al., 2014; Ashton et al., 2015; Chaisson et al., 2015). Recent works have demonstrated that these technologies allow for the investigation of complex repetitive regions of the human genome (Chaisson et al., 2015) as well as the structure of complex antibiotic resistance islands in Salmonella typhi (Ashton et al., 2015) and tandem repeats in human bacterial artificial chromosome (Jain et al., 2015).
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Repetitive sequences are abundant in the human genome. Different classes of repetitive DNA sequences, including simple repeats, tandem repeats, segmental duplications, interspersed repeats, and other elements, collectively span more than 50% of the genome. Because repeat sequences occur in the genome at different scales they can cause various types of sequence analysis errors, including in alignment, de novo assembly, and annotation, among others. This mini-review highlights the challenges introduced by small-scale repeat sequences, especially near-identical tandem or closely located repeats and short tandem repeats, for discovering DNA insertion and deletion (indel) mutations from next-generation sequencing data. We also discuss the de Bruijn graph sequence assembly paradigm that is emerging as the most popular and promising approach for detecting indels. The human exome is taken as an example and highlights how these repetitive elements can obscure or introduce errors while detecting these types of mutations.

Keywords: next-generation sequencing, sequence assembly, sequence analysis, variant detection, indel mutation, repetitive sequences, nucleic acid

INTRODUCTION

Enormous advances made over the last decade in next-generation sequencing technologies and computational variation analysis have made it feasible to study human genetics in unprecedented detail. These technologies have enabled the sequencing of many thousands of human genomes to examine the genetics of healthy and diseased human populations. This has included sequencing thousands of healthy individuals of different ancestries from around the world (The 1000 Genomes Project Consortium, 2010; Khurana et al., 2013), along with detailed studies of cancer1, autism (Iossifov et al., 2014), and schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), among many other projects. While historically genomic studies have focused on single nucleotide polymorphisms (SNPs) due to their prevalence and relative technical simplicity, a recent trend has been to study the role of insertion and deletion (indel) mutations. Already these projects have discovered indels to be ubiquitous in genomes, occurring nearly as frequently as SNPs, but with great diversity in size ranging from single base indels through larger events covering much larger regions (Montgomery et al., 2013). Indel mutations are especially important because they have been implicated in dozens of diseases through small frameshift mutations as well as larger indels that radically alter genes, change splicing and binding sites, or disrupt other important genomic sequences.

Most of the commonly used approaches for finding mutations from next-generation sequence data align one read at a time to the reference genome and then scan the alignments to identify any mutations (DePristo et al., 2011). This analytical framework works well for identifying simple mutations, as reads with a few mutated bases can generally be correctly aligned to a genome across the mutation. However, for indel analysis, this process becomes less and less effective. In the case of a larger insertion reads supporting the mutation will contain fewer and fewer bases matching the reference and therefore increasingly fail to map. A large deletion also leads to mapping complications, because even though the read consists of bases from the reference, there may not be enough bases to unambiguously map to both sides of the deletion forcing the aligner to instead trim or “soft clip” the reads. Consequently, insertions or deletions of more than a few bases are challenging to discover using standard alignment-based methods, and recent approaches have instead focused on assembly techniques to recover them instead.

Repetitive sequences in the genome also significantly complicate both sequencing and analysis accuracy (Treangen and Salzberg, 2011). Repeats of all classes complicate the mapping process as they introduce ambiguity into the true position of a read potentially reducing the sensitivity of our ability to discover indels or other mutations. Repeats, if not analyzed properly, can also introduce false positives by suggesting the presence of an artificial indels between repetitive elements and decrease the specificity of variant calling methods. Simple tandem repeats (STRs) are especially challenging genomic sequences to sequence and analyze, as they have a substantially greater sequencing error rate than other sequences and are prone to polymerase slippage that can artificially extend or contract the length of the repetitive element (Ellegren, 2004). For example, if a locus should consist of 10 adenines, during the sequencing process reads may be generated with just 9 or even 11. Downstream algorithms examining the sequencing data around STRs may misinterpret the sequencing error as an indel polymorphism in the genome if they are not aware of such effects.

Finally, detection of de novo and somatic mutations, although conceptually simple tasks, pose additional challenges within small-scale repeats due to technical and algorithmic problems that can easily introduce false-negative variants. For example, strand biases at the sequencing stage can introduce allele imbalance favoring the reference allele over the mutation at a specific locus in the normal sample with the negative effect of introducing false-positive somatic calls in the tumor. Similarly, calling de novo mutations within repeat structures, in particular STRs, is complicated by noise introduced by sequencing errors which can mask (by chance) a true de novo mutation by generating the same mutation signature in the parent. Consequently, many large-scale studies currently avoid calling de novo mutations at those highly variable sites.

INDEL DISCOVERY – THE ERA OF MICRO-ASSEMBLY

In an effort to extend the power of detectable mutation using short reads from next-generation sequencing technologies (e.g., Illumina), assembly based variant detection techniques are now becoming a popular solution. The strategy employed by these methods is to perform localized sequence assembly, micro-assembly, of the reads mapping around the location of the candidate mutation. Recently developed tools that use this strategy include Scalpel (Narzisi et al., 2014), GATK HaplotypeCaller2, SOAPindel (Li et al., 2012), Platypus (Rimmer et al., 2014), ABRA (Mose et al., 2014), TIGRA (Chen et al., 2014), DISCOVAR (Weisenfeld et al., 2014), and Bubbleparse (Leggett et al., 2013). Figure 1A illustrates the general workflow followed by tools that employ micro-assembly. The first step consists in performing a fast alignment of the reads to the reference genome, typically using BWA (Li and Durbin, 2009); however, these alignments are not directly used to identify mutations but instead the purpose is to localize the analysis by identifying all the reads that have similarity to the given locus. Once a region of interest has been selected, the reads are extracted, including soft-clipped reads and reads that fail to map but are anchored by their mate. The de Bruijn graph of those reads is then constructed by decomposing the reads into overlapping k-mers, and then explored to select candidate paths that contain mutations. Finally, the assembled sequences are aligned back to the reference to detect the correct signature for the mutation.
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FIGURE 1 | Micro-assembly. (A) typical workflow of the micro-assembly strategy: given a specific region of interest, the reads, previously aligned to the reference, are extracted, assembled, and then contigs are aligned back to the reference to discover mutations. (B) Schematic representation of a bubble in a De Bruijn graph induced by a heterozygous mutation within a repetitive sequence composed of two near-identical copies (with 1 bp mismatch) that are 15 bp apart. Each block represents a sequence; sequences that have the same base pair composition have the same color; the length of each sequence (in base pairs) is reported inside each block. Each node of the graph is colored according to the order and sequence composition contained in it. Simple (non-branching) paths are represented in a single node. Alt1 and Alt2 are two alternative alignments of the sequence contained in the bottom side of the bubble, where the dashed line represents the alignment gap. The top side of the bubble matches the reference. Any k-mer longer than the longest identical repeat (>49 bp) and shorter than the longest near-identical repeat (<69 bp) would create a bubble like the one depicted (B) where a jump is allowed from the first copy of the near-identical repeat to the second copy.



Although all the above-mentioned tools follow this paradigm, they differ in many important aspects. Two key differences are the selection of the k-mer size used for assembly and the way repeat sequences are handled. For example, SOAPindel tries to reconnect a broken path in low-coverage regions by searching for unused reads with gradually shorter k-mers until a path is formed or the lower bound on k-mer length has been reached. Similarly in TIGRA, the user can specify the list of k-mer sizes to use; however, this tool has been tailored for breakpoint detection without reporting the indel sequence. GATK HaplotypeCaller by default attempts to build two separate graphs, using k-mers of 10 and 25 bases in size; however, other k-mer sizes can be specified from the command line. Scalpel instead employs a self-tuning k-mer strategy that is coupled with a meticulous repeat composition analysis in order to reduce errors in highly repetitive regions. In contrast to SOAPindel that uses a decreasing size of k-mer values, Scalpel starts with a small value (default k = 25) and if a repeat structure (either perfect or near-perfect up to a few mismatches) is detected, the graph is discarded and a larger k-mer is selected. This process continues until a “repeat-free” graph is constructed or a maximum k-mer length is reached, and in the latter case, the region is discarded as undetectable. GATK HaplotypeCaller uses a similar iterative strategy to Scalpel to avoid false-positives indels within repeats by trying a larger k-mer when a cycle is detected in the graph. However, only perfect repeats (cycles in the graph) are checked by the GATK HaplotypeCaller, while nearly identical repeats can still mislead the algorithm to generate false-positive calls. ABRA also performs a localized assembly of the reads for genomic regions of size ≤2 kb. Similarly to Scalpel and GATK HaplotypeCaller, all non-cyclic paths through the graph are traversed and, in case a cycle is detected, the region is iteratively reassembled using increasing k-mer sizes until the cycle non-longer exists. Platypus integrates the colored de Bruijn graph methods initially developed for Cortex (Iqbal et al., 2012) to also perform a local assembly in small regions (by default 1.5 kb) using a fixed k-mer (15 by default). A revised DFS traversal of the graph is used in Platypus to avoid loops and to generate only non-self-intersecting paths. DISCOVAR also involves initial alignment of reads to the genomic regions followed by careful local assembly. Similarly to Platypus, DISCOVAR combines the detection of SNPs and indels into a unified framework. Using a combination of longer reads and improved error-correction algorithms, DISCOVAR demonstrates increased power compared to GATK and Cortex to detect challenging variants located in low-complexity sequences and segmental duplications. However, DISCOVAR is designed to work only with PCR free 250 bp paired-end reads, which are not commonly available. Finally, Bubbleparse, although it is not exactly a micro-assembly method, also attempts to identify SNPs and indels independent of a reference genome using the de Bruijn graph implementation in the Cortex framework, but it does not specifically evaluate the repetitive content surrounding a candidate indel, and was reported to have a high false-positive rate for indels (Leggett et al., 2013).

By assembling longer stretches of DNA sequence around the mutation, micro-assembly techniques allow more accurate alignments and interpretation of the detected mutations and extend the power of detectable indels ≥30 bp. However, like alignment-based methods, these techniques are also susceptible to errors when calling mutation within small-scale repeat sequences, specifically short tandem repeats (STRs) and localized near-identical repeats. For example, a comparative assessment (Narzisi et al., 2014) demonstrated through a large-scale re-sequencing experiment that SOAPindel has a high error rate within repeat structures. In this review, we start by discussing some classes of repeats that can be found in the human exome. We then show examples of the type of errors introduced by these repetitive structures and we provide recommendation on how to reduce or avoid the errors.

REPETITIVE STRUCTURES IN THE HUMAN EXOME

Repeats are the most difficult sequences to assemble and the specificity of any indel detection method is correlated to its ability to detect and analyze repetitive sequences correctly. Although the exome sequence composition is generally assumed to be relatively simple compared to the rest of the human genome, 30% of exons have a perfect 10 bp or larger repeat (Narzisi et al., 2014). More significantly, the number of near-identical repeats (sequences which differ from each other by just a few bases) increases substantially if more mismatches are permitted. Figure 2 shows the percent of locally repetitive human exons as a function of different k-mer values and maximum number of mismatches. Each exon target is exhaustively analyzed to check for the presence of an identical or near-identical repeat (up to a maximum of three mismatches) in the same region defining the exon. The y-axis reports the percentage of those exons that have been found to contain a repeat of size k (x-axis). Since the presence of repeats is confined only inside each exon, this analysis demonstrates a substantial level of locally repetitive sequences in the human exome. The two main classes of repeat structures that contribute to this plot are near-identical repeats and STRs. Given the generally low error rate of the Illumina sequencing technology, allowing 3-mismatches for a 10-mer (30% error rate) would seem to not be realistic for a sequencing study. However, this repeat analysis must be examined in the context of performing sequence assembly using de Bruijn graph method, where a perfect match is required for two overlapping k-mers.
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FIGURE 2 | Repeat content in the human exome. Repeat content distribution in the human exome target regions as a function of the k-mer size. The sequence of each target exon is analyzed to check for the presence of a repeat structure within the same region defining the exon. The y-axis reports the percentage of those exons that have been found to contain an identical or near-identical repeat of size k (up to three mismatches).



NEAR-IDENTICAL CLOSELY LOCATED REPEATS

The first major class of repeats that can confound indel discovery techniques is near-identical repetitive sequences that are localized within an exon or other small spans. This type of structures can introduce artifacts in the assembly graph that mislead such methods to make false-positive calls. Figure 1B shows an example of a near-identical repeat that can be misinterpreted as a large deletion. The key observation is that the beginning of this sequence is a nearly identical 69 bp repeat with just 1 bp different between the two copies that are 15 bp apart. The sequence is segmented as 19-C-49-A-14-19-T-49-G-21 where 19 and 49 are 19 and 49 bp identical repeats, separated by a 15 bp unique sequence (A, C, T, G are the typical bases). Since the longest exact repeat is 49 bp long, one would expect that using k-mer = 55 should be large enough to correctly assemble reads sampled from this sequence. However, if the sequencing data also contains reads with sequence 19-C-49-G because of a single base A to G change from the expected 19-C-49-A from sequencing error or true mutation, it can be wrongly interpreted as an 84 bp deletion of the A-14-19-T-49 internal segment.

The reason for this ambiguity and other false positives is that the de Bruijn graph is constructed using perfect matches of length k − 1. So any k-mer longer than the longest identical repeat (>49 bp) and shorter than the longest near-identical repeat (<69 bp) would create a bubble like the one depicted Figure 1B where a jump is allowed from the first copy of the near-identical repeat to the second copy. When aligned end-to-end to the reference, the sequence associated to the branch can be aligned in two different ways, one showing a large (false-positive) 84 bp deletion and the other one showing a single nucleotide variation. To reduce the chance to make false-positive indel calls in these regions, it is essential to evaluate the presence of near-identical repeats in either the reference or the assembled sequences. Then, if this type of ambiguity is detected, a decision must be taken to discard the region, flag the candidate mutations as having low quality, or use a k-mer size (if any) that avoids the creation of the false-bubble due to the near-identical repeat (e.g., Scalpel).

SHORT TANDEM REPEATS

Short tandem repeats, also known as microsatellites, are highly mutable genetic elements that consist of multiple repeating copies of elements composed of 1–6 nucleotides. Indels that alter the length of the repeat motif have been linked to more than 40 neurological diseases (Pearson et al., 2005). Despite recent advances in sequencing technology, STR variation pose remarkable challenges to variant detection methods compared to other classes of mutations, such as single nucleotide and copy number variation. Discovery of genetic STR variation with short-read sequence data is confounded by (1) the difficulty of uniquely mapping short, low-complexity reads, (2) the high rate of STR amplification error (e.g., homopolymers) due to replication slippage events and which result in high variability in the number of repeat elements (Mirkin, 2007), and (3) the fact that the spontaneous mutation rate of STRs can reach 1/500 mutations per locus per generation (Ballantyne et al., 2010). Due to these effects, distinguishing between sequencing errors and true mutations within STRs is the major challenge faced by indel detection methods. Moreover, even after a candidate locus for an STR mutation has been identified, the associated indel haplotype description can still have an ambiguous position. For example, if there is a 1 bp deletion in a long homopolymer (…AAAAAA…), deleting any A will give rise to the same haplotype but just with a different position. A more complex example which gives rise to two logically equivalent 3 bp deletions is
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Note that two different 3 bp sequences can be deleted (GGA or AGG) at two different locations generating the same alternative sequence. Since different methods might report different signatures for the same indel, these examples show how essential is to normalize the signature (typically left-normalization) when comparing indels.

Relatively few computational tools have been developed to specifically deal with the complexity of calling in STR regions. RepeatSeq (Highnam et al., 2013) and lobSTR (Gymrek et al., 2012) are the two most recent ones. In order to reduce the error rate at STR loci both methods use statistical modeling to empirically derive the sequencing error model. Comparisons with standard aligners such as BWA, Bowtie, and Novoalign, demonstrate that these aligners are biased toward the detection of the reference allele and specialized tools are required. Moreover most of the highly polymorphic STRs have length of 20 bp or longer, and unfortunately these sizes are the most prone to polymerase slippage and alignment artifacts (Gymrek et al., 2012). The major obstacle for STR profiling is the limited read length of current widely used sequencing technologies. A read must span the complete STR sequence in order to be detected with alignment. Micro-assembly is a promising approach to extend even further the spectrum of detectable STRs mutations and we expect micro-assembly tools specialized for STRs profiling to be developed in the near future.

CONCLUSION

The first major consideration for correctly identifying indel mutations is the use of assembly based approaches over alignment-based approaches. Assembly based methods afford the best sensitivity for detecting indel mutations, especially long indels, as they avoid any expectation or dependencies of the reads aligning end-to-end to the reference genome. This is especially important for reads sequencing long indels (>30 bp), as most read mapping algorithms typically treat these as soft-clipped reads or fail to map them at all. The next most important consideration is the presence of repeats in the genome, especially near-identical repeats within close proximity to each other and STR sequences that may increase the false-positive rate. Our analysis shows near-identical repeats are widespread in the genome, and if not carefully detected may introduce “false-bubbles” where the reads or assembled contigs incorrectly align to the repetitive sequences. Simple tandem repeats (STRs) are also very challenging, because of their especially high indel error rates and also especially high true mutation rates that can obscure true indels.

Considering the widespread interest to sequence genomes and identify indels for medical and other purposes, it is virtually certain that we will see the rise of new algorithmic and experimental approaches for indel detection in the near future. Algorithmically, we anticipate the development of more specialized methods for detecting indels within complex samples, such as somatic mutations in heterozygous cancer populations. For these samples, new scoring metrics will need to be developed that can accurately recognize low-coverage indels present in only a fraction of the cells. We also anticipate the rise of algorithms that can utilize very large populations of samples, especially to augment the standard reference genome with indels commonly found in the population to improve initial mapping efficiencies and also to flag problematic regions with unusual rates of mutations. Experimentally, we anticipate the rise of new sequencing technologies that can produce longer reads that will improve both micro-assembly and resolving repetitive elements. Already the widely used Illumina chemistry is available to produce ~250 bp reads, or even ~500 bp reads by merging paired-end reads together, and new single molecule approaches (PacBio and Oxford Nanopore) can generate substantially longer reads, although requiring new algorithms to tolerate the high error rate of the technologies. As these and other technologies improve we anticipate our ability to discover indel mutations will improve leading to the discovery of many additional indel-related diseases and phenotypes.
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Copy number variations (CNVs) are the most prevalent types of structural variations (SVs) in the human genome and are involved in a wide range of common human diseases. Different computational methods have been devised to detect this type of SVs and to study how they are implicated in human diseases. Recently, computational methods based on high-throughput sequencing (HTS) are increasingly used. The majority of these methods focus on mapping short-read sequences generated from a donor against a reference genome to detect signatures distinctive of CNVs. In particular, read-depth based methods detect CNVs by analyzing genomic regions with significantly different read-depth from the other ones. The pipeline analysis of these methods consists of four main stages: (i) data preparation, (ii) data normalization, (iii) CNV regions identification, and (iv) copy number estimation. However, available tools do not support most of the operations required at the first two stages of this pipeline. Typically, they start the analysis by building the read-depth signal from pre-processed alignments. Therefore, third-party tools must be used to perform most of the preliminary operations required to build the read-depth signal. These data-intensive operations can be efficiently parallelized on graphics processing units (GPUs). In this article, we present G-CNV, a GPU-based tool devised to perform the common operations required at the first two stages of the analysis pipeline. G-CNV is able to filter low-quality read sequences, to mask low-quality nucleotides, to remove adapter sequences, to remove duplicated read sequences, to map the short-reads, to resolve multiple mapping ambiguities, to build the read-depth signal, and to normalize it. G-CNV can be efficiently used as a third-party tool able to prepare data for the subsequent read-depth signal generation and analysis. Moreover, it can also be integrated in CNV detection tools to generate read-depth signals.
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1. INTRODUCTION

SVs in the human genome can influence phenotype and predispose to or cause diseases (Feuk et al., 2006a,b). Single nucleotide polymorphisms (SNPs) were initially thought to represent the main source of human genomic variation (Sachidanandam et al., 2001). However, following the advances in technologies to analyze genome, it is now acknowledged that different types of SVs contribute to the genetic makeup of an individual. SV is a term generally used to refer different types of genetic variants that alter chromosomal structure as inversions, translocations, insertions, and deletions (Hurles et al., 2008). SVs such as insertions and deletions are also referred as CNVs. CNVs are the most prevalent types of SVs in the human genome and are implicated in a wide range of common human diseases including neurodevelopmental disorders (Merikangas et al., 2009), schizophrenia (Stefansson et al., 2008), and obesity (Bochukova et al., 2009). Studies based on microarray technology demonstrated that as much as 12% of the human genome is variable in copy number (Perry et al., 2006), and this genomic diversity is potentially related to phenotypic variation and to the predisposition to common diseases. Hence, it is essential to have effective tools able to detect CNVs and to study how they are implicated in human diseases.

Hybridization-based microarray approaches as arraycomparative genomic hybridization (a-CGH) and SNP microarrays have been successfully used to identify CNVs (Carter, 2007). The low cost of a-CGH and SNP platforms promoted the use of microarray approaches. However, as pointed out in Alkan et al. (2011), microarrays (i) have limitations in the task of detecting copy number differences, (ii) provide no information on the location of duplicated copies, and (iii) are generally unable to resolve breakpoints at the single-base-pair level. Recently, computational methods for discovering SVs with HTS (Kircher and Kelso, 2010) have also been proposed (Medvedev et al., 2009). These methods can be categorized into alignment-free (i.e., de novo assembly) and alignment-based (i.e., paired-end mapping, split read, and read-depth) approaches (Zhao et al., 2013). The former (Iqbal et al., 2012; Nijkamp et al., 2012) focus on reconstruct DNA fragments by assembling overlapping short-reads. CNVs are detected by comparing the assembled contigs to the reference genome. The latter focus on mapping short-read sequences generated from a donor against the reference genome with the aim of detecting signatures that are distinctive of different classes of SVs. Mapping data hide useful information that can be used to detect different SVs. Different methods that analyze different mapping information have been devised.

Paired-end mapping (PEM) methods (Chen et al., 2009; Korbel et al., 2009; Sindi et al., 2009; Hormozdiari et al., 2010, 2011; Mills et al., 2011) identify SVs/CNVs by detecting and analyzing paired-end reads generated from a donor that are discordantly mapped against the reference genome. These methods allow to detect different types of SVs (i.e., insertions, deletions, mobile element insertions, inversions, and tandem duplications), but they do not allow to detect insertions larger than the average insert size of the library preparations.

Split read (SR) methods (Ye et al., 2009; Abel et al., 2010; Abyzov and Gerstein, 2011; Zhang et al., 2011) are also based on paired-end reads. Unlike PEM methods that analyze discordant mappings, SR methods analyze unmapped or partially mapped reads as they potentially provide accurate breaking points at the single-base-pair level for SVs/CNVs.

Read-depth (RD) methods (Chiang et al., 2008; Xie and Tammi, 2009; Yoon et al., 2009; Ivakhno et al., 2010; Xi et al., 2010; Abyzov et al., 2011; Miller et al., 2011) are based on the assumption that the RD in a genomic region depends on the copy number of that region. In fact, as the sequencing process is uniform, the number of reads aligning to a region follows a Poisson distribution with mean directly proportional to the size of the region and to the copy number [see Figure 1 and Chiang et al. (2008)]. These methods analyze the RD of a genome sequence through non-overlapping windows, with the aim of detecting those regions that exhibit a RD significantly different from the other ones. A duplicated region will differ from the other ones for a higher number of reads mapping on it, and then for a higher RD. Conversely, a deleted region will differ from the other ones for a lower number of reads mapping on it, and then for a lower RD. Basically, the analysis pipeline implemented in RD methods consists of four fundamental stages (Magi et al., 2012): (i) data preparation; (ii) data normalization; (iii) CNV regions identification; and (iv) copy number estimation (see Figure 2).
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FIGURE 1 | The RD in a genomic region depends on the copy number of that region and follows a Poisson distribution. Duplicated and deleted regions are characterized by a RD signal different from that of the other ones.
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FIGURE 2 | The analysis pipeline of RD-based methods consists of four main stages. The first two stages consist of preparatory operations aimed at generating the RD signal. Sequencing produces artifacts that affect the alignment and consequently the RD signal. Different filtering operators can be applied to reduce these errors. Moreover, alignments must be post-processed to remove those of low quality and to resolve ambiguities. Finally, the RD signal is calculated taking into account the bias related with the GC-content.



Data preparation consists of different tasks aimed at assessing the quality of the read sequences, mapping the reads against the reference genome, removing low mapping quality sequences, and sizing the observing window used to calculate the RD signal. Data normalization is aimed at correcting the effect of two sources of bias that affect the detection of CNVs. In particular, it has been proved that correlation exists between RD and the GC-content (Dohm et al., 2008; Hillier et al., 2008; Harismendy et al., 2009); the RD increases with the GC-content of the underlying genomic region. Moreover, there exists a mappability bias due to the repetitive regions in a genome. A read can be mapped to different positions so that ambiguous mappings must be dealt with. After normalization, RD data are analyzed to detect the boundaries of regions characterized by changed copy number. Finally, DNA copy number of each region within breakpoints is estimated.

The first two stages of the analysis pipeline consist of common operations, whereas the last two consist of specific operations for each method. However, it should be pointed out that available tools do not implement most of the operations required at the first and second stage. Typically, these tools start the analysis by building the RD signal from the post-processed alignments. All preparatory operations must be performed by the researchers using third-party tools. Moreover, other tools as ReadDepth (Miller et al., 2011) require annotation files with information about the GC-content that are pre-computed only for some reference genome builds. Only some tools provide limited functionalities to pre-process alignments. For instance, RDXplorer (Yoon et al., 2009) and CNV-seq (Xie and Tammi, 2009) use the samtools (Li et al., 2009a) to remove low-quality mappings and to select the best hit location for each mapped read sequence, respectively.

Most of these operations are data-intensive and can be parallelized to be efficiently run on GPUs to save computing time. GPUs are hardware accelerators that are increasingly used to deal with computationally intensive algorithms. Recently, GPU-based solutions have been proposed to cope with different bioinformatics problems (e.g., Manavski and Valle, 2008; Liu et al., 2010; Shi et al., 2010; Yung et al., 2011; Manconi et al., 2014a,b; Zhao and Chu, 2014).

In this work, we present GPU-copy number variation (G-CNV), a GPU-based tool aimed at performing the preparatory operations required at the first two stages of the analysis pipeline for RD-based methods. G-CNV can be used to (i) filter low-quality sequences, (ii) mask low-quality nucleotides, (iii) remove adapter sequences, (iv) remove duplicated reads, (v) map read sequences, (vi) remove ambiguous mappings, (vii) build the RD signal, and (viii) normalize it. Apart the task of removing adapter sequences, all the other tasks are implemented on GPU. G-CNV can be used as a third-party tool to prepare the input for available RD-based detection tools or can be integrated in other tools to efficiently build the RD signal.

G-CNV is freely available for non-commercial use. The current release can be downloaded at the following address http://www.itb.cnr.it/web/bioinformatics/gcnv

2. MATERIALS AND METHODS

Data preparation and data normalization are crucial operations to properly detect CNVs. It is widely known that sequencing is a process subject to errors. These errors can affect the alignments; hence both the RD signal and the accuracy of the identified CNVs can be affected as well. G-CNV implements filtering operators aimed at correcting some errors related to the sequencing process. In particular, G-CNV is able to analyze the read sequences to filter those read sequences that do not satisfy a quality constraint, to mask low-quality nucleotides with an aNy symbol, to remove adapter sequences, and to remove duplicated read sequences. G-CNV uses cutadapt (Martin, 2011) to remove adapter sequences. As for the alignment, G-CNV uses the GPU-based short-read mapping tool SOAP3-dp (Luo et al., 2013). Low-quality alignments are filtered out, while ambiguous mappings can be treated according to different strategies. To build the RD signal, G-CNV builds a RD signal according to a fixed-size observing window. Then, this raw RD signal is corrected according to the GC-content of the observed windows.

In this section, we first give a short introduction to GPUs. Then, we present the strategies adopted to cope with the tasks implemented by G-CNV. Finally, we briefly recall the hardware and software equipment required to use G-CNV.

2.1. GPU

GPUs are hardware accelerators that are increasingly used to deal with computationally intensive algorithms. From an architectural perspective, GPUs are very different from traditional CPUs. Indeed, the latter are devices composed of few cores with lots of cache memory able to handle a few software threads at a time. Conversely, the former are devices equipped with hundreds of cores able to handle thousands of threads simultaneously, so that a very high level of parallelism can be reached (see Figure 3). Apart from the high level of parallelism, there may be other advantages to use the GPU technology. In particular, the low cost for accessing to the GPUs (if compared with the cost to equip a laboratory with a CPU-cluster) is promoting the technology. Moreover, GPUs are inherently more energy efficient than other ways of computation because they are optimized for throughput and performance per watt and not absolute performance. The main disadvantage of adopting the GPU technology is related with the effort required to code algorithms. GPUs can run certain algorithms very faster than CPUs. However, gaining this speed-up can require a notably effort to properly code the algorithms for GPU. Algorithms must be coded to reflect the GPU architecture. To do this can mean to dive into the code and make significant changes to several parts of the algorithm. For the sake of completeness, it should be pointed out that depending on the algorithm may be more advantageous to parallelize it on CPUs rather than on GPUs. Due to their significantly different architectures, CPUs and GPUs can be suited to address different tasks. Therefore, both CPU and GPU parallelism offer particular advantages for particular problems.
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FIGURE 3 | The main difference between CPUs and GPUs is related to the number of available cores. A CPU is a multi-core processor that consists of a few cores. Conversely, a GPU is a many-core processor that consists of thousands of available cores.



The GPU computing model uses both a CPU and a GPU in a heterogeneous co-processing computing model. As a CPU is more effective than a GPU for serial processing, it is used to run the sequential parts of an algorithm, whereas computationally intensive parts are accelerated by the GPU (see Figure 4). It should be pointed out that the task of the CPU is not limited to just control the GPU execution. Hybrid CPU/GPU parallelization can also be implemented depending on the algorithm. As for GPU programing, Compute Unified Device Architecture (CUDA) (Nvidia, 2007) and Open Computing Language (OpenCL) (Munshi et al., 2009) offer two different interfaces for programing GPU. OpenCL is an open standard that can be used to program CPUs, GPUs, and other devices from different vendors. CUDA is specific to NVIDIA GPUs.
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FIGURE 4 | CPUs are more effective than GPUs to run sequential code. Therefore, only the computationally intensive parts of the algorithms must be run on the GPU, whereas sequential parts must be run on CPUs.



In the NVIDIA GPU-based architecture, parallelization is obtained through the execution of tasks in a number of stream processors or CUDA cores. Cores are grouped in multiprocessors that execute in parallel. A CUDA core executes a floating point or integer instruction per clock cycle for a thread and all cores in a streaming multiprocessor execute in a Single Instruction Multiple Thread (SIMT) fashion. All cores in the same group execute the same instruction at the same time. SIMT can be considered an extension of the Single Instruction Multiple Data (SIMD) paradigm: basically, the SIMD paradigm describes how instructions are executed whereas the SIMT paradigm also describes how threads are executed. The code is executed in groups of threads called warps. Device memory access takes a very long time due to the very long memory latency. The parallel programing model of the CUDA architecture provides a set of API that allows programmers to access the underlying hardware infrastructure and to exploit the fine-grained and coarse-grained parallelism of data and tasks. Summarizing, the CUDA execution model (see Figure 5) can be described as follow: the GPU creates an instance of the kernel program that is made of a set of threads grouped in blocks in a grid. Each thread has a unique ID within its block and a private memory and registers, and runs in parallel with others threads of the same block. All threads in a block execute concurrently and cooperatively by sharing memory and exchanging data. A block, identified by a unique ID within the block grid, can execute the same kernel program with different data that are read/written from a global shared memory. Each block in the grid is assigned to a streaming multiprocessor in a cyclical manner.
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FIGURE 5 | Threads are grouped in blocks in a grid. Each thread has a private memory and runs in parallel with the others in the same block (Manconi et al., 2014a).



2.2. QUALITY CONTROL

The sequencing technology has been notably improved. Modern sequencers are able to generate hundreds of millions of reads in a single run and the sequencing cost is rapidly decreasing. Despite this improvement, sequencing data are affected by artifacts of different nature that may strongly influence the results of the research. Hence, the ability to assess the quality of read sequences and to properly filter them are major factors that determine the success of a sequencing project. In particular, as for RD methods, both low quality and duplicated read sequences affect the RD signal and consequently the identification of CNV regions.

Different tools have been proposed for quality control of sequencing data such as NGS QC Toolkit (Patel and Jain, 2012), HTQC (Yang et al., 2013), FASTX-Toolkit1, FASTQC2, and Picard3. Most of these tools support both Illumina and 454 platforms, while only some of them support CPU parallelization. It should be pointed out that the artifacts generated during the sequencing process and the massive amount of generated reads make quality control tasks difficult and computationally intensive. The massive parallelization that can be provided by GPUs can be used to deal with these computational tasks. Starting from this assumption, we integrated G-CNV with GPU-based operators to filter low-quality sequences, to mask low-quality nucleotides, and to detect and remove duplicated read sequences. Only the removing of adapter sequences has not yet been implemented on GPU. Currently, these operators are specialized for short-read sequences generated with Illumina platforms.

2.2.1. Filtering low-quality sequences

FASTQ files report quality values for each sequence. Basically, G-CNV parses these files to identify low-quality nucleotides. Nucleotides are classified as of low quality if their quality value is lower than a user-defined threshold. FASTQ files represent quality values using an ASCII encoding. Different encodings are used depending on the Illumina platform. Illumina 1.0 format encodes quality scores from −5 to 62 using ASCII 59 to 126. From Illumina 1.3 and before Illumina 1.8, quality scores ranges from 0 to 62 and are encoded using ASCII 64–126. Starting in Illumina 1.8, quality scores range from 0 to 93 and are encoded using ASCII 33–126.

G-CNV performs filtering in three steps. The first step is performed on CPU, whereas the last two steps are massively parallelized on a single GPU. As for the first step, G-CNV analyses the FASTQ files to detect the Illumina format. Then, the quality values of sequences are decoded according to the detected Illumina format. Finally, G-CNV removes those read sequences that exhibit a percentage of low-quality nucleotides that exceed a user-defined threshold. As a final result, a new FASTQ file is created with the filtered sequences so that the original FASTQ file is preserved.

2.2.2. Masking low-quality nucleotides

G-CNV can also be used to mask low-quality nucleotides. Similarly that for the filtering of low-quality sequences, G-CNV performs masking in three steps. The first step is performed on CPU and it is aimed at detecting the Illumina format. Conversely, the last two steps are massively parallelized on a single GPU and are aimed at decoding the quality values sequences according to the Illumina format, and at masking with an aNy symbol those nucleotides with a quality score lower than a user-defined threshold. Then, a new FASTQ file is created with the masked nucleotides.

2.2.3. Removing adapter sequences

In the current release, G-CNV uses cutadapt to remove adapter sequences. Cutadapt can be used to look for adapter sequences in reads generated with Illumina, 454, and SOLiD HTS machines. Basically, cutadapt is able to look for multiple adapters in the 5′ and 3′ ends according to different constraints (e.g., mismatches, indels, minimum overlap between the read and adapter). It can be used to trim or discard reads in which an adapter occurs. Moreover, it allows to automatically discard those reads that after the trimming are shorter than a given user-defined length. All features of cutadapt were wrapped in G-CNV.

It should be pointed out that the current release of cutadapt is not parallelized. In order to speed up the removing of the adapters, G-CNV splits the original FASTQ files in chunks and runs in parallel an instance of cutadapt on each of these chunks. Finally, the output files provided by each instance of cutadapt are merged together in a new FASTQ file.

2.2.4. Removing duplicated read sequences

Duplicate reads are one of the most problematic artifacts. These artifacts are generated during the PCR amplification. Ideally, duplicates should have identical nucleotide sequences. However, due to the sequencing errors, they could be nearly identical (Gomez-Alvarez et al., 2009). Alignment-based [e.g., NGS QC Toolkit, SEAL (Pireddu et al., 2011), and Picard MarkDuplicates] and alignment-free [e.g., FastUniq (Xu et al., 2012), Fulcrum (Burriesci et al., 2012), CD-HIT (Li and Godzik, 2006; Fu et al., 2012)] methods have been proposed in the literature to remove duplicated read sequences. Basically, alignment-based methods start from the assumption that duplicated reads will be mapped into a reference genome in the same position. Therefore, in these methods, read sequences are aligned against a reference genome and those reads with identical alignment positions are classified as duplicates. It should be pointed out that the final result is affected by both the alignment constraints and the accuracy of the aligner. In alignment-free methods, read sequences are compared among them according to a similarity measure. The reads with a similarity score lower than a given threshold are classified as duplicated.

G-CNV implements an alignment-free method to remove duplicated read sequences from single-end libraries. Like other tools, it implements a prefix–suffix comparison approach. The algorithm has been devised taking into account the per-base error rates of Illumina platforms. Analysis of short-read datasets obtained with Illumina highlighted a very low rate of indel errors (<0.01%) while the number of occurrences of wrong bases increases with the base position (Dohm et al., 2008). Therefore, G-CNV does not take into account indels and considers as potentially duplicated read sequences those with an identical prefix. Potential duplicated sequences are clustered together (see Figure 6), and for each cluster G-CNV compares the suffixes of its sequences. The first sequence of a cluster is taken as a seed and its suffix is compared with those of the other sequences in that cluster. Those sequences identical or very similar to the seed are considered duplicated. Duplicated sequences will be condensed in a new sequence and will be removed from the cluster (see Figure 7). Then, the process is iterated for the remaining sequences in the cluster (if any), until the cluster is empty or contains only a read sequence.
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FIGURE 6 | Short-reads with an identical prefix (of fixed length k) are clustered together as potential duplicated sequences. This approach takes into account the error rates of Illumina platforms. Analysis performed on short-reads generated with these sequencing platforms highlighted that the number of wrong bases increases with the base position.
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FIGURE 7 | Suffixes of sequences in a cluster are compared to identify the duplicates. The first read is taken as a seed and its suffix is compared with those of the other ones. Sequences with a number of mismatches lower than a given threshold are considered duplicates of the seed. These sequences are removed from the cluster and are represented with a consensus sequences. Then the process is repeated until the cluster is empty or consists of a single sequence.



In G-CNV, clustering is performed sorting the prefixes of the read sequences. Sorting is performed on a GPU with our CUDA-Quicksort4,5. Experimental results show that CUDA-Quicksort is faster than other available GPU-based implementations of the quicksort. In particular, it results be up to 4 times faster than GPU-Quicksort of Cederman and Tsigas (2008) and up to 3 times faster than the NVIDIA CDP-Quicksort (CUDA toolkit 6.0). As CUDA-Quicksort sorts numerical values, the prefixes must necessarily be subject to a numerical encoding. We devised the encoding with the aim to maximize the length of the prefixes that can be compared. In doing this, read sequence prefixes are subject to a dual numerical encoding. Initially, we encoded the prefixes using a base-5 encoding by replacing each nucleotide with a numerical value ranging from 0 to 4 (i.e., A → 0, C → 1, G → 2, T → 3, N → 4). Using CUDA-Quicksort to sort items represented with 64 bit unsigned long long int data type, prefixes of up to 19 nucleotides can be sorted. A longer prefix will exceed the limit for this type of data. However, it is possible to exceed this constraint using a different numerical base to represent the prefixes. In particular, using the base-10, it is possible to represent a number consisting of 27 digits with a 64 bit unsigned long long int (see Figure 8). Therefore, G-CNV applies this second encoding to maximize the length of the prefixes used for clustering.
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FIGURE 8 | Prefixes are subject to a dual encoding. As for the first encoding, each nucleotide in a prefix is represented with a numerical value from 0 to 4 (A → 0, C → 1, G → 2, T → 3, N → 4). Then, these numerical representations are encoded using base-10. Finally, sorting is performed for clustering. In the figure, prefixes of length k = 8 are represented.



After that the reads have been clustered G-CNV compares their suffixes. This step requires a base-per-base comparison of the nucleotides of the seed read sequence with those of the other reads in a cluster. This approach can require a very high number of base–base comparisons. Let N be the length of the suffixes, and let m be the allowed number of mismatches. In the best case, m comparisons must be performed to classify two sequences as not duplicated. In the worst case, N–m comparisons must be performed to classify two sequences as duplicated. Apart from the high number of comparisons required, this approach is not adapted to be efficiently implemented on GPUs. As GPUs adopt the SIMT paradigm, each thread in a block must perform the same operation on different data. Then, G-CNV implements a different comparison method. Suffixes are split into fixed length chunks. Subsequence of each chunk is subjected to the same dual numerical encoding used to represent the prefixes for clustering. Then for each cluster, the numerical difference between the i-th chunk of the seed and the related chunk of the other suffixes in a cluster is calculated (see Figure 9). The order of magnitude of the difference provides information about the position of the leftmost different nucleotides. Then, the subsequences are cut corresponding to the mismatch position. The rightmost parts of the mismatch position are maintained and the process is re-iterated.


[image: image1]

FIGURE 9 | Suffixes (in orange in the figure) are analyzed in chunks. Each chunk is subject to the dual encoding used for prefixes (in red in the figure). The overall number of mismatches if obtained summing the partial number of mismatches obtained for each chunk.



2.3. MAPPING

It is widely known that mapping of short-read sequences is computationally onerous. Several tools have been devised to deal with short-read mappings. Without claiming to be exhaustive, let us cite some of the most popular solutions, i.e., MAQ (Li et al., 2008), RMAP (Smith et al., 2008, 2009), Bowtie (Langmead et al., 2009), BWA (Li and Durbin, 2009), CloudBurst (Schatz, 2009), SOAP2 (Li et al., 2009b), and SHRiMP (Rumble et al., 2009; David et al., 2011). A comparative study aimed at assessing the accuracy and the runtime performance of different cutting-edge next-generation sequencing read alignment tools highlighted that among all, SOAP2 was the one that showed the higher accuracy (Ruffalo et al., 2011). Exhaustive review of the tools cited above can be found in Bao et al. (2011).

In general, the mentioned solutions exploit some heuristics to find a good compromise between accuracy and running time. Recently, the GPU-based short-read mapping tools Barracuda (Klus et al., 2012), CUSHAW (Liu et al., 2012b), SOAP3 (Liu et al., 2012a), and SOAP3-dp have been successfully proposed to the scientific community. In particular, SOAP3-dp aligns the read sequences in two steps. As for the first step, it looks for ungapped alignments with up to four mismatches without using heuristics. As for the second step, it uses the dynamic programing to look for gapped alignments. Compared with BWA, Bowtie2 (Langmead and Salzberg, 2012), SeqAlto (Mu et al., 2012), GEM (Marco-Sola et al., 2012), and the previously mentioned GPU-based aligners, SOAP3-dp is two to tens of times faster, while maintaining the highest sensitivity and lowest false discovery rate on Illumina reads with different lengths.

Starting from the previous analysis, we decided to use SOAP3-dp to support read mapping in G-CNV. G-CNV allows to set different parameters of SOAP3-dp that can be useful to properly generate alignments for RD methods. Apart from the constraints on the allowed mismatches, G-CNV allows to set SOAP3-dp parameters able to filter out alignments that are not of interest for the specific RD method. In particular, as different methods presented in the literature filter alignments using different quality mapping scores, G-CNV allows to set a quality mapping threshold on the alignments that must be reported. To set these constraints, G-CNV needs to be able to access the SOAP3-dp files to change the initialization file. Moreover, a short-read may be uniquely aligned or can be aligned to multiple positions onto a genome. Multiple mappings can be related to the alignment constraints or to the nature of the sequenced read. A read sequence can be aligned to multiple positions, as it has been sequenced from repetitive regions or regions of segmental duplication (Abyzov et al., 2011). In the former case, alignments are characterized by different alignment scores, whereas in the latter case, they are expected to have equal or very similar scores. A common approach to take into account multiple mappings is to randomly select a best alignment. G-CNV allows to report only unique best alignments or a random best alignment.

2.4. RD SIGNAL

The RD signal depends on the size of the observing window. As methods proposed in the literature suggest different approaches to estimate the window size, G-CNV does not impose it. In G-CNV, the window size is a parameter that must be set by the user.

G-CNV builds the RD signal in two steps. Initially, G-CNV analyses the genome sequences to build a GC-content signal according to the fixed window size. A GC-signal for each genome sequence will be built. Then, G-CNV splits the mapping for each chromosome sequences, identifies the window where the mappings fall, and calculates a raw RD signal. By default, the window related to each alignment is identified considering the center of the read. Finally, G-CNV corrects the RD signal with the same approach proposed in Yoon et al. (2009) that adjust the RD by using the observed deviation of RD for a given GC percentage according to the following equation:

[image: image1]

where RDwi is the RD for the i-th window to be corrected, [image: image1] is the average RD signal, [image: image1] is the average RD signal calculated on the windows with the GC-content found in the i-th window, and [image: image1] is the corrected RD for the i-th window.

2.5. HARDWARE AND SOFTWARE REQUIREMENTS

G-CNV has been designed to work with NVIDIA GPU cards based on the most recent Kepler architecture. G-CNV works on Linux-based systems equipped with CUDA (release ≥6.0). We tested it on the NVIDIA Kepler architecture-based k20c card. Experiments have been carried out using the last release of soap3-dp (rel. 2.3.177) and of cutadapt (rel. 1.7.1).

3. RESULTS

We performed different experiments aimed at assessing the performance of G-CNV. In particular, we assessed its performance when used to filter low-quality sequences, to mask low-quality nucleotides, to remove adapter sequences, to remove duplicated reads, and to calculate the RD signal. Since G-CNV performs the alignments running SOAP3-dp, we deemed not relevant to assess the performance of G-CNV in this task. We invite the readers to refer the SOAP3-dp manuscript for an in-depth analysis of the performance of the aligner. Similarly, as G-CNV uses the well-known tool cutadapt to remove adapter sequences, we did not perform tests aimed at assessing its reliability in this task. However, we performed experiments aimed at assessing the benefits of the parallelization of cutadapt provided with G-CNV.

Experiments have been carried out on both synthetic and real-life libraries. Synthetic reads have been used to assess and compare with other tools the reliability of G-CNV, whereas real-life data to assess and compare its performance in terms of both computing time and memory consumption.

Synthetic reads have been generated from the build 37.3 of the human genome using the Sherman simulator6. Sherman has been devised to simulate HTS datasets for both bisulfite sequencing and standard experiments. To mimic real data, it generates synthetic data using an error rate curve that follows an exponential decay model. We used Sherman to generate a single-end synthetic library consisting of 1 millions of 100 bp reads. Library has been generated simulating a sequencing error of 2% and contaminating the reads with the Illumina single-end adapter 1 (i.e., ACACTCTTTCCCTACACGACGCTGTTCCATCT). The contamination has been simulated with a normal distribution of fragment sizes. Moreover, since Sherman generates identical quality scores for all reads, we modified them to generate a 3% of low-quality nucleotides (PHRED value ≤20) and a 9% of low-quality sequences. In the following of the manuscript, we will refer to this dataset as the S1 library.

Since Sherman does not permit to control the percentage of duplicates, we modified the simulated reads in S1 to generate a new synthetic library (S2) consisting of 30% of duplicated sequences. Read sequences have been duplicated simulating a sequencing error of 2%. The library S1 has been used to assess the reliability of G-CNV in the task of filtering low-quality sequences and masking low-quality nucleotides, whereas S2 has been used to assess the reliability of G-CNV in the task of removing duplicated sequences.

As for real-life data, experiments have been performed on different libraries generated with Illumina platforms: (i) SRR001220 consisting of 3.3 millions of 94 bp reads; (ii) SRR001205 consisting of 9.7 millions of 47 bp reads; (iii) SRR005720 consisting of 26.2 millions of 36 bp reads; and (iv) SRR921889 consisting of 50 millions of 100 bp reads (see Table 1).

Table 1 | Real-life datasets.
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Moreover, with the aim to simulate a CNV pre-processing detection analysis, we simulated two high coverage (30x) whole genome sequencing experiments. The first experiment have been simulated generating 37 synthetic libraries consisting of 25 millions of 100 bp reads, and the second generating 9 synthetic libraries consisting of 100 millions of 100 bp reads. All libraries have been generated according to the same constraints used to generate S1. In the following of the manuscript, we will refer to these datasets as HCS1 and HCS2.

In the following of this section, we describe the different experiments and present results. Finally, we briefly resume the hardware and software configuration used for experiments.

3.1. FILTERING LOW-QUALITY SEQUENCES

To assess G-CNV in the task of filtering low-quality read sequences, we compared its performance with those of FASTX-Toolkit and NGS QC Toolkit. Experiments have been performed setting parameters with the aim to filter those sequences with a percentage of low-quality (PHRED score <20) bases >10% (see Table 2).

Table 2 | Tools settings used to filter low-quality sequences.
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A first experiment has been performed on the S1 synthetic library aimed at assessing and comparing the reliability of G-CNV with the other tools. As expected, all tools have been able to filter all low-quality sequences. The same experiment has been performed on the real-life libraries aimed at assessing the performance of G-CNV in terms of both computing time and memory consumption. It should be pointed out that FASTX-Toolkit does not support parallelization whereas in NGS QC Toolkit parallelization has been implemented in multiprocessing and multithreaded ways. Multiprocessing parallelization was implemented to process multiple files in parallel whereas multithreading parallelization to process in parallel a single file. The FASTQ file is split into chunks, processed in parallel, and results are merged at the end. With the aim to provide an in-depth comparison among all tools and to assess as NGS QC Toolkit can scale increasing the CPU cores, we initially run the experiments without using parallelization, then experiments have been performed parallelizing the computation on 12 CPU cores.

It should be pointed out that FASTX-Toolkit does not provide support for paired-end libraries. Therefore, it has not been possible to test it with the SRR005720 dataset. Experimental results show that G-CNV is most effective than the other tools in terms of computing time. Table 3 reports computing time and peak of memory required by G-CNV, FASTX-Toolkit, and NGS QC Toolkit to analyze the different datasets. G-CNV has been 12.4x/7.8x/NA/21.4x faster than FASTX-Toolkit and 24x/21x/26.5x/28.3x faster than NGS QC Toolkit parallelized on 12 CPU cores to filter the read sequences of the SRR001220/SRR001205/SRR005720/SRR921889 dataset. Obviously, the performance of G-CNV improves notably when compared with those of NGS QC Toolkit executed without parallelization. In this case, G-CNV has been 154x/120x/125x/175x faster than NGS QC Toolkit to analyze the SRR001220/SRR001 205/SRR005720/SRR921889 dataset.

Table 3 | Performance evaluation to filter low-quality sequences.
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For the sake of completeness, it should be pointed out that NGS QC Toolkit automatically also generates statistics for quality check. Therefore, the computing time reported from NGS QC Toolkit takes into account also the time required to perform these operations.

As for the memory consumption, FASTX-Toolkit is undoubtedly the most effective tool. Conversely, G-CNV requires more memory than the other tools. Its performance is only comparable with those of NGS QC Toolkit executed in parallel for the SRR001220 and SRR001205 datasets. Experimental results show that the memory required by G-CNV increases with the size of the analyzed library. This is mainly due to the fact that to massively parallelize the computation G-CNV loads into the memory as many as possible read sequences to maximize the occupancy of the grid of the GPU.

Finally, we used G-CNV to filter the low-quality sequences of the HCS1 and HCS2 datasets. Filtering has been performed in ~20 min for the HCS1 and in ~34 min for HCS2. As for the memory consumption, G-CNV required 5.7 GB to analyze HCS1 and 20.5 GB for HCS2.

3.2. MASKING LOW-QUALITY NUCLEOTIDES

The performance of G-CNV in the task of masking low-quality nucleotides have only been compared with those of FASTX-Toolkit. NGS QC Toolkit does not provide support for this operator. G-CNV and FASTX-Toolkit have been run to mask with a aNy symbol the nucleotides with a PHRED quality score <20 (see Table 4). Experiments performed on the S1 synthetic library shown that both tools have been able to mask all low-quality sequences. Experiments performed on real-life libraries show that G-CNV outperforms notably FASTX-Toolkit in terms of computing time. Results reported in Table 5 show that G-CNV has been 12x/6.8x/5x/13.8x faster than FASTX-Toolkit to analyze the SRR001220/SRR001205/SRR005720/SRR921889 dataset. As previously highlighted, FASTX-Toolkit does not support paired-end reads. However, as for the task of masking low-quality nucleotides, it can be separately used on both the forward and the reverse read sequences. Then, as for the SRR005720 dataset Table 5 reports the overall computing time required by FASTX-Toolkit to analyze both files.

Table 4 | Tools settings used to mask low-quality nucleotides.
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Table 5 | Performance evaluation to mask low-quality nucleotides.
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As for the high coverage-simulated sequencing experiments, G-CNV masked the low-quality nucleotides of HCS1 in ~23 min using 7 GB of memory, whereas required ~39 min and 21.9 GB of memory for HCS2.

3.3. REMOVING ADAPTER SEQUENCES

As for the task of removing adapter sequences, G-CNV has been compared with both FASTX-Toolkit and NGS QC Toolkit. To assess the advantages of the implemented parallelization of cutadapt, we initially performed experiments running G-CNV without exploiting the parallelization, subsequently parallelizing the computation on 12 CPU cores. Tool settings used to perform these experiments are reported in Table 6.

Table 6 | Tools settings used to remove adapter sequences.
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Table 7 reports results obtained analyzing the real-life libraries. Results show that the performance of G-CNV improves notably with parallelization. With parallelization G-CNV has been 6.7x/6.4x/23.4x/2.8x faster to remove the adapter sequences from the SRR001220/SRR001205/SRR005720/SRR921889 dataset. Moreover, G-CNV parallelized on 12 CPU cores resulted to be 18.2x/11x/–/9.4x faster than FASTX-Toolkit and 11.8x/7.3x/58.3x/6.3x NGS QC Toolkit used exploiting the parallelization to remove the adapters from the SRR001220/SRR001205/SRR005720/SRR921 889 dataset. Obviously, also for this task the performance of G-CNV improves when compared with NGS QC Toolkit used without parallelization. In this case, G-CNV resulted be 48x/40x/173x/38x faster than NGS QC Toolkit to analyze the SRR001220/SRR001205/SRR005720/SRR921889 dataset. As for the memory consumption, FASTX-Toolkit provides better performance than the other tools. However, G-CNV outperforms NGS QC Toolkit. As FASTX-Toolkit does not support paired-end libraries, it has not been used to analyze the SRR005720 dataset.

Table 7 | Performance evaluation to remove adapter sequences.
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Finally, when used to remove adapters from the HCS1, G-CNV required ~50 min and 250 MB of memory, whereas it required ~3 h 20 min and 920 MB for HCS2.

3.4. REMOVING DUPLICATED READ SEQUENCES

To assess the performance of G-CNV in the task of removing duplicated sequences, we compared its performance with those of Fulcrum. G-CNV implements a very similar algorithm to that implemented in Fulcrum. In particular, similarly to our tool, Fulcrum clusters together the reads with a similar prefix and looks for duplicates in the same cluster.

Table 8 reports the main parameters that have been used for the experiments. Experiments on the synthetic S2 library have been performed clustering reads according to a prefix length of 25 bp and looking for identical sequences (i.e., 0 mismatches) and nearly identical sequences with up to 1 mismatch. Results reported in Table 9 show that both tools have been able to identify the synthetic duplicate sequences. It should be pointed out that S2 has been built avoiding to generate mismatches among the duplicated sequences in their first 25 bp. As for tests on real-life data, we performed experiments on the larger SRR921889 dataset. Experiments have been aimed at assessing the performance of G-CNV to remove duplicated sequences according to different constraints. In particular, we performed the experiments on both G-CNV and Fulcrum to cluster sequences according to a prefix size of 10 and 25 bp and to look for duplicated sequences with up to 1 and up to 3 mismatches. Experimental results are reported in Table 10. For each experiment were reported the percentage of removed sequences, the computing time and the peak of memory required for the analysis. Results show that both tools remove a similar percentage of duplicated sequences. However, as for the computing time, G-CNV outperforms Fulcrum in all experiments. It should be pointed out that Fulcrum automatically parallelize the computation on all available CPU cores. Therefore, the computing times reported in the table have been obtained running Fulcrum parallelized on 12 CPU cores. Results show that the computing time required by G-CNV depends on both the number of allowed mismatches and the prefix size. The number of sequences that will be classified as duplicated increases with the number of allowed mismatches. Therefore, increasing this value may involve a lower number of sequences comparison. Moreover, the size of a cluster depends on the prefix length. Typically, the size of the clusters increases as the prefix length decreases involving more sequences comparison.

Table 8 | Tools settings used to remove duplicated sequences.
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Table 9 | Performance evaluation to remove duplicated sequences from the synthetic S2 library.
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Table 10 | Performance evaluation to remove duplicated sequences from the real life dataset SRR921889.
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For the sake of completeness, G-CNV performed the clustering step in ~2 s for both length of the prefixes, whereas Fulcrum required 13 min to cluster the reads according to a prefix of 10 bp and 56 min to cluster the reads according to prefix length of 25 bp. However, it should be pointed out that G-CNV can not be used to cluster reads with a prefix longer than 27 bp. Moreover, the clustering phase implemented by G-CNV requires that all prefixes will be loaded into the memory of the GPU device. This implies a constraint on the size of the analyzed library, which depends on the memory of the GPU. As for the memory consumption, G-CNV undoubtedly requires more memory than Fulcrum. Also in this case, the high memory consumption is due to the need of maximize the occupancy of the grid of the GPU.

Finally, we performed different experiments on the HCS1 dataset. Experiments have been performed to cluster the reads according to a prefix length of 15 and 27 bp and to look for duplicated with up to 1 and to 3 mismatches. Results are reported in Table 11.

Table 11 | Performance evaluation to remove duplicated sequences from the synthetic HCS1 dataset.
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3.5. GENERATING THE RD SIGNAL

As there are no other specialized tools to generate the RD signal, we cannot assess and compare the performance of G-CNV with other tools. However, we used the FastQC tool7 to assess the reliability of G-CNV in the task of calculating the GC-content that is used to normalize the RD signal. FastQC is a tool that provides some quality control checks on HTS data. In particular, it is able to calculate the distribution of the per-sequence GC-content of the analyzed read sequences.

As G-CNV calculates the GC-content of each observed window in the genome sequences, we generated a synthetic library using as reads the subsequences observed with a window of 100 bp along the MT chromosome of the human genome (build 37.3). Then, we used FastQC to analyze the GC-content of these sequences and compared the results with those generated by G-CNV. Both tools provided the same distribution of the GC-content. It should be pointed out that it was not possible to compare the results with those of FASTX-Toolkit and NGS QC Toolkit as both determine only the per-base GC-content. We did not compare the time required by G-CNV with that required by FastQC as it automatically performs several quality checks.

Moreover, to assess the performance of G-CNV to generate a RD signal, we simulated an alignment SAM file on the human genome (build 37.3). The alignment has been simulated by assuming a sequencing experiment on the genome with coverage 30x. We did not simulate sequencing and alignment errors. The SAM file was generated by assuming an ideal aligner able to map the reads uniquely and without errors. In fact, these errors do not affect the computing time to generate the RD signal; they affect the detection of CNVs. However, as for this experiment, we have been mainly interested to assess the computing time of G-CNV in the task of generating the RD signal. G-CNV generated the RD signal with an observing window of length 100 in less than 1 h 56 min and required 10.4 GB of memory. As for the memory used by G-CNV, it depends on the number of alignments in the analyzed genome sequence. G-CNV generates the RD signal analyzing separately the genome sequences. To maximize the parallelization, as many as possible alignments on the analyzed genome sequence are loaded into the GPU.

3.6. HARDWARE AND SOFTWARE CONFIGURATION

Experiments described hereinafter have been carried out on a 12 cores Intel Xeon CPU E5-2667 2.90 GHz with 128 GB of RAM and an NVIDIA Kepler architecture-based Tesla k20c card with 0.71 GHz clock rate and equipped with 4.8 GB of global memory.

4. DISCUSSION

Different RD-based methods and tools have been proposed in the literature to identify CNVs. Typically, these tools do not support most of the preparatory operations for RD analysis. Therefore, a specific analysis pipeline must be built with different third-party tools. G-CNV allows to build the analysis pipeline required to process short-read libraries for RD analysis according to different constraints. However, in our opinion, the added value of G-CNV is the fact that almost all operations are performed on GPUs. In fact, these are data-intensive operations that may require an enormous computing power. GPUs are increasingly used to deal with computational intensive problems. The low cost for accessing the technology and their very high computing power is facilitating the GPUs success. Experimental results show that G-CNV is able to efficiently run the supported operations. However, it should be pointed out that the current release of G-CNV still has some limitations and/or constraints. In particular, as for removing duplicates, there are two main limitations of our algorithm. As for the former, the current release of G-CNV supports removal of duplicates only for single-end reads. As for the latter, there exists a constraint on the clustering phase. Sorting requires that all prefixes will be loaded into the memory of the GPU device. This implies a constraint on the size of the analyzed library, which depends on the memory of the GPU. With a GPU card equipped with 4.8 GB of global memory, libraries of up to 220 M reads can be analyzed. A solution to overcome this constraint is to parallelize the sorting on multiple GPU devices. We are currently working to adapt CUDA-Quicksort to run on multiple GPUs. Although CUDA-Quicksort resulted be the fastest GPU-based implementation of the quicksort algorithm, the Thrust Radix Sort is currently the fastest GPU-based sorting algorithm. However, as for clustering, we adapted and used our CUDA-Quicksort as it has been designed to be easily modified to scale on multiple GPUs. Moreover, we deem that the overall performance of G-CNV can be improved by implementing the trimming of the adapters on GPUs.
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Tandem repeats (TRs) are frequently observed in genomes across all domains of life. Evidence suggests that some TRs are crucial for proteins with fundamental biological functions and can be associated with virulence, resistance, and infectious/neurodegenerative diseases. Genome-scale systematic studies of TRs have the potential to unveil core mechanisms governing TR evolution and TR roles in shaping genomes. However, TR-related studies are often non-trivial due to heterogeneous and sometimes fast evolving TR regions. In this review, we discuss these intricacies and their consequences. We present our recent contributions to computational and statistical approaches for TR significance testing, sequence profile-based TR annotation, TR-aware sequence alignment, phylogenetic analyses of TR unit number and order, and TR benchmarks. Importantly, all these methods explicitly rely on the evolutionary definition of a tandem repeat as a sequence of adjacent repeat units stemming from a common ancestor. The discussed work has a focus on protein TRs, yet is generally applicable to nucleic acid TRs, sharing similar features.
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Tandem Repeats in Genomic Sequences

A tandem repeat (TR) in genomic sequence is a subsequent recurrence of a single sequence motif. TRs are described by the length of the minimal repeating motif (unit), the number of units, and the similarity among its units. The similarity of initially identical TR units fades with time through point mutations and indels, masking their shared ancestry. Diverged TR units, even when unrecognizable by eye, can maintain structural similarity over long evolutionary times [e.g., Figure 1 in Kajava (2012)]. While the mechanisms shaping TRs are poorly understood, they can evolve by duplication/loss of TR units, recombination, and gene conversion (Pearson et al., 2005; Richard et al., 2008). TRs can mutate by replication slippage (Levinson and Gutman, 1987; Ellegren, 2000), whereby the mispairing of a slipping-strand during the DNA synthesis causes a loss or gain of units as loops of TR units form hairpin structures (Mirkin, 2006).


[image: image1]

FIGURE 1 | Tandem repeats in genomic sequences. (A) An example TR with three units and the corresponding MSA of its units. (B) Different parts of a TR motif (R = right and L = left) have different histories after a single duplication with shifted TR units. Shown are these duplication histories as phylogenies of the right and left parts of the TR motif. (C) Five scenarios of overlapping and non-overlapping TR annotations.



Tandem repeats are frequent in coding and non-coding DNA in species throughout the kingdoms of life. Genomic TRs are a rich source for genetic variability, providing a wide range of possible genotypes at a given locus (Nithiananthrajah and Hannan, 2007) and apt opportunity for selection, not only on long evolutionary scales but also during somatic cellular processes. Particularly staggering variation in TR unit lengths and numbers is characteristic to genomic TRs, such as ribosomal DNA arrays crucial for the translation machinery, and satellite DNA comprising the main component of functional centromeres (Richard et al., 2008). In protein-coding genes, mutations in TRs are likely to alter the structure/function of the protein product. Even in non-coding TRs, mutations can have serious fitness consequences by affecting gene regulation, transcription, and translation (Usdin, 2008). Crucially, TRs have attracted attention because of their medical relevance: many human proteins with TRs have been linked to monogenic disorders, typically affecting the nervous system (Siwach and Ganesh, 2008; Hannan, 2010). There is a high incidence of TRs in virulence factors of pathogenic agents, toxins, and allergens (Jorda et al., 2010).

The Methodological Challenges for Tandem Repeats Detection

Systematic analyses of genomic TRs will help to better understand the biological processes governing and governed by TRs and their functional relevance. Such studies rely on the large-scale TRs detection (TRD). Numerous methods for TRD have been developed. Yet, since they are based on different algorithmic paradigms and heuristics, there is a large discrepancy between TR annotations produced by different algorithms for the same sequence (Leclercq et al., 2007; Merkel and Gemmell, 2008; Mudunuri et al., 2010; Schaper et al., 2012). For example, with four TRD methods applied to the human proteome, the majority of TRs were annotated by a single detector, only 9.8% were annotated by two and a meager 1.1% by at least three (Schaper et al., 2012).

The TR heterogeneity contributes to the large variability among TRD methods. The TRD is relatively simple for identical units. If the TR motif is unknown, this task is computationally expensive for long sequences, requiring an exhaustive search with no information on TR unit length, number, or position in the sequence (search space in O(N3) for sequence length N). Substitutions and indels in the TR region cause major challenges to TRD: with decreasing unit similarity, TR regions become hard to discern. Indels introduce length variability between individual TR units, increasing the TR search space to O(2NN3).

Furthermore, the original TR unit boundaries can be shifted due to new unit duplications (Figure 1A, Benson and Dong, 1999; Rivals, 2004). Clear boundaries are preserved only in some cases, for example, when protein TRs are confined by the exon structure. Therefore, unambiguously dividing a TR region into units of similar lengths may not accurately reflect the TR duplication history. Occasionally, the TR history is described by different phylogenies for different parts of the TR motif (Figure 1B). Thus, defining the consensus TR motif is problematic, and TRD methods typically differ in the predicted unit lengths and boundaries.

Ultimately, TRD methods differ by TR definitions. One TR definition borrows from string matching in computer science, whereby TRs are defined by a repetitive regular expression, allowing for a fixed proportion of dissimilar characters among TR units. This viewpoint enables straightforward exhaustive TRD algorithms, but lacks biological interpretation. Alternatively, from a structure perspective, protein TRs may be defined by structural repetitions, which allows TR detection for structurally conserved TR units, even with low sequence similarity [see, e.g., the structural TR database Repeats DB, Di Domenico et al. (2014)]. Yet, defining structural repeats is in itself problematic. Finally, the evolutionary definition states that a TR stems from ancestral unit duplications. This viewpoint has a direct biological interpretation reflecting the TR generating mechanism. Most TRD methods, however, lack an explicit TR definition, which obscures the search objective and TRs are typically detected by empirical properties of unit similarity. This further impedes the ability to evaluate the statistical properties of a method. Improving TRD requires a rigorous statistical framework based on a clear TR definition described as a biologically meaningful mathematical model. Then, a genuine TR can be distinguished from a non-TR sequence by comparison with a model describing random sequences. Relying on a mathematical TR model means that the TRD method’s behavior can be predicted for different scenarios, including the evaluation of false predictions.

One possibility is to define TR units as related by a common ancestral unit under a Markov substitution model and a standard phylogeny model reflecting the unit duplication history (Schaper et al., 2012). The evolutionary distance t from currently observed TR units to their common ancestor can be estimated by maximum likelihood. For any tentative TR region with predicted units, this conveniently allows for statistical hypothesis testing using a likelihood ratio test (LRT; Schaper et al., 2012). The null hypothesis “t = ∞” represents that the estimated evolutionary distance is so large that TR units have no common origin and could have appeared by chance. Rejecting the null suggests that the given units are related (with finite t) and therefore are assumed to be TRs by definition. Such approach provides a statistical framework to validate predicted TRs, filtering out potential false positive predictions.

The variability in TR annotations produced by different TRD methods warns against relying on one specific algorithm. Different methods not only achieve optimal power for different combinations of TR divergence and unit length, but also vary in their accuracy across the TR space. Therefore, to obtain the most complete and accurate set of TR annotations for a given sequence, we suggest that multiple TR detectors should be used [maximizing the number of true positives, e.g., as in Pellegrini et al. (2012)] followed by validation with an LRT (controlling false positives at a fixed significance level).

Annotating TRs with Sequence Profile Models

Many common protein domains found in tandem are listed in sequence profile databases, such as Pfam (Punta et al., 2011), PROSITE (Sigrist et al., 2010), SMART (Letunic et al., 2012), Repbase (Jurka et al., 2005), and Dfam (Travis et al., 2013). For example, of all de novo annotated TRs with unit length ≥15, we found that only few had not been described in Pfam (2.1% in Arabidopsis thaliana and 11.5% in human). Thus, TR annotation can profit strongly from the existing databases.

Profile-based annotation typically relies on sequence profile hidden Markov models (HMMs). Circular connections in an HMM allow the annotation of full TR units (Bucher et al., 1996; Schaper et al., 2014), as implemented in pftools (Sigrist et al., 2013) and in our Python TR Annotation Library TRAL (http://elkeschaper.github.io/tral/). General profile HMM annotation can be used to detect TR units [e.g., HMMER; Eddy (2011)], but a subsequent analysis is required to annotate the whole TR region, potentially including diverged TR units that, without considering the whole TR region, lack statistical significance.

Importantly, sequence profile HMMs can be used to refine de novo annotations. De novo detected TR units provide seed motifs that can be converted to sequence profile models (e.g., with hmmbuild from the HMMER package). These models can then be used to re-annotate sequences. The advantage is twofold: first, the quality of annotation is homogenized among TRs from different TRD methods; second, annotations on homolog sequences become comparable.

An Example Pipeline for Meta-Prediction of Genomic TRs

A plausible TR annotation pipeline in three steps could be (1) identify a putative TR unit seed motif; (2) detect all tandem occurrences of this motif in the sequence, forming a putative TR; and (3) for each putative TR validate its statistical significance and filter out redundant predictions. We describe this TR annotation workflow in Figure 2; all functionalities are implemented in TRAL (http://elkeschaper.github.io/tral/).
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FIGURE 2 | Overview of a generic TR annotation workflow.



Tandem repeat seed motifs are obtained from sequence profile databases and multiple de novo TRD algorithms. Circular profile HMMs are built from these TR seeds and consequently used to annotate TR regions in a sequence. All annotated TRs must be statistically validated, for example, using an LRT. A multiple testing correction may be required dependent on the application [e.g., Saville (1990)]. TRs that fail the test are assumed to be false positive predictions and are discarded. Combining several methods leads to redundant predictions, which is not limited to the rare case where two TR predictions fully coincide. Due to differences in predicted unit boundaries or unit numbers, it is often difficult to decide whether two overlapping TR annotations describe the same TR or, rather, nested or neighboring TRs (Figure 1C). To filter redundant predictions, several ad hoc criteria may be used. For example, overlapping TRs may be seen as redundant (the required degree of overlap demands another ad hoc decision; Figure 1C, b–d). Using the evolutionary TR definition, we propose one possible criterion based on the representation of a TR region as a multiple sequence alignment (MSA) of its TR units. Characters grouped in one MSA column are assumed to derive from a common ancestral character. Given this, one of two TR annotations may be seen as redundant if the characters in two annotations are grouped into columns similarly by the two corresponding MSAs (Figure 1C, b). Model-based test statistics may be defined to recognize redundant TRs, deciding if two independent TR models provide a better description of these TRs compared to one common model.

We used de novo and profile-based methods to annotate TRs in the entire UniprotKB/Swiss-Prot (UniProt Consortium, 2014, v2013-08) with the proposed pipeline (Figure 2). A considerable proportion of these sequences contain TRs: 46% in Eukaryotes, 29% in Archaea, and 27% in Bacteria. These TRs, across all kingdoms of life, are dominated by microsatellite (typically < 10 bp) or short minisatellite TRs (~10–100 bp) with few units.

Probabilistic MSA with TRs

When aligning homologous sequences, often we are not aware of the presence of TRs. Yet, due to uneven TR unit gain/loss among the homologs, TR-containing MSAs are error-prone, since standard indel penalty schemes do not account for the potential variation in TR region length. Some MSA methods accounting for sequence repeats produce local alignments (Raphael, 2004; Phuong et al., 2006; Treangen et al., 2009). However, a global alignment is required for evolutionary inferences, such as for the estimation of TR unit history. Sammeth and Heringa (2006) proposed a global MSA method with fixed TR unit boundaries. Yet, unit boundaries may be distorted by indels, slippage, and recombination. Modeling TRs explicitly in the MSA graph representation allows TR units to start at any position, adequately penalizing indels corresponding to unit gains/losses, and to reconstruct the evolutionary history of TR unit events. The implementation ProGraphMSA + TR (Szalkowski and Anisimova, 2013) uses a probabilistic phylogeny-aware approach similar to PRANK (Löytynoja and Goldman, 2005), achieving not only improved alignment quality, but also a posteriori estimation of rates of evolutionary events, such as TR unit indels. For example, ProGraphMSA + TR was applied to leucine-rich repeats (LRRs) in a gene family of type III effectors determining the pathogenicity in agriculturally important bacteria Ralstonia solanacearum. The estimates of TR indel frequencies in different clades of a gene phylogeny suggested that TR indel rate variation contributes to the diversification of this protein family [Figure 9 of Szalkowski and Anisimova (2013)]. Variation in LRR unit numbers might contribute to adaptive processes in this gene and to pathogenesis on different plant hosts.

Phylogenetic Approach to Study the Evolution of TRs

Tandem repeat unit phylogenies reconstructed from homologous TRs carry much evolutionary signal, even with short units (Schaper and Anisimova, 2014; Schaper et al., 2014). These phylogenies inform about unit duplication histories and TR unit gain/loss rates, allowing to study selection on TRs and their functional relevance. Clustering patterns in TR unit phylogenies describe the unit conservation between species. If the TR unit number and order in orthologs regions from different species are perfectly conserved throughout the evolution, then the phylogeny of all TR units consists of clades formed by orthologous unit copies, each reflecting the phylogeny of the whole region (or species) [Figure 1B of Schaper et al. (2014)]. In contrast, if TR regions are fully separated, then a speciation event is followed by a series of TR unit gain/loss events, and the TR unit phylogeny consists of species-specific monophyletic clades of TR units [Figure 1A of Schaper et al. (2014)].

Tandem repeat unit phylogenies from pairs of orthologs can be used to backtrack the evolution of TRs from a single species (Schaper et al., 2014) or across an entire species tree – using the all-against-all pair-wise approach (Schaper and Anisimova, 2014). In contrast to multispecies TR unit phylogenies, for pair-wise TR unit phylogenies, the statistical significance of observing perfect conservation and separation patterns is computed exactly (Schaper et al., 2014). On the other hand, multispecies TR unit phylogenies suffer fewer reconstruction errors due to the additional information on the unit evolution from additional orthologs.

Our large-scale analyses of eukaryotic proteomes revealed an extremely deep conservation of some protein domain TRs (dTRs), many dating to hundreds million years ago and some even to the times of separation between human and yeast (0.6–1.6 billion years ago) or red algae and green plants (~1.6 billion years ago). Conserved dTRs span much of the TR diversity of proteomes. For example, in human 81% of detected distinct dTR types have been conserved at least to the ancestor of mammals at least in one protein (Schaper et al., 2014). The distribution of conserved domain types is highly heterogeneous: 68% of all conserved dTRs are described by only 5% of all TR types detected in human. Yet, many conserved TRs are rare and occur only in a single protein. Similar numbers were observed in plants (Schaper and Anisimova, 2014).

In contrast, very few dTRs have separated between closely related species. In human, dTRs separated within mammals are dominated by zinc finger repeats (~50%), followed by DUF1220 (~8%; Schaper et al., 2014). In A. thaliana, dTRs separated within magnoliophytes are dominated by LRRs (~40%), followed by ankyrin (~12%) (Schaper and Anisimova, 2014). For both species, separated dTRs are enriched in de novo annotations, i.e., rare and presumably recent dTRs, which are perhaps more prone to unit gains/losses due to relaxed selection or due to higher mutation rates as a result of a high among-unit sequence similarity.

Simulating Genomic TRs

Benchmarking and hypothesis testing in bioinformatics must often rely on simulated data since the truth is rarely known. For example, only the observation of identical TR units qualifies them as a true TR with certainty. Yet this is only the simplest scenario, which is of little practical relevance. With diverged or shifted TR units, unbiased benchmarks are challenging to construct from real data. Model-based simulation offers a powerful means to benchmarking and hypothesis testing in bioinformatics studies of TRs. Simulations enable comparisons of competing hypotheses and help to reveal methodological weaknesses or detect and estimate important factors. Simulations are not only crucial for benchmarking new TRD methods, but also to study the underlying evolutionary mechanisms of genomic TRs. For example, to describe the biological mechanisms for specific TR types, patterns or parameter estimates observed in these data can be compared with those obtained from sequences simulated with alternative models of TR evolution. Sequences with TRs may be generated not only with the dedicated models of evolution by unit gain/loss with fuzzy units boundaries, e.g., SlippageSim (Szalkowski and Anisimova, 2013), but also with other general sequence simulators that allow gene family evolution by mutations, indels, gene gain/loss, recombination, etc. [e.g., Dalquen et al. (2012)]. For example, sequences with TRs of different divergence and unit lengths were used to benchmark the MSA method ProGraphMSA + TR that accounts for sequence TRs (see above). The evaluation of the power of TRD methods also relies on simulated sequences with TRs (the alternative hypothesis). Yet the high power is irrelevant without the evaluation of false positive TRD rates, which must be done on TR-free data (the null hypothesis). Furthermore, simulated TR-free data helps to validate TR-specific findings: the comparison of patterns found in simulated TR-free sequences with those observed in sequences with TRs serves to disentangle TR-specific findings from those that may occur in genomic sequences in general. A simple approach is to simulate TR-free data by drawing k-mers from a (k - 1)-th order Markov model based on empirical frequencies (Robin et al., 2007). In contrast to drawing single characters from their frequency distribution, simulating k-mers mimics natural local correlations while choosing small k minimizes the chance of hidden TRs within a k-mer.

Conclusion and Perspectives

Tandem repeats are diverse in their size, type, unit similarity, and distribution across genomes. Methods discussed above enable accurate detection of TR orthologs with strongly conserved unit configurations, or on the contrary, with highly changing unit numbers. Due to the heterogeneity of TRs, large-scale studies should be followed up by studies that focus on specific TR types and their effects on molecular processes. Our TR scans of eukaryotic proteomes provide a plentitude of cases to investigate with respect to their functional roles. While many TRs were linked to key functions, phenotypic changes, or disease predisposition, the biological mechanisms generating and preserving TRs in genomes are poorly understood. New studies of genomic TRs only fuel our fascination with these genomic features, calling for further research and for the development of dedicated methods. Further development of rigorous statistical models of TR generating mechanisms will help to improve TRD methods, and to shed some light on biological forces shaping these sequences.
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Repetitive patterns in genomic sequences have a great biological significance and also algorithmic implications. Analytic combinatorics allow to derive formula for the expected length of repetitions in a random sequence. Asymptotic results, which generalize previous works on a binary alphabet, are easily computable. Simulations on random sequences show their accuracy. As an application, the sample case of Archaea genomes illustrates how biological sequences may differ from random sequences.
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1. INTRODUCTION

This paper provides combinatorial tools to distinguish biologically significant events from random repetitions in sequences. This is a key issue in several genomic problems as many repetitive structures can be found in genomes. One may cite microsatellites, retrotransposons, DNA transposons, long terminal repeats (LTR), long interspersed nuclear elements (LINE), ribosomal DNA, and short interspersed nuclear elements (SINE). In Treangen and Salzberg (2012), it is claimed that half of the genome consists of different types of repeats. Knowledge about the length of a maximal repeat is a key issue for assembly, notably the design of algorithms that rely upon de Bruijn graphs. In re-sequencing, it is a common assumption for aligners that any sequenced “read” should map to a single position in a genome: in the ideal case where no sequencing error occurs, this implies that the length of the reads is larger than the length of the maximal repetition. Average lengths of the repeats are given in Gu et al. (2000). Recently, heuristics have been proposed and implemented (Devillers and Schbath, 2012; Rizk et al., 2013; Chikhi and Medvedev, 2014).

A similar problem has been extensively studied: the prediction of the length of maximal common prefixes for words in a random set. Typical parameters are the background probability model, the size V of the alphabet, the length n of the sequence, and so on. Deviation from uniformity was studied for a uniform model as early as 1988 (Flajolet et al., 1988). A complexity index that captures the richness of the language is addressed in Janson et al. (2004). A distribution model, valid for binary alphabets and biased distributions, was introduced in Park et al. (2009), the so-called trie profile and extended to Patricia tries in Magner et al. (2014). The authors pointed out different “regimes” of randomness and a phase transition, by means of analytic combinatorics (Sedgewick and Flajolet, 2009). It was observed in Jacquet and Szpankowski (1994) that the average length of maximal common prefixes in a random set of n words is asymptotically equivalent to the average length of maximal repetitions in a random sequence of length n. Sets of words are considered below in the theoretical analysis. A comparison with the distribution of maximal repetitions in random sequences or real Archaea genomic sequences is presented in Section 3.

Our first goal is to extend results of Park et al. (2009) to the case of a general V-alphabet, including the special case {A, C, G, T} where V is 4. A second goal is to compare the results consistency with random data and real genomic data in the finite range.

To achieve the first goal, we rely on an alternative, and simpler, probabilistic and combinatorial approach that is interesting per se. It avoids generating functions and the Poissonization–dePoissonization cycle that is used in Park et al. (2009) and it extends to non-binary alphabets. In that case, there is no closed formula for the asymptotic behavior. Nevertheless, the Lagrange multipliers allow to derive it as the solution of an equation that can be computed numerically.

Explicit and computable bounds for the profile of a random set of n words are provided. Three domains can be observed. A first domain is defined by a threshold k for the length, called the completion length: any prefix with a length smaller than this threshold occurs at least twice. This threshold is extremely stable over the data sets and it is highly predictable. A similar phenomenon was observed for a uniform model in Fagin et al. (1979a) and a biased model (Mahmoud, 1992; Park et al., 2009). For larger lengths, some prefixes occur only once. In a second domain, called the transition phase, the number of maximal common prefixes is sublinear in the size n of the sequence: increasing first, then decreasing slowly, and, finally, dropping rapidly. In the third domain, for a length larger than some extinction length, almost no common prefix of that length occurs. Despite the fact that these bounds are asymptotic, a good convergence is shown in practice for random texts when a second-order term is known.

Differences between the model and the observation are studied on the special case of Archaea genomes. A dependency to the GC-content, which is a characteristic of each genome, is exhibited. Regimes and transitions are studied on these genomic data and theoretical results are confirmed, with a drift in the values of transition thresholds. Notably, the length of the largest repetitions is much larger than expected. This difference between the model and the observation arises from the occurrences of long repeated regions.

Section 2 is devoted to Main Results, to be proved in Section 4. First, some notations are introduced; then, an algebraic expression for the expectation of the number of maximal common prefixes in a sequence is derived in Theorem 2.1. Second, this expression is split between two sums that are computable in practical ranges. Then, it is shown that a Large Deviation principle applies. It yields first and second order asymptotic terms, and oscillations, that are provided in Theorem 2.2. A comparison between exact, approximate, and asymptotic expressions is presented in Section 3.

2. MAIN RESULTS

It is assumed throughout this study that sequences and words are randomly generated according to a biased Bernoulli model on an alphabet of size V. Let p1, …, pV denote the probabilities of the V characters χ1, … ,χV.

Definition 2.1. For any i in {1, … ,V }, one notes

[image: image1]

Additionally,

[image: image1]
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The two values min(βi) and max(βi) are different when the Bernoulli model is non-uniform.

2.1. Enumeration

Definition 2.2. Given U a set of words and an integer k, k ≥ 2, a unique k-mer in U is a word wχi of length k such that

1. w is a prefix of at least two words in U;

2. and wχi is a prefix of a single word.

By convention, a unique 1-mer is a character χi that is a prefix of a single word.

Definition 2.3. Let U be a set of n words.

For k ≥ 1, one denotes B(n, k) the number of unique k-mers in U.

One denotes μ(n, k − 1) the expectation of B(n, k) over all sets of n words.

Remark: It follows from Definition 2.2 that quantity B(n, k) is upper bounded by n. Observe that, for each random set U, it is the sum of a large number – Vk – of correlated random variables. Expectation μ(n, k) is studied below and compared in Section 3 with B(n, k + 1).

Profiles of repetitions can be expressed as a combinatorial sum.

Theorem 2.1. Given a length k, the expectation μ(n, k) satisfies:

[image: image1]

where
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Proof. A word wχi is a unique (k + 1)-mer iff (i) w has length k and is the prefix of at least two words, including wχi; (ii) wχi is not repeated.

Event (i) has probability

[image: image1]

Event (ii), which is a sub-event of (i), has probability

[image: image1]

2.2. A Combinatorial Expression

Definition 2.4. Given a k-mer w, let α denote [image: image1] and ki denote the number of occurrences of character χi in w. The objective function is

[image: image1]

The character distribution (k1, … , kV) of a k-mer may be viewed as barycentric coordinates for a point [image: image1] that lies in [image: image1]. The order of β points on that interval allows for a classification of k-mers that is a key to this study.

Definition 2.5. A k-mer w is said

• a common k-mer if ρ(k1,…, kV) < 0;

• a transition k-mer if ρ(k1, … , kV) ≥ 0 and its ancestor is a common k-mer;

• a rare k-mer, otherwise.

Remark: If ρ(k1, … , kV) = 0, the condition on the ancestor is trivially satisfied.

Definition 2.6. Given a set U of n words and an integer k, let Dk(n) denote the set of character distributions (k1, … , kV) for rare and transition k-mers. Let Ek(n) denote the set of character distributions for common k-mers.

The set Dk(n) is the empty set if k < αmin log n and is the set of character distributions (k1, … , kV) if k > αmax log n. Computation of (3) is split among the two sets Dk(n) and Ek(n). Computations show that the main contribution arises from transition k-mers. A probabilistic interpretation will be discussed in 2.4.

Notation: Let S(k) and T(k) be

[image: image1]
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So μ(n, k) rewrites

[image: image1]

These sums S(k) and T(k) can be efficiently computed for moderate k, up to a few hundred, approximately. In practice, αmax log n is below this threshold for the sizes of actual genomes and for their ordinary GC content value. The simulations in Section 3 show that this estimation is rather tight. Behavior and asymptotic estimates are derived and discussed in the next section.

2.3. Asymptotic Estimates

In this section, asymptotic estimates for (3) are derived. First, some characteristic functions are introduced. Then, it is observed that a Large Deviation Principle applies for the combinatorial sums to be computed and asymptotics for the dominating term follow. Amortized terms are also computed. It is shown in Section 3 that this second-order term cannot be neglected in the finite range.

2.3.1. Notations

For general alphabets, asymptotic behavior is a function of the solution of an equation and depends on domains whose bounds are defined below.

Definition 2.7. Let (pi)1≤i≤V be a Bernoulli probability distribution. Let σ2 denote [image: image1].

The fundamental ratio, noted [image: image1], is [image: image1].

The transition ratio, noted [image: image1], is [image: image1].

The extinction ratio, noted αext, is [image: image1].

Definition 2.8. Let α be a real value in [αmin, αmax]. Let τα be the unique real root of the equation

[image: image1]

Let ψ be the function defined in [αmin, αext] as

[image: image1]

Proposition 2.1. The following property holds

[image: image1]

Function ψ increases on [image: image1] and decreases on [image: image1]. It satisfies

[image: image1]

Remark: Uniqueness of τα is shown in Section 4.2. As [image: image1], ψ is continuous at α = [image: image1], with [image: image1].

2.3.2. Asymptotic Results

Theorem 2.2. Given a length α log n, when n tends to ∞ the ratio [image: image1] satisfies:

[image: image1]
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Moreover, let ξ be the function defined in [αmin, αext] as [image: image1]. It satisfies

[image: image1]

[image: image1]

Proof. The key to the proof when α ranges in [αmin, αmax] is that ψn(k1, … kV) is maximal when ρ(k1, … kV) is close to 0. Sum T(k) satisfies a Large Deviation Principle.

[image: image1]

The maximization problem rewrites as

[image: image1]

The maximum value is [image: image1] that is reached for the V-tuple [image: image1].

S(k) satisfies again a Large Deviation Principle when α < [image: image1], which yields the asymptotic result in this range. For larger α, S(k) is approximately [image: image1] that dominates T(k).

Details for the proof, including the short and long lengths, are provided in Section 4.

Remark: The discussion will depend of the ratio [image: image1]. Possible values for α range over a discrete set as they are constrained to be the ratio of an integer by the log of an integer. An interesting property is that, for any real α, the set T = {n ∈ N; α log n ∈ N} is either empty or infinite. Indeed, when T is non-empty, it contains all values n(α)p where n(α) denotes the minimum value of T. It is beyond the scope of this paper to establish the number of other possible solutions.

2.3.3. Domains

Different domains arise from this Theorem, which were observed in Park et al. (2009). Equalities ψ(αmin) = 0 and [image: image1] show that there is a continuity between domains.

When α lies inside the domain [αmin, αext], the ratio [image: image1] is positive and parameters μ(n, α log n) are sub-linear in the size n of the text: some k-mers – mostly transition k-mers – are unique k-mers. Observe that the maximum value for ψ(α) is 1. When the Bernoulli model is uniform, this central domain is empty.

When the length is smaller than the completion length αmin log n or greater than the extinction length αext log n, the ratio [image: image1] is negative.

2.3.4. Oscillations

Parameters (k1, … , kV) in the combinatorial sums are integers. As the optimum values (kθi)1≤i≤V may not be integers, the practical maximum is a close point on the lattice (k1, … , kV). The difference introduces a multiplicative factor that ranges in [image: image1]. This leads to a small oscillation of log μ(n, k). For large n, this contribution to [image: image1] becomes negligible. As mentioned above, the set of lengths n that are admissible for a given α is very sparse. Nevertheless, an approximate value may be used: for instance, for an integer k′, [image: image1] is very close to α. This oscillation phenomenon was first observed in Nicodème (2005).

2.3.5. Binary Alphabets

Results for binary alphabets in Park et al. (2009) steadily follow from Theorem 2.2. A rewriting of ψ leads to alternative expression (18). This explicit expression points out the dependency to the distances to αmin and αmax, and the behavior around these points.

Corollary 2.1. Assume that the alphabet is binary. Then

[image: image1]

where

[image: image1]

A similar result holds for DNA sequences when the alphabet is 4-ary and the probability distribution satisfies pA = pT and pC = pG. Such a distribution is defined by its GC-content pG + pC.

2.4. A Probabilistic Interpretation

The main contribution to μ(n, k) arises from k-mers with an objective function close to 0, i.e., transition k-mers. Such k-mers exist in the transition phase [αmin log n, αmax log n] where they coexist with rare or common k-mers. Observe that this phase is shrinked when the Bernoulli model is uniform, as pmin = pmax and αmin = αmax. Therefore, most unique k-mers are concentrated on the two lengths [image: image1]αmin log n[image: image1] and [image: image1]αmin log n[image: image1], as observed initially in Fagin et al. (1979b).

Let k be some integer in the transition phase. First, the relative contribution of S(k) and T(k) to μ(n, k) varies with the length k. For lengths close to αmin log n, most words are common and T(k) dominates S(k). When k increases, the proportion of common words decreases and the relative contribution of T(k) decreases.

Second, the dominating term in μ(n, k) arises from transition k-mers. Let w be a word of length k, the character distribution in w be (k1, … , kV) and χi be some character. The number of words that admit w or wχi as a prefix fluctuates around the expectations nϕ(k1, … , kV) and nϕ(k1, … , kV)pi, respectively. On the one hand, when word wχi is a rare word, nϕ(k1, … , kV) is less than 1. The smallest nϕ(k1, … , kV) is, the less likely the actual number of occurrences of w is greater than 2 and the smallest the contribution of wχi to S(k), and μ(n, k), is. On the other hand, let wχi be a common k + 1-mer; w is a common k-mer and then nϕ(k1, … , kV) is greater than 1. The largest nϕ(k1, … , kV) is, the more likely the word wχi is repeated and the smallest the contribution to T(k), and μ(n, k), is.

For a short length, i.e., k smaller than the completion length kmin, all words are common. In a given sequence, most k-mers are repeated at least twice and there is (almost) no unique k-mers.

For a large length k, i.e., k greater than kmax, all words are rare. Nevertheless the number of unique k-mers remains sublinear in n in the range [αmax log n, αext log n]: the sum of small contributions arising from a large number of possible words is significant.

A folk theorem (Szpankowski, 2001; Jacquet and Szpankowski, 2015) claims that the objective function is concentrated around [image: image1]. Consequently, when α = [image: image1], most k-mers are transition k-mers and the exponent, the ψ function, is maximal.

3. EXPERIMENTS AND ANALYSIS

Simulations are presented for random and real data. For each simulation, a suffix tree (Ukkonen, 1995) is built, where each leaf represents a unique k-mer. For random cases, the Ukkonen’s insertion step is iterated until a tree with exactly n leaves is build. This requires n + kins insertions of symbols, where kins > 0 is relatively small (there is a value of a few dozen in practice for considered n). One can observe that the event of having n leaves after n + k − 1 insertions corresponds to the fact that the trailing k-mer is unique in the sequence of length n + k − 1.

Even if a statistical bias exists, with respect to the case of a set of N random words analyzed in previous sections, this bias for respective values on k and n is below the numeric precision used for tables below.

Then, one simulation that is related to the case of a set of n random words, requires the generation of the order of N random symbols from a small alphabet, following a Bernoulli scheme. For this range of n, and even in the case of a hundred consecutive simulations, this corresponds to a regular use of a common random number generator (Knuth, 1998).

A first set of simulation deals with the case of random sequences over a binary alphabet, since the results can be compared with previous work. A second set addresses the case of random sequences over a quaternary alphabet {A, C, G, T} with a constrained distribution such that probabilities pA ≈ pT and pC ≈ pG as it is the case for DNA sequences (where the sum pC + pG is also known as the GC-content). Results on such random sequences are then compared with the sample biological sequence of an Archaea (Haloferax volcanii).

An implementation with a suffix array (Manber and Myers, 1993) allows for a compact representation and an efficient counting (Beller et al., 2013).

3.1. Random data

A hundred binary sequences were randomly generated. The number of leaves in each tree was fixed to n = 5000000 and the Bernoulli parameter was pmax = 0.7000. Therefore, pmin = 0.3000, [image: image1], and log n = 15.4249. The thresholds for α and the corresponding lengths α log n are:

[image: image1]

3.1.1. Statistical Behavior on Random Sets

Throughout experiments, every sample profile for a given sequence fluctuates very little around the expectation.

Table 1 provides experimental results averaged over a hundred binary sequences. Short length with no observed unique k-mer is removed. Column 2 gives the mean of B(k + 1), i.e., the mean number of observed leaves at depth k + 1, over the set of a hundred simulations. Columns 3 to 5 give the computed values for S(k), T(k), and μ(k), using the expressions, equations (7–9).

TABLE 1 | Mean profile for 100 random binary sequences.

[image: image1]

The actual number of leaves B(n, k + 1) is very close to the average value μ(n, k), and simulations show that this is the general case when (only) a hundred simulations are performed: μ(n, k) is a very good prediction.

Observed lengths of extinction also show very little variations. In array below, each column gives nk, the number of sequences out of the one hundred sample set for which the longest repetition had length k.

Distribution of the extinction level for 100 random binary sequences. pmax is 0.7.

[image: image1]

In the binary case, the predicted extinction length is between 56 and 57. It is noticeable that, in most cases, the observed depth is slightly smaller than this value. In Table 1, value 0.04 for μ(n, 61) means that one expects a total of four leaves at depth 60 over one hundred sequences. In that run, exists a total amount of 8.

3.1.2. Quality of Estimates

1. Tightness of the asymptotic estimates. Asymptotic estimates (13) given in Column 7 significantly overestimate the observed values in Column 6 that is computed directly from Column 2 and n. A first conclusion is that first-order asymptotics provide a poor prediction: next term is O[image: image1] that goes slowly to 0.

2. Tightness of the second-order asymptotics. Second term for the asymptotic ξ(α) ensures a much better approximation in Column 8.

3. Growth of asymptotic estimates. Observed values increase with length until [image: image1] and then decrease. This is consistent with the variation of asymptotic values ψ(α).

3.1.3. Dependency to Probability Bias

Thresholds were computed for a given sequence length n and various probabilities. The more pmax departs from 0.5, the value for the uniform model, the largest the extinction length is. The completion length, kmin, slightly decreases, while the extinction length significantly increases. Nevertheless, this effect is limited when the largest probability pmax remains in the range [0.5;0.7].

Dependency of thresholds to pmax for binary alphabets, n = 5,000,000.

[image: image1]

3.2. Long Repetitions in Archaea Genomes

The experimental data set is the sequence from Haloferax volcanii DS2 chromosome, complete genome (Hartman et al., 2010). The alphabet is quaternary. Profile results are shown in Table 2.

TABLE 2 | Profile for the sequence from Haloferax volcanii DS2 chromosome, complete genome.

[image: image1]

Sequence length is n = 2847757. The observed symbol frequencies are pA = 0.1655; pC = 0.3334; pG = 0.3330; pT = 0.1681. Therefore, observed GC-content is 0.6664. Parameters for an approximate degenerated quaternary model are pA = pT = pmin = 0.1668; pC = pG = pmax = 0.3332; [image: image1]; and log n = 14.8620. The thresholds for the domain are

[image: image1]

Statistics on one hundred random sequences with same parameters are shown in Table 3. GC-content is 0.6664. Extinction level is provided in Table 4. Observe first a good match between the observed values, the predicted values for μ(n, k), and the asymptotic values for random data. As shown for binary alphabets, the observed extinction level for random sequences departs very little from the predicted kext level.

TABLE 3 | Mean profile for 100 random degenerated quaternary sequences.

[image: image1]

TABLE 4 | Distribution of the extinction level for 100 random degenerated quaternary sequences.

[image: image1]

Numerous differences with random data can be observed on real genomes.

Interestingly, the behavior for short lengths and in the transition phase is similar to the random behavior. Observation and prediction have the same order of magnitude. In particular, the number of unique k-mers is maximum for length [image: image1] where observation and prediction coincide. For a real genome and a length k smaller than kmin, observed B(n, k + 1) is larger than predicted μ(n, k). This indicates, at a level k + 1 where completion is expected, more leaves in the real trie, more missing words at level k + 2. Simultaneously, less internal nodes occur at level k + 1 because the total sum is constant and equal to Vk+1.

The effect of (non-random) repetitions is more sensible in the decreasing domain. First, the number of unique k-mers decreases much more slowly than expected for lengths larger than kmax. A significant gap can be observed around extinction level kext. The decrease rate, which was around 0.02–0.04 drops to 0.007 and then becomes even lower. Finally, the extinction level is much larger than the predicted value 23: the largest repetition is 1395 bp long.

To evaluate the contribution of long repetitions, one may erase the longest ones. When a word w is repeated, any proper suffix of w is also repeated. Consequently, once the longest repeated word is erased, one unique k-mer (only) disappears for each length larger than the length of the second largest subsequence (here, 935). The profile remains far from the random profile. This observation is still true if the 10 longest subsequences are erased.

4. COMBINATORIAL AND ANALYTIC DERIVATION

4.1. Lagrange Multipliers

Lagrange multipliers method allows to maximize an expression under constraints. To compute (17), one sets

[image: image1]

[image: image1]

[image: image1]

Two constraints are given:

[image: image1]

An intermediary function ϕα(τ1, … τV) is defined

[image: image1]

In order to maximize ϕ under these two constraints, ϕ function is derived with respect to each random variable τi. This yields V equations

[image: image1]

Two indices imin and imax are chosen that satisfy [image: image1]. For instance

[image: image1]

Solving equation (24) with indices imin and imax yields

[image: image1]

Remaining equations rewrite:

[image: image1]

Using the constraint [image: image1] that yields

[image: image1]

and an expression for [image: image1] follows. Therefore Equation 25 rewrites:

[image: image1]

Finally, Equation [image: image1] yields equation (10).

[image: image1]

For this V-tuple

[image: image1]

4.2. Approximation Orders

Derivating the RHS of (10) yields [image: image1] that is positive. Therefore, for any α, the solution to (10) is unique. Moreover, τα increases with α. Let

[image: image1]

[image: image1]

Notably, the solutions τα of (10) associated with the four increasing values of α: [image: image1] are (–∞, 1 + 2, + ∞). Computing ψ for these values yields (11) and Equality [image: image1].

Derivating both expressions yields

[image: image1]

[image: image1]

Both derivatives are monotone functions of τα. In equation (30), derivative is 0 when [image: image1]. Therefore, ψ is the maximum of the two values ψ1 and ψ2 over the interval [αmin, αmax]. The former equation is 0 if α = [image: image1]. Therefore, ψ is maximum when α = [image: image1].

4.3. Approximations

4.3.1. Short Lengths

Assume that k ≤ αmin log n. Each term ϕ(k1, … , kV) is lower bounded by [image: image1]. Each term ψn(k1, … , kV) is trivially bounded by [image: image1] that is upper bounded by 1 and nψn(k1, … , kV) tends to 0 when n goes to ∞. As [image: image1], the ratio [image: image1] is negative.

4.3.2. Moderate and Large Lengths

For a length k in the transition domain [αmin log n, αmax log n], the objective function may be either positive or negative. When k > αmax log n, set Ek(n) is empty and μ(n, k) reduces to S(k).

The maximum M among the terms [image: image1] in T(k) is reached when ρ(k1, … , kV) is 0. Due to the exponential decrease of [image: image1] when nϕ(k1, … , kV) ≥ 1, [image: image1] is upper bounded. Computation of log M is done with Lagrange multipliers, as explained above.

Computation of S(k) relies on the local development of ψn(k1, … , kV), that is n(1–σ2)ϕ (k1, … , kV). S(k) rewrites [image: image1] where [image: image1]. This sum satisfies a Large Deviation Principle when [image: image1], or α < [image: image1]. In this range, [image: image1], which was shown to be ψ(α).

When α > [image: image1], sum S˜(k) rewrites [image: image1] where

[image: image1]

This sum satisfies a Large Deviation Principle and

[image: image1]

As [image: image1], this maximum is

[image: image1]

that is negative.

4.4. Binary Case

Barycentric coordinates of α are unique. Indeed, equation (10) reduces to a linear equation on the variable [image: image1]

[image: image1]

where [image: image1]. Therefore, [image: image1]. Finally

[image: image1]

Function ψ rewrites, in the binary case:

[image: image1]

Observing that [image: image1] and changing variable τα into (β2 − β1) yields [image: image1] and [image: image1].

5. CONCLUSION

This paper describes the behavior of the number of unique or repeated k-mers in a random sequence, on a general alphabet. Derivation relies on a combination of analytic combinatorics and on Lagrange multipliers. It simplifies an approach provided for binary alphabets and allows to address larger alphabets, including the quaternary alphabets, such as DNA alphabet. Precise asymptotic estimates are provided and a probabilistic interpretation is given. They are validated on random simulated data and shown to be valid in the finite range. Therefore, they provide a valuable tool to estimate a suitable read length for assembly purposes and tune parameters for assembly algorithms. Real genomes significantly depart from the random behavior for long repetitions. The general shape of the trie profile is observed, with a maximum of the number of unique k-mers at the expected length. However, for real genomes, a number of very short k-mers are missing and, on the contrary, one observes a number of very long repetitions. Besides these events, the behaviors are rather similar.

In the future, it is worth extending the method to generalized Patricia tries, Markov models and approximate repetitions.
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Transposable elements (TEs) are abundant in mammalian genomes and appear to have contributed to the evolution of their hosts by providing novel regulatory or coding sequences. We analyzed different regions of long intergenic non-coding RNA (lincRNA) genes in human and mouse genomes to systematically assess the potential contribution of TEs to the evolution of the structure and regulation of expression of lincRNA genes. Introns of lincRNA genes contain the highest percentage of TE-derived sequences (TES), followed by exons and then promoter regions although the density of TEs is not significantly different between exons and promoters. Higher frequencies of ancient TEs in promoters and exons compared to introns implies that many lincRNA genes emerged before the split of primates and rodents. The content of TES in lincRNA genes is substantially higher than that in protein-coding genes, especially in exons and promoter regions. A significant positive correlation was detected between the content of TEs and evolutionary rate of lincRNAs indicating that inserted TEs are preferentially fixed in fast-evolving lincRNA genes. These results are consistent with the repeat insertion domains of LncRNAs hypothesis under which TEs have substantially contributed to the origin, evolution, and, in particular, fast functional diversification, of lincRNA genes.
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Introduction

Traditionally, genomes have been perceived mostly as repositories of protein-coding genes. Although this might be largely true in the case of viruses, prokaryotes, and unicellular eukaryotes, numerous recent studies on the genomes of multicellular eukaryotes, particularly animals, have revealed a vast non-coding RNome, i.e., numerous genes encoding various classes of non-coding RNAs (ncRNAs) (Carninci et al., 2005; Mattick and Makunin, 2006; Ponting et al., 2009; Derrien et al., 2012; Amaral et al., 2013). Strikingly, the total number of genes for ncRNAs that are expressed from a mammalian genome seems to exceed the number of protein-coding genes several fold (Mattick and Makunin, 2006; Amaral et al., 2013). The classification of ncRNAs and validation of their functionality remain matters of intensive investigation and debate (Van Bakel and Hughes, 2009; Ponting and Belgard, 2010; Graur et al., 2013). Among many distinct classes of ncRNAs, the long non-coding RNA (lncRNA) is probably the most enigmatic group. The definition of a lncRNA is based solely on the transcript size: lncRNAs are defined as ncRNAs longer than 200 nt (Mattick and Makunin, 2006; Ponting et al., 2009). Many lncRNAs are spliced, 5′capped, and polyadenylated (Okazaki et al., 2002; Carninci et al., 2005; Kapranov et al., 2007; Ponjavic et al., 2007). Based on the localization in the genome, lncRNAs can be divided into two distinct classes: (i) transcripts that overlap protein-coding genes, many of which are likely to be involved in sense–antisense regulation (Chen et al., 2005; Ponting and Belgard, 2010; Rinn and Chang, 2012) and (ii) long intergenic non-coding (linc)RNAs that are transcribed from genome regions separating protein-coding genes (Ponjavic et al., 2007; Mercer et al., 2008; Ponting et al., 2009).

The current knowledge on the functions of long intergenic non-coding RNAs (lincRNAs) is scarce because very few of the lincRNAs have been experimentally characterized. Nevertheless, the functional range of this class of ncRNA is believed to be broad on the basis of indirect evidence (Bertone et al., 2004; Ponjavic et al., 2007; Mercer et al., 2008; Ponting and Belgard, 2010; Ulitsky et al., 2011; Glazko et al., 2012; Ng et al., 2013). It has been proposed that lincRNAs could be involved in the regulation of many cellular processes (Mattick and Makunin, 2006; Loewer et al., 2010; Wang et al., 2011; Rinn and Chang, 2012). For example, they can affect transcription locally on the gene level (Martens et al., 2004; Martianov et al., 2007; Osato et al., 2007; Hirota et al., 2008) as well as target transcription regulators and thus affect transcription of many genes (Feng et al., 2006; Goodrich and Kugel, 2006). They can also target RNA polymerase II in human and mouse (Espinoza et al., 2007; Mariner et al., 2008) and thus affect the expression of an even broader range of genes. Furthermore, lincRNAs participate in the regulation of splicing (Munroe and Lazar, 1991; Beltran et al., 2008) and translation (Wang et al., 2005; Centonze et al., 2007). Well-characterized examples of lincRNAs involved in epigenetic processes are Xist (Brockdorff et al., 1992; Elisaphenko et al., 2008), Kcnq1ot1 (Umlauf et al., 2004; Pandey et al., 2008), and Air (Nagano et al., 2008).

It is well established that, compared to protein-coding sequences and structural RNAs, lincRNAs are weakly conserved in evolution. Many early studies, therefore, branded the lincRNAs “transcriptional dark matter” and considered them to be generally non-functional (Van Bakel and Hughes, 2009; Robinson, 2010). However, low level or lack of detectable conservation does not necessarily imply that these molecules have no function (Pang et al., 2006). A case in point is the best-characterized, functionally important lincRNA gene, Xist, which is weakly conserved although it does contain evolutionary constrained regions (Elisaphenko et al., 2008). In general, lincRNAs show reduced substitution and insertion–deletion rates, which has been attributed to purifying selection (Ponjavic et al., 2007; Managadze et al., 2011). Taking into account that some lincRNA genes originated from protein-coding genes [for example, Xist (Duret et al., 2006; Elisaphenko et al., 2008)], it appears likely that many properties of lincRNAs would generally resemble those of protein-coding genes, despite the typically lower level of constraint. In particular, protein-coding genes that are highly expressed in many tissues typically evolve slower than genes with lower expression level and breadth (Duret and Mouchiroud, 2000; Krylov et al., 2003; Drummond and Wilke, 2008), and a similar dependence has been observed for lincRNA genes (Managadze et al., 2011). Taken together, these findings imply that an unknown but substantial fraction of lincRNAs are functional molecules rather than transcriptional noise and have evolutionary properties similar to those of protein-coding genes. However, the number of functionally characterized lincRNAs remains scarce (Amaral et al., 2013).

The origin of lincRNA genes generally remains enigmatic. However, analysis of the well-characterized Xist lincRNA has revealed fragmentary homology to a protein-coding gene Lnx3 suggesting that the Xist genes emerged in early eutherians via integration of transposable elements (TEs) into the Lnx3 gene, which gave rise to simple tandem repeats (Duret et al., 2006; Elisaphenko et al., 2008). The Xist gene promoter region and 4 of its 10 exons retain homology to exons of the Lnx3 gene. The remaining six Xist exons including those containing simple tandem repeats show similarity to different TEs (Elisaphenko et al., 2008). Integration of TEs into the Xist gene apparently had been occurring throughout the course of evolution of this gene and most likely continues in contemporary eutherian species. Additionally, it has been shown that the combination of remnants of protein-coding sequences and TEs is not unique to the Xist gene but is also found in neighboring genes that encode non-coding nuclear RNAs (Elisaphenko et al., 2008; Kolesnikov and Elisafenko, 2010).

The discovery of the pivotal contribution of TEs to the evolution of the Xist gene prompts the question on a possible general role of TEs in the evolution of lincRNAs. Diverse TEs are widespread and abundant in the genomes of most eukaryotes (Smit, 1996; Brosius, 1999; Kidwell and Lisch, 2001; Deininger and Batzer, 2002). Different classes of TEs include mobile retrovirus-like elements, or retrotransposons, which transpose within the genome via RNA intermediates, and DNA transposons, which can relocate directly. Retrotransposons including long interspersed repetitive elements (LINEs), short interspersed repetitive elements (SINEs), and long terminal repeat (LTR) retrotransposons are widely represented in mammals (Smit, 1996; Deininger and Batzer, 2002). The LINEs are transcribed by RNA polymerase II and contain open reading frames (ORFs) (Temin, 1985). A complete and transpositionally active L1 element (the most common variety of LINEs) is ~7 kb long and contains a 5′-untranslated region (UTR) with an internal promoter, two ORFs (ORF1 and ORF2) and a 3′-UTR terminated by a polyadenylate-rich tail (Smit, 1996; Deininger and Batzer, 2002). The ORF1 encodes a putative RNA-binding protein ~40 kDa in size (Martin, 2006) whereas ORF2 encodes a protein with endonuclease and reverse transcriptase (RT) activities that generates cDNAs from RNA transcripts of the element (Loeb et al., 1986). The mobility of the LINE elements had been demonstrated in mouse and human genomes (Kazazian et al., 1988; Boccaccio et al., 1990). The SINEs are characterized by the presence of a split intragenic RNA polymerase III promoter and a 3′A-rich region often followed by an oligo(A) tail (Smit, 1996; Rogozin et al., 2000; Kapitonov and Jurka, 2003). The SINEs do not contain long ORFs and do not encode enzymes for transposition. Instead, transposition of SINEs apparently requires RT encoded by other TEs, in particular, LINEs (Smit, 1996; Deininger and Batzer, 2002). The LTR retrotransposons have LTRs that range from ~100 bp to over 5000 bp in size (Smit, 1996; Deininger and Batzer, 2002). The LTR retrotransposons are similar to retroviruses in organization, with transcriptional regulatory sequences located in the flanking LTRs, a RT priming site that is typically located immediately downstream of an first LTR, and several ORFs encoding proteins involved in retrotransposition, in particular, RT and integrase (Smit, 1996; Deininger and Batzer, 2002).

The TEs are the primary contributors to the bulk of the genomic DNA in many eukaryotes, in particular mammals, and have the potential to contribute to the evolution of the hosts by providing novel regulatory or coding sequences (Makalowski, 2000). Different classes of regulatory regions in the human genome have been surveyed for the presence of TE-derived sequences (TES) to systematically assess the potential contribution of TEs to the regulation of human genes, and almost 25% of the analyzed promoter regions have been found to contain TES (Jordan et al., 2003; Feschotte, 2008; Bourque, 2009). In addition, numerous examples where experimentally characterized cis-regulatory elements are derived from TE sequences have been identified (Jordan et al., 2003; Bourque et al., 2008; Faulkner et al., 2009). Thus, thousands of human (and other mammalian) genes appear to be regulated, at least in part, by sequences derived from TEs (Jordan et al., 2003; Feschotte, 2008; Bourque, 2009). The TES are likely to have substantially contributed to evolutionary change in both gene specific and global patterns of mammalian protein-coding gene regulation (Makalowski, 2000; Jordan et al., 2003).

In light of the regulatory and structural effects that some TEs exert on host protein-coding and lncRNA genes (Makalowski, 2000; Jordan et al., 2003; Elisaphenko et al., 2008; Mattick et al., 2010; Wang et al., 2011; Kapusta et al., 2013; Johnson and Guigo, 2014), we sought to examine the contribution and conservation of TES to regulatory regions, exons and introns of human and mouse lincRNA genes. We found that introns of lincRNA genes contain the highest fraction of TES, followed by exons. The promoters of the lincRNAs contain the lowest fraction of TES but the largest fraction of ancient TES that are conserved between primates and rodents. The content of TES in lincRNA genes is substantially greater than in protein-coding genes, particularly in exons and promoter regions. These results are compatible with the view that TEs are major contributors to the origin and evolution of lincRNAs. We further sought to assess the potential utility of TES as an “evolutionary variable” by analyzing the correlations between the TES content, lincRNA expression, and sequence conservation.

Materials and Methods

Human and mouse lincRNA genes, the corresponding genomic alignments and expression data were taken from our previous work (Managadze et al., 2011) where the procedures of data processing are described in full details. Briefly, complete mouse and human probe sets were downloaded from the NRED database (Dinger et al., 2009) in the tab delimited and browser extensible data (BED, containing genomic coordinates) formats. The probe sets from platform GNF Atlas 2 (Mouse and Human), with the target classification “Non-coding Only,” were used for further analysis. This protocol yielded 917 human and 5444 mouse probe sets. Only the probe sets that mapped to intergenic regions of the human and mouse genomes (i.e., between two adjacent protein-coding genes) were used for further analysis. The resulting list of lincRNAs was further filtered: sequences shorter than 200 nt were removed. This procedure yielded the final set of NCBI GenBank Accession IDs of 2390 mouse and 589 human lincRNAs and their corresponding microarray expression probe sets. The genomic coordinates and sequences of exons and introns of lincRNA and protein-coding genes were downloaded from the UCSC Table Browser (Karolchik et al., 2004), specifically, from “all_mrna” tables of mouse mm8 and human hg18 assemblies. Multiple alignments of these regions were fetched from Galaxy (Goecks et al., 2010). For the detection of TES, lincRNA and protein-coding genes were analyzed using RepeatMasker version open-3.1.31 with the following parameters: -w -s -no_is -cutoff 255 -frag 20000 -gff -species mouse/human. A TE insert was considered ancient if the pairwise alignment between human and mouse orthologous TE sequences was longer than 100 bp and contained <5% insertions/deletions (stringent definition) or 25% insertions/deletions (relaxed definition). Microarray data for normal (non-cancerous) tissues (73 human and 61 mouse tissues) were used to analyze the lincRNA expression. Log2-normalized median values of expression for each probe set across the tissues were calculated (Managadze et al., 2011). As an alternative method of measuring expression levels, the mouse RNA-seq data for eight tissues (the ENCODE project; modENCODE Consortium) were downloaded from the UCSC genome browser Web site2 and pooled together. The RPKM value was calculated for each mouse lincRNA (Managadze et al., 2011). Pairwise evolutionary distances for human–macaque and mouse–rat lincRNA alignments were calculated using the DNADIST program from the PHYLIP package (Felsenstein, 1996), with the Kimura nucleotide substitution model. The lists of lincRNA genes and expression data are available at ftp://ftp.ncbi.nlm.nih.gov/pub/managdav/paper_suppl/TEs_lincRNA/.

One of the problems in the analysis of lincRNAs is that there is little overlap between lincRNA sets produced in different studies (Ulitsky et al., 2011; Chew et al., 2013; Managadze et al., 2013; Schuler et al., 2014). We used human and mouse datasets because these curated lincRNA sets have known evolutionary and gene expression properties (Managadze et al., 2011, 2013). Another reason for this choice is that we sought to analyze lincRNA datasets as different as possible from those used in previous studies (Kapusta et al., 2013; Johnson and Guigo, 2014) and to check how small sample size of human lincRNA set influences results. As shown below, the sample size does not perceptibly affect the conclusions of this study.

Results

Transposable Elements in Human and Mouse lincRNA Genes

Transposable element-derived sequences (TES for short) comprise at least half of the mammalian genomes, and in particular, are found in most lincRNAs. We identified TES in 69% of the human lincRNAs and 51% of the mouse lincRNAs. These values are somewhat lower than the previously reported 83% of TES in human lincRNAs (Kelley and Rinn, 2012) but nevertheless clearly show the importance of TE for lincRNA evolution. The distribution of TES in 5′ flanking regions (putative core promoter regions), lincRNA exons, and introns is shown in the Figure 1. The lowest fraction of TES was found in the predicted core promoter regions (100 bp upstream regions), and the highest fraction of TES was observed in introns, whereas exonic sequences showed intermediate densities of TES (Figure 1A). This distribution of TES is compatible with the previously described general tendency of TES avoidance in functionally important regions of protein-coding genes (Jordan et al., 2003). In particular, similar to the protein-coding genes, the TES density in extended promoter regions has been found to be significantly greater than that in core promoter regions (Jordan et al., 2003). Notably, the fractions of TES in introns of lincRNAs and protein-coding genes are nearly identical, suggestive of comparable (weak) functional constraints. By contrast, in the exons and the core promoter regions of lincRNA genes, the fractions of TES are substantially and statistically significantly (P < 10−5 according to the Fisher exact test) higher than in the respective regions of protein-coding genes (compare Figures 1A,B). These findings are consistent with the results of a previous study that employed different datasets of lincRNA genes (Kapusta et al., 2013), indicating that the distribution of TES in lincRNA genes is a robust feature. A more detailed analysis of the distribution of TES across lincRNAs is shown in Figure S1 in Supplementary Material. The most prominent feature of this distribution is the high fraction of lincRNAs with a low TES content: in 66% of human lincRNAs and 78% of mouse lincRNAs, the fraction of TES is <20% (Figure S1 in Supplementary Material).
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FIGURE 1 | Fractions (proportions) of lincRNA gene regions (concatenated promoters, exons, and introns) (A) and protein-coding gene regions (B) occupied by TE-derived sequences. The differences for pairwise comparisons “promoters vs. introns” and “exons vs. introns” are statistically significant for both classes of genes (P < 10−5 according to the Fisher exact test; the raw counts of nucleotides in TES vs. the raw counts of nucleotides in TE-free regions was used as the input for 2 × 2 contingency tables).



The avoidance of TES in lincRNAs is consistent with purifying selection, which is an important feature of lincRNA evolution (Ponjavic et al., 2007; Managadze et al., 2011). The significant positive correlation between the evolutionary rate and the content of TES was observed for both human and mouse lincRNA sets (for human and mouse, respectively, the Pearson correlation coefficient are 0.183 and 0.337, P < 10−5 for both comparisons) (Figure 2). We also tested the correlation between the expression level and the content of TES (Figure S2 in Supplementary Material). In many independent previous studies, it has been shown that protein-coding genes that are highly expressed in many tissues typically evolve slower than genes with lower expression level and breadth (Duret and Mouchiroud, 2000; Krylov et al., 2003; Drummond and Wilke, 2008), and a similar dependence has been observed for lincRNA genes (Managadze et al., 2011). Consistent with these observations, here we found a significant negative correlation between the content of TES and the expression level of lincRNAs (Figure S2 in Supplementary Material; for mouse RNA-seq data, Pearson correlation coefficient is −0.158, P < 10−5; for mouse microarray data, Pearson correlation coefficient is −0.07, P < 10−5; for human microarray data, Pearson correlation coefficient is −0.253, P < 10−5).
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FIGURE 2 | Correlation between the fraction (proportion) of TEs in concatenated exons and evolutionary rate for human (A) and mouse (B) lincRNAs. Pearson correlation coefficient is 0.183 for human and 0.337 for mouse (P < 10−5 for both comparisons).



Different Classes of Transposable Elements in lincRNA Genes

Analysis of different classes of TEs indicates that the fractions of each class are similar for introns of lincRNA and protein-coding genes and whole genomes (Figures 3 and 4). In each case, the fraction of LINEs is substantially greater than those of SINEs and LTR elements (Figures 3A and 4A). However, there is a significant suppression of LINEs in exonic and promoter regions, in both human and mouse (Figures 3A and 4A). This effect cannot be explained by fluctuations of the base composition in different gene regions because there are no significant compositional differences between exons, introns, and promoter regions for human and mouse lincRNA genes (results not shown). The same trend was observed for different lincRNA sets (Kapusta et al., 2013) suggesting that re-distribution of TEs is a general property of mammalian lincRNA genes. Furthermore, similar tendency is observed in promoter sequences of protein-coding genes (Figures 3B and 4B), the overall lower abundance of TEs notwithstanding. Conceivably, when the smaller SINEs are inserted into functionally important parts of genes, they typically exert a milder deleterious effect than the larger LINEs and LTR elements and accordingly, are more often fixed in the course of evolution.
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FIGURE 3 | Fractions (proportions) of human lincRNA gene regions (concatenated promoters, exons, and introns) and the whole genome sequence (A) and protein-coding gene regions (B) occupied by sequences derived from different types of TEs. Differences for pairwise comparisons “SINEs vs. LINEs” and “LTRs vs. LINEs” are statistically significant for both classes of genes (P < 10−5 according to the Fisher exact test; the raw counts of nucleotides in TES vs. the raw counts of nucleotides in TE-free regions was used as the input for 2 × 2 contingency tables).
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FIGURE 4 | Fractions (proportions) of mouse lincRNA gene regions (concatenated promoters, exons, and introns) and the whole genome sequence [the data for the whole genome sequence were from Waterston et al. (2002)] (A) and protein-coding gene regions (B) occupied by sequences derived from different types of TEs. Differences for pairwise comparisons “SINEs vs. LINEs” and “LTRs vs. LINEs” are statistically significant for both classes of genes (P < 10−5 according to the Fisher exact test; the raw counts of nucleotides in TES vs. the raw counts of nucleotides in TE-free regions was used as the input for 2 × 2 contingency tables).



Higher Frequency of Ancient Transposable Element-Derived Sequences in Promoters and Exons Compared to Introns

Evolutionary conservation of TEs is likely to reflect molecular domestication of the respective elements (Jordan et al., 2003; Feschotte, 2008; Jurka, 2008; Bourque, 2009; Sinzelle et al., 2009). We analyzed the fraction of ancient mobile elements in different regions of lincRNA genes (Figure 5). A significantly higher abundance of ancient TEs (P < 10−5 according to the Fisher exact test) was detected in exons and especially in promoter regions compared to introns (Figure 5). This finding is consistent with the hypothesis that TEs, in some cases, may perform novel functions in the host organisms (Makalowski, 2000; Jordan et al., 2003). The excess of ancient TEs was more pronounced in human compared to mouse lincRNA genes (Figure 5), possibly reflecting differences in evolutionary processes in rodents and primates although a bias caused by technical problems with the detection of 5′-ends of human lincRNA sequences cannot be ruled out (Kutter et al., 2012). We searched the putative promoter regions of lincRNA genes for the presence of TATA boxes and found a substantially elevated frequency of TATA-like sequences in the region −25 to −35 (Figure S3 in Supplementary Material). Given that a similar distribution is observed in many well-annotated human protein-coding genes (Yang et al., 2007), these observations suggest acceptable accuracy of 5′-end identification in lincRNA genes. The fractions of TATA-containing promoters are similar for protein-coding genes (10–25%) (Yang et al., 2007; Anish et al., 2009) and the analyzed sets of lincRNA genes (19–30%; Table S1 in Supplementary Material). The higher frequency of ancient TEs in promoters and exons compared to introns (Figure 5; Table S2 in Supplementary Material) suggests that many lincRNA genes emerged before the split of primates and rodents, and that TEs contributed to the origin of these ancient lincRNAs. This finding is consistent with recent observations that 60–70% of the lincRNAs genes are conserved between human and mouse (Kutter et al., 2012; Managadze et al., 2013), and with the observed higher conservation of lincRNA promoter regions compared to exons (Elisaphenko et al., 2008; Kapusta et al., 2013; Johnson and Guigo, 2014).
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FIGURE 5 | Ancient transposable elements (TEs) in putative promoter regions, exons, and introns of lincRNA genes. A TE was considered ancient if the alignment between human–mouse orthologous TE sequences was longer than 100 bp and contained <5% insertions/deletions (the stringent threshold). “% TEs” stands for the fraction (proportion) of ancient TEs. Results for the relaxed threshold (the alignment between human–mouse orthologous TE sequences was longer than 100 bp and contained no more than 25% insertions/deletions) are shown in the Table S2 in Supplementary Material. Differences between pairwise comparisons “promoters vs. introns” and “exons vs. introns” are statistically significant (P < 10−5 according to the Fisher exact test; the raw counts of ancient TES vs. the raw counts of lineage-specific TES was used as the input for 2 × 2 contingency tables).



Discussion

The staggering evolutionary success of TEs in eukaryotes is often attributed to their ability to out replicate the host genomes in which they reside, as opposed to any selective advantage that they might provide to their hosts. Indeed, it has been shown that TEs can spread within and among genomes even in the face of a selective cost to the host (Hickey, 1982). Hence, the selfish DNA concept of TEs focuses on the parasitic nature of these elements and emphasizes the deleterious effects of transposition as well as the negligible evolutionary benefit that TEs provide to their hosts (Orgel et al., 1980; Gould and Vrba, 1982). However, the sheer abundance of TEs in the genome, as well as the variety of mutation effects induced by their mobility, suggest that they might, in some cases, be exapted (Gould and Vrba, 1982) or domesticated (Miller et al., 1999), to serve the evolutionary interests of the host (Makalowski, 2000; Jordan et al., 2003). Indeed, multiple lines of evidence indicate that the presence of TEs can result in host adaptation by shaping and reshaping the genome in many different ways (Smit, 1996; Makalowski, 2000; Rogozin et al., 2000; Kidwell and Lisch, 2001; Deininger and Batzer, 2002; Jordan et al., 2003).

The TEs comprise at least half of the mammalian genomes, and in particular, are found in most lincRNAs [this study and Kelley and Rinn (2012)]. Here, we demonstrate that TEs substantially contribute to the evolution of lincRNAs and their promoter regions. Although the densities of TES in these regions are much lower than those in introns, ostensibly, due to the purifying selection that affects functional regions, the contributions of TEs to the evolution of these regions is substantially greater than in the respective regions of protein-coding genes. The higher density of TES in the exons of lincRNAs compared to protein-coding exons appears to reflect the much lower level of functional constraint characteristic of the former (Ponjavic et al., 2007; Managadze et al., 2011). The promoters of lincRNA appear to similarly enjoy greater plasticity and flexibility compared to the promoters of protein-coding genes.

Thus, TE insertion is an important factor that affects lincRNA evolution and biological function. An analysis of TEs in human lincRNAs revealed that the TES composition in lincRNA genes significantly differs from genomic averages: LINEs and SINEs are depleted whereas LTR retrotransposons are enriched (Kelley and Rinn, 2012). The TES occur in biased positions and orientations at lincRNA transcription start sites suggesting a functional role in lincRNA transcriptional regulation (Kelley and Rinn, 2012). In many cases, lincRNAs devoid of TES are expressed at higher levels than lincRNAs containing TES in all tested tissues and cell lines (Kelley and Rinn, 2012). Thus, it has been suggested that TES divide lincRNAs into classes and have contributed to lincRNA evolution and function by conferring tissue-specific expression from extant transcriptional regulatory signals (Kelley and Rinn, 2012). Here, we add another facet to these observations by showing that the promoter regions of lincRNAs are specifically enriched for ancient TES. This finding indicates that not only have many lincRNA genes evolved before the radiation of primates and rodents but also that at least some features of their regulation were already established at that time through TE insertion.

The possibility that some lincRNA genes encode short peptides that are translated, perhaps in a tissue-specific manner, is the subject of an ongoing debate (Brosius and Tiedge, 2004; Mattick and Makunin, 2006; Dinger et al., 2008; Makalowska et al., 2010; Carvunis et al., 2012; Chew et al., 2013). It is extremely hard to rule out such a role for a fraction of purported lincRNAs. A recent peptidomics study demonstrated that most annotated lincRNAs do not generate stable protein (peptide) products (Banfai et al., 2012). Furthermore, ribosomal profiling of lincRNAs suggests that ribosomal engagement with lincRNAs is likely to be regulatory (Chew et al., 2013). The presence of ORFs in the analyzed lincRNA data sets had been analyzed before using different approaches (Managadze et al., 2011, 2013). Importantly, removal of ORF-containing lincRNAs did not affect the conclusions of both studies (Managadze et al., 2011, 2013). The much higher abundance of TES in lincRNA compared to 5′UTR and protein-coding regions of mRNAs is consistent with the low frequency of protein-coding regions in the analyzed data sets.

It has been proposed that lncRNAs are organized into combinations of discrete functional domains, but the nature of these domains and their identification remain elusive (Guttman and Rinn, 2012). Insertion of TEs and exaptation of TES could represent an important route of evolution of the domain structure of lncRNAs. More specifically, Johnson and Guigo (2014) have proposed that exonic TES comprise functional domains of lncRNAs that they dubbed repeat insertion domains of LncRNAs (RIDLs). A growing number of RIDLs have been experimentally identified whereby lncRNA TES function as RNA-, DNA-, and protein-binding domains/motifs (Elisaphenko et al., 2008; Kelley and Rinn, 2012; Grote and Herrmann, 2013; Holdt et al., 2013; Johnson and Guigo, 2014). These examples are likely to reflect a more general phenomenon of exaptation and/or domestication during lncRNA evolution whereby TES are employed as DNA-, RNA-, and protein-binding domain/motifs (Johnson and Guigo, 2014). The RIDL hypothesis has the potential to explain how functional evolution can keep pace with the fast evolution observed in many lncRNA genes (Johnson and Guigo, 2014). The findings on the distribution of TES across different regions of lincRNA genes, the higher occurrence of TES in lincRNA promoters and exons compared to introns, and significant correlations between the content of TES and evolutionary rate presented here appear to be compatible with the RIDL hypothesis. More specifically, even if a substantial fraction of TES are not fixed in lincRNA exons and promoter regions, those TES that are fixed tend to persist in the genome longer than intronic TES. Moreover, given the near ubiquity of recognizable TES in lincRNA genes, TE mapping can be a useful approach for characterization of lincRNAs and possibly even prediction of their functions. The correlations between the content of TES and various features of lincRNA genes described here could be useful for the characterization of lincRNA functions.

Conclusion

The results of the present analysis, along with several previous studies, indicate that TEs have contributed to the evolution of many if not most mammalian lincRNAs. Whereas the density of TES in the introns of lincRNA genes is about the same as in introns of protein-coding genes exons, and promoters of lincRNAs are markedly enriched in TES compared to the counterparts in protein-coding genes. This high prevalence of TES reflects the relatively weak evolutionary constraints on lincRNA genes and itself appears to contribute to the plasticity and functional diversification of lincRNAs. Furthermore, the distribution of TE types in the functional regions of lincRNA genes significantly differs from that in introns (or whole genomes), conceivably, because the smaller SINEs that encode no proteins are more suitable for exaptation than the larger, protein-coding LINEs. The prodigious exaptation of TE could account, at least in part, for the functionality of many lincRNAs despite their rapid evolution.
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Protein–protein interaction (PPI) networks available in public repositories usually represent relationships between proteins within the cell. They ignore the specific set of tissues or tumors where the interactions take place. Indeed, proteins can form tissue-selective complexes, while they remain inactive in other tissues. For these reasons, a great attention has been recently paid to tissue-specific PPI networks, in which nodes are proteins of the global PPI network whose corresponding genes are preferentially expressed in specific tissues. In this paper, we present SPECTRA, a knowledge base to build and compare tissue or tumor-specific PPI networks. SPECTRA integrates gene expression and protein interaction data from the most authoritative online repositories. We also provide tools for visualizing and comparing such networks, in order to identify the expression and interaction changes of proteins across tissues, or between the normal and pathological states of the same tissue. SPECTRA is available as a web server at http://alpha.dmi.unict.it/spectra.
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1. Introduction

In the last 10 years, there has been a rapid growth of available protein–protein interaction (PPI) data. They represent all known physical interactions between proteins within a cell. The collection of PPI data yields a network depicting a global overview of the relationships between proteins.

Nowadays, PPIs of species and associated data are stored in many databases, which usually are weekly or monthly updated. Primary sources of PPI data include BioGRID (Stark et al., 2006), DIP (Xenarios et al., 2000), HPRD (Peri et al., 2004), IntAct teorchard2013mintact, and MINT (Licata et al., 2012).

DIP (Xenarios et al., 2000) was the first database, which combined information from multiple observations and experimental techniques into networks of interacting proteins for different species. HPRD (Peri et al., 2004) contains manually curated proteomic information regarding human proteins, which are annotated and linked to OMIM database (Hamosh et al., 2005). BioGRID (Stark et al., 2006) collects protein–protein and genetic interactions for all major model organisms trying to remove redundancy and create a single mapping of interactions. The IntAct database (Orchard et al., 2013) provides tools for both textual and graphical representations of protein interactions. Interacting proteins can be annotated with GO terms for functional analysis. MINT (Licata et al., 2012), which is based on the IntAct database infrastructure, collects experimentally verified PPIs by extracting experimental evidences from the scientific literature.

Some databases integrate PPIs data of human and other organisms from primary sources, by removing redundancies and assigning a unique reliability score. These include STRING (Franceschini et al., 2013), IRefIndex (Razick et al., 2008), ConsensusPathDB (Kamburov et al., 2013), and HitPredict (Patil et al., 2011).

STRING (Franceschini et al., 2013) combines physical interaction data and curated pathways of different organisms with predicted interactions from text mining, genomic features and interactions transferred from model organisms based on orthology. IRefIndex (Razick et al., 2008) is a set of tools to index and retrieve proteins and interactions from major public databases. Indexes are built according to protein sequences and taxonomy identifiers and mapping scores evaluate the quality of the mapping. ConsensusPathDB (Kamburov et al., 2013) integrates human protein–protein interactions, biochemical pathways, gene regulatory, and drug–target interactions into a global network, containing genes, proteins, and metabolites, which can be visualized, analyzed, and annotated. HitPredict (Patil et al., 2011) combines PPI data from IntAct (Orchard et al., 2013), BIOGRID (Stark et al., 2006), and HPRD (Peri et al., 2004), by assigning a confidence score based on sequence, structure, and functional annotations of the interacting proteins. The reliability score is calculated using the Bayesian networks.

The analysis of PPI networks has provided novel biological insights on the function of many previously uncharacterized proteins in Human through module identification (Bader and Hogue, 2003; Adamcsek et al., 2006; Mete et al., 2008; Rhrissorrakrai and Gunsalus, 2011), network querying (Ferro et al., 2007; Banks et al., 2008; Bruckner et al., 2010), and network alignment (Flannick et al., 2006; Kalaev et al., 2009; Liao et al., 2009; Sahraeian and Yoon, 2013; Micale et al., 2014a) algorithms. Furthermore, the annotation of PPI networks with external data (i.e., diseases, expression data, phenotypes) has helped to classify genes according to the expression profiles (Dao et al., 2011), predict new gene–disease associations (Huang et al., 2012; Zhao et al., 2012), and discover new drugs (Huang et al., 2012; Alaimo et al., 2013; Csermerly et al., 2013).

These tasks have been accomplished thanks to the availability of authoritative repositories of gene expression data in normal/cancer tissues and at different diseases stages (Uhlen et al., 2010; Barrett et al., 2013; Rustici et al., 2013). For example, ArrayExpress (Rustici et al., 2013) and GEO (Barrett et al., 2013) include gene expression data from microarray and high-throughput sequencing experiments, which can be easily queried or downloaded. Users can also submit data directly by using the standard MIAME format. More recently, new projects have started with the aim of cataloging tissue or tumor sequencing data. The Cancer Genome Atlas (TCGA)1 collects complete high-throughput genome data (clinical information, expressions data, methylations, mutations) for specific cancer tissues, with the purpose of helping the diagnosis and the treatment of cancers. The Human Protein Atlas (Uhlen et al., 2010) is a database with histological images showing the spatial distribution of proteins in normal and cancer tissues. Protein Atlas contains also transcription expression levels, protein expression profiles, and subcellular localization data.

All above PPI networks data are constructed by ignoring the role of proteins in human tissues. On the other hand, human diseases often occur in specific tissues (Lage et al., 2008). Some genes can be predominantly expressed in one or few tissues and can control the formation of protein complexes (Emig and Albrecht, 2011). Furthermore, genes can use alternative splicing as a powerful mechanism to enlarge the number of their interactors and perform distinct functions in different tissues (Emig and Albrecht, 2011). Therefore, the integration of PPI networks with tissue-specific gene expression data can help to highlight the role of some genes in specific disease or tumors. The result of such integration gives the so called Tissue-Specific PPI (TS-PPI) network (Bossi and Lehner, 2009), which is a subgraph of a PPI network where the genes corresponding to both interacting proteins are expressed in one or more selected tissues.

Some studies focus on the analysis of global and local properties of TS-PPI networks. In Bossi and Lehner (2009), authors prove that most housekeeping proteins form highly tissue-specific protein interactions, suggesting a key role of those proteins in tissue-specific biological processes. Emig and Albrecht (2011) show that the number of tissue-specific proteins is very low and the receptor-activated signaling processes and the transcriptional regulation are two key factors for tissue specificity. In Souiai et al. (2011), a gradient model is used to describe the structure of TS-PPI networks, containing interactions of regulatory and developmental functions at the core of the TS-PPI network and physiological functions at the periphery.

Several recent works highlight the advantages of using TS-PPI networks. In Lopes et al. (2011), a set of proteins related to the response of viral infection in a TS-PPI network lead to a more reliable functional enrichment. Magger et al. (2012) use TS-PPI networks to improve the prioritization of candidate disease-causing genes with respect to a generic PPI network. In Chen and Wang (2012), authors identify functional modules in TS-PPI networks using CFinder (Adamcsek et al., 2006) and show that they exhibit more biological meaning than modules in a PPI network. Xiao et al. (2014) propose a new method for the identification of multi-tissue gene co-expression networks associated with specific functional processes relevant for phenotype variation and disease in humans. Barshir et al. (2014) show that genes causing hereditary diseases tend to have higher transcript levels and more interacting partners in the TS-PPI network of disease tissues than in the TS-PPI network of unaffected tissues.

To the best of our knowledge, few tools are available for querying and analyzing TS-PPI networks (Barshir et al., 2013; Nersisyan et al., 2014). CyKeggParser (Nersisyan et al., 2014) is a Cytoscape app for generating and analyzing tissue-specific KEGG pathways. Pathways can be checked for inconsistencies and modified based on gene expression data from normal and cancer tissues. TissueNet (Barshir et al., 2013) is a dataset of TS-PPIs in humans, which integrates a collection of four PPInetworks (BioGRID, DIP, IntAct, and MINT) with three expression datasets (GEO, Human Protein Atlas, and Illumina Body Map 2.0). The database provides a web interface for retrieving tissue-specific interactions of a query protein. However, it handles only 16 normal tissues and does not provide any tool for the analyses of TS-PPI networks.

In this paper, we propose SPECTRA (SPECific Tissue/Tumor Related PPI networks Analyzer), a framework to build and analyze TS-PPI networks. SPECTRA integrates tissue and tumor-specific gene expression data from the most authoritative online repositories such as Protein Atlas, ArrayExpress, GEO, and TCGA. Expression data are then integrated with high-quality protein–protein interactions, taken from HPRD, BioGRID, MIPS, IntAct, and the work of Havugimana et al. (2012). We provide a web interface for constructing, visualizing, and comparing TS-PPI networks, with the aim of identifying differential interaction/expression patterns in TS-PPI networks (i.e., distinct tissues, or normal and pathological states of the same tissue). The TS-PPI networks together with the results of differential analysis can be easily visualized by using Cytoscape facilities (Shannon et al., 2003) and downloaded as text files for further investigations. SPECTRA is free for all users and available at http://alpha.dmi.unict.it/spectra.

2. Materials and Methods

SPECTRA combines protein–protein interactions in human with gene expressions, by integrating 13 authoritative resources. The final integrated SPECTRA database contains 16,435 protein coding genes and 175,841 gene interactions (GIs), 1,350,637 tissue-specific gene expression data entries covering 107 normal tissues, and 2,171,808 tumor-specific expression data entries covering 160 different tumors.

2.1. Interaction Datasets

Human protein interaction data were taken from BioGRID2, DIP3, a recent work by Havugimana et al. (2012), HPRD4, IntAct5, and MINT6.

Table 1 describes the features of the PPI networks integrated in SPECTRA. Networks taken from the work of Havugimana et al. (2012), IntAct and MINT are weighted with edge weights ranging in [0,1], while the other PPI networks are unweighted. Proteins of the considered PPI networks, including splicing isoforms, were first mapped to the corresponding gene. Next, a global GI network was built, by collecting all interactions reported in at least one dataset. We assigned to each edge a pair consisting of the average value of weights across the datasets that report that interaction and the percentage of datasets giving the interaction (dataset coverage). Average edge weights range from 0.131 to 1.

TABLE 1 | Features of PPI networks integrated in SPECTRA.
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Figure 1 depicts a Venn diagram of common gene interactions between PPI datasets. Interaction databases generally show low overlap, with only 25 interactions shared by all datasets and only 7,783 interactions in common between MINT, BioGRID, IntAct, and HPRD, which are the biggest ones. The final integrated network has 16,435 nodes, 175,841 edges and 17 connected components, with a high average diameter (9) and low clustering coefficient (0.289). The average degree is 21.398 and the degree distribution follows a power law (Figure 2).
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FIGURE 1 | Venn diagram showing the number of common interactions across PPI datasets in SPECTRA.
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FIGURE 2 | Log–log plot of degree distribution of the final integrated PPI network in SPECTRA.



2.2. Expression Datasets

Gene expression data for various tissues and tumors were downloaded from ArrayExpress7, GEO8, ProteinAtlas9, and TCGA (see text footnote 1). Table 2 lists the gene expression datasets integrated within SPECTRA, the platform used to detect the expressions and the number of covered tissues and tumors.

TABLE 2 | Features of expression datasets integrated in SPECTRA.
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Figure 3 depicts a Venn diagram of common tissues and tumors across expression datasets. While tissue names are generally shared, tumor names are much differentiated, resulting in a poor overlap between datasets. In particular, TCGA contains data for very specific tumors and partially overlap only with E-MTAB-62 dataset, which is the richest one. Note that the numbers reported in Figure 3 only refer to specific tumors and not to tumor classes. So, for instance, “breast carcinoma” and “breast adenocarcinoma” are considered distinct tumors, even though they belong to the same class of tumors, “breast cancer.”
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FIGURE 3 | Venn diagrams depicting: (A) the number of common tissues and (B) the number of common cancer types across expression datasets in SPECTRA. The zero overlap among the cancer datasets is due to the fact that cancers are considered according to their specific names and not to their class (breast cancer, prostate cancer, etc.).



As regards the integration of expression data, we followed the work of Guo et al. (2013), where authors show that there is a positive correlation between normalized Affymetrix and RNA-Seq data. We performed RMA normalization (McCall et al., 2010) for datasets based on Affymetrix platforms (GDS181, GDS596, and GDS1096), using the corresponding R Bioconductor package. For GDS3113, ProteinAtlas, and TCGA, we first computed the log2 of the number of fragments and then we normalized values using the quantile normalization method of Bolstad et al. (2003). For GDS181, GDS596, and GDS1096 datasets, normalized values were computed from raw data. Then, probes, which were present in a particular microarray dataset, were mapped to the corresponding genes. Finally, the expression of a gene for a specific tissue was computed as the average expression value of probes mapping to that gene in the tissue. For GDS3113, ProteinAtlas, and TCGA, instead, we directly normalized gene expression values for different tissues. We did not normalize EMTAB-62 data, since its source values were already normalized with RMA.

Finally, we assigned to each pair gene–tissue a unique positive expression score, given by the average normalized expression value of the gene in that tissue, according to the different datasets. Expression scores in SPECTRA range from 3.566 to 17.366 for tissues and from 0.01 to 17.343 for tumors.

2.3. Data Schema

SPECTRA database is structured as a MySQL relational database with six tables: Genes, Tissues, Tumors, Interactions, Expr_normal, and Expr_tumor.

The Genes table contains the list of all expressed and interacting genes. Each entry is identified by the gene symbol and contains associated data, including a description string, aliases, and cross references to Entrez Gene (if available).

The Tissues and Tumors tables have the same structure. Tissues and tumors are associated to different classes, depending on the organism part they refer to. Each entry is identified by a unique number and contains a description and the corresponding class. SPECTRA contains 26 distinct classes of tissues and 32 distinct classes of tumors.

The Interactions table lists all the PPIs integrated in SPECTRA. Interactions are identified by a couple of gene symbols and the edge weight for each integrated dataset (when available) is stored, together with the average interaction weight across dataset reporting that interaction and the dataset coverage.

Expr_normal and Expr_tumor contain all the gene expressions in normal and cancer tissues. The unique identifier of Expr_normal is a couple gene–tissue, while entries in Expr_tumor are uniquely identified by the couple gene–tumor. In both tables, the normalized expression value for each integrated dataset (where available) and the average expression score are included as associated data.

2.4. An Algorithm for Differential Local Alignment of TS-PPI Networks

TS-PPI networks are compared in SPECTRA for identifying patterns of differential gene expressions between multiple TS-PPI networks.

Our goal is to find conserved sub-regions in the TS-PPI networks, which maximize the difference of expression values of aligned genes. The problem is related to that of finding maximal-scoring connected subgraphs, which is NP-hard, even in a common simpler setting where the aligning TS-PPI networks have the same set of nodes and edges (e.g., TS-PPI networks built starting from different expression data and the same interaction datasets) (Ideker et al., 2002).

In the case of two TS-PPI networks with the same set of nodes and edges (representing for instance case and control expression data), heuristic (Ideker et al., 2002; Sohler et al., 2004; Cabusora et al., 2005; Rajagopalan and Agarwal, 2005; Guo et al., 2007) and exact (Dittrich et al., 2008) solutions have been proposed. However, as far as we are concerned, no solutions are known for the multiple case. Here, we propose an approximate solution to the multiple differential alignment problem based on a modified version of the GASOLINE algorithm (Micale et al., 2014a). For simplicity, we consider TS-PPI networks with no multiple edges between two nodes.

2.4.1. The GASOLINE Algorithm

GASOLINE (Micale et al., 2014a) is a greedy and stochastic algorithm for multiple local alignment of protein–protein interaction networks. Flowchart in Figure 4 provides a general description of GASOLINE.
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FIGURE 4 | General description of GASOLINE.



Given N weighted PPI networks of different species, where edge weights are probabilities of interaction between proteins, local alignment aims at finding a set of connected subnetworks, one from each network, that are conserved in their sequence and interaction pattern. Such subnetworks could represent evolutionary conserved complexes or pathways across different organisms.

Such a problem is related to subgraph isomorphism, which is known to be NP-complete (Cook, 1971). GASOLINE proposes an approximate solution through a stochastic-greedy strategy consisting of two phases.

In the first step, called bootstrap phase, we look for orthologous proteins across the networks and build a set of seeds. The set of seeds initially consists of proteins, one from each network, and includes all the starting nodes of the suboptimal local network alignment.

The second step, called iterative phase, repeatedly adds (extension step) or removes (removal step) nodes in the network alignment, trying to maximize the final alignment score. Each extension step adds, in each network, a single node to the corresponding seed. During the extension step, the seeds grow up producing a set of subgraphs, one from each network. The extension process is regulated by a properly defined degree ratio measuring the average density of the aligned subgraphs with respect to their neighbors in the networks. The extension is performed until the degree ratio increases.

Each removal step replaces from the current alignment the set of proteins (one from each network) with minimum topology similarity score.

The bootstrap phase and each extension step are performed through Gibbs sampling (Geman and Geman, 1984). In both cases, the Gibbs sampling builds a chain, where each state represents a combination (i.e., alignment) of single proteins, one from each network. First, a random initial state is selected. Then, the sampling method iteratively performs a transition from a state to another, by replacing a randomly chosen protein of the current alignment with a protein of the same network, according to a properly defined transition probability distribution.

Due to its non-deterministic nature, different iterations of GASOLINE may produce different local alignments. The above steps are iterated to produce a set of local networks alignments, which are then ranked according to an Index of Structural Conservation (ISC) score. ISC score measures the percentage of conserved interactions in the final alignment. The higher is ISC, the better is the alignment.

GASOLINE implements preprocessing and post-processing steps. During preprocessing, the search space for potential seeds is reduced. This is obtained by marking only proteins having orthologs in all aligning networks and with a significant interaction degree in each network. All marked nodes in each network Gi(1 ≤ i ≤ N) are added to a set called Si. These sets will be used in the initial phase and will be updated at each iteration. Finally, a post-processing filters the final set of local alignments returned by GASOLINE by removing highly overlapping complexes.

GASOLINE does not allow many-to-many mapping between aligned nodes. However, experimental results show that the algorithm can produce more reliable results than methods implementing many-to-many mapping. Moreover, GASOLINE is clearly faster than the state-of-art algorithms (Micale et al., 2014a).

2.4.2. The Adapted GASOLINE

We implemented a customized version of GASOLINE to compare two or more Tissue-Specific PPI (TS-PPI) networks for local differential alignment problem. GASOLINE algorithm was extended to deal with gene expressions as weights to the nodes.

Let A and B two genes and Expr(A) and Expr(B) their expression values, with Expr(A) ≥ Expr(B). In order to evaluate the expression difference between A and B, we compute the log fold change, defined as follows:

[image: image1]

Given N TS-PPI networks and a set of aligned genes G = {G1, G2, …, GN}, one for each TS-PPI network, MaxLogFold is the maximum value of LogFold function among all pairs of genes in G:

[image: image1]

We applied the following changes to original GASOLINE algorithm:

• We included the LogFold function in the Gibbs sampling procedure of bootstrap and iterative phases, by multiplying it by the topology and homology scores in the computation of node similarities;

• The number of iterations of Gibbs sampling both in the bootstrap and in the extension phase is governed by a new parameter, is α, which is a probability threshold related to N, the number of networks, according to the following formula:

[image: image1]

where [image: image1] is the probability that a gene is never selected in k′ consecutive iterations of Gibbs sampling. The idea is to stop Gibbs sampling when an alignment does not change for k consecutive iterations. The lower is α, the higher is k, so the more precise and slower will be the sampling procedure:

• We introduced a new threshold, MaxLogFoldThreshold, for the value of MaxLogFol function, and we used it to tune the extension process in place of the degree ratio: in particular, we extend the current alignment until the average value of MaxLogFold between the sets of aligned nodes is above such a threshold;

• In the remove phase, the set of aligning nodes with minimum value of MaxLogFold is deleted from the current local alignment;

• Given a local alignment A = {A1, A2, …, Aw}, where w is the size of the alignment and A1, …, Aw are the set of aligned genes, an average value of MaxLogFold(Ai) is computed together with the ISC score to evaluate the quality of the alignment.

3. Results

SPECTRA is a framework for retrieving and analyzing protein–protein interaction data specific for a given set of normal or cancer tissues. The underlying graph model in SPECTRA is the Tissues-Specific PPI network (or TS-PPI network), in which the genes of corresponding interacting proteins are both expressed in one or more tissues. The architecture of SPECTRA is composed by (i) the searching tool, which allows to build TS-PPIs; (ii) the comparison tool to look for shared differential expressions patterns between genes of two or more TS-PPI networks. Results can be graphically visualized by using Cytoscape.js or downloaded as text files.

3.1. SPECTRA Search Tool: Building TS-PPI Networks in SPECTRA

SPECTRA builds TS-PPI networks starting from a user-defined set of genes, tissues, expression data, and interaction data. Figure 5 depicts the search interface of SPECTRA.
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FIGURE 5 | SPECTRA search tabbed panel. Red boxes highlight the three sections: (A) “Gene data,” (B) “Expression data,” and (C) “Interaction data.” In this case, the parameters have been set to indicate that we want to retrieve all the interactions that are present at least in Havugimana and HPRD, involving genes that are expressed in adrenal gland” tissue according at least to GDS3113 and ProteinAtlas. In this example, we neither restrict our search to a predefined set of genes nor provide a threshold for interaction weights, dataset coverage, and expression scores.



In the “Gene data” section (Figure 5A), the user can look for all genes expressed in a set of tissues or restrict the search to a specific list of genes. Genes can be provided with their official names or Aliases (e.g., Ensembl Gene, Entrez Gene, Affy).

In the “Expression data” section (Figure 5B), the user limits the search to a set of tissues/tumors and to a set of expression datasets or uploads a text file with custom expression data. Note that the two options are mutually exclusive, that is, all the settings concerning datasets and tissue/tumors will be ignored if the user provides a custom text file. Available tissues and tumors in SPECTRA are listed in a table and can be easily included in the input query list with a double click in each entry. When no data are provided, all the tissues and tumors in SPECTRA are considered. Tissues and tumors are also mutually exclusive, meaning that a TS-PPI network built-in SPECTRA cannot contains interactions defined on both normal and tumor tissues. However, two TS-PPI networks defined upon a specific set of tissues and tumors, respectively, can be always compared for differential analysis with the adapted GASOLINE. The user can also select one or more datasets from which the expression have to be reported. When the expression is in other datasets it will be also given. When no dataset is selected, all expression data in SPECTRA are considered.

Finally, a further filter on genes can be applied by indicating a threshold for the minimum normalized value of gene expressions to be considered.

The “Interaction data” section (Figure 5C) contains the parameters for filtering interaction data. As above, the user can select one or more datasets where protein interactions have to be reported. If no interaction dataset is selected, all PPIs in SPECTRA are considered. A threshold can be provided to select interaction weights above a given value and a minimum dataset coverage.

When all input parameters have been specified, the user clicks on the “Search” button. At the end of the process, all the TS-PPIs found are listed in a result table (Figure 6). For each TS-PPI, we show the interacting genes, the tissues where they are expressed, the expression values of genes in tissues, the average interaction weights and dataset coverages of corresponding proteins. Results are ordered by dataset coverage and average interaction weight. Expression values and interaction weights are depicted with colored progress bar, where colors range from cyan (low values) to red (high values).
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FIGURE 6 | Result table for the query of Figure 5. For each interaction in the table we report, the tissue, the average expression scores of interacting genes, and the total interaction weight. Expression scores, weights, and dataset coverage are represented with a colored progress bar (from cyan to red). By selecting a row (in the example the interaction between NCBP2 and NCBP1), detailed data about the interaction are shown to the right. For each dataset, the corresponding interaction weight (when available) is reported (for example, 0.71 for IntAct database).



By selecting a specific TS-PPI in the result table, additional data about the interaction and the interacting genes are shown (Figures 6 and 7). A list of datasets reporting the interaction and the corresponding interaction weight is reported on the right of the result table (Figure 6). Below the result table, two panels with details about the interacting genes are shown (Figure 7). For each gene, description and aliases are provided, together with the lists of tissues and tumors where the gene is expressed, according to the different expression datasets, ordered by expression score.
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FIGURE 7 | The panel with detailed information of a gene. When an interaction is selected from the result table (Figure 6), two panels with additional data, one for each interacting gene, are shown. This example refers to the detailed panel for gene NCBP2, which appears when the row table of Figure 6 is selected. In the detailed panel, the gene symbol, the description, the corresponding ID in Entrez Gene database (when available), and aliases (including references in other databases) are reported. Finally, two tables with the set of tissues and tumors where the gene is expressed are shown. These are shown in decreasing order with respect to the average expression scores.



3.2. SPECTRA Comparison Part: Compare TS-PPI Subnetworks

TS-PPI networks can be compared in SPECTRA for identifying patterns of differential gene expressions between multiple TS-PPI networks. The goal is to find conserved sub-regions in the TS-PPI networks, which maximize the difference of expression values of aligned genes.

Figure 8 shows the “Compare” tabbed panel in SPECTRA. Before running the adapted GASOLINE, the user has to upload at least two TS-PPI networks. For each network, the number of nodes and edges are reported. Networks can also be renamed by double clicking on the corresponding cell. Note that uploaded TS-PPI networks with multi-edges between nodes will be always treated as simple networks, where multi-edges are replaced by a single edge with weight equals to the average weight of multi-edges and label given by the concatenation of the multi-edge labels.
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FIGURE 8 | The SPECTRA compare panel. In this example, we first loaded 4 different TS-PPI networks from files using the “Add networks” button. Then by clicking on “Run Gasoline” the form for the selection of the adapted GASOLINE input parameters appears.



Once the networks have been uploaded, the user can click on “Run GASOLINE” button to set the input parameters for the adapted GASOLINE (Figure 8).

We briefly describe their meaning (default values are reported in brackets):

• “Sigma”: the minimum degree of candidate nodes for the initial alignment of seeds (1);

• “Alpha”: a value between 0 and 1, which regulates the number of iterations of Gibbs sampling in the bootstrap and extend phases (default 0.05);

• “Overlap threshold”: a maximum average overlap threshold between local alignments, which is used to remove highly overlapping alignments. It takes values between 0 and 1 (default 0.5, which means 50%);

• “Refine iterations”: the number of iterations of the iterative phase, i.e., extend steps followed by a removal step (default 10);

• “Minimum alignment size”: the minimum size of a local alignment. Local alignments with size lower this minimum size are not reported in final list (default 3);

• “Minimum gene expression log fold change threshold”: value for MaxLogFoldThreshold, which controls the extension process (default 0.6).

According to the experiments reported in Micale et al. (2014a,b), we assigned to each parameter default values, which guarantee a good tradeoff between speed and accuracy of GASOLINE.

“Alpha” and “Refine iterations” parameters are strictly related to the stochastic nature of the algorithm. Lower values for “Alpha” and higher values for “Iter Refine” can be assigned to improve accuracy; however, the suggested default values are enough to yield good alignment results. Higher values of “Sigma” can be used to restrict the search to alignments starting from central genes in the input networks and to speedup the algorithm. Lower values of “Overlap threshold” and higher values of “Minimum alignment size” allow to prune the final set of local alignments.

MaxLogFoldThreshold is the most critical parameter for GASOLINE. By increasing this threshold, the number and the size of final local alignments can be highly decreased and the algorithm could become much faster. Notice that there is no constant ideal value for MaxLogFoldThreshold, because it is highly dependent on the properties of input expression data. For log-transformed gene expression data, like the one which are present in SPECTRA database, low values of MaxLogFoldThreshold (0.2–1) are recommended.

Before running the adapted GASOLINE by clicking on “Run GASOLINE” button, the user has to indicate an homology scoring scheme between proteins of different aligning TS-PPI networks (Figure 8). The default naive solution is to use gene names for computing similarities: if two nodes have the same label, then they are considered homologs. Otherwise, user can upload an homology score file.

When the adapted GASOLINE ends, it gives as output a list of local alignments (if any, see Figure 9). For each alignment, the size, the average value of MaxLogFold, and the ISC score are reported.
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FIGURE 9 | Result table for the differential local alignment of the four TS-PPI networks of Figure 8 with the Adaptive GASOLINE. The table reports, for each alignment, the size (i.e., the number of aligned nodes), the average expression difference between aligned nodes, and the ISC (Index of Structural Conservation) score. When the user selects a row in the table, a panel with alignment details is shown to the right. Details include the list of aligned subnetworks (defined by the set of nodes and edges) and the mapping between aligned nodes. Nodes of aligned networks are represented by the corresponding ids, followed by their weights, while edges are represented by the ids of interacting proteins, followed by the interaction weights and the corresponding tissues. Alignment mapping is represented as a matrix where rows contain aligned proteins and columns represent nodes of the same subnetwork.



By selecting an alignment, its details are reported on the right (Figure 9). Alignment data include the set of nodes and edges attributes. The final mapping of aligned nodes is represented as a matrix in which columns contain nodes of the same network and rows represent the mapped genes.

3.3. Alternative Input for SPECTRA

User can upload text files in SPECTRA for building and comparing network. Expression data can be provided as text files in the “Expression data” section (Figure 5B) by selecting the Üpload expression data” option. Expression data files should have a matrix format with a row header representing tissues, a column header representing genes, and matrix elements indicating the gene expression value in a tissue.

There are two ways to provide input TS-PPI networks for comparison. User can either upload a text file or create the TS-PPI network with the SPECTRA searching tool and pass it to the comparison page. In the first case, network files are uploaded by clicking on “Add networks from files” in the “Compare” tabbed panel (Figure 8).

TS-PPI network files for comparison follows the same format of the result table in SPECTRA (Figure 6), except for the dataset coverage, with fields separated by tab characters. In the second case, one or more TS-PPI networks for specific tissues are passed to the comparison tool, by clicking on the “Add to compare list” button. The network is then added as input to the comparison list (Figure 8). By default, networks are added with the name of the corresponding tissue, optionally followed by a progressive number whenever two or more TS-PPI networks for the same tissue are already present in the table. Anyway, networks can be later renamed by the user from the comparison table, before running GASOLINE.

In the homology file, needed to run the adapted GASOLINE algorithm, each row contains a pair of nodes of different TS-PPI networks, followed by a positive score value.

3.4. SPECTRA Output

TS-PPI networks (or subnetworks of them) are downloadable from the result panel, by clicking on “Download network” button (Figure 6). The user can filter the set of tissues upon which the TS-PPI network is defined. TS-PPI networks will be saved into different text files, one for each selected tissue or tumor. The file format is the same of the result table (Figure 6), with fields separated by tab characters.

The set of differential alignments returned by the adapted GASOLINE can be saved as .zip archive. The archive will contain a text file for each alignment. Each file contains the same alignment information reported in Figure 9.

Results can also be visualized by using Cytoscape.js10, a JavaScript library for the analysis and visualization of networks. In the 2D visualization, TS-PPI networks can be navigated and zoomed. A TS-PPI network can be visualized from the result panel (Figure 6). Figure 10 shows two different examples of visualizations of TS-PPI networks within SPECTRA, with one (Figure 10A) or more (Figure 10B) tissues. Nodes and edges are differently colored according to the tissues of the TS-PPI network. Nodes are represented as pies with multiple colored slices. The diameter of the pie is proportional to the total expression score of the gene (considering all tissues of the TS-PPI network) and the size of each pie slice is proportional to the expression score of the gene in the corresponding tissue. Edge line widths are proportional to the interaction weights.


[image: image1]

FIGURE 10 | The Network visualization in SPECTRA. (A) A TS-PPI network for a single tissue; (B) A TS-PPI network for multiple tissues. In this case, nodes are represented as pies with slice sizes proportional to the expression of corresponding gene in a tissue. Nodes and edges are colored according to the corresponding tissue and node dimensions are proportional to the total gene expression score.



The alignments can be visualized in 2D (Figure 11), by selecting them from the list of local alignments and clicking on the “Show alignment network” button (Figure 9). Aligned nodes are colored according to the network they belong to and their sizes are proportional to the genes expressions. Edges are divided into two categories: intra-edges and inter-edges. Intra-edges connect nodes of the same subnetwork and are represented with solid lines with variable width, depending on the interaction weights. Inter-edges connect aligned nodes of different networks and are drawn with dashed black lines. In both cases, we used the Constraint-Based Layout (COLA) for network visualization.
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FIGURE 11 | The two biggest local differential alignments found by the Adaptive GASOLINE for the TS-PPI networks of normal breast cells (grade 0), well-differentiated cells (grade 1), moderately differentiated cells (grade 2), and poorly differentiated cells (grade 3). (A) A complex of chemokine proteins. (B) The Human Leukocyte Antigen (HLA) system. Nodes and edges are colored according to the corresponding network. Edge widths are proportional to the strength of interaction. Node dimensions are proportional to the gene expressions. Solid lines (intra-edges) connect the nodes of the same network, while dashed lines (inter-edges) connect the aligned nodes.



3.5. Case Study

In this section, we show a practical usage of SPECTRA through a case study. We compared a set of four TS-PPI networks, built from genes expression data in normal and well differentiated, moderately differentiated, and poorly differentiated breast cancer tissues. The aim is to identify subnetworks of differentially expressed genes across the normal breast and the three different grades of breast tumors.

3.5.1. Data Preprocessing

We downloaded four breast cancer expression datasets for which information about the stage of breast tumors were available: GSE2361 (Ge et al., 2005), GSE2990 (Sotiriou et al., 2006), GSE4922 (Ivshina et al., 2006), and GSE7390 (Desmedt et al., 2007). We normalized data using RMA in R Bioconductor package (McCall et al., 2010).

The four expression datasets were then combined using COMBAT (Johnson and Li, 2007) into the R InSilicoDbMerging package. Finally, we grouped samples of the integrated dataset into four categories according to the grade of breast tumor (0 for normal tissue, 1 for well-differentiated tumor cells, 2 for moderately differentiated cells, and 3 for poorly differentiated cells). For each category, we computed the average expression value of each gene among samples. Results are stored into four different files (one per category).

3.5.2. Uploading Data in SPECTRA and Building Breast TS-PPI Networks

We loaded the expression files in the “Expression data” panel in SPECTRA (Figure 5B) and we selected BioGRID and IntAct as PPI datasets in the “Interaction data” panel (Figure 5C). SPECTRA builds four TS-PPI networks, each of them has 7,472 nodes and 29,765 edges. We added each network to the comparison list of GASOLINE (Figure 8), by clicking on Add to compare list from the Result panel (Figure 6).

3.5.3. Results of GASOLINE on TS-PPI Networks

Networks have been aligned by clicking on Run GASOLINE with the following parameters:

• Sigma = 1;

• Alpha = 0.05;

• Overlap threshold = 0.5;

• Refine iterations = 10;

• Minimum complex size = 2;

• Maximum gene expression log fold change threshold = 0.3;

• Use gene names for homology score.

GASOLINE took 27 s to complete the task and returned 20 local alignments. In Figure 11, the two biggest alignments are shown using the SPECTRA visualization tool. Both alignments contain genes that are known to be involved in breast cancer at different stages.

More precisely, the major group of aligned nodes in Figure 11A is formed by the chemokine proteins (CXCL10, CXCL9, CXCL11, CCL5) and the chemokine receptors CXCR3 and CCR1, which are all highly overexpressed across the different grades of breast tumor. Chemokines can be responsible for leukocyte migration during processes of tissue development and formation, or can attract immune cells to a site of inflammation. Chemokines and chemokine receptors are known to have an important role on cancer metastasis, by facilitating tumor dissemination (Muller et al., 2000; Karnoub and Weinberg, 2007). DPP4 gene has a lower expression variation but ensures the communication between CCL5, CCR1, and the other chemokine proteins. This result agrees with the key role of DPP4 in signal transduction and tumor progression (Pro and Dang, 2004).

The alignment of Figure 11B is characterized by the Human Leukocyte Antigen (HLA) system (HLA-DRB1, HLA-DMB, HLA-DMA, HLA-DRA). The HLA system is composed by proteins on cell surface that are responsible for regulation of the immune system. HLA genes exhibit very high differential expression between normal and tumor cells and their overexpression in breast cancers is confirmed by several papers (Bartek et al., 1987; Kaneko et al., 2011; Da Silva et al., 2013).

The above case study highlights the capability of SPECTRA in helping researchers in producing novel biologically sound hypothesis and insight in the study of tissue-specific diseases.

4. Discussion

SPECTRA is a knowledge base to build and compare tissue or tumor-specific PPI networks. It overcomes the current PPI network analysis limitations mainly due (i) to the spreading of data in several databases with low overlap; (ii) to be unaware of the role of proteins in human tissues and diseases. SPECTRA integrates 13 databases of both protein–protein interactions and expressions data. Moreover, it provides an algorithm to compare built-in or custom tissue and tumor-specific PPI networks and identify subnetworks of differentially expressed genes. Finally, the results can easily browsed trough a lightweight web application equipped with a 2D visualization network tool based on Cytoscape.js. Experiments performed on four TS-PPI networks built from gene expression data consisting of normal and breast cancer tissues show that the comparison algorithm can produce biologically significant results. SPECTRA database will go under update twice a year, with a semi-automatic curation of data downloaded from the online repositories. Future developments of SPECTRA aim to provide further network mining algorithms devoted to the analysis of expression data and the validation and annotation with ontologies of results.
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The rapid advance of DNA sequencing technologies has yielded databases of thousands of genomes. To search and index these databases effectively, it is important that we take advantage of the similarity between those genomes. Several authors have recently suggested searching or indexing only one reference genome and the parts of the other genomes where they differ. In this paper, we survey the 20-year history of this idea and discuss its relation to kernelization in parameterized complexity.

Keywords: approximate pattern matching, data compression, genomic databases, indexing, kernelization, random-access reading, string algorithms

1. INTRODUCTION

The Human Genome Project took 13 years and three billion dollars to sequence a human genome, but the latest next-generation sequencing methods take only a few days and a few thousand dollars. With these methods, initiatives such as the 1000 Genomes Project and the 100,000 Genomes Project are now feasible. Advances in sequencing have far outstripped advances in computer processors and random-access memory, however, so it is increasingly challenging to make use of the data available. For example, while modern aligners can easily hold in memory the index for approximate pattern matching on a single human genome, they cannot handle thousands of human genomes. Schneeberger et al. (2009) proposed that we index the common parts of the genomes only once for them all, but we index the parts near variation sites for each genome. Ferrada et al. (2014b) suggested indexing the parts of all the genomes near boundaries between phrases in the LZ77 parse of the database. This is more general and may give better compression but requires the LZ77 parse, which is difficult to compute when the database does not fit in memory. Wandelt et al. (2013) proposed using a modified parse in which phrases must occur in a reference genome, which is easier to compute. (When papers have appeared in journals we cite those versions, although their chronological order may differ from that of previous versions.) Danek et al. (2014) recently showed that with this general approach we can store an index for approximate pattern matching on the database from the 1000 Genomes Project, in the memory of a commodity personal computer. This has so far not been possible with competing approaches, as surveyed by Vyverman et al. (2012).

When we are not given an upper bound on the pattern length, we can use one of the competing indexes that does not require such a bound or we can scan, with an online pattern-matching algorithm, the reference genome, and the parts of the other genomes near phrase boundaries. Wandelt and Leser (2012) and Rahn et al. (2014) proposed the latter idea specifically for approximate pattern matching in genomic databases, but the general approach has a 20-year history in the field of compressed pattern matching. In this paper, we survey that history and relate it to current research: in Section 2 we discuss some relevant data compression schemes and how they have been augmented to support fast random-access reading; in Section 3 we discuss how they have been used to speed up pattern-matching; in Section 4 we discuss how they have been used in compressed indexing. While writing this survey, we realized that scanning or indexing only parts of the database and then mapping the solution for those parts onto a solution for the whole database, is like kernelization in parameterized complexity (We note that kernels in parameterized complexity bear no relation to operating system kernels nor to kernels in machine learning.). We emphasize this perspective because we feel that computing a pattern-matching kernel is an interesting problem in itself, regardless of how we process it later, and deserving of further study. Of course, the nature and even the existence of the kernel depend on the problem we are trying to solve.

2. COMPRESSION WITH RANDOM-ACCESS READING

In general, the best compression of highly repetitive datasets is achieved with the LZ77 algorithm by Ziv and Lempel (1977). Suppose S[1, …, n] is a string with S[n] = $, which is an end-of-file symbol that does not occur elsewhere in S. LZ77 works by parsing S into phrases such that, for each phrase S[i, …, j], S[i, …, j − 1] occurs in S[1, …, j − 2] but S[i, …, j] does not occur in S[1, …, j − 1]; that phrase is stored as a triple consisting of a pointer to S[i, …, j]’s first occurrence in S (which is called the phrase’s source), j − i, and S[j]. The LZ77 encoding of S takes [image: image1] (z log n) bits, where z is the number of phrases in the parse. For example, in the following verses vertical lines indicate phrase boundaries:

9|9-|b|o|t|tl|e|s|-o|f|-be|er|-on|-t|h|e-|w|a|ll|-9|9-bottles-of-beer-

I|f-o|n|e-o|f-t|ho|se|-bottles-s|hou|ld|-h|ap|pe|n-to|-f|all-

98|-bottles-of-beer-on-the-wall-

98|-bottles-of-beer-on-the-wall-98-bottles-of-beer-

I|f-one-of-those-bottles-should-happen-to-fall-

97|-bottles-of-beer-on-the-wall …

(We have displayed the verses with linebreaks to increase readability, but we have not considered them while computing the parse.) Although these verses may be annoyingly similar by the standards of natural language, they are far less similar than human genomes. Indeed, most repetitive biological datasets are much too similar (as well as much too large) for us to use them as informative examples.

One drawback of LZ77 compression is that reading a character in a compressed string can be very slow. Rytter (2003) and Charikar et al. (2005) showed how we can turn that parse into a balanced straight-line program (SLP) for S with [image: image1] (z log n) rules. An SLP for S is a context-free grammar in Chomsky normal form that generates S and only S; it is balanced if the height of each subtree in the parse tree is logarithmic in that subtree’s size. It follows from Rytter’s and Charikar et al.’s results that we can store S in [image: image1] (z log2n) bits and support random-access reading of any substring of S with length l in [image: image1] (log n + l) time. Verbin and Yu (2013) showed that this is nearly optimal in the worst case. Bille et al. (2011) showed how, given even an unbalanced SLP for S with r rules, we can store S in [image: image1] (r log n) bits and support random-access reading in [image: image1] (log n + l) time. Rytter’s, Charikar et al.’s, and Bille et al.’s constructions are not practical, but there are practical grammar-based compressors, such as those by Larsson and Moffat (1999) and Maruyama and Tabei (2014). As far as we know, block graphs by Gagie et al. (2011) and Gagie et al. (2014c) are the most practical grammar-like representations for random-access reading. The LZ78 algorithm by Ziv and Lempel (1978) does not compress repetitive datasets as well as LZ77, but the LZ78 encoding of S can easily be augmented to support random-access reading in [image: image1] (log log n + l) time. LZ78 also works by parsing S into phrases but then each phrase must extend a previous phrase plus one character. Because of this property, the LZ78 encoding of S has Ω ([image: image1]) phrases, even when S = an.

In the example above, the first verse contains many phrase boundaries but the second verse contains only three. Kuruppu et al. (2010) proposed that, given a set of similar strings (or one string that can easily be divided into similar substrings), we store the first string in plain text as a reference and compress the others with a version of LZ77 that restricts phrases’ sources to occur in the reference. They called this scheme Relative Lempel–Ziv (RLZ) and showed it compresses genomic databases very well in practice (although it too uses Ω ([image: image1]) phrases, even when S = an) and there are several implementations of this approach, such as those by Deorowicz and Grabowski (2011), Kuruppu et al. (2012), and Ferrada et al. (2014a). Even when there is no obvious reference, Kuruppu et al. (2011) showed we can often build one by sampling the dataset: intuitively, if a substring is common then it is likely to appear in our sample, and if it is not then we lose little by not compressing it well; this can be formalized using results about SLPs.

3. SEARCHING

Farach and Thorup (1998) observed that the first occurrence of any pattern P[1, … , m] in S must cross or end at a phrase boundary in the LZ77 parse. Kärkkäinen and Ukkonen (1996) showed how, if we already know the locations of P’s occurrences in S that cross or end at phrase boundaries, then we can deduce the locations of all its other occurrences from the structure of the parse. By the same arguments, LZ78 also has these properties and (Karpinski et al., 1997) simultaneously proved similar results for SLPs. Bille et al. (2009) observed that any substring of S within edit distance k of P (i.e., any of P’s approximate matches) has length at most m + k, and any such substring that does not cross or end at an LZ78 phrase boundary must be an exact copy of an earlier one that does. They gave an algorithm for approximate pattern matching in LZ78 strings that works by extracting the m + k and m + k − 1 characters before and after each LZ78 phrase boundary, respectively, using a technique similar to those discussed in Section 2; scanning the resulting substrings with any online algorithm for approximate pattern matching in uncompressed strings; and then deducing the locations of the other approximate matches from the structure of the parse.

Bille et al. (2011) extended this approach to show how we can find all P’s approximate matches in S from an SLP for S. Recently, Gagie et al. (2014b) extended it further to show how we can preprocess the LZ77 parse of S in [image: image1] (z log n) time such that later, given P and k, we can find all P’s occ approximate matches in [image: image1] (z min(mk, m + k4) + occ) time. Their algorithm works by extracting the m + k and m + k − 1 characters before and after each LZ77 phrase boundary, respectively, and then continuing as with the algorithm by Bille et al. (2009). The set of substrings we extract is like a kernel in parameterized complexity: the total length of the substrings can be much smaller than n, but a solution on them can quickly be mapped to a solution on all of S. For our example from Section 2 with m = 4 and k = 1, the kernel is:

99-bottles-of-beer-on-the-wall-99-bo

eer-If-one-of-those-bottles-should-happen-to-fall-98-bot

ll-98-bot

eer-If-on

ll-97-bot …

If we want a kernel consisting of only a single string, we can concatenate the substrings with k + 1 copies of $ between each consecutive pair. Notice that if we are careful, we can avoid scanning the fourth substring “eer-If-on,” since it occurs in the second substring.

We do not wish to leave the impression that kernelization is the only approach used in compressed pattern matching, nor even that the papers mentioned above are the only ones that use it. We have focused on those papers because we feel they are the most relevant to the practical bioinformatics papers by Wandelt and Leser (2012) and Rahn et al. (2014) mentioned in Section 1. Those authors were apparently unaware of the field of compressed pattern matching and re-invented kernelization specifically for approximate pattern matching in genomic databases, with kernels based on RLZ instead of LZ77, LZ78, or SLPs. This may be because the earlier researchers using kernelization for pattern matching did not perform convincing experiments on large enough datasets, publicize their ideas in interdisciplinary forums or implement their ideas in tools usable by other scientists.

4. INDEXING

Kärkkäinen and Ukkonen (1996) gave the first LZ-based index, which supported exact pattern matching and stored S separately and uncompressed. They used Patricia trees and range reporting to find a set of candidate matches crossing or ending at LZ77 phrase boundaries; verified them by checking S; and then used more range reporting to find the other matches. We can obtain various time-space tradeoffs by compressing S and use the methods discussed in Section 1 to extract the characters needed to verify candidate matches. Claude and Navarro (2012) modified Kärkkäinen and Ukkonen’s index to use a grammar-compressed encoding of S, and Kreft and Navarro (2013) modified it to use the encoding of S produced by a version of LZ77 they called LZ-End, which supports fast random-access reads starting at phrase boundaries. Arroyuelo et al. (2012) and Do et al. (2014) gave indexes based on LZ78 and RLZ, respectively, and Maruyama et al. (2013) and Takabatake et al. (2014) gave indexes based on the edit-sensitive parsing by Cormode and Muthukrishnan (2007). Gagie et al. (2014a) recently gave a version of Kärkkäinen and Ukkonen’s index that uses a total of [image: image1] (z log2n) bits and returns the locations of all P’s occ occurrences in S in [image: image1] (m log m + occ log log n) time. These indexes require no assumptions about the pattern.

Kärkkäinen and Sutinen (1998) gave an index based on a version of LZ77 that allows phrases to overlap by q − 1 characters, where q is a parameter. If P has length exactly q, then their index returns the locations of all P’s occurrences in S in optimal [image: image1] (m + occ) time. If we are given an upper bound M on the pattern length at construction time, then even with Kärkkäinen and Ukkonen’s original version, we need keep only a kernel of the text and can use [image: image1] (z log n + zM log σ) bits in total, where σ is the size of the alphabet. We suspect this escaped investigation for so long because it seemed too obvious and inelegant to be theoretically interesting, and the need to index massive, highly repetitive datasets in practice has become pressing only since the development of next-generation sequencing methods.

The use of kernelization for indexing was eventually investigated by Schneeberger et al. (2009), although they did not present kernelization as a separate process because their work was application-driven. As noted in Section 1, they proposed that, given a database of genomes from the same species, we index the common parts of the genomes only once for them all, but we index the parts near variation sites for each genome. Wandelt et al. (2013) and Danek et al. (2014) gave similar results, essentially using a kernel based on the RLZ parse. Like Schneeberger et al., these authors indexed the kernels using specific methods based on q-grams or seeds. Danek et al.’s index for the database for the 1000 Genomes Project is the first one to fit in the memory of a commodity personal computer. Ferrada et al. (2014b) emphasized kernelization (albeit not under that name) in terms of the LZ77 parse, which is more general and may give better compression, and pointed out that we can use any index for approximate pattern matching to store the kernel. One point they did not comment on, and which we hope to have clarified in this paper, is that we can consider kernels based on LZ77, LZ78, RLZ, other compression schemes, or possibly other algorithms entirely. These kernels may be easier to compute when the database does not fit in memory, or have other useful properties that make them preferable in some situations. One interesting problem is how we can best maintain a dynamic kernel for an expanding database. This could allow us to align reads against a genomic database and then add the newly assembled genome, which could be useful when dealing with mutating cancer genomes or changing strains of a disease during an outbreak.
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Tandem repetitions in protein sequence and structure is a fascinating subject of research which has been a focus of study since the late 1990s. In this survey, we give an overview on the multi-faceted aspects of research on protein tandem repeats (PTR for short), including prediction algorithms, databases, early classification efforts, mechanisms of PTR formation and evolution, and synthetic PTR design. We also touch on the rather open issue of the relationship between PTR and flexibility (or disorder) in proteins. Detection of PTR either from protein sequence or structure data is challenging due to inherent high (biological) signal-to-noise ratio that is a key feature of this problem. As early in silico analytic tools have been key enablers for starting this field of study, we expect that current and future algorithmic and statistical breakthroughs will have a high impact on the investigations of the biological role of PTR.
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Introduction

A seminal paper (Andrade et al., 2001) reports the observation that repetitive subsequences that appear in tandem repetitions (TR) within the protein primary sequence often form integrated assemblies when these residues are mapped to their corresponding three-dimensional folded conformation. These TR confer multiple binding opportunities and may play a structural role by giving rigidity to a protein, and by exposing functional domains. Moreover, Andrade et al. (2001) remark that tandem repeated structures should not be assimilated to the traditional notions of domains and motifs that may appear singly or in multiple interspersed copies in each protein (while they can be repeated across families of protein), since they constitute a rather distinct class. They also remark that repeats in protein sequences are usually hard to detect because on average the repeating unit is relatively short, and moreover there can be considerable sequence divergence among units of the same TR. We will refer throughout this article to these repetitive sub-sequences as Protein Tandem Repeats (PTR or Protein-TR, for short).

A study by Marcotte et al. (1998) indicates that internal subsequence repetitions in protein primary structure are quite widespread. They have been detected in about 14% of all the then known proteins, with eukaryotic proteins being three times more as likely to have internal repeats than prokaryotic ones. More recent measurements in (Pellegrini et al., 2012) give a count of about 25% of the proteins in the Uniprot database (Apweiler et al., 2004) holding a PTR of length at least 20 aa.

A recent survey of some algorithmic aspects of PTR detection in protein sequences is in Luo and Nijveen (2014). In this survey, we will touch lightly on the multi-faceted aspects of PTR research, including prediction algorithms, databases, early classification efforts, mechanisms of PTR formation and evolution, and synthetic PTR design. We also touch on the rather open issue of the relationship between PTR and flexibility (or disorder) in proteins.

Protein-TR Detection Algorithms Based on Sequence

Structural and functional properties of Protein-TR are often preserved also in presence of high divergence among the subsequences corresponding to the PTR units, both at the level of DNA coding sequence and at the level of AA sequence. This property makes automatic PTR detection a challenging task, and a variety of approaches have been implemented since the late 1990s. More recently, a tendency to integrating basic sequence data with evolutionary or biochemical annotations has emerged. Table 1 reports the list of sequence-based algorithms.

TABLE 1 | Synthetic table of resources for PTR studies: sequence-based algorithms.
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Interestingly, early algorithms by Marcotte et al. (1998), Pellegrini et al. (1999), and Andrade et al. (2000) were instrumental to the first PTR classification efforts, while more recent tools have been aimed at providing web-server-based utilities, or at populating databases.

REP in Andrade et al. (2000) is one of the first PTR detection algorithms which uses a homology-based method to identify statistically significant protein repeats.

Other early methods developed for finding TRs in proteins are based on detecting sub-optimal alignments in the self-alignment matrix generated by the Smith-Waterman algorithm (or similar methods). Some methods developed along this line are Internal Repeat Finder (Marcotte et al., 1998; Pellegrini et al., 1999), prospero (Mott, 1999), RADAR (Heger and Holm, 2000), REPRO (Heringa and Argos, 1993; George and Heringa, 2000), and TRUST (Szklarczyk and Heringa, 2004). These methods often detect both tandem and interspersed repeats.

XSTREAM (Newman and Cooper, 2007) uses a seed expansion approach, while Jorda and Kajava (2009) proposed T-REKS, which uses a clustering approach based on k-means.

The systems HHrep (Soding et al., 2006) and HHRepID (Biegert and Soding, 2008) are instead based on building and matching Hidden Markov Models for the repeating substrings to be sought (not necessarily tandem).

Some approaches based on neural networks aim at detecting particular repetitive structures. For example, Palidwor et al. (2009) developed a classification technique for detecting alpha-rods repeats, a specific important repetitive structure [see also Rubinson and Eichman (2012)].

For the class of protein solenoid repeats, REPETITA, by Marsella et al. (2009), uses several AA biochemical properties (including polarity, secondary structure, molecular volume, electric charge, and codon diversity) and a discrete fourier transform approach to detect self-similarities.

Pellegrini et al. (2012) propose the notion of fuzzy TR (FTR) for proteins, which is based on using a normalized BLOSUM-weighted edit distance between AA sub-strings and in assuming that in a FTR, even if the constitutive unit elements may be pairwise at high divergence, there exists an “origin” string, not necessarily still part of the protein in exam, that is at a relatively small divergence from any of its unit elements. Here, the notion of high/low divergence is relative to the divergence between random AA strings under the chosen weighted edit distance. An exhaustive search of FTRs in long proteins is computationally demanding, since the bare definition leads to an NP-hard problem. Thus, an efficient heuristic is used in PTRStalker to guess the candidate “origin” strings.

Gruber et al. (2005) propose REPPER a meta searching approach that combines the output of different algorithms. A web-based meta-search server that allows to run and compare easily several tools on the same input is also described in Schaper et al. (2015).

Shapper et al. (Schaper et al., 2012; Anisimova et al., 2015) propose a statistical method based on phylogenetic fingerprints and ML-estimation that, in conjunction with one or more standard predictors, is able to filter out predicted TR that are more likely to be false-positive.

As screening large portions of protein sequence DB looking for TR patterns is time consuming, Richard and Kajava (2014) propose a pre-screening tool (TRDistiller) whose purpose is to quickly filter out proteins that almost surely do not contain a TR, while retaining for further analysis the proteins carrying a TR with high probability.

As the list of possible tools to choose from becomes longer, there is an emerging need for guidance on which tool is most suitable for a given task. Unfortunately, at the best of my knowledge, no such comprehensive comparative study has been attempted yet. More limited comparative tests can be found in Pellegrini et al. (2012) where five methods (RADAR, TRUST, T-REKS, XSTREAM, and PTRStalker) are compared in their ability to detect very long PTRs (≥ 4000 AA), with XSTREAM and PTRStalker emerging as the best choice for this task. A second test is aimed at detecting dimeric proteins by five tools (RADAR, TRUST, HHRep, HHRepID, and PTRStalker), with PTRStalker, TRUST, and HHRepID being able to successfully uncover such dimeric structures in some of the tested proteins. In Jorda and Kajava (2009), four methods (T-REKS, XSTREAM, Internal Repeat Finder, and TRED) are compared by the number of sequences they could identify as holding a PTR longer than 14 AA in the SWISSPROT database, with T-REKS giving the highest number (almost doubling the closest competitor). In Marsella et al. (2009), three methods (REPETITA, TRUST, and RADAR) are compared to assess their ability in guessing the correct periodicity in solenoid repeats, with REPETITA having an edge over the other two methods.

Protein-TR Detection Algorithms Based on Structure

Functional features are more readily linked to the structural features of a protein rather than to their primary sequence, thus available structural data should also be used to detect protein 3d symmetries and repetitive 3d motifs (Goodsell and Olson, 2000). However, only for a fraction of the known protein sequences, the corresponding 3D conformation could be determined, therefore the range of applicability of structure-based methods is limited w.r.t. the range of the sequence-based methods.

In this case, the algorithmic challenge lies in the multidimensional nature of the data, and on the fact that the space of rigid transformations (rotations, translations) as well as the inherent flexibility of proteins must be taken into account when attempting to match 3d substructures in order to detect the PTR periodicity. Table 2 reports the list of structure-based algorithms.

TABLE 2 | Synthetic table of resources for PTR studies: structure-based algorithms.
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In Murray et al. (2002), both the sequence and the structure signals are integrated within a continuous wavelet transform approach to detect repeating motifs. In particular, the sequence is represented by values of the Kyte–Doolittle hydrophobicity scale, while structure is characterized via the relative accessible surface area. This approach has been shown to be successful on most of the well known types of repetitive motifs.

DAVROS (Murray et al., 2004) is a PTR prediction system that builds upon a structural alignment program (SAP) that evaluates internal structural symmetries via a protein self-similarity matrix and employs a Fourier Transform approach to identify strong signals over the noisy background.

Swelfe (Abraham et al., 2008) finds internal repeats by combining three abstraction levels. Swelfe quickly identifies statistically significant internal repeats in DNA sequence, in the amino acid sequence and in the 3D structures using dynamic programing. The associated web server also shows the relationships between repeating feature at each level and facilitates visualization of the results.

SymD (Kim et al., 2010) is an algorithm that aims at detecting internal spatial symmetries of proteins. It uses the alignment method in Kim et al. (2009) on pairs of structure formed by the target protein and its shifted versions built by all circular permutations of its residues. Although not all PTR give rise to symmetric 3D structures, many do, therefore this approach often indicates the presence of a PTR. Other methods based on this symmetry detection approach are RQA (Chen et al., 2009), OPAAS (Shih and Hwang, 2004), and Gplus (Guerler et al., 2009).

ProSTRIP (Sabarinathan et al., 2010) uses dynamic programing to find similar structural repeats in a protein structure encoded by the protein backbone dihedral angles.

RAPHAEL (Walsh et al., 2012b) is a more recent method for the detection of solenoids in protein structures. It aims at mimicking the periodicity and distance patterns detection criteria a human curator is likely to exploit when assessing the presence of a solenoid visually. In particular, the candidate protein is subject to a random rotation and translation, and subsequently for each of the three C-alpha coordinates a projection is performed. This operation produces a profile curve, in which the distance between consecutive local maxima is a candidate periodicity value. By averaging over multiple random rotations and translations, a robust period estimation is attained. Additional simple rules allow to further detect non-periodic residues interspersed in the solenoid periodic structure.

Parra et al. (2013) use the structural alignment tool TopMatch (Sippl, 2008) to search exhaustively the space of possible sub-structures that tile a large fraction of a given structure, and thus can represent a bona fide structural repetitive element of the input protein.

PRIGSA (Chakrabarty and Parekh, 2014) represents distance information among residues in an adjacency matrix, and it is based on the observation that similar sub-structures can be recognized as unique profiles of the principal eigenspectra of this matrix.

ConSole (Hrabe and Godzik, 2014) aims at detecting solenoid domains having as input structural information, by searching repetitive patterns in a contact matrix, which, for every pair of residues i,j in a protein, encodes a value 1 if the two residues have at least a pair of heavy atoms at Euclidean distance below a threshold t (set at t = 4.5 Å). Ad hoc rules are further applied in order to handle insertions in the solenoid repetitive patterns.

As in the case of sequence-based methods, very few comparative studies among the proposed structure-based tools have been done. In Kim et al. (2010), six methods (DAVROS, OPAAS, Swelfe, RQA, Gplus, and SymD) are compared in their ability to identify characteristic symmetries in fold families from CATH, SCOP, and ASTRAL databases, with SymD having an overall better performance. In Sabarinathan et al. (2010), two methods (ProSTRIP and Swelfe) are compared over well known families of repeat proteins, for the task of detecting periodicity and exact repeat positions. On well known PTR proteins, both methods detect approximatively the correct period, however, ProSTRIP detects more repeating units. On the harder class of multidomain proteins ProSTRIP is also better at guessing the correct periodicity. In Walsh et al. (2012b) five methods (both sequence and structure based) are compared (namely Swelfe, RAPHAEL, REPETITA, TRUST, and RADAR) in their ability to guess the PTR periodicity, with RAPHAEL giving better predictions, when we allow for a slackness of 5 AA in the predicted value. For exact predictions, RAPHAEL, REPETITA, and TRUST are about equivalent.

Databases for Protein-TR

Information about PTR can be retrieved as annotations in general purpose integrated protein databases. However, such annotations often cover only the well studied PTR, therefore in recent years a number of special purpose repositories have been assembled with the objective of making large scale PTR analysis easier. We list here in Table 3 only DBs that are available on-line at the present time, as many older published articles refer to DBs no longer available.

TABLE 3 | Synthetic table of resources for PTR studies: databases.
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RepSeq (Depledge et al., 2007) is a specialized DB for PTR in lower eukaryotic pathogens.

PRDB is a PTR database that supports queries on protein tandem repeats found in sequence data bases. Currently, it holds about 1.25M PTR extracted from the Swissprot, PDB, and NR databases in early 2010 using the T-REKS detection tool (Jorda et al., 2012). This database has been instrumental for uncovering original biological correlations in Jorda et al. (2010).

PTRStalkerDB lists the PTR found with the PTRStalker method on the SwissProt database release 57.15 of March 2, 2010 that contains 515,203 sequence entries.

ProRepeat (Luo et al., 2012) is a curated and integrated data base and analysis platform for research on the biological features of amino acid tandem repeats. ProRepeat collects PTR of protein sequences listed in the UniProt knowledge base from different species; moreover, it includes 85 completely sequenced eukaryotic proteomes from the RefSeq collection. The latest datasets used in ProRepeat are UniProtKB Release May 2011 and RefSeq Release 40.

RepeatsDB (Di Domenico et al., 2013) is a database of annotated tandem repeat protein structures that uses both a state of the art detection method (RAPHAEL) and manual curation to survey the protein structures listed in PDB. The latest version 2.0.0 (beta) released in 2015 holds 10,039 PTR structures (including manually classified and predicted PTR). Automated updates every 3 months are planned.

Although progress in the area of databases for PTR has come about in the past few years, there is also much scope for improvement, in particular, as the amount of proteomic data increases rapidly, it is important to maintain the PTR databases aligned with the latest releases of the reference protein sequence and structure. Also, given the variety of algorithms and approaches to PTR prediction, DB that uses one single algorithm as source of data could suffer for the specific algorithm’s biases, and more robust prediction could be obtained instead by using multiple detecting algorithms.

Classification of Protein-TR

Kajava (2012) reports an extensive survey of bioinformatic tools to support various analysis of TR in proteins, including tools for identification of TR in proteins, databases reporting PTR (either exclusively, or as an annotation in a larger protein DB), classification of repetitive 3D structures, and tools for structural prediction targeting proteins with PTR (as opposed to globular ones).

Early surveys by Marcotte et al. (1998), Andrade et al. (2001), and Kajava (2001) are very much concerned with the task of identifying specific classes of proteins highly characterized by their PTR content with the aim of finding corresponding structural and functional regularities. Andrade et al. (2001) propose a taxonomy of six main classes (β-propellers, β-trefoils, TPR-like, Ankyrin-like, Armadillo/HEAT-like and Leucine-Rich). Instead Kajava (2001) uses a classification based on the repeating unit length (1–2 residues = class I crystalline aggregates, 3–4 residues = class II fibrous proteins, 5–40 residues = class III solenoid-like proteins, and class IV beads-on-string proteins with repeats longer than 30 residues folded into globular domains). Later in Kajava (2012), a refinement of this classification by splitting class III into two sub-classes of solenoid and non-solenoid structures has been proposed. The database RepeatsDB (Di Domenico et al., 2013) uses the classification proposed by Kajava (2012).

Mechanisms of Protein-TR Expansion During Evolution

Björklund et al. (2006) and Moore et al. (2008) analyze the internal sequence similarity in proteins of several species and note that the domain repeats are often expanded through simultaneous duplications of several domains in one event, while the duplication of one domain at a time is a less common event. Moreover, many of the repeats appear to have been duplicated in the middle of the repeat region. This behavior is in contrast to the evolution of other proteins that mainly happens through additions of single domains at either terminus of the protein. No common mechanism for the expansion of all repeats could be detected in this study, for example, duplication patterns show no dependence on the size of the domains. Repeat expansion in some families can possibly be explained by shuffling of exons but exon shuffling does not appear to be a general formation mechanism.

Some domain families show distinct specific duplication patterns, for example, nebulin domains have mainly been expanded with groups of seven domains at a time, while duplications of other domain families involve varying numbers of domains for each event. A more detailed analysis of nebulin domains evolution is in Björklund et al. (2010).

By mapping the Protein TR back onto their coding DNA sequences, Street et al. (2006) study the conservation of intron/exon patterns across several species and show evidence that subdivide the repeat protein genes into two classes. The first class has random-length exons that are likely produced by accumulating introns though random insertion within the array of repetitive units. The second class is composed exclusively of exons corresponding to the multiple of the repeating unit, and thus is likely to be formed by local duplications of intron/exon modules.

Protein-TR Evolutionary Conservation

In Schaper et al. (2014), it is described a proteome-wide analysis of the evolution of TR in human proteins, using a database of 61 eukaryotes. The main finding is that the vast majority of human PTR are ancient, with TR unit number and order preserved intact since remote speciation events. Moreover, no human PTR shows evidence of a recent duplication or deletion event. Thus, presumably, most PTRs fold into stable and conserved structures, indispensable for their function. Similar findings for plants are shown in Schaper and Anisimova (2015). The analysis of PTR in Drosophila melanogaster reported in Ponting et al. (2001) led to the identification of novel PTR in the products of disease-related human genes homologous to those in Drosophila melanogaster.

Protein-TR in Protein Design

Different structures which arise from tandem arrays of a repeated structural motif have generated significant interest with respect to protein engineering and synthetic protein design (Forrer et al., 2003, 2004; Main et al., 2003, 2005; Javadi and Itzhaki, 2013). Several results are reported in these articles about re-engineering of PTR binding specificities, with attention to protein folding kinetics and protein stability.

Sawyer et al. (2013) present a “module-based” design approach in which modules composed of tandem repeats are aligned to identify repeat-specific features that will be important to include in future repeat protein design templates.

Parmeggiani et al. (2015) describe a general database-driven approach for reliable generation of synthetic stable modular repeat proteins. Concomitant to the distillation of general design principles for PTR engineering, research activities have been also concentrated toward specific classes of Protein-TR which have shown a more promising potential for applications (Stumpp et al., 2015). A notable example is that of Designed Ankyrin Repeat Proteins (DARPins) (Binz2003) that have been extensively studied [see a recent survey by Plückthun (2015) and references therein], since they provide a biochemically stable scaffold for designing protein variants able to recognize targets with affinity and specificity that are equal or possibly superior to that of antibodies. Similar promising studies focus also on armadillo repeat proteins (Reichen et al., 2014) and leucine-rich-repeat proteins (Park et al., 2015).

Order, Disorder, and Protein-TR

While our view of protein functions is often linked to the presence of a well defined 3-dimensional protein conformations, it has been recognized (Tompa, 2002) that many important protein functions are also linked to proteins (or regions within a protein) that lack a folded structure, but display a highly flexible random-coil-like conformation under physiological conditions [named intrinsically unstructured proteins (IUP) or intrinsically unstructured regions (IUR)].

The concept of order and disorder in protein segments (Dunker et al., 2001; Tompa, 2002) has been often investigated in correlation with the presence or absence of PTR at the sequence level. For example in Tompa (2002), 21 IUP are examined, and further 21 cases are cited in Dunker et al. (2001). It is noticed that IUR often correspond to regions of low compositional complexity (low sequence entropy) and sometimes to repetitive sub-sequences in fibrillar proteins. Tompa and Fersht (2009) discuss in detail the cases of PTR in PEVK regions of human Titin, in prion proteins and in the CTD domain of RNA polymerase. These findings on specific instances are, however, hard to generalize.

A general property observed by Jorda et al. (2010) is that higher level of repeat perfection correlates positively with the disordered state of protein sub-chains.

The emergence of IUP/IUR prediction tools, such as IUpred (Dosztányi et al., 2005), ESpritz (Walsh et al., 2012a), and DISOPRED (Jones and Cozzetto, 2015), to name a few, and comprehensive databases of IUP/IUR, such as DisProt (Sickmeier et al., 2007) and MobiDB 2.0 (Potenza et al., 2015), can be quite useful for finding generalizable connections between PTR and ordered/disordered states of protein regions.

Correlation of Protein-TR with Other Protein Properties

In Turutina et al. (2006), the sequences of the Swiss-Prot protein families are analyzed in order to detect family-specific latent periodicity fingerprints induced by PTR, using the method in Korotkov et al. (2003), and 94 such protein families are reported as well-characterized by such fingerprints.

A complete analysis of PDB sequences using RADAR is reported in Rajathei and Selvaraj (2013), where a good correlation among PTR, structural similarity, and functionally involved residues is highlighted.

In Mularoni et al. (2007) and Mularoni et al. (2010), the function and evolution of a particular class of PTR formed by repetitions of a single AA are investigated (homo-TR). These two studies concentrated on human and mouse homo-TR of length four. The protein stabilizing properties of homo-TR are also reported in Katti et al. (2000). A more general statistical analysis of homo-PTR in human proteins is in Jorda and Kajava (2010).

Conclusion

The present survey on Protein-TR touches several aspects of this research fields, including detection algorithms (Sections “Protein-TR Detection Algorithms Based on Sequence” and “Protein-TR Detection Algorithms Based on Structure”), databases (Section “Databases for Protein-TR”), classification (Section “Classification of Protein-TR”), the relationship between PTR and biologically relevant concepts (Sections “Mechanisms of Protein-TR Expansion During Evolution,” “Protein-TR Evolutionary Conservation,” “Order, Disorder, and Protein-TR,” and “Correlation of Protein-TR with Other Protein Properties”), and it highlights also recent progress in the design of synthetic PTR (Section “Protein-TR in Protein Design”).

Although there has been steady progress in the last 15 years in devising new prediction tools, both sequence and structure based, very little comparative or integrative work has been done. Most of the proteome-wise studies use only one tool to define and detect PTR and draw conclusions on PTR distributions and statistics. Though this approach was completely justified in the pioneering times (late 1990s and early 2000s), it is necessary now to refine these methodologies and make full use of the wealth of algorithms and approaches devised in the last decade. A more robust assessment of the distribution and annotations of PTR over the entire proteome could be attained by applying and merging the outcomes of multiple tools. In this context, the manually curated databases of PTRs can provide the necessary validation benchmarks.

From the point of view of the design of prediction tools, one open challenge is to devise sequence-based tools that are able to come close to the performance of structure-based tools. Thus providing higher quality PTR predictions for a larger pool of sequenced proteins.
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RNA editing is a post-transcriptional alteration of RNA sequences that is able to affect protein structure as well as RNA and protein expression. Adenosine-to-inosine (A-to-I) RNA editing is the most frequent and common post-transcriptional modification in human, where adenosine (A) deamination produces its conversion into inosine (I), which in turn is interpreted by the translation and splicing machineries as guanosine (G). The disruption of the editing machinery has been associated to various human diseases such as cancer or neurodegenerative diseases. This biological phenomenon is catalyzed by members of the adenosine deaminase acting on RNA (ADAR) family of enzymes and occurs on dsRNA structures. Despite the enormous efforts made in the last decade, the real biological function underlying such a phenomenon, as well as ADAR’s substrate features still remain unknown. In this work, we summarize the major computational aspects of predicting and understanding RNA editing events. We also investigate the detection of short motif sequences potentially characterizing RNA editing signals and the use of a logistic regression technique to model a predictor of RNA editing events. The latter, named AIRlINER, an algorithmic approach to assessment of A-to-I RNA editing sites in non-repetitive regions, is available as a web app at: http://alpha.dmi.unict.it/airliner/. Results and comparisons with the existing methods encourage our findings on both aspects.

Keywords: A-to-I RNA editing, motif analysis, prediction, ADARs, logistic regression

BACKGROUND

In recent times, there has been a change in the range of research on many types of diseases. In the past decades, the principal aim was to add information about the molecular pathways involved in some disease through the study of DNA mutations. Lately, the focus has indeed moved to the analysis of post-transcriptional modification events, such as RNA editing. The knowledge that the activity of RNA editing is higher in mammalian brain than in other tissues (Paul and Bass, 1998), hints that editing may play a crucial role in the central nervous system (Nishikura, 2006). Therefore, malfunctions of RNA editing machineries could lead to serious consequences (Galeano et al., 2012; Tomaselli et al., 2014).

RNA editing is a type of post-transcriptional modification, taking place in eukaryotes, which alters the sequence of primary RNA transcripts by deleting, inserting, or modifying residues. Despite the discovery of several distinct types of RNA editing over the years, adenosine-to-inosine (A-to-I) RNA editing is now considered the most predominant in mammalians (Nishikura, 2010). Through the deamination process, adenosine (A) is converted into inosine (I), which in turn is interpreted as guanosine (G) by both the splicing and the translation machineries (Rueter et al., 1999). Enzymes members of the adenosine deaminase acting on RNA (ADAR) family catalyze this biological phenomenon only on dsRNA structures (Bass, 2002; Jepson and Reenan, 2008; Nishikura, 2010).

Adenosine-to-inosine RNA sites abundantly occur in intronic regions as well as in 3′-UTRs. RNA editing events can modify RNA molecules in several cellular contexts causing: the creation and/or destruction of splicing sites (Rueter et al., 1999); the modulation of gene expression pathways (Bazak et al., 2014b) during translation (Nishikura, 2010); the gain or loss of miRNA recognition elements (MRE) during mRNA targeting (Nishikura, 2006; Borchert et al., 2009) (i.e., MRE can be created or deleted even with a single post-transcriptional modification). As it has been reported in the last few years, RNA editing sites can be found in non-coding RNA molecules, especially within pri-miRNA (Kawahara et al., 2008; Kawahara, 2012), lncRNA (Mitra et al., 2012), and precursor-tRNA (Su and Randau, 2011), the latter deaminated by adenosine deaminases acting on tRNA (ADAT) enzymes.

It is possible to distinguish two forms of A-to-I RNA editing, promiscuous and specific. The promiscuous A-to-I editing occurs within longer duplexes of hundreds of nucleotides, as in the case of stem–loops that are formed by the pairing of repetitive elements (e.g., Alu elements), as seen above. In those cases, up to 60% of adenosines could be edited (Carmi et al., 2011; Bazak et al., 2014b). The specific A-to-I RNA editing occurs in short and/or unstable duplex RNA regions (Wahlstedt and O’Hman, 2011), in which at least 10% of their adenosines selectively could undergo deamination. A-to-I RNA editing events in small non-coding RNAs, such as microRNAs, are perfect examples of specific editing (Nishikura, 2010).

One of the main challenges in the study of the RNA editing phenomenon is certainly RNA editing occurrence. The detection of editing sites in RNA molecules in particular cellular conditions is very difficult considering that RNA editing is a dynamic spatial–temporal process. In the last decade, the application of global approaches to the study of A-to-I editing, including in a first phase bioinformatics methods and, lately, high-throughput sequencing technology (HTS) based pipelines, have led to important advances, allowing the discovery of a large amount of editing sites in the human transcriptome. Despite the enormous efforts made in recent years, the real biological function underlying such a phenomenon, as well as ADAR’s substrate features still remain unknown.

In this work, we give an overview of the current state of knowledge on the editing phenomenon, as well as provide the main features of editing sites as highlighted today. We also investigate, inspired by previous results, methods for the detection of signals characterizing editing events and the prediction of novel A-to-I editing sites in non-repetitive regions. These techniques are based on the analysis of nucleotide profiles within a distance-radius of the probable editing site. Results on the signal detection show that editing sites may not have strong defined signal patterns.

Finally, by using a logistic regression technique we developed AIRlINER, an algorithmic approach for the prediction of A-to-I RNA editing sites in non-repetitive regions. This method has been compared with InosinePredict (Eggington et al., 2011), a similar technique, which analyzes the nucleotides flanking the editing site. InosinePredict assumes a multiplicative relationship between the coefficients necessary to compute the percentage of editing. Our results clearly show that AIRlINER improves the quality of predictions with respect to InosinePredict and suggest further research directions. AIRlINER is available at the following address: http://alpha.dmi.unict.it/airliner/.

KNOWLEDGE AND FEATURES OF EDITING SITES SIGNALS

At the end of 80s, ADARs, initially identified as associated with an unknown dsRNA-unwinding activity (Bass and Weintraub, 1987; Rebagliati and Melton, 1987), were discovered as RNA editing machineries able to alter adenosine into inosine through deamination, especially in dsRNA structures (Bass and Weintraub, 1988; Wagner et al., 1989). In the next 10 years, three members of the ADAR gene family were identified in humans: two isoforms of ADAR1 (N-terminally truncated ADAR1p110 and a full-length ADAR1p150) (Kim et al., 1994; Patterson and Samuel, 1995), ADAR2 (Lai et al., 1997) (both these members expressed in many tissues), and ADAR3 (Chen et al., 2000) present only in the central nervous system. While for ADAR1 and ADAR2 the enzymatic activity was established, for ADAR3 it remains unknown. Unlike ADAR1 and ADAR2, an interesting feature about ADAR3 is the presence of the R domain, which enables the enzyme to bind to single strand structures. ADAR1 and ADAR2 have two common functional regions, an N-terminal dsRNA-binding domain (dsRBD) and a C-terminal deaminase domain, but only ADAR1 contains two Z-DNA-binding domains, Zα and Zβ. Some editing events are edited only by ADAR1 or ADAR2, showing a significant difference in their RNA-substrate interactions (Wong et al., 2001; Riedmann et al., 2008). For instance, the serotonin B site is deaminated not only by ADAR1, while the serotonin D and the GluR-B Q/R sites are deaminated exclusively by ADAR2 (Burns et al., 1997; Yang et al., 1997), but also ADAR1 and ADAR2 can edited the same target, as in the cases of serotonin A and C editing sites (Burns et al., 1997). Subsequently, the characterization of the neighborhood profiles of both ADAR1 and ADAR2 were established. In particular, ADAR1 has 5′ neighboring base preference consisting of uracil, adenosine, cytosine, and guanosine in order (U ≈ A > G > C), but not 3′neighbor preference has been identified (Polson and Bass, 1994). Similarly, ADAR2 has a 5′ neighbor preference, but, differently from ADAR1, ADAR2 has a 3′ neighboring base preference (U = G > C = A) forming particular trinucleotide sequences with an adenosine at the second base (UAU, AAG, UAG, AAU) (Lehmann and Bass, 2000).

In 2003, Hoopengardner et al. (2003) discovered that highly conserved regions, which in turn form a dsRNA structure, surround many editing sites. Later, by considering these findings, bioinformatics methods mapping ESTs against a reference genome were able to discover tens of thousands of A-to-I RNA editing sites, with more than 90% of them occurring within Alu repeats (Athanasiadis et al., 2004; Kim et al., 2004; Levanon et al., 2004). A significant problem in all the bioinformatics approaches for RNA editing detection, as described above, still remains the limitations posed by sequencing technologies, specifically, the inability to distinguish a guanosine originating from an I-to-G replacement from a guanosine as a product of noise, sequencing errors or SNP. A solution to this issue was proposed by Sakurai et al. (2010) who designed a biochemical method, called inosine chemical erasing (ICE), able to identify inosine sites on RNA molecules by employing inosine-specific cyanoethylation with reverse transcription. This is a reliable and accurate biochemical method to detect inosines in RNA strands.

The recent years have been characterized by the development of several approaches for editing discovery based on deep sequencing. It was recently hypothesized that more than 100 million editing sites could be found in human Alu repeats, located mainly in genic regions (Bazak et al., 2014a). Although these recent methods prove to be more accurate than previous ones, some of them nonetheless present limitations in terms of false positives produced (Kleinman and Majewski, 2012; Lin et al., 2012; Pickrell et al., 2012). In recent years, a considerable number of RNAseq based methods have emerged (Li et al., 2009; Ju et al., 2011; Bahn et al., 2012; Peng et al., 2012; Picardi et al., 2012; Ramaswami et al., 2012, 2013; Bazak et al., 2014a), gradually improved the accuracy in discovering new editing sites, leading, in addition, to the identification of a set of human editing sites orders of magnitude larger than before. Recently, Sakurai et al. (2014) combined the ICE method with HTS (ICE seq) for an unbiased genome-wide screening of novel A-to-I editing sites. ICE seq is able to detect editing sites in both repeat elements and short hairpins, rendering this a currently unique method for genome-wide identification of A-to-I editing events in both tissues and clinical specimens without genomic DNAs.

The application of HTS technology to RNA editing discovery has not only brought improvements in the editing discovery but also helped to increase the knowledge about the features inherent to the phenomenon. In fact, thanks to the analysis of a large RNA-seq data, Bazak et al. (2014b) studied the global characteristics that affect the editability at the Alu level, uncovering some important features. An important parameter that influences the editing of the Alu is the distance to the nearest complementary inverse sequence. Indeed, the editing, on average, exponentially decays with this distance, with a typical length of about 800 nt. Another aspect is that the editing levels are positively correlated with the number of reversely complementary repeats in the flanking regions of the Alu. Instead, they are negatively correlated with the number of same-strand repeats. Furthermore, the editing level depends on both the lengths of the Alu repeats and their closest reversely oriented sequence, additionally to whether the latter resides in the same intron/exon. Finally, the consensus strand of the Alus is more edited than the reverse strand.

Lately, Pinto et al. (2014) conducted a study with the scope to find mammalian conserved editing sites. Surprisingly, only a very small fraction (0.004%) of human editing sites is conserved in mammals. Noteworthy, by considering the nucleotide frequency, the 10-nt upstream and downstream regions of conserved editing sites are stronger than the ones of all non-Alu human editing sites.

The large number of editing sites discovered by these methodologies has given rise to the need for public databases to record such information in order to further elucidate the biological functions underlying the RNA editing phenomenon. The first centralized repository was DARNED1 (Kiran and Baranov, 2010), whose last release contains more than 300,000 editing sites (Kiran and Baranov, 2010; Kiran et al., 2013). Later, Ramaswami and Li (2014) built RADAR2, a rigorously manually curated database of annotated A-to-I editing sites, amounting to about 1.4 million editing events. Unfortunately, both DARNED and RADAR do not offer a grade of confidence for each editing site due to the heterogeneity of the discovering methods applied, making the creation of a standard measure of confidence necessary in the future.

INVESTIGATION OF MOTIFS CHARACTERIZING THE RNA EDITING EVENTS

It is well known that the vast majority of editing events occur in repetitive regions. Recently, Ramaswami et al. (2012) developed a computational framework to identify editing events both Alu and non-Alu regions (repetitive non-Alu and non-repetitive regions) by analyzing the genomic DNA and RNA sequences. Through this method they found that more than 97% of the discovered editing events occur in Alu regions, also speculating that the remaining non-Alu editing sites are related to nearby edited Alu ones. This makes the identification of sequence motifs able to characterize RNA editing a very challenging problem. Therefore, any approach aimed at the search of sequence or structural motifs associated to RNA editing events should take into account the bias introduced by repetitive regions. Consequently, the searching should be done outside of repetitive regions in order to detect signals independent of the background.

Our strategy has been the following. First, we selected a set of non-Alu editing events and then generated edited regions (ERs) based on the distances between non-Alu editing site, as described below. Next, we applied MEME (Bailey et al., 2009) in order to discover motifs within such a set of sequences. MEME analyzes the input data and searches for significant ungapped sequence patterns shared among the sequences.

In order to obtain the ERs, considering the human editing sites listed in the RADAR database (Ramaswami and Li, 2014), we firstly filtered the A-to-I editing sites, which resulted to be SNPs, as compared to dbSNP141 (Solomon et al., 2014). We then computed δ as the weighted average distance between the editing sites. We obtained that on average there are 6,057 nt between two editing events. This value has been considered as a breakpoint during the construction of ERs. In particular, starting from a generic editing site x, we searched for the next one y. When y falls within a distance less than or equal to δ, the editing site y is included in the ER and the process continues. Otherwise, if the next site is found at a distance greater than δ, the ER is no longer extended. As a result, a total of 55,952 ERs have been defined. Additionally, we separated ERs containing repetitive elements from those, which do not contain any, obtaining a total of 48,164 repetitive ERs and 7,788 non-repetitive ERs. The fact that ERs possess different lengths could allow us to take into account the possibility that they may contain motifs close to the editing sites in secondary structures.

Figure 1 shows that repetitive ERs are longer than non-repetitive ones, with the largest number of editing sites found in regions containing some repetitive elements, as confirmed in the literature (Wahlstedt and O’Hman, 2011). We built a training set of non-repetitive ERs by selecting those regions with a length of 2,000–6,000 nt, containing at least 10 editing sites. Hence, we obtained a final dataset of 47 ERs, in particular, 29 regions are in positive strand with 479 editing sites and 18 ones are in negative strand with 319 editing sites.
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FIGURE 1 | Statistics about the repetitive and non-repetitive edited regions (ER). Distribution of editing sites frequency in repetitive ERs (A) and non-repetitive ERs (B). Distribution of repetitive ERs sequence length (C) and non-repetitive ERs sequence length (D). The figure shows that the non-repetitive ERs are shorter than repetitive ones and contain fewer editing sites.



We ran MEME on such dataset by searching both palindromic and non-palindromic motifs with a length ranging from 6 to 50 nt. We bound the number of motifs to 50 palindromic and 50 non-palindromic.

From these 100 motifs we took only those with an E-value <0.05. Next, we filter out motifs that were contained in a set of human ultra-conserved sequences having no known editing site (Bejerano et al., 2004), with respect to DARNED and RADAR databases. Finally, a total of 16 motifs (4 palindromic and 12 non-palindromic) have been discovered.

In order to validate the filtered motifs, we performed a permutation test using 100 samples of 1,000 randomly taken 3′ UTR sequences (hg19) with masked repetitive regions. As shown in Table 1, only 13 motifs were significant (p-value <0.01).

Table 1 | Filtered motifs in ERs (47 edited regions).
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FROM NUCLEOTIDE FREQUENCY TO AN APPROACH TO ASSESSMENT OF A-TO-I RNA EDITING SITES

Starting from the idea proposed by Pinto et al. (2014), we used a logistic regression technique to determine a model from which we can compute the probability that an adenosine in a non-repetitive region of the genome is affected by the A-to-I editing phenomenon. Our method, called AIRlINER, determines the editing probability of an adenosine by analyzing its flanking region of 10 nt. Such pattern is then combined with a similar model calculated from un-edited sequences, resulting in the estimation of an unbiased editing probability.

In order to train our method, we built a dataset composed of 30,280 sequences of 21 nt centered on an adenosine, from the human genome (hg19). According to their provenance, our dataset can be divided equally into two sets: known editing sites and random sites. For the purpose of retrieving known editing sites in non-repetitive regions, only human sites which do not have any repetitive elements in their flanking regions of 2,000 nt were selected from the RADAR database (Ramaswami and Li, 2014). Random sites were chosen by randomly selecting a number of sequences equal to that of the known editing sites. From such a selection, we excluded known editing sites in both repetitive and non-repetitive regions.

From such a dataset, two probabilities P(j, i) and P’(j, i) can be computed: the first one corresponds to the probability of finding nucleotide j in position i of a region affected by editing, while the second one represents the probability of finding nucleotide j in position i of an un-ER. Starting from these probabilities, we computed the graphs in Figure 2, which represent the distributions of the nucleotides for the two types of regions.
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FIGURE 2 | Neighborhood preferences that we computed for experimentally verified editing sites in non-repetitive regions (A) and random sites (B) chosen among those for which no editing event is reported. Neighborhood preferences are coherent with the upstream nucleotide distribution of editing site sequence contexts reported in Eggington et al. (2011).



Therefore, let s be a nucleotide sequence and P(s) its editing probability, using the previously defined probabilities we are able to train a logistic regression model such as:
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where s[i] is the i-th nucleotide in a sequence. Now we can use this model to estimate the editing probability of any sequence of 21 nt centered on an adenosine, and if such probability is >0.5, we can say that such a sequence may be affected by editing.

To tune and validate our method, we applied a 10-fold cross validation procedure and computed a mean error. To compare our method with InosinePredict, we used a threshold to establish the presence or absence of editing in a specific sequence. Such a threshold was set to 9.6% for InosinePredict, as shown in Eggington et al. (2011). For our algorithm, we choose all sites for which an editing probability >0.5 is computed. We also took into account the fact that InosinePredict can produce predictions for both hADAR1 and hADAR2. We do not have this information in our dataset, so we chose to select the maximum score produced by InosinePredict for editing sites, and the minimum score for random sequences. Consequently, we are able to ensure a fair comparison with our method despite the absence of information on which ADAR affects each editing site.

In Tables 2 and 3, we show the confusion matrices computed using the previously described procedure. The two algorithms were applied to the dataset and the values computed for the central adenosines in each sequence were used to determine the presence or absence of editing. Our method significantly reduces the number of false negatives compared to InosinePredict, thus resulting in a better editing sites prediction quality. AIRlINER is also able to achieve a substantial reduction of false positives, even if nothing can be stated with certainty about them, as the absence of editing in these sites can also be determined by lack of experimental tests. The best quality in predicting editing sites, however, may reflect the fact that the random sequences classified as non-edited could be with high probability considered as such.

Table 2 | Confusion matrix computed by applying InosinePredict (Eggington et al., 2011) to our dataset.
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Table 3 | Confusion matrix computed by applying AIRlINER to our dataset.
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Further confirmation of the quality of our methodology is represented by the receiver operating characteristic curves (ROCs), Figure 3, computed from the results produced by the two algorithms. The curves demonstrate a significant improvement in performance. Such curves also show that the threshold chosen to distinguish editing sites from non-editing ones does not affect the performance difference between the two algorithms. As a confirmation of this, InosinePredict obtains an average area under the ROC curve (AUC) of 0.5072, while AIRlINER reaches 0.7466. In Figure 3, we also compare a variant of our method, AIRlINER 4 nt, with InosinePredict. Such a variant computes the editing probability of an adenosine by considering its flanking region of 4 nt. This comparison shows that our strategy is superior to InosinePredict even when the prediction is calculated from this same region around an adenosine.


[image: image1]

FIGURE 3 | Receiver operating characteristic curve (ROC) computed for the two prediction algorithms. We also provide a ROC curve for a variant of our algorithm (AIRlINER 4 nt), which takes into account only the flanking region of 4 nt around an adenosine. Such a curve is useful to compare the performance with our algorithm using the same flanking region. AIRlINER shows an average area under the ROC curve (AUC) equal to 0.7466, while InosinePredict gets an AUC of 0.5072. AIRlINER 4 nt has an AUC of 0.7464.



Furthermore, we investigated that ADAR acts on each editing site in our training set by building an additional data set from editing sites experimentally identified in (Bahn et al., 2012). Using human cell lines U87MG in which the gene expression of ADAR1 was repressed, the authors were able to identify about 4,000 ADAR1-specific editing sites. Four hundreds of such sites were identified in non-repetitive regions. From the latter, we have built a training set using the same procedure described above and trained our model. In Figure 4, we show the results of this experiment by means of ROC curves. Even in this case, the AIRlINER methodology is significantly better than InosinePredict. As further confirmation, we also computed the AUC, which amounts to 0.6763 for AIRlINER, and 0.4498 for InosinePredict.
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FIGURE 4 | Comparison between AIRlINER and InosinePredict by means of receiver operating characteristic curve (ROC) computed using the data set built from Bahn et al. (2012). Here we also show a ROC curve for a variant of the proposed algorithm (AIRlINER 4 nt), which takes into account only the flanking region of 4 nt around an adenosine. AIRlINER shows an average area under the ROC curve (AUC) equal to 0.6763, while InosinePredict gets an AUC of 0.4498. AIRlINER 4 nt has an AUC of 0.6435.



Finally, to verify the quality of the editing sites predicted by our algorithm, we selected from the literature 52 experimentally validated sites by Sanger method and 7 sites validated as non-edited (as shown in Table S1 in Supplementary Material). We then applied the two methodologies and checked how many of them are correctly identified. AIRlINER is able to predict 42 of 52 editing sites and 5 of 7 non-editing sites while InosinePredict identifies 26 editing sites and 4 non-editing ones. More details can be found in the Table S1 in Supplementary Material.

AIRlINER is available as a web app at the following URL: http://alpha.dmi.unict.it/airliner/.

CONCLUSION AND FUTURE DIRECTIONS

RNA editing is a post-transcriptional phenomenon that occurs in eukaryotes and contributes to the diversity of transcriptome. A-to-I is the most common form of RNA editing in mammals, altering the sequence of primary RNA transcripts by adenosine deamination. In this last decade, computational methods and RNAseq based approaches to RNA editing discovery have emerged, contributing to the identification of more than a million editing events in human, many of which located close to or within Alu repeats. Despite the enormous efforts made so far, the biological significance of the editing phenomenon remains largely unknown.

In the first part of this work, we summarized some of the most important characteristics discovered for RNA editing. Inspired by literature, we investigated the presence of motifs in non-repetitive regions characterizing the editing events, finding a small set of candidates. Moreover, we considered the frequency of the 20 nt centered on each RNA editing site to compute the probability that an adenosine in a non-repetitive region of the genome may be affected by the A-to-I editing phenomenon. Our method, available on line, significantly reduces the number of false negatives with respect to existing methods, thus indicating a better editing-site prediction quality.

Future work will concern the use of different motif-detecting algorithms to confirm the consistency of our current findings. Motif detection methods may make use of information from the secondary structure of the editing regions with respect also to the different classes of ADAR. Finally, further investigation is needed to highlight any significant combination of motif patterns.
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