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Editorial on the Research Topic

Imaging in non-small cell lung cancer
Non-Small Cell Lung Cancer (NSCLC) accounts for approximately 80% to 85% of all

lung cancer cases and is the leading cause of cancer death worldwide (1, 2). Beyond invasive

histopathological diagnosis, imaging plays critical roles in screening, diagnosing, staging,

restaging, detecting recurrence and/or metastasis, and monitoring therapeutic response of

NSCLC. Significant limitations of traditional image modalities such as radiography, CT, and

MRI have prompted the development of novel imaging strategies for better and more

accurate tumor characterization and guidance for targeted therapy. Our Research Topic

aimed to shed light on the latest imaging advances in NSCLC, which has been very attractive

to our contributors and readers. We would like to express great appreciation for valuable

contributions to the Research Topic by all authors.

Over the last two decades, F18-fluorodeoxyglucose PET/CT has been widely used for

NSCLC, which has the unique advantage of metabolic evaluations with semi-quantitative

parameters compared to the traditional images. Although there has been significant progress

in FDG PET/CT applications and performance, further advancements can optimize imaging

interventions as well as establish emerging approaches, such as radiomics, to improve the

management of lung cancer. 8 of 17 published articles in our Research Topic are about the

value of radiomics features in NSCLC.

Radiomics has been considered an “imaging biomarker”, and it is a quantitative approach

with advanced mathematical analysis to medical imaging, which extracts many features from

medical images using data-characterization algorithms. By providing 3-D characterization of

the tumor, radiomics features based on CT, MRI and/or PET describe intra-tumor

heterogeneity and have the potential to uncover disease characteristics. To date, radiomics

has been most extensively studied in NSCLC compared to other tumors (3, 4). Published

articles in the Research Topic have demonstrated new information about the values of

radiomics in NSCLC.

Adequate identification of genotype and gene mutation is the basis for target therapy.

Recent research showed correlation between the radiomics features and the epithelial growth

factor receptor (EGFR) (5–7). In this topic collection, Zhang et al. reported that with

correction of FDG PET/CT radiomics features to EGFR mutation analyses of tissue samples,

FDG PET/CT radiomics models could help in discriminating EGFR positive from negative

mutations in 173 preoperative patients with NSCLC, which could guide target therapy in

patients with EGFR mutations. In another larger multicenter study including 728 patients

with lung adenocarcinoma, Zhang et al. reported a two-user friendly nomogram by
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calculating radiomics score to predict the EGFR mutation status. Wu

et al. also demonstrated that pre-treatment CT based radiomics

features could reliably predict EGFR mutation in 67 NSCLC

patients, and the addition of clinical models further improved

radiomics performance.

Beyond invasive approach to histopathologic diagnosis by surgery

or biopsy, radiomics may help in the prediction of histology and stage

of the tumors. Tang et al. analyzed FDG PET/MRI radiomics in 61

NSCLC patients and found that FDG PET/MRI radiomics features

revealed different degrees of correlation with different tumors and

could predict the preoperative histological classifications of the

lesions: adenocarcinoma or squamous cell cancer.

Differentiation between lung metastasis and the 2nd lung primary

is of incremental significance of treatment and prognosis in oncologic

patients. Zhong et al. evaluated the value of CT radiomics in

discriminating the second lung primary from lung metastasis in 252

oncologic patients with suspected lung lesions. 16 radiomics features

and 4 clinical-radiographic features were selected to build the final

model, which showed good discriminative capacity for the 2nd lung

primary and lung metastasis.

Currently immunotherapy by immune checkpoint blockade is

standard care in advanced NSCLC. Radiomics has been used in

assessment of PD-L1 expression in NSCLC (8). Zhou et al. assessed

the predictive role of FDG PET/CT based radiomics for tumor

microenvironment immune types (TMIT) in 103 treatment-naïve

NSCLC patients, including the expressions of programmed death

ligand (PD-L1), programmed death 1 (PD-1) and CDF8+ tumor

infiltrating lymphocytes. The results suggested that FDG PET/CT

radiomics features had good performance in predicting the TMIT.

Zha et al. developed and validated a nomogram model based on

CT radiomics features for preoperative prediction of visceral pleural

invasion in 659 patients with lung adenocarcinoma. The results

showed that the nomogram combining clinical and radiomics

features had markedly improved accuracy, specificity, positive

predictive value, and AUC for predicting visceral pleural invasion.

The micropapillary pattern is a marker of poor prognosis in

NSCLC (Xu et al.). Li et al. reported a radiomics model based on

nodule type stratification for preoperative prediction of

micropapillary pattern in lung adenocarcinoma less than 2 cm.

They found that ground glass opacity nodule type affected

performance of the prediction.
Frontiers in Oncology 026
In conclusion, radiomics is expected to optimize and augment

image capabilities, and holds the great promise of valuable clinical

applications in diagnosis, staging, prediction of treatment outcome

and survival in NSCLC. Today we are on the brink of a new era in

radiology artificial intelligence (AI). AI and deep learning models will

facilitate faster clinical translation and implementation of radiomics

in NSCLC. However, the significant variability in radiomics

features used in different studies, in addition to the lack of

reproducibility, suggests that the current data are still preliminary

and more comprehensive studies are needed for validation of

radiomics applications.
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Objective: To evaluate the value of CT radiomics in predicting the epidermal growth

factor receptor (EGFR) mutation of patients with non-small cell lung cancer (NSCLC),

and combing with the clinical characteristic to construct the prediction model.

Methods: Sixty-seven cases of NSCLC confirmed by pathology were enrolled. The

pre-treatment chest CT enhanced images were used in Radiomics analysis. Two

experienced radiologists delineated the region of interest (ROI) on open source software

3D-Slicer. The feature of ROI was extracted by Pyradiomics software package and a total

of 849 features were extracted. By calculating Pearson correlation coefficient between

pair-wise features and LASSO method for feature screening. The prediction model was

constructed by logical regression, diagnostic efficacy of the model by the area under the

receiver operating characteristic (ROC) curve was calculated.

Results: Based on clinical model and the radiomics model, the AUC under the ROC was

0.8387 and 0.8815, respectively. The model combining clinical and radiomics features

perfect best, the AUC under the ROC was 0.9724, the sensitivity and specificity were

85.3 and 90.9%, respectively.

Conclusions: Compared with clinical features or radiomics features alone, the model

constructed by combining clinical and pre-treatment chest enhanced CT features may

show more utility for improved patient stratification in EGFR mutation and EGFR wild.

Keywords: radiomics, non-small cell lung cancer, enhancement CT, EGFR, region of interest

INTRODUCTION

Lung cancer is accounting for 13% of the new cancer in the world (1), which is the main cause
of cancer-related death. As a lung solid tumor, lung cancer shows a wide range of molecular
heterogeneity. In the past decade, the treatment of non-small cell lung cancer (NSCLC) has evolved
from previous cytotoxic chemotherapy to target therapy based on molecular changes, due to
significant breakthrough in molecular research for its theranostics (2, 3). Small molecule tyrosine
kinase inhibitors (TKIs) targeting specific EGFR mutations are the first targeted drugs for the
treatment of NSCLC. Riely et al. (4) reported the response rate of EGFR-TKIs in patients with
EGFR mutations (60–80%) was significantly higher than that in patients with EGFR wild-type or
unknown mutation status (10–20%). In addition, a large number of clinical trials of Schuler et al.
(5) found treatments with errotene, gefitinib, or afatinibthe in NSCLC with EGFR mutation would
get a longer progress-free survival and higher objective response rate, compared with standard
first-line chemotherapy. However, they also found if a non-EGFR mutant lung cancer patient was
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treated with targeted drugs such as gefitinib, the progression-
free survival of the patient would be significantly shorter than
those with first-line standard chemotherapy drugs (3). These data
highlight the importance of accurately identifying the status of a
patient’s gene mutations in clinical to guide treatment.

For a clinical patient, the biopsy samplemay be the only tumor
material that can be used to detect the EGFR mutation status (6).
However, tumor, it is possible to make the mutant DNA allele
difficult to detect due to the sampling error and the observer

FIGURE 1 | The study flow diagram.

difference, resulting in the occurrence of a false negative result
(7). Second, living tissue examination is invasive, which increases
the risk of complications. Last, genetic test is often expensive
and some patients will not be able to afford it, which partly
limits the clinical application of molecular test. Unfortunately,
so far, there is still no stable, reliable clinical feature that can
accurately predict the mutation status of EGFR. Radiogenomics
has become a promising technique for identifying the gene
phenotype in a tumor. As a new field of research, radiogenomics
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can integrate the image features and genome data of the disease,
and to help explore the features of the image that can reflect
the polymorphism or expression of the gene by digging the
relation between the two. It is reported that using radiogenomics,
Liu et al. (8) revealed EGFR mutation status of NSCLC was
related to image features and could be predicted by five types of
image feature. In this retrospective study, we tried to explore the
relationships between CT imaging features and EGFR mutation
in patients with NSCLC before treatment, and to construct a
predictive model combined with clinical features.

TABLE 1 | General information of 67 NSCLC patients.

Subgroups EGFR+ EGFR– P-value

Cases 34 33

Age, mean ± SD 53.0882 ± 8.1997 59.6061 ± 7.8020 0.023

Gender <0.001

Males 11 (32.35%) 27 (81.82%)

Females 23 (67.65%) 6 (18.18%)

Smoking <0.001

Yes 8 (23.53%) 26 (78.79%)

No 26 (76.47%) 7 (21.21%)

Pathological stages 0.518

IIIb, IIIc 15 (44.12%) 12 (36.36%)

Iva, IVb 19 (55.88%) 21 (63.64%)

Histological types <0.001

Adenocarcinoma 32 (94.12%) 14 (42.42%)

Squamous cell carcinoma 2 (5.88%) 19 (57.58%)

Rad_score (mean) 4.167 −3.947 <0.001

MATERIALS AND METHODS

Patient Population
All NSCLC cases confirmed by pathology from May 2017
to November 2018 were retrospectively collected in our
hospital. The inclusion criteria were: (1) NSCLC confirmed
by histopathology with complete clinical data; (2) Complete
contrast enhancement chest CT imaging before treatment and
follow-up images; (3) Complete genetic testing information. The
exclusion criteria were: (1) Small cell lung cancer confirmed by
histopathology; (2) Incomplete clinical data; (3) Image quality
does not meet the requirements due to serious respiratory
motion artifacts. Finally, 67 patients with EGFR detection
information were analyzed, including 34 patients with positive
EGFR mutation and 33 patients with negative EGFR mutation.

Detection of EGFR Mutations
EGFRmutational analysis was performed on four tyrosine kinase
domains (exons 18–21) that frequently mutated in lung cancer.
The EGFR gene mutation was tested using human EGFR gene
mutation detection kit (Beijing ACCB Biotechnology Company)
using the Amplified refractory mutation system (ARMS) real-
time technology.

CT Scanning Protocols
Chest CT contrast enhancement examinations were performed
using TOSHIBA CT (Aquilion PRIME TSX-302A, Japan),
scanning parameters: tube voltage 120 KV, tube current 350mA,
field of view 390.0 × 390.0mm, reconstruction thickness 5mm,
reconstruction interval 5mm. Non-ionic iodine contrast agent
(Bayer Pharmaceuticals, Berlin, Germany; Ompaque, Shanghai,

FIGURE 2 | ICC histogram of radiomics features.
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FIGURE 3 | LASSO method for screening of radiomics features.

GE) was intravenously injected at a rate of 2.5 ml/s using a high-
pressure syringe at a dose of 1.3–1.5 ml/kg. The CT scanning was
performed 50 s after the contrast injection.

Radiomics Analysis
Image Segmentation and Feature Extraction
The segmentation of the region of interest (ROI) was performed
by two experienced radiologist, all segmented in the open
source software 3D-Slicer (9) (v4.10.0, download address:
https://www.slicer.org/), the image data is saved in DICOM
format. According to the three-dimensional (3D) volume of
the tumor after segmentation, the tumor 3D features were
extracted in the open source software package Pyradiomics
(10) (https://github.com/Radiomics/pyradiomics/releases), and
a total of 849 features were extracted for each patient.
Among them, there are 14 shape features, 18 first-order
statistical features (strength features), 74 texture features,
and 743 wavelet features. Then, calculating the consistency
of two expert extraction features, select the features with
intra-class correlation coefficient (ICC) >0.75 for subsequent
feature screening.

Feature Screening
After the feature consistency test, we were calculating the Pearson
correlation coefficient between all the features, one is randomly
excluded from each pair of features with a correlation coefficient

>0.9, the other feature is selected, and so on, the redundancy of
the feature is reduced (11).The feature is then screened by the
least absolute shrinkage and selection operator (LASSO), LASSO
is an accepted algorithm that has been used for feature selection
in high-dimensional variables. Finally, the model is constructed
by logistic regression method (12). LASSO method was applied
to select the features that were most distinguishable and build
a logistic regression model. A radiomic score (Rad_score) was
obtained for each patient using features selected and weighted
by the respective coefficients. The detailed study flow is shown
in Figure 1.

Development of the Multivariable Prediction Model
A multivariable logistic regression model was built using clinical
variable and radiomics features. All of these features were
included in the development of a diagnostic model to predict
EGFRmutation. We also developed a radiomic nomogram based
on a multivariable logistic analysis. We used radiomic signature
(Rad_signature) to represent the possibility for each patient,
which was obtained by the LASSO regression model developed
by radiomic features.

Statistical Analysis
Statistical analysis was performed using R-3.4.4-win. In the
clinical data of the patients, two independent sample T-tests
were used to compare the age of the two samples, and
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FIGURE 4 | ROC analysis of the model. As shown above, radiomics features combined with clinical variables had the potential ability to predict the EGFR mutation,

the AUC was 0.9724.

TABLE 2 | Diagnostic accuracy of prediction model.

Sensibility Specificity Positive Negative Accuracy

% % predictive value predictive value %

% %

85.3 90.9 90.6 85.7 88.1

(29/34) (30/33) (29/32) (30/35) (59/67)

the other clinical data were compared by chi-square test,
p < 0.05 as the difference was statistically significant. The
diagnostic efficacy of the radiomics model was analyzed by the
receiver operating characteristic (ROC) curve of the subjects,
and the area under curve (AUC) was calculated, and the
sensitivity and specificity of the model were also calculated.
The “glmnet” package is used to realize LASSO. In order
to fit the excellent model better, the 10-fold cross-validation
method is adopted (13). The nomogram was depicted based
on the results of the multivariate analysis using the “rms”
package in R. The “Hmisc” package was used to investigate
the performance of the nomogram in concordance with
the C-index.

RESULTS

Patient
There were 34 patients with positive EGFR mutation and

33 patients with negative EGFR mutation, and there were

significant differences in both cohorts detected in terms of

smoking status, histological subtype, age, gender, or Rad_score.
In the positive EGFR mutation, male patient comprised 32%

(11/34) and female patients comprised 68% (23/34) of the

total EGFR mutation cohort. The mean age was 53.1 ±

8.2 years. Adenocarcinoma was 94% (32/34) of all cases,
squamous cell carcinoma was 6% (2/34). Smokers accounted
for 24% (8/34) of patients, and non-smokers accounted for
76 (26/34). In the negative EGFR mutation, males were 82%
(27/33) and females were 18% (6/33) of total patients. The
mean age was 59.6 ± 7.8 years. Adenocarcinoma was 42%
(14/33) of cases; squamous cell carcinoma was 58% (19/33).
Smokers were 79% (26/33) of patients; non-smoker were 21
(7/33). More general information of patients was shown in
Table 1.

Feature Consistency Testing and Screening
After the ICC analysis, there were 658 features ICC > 0.75
(Figure 2), these features combined with clinical variables will be
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FIGURE 5 | ROC analysis of the clinical variable.

used for subsequent feature screening. After Pearson correlation
coefficient filtering, the number of features changed from 658
to 382. Based on the LASSO dimension reduction, as Figure 3,
when the variable is equal to 12, the error classification value is
lower, and 12 features related to the patient’s EGFR mutation are
selected to construct the LASSO logistic regression model.

Development of the Multivariable
Prediction Model
The LASSO logistic regression analysis (Figure 4) revealed that
10 radiomic features combined with two clinical features had
the potential to build the prediction model for EGFR mutation
by the training of 67 cases, which include Shape.Surfacevolume
ratio; Gldm.dependencevariance; WHLL.glcm.idn; wLHL

.ngtdm.Contrast; WLHH.gldm.Large_emhpasis; WLHH.gldm.
Small_emphasis; WHHL.gldm.variance; WHHL.ngtdm.busyness;
WLLL.gldm.variance; WLLL.glrlm.long_emphasis; smoking
status and histological subtype. In addition, we calculated
the sensitivity, specificity, positive predictive value, negative
predictive value and accuracy to show the ability, the details are
shown in Table 2.

ROC Curves Analysis for Radiomic
Features and Clinical Predictors
The model revealed that gender, smoking status, clinical stage,
and histological subtype were independent predictors of EGFR
mutation. However, the model was merely developed by these
features showing poor performance, the AUC ranged from 0.72
to 0.78 (Figure 5).

In order to illustrate the potential ability for prediction
of EGFR mutation, we compared the models developed by

FIGURE 6 | Comparison of ROC between three models. Radiomics model

was marked with blue line, and the AUC was 0.8815; Clinical model was

marked with green line, and the AUC was 0.8387; The combine model was

marked with red line, the AUC was 0.9724.

radiomics features, clinical variables, and combination of them.
As we can see from Figure 6, the ROC curves showed the good
performance and generalization for the model built by radiomics
features, AUC for radiomics model was 0.8815. When the model
built by the both radiomics features and clinical variables, the
AUC was 9724, which was significantly higher than the single
radiomics model and the single clinical variables model, this
indicates that the combine model showed best performance to
predict EGFR gene mutations.

Analysis of an Individualized Prediction
Model
Multivariate logistic regression analysis identified the clinical
stage, age, gender, smoking status, and Rad_signature as
independent predictors. The individualized EGFR mutation
prediction model that consisted of the above independent
predictors was visualized by the nomogram (Figure 7).

DISCUSSION

The malignant degree of NSCLC is high and the 5-years survival
rate of patients is low, exploring effective treatment has become
a widespread concern in recent years. Because of the high
expression of epidermal growth factor in 40–80% of NSCLC
patients, the molecule can be used as a target molecule for
specific targeting therapy when the patient detects an EGFR
mutation. So, the purpose of this study was to analyze the imaging
features and clinical characteristics of 67 patients, to explore the
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FIGURE 7 | The nomogram was depicted to present the relationship between radiomic features and clinical features and visually show the potential ability individually.

The nomogram was built with the stage, age, gender, smoking status and rad_signatures.

correlation between chest enhanced CT imaging features and
EGFRmutation status, to construct a predictionmodel combined
with imaging features and clinical characteristics, and to draw a
clinical predictive nomogram.

Early studies have shown inconsistent findings regarding the
correlation between CT findings and EGFR mutation status in
patients with NSCLC (14–16). According to a study by Zhou
et al. (17), EGFR mutants and wild type were no difference in
CT morphological features of lung tumors. In contrast, Rizzo
et al. (18) reported that EGFR mutations are closely related to
air bronchography, pleural retraction, lesion size, and presence
or absence of fibrosis. In recent years, with the deepening of
research, a large number of studies by Ozkan et al. (19) have
demonstrated the potential of CT-based quantitative imaging
features in identifying EGFR mutants and wild type in NSCLC.
Mei et al. (20) also found that CT texture features are not only
related to EGFR mutation status, but also can further distinguish
patient mutation sequences (18–20).

In our study, a total of 67 patients with NSCLC were included
in the analysis of clinical features, imaging findings and EGFR
mutations. We extracted 849 features for each patient, which
can provide us with more details and help us complete the
evaluation of the lesionmore comprehensively and accurately, it’s
very important. In response to EGFR mutations, we constructed
three predictive models (based on patient clinical, radiomics,
combined radiomics and clinical), the AUC values were 0.8387,

0.8815, and 0.9724, respectively. The results of this study are
consistent with the study of Liu et al. (8), indicating the
imaging features are associated with EGFR mutation status
in NSCLC patients. Different from Liu et al., 849 features
were extracted for each patient in this study, while Liu’s study
only extracted 219 features. The increase in the number of
features provides us with more valuable information and greatly
improved the performance of the model (0.709 vs. 0.972).
we also perform a consistency test on the extracted features,
only highly stable features (ICC > 0.75) can be used for
subsequent feature screening to ensure the stability of the
study. In addition, we developed a radiomic nomogram based
on a multivariable logistic analysis and radiomic signature
(Rad_signature) to represent the possibility for each patient,
these are not available in Liu et al. We also can find that in our
study the image features used to construct the predictive model
are texture, wavelet features, the results were not match Hsu
et al. (21) previously reported that tumor size are correlation,
which may be due to previous research based on only one
level of tumor to extract tumor size characteristics (most
the larger tumor areas), and our study focused on the size
of the entire tumor extraction, leading to the emergence of
differences. When compare the three models, we can find that
the model combining imaging features and clinical has higher
diagnostic efficiency than the single image model or clinical
model; This also indicates that the image features and clinical
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features may reflect different valuable prediction information,
the combination of two can complement the information and
improve the prediction ability.

Compared with recent studies by Tu et al. (22) and Zhao
et al. (23), the diagnostic efficacy of this study is significantly
higher. This may be because our study is based on enhanced
CT images. Compared with plain images, enhanced images
can reflect tumors more valuable information on blood supply,
internal lesions and more. Secondly, in some CT images of
patients with lung cancer and atelectasis, enhanced images can
more accurately delineate the edge of the lesion, reduce the
impact on imaging features, and improve the diagnostic efficacy
of the model for EGFR mutations in non-small cell lung cancer.
In addition, Tu et al. and Zhao et al. Studies have lots of patients,
but the sample size in our study is small, and the samples from
the same institution will also have an impact on the results.

Although this study has achieved high diagnostic
performance, the study still has some limitations. First,
according to the Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis
(TRIPOD) (24), in addition to internal cross-verification, the
developed predictionmodel needs to evaluate the performance in
external data to avoid overfitting. In this study, due to the small
sample size, we have only performed internal cross-validation,
and the independent model assessment could not be performed,
which may have an impact on the true diagnostic performance
of the prediction model. The next study requires large sample
data from multi-center and independent model validation to
confirm our findings. Secondly, the 5-mm slice thickness image
is used in this study, due to the acquisition parameter have
influence in the feature stability (25, 26), it can also lead to
an inaccurate evaluation. In the future research, a prospective
study is adopted, and the comparison between the models can
be more facilitated by the standardized image acquisition and
reconstruction algorithm, so as to improve the generalization of
the model and the clinical application capability.

Our preliminary study indicates CT radiomics features are
associated with EGFR mutation in patients with NSCLC,
and CT imaging features of lesions on pretreatment
may function as non-invasive biomarkers for improve
stratification in patients with EGFR mutation and
EGFR wild.
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Objective: To assess the performance of pretreatment 18F-fluorodeoxyglucose positron
emission tomography/computed tomography (18F-FDG PET/CT) radiomics features for
predicting EGFR mutation status in patients with non-small cell lung cancer (NSCLC).

Patients and Methods:We enrolled total 173 patients with histologically proven NSCLC
who underwent preoperative 18F-FDG PET/CT. Tumor tissues of all patients were tested
for EGFR mutation status. A PET/CT radiomics prediction model was established through
multi-step feature selection. The predictive performances of radiomics model, clinical
features and conventional PET-derived semi-quantitative parameters were compared
using receiver operating curves (ROCs) analysis.

Results: Four CT and two PET radiomics features were finally selected to build the PET/CT
radiomics model. Compared with area under the ROC curve (AUC) equal to 0.664, 0.683 and
0.662 for clinical features, maximum standardized uptake values (SUVmax) and total lesion
glycolysis (TLG), the PET/CT radiomics model showed better performance to discriminate
between EGFR positive and negative mutations with the AUC of 0.769 and the accuracy of
67.06% after 10-fold cross-validation. The combined model, based on the PET/CT radiomics
and clinical feature (gender) further improved the AUC to 0.827 and the accuracy to 75.29%.
Only one PET radiomics feature demonstrated significant but low predictive ability (AUC =
0.661) for differentiating 19 Del from 21 L858R mutation subtypes.

Conclusions: EGFR mutations status in patients with NSCLC could be well predicted by
the combined model based on 18F-FDG PET/CT radiomics and clinical feature, providing
an alternative useful method for the selection of targeted therapy.

Keywords: positron emission tomography/computed tomography, radiomics, lung cancer, epidermal growth factor
receptor, 18F-fluorodeoxyglucose
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INTRODUCTION

Lung cancer is the leading cause of cancer-related death in the world
(1). Non-small cell lung cancer (NSCLC) accounts for approximately
80% to 85% of all lung cancers (2). Epidermal growth factor receptor
(EGFR) tyrosine kinase inhibitor (TKI) has become a first-line drug
in the treatment of NSCLC. Because the efficacy of TKI therapy is
closely related to EGFR mutation status, identification of mutation
status before the administration of TKI is crucial in achieving the best
curative effect. Furthermore, exon 19 deletion (19 del) and exon 21
L858R point mutation (21 L858R),the most common mutation
subtypes of EGFR (3), demonstrate different clinical outcomes in
patients with NSCLC after TKI treatment (4, 5). Current molecular
testing for identifying EGFRmutation status is mainly based on tumor
tissue from biopsies and surgical resection (6). However, focal tissue
testing may sometimes be limited by invasive procedures or tissue
samples that are not readily available (7), causing patients to lose
potential opportunities for EGFR-TKI treatment.

Medical imaging can reflect tumor gene-driven phenotype (8).
18F-fluorodeoxyglucose (18F-FDG) PET/CT, as a noninvasive
molecular imaging tool, has been widely used in the evaluation of
glucose metabolic phenotype of tumor (6). Previous data has
suggested that several genes associated with glucose metabolism,
including GLUT1 (9), GPI, G6PD, PKM2, and GAPDH (10), are
down-regulated in EGFR-mutated lung cancer. Therefore, numerous
studies have explored the relationship between 18F-FDG PET/CT
images and EGFRmutation status. Some studies suggested that there
was significantly lower maximum standardized uptake values
(SUVmax) of NSCLCs with EGFR mutations than those with wild
type (11–14), but other studies reported non-significant (15) or
opposite results (16). These confusing findings may be related to
intra-tumoral heterogeneity of EGFR mutation (17) that the PET-
derived semi-quantitative parameters cannot well reflect.

Radiomics data obtained using mathematical algorithms can
quantitatively describe the spatial relationship between voxels,
and become an important tool to study tumor heterogeneity in
vivo (18). To date, most studies using radiomics for the
prediction of EGFR mutation status in NSCLC are based on
chest CT images (19, 20), whereas few studies about the
relationship between PET or PET/CT radiomics features and
EGFR mutation status in lung cancer (21–23) are conducted.

In the present study, both PET and CT radiomics features that
significantly discriminated EGFR mutation status were extracted and
selected for establishing a robust predictive model. Then we compared
the predictive performances of the radiomics model, clinical features,
and conventional PET-derived semi-quantitative parameters.
Moreover, we tried to investigate the possibility of PET/CT
radiomics features for distinguishing the 19 del from the 21 L858R
mutation which both are two main mutation subtypes of EGFR.
MATERIALS AND METHODS

Subjects
A total of 173 patients (115 men, 58 women; mean [± SD] age
60.9 ± 10.9 years [range, 27–86 years]) with histologically proven
Frontiers in Oncology | www.frontiersin.org 217
NSCLC, who had undergone pre-treatment 18F-FDG PET/CT
between January 2017 and March 2018, were included in this
study. This retrospective study was approved by the Ethics
Committee of Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine.

18F-FDG PET/CT Imaging
Patients were required to fast for at least 6 h before 18F-FDG
PET/CT scan using GE Discovery VCT64 system, and their
serum glucose levels were maintained to < 7.8 mmol/L. Whole-
body imaging was performed approximately 60 min after the
intravenous administration of 5.55 MBq of 18F-FDG per
kilogram of body weight. Emission images were acquired for
3 min per bed position using 128 × 128 matrix size, 28 subsets, 2
iterations and full-width half-maximum post-filtering. CT
images were acquired using 140 kV tube voltage, 220 mA
tube current, and 3.75 mm section thickness. PET images
were reconstructed based on an ordered-subset expectation
maximization algorithm with photon attenuation correction
from CT data.

EGFR Mutation Status Analysis
Tissue samples from lung tumors were obtained through biopsy
or surgical resection followed by 10% formalin fixation, paraffin
embedding, and sectioning. After extracting DNA from sample
sections, the nucleotide sequence encoding the kinase domain
(exons 18-21) of EGFR was tested using an amplification
refractory mutation system polymerase chain reaction (24) or
target sequencing method based on polymerase chain reaction
(25) using the X10 system (Illumina, San Diego, CA, USA).

PET/CT Image Feature Extraction,
Selection and Model Establishment
All segmentation was performed by experienced nuclear
medicine physicians blinded to the mutation data using an
open-source ITK-SNAP software (version 3.6, https://www.
itksnap.org) to manually outline the contour of the volume
of interest on CT images, and automatically delineated
on PET images using a fixed SUVmax threshold of 2.5 as
previously reported (21). The extraction and selection of
radiomics features were performed according to the following
steps (Figure 1):

1. Before extraction of radiomics features, filters including
Laplacian of Gaussian, wavelet, square, square root,
logarithm and exponential (26) (Supplemental Table 1),
were applied to the original PET/CT images to highlight
image features for more efficient feature extraction.

2. Based on the original and filtered PET/CT images mentioned
above, several types of well-designed image features were
calculated using pyradiomics python package (27). These
features are designed in compliance with the Image
Biomarker Standardization Initiative (28) including First-
order statistics, Shape, Gray Level Co-occurrence Matrix
(GLCM), Gray Level Size Zone Matrix (GLSZM), Gray
Level Dependence Matrix (GLDM), Gray Level Run Length
Matrix (GLRLM) and Neighboring Gray Tone Difference
October 2020 | Volume 10 | Article 568857
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Matrix (NGTDM) (Supplemental Table 2). A total of 1198
PET and CT radiomics features were then extracted.

3. A recursive feature elimination (29) method based on
random forest (RF) algorithm was developed to delete
features with minimum weight coefficient. Compared to
other regularization based embedded methods like Lasso
and Ridge, this random forest-based wrapper feature
selection method is more convenient and more intuitive for
researchers to find out the most relevant features corresponding
to the predication target. Among 1198 radiomics features, that
with the lowest correlation with EGFR mutation status was
removed during current random forest model training iteration,
and the most suitable feature sub-package was reserved for next
iteration. Finally, 100 CT and 100 PET radiomics features were
retained (Supplemental Table 3).

4. The Spearman correlation coefficient (r) was used to assess
the correlation between 100 PET/CT radiomics features and
four conventional PET-derived semi-quantitative parameters
including SUVmax, mean SUV (SUVmean), metabolic tumor
volume (MTV) and total lesion glycolysis (TLG) (illustrated
in Supplemental Figure 1). In all pair features with r > 0.85
that were highly correlated and likely to provide redundance
rather than complementary information about the mutation
status, the one with the lower area under the curve (AUC)
by receiver operating characteristic (ROC) analysis for
predicting EGFR mutation status was excluded. As a result,
54 CT and 38 PET radiomics features as well as SUVmax and
TLG were included.

5. The univariate and multivariate (Supplemental Tables 4, 6)
logistic regression (LR) was ultimately used to screen out the
CT and PET radiomics and clinical features that can be
significant to establish a robust prediction model for
differentiating EGFR mutation status, and the PET/CT
Frontiers in Oncology | www.frontiersin.org 318
radiomics prediction score for EGFR mutation probability
of each patient was calculated based on this model.
Statistical Analysis
Data were analyzed using SPSS version 19.0 (IBM Corporation,
Armonk, NY, USA). Spearman correlation analysis was performed
to remove redundant radiomics features. Continuous data were
compared using the independent samples t test. The c2 test was
used to compare categorical data such as patient sex. Univariate
and multivariate logistic regression was used to screen out final
significant variables. 10-fold cross-validation of prediction model
based on selected features using machine learning algorithm of RF,
support vector machine (SVM) or traditional statistics of LR were
performed to test the generalization ability of the models. ROC
curves were analyzed to evaluate the performance of PET/CT
radiomics model for predicting EGFR mutation status. Statistical
significance was set at p < 0.05.
RESULTS

Patient Characteristics
As shown in Table 1, 173 patients with NSCLC were enrolled in
the present study, among whom 71 (41%) tested positively for an
EGFR mutation (EGFR+) and 102 (59%) were EGFR-negative
(EGFR-). Female patients demonstrated a significantly higher
EGFR mutation rate (64% [37/58]) than male patients (30% [34/
115]). There was no statistical difference in age between patients
with or without EGFR mutations. 39% (68/173) and 61% (105/
173) of patients were stage I/II and stage III/IV, respectively.
Seventy-one percent (122/173) of the pathological types of
NSCLCs were adenocarcinoma. Among the 71 patients who
FIGURE 1 | Schematic diagram of image feature extraction and selection steps.
October 2020 | Volume 10 | Article 568857
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were EGFR+, 38 (54%) harbored the 21 L858R mutation, 29
(41%) had the 19 del mutation, 3 (4%) had the 18 G719A
substitution mutation, and 1 (1%) had the 20 T790M
substitution mutation. In all clinical features, only gender was
an independent and significant variable for differentiating EGFR
mutation status after multivariate logistic regression analysis
(Supplemental Table 4).

Characteristic of Selected PET/CT
Radiomics Features
Eventually, four CT and two PET radiomics features were
selected to build the radiomics model based on the 173
patients, including ct_original_glszm_High Gray Level Zone
Emphasis (GLSZM_HGLZE), ct_wavelet_HLL_glszm_Gray
Level Non-Uniformity Normalized (GLSZM_GLNN),
ct_wavelet_HLL_glszm_Zone Entropy (GLSZM_ZE),
ct_exponential_gldm_Dependence Variance (GLDM_DV),
pet_wavelet_LHH_firstorder_Skewness (First-order_Skewness
(LHH)), pet_wavelet_LLL_firstorder_Skewness (First-
order_Skewness (LLL)). The definitions of these selected
radiomics features were shown in Supplemental Table 5. The
PET/CT radiomics model prediction score for EGFR mutation
probability of each patient was calculated using the following formula:

PET=CT radiomics model prediction score  =  � 6:142� 2:736

� GLSZM_HGLZE  +  5:815� GLSZM_GLNUN  +  5:173

� GLSZM_ZE  +  7:737 � GLDM_DV �  1:734�  First� order

_ Skewness (LHH) �  6:142 �  First� order _ Skewness (LLL) :

The median and the interquartile range for selected PET/CT
radiomics features and conventional PET parameters (SUVmax
Frontiers in Oncology | www.frontiersin.org 419
and TLG) was shown in Table 2. There was significant difference
of every individual radiomics feature, SUVmax and TLG between
the EGFR+ and EGFR- groups. Meanwhile, the tumors with
EGFR+ had higher radiomics model score than those with
EGFR- (0.722 vs. 0.170, p < 0.001). The PET/CT radiomics
model prediction score for each patient was displayed in
Figure 2.

Performance of the PET/CT
Radiomics Model
The performance of PET/CT radiomics model was
evaluated and compared with conventional PET-derived semi-
quantitative parameters and clinical features for distinguishing
EGFR+ from EGFR-. Both CT (AUC=0.792) and PET alone
(AUC=0.738) radiomics model had better predictive
performance than SUVmax (AUC=0.683), TLG (AUC=0.662)
and gender (AUC=0.664). The AUC of PET/CT radiomics
model further reached 0.868 with sensitivity of 92.8%,
specificity of 66.3% and accuracy of 77.1%. Gender was only
significant clinical predictor of EGFR mutation status
(AUC=0.664), and used in the combined model in our study,
whereas other clinical characteristics were excluded from the
diagnostic model after multivariate regression analysis. The
combined model, based on the PET/CT radiomics features and
gender showed a comparable AUC (0.866) to PET/CT radiomics
model. The sensitivity, specificity, and accuracy of different
models and individual parameter in the training set were
shown in Table 3. Subsequently, 10-fold cross-validation of the
diagnostic model based on selected features using machine
learning algorithm of SVM (Table 3), RF or traditional
statistics of LR (Supplemental Table 7) were performed to
further test the generalization ability of the models. The AUCs
of PET radiomics, CT radiomics, PET/CT radiomics and
combined models based on SVM were respectively 0.750,
0.754, 0.769 and 0.827.

In addition, we tried to investigate the possibility of radiomics
features for discriminating two main mutation subtypes (Table 4).
As previous reported, there was no difference of SUVmax or TLG
between the 19 del and the 21 L858R mutation group. In
all radiomics features, only one PET radiomics feature
(pet_logarithm_glcm_Difference Variance, GLCM_DV) was
significantly predictive (AUC=0.661) for differentiating these two
mutation subtypes. However, it had low accuracy (43.1%) for the
prediction of EGFR mutation subtypes.
DISCUSSION

EGFR-TKI is an important treatment for patients with NSCLC.
When treated with TKI, patients with EGFR mutations
experience significantly longer survival than those with wild-
type EGFR. As such, identification of EGFR mutation status is
crucial for TKI treatment to be effective; however, the molecular
test for EGFR mutation status sometimes cannot be performed
when a tumor sample is not available.
TABLE 1 | Patient Characteristics.

EGFR+ EGFR- p Value

No. of patients 71 102
Sex
Male 34 81 <0.001
Female 37 21

Age (y)
Mean ± SD 60.06 ± 10.93 61.54 ± 10.89 NS
Range 27 ~ 86 32 ~ 83

Clinical Stage
I 18 28 NS
II 8 14
III 19 23
IV 26 37

Histology
Adenocarcinoma 60 62 0.004
Squamous cell carcinoma 8 31
Large cell neuroendocrine carcinoma 0 4
NSCLC-NOS 3 5

EGFR mutation subtype
18 G719S 3 /
19 Del 29 /
20 T790M 1 /
21 L858R 38 /
NOS, not otherwise specified; NS, not significant.
October 2020 | Volume 10 | Article 568857
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Although a significant correlation between the tumor glucose
metabolism level captured on PET images and EGFR mutation
status has been found in multiple previous studies (11–14),
namely lower SUVmax in NSCLCs with EGFR mutation than
those with wild type EGFR, conventional PET-derived semi-
quantitative parameters didn’t show enough satisfactory
predictive ability to be applied in clinical practice. Consistent
with previous studies, SUVmax as a single pixel value only showed
moderate AUC for distinguishing mutant EGFR from wild type
in our study, whereas total lesion glycolysis (TLG) as a
volumetric measurement of tumor glucose metabolism showed
no higher predictive performance either. Therefore, our present
study established a model based on 18FDG PET/CT radiomics to
improve the predictive performance for EGFR mutation status in
patients with NSCLC.

In our study, four CT radiomics features and two PET
features were selected to establish the predictive model with
significantly higher AUC than that of SUVmax and TLG. Among
Frontiers in Oncology | www.frontiersin.org 520
these selected radiomics features, GLSZM_HGLZE from CT
images measures the distribution of the higher gray-level
values with a higher value indicating larger high-density areas
proportion in tumor, which suggested that the tumors with
EGFR+ had lower density than the EGFR- group in our study.
In agreement with our finding, more ground-glass opacity
and less solid components were observed in lung cancers
with EGFR mutation (30) with lower mean CT values when
compared to those with wild-type EGFR (31). The remaining 5
radiomics features, including three CT features (GLDM_DV,
GLSZM_GLNN, GLSZM_ZE) and two PET features (First-
order_Skewness (LHH), First-order_Skewness (LLL)), are all
related to image uniformity and heterogeneity. In our study,
the EGFR+ group was more heterogeneous on both PET and CT
images than the EGFR- group. Our findings were similar to
previous studies (21–23). They found that those image texture
feature measuring the variability of gray-level intensity or the
asymmetry of the distribution of gray-level values were
significant predictive of EGFR mutation status. In summary,
the NSCLCs with EGFR mutation had lower glucose metabolism
and density, with more heterogeneity on both PET and CT
images than those with wild-type EGFR. Owing to the bi-modal
image features, PET/CT radiomics model in recent studies (0.79
in Zhang J’s study (23); 0.80 in Li X’s study (22); 0.77 in our
study) has showed higher AUC than those generated by PET
(0.67 in Yip, SS’s study (21)) or CT (0.69 in Rios Velazquez, E’s
study (19); 0.56-0.75 in Sacconi, B’s study (31)) radiomics
features alone for predicting EGFR mutation status. However,
compared with larger sample size in CT radiomics research, the
current sample size in PET/CT radiomics-related studies is
generally limited, and thus the generalization ability of PET/
CT radiomics-based model remains to be further tested.

Clinical features in patients with NSCLC are also non-
negligible variables in the evaluation of EGFR mutations, which
are more likely to occur in Asians, adenocarcinomas, females, and
nonsmokers (32). In our study, gender was only significant clinical
predictor of EGFR mutation status. Smoking history was not
included in our study due to the complexity of its definition,
including the length of history, whether to quit or repeat smoking,
etc. This complexity of smoking history made the simple
TABLE 2 | Characteristic of selected PET/CT radiomic features and conventional PET parameters.

Characteristic EGFR- (N=102) EGFR+ (N=71) p Value

Conventional PET parameters
SUVmax 11.500 (7.070-16.950) 6.900 (4.895-10.890) <0.001
TLG 143.181 (25.241-358.192) 33.120 (8.854-168.031) 0.018

CT Radiomic features
GLSZM_HGLZE 0.523 (0.353-0.659) 0.314 (0.240-0.445) <0.001
GLDM_DV 0.390 (0.248-0.501) 0.530 (0.446-0.725) <0.001
GLSZM_GLNUN 0.286 (0.218-0.379) 0.374 (0.283-0.483) 0.001
GLSZM_ZE 0.737 (0.610-0.849) 0.631 (0.479-0.725) <0.001

PET Radiomic features
First-order_Skewness (LHH) 0.561 (0.392-0.764) 0.374 (0.125-0.815) 0.019
First-order_Skewness (LLL) 1.008 (0.653-1.615) 0.773 (0.537-0.982) <0.001
PET/CT Radiomic Score 0.170 (0.051-0.359) 0.722 (0.388-0.893) <0.001
October 2020 | Volume 10 | Article
Data were expressed as median (interquartile range).
GLSZM, Gray Level Size Zone Matrix; GLDM, Gray Level Dependence Matrix; HGLZE, High Gray Level Zone Emphasis; DV, dependence variance; GLNUN, Gray Level Non Uniformity
Normalized; ZE, zone entropy; LHH and LLL are two subtypes of wavelet filters.
FIGURE 2 | Distribution of PET/CT radiomic model prediction score of all
patients. The tumors with EGFR+ had significantly higher score than those
with EGFR- (p < 0.001).
568857

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. PET/CT Radiomics for EGFR Mutation
classification of yes or no meaningless. Gender as only clinical
characteristic was selected in combine model of our study. The
addition of clinical characteristics to PET/CT radiomics model, to
varying degrees, increase the diagnostic performance of diagnostic
model in previous studies (22, 23) and our study, which finally
reached 82.6% of diagnostic accuracy in Li X’s study (22), 80.0% in
Zhang J’s study (23), and 75.3% in our study for predicting EGFR
mutation status. It suggested that the combined model might be an
alternative indicator of EGFR mutations when tissue samples are
not available.

The 19 del and 21 L858R mutations are the main two EGFR
mutation subtypes. Although both mutation subtypes are
sensitive to EGFR-TKI treatment, it is now being recognized
that patients with the 19 del mutation experience better clinical
outcomes compared to those with the 21 L858R mutation (33,
34). Similar to a previous study investigating a large cohort of
Chinese patients (14), we found that SUVmax or TLG had no
ability to classify the 19 del and the 21 L858R mutation. We tried
to investigate the possibility of PET/CT radiomics features for
distinguishing these two subtypes. Only GLCM_DV from PET
images, which measures the heterogeneity of different intensity-
level matrix, showed significant but unsatisfactory predictive
performance in our study (AUC=0.661). Liu Q, et al. recent
study (35) established a predictive model for EGFR mutation
subtypes using machine learning algorithm, which seemed to
have better classification performance (AUC=0.77 and 0.92 for
respectively predicting exons 19 del and 21 L858R mutations)
than ours. However, the number of exons 19 del and 21 L858R
mutations was small in Liu Q’s study (only 44 and 31 cases
respectively), especially when divided as the train and test
cohorts, so the generalization ability of the predictive model
was not clear.
Frontiers in Oncology | www.frontiersin.org 621
The limited number of cases was one of the main factors
restricting our research to obtain more reliable conclusions.
Larger-scale data based on multi-center may be a solution in
our next research. However, multi-center study may bring
another important issue that affects the generalization ability of
the model, that is, the variable PET imaging protocols among
multi-centers including image acquisition and reconstruction
conditions will be unable to ensure the uniformity and
comparability of extracted radiomics features, thus affecting the
sensitivity and specificity of radiomics model. Papp L, et al.
suggested that larger matrix size/smaller voxel size, point-spread
function reconstruction algorithms, and narrow Gaussian post-
filtering helped minimize feature variations (36). The variability
of PET radiomics is also feature-dependent. GLCM and shape
features are the least sensitive to PET imaging system variations
(36, 37). Although the single center study maintains the image
acquisition and reconstruction methods consistent in all enrolled
patients, thus avoiding the influence of the above-described
factors as much as possible, the standardization of large
databases from multi-centers will remain an unavoidable key
step in further research.

In conclusion, EGFR mutations status in patients with NSCLC
could be well predicted by the model based on 18F-FDG PET/CT
radiomics and clinical features, providing an alternative useful
method for the selection of TKI therapy.
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TABLE 3 | Predictive performance of EGFR mutation status using different models compared with conventional PET parameters and clinical feature.

Model/Parameters Training set 10-fold cross validation using SVM algorithm

AUC Sensitivity (%) Specificity (%) Accuracy (%) AUC Sensitivity (%) Specificity (%) Accuracy (%)

Combined Model 0.866 82.60% 81.20% 81.80% 0.827 73.74% 76.07% 75.29%
PET/CT Radiomics Model 0.868 92.80% 66.30% 77.10% 0.769 67.11% 67.03% 67.06%
CT Radiomics Model 0.792 58.00% 87.10% 75.30% 0.754 64.22% 69.87% 67.65%
PET Radiomics Model 0.738 55.10% 82.20% 71.20% 0.750 60.29% 69.69% 67.06%
Gender 0.664 53.60% 79.20% 68.80% / / / /
SUVmax 0.683 84.10% 49.50% 63.50% / / / /
TLG 0.662 66.70% 64.40% 65.30% / / / /
October
 2020 | Volume 10 |
SVM, support vector machine.
TABLE 4 | Predictive performance of EGFR mutation subtypes using PET/CT radiomic features compared with conventional PET parameters.

Parameters/Feature 21 L858R mutation(N =38) 19 Del mutation(N=29) p Value AUC Sensitivity(%) Specificity(%) Accuracy(%)

SUVmax 7.5
(5.355-11.650)

6.695
(4.450-10.450)

0.134 / / / /

TLG 37.98
(12.703-180.620)

26.014
(4.529-164.770)

0.408 / / / /

GLCM_DV 1134.093
(801.011-1667.094)

808.42
(433.669-1353.409)

0.016 0.661 75.70% 57.10% 43.10%
Data were expressed as median (interquartile range).
GLCM, Gray Level Co-occurrence Matrix; DV, dependence variance.
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Objective: To improve the assessment of primary tumor heterogeneity in magnetic
resonance imaging (MRI) of non-small cell lung cancer (NSCLC), we proposed a method
using basic measurements from T1- and T2-weighted MRI.

Methods: One hundred and four NSCLC patients with different T stages were studied.
Fifty-two patients were analyzed as training group and another 52 as testing group. The
ratios of standard deviation (SD)/mean signal value of primary tumor from T1-weighted
(T1WI), T1-enhanced (T1C), T2-weighted (T2WI), and T2 fat suppression (T2fs) images
were calculated. In the training group, correlation analyses were performed between the
ratios and T stages. Then an ordinal regression model was built to generate the tumor
heterogeneous index (THI) for evaluating the heterogeneity of tumor. The model was
validated in the testing group.

Results: There were 11, 32, 40, and 21 patients with T1, T2, T3, and T4 disease,
respectively. In the training group, the median SD/mean on T1WI, T1C, T2WI, and T2fs
sequences was 0.11, 0.19, 0.16, and 0.15 respectively. The SD/mean on T1C (p=0.003),
T2WI (p=0.000), and T2fs sequences (p=0.002) correlated significantly with T stages.
Patients with more advanced T stage showed higher SD/mean on T2-weighted, T2fs, and
T1C sequences. The median THI in the training group was 2.15. THI correlated with T
stage significantly (p=0.000). In the testing group, THI was also significantly related to T
stages (p=0.001). Higher THI had relevance to more advanced T stage.

Conclusions: The proposed ratio measurements and THI based on MRI can serve as
functional radiomic markers that correlated with T stages for evaluating heterogeneity of
lung tumors.

Keywords: non-small cell lung cancer, MRI, heterogeneity, T stage, radiation therapy
January 2021 | Volume 10 | Article 591485124

https://www.frontiersin.org/articles/10.3389/fonc.2020.591485/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.591485/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.591485/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.591485/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:qiubo@sysucc.org.cn
mailto:liuhuisysucc@sina.com
https://doi.org/10.3389/fonc.2020.591485
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.591485
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.591485&domain=pdf&date_stamp=2021-01-08


Hu et al. Evaluating Heterogeneity Using MRI
BACKGROUND

Malignant tumors usually consist of sub-clonal cells with different
genemutations, histology andmorphology in a single lesion, which
is termed as intratumoral heterogeneity (1–3). High level of
heterogeneity has been reported to be associated with adverse
survival outcomes in multiple cancer types (4, 5). Non-small cell
lung cancer (NSCLC) is a highly heterogeneous disease regarding
the genetic and phenotypic features (2, 3). The heterogeneity
provides the fuel for drug resistance and treatment failure. The
assessment of intratumoral heterogeneity helps in treatment
decision and survival prediction. In patients with inoperable
NSCLC, the diagnosis and treatment usually rely on a small
amount of tissue by biopsy, which could not represent the chunk
of tumor. Therefore, it’s important to develop a noninvasive
method to evaluate the full spectrum of heterogeneity for primary
lesions in NSCLC.

Intratumoral genetic heterogeneity leads to regional variety in
stromal architecture, vascularity, glucose uptake, and water
diffusion, which can be identified and quantified by medical
imaging. Heterogeneity quantification by imaging has been
reported to assist in distinctions on tumor types, grading, and
different survival outcomes (6). Studies for lung cancer has
primarily focused on computed tomography (CT) and positron
emission tomography (PET) images. For example, texture
analysis of computed tomography (CT) images in NSCLC have
the potential to correlate with tumor hypoxia and angiogenesis
(7). Intratumoral metabolic heterogeneity on 18F-FDG PET
imaging has been shown to be associated with pathological
type, differentiation, T stages, and recurrence in NSCLC (8, 9).

Magnetic resonance images (MRI) provides detailed anatomic
information with high spatial contrast. The superior soft tissue
resolution and lack of radiation make it a useful imaging modality
for radiomic analysis. Advances inMR imaging technique, together
withquantitative, andqualitative analysis, have expanded the roleof
MR imaging in lung cancer. The role of MRI in NSCLC has been
investigated in multiple settings, including diagnosis, staging,
response prediction and assessment, and postoperative lung
function prediction (10–14). Moreover, MRI provides great
insights into characterization of tumor heterogeneity (15, 16).
Measuring heterogenous vascular features using dynamic
contrast-enhanced (DCE) MRI and heterogenous cellular
morphology using diffusion-weighted MRI (DWI) could yield
important predictive biomarkers in lung cancer (16, 17). On the
other hand, the assessment of intratumoral heterogeneity using
routine MRI sequences has been less prominently studied in
NSCLC (18), partly due to the variations in imaging protocol and
Frontiers in Oncology | www.frontiersin.org 225
acquisition signal.With the introduction ofMRsimulation andMR
guidance into the radiation therapy workflow, the signal intensity
analysis basedon routine sequences become increasingly important
and need further exploration.

We hypothesized that the texture features from MRI may be
efficient in evaluating intratumoral heterogeneity. The aim of this
study was to propose a method using basic texture measurements
from T1- and T2-weightedMRI, which can improve the assessment
of primary pulmonary tumor heterogeneity and provide more
information on future MRI-guided radiation therapy.

MATERIALS AND METHODS

Patients
From January 2016 to December 2018, 120 histologically diagnosed
NSCLC patients with stage I–III disease who underwent radiation
therapy in our center were included. Clinical data were collected
from each patient including age, sex, histology, and tumor stage.
Patients were staged based on the 8th AJCC staging system for lung
cancer. All patients had biopsy-approved pathological diagnosis of
lung primary lesions. Chest MRI including unenhanced T2-
weighted images (T2WI), T2WI with fat suppression,
unenhanced/enhanced T1-weighted images (T1WI) had been
acquired before radiation therapy. Informed consent was
obtained from patients for the use of clinical and imaging data.
This study was approved by institutional review board.

MRI Acquisition
AllMRI examinationswereperformedusing the same1.5Tesla unit
(GE Signa HDx 1.5; GE Healthcare, Milwaukee, Wisconsin, USA)
with a combined eight channel phased-array surface coil. The
following sequences were obtained for each patient: unenhanced
T2WI in the coronal and axial planes; unenhanced T2WI with fat
suppression in the axial planes; three-dimensional liver acquisition
with volume acceleration (3D-LAVA) enhanced-scanning in the
axial, sagittal, and coronal planes. The parameters of these
sequences are listed in Table 1. For contrast enhancement, a 0.1
mmol/kg body weight bolus injection of gadopentetate
dimeglumine was administered and the enhanced image was
acquired ~25 s after the injection.

Image Processing and Analysis
All MR images were viewed on a picture archiving and
communication system workstation monitor (AW4.6; GE
Healthcare, Milwaukee, Wisconsin, USA). The largest cross-
sectional slice of primary tumor was selected. The region of
TABLE 1 | Parameters for the magnetic resonance sequences.

Sequence botained Scanning method TR (ms) TE (ms) NEX ST/spacing (mm) FOV (cm) Matrix

T2WI (sagittal plane) FSE >1,500 80 2 5/1 25 320×224
T2WI (axial plane) FSE ≥2,000 85 2 3/1.5 25 320×224
FS T2WI (axial plane) FSE ≥2,000 85 2 5/1 25 320×224
Enhanced-scanning (axial and coronal planes) 3D-LAVA 3–5 1–2.5 1 4/-2 25 512×224
January 2021 | Vo
lume 10 | Articl
T2WI, T2-weighted image; TR, repetition time; TE, echo time; NEX, nember of excitations; ST, slice thickness; FOV, field of view; FSE, fast spin-echo; SE, spin-echo; FS, fat suppression;
SE-EPI, spin echo planar imaging.
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interest (ROI) was manually contoured on T1WI, enhance T1
(T1C), T2WI, and T2 fat suppression (T2fs) images to
encompass the entire cross-sectional area of the primary tumor
(Figure 1). The encompassment of any adjacent normal lung
tissue was avoided. Contouring was performed by one radiation
oncologist and reviewed by a senior radiation oncologist and a
radiologist as well. The mean and standard deviation (SD) of
signal intensity of ROI was read from the GE workstation. To
determine the intratumoral heterogeneity, the ratios between SD
and mean value (SD/mean) were calculated. The higher the
ratios value was, the higher the heterogeneity of the primary
tumor, and vice versa.

Statistical Analysis
We divided patients into the training and testing groups using
propensity score matching (PSM) method with a caliper of 0.1 in a
1:1 ratio, with four covariates including sex, age, histology, and T
stage. The SD/mean value from each sequence was presented as
median and range, and compared using paired-sample t-test. In the
training group, Spearmancorrelationanalyseswereperformed to test
the correlation between the SD/mean value and T stage. Variables
with a p value <0.05 were selected into an ordinal logistic regression
analysis. The ordinal logistic regression model is an extension of the
binary model to the case of more than three outcomes which are
naturally ordered. Then we generated a tumor heterogeneity index
(THI) defined as the algebraic sum of imaging values in the model
multipliedby their coefficients.TheTHIcouldbeused tocalculate the
probabilityof each stage foran individualpatient according toordinal
logistic regression equations. External validation of the model was
performed in the testinggroupbycalculatingTHIand theprobability
of T stage for each patient. Spearman correlation analyses were
performed to test the correlation between the calculated THI and T
stage. All statistical analyses were performed using SPSS ver. 24.0
Frontiers in Oncology | www.frontiersin.org 326
software (IBMCorp., Armonk,NY), and differenceswere considered
significant at a p-value < 0.05.

RESULTS

Baseline Characteristics
A total of 104 of the included 120 consecutive patients were
divided into the training and testing groups based on the above-
mentioned PSM procedure. Patients in the training and testing
groups were well matched with respect to age, sex, T stage, and
histology (p>0.1) (Table 2). The demographic and clinical
characteristics of all 104 patients were listed in Table 2. The
median age was 59 years, ranging from 30 to 82. Eighty patients
were male and 24 patients were female. The histology was
squamous cell carcinoma in 62 patients and non-squamous cell
carcinoma in 42 patients. Eleven, 32, 40, and 21 patients had
stage T1, T2, T3, and T4 disease, respectively.
FIGURE 1 | The representative MR images of stage T1–4 patients. Red lines delineate the ROI, which was delineated on the largest cross-sectional slice of primary
lung tumor. The SD/mean value was shown on the right upper top of each image.
TABLE 2 | The demographic and clinical characteristics of the 104 matched patients.

Training group (n=52) Testing group (n=52) P value

Age (median, range) 58, 34~82 59, 30~78 0.985
Sex 0.642
Male 41 39
Female 11 13

Histology 0.424
Squamous 33 29
Non-squamous 19 23

T stage 0.779
T1 4 7
T2 17 15
T3 21 19
T4 10 11
January 20
21 | Volume 10 | Article
Age, sex, histology, and T stage were well matched between training and testing group.
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The Heterogeneity of Primary Tumor onMRI
In the training group, the median SD/mean on T1WI, T1C,
T2WI, and T2fs sequences was 0.11, 0.19, 0.16, and 0.15
respectively. The SD/mean was greatest on T1C, while smallest
on T1WI. The SD/mean in T1C (p=0.003), T2WI (p=0.000), and
T2fs sequences (p=0.002) correlated significantly with T stages.
Patients with more advanced T stage showed higher SD/mean on
T2WI, T2fs, and T1C sequences (Figure 2).

The Development of Regression Model
in the Training Group
In the training group, the SD/mean on T1C, T2WI, and T2fs
sequences were entered into an ordinal logistic regression model
to predict the T stage (Table 3). The model fitting information
indicated a significance of 0.000. The SD/mean on T2fs (p=0.017)
and T1C (p=0.043) were independently predictive of T stage.

Based on the model, a tumor heterogeneous index (THI) that
consists of these three variateswasdevelopedas the following equation:

THI = 7:748� SD=mean _T1C − 11:301� SD=mean _T2

+ 14:906� SD=mean _T2fs

The median THI in the training group was 2.15 (range
0.81~4.85). THI correlated with T stage significantly (p=0.000).

The probability of any T stage for each patient could be
calculated by the ordinal logistic regression rule:
Frontiers in Oncology | www.frontiersin.org 427
T1 = P(Y ≤ 1) = 1=(1 + exp½−( − 0:453 − TH1)�)

T2 = P(Y ≤ 2) − P(Y ≤ 1)

= 1=(1 + exp½−(1:924 − TH1)�) − 1=(1 + exp½−(0:453
− TH1)�)

T3 = P(Y ≤ 3) − P(Y= ≤ 2)

= 1=(1 + exp½−(4:159 − TH1)�) − 1=(1 + exp½−(1:924
− TH1)�)

T4 = 1 − P(Y ≤ 3) = 1 − 1=(1 + exp½−(5:140 − TH1)�)
FIGURE 2 | The SD/mean on T1WI, T1C, T2WI, and T2fs grouped by T stage in the training group. Patients with more advanced T stage showed higher SD/mean
in T2-weighted, T2fs, and T1C sequences.
TABLE 3 | Ordinal logistic regression analysis.

Coefficient P value OR

Threshold[T = 1] −0.453 .604 —

Threshold[T = 2] 1.924 .022 —

Threshold[T = 3] 4.159 .000 —

SD/mean_T2WI −11.301 .077 0.462
SD/mean_T2fs 14.906 .017 4.428
SD/mean_T1C 7.748 .043 0.744
January 2021 | V
olume 10 | Article 5
The SD/mean on T1C, T2WI, and T2fs sequences were entered into an ordinal logistic
regression model to predict the T stage. The model fitting information indicated a
significance of 0.000.
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Validation of the Model and Tumor
Heterogeneity Index in the Testing Group
THI had been calculated for each patient in the testing group
according to the above equation. The median THI was 2.06
(range, 0.33~5.06). THI correlated with T stage significantly
(p=0.001). The proportion of more advanced stages grew
gradually as the THI increased in the testing group (Figure 3).

The probability of each stage was calculated for individual
patient according to the above equations to generated the
estimated T stage. The actual and estimated T stage were listed
in Table 4. The model predicted T stage accurately in 61.5% (32/
52) of patients.
DISCUSSION

Intratumoral heterogeneity is an important feature of malignant
tumors. There has been considerable effect to use medical imaging
to depicts spatial heterogeneity in tumors (6). The advantage of
MRI compared with other imaging approach, such as CT and
PET, resides in its potential to provide a multi-parameter
sequences (T1WI, T2WI, diffusion-weighted, flow-weighted, etc.)
at a high spatial resolution. In NSCLC, the signal intensity of
primary lesion onMRI is often complexed by fibrous tissue signal,
necrotic signal, septations, and vascular void signal. In this study,
we quantified the signal heterogeneity on T1WI, T1C, T2WI, and
T2fs sequences by measurement of SD/Mean. The signal
heterogeneity on T1C, T2WI, and T2fs sequences correlated
with T stages significantly. A model had been developed based
on the measurements to predict T stages. Then the tumor
heterogeneity index (THI) was generated which could be used
as a potential radiomic marker for MRI-guided diagnosis and
radiotherapy on NSCLC.

Our results showed higher THI was associated with more
advanced T stages. It was in accordance with the finding that the
metabolic heterogeneity of primary tumor from 18F-FDG PET
showed a stepwise increase with the increase of T stages in
Frontiers in Oncology | www.frontiersin.org 528
NSCLC (8). As T stage is a well-established prognostic factor,
imaging heterogeneity has been regarded as a potent biomarker
for prognosis as well. The intratumor heterogeneity is a distinct
predictive factor of response to radiation therapy, mainly due to the
resistant subpopulations of cells (19). Non-enhancing tumor
fraction assessed by DCE MRI subtraction was found to be a
predictor of decrease in tumor volume in response to
chemoradiotherapy (20). Texture features derived from MRI was
reported to effectively predict tumor response after radiotherapy
(18). Taken together, these findings implied that the heterogeneity
assessed by MRI reflected the biological behaviors of tumors thus to
provide important biological information for tumor diagnosis and
treatment in NSCLC.

Although MRI emerges as an effective method for assessing
tumor heterogeneity, the research of optimal sequences or method
for quantifying heterogeneity are still processing. At present,
studies on heterogeneity assessment by MRI mostly focus on
DCE analysis in NSCLC. The semiquantitative perfusion,
histogram, and texture parameters from DCE were shown to be
prognostic of clinical outcomes (17, 21, 22). However, compared
with routine sequences, DCE was not conveniently available in
routine practice and relies on post-processing software for data
analysis. Therefore, we explored the role of routine sequences in
the assessment of intratumoral heterogeneity in NSCLC, which
might provide practical information onMRI-guided diagnosis and
radiation therapy (MRI simulation and MRI Linac). In our study,
tumor on T1C showed the most remarkable signal heterogeneity
among the four routine sequences. While unenhanced T1
sequence exhibited the most homogenous imaging. It may be
expected that unenhanced images could not well differentiate
regions of viable tumor, hypoxic tissues, necrosis or myxoid
changes. Contrast-enhanced imaging allows for visualization of
more diverse intratumoral components with heterogeneity in
enhancement, which can be attributed to heterogeneity of
intratumoral perfusion and permeability (23). Therefore, T1C
might provide more spatially rich information, and be an
important sequence for MRI-based radiomic analysis for
intratumoral heterogeneity.

Other than T1C, the heterogeneity measurements from T2WI
and T2fs also correlated with T stages. Combining analysis of
multiple sequences might provide a more significant marker than
single sequence alone. Therefore, we generated a model based on
signal heterogeneity from T1C, T2WI, T2fs to predict T stages. By
external validation, this model predicted T stages with an accuracy
of nearly 62% in the testing group. It is noteworthy that more than
40% of patients were falsely predicted in the testing group. This
FIGURE 3 | The observed proportion of T stages in the testing group stratified
by the tumor heterogeneity index (THI). THI was categorized by quantile to THI_1:
0.33~1.42; THI_2: 1.44~2.04; THI_3: 2.09~2.60; THI_4: 2.67~5.06. The
proportion of more advanced stages grew gradually as the THI increased.
TABLE 4 | The actual and estimated T stages in the testing group.

Actual T stage Estimated T stage

1 2 3 4 Total

1 5 2 0 0 7
2 3 10 2 0 15
3 0 3 10 6 19
4 0 1 3 7 11
J
anuary 2021
 | Volume 10
 | Article 5
The bold values are the number of cases in which the predicted T stage matches the
actual T stage successfully.
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indicated that a model derived frommerely MRI parameters could
not yield a satisfactory performance in predicting T stages. Other
factors, such as the location of primary tumor and the presence of
atelectasis or obstructive pneumonitis, might also determine the T
stages. For instance, a primary tumor of small size that invades
mediastinum is staged as T4, while it might present with relatively
homogenous appearance and therefore is predicted as T2
according to the model (Figure 4). Despite the suboptimal
performance, it certainly added value in predictive models
incorporating multiple clinical and imaging variables. From this
point of view, we generated a novel heterogeneity score from the
regressionmodel, termas tumorheterogeneity index (THI), defined
as the algebraic sum of the heterogeneitymeasurements from three
sequencesmultipliedby their coefficients. THI represented the level
of heterogeneity, which significantly correlated with T stages in the
training and testing groups. Higher THI had relevance to more
advancedT stage and possiblyworse prognosis. THI could be easily
accessed from routine MRI imaging, and therefore conveniently
serves as an efficient MRI biomarker.

Besides quantifying the level of heterogeneity, another purpose
of heterogeneity analysis is to identify the subregions with different
biology that respond differentially to treatment. Kim et al. used
clustering of PET andDWI to identify highly aggressive subregions
in NSCLC. They found the volume of subregion with high
aggressiveness was a negative prognostic factor of survival (16).
Radiation therapy is the backbone of treatment for locally advanced
NSCLC. High-dose radiation was associated with improved local-
regional control. However, escalating the radiation dose to the
whole tumorvolume is limitedbynormal tissue toxicity.Nowadays,
radiation planning using intensity modulated technique allows for
different dose distributions inside a tumor volume. Therefore,
improvement of local control could be achieved by taking into
account intratumoral heterogeneity and delivering higher dose to
resistant subregions (24). Kong et al. adapted the target volume
Frontiers in Oncology | www.frontiersin.org 629
based on mid-treatment PET and delivered higher-dose radiation
to the FDG-avid areas of the tumor, which achieved favorable local-
regional control. Compared with PET, MRI could be conveniently
acquired before and during the course of radiation. MRI-guided
radiotherapy with hybrid MR linear accelerator creates new
perspectives towards an individualized planning and treatment
approach (25). Therefore, fully depicting the intratumoral
heterogeneity on MRI will help identify the resistant subregions
and provide evidence for adaptation strategies.

This study has several limitations. Firstly, we quantified the
parameters from the largest cross-sectional slice instead of the
whole tumor volume. Although tumor heterogeneity measured
by the two methods was similar (26), analysis of the whole tumor
can theoretically capturemoreheterogeneous internal components.
Secondly, in comparison with CT or PET, scanner and sequence
acquisition parameters of MRI have great influence on signal
intensity measurements and heterogeneity quantification.
Therefore, in order to minimize the influence, we scanned all
patients in the same scanner with the same parameters.

CONCLUSIONS

The aim of this study was to propose a method using basic texture
measurements from T1- and T2-weighted MRI which can
improve the assessment of primary pulmonary tumor
heterogeneity and biological behaviors. We found the signal
heterogeneity on T1C, T2WI, and T2fs sequences, in terms of
SD/mean, correlated positively with T stages. The proposed ratio
measurements and THI based on clinical routine MR images can
serve as functional radiomic markers that correlated with T stages
for evaluating heterogeneity of lung tumors, and provide more
information on future MRI-guided radiation therapy. Further
studies are warranted to validate the role of THI in response
and survival prediction.
FIGURE 4 | The MR images of a patient with stage T4 that was falsely predicted as stage T2 by the model. Red lines delineate the ROI, which was delineated on
the largest cross-sectional slice of primary lung tumor. The SD/mean value was shown on the right upper top of each image.
January 2021 | Volume 10 | Article 591485
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Background: Histologic phenotype identification of Non-Small Cell Lung Cancer
(NSCLC) is essential for treatment planning and prognostic prediction. The prediction
model based on radiomics analysis has the potential to quantify tumor phenotypic
characteristics non-invasively. However, most existing studies focus on relatively small
datasets, which limits the performance and potential clinical applicability of their
constructed models.

Methods: To fully explore the impact of different datasets on radiomics studies related to
the classification of histological subtypes of NSCLC, we retrospectively collected three
datasets from multi-centers and then performed extensive analysis. Each of the three
datasets was used as the training dataset separately to build a model and was validated
on the remaining two datasets. A model was then developed by merging all the datasets
into a large dataset, which was randomly split into a training dataset and a testing dataset.
For each model, a total of 788 radiomic features were extracted from the segmented
tumor volumes. Then three widely used features selection methods, including minimum
Redundancy Maximum Relevance Feature Selection (mRMR), Sequential Forward
Selection (SFS), and Least Absolute Shrinkage and Selection Operator (LASSO) were
used to select the most important features. Finally, three classification methods, including
Logistics Regression (LR), Support Vector Machines (SVM), and Random Forest (RF)
were independently evaluated on the selected features to investigate the prediction ability
of the radiomics models.

Results: When using a single dataset for modeling, the results on the testing set were
poor, with AUC values ranging from 0.54 to 0.64. When the merged dataset was used for
modeling, the average AUC value in the testing set was 0.78, showing relatively good
predictive performance.
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Conclusions: Models based on radiomics analysis have the potential to classify NSCLC
subtypes, but their generalization capabilities should be carefully considered.
Keywords: non-small cell lung cancer, radiomics, machine learning, feature selection, classification
INTRODUCTION

Lung cancer is the leading cause of cancer death in many
countries (1, 2). Especially in China, lung cancer is the most
common cancer with more than 430,000 deaths per year (3).
According to the characteristics of cancer cells under the
microscope, lung cancer is broadly classified into two types:
small cell lung cancer (SCLC) and non-small cell lung cancers
(NSCLC). NSCLC is the most common type of lung cancer,
accounting for about 80% of all lung cancers. Squamous cell
carcinoma (SCC) and adenocarcinoma (ADC) are the most
common histological subtypes of NSCLC. The classification
criteria is based on the histologic features, i.e., ADC appears as
carcinoma of acinar/tubular structure or mucin production,
while SCC appears as carcinoma with keratinization or
intercellular bridges (4).

Since the treatment methods of SCC and ADC are quite
different, it is of great significance to accurately distinguish SCC
from ADC in patients with lung cancer (5, 6). For instance,
pemetrexed (a multiple-enzyme inhibitor) has greater efficacy in
ADC patients than in SCC patients (7). Pathological diagnosis is
commonly regarded as the gold standard for distinguishing ADC
from SCC. However, it is invasive and requires needle biopsy or
surgery. The tumor may be heterogeneous, which may lead to
sampling errors and affect biopsy results. In addition, the risk of
complications is also an important factor that must be
considered. These limitations of pathological diagnosis prompt
us to develop non-invasive and accurate alternative methods.

Radiomics refers to extracting high-throughput features from
medical images and mining the potential relationships between
quantitative image features and pathophysiology characteristics.
Radiomics analysis can be used for predicting various clinical
outcomes, such as survival, distant metastases, and molecular
characteristics classification (8–10). Several studies have focused
on the identification of histologic subtype of NSCLC based on
radiomics. Wu et al. (11) constructed two study cohorts with 350
patients and extracted 440 radiomic features for each sample.
They applied 24 feature selection methods and 3 classification
methods to identify SCC and ADC, of which the Naive Bayes
method achieved the highest AUC of 0.72. Zhu et al. (12)
retrospectively studied 129 patients with NSCLC and extracted
485 features from manually labeled tumor regions. Five features
were selected to construct a radiomics signature by using a logistic
regression method. This radiomic signature achieved an AUC of
0.893 in the test set. Chaunzwa et al. (13) retrospectively studied
157 patients with NSCLC to classify ADC or SCC. They used a
VGG-16 neural network to extract deep features from CT images
and classify them with fully connected layers. Besides, they also
independently evaluated the extracted features using three
machine learning classification models. The results showed that
233
all models were able to classify tumor histology, of which
the neural network achieved the highest performance with an
AUC of 0.751.

Although these studies have achieved excellent results, there
are still some critical problems that need to be solved: 1) Many
radiomics studies generally have small size datasets, thus limiting
the performance and the potential clinical applicability of these
models. 2) The research methods are relatively simple, and there
are fewmethods of feature selection and classifier for comparison.
The differences between different research methods are not
fully discussed, which reduces the credibility of the model and
limits the application of the models in the clinic.

In order to solve the above problems, we collected three
datasets from different centers. Each dataset was used as the
training set to build a model and tested in the remaining two
datasets. Then, we combined all the datasets into one large dataset
to build amodel; this dataset was randomly divided into a training
set and a testing set. For each dataset, a total of 788 radiomic
features were extracted from the segmented tumor volumes of
corresponding CT images. Three widely used features selection
methods, minimum Redundancy Maximum Relevance Feature
Selection (mRMR), Sequential Forward Selection (SFS), Least
Absolute Shrinkage and Selection Operator (Lasso) were used to
select the most important features. Three widely used
classification models were independently evaluated on the
selected features: Logistics Regression (LR), Support Vector
Machines (SVM), and Random Forest (RF). We aim to build
models through multi-center datasets to thoroughly study the
potential of radiomics in identifying SCC and ADC.
MATERIALS AND METHODS

Figure 1 presents the workflow of this study, including image
acquisition and segmentation, feature extraction, feature selection,
classifier construction and evaluation. In the following sections, we
will describe these steps in detail.

Datasets
We utilized 3 independent datasets in this study that were collected
from China institution and open-access online repositories.

Dataset 1
This retrospective study has been approved by our institutional
review board and does not require patient informed consent. From
June 2014 to June 2019, 324 patients with a diagnosis of lung
cancer were retrospectively collected. The inclusion criteria are as
follows: (1) pathologically confirmed lung cancer; (2) CT images
can be obtained before treatment. Exclusion criteria were as
follows: (1) small cell lung cancer (n = 3); (3) grade of
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preoperative biopsy evidence was not available (n = 17). Finally,
302 patients were selected for this study. Tumors were classified
into ADC or SCC based on pathological information. All
pulmonary CT examinations were performed using four CT
scanners, with tube voltage of 120 kVp, tube current of 220
mAs, and inter-layer slice thickness of 4–5 mm. For each
patient, the tumor region was contoured in a slice-by-slice
manner on CT images by an experienced radiologist (with eight
years of experience) using Medical Imaging Interaction Toolkit
(MITK) software (14) (version 2013.12.0; http://www.mitk.org/),
and then confirmed by another experienced radiologist (with 15
years of experience). The final consensus was reached by group
discussion if there were discrepant interpretations.

Dataset 2
This dataset was obtained from The Cancer Imaging Archive
(TCIA) (15) and included 422 patients with NSCLC treated at
Maastricht University Medical Center (16). All patients
underwent a CT scan. Depending on the patient’sbody type,
the scanning scheme was slightly different. The tube voltage was
120–140 kVp and the tube current was 40–80 mAs. The
reconstructed pixel size was 0.977×977mm, the matrix size was
512×512, and the layer thickness between slices was 3 mm. For
all CT images, the doctor performed manual tumor region
segmentation. From all the samples, 203 samples that meet the
requirements of this study were selected.

Dataset 3
This dataset was obtained from TCIA (15) and included 211
NSCLC patients (17). This is a retrospectively collected dataset
through different CT equipments and different imaging
parameters, with tube voltage of 80–140 kVp, tube current of
124–699 mAs, and inter-layer slice thickness of 0.625–3 mm. For
all CT images, an undisclosed automatic segmentation algorithm
was used for segmentation and then manually adjusted by the
doctors. From all the samples, 140 samples that meet the
requirements of this study were selected.
Frontiers in Oncology | www.frontiersin.org 334
Some slices from the above datasets are displayed in Figure 2
to show the variety in cancer locations, shapes, and appearances
of the different datasets.

Feature Extraction and Selection
Before feature extraction, we resampled all the CT images to a
1×1×1mm3 voxel size.According to the radiomic featuresdescribed
by Imaging Biomarker Standardization Initiative (IBSI), a wide
rangeoffeatures including intensity features, shape features, texture
features, and wavelet features were extracted from the segmented
cancer regions (18).

Intensity features use first-order statistics (energy, entropy,
standard deviation, skewness, kurtosis, etc.) to quantify the
tumor intensity feature, which are calculated from the histogram
of all tumor voxel intensity values. Shape features describe the
shape of the tumor, such as sphericity or compactness of the tumor.
Texture features can quantify intratumor heterogeneity differences
in the texture that is observable within the tumor volume. These
features are calculated in all three-dimensional directions within
the tumor volume, thereby taking the spatial location of each voxel
compared with the surrounding voxels into account. Texture
features quantify the intratumor heterogeneity by using the Gray
Level Cooccurrence (GLCM), Gray Level Run Length Matrices
(GLRLM), Gray Level Size Zone Matrix (GLSZM), Neighbouring
Gray Tone Difference Matrix (NGTDM) and Gray Level
Dependence Matrix (GLDM). Wavelet features calculate the
intensity and textural features from wavelet decompositions of
the original image, thereby focusing the features on different
frequency ranges within the tumor volume. All feature extraction
algorithms were implemented in Pyradiomics toolkit (19).

To eliminate the differences in the value scales of the radiomic
features, featurenormalizationwasperformedbefore feature selection.
For features in the training group, each feature for a specific patient
was subtracted by the mean value and divided by standard deviation
value from this group. The same normalization method was applied
to features in the validation group using the mean values and
standard deviation values calculated based on the training group.
FIGURE 1 | Workflow of this study.
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Too many features will increase the computational cost, and
the redundancy between features will reduce the accuracy of the
classification. Furthermore, the number of features is more than the
number of samples in this work, which will increase the probability
of overfitting. Therefore, feature selection is essential. There are three
main types of feature selection algorithms: filter methods, wrapper
methods, and embedded methods. Based on previous works, we
selected three widely used feature selection methods, namely:
minimum redundancy maximum correlation method (mRMR)
(20), sequential forward selection method (SFS) (21), and least
absolute shrinkage and selection operator (Lasso) (22).

mRMR is a multivariate filtering feature selection algorithm,
which finds the optimal subset of features by considering both
the importance of features and the correlation between them,
that is, maximizing the correlation between features and
categorical variables, while minimizing the redundancy
between features. In the set S with N features, the correlation
D of the features is calculated as follows:

D =
1
Sj j oxi∈S

I xi; cð Þ (1)

Where I represents mutual information and the redundancy
between features is expressed as:
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R =
1

jSj2 o
xi ,xj∈S

I xi, xj
� �

(2)

The goal of mRMR is to find the feature subset where D – R
takes the maximum value. SFS is a kind of wrapper method that
uses a bottom-up search strategy that starts from an empty
feature set and gradually adds features selected by evaluation
function. At each iteration, the feature to be added is selected
from the remaining available features that have not been added
to the feature set. Then, the final selected features should produce
the best classification performance compared with the any other
feature set (23). Lasso is a kind of embedded method that is
widely used in radiomic feature selection of high dimensional
data with relatively small sample size. It is based on ℓ1-norm of
the coefficient of a linear classifier. Some of the coefficients of the
learned classifier may equal zero. Since each coefficient is
associated with a feature, so feature selection is achieved by
retaining features with non-zero coefficients.

Classifiers Construction
We evaluated three classification algorithms: logistic regression
(LR), support vector machine (SVM), and random forest (RF).
LR is a classical machine learning algorithm that was usually
used for binary classification tasks. The model attempts to
A

B

C

FIGURE 2 | Examples from different datasets. Each row represents three axial slices of different datasets; (A) Dataset 1. (B) Dataset 2. (C) Dataset 3. A red contour
that outlined by the physician is displayed to identify the cancer area in each patient scan.
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estimate the probability p(y = 1|x), that is, the probability of a
positive result y = 1 under the given data x. The advantage of
logistic regression is that the training speed is fast, and discrete
and continuous variables can be used as inputs. The disadvantage
is that it is a linear model, and the classification effect is not good
enough in the face of complex data problems, but the logistic
regression model can achieve good results on many datasets, and
it is easy to implement and can be used as a basic modeling
method (24). SVM is another widely used classification
algorithm that attempts to separate the data by computing the
decision boundary. This decision boundary, also called the
hyperplane, is orientated in such a way that it is as far away as
possible from the closest data points (support vectors) from each
class (25). SVM is a powerful method for obtaining good
classification results by using only a few data points (26). RF is
an ensemble learning method, known for its high performance
and generalizability. It uses bootstrap resampling to extract
multiple samples from the original sample, and constructs a
decision tree for each bootstrap sample, and then combines these
decision trees together to obtain the final classification (27).

Statistical Analysis
The statistical analyses were performed with R 3.1.2 (http://www.
R-project.org) and Python (version 3.6.4) machine learning
library scikit-learn (version 0.19.1). Univariate analysis for
clinical data was performed by using the Chi-square (c2) test
or Mann-Whitney U test, as appropriate. The categorical variable
(such as gender and category probability) was analyzed using the
c2 test. The continuous variable (such as age) was analyzed using
the Mann-Whitney U test.
RESULTS

Patients Statistics
Table1 lists the clinical data of the patients in the threedatasets.The
percentages of SCC in dataset 1, 2, and 3 were 29, 75, and 20%,
respectively. Among them, the category probability betweendataset
1 and dataset 2 is statistically different (P < 0.001, c2 test); the
category probability between dataset 1 and dataset 3 is statistically
different (P = 0.04959, c2 test); the category probability between
dataset 2 and dataset 3 is statistically different (P < 0.001, c2 test).

The percentages of males in dataset 1, 2, and 3 are 62, 71, and
74%, respectively. Among them, the probability of gender in
Frontiers in Oncology | www.frontiersin.org 536
dataset 1 is statistically significant difference (P < 0.001, c2 test);
the probability of gender in dataset 2 is not statistically
significant difference (P = 0.01365, c2 test); the probability of
gender in dataset 3 is not statistically significant difference (P =
0.01219, c2 test).

There is a statistically significant difference between the age of
SCC and ADC in dataset 1 (P < 0.001, Mann-Whitney U test);
there is no statistical difference between the age of SCC and ADC
in dataset 2 (P = 0.06693, Mann -Whitney U test); there is no
statistical difference between the ages of SCC and ADC in dataset
3 (P = 0.1501, Mann-Whitney U test). As can be seen from the
above results, there exist significant differences between
different datasets.

Feature Extraction and Selection Results
A large number of features were extracted from the tumor
volume, where each sample contains 788 features. To select the
most distinguishing feature subset, we applied three widely used
feature selection methods. For each method, we applied Grid
search and 5-fold cross-validation to select the best hyper-
parameters. The feature selection process is shown in Figure 3,
where (I)–(IV) represent the feature selection process based on
dataset 1, dataset 2, dataset 3, and merged dataset, respectively.
The blue dashed line represents the average AUC value of the 5-
fold cross-validation, and the shading represents the standard
deviation. For mRMR and SFS, the hyperparameter is the
number of features, and for Lasso, the hyperparameter is the
regularization parameter a. Using the AUC value as the criterion
for hyperparameter selection, it can be seen from the figure that
for models 1–3, the AUC value is relatively low, and the standard
deviation is larger, the Lasso feature selection method shows the
best stability.

Table 2 lists the number of features selected by the three feature
selection methods in the four training sets and the jointly selected
features. For themodel trained in dataset 1, mRMR, SFS, and Lasso
selected 24, 28, and 28 features, respectively, and 1 feature was
jointly selected. It is wavelet-LLH firstorder_Skewness, which
measures the asymmetry of value distribution of the tumor area
under wavelet transform. For the model trained in dataset 2,
mRMR, SFS, and Lasso selected 17, 13, and 9 features,
respectively, and there were no features that were jointly selected.
For the model trained in dataset 3, mRMR, SFS, and Lasso selected
17, 24, and 7 features, respectively, and there were no features that
were jointly selected. For the model trained in the merged dataset,
TABLE 1 | Patients statistics.

Dataset 1 Dataset 2 Dataset 3

ADC (n = 215) SCC (n = 87) ADC (n = 51) SCC (n = 152) ADC (n = 112) SCC (n = 28)

age
range (median) 36–89 (59) 32–81 (65) 45–85 (68) 33–88 (70) 43–87 (68) 57–83 (71)
mead+std 59±10 64±9 67±9 70±10 68±9 71±6
sex
male 108 79 32 112 80 24
female 107 8 19 40 32 4
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mRMR, SFS, andLasso selected 29, 46, and29 features, respectively,
and 1 feature was jointly selected, which is wavelet-HHL_glcm_
ClusterShade, thatmeasures the skewness of GLCM features under
wavelet transform. A higher ClusterShade indicates greater
asymmetry. According to the above results, it can be seen that
different feature selection methods select different features, and
there is a great inconsistency between the selected features.
A B C

FIGURE 3 | Feature selection process performed on different datasets through different feature selection methods. Each row represents different datasets;
(I) Dataset 1. (II) Dataset 2. (III) Dataset 3. (IV) Merged dataset. Each column represents feature selection methods; (A) mRMR. (B) Lasso. (C) SFS.
Frontiers in Oncology | www.frontiersin.org 637
TABLE 2 | Commonly selected features.

mRMR SFS Lasso Common features

dataset 1 24 28 28 wavelet-LLH_firstorder_Skewness

dataset 2 17 13 9 None

dataset 3 17 24 7 None

merged dataset 29 46 29 wavelet-HHL_glcm_ClusterShade
January 20
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Classification Result
It can be seen from the previous section that different feature
selectionmethods selected distinct feature subsets. To evaluate these
feature subsets, we used three classifiers for modeling and analysis.
Taking the SVM method as an example, Figures 4–6 show the
ROC curves of different datasets that obtained by three feature
selection methods. The left column of each figure shows the 5-fold
cross-validated ROC curves of the training dataset, and the right
column shows the ROC curves of the testing dataset.

Whendataset 1wasused tobuild themodel andmRMRmethod
was used to select features, the average AUC value of 5-fold cross
Frontiers in Oncology | www.frontiersin.org 738
validation was 0.71, and the AUC value in dataset 2 and 3were 0.56
and0.59, respectively.WhenSFS feature selectionmethodwasused,
the average AUC value of 5-fold cross validation was 0.87, and the
AUC value in dataset 2 and dataset 3 were 0.56 and 0.56,
respectively. When Lasso feature selection method was used, the
averageAUCvalue of 5-fold cross validationwas 0.79, and theAUC
values in dataset 2 and dataset 3 were 0.61 and 0.64, respectively.

When dataset 2 was used to build the model and mRMR
method was used to select features, the average AUC value of 5-
fold cross-validation was 0.54, and the AUC values in dataset 1
and dataset 3 were 0.54 and 0.55, respectively. When SFS feature
FIGURE 4 | ROCs of different datasets achieved through mRMR and SVM. Each row represents different datasets; (I) Dataset 1. (II) Dataset 2. (III) Dataset 3.
(IV) Merged dataset.
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selection method was used, the average AUC value of 5-fold
cross-validation was 0.73, and the AUC values in dataset 1 and
dataset 3 were 0.55 and 0.57, respectively. When Lasso feature
selection method was used, the average AUC value of 5-fold
cross-validation was 0.70, and the AUC values in dataset 1 and
dataset 3 were 0.64 and 0.57, respectively.

When dataset 3 was used to build the model and mRMR
method was used to select features, the average AUC value of 5-
fold cross-validation was 0.65, and the AUC values in dataset 1
and dataset 3 were 0.60 and 0.57, respectively. When SFS feature
selection method was used, the average AUC value of 5-fold
Frontiers in Oncology | www.frontiersin.org 839
cross-validation was 0.85, and the AUC values in dataset 1 and
dataset 3 were 0.58 and 0.57, respectively. When the Lasso
feature selection method was used, the average AUC value of
5-fold cross-validation was 0.75, and the AUC values in dataset 1
and dataset 3 were 0.60 and 0.57, respectively.

When the merged dataset was used to build the model and
mRMRmethod was used to select features, the average AUC value
of 5-fold cross-validation was 0.78, and the AUC value in the
testing set was 0.76. When the SFS feature selection method was
used, the average AUC of 5-fold cross-validation was 0.86, and the
AUC value in the test set was 0.79. When the Lasso feature
FIGURE 5 | ROCs of different datasets achieved through SFS and SVM. Each row represents different datasets; (I) Dataset 1. (II) Dataset 2. (III) Dataset 3.
(IV) Merged dataset.
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selection method was used, the average AUC value of 5-fold cross-
validation was 0.82, and the AUC value in the test set was 0.79.

It can be seen from the above results that although different
feature selection methods selected different features, relatively
consistent classification results were obtained under different
classifiers, among which Lasso feature selection method achieved
the best classification results. When using datasets 1–3 for
modeling, the results on the testing set were poor, with AUC
values ranging from 0.54 to 0.64. According to the definition of
AUC value, in the range of [0.5–0.7], although the model has
certain prediction ability, its prediction level is relatively poor.
Frontiers in Oncology | www.frontiersin.org 940
The AUC values of 0.76, 0.78, and 0.79 in the testing set of the
merged dataset were obtained respectively, showing good
predictive performance.

For further analysis, we evaluated the accuracy, sensitivity,
specificity and AUC values of different models. The results are
shown in Table 3. When modeling with dataset 1, the average
accuracy, sensitivity, specificity, and AUC values on dataset 2
were 0.45, 0.73, 0.36, and 0.58, respectively; the average accuracy,
sensitivity, specificity, and AUC values on dataset 3 were 0.64,
0.70, 0.43, and 0.59, respectively. When modeling with dataset 2,
the average accuracy, sensitivity, specificity, and AUC values on
FIGURE 6 | ROCs of different datasets achieved through Lasso and SVM. Each row represents different datasets; (I) Dataset 1. (II) Dataset 2. (III) Dataset 3.
(IV) Merged dataset.
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dataset 1 were 0.48, 0.40, 0.69, and 0.57, respectively; the average
accuracy, sensitivity, specificity, and AUC values on dataset 3
were 0.46, 0.41, 0.67, and 0.56, respectively. When modeling with
dataset 3, the average accuracy, sensitivity, specificity and AUC
values on dataset 1 were 0.62, 0.72, 0.38, and 0.58, respectively;
the average accuracy, sensitivity, specificity, and AUC values on
dataset 2 were 0.47, 0.69, 0.40, and 0.58, respectively. When
modeling with the merged dataset, the average accuracy,
sensitivity, specificity and AUC values on the testing set were
0.74, 0.77, 0.68, and 0.78, respectively. Based on the above results,
it can be seen that the classification results are the best when
using the merged dataset for modeling.
DISCUSSION

This paper studied the subtype differentiation of NSCLC based on
radiomics analysis. The identification of histological types of
NSCLC is essential for treatment, and many studies have been
conducted and demonstrated the potential ability of radiomics.
However, existing studies usually focus on relatively small datasets
and lack multi-center external validation datasets, resulting in a
high risk of over-fitting, so the model’s generalization performance
cannot be adequately verified. Besides, the methods used in many
studies are relatively simple, and few feature selection and classifier
methods are compared. The differences between different methods
are not fully discussed, which reduces the credibility of the model
and limits its clinical application.

To solve the above problems, we retrospectively studied three
independent datasets from different centers, where each dataset
was used to train the model and tested in the remaining two
datasets. Then all the datasets were combined into a large dataset
and randomly divided into training and testing sets for modeling
and analysis. For each form of dataset division, a corresponding
radiomics model was constructed. The experimental results show
that each model’s performance is quite different, and the model
based on the merged dataset obtains the best performance.

The feature subsets selected by different feature selection
methods vary greatly, which is also the difficulty of radiology
research. How to select the most effective feature subset is a
complex feature engineering problem, especially in radiomics
research. Besides, how to ensure the interpretability of features is
another difficulty in applying radiomics models to the clinic. In
future work, we will continue to conduct research in this field by
combining doctors’ qualitative semantic features and deep learning
Frontiers in Oncology | www.frontiersin.org 1041
features, and using ensemble methods to select interpretable and
distinguishable features.

Generalization ability is an important index in radiomics
research. The samples we studied came from different centers,
with different imaging methods and a wide range of demographic
information. The experimental results show that the performance
of the other centers’ datasets was poor when only one dataset was
used formodeling. The results put forward a requirement for future
radiomics research; that is, to better apply it to clinical practice, it is
necessary to collect as much multi-center datasets as possible in
order to learn the common feature representation. When using
multi-center datasets, the imaging quality is another issue that
needs to pay attention. Some notableworks have discussed imaging
quality issues (28–30), which inspire us to carry out future work.

The curse of dimensionality is a huge challenge in the
radiomics analysis, so feature selection is an essential step. Many
studies have discussed the performance of different feature
selection methods. Qian et al. (31) evaluated 12 feature
selectionmethods and 7 classification methods to distinguish
glioblastoma from solitary brain metastases and found that the
Lasso feature selection and SVM classifier obtained the highest
AUC. Wu et al. (11) investigated 24 filter-based feature selection
methods and 3 classification methods for the classification of lung
cancer histology, and found that the ReliefF feature selection
method has higher prediction accuracy than other methods. In
this study, we studied three widely used feature selection methods,
namely mRMR, Lasso and SFS. The experimental results
demonstrated that although different feature selection methods
selected different features, relatively consistent classification results
were obtained under different classifiers, among which Lasso
feature selection method achieved the best classification results.

Since the sampleswe studied came fromdifferent institutions, the
process of tumor segmentation by different radiologists and the
repeatability of radiomic featuresmay vary significantly. Subjectivity
may occur in the determination of tumor volume and tumor
boundaries, leading to uncertainties of tumor segmentation, which
may adversely affect the repeatability of radiomic features. It is
widely acknowledged that it is difficult to precisely delineate the
tumor volume due to the similar characteristics between organs and
tumors, as well as the differences in shape and size of the tumor.
Moreover, medical images are far from perfect because they have
limited resolution and may contain artifacts. Physicians often
interpret tumors differently based on their skills and experiences.
Since radiomic features are calculated based on the tumor masks,
the uncertainties of the tumor segmentation significantly affect
the features, resulting in poor generalization performance of the
TABLE 3 | Classification results of different testing sets.

Training set Testing set Accuracy Sensitivity Specificity AUC

Dataset 1 Dataset 2 0.45 0.73 0.36 0.58
Dataset 3 0.64 0.70 0.43 0.59

Dataset 2 Dataset 1 0.48 0.40 0.69 0.57
Dataset 3 0.46 0.41 0.67 0.56

Dataset 3 Dataset 1 0.62 0.72 0.38 0.58
Dataset 2 0.47 0.69 0.40 0.58

Merged training set Merged testing set 0.74 0.77 0.68 0.78
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prediction models (32). With the development of computer vision
and deep learning, automatic tumor segmentation may help
radiomics studies. One of our recent work shows that the
classification results based on automated segmentation and
ground truth segmentation have no significantdifferences in
computer-aided glioma grading task (33). In the future work, we
will combine the automatic segmentation method for
radiomics research.
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Background: Positron emission tomography is known to provide more accurate
estimates than computed tomography when staging non–small cell lung cancer. The
aims of this prospective study were to contrast the short-term efficacy of the two imaging
methods while evaluating the effects of hypo-fractionated radiotherapy in non-small cell
lung cancer, and to establish a short-term efficacy prediction model based on the
radiomics features of positron emission tomography.

Methods: This nonrandomized-controlled trial was conducted from March 2015 to June
2019. Thirty-one lesions of 30 patients underwent the delineation of the regions of interest
on positron emission tomography and computed tomography 1 month before, and 3
months after hypo-fractionated radiotherapy. Each patient was evaluated for the
differences in local objective response rate between the two images. The Kaplan Meier
method was used to analyze the local objective response and subsequent survival
duration of the two imaging methods. The 3D Slicer was used to extract the radiomics
features based on positron emission tomography. Least absolute shrinkage and selection
operator regression was used to eliminate redundant features, and logistic regression
analysis was used to develop the curative-effect-predicting model, which was displayed
through a radiomics nomogram. Receiver operating characteristic curve and decision
curve were used to evaluate the accuracy and clinical usefulness of the prediction model.

Results: Positron emission tomography-based local objective response rate was
significantly higher than that based on computed tomography [70.97% (22/31) and
12.90% (4/31), respectively (p<0.001)]. The mean survival time of responders and non-
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responders assessed by positron emission tomography was 28.6 months vs. 11.4
months (p=0.29), whereas that assessed by computed tomography was 24.5 months
vs. 26 months (p=0.66), respectively. Three radiomics features were screened to establish
a personalized prediction nomogram with high area under curve (0.94, 95% CI 0.85–0.99,
p<0.001). The decision curve showed a high clinical value of the radiomics nomogram.

Conclusions: We recommend positron emission tomography for evaluating the short-
term efficacy of hypo-fractionated radiotherapy in non-small cell lung cancer, and that the
radiomics nomogram could be an important technique for the prediction of short-term
efficacy, which might enable an improved and precise treatment.

Registration number/URL: ChiCTR1900027768/http://www.chictr.org.cn/showprojen.
aspx?proj=46057
Keywords: positron emission tomography, radiomics, non-small-cell lung cancer, computed tomography, hypo-
fractionated radiotherapy
INTRODUCTION

Lung cancer is the most common cancer type and the leading cause
of cancer-associated mortality worldwide (1). Hypo-fractionated
radiotherapy (HFRT) includes stereotactic body radiation therapy
(SBRT) and hypo-fractionated brachytherapy, both of which deliver
a high biologically effective dose (BED) to the tumor while
minimizing toxicity to the normal tissues. Therefore, HFRT can
prompt superior local control and improved survival (2).

Currently, lung cancer treatment efficacy evaluation is
mostly based on computed tomography (CT) (3). However,
CT being a structural imaging, has limited value in the
detection of an early response to therapy, and the tumors
could be obscured by atelectasis and radiation pneumonitis
(4). Instead, functional imaging with 18F-fludeoxyglucose
positron emission tomography (18F-FDG PET) may promote
accurate and early assessment of therapy response (5–7). In
addition, recent studies have demonstrated that radiomics has
been successfully used to stage the tumor, assess the side effects,
and predict the clinical endpoints in lung cancer (8–10).
However, to our knowledge, few studies have focused on
contrasting the efficacy of PET and CT in peripheral non-
small cell lung cancer (NSCLC) after HFRT treatment as well as
on the development of a prediction model of local short-term
efficacy based on PET radiomics.

Therefore, the main objectives of this prospective trial were to
investigate the differences between short-term efficacy of PET
and CT while evaluating the effects of HFRT in peripheral
NSCLC, and to screen the efficacy-related radiomics features of
PET imaging and use those to establish a prediction model.
MATERIALS AND METHODS

Patients
PET imaging was performed as a part of the phase I/II clinical
trial (Clinicaltrials.gov number: ChiCTR1900027768) that
evaluated the efficacy of HFRT in patients with pathologically
245
confirmed NSCLC. The patients who underwent HFRT for
primary NSCLC (T2-4N0-3M0-1) at our hospital, between
March 2015 and June 2019 were enrolled in this study.
Eventually, 31 lesions of 30 patients underwent serial 18F-FDG
PET/CT 1 month before HFRT and 3 months after HFRT on the
same scanner. The TNM stage was designated according to the
American Joint Committee on Cancer Staging 8th edition
(AJCC) (11). The N and M staging was based on pre-
treatment PET/CT and magnetic resonance imaging (MRI).
Additionally, all patients underwent pathological diagnosis for
the lung lesion before undergoing treatment. The first follow-up
imaging examination was performed 4–12 weeks after
radiotherapy. After that, patients were monitored every three
months in the first year, every six months in the next two years,
and once a year thereafter. Because the patients lived in remote
places, the scan was occasionally performed outside these limits.
The study was approved by the Research Ethics Committee of
the Affiliated Hospital of Southwest Medical University (Date of
approval by ethics committee and approval number: 2013-8-26,
and KY2019276, respectively) and conducted in accordance with
the Declaration of Helsinki (as revised in 2013) and its later
amendments or comparable ethical standards. Written informed
consent was obtained from all individual participants included in
the study.

Treatment
All patients were treated with radiotherapy planning system (TPS)
(Oncentra 4.3, Elekta, Sweden). Then, 19 out of 30 patients were
treated with hypo-fractionated brachytherapy, delivered with an 192Ir
source from a MicroSelectron afterloader (Elekta Brachytherapy,
Elekta AB, Stockholm, Sweden), and these patients were
administered a single dose of 30Gy, as recommended by a
previous clinical trial (12). The remaining 11 patients were treated
with SBRT that was delivered in 3–5 fractions to a total of 23–50Gy.
After radiotherapy, concurrent platinum-based doublet adjuvant
chemotherapy was allowed. In addition to cisplatin (or
carboplatin), a second concurrent nonplatinum agent was required
(e.g., paclitaxel, etoposide).
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PET and CT Scanning Acquisition and
Processing
Patients fasted for at least 6 h before 18F-FDG was administered.
The patient’s blood glucose level should have been ≤ 11 mmol/L.
The PET-CT was performed according to the European
Association of Nuclear Medicine (EANM) guidelines version
1.0 (13). A whole-body PET-CT (Philips Gemini TF/16; Philips,
Cleveland, Ohio, USA) was performed after the intravenous
administration of 18F-FDG (5.55 MB q/kg). Then, low-dose
helical CT transmission scanning (pitch, 0.813; current, 100
mAs; peak voltage, 120 kV; slice thickness, 5.0 mm) was
performed with attenuation correction and lesion localization.
PET was then performed at 1.5 min per bed position and used
19–21 bed positions. 18F-PET/CT scanning was performed from
the vertex of the head to the feet. In order to reduce the impact of
respiratory motion on image acquisition and ensure the
credibility of the research results, chest scans were conducted
after having the patients hold their breath.

Assessment of Local Objective
Response Rate
The PET-only and CT-only images were both sent to the three-
dimensional (3D) radiotherapyplanning system (TPS) (Oncentra 4.3,
Elekta, Sweden) via the local area network. One physician with more
than15yearsof experiencewithPETandCTinperipheral lungcancer
and regions of interest (ROI) definition performed the analyses after
being blinded to the patient outcome data. Nodal disease was not
included in the analysis. PET-based ROI delineation was carried out
before and afterHFRTwith standard uptake value (SUV) of 2.5 as the
initial threshold (14, 15). Mean standard uptake value (SUVmean),
maximum standard uptake value (SUVmax), metabolic tumor
volume (MTV), and longest diameter (Dmax) were calculated for
the ROI based on PET. CT-based ROI was manually drawn by the
same physician with lung windows (window width, 1600 Hounsfield
units [HU]; window level, 600 HU). Volume and longest diameter
from the ROI based on CT were also calculated. CT-only scans were
assessed for response using Response evaluation criteria in solid
tumors (RECIST1.1) (16) after the treatment, and PET-based
response criteria used in this study were according to the European
Organization for Research and Treatment of Cancer (EORTC) (17)
that were based on an assessment of the SUVmaxmeasured through
ROI analysis. The terms for the response categories were the same for
both CT and PET: complete response (CR), partial response (PR),
stable disease (SD), and progressive disease (PD).

Radiomic Processing
The workflow for radiomic processing included the following four
steps: image acquisition and reconstruction, image segmentation,
feature extraction, and data analysis (18, 19). The first two steps
involving collection of PET images and delineation of the ROI were
described in the above section.The feature extractionanddefinition in
this study were consistent with the Imaging Biomarker
Standardization Initiative (IBSI) (20). The feature extraction process
was divided into image processing and feature calculation. For each
ROI based on PET image, a resampled 4×4×4 mm3 voxel size and a
bin width of 25 were applied (21). After image processing, Due to the
Frontiers in Oncology | www.frontiersin.org 346
characteristics of medical images, filter properties are important for
image analysis methods. Filtering properties including geometric
invariances for medical image analysis directional sensitivity,
combining directional sensitivity and invariance to local rotations,
spectral coverage (22). We used wavelet which is a filtering method
basedonacollectionwith eight combinationsof applyingeither ahigh
or a low pass filter and cover the entire image spectrum as study filter.
Wavelets families contains the followingwavelet groups: “haar,” “db,”
“sym,”“coif,”“bior,”“rbio,”“dmey” (22).After those, all featureclasses
with theexceptionof shapecanbecalculatedontheoriginal imageand
a derived image which obtained by applying wavelets filter. Feature
extraction was based on the 3Dslicer platform and used the
pyradiomics package, which is available at: http://PyRadiomics.
readthedocs.io/en/latest/, accessed June 30, 2019 (23).

Statistical Analysis
We assessed the differences between all parameters observed by
CT and PET using the Wilcoxon signed-rank test or paired t test
after ascertaining whether the parameters were normally
distributed using the Shapiro-Wilks test. The delta-parameters
of the CT and PET were identified by the prefix “D.”

Tumor response to HFRT was analyzed using PET and CT
independently. Patients were then grouped as responders (CR+PR)
or non-responders (SD+PD). The difference of ORR between PET
and CT was assessed using the Mann-Whitney U test. The Kaplan
Meier method was used to analyze the local objective response and
subsequent survival duration of the two imaging methods.

The least absolute shrinkage and selection operator (LASSO)
regression analysis was used to screen out the radiomics features
related to responders, and logistic regression analysis was used to
develop the curative-effect-predicting model. To assess the
probability of short-term efficacy in individuals, we built the
radiomics nomogram based on multivariable logistic analysis.
Receiver operating characteristic (ROC) curve and area under
the curve (AUC) were used to assess the accuracy of the
prediction model. To ensure radiomic robustness, we
performed 1,000 bootstrap resamples to check the agreement
between our prediction based on radiomics and actual
observation. The net benefit was quantified by the decision
curve analysis to determine the clinical applicability of the
PET-based radiomics nomogram prediction model.

All statistical analyses were performed using SPSS, Version
17.0 software (SPSS, Inc., Chicago, IL) and R software, version
3.6.3 (R Foundation for Statistical Computing, Vienna, Austria),
using the glmnet, rms, and pROC analysis packages for
Windows. The level of statistical significance was defined as a
p value less than 0.05 based on 2-sided tests.
RESULTS

Baseline Characteristics and Follow-Up
From March 2015 to June 2019, 30 patients with peripheral
NSCLC were enrolled. The baseline clinical characteristics of
these patients are listed in Tables 1 and 2.

Survival was measured from the date of completing
radiotherapy to the date of death from any cause since April
February 2021 | Volume 11 | Article 590836
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2020. Patients who were still alive at the date of last contact were
censored at deadline. Only one patient was lost to follow-up
before the deadline date; nine patients died and the rest were still
alive. Estimated median follow-up duration was 16 months.

Comparison of PET- and CT-based
Response Assessments
The PET based efficacy in all 31 lesions was assessed as CR (n=0),
PR (n=22), SD (n=6), and PD (n=3), while the same according to
CT was CR (n=0), PR (n=4), SD (n=23) and PD (n=4).
Comparisons for all patients are shown in Figure 1. For these
patients assessable by both PET and CT, there was a poor
agreement between the two assessments, with a weighted
kappa value of 0.114. A significantly higher number of patients
were regarded as responders on PET than on CT in the patients
assessable by both techniques (22 vs. four patients respectively;
p<0.001). All differences between parameters observed by CT
and PET are listed in Table 3. A representative case of an
individual patient exemplifying the different CT and PET/CT
response is shown in Figure 2.

Effect of Chemotherapy on Treatment
Evaluation
In order to explore the effect of chemotherapy after radiotherapy
on the evaluation of short-term efficacy, the patients were divided
TABLE 2 | Patient TNM staging, duration and type of chemotherapy, and duration of response.

Patient no. Stage Type of chemotherapy Chemotherapy cycle Duration of response (month)

1 T3N0M1 Pemetrexed+cisplatin 4 3
2 T4N2M0 Etoposide+ cisplatin 3 6
3 T3N2M0 None \ 3
4 T4N0M1 None \ 3
5 T4N2M1 None \ 3
6 T4N3M1 None \ 1
7 T4N2M1 None \ 3
8 T2N3M0 Paclitaxel+ carboplatin 2 3
9 T4N3M0 Etoposide+ cisplatin 4 6
10 T2N2M0 None \ 6
11 T4N2M1 None \ 6
12 T4N3M1 Etoposide+ cisplatin 3 6
13 T4N2M1 Paclitaxel+ carboplatin 1 1
14 T4N2M1 Paclitaxel+ carboplatin 1 1
15 T4N2M1 Paclitaxel+ carboplatin 1 3
16 T4N2M0 None \ 6
17 T2N3M0 None \ 1
18 T4N1M1 None \ 3
19 T4N3M1 None \ 1
20 T3N1M1 None \ 1
21 T3N1M1 None \ 3
22 T4N0M0 None \ 3
23 T3N3M1 None \ 6
24 T2N1M1 None \ 3
25 T4N3M1 None \ 3
26 T4N3M1 None \ 3
27 T4N3M1 None \ 6
28 T1N2M1 Etoposide+carboplatin 3 3
29 T4N2M1 None \ 1
30 T2N1M1 None \ 1
February 202
TABLE 1 | Characteristics of the patients.

Characteristics Median (Range) or Number (%)

Age (y) 55.5 (43–77)
Gender
Male 24 (80.00)
Female 6 (20.00)

Stage
IIIA~IIIC 8 (26.67)
IVA~IVB 22 (73.33)

Histology
Adenocarcinoma 22 (73.33)
Squamous carcinoma 8 (26.67)

Smoking
Yes 18 (60.00)
No 12 (40.00)

KPS
70~80 15 (50.00)
90~100 15 (50.00)

ECOG
0 15 (50.00)
1~2 15 (50.00)

Location
Left 13 (41.94)
Right 18 (58.06)

Radiotherapy
Stereotactic body radiation therapy 12 (38.71)
Hypo-fractionated brachytherapy 19 (61.29)
KPS, Karnofsky Performance Status; ECOG, Eastern Cooperative Oncology Group.
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into two groups: post radiotherapy chemotherapy group
(Chemotherapy) and non-chemotherapy treatment group
(None). The difference of curative effect between the two groups
was compared. The results showed that there was no significant
difference between the patients receiving chemotherapy and those
who did not receive chemotherapy (Figure 3, p=0.374), that is, no
matter whether chemotherapy was carried out after radiotherapy,
the short-term efficacy evaluation of patients had no influence.

Prognostic Significance of Response
Assessments
The mean survival time of responders and non-responders
assessed by PET was 28.6 months vs. 11.4 months, whereas
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that assessed by CT was 24.5 months vs. 26 months, respectively.
In PET assessment, the survival duration of responders was
longer than that of non-responders, whereas CT assessment had
the opposite result. Thus, the PET responses seem to be stronger
prognostic indicators than the CT responses. However, neither
the PET nor CT scan assessments of response had a significant
difference in subsequent survival duration between the
responders and non-responders (Figures 4A, B).

Radiomics Feature Selection and
Response Prediction
All 851 radiomics features were extracted, including
Shape features, First Order statistical features, Gray Level
A B

FIGURE 1 | Relative change rate of longest diameter and maximum standard uptake value (SUVmax) in each patient. Best overall response waterfall plots, in which
computed tomography (CT) (A) is based on the rate of longest diameter changes, according to RECIST 1.1, and positron emission tomography (PET) (B) is based
on the rate of SUVmax changes, according to European Organization for Research and Treatment of Cancer (EORTC). The top dotted line represents progressive
disease, the bottom dotted line represents partial response, or complete response, while, stable disease is represented by the area between the two dotted lines.
TABLE 3 | Comparison of difference variables and short-term efficacy assessment based on PET and CT.

Variable PET/CT CT p Value

Tumor volume (cm³)
VB 25.31 (14.92,89.79) 28.54 (15.05,76.95) 0.337†

VL 6.40 (2.14,14.46) 18.25 (8.59,67.02) <.001†

DV −18.07 (−63.04, −8.58) −13.93 (−49.56, 5.03) <.001†

D-max (cm)
DB 5.19 (3.53,6.80) 5.30 (3.99,7.38) 0.019†

DL 3.19 (1.62,3.93) 4.59 (3.83,7.83) <.001†

DD −1.66 (−3.81, −0.73) −0.35 ± 1.30 <.001†

SUVmeanB 4.78 (3.92,5.47) / /
SUVmaxB 9.92 (7.52,11.77) / /
SUVmaxL 4.72 (3.31,7.83) / /
DSUVmax −4.17 ± 5.25 / /
Efficacy§ <.001‡

Responders 22 (70.97%) 4 (12.90%)
Non-responders 9 (29.03%) 27 (87.10%)
February 2021 | Volume 11 | Article
PET, positron emission tomography/computed tomography; CT, computed tomography; the suffix B, value of volume/longest diameter before brachytherapy; the suffix L, value of volume/
longest diameter after hypo-fractionated brachytherapy (HFBT). Use mean ± SD for normally distributed data and interquartile ranges (IQRs) for data that are not normally distributed.
DV=VL– VB, DD=DL – DB, DSUVmax=SUVmaxL–SUVmaxB.
†p value of the Wilcoxon signed rank test.
‡p value of the McNemar test continuity correction.
§PET-based and CT-based evaluation of efficacy is according to the European Organization for Research and Treatment of Cancer (EORTC)and Response Evaluation Criteria in Solid
Tumors (RECIST 1.1) respectively; complete response or partial response means responders, progressive disease or stable disease means non-responders.
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Co-occurrence Matrix (GLCM) features, Gray Level Dependence
Matrix (GLDM) features, Gray Level Run Length Matrix
(GLRLM) features, Gray Level Size Zone Matrix (GLSZM)
features, and Neighboring Gray Tone Difference Matrix
Frontiers in Oncology | www.frontiersin.org 649
(NGTDM) features. Among the radiological features, 851
features were reduced to three potential predictors based on 31
lesions (Figure 5), which were Busyness of NGTDM of wavelet-
LHL, Short Run High Gray Level Emphasis of GLRLM of
wavelet-LHH, and Median of First order of wavelet-HHH.
These three features were used to establish a model that is
presented as a nomogram in Figure 6. Based on the ROC
curve analysis, the model with high AUC (0.94, 95% CI 0.85–
0.99, p<0.001) is presented in Figure 7A, and the decision curve
analysis for the model is presented in Figure 7B. The decision
curve indicates that if the threshold probability of a patient is
40%, then the use of radiographs from the current study to
predict treatment outcomes would add more benefits than the
“treat-all-patients” or “treat-none” options.
DISCUSSION

Currently, CT is the recommended method for response
assessment in NSCLC as per the RECIST guidelines. There is
insufficient standardization or evidence to abandon anatomical
assessment of tumor burden, or to determine if it is appropriate
to replace the unidimensional anatomic assessment with either
volumetric anatomical assessment or functional assessment with
FIGURE 2 | Example of discordant positron emission tomography (PET/CT) and computed tomography (CT). (A, B) show pretreatment CT and PET/CT images
respectively, and (C, D) show CT and PET/CT images of the large tumors 3 months after treatment. The red regions of interest (ROI) is manually segmented based
on CT, and the green ROI is delineated according to SUV value higher than 2.5 based on PET. According to the images before and after treatment, CT shows stable
disease; PET/CT shows partial response.
FIGURE 3 | Effect of chemotherapy on treatment evaluation. The patients
were divided into two groups: chemotherapy group after radiotherapy
(Chemotherapy) and group without chemotherapy after radiotherapy (None).
The difference of short-term efficacy between the two groups was compared.
February 2021 | Volume 11 | Article 590836
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PET (16). Some studies have revealed that PET has better
evaluation validity than CT in patients with both NSCLC (7)
and small cell lung cancer (24). Our data revealed that among
such patients, who are assessable by both techniques, more
patients were regarded as responders on PET than on CT. The
local ORR of patients according to PET was 70.97%, whereas the
corresponding CT evaluation found that to be 12.90%.
Moreover, when the efficacy evaluation was compared between
CT and PET, only eight lesions (25.81%) were evaluated
uniformly, of which, four were evaluated as PR and four were
evaluated as SD. Some researchers have previously reported that
PET/CT-derived tumor volumes were smaller than those derived
by CT alone in case of locally advanced-stage peripheral lung
cancer before radiotherapy treatment (25). However, we found
that the volumes of ROIs, delineated by PET and CT before
HFRT, were similar. In contrast, Dmax of ROIs delineated using
PET before and after HFRT, and the volumes of ROIs after
HFRT delineated using PET were significantly smaller than that
of ROIs outlined using CT, as shown in Table 3, mainly because
CT was not very sensitive to distinguish between atelectasis and
lung cancer. Moreover, radiation therapy may result in
radiation-induced lung opacity (RILO) on CT (5), such as
ground-glass opacity, scar or fibrotic changes, consolidation
with air-bronchogram, consolidation alone, and nodule. These
RILOs may result in a larger size and diameter of the tumor being
observed on the CT, which may overestimate the progressive
Frontiers in Oncology | www.frontiersin.org 750
disease during exclusive assessment of efficacy via the CT. A
previous study had also suggested that the combined PET/CT to
evaluate post-treatment response would increase the correct
identification of patients with progressive disease after lung
SBRT (26). While investigating the differences in the PET and
A

B

FIGURE 4 | Relationship between survival time and response evaluated by
positron emission tomography (PET) and computed tomography (CT) scan.
(A) Comparison of positron emission tomography scan response categories.
(B) Comparison of computed tomography scan response categories.
A

B

FIGURE 5 | Process of LASSO regression screening of radiomics features.
Screening radiomics features using the least absolute shrinkage and selection
operator (LASSO) binary logistic regression model. (A) Tuning parameter (l) in
the LASSO model used 5-fold cross-validation. Dotted vertical lines are drawn
by using the minimum criteria and the 1 standard error of the minimum
criteria. (B) 851 normalized lasso coefficient plots of radiomics features. When
log (l) takes the minimum criteria, three non-zero coefficients are selected.
FIGURE 6 | A radiomics nomogram that predicts the probability of effective
treatment. Feature1: Wavelet.LHL_NGTDM_Busyness; Feature2:
Wavelet.LHH_GLRLM_ShortRunHighGrayLevelEmphasis; Feature3:
Wavelet.HHH_Firstorder_Median.
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CT based response assessment, we also report significant
statistical differences between the two methods. As shown in
Figure 1, only six patients were considered SD based on PET,
whereas 23 patients were considered SD based on CT. According
to our study, PET assessment is better than CT assessment in
reflecting the prognosis of patients. Although there was no
significant difference in the survival time between the two
groups of patients, this may be due to the small sample size or
short follow-up time. Based on the above data, we recommend
that PET would be better than CT when evaluating the
efficacy of HFRT in NSCLC, since the change in tumor
volume may be slower than the metabolic change discernable
by PET; additionally, CT scan may not accurately reflect the
therapeutic effect on the tumor in time, which may lead to
unnecessary overtreatment.

Since each patient’s sensitivity to treatment is inconsistent,
the prognosis may be completely different even in patients who
are in the same cancer stage and receive the same treatment (27).
Therefore, early prediction of treatment response is particularly
important for identifying patients who may or may not benefit
from treatment.

FDG uptake is not only related to increased metabolism, but
also to other physiological parameters, such as cell proliferation
(28), perfusion, invasiveness, and hypoxia (29). Therefore,
radiomics can obtain several data contained in the PET image
through non-invasive means. Many quantitative features of PET
can be calculated during treatment of the patient. This principle
of extracting image features is termed as “radiomics” that has
been recently studied in esophageal cancer (30), NSCLC (31, 32),
breast cancer (33), nasopharyngeal carcinoma (34), and rectal
cancer (35), and demonstrated its potential in predicting
treatment efficacy or patient prognosis.

PET-based radiomics had a high sensitivity in AUC for
predicting the efficacy of radiochemotherapy in esophageal
cancer (76%–92%) (30). In the prediction of the efficacy of
adjuvant therapy for rectal cancer, the AUC of radiomics based
on PET and MRI was up to 0.86 (35). Our model based on PET
radiomics has an AUC of 0.94, indicating that PET radiomics
plays a significant role in predicting the treatment efficacy in
non-small cell lung cancer. The most important use of
nomograms is based on explaining the individual’s need for
further treatment. Therefore, in order to prove its clinical value,
we evaluated whether the radiomics nomogram assisted
decision-making could add more benefits to the patients
through the novel method of decision curve, which estimated
the net benefit. (Net benefit was defined as the proportion of true
positives minus the proportion of false positives, weighted by the
relative harm of false-positive and false-negative results) (36).

The key to ensure the accuracy, generalization and repeatability
of radiomics prediction is accurate and high repeatability ROI
segmentation. In this study, all ROI are manually segmented.
However, manual segmentation has the disadvantages of time-
consuming and low repeatability of tumor volume description.
Automatic or semi-automatic methods can make up for these
defects. Recently, a lot of research on automatic segmentation is
increasing rapidly. The fully automatic multi-mode PET/MRI
Frontiers in Oncology | www.frontiersin.org 851
segmentation method proposed by some scholars is an operator
independent method, which can help clinicians to outline
containing both metabolic and morphological information (37).
Some studies have shown that, compared with traditional manual
segmentation radiomics approaches, the survival model of
automatic tumor segmentation based on neural network
segmentation shows significantly higher predictive power (38).
However, there is not enough evidence to prove that automatic
segmentation can replace manual segmentation. We have only
preliminarily discussed the prediction performance of manual
segmentation. We will test accurate automatic segmentation
methods for reliable segmentation.
LIMITATIONS AND CONCLUSION

First, this study is based on a small-sample clinical trial to establish a
training model. For the training sample size, some scholars suggest
that formultiple regression, eachpredictionvariableneeds at least 10
observations to produce a reasonable and stable estimate (39). In our
study, three features are selected as the final model, and the
minimum data size is 30. Due to the limited sample size, in order
to make the model more accurate, we use all the collected cases to
A

B

FIGURE 7 | Receiver operating characteristic (ROC) and decision curve for
the model. The ROC curve (A) shows the prediction accuracy of the model
(AUC 0.94, 95% CI 0.85–0.99, p < 0.001). In the decision curve (B), the red
line represents the radiomics nomogram. The gray line represents the
assumption that all patients were responders. The thin black line represents
the assumption that all patients were non-responders.
February 2021 | Volume 11 | Article 590836

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jiang et al. PET-Based Radiomics in NSCLC
establish the training set. Like the previous small sample study (40),
this study uses bootstrap resampling method to extract multiple
samples from the original samples, generate simulation data, and
compare these data results with the actual results to prove the
robustness of the statistical data. In order to better understand
whether the different short-termefficacy evaluationsobtained by the
two imaging techniques are related to the patient’s long-term
prognosis, we plan to increase the follow-up time to calculate the
3-or 5-year overall survival rates, and respective disease-free survival
rates. Finally, our model needs to be validated through further
prospective research, although it showed a high predictive power.
Though we have accord with the requirement of the minimum
sample size in training set and used LASSO regression to avoid
overfitting (41), we still need to increase the sample size and set the
training set to further avoidoverfitting.Wealsoplan to includemore
patients in further prospective studies, wherein some patients will
continue to serve as the training set to increase the repeatability of the
prediction performance of the model by expanding the sample size,
while others will serve as the validation set to verify the accuracy of
the verification model. The study provides further evidence to use
PET to evaluate the efficacy in NSCLC. Our results show that early
18F-FDG-PET could be particularly useful for identifying early
responders, allowing clinicians to avoid overtreatment, and that
the radiomics nomogram could be an important technique for the
prediction of short-term efficacy in patients with NSCLC, which
might enable an improved and precise treatment (41).
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Silvia G. Drago1, Ieva Kurilova1,2, Adriana M. Calin-Vainak1,4, Andrea Delli Pizzi 1,5,
Mirte Muller6, Karlijn Hummelink7, Koen J. Hartemink8, Thi Dan Linh Nguyen-Kim1,2,9,
Egbert F. Smit4, Hugo J. W. L. Aerts1,2,3,10,11 and Regina G. H. Beets-Tan1,2,12*
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Medicine, University of Maastricht, Maastricht, Netherlandsa, 11 CARIM School for Cardiovascular Diseases, University of
Maastricht, Maastricht, Netherlands, 12 Department of Radiology, University of Southern Denmark, Odense, Denmark

Background: Checkpoint inhibitors provided sustained clinical benefit to metastatic lung
cancer patients. Nonetheless, prognostic markers in metastatic settings are still under
research. Imaging offers distinctive advantages, providing whole-body information non-
invasively, while routinely available in most clinics. We hypothesized that more prognostic
information can be extracted by employing artificial intelligence (AI) for treatment
monitoring, superior to 2D tumor growth criteria.

Methods: A cohort of 152 stage-IV non-small-cell lung cancer patients (NSCLC) (73
discovery, 79 test, 903CTs), who received nivolumab were retrospectively collected. We
trained a neural network to identify morphological changes on chest CT acquired during
patients’ follow-ups. A classifier was employed to link imaging features learned by the
network with overall survival.

Results: Our results showed significant performance in the independent test set to
predict 1-year overall survival from the date of image acquisition, with an average area
under the curve (AUC) of 0.69 (p < 0.01), up to AUC 0.75 (p < 0.01) in the first 3 to 5
months of treatment, and 0.67 AUC (p = 0.01) for durable clinical benefit (6 months
progression-free survival). We found the AI-derived survival score to be independent of
clinical, radiological, PDL1, and histopathological factors. Visual analysis of AI-generated
prognostic heatmaps revealed relative prognostic importance of morphological nodal
changes in the mediastinum, supraclavicular, and hilar regions, lung and bone
metastases, as well as pleural effusions, atelectasis, and consolidations.
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Conclusions: Our results demonstrate that deep learning can quantify tumor- and non–
tumor-related morphological changes important for prognostication on serial imaging.
Further investigation should focus on the implementation of this technique beyond
thoracic imaging.
Keywords: artificial intelligence, immunotherapy, checkpoint inhibitors, non small cell lung cancer,
treatment monitoring
INTRODUCTION

Recent advancements in the understanding of the tumor-
immune cell interactions (1, 2) have enabled the development
of novel drugs for the treatment of advanced-stage lung cancer.
Immune checkpoint inhibitors, in particular, have been shown to
provide sustained clinical benefit to patients, especially in the
metastatic setting (3–5).

Metastatic markers that can be used for patient selection (i.e.,
before the start of treatment), as well as for treatment monitoring
(i.e., during treatment), are still under research (6–8). In the
context of oncological research, most predictive/prognostic
markers are derived from tissue samples, routinely-extracted
blood (9), or non-invasive radiological imaging (surrogate
imaging markers). Tissue samples derived from biopsies
(usually taken from anatomically accessible locations) often fail
to account for inter- and intra-lesion heterogeneity, and response
assessed during evaluation of tissue samples of only a few lesions
does not necessarily mean that all lesions have responded in the
same way. Furthermore, serial biopsies during longitudinal
follow-up are cumbersome for the patient but also impractical.
Regardless of biomarker source, monitoring of response to
therapy remains challenging. As such, they are not part of the
routine clinical workflow of patients.

Standard clinical imaging provides a non-invasive overview of
the entire tumor burden and has the potential to more accurately
evaluate the overall response of the patient to the treatment. Yet,
imaging evaluation is currently limited to 2-dimensional
“subjective” measurements of tumor size changes (10), time-
consuming ROI delineation (11, 12), and/or to values
approximating metabolic activity (i.e., SUV values in PET) (6).
By limiting the use of imaging for response evaluation to only
these approaches, many (potentially prognostic) imaging
characteristics are ignored. For example, as the disease evolves
in multiple distal sites, traditional imaging assessment methods
would not account for the microenvironment of each lesion,
despite the fact that several potential prognostic factors (e.g.,
angiogenesis, inflammation, and lymphocytic infiltration) likely
depend on that environment (13). Since immunotherapy is a
systematic treatment modality, changes indicating response are
not limited to one location but can occur all over the body. This
is particularly relevant in patients treated with anti PD-1
blockade where lymphadenopathy (14, 15), parenchymal
inflammations, edema (16, 17), and compression atelectasis
(18), can be observed. Ideally, during image response
evaluation these conditions, together with tumor growth,
255
should be monitored and quantified as they might hold
valuable prognostic information.

Using artificial intelligence (AI), treatment monitoring
tools can be built, capable of rapidly assessing gross
morphological changes between two (or more) follow-up
images of the same patient (19), in a fully-automatic manner,
completely independent of human input. In this context, image
registration can be used as the basis for such a method. At its
core, image-to-image registration is the process of establishing a
voxel-wise match between two radiological images. By
establishing a match, we can measure voxel-level differences
between corresponding objects represented in the images
quantitatively. While conventional registration techniques are
very limited for this application, deep learning-based methods
have shown promise in image-to-image registration (20). There
are three main advantages to using deep learning-based image
registration as the core technique. The first advantage is that
registration networks are trained to match a pair of images,
voxel-wise. This creates a network that is explicitly trained to
quantify differences between two images. By leveraging its
internal features, we can effectively obtain feature vectors that
represent these voxel-wise changes. These vectors can be used for
classification purposes. The second advantage of using image
registration is that it can be trained on large unlabeled datasets
(i.e., lacking any kind of manual annotation, such as
segmentations or RECIST-like measurements), while not
compromising its ability to model voxel-wise details, that are
likely lost in a classical unsupervised autoencoder approach. The
third advantage of using image-to-image registration is that,
unlike standard RECIST, such a method could be fully automatic
and not require any manual input (e.g., two-dimensional
diameter measurements), and not be limited to changes in the
tumor size, but it would also account for global morphological
changes, whether tumor-associated or not, throughout the body.
Applying an image-registration-based AI algorithm in
oncological follow-up imaging enables us to develop a novel
method that can accurately measure gross morphological
changes during treatment. Quantitative measurements of these
changes can then be used for prognostication.

This study aims to investigate the potential prognostic
value of AI-mediated monitoring on CT scans in non-small
cell lung cancer (NSCLC) patients receiving anti-PD-1 immune
checkpoint blockade. Relying on existing technical research on
image-to-image registration, we hypothesize the existence of
quantitative imaging features describing a set of gross
morphological changes during treatment that hold prognostic
March 2021 | Volume 11 | Article 609054
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value. To test this hypothesis, we developed a deep learning
network for thoracic image-to-image registration and studied the
prognostic value of features learned by the network in NSCLC
patients being treated with PD-1 blockade.
1Github: github.com/nki-radiology/PAM
MATERIALS AND METHODS

Study Cohort
For this study, we retrospectively included patients with stage IV
NSCLC treated with anti-PD1 monotherapy within The
Netherlands Cancer Institute-Antoni van Leeuwenhoek
Hospital (NKI-AVL; Amsterdam, The Netherlands) between
2014 and 2016. All patients underwent standardized, imaging-
based tumor response assessment with contrast-enhanced
computed tomography (CT), with follow-up (FU) intervals of
8 to 12 weeks (Supplement 1). We retrieved all available FU
scans within the first two years of treatment, together with a
baseline scan (BL) performed 8 weeks before and up to 1 week
after start of treatment. To encode pre-treatment tumor spread, a
pre-baseline scan (PBL), defined as the first available scan before
BL, was also retrieved when available. The exact dates of each
scan were recorded with respect to the start of treatment (in
days). Patients with only one scan available throughout the entire
treatment regimen, or whose scan would not fully cover the
thorax, were excluded from the analysis. The cohort was divided
into a discovery and independent test set based on the patient
identifier: patients with even ID numbers were assigned to the
discovery set, patients with odd ID numbers were assigned to the
independent test set. The study was carried out at the NKI-AVL
with the approval of the local Institutional Review Board
(IRBd19-083). This cohort is a longitudinal expansion of a
previously described NSCLC cohort (11).

Image Acquisition
The CT scans were performed by either covering the chest or
covering the chest and abdomen using multi-slice CT equipment
(Toshiba Aquilion CX, Minato, Tokyo, Japan; Siemens Somatom
Sensation Open, Erlangen, Germany) with a tube voltage of 120
kVp, slice thickness of 1 mm, and in-plane resolution of 0.75 x
0.75 mm. The bolus injection was performed at 3 ml/s
(Omnipaque 300, GE Healthcare, Chicago, Illinois, US) not
pre-warmed, with a total amount based on the patient weight +
40 cc (minimum of 90 cc and maximum of 130 cc) followed by a
saline flush of 30 cc. The chest CT examinations were performed
40 s after contrast injection, whereas the chest and abdomen
examinations were performed at 70 s.

Data Curation
Radiological datasets are often heterogeneous. To mitigate
differences in radiological image acquisition, all CT scans were
cropped between the liver and the lower neck region using the
method proposed by Zhang et al. (21), and linearly resampled to
2 mm isotropic voxel size. Hounsfield units were clipped between
−120 (fat) and 300 (cancellous bone) and rescaled between 0 and
Frontiers in Oncology | www.frontiersin.org
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1. CT scans were further cropped to 192 x 192 x 160 voxels from
the center point in order to provide the network with regular
image shapes during training.

AI-mediated Quantitative Treatment
Monitoring
To harness AI for quantitative treatment monitoring, we
developed a 3-dimensional convolutional neural network to
perform image-to-image registration between subsequent
follow-ups of the same patient (architecture shown in Figure
1), based on the research of Balakrishnan et al. (22) and Zaho et
al. (23). The network comprised of two subsequent parts: the first
performing affine registration aimed to provide alignment of the
scans (i.e., to correct for different patient positions), the second
section performing deformable registration and aimed to identify
morphological changes during the course of the treatment (i.e.,
longitudinal tracking).

Architecture-wise, the first part of the network consisted of a
VGG-like network comprised of a series of five convolutional
blocks, and two fully-connected layers, regressing the 12
parameters of the affine transform. The output transform of
the network was applied to the moving image, concatenated
to the fixed image, and fed into the second part of the network.
The second part of the network followed a U-Net architecture
(24), and it aimed to quantify non-linear anatomical differences
between the input scans. This consisted of an encoding
section, comprising 4 convolutional blocks downsampling
the images by half the size via striding, a convolutional latent
space with stride of 1, and four deconvolutional blocks each
upsampling the inputs by double the size via striding. Skip
connections were implemented between encoding and
decoding layers following the implementation in the original
paper. The network was trained to minimize the correlation
coefficient loss (23). Unlike standard measurements of classical
registration procedures, this loss is easy to compute in the
continuous case. Three penalties were also employed to
mitigate for unlikely morphological deformations, each
weighted 1/10 in the final loss. Adam optimizer was used
during training, with an initial learning rate of 8 × 10−5. A
curriculum learning scheme was implemented during training,
such that the loss would be computed on a smoothed version of
the images. The smoothing was implemented via average
pooling, starting with a kernel size of 9, and reduced by 3 at
epochs 100, 150, and 175. Batch size was set to 2. To mitigate
negative effects resulting from the small batch size, group
normalization was employed instead of batch normalization.
Figure 1 shows a detailed overview of the model loss used. The
network was trained on a publicly available dataset of 1010
patients of the lung image database consortium (25–27) with
10% hold out during training to control for overfitting (i.e.,
patients whose ID were multipliers of 10 were held out). Our
code can be found online

1.
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Prognostication Through Quantitative
Monitoring
To explore the prognostic value of AI-mediated treatment
monitoring, we trained a random forest classifier (28) (RFC),
with wrapper feature selection, to predict survival based on
network imaging features extracted from pairs of subsequent
follow-up scans. More specifically, the RFC was trained
longitudinally, on pairs of subsequent scans, to predict whether
the patient would survive 1 year from the date of the latest of the
two scans (see Figure 2). The input of the RFC consisted of 96
feature maps from the latent space of the decoder that
represented the morphological changes between the prior and
the subsequent scan. These are the deepest features found in the
middle layer of the second section of the network—the one
handling deformable registration. These features come in tensor
shape, hence the name feature maps. For classification purposes,
it is standard to transform the feature maps of the network to a
feature vector, to be fed into a classifier. Global average pooling is
the technique commonly used to create a feature vector out of a
Frontiers in Oncology | www.frontiersin.org 457
set of feature maps: each entry of the feature vector is the average
value of the corresponding feature map. Alongside the global
average pooling, we also included standard deviation, skewness
and kurtosis, as we deemed the feature maps too large to be
represented just by the mean activation—1,000 values per feature
map, compared to 49 of a classical ResNet architecture.

To correct for temporal discrepancies (e.g., differences in time
between follow-ups), the amount of days elapsed between the
two scans, and the days elapsed since the start of treatment were
also fed to the RFC. Furthermore, morphological changes should
be order invariant: the differences estimated between image A
and B should be the same as the differences between image B and
A. To provide order invariance, we applied element-wise
multiplication of the feature maps generated by swapping the
input scans. More specifically, we computed the feature maps for
the scan pair prior-to-subsequent, and the feature maps for the
pair subsequent-to-prior. Then we multiplied them together,
element-wise. The multiplication preserved only those changes
that were detected in both directions, therefore providing order
FIGURE 1 | Detailed representation of the registration network used in the prognostic AI-monitoring framework.
March 2021 | Volume 11 | Article 609054
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invariance to our model. The discovery set was used for training,
while testing was performed on the independent validation set.
Both the registration network and the random forest classifier
were trained on the partitioned data, at once, with their
respective default parameters—no cross-validation or model
selection was performed.

Prognostic Heatmaps
Occlusion sensitivity was employed to visualize the parts of the
image that were deemed prognostic of the outcome (29). The
main idea of the occlusion algorithm is based on the assumption
that removing a predictive section/region from the original image
will change the algorithm prediction substantially. In contrast, by
removing a non-predictive section/region from the original
image, the algorithm prediction will stay unchanged. We
occluded a section (or patch) of the input image presented to
the RFC. The prognostic value of that patch is then computed as
the difference of the RFC survival score produced by the
occluded image vs the original unoccluded one. The resulting
prognostic map is the result of the algorithm scrolling the ROI
through the image, and repeating the procedure. This was filtered
with the gross morphological changes map to produce a
prognostic map of the gross morphological changes used for
visual interpretation. Details of the algorithm reported in
Supplement 1. Visual assessment of the resulting prognostic
maps was carried out by an expert reader (T.N.B., board-certified
radiologist, 2 years experience in thoracic imaging at a tertiary
oncologic center), blinded to all clinical parameters, including
survival. All scan pairs were assessed with the prognostic maps
overlaid on top. The reader was tasked to identify the areas of
activation (i.e., hot spots) in the scan pair, and report them
categorized as tumor-related areas, secondary comorbidities, and
general anatomical areas. Tumor-related areas and secondary
Frontiers in Oncology | www.frontiersin.org 558
comorbidities, which were not highlighted in the prognostic
map, were recorded separately.

Independence From Known Prognostic
Factors
To test the independence of our AI model, we ran a multivariate
analysis against known prognostic factors. Age and pathological
cancer subtypes were extracted directly from the anonymized
patient records. Changes in tumoral burden were computed
based on the available manual segmentations of the total
tumor—i.e., all visible and segmentable lesions in the body,
except for bone and brain. To ensure comparability with 2D
measurements from standard RECIST criteria, volumes were
converted to pseudo-diameters via d = ffi

3
p (6V=p), where V is the

total tumoral burden. This computes the diameter of the sphere
equi-volumetric to the total tumor burden. Tumor PD-L1
expression scoring was performed according to the instruction
manual of the qualitative immunohistochemical assay developed
as a complementary diagnostic tool for nivolumab (PD-L1 IHC
22C3 pharmDx, Dako, Carpinteria, CA). PD-L1 expression
levels were determined by observing complete circumferential
or partial linear expression (at any intensity) of PD-L1 on the
plasma cell membrane of viable tumor cells. In parallel, the
pattern of staining in CD4 stained slides, which also stain CD4+

lymphocytes and macrophages, was evaluated and compared to
PD-L1 stained slides in order to avoid false positive assessment
due to PD-L1 expressing macrophages in between tumor cells.
Assessment of expression levels was performed in sections that
included at least 100 tumor cells that could be evaluated.

Statistical Analysis
To assess prognostic performance, the area under the receiver
operating curve (ROC-AUC) was used. Confidence intervals
FIGURE 2 | Schematic representation of the evaluation of prognostic values through quantitative monitoring. Radiological examinations are shown as pre-baseline
(PBL), baseline (BL) and follow-up (FU), with respect to the start of treatment (SoT). Prediction of survival is made based on the time of death (D). For each pair of
subsequent scans, we label the earlier one as prior and the subsequent as subsequent (Subs).
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were estimated via bootstrapping performed using repeated
sampling with replacement (10000 times). Statistical
significance was assessed via Mann-Whitney-U test. Kaplan
Meier models were employed for survival analysis. Statistical
significance of survival metrics was assessed via log-rank test.
Prognostic (treatment monitoring) performance was quantified
in terms of overall survival from the date of the scan. Biomarker
performance was quantified in terms of overall survival and
durable clinical benefit (complete or partial response, or stable
disease, for at least 6 months) from the start of treatment. Cox-
Hazards models were used for comparison of known
prognostic factors.
RESULTS

Study Cohort
A total of 152 patients, 903 CT scans, and 611 scan matched pairs
of subsequent CT scans were included in this study (see Figure
3A). The discovery set consisted of 73 patients (and 276 scan
Frontiers in Oncology | www.frontiersin.org 659
pairs), while the independent validation set had 79 patients (and
335 scan pairs). The median age of the entire cohort was 64.4
(IQR 57.8–68.9), with a higher prevalence of males (57.9%).
Adenocarcinoma was the most common subtype, reported in
61% of the cohort. No differences in clinical characteristics were
encountered between discovery and validation set, except for
survival. In comparison to the discovery set, the independent
validation set had 180 days longer overall survival, and 101 days
longer progression-free survival. Imaging-wise, we collected 129
pre-baselines (PBL; 14.3%), 149 baselines (BL; 16.5%), 135 first
follow-ups (FU1; 15.0%), and 103 second follow-ups (FU2;
11.4%). Subsequent follow-ups (FU3+) constituted the
remaining 42.9% of the dataset (N = 387). Time-wise, BL scans
were acquired on average 26 days before the start of treatment
(IQR, 37–14), while the first FU scan, 68 days after (IQR, 46–77).
Subsequent follow-ups were made on average every 77 days
(IQR, 55–95). Acquisition of non-contrast-enhanced PET-CT
instead of contrast-enhanced CT was the main reason for the
lack of imaging during follow-up. Further patient characteristics
in Table 1.
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FIGURE 3 | (A) CONSORT diagram. (B) 1-year survival classification performance on the independent validation set, with respect to the clinical follow-up routine
(highlighted in green the ROC-AUC of the scan pairs used for the 2-years survival analysis) and (C) corrected by time. (D) 2-years Kaplan-Meier curves of the RFC
survival score of BL-FU1 and (E) PBL-BL. (F) Combination of the PBL-BL and BL-FU1 RFC survival scores with (G) enrichment of each of the four quadrants (F, H)
survival of each of the four quadrants. (I) Example of the occlusion sensitivity method used for AI explainability and visualization. * indicates p < 0.05, **p < 0.01,
***p < 0.001.
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Image Registration Performance
We evaluated the performance of the registration algorithm
merely to identify the cases where the registration algorithm
failed. The evaluation of a registration algorithm is usually
performed by evaluating the distance between two known
corresponding landmarks in the registered image. This can be
done automatically, in a circular fashion. Namely, by selecting N
random points in an image, we can transform them to their new
coordinates in the target image, and back, using the registration
functions TAB to represent the transformation from source to
target, and TBA as the transformation from target to source.
Ideally, these should be the inverse of one another. Practically
however there is a registration error propagating from source to
target and back. We estimate this error to be proportional to the
euclidean distance between N and TBA(TAB(N)). It is not exactly
the registration error, as this depends on two subsequent
dependent registration steps. However, as registration is merely
the auxiliary task in our model, a full evaluation of the
registration procedure—also in terms of architecture and
network components—is beyond the scope of this study. The
purpose of this analysis is to analyze the worst cases, i.e., the
failures of the algorithm.

We ran the evaluation for all scan pairs, with 100 randomly
generated points that were transformed from prior to
subsequent, and back to prior. The resulting error was
1.67 cm, on average (CI: 0.87–3.18). We selected for visual
inspection the three worst cases, with error 4.54, 3.76 and
3.75 cm, respectively (see figure in Supplement 2). These can
be considered the closest case of failure of the algorithm. In each
of these cases, we can notice the presence of unlikely
deformation, like in the heart or the thoracic wall. Although a
penalty was set to deter this behavior, we would refrain from
increasing it, as it might limit the ability of the network to model
other deformations. The strength of the algorithm is represented
by the classifier able to distinguish informative deformations
from non-informative ones. Overall, in other locations of the
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image, the registration was still successful in matching
anatomical structures properly.

Prognostic Performance
We fed pairs of subsequent follow-up scans to our network
trained for (CT chest) image-to-image registration, and trained a
random forest classifier (RFC) on its feature maps to investigate
the prognostic value of the imaging features learned by the
network. Overall results of the RFC survival score on the
independent validation set show an AUC of 0.68 (N = 335, CI:
0.62–0.74, p < 0.001) to predict 1-year overall survival from the
date of the later scan of the scan pair (see Figure 3B). The highest
prognostic value can be found for the scan pair BL-FU1, reaching
an AUC of 0.74 (N = 61, CI: 0.61–0.86, p < 0.001), and for the
scan pair FU1-FU2, reaching an AUC of 0.75 (N = 42, CI: 0.58–
0.89, p = 0.002). A decrease in performance is observed during
follow-ups, with a 0.71 AUC (N = 42, CI: 0.50–0.89, p = 0.02) for
the pair FU2-FU3. None of these differences however reached
statistical significance. Interestingly, RFC survival scores on the
pair PBL-BL also showed prognostic value (0.69 AUC, N = 51,
CI: 0.54–0.83, p = 0.01). After the fourth follow-up image, the
prognostic performance of the model dropped (0.57 AUC, N =
131, CI: 0.47–0.67, p = 0.11). This trend becomes evident when
looking at the performance with respect to the days between the
later scan in the scan pair, and the start of the treatment (see
Figure 3C). In this respect, we divided the exam pairs in five
groups, based on the time between the day of the later scan, and
the day of start of treatment (i.e., before start of treatment, 0–90
days from start, 90–180 days and >365 days), and tested the
performance in each group individually. Exam pairs performed
before start of treatment showed an AUC of 0.72 (N = 48, CI:
0.57–0.86, p = 0.006), between start and 90 days after start of
treatment showed an AUC of 0.73 (N = 64, CI: 0.59–0.84, p <
0.001), between 90 and 180 days showed an AUC of 0.68 (N = 59,
CI: 0.51–0.83, p = 0.01), between 180 and 365 days an AUC of
0.66 (N = 89, CI: 0.51–0.79, p = 0.01). Exam pairs performed in
TABLE 1 | Patient and imaging data characteristics.

Entire Dataset Discovery Set Validation Set

Patient Characteristics
N 152 73 79
Age [median, IQR] 64.4 (57.8–68.9) 64.5 (58.3–69.2) 64.2 (56.2–68.2)
Gender [N, %] 88 Males (57.9%) 44 Males (60.3%) 44 Males (55.7%)
Survival [median days] 341 269 449
Adenocarcinoma [N, %] 92 (60.5%) 46 (63.0%) 19 (26.0%)
Squamous [N, %] 35 (23.0%) 46 (58.2%) 16 (20.3%)
Radiological Follow-up
All scan pairs 611 276 335
— PB-BL to BL [N, %] 93 (15.2%) 42 (15.2%) 51 (15.2%)
— BL to FU1 [N, %] 116 (19.0%) 55 (19.9%) 61 (18.2%)
— FU1 to FU2 [N, %] 100 (16.4%) 50 (18.1%) 50 (14.9%)
Days b/w scans in any scan pairs [median, IQR] 77.0 (55.0–95.0) 77.0 (50.0–97.2) 77.0 (56.0–94.0)
— Pre-baseline to baseline [median, IQR] 76.0 (55.0–113.0) 75.0 (47.0–114.8) 76.0 (61.0–98.0)
— Baseline to follow-up 1 [median, IQR] 85.5 (69.0–105.0) 86.0 (68.5–107.0) 85.0 (70.0–104.0)
— Follow-up 1 to follow-up 2 [median, IQR] 57.0 (44.0–78.2) 53.5 (43.0–75.0) 72.0 (47.5–83.5)
Days b/w treatment start and BL [median, IQR] −26.0 (−37.0 to −14.0) −25.0 (−34.8 to −12.2) −27.0 (−37.0 to −14.0)
Days b/w treatment start and FU1 [median, IQR] 68.0 (46.0–77.2) 67.0 (46.5–73.0) 68.0 (46.0–78.0)
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the second year of treatment showed an AUC of 0.63 (N = 75, CI:
0.50–0.75, p = 0.04). Results summary in Table 2.

Biomarker Performance
To investigate the prognostic value of AI-monitoring as a
biomarker we ran a survival analysis on the scan pairs closest
to the date of treatment start, i.e., PBL-BL and BL-FU1. High and
low-risk groups were defined for each scan pair by splitting the
RFC survival scores on the median value. The scan pair BL-FU1
offered the highest prognostic performance (p = 0.02), with a
median survival difference of 357 days (637 vs 280 days median
survival respectively, p = 0.02, see Figure 3D). A similar trend
was observed for the PBL-BL pair, with a median survival
difference of 239 days (467 vs 228 days median survival,
respectively, see Figure 3E). This, however, did not reach
statistical significance (p = 0.16). For durable clinical benefit (6
months progression-free survival from start of treatment), we
ran a classification analysis on the same scan pairs. This yielded a
significant performance of 0.67 AUC (CI: 0.52–0.80, p = 0.01) for
the BL-FU1 pair, and a similar trend for the PBL-BL pair (0.61
AUC, CI: 0.44–0.77, p = 0.10).

Combination of Multiple Time-points
To investigate the prognostic value of AI-monitoring across
multiple time points, we combined the prognostic scores of
PBL-BL monitoring, and BL-FU1 monitoring (see Figures 3F, G).
For this particular analysis, we chose the start of treatment as
reference, as differences in follow-up schemas might magnify
when combining multiple time-points. Across the subset of
patients analyzed (with PBL, BL and FU1 scans available, N =
43), 53% survived 1 year after start of treatment (N = 23).
Patients with high expression of prognostic features during the
monitoring of both PBL-BL and BL-FU1 (N = 15) showed the
highest increase in survival, with enrichment from the baseline of
27% (80% survived 1 year after start of treatment). On the
contrary, patients with low prognostic features on both PBL-
BL and BL-FU1 (N = 14) showed a diminution from baseline of
24% (29% survived 1-year after start of treatment). A point of
interest is to be made for patients showing conflicting prognostic
scores between PBL-BL and BL-FU1 (positive-negative and
Frontiers in Oncology | www.frontiersin.org
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negative-positive, N = 7, respectively). While these groups do not
seem to show any deviation from the baseline (50% survived 1-
year after start of treatment), further analysis on OS showed
comparable results to the negative-negative group (p = 0.99) over
a longer time span (2 year, see Figure 3H). The positive-positive
group, on the other hand, kept showing significantly higher OS
compared to both negative-negative (p = 0.01) and negative-
positive (p = 0.003) groups.

Comparison With Known Prognostic Factors
To compare the prognostic value of AI-monitoring against other
known clinical prognostic factors, we ran a multivariate cox-
hazards survival analysis. Specifically, we compared the RFC
prognostic scores to age, cancer subtype, volumetric changes in
total tumor burden between BL and FU1, and PDL1 expression
at baseline. To mitigate collinearity, we reduced PBL-BL/BL-FU1
scores to a single score by principal component analysis.
Complete data was available for 22 patients in the independent
validation set. Results showed our RFC survival score preserved
statistical significance (0.35 HR, CI: 0.12–0.97, p = 0.04) against
age (2.69 HR, CI: 1.20–6.05, p = 0.02), volumetric change of total
tumor burden (2.36 HR, CI: 0.67–8.22, p = 0.18), >1% PDL-1
expression (0.26 HR, CI: 0.03–2.22, p = 0.22), adenocarcinoma
(0.34 HR, CI: 0.03–4.43, p = 0.41) and squamous subtype (0.14
HR, CI: 0.01–3.01, p = 0.21).

Visual Inspection of Prognostic Maps
The main idea behind predictive maps was to evaluate the
predictive value of different regions of the image by removing
those regions, one at a time, and estimating the difference in
predicted survival. Figure 3I shows an example. The input scans
are displayed in the first column. The second column shows the
prognostic map generated by the occlusion algorithm (Supplement
1). The patchy look of the overlay is the result of the cubic ROI,
being scrolled around the image. Its intensity values are
proportional to the change in predicted survival resulting from
occluding that region. The third column is the deformation map,
where hotspots correspond to regions of gross morphological
changes (i.e., pleural effusion). The fourth column was the
visualization presented to the reader. It is the result of the fusion
between the prognostic map and the deformation map, and
highlights the prognostic changes identified by the algorithm.

At visual inspection, lymph node metastases and lung lesions
were common hotspots in the prognostic maps. Nodal
metastases were present in 58% of scan pairs (N = 57), and
highlighted as prognostic in 81% of the cases (N = 46). The
mediastinum contained the most nodal hotspots, being
highlighted in 80% of cases, followed by supraclavicular and
hilar nodal metastases, highlighted in 67% and 57% of cases
respectively. Axillary and pericardial nodal metastases were
hotspots in 75% and 50% of cases, but found only in 4 and 2
scan pairs respectively. Large lung masses were found in 45% of
scan pairs (N = 39), and highlighted as prognostic in 85% of
cases. The same rate was observed for small lung nodules, while
being less frequent, found in 30% of the scan pairs (N = 26). Bone
metastases were found in 20% of scan pairs (N = 17).
Nonetheless, they were deemed prognostic by the algorithm in
TABLE 2 | Performance of the AI model in predicting 1 year survival after the
date of the CT scan.

N - N + p-value Area under the ROC curve

All 128 207 <0.001 0.68 (CI: 0.62–0.74)
PBL-BL 27 24 0.010 0.69 (CI: 0.54–0.83)
BL-FU1 30 31 <0.001 0.74 (CI: 0.61–0.86)
FU1-FU2 18 32 0.002 0.75 (CI: 0.58–0.89)
FU2-FU3 14 28 0.015 0.71 (CI: 0.50–0.89)
FU3 + 39 92 0.112 0.57 (CI: 0.47–0.67)
With respect to days from start of
treatment
< 0 25 23 0.0057 0.72 (CI: 0.56–0.86)
0–90 33 31 <0.001 0.73 (CI: 0.60–0.84)
90–180 19 40 0.013 0.68 (CI: 0.51–0.83)
180–365 26 63 0.011 0.66 (CI: 0.51–0.79)
365 + 25 50 0.037 0.63 (CI: 0.50–0.75)
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82% of cases. Pleural masses, liver metastases and subcutaneous
lesions, while being almost exclusively hotspots in the prognostic
maps, accounted together for only 13 scan pairs. Among
secondary comorbidities, pleural effusion, consolidations and
atelectasis were the most common, accounting for 31%, 28%
and 20% of scans pairs (N = 27, 24, and 17, respectively).
Hotspots were found in 94% cases of atelectasis (N = 16), 93%
cases of pleural effusions (N = 25), and 83% cases of non-specific
consolidation (N = 20). Pericardial effusions were hotspots in
75% of the times, but found only in 8 cases. Only one case of
ascites was reported, which the algorithm also highlighted as
prognostic. Hotspots in anatomical regions included the spine in
56% of cases, the thoracic wall in 55% of cases, and various
regions in the upper thorax, including periscapular (51%),
shoulders (49%), neck (48%), and supraclavicular (45%), with
the exception of the axilla, highlighted only in 13% of scan pairs.
Normal lung parenchyma was highlighted in 28% of cases. The
remaining hotspots include the great vessels (9%) and the breast
(4%). Detailed summary reported in Table 3.
DISCUSSION

Advanced treatment monitoring through more detailed
quantitative descriptors of the overall status of the patient, as
Frontiers in Oncology | www.frontiersin.org 962
visualized on routine imaging scans, could provide valuable
prognostic information. Our aim was to investigate the
potential prognostic value gained by AI-based treatment
monitoring on imaging in NSCLC patients treated by PD-1
checkpoint inhibitors. To test this, we implemented a
convolutional neural network for image-to-image registration,
and trained it on a large public dataset of chest CT scans. The
trained network was then used to longitudinally model gross
morphological changes between subsequent scans of NSCLC
patients receiving PD1 checkpoint inhibitors. Morphological
changes identified by the network were then used to train a
classifier to predict 1-year OS from the date of the latest scan.

Our results showed significant performance in the
independent test set for the prediction of 1-year OS from the
date of image acquisition, with an average AUC of 0.69, and up
to 0.75 AUC for the first 3 to 5 months after start of treatment,
and 0.67 AUC for durable clinical benefits, suggesting the
presence of (AI-quantified) gross morphological changes
encoding prognostic value. These results are comparable to
state-of-the-art methods, which currently employs laborious
and time-consuming segmentation procedures (11, 12).
While the field of research has been focusing on single-lesion
analysis—leveraging different known factors in cancer growth,
including vascularity (30), oxygenation (31), and metabolic
activity (32)—our approach offers a novel fully automatic
procedure which completely eradicates the need of time-
consuming segmentations, and simultaneously offers a way to
provide a full picture of the patient status as seen on chest
imaging. While this does not preclude the usefulness of the
single-lesion approach, it proposes a way for future multi-scale
solutions that leverage both single lesion imaging biomarkers as
well as whole image approaches that provide general quantitative
information about the status of the patient receiving treatment.
Research efforts, however, have to be made in order to overcome
the bottleneck of manual ROI delineation procedures, either in
the form of automatic segmenters (33), or with implicit AI
representations of the total tumor burden.

In addition to the statistical analysis of the performance, we
investigated the choices the AI made by means of sensitivity
occlusion (29). This resulted in a set of prognostic heatmaps,
highlighting regions of morphological changes that the AI
deemed prognostic relevance. Gross morphological changes in
nodal and lung lesions held the highest prognostic value,
especially nodal lesions in the mediastinum, hilum, and
supraclavicular region. Further results suggested additional
prognostic value for morphological changes affecting the lungs,
either in the form of compression from the thoracic wall (due to
pleural effusion or pleural masses), non-specific consolidations, or
atelectasis. These results also seemed to extend to other regions,
with ascites and pericardial effusions also being highlighted as
prognostic, despite their rare occurrence. The AI seemed to pay
particular attention to the skeleton, with the spine being the
anatomical region most commonly highlighted by the AI in the
prognostic maps, and bone metastases deemed prognostic in most
cases where those were present. As common imaging follow-up
schemas, such as RECIST (29, 34), do not account for tumor
TABLE 3 | Highlighted areas in the AI-generated prognostic maps.

ALL PBL-BL BL-FU1

Tumor Related
Lymph Nodes 46/57 (80.70%) 21/27 (77.78%) 25/30 (83.33%)
— Pericardial 1/2 (50.00%) 1/1 (100.00%) 0/1 (0.00%)
— Mediastinal 42/53 (79.25%) 18/25 (72.00%) 24/28 (85.71%)
— Hilar 16/28 (57.14%) 7/12 (58.33%) 9/16 (56.25%)
— Supraclavicular 16/24 (66.67%) 5/10 (50.00%) 11/14 (78.57%)
— Axillary 3/4 (75.00%) 1/2 (50.00%) 2/2 (100.00%)
Large Lung Masses 33/39 (84.62%) 16/20 (80.00%) 17/19 (89.47%)
Small Lung Nodules 22/26 (84.62%) 8/11 (72.73%) 14/15 (93.33%)
Bone Metastases 14/17 (82.35%) 7/7 (100.00%) 7/10 (70.00%)
Pleural Masses 6/6 (100.00%) 3/3 (100.00%) 3/3 (100.00%)
Liver Metastases 5/6 (83.33%) 2/3 (66.67%) 3/3 (100.00%)
Subcutaneous Lesions 1/1 (100.00%) — 1/1 (100.00%)
Secondary Comorbidities
Pleural Effusion 25/27 (92.59%) 12/12 (100.00%) 13/15 (86.67%)
Consolidation 20/24 (83.33%) 10/12 (83.33%) 10/12 (83.33%)
— Post-radiation 3/3 (100.00%) 2/2 (100.00%) 1/1 (100.00%)
Atelectasis 16/17 (94.12%) 9/9 (100.00%) 7/8 (87.50%)
— Post-obstructive 7/8 (87.50%) 4/4 (100.00%) 3/4 (75.00%)
Pericardial Effusion 6/8 (75.00%) 2/3 (66.67%) 4/5 (80.00%)
Ascites 1/1 (100.00%) — 1/1 (100.00%)
General Anatomical Areas
Spine 48/86 (55.81%) 26/43 (60.47%) 22/43 (51.16%)
Thoracic Wall 47/86 (54.65%) 25/43 (58.14%) 22/43 (51.16%)
Periscapular 44/86 (51.16%) 20/43 (46.51%) 24/43 (55.81%)
Shoulder 42/86 (48.84%) 23/43 (53.49%) 19/43 (44.19%)
Neck 41/86 (47.67%) 20/43 (46.51%) 21/43 (48.84%)
Periclavicular 39/86 (45.35%) 19/43 (44.19%) 20/43 (46.51%)
Lung Parenchyma 24/86 (27.91%) 13/43 (30.23%) 11/43 (25.58%)
Axilla 11/86 (12.79%) 6/43 (13.95%) 5/43 (11.63%)
Great Vessels 8/86 (9.30%) 5/43 (11.63%) 3/43 (6.98%)
Breast 3/86 (3.49%) 1/43 (2.33%) 2/43 (4.65%)
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burden in the bones, our findings suggest that, on the contrary,
such phenomena should not be ignored. Further investigations
should lead to novel guidelines, which can provide valuable
contribution from the imaging beyond diametrical measurements.

Particular attention should also be paid to nodal metastases
and nodal growths during treatment. Imaging features of nodal
metastases were found already to be correlated with disease
progression for NSCLC, melanoma, and head and neck cancer
(11, 35), though no distinction was made between the location of
the lymph nodes. However, both our findings and the current
literature suggest that this information may be of value. This
would be especially interesting in the light of regional (tumor-
draining) lymph nodes which play a critical role in terms of anti-
tumor immunity and priming (36), increased expression of
cytokines and checkpoint markers (37), and changes in the
immune compartments resulting in a tumor favorable
microenvironment (38). A major hurdle that remains in the
analysis of lymph nodes is represented by the radiological
assessment, often in contrast with the pathological one. Most
radiomics studies so far focused on the detection of positive
nodal metastases rather than their prognostic values (39–44).

The analysis of lung lesions is far more common. Imaging
features from lung lesions have been reported to hold prognostic
value for patients receiving immunotherapy in several studies
(11, 32, 45–48). Indeed our findings confirm the association
between lung lesions and treatment outcome, with about 85%
percent of them being hotspots in the AI-generated prognostic
maps, independent of size. Most of the studies published so far
focus on the analysis of the tumor region and/or the peritumoral
boundary, which may hold valuable information regarding
tumor vascularization and inflammatory environment. In this
study, the proposed AI model monitors the whole image
including both the healthy tissue as well as the tumor(s). As
the growth of a cancer lesion does not uniquely depend on the
genetic makeup, but rather a complex interaction of
microenvironmental features and favorable location for seeding,
it would not be surprising to establish a link between a
comprehensive modeling tool of cancer growth and its biological
features. Even in this case however, further research is needed to
establish any link between imaging features and tumor biology.

Following our results, we observed an increase in the
prognostic performance of the AI resulting from the
combination of multiple time points, namely pre-baseline,
baseline and first follow-up. This analysis showed good OS for
patients with higher AI-survival scores (AI-RFChi) in both pre-
baseline to baseline scan pair, and baseline to first follow-up—
and worse OS for the opposite case (AI-RFClo). Interestingly,
patients with contradicting scores (AI-RFChi for pre-baseline to
baseline scan pair, and AI-RFClo for the baseline to follow-up,
and vice versa) showed worse survival, similar to the double
negative group. These results suggest the existence of a
prognostic combination of pretreatment and early-treatment
characteristics, both of which should be accounted for during
patient stratification. Further insights could be achieved by more
advanced AI methods that would account for larger time spans,
or even the entirety of patients’ treatment history.
Frontiers in Oncology | www.frontiersin.org 1063
The combined score was demonstrated to be an independent
prognostic parameter even when corrected for other known
prognostic parameters. This is of particular interest when we
consider the possible role of such a tool, for example as an
additional input to the tumor board during treatment decision
making. Further research is required to study its implementation
in the clinical settings.

Limitations and Future Outlook
Our study aimed to monitor AI-measured gross morphological
changes between imaging follow-up for survival prediction in
NSCLC patients receiving PD1 checkpoint antibodies. In this
study, we pre-trained a neural network on a large dataset of chest
CT scans, and fine-tuned it for survival on our smaller local
immunotherapy data set. Under the current settings, we limited
the analysis to chest imaging which, in addition to the chest,
frequently included the lower neck and the upper abdomen.
While this limitation could hold for lung malignancy, an
extension to other cancer types would require this technique to
be extended to include the whole body—i.e., the abdomen and,
when available, the brain. Moreover, due to the limited amount of
data, it was not possible to explore more complex machine
learning algorithms for the prediction of survival, nor for more
precise visualization of the prognostic maps. Expansion of the
dataset, both in terms of patients and in terms of time points,
would certainly allow for an increase in performance and better
explainability of the AI algorithm. Specifically, an extension of the
field of view of the algorithm to the whole body, as well as the
usage of parameters other than imaging, could potentially
improve the performance of the algorithm to be usable in the
clinics. Further clinical validation of the method is also needed.
While this study presented a comparison of this method with
response evaluation criteria (e.g., changes in total tumor burden)
and biomarkers (e.g., PD-L1 expression), the primary objective for
future studies should be a comparison with the clinical standard,
namely the RECIST criteria. It remains to be investigated whether
this method would be complementary to the current radiological
response evaluation (i.e., RECIST). Furthermore, additional
investigations are required to link biological features to tumor
growth and gross morphological changes. Further analysis should
also study the effects of different machine acquisition parameters,
and the sensitivity of the method to imaging acquisition
parameter variability. Looking into the future, we envision that
an AI solution could be set up as a clinical decision support system
capable of providing information to the treating physician
complementary to traditional clinical and pathological input data.
CONCLUSIONS

In this study, we aimed to investigate the potential prognostic
value of AI-mediated monitoring in NSCLC patients receiving
PD-1 blockade. We hypothesized the existence of quantitative
imaging features describing a set of gross morphological changes
happening during treatment that hold prognostic information.
Our results demonstrate the existence of such factors (as
March 2021 | Volume 11 | Article 609054
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described by the AI on imaging), that are tumor-related, such as
nodal, lung and bone lesions, as well as non-tumor related, such
as pleural effusions, atelectasis and non-specific consolidations.
Further investigation should focus on the development of more
flexible models that can extend beyond thoracic imaging, as well
as on external validations.
DATA AVAILABILITY STATEMENT

The data sets presented in this article are not readily available
because the restrictions of agreement with the local ethical
committee. We can, however, share the feature space on request.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Board. Written informed consent
for participation was not required for this study in accordance with
the national legislation and the institutional requirements.
AUTHOR CONTRIBUTIONS

ST: software development. ST, ZB, TT, TDLN-K: conceptualization,
experimental design. ZB, TB, TDLN-K: clinical results validation
Frontiers in Oncology | www.frontiersin.org 1164
and interpretation. ST, ZB, SD, IK, AC-V, AD, TDLN-K:
radiological and clinical data collection and curation. MM, KH:
pathological and clinical data collection and curation. KJH,
TDLN-K, ES, HA, RB-T: project supervision, resource acquisition.
All authors: results and manuscript editing and validation. All
authors contributed to the article and approved the
submitted version.
FUNDING

This work was also carried out on the Dutch national
e-infrastructure with the support of SURF Cooperative. The
authors would also like to thank NVIDIA for their kind
donation via the Academic GPU Grant Program as well as the
Maurits en Anna de Kock Stichting for its financial support.
TN-K was funded by the Oncologic Imaging Fellowship Grant
from the European Society of Radiology.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2021.
609054/full#supplementary-material
REFERENCES

1. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by
CTLA-4 blockade . Science (1996) 271 :1734–6. doi : 10.1126/
science.271.5256.1734

2. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a
novel member of the immunoglobulin gene superfamily, upon programmed
cell death. EMBO J (1992) 11:3887–95. doi: 10.1002/j.1460-2075.1992.
tb05481.x

3. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al.
Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell
Lung Cancer. N Engl J Med (2015) 373:1627–39. doi: 10.1056/
NEJMoa1507643

4. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E,
et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell
Lung Cancer. N Engl J Med (2015) 373:123–35. doi: 10.1056/NEJMoa1504627

5. Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y, et al.
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Purpose: Dual-time-point 18F-fluorodeoxyglucose positron emission tomography (DTP
18F-FDG PET), which reflects the dynamics of tumor glucose metabolism, may also provide
a novel approach to the characterization of both cancer cells and immune cells within the
tumor immune microenvironment (TIME). We investigated the correlations between the
metabolic parameters (MPs) of DTP 18F-FDG PET images and the tumor microenvironment
immune types (TMITs) in patients with non-small cell lung cancer (NSCLC).

Methods: A retrospective analysis was performed in 91 patients with NSCLC who
underwent preoperative DTP 18F-FDG PET/CT scans. MPs in the early scan (eSUVmax,
eSUVmean, eMTV, eTLG) and delayed scan (dSUVmax, dSUVmean, dMTV, dTLG) were
calculated, respectively. The change in MPs (DSUVmax, DSUVmean, DMTV, DTLG)
between the two time points were calculated. Tumor specimens were analyzed by
immunohistochemistry for PD-1/PD-L1 expression and CD8+ tumor-infiltrating
lymphocytes (TILs). TIME was classified into four immune types (TMIT I ~ IV) according
to the expression of PD-L1 and CD8+ TILs. Correlations between MPs with TMITs and the
immune-related biomarkers were analyzed. A composite metabolic signature (Meta-Sig)
and a combined model of Meta-Sig and clinical factors were constructed to predict
patients with TMIT I tumors.

Results: eSUVmax, eSUVmean, dSUVmax, dSUVmean, DSUVmax, DSUVmean, and
DTLG were significantly higher in PD-L1 positive patients (p = 0.0007, 0.0006, <
0.0001, < 0.0001, 0.0002, 0.0002, 0.0247, respectively), and in TMIT-I tumors (p =
0.0001, < 0.0001, < 0.0001, < 0.0001, 0.0009, 0.0009, 0.0144, respectively). Compared
to stand-alone MP, the Meta-Sig and combined model displayed better performance for
assessing TMIT-I tumors (Meta-sig: AUC = 0.818, sensitivity = 86.36%, specificity =
73.91%; Model: AUC = 0.869, sensitivity = 77.27%, specificity = 82.61%).
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Conclusion: High glucose metabolism on DTP 18F-FDG PET correlated with the TMIT-I
tumors, and the Meta-Sig and combined model based on clinical and metabolic information
could improve the performance of identifying the patients who may respond to
immunotherapy.
Keywords: DTP 18F-FDG PET, PD-L1, tumor microenvironment immune types, NSCLC, metabolic parameters
INTRODUCTION

Lung cancer is the leading cause of cancer death in China (1). Non-
small cell lung cancer (NSCLC) accounts for more than 80% of all
lung cancer cases. Over the last decade, the immune checkpoint
inhibitors (ICIs) targeting the programmeddeathprotein 1 (PD-1)/
programmed death ligand 1 (PD-L1) axis have shown significant
clinical benefit for advanced NSCLC patients. The expression of
PD-L1on tumor cells is consideredas a predictivebiomarker for the
response to anti-PD-1/PD-L1 ICIs (2). However, not all patients
with positive PD-L1 expression respond well to immunotherapy. It
suggests that other tumor immune microenvironment (TIME)
factors may also affect the response to the ICIs (3). In addition to
PD-L1 expression, CD8+ tumor-infiltrating lymphocytes (TILs)
might play an important role in anti–PD-1/PD-L1 therapies (2).
Without CD8+ TILs, it’s unlikely that blocking PD-1 or PD-L1
causes any tumor inhibition (4). Characterized by high infiltration
of CD8+ cytotoxic lymphocytes, the infiltrated–inflamed TIMEhas
significantly better responses to ICIs (5). Therefore, it was proposed
that TIME could be classified into four subtypes based on PD-L1
and CD8+ TILs status (4). Tumors with high PD-L1 expression
and the presence of CD8+ TILs are classified as tumor
microenvironment immune type I (TMIT-I), a immunologically
‘hot’ subtype that would likely benefit from anti-PD-1/PD-L1
therapies (6). However, there is no noninvasive method to
identify TMIT I tumors, and up to now the overall and dynamic
detection of TIME biomarkers is still challenging.

Among the image-based modalities for non-invasive tumor
assessment, 18F-fluorodeoxyglucose positron emission
tomography/computed tomography (18F-FDG PET/CT) is the
most common one of patients with NSCLC (7). Glucose
metabolism is closely related to the characteristics of TIME. As a
nutrient, glucose is actively entrapped in neoplastic tissue and
tumor-related activated immune cells (8). Previous studies have
established the correlation between theMPs [maximumandmean
standard uptake value (SUVmax and SUVmean)] of 18F-FDG
PET and the expression of immune markers (PD-1, PD-L1 and
CD8) in patients with NSCLC (9–16). However, little attention
was paid to CD8+ TILs and tumor immune types. The predictive
value of tumormetabolism solely basedonSUVmax remainsweak
in patients undergoing ICI immunotherapy. Dual-time-point
(DTP) 18F-FDG PET, which reflects the dynamics of glucose
metabolism, is expected to be a potential imaging method to
reveal the TIME information. Up to date, the correlation between
metabolic parameters (MPs) on DTP FDG PET and TMITs in
pretreated NSCLC remains unclear.

This retrospective study was conducted to correlate a number of
MPs of DTP 18F-FDG PET with immune markers and TMITs in a
rg 267
cohort of pretreated NSCLC patients. We hypothesize that the
abundant metabolic information on DTP FDG PET imaging
defines the TMITs of NSCLC and helps optimize patient selection
for ICIs treatment.
MATERIALS AND METHODS

Patient Population
Patients who underwent pretreatment DTP 18F-FDG PET/CT
scans in Tongji hospital for NSCLC diagnosis and staging from
December 2014 to December 2017, were retrospectively reviewed.
Eligible patients were histologically confirmed with NSCLC,
underwent initial PET scan less than 30 days from surgery (or
biopsy), with tumor size ≥ 1 cm in diameter. Key exclusion criteria
were: patients that received anti-tumor therapy before surgery (or
biopsy), andpatients whose tumor specimenswere not available for
immunohistochemistry. This retrospective study was approved by
the institutional review board.

DTP 18F-FDG PET/CT Acquisition Protocol
and Image Analysis
In each patient, 3.7 MBq/kg FDG was intravenously
administered after fasting for at least 6 h. The blood glucose
concentration was lower than 200 mg/dL before injecting. PET/
CT images were obtained by a PET/CT scanner (Discovery 690
PET/CT, GE) at approximately 60 ± 5min (early) and 120 ± 5min
(delayed) after FDG administration. Whole body images were
obtained from the base of the skull to mid-thigh by means of an
integrated PET/CT tomography (5 to 7 bed positions with 3 min
per bed position). PET images were attenuation-corrected and
anatomically fused with low-dose CT images, and reconstructed
onto a 128 × 128 matrix. A low-dose helical CT scan (120 kV, 120
mA, slice thickness, 3.75mm) was performed for anatomical
correlation and attenuation correction.

Images were analyzed by two board-certified nuclear medicine
physicians. Tumor mass area of increased radiotracer uptake was
first identified, then a semi-automated, ellipsoid 3D-isocontour
volume of interest (VOI) with threshold of 40%SUVmax was
marked around the tumor for the measurement of SUVmax,
SUVmean and metabolic tumor volume (MTV). For tumors with
low uptake, VOI was obtained by manually delineating the
boundary layer by layer along the tumors, then SUVs and MTV
(with threshold of 40%SUVmax) were automatically calculated
within each VOI. Total lesion glycolysis (TLG) and the change of
SUVmax, SUVmean, MTV and TLG were calculated according to
the following formula: TLG = SUVmean × MTV, DMP =
dMP – eMP.
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Immunohistochemistry Analysis
Immunohistochemistry was performed using 4 µm sections from a
paraffin-embedded tissue block as previously described (17).
Briefly, the sections were deparaffinized in xylene and rehydrated
in graded ethanol and distilled water. Slides were auto-stained with
primary antibodies raised against CD8+ (ZA-0508, ZSGB-BIO,
China), PD-1 (Abcam, EPR4877(2), ab137132), PD-L1 (ZA-0629,
ZSGB-BIO, China). The PD-L1 immunostaining results were
classified into two groups based on staining intensity and
proportion of tumor cell positivity (18). Staining intensity was
scored as follows: 0, negative staining; 1, weak staining; 2, moderate
staining; and 3, strong staining (more intense than alveolar
macrophages). Case in which more than 5% of tumor cells
displayed a staining intensity ≥2 was considered positive. Case
with staining intensity <2 or less than 5%of tumor cells was defined
negative. The expressions of PD-1 and CD8+ TIL were evaluated
according to the average number of positively stained cells in 3
randomly selected high-power fields in each case. The numbers of
CD8+ TILs were classified into two groups based on the median
value: CD8+ TILs+ (n ≤100), CD8+ TILs- (n> 100).

Four tumor microenvironment immune types was classified
as reported (3, 6, 19): TMIT-I (PD-L1+, CD8+ TILs+); TMIT-II
(PD-L1-, CD8+ TILs-); TMIT-III (PD-L1+, CD8+ TILs-) and
TMIT-IV (PD-L1-, CD8+ TILs+).

Statistical Analysis
Data was analyzed with the SPSS statistical package, MedCalc
and R software. The distribution of variables was checked using
Shapiro-Wilk test. For continuous data, the differences between
two groups were assessed using Mann-Whitney U test or
Student’s t-test. Differences among multi-group were compared
using one-way analysis of variance (ANOVA) (with least
significant difference method) or Kruskal-Wallis H test, when
appropriate. Spearman’s correlation coefficients were calculated.
The least absolute shrinkage and selection operator (LASSO)
algorithm method using 10-fold cross-validation was employed
to select the optimal features. Features with non-zero coefficients
at the minimum of lambda were selected from the candidate MPs
to construct a metabolic signature (Meta-Sig). Multivariate
logistic regression analysis with backward stepwise elimination
method was performed to construct a combined model, based on
clinical factors and the Meta-Sig. The receiver operating
characteristic (ROC) curves and DeLong test were used to
compare the area under the curves (AUCs) for predicting
TMIT I tumors. Furthermore, decision curve analysis (DCA)
was used to evaluate the clinical usefulness of the combined
model by quantifying the net benefits at different threshold
probabilities. P<0.05 was considered to be statistically significant.
RESULTS

Patient Characteristics
A total of 91 patients (68 with adenocarcinoma, 22 with squamous
cell carcinoma and 1 with adenosquamous carcinoma; 47 male, 44
female) were included. The median age of these patients was 59
Frontiers in Oncology | www.frontiersin.org 368
years (range 36~78). Patients’ demographics and the median value
of twelveMPs ofDTP 18F-FDGPET imageswere shown inTable 1.

Positive PD-L1 immunostaining was observed on the
membranes and/or in the cytoplasm of tumor cells. Positive
PD-L1 expressions were noted in 33 of the 91 (36.26%) patients.
The median value of CD8+ TILs and PD-1 TILs was 100 (range
0~300) and 74 (range 0~282) respectively. The percentage of
TMIT-I tumors was 24.18% (22/91) in this study.

Characterization of TMITs
The percentages of four TMITs were as follows: 22 (24.18%) TMIT
I, 36 (39.56%) TMIT II, 11 (12.09%) TMIT III and 22 (24.18%)
TMIT IV. PD-1 expression was significantly higher in TMIT I
tumors than TMIT II and III tumors (p < 0.001, 0.015), but no
statistically significantdifferencewas foundbetweenTMIT I and IV
groups (p = 0.584) (Figure 1). The spearman’s analysis showed a
statistically significant correlation between the PD-1 and CD8+

TILs (rho = 0.543, p < 0.001). PD-1 and CD8+ TILs were
significantly higher in PD-L1 positive patients (p = 0.015 and
0.004, respectively).

Correlations Between PD-L1 Expression
and MPs on DTP FDG PET
By Mann-Whitney U test, PD-L1 positive patients showed higher
early SUVmax (eSUVmax) (p = 0.0007), early SUVmean
TABLE 1 | Demographic and clinical data of all patients.

Characteristics No. (%)

Age Median (range) 59 (36~78) years
Gender Male 47 (51.65%)

Female 44 (48.35%)
Smoking status Smoker 37 (40.70%)

Non-smoker 54 (59.30%)
CEA Median (range) 2.52 (0.50~397.51) ug/L*
CYFRA21 Median (range) 2.49 (0.94~28.07) ng/ml*
SCC Ag Median (range) 0.8 (0.30~47.99) mg/L*
Histology SCC 22 (24.18%)

ADC 68 (74.73%)
ASC 1 (1.1%)

Pathologic stage I 37 (40.70%)
II 22 (24.2%)
III 23 (25.30%)
IV 9 (9.90%)

eSUVmax Median (range) 8.40 (0.9~20.2)
eSUVmean Median (range) 5.00 (0.6~12.00)
eMTV Median (range) 5.78 (0.83~96.14) cm3

eTLG Median (range) 24.68 (0.85~663.37) g
dSUVmax Median (range) 13.10 (0.80~27.90)
dSUVmean Median (range) 7.60 (0.60~16.00)
dMTV Median (range) 5.43 (0.61~89.45) cm3

dTLG Median (range) 30.69 (0.79~796.11) g
DSUVmax Median (range) 2.80 (-0.2~8.500)
DSUVmean Median (range) 1.90 (-0.1~4.30)
DMTV Median (range) -0.65 (-13.34~4.30) cm3

DTLG Median (range) 5.75 (-13.88~151.76) g
March 2021 | Vo
*Ten patients’ data on tumor markers were absence.
ADC, adenocarcinoma; SCC, squamous cell carcinoma; ASC, adenosquamous
carcinoma; CEA, carcinoembryonic antigen; CYFRA21, cytokeratin 19-fragments; SCC
Ag, squamous cell carcinoma antigen; SUVmax, maximum standard uptake value;
SUVmean, mean standard uptake value; MTV, metabolic tumor volume; TLG, total
lesion glycolysis.
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(eSUVmean) (p = 0.0006), delayed SUVmax (dSUVmax) (p <
0.0001), delayed SUVmean (dSUVmean) (p<0.0001), DSUVmax
(p = 0.0002), DSUVmean (p = 0.0002) and DTLG (p = 0.0247) in
Figure 2. ROC curve for MPs showed moderate ability for
predicting PD-L1 expression in Table 2.

Correlations Between TILs and MPs on
DTP FDG PET
Spearman’s correlation coefficients revealed poor correlations
between TILs and MPs. Specifically, CD8+ TILs in NSCLC were
weakly correlated with dSUVmean (rho = 0.212, p = 0.044) and
DSUVmean (rho = 0.209, p = 0.047). Similarly, weak correlations
were found between PD-1 TILs and eSUVmax (rho = 0.234, p =
0.026), eSUVmean (rho = 0.242, p = 0.021), dSUVmax (rho =
0.225, p = 0.032) and dSUVmean (rho = 0.235, p = 0.025),
respectively (Figure 3).

Correlations Between Different TMITs and
MPs on DTP FDG PET
Figure 4 showed that most MPs were significantly different
between TMIT I and other immune types (TMIT II, III, IV)
respectively. Meanwhile, the least p value was shown in TMIT I
vs II, increasing gradually in TIMT I vs IV and TIMT I vs III.
Moreover, TMIT I tumors exhibited higher eSUVmax,
eSUVmean, eTLG, dSUVmax, dSUVmean, dTLG, DSUVmax,
DSUVmean and DTLG (p = 0.0001, < 0.0001, 0.0453, < 0.0001,
<0.0001, 0.0231, 0.0009, 0.0009, 0.0144) than other types
together (TMIT II+III+IV). Figure 5 showed a representative
patient with a TMIT-I tumor exhibited hypermetabolic tumors
on DTP PET, characterized by high expression of PD-L1 and
high density of PD-1, CD8+ TILs. Of the nine metabolic features
above, eSUVmax, eSUVmean, eTLG, dSUVmax and DTLG were
Frontiers in Oncology | www.frontiersin.org 469
selected in the LASSO model with 10-fold cross-validation
(Figure 6). The Meta-Sig (metabolic signature) was
constructed as follows:

Meta − Sig = 0:125626063� eSUVmax + 0:066810617� eSUV—mean
  − 0:006982037� eTLG + 0:066701772� dSUVmax + 0:024456035

�DTLG − 3:584450396:

Meta-Sig had a higher AUC value than the stand-alone MP,
although the differences were not statistically significant
according to the Delong test. When compared to eSUVmax
(AUC: 0.775, sensitivity: 77.27%, specificity: 73.91%) and
dSUVmax (AUC: 0.788, sensitivity: 86.36%, specificity:
65.22%), Meta-Sig enhanced the performance to predict TMIT
I tumors with higher sensitivity or specificity (AUC: 0.818,
sensitivity: 86.36%, specificity: 73.91%) (Table 3).

With multivariate logistic regression analysis (using backward
stepwise elimination method), the combined model was
constructed based on the clinical and metabolic information.
The formula was as follows:

Model = 1:490�Meta − Sig + 2:435� smoking − 0:840� stage

− 1:689� gender + 1:883

The preferable model was assessed using ROC analyses and
decision curve analysis (DCA). Compared to the combined
model (AUC: 0.869, sensitivity: 77.27%, specificity: 82.61%),
AUCs for eSUVmax, dSUVmax, gender, and smoking were
relatively lower according to the Delong test (p = 0.0187,
0.0182, <0.0001, 0.0004) (Table 3; Figure 7). DCA for the
combined model was shown in Figure 8. Using the combined
model to predict TMIT I tumors added more benefit than
eSUVmax or dSUVmax.
DISCUSSION

The past decade was marked by a revolution in the field of cancer
treatment. Recently, antibody-based immunotherapy that
modulates immune responses against tumors has been
approved as first-line treatment option for selected advanced
or metastatic lung cancer (20). However, the response of NSCLC
patients to immunotherapy is affected by the TIME. Notably,
patients with TMIT I tumors, regarded as immunologically ‘hot’,
are most likely to benefit from ICI therapy. Our study provided a
new insight into the underlying correlation between TIME types
and DTP FDG PET imaging. To our knowledge, this is the first
study to identify TMIT I type using DTP FDG PET scan in
pretreated NSCLC patients.

In general, TMIT I tumors are characterized by somatic
tumor mutations, PD-L1/PD-1 expression, and CD8+ TILs. In
a previous report, TMIT I tumors were found to harbor
significantly more somatic tumor mutations (6), therefore
presenting more neoantigens (4). Endogenous CD8+ T cells
can recognize these neoantigens, increase the TILs density, and
trigger an immune response by the host (21). Meanwhile, glucose
transporter 1 is reported to upregulate in these activated CD8+ T
FIGURE 1 | The distributions of programmed cell death 1 (PD‐1) expression
according to different tumor microenvironment immune types (TMITs).
The PD-1 expression was significantly higher in TMIT I tumors than TMIT II
and III tumors.
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cells, leading to increased glucose uptake (8). Furthermore,
during therapeutic PD-1 blockade, pre-treatment samples
obtained from responders exhibited higher CD8+ cell densities
compared to those from non-responders (22). According to
results in our study, tumors with high infiltration of CD8+ T
cells had a tendency for high FDG uptake in comparison with the
TILs- tumors. It suggested that FDG PET could serve as a non-
invasive tool to assess the tumor microenvironment, and might
help to identify responders ahead of treatment. However, CD8+
TILs alone had low correlations (p = 0.044, 0.047) with MPs in
our work, proving the necessity of simultaneously interpreting
multiple immune biomarkers within the complex system of
tumor immune microenvironment. Indeed, there was a
metabolic competition between tumors and immune cells. The
Frontiers in Oncology | www.frontiersin.org 570
high levels of glycolysis within tumor cells consumed
extracellular glucose, which in turn impaired the glycolysis in
T cells (23). We hypothesized that the FDG uptake of TMIT I
tumors depends primarily on PD-L1+ tumor cells rather than
CD8+ T cells. Chang et al. (24) reported that PD-L1 expression
maintained Akt/mTOR signaling, which in turn promoted
metabolic pathway through the translation of glycolysis
enzymes. Lopci et al. (9) first investigated the correlation
between PD-L1 expression and FDG uptake in NSCLC.
Although no correlation was found in this particular study, the
negative results may arise from the small size of studied patients.
Later, Takada et al. (10) found a positive correlation between
FDG uptake with PD‐L1 expression in a larger group of patients.
In addition to PD-L1 expression and CD8+ TILs, PD-1
TABLE 2 | ROC analysis for the metabolic parameters according to PD-L1 expression.

Parameters sensitivity specificity cutoff AUC 95%CI

eSUVmax 66.67% 75.86% 9.7 0.714 0.610 - 0.804
eSUVmean 63.64% 77.59% 6.0 0.716 0.612 - 0.806
dSUVmax 66.67% 79.31% 14.0 0.750 0.648 - 0.835
dSUVmean 72.73% 72.41% 8.2 0.747 0.645 - 0.832
DSUVmax 93.94% 48.28% 1.9 0.732 0.629 - 0.820
DSUVmean 84.85% 56.90% 1.3 0.738 0.636 - 0.825
M
arch 2021 | Volume 11 |
CI, confidence interval; SUVmax, maximum standard uptake value; SUVmean, mean standard uptake value; eSUVmax, early SUVmax; eSUVmean, early SUVmean; dSUVmax, delayed
SUVmax; dSUVmean, delayed SUVmean; PD-L1, programmed death ligand 1.
FIGURE 2 | The distributions of metabolic parameters (MPs) according to programmed cell death‐ligand 1 (PD‐L1) protein expression. The MPs were significantly
higher in patients with PD‐L1 positivity than those with PD‐L1 negativity.
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expression is also a biomarker of ICIs treatment. PD-1
expression was significantly higher in TMIT I tumors than
type II and III, probably because PD-1 is of upregulated in
CD8+ TILs, where the binding of PD-1 and its ligand PD-L1 can
inhibit a cytotoxic T-cell response.

CD8+TILs and the tumor immunemicroenvironmentmayalso
affect patients’ responses to immunotherapy, since not all patients
with positive PD-L1 expression respond well. We hereby
categorized the tumor immune microenvironment into four
subgroups to assist the stratification of NSCLC patients. We
strived to identify responders from the perspective of different
tumor immune types, and for the first time established the
correlation between dynamic glucose metabolism and TMIT-I
tumors. One remarkable finding in the present study was that
TMIT I tumors present higher MP values than other types (TMIT
II, III, IV), and the smallest p valuewas shownbetweenTMIT I vs II.
Contrary to TMIT I tumors, TMIT II tumors, regarded as “cold”
tumors, lack tumors cells expressingPD-L1andCD8+Tcells.While
TMITI tumors aremost likely tobenefit fromsingle-agent anti-PD-
1/L1 blockade, TMIT II tumors had significantly worse prognosis
due to the lack of detectable immune responses (4). The semi-
quantification of MPs on DTP FDG PET was a decision support
methodology for the complex clinical decisions to differentiate
TMIT I and II tumors. Compared to TMIT I vs II, the p values
increased gradually in TMIT I vs IV. TMIT IV tumors are enriched
withCD8+TILs.However, the lower uptake FDGmaybe attributed
to PD-L1 negativity. Interestingly, TMIT III tumors also showed
relatively lower FDGuptake thanTMIT I, and the p value increased
even further in TMIT I vs III. Since TMIT III tumors were also
characterized byPD-L1 positivity like TMIT I tumors, CD8+T cells
have less effect on the FDGuptake of TMIT III tumors. It should be
noted that only a lowproportionof tumors in this study belonged to
Frontiers in Oncology | www.frontiersin.org 671
TMIT III (12.1%, 11/91). A similarly low occurrence of TMIT III
was also observed in melanoma. (2%) (25). Nevertheless, the
presence of TMIT III tumors indicates that not all patients with
PD-L1 positive expression respond well to the ICIs. Our work
demonstrated the importance of highlighting this subset of patients
as probable non-responders to immunotherapy. The identification
ofdifferent tumor immune types ismeaningful fromtheperspective
of clinical practice, since using the same strategy for all patients will
be inefficient, costly, and unreasonable (26).

For the identificationofTMITI tumors,DTPFDGPETnot only
provided a non-invasive work-up, but also improved the capability
for pre-selecting patients that are likely responsive to ICIs. Cancer
cells continuously uptake 18F-FDG and trap them intracellularly in
the form of 18F-FDG-6-phosphate (27). In contrast, in benign
tissue, the uptake of 18F-FDG decreases or plateaued after
reaching a maximum within 30 min of FDG administration.
Although it is generally accepted that FDG-PET/CT images
obtained during the delayed phase reflect the dynamics of tumor
glucose metabolism, our study revealed that eSUVmax and
dSUVmax had similarly unsatisfactory performances for the
assessment of TMIT I tumors since the sensitivity of eSUVmax
(77.27%) and specificity of dSUVmax (65.22%) were relatively low
when comparedwith each other. The application ofDTPFDGPET
provided a new perspective for the assessment of tumor immune
microenvironment, andcanmakeup thedeficienciesof a singleMP.
Compared with the MP at a single time point, DTP PET exhibited
improved sensitivity (Meta-Sig vs eSUVmax: 86.36% vs 77.27%)
and specificity (Meta-Sig vs dSUVmax: 73.91% vs 65.22%).
Therefore, DTP FDG PET might reduce the false positive rates on
early scan and false negative rates on delayed scan, which would
help to facilitate accurate treatment strategies and reduce
unnecessary medical cost. Furthermore, the combined model
FIGURE 3 | Correlations between metabolic parameters and PD-1 expression.
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achieved a performance for the identification of TMIT I tumors
with AUC of 0.869, better than that of Meta-Sig (0.818). As
confirmed by DCA, the combined model had a better clinical
usefulness than Meta-Sig at a wide range of threshold probability
(except the range of 20%~25%).

This present study also has a couple of limitations. First, this
study was a single institutional retrospective study with a limit
number of subjects. Second, further understanding of the complex
and volatile TIME is still needed because TIME consists of various
cells types, which display metabolic interactions in the tumor
microenvironment. Third, as the analysis of histology slices was
performed with a semi-quantitative method in the present study,
Frontiers in Oncology | www.frontiersin.org 772
some clustering analyses are needed to make it more quantitative.
The clustering analysis may allocate the cohort into distinct and
discrete subgroups, and clearly delineate patients who are suitable
for immunotherapy. Fourth, none of the patients in the
retrospective cohort received immunotherapy within one month
of the 18F-FDGPET/CTscan.Therefore, it is unknownwhether the
patients with significantly changed MPs could benefit from
immunotherapy. A recent study on 89 patients with advanced or
recurrent NSCLC showed that patients with higher baseline
SUVmax values had higher response rate to immunotherapy than
those with lower baseline SUVmax values (28). Future studies are
warranted to enroll patients that receive subsequent 18F-FDGPET/
FIGURE 4 | The differences of metabolic parameters (MPs) according to different tumor microenvironment immune types (TMITs). The MPs were significantly higher
in TMIT I tumors than other immune types.
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FIGURE 5 | Representative DTP 18F-FDG PET/CT imagings of a 71y male patients, defined as TMIT I tumor. (A–D): early images, (E, F): delayed images, (A): MIP
figure, (B–D): PET, lung window, PET/CT fusion image. A mass was in the lower lobe of right lung (arrow) with markedly increased radioactivity, eSUVmax: 20.3,
eSUVmean: 12.0, eMTV: 52.9 cm3, eTLG: 634.8 g, dSUVmax: 27.7, dSUVmean: 16.0, dMTV: 49.16 cm3, dTLG: 786.56 g. The surgical pathology: moderately
differentiated squamous cell carcinoma. (G) high PD-L1 expression. (H) PD-1 TIL high density. (I) CD8+ TIL high density.
A

B

FIGURE 6 | The selection of optimal MPs using the LASSO algorithm. (A) The optimal tuning parameter (Lambda) in the LASSO model was selected using 10-fold
cross-validation at the minimum of lambda. (B) LASSO coefficient profiles of the 9 parameters. According to the 10-fold cross-validation in (A), Five parameters with
non-zero coefficients were included for metabolic signature construction.
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TABLE 3 | Performance of the combined model and other factors according to TMIT I tumors.

Factors Sensitivity Specificity AUC DAUC 95% CI Z P

Model 77.27% 82.61% 0.869
dSUVmax 86.36% 65.22% 0.788 0.0814 0.0135 - 0.149 2.351 0.0187*
eSUVmax 77.27% 73.91% 0.775 0.0935 0.0159 - 0.171 2.361 0.0182*
Gender 68.18% 53.62% 0.609 0.260 0.140 - 0.380 4.250 < 0.0001*
Smoking 68.18% 68.12% 0.681 0.188 0.0840 - 0.291 3.551 0.0004*
Meta-Sig 86.36% 73.91% 0.818 0.0514 -0.0134 - 0.116 1.553 0.1203
Frontiers in Oncology
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DeLong method were used to compared the AUC of combined model with other factors.
*Statistically significant.
SUVmax, maximum standard uptake value; dSUVmax, delayed SUVmax; eSUVmax, early SUVmax; Meta-Sig, metabolic signature; CI, confidence interval; TMIT I: 3tumor
microenvironment immune type I.
FIGURE 7 | Representative image of receiver operating characteristic (ROC) curves for various factors in the analyses of TMIT I tumors. The combined model had
the highest AUC than other factors.
FIGURE 8 | Decision curve analysis for the model and other factors. The y axis measures the net benefit. The x axis shows the threshold probability. The yellow line
represents the combined model. The blue line represents the Meta-Sig only. The thin gray line represents the assumption that all patients were with TMIT I tumors.
The black line represents the assumption that no patients have a TMIT I tumor.
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CT and immunotherapy within one month of each other, and to
evaluate whether the patients with significantly changedMPs could
benefit from immunotherapy.
CONCLUSION

High glucose metabolism on DTP 18F-FDG PET is relevant to
TMIT-I tumors, and the Meta-Sig and combined model based on
clinical and metabolic information could improve the
performance of identifying patients who may respond to
ICIs treatment.
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The prediction of lymphovascular invasion (LVI) or pathological nodal involvement of tumor
cells is critical for successful treatment in early stage non-small cell lung cancer (NSCLC).
We developed and validated a Deep Cubical Nodule Transfer Learning Algorithm
(DeepCUBIT) using transfer learning and 3D Convolutional Neural Network (CNN) to
predict LVI or pathological nodal involvement on chest CT images. A total of 695
preoperative CT images of resected NSCLC with tumor size of less than or equal to 3 cm
from 2008 to 2015 were used to train and validate the DeepCUBIT model using five-fold
cross-validation method. We also used tumor size and consolidation to tumor ratio (C/T ratio)
to build a support vector machine (SVM) classifier. Two-hundred and fifty-four out of 695
samples (36.5%) had LVI or nodal involvement. An integrated model (3D CNN + Tumor size +
C/T ratio) showed sensitivity of 31.8%, specificity of 89.8%, accuracy of 76.4%, and AUC of
0.759 on external validation cohort. Three single SVM models, using 3D CNN (DeepCUBIT),
tumor size or C/T ratio, showed AUCs of 0.717, 0.630 and 0.683, respectively on external
validation cohort. DeepCUBIT showed the best single model compared to the models using
only C/T ratio or tumor size. In addition, the DeepCUBIT model could significantly identify the
prognosis of resected NSCLCpatients even in stage I. DeepCUBIT using transfer learning and
3D CNN can accurately predict LVI or nodal involvement in cT1 size NSCLC on CT images.
Thus, it can provide a more accurate selection of candidates who will benefit from limited
surgery without increasing the risk of recurrence.
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INTRODUCTION

Lung cancer is one of the most prevalent lethal diseases in the
world. Over the past decade, the percentage of early-stage lung
cancer has also increased; clinical stage IA disease has increased
to account for 15% of non-small cell lung cancer (NSCLC)
patients in developed countries (1). The standard treatment for
stage I NSCLC is lobectomy with mediastinal lymph node
dissection for the best chance of cure (2). However, due to an
increase of screen-detected, indolent cancers appearing as
subsolid nodules, there has been a shift of surgical treatment
modality toward limited resection, such as sublobar resection.
Yet, randomized trials are ongoing and the results for limited
resection are pending (3, 4). For limited surgery to be successful,
a careful selection of patients who would most benefit from
limited surgery is one of the most important steps. However,
there are no definite selection criteria for limited resection as of
yet; a few studies have suggested possible candidates for limited
resection with their study results.

Predominance of ground-glass opacity (GGO) in a lung
nodule on computed tomography (CT) has been widely
recognized to correlate with less invasive pathological findings
of cancer cells replacing the alveolar epithelial cells (5). NSCLC
patients with predominantly GGO appearance showed extremely
good prognosis following surgical resection (6), suggesting that
they are good candidates for limited surgery. In addition, a
previous study has also suggested that NSCLC without
lymphovascular invasion (LVI) or nodal involvement to be
suitable candidates for limited surgical resection. They
concluded that consolidation to tumor ratio (C/T ratio) less
than 0.25 or 0.5 on a CT scan could accurately predict the
absence of LVI or nodal involvement with a very high specificity
(96.4%) (7). However, C/T ratio requires a few extra steps of
manually measuring the size of the tumor and its solid
component and calculating the ratio, which could be time-
consuming and increase work burden for the radiologist. If
LVI or nodal involvement can be accurately identified with a
simpler method, it would prove useful in the selection of
candidates for limited resection.

Deep learning has emerged as a powerful tool of
representation learning, drastically changing the landscape of
feature engineering from hand-crafted manner to a self-taught,
machine-driven manner (8). This has been proven to be useful in
the field of medical image analysis. Moreover, many studies have
successfully demonstrated various applications of deep learning,
including nodule detection on chest radiographs (9) and
prediction of malignancy in lung nodules (10). A deep learning
system can identify features that cannot be assessed by the
human eyes. Therefore, we hypothesized that it would be
possible to develop a system which would classify and predict
pathological features of a nodule on chest CT images to make an
accurate selection of possible candidates for limited surgery with
a simpler method. Thus, we planned to develop, train, and
validate a deep learning algorithm in predicting LVI or
pathological nodal involvement using chest CT images without
manual measurements.
Frontiers in Oncology | www.frontiersin.org 278
MATERIALS AND METHODS

Study Population
The clinical and pathological data of NSCLC patients who
had undergone curative resection between 2011 and 2015
at two different hospitals (Seoul St. Mary’s Hospital and
Incheon St. Mary’s Hospital) of the Catholic University of
Korea were reviewed. The inclusion criteria were as follows:
(i) pathologically confirmed stage I - III NSCLC; (ii) tumor size
of ≤ 3 cm on pathology report; (iii) availability of pathology
report; (iv) no preoperative radiation or chemotherapy;
(v) availability of chest CT scan (axial images) prior to surgical
treatment; and (vi) measurable cancer lesion on preoperative CT
images. This study was approved by the institutional review
board of Catholic Medical Center (No. UC17SESI0073), and was
performed in accordance with the guideline of human research.
The requirement for written informed consent was waived by the
institutional review board (Catholic Medical Center) because of
this study’s character of retrospective analysis.

One thousand seventy-six patients underwent lung cancer
surgery between 2011 and 2015, and the final 600 patients who
met the inclusion criteria were identified at Seoul St. Mary’s
Hospital (cohort I). Patients in cohort I were used for training,
validation and test, and 95 patients from Incheon St. Mary’s
Hospital (cohort II) were used for external validation (Figure 1).
Six hundred ninety-five patients (mean age, 63.0 years ± 9.7)
were enrolled in this study; the patient cohort consisted of 361
males and 334 females. Two hundred fifty-four (36.5%) had LVI
or nodal involvement and 441 (63.5%) no LVI or nodal
involvement (Table 1).

Data Preparation and Lesion Labeling
The preoperative CT images at Seoul St. Mary’s Hospital were
acquired from Siemens (Somtatom; Erlangen, Germany), with a
tube voltage of 120 kVp and tube-current time product of 35-290
mAs, and the images were reconstructed with a slice thickness of
3-5 mm and increment of 3-5 mm. The preoperative CT images
at Incheon St. Mary’s Hospital were acquired from Toshiba
(Aquilion; Tochigi-ken, Japan), with a tube voltage of 120 kVp
and tube-current time product of 30-108 mAs, and the images
were reconstructed with a slice thickness of 3-5 mm and
increment of 3-5 mm.

Two board-certified radiologists (K.S.B. and B.M.K.), who were
blinded to clinical data of all patients, manually drew a rectangular
region of interest (ROI) (smallest possible rectangle that could
encompass the entire tumor) around the cancer lesion on axial CT
images on the PACS workstation (Maroview 5.4; Infinitt, Seoul,
Korea) independently. ROI was drawn on the contrast-enhanced
images, if available. The chest CT images were extracted in
DICOM (Digital Imaging and Communications in Medicine)
format with ROI information to develop prediction models.

Data Splitting and Pretreatment
The cohort I was randomized to maintain the ratio of training
(64%), validation (16%), and test (20%). The training and
July 2021 | Volume 11 | Article 661244
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validation sets were used for model learning and optimal model
selection, and the test set was used to evaluate the performance of
the model. Five-fold stratified cross validation was adopted for
training and validation. Figure 1 indicates a detailed number of the
lesions for training, validation, and testing, whereas Figure 2 shows
the overall evaluation pipeline. In the development of the deep
Frontiers in Oncology | www.frontiersin.org 379
learning system, each data sample was defined as (1): A 3D patch of
32mm×32mm×32mm, cropped from the CT scan at the center of a
nodule; (2) The pathologically identified label of LVI or nodal
involvement; and (3) Manually labeled voxel-wise nodule mask.
Online data augmentation (randomly flipping the images on x, y, z
axes) was performed for efficient training of the networks.
FIGURE 1 | Data criteria and specification.
TABLE 1 | Baseline characteristics of the training, validation, and external validation cohorts.

Characteristic Total (n = 695) Training and validation cohort (n = 600) External validation cohort (n = 95) p-value

Age (years)* Mean ± SD 63.0 ± 9.7 63.0 ± 9.8 63.6 ± 9.5 0.551
Sex Male 361 308 (51.3%) 53 (55.8%) 0.419

Female 334 292 (48.7%) 42 (44.2%)
Smoking history Never 412 349 (58.2%) 63 (66.3%) 0.281

Current 128 112 (18.7%) 16 (16.8%)
Former 155 139 (23.1%) 16 (16.8%)

Histology AC 471 395 (65.8%) 76 (80.0%) 0.005
SqCC 123 108 (18.0%) 15 (15.8%)
Others 101 97 (16.2%) 4 (4.2%)

Tumor size (cm)† 2.0 (1.6-2.6) 2.0 (1.5-2.6) 2.1 (1.7-2.6) 0.184
C/T ratio† 1.0 (0.5-1.0) 1.0 (0.5-1.0) 1.0 (0.7-1.0) 0.008
LVI or nodal involvement Yes 254 232 (38.7%) 22 (23.2%) 0.004

No 441 368 (61.3%) 73 (76.8%)
July 2021 | Volume 11 | Article
*Data are mean ± SD.
†Measured on CT image and data are median (with interquartile range in parentheses).
C/T ratio, consolidation to tumor ratio; LVI, lymphovascular invasion; AC, adenocarcinoma; SqCC, squamous cell carcinoma.
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Deep Cubical Nodule Transfer Learning
(DeepCUBIT) Model
In order to overcome the limited number of samples of medical
data in this study, which we considered insufficient to learn from
scratch, we used a transfer learning method. Transfer learning is
a machine learning technique for predictive modeling on related
tasks that can be reused to accelerate the training and improve
the performance of a model. This is done by fine-tuning the
weights from a pre-trained network (11). We named the overall
process consisting of pre-training, deep transfer learning, and
actual prediction of LVI or nodal involvement as DeepCUBIT
(Deep CUBical nodule Transfer learning) algorithm (Figure 3).

Preprocessing
Images were obtained as three-dimensional CT image data by
layering two-dimensional slice images. Preprocessing was
required to apply the data to the DeepCUBIT model, because
the relative size of one voxel is different between samples and the
entire CT image cannot be used as an input for the DeepCUBIT
model. The CT images were preprocessed in the following steps.
In CT scans, each 3D voxel intensity is expressed as Hounsfield
Units (HU), which represent a measure of radiodensity. For
example, HU value of -1000 represents the air and HU value
from -500 to -600 represents the lungs. Inconsistency of
cylindrical scanning boundary and image boundary results in
an abnormal HU value of - 2000 HU. However, since these are
noises and because we thought there is no need to differentiate
air and noise, we changed the value of noise to be -1000HU to
Frontiers in Oncology | www.frontiersin.org 480
represent air, instead of original -2000HU. In order to have
comparability among samples, we have rescaled the CT images
so that one voxel represents size of 1mm×1mm×1mm by linear
interpolation, and the voxel values were normalized using min-
max normalization for each sample. We extracted 3D nodule
cubes in the ROI according to manually annotated center of
nodules for the test set, as in the training set. Whole raw image
data were used instead of segmenting the lung region because
there were nodules on the boundary between lung and mass.

Model Architecture
The structure of the DeepCUBIT consists of four 3D CNN units
and one classifier unit. Figure 4 shows the entire architecture of
the DeepCUBIT. In the 3D CNN units, the channels are
increased through the convolutional operation of CNN layers.
The max-pooling layer is used to reduce resolution (12), and the
batch normalization layer (13) is used to speed up the learning
time and facilitate the learning process. The kernel size of the
CNN layer is all (3, 3, 3), which means 3 pixels depth, 3 pixels
height and 3 pixels width. In a 3D CNN layer, adding one kernel
increases one channel, and the value computed through
convolutional operation using the kernel forms one 3D cube
channel. 3D CNN units are stacked to increase the channels and
reduce the resolution. Thus, the DeepCUBIT model learns from
the detailed features to the high-level abstract features. The
classifier unit was made by adding a 64 nodes dense layer and
sigmoid layer on the CNN layer. In the transfer learning process,
the architecture of all units was unchanged except for the
FIGURE 2 | Evaluation pipeline for proposed model.
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FIGURE 4 | Architecture of DeepCUBIT model.
FIGURE 3 | Overall process of the DeepCUBIT algorithm. (A) Pre-training Process: Nodule samples and malignancy samples are presented to pre-train. (B) Deep
Transfer Learning: Predicting the LVI or nodal involvement by fine-tuning the model with weights of pre-trained weights. (C) Prediction of LVI or nodal involvement:
Feature integration and prediction of LVI or nodal involvement for extra validation cohort.
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classifier unit. After the training of the model, we changed the
classifier unit to support vector machine (SVM) algorithm (14).

3D Convolutional Neural Network
CNN is a type of deep learning model, and some CNNmodels have
the capability of end to end learning (15). In two-dimensional still
image data, CNN image filter becomes a 2D kernel acting as a spatial
feature extractor. However, in the CT data, we have to reflect the
volume information as well as 2D spatial information; therefore, it is
necessary toextract the features through the3Dkernels and3DCNN.
The 3D CNN obtains a feature map through a Width × Height ×
Depthfilter called a kernel. TheCNN layer creates a new featuremap
from neighboring pixels centered on the location where the kernel
mapping to the previousCNN layer. The size of the featuremap itself
is reduced by attaching themax pooling layer to the end of the CNN
layer. Moreover, stacking more than 2 layers of CNN layer will
increase the feature map channel numbers (16). We can get the nth
channel featuremaps value of (x, y, z) position ofLthCNN layer from
the L–1th CNN layer using the following formula (12).

Xxyz
nL   =  f (bnL  +  ∑

m
  ∑
Pn−1

p=0
  ∑
Qn−1

q=0
  ∑
Rn−1

r=0
 Wpqr

nLmX
(x+p)(y+q)(z+r)
(L−1)m )

In this formula, f is the activation function of the each node,
bnL is the bias values mapping kernel weights, Pn, Qn, Rn are the
size of the 3D kernel consist of width, height, and volume
dimension, respectively, and wpqr

nLm is the (p, q, r)th value of the
kernel connected to the mth feature map in the L–1th layer
(previous layer). One 3D kernel has a feature map that extracts
one feature because one 3D kernel with P × Q × R weights will
apply the same weight to all input CT data sliding with fixed
stride hops. Therefore, we have to create a large number of
kernels to extract various types of features.

Deep Transfer Learning
Pre-training domains related to the fine-tuning domain, which
predicts LVI or nodal involvement of a nodule in this case, need
to be selected for transfer learning to work. Pre-training was on
the 3D ROIs. We selected two types of domain for pre-training: a
nodule detection domain and a nodule malignancy prediction
domain. LUNA16 (LUng Nodule Analysis 2016 challenge,
https://luna16.grand-challenge.org/) data set of about 400,000
samples was trained for the first pre-training step to predict the
presence of a nodule for the presented 3D cube. LIDC (The Lung
Image Database Consortium image collection, https://wiki.
cancerimagingarchive.net/display/Public/LIDC-IDRI) data set
of about 5,000 samples was trained for the second pre-training
step to predict malignancy scores for the presented nodule cubes.
The number of samples represents the number of nodule cubes.
DeepCUBIT was then fine-tuned using nodule samples of cohort
I based on the weights of pre-trained results.

Predicting Lymphovascular Invasion or Nodal
Involvement and Addition of Clinical Data
To assess how well the features are extracted through the deep
learning model and how well LVI or nodal involvement of
nodule is predicted, we compared the prediction using
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DeepCUBIT model with prediction using tumor size and C/T
ratio. The tumor size and C/T ratio are known indicators for
determining the invasiveness of a nodule, both measured on CT
and then calculated by the radiologists. We measured the
performance of the learned model by using each feature set
independently. We also measured the performance of the learned
model by combining all the feature sets. We trained the SVM
classifier to predict LVI or nodal involvement of a nodule. Radial
Basis Function (RBF) kernel was used to train the SVM. The
integrated features were used in the training of the SVM classifier
after concatenating 64 size vector of DeepCUBIT features, tumor
size, and C/T ratio. The process of the final LVI or nodal
involvement prediction is presented in a part C) on the Figure 3.

Model performance was evaluated by averaging the scores of
five stratified hold-out test sets on three different classifiers
(SVM, xgboost, random forest). All classifiers were trained
using default parameters, and software package versions were
as follows: “scikit-learn” python package 0.21.3 for SVM and
random forest and “xgboost” python package version 0.90 for
xgboost. SVM classifier was finally selected, because it showed
the best performance score among the three classifiers.

Statistical Analysis
Clinicopathologic characteristics are presented as median
(range) for continuous variables or numbers (percentage) for
categorical variables. Comparisons between the two groups were
performed using the Students unpaired t-test or chi-square test.
Recurrence-free survival (RFS) was defined as the duration
between the date of diagnosis and the date of recurrence date
or death from any causes. The performance of the algorithms
was evaluated using Harrells concordance-index (C-index),
which is a non-parametric statistic that measures concordance
between predicted risk and actual survival (17). The predictive
performance of all models was compared based on the mean
AUC. The evaluation matrix includes Accuracy, Sensitivity,
Specificity, PPV (Positive Predictive Value) and NPV (Negative
Predictive Value). Kaplan-Meier method and log-rank test were
used to determine the differences of estimated survival curves
according to the classifier.
RESULTS

Performance of Transfer Learning
DeepCUBIT model was pre-trained using a total of 405,000
samples from LUNA16 and LIDC models. As depicted in
Table 2, DeepCUBIT showed a much better performance than
Deep 3D CNN without transfer learning. This result
demonstrates that transfer learning is a critical step in training
the domains that predict LVI or nodal involvement of nodules.

Model Performance
After transfer learning, nodule image features were extracted by the
proposed deep network (DeepCUBIT), and clinical features were
integrated into the model. The integrated model was performed to
predict the performance of the best result in the test sets, and the
July 2021 | Volume 11 | Article 661244
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results of the comparison are reported in Table 3, Supplementary
Table 1, and Supplementary Figure 1. Three single SVM classifier
models, using 3DCNN, tumor size, andC/T ratio showedAUCs of
0.723, 0.657 and 0.742, respectively. Evaluation scores improved
(sensitivityof 75.8%, and specificityof 67.6%, accuracyof70.8%and
AUC of 0.77) after applying SVM to the merged features of
DeepCUBIT model, C/T ratio, and tumor size.

We also did a subgroup analysis in patients with C/T ratio < 1.0
to compare the probability scores of DeepCUBIT and SVM
classifier models using C/T ratio in predicting LVI or nodal
involvement. The performance of DeepCUBIT model was
superior to the C/T ratio model in this subgroup, and the
detailed results can be seen in the Supplementary Table 2.
These findings indicate that deep learning features and clinical
features are complementary to each other.

External Validation
To further analyze the robustness, reproducibility, and reliability of
the model, we performed an additional validation using data from
cohort II. Similar to the results of cohort I, DeepCUBIT showed the
Frontiers in Oncology | www.frontiersin.org 783
best single model performance (AUC of 0.717) compared to the
models using only C/T ratio or tumor size on SVM classifier
(Table 4, Supplementary Table 3 and Supplementary Figure 2).
Applying SVM using all the features, including DeepCUBIT
features, tumor size, and C/T ratio, showed the best predictive
performance (sensitivity of 31.8%, and specificity of 89.8%,
accuracy of 76.4% and AUC of 0.759).

Clinical Significance of DeepCUBIT Model
To identify the area in the CT image most responsible for the
DeepCUBIT model in predicting LVI or nodal involvement,
GradCAM (Gradient-weighted Class Activation Mapping) (18)
was adapted to visualize the 3D CNN result, creating heatmaps
(Figure 5). Grad-cam was applied after the DeepCUBIT network
was trained. DeepCUBITmodel wasmade of four 3D CNN blocks.
Last output activations and gradients of third 3DCNN layers block
was used in the analysis. Heatmaps showed different results for
tumorswithC/Tratio1.0 and thosewithC/Tratio lower than1.0. In
solid tumors with C/T ratio 1.0, the area most responsible for the
prediction of LVI or nodal involvement was the tumor itself.
TABLE 4 | Performance evaluation for external validation data (Cohort II, external hold-out set).

Classifier SVM Xgboost Random Forest

Feature Type AUC CIs (95%) AUC CIs (95%) AUC CIs (95%)

3D CNN (DeepCUBIT) 0.717 0.601 - 0.819 0.685 0.566 - 0.797 0.660 0.528 - 0.779
Tumor size 0.630 0.502 - 0.749 0.634 0.510 - 0.752 0.606 0.476 - 0.729
C/T Ratio 0.683 0.614 - 0.743 0.682 0.612 - 0.743 0.658 0.591 - 0.733
Tumor size + C/T Ratio 0.716 0.606 - 0.813 0.715 0.613 - 0.812 0.663 0.544 - 0.776
3D CNN + Tumor size
+ C/T Ratio

0.759 0.646 - 0.855 0.757 0.654 - 0.843 0.716 0.607 - 0.820
July 2
021 | Volume 11 |
CNN, Convolutional Neural Network; DeepCUBIT, Deep Cubical Nodule Transfer Learning Algorithm; C/T Ratio, consolidation to tumor ratio; SVM, Support Vector Machine; AUC, area
under the curve; CIs, Confidence Intervals for AUC score.
Variable with DeepCUBIT model is shown in bold type.
TABLE 2 | Performance comparison for transfer learning in Cohort 1 and 2.

Cohort P-value Model CLF AUC Cis (95%)

1 2.447e-09 Deep 3D CNN with TL NN 0.682 0.587 - 0.772
Deep 3D CNN without TL NN 0.606 0.503 - 0.707

2 7.485e-11 Deep 3D CNN with TL NN 0.669 0.553 - 0.78
Deep 3D CNN without TL NN 0490 0.364 - 0.625
CNN, Convolutional Neural Network; CLF, Classifier; NN, Neural Network; TL, Transfer Learning; AUC, area under the curve; CIs, Confidence Intervals for AUC score.
Variables with DeepCUBIT model are shown in bold type.
TABLE 3 | Performance evaluation for test data (Cohort I, average of 5 fold hold-out test set).

Classifier SVM Xgboost Random Forest

Feature Type AUC CIs (95%) AUC CIs (95%) AUC CIs (95%)

3D CNN (DeepCUBIT) 0.723 0.633 - 0.814 0.730 0.642 - 0.816 0.715 0.622 - 0.802
Tumor size 0.657 0.558 - 0.751 0.621 0.522 - 0.720 0.577 0.473 - 0.684
C/T Ratio 0.742 0.663 - 0.817 0.726 0.644 - 0.803 0.631 0.538 - 0.721
Tumor Size + C/T Ratio 0.754 0.669 - 0.834 0.735 0.658 - 0.817 0.686 0.591 - 0.777
3D CNN + Tumor size
+ C/T Ratio

0.770 0.681 - 0.852 0.752 0.663 - 0.833 0.725 0.635 - 0.813
CNN, Convolutional Neural Network; DeepCUBIT, Deep Cubical Nodule Transfer Learning Algorithm; C/T Ratio, consolidation to tumor ratio; SVM, Support Vector Machine; AUC, area
under the curve; CIs, Confidence Intervals for AUC score.
Variable with DeepCUBIT model is shown in bold type.
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However, in part-solid tumors with C/T ratio lower than 1.0, the
area most responsible for the prediction of LVI or nodal
involvement was the periphery of the tumor, which is the
interface between the tumor and the adjacent lung parenchyma.

To ascertain the clinical significance of DeepCUBIT model, a
novel 3D CNN using the deep cubical transfer learning algorithm,
the survival analysis for relapse free survival (RFS) was performed
on patients with stage I. These patients were of special interest since
postoperative treatment for stage I disease is controversial in
external cohort. We assumed that the samples with high invasion
probability score will have high risk probability, so we sorted
samples according to the invasion probability scores based on the
median probability. Despite the small number of patientswith stage
I disease (105 patients; cohort I, those not used in the training, n =
62; cohort II, n = 43), the RFS of patients with high and low risk
scores using DeepCUBIT alone (P = 0.019) and SVMmodel using
DeepCUBIT features with tumor size andC/T ratio (P = 0.223) was
significantly different.However, SVMmodel using tumor size orC/
T ratio alonedidnot demonstrate any significantdifferencebetween
high and low risk score for the 3-year RFS (Figure 6).
DISCUSSION

Lobectomy is the standard surgical care for patients with
resectable NSCLC; recently, pulmonary function-preserving
limited surgery has become more prevalent due to the
increased number of early and small sized lung cancer, owing
Frontiers in Oncology | www.frontiersin.org 884
to advances in CT technology, more widespread use of CT, and
implementation of low-dose CT screening programs worldwide
(4). However, previous randomized controlled study had failed
to demonstrate the efficacy and validity of limited surgery for
clinical early-stage NSCLC (19). Therefore, a careful selection of
early stage NSCLC patients for limited resection is of paramount
importance to achieve favorable clinical outcomes. One of the
factors for favorable clinical outcomes is the absence of LVI or
nodal involvement (20). If early-stage NSCLC population
without LVI or nodal invasion could be accurately identified
before surgery, they could undergo limited resection expecting
favorable outcomes. To our knowledge, this the first study
incorporating deep learning with preoperative CT images of
primary tumor to identify LVI or nodal involvement. We
developed a Deep 3D CNN with transfer learning algorithm,
the DeepCUBIT, that showed similar performance to the C/T
ratio, which is a strong indicator for LVI or nodal involvement of
early lung cancer in previous studies (7, 21). Adding C/T ratio
and tumor size to the deep learning algorithm further improved
the predicting capability of deep learning algorithm. However,
even with DeepCUBIT alone, the prediction of LVI or nodal
involvement in cT1 stage NSCLC using CT images has become
much simpler yet accurate.

The performance of our model, as represented by specificity
of 92.6% and sensitivity of 27.6%, is similar to the results of a
previous study using C/T ratio to predict LVI or pathological
nodal involvement, which resulted in specificity of 96.4% and
sensitivity of 30.4% (7). The results cannot be directly compared,
A B

D E F
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FIGURE 5 | Gradient-weighted class activation heatmaps of nodule cubes. (A) Raw intensity, (B) gradient heatmap, and (C) overaly heatmap of a solid tumor with
C/T ratio 1.0 show the area most responsible for the prediction of LVI or nodal involvement to be the solid tumor itself, rather than pleural tag. (D) Raw intensity,
(E) gradient heatmap and (F) overlay heatmap of a part-solid tumor with C/T ratio 0.75 show that the area most responsible for the prediction of LVI or nodal
involvement to be the interface of the tumor with the adjacent lung parenchyma.
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because our study population and theirs are slightly different:
that study consisted almost entirely of adenocarcinomas (97.1%,
to be exact), but our study consisted of 65.8% of adenocarcinomas,
and 34.2% were NSCLCs other than adenocarcinomas, and this
could have influenced the accuracy.

Lymph node involvement or LVI are known to have higher
recurrence rate and mortality risk (20, 22). In previous studies,
tumor size and C/T ratio have been identified as well-known risk
factors for mediastinal nodal involvement (23). Another study has
also shown that the size of the consolidation or solid portion of the
primary tumor measured on CT images is one of the independent
predictors of lymph node metastasis (24). However, conventional
CT images, which rely on lymph node size alone, have a low
accuracy in predicting nodal involvement (25). Although the
specificity of 18F-FDG PET/CT for detecting lymph node
metastasis is high, accuracy of PET-CT is insufficient because of
its low sensitivity, especially in the tuberculosis endemic countries
(26). Unlike lymph node metastasis, LVI cannot be clinically and
preoperatively determined based onCT imaging features. Thus, the
fact that LVI or nodal metastasis has been incorporated in the
prediction of invasiveness using CT images seems to be an
encouraging step. Therefore, our success in using the CT images
of the primary tumor to predict LVI or nodal metastasis is in line
with the results of previous studies (20, 22).

There have been many conflicting reports dealing with proper
indication and efficacy of limited surgery for early stage NSCLC.
However, based on the long-term results of the JCOG 0201 trial,
limited surgery would lead to satisfactory prognoses in patients
Frontiers in Oncology | www.frontiersin.org 985
with predominantly GGO lung cancers with C/T ratio of 0.5 or
less and tumor sizes exceeding 2 cm but 3 cm or less (21, 27). In
our study, the performance of the DeepCUBIT model predicting
LVI or nodal involvement was similar to that of using C/T ratio,
in tumors less than 3cm in size. Of note, this deep learning model
can potentially identify patients at high recurrence risk even in
stage I patients in a simpler way, which may reflect the biology of
primary tumor and provide additional beneficial prognostic
information. The benefit from adjuvant chemotherapy is now
widely accepted stage in II or III NSCLC (28), but there is no
agreement on the use of adjuvant chemotherapy in stage I
NSCLC. Previous retrospective study indicated that adjuvant
chemotherapy might be beneficial to stage I NSCLC patients with
high risk features, such as LVI (29). However, choosing optimal
candidates for adjuvant treatment according to conventional
single risk factor might be insufficient because it does not
consider all clinical or biologic factors and the varying weight
of each factor. Thus, we could identify the subgroup harboring a
high risk of recurrence that might benefit from adjuvant therapy
by applying the novel deep algorithm developed in this study.

In general, to apply the machine learning to CT images, a
known feature is extracted from radiologists using the domain
knowledge in the CT images or using feature extraction software
tools. Then, the machine running is applied to that extracted
features. However, in this way, the performance is limited,
because new hidden features are difficult to find and learning
occurs only within the known existing feature set. To overcome
these drawbacks, we used an end-to-end learning method by
A B
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FIGURE 6 | Kaplan–Meier curves according to predicted risk of recurrence for NSCLC patients with stage I in Cohort I (test set only) and Cohort II (105 patients).
Curves obtained using (A) DeepCUBIT model, (B) SVM classifier using DeepCUBIT features with tumor size and C/T ratio, (C) SVM classifier using tumor size alone,
and (D) SVM classifier using C/T ratio alone.
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extracting a feature set from CT images directly using 3D CNN.
Moreover, we used transfer learning to improve generality,
robustness, and performance. We observed that the addition of
transfer learning to 3D CNN improved the performance of 3D
CNN, which means that transfer learning process, consisting of
pre-training and fine-tuning, is a necessary step in optimization
of learning features. Heatmaps generated in order to identify the
areas in the CT image most responsible for the DeepCUBIT
model in predicting LVI or nodal involvement showed that
the DeepCUBIT model seemed to work differently in tumors
with C/T ratio 1.0 and those with C/T ratio lower than 1.0. In
solid tumors with C/T ratio 1.0, the area most responsible for the
prediction of LVI or nodal involvement was the tumor itself.
However, in part-solid tumors with C/T ratio lower than 1.0, the
area most responsible for the prediction of LVI or nodal
involvement was the periphery of the tumor, which is the
interface between the tumor and the adjacent lung
parenchyma. This suggests that there may be factors not
identifiable to the human eye influencing the invasiveness of a
part-solid tumor at the interface between the tumor and the
adjacent lung parenchyma. Further studies may be needed to
expand on this idea. We believe such approach integrating the
deep learning models and readily available clinical or radiological
data can be used to develop other models in the medical field.

The clinical relevance of the findings in this study has several
limitations. First, the number of patients in an independent external
validation dataset is relatively small, but both training and validation
cohort data, such as radiological findings, standardized surgical
treatment, and the detailed records of clinical parameters, were well
obtained andof goodquality. Second, this is a retrospective study, but
the inclusion and exclusion criteriawere strictly applied to ensure the
inclusion of definite LVI or nodal involvement in the study. Third,
there were 18 (2.9%) out of 631 caseswith primary cancer lesion “not
measurable” on chest CT scans, which were excluded from the study
population. All of these lesions were endobronchial lesions in the
lobar or intermediate bronchi, and 15 of these tumors could be seen
on CT but the exact extent of tumor was not entirely clear because
they were blended with distal atelectasis. Three other lesions were
diagnosed through transbronchoscopic biopsy but could not be
located on CT. However, they only represent a relatively small
population (2.9%). Moreover, endobronchial tumors are
considered as relative contraindications for performing sublobar
resection in NSCLC (30, 31), so we don’t believe excluding these
patients would create major limitation for using our approach in the
clinical practice for selecting candidates for limited resection. Fourth,
the single model of DeepCUBIT did not outperform the boosting
modelusingC/Tratio.This resultmightbedue to the limitednumber
of samples.However, the deep learningmodel has the advantage that
CT images can be directly used to predict LVI or nodal involvement
of the tumor without increasing the workload of a radiologist. Fifth,
the CT images used in this study are comprised of a heterogeneous
mixture of CTs from different vendors, machines, and protocols.
Contrast-enhancement images were used if available because we
hypothesized enhancement pattern may be useful in determining
LVI or nodal involvement. However, because contrast-enhancement
images were not available in all patients, the data is heterogeneous,
Frontiers in Oncology | www.frontiersin.org 1086
and this could have affected the ability of the deep learning algorithm
inpredictingLVIornodal involvement.Nonetheless,webelieve such
heterogeneity in CT images accurately reflects the real world, and a
trained deep learning system with such data may be more fit for the
real-world clinical practice.

CONCLUSIONS

The authors have shown that the DeepCUBIT algorithm using
transfer learning and 3D CNN based on CT scan images can
accurately predict LVI or nodal involvement of primary NSCLC.
This deep learning algorithm prediction may be convenient and
useful for individualizing treatment modality. In order to predict
LVI or nodal involvement of the tumor before surgery, an
integrated deep learning approach that combines the
multimodal imaging data with clinical data may be more useful.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the ethical committee at Seoul St. Mary’s Hospital
and Incheon St. Mary’s Hospital of the Catholic University of Korea.
Written informed consent was waived by the institutional review
board because of this study’s character of retrospective analysis.

AUTHOR CONTRIBUTIONS

YK and SP generated the concept of the work. BG, SN, SC, JH,
JK, SH, WS, HA, and KB performed the data acquisition,
analysis, and interpretation. WS, BL, and SP created the new
algorithm used in this work. KB drafted the manuscript. HA and
YK substantively revised it. All authors contributed to the article
and approved the submitted version.

FUNDING

This study was supported by a grant from the National R&D
Program for Cancer Control, Ministry of Health & Welfare,
Republic of Korea (1720100).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2021.
661244/full#supplementary-material

Supplementary Figure 1 | Comparison of performance of three models
(DeepCUBIT, tumor size, and C/T ratio) via ROC AUC. AUC scores were calculated
using the hold-out test data in cohort I (n = 121 patients, (A) and cohort II (n = 95
patients, (B).
July 2021 | Volume 11 | Article 661244

https://www.frontiersin.org/articles/10.3389/fonc.2021.661244/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.661244/full#supplementary-material
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Beck et al. Deep Learning in NSCLC and Its Prognosis
REFERENCES

1. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt
WE, et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of
the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM
Classification for Lung Cancer. J Thorac Oncol (2016) 11(1):39–51. doi:
10.1016/j.jtho.2015.09.009

2. Lackey A, Donington JS. Surgical Management of Lung Cancer. Semin
Intervent Radiol (2013) 30(2):133–40. doi: 10.1055/s-0033-1342954

3. Donington JS, Kim YT, Tong B, Moreira AL, Bessich J, Weiss KD, et al.
Progress in the Management of Early-Stage Non-Small Cell Lung Cancer in
2017. J Thorac Oncol (2018) 13(6):767–78. doi: 10.1016/j.jtho.2018.04.002

4. Khullar OV, Liu Y, Gillespie T, Higgins KA, Ramalingam S, Lipscomb J, et al.
Survival After Sublobar Resection Versus Lobectomy for Clinical Stage IA
Lung Cancer: An Analysis From the National Cancer Data Base. J Thorac
Oncol (2015) 10(11):1625–33. doi: 10.1097/JTO.0000000000000664

5. Taylor ML, Carmona F, Thiagarajan RR, Westgate L, Ferguson MA, del Nido
PJ, et al. Mild Postoperative Acute Kidney Injury and Outcomes After Surgery
for Congenital Heart Disease. J Thorac Cardiovasc Surg (2013) 146(1):146–52.
doi: 10.1016/j.jtcvs.2012.09.008

6. Ohde Y, Nagai K, Yoshida J, Nishimura M, Takahashi K, Suzuki K, et al. The
Proportion of Consolidation to Ground-Glass Opacity on High Resolution
CT Is a Good Predictor for Distinguishing the Population of Non-Invasive
Peripheral Adenocarcinoma. Lung Cancer (2003) 42(3):303–10. doi: 10.1016/
j.lungcan.2003.07.001

7. Suzuki K, Koike T, Asakawa T, Kusumoto M, Asamura H, Nagai K, et al. A
Prospective Radiological Study of Thin-Section Computed Tomography to
Predict Pathological Noninvasiveness in Peripheral Clinical IA Lung Cancer
(Japan Clinical Oncology Group 0201). J Thorac Oncol (2011) 6(4):751–6. doi:
10.1097/JTO.0b013e31821038ab

8. Shen D, Wu G, Suk HI. Deep Learning in Medical Image Analysis. Annu
Rev BioMed Eng (2017) 19:221–48. doi: 10.1146/annurev-bioeng-071516-
044442

9. Nam JG, Park S, Hwang EJ, Lee JH, Jin KN, Lim KY, et al. Development and
Validation of Deep Learning-Based Automatic Detection Algorithm for
Malignant Pulmonary Nodules on Chest Radiographs. Radiology (2019)
290(1):218–28. doi: 10.1148/radiol.2018180237

10. Causey JL, Zhang J, Ma S, Jiang B, Qualls JA, Politte DG, et al. Highly Accurate
Model for Prediction of Lung Nodule Malignancy With CT Scans. Sci Rep
(2018) 8(1):9286. doi: 10.1038/s41598-018-27569-w

11. Shao L, Zhu F, Li X. Transfer Learning for Visual Categorization: A Survey.
IEEE Trans Neural Netw Learn Syst (2015) 26(5):1019–34. doi: 10.1109/
TNNLS.2014.2330900

12. Ji S, Yang M, Yu K. 3D Convolutional Neural Networks for Human Action
Recognition. IEEE Trans Pattern Anal Mach Intell (2013) 35(1):221–31. doi:
10.1109/TPAMI.2012.59

13. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. (2015).

14. Cortes C, Vapnik V. Support-Vector Networks. Mach Learn (1995) 20
(3):273–97. doi: 10.1007/BF00994018

15. LeCun Y, Bottou L, Yoshua B, Haffner P. Gradient-Based Learning Applied to
Document Recognition. Proc IEEE (1998) 86:2278–324. doi: 10.1109/5.726791

16. Yosinski J, Clune J, Nguyen AM, Fuchs TJ, Lipson H. Understanding Neural
Networks Through Deep Visualization. CoRR (2015). arXiv preprint
arXiv:1506.06579.

17. Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the Yield of
Medical Tests. JAMA (1982) 247(18):2543–6. doi: 10.1001/jama.247.18.2543

18. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-
CAM: Visual Explanations From Deep Networks Via Gradient-Based
Localization. Proc IEEE Int Conf Comput Vision (ICCV) (2017), 618–26.
doi: 10.1109/ICCV.2017.74
Frontiers in Oncology | www.frontiersin.org 1187
19. Ginsberg RJ, Rubinstein LV. Randomized Trial of Lobectomy Versus Limited
Resection for T1 N0 Non-Small Cell Lung Cancer. Lung Cancer Study Group.
Ann Thorac Surg (1995) 60(3):615–22; discussion 22-3. doi: 10.1016/0003-
4975(95)00537-U

20. Higgins KA, Chino JP, Ready N, D’Amico TA, Berry MF, Sporn T, et al.
Lymphovascular Invasion in Non-Small-Cell Lung Cancer: Implications for
Staging and Adjuvant Therapy. J Thorac Oncol (2012) 7(7):1141–7. doi:
10.1097/JTO.0b013e3182519a42

21. Asamura H, Hishida T, Suzuki K, Koike T, Nakamura K, Kusumoto M, et al.
Radiographically Determined Noninvasive Adenocarcinoma of the Lung:
Survival Outcomes of Japan Clinical Oncology Group 0201. J Thorac
Cardiovasc Surg (2013) 146(1):24–30. doi: 10.1016/j.jtcvs.2012.12.047

22. Wang J, Wang B, Zhao W, Guo Y, Chen H, Chu H, et al. Clinical Significance
and Role of Lymphatic Vessel Invasion as a Major Prognostic Implication in
Non-Small Cell Lung Cancer: AMeta-Analysis. PloS One (2012) 7(12):e52704.
doi: 10.1371/journal.pone.0052704

23. Koike T, Koike T, Yamato Y, Yoshiya K, Toyabe S. Predictive Risk Factors for
Mediastinal Lymph Node Metastasis in Clinical Stage IA Non-Small-Cell
Lung Cancer Patients. J Thorac Oncol (2012) 7(8):1246–51. doi: 10.1097/
JTO.0b013e31825871de

24. Zang RC, Qiu B, Gao SG, He J. A Model Predicting Lymph Node Status for
Patients With Clinical Stage T1aN0-2M0 Nonsmall Cell Lung Cancer. Chin
Med J (Engl) (2017) 130(4):398–403. doi: 10.4103/0366-6999.199838

25. Toloza EM, Harpole L, McCrory DC. Noninvasive Staging of Non-Small Cell
Lung Cancer: A Review of the Current Evidence. Chest (2003) 123(1 Suppl):
137S–46S. doi: 10.1378/chest.123.1_suppl.137S

26. Pak K, Park S, Cheon GJ, Kang KW, Kim IJ, Lee DS, et al. Update on Nodal
Staging in Non-Small Cell Lung Cancer With Integrated Positron Emission
Tomography/Computed Tomography: A Meta-Analysis. Ann Nucl Med
(2015) 29(5):409–19. doi: 10.1007/s12149-015-0958-6

27. Aokage K, Yoshida J, Ishii G, Matsumura Y, Haruki T, Hishida T, et al.
Identification of Early T1b Lung Adenocarcinoma Based on Thin-Section
Computed Tomography Findings. J Thorac Oncol (2013) 8(10):1289–94. doi:
10.1097/JTO.0b013e31829f6d3b

28. Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ,
et al. Lung Adjuvant Cisplatin Evaluation: A Pooled Analysis by the LACE
Collaborative Group. J Clin Oncol (2008) 26(21):3552–9. doi: 10.1200/
JCO.2007.13.9030

29. Tsuchiya T, Akamine S, Muraoka M, Kamohara R, Tsuji K, Urabe S, et al.
Stage IA Non-Small Cell Lung Cancer: Vessel Invasion Is a Poor Prognostic
Factor and a New Target of Adjuvant Chemotherapy. Lung Cancer (2007) 56
(3):341–8. doi: 10.1016/j.lungcan.2007.01.019

30. Ketchedjian A, Daly B, Landreneau R, Fernando H. Sublobar Resection for the
Subcentimeter Pulmonary Nodule. Semin Thorac Cardiovasc Surg (2005) 17
(2):128–33. doi: 10.1053/j.semtcvs.2005.04.003

31. Sihoe AD, Van Schil P. Non-Small Cell Lung Cancer: When to Offer Sublobar
Resection. Lung Cancer (2014) 86(2):115–20. doi: 10.1016/j.lungcan.2014.09.004

Conflict of Interest: Authors BL, WSS, and SP were employed by company
Deargen Inc.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Beck, Gil, Na, Hong, Chun, An, Kim, Hong, Lee, Shim, Park and
Ko. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.
July 2021 | Volume 11 | Article 661244

https://doi.org/10.1016/j.jtho.2015.09.009
https://doi.org/10.1055/s-0033-1342954
https://doi.org/10.1016/j.jtho.2018.04.002
https://doi.org/10.1097/JTO.0000000000000664
https://doi.org/10.1016/j.jtcvs.2012.09.008
https://doi.org/10.1016/j.lungcan.2003.07.001
https://doi.org/10.1016/j.lungcan.2003.07.001
https://doi.org/10.1097/JTO.0b013e31821038ab
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1148/radiol.2018180237
https://doi.org/10.1038/s41598-018-27569-w
https://doi.org/10.1109/TNNLS.2014.2330900
https://doi.org/10.1109/TNNLS.2014.2330900
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/5.726791
https://doi.org/10.1001/jama.247.18.2543
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1016/0003-4975(95)00537-U
https://doi.org/10.1016/0003-4975(95)00537-U
https://doi.org/10.1097/JTO.0b013e3182519a42
https://doi.org/10.1016/j.jtcvs.2012.12.047
https://doi.org/10.1371/journal.pone.0052704
https://doi.org/10.1097/JTO.0b013e31825871de
https://doi.org/10.1097/JTO.0b013e31825871de
https://doi.org/10.4103/0366-6999.199838
https://doi.org/10.1378/chest.123.1_suppl.137S
https://doi.org/10.1007/s12149-015-0958-6
https://doi.org/10.1097/JTO.0b013e31829f6d3b
https://doi.org/10.1200/JCO.2007.13.9030
https://doi.org/10.1200/JCO.2007.13.9030
https://doi.org/10.1016/j.lungcan.2007.01.019
https://doi.org/10.1053/j.semtcvs.2005.04.003
https://doi.org/10.1016/j.lungcan.2014.09.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Yiyan Liu,

University of Louisville, United States

Reviewed by:
Zehua Zhu,

Xiangya Hospital, China
Hongzan Sun,

Shengjing Hospital of China Medical
University, China

*Correspondence:
Xiaohua Zhu

evazhu@vip.sina.com
orcid.org/0000-0003-0495-9510

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 01 September 2021
Accepted: 25 October 2021

Published: 17 November 2021

Citation:
Zhou J, Zou S, Kuang D, Yan J,

Zhao J and Zhu X (2021) A Novel
Approach Using FDG-PET/CT-Based
Radiomics to Assess Tumor Immune

Phenotypes in Patients With
Non-Small Cell Lung Cancer.

Front. Oncol. 11:769272.
doi: 10.3389/fonc.2021.769272

ORIGINAL RESEARCH
published: 17 November 2021

doi: 10.3389/fonc.2021.769272
A Novel Approach Using FDG-PET/
CT-Based Radiomics to Assess
Tumor Immune Phenotypes in
Patients With Non-Small Cell
Lung Cancer
Jianyuan Zhou1, Sijuan Zou1, Dong Kuang2, Jianhua Yan3, Jun Zhao1,4†

and Xiaohua Zhu1*†

1 Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China, 2 Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China, 3 Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine
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Purpose: Tumor microenvironment immune types (TMITs) are closely related to the
efficacy of immunotherapy. We aimed to assess the predictive ability of 18F-
fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG
PET/CT)-based radiomics of TMITs in treatment-naive patients with non-small cell lung
cancer (NSCLC).

Methods: A retrospective analysis was performed in 103 patients with NSCLC who
underwent 18F-FDG PET/CT scans. The patients were randomly assigned into a training
set (n = 71) and a validation set (n = 32). Tumor specimens were analyzed by
immunohistochemistry for the expression of programmed death-ligand 1 (PD-L1),
programmed death-1 (PD-1), and CD8+ tumor-infiltrating lymphocytes (TILs) and
categorized into four TMITs according to their expression of PD-L1 and CD8+ TILs.
LIFEx package was used to extract radiomic features. The optimal features were selected
using the least absolute shrinkage and selection operator (LASSO) algorithm, and a
radiomics signature score (rad-score) was developed. We constructed a combined model
based on the clinical variables and radiomics signature and compared the predictive
performance of models using receiver operating characteristic (ROC) curves.

Results: Four radiomic features (GLRLM_LRHGE, GLZLM_SZE, SUVmax,
NGLDM_Contrast) were selected to build the rad-score. The rad-score showed a
significant ability to discriminate between TMITs in both sets (p < 0.001, p < 0.019),
with an area under the ROC curve (AUC) of 0.800 [95% CI (0.688–0.885)] in the training
set and that of 0.794 [95% CI (0.615–0.916)] in the validation set, while the AUC values of
clinical variables were 0.738 and 0.699, respectively. When clinical variables and
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radiomics signature were combined, the complex model showed better performance in
predicting TMIT-I tumors, with the AUC values increased to 0.838 [95% CI (0.731–0.914)]
in the training set and 0.811 [95% CI (0.634–0.927)] in the validation set.

Conclusion: The FDG-PET/CT-based radiomic features showed good performance in
predicting TMIT-I tumors in NSCLC, providing a promising approach for the choice of
immunotherapy in a clinical setting.
Keywords: radiomics, tumor microenvironment immune types, non-small cell lung cancer, 18F-FDG PET/CT, PD-L1
INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths in the
United States (1). Among the common subtypes of lung cancer,
non-small cell lung cancer (NSCLC) represents approximately
85% of lung cancer cases. Most of the patients with NSCLC are
already at an advanced stage upon diagnosis, whose 5-year
survival rate is below 5% (2). Recently, immune checkpoint
inhibitors targeting the programmed death-1 (PD-1)/
programmed death-ligand 1 (PD-L1) axis have become
standard treatments for patients with advanced NSCLC.
Biomarkers, including the tumor proportion score of PD-L1,
are being tested in clinical trials for its ability to identify patients
who are most likely to benefit from immunotherapy (3).
However, the predictive ability of PD-L1 expression is still
under debate (4), since the majority of patients with PD-L1-
positive tumors did not respond to PD-1/PD-L1 blockade. In
addition to cancer cells, tumor immune microenvironment also
plays a critical role in immunotherapy. Recent studies have
demonstrated that tumor tissue dampened the host immune
response by upregulation of PD-L1, which subsequently ligated
to PD-1 on the antigen-specific CD8+ T cells (5). Therefore,
without the preexistence of CD8+ tumor-infiltrating lymphocytes
(TILs), blockade of PD-L1 or PD-1 is unlikely to achieve any
antitumor efficacy. Tumor immune microenvironment could be
classified into four types according to the status of PD-L1 expression
and CD8+ TIL abundance (6, 7), while the tumors with tumor
microenvironment immune type I (TMIT-I), i.e., with high PD-L1
expression and presence of CD8+ TILs, are more likely to benefit
from anti-PD-L1/PD-1 therapies (6). An accurate identification of
the TMIT-I subset not only canmaximize the therapeutic efficacy of
anti-PD-1/PD-L1 therapy but also can minimize the adverse effects
of treatments. However, to date, there are no noninvasive methods
to specifically identify the TMITs of NSCLC tumors.

Medical imaging allows a noninvasive evaluation of tumor and
its microenvironment, as well as a longitudinal assessment of
tumor progression. 18F-fluorodeoxyglucose positron emission
tomography/computed tomography (18F-FDG-PET/CT) is one
of the most commonly used diagnostic imaging modalities in
oncology (8). 18F-FDG PET monitors the metabolism of glucose
that is actively entrapped as nutrients in neoplastic tissues and
tumor-associated activated immune cells (9). Therefore, 18F-FDG
PET signals depicting the glucose metabolism are closely related to
the characteristics of tumor immune microenvironment. Previous
studies have shown a direct association between the maximum
289
standardized uptake value (SUVmax) of 18F-FDG-PET and the
expression of tumor-related immunity markers within the tumor
immune microenvironment (10, 11). However, the SUVmax does
not account for the spatial heterogeneity in the metabolism and
biological features of tumor. Its predictive value on patients treated
with immune checkpoint inhibitors remains weak. Tumor
heterogeneity poses a significant challenge to personalized
cancer medicine. The heterogeneity in the tumor uptake of FDG
is of clinical importance as evidenced by a number of clinical trials
(12). However, little attention is paid to the association between
tumor immune microenvironment and the intratumoral
heterogeneity of 18F-FDG uptake. Radiomics is a rapidly
evolving field of research that is focused on the extraction and
quantification of patterns within medical images (13). Unlike
biopsies that only take a snapshot within a small tumor portion,
radiomics captures heterogeneity across the entire tumor volume.

This retrospective study was conducted to establish a correlation
between the intratumoral heterogeneity of 18F-FDG PET signals
and tumor immune phenotype in a cohort of treatment-naive
NSCLC patients. We hypothesized that radiomic features would
provide insights into TMIT categorization and help optimize patient
selection for immunotherapy.
MATERIALS AND METHODS

Patients
With approval from the institutional review board, we
retrospectively analyzed consecutive patients who had been
diagnosed pathologically with NSCLC between December 2014
and December 2017 at our institution. Enrollment eligibility:
patients histologically confirmed to present NSCLC and
underwent initial 18F-FDG PET/CT scan within 30 days of
surgery or biopsy; tumor size ≥1 cm in diameter. Exclusion
criteria: patients who received antitumor therapy before surgery
or biopsy due to the concern of therapy-induced alteration in
PD-L1 expression. Patients without available tumor specimens
for immunohistochemistry were also excluded.

Immunohistochemistry Analysis
Immunohistochemistry was performed using protocols
described in a previous study (14). In brief, 4-µm continuous
sections were prepared from formalin-fixed, paraffin-embedded
(FFPE) tissue blocks. Slides were autostained by the Leica Bond-
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Max automation (www.leica-microsystems.com) with primary
antibodies against CD8 (ZA-0508, ZSGB-BIO), PD-1 [Abcam,
EPR4877(2), ab137132], and PD-L1 (ZA-0629, ZSGB-BIO). The
analysis of Immunohistochemistry results was performed as our
previous study (15). The PD-L1 immunostaining results were
classified into two groups based on staining intensity and
proportion of tumor cell positivity. Staining intensity was
scored as 0-3: 0, negative staining; 1, weak staining; 2,
moderate staining; and 3, strong staining (more intense than
alveolar macrophages). Cases with more than 5% of tumor cells
and staining intensity ≥2 were defined as positive. Cases with
staining intensity <2 or with positive staining in less than 5% of
tumor cells were defined as negative. The expressions of PD-1
and CD8+ TILs were evaluated according to the average number
of positively stained cells in three randomly selected high-power
fields (HPFs) in each case. The numbers of CD8+ TILs were
classified into two groups based on the median value (n=99):
CD8+ TILs- (n ≤ 99) and CD8+ TILs+ (n > 99).

Four TMITs were classified as reported (6): TMIT-I (PD-L1+,
CD8+ TILs+), TMIT-II (PD-L1-, CD8+ TILs-), TMIT-III
(PD-L1+, CD8+ TILs-), and TMIT-IV (PD-L1-, CD8+ TILs+).

18F-FDG PET/CT Acquisition Protocol and
Image Analysis
18F-FDG was intravenously administered at a dose of 3.7 MBq/
kg after fasting for at least 6 h. The blood glucose concentration
was lower than 11 mmol/L before injecting 18F-FDG. PET/CT
imaging was performed on a PET/CT scanner (Discovery 690
PET/CT, GE) at 60 ± 5 min after FDG administration. Whole-
body images were obtained from the base of the skull to mid-
thigh by means of an integrated PET/CT tomography (5–7 bed
positions with 2 min per bed position). A low-dose helical CT
scan (120 kV; 120 mA; slice thickness, 3.75 mm) was performed
for anatomical correlation and attenuation correction.
Reconstructed images were then displayed on a GE ADW4.5
workstation. Tumor mass was identified as the volume with
elevated 18F-FDG uptake compared to normal lung parenchyma
or other mediastinal structures. SUVmax was defined as the
highest pixel value of PET imaging. Tumor burden was
calculated by drawing a three-dimensional volume of interest
(VOI) on the volume of tumor-related metabolic activity and
applying a percentage threshold at 30% of SUVmax.

Radiomic Feature Extraction
The feature extraction was performed as previously described
(16). Briefly, LIFEx package (version 5.10, http://www.lifexsoft.
org) was used to extract the texture features of 18F-FDG PET/CT
images of lesions in the same VOI. The 18F-FDG PET/CT images
of the patient in the DICOM format were imported into the
software. Two experienced PET/CT diagnostic physicians
semiautomatically delineated the VOI of the target lesion using
a threshold at 30% of SUVmax. The interobserver reliability
between the two physicians was analyzed. Then, the software
program automatically calculates and extracts 52 PET radiomic
features and 51 CT radiomic features, which are provided in
Supplemental Table 1.
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Radiomic Feature Selection and
Model Establishment
Radiomic features with significant differences among different
TMITs were selected in the training set using the Mann–
Whitney U test with a p-value <0.05. The least absolute
shrinkage and selection operator (LASSO) algorithm with 10-
fold cross-validation was then used to select the optimal
predictive features in the training set. The selected features
with non-zero coefficients at the minimum of lambda were
selected to construct a radiomics signature score (rad-score).
Finally, rad-score and clinical variables were combined to establish a
complex model using multivariate logistic regression analysis.

Model performance was tested in the validation set. Briefly,
receiver operating characteristic (ROC) curve and area under the
ROC curve (AUC) were used to evaluate the model performance
in the training and validation sets. A nomogram was developed
to display the prediction results for each patient using the rad-
score and clinical variables, and calibration curves were plotted
to improve the nomogram’s prediction accuracy. Furthermore,
decision curve analysis (DCA) was performed to evaluate the
clinical usefulness of the combined model by quantifying the net
benefits at different threshold probabilities.

Statistical Analysis
All statistical tests were performed using SPSS statistical package
(version 22.0, IBM, Armonk, NY, USA), MedCalc (MedCalc
Software bvba, Ostend, West Flanders, Belgium), and R version
3.6.2 (http://www.r-project.org).

Feature reliability was analyzed using an intraclass correlation
coefficient (ICC), where ICC ≥0.75 is generally considered to
indicate good repeatability of the measured results. Mann–
Whitney U test and Fisher’s exact test were used to test the
differences between continuous variables or categorical variables,
respectively. Relations between two variable distributions were
analyzed with the Spearman rank correlation coefficient (rho).

R package “glmnet” was used to perform LASSO binary
logistic regression analysis, “rms” package to create the
nomogram and calibration curve, “rmda” package to plot the
DCA, “ggplot” package to plot the bar graph, and the “pROC”
package to analyze ROC curves. A p-value <0.05 was considered
statistically significant.
RESULTS

Patient Characteristics
In total, 103 patients were eligible for the retrospective analysis.
The median age of the patients was 59 years old (range: 33–78
years old). The patients were randomly assigned to training or
validation set at a ratio of 7 to 3, with 71 cases in the training set
and 32 in the validation set. The baseline characteristics of the
patients are summarized in Table 1.

Feature Reliability
Feature extraction was performed by two physicians to ensure
the validity and reproducibility of the procedure. After
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examining the inter-set differences with Manny–Whitney U-test,
as well as the interobserver reliability with ICC, it was concluded
that none of the features was significantly different from each
other (p > 0.05), suggesting that all the features were reliable and
reproducible (ICC > 0.75).

Correlations Between Radiomic Features
and Immune Variables
By Mann–Whitney U test, 51 radiomic features were
significantly different between PD-L1+ and PD-L1- patients
(p < 0.05) (Supplemental Table 2). ROC for these indices
showed moderate ability for predicting PD-L1 expression
(AUC < 0.710), and the preferable features in differentiating
PD-L1 status include SUVmax (AUC = 0.704) among the basic
features and GLRLM_LRHGE (AUC = 0.702) and
GLRLM_HGRE (AUC = 0.700) among the texture features.

Thirty-seven radiomic features correlated with CD8+ TILs in
NSCLC (rho = -0.289 to 0.310, p < 0.05), among which
NGLDM_Contrast has a strong correlation with CD8+ TILs
with the largest linear correlation coefficient (rho = 0.310, p =
0.001; Supplemental Table 3).
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In addition, PD-1+ TILs correlated with abundant radiomics
indices, including 40 PET features and 28 CT features (rho = -0.317
to 0.356, p < 0.05; Supplemental Table 3). The strongest correlation
was between SUVpeak (1 ml) and PD-1 expression (rho = 0.356,
p < 0.001; Supplemental Table 4).

Feature Extraction
To avoid model overfitting, radiomic features with p-values <0.05
were first selected by the Mann–Whitney U test. Seventy-three
features (42 PET features, 31 CT features) were found significantly
different among TMIT groups in the training set. All of these
features showed moderate power for predicting the TMIT-I
tumors (Figure 1).

Construction of the Radiomics Signature
and Complex Model
LASSO algorithm and 10-fold cross-validation were used to
extract the optimal subset of radiomic features from the 73
features above. Four radiomic features were then selected to
build the radiomics signature score based on the 71 patients in
the training set (Figure 2) as follows: GLRLM_LRHGE,
A B

FIGURE 1 | (A) The performance of radiomic features for the evaluation of tumor microenvironment immune type (TMIT)-I tumors. All the features showed moderate
power for predicting the TMIT-I tumors, and PET features have better ability than CT features with higher area under the receiver operating characteristic (ROC) curve
(AUC). Panel (B) was the ROC curve of the optimal PET (GLZLM_SZE) and CT (Conventional_HUmax) features to distinguish TMIT-I from other groups.
TABLE 1 | Demographic and clinical data of all patients.

Variables All patients (n = 103) Training set (n = 71) Validation set (n = 32) p

Age (years) Range 59 (33–78) 56 (33–78) 63 (49–76) 0.03
Gender Male 57 35 22 0.09

Female 46 36 10
Smoking Smoker 45 26 19 0.03

Non-smoker 58 45 13
Histology SCC 28 17 11 0.208

No-SCC 75 54 21
Stage I 37 23 14 0.20

II 24 16 8
III 30 23 7
IV 12 9 3

SUVmax Range 9.49 (0.88–23.5) 9.61 (0.88–23.5) 9.00 (1.19–21.0) 0.932
No
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GLZLM_SZE, SUVmax, and NGLDM_Contrast. The first three
were PET features, and the last one was a CT feature. A rad-score
for each patient was calculated using the following formula:

Rad − score = GLZLM _ SZE � 0:6929504962 +
GLRLM_LRHGE� 0:0001966283þ SUVmax

� 0:0707030000 + NGLDM_Contrast
� 0:0086261012 − 2:5406198360  

(1)

The median and the range for the four selected radiomic
features and the calculated rad-score are shown in Table 2. The
rad-score and the four selected features were significantly
Frontiers in Oncology | www.frontiersin.org 592
different among the TMITs in both the training and the
validation sets (p < 0.05). The rad-score for each patient in the
two sets was displayed as a bar graph in Figure 3.

With multivariate logistic regression analysis (using backward
stepwise elimination method), the combined model was
constructed based on the clinical variables (age, gender,
smoking history, stage) and radiomics signature. The formula
was as follows:

Model − score = 1:668� rad − score + 1:481� smoking

− 0:121 (2)
TABLE 2 | The differences of four selected radiomic features and the calculated rad-score between TMITs.

Variables Training set (n = 71) p Validation set (n = 32) p

TMIT-I (n = 18) TMIT-II~IV (n = 53) TMIT-I (n = 7) TMIT-II~IV (n = 25)

Rad-Score -0.645 (-1.67 to 0.64) -1.328 (-2.47 to -0.08) 0.000157 -0.734 (-1.223 to 0.123) -1.286 (-2.39 to 0.289) 0.018895
PET features
SUVmax 12.65 (5.10–23.50) 8.03 (0.875–19.50) 0.000634 13.70 (8.01–19.40) 8.13 (1.19–21.00) 0.024031
GLRLM_LRHGE 617 (85.90–2,680) 242 (18.50–1,440) 0.000750 664.0 (254–1,180) 276 (25.8–1770) 0.030368
GLZLM_SZE 0.697 (0.514–0.797) 0.548 (0.001–0.872) 0.000438 0.707 (0.421–0.763) 0.535 (0.017–0.791) 0.040220
CT feature
NGLDM_Contrast 37.40 (0–72.80) 15.10 (0–62.60) 0.009743 30.7 (14.6–61.6) 21.30 (0–78.4) 0.171421
November 2021 | Volume 11 | Artic
TMIT, tumor microenvironment immune type.
A

B

FIGURE 2 | The least absolute shrinkage and selection operator (LASSO) algorithm and 10-fold cross-validation were used to extract the optimal subset of radiomic
features. (A) Tuning parameter (lambda, l) selection in the LASSO model used 10-fold cross validation for the training set. The mean deviance (goodness-of-fit statistics,
red dots) was plotted vs. log (l), error bars displaying the range of standard error. Dotted vertical lines were drawn at the point of minimum deviance and at the point
where maximum l was obtained among errors smaller than the standard error of minimum deviance. (B) LASSO coefficient profiles of the 73 texture features.
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Performance of the Radiomics Signature
and Clinical Features
We evaluated the models based on radiomics signature, clinical
variables (smoking history), and the complex model in terms of
their ability to predict TMIT-I tumors. The complex model had
good predictive ability, and its AUCs in differentiating TMIT
groups were 0.838 [95% CI (0.731–0.914)] in the training set and
0.811 [95% CI (0.634–0.927)] in the validation set. The predictive
abilities of the four models, including sensitivity and specificity,
were shown in Table 3. The differences of AUC values in
different variables were shown in Figure 4. Notably, the AUCs
of the complex model and smoking history were significantly
different in the training set and validation set (p = 0.0156, p =
0.0250). The AUC values of the complex model and radiomics
signature were not significantly different in either the training set
or the validation set (p > 0.05).

Individualized Nomogram Construction
and Validation
Given that the complex model based on both rad-score and
clinical variables had better ability to predict TMIT-I tumors, we
created a nomogram representing the individualized predictions
based on the training set, which visualized the prediction result
and the proportion of each factor (Figure 5A) . The calibration
curves of the nomogram in the training and validation sets were
presented in Figures 5B, C and showed good agreement between
the predicted and observed values in the training set. DCA for
the combined model (Figure 6) showed that prediction of
Frontiers in Oncology | www.frontiersin.org 693
TMIT-I tumors with the complex model added more benefit to
SUVmax and the clinical variable (smoking history) in the
training set. Figure 7 showed that a representative patient with
a TMIT-I type exhibited a hypermetabolic and heterogeneous
tumor on 18F-FDG PET, characterized by high expression of PD-
L1 and high density of PD-1, CD8+ TILs.
DISCUSSION

The past decade was marked by a revolution in the treatment of
NSCLC, including the variety of immunotherapy strategies
targeting the tumor immune microenvironment (17–19).
Biomarkers, such as TMIT-I, can identify the patient population
that are more likely to respond to the immunotherapy (6).
Consequently, novel approaches to assess the tumor immune
microenvironment are of particular interest in clinical practice.
We strived to address this need by proposing an 18F-FDG-PET/
CT-based radiomics to assess TMITs, especially TMIT-I tumors in
pretreatment NSCLC patients. To the best of our knowledge, this
is the first attempt to identify this type of immune “hot” tumors
using PET/CT-based radiomics in pretreatment NSCLC patients.

Among the selected features in our work, numerous indices,
including basic and texture features, were associated with PD-L1/
PD-1 expression and CD8+ TILs. The metabolic characteristics
of PD-L1/PD-1 expression in lung cancer were revealed in the
previous study (10, 11). It seems that PD-L1-positive cells take
up more glucose. Tumor microenvironment with high PD-L1
TABLE 3 | Predictive performance of variables in the training and validation sets.

Variables Training set Validation set

AUC (95% CI) Sensitivity (%) Specificity (%) AUC (95% CI) Sensitivity (%) Specificity (%)

Model-score 0.838 (0.731–0.914) 72.22% 88.68% 0.811 (0.634–0.927) 85.71% 76.00%
Rad-Score 0.800 (0.688–0.885) 66.67% 81.13% 0.794 (0.615–0.916) 100% 56.00%
Smoking 0.738 (0.621–0.836) 72.22% 75.47% 0.699 (0.481–0.824) 85.71% 48.00%
SUVmax 0.771 (0.656–0.862) 72.22% 73.58% 0.783 (0.602–0.908) 85.71% 72.00%
Novem
ber 2021 | Volume 11
FIGURE 3 | Rad-score of patients in the cohort of patients with non-small cell lung cancer (NSCLC). Generally, rad-scores in the tumor microenvironment immune
type (TMIT)-I tumors were higher than other TMIT-II~IV.
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expression is often accompanied with dysfunctional anti-tumor
immune responses, and therefore can foster immune tolerance
that is favorable for tumor progression (20). However, the
molecular mechanism between glucose metabolism and PD-L1
expression has not been fully revealed. Chang et al. (21) reported
that PD-L1 expression maintained Akt/mammalian target of
rapamycin (mTOR) signaling, which in turn promoted
metabolic pathway through the translation of glycolysis enzymes.
It might partly explain that the PD-L1/PD-1-positive tumors were
more heterogeneous with more 18F-FDG involvement in tumor
cells. Moreover, the PD-L1 protein expression has been noted to be
heterogeneous within different intertumoral regions, and the
distribution of expression was frequently present near stromal
tumor interfaces (22). Some tumors may display heterogeneous
PD-L1 expression at different biopsied sites, which may partly
explain the reason of mixed response to anti-PD-L1/PD-1 therapy
(23, 24). On the other hand, the distribution of PD-L1 expression
may cause different metabolic distributions of tumor cells. As is
well known, the heterogeneity of image voxel intensities can be
quantified by different image processing and analysis methods,
including texture analysis, thus texture features describe the
uniformity and heterogeneity of the PET images. These
metabolic patterns could be representative of the intratumoral
heterogeneous expression of PD-L1/PD-1.

Previously, quantitative CT radiomic features were extracted
to predict PD-L1 expression in advanced-stage lung
adenocarcinoma, yet their ability to predict PD-L1 positivity
was weak (AUC = 0.661) (25). Recently, radiomics models of
PET/CT demonstrated good performance in classifying a group
of patients with PD-L1 expression, either ≥1% or ≥50%; however,
TILs were not included in their research (26). Meanwhile, Jiang
et al. (26) found that the performance of PET features was still
unsatisfying, although the radiomics-based signatures from CT
data achieved significant and robust individualized estimation of
specific PD-L1 status. In this study, we used 18F-FDG-PET/CT-
Frontiers in Oncology | www.frontiersin.org 794
based radiomics to analyze the correlation between radiomic
features and PD-L1 expression. Among the numerous
parameters, GLRLM_LRHGE derived from the PET images is
the preferable feature to discriminate the PD-L1 status and
achieved a moderate performance of predicting PD-L1.
GLRLM reflects the comprehensive information of the image
gray scale with respect to direction, adjacent interval, and
variation amplitude (27), which is a set of statistical features
extracted from medical images and frequently applied in
radiomics (28, 29). Long-Run High Gray-level Emphasis
(LRHGE) is the distribution of the long homogeneous runs
with high gray levels. This may reflect that intertumoral
regions with high PD-L1 expression are associated with high
gray levels (or high metabolic distribution) on PET images.

Interestingly, NGLDM_Contrast had a strong correlation with
CD8+TILs. NGLDM_Contrast measures the intensity difference
between neighboring regions. Several studies have shown that
preexisting tumoral and peritumoral immune infiltration
correlates with patient response to anti-PD-1 and anti-PD-L1
therapy (30). CD8+ TILs are not evenly distributed within the
tumor, where both T cell-infiltrated and T cell-excluded regions
are present (31). It is likely that the heterogeneous distribution of
CD8+ TILs contributed to the heterogeneity pattern of tumor
metabolism, which was depicted by NGLDM_Contrast.

Rad-signature and complex model showed better predictive
performances for TMIT-I tumors compared to the conventional
features (SUVmax) and clinical variables probably because
SUVmax alone does not accurately recapitulate the spatial
heterogeneity of tumor metabolism (32). Radiomics aims to
extract quantitative information from medical images that are
difficult to be recognized or quantified by human eyes (33). Until
recently, Sun et al. (34) developed a radiomics signature
predictive of immunotherapy response by combining contrast-
enhanced CT images and RNA-seq genomic data. The signature
was able to discriminate inflamed tumors from immune-desert
FIGURE 4 | The differences of area under the receiver operating characteristic (ROC) curve (AUC) values in different variables. There are significant differences in
AUCs between Model-score and smoking in both the training and validation sets.
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tumors, although with a modest AUC value of 0.76. Still, the
ability of the radiomics signature to predict the gene expression
signature of CD8 cells is unsatisfactory in the validation set
(AUC = 0.67), underlying the importance of developing more
and better imaging modality-based radiomics. We assessed the
tumor immune microenvironment with 18F-FDG-PET/CT
radiomics and provided a promising way to predict the tumor
immune phenotype. The nomogram included the radiomics
signature score and clinical variables, which visualized the
prediction results and provided an easy-to-use method for
individualized prediction of TMIT-I tumors. In addition,
radiomics-based signature could provide predicting outcomes
at the time of image acquisition, providing a real-time guidance
for patient stratification and therapeutic efficacy prediction.
Frontiers in Oncology | www.frontiersin.org 895
DCA was used to facilitate the comparison between different
prediction models. The utility of risk models may be evaluated
with cost-effectiveness studies in clinical practice (35). DCA
focuses on net benefit, which combines the number of true
positives and false positives into a single “net” number (36,
37). In the TMIT example, the “net” values were calculated by
subtracting the false positives (inconsistent biopsies showing
other types of TMITs from the true positives TMIT I tumors
confirmed by biopsies).

As seen in Figure 6, the clinical usefulness of each model was
evaluated using DCA method by plotting the “net” benefit of
using the model to stratify patients (y axis) against the
continuum of potential thresholds for the probability of TMIT-
1 tumors (x axis) (38). This study developed and validated a
A

B

C

FIGURE 5 | Development and performance of a nomogram. (A) Nomogram based on rad-score and clinical factors (smoking history). Calibration curves (B, C) of
the nomogram in the training set. The horizontal axis is the predicted incidence of the tumor microenvironment immune type (TMIT)-I tumors. The vertical axis is the
observed incidence of the TMIT-I tumors. The diagonal line is the reference line, indicating that the predicted value is equal to the actual value. The prediction results
and diagonals were basically coincident, indicating that the prediction results were accurate.
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complex model to identify NSCLC patients with Type-I TMIT.
The novel approach was based on radiomic features, clinical
variable, and 18F-FDG uptake. The 18F-FDG uptake accounted
for intratumoral heterogeneity that correlated with underlying
biological processes. The model described in our study showed
good discriminative ability in both training and validation sets
and exhibited higher predictive accuracy than conventional PET
parameters (e.g., SUVmax). Within the range from 0.15 to 0.4 of
the threshold probabilities, the model obviously showed a higher
curve than that of SUVmax in Figure 6, indicating a much
higher net benefit of our complex model than that of SUVmax.
Therefore, this complex model obtained more true-positive cases
of TMIT-I tumors and avoid more false-negative cases of other
immune types. Considering the low probability of TMIT-I in
clinical practice, it indicates that our DCA curve has a promising
potential for clinical application. We agree that the DCA curve of
the verification set is less optimal than that of the training set,
which may require expansion of sample size and further
optimization of the training model. Nevertheless, the DCA
Frontiers in Oncology | www.frontiersin.org 996
curves demonstrated advantages of complex model over
radiomics, indicating clinical variable is also important.

To the best of our knowledge, there are no consensus cutoff
values of PD-L1 and CD8+ TILs, even though the Food and Drug
Administration (FDA) approved the cutoff of 50% tumor
proportion score for first-line therapy with pembrolizumab
and 1% tumor proportion score for second-line therapy with
pembrolizumab/atezolizumab/bevacizumab (39). For the
expression of PD-L1, we referred to a previous literature with a
relatively large cohort and thus more reliable results (40). Koh
et al. (39) evaluated PD-L1 immunohistochemistry based on the
intensity and proportion of membranous and/or cytoplasmic
staining in tumor cells. For CD8+ TILs, median or mean values
were often used for classification of high or low infiltration (7,
41). Lin et al. (42) transferred continual variables like CD8+ T-
cell infiltrating density and PD-1/PD-L1 mRNA expression level
into categorical variables (high vs. low) with median value as
cutoff point. Similarly, a recent assessment for PD-L1 was
performed by Noh et al. (43), where PD-L1 expression was
A

B

FIGURE 6 | Decision curve analysis (DCA) of each model in predicting tumor microenvironment immune type (TMIT)-I for non-small cell lung cancer (NSCLC). The
vertical axis measures standardized net benefit. The horizontal axis shows the corresponding risk threshold. In the training set (A), the DCA showed that if the
threshold probability is between 0.1 and 0.8, using the complex model (brown line) provided a greater benefit than the clinical model (blue curve) and basic PET
parameter (green curve). In the validation set (B), the DCA showed that if the threshold probability is between 0.1 and 0.5, using the complex model provided a
greater benefit than the clinical model.
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interpreted based on the proportion and intensity (graded as 0–
3) of positive tumor cells. Besides, they utilized mean values as
the cutoff threshold to categorize the CD8 TILs as “high” or
“low.” Based on the above, PD-L1+ was defined as more than 5%
of tumor cells with staining intensity ≥2, and median value >99
was for CD8+ TILs in our study.

Our study has some limitations. First, it was of a single-center
design and the relatively small sample size may influence the
predictive ability of radiomics signature. Therefore, it is necessary
to carry out multicenter studies and test multicenter data to ensure
better robustness of the model. Second, patients with both lung
squamous cell carcinoma and adenocarcinoma were enrolled and
investigated, and the predictive performance of each tumor
subtype should be further validated separately in a larger cohort.
Third, with the development of quantitative imaging methods
along with machine learning, it provides powerful modeling tools
to mine the huge amount of image data available and reveal
underlying complex biological mechanisms (44). Therefore, more
advanced radiomics approaches, such as machine learning and
deep learning, should be established to develop a model with
optimal prediction performance.
Frontiers in Oncology | www.frontiersin.org 1097
CONCLUSION

In conclusion, a radiomics signature and complex model were
developed and validated in patients with NSCLC. 18F-FDG-PET/
CT radiomics may provide a noninvasive method for predicting
tumor immune phenotypes, which can assist in clinical practice
to identify candidates for immunotherapy.
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Purpose: To construct an optimal radiomics model for preoperative prediction
micropapillary pattern (MPP) in adenocarcinoma (ADC) of size ≤ 2 cm, nodule type
was used for stratification to construct two radiomics models based on high-resolution
computed tomography (HRCT) images.

Materials and Methods: We retrospectively analyzed patients with pathologically
confirmed ADC of size ≤ 2 cm who presented to three hospitals. Patients presenting to
the hospital with the greater number of patients were included in the training set (n = 2386)
and those presenting to the other two hospitals were included in the external validation set
(n = 119). HRCT images were used for delineation of region of interest of tumor and
extraction of radiomics features; dimensionality reduction was performed for the features.
Nodule type was used to stratify the data and the random forest method was used to
construct two models for preoperative prediction MPP in ADC of size ≤ 2 cm. Model 1
included all nodule types and model 2 included only solid nodules. The receiver operating
characteristic curve was used to assess the prediction performance of the two models
and independent validation was used to assess its generalizability.

Results: Both models predicted ADC with MPP preoperatively. The area under the curve
(AUC) of prediction performance of models 1 and 2 were 0.91 and 0.78, respectively.
The prediction performance of model 2 was lower than that of model 1. The AUCs in the
external validation set were 0.81 and 0.72, respectively. The DeLong test showed
statistically significant differences between the training and validation sets in model 1
(p = 0.0296) with weak generalizability. There was no statistically significant difference
between the training and validation sets in model 2 (p = 0.2865) with some generalizability.
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Conclusion: Nodule type is an important factor that affects the performance of radiomics
predictor model for MPP with ADC of size ≤ 2 cm. The radiomics prediction model
constructed based on solid nodules alone, can be used to evaluate MPP and may
contribute to proper surgical planning in patients with ADC of size ≤ 2 cm.
Keywords: lung adenocarcinoma, radiomics model, micropapillary pattern (MPP), multicenter,
computed tomography
INTRODUCTION

With widespread use of high-resolution CT (HRCT), lung cancer
is increasingly being detected at an early stage and small
peripheral lung cancers are increasingly treated with surgical
resection. Adenocarcinoma (ADC) is the most common lung
cancer type. According to the World Health Organization
classification of lung ADC (1), invasive adenocarcinoma (IAC)
is divided into five pathological types, namely lepidic, acinar,
papillary, micropapillary, and solid subtypes. The micropapillary
pattern (MPP) is a marker for poor outcome (2–6). Lee (7) found
that the overall survival and disease-free survival were worse in
cases with minimal areas of MPP (accounting for 1-5% of the
entire tumor). Since this adverse prognostic effect, identification
of MPP may potentially be instructive for surgical plan and
further aggressive adjuvant treatment.

Tumor size and MPP are important prognostic factors for
surgical outcome in patients with early stage lung ADC. The use
of limited resection has gradually increased for patients with
non-small cell lung cancer with size ≤ 2 cm. Notably, MPP
accounting for more than 5% of the entire tumor is an
independent risk factor for recurrence and poor outcome of
lung ADC with size ≤ 2 cm (3, 8, 9), suggesting that limited
resection may not be the optimal surgical approach for such
patients. Thus, preoperative confirmation of MPP (constituting>
5%) in ADC with size ≤ 2 cm has importance for selection of
surgical procedure. Due to technical reasons, preoperative
histological examination cannot be performed for many
peripheral small tumors.

Radiomics can objectively and quantitatively analyze imaging
features that reflect tumor heterogeneity. Previous studies
showed that radiomics can be used to preoperatively detect
ADC with MPP or MPP/solid pattern (10–18). However,
previous reports of predicting MPP subtypes using radiomic
analyses are with some limitations. First, previous studies have
been conducted on the predictor MPP for T1-stage ADC (17,
18), including patients of tumors with size ≥ 2 cm. Because the
preferred surgical procedures for ADC with sizes ≤ 2 cm or
> 2 cm are different, prediction of MPP in ADC with size ≤ 2 cm
can aid in determining the optimal resection method. In
addition, previous studies considered only tumor size and
overlooked different imaging characteristics between ground
glass opacity (GGO) and solid nodule. These radiomics studies
combined solid and GGO nodules but the unequal number of
these two nodule types may have introduced bias in these study
results. Furthermore, these studies were performed on small
populations and lacked external validation.
2101
Therefore, the purpose of our retrospective study was to
develop an optimal radiomics model for preoperative
prediction of MPP with ADC of size ≤ 2 cm. First, we
included a large number of ADC patients with peripheral
tumor size ≤ 2 cm from three institutions. Second, nodule type
was used for stratification and it was combined with HRCT
radiomics characteristics to construct two models. Model 1
included all nodule types (solid and GGO). Because most ADC
with MPP of size ≤ 2 cm were solid (19), the GGO type was
excluded for model 2; only solid nodules were used to construct
model. Third, independent external validation was used to
validate the two model’s generalization ability.
MATERIALS AND METHODS

Patients
This was a retrospective study, which was approved by the
institutional review board of the First Affiliated Hospital
of Zhejiang University School of Medicine, the First Affiliated
Hospital of Wannan Medical College and Zhejiang Cancer
Hospital. Informed consent by the patients was waived by
the hospital ethics committee. Patients diagnosed with ADC
between September 2019 and January 2021 were selected from
three study centers.

Patients were included in the study if they had a tumor with
size on CT images < 2 cm, peripheral nodules on chest CT, no
marked cavitation of lesions, histologic subtype without solid
component, and surgery within 1 week of CT examination.

We excluded patients with history of neoadjuvant
chemotherapy or radiotherapy, lung cancer surgery in the past
2 years, simultaneous multiple cancers, and patients with
multifocal lesions.

We included 2,386 patients (mean age: 51.62 ± 13.13 years;
range: 27–76 years) from Hospital 1 in this study. The
proportion of female patients was 76.3%, 194 patients had
MPP and 2,192 did not have MPP. Of the 2386 patients, 400
had solid nodule and 1,792 had GGO.

The independent external validation database consisted of
119 patients from the other two hospitals. The proportion of
female patients was 66.4% and the average age was 60.56 ± 9.51
years (range: 29–80 years). There were 65 patients with MPP and
54 without MPP. Of the 119 patients, 80 had solid nodule and 39
had GGO.

To imbalance data numbers between the two groups, when
model 1 (including GGO and solid nodules) was constructed,
2,192 ADC patients without MPP from hospital 1 were matched
December 2021 | Volume 11 | Article 788424
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to 195 controls. Finally, Model 1 included 389 patients from
hospital 1 and 119 patients from the other two hospitals in the
training and validation sets, respectively. When constructing
model 2 (only including solid nodules), 400 and 108 patients
from hospitals 1 and the other two hospitals respectively, were
included in the training and validation sets. Figure 1 shows the
model construction flow chart. The clinical variables were
retrospectively reviewed from the electronic medical records.

CT Imaging Acquisition
Pulmonary CT imaging was performed for all patients, using six
CT scanners from Philips Healthcare (iCT 256 and 16-slice CT),
Siemens Healthineers (64-slice CT), and GE (64-slice CT). All
scans were acquired with a deep inhaled breath held in the supine
position, without contrast. The scan covered from the thoracic
inlet to bilateral adrenal glands. A sharp reconstruction
algorithm was used. CT imaging parameters used in the three
institutions were as follows: tube voltage of 100 or 120 kev,
automatic tube current modulation; reconstructed slice thickness
1-3 mm. and reconstruction interval 0.625-1 mm. The images
were displayed in two gray scales for interpretation of lung
(width 1500 HU, level −430 HU) and mediastinal (width 200
HU, level 40 HU) windows.

Histologic Evaluation and CT Features
Histological subtype was independently evaluated by two
experienced radiologists and discrepancies were resolved
through consensus. According to the 2015 World Health
Organization classification of lung tumors (1), ADC histologic
subtypes were recorded using a semiquantitative assessment of
each subtype in 5% increments. In our study, according to the
amount of micropapillary component, patients were divided into
group 1 (ADC with MPP constituting > 5% of the entire tumor)
and group 2 (ADC without MPP or MPP < 5% of the entire
tumor). Based on the guidelines from the Fleischer society (20)
nodule type (pure ground glass opacity, mixture ground glass
opacity or solid) was determined by two radiologists on the lung
Frontiers in Oncology | www.frontiersin.org 3102
window setting. In our study, the pure ground glass opacity
(pGGO) and mixture ground glass opacity(mGGO) nodules
were classified as GGO.

Tumor Segmentation and Radiomics
Feature Extraction
In this study, the Dr. Wise® research platform was used for
radiomics analysis. All patient images were downloaded and
processed in the raw DICOM format and images were
transferred to the post-processing workstation. One radiologist
manually labeled the lesion region in thin-layer HRCT using the
raw dataset (Figure 2) to avoid bronchovascular bundles and
normal lung parenchyma. Then, the second radiologist
confirmed the final regions of interest with consensus.

Image Preprocessing
The radiomics features included first-order features, tumor
morphologic features, gray-level co-occurrence matrix
describing the tumor internal and surface textures, gray-level
run-length matrix, gray-level size zone matrix, and gray level
dependence matrix texture features. A total of 105 radiomics
features were extracted from every ROI and Z-score
standardization was performed.

Feature Dimensionality Reduction and
Model Construction
Spearman’s correlation analysis was performed for radiomics
features using a correlation coefficient threshold of 0.8. Then, a
tree-based algorithm was used for feature dimensionality
reduction. The random forest method was used to construct
two prediction models, based on the nodule types combined with
radiomics features extracted from plain HRCT images. Model 1
contained solid nodules and GGO, while model 2 contained only
solid nodules. Ten cross-validations were performed on the
training set to analyze model stability. The ROC curve was
used to evaluate the diagnostic performance of two models in
predicting ADC with MPP in the training and validation sets.
FIGURE 1 | Flowchart selection patients of the two-model dataset. Inclusion criteria 1: tumor size measured in CT images <2 cm;2) the presence of peripheral
nodules on chest CT; 3) the lesions without marked cavity;4) histologic subtype without solid pattern; Inclusion criteria 2: the nodule manifest as solid on chest CT.
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Finally, the generalizability of the two models was evaluated
using the external validation set.

Statistical Analysis
R software (version: 3.4.1; R Foundation for Statistical
Computing, Vienna, Austria; http://www.Rproject.org) was
used for the statistical analyses. Quantitative data were
expressed as mean ± standard deviation (SD), while qualitative
data were expressed as frequency (%). Qualitative variables
(gender, nodule type, and ADC with/without MPP) were
compared using the Chi-square test. Continuous variables
(age) were evaluated using a two-sample t-test or Mann-
Whitney U test.

The area under the ROC curve (AUC), 95% confidence
interval (CI), accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) of
the two models were calculated for the training and validation
sets. DeLong test was used to compare AUC differences between
the training and validation sets for the two models. A two-tailed
difference of p < 0.05 was deemed to be statistically significant.
Frontiers in Oncology | www.frontiersin.org 4103
RESULT

Dataset Characteristics
The clinical characteristics of the two model databases are
summarized in Tables 1, 2.

Model 1 included 389 patients from the training set. ADC
patients with MPP were aged 31–87 years (61.8 ± 10.9), 46%
were females, 93% had solid nodules, and 7% had GGOs. ADC
patients without MPP were aged 20–81 years (60.8 ± 11.1), 71%
were females, 31% had solid nodules, and 69% had GGOs. There
were 119 patients in the validation set. In the validation set, the
age of ADC patients with MPP was 35–81 years (60.5 ± 9.3), 51%
were females, 92% had solid nodules, and 8% had GGOs. ADC
patients without MPP were aged 29–84 years (60.56 ± 9.91), 72%
were females, 37% had solid nodules, and 63% had GGOs.

There were 400 patients in Model 2 from the training set. In
the training set, ADC patients with MPP were aged 31–83 years
(62 ± 10.8) and 47% were females. ADC patients without MPP
were aged 26–83 years (61.4 ± 10.9) and 68% were females.
There were 108 patients in the validation set. In the validation set,
TABLE 1 | Demographic and clinical characteristics of patients on different datasets of model 1.

Model 1 Training P validation P

MPP (n = 194) Without MIP (n = 195) MPP (n = 65) Without MPP (n = 54)

Age 61.8 ± 10.9 60.8 ± 11.1 0.25 60.5 ± 9.3 60.6 ± 9.9 0.29
Gender 0.045
Man 104 (54%) 56 (29%) <0.001 31 (48%) 15 (32%)
Woman 90 (46%) 139 (71%) 34 (51%) 39 (72%)
Nodule type <0.001 <0.001
Solid 180 (93%) 61 (31%) 60 (92%) 20 (37%)
GGO 14 (7%) 134 (69%) 5 (8%) 34 (63%)
December 2021 | Volume 11 | Article
FIGURE 2 | 52 years-old patient, male, the lesion located in right middle lung. The area inside the red line represents the ROI for the tumor.
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ADC patients with MPP were aged 35–81 years (61 ± 9.2)
and 48% were females. ADC patients without MPP were aged
29–84 years (60.8 ± 9.2) and 68% were females.

No statistically significant difference was observed in the age
between the training and validation sets in the two models, but
statistically significant differences in gender were observed. The
difference in solid nodule ratio was statistically significant
between the two groups.

Feature Selection
Tables 3, 4 shows the radiomics characteristics used in the two
models. Eight radiomics characteristics were included in model
1: gray level matrix (GLDM; n = 4) and first order (n = 4).
Eighteen optimal radiomics characteristics were included in
model 2: gray level co-occurrence matrix (GLCM; n = 6); first
order (n = 4), shape feature (n = 4), neighborhood gray tone
difference matrix (NGTDM; n = 2) and gray level size zone
matrix (GLSZM; n = 2).

Evaluation of Model Prediction
Performance
The AUC values for the two radiomics models in training and
validation cohort were shown in Table 5. The ROC curve results
showed that model 1 had excellent preoperative prediction for
ADC with MPP. In the training set, AUC was 0.91 (95% CI 0.88–
0.94), accuracy was 0.79, sensitivity was 0.73, specificity was 0.86,
PPV was 0.79, and NPV was 0.82. In the validation set, AUC was
0.82 (95% CI 0.74–0.89), accuracy was 0.83, sensitivity was 0.76,
specificity was 0.88, PPV was 0.83, and NPV was 0.83.

Model 2 showed good preoperative prediction performance
for ADC with MPP. In the training set, AUC was 0.78 (95%CI
0.74–0.82), accuracy was 0.73, sensitivity was 0.77, specificity was
0.6, PPV was 0.73, and NPV was 0.65. In the training set, AUC
Frontiers in Oncology | www.frontiersin.org 5104
was 0.76 (95% CI 0.63–0.82), accuracy was 0.76, sensitivity was
0.49, specificity was 0.85, PPV was 0.75, and NPV was 0.65.

The DeLong test showed that there were statistically
significant differences between the training and validation sets
in model 1 (p = 0.0296) (Figure 3A). There was no statistically
significant difference between the training and validation sets in
model 2 (p = 0.2865) (Figure 3B).
DISCUSSION

In this multicenter study, stratification was based on nodule
types to construct two radiomics models for preoperative
prediction the MPP in peripheral lung ADC with size ≤ 2 cm.
The AUC of model 1 (which included solid nodules and GGO)
and model 2 (solid nodules only) were 0.91 and 0.78,
respectively. Both models had good prediction ability but the
prediction performance of model 2 was lower compared to that
of model 1, suggesting that GGO affects prediction model
performance. In the external validation set, the AUCs for the
two models were 0.82 and 0.72, respectively. The DeLong test
suggested a difference in AUC between the training and
validation sets for model 1, showing poor generalizability.
However, no significant difference was noted in AUC between
the training and validation sets in model 2, showing good
generalizability. Therefore, radiomics can be used as a
convenient and non-invasive biomarker for preoperative
prediction MPP in peripheral lung ADC with size ≤ 2 cm and
to guide the diagnosis and treatment.

Previous studies proved that tumor size is an independent
factor for postoperative prognosis in non-small cell lung cancer.
Additionally, lung ADC with size 2.1–3 cm has a significantly
higher local recurrence rate than ADC < 2 cm (21). Tumor size
TABLE 2 | Demographic and clinical characteristics of patients on different datasets of model 2.

Model 2 Training P validation P

MPP (n=180) Without MPP (n = 220) MPP (n = 60) Without MPP (n = 48)

Age 62 ± 10.8 61.4 ± 10.9 0.28 61.1 ± 9.2 60.8 ± 9.2 0.19
Gender <0.001 0.012
Man 96 (53%) 70 (32%) 31 (52%) 11 (29%)
Woman 84 (47%) 150 (68%) 29 (48%) 37 (71%)
December 2021 | Volume 11 | Article 7
TABLE 3 | Selected radiomic features for the prediction model 1.

Feature class Feature name Feature coefficient Weight

First order Mean 0.207 1
GLDM LDHGLE 0.1884 0.9104
First order Energy 0.1824 0.8815
First order 10 Percentile 0.1016 0.491
First order Minimum 0.0833 0.4027
GLDM SDLGLE 0.0809 0.391
GLDM LDLGLE 0.0784 0.3786
GLDM Contrast 0.0779 0.3765
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also affects the choice of surgical procedure for T1-stage
peripheral lung ADC. Su (22) found that in ADC patients with
tumor size ≤ 2 cm and MPP < 0–5%, limited resection is suitable
(3, 8), whereas lobectomy may be required for patients with MPP
> 5% (9). Therefore, prediction MPP in lung ADC with size ≤
2 cm can guide surgical resection strategy.

Many previous studies have showed that CT image-based
radiomics analysis can be used to predict ADC with MPP with a
prediction performance of 0.7–0.98 (11–18). However, there are
inconsistencies and significant differences among the results of
previous studies. MPP and solid pattern appear mostly solid on
CT, while solid, mGGO, and pGGO types are present in other
ADC subtypes. Radiomics identification of GGO and solid
lesions is simple. We speculate that the ratio of GGO and solid
nodules in ADC without MPP dataset may affected the
performance of the prediction model. Many previous studies
using radiomics analysis combined GGO and solid nodules in
the non-MPP dataset, and the proportion of GGOs was
unknown. Chen (11) achieved a prediction performance of
0.86, but GGO and solid nodules accounted for 78% and 22%,
respectively, in the ADC without MPP group. Park (12) obtained
a prediction performance of 0.98 but the subtypes in non-MPP
dataset only consisted of lepidic subtype. The prediction
performance decreased to 0.84 when the dataset consisted of
papillary and acinar subtype. The dataset byWang (13) consisted
of entire pGGO type for predictor MPP in ADC and the
performance was below 0.80. In the current study, the AUC
for the prediction performance of model 1 (solid nodules and
GGO) was 0.91, but AUC decreased to 0.78 in model 2 after
excluding GGO type (69%). In the final external validation, the
AUC of model 1 was significantly decreased, may be due to the
different ratio of GGO in the training and validation sets.
Importantly, the proportion of GGO was lower in the
validation set than the training set. These results suggest that
Frontiers in Oncology | www.frontiersin.org 6105
the GGO type in the non-MPP dataset contributed to bias in the
study results and may explain the differences in results from
previous studies.

Notably, there are significant differences in the characteristics
of the two prediction models. First, in model 1, the most
important characteristic was mean, which was not included in
model 2. Mean is a first-order characteristic related to the CT
density of the lesion. The CT value of solid nodules is
significantly higher than of GGO. Second, first-order
characteristic parameters accounted for around half of the
parameters in model 1. This may be because GGO is rare in
ADC with MPP, resulting in higher contribution to first-order
parameters in the histogram. In contrast, there were fewer first-
order characteristics in model 2, which means that the role of
density characteristics in non-solid nodule prediction is not
significant. The prediction of model 1 relied more on texture
features and other high-order parameters; therefore, the
prediction performance of model 2 was lower than that of
model 1. This emphasizes that nodule type is an important
factor affecting the prediction MPP in early stage ADC, as well as
the necessity of stratifying nodule type when constructing
models to predict ADC with MPP. However, the proportion of
solid nodules was significantly higher than GGOs (pGGO and
mGGO) in ADC with MPP of size ≤ 2 cm (19). Therefore,
preoperative prediction of ADC with MPP for solid nodules
with 2 cm or less has great clinical value for guiding
surgical treatment.

This was a multicenter study and external validation was
performed for both models. The results were significantly
different between the models, and the generalizability of model
2 was validated in external validation. Although the AUC of
model 1 was 0.91 in the training set, which was significantly
lower in external validation. There were statistically significant
differences in AUC between the training set and external
TABLE 4 | Selected radiomic features for the prediction model 2.

Feature class Feature name Feature coefficient Weight

First order Energy 0.0911 1
GLCM Imc2 0.0844 0.9271
GLCM Imc1 0.0756 0.8296
GLCM Dependence Non-Uniformity Normalized 0.0718 0.7886
shape Sphericity 0.0657 0.7211
First order Kurtosis 0.0583 0.6406
shape Least Axis Length 0.0578 0.6347
GLCM Correlation 0.0577 0.6335
GLCM Joint Entropy 0.0519 0.5704
GLSZM Large Area High Gray Level Emphasis 0.0507 0.5571
GLCM Maximum Probability 0.0495 0.5433
First order 10 Percentile 0.0472 0.5184
GLSZM SZN 0.047 0.5161
NGTDM Busyness 0.0442 0.4849
First order Minimum 0.0429 0.471
NGTDM Coarseness 0.0406 0.4462
shape Major Axis Length 0.032 0.3517
shape Maximum 3D Diameter 0.0315 0.3463
December 2021 | Volume 11 | Article
GLCM, Gray Level Co-occurrence Matrix; GLDM, L Gray Level Dependence Matrix; GLSZM, Gray Level Size Zone Matrix; NGTDM, Neighborhood Gray Tone Difference Matrix; DHGLE,
Large Dependence High Gray Level Emphasis; SDLGLE, Small Dependence Low Gray Level Emphasis; LDLGLE, Large Dependence Low Gray Level Emphasis; Dependence Non-
Uniformity Normalized; SZN, Size Zone Non-Uniformity Normalized.
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validation set, thereby raising concern over its generalizability for
model 1. These results highlight the importance of external
validation. In previous prediction studies of T1 stage ADC
with MPP, only He et al. (18) performed external validation,
Frontiers in Oncology | www.frontiersin.org 7106
while most others were single-center studies that lacked external
validation. There are limitations to single-center studies because
of over-fitting in the prediction model. Over-fitting was observed
in model 1 after external validation, resulting in poor reliability
A

B

FIGURE 3 | Results of the receiver-operating characteristic curve analysis for the two models. (A) The ROC curves for the model 1 in the training and validation
database. The blue line was training set. the AUC value was 0.91[95% confidence intervals (CI):0.88-0.94]; the red line was validation set. The AUC value was 0.82
[CI:0.74-0.89];Delong test p=0.0296; (B) The ROC curves for the model 2 in the training and validation database; The blue line was training set. The AUC value was
0.78[CI:0.74-0.82]; The red line was validation set. The AUC value was 0.72[CI:0.63-0.82];Delong test p=0.2865.
December 2021 | Volume 11 | Article 788424
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of study results and limited clinical applicability. Multicenter
data must be used for constructing and testing radiomics models
for better clinical application.

There were several limitations to this study. First,
retrospective studies have inherent weaknesses and potential
bias. In future prospective works, we will strengthen the
research of ratio of GGO and solid type. Second, the study
included a small number of patients with MPP in ADC.
Although this study included three hospitals, our sample size
was small. This may be because we included patients with
peripheral lung ADC with size ≤ 2 cm, and the incidence of
MPP in ADC increases with tumor size. A larger sample size is
required in future studies. Third, the incidence of MPP in ADC
in our study is different from previous studies. As pathologists
have different expertise, potential subjective deviation may be
present when semi-quantitative analysis is used to record the
ratio of each pathological subtype, which may affect the
study results.
CONCLUSION

In summary, the constructed two models based on nodule type
stratification has potential to predict MPP in lung ADC of size ≤
2 cm. We found that GGO nodule type in the without MPP
dataset will affect the performance of the prediction model. Thus,
the pure solid nodules (model 2) prediction had moderate stable
Frontiers in Oncology | www.frontiersin.org 8107
generalizability. This model may contribute to an auxiliary
method for preoperative prediction of MPP peripheral lung
ADC of size ≤ 2 cm with proper treatment planning.
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Background: The objective of this study was to assess the value of quantitative
radiomics features in discriminating second primary lung cancers (SPLCs) from
pulmonary metastases (PMs).

Methods: This retrospective study enrolled 252 malignant pulmonary nodules with
histopathologically confirmed SPLCs or PMs and randomly assigned them to a training
or validation cohort. Clinical data were collected from the electronic medical records system.
The imaging and radiomics features of each nodule were extracted from CT images.

Results: A rad-score was generated from the training cohort using the least absolute
shrinkage and selection operator regression. A clinical and radiographic model was
constructed using the clinical and imaging features selected by univariate and multivariate
regression. A nomogram composed of clinical-radiographic factors and a rad-score were
developed to validate the discriminative ability. The rad-scores differed significantly
between the SPLC and PM groups. Sixteen radiomics features and four clinical-
radiographic features were selected to build the final model to differentiate between
SPLCs and PMs. The comprehensive clinical radiographic–radiomics model
demonstrated good discriminative capacity with an area under the curve of the receiver
operating characteristic curve of 0.9421 and 0.9041 in the respective training and
validation cohorts. The decision curve analysis demonstrated that the comprehensive
model showed a higher clinical value than the model without the rad-score.

Conclusion: The proposed model based on clinical data, imaging features, and
radiomics features could accurately discriminate SPLCs from PMs. The model thus has
the potential to support clinicians in improving decision-making in a noninvasive manner.

Keywords: second primary lung cancers, pulmonary metastases, clinical-radiographic factor, radiomics,
lung cancer
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INTRODUCTION

Over the last few decades, owing to advancements in cancer
screening and treatment, the life expectancy of cancer survivors
continues to improve. It was estimated that approximately 16.9
million Americans were living with cancer as of January 1, 2019,
and this number is expected to increase to 20 million by January
1, 2030 (1). Cancer survivors have a higher risk of developing
new primary malignant tumors than the general population. The
most common newly developed primary malignant tumor is
lung cancer (2). Lung cancer remains the leading cause of cancer-
related death worldwide (3). Meanwhile, the lungs are the sites
most frequently affected by metastasis. Approximately 30% of
cancer survivors develop lung metastases (4).

The distinction of second primary lung cancers (SPLCs) from
pulmonary metastases (PMs) is of great clinical interest because
of the vastly different survival outcomes between them. On
account of the close clinical monitoring and regular follow-up
of cancer survivors, SPLCs are often diagnosed at an early stage.
Compared with primary lung cancer, SPLCs have a fair
prognosis after surgical resection of the lesion (5). Both
radiotherapy and chemotherapy are regarded as effective
methods of treatment (6, 7). Metastasis is the leading cause of
mortality among tumor patients (8). The occurrence of
metastasis is considered to represent the terminal, incurable
stage of a tumor. Early differential diagnosis between these two
disorders may help clinicians decide whether aggressive
treatment or palliative care is appropriate.

Pathologic assessment remains the gold standard for
distinguishing between SPLCs and PMs. Histologically distinct
primary tumors are presumed to have diverse origins in a single
patient. When tumors are categorized as the same histologic
type, immunohistochemistry and genetic testing can assist in
confirming the diagnosis (9). However, pathological results
cannot be obtained preoperatively. Histopathology specimen
acquisition relies on invasive lung biopsy, which may cause
several complications, such as pneumothorax, pneumorrhachis,
or air embolism. Not all patients are suitable for a needle biopsy
or surgical resection. In addition, pathological specimens are
typically acquired from one or more separate focal areas and
cannot completely characterize the whole tumor.

The value of clinical and imaging characteristics in differential
diagnosis between SPLCs and PMs has been reported in our
previous study (10) and other articles (11–14). However, there is
a lack of radiomics studies concerning the distinctions.
Radiomics is an emerging science that extracts a large number
of imaging features from radiographic images. It converts images
into quantitative parameters and subsequently performs
statistical analysis to support decision-making. Previous studies
have shown that radiomics can play an important role in
diagnosing malignancy, assessing treatment efficacy, and
predicting clinical outcomes (15–17). In particular, radiomics
has been used to discriminate different pathological types of lung
cancer (18, 19). The present study thus aimed to assess whether
radiomics features can discriminate SPLCs from PMs and to
develop a comprehensive model based on clinical imaging and
radiomics to guide clinical decisions.
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MATERIALS AND METHODS

Patients
This retrospective, single-center study was approved by the
Institutional Review Board of Zhongnan Hospital of Wuhan
University and was conducted in accordance with the
Declaration of Helsinki. The requirement for informed consent
was waived owing to the retrospective nature of this study. The
inclusion criteria were as follows: (1) pathological confirmation
of malignant pulmonary lesions based on the histopathological
evaluation of surgical resection and percutaneous biopsy; (2)
thin-section chest CT (section thickness ≤1.5 mm) examination
performed within one week before needle biopsy or surgery, and
(3) history of malignant tumors. The exclusion criteria were as
follows: (1) insufficient image quality for analysis (20), (2) any
anti-tumor treatment received before the CT scan, (3) ground-
glass opacity (GGO) lesions, (4) uncertainty of whether the
lesion was primary or metastatic, and (5) a previous history of
multiple primary tumors in separate organs. All pathologically
confirmed lesions for included patients were examined unless
they had three or more lesions. In this case, the two largest
focuses of tumor were selected. Based on the above criteria, 252
lesions (97 SPLCs and 155 PMs) from 245 patients of the given
institution from January 2017 to June 2020 were included.
Patients included in this study partially were described
previously (10). The lesions were randomly assigned to a
training cohort (n = 137) or validation cohort (n = 115).

The clinicopathological data, including pathologic
assessment, sex, age, history of smoking, family history of
malignancy, the recurrence status of the initial tumor, and
serum tumor markers [neuron-specific enolase (NSE),
carcinoembryonic antigen (CEA), and carbohydrate antigen
125 (CA125)] were obtained by reviewing the electronic
medical record system. The upper limit of each tumor marker
was the following: NSE, 15.2 ng/mL; CEA, 5 ng/mL; and CA125,
35 U/mL. The above tumor markers were considered positive if
their values were higher than the upper limit. Two authors (ZFY
and LZX) independently extracted the data.

CT Scanning
The chest CT images were obtained from the following CT
systems: SOMATOM definition scanner (Siemens Healthineers,
Forchheim, Germany), and GE discovery 750HD scanner (GE
Medical Systems, Milwaukee, WI, USA). The scanning parameters
of the above devices were as follows: tube voltage, 120 kV;
automatic tube current adjustment technology, 100–350 mAs;
matrix size, 512×512; slice interval, 0 mm; standard soft-tissue
algorithm reconstruction; reconstructed section thickness, 1 mm.

Evaluation of Subjective Radiographic
Characteristics
The subjective radiographic characteristics were independently
analyzed by two thoracic radiologists (FZ, with three years of
chest radiological experience, and HZ, with seven years of chest
radiological experience), who were blinded to the final pathological
results. The CT images were reviewed in the lung window setting
(width, 1500 HU; level, −700 HU) and mediastinal window setting
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(width, 300 HU; level, 40 HU) windows. Discrepancies in the
evaluations were resolved through consultation. The imaging
characteristics of each pulmonary malignant lesion included (1)
lesion size (maximum diameter), (2) distribution of the lesions
(single or multiple), (3) central or peripheral type, (4) density
(homogeneous or heterogeneous), (5) air bronchogram (absent,
present), (6) bubble lucency (absent, present), (7) calcification
(absent, present), (8) vessel convergence sign (absent, present),
(9) margin (clear, unclear), (10) contour (round, irregular), (11)
lobulation (absent, present), (12) spiculation (absent, present), (13)
pleural effusion (absent, present), and (14) enlarged mediastinal
lymph node (absent, present).

Region of Interest (ROI) Segmentation
and Radiomics Feature Extraction
The pulmonary lesions were semi-automatically segmented using
ITK-SNAP (version 3.8.0, http://www.itk-snap.org). The original
Digital Imaging and Communications in Medicine files were
imported into the in-house software (Analysis Kit, version 3.1.5.R,
GE Healthcare) for pre-processing, and the lesions were segmented
in standard images, slice by slice, under the lung window setting
(width, 1500 HU; level, −700 HU). The lesions were delineated to
avoid large vessels, bronchi, and chest walls, if possible.

Radiomics feature extraction was applied to the chest CT
images using AK software. Finally, from one segmented ROI, a
total of 402 imaging texture features were extracted: 42
histogram features, 144 Gy-level co-occurrence matrix features,
11 Gy-level size zone matrix features, 180 Gy-level run‐length
matrix features, and 25 shape- and size-based features. Details of
the extraction features are provided in the Supplementary
Material. Each image was normalized to eliminate the impact
of different quantization levels on the texture features.

Feature Selection and Model Building
Dice Similarity Coefficient was used to describe inter reader
segmentation variability, which ranged from 0.74 to 0.98
(Table S2) (21). The intraclass correlation coefficient (ICC)
was used to evaluate inter-observer agreement of quantitative
radiomics parameters. In 20 randomly sampled cases, two chest
radiologists (FZ and HZ) independently drew the ROI and
extracted the radiomics features. Radiomics features with an
ICC higher than 0.75 were regarded as consistent (21) and were
included for further analysis. A radiologist (FZ) sketched ROIs in
the remaining cases.

In the training set, a minimum redundancy–maximum
relevance (mRMR) algorithm was employed to rank the
importance of the selected features. Finally, the 100 highest
mRMR-ranked features were input to the least absolute
shrinkage and selection operator (LASSO) classifier to select the
most predictive features. The rad-score was calculated for each
lesion based on the final selected features (22), and a receiver
operating characteristic (ROC) curve was constructed to evaluate
the discriminatory ability of the rad-scores via the area under the
curve (AUC) in the training and validation cohorts. The clinical
data and subjective radiographic characteristics were evaluated
using univariate analysis. Significant factors were included in the
multivariate analysis to build a clinical–radiographic model.
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The clinical–radiographic and rad-scores were combined to
construct an individualized discriminatory nomogram based on
a multivariate logistic regression algorithm. Internal validation
was performed using a calibration curve, which was verified by
the Hosmer–Lemeshow test. The AUCs of the ROC were
calculated to evaluate the above models in the respective
training and validation sets. Decision curve analysis (DCA)
was performed to compare the clinical value of the models (23).

Statistical Analysis
Categorical variables were expressed as frequency rates and
compared using the c² test or Fisher’s exact test. Continuous
variables were described as the median (interquartile range [IQR])
and compared using the t-test or Wilcoxon rank-sum test. A two-
sided a value of less than 0.05 was considered statistically
significant. Statistical analysis was performed using R software
(version 4.1.2, http://www.R-project.org). The “mRMRe” package
was used to conduct the mRMR algorithm, “irr” package for Intra-
class correlation coefficient (ICC) algorithm, “tableone” for
comparison of clinical baseline data between groups, “tidyverse”
for data collation and exploration, “glmnet” for LASSO regression,
“rms” for Nomogram, “rmda” for decision curve analysis(DCA),
“pROC” for receiver operating characteristic curve analysis(ROC),
“ResourceSelection” for goodness of fit test, and “ggpubr” for data
result visualization, respectively.
RESULTS

Patient Information
A total of 245 patients (134 men [54.7%] and 111 women
[45.3%]) who met the inclusion criteria were included in this
retrospective study. The median patient age was 62 years (IQR,
55–67 years; range, 31–93 years). The baseline characteristics of
the patients are presented in Table 1. Of the 245 patients, 252
solid pulmonary lesions were pathologically diagnosed as
malignant foci, including 97 primary lesions and 155
metastatic lesions. There are 21 synchronous SPLCs and 76
metachronous ones. 55SPLCs and 82 PMs were included in the
training set, while 42 SPLCs and 73 PMs were included in the
validation set. Univariate analysis revealed no difference between
the clinical data and subjective radiographic characteristics in the
training and validation sets.

Comparison of Clinical and Radiographic
Features Between SPLC and PM Groups
The univariate logistic regression analysis of the clinical data
showed a statistically significant difference in sex, history of
smoking, and CEA level between the SPLC and PM groups in the
training set (p <0.05). Other clinical data, such as age, recurrence
status of the initial tumor, family history of malignancy, NSE
level, and CA125 level, were not statistically significant.

Among the visual imaging findings, the maximum diameter
of lesions, the distribution of lesions, central or peripheral type of
lesions, air bronchogram, calcification, vessel convergence sign,
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TABLE 1 | The clinical and radiographic factors of patients in SPLC
†
and PM

§
Groups.

Variables SPLC Group (N=97) PM Group (N=155) P value
No. of patient (%) No. of patient (%)

Sex 0.029
Male 62 (63.9) 76 (49.0)
Female 35 (36.1) 79 (51.0)

Age (years) <0.001
(Median [IQR]) 64.00 [59.00, 68.00] 59.00 [52.00, 65.00]

History of smoking 0.003
Yes 54 (55.7) 116 (74.8)
No 43 (44.3) 39 (25.2)

Family history of malignancy (%) 0.43
Yes 88 (90.7) 146 (94.2)
No 9 (9.3) 9 (5.8)

Recurrence status of the initial tumor 0.085
Yes 97 (100.0) 149 (96.1)
No 0 (0.0) 6 (3.9)

Maximal lesion size (mm) <0.001
(Median [IQR]) 30.00 [20.00, 49.00] 19.00 [13.00, 28.50]

NSE 0.003
Normal 74 (76.3) 141 (91.0)
Abnormal 23 (23.7) 14 (9.0)

CEA 0.002
Normal 59 (60.8) 123 (79.4)
Abnormal 38 (39.2) 32 (20.6)

CA125 0.034
Normal 69 (71.1) 129 (83.2)
Abnormal 28 (28.9) 26 (16.8)

The distribution of lesions <0.001
Single 80 (82.5) 72 (46.5)
Multiple 17 (17.5) 83 (53.5)

Central or peripheral type <0.001
Peripheral 75 (77.3) 149 (96.1)
Central 22 (22.7) 6 (3.9)

Density 0.546
Homogeneous 79 (81.4) 120 (77.4)
Heterogeneous 18 (18.6) 35 (22.6)

Air bronchogram <0.001
Absent 47 (48.5) 134 (86.5)
Present 50 (51.5) 21 (13.5)

Bubble lucency 0.283
Absent 81 (83.5) 138 (89.0)
Present 16 (16.5) 17 (11.0)

Calcification 0.001
Absent 79 (81.4) 147 (94.8)
Present 18 (18.6) 8 (5.2)

Vessel convergence sign <0.001
Absent 62 (63.9) 137 (88.4)
Present 35 (36.1) 18 (11.6)

Margin 0.003
Clear 79 (81.4) 146 (94.2)
Unclear 18 (18.6) 9 (5.8)

Contour <0.001
Round 22 (22.7) 118 (76.1)
Irregular 75 (77.3) 37 (23.9)

Lobulation <0.001
Absent 6 (6.2) 40 (25.8)
Present 91 (93.8) 115 (74.2)

Spiculation <0.001
Absent 30 (30.9) 130 (83.9)
Present 67 (69.1) 25 (16.1)

Pleural effusion <0.001
Absent 25 (25.8) 83 (53.5)
Present 72 (74.2) 72 (46.5)

Enlarged mediastinal lymph node 0.158
Absent 70 (72.2) 125 (80.6)
Present 27 (27.8) 30 (19.4)
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contour, lobulation, spiculation, and pleural effusion presented
significant differences in the univariate analysis (p <0.05). Other
radiographic features, such as density, bubble lucency, margin,
and enlarged mediastinal lymph nodes, were not statistically
significant in the two groups. All clinical–radiographic variables
that achieved statistical significance were enrolled in the
multivariate logistic regression analysis.

In the multivariate analysis, the distribution of lesions (odds
ratio [OR], 6.52; 95% confidence interval [CI], 1.92–26.84;
p-value = 0.005), central or peripheral type (OR, 0.05; 95% CI,
0–0.66; p-value = 0.031), contour (OR, 0.23; 95% CI, 0.06–0.76;
p-value = 0.018), and spiculation (OR, 0.12; 95% CI, 0.03–0.42;
p-value <0.001) were identified as independent variables and
included in the clinical–radiographic model.
Feature Selection and Radiomics
Model Building
A total of 233 radiomics features with an ICC higher than 0.75
were enrolled for the next feature extraction step. Then, the
Frontiers in Oncology | www.frontiersin.org 5113
mRMR program was used to select the 100 highest-ranked
features in the training set. Finally, LASSO logistic regression
was used to reduce the 100 features to 16 features with nonzero
coefficients, as shown in Figure 1. The rad-score of each lesion
was calculated using the following formula:

Rad� Score  =  0:585917936  +  0:300121336 �  InverseDifferenceMoment _AllDirection _ offset1 _ SD

+ 0:139511141 �  HaralickCorrelation _ angle90 _ offset7  +  0:117363006

� LongRunEmphasis _ angle0 _ offset7  −  0:286189566 �  LongRunEmphasis _ angle0 _ offset4

+ 0:807308895 �  Compactness2  −  0:095952964 �  HaralickCorrelation _ angle0 _ offset7  −  0:09620897

� SphericalDisproportion  +  0:410874754

� ShortRunHighGreyLevelEmphasis _AllDirection _ offset7 _ SD  −  0:109558249 �  SmallAreaEmphasis

− 0:05680965 �  ZonePercentage  +  0:102430665 �  GLCMEntropy _ angle135 _ offset4  +  0:148896463

� LongRunHighGreyLevelEmphasis _AllDirection _ offset1 _ SD  +  0:057282871 �  Elongation

+ 0:202108196� LongRunLowGreyLevelEmphasis _ angle 0 _ offset7  −  0:244924038

� GLCMEnergy _ angle90 _ offset7  +  0:310948511 �  LongRunEmphasis _AllDirection _ offset7 _ SD

The rad-scores were significantly different between the SPLC
and the PM groups in both the training and validation sets
(p <0.05); PMs had higher rad-scores than SPLCs. The rad-
scores for both the training and validation sets are shown
in Figure 2.
A B

C

FIGURE 1 | The result of LASSO model (A) LASSO coefficient profiles of the candidate predictors. (B) The features with nonzero coefficients are shown in the model.
(C) The y-axis indicates the selected radiomics features, and the x-axis represents the coefficient of radiomics.
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Nomogram Model Construction and
Validation
Based on the training set, the radiomics scores, distribution of
lesions, central or peripheral type, contour, and spiculation were
incorporated into the comprehensive nomogram model
construction (Figure 3A). Figure 3 shows the calibration
curves of the nomogram model in training cohort (B) and
validation cohort (C). The Hosmer–Lemeshow test finding was
not significant (P = 0.4612); it showed good calibration in the
training set. Figure 4 shows the discriminative abilities of each
model. The radiomics model had good discriminative
performance, with AUCs of 0.8707 (95% CI, 0.8138–0.9277) in
the training set and 0.7622 (95% CI, 0.6702–0.8543) in the
validation set. The clinical–radiographic model had AUCs of
0.8989 (95% CI, 0.8475–0.9503) and 0.9035 (95% CI, 0.8489–
0.9581) in the training and validation cohorts, respectively. The
comprehensive model achieved a slightly higher AUC in the
training (0.9421; 95% CI, 0.9056–0.9786) and validation sets
(0.9041; 95% CI, 0.8417–0.9665). Figure 5 presents the DCA of
the nomogram. The DCA showed that in most circumstances,
using the comprehensive model to distinguish between SPLCs
and PMs would be more clinically beneficial than using other
models in training cohort (A) and validation cohort (B).
DISCUSSION

In this study, the ability of CT-based radiomics to discriminate
SPLCs from PMs was investigated. An individual nomogram
model integrated with clinical data, radiographic characteristics,
and radiomics features was constructed. It achieved an
excellent discriminative capability and has the potential to
support clinicians in improving decision-making in a
noninvasive manner.

In recent years, radiomics studies have attracted increasing
attention because they can reflect quantitative intratumoral
Frontiers in Oncology | www.frontiersin.org 6114
pathophysiological information in a noninvasive manner (24).
Radiomics features represented tumor heterogeneity and were
extracted from the entire ROI; they were not just limited to the
biopsy site (17). Previous studies demonstrated that radiomics
plays a role in differentiating between primary and metastatic
tumors (25–29). In particular, CT radiomics features combined
with positron emission tomography (PET) features can
accurately distinguish between primary and metastatic lung
cancers (26, 27). However, neither of these previous studies
focused on the patient’s history of neoplastic disease, leading to
insufficient clinical value. To the best of the present authors’
knowledge, this is the first study to apply radiomics studies to
SPLCs and to build a radiomics model for distinguishing SPLCs
from PMs. In this study, the rad-scores in the SPLC group were
significantly lower than those in the PM group (−0.005
[IQR −0.516–0.365] vs. 0.830 [IQR 0.357–1.53]), thereby
showing strong diagnostic efficacy.

Several studies have demonstrated that combining
radiographic and radiomics provides a higher prognostic
performance than radiomics alone in lung lesions (20, 30, 31).
Despite some observer bias, the subjective radiographic
characteristic is the most frequently used method for
describing pulmonary lesions. Pulmonary GGO lesions have
shown that tumor cells grow along the alveolar wall and are
known to be a key sign of primary lung adenocarcinoma (11, 14,
32). This was also observed at the present research institution
(10); therefore, only solid lesions were employed in this study. A
prior study argue that central-type pulmonary lesion strongly
prompts to be the SPLC because endobronchial metastasis is a
rare event (13), and the same result was obtained in this study. In
the final model, four independent imaging characteristics,
including the distribution of lesions, central or peripheral type,
contour, and spiculation, were in accordance with the authors’
clinical experience. The final model did not include clinical
variables because they were not statistically significant in
the multiple logistic regression analysis. In the past, the event-
A B

FIGURE 2 | The Rad-score of each lesion in the training set (A) and validation set (B).
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A

B C

FIGURE 3 | (A) Nomogram for predicting SPLCs and PMs. For each patient, draw a vertical line between the variable value and the corresponding point line, and
then assign a score for each variable based on the clinical and imaging characteristics to obtain a total score. The risk of metastasis can be predicted according to
the total score. (B) Calibration curve for the nomogram in training cohort. (C) Calibration curve for the nomogram in validation cohort.
A B

FIGURE 4 | Receiver operating characteristic (ROC) curves of the models based on clinical-radiographic factors (blue), radiomics features alone (red), and
comprehensive clinical-radiography-radiomics features (green) in the training set (A) and validation set (B).
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free duration is considered to be an important differentiating
factor (13). However, it is difficult to accurately measure
the time between primary and secondary tumor. So, this
characteristic was not included in this study. Smoking
history used to be a risk factor for SPLC (14, 33) but it
has not been seen in this research. This may be because
traditional Chinese women smoke less. Thus, combining the
radiomics model with the radiographic features improved the
prognostic performance.

However, there were some limitations to this study. First, it
was a retrospective, single-center study with a small sample
size. As the number of cases was small, different organs of
initial primary cancers were not distinguished, which may have
led to bias. Therefore, larger sample sizes from multiple centers
are required for further studies. Second, radiomics feature
extraction was performed only on plain CT scanning images.
Enhanced CT or PET images may contain added valuable
information. Third, in this study, a semi-automatic method
was adopted to segment ROIs, which could lead to artificial
differences. An accurate automatic segmentation method should
be considered in future studies (34). Last, the relationship
between radiomics signatures and subjective radiographic
characteristics was not assessed. This aspect will be explored in
future work.

In conclusion, the model developed using clinical–
radiographic factors and CT-based radiomics features shows
good performance discriminating between SPLCs and PMs.
Therefore, for pulmonary malignancy patients with a history of
other malignant tumors, the individual nomogram model may
guide therapeutic decisions. With the development of artificial
intelligence and machine learning, quantitative radiomics may
have promising clinical applications.
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Objective: To investigate the diagnostic value of positron emission tomography (PET)/
magnetic resonance imaging (MRI) radiomics in predicting the histological classification of
lung adenocarcinoma and lung squamous cell carcinoma.

Methods: PET/MRI radiomics and clinical data were retrospectively collected from 61
patients with lung cancer. According to the pathological results of surgery or fiberscope,
patients were divided into two groups, lung adenocarcinoma and squamous cell
carcinoma group, which were set as positive for adenocarcinoma (40 cases) and
negative for squamous cell carcinoma (21 cases). The radiomics characteristics most
related to lung cancer classification were calculated and selected using radiomics
software, and the two lung cancer groups were randomly assigned into a training set
(70%) and a test set (30%). Maximum relevance and minimum redundancy (mRMR) and
least absolute shrinkage and selection operator (LASSO) methods in the uAI Research
Portal software (United Imaging Intelligence, China) were used to select the desired
characteristics from 2600 features extracted from MRI and PET. Eight optimal features
were finally retained through 5-fold cross-validation, and a PET/MRI fusion model was
constructed. The predictive ability of this model was evaluated by the difference in area
under the curve (AUC) obtained from the receiver operating characteristic (ROC) curve.

Results: AUC of PET/MRI model for the training group and test group were 0.886 (0.787-
0.985) and 0.847 (0.648-1.000), respectively. PET/MRI radiomics features revealed
different degrees of correlation with the classification of lung adenocarcinoma and
squamous cell carcinoma, with significant differences.
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Conclusion: The prediction model constructed based on PET/MRI radiomics features
can predict the preoperative histological classification of lung adenocarcinoma and
squamous cell carcinoma without seminality and repeatability. It can also provide an
objective basis for accurate clinical diagnosis and individualized treatment, thus having
important guiding significance for clinical treatment.
Keywords: lung, cancer, PET/MRI, radiomic, adenocarcinoma, squamous
INTRODUCTION

In 2020, there were 19.29 million new cancer cases and 9.96
million cancer-related deaths worldwide, among which lung
cancer accounted for 2.2 million (11.4%) and 1.8 million
(18%), respectively. Thus, lung cancer has become the second
most common cancer and the leading cause of death globally. In
addition, lung cancer occurs more frequently in men with the
highest incidence and mortality in males compared to other
tumors (1). Lung cancer is divided into adenocarcinoma,
squamous cell carcinoma, small cell carcinoma, etc., of which
lung adenocarcinoma and squamous cell carcinoma are the main
types, accounting for about 75% (2, 3). The treatment methods
vary for different pathological types of lung cancer, and early
diagnosis is of great significance for the diagnosis, overall
treatment, and personalized treatment of patients with
lung cancer.

Over recent years, the diagnosis and treatment of lung cancer
have been further improved by the integration of radiomics,
molecular biology, clinical and other disciplines. With the
progress of imaging technology and the continuous
development of drugs, especially the popularization and
application of PET/CT and PET/MRI molecular radiomics
technology, the performance level of clinical diagnosis and
treatment efficacy evaluation of lung cancer have been greatly
advanced. Sepehri et al. (4) found that the PET/CT radiomics-
based model outperformed the standard clinical staging by
retrospectively analyzing 138 patients with stage II-III non-
small cell lung cancer. Ehman et al. (5) found that PET/CT
had superiority in terms of use opportunity, application cost,
examination speed and clinical awareness, but PET/MRI
produced less radiation and was more advantageous in the
detection of soft tissue tumors. In addition, for the staging of
breast cancer, compared to PET/CT, PET/MRI can better
distinguish the invasion of chest wall, diaphragm and
mediastinum/distant soft tissues, which affected the TMN
staging. As a result of the fusion of the metabolic information
by PET with the high soft-tissue resolution and functional
information by MRI, PET/MRI has gained more advantages in
detecting primary soft tissue lesions, histopathological
classification, TMN staging, prognosis prediction, efficacy
evaluation, and recurrence detection. At the same time, as the
fusion radiomics can determine the accurate location of the
lesion and the anatomical relationship with the surrounding
tissues, it has obvious advantages in determining the biological
target area for lung cancer radiotherapy and formulating the
extent of surgical resection. Thus, in the treatment of lung
2119
cancer, PET/MRI can be used for early observation of the
tumor’s response to treatment, timely adjustment and
optimization of the treatment plan, avoidance of ineffective
treatment or toxic side effects, gaining treatment time for
patients, improving the therapeutic effect, prolonging the
survival time of patients and improving the quality of life.

The current diagnosis and treatment of lung cancer still
mainly rely on the subjective experience of physicians and
clinicians, and there is a lack of systematic analysis of the data
information generated by radiomics examinations. Needle
biopsy is the gold standard for pathological diagnosis of
patients; still, it is invasive, reproducible, has potential
complications, and is difficult to perform when the lesion is
deep or adjacent to blood vessels. Therefore, this method has
certain limitations and may even lead to fatal outcomes (3).
However, radiomicsmethods use automated data characterization
algorithms to transform medical images into high-resolution
graphics, excavate feature spatial data, and quantify lesion
morphological characteristics and internal heterogeneity (6–9).
Deep mining of radiomics data can obtain many quantitative
radiomics characteristics that the human eye cannot perceive.

This study aimed tofindnewradiomics quantitativeparameters
for histological classification of lung adenocarcinoma and
squamous cell carcinoma based on PET/MRI radiomics method,
construct a prediction model, and explore the diagnostic value of
this technique in predicting the classification of lung
adenocarcinomaand squamous cell carcinomawithout seminality.
MATERIALS AND METHODS

Subjects
A total of 61 patients with lung adenocarcinoma or squamous
cell carcinoma confirmed by surgery or puncture, including 40
with lung adenocarcinoma and 21 with squamous cell
carcinoma, who were initially diagnosed by PET/MRI
examination in Hangzhou Universal Medical Imaging
Diagnostic Center between October 2018 and August 2021
were retrospectively included in the study. The research
protocol met the requirements of medical ethics (Scientific
Research Medical Ethics, No. 2021-008), and all methods were
implemented in accordance with the Declaration of Helsinki.

Inclusion criteria were the following: all patients underwent
PET/MR examination before treatment and were pathologically
confirmed to have adenocarcinoma or squamous cell carcinoma;
no chemotherapy or radiotherapy and surgical anti-tumor
February 2022 | Volume 12 | Article 803824
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therapy were performed; clear whole-body and chest PET/MR
could be obtained before treatment; PET/MR examination was
performed 40 – 60 min after injection of 18F-fluorodeoxyglucose
(18F-FDG).

Exclusion criteria were: patients whose PET/MRI image failed
to meet the diagnostic criteria (such as obvious metal or motion
artifact); patients with contraindications to MRI examination or
inability to tolerate the examination; patients with a history of
other thoracic malignant tumors or other systemic malignancies;
patients who had received any form of treatment before PET/MR
examination (such as radiotherapy, chemotherapy, etc.);
pathologically confirmed adenocarcinoma and squamous cell
carcinoma of other histopathological types.

Instruments and Equipments
Imaging data were acquired using integrated time-of-flight
(TOF) PET/MR from GE (GE SIGNA, WI, USA). The system
consisted of a PET detector with TOF technology (TOF-PET)
and the latest generation of 750W 3.0T magnetic resonance. The
TOF-PET detector is constructed with a state-of-the-art solid-
phase array photoelectric converter (SiPM) and a new generation
of LBS crystal. Simultaneous PET and MRI scanning were
performed with the thinnest acquisition slice thickness of 2.8
mm (Transverse FOV: 60 cm, axial FOV: 25 cm, transverse
resolution (1 cm from the center): 4.2 mm, axial resolution (1 cm
from the center): 5.8 mm, temporal resolution: 385 ps, energy
resolution: 11%, and sensitivity: 21 cps/kBq).

Patients Preparation
Patients were required to fast for more than 6 hours, and the
blood glucose concentration was controlled to be < 7.8 mmol/L
before injection of 18F-FDG. On the examination day, patients
wore clothes that did not have any accessories or were easy to
take off. They were injected with 18F-FDG at a dose of 3.7 Mbq/
kg and underwent whole-body PET/MRI 40 min later. Written
informed consent was obtained from all patients or legal
guardians before the examination.

PET/MRI Scan
The patient was placed in the supine position. After performing
attenuation correction, whole-body PET/MR scans were
performed from the top of the head to the middle of the
femur, and if necessary, sweeping to the sole of the foot. A
total of 5 – 6 beds were collected, with an acquisition time of 6
minutes per bed. PET images was acquired and reconstructed
using 3D mode, TOF technique, and point spread function (PSF)
with ordered subset expectation maxima (OSEM) algorithm,
which used two iterations, 28 subsets, and a 5 mm Gaussian
post-processing filter with a 192 × 192 matrix. PET data
acquisition was performed during a whole-body MRI
examination. A regional PET/MR scan of the chest was then
carried out, ranging from the apex to the base of the lung, and
radiomics were obtained using dedicated MRI coils for the chest
region, resulting in whole-body and regional PET, MRI, and
PET/MR fusion radiomics. All data were acquired from the same
PET/MR instrument. MRI sequences included LAVA-Flex
T1WI, fs-PROPELLER T2WI, DWI (b = 800 mm2/s), and
Frontiers in Oncology | www.frontiersin.org 3120
coronal fs-PROPELLER T2WI. In this study, chest local Axial
T2WI radiomics and PET radiomics were selected as radiomics
feature extraction sequences (10, 11).

Radiomics Data Processing
Conjoined uAI Research Portal software (United Imaging
Intelligence, China) that was embedded into the widely used
package-PyRadiomics (https://pyradiomics.readthedocs.io/en/
latest/index.html) was used for radiomics analysis on the
region of interest (ROI) of the subject’s primary tumor. The
workflow of radiomics mainly included the following steps:
lesion segmentation, feature extraction, feature selection, and
machine learning modeling (12–15).

Lesion Segmentation
Chest PET and MRI data in DICOM format were imported into
ITK-SNAP software (http://www.itksnap.org), which was used to
delineate the region of interest (ROI) of the patient on PET and
MRI axial data, manually delineate along the edge of the primary
tumor of lung cancer, exclude adjacent normal tissues and lymph
nodes, overlap the segmentation boundaries of PET and MRI
data, and finally export the three-dimensional segmentation
results obtained by PET and MRI radiomics sequentially into
the original map and the corresponding ROI map (Figures 1–4).
The segmentation result was saved as nii file. Two radiologists
with 15 to 20 years of experience in thoracic PET/MR diagnosis
simultaneously segmented ROIs on MRI and PET images of the
primary lesion to obtain the corresponding ROI segmented
graphics, respectively. When the results were inconsistent, the
third radiologist with twenty years of experience performed ROI
delineation again and checked until the results were unified.

Feature Extraction
All ROI data and the original images of PET and MRI were
imported into the uAI Research Portal software in batch.

Feature Selection
Data Import
The radiomics of PET and MRI were imported into the
R software (version 4.0.5, http://www.Rproject.org) for
feature selection.
FIGURE 1 | The lesion ROIs of axial PET sequence.
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Feature Selection
The patients were randomly assigned into a training set (70%)
and a test set (30%) (12, 16, 17). We used two feature selection
methods, mRMR and LASSO, to select the features. Firstly,
mRMR was performed to eliminate the redundant and
irrelevant features; then LASSO was conducted to choose the
optimized subset of features to construct the final model.

1. LASSO analysis included choosing the regular parameter l,
determining the number of the feature (Figure 5). After the
number of feature was determined, the most predictive feature
subset was chosen and the corresponding coefficients were
evaluated (Figure 6).

2. After the number of feature was determined, the most
predictive feature subset was chosen and the corresponding
coefficients were evaluated (Figure 7).

The radiomic signature (Rad score) was calculated by
summing the selected texture features, which were weighted by
their respective coefficients. All rad scores between lung
Frontiers in Oncology | www.frontiersin.org 4121
adenocarcinoma and squamous cell carcinoma group were
compared in the training set and test set respectively.

The final formula for the PET/MRI rad score was: “Radscore=-
1.161*PET_wavelet_glszm_wavelet-HHL-GrayLevelNon
Uniformity+-0.147*PET_boxsigmaimage_glcm_ClusterShade+-
0.516*PET_normalize_glrlm_ShortRunLowGrayLevelEmphasis+
FIGURE 2 | The lesion ROIs of coronal PET sequence.
FIGURE 3 | The lesion ROIs of sagittal PET sequence.
FIGURE 4 | The lesion ROIs of axial MRI sequence.
FIGURE 5 | LASSO analysis of PET/MRI.
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0.311*MR_wavelet_firstorder_wavelet-HLH-Median+-
0.332*PET_wavelet_firstorder_wavelet-LHH-Kurtosis+0.336*
PET_wavelet_glszm_wavelet-HHH-SizeZoneNonUniformity
Normalized+0.491*MR_laplaciansharpening_gldm_Large
DependenceLowGrayLevelEmphasis+-0.021*PET_binomial
blurimage_firstorder_Skewness + 0.449”

Radiomics Validation
We used ROC analysis to evaluate the performance of the
model (Figure 10).
Frontiers in Oncology | www.frontiersin.org 5122
Nomogram Building
Statistical Analysis
Statistical comparisons of gender and age were performed using
SPSS software (version 26). In addition, feature selection and
radiomics signature construction and validation were conducted
with R software. The statistical significance was set at a P-value of
0.05 with two-tailed analyses (3, 18). Feature extraction ROC
measured the evaluation consistency between radiologists using
the inter-correlation coefficients (ICC). All statistical methods of
February 2022 | Volume 12 | Article 803824
FIGURE 6 | The most predictive feature subset of PET/MRI.
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the radiomics analysis were conducted with uAI Research Portal
software and R software.
RESULTS

In this study, the ICC value of > 0.86, which was considered to be
in good agreement of the ROC. We selected ROC results from
the senior radiologist to extract features.

Comparison of Clinical Data
Table1 showed the results of statistical analysis of thedemographic
and clinical data. There were no statistically significant differences
in age and gender between the lung adenocarcinoma and lung
squamous cell carcinoma groups (Table 1).

Radiomics Analysis Results
Figure 5 showed that top 20 imaging features were ranked and
used as candidate features for LASSO regression analysis,
according to the results with mRMR algorithm. In LASSO
regression analysis, when Log (In) was -6 and Log Lambda was
0.521, the PET/MRI prediction model showed the best diagnostic
performance, and the eight optimal imaging features were
determined at this point.
Frontiers in Oncology | www.frontiersin.org 6123
Figures 6, 7 showed that eight characteristic parameters were
obtained from the PET/MRI prediction model, which were
PET_wavelet_glszm_wavelet-HHL-GrayLevelNonUniformity;
PET_boxsigmaimage_glcm_ClusterShade; PET_normalize_
glrlm_ShortRunLowGrayLevelEmphasis; MR_wavelet_
firstorder_wavelet-HLH-Median; PET_wavelet_firstorder_
wavelet-LHH-Kurtosis; PET_wavelet_glszm_wavelet-HHH-
SizeZoneNonUniformityNormalized; MR_laplaciansharpening_
gldm_LargeDependenceLowGrayLevelEmphasis ; and
PET_binomialblurimage_firstorder_Skewness.

Figures 8A, B showed that the predicted values of the training
and test group were very close to the actual values, and they
showed that the prediction ability of the nomogram was good.

Figure 9 showed that labels “0” and “1” were added to the rad
scores of the training and test groups, respectively, where
adenocarcinoma was labeled “1” and scale-cell carcinoma was
labeled “0”.

Figure 10 showed that AUC of PET/MRI model in the
training and test group was 0.886 (0.787-0.985) and 0.847
(0.648-1.000), respectively. Based on Youden Index, other
parameters were calculated as follows (Table 2):

Figures 11A, B showed the Hosmer-Lemeshow test result.
Finally, we used decision curve to evaluate the clinical

usefulness of the model (Figure 12).
FIGURE 7 | The radiomic coefficients of each feature in the most predictive feature subset in PET/MRI radiomics signature construction.
TABLE 1 | Summary of original data of cases.

Characteristic Adenocarcinoma squamous cell carcinoma Statistical analysis P-value

Gender chi-square p = 0.918
Male (case) 10 16
Female (case) 30 5
Age (years) 23-90 51-80 A two-sample T-test P = 0.834
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DISCUSSION

In this study, PET/MRI prediction models established based on
chest MRI and PET radiology were used to analyze 40 patients
with lung adenocarcinoma and 21 patients with squamous cell
carcinoma, and finally 8 optimal characteristic parameters were
obtained, of which 3 belonged to intensity characteristics and 5
belonged to texture characteristics, 6 characteristics were from
PET radiology and 2 characteristics were from MRI radiology.
These results indicated that texture characteristics were more
related to lung adenocarcinoma and lung squamous cell
carcinoma classification, of which the characteristics with the
highest feature weight ratio was wavelet GLSZM-HHL-GLNU,
indicating that it had the most significant predictive effect on
NSCLC patient subtypes in PET/MRI models, and GLSZM was a
standardized distribution of regional counts relative to gray
values. The lower the value was, the more uniform the
intensity value became. Moreover, GLSZM is negatively
correlated with survival and helps identify hypoxic or necrotic
areas with poor prognosis. Yang et al. (19) showed that gray level
run length matrix (GLRLM) and wavelet characteristics were
Frontiers in Oncology | www.frontiersin.org 7124
related to the survival time of lung cancer. Additionally, the AUC
of the PET/MRI model in the training and test set were 0.886
(0.787 – 0.985) and 0.847 (0.648 – 1.000), respectively, which
were very close. The results showed that the PET/MRI prediction
model had good fit, good consistency and stability, and also
showed that the PET/MRI prediction model could effectively and
non-invasively classify the pathological types of lung
adenocarcinoma and lung squamous cell carcinoma. The
diagnostic value of PET/MR prediction model in the training
and test set suggested that the model constructed based on PET/
MRI radiomics characteristics had a high predictive value for
preoperative pathological classification of lung adenocarcinoma
and squamous cell carcinoma, providing an objective basis for
accurate clinical diagnosis and individualized treatment, and
having an important guiding significance for clinical treatment.
The Hosmer-Lemeshow test indicated that the PET/MRI
prediction model could effectively differentiate the pathological
subtypes of lung adenocarcinoma from lung squamous cell
carcinoma. Decision curve analysis of different variables for
clinical application of PET/MRI model showed that the net
benefit of the PET/MRI radiomics model under different
A

B

FIGURE 8 | (A) Nomogram construction in the PET/MRI training set. (B) The left figure is the training set calibration curve; the right figure is the test set calibration
curve; the solid black line represents the theoretical curve, and the red dashed line represents the deviation correction curve. The formula of PET/MRI nomoscore is
defined as follows: “Nomoscore = (Intercept)*0.188+rad_score*1.648”.
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FIGURE 9 | The label of PET/MRI.
FIGURE 10 | The left figure represents the AUC of PET/MRI model in the training set, and the right figure represents the AUC of PET/MRI model in the test set.
TABLE 2 | Results of PET/MRI radiomics.

Group Accuracy Accuracy Lower Accuracy Upper Sensitivity Specificity Pos.Pred.Value Neg.Pred.Value

Training 0.814 0.666 0.916 0.800 0.821 0.706 0.885
Test 0.833 0.586 0.964 0.667 0.917 0.800 0.846
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threshold probabilities outweighed the clinical variables. We
found that these curves could further reflect the clinical
utility and the higher predictive efficiency of PET/MRI
radiomics models.
Frontiers in Oncology | www.frontiersin.org 9126
Coroller et al. (20) analyzed the CT radiomics of 85 patients
with locally advanced NSCLC and extracted the radiomics
parameters of lymph nodes and primary tumors using
radiomics methods. They reported that the phenotypic
A

B

FIGURE 11 | (A) The Hosmer-Lemeshow result for the PET/MRI model in the training set. (B) The Hosmer-Lemeshow results for PET/MRI model in the test set.
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information of lymph nodes was more effective than that of
primary tumors in predicting the pathological responses.
Kirienko et al. (21) retrospectively analyzed the radiomics data
of PET and CT of 534 lung lesions cases and found that the
texture characteristics of PET radiomics using the method of
linear discriminant analysis could distinguish primary lung
cancer from metastatic tumors (AUC > 0.90), and could
classify the histological subtypes of primary lung cancer (AUC
0.61, 0.97). Other studies have also evaluated the relationship
between tumor subtypes, histopathological grades, diagnosis,
treatment, and prognosis of lung cancer and radiomics
characteristics. Orlhac and colleagues (22) compared the
texture characteristics of adenocarcinoma and squamous
cell carcinoma and showed differences in most texture
characteristics, while squamous cell carcinoma had lower
homogeneity and higher entropy, reflecting its higher
heterogeneity than adenocarcinoma. Yang et al. (23)
retrospectively analyzed PET/CT radiology data of 315 NSCLC
patients and found that the radiological nomograms based on
18F-FDG PET/CT rad score and clinicopathological factors had
a good predictive performance for survival outcomes, providing
feasible and practical guidance for individualized management of
NSCLC patients. Szyszko et al. (24) and Grosse et al. (25)
reported that the main advantages of PET/MRI were the
reduction of radiation dose and the improvement of
anatomical details in soft tissue areas, making it suitable for
pediatric patients and patients requiring repeated radiomics.
Hyun et al. (26) established a PET prediction model that
successfully predicted histological subtypes of lung cancer and
found that the logistic regression model outperformed all other
classifiers (AUC = 0.859, accuracy = 0.769). In the present study,
we used mRMR and LASSO methods to construct a combined
PET/MRI prediction model based on chest MRI and PET, and
showed that the results of the training group, with an AUC of
0.886 and an accuracy of 0.814. We concluded that the PET/MRI
prediction model was superior to the PET prediction model in
terms of predicting the pathological types of lung
adenocarcinoma and squamous cell carcinoma, and the PET/
MRI radiomics might be more helpful for clinicians to improve
Frontiers in Oncology | www.frontiersin.org 10127
the histopathological diagnosis. As a non-invasive radiomics
method, PET/MRI can significantly reduce the radiation dose
compared with PET/CT and provide morphological, functional,
and molecular radiomics information of the tumor in one
examination. Compared with histopathological and genetic
testing methods, PET/MR examination can overcome sampling
deviations and complications caused by biopsy. It can also
provide more comprehensive and accurate information in
predicting biomarkers. This study showed that PET/MRI could
be used for non-seminal evaluation and prediction of lung
adenocarcinoma and squamous cell carcinoma, which was
conducive to develop a specific and individualized treatment
plan for lung cancer patients in clinical practice.

The present study had some limitations. Firstly, this was a
single-center retrospective study with a limited sample size.
Furthermore, the cost of PET/MRI was too expensive and
PET/MRI examination required the use of multi-sequence MR
radiomics. The examination time was too long, the patient could
not fully cooperate statically, and the rapidly changing gradient
of MRI produced great noise, resulting in the inability to directly
assess tissue density, especially for the lung and bone. Therefore,
an accurate attenuation correction map was obtained, and the
interference caused by different radiomics acquisition
parameters and respiratory motion displacement might reduce
the diagnostic accuracy of the model. In the future, more data on
lung cancer patients’ samples can be obtained, new MRI
examination sequences can be developed, respiratory and
motion artifacts can be improved, more comfortable bed
surfaces and audio and video equipments for PET/MRI
machines can be improved, and examination time can be
shortened without affecting radiomics quality. It is necessary to
select appropriate machine learning algorithms, build multi-
modal and multi-center cooperation, improve the prediction
efficiency, minimize the risk of overfitting, perform more
refined sample data processing, and construct artificial
intelligence classification models with higher complexity that
may have an important role in the accurate classification and
prediction of lung adenocarcinoma and lung squamous cell
carcinoma. At present, the advantages of PET/MRI do not
exceed their disadvantages. Nevertheless, PET/MRI is equivalent
or complementary to PET/CT for lung tumor detection. At the
same time, the radiomics research is still in its infancy, and there is a
lot of possibility for future development.

With the development of artificial intelligence and radiomics,
a multi-modal combination of clinical, radiomics, and
pathological data will be adopted. Therefore, it is believed that
imaging-based PET/MRI prediction for lung cancer classification
will have a promising future in the clinical auxiliary diagnosis of
lung cancer.
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Introduction: As the molecular features of lung adenocarcinoma (LUAD) have been
evaluated as a cross-sectional study, the course of tumor characteristics has not been
modeled. The temporal evolution of the tumor immune microenvironment (TIME), as well
as the clinico-molecular features of LUAD, could provide a precise strategy for
immunotherapy and surrogate biomarkers for the course of LUAD.

Methods: A pseudotime trajectory was constructed in patients with LUAD from the
Cancer Genome Atlas and non-small cell lung cancer radiogenomics datasets.
Correlation analyses were performed between clinical features and pseudotime. Genes
associated with pseudotime were selected, and gene ontology analysis was performed.
F-18 fluorodeoxyglucose positron emission tomography images of subjects were
collected, and imaging parameters, including standardized uptake value (SUV), were
obtained. Correlation analyses were performed between imaging parameters and
pseudotime. Correlation analyses were performed between the enrichment scores of
various immune cell types and pseudotime. In addition, correlation analyses were
performed between the expression of PD-L1, tumor mutation burden, and pseudotime.

Results: Pseudotime trajectories of LUAD corresponded to clinical stages. Molecular
profiles related to cell division and natural killer cell activity were changed along the
pseudotime. The maximal SUV of LUAD tumors showed a positive correlation with
pseudotime. Type 1 helper T (Th1) cells showed a positive correlation, whereas M2
macrophages showed a negative correlation with pseudotime. PD-L1 expression showed
a negative correlation, whereas tumor mutation burden showed a positive correlation
with pseudotime.
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Conclusion: The estimated pseudotime associated with the stage suggested that it
could reflect the clinico-molecular evolution of LUAD. Specific immune cell types in the
TIME as well as cell division and glucose metabolism were dynamically changed
according to the progression of the pseudotime. As a molecular progression of LUAD,
different cellular targets should be considered for immunotherapy.
Keywords: lung adenocarcinoma, stage, glucosemetabolism, tumor immunemicroenvironment, pseudotime analysis
INTRODUCTION

Lung adenocarcinoma (LUAD) is the most frequent histological
type among lung malignancies (1). The diagnosis and treatment of
LUAD are based on initial evaluation of disease progression. TNM
stage has been recognized as the most basic and critical factor to
evaluate the status of disease (2). In addition, the progression of
lung cancer has been assessed by histological features and imaging
findings as well as staging. Among imaging modalities, 18F-
fluorodeoxyglucose positron emission tomography (FDG PET)
is widely used to evaluate the extent of metastasis and
aggressiveness of tumors (3, 4). However, there is a limitation to
investigating the natural progression of tumors based on
conventional diagnostic information, as pathological staging and
imaging examinations are performed at the timing of initial
diagnosis. Therefore, the biological and molecular progression of
LUAD has hardly been modeled on a continuous scale.

The tumor immune microenvironment (TIME) plays a
crucial role in tumor progression and metastasis. Because of
recent broad-range indications for immune checkpoint
inhibitors, tumor immune profiles in addition to staging have
been suggested for predicting prognosis and considering
appropriate treatment plans (5). Among immune cells, natural
killer (NK) cells and T cells are known to have a role in
antitumor immunity (6, 7). In addition, tumor-associated
macrophages (TAMs) exert various functions in lung cancer by
differentiating into different subtypes: M1 and M2 macrophages,
with M1 macrophages mainly contributing to antitumor activity,
and M2 macrophages mainly contributing to protumor activity
(8). In the clinical aspect, characterization of the TIME is
important to explore therapeutic targets and predict the
response to immunotherapy (9, 10). Therefore, it is important
to investigate the evolution of the TIME during disease
progression. More specifically, recent trends in immunotherapy
suggest a strategy according to the characteristics and the
progression pattern of the TIME (11).

Pseudotime analysis, also called trajectory inference analysis,
is a spotlighted method to explore changes in cell or tissue
characteristics based on transcriptomic expression (12). It
provides a numerical scale to reflect where a cell or tissue is in
the course of disease, other than the TNM staging system.
Although there have been several studies to apply pseudotime
analysis in lung cancer samples, the scopes of those studies were
limited to only single-cell RNA-sequencing (RNA-seq) data from
small numbers of patients (13, 14). Pseudotime analysis in large
numbers of subjects may provide a model to explore the course
of biological progression of lung cancer.
2131
In this study, we aimed to reveal the evolution of the TIME
along with the molecular progression of LUAD. Pseudotime
trajectories were estimated in the LUAD cohorts from The
Cancer Genome Atlas (TCGA) and a non-small cell lung
cancer (NSCLC) radiogenomics dataset. Associations between
TIME cell types as well as clinico-molecular features and
pseudotime were analyzed. We expected to find appropriate
targets of the TIME according to the evolution of the TIME
along the pseudotime.
METHODS

Pseudotime Estimation
A pseudotime trajectory was constructed based on the sum of
two publicly available datasets: TCGA-LUAD and TCGA-lung
squamous cell carcinoma (LUSC). The datasets were obtained
using the “TCGAbiolinks” package in R (15). Legacy data of gene
expression quantification were downloaded using the
“GDCdownload” function. There were 600 LUAD samples and
553 LUSC samples. RNA-seq data were prepared as a matrix
format and normalized by log2 transformation. Highly variable
genes were selected using the “DESeq2” package in R (16, 17).
First, variance and coefficients of variation for each gene
expression were calculated in 1153 total samples. Subsequently,
a generalized linear model was fitted to set a reference for
variability of each gene expression using “glmgam.fit” function
in R. The fitted curve was hypothesized as an expected
distribution of estimates of variance and coefficients of
variation. Chi-squared tests were performed to evaluate
deviation from the fitted curve. Finally, genes showing lower
p-value than 0.001 were selected as highly variable genes
(HVGs). A total of 8589 genes were selected among a total of
21,022 genes. A pseudotime trajectory was generated using the
“Phenopath” package in R (18). PhenoPath, an analytic tool for
pseudotime, provides an ordering of gene expression
measurements across individual objects. It employs a Bayesian
statistics and models latent progression of gene expression (18).
Among various pseudotime analysis tools, PhenoPath was the
only method to be utilized in bulk tissue RNA-seq dataset.
Therefore, it was selected in the present study. The input data
were a gene expression matrix of HVGs from TCGA-LUAD and
TCGA-LUSC datasets. We chose the evidence lower bound as
10-6 and computed it thinned by 2 iterations. Ultimately,
pseudotime as a reference value for latent progression of
disease was estimated.
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Applying Pseudotime Into a New Dataset
LUAD samples of the NSCLC radiogenomics dataset were
employed to perform additional correlative analysis with
imaging-derived variables. An RNA-seq dataset (GSE103584)
was downloaded from the Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/) (19). There were 96 LUAD samples
in the NSCLC radiogenomics dataset. To translate pseudotime
estimated by the TCGA dataset to the new dataset, a lasso
regression model was used to estimate pseudotime in LUAD
samples of the NSCLC radiogenomics dataset. There were three
reasons to apply lasso regression model. First, there was a
technical limitation that ‘Phenopath’ tool could not generate a
proper model due to small sample size of the NSCLC
radiogenomics dataset. Second, it was necessary to predict
pseudotime based on genes which were revealed to have
significant association with pseudotime in TCGA dataset.
Third, lasso regression provides better interpretability and
prevents overfitting as it deals some of the estimated
coefficients as zero (20). To develop a model to predict
pseudotime using a lasso regression, two hundred genes were
selected from genes that showed a significant association
between pseudotime: the top 100 genes with highest
correlation coefficients in the positive correlation group and
the top 100 genes with highest correlation coefficients in the
negative correlation group. An expression matrix of those 200
genes was constructed from the TCGA dataset. It was divided
into two groups at a 2:1 ratio: training and internal validation
data. The lambda with the least error was selected via cross-
validation. A lasso regression model was obtained. The alpha was
1. The model was applied to LUAD samples of the NSCLC
radiogenomics dataset to predict a pseudotime trajectory.

Clinical Feature Analysis
Clinical data of the TCGA dataset were downloaded from
cBioPortal (http://www.cbioportal.org/) using the “cgdsr” package
in R. TNM stage, disease-free survival (DFS), overall survival (OS),
and duration of DFS/OS were selected as representative clinical
factors. A heatmap was plotted to visualize the associations
between genes, clinical factors, and pseudotime using the
“Complexheatmap” package in R. The pseudotimes of each
TNM stage group were compared using t-tests or ANOVA.
Survival analyses for DFS and OS were performed using the
Kaplan–Meier method between subjects with early and late
pseudotime. Cutoff values of pseudotime were explored using the
“cutoff” package in R. Clinical data of the NSCLC radiogenomics
dataset were downloaded from The Cancer Imaging Archive
(TCIA, https://www.cancerimagingarchive.net/). The pseudotime
of each TNM stage group was compared using the Wilcoxon rank-
sum test or the Kruskal–Wallis test.

Genetic Feature Analysis
Principal component analysis (PCA) was performed to visualize
the temporal evolution of the genetic characteristics of LUAD
and LUSC using the “PCA” function included in the
“factoextra” package in R. Phenopath analysis provided four
output values: alpha: degree of differential expression, beta:
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degree of covariate-pseudotime interaction, lambda: degree of
pseudotime dependency, z: estimates of pseudotime. A Bayesian
significance test was applied to select genes showing significant
pseudotime dependency (nonzero lambda) and significant
covariate pseudotime dependency (nonzero beta). Gene
ontology (GO) analysis was conducted on genes showing
significant pseudotime dependency to investigate which
functions were upregulated or downregulated along the
pseudotime trajectory using the “enrichGO” function
included in the “clusterProfiler” package in R. A cut-off of p-
value was 0.05 and that of q-value was 0.1 to select significant
GO terms.

Glucose Metabolism Analysis
FDG PET images of LUAD subjects from both the TCGA dataset
and the NSCLC radiogenomics dataset were downloaded from
The Cancer Imaging Archive (TCIA, https : / /www.
cancerimagingarchive.net/). There were 16 and 93 samples
with both RNA-seq data and FDG PET images in LUAD
samples of the TCGA and NSCLC radiogenomics datasets,
respectively. Tumor margins were delineated using the Nestle
adaptive threshold method provided by “LifeX” software (21,
22). An adaptive threshold to define tumor margins was applied,
and the deterministic parameter beta was set to 0.3. The maximal
standardized uptake value (SUV), mean SUV, and metabolic
tumor volume (MTV) were obtained from the region of interest.
Total lesion glycolysis (TLG) was calculated from the mean SUV
and MTV. Correlation coefficients of expression of FDG PET
parameters, solute carrier family 2 member 1 (SLC2A1)
expression, and pseudotime were calculated by Spearman and
Pearson correlation tests in the TCGA and NSCLC
radiogenomics datasets, respectively.

Immune Profile Analysis
In both the TCGA and NSCLC radiogenomics datasets, the
enrichment scores of 64 immune and stromal cell types were
estimated using the “xCellAnalysis” function in the “xCell”
package in R (23). Correlation coefficients between enrichment
scores and pseudotime were calculated by the Pearson
correlation test. The false discovery rate was calculated from p
values with the Bonferroni method. Volcano plots, heatmaps,
and scatter plots were generated to describe the association
between the enrichment scores of immune cells and
pseudotime. The expression of PD-L1 and the tumor mutation
burden (TMB) are well-known indicators of the immune profiles
of tumors (24, 25). In the TCGA dataset, gene mutation data
were downloaded from genomic data commons (https://gdc.
cancer.gov/), and a mutation annotation format file was then
constructed using the “read.maf” function included in the
“maftools” package (26). TMB was calculated by the number
of non-synonymous somatic mutations using the “tmb” function
included in the “maftools” package. Correlation coefficients of
expression of PD-L1 and TMB with pseudotime were calculated
by the Pearson correlation test. All statistical analyses were
performed using R software (v4.0.4, Vienna, Austria). A p
value of < 0.05 was considered statistically significant.
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RESULTS

Clinical Features Related to Pseudotime
Demographic and clinical characteristics of the patients were
described in Table 1. A heatmap was constructed to visualize the
clinical factors of each sample with the top 10 genes upregulated
and those downregulated over pseudotime in TCGA-LUAD
samples (Figure 1). Notably, histone coding genes showed
upregulation along pseudotime. Boxplots represent the
association between TNM stage and pseudotime in LUAD
samples (Figures 2A–D). There was a significant difference in
pseudotime in each T stage (p < 0.001), especially in T1-T2 (mean:
-0.08013 vs. 0.03092, p < 0.001) and T1-T3 (mean: -0.08013 vs.
0.08310, p < 0.001). Pseudotime in different N stages and M stages
showed no difference. There was a significant difference in
pseudotime in each overall TNM stage (p < 0.001), especially in
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I-II (mean: -0.02835 vs. 0.03565, p = 0.021) and I-III (mean:
-0.02835 vs. 0.04780, p = 0.019). Disease-free survival and overall
survival were well discriminated according to pseudotime
(Figure 3, p = 0.002 and p < 0.001, respectively).

Pseudotime was estimated in the NSCLC radiogenomics
dataset based on a lasso regression model from the TCGA
dataset. The association between clinical factors and pseudotime
was evaluated in LUAD samples of the NSCLC radiogenomics
dataset. There was a tendency of increasing T stage along
pseudotime, especially in early T stages (Supplementary
Figure 2A, p = 0.097). There was no association between N/M
stage and pseudotime (Supplementary Figures 2B, C).
Histological grade showed an association with pseudotime
(Supplementary Figure 2D, p = 0.017). There was no significant
association between overall TNM stage and pseudotime
(Supplementary Figure 2E).
TABLE 1 | Demographic and clinical characteristics of the patients.

Characteristics TCGA-LUAD LUAD in the NSCLC radiogenomics dataset
Patients, n (%) Patients, n (%)

Total 600 96
Sex
Female 325 (54.2) 29 (30.2)
Male 275 (45.8) 67 (69.8)

Age, median (range), years 66 (33-88) 68 (43-85)
Smoking history
Current 131 (21.8) 19 (19.8)
Former 364 (60.7) 57 (59.4)
Never 85 (14.2) 20 (20.8)
Unknown 20 (3.3) 0

Location
Right upper lobe 220 (36.7) 31 (32.3)
Right middle lobe 24 (4) 8 (8.3)
Right lower lobe 106 (17.7) 12 (12.5)
Left upper lobe 144 (24) 30 (31.3)
Left lower lobe 88 (14.7) 15 (15.6)
Unknown 18 (3) 0

Pathological T stage
Tis 0 5 (5.2)
T1 195 (32.5) 38 (39.6)
T2 331 (55.2) 38 (39.6)
T3 51 (8.5) 11 (11.5)
T4 20 (3.3) 4 (4.2)
Unknown 3 (0.5) 0

Pathological N stage
N0 381 (63.5) 78 (81.3)
N1 110 (18.3) 7 (7.3)
N2 87 (14.5) 11 (11.5)
N3 2 (0.3) 0
Unknown 20 (3.3) 0

Pathological M stage
M0 407 (67.8) 91 (94.8)
M1 27 (4.5) 5 (5.2)
Unknown 166 (27.7) 0

Pathological stage
0 0 5 (5.2)
I 322 (53.7) 57 (59.4)
II 138 (23) 16 (16.7)
III 97 (16.2) 13 (13.5)
IV 28 (4.7) 5 (5.2)
Unknown 15 (2.5) 0
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Genetic and Functional Features Related
to Pseudotime
We investigated gene expression features and their functional
relevance according to pseudotime. On the dimension reduction
plot using PCA, the LUAD and LUSC samples seemed to be in the
same position at the beginning of pseudotime (Supplementary
Figure 3). As pseudotime passed, the LUAD and LUSC samples
were clearly discriminated in the PCA plot. We investigated genes
regulated over pseudotime in total lung cancer, LUAD, and LUSC
samples (Figure 4A). A total of 603 genes showed significantly
positive correlations with pseudotime in total lung cancer samples,
2594 genes showed negative correlations in total cancer samples,
178 genes showed positive correlations in LUAD samples, 853
genes showed negative correlations in LUAD samples, 479 genes
showed positive correlations in LUSC samples, and 647 genes
showed negative correlations in LUSC samples. GO analysis was
performed to determine which biological pathways were related
(Figures 4B, C). In total lung cancer samples, molecular functions
related to cell division were upregulated over pseudotime. In
LUAD samples, molecular functions related to cell division, such
as nucleosome assembly and DNA packaging, were upregulated
over pseudotime, as in total lung cancer samples. Those related to
NK cell function are downregulated over pseudotime.

Evolution of Glucose Metabolism
Along Pseudotime
As increased glucose metabolism measured by FDG PET is
associated with poor prognosis by reflecting biological
aggressiveness, we tested the association between FDG uptake
and pseudotime (27). In the TCGA-LUAD dataset, there was a
significant positive correlation between maximal SUV and
pseudotime (Supplementary Figure 4, rho = 0.518, p = 0.042).
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There was also a significant positive correlation between mean
SUV and pseudotime (Supplementary Figure 4, rho = 0.517, p =
0.049). However, MTV and TLG showed no association with
pseudotime. In the NSCLC radiogenomics dataset, there was a
significant positive correlation between maximal SUV and
pseudotime (Figure 5A, r = 0.259, p = 0.005). There was also a
significant positive correlation between mean SUV and
pseudotime (Figure 5B, r = 0.227, p = 0.029). However, MTV
and TLG showed no association with pseudotime.

Evolution of Immune Profiles
Along Pseudotime
As GO terms related to pseudotime included downregulation of
immune-related functions according to pseudotime, we further
analyzed tumor immune microenvironment profiles related to
pseudotime. A volcano plot and a heatmap were constructed to
illustrate the immune and stromal cells associated with
pseudotime in the TCGA dataset. (Figures 6A, B). Among cell
types, the enrichment score of type 1 helper T (Th1) cells showed
a positive correlation (Figure 7A, r = 0.524, p < 0.001), and that
of M2 macrophages showed a negative correlation (Figure 7B,
r = -0.545, p < 0.001). PD-L1, the most representative
immunotherapy target in lung cancer, showed a weakly
negative correlation with pseudotime (Figure 7C, r = -0.289,
p < 0.001). TMB showed a weakly positive correlation with
pseudotime (Figure 7D, r = 0.243, p < 0.001). In the NSCLC
radiogenomics dataset, Th1 cells showed a positive correlation
(Supplementary Figure 5A, r = 0.444, p < 0.001), and M2
macrophages showed a negative correlation (Supplementary
Figure 5B, r = -0.367, p = 0.020). PD-L1 showed no significant
correlation with pseudotime (Supplementary Figure 5C, r =
0.041, p = 0.698).
FIGURE 1 | A heatmap visualizing clinical features and gene expression along pseudotime in the TCGA-LUAD dataset. Clinical features, including TNM stage and
the expression of the top 10 genes showing significant positive or negative associations with pseudotime, are displayed. In particular, histone-coding genes showed
significant upregulation over pseudotime.
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DISCUSSION

TNM staging in lung cancer is a well-established system to
evaluate disease progression status, predict prognosis, and
select appropriate treatment options (28, 29). However, it is
the result of cross-sectional observation via clinical/pathologic/
radiologic findings at the timing of initial diagnosis. Therefore,
there is a limitation to investigating the temporal evolution of
tumor biology longitudinally based on TNM staging as a
reference scale. We attempted to construct a temporal model
for biological progression and change of TIME from genetic
Frontiers in Oncology | www.frontiersin.org 6135
profiles of a bulk RNA-seq dataset using pseudotime analysis.
For scRNA-seq dataset, pseudotime analysis orders cells along a
hypothetic trajectory based on patterns of gene expression (30).
It is based on the hypothesis that multiple cross-sectional data is
integrated into sequential data demonstrating temporal
evolution (31). As bulk RNA-seq can be used for the trajectory
analysis with a same manner, Campbell and Yau uncovered
temporal evolution of tumor tissues of colorectal cancer and
breast cancer (18). In this study, continuous scale for temporal
evolution of tumor tissue was generated using previously known
analytic tool, PhenoPath (18). The validity of the generated
A B
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FIGURE 2 | Boxplots visualizing differences in pseudotime according to TNM stage in the TCGA-LUAD dataset. (A) There was a significant difference in pseudotime
in each T stage, especially in T1-T2 (mean: -0.08013 vs. 0.03092, p < 0.001) and T1-T3 (mean: -0.08013 vs. 0.08310, p < 0.001). (B, C) Pseudotime in each N and
M stage showed no difference. (D) There was a significant difference in pseudotime in each overall TNM stage, especially in IA-IB (mean: -0.09326 vs. 0.02969, p <
0.001), IA-IIB (mean: -0.09326 vs. 0.05374, p < 0.001), and IA-IIIA (mean: -0.09326 vs. 0.03749, p < 0.001).
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A B
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FIGURE 4 | Genes and molecular functions upregulated and downregulated over pseudotime. (A) Genes upregulated and downregulated over pseudotime were
selected and plotted. A total of 3197 genes showed significant correlations with pseudotime in total lung cancer. A total of 1031 genes showed significant
correlations in LUAD samples, and 1126 genes showed significant correlations in LUSC samples. (B) In total lung cancer samples, molecular functions related to cell
division were upregulated over pseudotime. (C) In LUAD samples, those related to natural killer cell activity were downregulated over pseudotime, and those related
to cell division were upregulated.
A B

FIGURE 3 | Survival curves according to pseudotime. Survival analyses were performed in two groups divided by cutoff values of pseudotime which were explored using
the “cutoff” package in R. (A) Disease-free survival was significantly different between the two groups. (B) Overall survival was significantly different between the two groups.
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model as a reference of disease progression was examined by
correlation analyses between clinico-molecular features and
pseudotime. Based on the generated model, we investigated the
temporal evolution of the tumor immune microenvironment in
lung adenocarcinoma.
Frontiers in Oncology | www.frontiersin.org 8137
In this study, we successfully estimated a pseudotime
trajectory in TCGA-LUAD and TCGA-LUSC datasets. In
PCA, LUAD and LUSC samples in the early phase are revealed
to have similar genetic characteristics and to differentiate into
LUAD and LUSC along pseudotime order. In the tumorigenesis
A B

FIGURE 5 | Correlation between SUV and pseudotime in LUAD samples of the NSCLC radiogenomics dataset. The size of the dot represents the metabolic tumor
volume. The color of the dot represents total lesion glycolysis as a log scale. (A) The maximal SUV showed a weakly positive correlation with pseudotime (r = 0.259,
p = 0.005). (B) The mean SUV showed a weakly positive correlation with pseudotime (r = 0.227, p = 0.029). However, MTV and TLG showed no association with
pseudotime.
A

B

FIGURE 6 | Immune and stromal cells associated with pseudotime in the TCGA-LUAD dataset. (A) A volcano plot representing immune cells associated with
pseudotime is shown. Cell types with correlation coefficients above 0.5 are plotted as red dots. Cell types with FDR below 0.05 and correlation coefficients below 0.5
are plotted as blue dots. Among them, immune cells were annotated. (B) A heatmap representing immune and stromal cells associated with pseudotime is shown.
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of NSCLC, molecular events such as 3p allele loss and telomerase
activation are observed in most NSCLCs (32–34). The similarity
of genetic characteristics in early LUAD and LUSC may be
caused by common pathogenesis mechanisms. This result
implies that tumors showing specific characteristics of LUAD
or LUSC have a high possibility of progressed disease.

In both total lung cancer and LUAD samples, GO terms
related to cell division were selected as significantly upregulated
terms over pseudotime. In particular, histone-related genes
showed a high correlation with pseudotime in LUAD. These
results can be interpreted as the result of either the presence of a
large number of tumor cells or enhanced mitotic activity of
tumor cells in the late phase. Similarly, T stage and overall TNM
stage demonstrated good association with pseudotime. This is
consistent with the current TNM staging system. Notably, there
were significant associations in the early T stages (T1-T2, T2-T3)
and early overall stages (IA-IB, IA-IIB, IA-IIIA). In the current
TNM staging system, T2-T4 stages include not only size criteria
but also criteria involving other structures, such as bronchi or
chest walls (35). Thus, a small tumor with involvement of other
structures can be diagnosed as a high T stage. If there is lymph
node metastasis, it is highly likely to be classified as above stage
IIIA. These characteristics of the current TNM staging system
Frontiers in Oncology | www.frontiersin.org 9138
cause associations between early T stage/overall stage and
pseudotime. The probability of disease-free survival and overall
survival showed significant differences according to pseudotime.
This indicates that pseudotime may have clinical usability to
classify patients based on prognosis as TNM staging. Of course,
further study is warranted to explore the clinical significance of
pseudotime trajectories.

In both datasets, the maximal SUV and mean SUV
demonstrated significantly positive correlations with pseudotime.
These findings are consistent with a previously revealed
relationship between FDG uptake and tumor stage (3, 4, 36).
Furthermore, the tendency of increasing FDG uptake along
pseudotime is closely related to the molecular function of cell
division, showing the same tendency along pseudotime.
Proliferative activity is known to be a significant factor affecting
FDG uptake in tumors in lung cancer (37, 38). In brief, changes in
genetic features, clinical features, and glucose metabolism over
pseudotime were revealed to be consistent with previous
knowledge about tumor progression. Therefore, the estimated
pseudotime was hypothesized to be an appropriate temporal
reference of disease progression.

The present study demonstrated the temporal evolution of
immune profiles in LUAD. It is noteworthy that the enrichment
A B
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FIGURE 7 | Evolution of the tumor immune microenvironment over pseudotime in the TCGA-LUAD dataset. (A) Th1 cells showed a positive correlation with
pseudotime (r = 0.524, p < 0.001). (B) M2 macrophages showed a negative correlation with pseudotime (r = -0.545, p < 0.001). (C) PD-L1 expression showed a
weakly negative correlation with pseudotime (r = -0.289, p < 0.001). (D) TMB showed a weakly positive correlation with pseudotime (r = 0.243, p < 0.001).
March 2022 | Volume 12 | Article 828505

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lee and Choi Evolution of Lung Adenocarcinoma
score of Th1 cells represented a significantly positive correlation
with pseudotime. It is generally believed that Th1 cells contribute
to the antitumor response, inducing cytotoxicity (7, 39). It is also
remarkable that M2 macrophages showed a significantly negative
correlation with pseudotime. M2 macrophages exert protumor
activity via tissue remodeling and angiogenesis (40, 41). Briefly,
antitumor immunity seems to strengthen along pseudotime,
whereas protumor immunity seems to weaken along
pseudotime. These results indicate two possible mechanisms.
First, protumor immunity via M2 macrophages prepares an
appropriate environment for the survival and proliferation of
tumor cells in the early phase of lung cancer. Second, antitumor
immunity via Th1 cells is induced by a high tumor burden to
attempt to control and suppress disease in the late phase of lung
cancer. These results are also consistent with a previous report
documenting that the proportion of high stage was larger in
samples with high immune scores and cytolytic scores (42). The
present study showed heterogeneous evolution of specific
immune cells over pseudotime. This implies that selecting
immunotherapy options for appropriate targets may be
considered during the disease progression of LUAD.
Pharmaceuticals such as resveratrol and imatinib were found
to suppress cancer progression via inhibition of M2 macrophage
activation (43, 44). The application of those drugs may be
utilized in patients with early pseudotime.

Interestingly, PD-L1 expression showed a negative correlation
with pseudotime, whereas TMB showed a positive correlation in
the TCGA dataset. These are well-known biomarkers predicting
the response to cancer immunotherapy (25, 45). This implies
that the response to immunotherapy, such as pembrolizumab,
may not represent any tendency according to the molecular
progression of lung adenocarcinoma. Referring to this
heterogeneous finding of opposite tendencies of PD-L1 and
TMB, it is necessary to establish a more precise immunotherapy
strategy. Considering that both the enrichment of Th1 cells
and TMB showed positive correlations with pseudotime, it is
supposed that immunogenic antigens are enriched in progressed
LUAD. LUAD with a relatively early pseudotime associated with
high PD-L1 suggested early anti-PD-1/PD-L1 treatment before
tumor evolution (46). As LUAD with late pseudotime showed
high TMB and low PD-L1 expression, immune checkpoint
inhibitors targeting molecules other than PD-L1 can be
proposed as an appropriate immunotherapy option for tumors
in progressed LUAD. Our model of the temporal evolution of the
TIME and biomarkers related to immunotherapy suggested that a
more precise strategy of immunotherapy could be needed
according to the biological progression of lung cancer. In this
respect, further study can be planned for selecting appropriate
immunotherapy regimens and evaluating treatment response
using pseudotime concept. Based on estimated pseudotime from
transcriptomics, patients can be classified into those with early
and late phase of disease. Application of different immunotherapy
regimen and evaluation prognosis can be performed in each
group. The further study is expected to expand usefulness and
clinical significance of pseudotime in LUAD patients.

This study has clinical implication and benefits as followings.
We attempted to generate simple and continuous scale of disease
Frontiers in Oncology | www.frontiersin.org 10139
progression in LUAD. The genomic landscape of LUAD has been
investigated in many previous studies and varying genetic
characteristics were known to associate with prognosis of LUAD.
It is needed to suggest more simplified and available value
integrating diverse genetic information. In recent clinical filed,
there are a fewapproaches toprovide genetic profile information to
LUADpatientswithmicroarray orRNAsequencing.However, it is
too complicated and difficult to deliver its clinical implication to
patients. It is expected that simplified scale of disease progression is
helpful to communicate with patients for discussing disease
progression status, further treatment plan, and prognosis. Of
course, further study is needed to construct a reference model
from a larger cohort to validate and utilize pseudotime.

There are some limitations in this study. First, FDG PET
examination of subjects was performed in different institutes so
that there were differences in image acquisition and reconstruction
methods. However, the purpose of analyzing the association
between SUV and pseudotime was not to predict accurate SUV
or pseudotime but to assess the overall tendency of SUV along
pseudotime. Furthermore, the image acquisition protocol of each
sample was not identified in the obtained clinical data. Therefore,
all the data were included in a single correlation study. Further
study is warranted to analyze the evolution of glucose metabolism
over pseudotimemore accurately using FDG PET image data from
the same institute. Second, pseudotime trajectory from RNA-seq
has a limitation to apply to the clinical field due to the complexity
of obtaining tumor tissue and analyzing transcriptomic data from
each patient. To facilitate the application of pseudotime in clinical
situations, further study is underway to construct pseudotime
trajectories from FDG PET images. Third, estimation of immune
cell infiltration using deconvolutional method for transcriptomic
data has a limitation to exactly estimate immune cell fraction of
tumor tissue. In contrast, it has an advantage that quantification
for large-scale dataset is available. Further study is warranted to
validate actual TIME of tumor tissue with experimental methods
such as immunofluorescence.

Taken together, pseudotime trajectories were successfully
estimated in lung adenocarcinoma subjects from the TCGA
dataset and the NSCLC radiogenomics dataset. These results
show fair correlations with TNM stage, clinical outcome, and
glucose metabolism, suggesting the feasibility of a new scale
evaluating disease progression status. There were heterogeneous
findings in the evolution of tumor immune microenvironment
components over pseudotime. The present study suggested that
individualized immunotherapy strategies should be selected
according to different molecular characteristics evolving during
disease progression.
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(GSE103584) are available in Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/).
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Development of a Nomogram Based
on 3D CT Radiomics Signature to
Predict the Mutation Status of
EGFR Molecular Subtypes in
Lung Adenocarcinoma:
A Multicenter Study
Guojin Zhang1,2*†, Liangna Deng3†, Jing Zhang4†, Yuntai Cao5†, Shenglin Li3,
Jialiang Ren6, Rong Qian1,2, Shengkun Peng1,2, Xiaodi Zhang7, Junlin Zhou3,
Zhuoli Zhang8, Weifang Kong1,2* and Hong Pu1,2*

1 Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China,
Chengdu, China, 2 Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research
Hospital, Chengdu, China, 3 Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China, 4 Department of
Radiology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China, 5 Department of Radiology, Affiliated Hospital of
Qinghai University, Xining, China, 6 Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, China, 7 Clinical
Science Department, Philips (China) Investment Co., Ltd., Chengdu, China, 8 Department of Radiology and BME, University
of California Irvine, Irvine, CA, United States

Background: This study aimed to noninvasively predict the mutation status of epidermal
growth factor receptor (EGFR) molecular subtype in lung adenocarcinoma based on CT
radiomics features.

Methods: In total, 728 patients with lung adenocarcinoma were included, and divided
into three groups according to EGFR mutation subtypes. 1727 radiomics features were
extracted from the three-dimensional images of each patient. Wilcoxon test, least
absolute shrinkage and selection operator regression, and multiple logistic regression
were used for feature selection. ROC curve was used to evaluate the predictive
performance of the model. Nomogram was constructed by combining radiomics
features and clinical risk factors. Calibration curve was used to evaluate the goodness
of fit of the model. Decision curve analysis was used to evaluate the clinical applicability of
the model.

Results: There were three, two, and one clinical factor and fourteen, thirteen, and four
radiomics features, respectively, which were significantly related to each EGFR molecular
subtype. Compared with the clinical and radiomics models, the combined model had the
highest predictive performance in predicting EGFR molecular subtypes [Del-19
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mutation vs.wild-type, AUC=0.838 (95% CI, 0.799-0.877); L858R mutation vs.wild-type,
AUC=0.855 (95% CI, 0.817-0.894); and Del-19 mutation vs. L858R mutation,
AUC=0.906 (95% CI, 0.869-0.943), respectively], and it has a stable performance in
the validation set [AUC was 0.813 (95% CI, 0.740-0.886), 0.852 (95% CI, 0.790-0.913),
and 0.875 (95% CI, 0.781-0.929), respectively].

Conclusion: Our combined model showed good performance in predicting EGFR
molecular subtypes in patients with lung adenocarcinoma. This model can be applied
to patients with lung adenocarcinoma.
Keywords: NSCLC, lung adenocarcinoma, EGFR, computed tomography, radiomics
INTRODUCTION

Targeted therapy has brought based on recognizing the
importance of acquired gene driver mutations, such as
epidermal growth factor receptor (EGFR) mutations, kristen
rat sarcoma (KRAS) mutations and anaplastic lymphoma
kinase (ALK) rearrangements, in non-small cell lung cancer
(NSCLC) new hope to patients with these gene mutations. In
the Asian population, about 50% of lung adenocarcinoma
patients have known carcinogenic driver genes (1, 2). There
are currently targeted drugs used in clinical practice for these
mutations, such as gefitinib and osimertinib for EGFR
mutations. In contrast, patients without these mutations are
not candidates for targeted therapy (3). Furthermore, there are
molecular differences between each molecular mutation and
molecular subtype, and these differences lead to different
therapeutic effects after using other targeted drugs (4). EGFR
mutations mainly include exon 18-21 mutations. Among them,
exon 19 deletion (Del-19) mutation and 21 L858R point (L858R)
mutation are the two most common activating mutations, and
they are also the two most sensitive mutation sites for tyrosine
kinase inhibitors (TKI) treatment (5). In a single targeted
therapy, patients with Del-19 mutation benefited more from
osimertinib (6), while patients with L858R mutation benefited
significantly from dacomitinib (7); in addition, combination
therapy and immunotherapy brought patients with L858R for
more potential benefits (8, 9). Therefore, the detection of specific
EGFR mutation subtypes can make targeted therapies more
precise and allow patients receiving these treatments to benefit
the most.

Currently, the detection of EGFR mutation status from
histological specimens is the most common detection method.
However, in clinical practice, these detection techniques also
have some limitations. For example, tissue samples are obtained
through invasive methods such as biopsy or surgery; sometimes
the amount of tissue samples obtained due to operational errors
is insufficient; biopsy can increase the risk of tumor metastasis; in
addition, a small part of the tissue obtained does not represent
the heterogeneity of the entire tumor, etc. (10–12). In addition,
another noninvasive detection strategy for EGFR mutations is
‘liquid biopsy’, which is a biological detection method on the
blood. For patients with advanced NSCLC, ‘liquid biopsy’ is a
promising method to isolate circulating tumor DNA from blood
2143
samples (13). However, ‘liquid biopsy’ has a high risk of false-
negative results (30%) (14). Therefore, until this defect is
effectively resolved, ‘liquid biopsy’ is far from substitute for
histological testing. Because of this, there is an urgent need for
a simple and noninvasive method to detect EGFR mutation
subtypes before targeted drug therapy.

The radiological features have been shown to reflect EGFR
mutation status in lung adenocarcinoma (12, 15–17). However,
the clinical applicability of these studies needs to be confirmed by
further research. Compared with traditional CT, radiomics
converts medical images into mineable data and extracts a
large number of features that cannot be observed by the
human naked eye system, thereby reflect ing more
characteristics of tumors (18). To our knowledge, some studies
have used radiomics to predict EGFR mutation status (19–22).
Although the prediction performance of these studies is different,
this shows that it is feasible to predict EGFR mutations
noninvasively through radiomics. However, only a few studies
have used radiomics methods to predict the mutation status of
EGFR molecular subtypes (23–26). Unfortunately, the sample
size included in these studies is limited, and the accuracy of the
obtained prediction model was only 65.5-79.0%. In this study, we
retrospectively collected a relatively large data set and
constructed a model based on CT radiomics signature to
noninvasively predict the mutation status of EGFR molecular
subtype in lung adenocarcinoma.
MATERIALS AND METHODS

Patient Population
This retrospective study was ethically approved by the
Institutional Review Board of the Sichuan Provincial People’s
Hospital and Lanzhou University Second Hospital, and the need
for patient informed consent was waived. Clinical data and chest
CT images of these patients were obtained from the picture
archiving and communication system (PACS). The inclusion
criteria were as follows: (1) patients with the histologic type of
lung adenocarcinoma; (2) patients with complete CT thin-slice
images (1.25 mm) and clinical data; (3) patients who did not
receive lung cancer-related treatment before CT scan; (4)
patients who underwent biopsy or surgery within one month
April 2022 | Volume 12 | Article 889293
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after CT scan; (5) patients with EGFR exon Del-19 mutation,
exon L858R mutation, and wild-type. The exclusion criteria were
as follows: (1) patients whose tumor boundary is difficult to be
recognized by the naked eye on CT images; (2) patients younger
than 18 years old.

According to the above inclusion and exclusion criteria, 728
patients (median age, 57.0 years, age range, 21-82 years, 370
males and 358 females) were finally selected from 2,557 patients
in the two hospitals. Among them, a total of 540 patients from
Sichuan Provincial People’s Hospital were used as the training
set from January 2018 to March 2021, and 188 patients from
Lanzhou University Second Hospital were identified as the
external validation set from January 2019 to September 2020.
The patient recruitment flowchart is shown in Figure 1.

Demographic and clinical data include the patient’s sex, age,
smoking history [including non-smoking (never smoked) and
smoking (former or current smoking)], carcinoembryonic
antigen (CEA) level, and tumor lobe location of the tumor
(including right upper, right middle, right lower, left upper and
left lower lobes). If the tumor crosses the fissure, the lobe location
is defined as the lobe in which the tumor predominates.

EGFR Mutation Status Detection
The polymerase chain reaction-amplified refractory mutation
system (PCR-ARMS) detected EGFR mutation status. The
human EGFR gene detection kit (Beijing SinoMD Gene
Detection Technology Co., Ltd., China; Amoy Diagnostics,
Xiamen, China) detected EGFR exon 18 to 21 mutation status.

CT Image Acquisition
CT scans ranged from the thoracic inlet to the level of the lower
edge of the 12th rib were completed by three spiral CT scanners
(Discovery CT750 HD, GE Healthcare; Philips iCT 256,
Koninklijke Philips N.V.; Somatom Sensation 64, Siemens
Frontiers in Oncology | www.frontiersin.org 3144
Healthineers). Scanning parameters were as follows: (1) tube
voltage 120 kVp, tube current adjusted automatically for the
Sensation 64 scanner, and (2) tube voltage 120 kVp, tube current
150 to 200 mA for the other two scanners. For all scanners, 0.5-
1.0 second tube rotation time, and field of view (FOV): 350 mm;
matrix, 512 × 512; the layer thickness and spacing were both
5 mm; the reconstruction layer thickness and spacing were both
1.25 mm. All images were exported in DICOM format to
facilitate feature extraction.

Tumor Segmentation and Radiomics
Feature Extraction
Radiomics feature extraction and analysis workflow are shown in
Figure 2. To ensure the accuracy and consistency of the data, two
readers (radiologists with 6 and 4 years of experience in chest CT
diagnosis, respectively) independently used the open-source
software ITK-SNAP 3.8.0 (http://www.itksnap.org) to segment
the tumor on the thin-slice CT lung window (window width:
1500HU; window level: -500HU). Training cases were segmented
by reader 1 (G.J.Z), and validation caseswere segmented by reader 2
(L.N.D). Both readers were blinded to all patients’ clinical data,
pathological records, and EGFR status results. When the two
readers were unsure, a consultant radiologist (J.Z) confirmed the
segmentation with 17 years of experience. The region of interest
(ROI) was manually segmented on CT axial images with tumor
tissue and confirmed on sagittal and coronal images.

In order to evaluate the robustness and repeatability of the
radiomics feature extraction process, one month later, 40
patients were randomly selected from the training set and
segmented again by readers 1 and 2 to construct a re-
segmentation set, and 40 patients were randomly selected from
each CT scanner to construct different CT scanner sets for
calculating the intra-/interclass correlation coefficients (ICC),
respectively. ICC values > 0.8 reflected good consistency (26).
FIGURE 1 | The flowchart of the inclusion and exclusion criteria.
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The open-source Python software package PyRadiomics 3.0.1
automatically extracted radiomics features from the three-
dimensional (3D) tumor volume after segmentation. Radiomics
features were divided into three main categories: 16 shape
features, 324 first-order features and 1387 texture features.
Details of radiomics features were included in the
Supplementary Material (Methods). According to the
recommendations of International Symposium on Biomedical
Imaging (ISBI), we only resampled the image and set the bin
width of gray discretization to 25. We performed z-score
preprocessing on the extracted radiomics features.

Radiomics Feature Selection
To avoid model overfitting and improve accuracy, we used three
steps for feature selection to obtain the optimal feature subset.
First, Wilcoxon test was used to retain the features with P-value
less than 0.05. Secondly, the least absolute shrinkage and
Frontiers in Oncology | www.frontiersin.org 4145
selection operator (LASSO) regression with 10-fold cross-
validation was used to eliminate the collinearity features.
LASSO is a recognized algorithm that has been used for
feature selection of higher-dimensional variables (27). Finally,
multiple logistic regression was used to select the features, and
the minimum features of akaike information criterion (AIC)
were retained.

For clinical factors, the Chi-square and Student’s t-tests were
first used in the training set to screen for clinical characteristics
that were correlated between each group. P-value was set to 0.05.
Clinical factors with a P-value greater than 0.05 were excluded.
Next, use logistic regression to further analyze the most
relevant variables.

Radiomics Model Establishment
Logistic regression was used in the training set to build a model
for predicting Del-19 or L858R mutations, and its performance
FIGURE 2 | Flowchart of the process of radiomics. (A) The tumours were segmented on CT images to form the region of interest (ROI). (B) Radiomics feature
extraction from the ROI. (C) Radiomics feature dimensionality reduction process. (D) Construct a radiomics model.
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was evaluated in the external validation set. Logistic regression is
a classic method in radiomics research. It is easy to understand,
explain, and combine discrete and continuous variables (28, 29).
To identify Del 19 and L858R mutations, we used logistic
regression, support vector machine (SVM), and random forest
(RF) to construct prediction models. The clinical and radiomics
models were constructed based on clinical factors and radiomics
features, respectively, while the combined model was constructed
based on clinical and radiomics models. Additionally, clinical
models were constructed using logistic regression.

Statistical analysis
All statistical analyses were performed using R 3.6.0 (http://www.
R-project.org). Two-sided P-values less than 0.05 were
considered to be statistically different. Kolmogorov-Smirnov
test was used to evaluate the normal distribution of the data.
Categorical variables were expressed as percentiles, and the Chi-
square test or Fisher’s exact test was used to analyze groups.
Continuous variables were expressed as mean ± standard
deviation (SD), and Student’s t-test or Mann-Whitney U test
was used for analysis between groups. Receiver operating
characteristic (ROC) curve was used to evaluate the
performance of the model, and the area under the curve
(AUC), sensitivity, specificity, accuracy, positive predictive
value (PPV), and negative predictive value (NPV) were
calculated. Delong test was used to compare the performance
differences of the prediction models.

Based on the above-screened clinical factors and radiomics
features, we constructed a personalized nomogram to predict the
mutation status of the EGFR molecular subtype. Calibration
curve and Hosmer-Lemeshow (H-L) test were used to evaluate
the model’s goodness of fit. Decision curve analysis (DCA) was
used to assess the clinical applicability of the model.
RESULTS

Clinical Characteristics of Patients
There were no significant differences in clinical factors (including
sex, smoking history, and CEA), the mutation rate of Del-19 or
L858R, and tumor location in each EGFR mutant subtype group
(all P > 0.05), while there were significant differences in age
between the two EGFR mutant subtype groups (Del-19 vs. wild
type, Del-19 vs. L858R) (Supplementary Tables S1–S3).

Univariate analysis revealed that age, sex and smoking history
were significantly different between the Del-19 mutation and
wild-type groups (P < 0.05), sex and smoking history were
significantly different between the L858R mutation and wild-
type groups (P < 0.05), and age was significantly different
between the Del-19 mutation and L858R mutation groups (P <
0.05). Multivariate analysis revealed that age (OR, 0.972; 95% CI,
0.948-0.996; P = 0.021) and sex (OR, 3.193; 95% CI, 1.836-5.565;
P < 0.001) were correlated independently with the task of
Del-19 vs. wild-type (Table 1), sex (OR, 2.612; 95% CI, 1.548-
4.457; P < 0.001) and smoking history (OR, 0.427; 95% CI, 0.238-
0.761; P = 0.001) were correlated independently with the task of
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L858R vs. wild-type (Table 2), and age (OR, 1.050; 95% CI,
1.022-1.081; P < 0.001) was correlated independently with the
task of Del-19 vs. L858R (Table 3). Based on multivariate
analysis results, clinical factors with P < 0.05 in each task were
incorporated in the clinical model.

Radiomics Feature Selection and
Model Establishment
In total, 1727 radiomics features were extracted from the 3D images
of each ROI. The ICC values of the radiomics features extracted
from two readers and different CT scanners were all greater than
0.80, reflecting good consistency. Fourteen radiomics features were
highly correlated with Del-19 mutation (Table S4; Figure S1),
thirteen radiomics features were highly correlated with L858R
mutation (Table S4; Figure S2). For Del-19 mutation vs. L858R
mutation, only four radiomics features were screened after using the
Wilcoxon test (Table S4; Figure S3). Therefore, we retained these
four features to construct the prediction model.

Correlation analysis showed that the correlation between each
feature is weak and independent in the training and validation sets
(Figures S4–S6).

Based on the above-screened radiomics features and clinical
factors, the clinical, radiomics, and combined models were
established in the training set, respectively, to predict the EGFR
molecular subtype mutation status.

Predictive performance and Validation
Based on Clinical, Radiomics, and
Combined Models
The predictive performance of different models in the training and
validation sets is shown in Figure 3 and Table 4. The predictive
performance of the combined model was higher than that of other
single models. In the training set, the AUC of the combined model
was 0.838 (95% CI, 0.799-0.877), 0.855 (95% CI, 0.817-0.894), and
0.906 (95% CI, 0.869-0.943), respectively. In addition, we used an
external validation set to verify the accuracy of the combinedmodel,
and the AUC was 0.813 (95% CI, 0.740-0.886), 0.852 (95% CI,
0.790-0.913), and 0.875 (95% CI, 0.781-0.929), respectively. In
addition, when distinguishing between Del-19 and L858R
mutations, the prediction model’s performance constructed using
random forest was higher than that of other single models. The
AUC of the training and validation sets were 0.881 (95% CI, 0.840-
0.921) and 0.871 (95% CI, 0.802-0.941), respectively.

Delong test showed that there were significant differences in
AUC values of the three models in the training set between EGFR
Del-19 mutation or L858R mutation and wild-type groups (all P <
0.05); However, only the AUC value of combinedmodel and clinical
model was significantly different in the validation set (P < 0.05), and
the AUC values between other models were not statistically
significant (P > 0.05) (Figures S7A–D). There were significant
differences in AUC values of the combinedmodel and clinical, SVM
or Logistic models in the training and validation sets between EGFR
Del-19 mutation and L858R mutation groups (all P < 0.05).
However, the AUC value between combined model and RF
model was not statistically significant in the both sets (P > 0.05)
(Figures S7E, F).
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Clinical Application of the
Combined Model

Based on radiomics score and clinical risk factors, we constructed
two user-friendly nomograms to predict the mutation status of
EGFR molecular subtypes (Figures 4A and 5A). The detailed
Frontiers in Oncology | www.frontiersin.org 6147
formula for calculating the radiomics score is shown in the
Supplementary Material (Result). The calibration curve analysis
showed that the probability of Del-19 mutation or L858R
mutation predicted by the combined model was highly
consistent with the actual possibility, indicating that the model
had the best discriminant ability (Figures 4B, C, and 5B, C).
TABLE 1 | The relationship between clinical variables of patients and EGFR molecular subtypes (Del-19 mutation vs. Wild-type) in the training set.

Variable Total (n = 395) Del-19 mutation (n =154) Wild-type (n = 241) `Univariate analysis Multivariate analysis

P value OR (95%CI) P
value

Age (years) <0.001 0.972
(0.948-0.996)

0.021

- Mean ± SD 56.70 ± 9.19 54.87 ± 8.13 58.87 ± 9.65
- Median (Q1, Q3) 56.0 (50.0,63.0) 55.0(49.0,61.0) 58.0(51.0,65.0)
- Range 26-79 32-78 26-79

Sex (%) <0.001 <0.001
- Male 221 (55.9%) 51 (33.1%) 170 (70.5%) Reference
- Female 174 (44.1%) 103 (66.9%) 71 (29.5%) 3.193

(1.836-5.656)
Smoking history (%) <0.001 NA
- No 240 (60.8%) 122 (79.2%) 118 (49.0%)
- Yes 155 (39.2%) 32 (20.8%) 123 (51.0%)

CEA (%) 0.391 NA
- Normal 167 (42.3%) 61 (39.6%) 106 (44.0%)
- High 228 (57.7%) 93 (60.4%) 135 (56.0%)

Lobe location (%) 0.959 NA
- Right upper lobe 135 (34.2%) 54 (35.1%) 81 (33.6%)
- Right middle lobe 17 (4.3%) 6 (3.9%) 11 (4.6%)
- Right lower lobe 97 (24.6%) 35 (22.7%) 62 (25.7%)
- Left upper lobe 81 (20.5%) 33 (21.4%) 48 (19.9%)
- Left lower lobe 65 (16.5%) 26 (16.9%) 39 (16.2%)
April 2022
 |
 Volume 12 | Article
CEA, Carcinoembryonic antigen; CI, Confidence interval; Del 19, Exon-19 deletion mutation; EGFR, Epidermal growth factor receptor; NA, not applicable; OR, Odds ratio; SD, Standard
deviation. vs., versus.
TABLE 2 | The relationship between clinical variables of patients and EGFR molecular subtypes (L858R mutation vs. Wild-type) in the training set.

Variable Total (n = 386) L858R mutation (n = 145) Wild-type (n = 241) Univariate analysis Multivariate analysis

P value OR (95%CI) P value

Age (years) 0.686 NA
- Mean ± SD 58.12 ± 9.46 58.50 ± 9.15 58.87 ± 9.65
- Median (Q1, Q3) 58.0 (52.0,65.0) 58.0(53.0,64.0) 58.0(51.0,65.0)
- Range 21-82 21-82 26-79

Sex (%) <0.001 <0.001
- Male 223 (57.8%) 53 (36.6%) 170 (70.5%) Reference
- Female 174 (44.2%) 92 (63.4%) 71 (29.5%) 2.612

(1.548-4.457)
Smoking history (%) <0.001 0.004
- No 234 (60.6%) 116 (80.0%) 118 (49.0%) Reference
- Yes 152 (39.4%) 29 (20.0%) 123 (51.0%) 0.427

(0.238-0.761)
CEA (%) 0.301 NA
- Normal 162 (42.0%) 56 (38.6%) 106 (44.0%)
- High 224 (58.0%) 89 (61.4%) 135 (56.0%)

Lobe location (%) 0.262 NA
- Right upper lobe 124 (32.1%) 43 (29.7%) 81 (33.6%)
- Right middle lobe 24 (6.2%) 13 (9.0%) 11 (4.6%)
- Right lower lobe 99 (25.6%) 37 (25.5%) 62 (25.7%)
- Left upper lobe 83 (21.5%) 35 (24.1%) 48 (19.9%)
- Left lower lobe 56 (14.5%) 17 (11.7%) 39 (16.2%)
CEA, Carcinoembryonic antigen; CI, Confidence interval; EGFR, Epidermal growth factor receptor; L858R, Exon-21 L858R point mutation; NA, not applicable; OR, Odds ratio; SD,
Standard deviation. vs., versus.
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Decision curve analysis showed that the combined model
threshold in range of 0.18-0.77 have higher net benefit for Del-
19 vs. wild type and the cutoff value was 0.440 fall in this rang; the
combined model threshold in range of 0.16-0.715 have higher
net benefit for L858R vs. wild type and the cutoff value was 0.389
fall in this range (Figures 4D, E and 5D, E).

The precision-recall curves showed that the combined model
constructed by the RF model combined with clinical factors had
better performance than other single models in predicting Del-19
and L858R mutations (Figures 6A, B).
DISCUSSION

Preoperative noninvasive prediction of EGFR mutant subtypes is
a new field that attracts researchers’ attention. It can well
overcome some shortcomings of molecular mutation detection
based on histology and provide critical information for the
rational formulation of targeted therapy in clinical practice.
This study established different models based on clinical
factors and radiomics features to predict EGFR mutation
subtypes. Among them, the combined model showed good
predictive performance in the training set. It also had good
stability when evaluating the model’s performance in the external
validation set, which reveals the feasibility of predicting EGFR
molecular subtypes through radiomics features.

Previous studies have found that some clinical variables such
as female, non-smokers, patients with histological type of lung
adenocarcinoma, and East Asian populations are significantly
associated with EGFR mutations (16, 17, 20, 30, 31). Our
previous research has also confirmed this (12, 15). However,
these studies did not further analyze the correlation between
EGFR mutation subtypes and clinical variables. In our study, sex,
Frontiers in Oncology | www.frontiersin.org 7148
smoking history, and age were significantly different in the EGFR
mutation subtypes group. Compared with EGFR wild-type
patients, Del-19 mutation patients were more common in
females and non-smokers, and L858R mutation patients were
more common in females and non-smokers. Compared with
patients with Del-19 mutation, patients with L858R mutation
were relatively older. Only patients with Del-19 mutation and
L858R mutation were selected because they are the most
common mutations in EGFR mutation subtypes. The two
mutation sites most related to the sensitivity of EGFR
TKI treatment.

Some previous studies have predicted the mutation status of
EGFR molecular subtypes based on CT radiomics features and
achieved promising results. For example, Li and colleagues (26)
retrospectively collected 312 patients with NSCLC, and 580
radiomics features were extracted from each patient’s CT
images to construct a model to predict EGFR mutation
subtypes (Del 19 and L858R). The test set’s AUC for
predicting Del 19 and L858R mutations were 79.3% and 77.5%,
respectively. Similarly, Zhao et al. (25) included 637 patients with
lung adenocarcinoma in their study to predict EGFR mutation
subtypes, and extracted 475 radiomics features to construct a
model. The results showed that the AUC in the training and
validation datasets were 68.9% and 75.7%, respectively. However,
these studies did not distinguish between the Del-19 mutation
and the L858R mutation, limiting the clinical applicability of
these studies. In this study, we not only distinguished between
EGFR Del-19 mutation or L858R mutation and EGFR wild-type.
More importantly, we further distinguished the Del-19 mutation
and the L858R mutation, and achieved good prediction
performance. The training and validation sets’ AUC was 90.6%
and 87.5%, respectively. Therefore, our research may be more in
line with actual clinical needs.
TABLE 3 | The relationship between clinical variables of patients and EGFR molecular subtypes (Del-19 mutation vs. L858R mutation) in the training set.

Variable Total (n = 299) Del-19 mutation (n = 154) L858R mutation (n = 145) Univariate analysis Multivariate analysis

P value OR (95%CI) P value

Age (years) <0.001 1.050
(1.022-1.081)

<0.001

- Mean ± SD 56.63 ± 8.81 54.87 ± 8.13 58.50 ± 9.15
- Median (Q1, Q3) 56.0 (50.5,62.5) 55.0(49.0,61.0) 58.0(53.0,64.0)
- Range 21-82 32-78 21-82

Sex (%) 0.533 NA
- Male 104 (34.8%) 51 (33.1%) 53 (36.6%)
- Female 195 (65.2%) 103 (66.9%) 92 (63.4%)

Smoking history (%) 0.867 NA
- No 238 (79.6%) 122 (79.2%) 116 (80.0%)
- Yes 61 (20.4%) 32 (20.8%) 29 (20.0%)

CEA (%) 0.861 NA
- Normal 117 (39.1%) 61 (39.6%) 56 (38.6%)
- High 182 (60.9%) 93 (60.4%) 89 (61.4%)

Lobe location (%) 0.235 NA
- Right upper lobe 97 (32.4%) 54 (35.1%) 43 (29.7%)
- Right middle lobe 19 (6.4%) 6 (3.9%) 13 (9.0%)
- Right lower lobe 72 (24.1%) 35 (22.7%) 37 (25.5%)
- Left upper lobe 68 (22.7%) 33 (21.4%) 35 (24.1%)
- Left lower lobe 43 (14.4%) 26 (16.9%) 17 (11.7%)
April 2022 | V
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CEA, Carcinoembryonic antigen; CI, Confidence interval; Del 19, Exon-19 deletion; EGFR, Epidermal growth factor receptor; L858R, Exon-21 L858R point mutation; NA, not applicable;
OR, Odds ratio; SD, Standard deviation. vs., versus.
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In this study, whether in the training or validation sets, the
combined model established by clinical factors combined with
radiomics features can improve the diagnostic performance of
identifying EGFRmolecular subtypes. Liu et al. (24) included 263
patients with lung adenocarcinoma in their study to detect EGFR
mutation status and its molecular subtypes. Among the 6 models
established, the combined model had better distinguishing ability
than the model that only uses radiomics features or clinical
factors. Tu et al. (20) included 404 NSCLC patients in their study
to predict EGFR mutation status, and the comprehensive model
showed higher predictive performance than any other single
Frontiers in Oncology | www.frontiersin.org 8149
model. Jia et al. (32) also showed that a comprehensive model
with radiomics features combined with clinical factors had better
diagnostic performance than a single model. It shows that adding
clinical factors to the radiomics model can improve the
diagnostic performance of the model.

In recent years, the study of radiomics in predicting tumor gene
mutations has attracted extensive attention from researchers (20,
22, 32, 33). The intrinsic relationship between the radiomics
features and EGFR mutation status in patients with lung
adenocarcinoma can be further explored through data mining to
guide clinical decision-making, predict prognosis and evaluate
BA

C D

E F

FIGURE 3 | Receiver operating characteristic (ROC) curves of the three models were used to predict the mutant status of EGFR molecular subtypes. (A, B) Del-19
mutation vs. wild-type. (C, D) L858R mutation vs. wild-type. (E, F) Del-19 mutation vs. L858R mutation. (A, C, E) Training set. (B, D, F) Validation set.
April 2022 | Volume 12 | Article 889293
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efficacy (19, 22, 32). This study investigated the relationship
between radiomics features and EGFR molecular subtypes.
Among these features, most of them were texture features,
indicating that texture features were more closely related to
EGFR molecular subtypes. The human visual system cannot
recognize these features, nor can they be interpreted as specific
Frontiers in Oncology | www.frontiersin.org 9150
meanings (34, 35). We observed that radiomics features, including
logarithm_glcm_Correlation, wavelet.LLL_glszm_Zone Entropy
(ZE), and gradient_glszm_Gray Level Non-Uniformity
Normalized (GLNN), etc. were associated significantly with Del-
19 mutation. Among them, logarithm_glcm_Correlation and
wavelet.LLL_glszm_ZE reflected the image texture of the tumor
TABLE 4 | The prediction performance of different models in the training and validation sets.

Models AUC Accuracy Sensitivity Specificity PPV NPV

Del-19 mutation vs. wild-type
Training set
Clinical model 0.719

(0.668-0.770)
0.706

(0.659-0.751)
0.721

(0.589-0.792)
0.697

(0.574-0.743)
0.603

(0.554-0.626)
0.796

(0.763-0.806)
Radiomics model 0.807

(0.765-0.850)
0.747

(0.701-0.789)
0.708

(0.597-0.779)
0.772

(0.651-0.834)
0.665

(0.626-0.686)
0.805

(0.777-0.817)
Combined model 0.838

(0.799-0.877)
0.775

(0.30-0.815)
0.682

(0.565-0.760)
0.834

(0.705-0.896)
0.724

(0.685-0.745)
0.804

(0.776-0.815)
Validation set
Clinical model 0.693

(0.606-0.781)
0.667

(0.581-0.745)
0.648

(0.268-0.787)
0.679

(0.512-0.762)
0.565

(0.349-0.612)
0.750

(0.694-0.771)
Radiomics model 0.779

(0.694-0.864)
0.732

(0.650-0.804)
0.685

(0.592-0.815)
0.762

(0.571-0.952)
0.649

(0.615-0.687)
0.790

(0.738-0.825)
Combined model 0.813

(0.740-0.886)
0.768

(0.689-0.836)
0.648

(0.407-0.759)
0.845

(0.678-0.929)
0.729

(0.629-0.759)
0.789

(0.750-0.804)
L858R mutation vs. wild-type
Training set
Clinical model 0.701

(0.651-0.750)
0.679

(0.630-0.725)
0.634

(0.507-0.722)
0.705

(0.600-0.769)
0.564

(0.509-0.596)
0.762

(0.732-0.778)
Radiomics model 0.825

(0.783-0.868)
0.764

(0.719-0.806)
0.772

(0.662-0.842)
0.759

(0.647-0.826)
0.659

(0.623-0.678)
0.847

(0.825-0.858)
Combined model 0.855

(0.817-0.894)
0.756

(0.710-0.798)
0.890

(0.793-0.945)
0.676

(0.531-0.747)
0.623

(0.596-0.637)
0.911

(0.889-0.918)
Validation set
Clinical model 0.697

(0.614-0.781)
0.672

(0.585-0.750)
0.660

(0.458-0.820)
0.679

(0.552-0.798)
0.550

(0.459-0.603)
0.770

(0.732-0.798)
Radiomics model 0.812

(0.737-0.887)
0.746

(0.664-0.817)
0.760

(0.580-0.880)
0.738

(0.547-0.845)
0.633

(0.568-0.667)
0.838

(0.793-0.855)
Combined model 0.852

(0.790-0.913)
0.739

(0.656-0.811)
0.920

(0.740-1.000)
0.631

(0.500-0.774)
0.597

(0.544-0.617)
0.930

(0.913-0.942)
Del-19 mutation vs. L858R mutation
Training set
Logistic model 0.581

(0.510-0.651)
0.587

(0.524-0.649)
0.789

(0.593-0.854)
0.395

(0.256-0.473)
0.554

(0.483-0.574)
0.662

(0.559-0.701)
RF model 0.881

(0.840-0.921)
0.786

(0.730-0.835)
0.715

(0.621-0.825)
0.853

(0.769-0.948)
0.822

(0.801-0.842)
0.759

(0.739-0.778)
SVM model 0.601

(0.531-0.671)
0.591

(0.528-0.653)
0.805

(0.634-0.870)
0.388

(0.240-0.465)
0.556

(0.497-0.575)
0.676

(0.564-0.714)
Clinical model 0.660

(0.593-0.726)
0.599

(0.536-0.660)
0.797

(0.645-0.872)
0.411

(0.278-0.506)
0.563

(0.511-0.585)
0.679

(0.589-0.723)
Combined model† 0.906

(0.869-0.943)
0.833

(0.781-0.877)
0.821

(0.738-0.916)
0.845

(0.758-0.923)
0.835

(0.819-0.849)
0.832

(0.816-0.844)
Validation set
Logistic model 0.673

(0.569-0.777)
0.679

(0.582-0.767)
0.827

(0.481-0.924)
0.537

(0.315-0.686)
0.632

(0.500-0.658)
0.763

(0.654-0.804)
RF model 0.871

(0.802-0.941)
0.849

(0.766-0.911)
0.788

(0.394-0.904)
0.907

(0.654-0.981)
0.891

(0.804-0.904)
0.817

(0.763-0.828)
SVM model 0.652

(0.547-0.758)
0.651

(0.552-0.741)
0.808

(0.538-0.962)
0.500

(0.370-0.648)
0.609

(0.509-0.649)
0.730

(0.667-0.778)
Clinical model 0.514

(0.402-0.625)
0.538

(0.438-0.635)
0.692

(0.378-0.885)
0.389

(0.248-0.546)
0.522

(0.373-0.582)
0.568

(0.455-0.648)
Combined model† 0.875

(0.781-0.929)
0.830

(0.745-0.896)
0.885

(0.490-0.962)
0.778

(0.536-0.889)
0.793

(0.680-0.806)
0.875

(0.828-0.889)
Ap
ril 2022 | Volume 12 |
AUC, Area under the curve; Del 19, Exon-19 deletion; L858R, Exon-21 L858R point mutation; NPV, Negative predictive value; PPV, Positive predictive value; RF, Random forest; SVM,
Support vector machine; vs., versus.
†Combined model: RF model combined Clinical model.
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area, and gradient_glszm_GLNN reflected the gray image value of
the tumor area (36). Compared with the EGFR wild-type group,
the values of these features were higher in Del-19 mutation,
indicating that the image texture and gray image values were
related to Del-19 mutation. Lbp.3D.m1_firstorder_10Percentile
and Lbp.3D.m1_firstorder_Skewness, etc. were associated
significantly with L858R mutation. They reflected the voxel
intensity of the image (36). Compared with the EGFR wild-type
group, the values of these features were higher in L858R mutation,
indicating that the image voxel intensity was related to L858R
mutation. Therefore, radiomics features as a new auxiliary tool can
predict EGFR molecular subtypes.
Frontiers in Oncology | www.frontiersin.org 10151
Compared with the radiomics model based on only containing
radiomics features, incorporatingpreoperative clinical factors of the
nomogram showed the best predictive performance. This user-
friendly nomogram will help clinicians easily predict EGFR
molecular subtypes in clinical practice. The results were more
practical than a single model and can be used for clinical
applications in patients with lung adenocarcinoma undergoing
CT scans. The task of Del-19 vs. wild-type and L858R vs. wild-
type build with linear model (logistic regression) could obtain a
satisfactory result, and the linearmodel is easy for application. Such
we didn’t applied nonlinear model. The task of Del-19 vs. L858R
washard, the performance of linearmodelwasnot satisfactory, sowe
A

B

D E

C

FIGURE 4 | Nomogram was used to identify Del-19 mutation and wild-type. (A) Construct a nomogram in the training set based on the combined model. (B, C)
Calibration curve of the combined model in the training (B) and validation (C) sets. The x-axis represents the use of the combined model to predict the risk of Del-19
mutation. The y-axis represents the actual Del-19 mutation rate. The green, red, and blue lines represent the distinguishing ability of the clinical, radiomics, and
combined models, respectively, while the gray diagonal line represents the ideal evaluation of the ideal model. The closer the fit to the diagonal line indicates the
better discrimination ability. (D, E) Decision curve analysis for the combined model in the training (D) and validation (E) sets. The x-axis shows the threshold
probability, and the y-axis measures the net benefit. The gray line represents all patients with Del-19 mutation, and the black line represents all patients without Del-
19 mutation. The green, red, and blue lines represent the clinical, radiomics, and combined models, respectively.
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add nonlinear model for comparison and selected best model for
radiomics score construction.

Our study had several limitations. First, although we collected
data from two large medical centers, this was a retrospective study
and there may be inevitable selection bias. The conclusions of this
study need to be prospectively verified in more centers to improve
the clinical applicability of our model. Second, although our study
included 728 patients, increasing the sample size will further
improve the accuracy of the results of this study. Finally, two
Frontiers in Oncology | www.frontiersin.org 11152
radiologists spent a lot of time manually segmenting ROI.
Therefore, ROI can be segmented automatically and effectively in
future research.
CONCLUSION

In conclusion, demonstrated the feasibility of identifying EGFR
molecular subtypes through the radiomics features of patients
A

B

D E

C

FIGURE 5 | Nomogram was used to identify L858R mutation and wild-type. (A) Construct a nomogram in the training set based on the combined model. (B, C)
Calibration curve of the combined model in the training (B) and validation (C) sets. (D, E) Decision curve analysis for the combined model in the training (D) and
validation (E) sets.
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with lung adenocarcinoma, making the formulation of clinically
individualized targeted therapy programs more precise and more
in line with actual clinical needs, so as to benefit the patients with
candidate targeted therapy the most.
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A Nomogram Combined Radiomics
and Clinical Features as Imaging
Biomarkers for Prediction of
Visceral Pleural Invasion in
Lung Adenocarcinoma
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Soochow University, Suzhou, China

Objectives: To develop and validate a nomogram model based on radiomics features for
preoperative prediction of visceral pleural invasion (VPI) in patients with lung adenocarcinoma.

Methods: A total of 659 patients with surgically pathologically confirmed lung
adenocarcinoma underwent CT examination. All cases were divided into a training
cohort (n = 466) and a validation cohort (n = 193). CT features were analyzed by two
chest radiologists. CT radiomics features were extracted from CT images. LASSO
regression analysis was applied to determine the most useful radiomics features and
construct radiomics score (radscore). A nomogram model was developed by combining
the optimal clinical and CT features and the radscore. The model performance was
evaluated using ROC analysis, calibration curve and decision curve analysis (DCA).

Results: A total of 1316 radiomics features were extracted. A radiomics signature model
with a selection of the six optimal features was developed to identify patients with or
without VPI. There was a significant difference in the radscore between the two groups of
patients. Five clinical features were retained and contributed as clinical feature models.
The nomogram combining clinical features and radiomics features showed improved
accuracy, specificity, positive predictive value, and AUC for predicting VPI, compared to
the radiomics model alone (specificity: training cohort: 0.89, validation cohort: 0.88,
accuracy: training cohort: 0.84, validation cohort: 0.83, AUC: training cohort: 0.89,
validation cohort: 0.89). The calibration curve and decision curve analyses suggested
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that the nomogram with clinical features is beyond the traditional clinical and radiomics
features.

Conclusion: A nomogram model combining radiomics and clinical features is effective in
non-invasively prediction of VPI in patients with lung adenocarcinoma.
Keywords: CT, lung adenocarcinomas, radiomics, Nomogram, prediction, visceral pleural invasion
INTRODUCTION

Lung cancer is currently the second most common cancer in the
world and remains the leading cause of death among malignant
tumors (1). Over 83% of lung cancers are non-small cell lung
cancer (NSCLC) (2). Visceral pleural invasion (VPI), defined as
tumor extension beyond the elastic layer of viscera pleura, is one
of the most important adverse prognostic factors in non-small
cell lung cancers with tumor sizes ≤ 3 cm (3, 4). In the eighth
edition of TNM classification for NSCLC, VPI increases the T
staging of lung cancer with diameters ≤ 3 cm: the presence of VPI
leads to upstaging T1 tumor to T2 and stage IA tumor to IB
(5, 6).

Several studies have evaluated the morphological
characteristics of VPI in NSCLC based on CT images (7–9).
However, there is no definite morphological feature that can
reliably predict VPI, especially when the tumor is far from the
pleura without pleura indentation or pleural attachment (7–9).
Radiomics extracts a large amount of quantitative information
from medical images (10, 11). Radiomics have been utilized for
clinical-decision support systems in lung cancer, including
diagnose and prognostic prediction (12–14). However, few
studies have been reported to assess for the presence of VPI in
patients with NSCLC using radiomics methods (15).

Therefore, the purpose of this study was to construct a
nomogram model based on radiomics features, and determine
whether VPI of lung adenocarcinoma can be predicted using
the model.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the institutional
review board of the First Affiliated Hospital of Soochow
University (Suzhou, China), and the requirement for patient
informed consent was waived. Patients with peripheral lung
adenocarcinoma who underwent chest CT scans with thin-
section (1–1.25 mm) images from January 2016 to December
2020 were reviewed. Inclusion criteria were as follows: (a) all the
patients were confirmed as lung adenocarcinoma by pathological
examination, and whether pleural invasion or not was evaluated
pathologically; (b) the peripheral lesion was determined as
N0M0 stage with the largest diameter smaller than 3.0 cm; (c)
thin-section CT scan was performed within 30 days before
surgery; (d) available results for clinical data, including age,
sex, smoking history; (e) at least one of the following features
2156
were presented on CT images: pleural depression, pleural
attachment or pleural closeness. 750 patients were excluded
because of the following reasons: (a) histological diagnosis of
SCLC (n=89); (b) tumor size > 3 cm (n=185); (c) whether pleural
invasion or not cannot be assessed pathologically (n=136); (d)
the lesion is far from the pleura without any of the above three
features (n =301). (e) poor imaging quality due to respiratory
artifact during examination (n=39). Finally, A total of 659
patients met all the inclusion criteria and included in this study.

CT Scans
Patients underwent preoperative unenhanced CT scanning using
various multidetector row scanners: Brilliance 16 or Brilliance
iCT (Philips Healthcare, Best, the Netherlands), Somatom
Sensation 64 or Somatom Definition (Siemens Healthineers,
Erlangen, Germany), GE revolution or Discovery CT 750 HD
(GE Healthcare, Chicago, USA), Aquilion One (Toshiba Medical
Systems, Tokyo, Japan). The imaging parameters for thin-section
CT were as follows: tube voltage 100-120 kV, automatic tube
current modulation, matrix 512 × 512, field of view (FOV) of
400 mm (Brilliance 16 scanner) and 500 mm (other machines),
slice thickness of 1-2 mm, the iterative reconstruction algorithm.
All CT images were obtained in the supine position during
inspiratory breath-hold.

Imaging Analysis
Two experienced radiologists analyzed the CT images
independently with a lung window (window width, 1500 HU;
window level, −500 HU) and mediastinum window (window
width, 400 HU; window level, 60 HU). Consensus was reached
by discussion in case of disagreement. Image features included
the following (1): tumor density (solid/part-solid) (2); maximum
diameter (3); margin (lobulated, spiculated) (4); air
bronchogram (5); pleura indentation, pleural attachment, or
pleural closeness (6); distance from the pleura. A part-solid
nodule was defined as a tumor that included both GGO and
solid components (0<CTR<1.0). A pure-solid nodule was
defined as a tumor that included only consolidation without
GGO (CTR=1.0) (16). In the current study, pure GGO was
excluded since VPI was never observed in these lesions due to its
minimally invasive nature and inability to penetrate the thick
elastic layer (17). Pleural indentation was defined as tumor
indentation of the visceral pleura on CT images at the lung
window. Pleural attachment was defined as no visible space
between the nodule and the visceral pleura on CT images at
the lung window or tumor attachment to the interlobar pleura at
the lung window. Pleural closeness was defined as tumor located
within 1.0 cm of the pleura (16).
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Histologic Evaluation
Surgically resected specimens were stained with hematoxylin and
eosin, and examined to determine the presence or absence of
VPI. VPI was defined as invasion beyond the elastic layer of the
visceral pleura according to the 8th edition of the TNM
classification criteria (5). Histologic evaluation was performed
by one experienced pathologist.

Tumor Segmentation and Radiomics
Feature Extraction
CT images of enrolled patients were exported from the picture
archiving and communication system (PACS), and segmented
semi-automatically using ITK-SNAP software (version 3.6.0, www.
itk-snap.org) (18). The workflow of the analysis is summarized in
Figure 1. All imageswere automatically segmented and adjusted by a
radiologist with 8 years of experience. After 4 weeks this radiologist
segmented the images of 30 randomly selected patients for intra-
observer reproducibility. In addition, another radiologist with 20
years of experience segmented 30 randomly selected patient images
for inter-observer reproducibility. The inter- and intra-observer
reproducibility of feature extraction was evaluated by intraclass
correlation coefficients (ICCs). ICCs greater than 0.75 were
considered as good consistency.

All images were performed image normalization before feature
extraction (19). Radiomics features were extracted from the ROI by
the pyradiomic package Python software (version 3.7.12, www.
python.org). A total of 1316 high-dimensional features were
Frontiers in Oncology | www.frontiersin.org 3157
extracted from each sample and these were classified into seven
categories: first order statistics (n = 252), shape (n = 14),
neighborhood gray-tone difference matrix (n = 70), grey level
dependence matrix (GLDM) (n = 196), grey level co-occurrence
matrix (GLCM) (n = 336), run-length matrix (RLM) (n = 224), and
grey level zone size matrix (GLZSM) (n = 224).

Radiomics Feature-Based Prediction
Model Construction
Radiomics signature model based on selected features from the
training cohort was constructed. Two feature selection methods
were used to select the features. First, maximum relevance
minimum redundancy (mRMR) was performed to eliminate
redundant and irrelevant features. Then, least absolute shrinkage
and selection operator (LASSO) was used to select the most useful
features. A radiomics score (Radscore) was computed for each
patient through a linear combination of selected features weighted
by their respective coefficients. The final formula for the Radscore
was as follows: “Radscore=0.085*image_wavelet-LLL_glszm_L
argeAreaHighGrayLevelEmphasis+-0.034*image_exponential_first
order_TotalEnergy+-1.071*image_wavelet-LLL_ngtdm_
Coar s ene s s+0 . 21 * image_exponen t i a l _g l s zm_Large
AreaLowGrayLevelEmphasis+0.083*image_square_glszm
_ZoneVariance+-0.771*image_squareroot_firstorder_Skewness + -
1.266”. Furthermore, the Radscore was compared between lung
adenocarcinoma with VPI and those without VPI in both the
training and validation cohorts.
FIGURE 1 | Workflow of the study. Workflow can be divided into four parts: tumor segmentation, feature extraction, feature selection and analysis.
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Logistic regression was performed to select the independent
clinical predictors in the training cohort. Prediction models
combining radiomics features and clinical variables were
established. Finally, a radiomics nomogram based on the
multivariate logistic regression model in the training cohort was
constructed, and receiver operating characteristic (ROC) curveswere
developed to evaluate the discriminatory ability of the nomogram.
The calibration curve andHosmer-Lemeshow test was used to assess
the goodness-of-fit of nomogram (20, 21). Decision curve analysis
was performed to assessed the clinical value of nomogram. The net
benefit is calculated within a threshold probability, defined as the
minimumprobability of adisease requiring further intervention (22).

Statistical Analysis
Statistical analyses were performed using R software (version
4.1.0) for quantitative characterisation. The characteristics of
patients with VPI and without VPI were compared by Student’s
t-test for normally distributed data, otherwise the Mann-
Whitney u-test was used. The intra-observer reproducibility of
tumor segmentation and feature extraction were evaluated by
intraclass correlation coefficients (ICCs). ICCs greater than 0.75
were considered to have good consistency. A multivariate binary
logistic regression was implemented using the “rms” package.
The nomogram was created and the calibration plots were
created using the “rms” package. ROC curves were plotted to
evaluate the diagnostic efficiency of the nomogram model. The
area under the ROC curve (AUC) was calculated. P-values < 0.05
were considered to be significant.
RESULTS

Clinical Characteristics
A total of 659 patients were included in this study, of whom 193
(29.3%) were diagnosed with VPI and 466 (70.7%) were
diagnosed without VPI (Table 1).

There were significantly differences between VPI-presence and
VPI-absence group in gender, pleural indentation, pleural
attachment, air bronchogram, and lobulation (all P < 0.05).
Gender, pleural indentation, pleural attachment, air bronchogram,
and lobulation were independent risk factors for predicting VPI
after logistic regression analysis (Table 2). A clinical model was
developed based on these characteristics.

Reproducibility Analysis
The average ICCs of intra-observer was 0.96, indicating satisfactory
agreement. The number of features with fair consistency (0.75 >
ICC ≥ 0.4) and poor consistency (ICC <0.4) were 4 (0.3%) and 26
(2.0%), respectively. The average ICCs of inter-observer was 0.95,
indicating satisfactory agreement. The number of features with fair
consistency (0.75 > ICC ≥ 0.4) and poor consistency (ICC <0.4)
were 11 (0.8%) and 32 (2.4%), respectively.

Radiomics Feature Selection Signature
Construction, Validation, and Evaluation
30 features were retained after eliminating the redundant and
irrelevant features with mRMR. Then, 6 features were selected as
Frontiers in Oncology | www.frontiersin.org 4158
the most predictive subset after LASSO (Figures 2A, B). The
corresponding coefficients were evaluated (Figure 2C) and a
predictive model was constructed. Radscore was calculated by
summing the selected features weighted by their coefficients.
There was a significant difference in radscore between lung
adenocarcinoma with VPI and without VPI in the training and
validation groups (Figure 3).

As shown in Figure 4, the radiomics feature model had an
AUC of 0.83 in the training cohort and 0.81 in the validation
cohort. Then, clinical indicators (Table 1) with p values less than
0.01 in the logistic regression analysis with radscore were used
to constructed a combined model, which showed an AUC of
0.89 (95% CI, 0.86-0.92) in the training cohort (Figure 4A) and
an AUC of 0.88 (95% CI, 0.83-0.94) in the validation cohort
(Figure 4B). The predictive performance of the combined model
was shown in Table 3. In both the training and validation
cohorts, the accuracy, specificity, positive predictive value, and
AUC of the combined model outperformed both the radiomics
feature model and the clinical feature-based model.

Subsequently, a nomogram model was created (Figure 5A).
The calibration curve of the nomogram for predicting VPI
matched well with the estimated and actual observed values of
the radiomics nomogram. The p-value for the predictive power
of the nomogram obtained by the Hosmer-Lemeshow test was
0.94 in the training cohort (Figure 5B) and 0.86 in the validation
cohort (Figure 5C).

The DCA showed that the net benefit of the combined
nomogram outperformed the clinical and radiomics feature
models (Figure 5D). The decision curve showed that the
combined nomogram established in this study has more
benefit for predicting VPI if the threshold probability of a
patient is between 0 to 55%, 60% to 80% and 90% to 100%.
DISCUSSION

This study constructed and validated a nomogram model based
on clinical and radiomics features extracted from CT imaging for
identifying VPI in lung adenocarcinoma less than or equal to
3 cm. The nomogram model was able to classify stage I lung
adenocarcinoma into those with VPI and without VPI, with
AUC values greater than those of the radiomics model and the
clinical model. The results demonstrated that the combined
model can reliability predict VPI.

In this study, we included patients with lung adenocarcinoma
to construct a nomogram to predict with or without VPI.
This is because research showed that no significant difference
in survival rates associated with VPI in NSCLC (23). As for
NSCLC, squamous cell carcinoma and adenocarcinoma
showed significantly different biological behaviors (24). Whereas
the heterogeneity in biological behavior between lung
adenocarcinoma and squamous cell carcinoma can be reflected
by radiomics, radiomics can predict their histological subtypes
(25, 26). In addition, lung adenocarcinoma is the most common
subtype of lung cancer, so in this study we only discussed lung
adenocarcinoma.VPI is a poor prognostic factor for lung
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adenocarcinoma (27–29), since VPI has been associated with
increased overall mortality and decreased disease-free survival
(30). The visceral pleura is rich in lymphatic vessels and forms
an intercommunicating network on the lung surface. This
network penetrates the lung parenchyma, connects to the
bronchial lymphatics and flows into the hilar lymph nodes (31),
which may progressively develop into metastatic disease
(lymph node metastasis or distant metastasis). According to the
8th edition of the AJCC staging manual, a tumour size of 0-3 cm
with VPI (including PL1 and PL2) is considered IB stage (31).
Some previous studies have shown that patients with stage IB
NSCLC can benefit from adjuvant chemotherapy treatment
(32–34).

The correlation between CT morphological features and VPI
has been reported previously (30, 35, 36). The present study
concluded that lobulation and air bronchogram were not
significant indicators of VPI in lung adenocarcinoma, which
Frontiers in Oncology | www.frontiersin.org 5159
was consistent with previous study (30, 35). A lobulated contour
implies uneven growth, which is associated with malignancy.
However, lobulation also occurs in up to 25% of benign nodules
(37). In our study, the lobulation sign was not an independent
risk factor for predicting VPI, which may be due to a selection
bias resulting from the small size of our enrolled tumors and the
fact that the number of patients in this study was not large
enough. The air bronchogram sign is the result of tumor cells
spreading along the wall of fine bronchus and alveolar wall in a
volvulus-like growth pattern without destroying the lung scaffold
structure, and the residual gas in the bronchus and alveoli is
visualized (38). In previous studies, air bronchogram signs were
associated with low invasiveness and helped to distinguish with
or without VPI of lung adenocarcinoma (39). Many studies have
suggested that the node-pleura relationship is an important
predictor of positive VPI. In lung adenocarcinoma, pleural
indentation is generally considered to be a positive predictor of
VPI (39). Indentation increases the risk of tumor invasion of the
visceral pleura (40). Pleural attachment is another known factor
for local recurrence and poor survival of lung adenocarcinoma
after radiotherapy for non-small cell lung cancer (41, 42).
Although most studies have evaluated the morphologic
features of VPI on CT images, the accuracy of studies based on
morphologic features of CT images remained low, and the
morphological features identified are dependent on the
experience of the radiologists (7–10).

Currently, radiomics allows for the non-invasive evaluation
of internal tumor heterogeneity by extracting and analyzing a
TABLE 1 | Characteristics of 659 lung adenocarcinoma patients, according to the presence of the visceral pleural invasion.

Characteristics Total (n=659) Univariate logistic regression Multivariate logistic regression

VPI (−) (n=466) VPI (+) (n=193) P value P value

Gender <0.001 0.01
Male 244 150 94
Famale 415 316 99
Age(years) 61 (53-67) 60 (52-66) 63 (57-69) <0.001 NA
Smoking status <0.001 NA
Active 553 413 140
Inactive 106 53 53
lobulation <0.001 0.04
Present 481 315 166
Absent 178 151 27
spiculation 0.528
Present 479 342 137
Absent 180 124 56
air bronchogram <0.001 <0.001
Present 352 298 54
Absent 307 168 139
Radiological tumor type <0.001 NA
Pure-solid 381 217 164
Part-solid 278 249 29
Pleura indentation <0.001 <0.001
Present 422 266 156
Absent 237 200 37
Pleural attachment <0.001 <0.001
Present 327 193 134
Absent 332 273 59
May 2
Age is expressed as Median (interquartile range). Otherwise, data are number of patients. The P value marked bold indicated statistical significance.
NA means that the characteristic is not included in the logistic regression.
TABLE 2 | Variables and coefficients of clinical model.

Variable Adjusted OR 95%CI P value

Gender 1.95 1.17-3.25 0.011
Lobulation 0.32 0.19-0.53 0.040
Air bronchogram 2.11 1.03-4.31 <0.0001
Pleura indentation 19.07 9.38-38.76 <0.0001
Pleural attachment 10.10 5.33-19.14 <0.0001
OR, odds ratio; CI, confidence interval.
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large number of advanced quantitative imaging features from CT
images (12, 43). Yuan et al. proposed a support vector machine
(SVM) based deep learning model to predict the status of VPI
from preoperative CT scans, with a high AUC in the validation
cohort (10). However, the model could only distinguish patients
with or without VPI based on radiomics models, without
incorporating relevant clinical characteristic parameters, and
did not take the relations of tumor to adjacent pleura
into account.

In this study, six optimal quantitative radiomics features
(including Coarseness, Skewness, TotalEnergy, ZoneVariance,
Frontiers in Oncology | www.frontiersin.org 6160
LAHGLE and LALGLE) were extracted Coarseness is a
parameter for the neighbouring gray tone difference matrix
(NGTDM). The lower coarseness values in the present study
indicated more heterogeneous textures of the lesion. Skewness
and total energy are both the first order parameters. Lower
skewness and total energy values indicated higher
heterogeneity of the lesion. LAHGLE and LALGLE are
parameters for the gray level size zone matrix (GLSZM). Zone
variance is also a parameter for the GLSZM. In this study, the
high LAHGLE, LALGLE and zone variance values indicated high
heterogeneity of the lesion.
A

C

B

FIGURE 2 | Radiomics features associated with VPI were selected using LASSO regression models. (A) Cross-validation curve. An optimal log lambda (0.013) was
selected, and 6 non-zero coefficients were chosen. (B) LASSO coefficient profiles of the 1316 radiomics features against the deviance explained. (C) Histogram
shows the contribution of the selected parameters with their regression coefficients in the signature construction.
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According to our findings, the model that combines
radiomics features and clinical features is more effective.The
clinical features model included four semantic features (the signs
of lobulation, air bronchogram, pleural attachment and pleural
indentation) among the five features, all describing the perimeter
and morphology of tumor. Because of the difficulty in outlining
Frontiers in Oncology | www.frontiersin.org 7161
peritumoral ROI due to the proximity of the tumor to the pleura,
this imaging histology study focused only on the interior of the
tumor. However, we included some of the imaging signs to
reflect the peritumoral situation as described previously.
Previous studies have demonstrated that the above features
were the risk factors of VPI. Furthermore, the radiomics
A B

FIGURE 3 | Difference in the Radscore between lung adenocarcinoma with VPI and without VPI in training cohort (A) and validation cohort (B). (Label 0: No VPI;
label 1: VPI).
A B

FIGURE 4 | Comparison of the performance of three models for predicting VPI in lung adenocarcinoma. ROC curves for clinical features alone, radiomics features
alone and combined features for the training (A) and validation (B) cohorts.
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TABLE 3 | Predictive performance of the three models in the training and validation cohorts.

Model Accuracy [95%CI] AUC [95%CI] Sensitivity Specificity PPV NPV

Training cohort
Radiomics features 0.74 [0.70-0.78] 0.83 [0.79-0.86] 0.86 0.69 0.55 0.91
Clinics features 0.75 [0.71-0.79] 0.86 [0.82-0.90] 0.87 0.69 0.56 0.93
Joint features 0.84 [0.81-0.88] 0.89 [0.86-0.92] 0.74 0.89 0.75 0.89
Validation cohort
Radiomics features 0.73 [0.66-0.79] 0.81 [0.74-0.87] 0.75 0.72 0.49 0.88
Clinics features 0.73 [0.66-0.79] 0.83 [0.76-0.90] 0.79 0.71 0.49 0.90
Joint features 0.83 [0.78-0.89] 0.88 [0.83-0.94] 0.71 0.88 0.65 0.90
Frontiers in Oncology | www.fro
ntiersin.org
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AUC, area under the curve; 95%CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
A

B

D

C

FIGURE 5 | Nomogram for prediction of VPI based on training cohort and the model evaluation of calibration curve. (A) Radiomics nomogram based on clinical
characteristics and Radscore. The calibration curves were used to evaluate the consistency of the probability of VPI predicted by the nomogram with the actual
fraction of visceral pleural invasion in the training (B) and validation (C) cohorts. (D) DCA for the prediction of VPI in lung adenocarcinoma for each model. X-axis
represents the threshold probability and Y-axis represents the net benefit. The red curve represents the nomogram. The blue curve represents the clinical features
model. The green curve represents the radiomics features model.
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focused on the heterogeneity within the tumor, the two models
were complementary to each other. Although the diagnostic
performances of the radiomic model and the clinical model
were similar, the combination of the two models can obtain a
higher diagnostic efficiency. The AUC values of the combined
model were higher than those of the radiomics and clinical models
(p < 0. 05). Moreover, the DCA results showed that the nomogram
was superior to both the clinical features model and the radiomics
model for most ranges of reasonable threshold probabilities.

There are several limitations in this study. Firstly, it was a
retrospective study and there may have been selection bias.
Secondly, tumour serum indicators may be missing due to the
small size of the tumour. Thirdly, multiple different CT scanning
devices were used, using different acquisition protocols.
Multicentre studies should be conduted to validate the
reliability of Nomogram.

In summary, a CT image-based nomogram model combining
radiomics features and clinical features was developed for
predicting VPI in lung adenocarcinoma. A nomogram based
on radiomics features may provide a non-invasive method to
evaluate the prognosis of early lung adenocarcinoma.
Frontiers in Oncology | www.frontiersin.org 9163
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Purpose: Several studies have demonstrated that 68Ga-FAPI PET/CT shows high
intratumoral tracer uptake and low normal tissue uptake, allowing for excellent
visualization of cancer. The purpose of this study was to compare the ability of 68Ga-
FAPI and 18F-FDG PET/CT for the evaluation of newly diagnosed NSCLC.

Materials andMethods: A prospective analysis of 28 individuals with histopathologically
newly confirmed NSCLC that underwent 68Ga-FAPI and 18F-FDG PET/CT was
conducted. The performance of two imaging modalities was compared based upon
visual assessment, rates of cancer detection, and semi-quantitative parameters (target-
to-background ratio [TBR], maximum standard uptake value [SUVmax]) for both primary
tumors and metastases.

Results: In total, this study enrolled 28 participants (13 male, 15 female; median age: 60.5
years, range: 34 – 78 years. <u>For primary tumors, 68Ga-FAPI and 18F-FDG PET/CT
have similar detection performance (28 vs. 27). However, 68Ga-FAPI PET/CT was found to
more effectively evaluate most metastases as compared to 18F-FDG PET/CT. 68Ga-FAPI
PET/CT detecting more metastases present within the lymph nodes (53 vs. 49), pleura (8
vs. 7), liver (4 vs. 1), and bone (41 vs. 35).</u> The SUVmax and TBR values for 68Ga-FAPI
were substantially superior to those for 18F-FDG in lymph node, pleural, and bone
metastases. While the SUVmax for these two imaging approaches was comparable for
hepatic metastases, 68Ga-FAPI exhibited a significantly higher TBR in relation to that of
18F-FDG. In addition, 68Ga-FAPI PET/CT demonstrates excellent N (80% [8/10]) and M
(92.9% [26/28]) staging accuracy in NSCLC patients.
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Conclusions: 68Ga-FAPI PET/CT as an examination modality is excellent for evaluation of
newly diagnosed NSCLC. 68Ga-FAPI PET/CT improves the detection rates of most
metastases and facilitating the superior staging of patients with newly diagnosed
NSCLC, relative to that achieved by 18F-FDG PET/CT.
Keywords: 68 Ga-FAPI, 18 F-FDG, non-small-cell lung cancer (NSCLC), fibroblast activation protein
(FAP), metastases
INTRODUCTION

Cancer is one of the fundamental threats to human health and
well-being, with lung cancer in particular remaining among the
most common and deadliest tumors (1). Lung cancer is a
heterogeneous classification of epithelial malignancy with a
range of pathological and clinical manifestations. Broadly
speaking, lung cancer cases are subdivided into non-small-cell
lung cancer (NSCLC) and small cell lung cancer (SCLC) (2–4).
For individuals with stage I – IIIA NSCLC, surgical resection is
the optimal therapeutic intervention, but just 20-25% of
patients are suited to undergo curative surgical resection (2,
3, 5, 6). The eligibility of newly diagnosed patients for such
treatment is generally dependent on the degree of tumor
involvement such that accurate tumor staging is essential and
can affect both the prognostic evaluation and treatment of
patients (5, 7). 18F-fluorodeoxyglucose (18F-FDG) positron
emission tomography/computed tomography (PET/CT)
imaging has emerged as the most widely used modality for
diagnosing and systemically staging NSCLC. However, the
utility of this approach can be limited by insufficient soft-
tissue contrast and by elevated levels of physiological
background activity in specific organs (1, 8, 9). Cancer-
associated fibroblasts (CAF) are commonly linked to a poor
cancer patient prognosis (10–16). CAFs frequently express
elevated levels of the type II transmembrane serine protease
fibroblast-activated protein (FAP) (17–19), which plays key
roles in migratory, invasive, and angiogenic activity in
oncogenic contexts (20–24). Recently, novel quinoline FAP-
specific inhibitor-based PET tracers have been developed that
can be used to precisely target fibrotic and tumor-associated
stromal tissue (19, 25, 26). 68Ga-FAPI PET/CT exhibits a high
degree of intratumoral tracer uptake, low normal tissue uptake,
and rapid clearance, thus resulting in excellent tumor visibility
and a great target to background ratio (26–29). In multiple
recent research (18, 19, 25, 27, 28, 30–34), 68Ga-FAPI PET/CT
was demonstrated to aid in the visualization of a diversity of
tumors in addition to offering clear advantages as compared to
18F-FDG PET/CT when discerning lymph node, pleural, brain,
and bone metastases.

Current research advances suggest that 68Ga-FAPI may be a
more accurate and convenient alternative to 18F-FDG PET/
CT for the diagnosis and staging of lung cancer. Therefore,
this study was conducted to examine the performance of 68Ga-
FAPI and 18F-FDG PET/CT for the evaluation of newly
diagnosed NSCLC.
2166
MATERIALS AND METHODS

Patients
The Ethics Committee of Southwest Medical University Hospital
approved the present study, which was conducted from July 2020
- October 2021 (Ethics committee approval No.: 2020035), and
all patients signed a written informed consent form. The
inclusion criteria for this study were as follows: (1) individuals
≥ 18 years of age; (2) individuals newly diagnosed with NSCLC
that had not undergone any previous antitumor treatment; (3)
individuals who underwent both 68Ga-FAPI and 18F-FDG PET/
CT at a 1-week interval. Contributors were excluded if they: (1)
underwent < 3 months of follow-up; (2) had undergone
antitumor treatment prior to PET/CT imaging; or (3) harbored
any other non-NSCLC primary tumors.

PET/CT Imaging
Contributors were asked to fast, not received intravenous
glucose, and avoid strenuous activity or prolonged exercise for
a minimum of 6 h before intravenous 18F-FDG (3.7 MBq/kg)
infusion, and patients also needed to have normal blood glucose
levels. 68Ga-FAPI injection (1.85–2.59 MBq/kg) did not
necessitate any specific fasting or glycemic preparation. A
hybrid PET/CT scanner (uMI780, United Imaging Healthcare,
Shanghai, China) was used to conduct all PET/CT imaging ~1 h
following radiotracer administration. With the contributor’s
arms raised above their head, an initial spiral CT scan was
conducted from the top of the skull to the upper portion of the
mid-thigh (current 120 mA; tube voltage 120 kV; matrix 512 ×
512 pixels; slice thickness 3.00 mm; window width 300–500 HU;
window level 40–60 HU). PET scanning was subsequently
conducted using the same bed position utilized for CT
scanning, with 1.5 min/position in 3D acquisition mode and
5–6 bed positions. The resultant outcomes were transferred to a
post-processing workstation (v R002, uWS-MI, United Imaging
Healthcare, Shanghai, China). PET attenuation correction was
performed using CT data, with PET data reconstruction being
conducted based upon an ordered subset estimation
maximization algorithm (20 subsets, 2 iterations). The overall
condition of each case, such as their body temperature, heart
rate, blood pressure, and mental status, was assessed by a nuclear
medicine physician within 2 h following injection.

Image Review
Two experienced nuclear medicine physicians independently
conducted visual, qualitative, and semi-quantitative
July 2022 | Volume 12 | Article 924223
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interpretation of all 18F-FDG and 68Ga-FAPI PET/CT.
Discrepancies were resolved through discussion and consensus.
Patient PET/CT images were assessed in the coronal, axial, and
sagittal planes. Positive lesions were identified by areas of non-
physiological uptake above background in 68Ga-FAPI or 18F-
FDG PET images. Positive lesions were combined with data from
the corresponding CT scan images for further diagnosis, and
their length were measured and recorded. Positive PET/CT
lesions were further categorized as non-malignant lesions,
primary tumors, distant metastases, or lymph node metastases.
18F-FDG PET/CT and 68Ga-FAPI imaging results were initially
compared via a visual assessment in which the two images for
each patient were assessed to establish their relative inferiority or
superiority when detecting primary tumors (based upon tumor
size and conspicuousness) and metastatic lesions (based upon
numbers, involvement, and conspicuousness). Semi-quantitative
analyses were then conducted by comparing 18F-FDG and 68Ga-
FAPI radiotracer uptake within the same lesions. SUVmax was
measured using the analytical workstation after the region of
interest (ROI) surrounding the lesion had been defined by a
physician. The TBR was defined as the difference in radiotracer
uptake between the lesion and background, and was measured
via dividing the SUVmax for a given lesion by the mean
normalized uptake (SUVmean) for normal background tissue.

Diagnostic Criteria
Histopathological findings were used for final diagnostic
determinations for all primary tumors. When histopathological
results were not available for metastases, final diagnosis was
made based upon the results derived from multiple imaging
modalities (MRI, enhanced CT, ultrasound, bone scan, PET/CT)
and corresponding follow-up imaging. During follow-up, a
suspicious lesion was considered to be malignant if it exhibited
progressive growth or the number and/or size of suspect lesions
declined following antitumor treatment.

Statistical Analysis
Statistical evaluations were executed using SPSS (v 26.0; IBM, NY,
USA). General data were compared through descriptive analyses,
with categorical variables being listed as numbers with
percentages, while continuous variables were listed as the mean
± SD. Chi-squared tests were used to compare numbers of positive
lesions. Student’s t-tests were employed for comparing SUVmax
and TBR values for specific lesions associated with 68Ga-FAPI and
18F-FDG PET/CT. Correlations between lesion length and
metabolic parameters (TBR and SUVmax) were assessed
through Spearman’s rank correlation analyses. A two-tailed P <
0.05 was the threshold of significance.

Results
Generally, this study enrolled 28 cases (13 male, 15 female;
median age: 60.5 years, range: 34-78 years). The basic features
of these cases are detailed in Table 1.

The patients had been newly diagnosed with NSCLC,
including 24 patients diagnosed with adenocarcinomas and 5
diagnosed with squamous cell carcinomas, with one patient
(patient 17) having been simultaneously diagnosed with two
Frontiers in Oncology | www.frontiersin.org 3167
primary tumors. In total, 16 patients underwent surgical
resection, with 10 having simultaneously undergone
mediastinal lymph node dissection. The remaining 12 patients
underwent non-surgical antitumor treatment.

Adverse Event
No patients developed any adverse events, discomfort, or
abnormalities with respect to heart rate, body temperature,
blood pressure, or mental status within 2 h following imaging
agent injection.

Comparison of Visual Assessment
Outcomes
Upon visual assessment, 68Ga-FAPI PET/CT enabled clearer
metastatic and primary tumor visualization as compared to
18F-FDG PET/CT in a majority of patients. Specifically, 68Ga-
FAPI outperformed 18F-FDG PET/CT for the visual evaluation
of primary tumors (14/28 [50.0%] vs. 9/28 [32.1%]) (Figure 1),
lymph node metastases (9/15 [60.0%] vs. 5/15 [33.3%]), pleural
metastases (3/3 [100.0%] vs. 0/3 [0%]) (Figure 2), hepatic
metastases (2/2 [100.0%] vs. 0/2 [0%]), and bone metastases
(6/7 [85.7%] vs. 0/7 [0%]), but it performed less effectively for
pulmonary (0/2 [0%] vs. 2/2 [100.0%]) and adrenal metastases
(0/2 [0%] vs. 2/2 [100.0%]) (Figure 3).

Lesion Detection Analysis
68Ga-FAPI PET/CT outperformed 18F-FDG PET/CT in a lesion-
based analysis when detecting hepatic (100% [4/4] vs. 25% [1/4])
and bone metastases (97.6% [41/42] vs. 83.3% [35/42])
(Figure 4), whereas 68Ga-FAPI was inferior to 18F-FDG PET/
CT when utilized to detect adrenal metastases (0% [0/2] vs. 100%
[2/2]). 68Ga-FAPI and 18F-FDG PET/CT performed similarly
when used to detect primary tumors (96.6% [28/29] vs. 93.1%
[27/29]), as well as lymph node (93.0% [53/57] vs. 86.0% [49/
57]), pulmonary (100% [3/3] vs. 100% [3/3]), and pleural
metastases (100% [8/8] vs. 87.5% [7/8]) (Table 2).

Comparison of Different
Pathological Types
Evaluation of metabolism of primary tumors and lymph node
metastases based on pathological type. For primary lung
adenocarcinoma, there was no statistically significant difference
in SUVmax (9.4 ± 4.8 vs. 8.7 ± 6.2, P = 0.572) and TBR (26.5 ±
19.9 vs. 19.7 ± 18.6, P = 0.131) between 68Ga-FAPI and 18F-FDG
PET/CT. For primary lung squamous cell carcinoma, there was
also no statistically significant difference in SUVmax (9.0 ± 4.1
vs. 15.8 ± 8.0, P = 0.156) and TRB (25.5 ± 14.1 vs. 44.2 ± 25.6, P =
0.16) between the two examination. For lymph node metastasis,
The SUVmax (8.4 ± 4.3 vs. 5.9 ± 4.2, P =0.001) and TBR (10.8 ±
6.4 vs. 5.7 ± 4.6, P = 0.001) of lymph node metastases from
adenocarcinoma were significantly higher in 68Ga-FAPI than in
18F-FDG PET/CT. In contrast, SUVmax (9.0 ± 5.3 vs. 11.2 ± 6.9,
P = 0.077) and TBR (9.1 ± 5.2 vs. 10.1 ± 6.3, P = 0.227) for lymph
node metastases from squamous cell carcinoma were not
statist ical ly significantly different between the two
examination modalities.
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A B

FIGURE 1 | A 70-year-old male (patient 9) diagnosed with adenocarcinoma. 68Ga-FAPI PET/CT (A) revealed an adenocarcinoma lesion with increased FAPI uptake
(solid arrows, SUVmax=6.3), while 18F-FDG PET/CT did not reveal any significant uptake in the primary lesion (B) solid arrows).
TABLE 1 | Basic patient characteristics.

NO. Sex Age Pathology Primary tumor site Length (cm) Metastases site Staging

1 F 44 ADC right upper lobe 5.9 LNM; LM; PM IVA
2 M 61 ADC left upper lobe 2.7 LNM; AM IVA
3 M 66 ADC right upper lobe 1.2 None IA
4 F 46 ADC left upper lobe 1.8 LNM; BM IVB
5 F 48 SCC left lower lobe 2.2 None IA
6 F 57 ADC left lower lobe 3.2 LNM; HM; BM IVB
7 F 53 ADC left upper lobe 1.1 None IA
8 F 72 ADC right upper lobe 1.2 None IA
9 M 70 ADC right upper lobe 2.3 None IA
10 F 78 ADC left lower lobe 8.1 LM; PM; BM IVA
11 M 68 ADC left upper lobe 2.1 LNM IIIA
12 F 57 ADC right middle lobe 2.8 LNM IIIB
13 M 69 SCC right lower lobe 3 None IA
14 M 49 ADC right upper/lower lobe 8.9 LNM, Pancreas, Kidney IVB
15 F 46 ADC right middle lobe 3.2 LNM IIIB
16 M 63 ADC left lower lobe 3.1 BM IVB
17 F 68 ADC

ADC
right lower lobe
right middle lobe

1.9
1.8

LNM IIIA

18 M 63 ADC left upper lobe 1.2 LNM;HM; BM IVB
19 M 71 SCC right upper lobe 3.3 LNM; BM IVA
20 M 67 SCC right upper lobe 2.7 AM IVA
21 M 34 ADC right lower lobe 3.3 LNM; BM IVB
22 F 58 ADC right lower lobe 3.1 LNM; PM IVA
23 F 61 ADC left upper lobe 2.2 LNM IIB
24 F 60 ADC right upper lobe 3.4 None IB
25 M 56 SCC left lower lobe 4.3 LNM IIIA
26 F 45 ADC right middle lobe 1.9 None IA
27 F 53 ADC right upper lobe 2.3 None IA
28 M 68 ADC right upper lobe 2.5 None IA
Frontiers in On
cology | www.
frontiersin.org
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SCC, squamous cell carcinoma; ADC, adenocarcinoma; LNM, lymph node metastasis; LM, lung metastasis; PM, Pleural metastasis; AM, adrenal metastasis; BM, bone metastasis; HM,
hepatic metastases.
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Comparison of Semi-Quantitative
Parameters
The SUVmax and TBR values for 68Ga-FAPI and 18F-FDG PET/
CT did not differ significantly when used for detecting primary
tumors, pulmonary metastases, and adrenal metastases, while the
SUVmax and TBR of 68Ga-FAPI were substantially superior to
Frontiers in Oncology | www.frontiersin.org 5169
those for 18F-FDG PET/CT when used to detect lymph node,
pleural, and bone metastases. Although there was no significant
difference in SUVmax between these two imaging modalities in
detecting liver metastases (P = 0.062), 68Ga-FAPI had
significantly greater TBR values relative to 18F-FDG (P =
0.027) (Table 2).
A B

FIGURE 2 | A 44-year-old female (patient 1) diagnosed with adenocarcinoma. 68Ga-FAPI PET/CT (A) revealed increased FAPI uptake in the primary lesion (solid
arrows, SUVmax = 11.7) and pleural lesion (dashed arrows, SUVmax = 7.0). 18F-FDG PET/CT (B) also showed high FDG uptake in the primary lesion (solid arrows,
SUVmax = 12.4), while the pleural lesion with only mild FDG uptake (dashed arrow, SUVmax = 2.2). The pleural lesion was deemed likely to be metastatic, as
confirmed upon subsequent follow-up.
FIGURE 3 | Visual assessment comparison for 68Ga-FAPI and 18F-FDG PET/CT. M = metastases.
July 2022 | Volume 12 | Article 924223
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The Relationship Between Lesion Length
and Suvmax
Significant correlations between lesion length and FAPI-SUVmax
were noted for primary tumors, lymph node metastases, and bone
metastases in Spearman’s correlation analyses, while FDG-
SUVmax values were only correlated with lesion length for
primary tumors and lymph node metastases but not for bone
metastases (Figure 5).

N and M Staging
Ten of all patients underwent mediastinal lymph node
dissection. A total of 180 lymph nodes underwent pathological
biopsy, of which 11 were malignant and 169 were benign. The
Frontiers in Oncology | www.frontiersin.org 6170
sensitivity and specificity of 68Ga-FAPI and 18F-FDG PET/CT
for detecting lymph node metastasis were 81.8% (9/11), 97.6%
(165/169) and 72.7% (8/11), 88.8% (150/169), respectively
(Figure 6). 68Ga-FAPI PET/CT led to a lower N-stage in 1
patient owing to overlooked lymph node metastases and a higher
N-stage in 1 patient owing to the detection of additional false-
positive lymph nodes. In contrast, 18F-FDG PET/CT detected
additional false-positive lymph nodes in 5 patients resulting in
higher N staging for these individuals. Overall, N-staging of
NSCLC patients based on 68Ga-FAPI-FAPI results was more
accurate than 18F-FDG PET/CT results in these same patients
(80% [8/10] vs. 50% [5/10]), but there was no significant
difference between the two values (p=0.16).
TABLE 2 | Comparison of 68Ga-FAPI and 18F-FDG PET/CT semi-quantitative imaging parameters.

Parameter Imaging
method

Primary
tumor

Lymph node metas-
tasis

Lung metas-
tasis

Pleural metas-
tasis

Hepatic metas-
tasis

Adrenal metas-
tasis

Bone metas-
tasis

Number of
lesions

29 57 3 8 4 2 42

Positive
detection

68Ga-FAPI 28 53 3 8 4 0 41
18F-FDG 27 49 3 7 1 2 35
P 0.554 0.222 1.000 0.302 0.028 0.046 0.026

SUVmax 68Ga-FAPI 9.3 ± 4.6 8.4 ± 4.3 2.4 ± 1.6 10.8 ± 3.6 6.2 ± 2.1 1.2 ± 0.4 11.2 ± 5.5
18F-FDG 9.9 ± 6.9 6.4 ± 4.7 2.9 ± 1.9 5.5 ± 3.0 3.4 ± 0.27 6.4 ± 3.3 6.5 ± 3.9
P 0.631 0.003 0.192 <0.001 0.062 0.237 <0.001

TBR 68Ga-FAPI 26.3 ± 18.8 10.6 ± 6.3 3.4 ± 1.8 9.1 ± 2.8 11.4 ± 5.3 1.6 ± 0.1 16.2 ± 11.2
18F-FDG 24.0 ± 21.6 6.1 ± 4.9 4.8 ± 3.2 6.2 ± 3.3 1.3 ± 0.3 3.3 ± 2.5 5.9 ± 5.8
P 0.589 <0.001 0.215 0.001 0.027 0.500 <0.001
July
 2022 | Volume 12
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FIGURE 4 | A 63-year-old male (patient 18) diagnosed with adenocarcinoma. 68Ga-FAPI PET/CT (A) showed intense tracer uptake in the primary tumor (solid
arrows, SUVmax=10.0), liver metastasis (dashed arrows, SUVmax=7.6) and bone metastases (arrows, SUVmax=8.3-8.5). 18F-FDG PET/CT (B) showed primary
lesion with mild FDG uptake (solid arrows, SUVmax=3.6), while no significant FDG uptake was showed in liver metastasis and multiple bone metastases.
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Distant metastatic lesions were found in 12 of all patients
(42.9%). 68Ga-FAPI PET/CT failed to detect adrenal metastases
in two patients, resulting in decreased M stage. 18F-FDG PET/CT
resulted in incorrect M staging due to 1 false positive adrenal
Frontiers in Oncology | www.frontiersin.org 7171
lesion and 2 false negatives for bone metastases. The overall M-
staging accuracy of 68Ga-FAPI PET/CT was slightly higher than
that of 18F-FDG PET/CT (92.9% [26/28] vs. 89.3% [25/28]), but
the values were not statistically different between them (P=0.64).
A B

FIGURE 6 | A 61-year-old female (patient 23) diagnosed with adenocarcinoma. 68Ga-FAPI PET/CT (A) revealed intense FAPI uptake in the primary tumor (solid
arrows, SUVmax = 9.7) along with moderately increased uptake in the left pulmonary hilar lymph node (arrows, SUVmax = 5.0), whereas there was no FAPI uptake
in the subcarinal and right pulmonary hilar lymph nodes (dashed arrows). 18F-FDG PET/CT (B) demonstrated intense FDG uptake in the primary tumor (solid arrows,
SUVmax = 9.0) with moderate uptake in the left pulmonary hilar (arrows, SUVmax = 4.5), subcarinal, and right pulmonary hilar (dashed arrows, SUVmax = 3.5) lymph
nodes. Pathological biopsy confirmed metastasis in the left hilar lymph node, while no metastasis was found in the subcardiac or right hilar lymph nodes.
A

B D

E

F

C

FIGURE 5 | Spearman rank correlation analysis of the relationship between SUVmax value and lesion length for primary tumors (A). FAPI-SUVmax; (B) FDG-
SUVmax), lymph node metastases (C). FAPI-SUVmax; (D) FDG-SUVmax), and bone metastases (E). FAPI-SUVmax; (F) FDG-SUVmax).
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DISCUSSION

The current exploration is to explore the comparative performance
of 68Ga-FAPI and 18F-FDG PET/CT in the evaluation of patients
with newly diagnosed NSCLC. Overall, these results show that
68Ga-FAPI PET/CT provides better lesion visualization and
staging accuracy than 18F-FDG PET/CT in NSCLC.

One recent analysis (31) comparing 68Ga-FAPI and 18F-FDG
reported no significant differences between these two technologies
with respect to primary lung cancer detection rates or associated
SUVmax or TBR values, in line with our findings. In contrast,
Wang et al. (35) reported that 68Ga-FAPI yielded significantly
higherSUVmaxandTBRvalues as compared to 18F-FDGPET/CT,
leading them to conclude that this former technology is better
suited to the detection of early-stage lung cancer. AS their analysis
specifically included individuals with large tumors (Mean size:
3.3 cm) and advanced disease, this may account for their
inconsistent results. In addition, no significant differences in
SUVmax and TBR were found in 68Ga-FAPI and 18F-FDG PET/
CT for different pathological subtypes of primary tumors.

At present, surgical tumor resection is the benchmark of care for
early-stageNSCLCpatients.Thecapabilityofpredictinganddetecting
regional lymph node metastases in these patients performs a central
task in treatment planning and associated management efforts (36,
37). While 18F-FDG PET/CT imaging is frequently employed as a
screening tool to stage lung cancer patients, it exhibits relatively low
sensitivity for smallmetastatic lesions locatedwithin lymphnodes (8,
9). In contrast, wediscovered that 68Ga-FAPIPET/CTwas capable of
detecting lymph node metastases more reliably than was 18F-FDG
PET/CT, yielding higher SUVmax and TBR values for these
metastases relative to the latter imaging modality. As 68Ga-FAPI
PET/CT imaging can detect lymph node metastases at an earlier
stage, it has the potential to increase occult lymph node metastasis
detection, guiding the more accurate staging of NSCLC patients.
However, for lymphnodemetastases from squamous cell carcinoma,
SUVmax and TBR of 68Ga-FAPI were not significantly different
compared to 18F-FDG. The ability of 68Ga-FAPI PET/CT to detect
lymph node metastasis in squamous cell carcinoma still requires
further and larger data studies. In patients undergoing mediastinal
lymph node dissection, 68Ga-FAPI detected fewer mediastinal false-
positive lymph nodes relative to 18F-FDG PET/CT, indicating that
68Ga-FAPI ismore specific and has the potential to reduce the rate of
unnecessary treatment in patients with NSCLC.

Our analyses additionally revealed 68Ga-FAPI to be superior to
18F-FDG PET/CT when used for the detection of hepatic, pleural,
and bone metastases, in line with prior evidence (28, 35, 38, 39).
This is ascribable to the reduced physiological uptake of the 68Ga-
FAPI radiotracer and associated sensitivity gains. High levels of
hepatic glucosemetabolismhave the potential tomask FDGuptake
bymetastatic lesions within this organ, while the use of 68Ga-FAPI
PET/CT may enable the more reliable detection of these lesions.
68Ga-FAPI PET/CT is also capable offacilitating the early detection
of occult bone and pleural metastases to guide more appropriate
patient staging and treatment efforts. Unfortunately, we found
discovered that 68Ga-FAPI PET/CT exhibited low sensitivity
when used to detect adrenal metastases, suggesting that such
lesions may be not associated with substantial fibrotic activity.
Frontiers in Oncology | www.frontiersin.org 8172
However, 18F-FDG PET/CT is also not effective in diagnosing
adrenal metastases due to its low specificity, suggesting that a
combination of CT imaging and other modalities is necessary to
ensure an accurate diagnosis. High physiological uptake in normal
organs masks lesions, or metastases with low FDG uptake or small
size are difficult todetect on 18FDG-PET/CT,whichmay lead to low
detection rates on 18F-FDGPET/CT. The superiority of 68Ga-FAPI
over 18F-FDGPET/CT for visual assessment and detection ofmost
metastases may be attributed to the higher FAPI accumulation in
the lesion and lower FAPI accumulation in normal organs.

There are multiple limitations to the present analysis. For one,
the number of included contributors was relatively small, and the
variety of NSCLC pathological types was limited, thus potentially
contributing to some degree of bias in the overall study results.
Second, accurate pathological results were not available for many
suspicious metastatic lesions in individuals with advanced
NSCLC as it is generally impractical and unethical to conduct
biopsies of these samples. Third, the minimum follow-up
duration for patients in this study was just 3 months, and
future studies should thus utilize an extended follow-up interval.

CONCLUSION

In summary, these results indicate that 68Ga-FAPI PET/CT
imaging demonstrates desirable performances when used for
the initial staging of newly diagnosed NSCLC. Moreover, 68Ga-
FAPI exhibits significantly better diagnostic efficacy relative to
that of 18F-FDG PET/CT imaging when used to detect metastatic
lesions in the lymph nodes, pleura, liver, and bone. Therefore,
68Ga-FAPI PET/CT is expected to be a viable imaging modality
for staging and management of patients with NSCLC, and may
be an ideal alternative to 18F-FDG PET/CT.
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Novel image features of optical
coherence tomography for
pathological classification of
lung cancer: Results from a
prospective clinical trial

Qiang Zhu1, Hang Yu1, Zhixin Liang1, Wei Zhao1,
Minghui Zhu2, Yi Xu1, Mingxue Guo1, Yanhong Jia1,
Chenxi Zou1, Zhen Yang1* and Liangan Chen1*

1Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army
(PLA) General Hospital, Beijing, China, 2Department of Pulmonary and Critical Care Medicine,
Zhongnan Hospital of Wuhan University, Wuhan, China
Background: This study aimed to explore the characteristics of optical

coherence tomography (OCT) imaging for differentiating between benign

and malignant lesions and different pathological types of lung cancer in

bronchial lesions and to preliminarily evaluate the clinical value of OCT.

Methods: Patients who underwent bronchoscopy biopsy and OCT between

February 2019 and December 2019 at the Chinese PLA General Hospital were

enrolled in this study. White-light bronchoscopy (WLB), auto-fluorescence

bronchoscopy (AFB), and OCT were performed at the lesion location. The

main characteristics of OCT imaging for the differentiation between benign and

malignant lesions and the prediction of the pathological classification of lung

cancer in bronchial lesions were identified, and their clinical value

was evaluated.

Results: A total of 135 patients were included in this study. The accuracy of

OCT imaging for differentiating between benign and malignant bronchial

lesions was 94.1%, which was significantly higher than that of AFB (67.4%).

For the OCT imaging of SCC, adenocarcinoma, and small-cell lung cancer, the

accuracies were 95.6, 94.3, and 92%, respectively. The accuracy, sensitivity, and

specificity of OCT were higher than those of WLB. In addition, these main OCT

image characteristics are independent influencing factors for predicting the

corresponding diseases through logistic regression analysis between the main
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OCT image characteristics in the study and the general clinical features of

patients (p<0.05).

Conclusion: As a non-biopsy technique, OCT can be used to improve the

diagnosis rate of lung cancer and promote the development of non-invasive

histological biopsy.
KEYWORDS

bronchoscopy, lung cancer, OCT, AFB, WLB
Background

Lung cancer is the leading cause of cancer deaths in the

world (1–3), which is a serious threat to human health. At

present, the “gold standard” for the diagnosis of lung cancer is

histopathological results, which could be obtained by

bronchoscopic biopsy, CT-guided lung biopsy, and surgical

operation. These biopsy methods have high diagnostic

accuracy; however, patients might suffer from complications

such as bleeding, pneumothorax, and infection. Moreover, some

of the biopsy methods are high risk, traumatic, and expensive (4,

5). In recent years, the “non-invasive histology” biopsy

technology, which can effectively avoid the possible

complications of tissue biopsy, has been developing by leaps

and bounds. Recent studies (6–10) have also reported that non-

invasive histological biopsy has high accuracy, sensitivity, and

specificity for the diagnosis of lung cancer, in which optical

coherence tomography (OCT) examination can achieve similar

histopathological diagnosis without biopsy.

OCT is a high-resolution optical imaging technology, which

has the characteristics of non-invasiveness, non-radiation,

simple operation, and high repeatability. OCT integrates new

technologies such as optics, supersensitive detection, and

computer image processing. It utilizes low-energy near-

infrared harmless light as the light source, and it detects the

microstructure of biological tissue using optical interference

principles. The resolution of the OCT image is 30 mm, and the

depth of tissue that it detects is 3 mm. Mucous layer, submucosa,

alveoli, glands, cartilage, and other structures of the bronchial
Small-cell lung cancer;

d tomography; WLB,

ronchoscopy; EBUS,

veolar lavage; HE,

ganization; IASLC,

ncer; ATS, American

ety; COPD, Chronic

a coagulation; FNA,
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wall are clearly presented in OC images, which are highly

matched with histopathological images. OCT imaging could be

applied to distinguish between benign and malignant bronchial

lesions, predict the histological classification of lung cancer, and

precisely detect small precancerous lesions that are unable to be

seen with naked eyes.

In 1998, Pitris (11, 12) has confirmed the feasibility of OCT

in human airway in vitro. Since then, studies (13–15) have

proposed the OCT imaging features for different types of lung

cancer with an accuracy of more than 80%. However, there are

limitations with the present studies. First of all, the OCT images

of adenocarcinoma, squamous cell carcinoma, and poorly

differentiated cancer were only completed in vitro in these

studies. It is known that the tissue degeneration and change of

blood flow could largely affect the OCT images, leading to the

inaccuracy of characteristics that were summarized. Second, the

sample size of these studies was also small, so that the results

need to be further verified. Third, the main OCT image features

of small-cell lung cancer were only reported in case reports,

which still need further verification (13). In addition, the OCT

image features summarized in these studies were few and lacked

unified image feature evaluation standards. Therefore, we aimed

to explore the main OCT image features for the differentiation

between benign and malignant lesions and for the prediction of

pathological classification of lung cancer including central lung

cancer and peripheral lung cancer and to evaluate their clinical

value in vivo. The results of this study might be useful for the

future application of OCT in the diagnosis, evaluation, and

prognosis of lung cancer.
Materials and methods

Research population

This prospective study collected and analyzed the data of

patients who underwent bronchoscopy biopsy and OCT

examination at the Interventional Diagnosis and Treatment

Center for Lung Cancer and Respiratory Diseases of the
frontiersin.org
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Chinese PLA General Hospital from February 2019 to December

2019. Prior to the study, all subjects had met the examination

indications in the guidelines for the application of diagnostic

flexible bronchoscopy in adults. This study was reviewed and

approved by the Ethics Committee of CPLAGH (Ethics No.

2018-232-01). Patients were fully informed of the possible risks

of the study and signed the informed consent form before the

study began.

The admission criteria of this study were as followed:

(1) voluntary participation and written informed consent

signed by patients, (2) age ≥ 18 years old, (3) patients with

routine diagnostic bronchoscopy through clinical evaluation,

(4) normal ECG, and (5) adequate hematopoietic function of

bone marrow and organs confirmed by blood examination. The

exclusion criteria of this study were as follows: (1) patients with

contraindication of bronchoscopy (such as respiratory failure

and acute cardio-cerebrovascular events), (2) patients who

refuse bronchoscopy because of physical reasons or personal

wishes, (3) patients who are not suitable for bronchoscopy or

OCT examination by researchers, (4) patients who cannot

tolerate operation during bronchoscopy resulting in the

uncompleted examination, (5) patients with unfound

abnormal lesion during routine bronchoscopy or those who

could not complete the biopsy, (6) patients who are participating

in other clinical studies, (7) patients with poor compliance who

are believed by the researchers to be unable to cooperate for the

completion of OCT examination and follow-up, and (8) women

who were pregnant.
OCT

OCT system: The OCT system (Yongshida Medical

Technology, Guangdong, China) has been approved by the

FDA (K102599) for medical research and application. OCT

system consists of image analysis system mainframe and

aseptic removable probe. The probe of OCT is a cylindrical

catheter with 1.7 mm in diameter and 150 cm in length, which is

sealed with transparent sheath of 1 mm in length near its head

and used for image scanning and acquisition. There is a flexible

optical fiber axis in the sheath rotating at the speed of 600–1200

rpm; the working wavelength of the optical fiber passing the light

source is 1300 nm and the frequency is 50kHz, the image

acquisition speed is 10 frames per second, the axial and

longitudinal resolution is 15 and 25 mm, respectively, and the

detection depth of gray scale and color mode is 3 mm.
Procedure

In this study, the relevant bronchoscopic procedures were

performed by a respiratory physician with 7 years of experience

in respiratory endoscopic diagnosis and treatment, including
Frontiers in Oncology 03
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preoperative evaluation, preparation, and anesthesia. The

respiratory endoscopic doctors completed the capability

training on OCT examination following the learning curve

prior to the formal inception of this study.

The respiratory endoscopic doctors had examined bronchial

lesions with white-light bronchoscopy (WLB), auto-fluorescence

bronchoscopy (AFB), and OCT successively after the completion

of preoperative anesthesia. Routine tissue biopsy was performed

on the same location after OCT examination, and the biopsy

samples were fixed in 10% formalin for subsequent

histopathological examination. If the lesion failed to be found

or biopsied during the bronchoscopy, the OCT examination will

not be performed, and the subsequent operation such as EBUS-

TBNA and BAL will be carried out routinely by the doctor. The

patients were followed up by telephone or outpatient service on

the 3rd and 7th day after the examination, and adverse events

and auxiliary examination results were recorded. The data of all

patients were recorded in detail as shown in the table of

case report.
Histopathology

After the OCT examination, the tissue specimens were

immediately fixed in 10% formalin, processed and sliced

according to the standard histological procedure, and stained

with HE. Two independent pathologists analyzed histological

sections of each subject according to the lung tumor

classification strategy proposed by WHO, IASLC, ATS, and

ERS (16, 17). Adenocarcinoma, SCC and small-cell lung

cancer were diagnosed by micro-endoscopy (magnification:

10–20).
Analysis on the images of WLB, AFB, and
OCT

The images of WLB and AFB were analyzed by respiratory

endoscope operators without knowing the histopathological

results, whereas OCT images were analyzed by the

professional analysts and three clinicians with professional

training experiences. The clinical values of WLB, AFB, and

OCT in differentiating benign bronchial lesions from

malignant ones and predicting different types of lung cancer

were further evaluated based on the histopathological results.
Statistics

SPSS23.0 statistical software was used for statistical analysis.

The measurement data that accord with the normal distribution

was expressed by X ± SD and the abnormal distribution by the

median value. The counting data were expressed by the
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percentage. Paired t-test was used to compare the intra-group

data in accordance with normal distribution. Independent

sample t-test was used to compare inter-group data. Paired

rank sum test was used to compare intra-group data in

accordance with abnormal distribution, and rank-sum test for

independent sample was used to compare inter-group data.
Results

Clinical information

A total of 135 patients were enrolled in this study. One

hundred five (77.78%) were men and 30 (22.22%) were women;

the mean age of the patients was 59.25 ± 10.35 (27–78) years.

Ninety-eight (72.59%) patients had a history of smoking. All

patients were examined by bronchoscopy biopsy and OCT

successfully under local or basic anesthesia, including 126

(93.33%) cases with local anesthesia and 9 (6.67%) cases with

basic anesthesia. There were 66 cases with left bronchial lesions

and 69 cases with right bronchial lesions. Histopathological

results of bronchial lesions included 30 (22.22%) cases with

benign lesions and 105 (77.78%) cases with malignant lesions.

There were 52 (49.52%) cases of lung squamous cell carcinoma

including 19 (18.10%) cases with lung adenocarcinoma and 34

(32.38%) cases with small-cell lung cancer. The average time of

OCT examination was 2.8 ± 1.6 min (Table 1). There were no

adverse events directly related to OCT examination in this study.
The image features and clinical values of
OCT, WLB, and AFB

The main OCT image features of benign bronchial lesions

was the integrity of normal structure with or without mucosal

edema, whereas the image of malignant bronchial lesions was

the destruction of normal structural layers including mucous

layer, submucosa, and adventitia (Figure 1). The accuracy,

sensitivity, and specificity of distinguishing benign from

malignant bronchial lesions based on the main OCT image

features were 94.1%, 97.1% and 83.3%, respectively. Receiver

operator characteristic curve (AUC) = 0.902 ± 0.041 (95% Cl =

[0.821, 0.983], P < 0.001). The AFB images of benign bronchial

lesions are green, whereas those of malignant bronchial lesions

are pink (Figure 2). The accuracy, sensitivity, and specificity of

distinguishing benign from malignant bronchial lesions through

AFB images were 67.4, 78.1, and 30%, respectively. AUC = 0.540

± 0.061 (95% Cl = [0.421, 0.660], P < 0.001). It can be seen that

the accuracy, sensitivity, and specificity of OCT in differential

diagnosis of benign and malignant bronchial lesions are higher

than those of AFB.

The main OCT image features of squamous cell carcinoma

include (1) “cyst-like” structure; (2) “round” or “irregularly
Frontiers in Oncology 04
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shaped” high-signal nests, with or without low-density

shadow; and (3) scaly protuberance of the epithelial layer and

a darkened gray color of the submucosa layer. The accuracy of

image features (2) for predicting squamous cell carcinoma was

95.6%. The sensitivity and specificity were 96.2 and 93.8%,

respectively. AUC = 0.964 ± 0.025 (95% Cl = [0.916, 1.000],

P < 0.001). The specificity was 100% by combining the image

features (1) and (3), but the sensitivity was reduced to

75% (Figure 3A).

The main OCT image features of adenocarcinoma include

(1) “round” or “angulated” poor signal structures in mucous

layer and (2) continuous low-density shadow in submucous

layer. The accuracy was 94.3% by combining image features (1)
TABLE 1 The clinical data of patients.

Characteristic Values

Gender——n (%)

Male 105 (77.78)

Female 30 (22.22)

Age——Years 59.25±10.35

Smoking——n (%)

Yes 98 (72.59)

No 37 (27.41)

Anesthetic method——n (%)

Local anesthetic 126 (93.33)

Basic anesthetic 9 (6.67)

Location of lesion——n (%)

RMB 4 (2.96)

RUB 20 (14.81)

RISB 11 (8.15)

RMIB 12 (8.89)

RLB 19 (14.07)

LMB 10 (7.41)

LUB 10 (7.41)

LSLB 9 (6.67)

LLB 5 (3.70)

LLLB 35 (25.93)

Histopathology——n (%)

Benign 30 (22.22)

Inflammation of mucosa 23 (76.67)

Granulomatous inflammation 3 (10)

Necrotizing inflammation 4 (13.33)

Malignant 105 (77.78)

SCC 52 (49.52)

adenocarcinoma 19 (18.10)

SCLC 34 (32.38)

Time (min)

Total 18.6±6.5

WLB 8.7±1.2

AFB 7.1±1.4

OCT 2.8±1.6
fro
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and (2) for predicting adenocarcinoma, the sensitivity and

specificity was 89.5 and 100%, respectively, and AUC = 0.947

± 0.042 (95% Cl = [0.865, 1.000], P < 0.001) (Figure 3A).

The main OCT image features of small-cell lung cancer

include (1) low signal lines, which resembled “fracture line,” (2)

a significantly thickened lamina propria with a darkened gray

color of the submucosa layer. The accuracy for predicting small-

cell lung cancer was 92% by combining OCT image features (1)

and (2); the sensitivity and specificity was 91.2 and 93.8%

respectively; AUC = 0.939 ± 0.034 (95% Cl = [0.872, 1.000],

P < 0.001) (Figure 3C).

The accuracy was verified by incorporating the main OCT

image features for the three types of lung cancer into the total

sample size and drawing ROC curves, respectively. The AUC

was 0.945 ± 0.023 for squamous cell carcinoma (95% Cl= [0.900,

0.989], P < 0.001), 0.947 ± 0.041 for adenocarcinoma (95% Cl =

[0.866, 0.989], P < 0.001), and 0.941 ± 0.030 for small-cell lung

cancer (95% Cl = [0.882, 1.000], P < 0.001). Therefore, the main
Frontiers in Oncology 05
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OCT image features for the three types of lung cancer in this

study have been verified with high accuracy (Figure 4). In

addition, the study showed that the accuracy of WLB in

predicting squamous cell carcinoma, adenocarcinoma, and

small-cell lung cancer was about 70%, which was significantly

lower than that of OCT in predicting the pathological

classification of lung cancer.

We have conducted a further statistical analysis on the main

OCT image features for benign and malignant lesions and for

the three types of lung cancer by combining with the total

sample size and drawing ROC curves to evaluate its accuracy for

the diagnosis of bronchial lesions. The AUC was 0.902 ± 0.023

for benign bronchial lesions (95% Cl= [0.821, 0.983], P < 0.001),

0.945 ± 0.041 for squamous cell carcinoma (95% Cl= [0.900,

0.989], P < 0.001), 0.947 ± 0.041 for adenocarcinoma (95% Cl=

[0.866, 1.000], P < 0.001), and 0.941 ± 0.030 for small-cell lung

cancer (95% Cl= [0.882, 0.983], P < 0.001) (Figure 5). In

addition, these main OCT image features are independent
FIGURE 1

The main OCT feature of benign and malignant bronchial lesions. (A): benign bronchial lesions. (B): malignant bronchial lesions.
FIGURE 2

The AFB image feature of benign and malignant bronchial lesions. (A): benign bronchial lesions. (B): malignant bronchial lesions.
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influencing factors for predicting the corresponding diseases

through constructing Logistic regression analysis between the

main OCT image characteristics in the study and the general

clinical features of patients (Table 2). Therefore, the main OCT

image that features each has shown a good differentiation from

the other three features in predicting the corresponding diseases,

that is, different OCT image features have specific corresponding

diagnostic significance.

Discussion

OCT is a newly developed technology with real-time

imaging in vivo. Researches about OCT have been conducted

in various fields of medicine (18), especially in ophthalmology,

cardiovascular, and digestive tract diseases. OCT outperformed
Frontiers in Oncology 06
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CT and ultrasound with its high resolution and non-radiation

process, indicating its potential clinical application.

At present, OCT has been applied in respiratory diseases such

as COPD, bronchial asthma, and lung cancer based on the principle

that tissue images can be constructed by computer processing after

infrared scattering, and the microstructure of bronchial wall can be

recognized in real time. Unlike ultrasound, light waves of OCT do

not need liquid medium for propagation, indicating that OCT is

more suitable to be used in airway imaging. Moreover, OCT does

not require a catheter to contact the tissue, which in turn minimizes

adverse reactions that are commonly seen in invasive examination

procedures. There is also no risk of exposing to infrared light in a

short period of time. In addition, the OCT catheter probe reaches

the end of the bronchoscope through the working channel of the

bronchoscope and then is further sent to the lesion. During the
A

B

C

FIGURE 3

(A) The main OCT image features for predicting SCC: (1) “Cyst-like” structure, (2) “round” or irregularly shaped” high signal nests, with or without
low-density shadow, (3) Scaly protuberance of the epithelial layer, and a darkened gray level of the submucosa layer was found. (B) The main
OCT image features for predicting adenocarcinoma: (1) “Round” or “angulated” poor signal structures was found in mucous layer, (2) continuous
low density shadow was found in submucous layer. (C) The main OCT image features for predicting SCLC: (1)Low signal lines, which resembled
“fracture line”, (2) a significantly thickened lamina propria with a darkened gray level of the submucosa layer w2as foundcontinuous low density
shadow was found.
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operation, there might be adverse reactions caused by the catheter

touching the bronchial wall or the lesions, so scholars have listed

OCT examination as one of the “minimally invasive” examinations

(19). The adverse events were consistent with the above study, and

there were no adverse reactions directly related to OCT

examination. Only several cases of mild bleeding or cough were

noticed. The adverse reactions were improved and did not affect the

continuation of OCT examination after short observation or local

administration of a small amount of hemostatic drugs. In this study,

the analysts for OCT image features consisted of a professional

OCT image analyst and a trained respiratory physician, pathologist,
Frontiers in Oncology frontiersin.or07
181
and thoracic surgeon, which were of great significance for judging

the histological features of lung cancer, evaluating OCT image

features and imaging artifacts, and assessing whether OCT imaging

can be evaluated in real time during the examination. In addition,

although the real-time scanning location of OCT catheter was close

to that of biopsy, it was not completely consistent in vivo, so the

OCT images could not match the images of tissue pathological

sections under microscope, and the one-by-one comparative

analysis was not available; therefore, the clinical value of OCT

images was evaluated based on the results of histopathology. The

OCT examination takes only a few minutes, and the tissue
A B

C

FIGURE 4

(A) ROC curve for verifying the accuracy of major OCT image features of squamous cell carcinoma. (B) ROC curve for verifying the accuracy of
major OCT image features of adenocarcinoma. (C) ROC curve for verifying the accuracy of main OCT image features of small cell lung cancer.
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microstructure of bronchus such as mucous membrane,

submucosa, cartilage, and adventitia were imaged with high

resolution without contact with the bronchus in our study; these

data are consistent with the findings in other literatures (20, 21). It is

worth noting that it is recommended to increase local topical

anesthesia for the target lesions and its adjacent bronchi prior to

OCT examination, which is useful to increase the tolerance of

patients, and reduce the possibility of OCT catheter touching the

bronchial wall and lesions, so as to prevent cough stimulation from

affecting the imaging effect and destroying the lesions.

The traditional method of respiratory endoscopy for

distinguishing benign bronchial lesions from malignant ones is

to identify with the naked eyes through the endoscopic images

formed in the process of WLB or AFB. WLB has significantly
Frontiers in Oncology 08
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increased the image resolution and improved the ability to

distinguish the nature of bronchial lesions by using electronic

bronchoscope instead of fiberoptic bronchoscope. However, it is

still difficult for experienced bronchoscopic operators to identify

subtle mucosal lesions (22, 23). Fluorescence bronchoscopy has

been proved to be highly sensitive in differentiating benign and

malignant endobronchial lesions, but it has a high false positive

rate due to bronchial mucosal inflammation and bleeding. Low

specificity is another problem for fluorescence bronchoscopy

(24, 25), which is further confirmed in our research results.

Former studies (12, 13, 26) have confirmed that OCT can

distinguish normal bronchial tissue from tumor lesions with

the principle that the mucous layer and submucosa of bronchial

wall thickened in different stages of cancer; however, no study
TABLE 2 The logistic regression analysis of the general clinical features and main OCT image characteristics in the differentiation of benign and
malignant bronchial lesions and histopathological classification of lung cancer.

OCT B S.E. Wald p OR
(95% CI)

Distinguish between benign and malignant 5.136 0.764 45.232 <0.001 170

(38.058, 759.374)

SCC-"High signal nests" 5.771 0.836 47.6 <0.001 320.833

(62.272, 1652.987)

Adenocarcinoma-"Low density gland" & "continuous low-density shadow" 4.642 1.06 19.162 <0.001 103.765

(12.983, 829.312)

SCLC-"Fracture line" & "Thickened lamina propria" 5.822 0.842 47.795 <0.001 337.556

(64.796, 1758.491)
FIGURE 5

Four main OCT image characteristics have a high degree of differentiation to predict the corresponding disease.
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had summarized and proposed the main OCT image features in

distinguishing benign bronchial lesions from malignant ones. In

our study, for the first time, we found that whether the mucosal

layer is edematous and the normal structural layer is destroyed

are the main OCT image features in distinguishing between

benign and malignant bronchial lesions. The accuracy of the

main OCT image features in distinguishing benign and

malignant bronchial lesions was 94.1%, and the sensitivity and

specificity were 97.1 and 83.3%, respectively, both of which were

significantly higher than those of AFB. Therefore, comparing

with AFB, OCT has more clinical value in distinguishing benign

and malignant bronchial lesions. It is worth noting that the

histopathological results of malignant lesions were invasive

cancer in our study, whereas OCT images of precancerous

lesions and carcinoma in situ could also show the integrity of

normal tissue structure, which was reported in early studies.

However, there was a significant difference between benign and

malignant bronchial lesions in OCT images in our findings.

Therefore, the differentiation between bronchial benign lesions

and bronchial precancerous lesions or carcinoma in situ still

needs more research and further exploration.

OCT has been used to assist the diagnosis and treatment of

lung cancer with the development of interventional diagnosis

and treatment of respiratory diseases. Many studies (14, 15, 27)

have preliminarily reported that the accuracy of main OCT

image features for distinguishing adenocarcinoma, squamous

cell carcinoma, and poorly differentiated lung cancer in vitro was

more than 82.6%. However, whether the OCT image features of

tissue specimens in vitro can reflect the actual condition still

needs to be further confirmed, because tissue degeneration and

internal blood flow changes will occur in the excised specimens,

and the effects of cough, spontaneous breathing, heartbeat, and

secretions on the imaging results will not be truly reflected in the

examination process. In our study, the clinical value of OCT in

real-time diagnosis of lung cancer was evaluated for the first

time, and the main OCT image features for predicting

adenocarcinoma, squamous cell carcinoma, and small-cell lung

cancer were proposed and verified. There are three main OCT

image features with squamous cell carcinoma. The sensitivity of

any image features in predicting squamous cell carcinoma was

100%, but the specificity was only about 31.2%. The specificity

was 100% by combining the three image features to predict

squamous cell carcinoma, but the sensitivity was very low.

However, the main image features (2) showed high clinical

value with the accuracy of 95.6%, and the sensitivity and

specificity were 96.2 and 93.8%, respectively. The accuracy and

specificity of the main OCT image features of squamous cell

carcinoma, which was proposed by previous studies in vitro,

were 82.6 and 87% (14), respectively. Therefore, the main OCT

image features (1), (2), or (3) can be used as the preliminary

screening image for the diagnosis of squamous cell carcinoma,
Frontiers in Oncology 09
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and the final image features should be the main OCT image

features (2) or the combination of features (1), (2), and (3). It is

recommended to choose the combination of each (1) and (2) as

the main OCT image features in predicting adenocarcinoma and

small-cell lung cancer. The accuracy of the main OCT image

features of adenocarcinoma was 94.3%; the sensitivity and

specificity were 89.5 and 100%, respectively, which were

significantly higher than those in the previous studies in vitro

(80.3 and 88.6%). The main OCT image features of small-cell

lung cancer were proposed by the study for the first time and

initially showed high accuracy, sensitivity, and specificity.

Therefore, compared with previous studies, the main OCT

image features in the study can be used to predict the

histological classification of lung cancer significantly. In

addition, the sensitivity and specificity have been comparable

with the results of studying esophageal and cardiovascular

diseases for which the application of OCT is more mature

(28–30) and the accuracy results by verification had significant

statistical results (P<0.05). In addition, the study also found that

the accuracy, sensitivity, and specificity of OCT in predicting the

pathological classification of lung cancer were higher than those

of WLB, so the clinical value should be affirmed. While the OCT

images cannot be compared with the histopathological images

one by one, therefore, the analysis of OCT images is affected by

subjective factors to a certain extent, and the related research

data need to be confirmed by more studies. The latest study (31)

reports that the OCT catheter is integrated into the 19G

puncture needle, which design is useful to highly match the

location of OCT examination and aspiration tissue, and the OCT

images are more matched with histopathological images, which

is expected to obtain more OCT image features with reality and

reliability. However, currently, the product is tested using

animals; we are looking forward to the relevant findings for

clinical research after the product is put on the market.

To sum up, OCT is very useful to clinicians in differentiating

benign and malignant bronchial lesions and for the histological

classification of lung cancer, especially for patients who are

unable to perform tissue biopsy or cannot obtain accurate

histological pathological results after biopsy. Meanwhile, it can

also provide real-time imaging of the lesions during

bronchoscopy and guide the location of bronchoscopy biopsy

to improve the positive rate of biopsy and the diagnosis rate of

lung cancer. We can even choose direct operation after

evaluating the lesion by OCT examination for patients who

was diagnosed as lung cancer clinically and have the chance for

operation, and there is no need for bronchoscopic biopsy so that

the lung cancer metastasis caused by biopsy can be avoided. In

addition, studies (32, 33) have suggested that OCT is also helpful

in the treatment of lung cancer including auxiliary airway stent

implantation, APC, cryosurgery, and other interventional

therapy and to explore the relationship between OCT image
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features and gene mutations in patients with lung cancer who

cannot be biopsied because of high risk of secondary biopsy after

targeted drug resistance. However, the findings in the studies

were still preliminary. It is expected that more research findings

will form a sufficient basis to support its clinical application. It is

worth noting that artificial intelligence has been widely used in

the diagnosis and treatment of lung cancer in recent years, and

OCT will be combined with artificial intelligence in the diagnosis

and treatment of lung cancer, but there are still few OCT image

features that were found so far, which is not enough for

mechanical learning and deep learning. However, the

development of follow-up research and the establishment of

the database will carry out mechanical learning with massive

image features and establish a basic model according to the

learning results, and deep learning combined with basic clinical

features is conducive to the automation, standardization, and

individualization of OCT in the diagnosis and treatment of

lung cancer.

Although the findings of the study are quite encouraging, the

accuracy, sensitivity, and specificity are not sufficient to support

OCT as a complete substitute for tissue biopsy. A study (34)

reported that the histopathological results of specimens obtained

by FNA were consistent with the pathological results of resection

specimens, including 96.2% for adenocarcinoma and 84.7% for

squamous cell carcinoma. There are differences between the

accuracy of the main OCT image features of lung

adenocarcinoma in our study and the above findings, which

might due to some important factors that could affect the OCT

process. For example, we mainly analyzed the OCT image

features of the most common primary lung cancer, but the

histological classifications of lung cancer diverses and the OCT

image features of some rare lung cancer and metastatic lung

tumors still need to be further explored. It has been reported that

only 32% of poorly differentiated cancers can be accurately

classified by histopathological method (34–36). With the rapid

development of targeted therapy in the field of lung cancer

treatment in recent years, it may be necessary to perform

multiple tissue biopsies for gene detection to evaluate the

targeted drug resistance of lung cancer and guide the next step

of treatment (37–39). This situation makes other non-invasive

tissue biopsy techniques including OCT difficult to completely

replace tissue biopsy in a short time. In addition, the resolution

of OCT cannot fully reach the level of the microscope, and

adjustable factors such as lens selection, focal length adjustment,

and high power lens field of view of the microscope cannot be

achieved by OCT temporarily. Some factors affecting OCT

imaging include spontaneous respiration, heartbeat, blood,

airway secretions, calcification, fibrosis, and so on; more

advanced technologies need to be developed for data

acquisition and automatic image processing to improve the
Frontiers in Oncology 10
184
authenticity of airway images and standardize the clinical

application of OCT images (40, 41).
Conclusions

In summary, the safety and effectiveness of OCT were

confirmed by our study; however, the current findings are not

sufficient to support OCT as a complete substitute for tissue

biopsy. Nevertheless, optical signals have stronger ability to

penetrate tissues with the further development of OCT

technology, and the images will have higher resolution and

better matching with histopathological images after reducing

the influencing factors. It is expected to carry out larger sample

size research in the future including early screening of lung

cancer and diagnosis of peripheral lung cancer to find more

OCT image features of clinical significance. Big data integrate

the clinical data of patients with OCT image features and

combine with the artificial intelligence, which will play an

important role in the clinical application of OCT for the

diagnosis and treatment of lung cancer.
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