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Editorial on the Research Topic

Genomic selection and characterization in Cereals

Introduction

Genomics is the branch of biological science in which the genomic content and

structure of an individual genome are evaluated to ascertain expression and characterize

its functions at the molecular, cellular, and cytological levels, and higher, in an ecosystem.

Advancements based on multi-omic approaches have been reported in genetic and

breeding studies of sustainable food security and climate-resilient crop improvements.

The integration of biotechnology and bioinformatics has resulted in significant progress

in identifying, analyzing, and verifying various structural, functional, and comparative

genomic features in living beings.

Cereals have not only been selected as a staple food but also as a source of nutrients

and income worldwide. The identification and verification of major and minor genes

contributing to sustainable food security and resistance to biotic and abiotic stresses will

be essential for breeding climate-resilient varieties and hybrids.

Peer-reviewed studies were collected on the latest trends, which covered three areas of

genetics: forward, reverse, and comparative genetics. The articles characterized double

haploids (DH), near-isogenic lines (NILs), diverse populations, segregating populations,

and other domesticated germplasm, and presented models and marker-based genomic

selection for improving crop yield and resistance to environmental stresses. These articles

focused on rice, wheat, maize, and Sorghum crops.
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Wheat

Wheat is a major staple food grown in 89 countries and

consumed by 2.5 billion people. Genetic improvement of wheat

is indispensable for meeting the dietary requirements of a global

population of ~9.8 billion in 2050. The identification and induction

of multi-ovary genes from mutant to semi-dwarf wheat lines

through hybridization improved the grain yield potential of

wheat Irshad et al. Three-pistil (multi-ovary) wheat is also a

useful genetic resource for the commercial hybrid-seed

production of wheat. Among insect pests, multivoltine insects,

including saddle gall midge, orange, and yellow wheat blossom

midges, fruit flies, and thrips are catastrophic for the environment in

Europe. Arif et al. identified 246QTLs resistant to these insects using

genome-wide association studies (GWAS) in winter- and spring-

wheat populations. The potential candidate genes were predicted to

be involved in stomatal immunity and closure, and leaf-blade

cuticular wax development, leading to the formation of physical

barriers to insects. Some other candidates were predicted to be

involved in the production and regulation of certain enzymes against

stress stimuli. One study revealed two stable and five environment-

specific QTLs for inducing stripe-rust resistance in wheat Tehseen

et al.

Sandhu et al. explored the scope of multi-trait genomic

selection (GS) models for predicting qualitative traits through

cross-validation, independent-prediction, and independent-

and-across-location prediction for a panel of 666 soft-white-

wheat genotypes grown for 5 years. The results revealed that

the overall prediction accuracies of the multi-trait GS model

for within- and across-location prediction were 5.5% and 7.9%

better, respectively, than the single or uni-trait models.

Merrick et al. compared the regression and classification-

based genomic selection models in winter wheat for the

skewed phenotypes of infection type (IT) and stripe-rust-

disease-severity (SEV). The best combination of relative

efficiency and accuracy was found for the square root-

transformed phenotypes using ridge-regression-best-linear-

unbiased-prediction and support-vector-machine-regression

models. The study concluded that breeders can accurately

predict their breeding lines with skewed phenotypes by using

non-parametric and linear regression models over combined

years.

Tehseen et al. collected 600 bread-wheat landraces from eight

ecological zones and characterized them with 11,830 high-quality

SNPs Tehseen et al. The research suggested the model-based

methods (DAPC and PCA) along with the STRUCTURE

method is the best way for precise dissection of the population

structure. The study explored the complex genetic architecture of

studied landraces from the Fertile Crescent region using

population structure analysis and estimation of genetic diversity.

Another study characterized 1,285 advanced breeding lines

using historical multi-environment data for GS in breeding

programs Ballén-Taborda et al. This study revealed that multi-

institutional partnerships and genomics-enabled breeding are a

useful approach for accelerating the varietal development

process.

Rice

Rice is the second top staple cereal food worldwide. The

number of panicles per plant is a major yield component in

rice. The nucleotide-binding adaptor shared by APAF-1, R

proteins, and CED-4 (NB-ARC) plays a significant role in the

structural development of plants, including panicle number. A

study identified 258 members of the NB-ARC gene family in

rice and characterized them for their structural, functional,

and expression patterns. These genes were shown to be

expressed in panicles, leaves, and roots, and regulated plant

growth at panicle development stages. Among the NB-ARC

genes, GNP12 has been characterized as regulating rice yield

by improving panicle features (panicle length and panicle

grain number) and grain length in its eight major identified

haplotypes Pan et al.

Another novel study evaluated multiple stress tolerance at

the seed-germination stage to enhance the direct-seeded rice

pattern. A total of 117 QTLs from 99 loci governing salinity,

anaerobic, and combined (anaerobic and salinity) stress

tolerance in rice were detected Islam et al. The study also

observed two genes, OsMT2B (Os01g0974200) and OsTPP7,

involved in multi-stress tolerance. Another study evaluated

the genomic factors of low-temperature tolerance and the

accumulation of essential minerals in a gene pool of near-

isogenic lines (NILs) for genomic selection in japonica rice Ali

et al. The study revealed the genomic regions associated with

zinc, calcium, magnesium, chromium, phosphorous content,

and low-temperature tolerance in rice at the booting stage Ali

et al. The genomic regions significantly associated with

chilling stress tolerance may not only help germplasm

screening in rice breeding-targeted areas but also the

biofortification of essential nutrients in grains. High

cadmium accumulation in plants is a serious threat and

known to cause cancer in humans. The GWAS-based

characterization study of the rice genome found eight QTLs

and 1,656 differentially expressed genes (DEGs), of

which 799 and 857 DEGs were respectively expressed in

root and shoot for Cd accumulation. A locus, LOC_

Os11g11050, significantly associated with cadmium

reduction was validated for marker-assisted genomic

selection Wang et al.

Genomic selection by identification of the right parental

combinations to maximize heterosis in hybrid breeding is also

a well-known breeding and genetic tool. Hussain et al. revealed

the temperature-sensitive genetic male sterility (TGMS) and

cytoplasmic male sterility (CMS) lines and reported the best

heterotic groups for hybrid rice breeding.
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The reproductive stage in rice is vulnerable to drought

causing a significant decrease in crop yield. Ahmad et al.

characterized green super rice for morpho-physiological and

molecular responses to drought at pre-anthesis. The

germplasm was evaluated for certain drought-responsive genes

(OsDSM1, OsSADRI, and OsDT11), and also mined for novel

drought-responsive genes (LOC_Os02g11960, LOC_Os11g36190,

LOC_Os12g04500, and LOC_Os12g26290) that enhance drought

tolerance in rice breeding Ahmad et al.

Genomic selection by multi-trait (MT) genomic prediction is a

useful tool for conserving phenotyping resources. It exploits the

information from auxiliary or non-target traits and can enhance

the prediction accuracy of target traits. Epistatic effects along with

haplotype-based evaluation can improve the predictive ability in

MT model genomic selection with additive effects Muvunyi et al.

Maize

In maize, flowering time is among the most important

agronomic traits that contribute to total yield. A study

evaluated genomic variation and heterochromatic knob

content Carvalho et al. and revealed that chromosome nine of

the maize genome is associated with the heterochromatic knob

that could reduce flowering time

Barley

Barley (Hordeum vulgare) is the fourth most economically

important cereal worldwide. Various genomic selection and

characterization models have been studied in barley. However,

the multi-parent advanced generation inter-cross (MAGIC) lines

were found to be the most suitable for understanding the genetic

basis of several traits and dissecting epistatic traits (Tao et al., 2022).

This population, along with empirical analyses, was better than QTL

mapping and/or epistatic effects at predicting grain yield.

Sorghum

Two-component signal-transduction-system (TCS) genes assist

plants in various physiological and cellular processes, such as cell

division, leaf senescence, nutrition signaling, stress resistance, and

chloroplast division. There are three types of proteins for developing

these systems Irshad et al.: the response regulators (RRs) (Arif et al.),

histidine kinases (HKs), and (Tehseen et al.) histidine

phosphotransfer (HPs) proteins. A study on the Sorghum bicolor

genome identified 37 TCS genes containing 13 HKs, five HP

proteins, and 19 RRs (3 type-A, 7 type-B, 2 type-C, and

7 pseudo-RRs). Expression validation by qRT-PCR and RNA-seq

confirmed the responsive expression of these TCS genes to salt and

drought stresses in Sorghum leaves Zameer et al.
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Chilling stress at booting stage can cause floret deterioration and sterility by limiting the
supply of food chain and the accumulation of essential mineral elements resulting in
reduction of yield and grain quality attributes in rice. Genomic selection of chilling tolerant
rice with reference to the accumulation of mineral elements will have great potential to cope
with malnutrition and food security in times of climate change. Therefore, a study was
conducted to explore the genomic determinants of cold tolerance and mineral elements
content in near-isogenic lines (NILs) of japonica rice subjected to chilling stress at flowering
stage. Detailed morphological analysis followed by quantitative analysis of 17 mineral
elements revealed that the content of phosphorus (P, 3,253 mg/kg) and potassium (K,
2,485 mg/kg) were highest while strontium (Sr, 0.26 mg/kg) and boron (B, 0.34 mg/kg)
were lowest among the mineral elements. The correlation analysis revealed extremely
positive correlation of phosphorus (P) and copper (Cu) with most of the cold tolerance
traits. Among all the effective ear and the second leaf length correlation was significant with
half of the mineral elements. As a result of comparative analysis, some QTLs (qBRCC-1,
qBRCIC-2, qBRZC-6, qBRCHC-6, qBRMC-6, qBRCIC-6a, qBRCIC-6b, qBRCHC-6, and
qBRMC-6) identified for calcium (Ca), zinc (Zn), chromium (Cr) and magnesium (Mg) on
chromosome number 1, 2, and 6 while, a novel QTL (qBCPC-1) was identified on
chromosome number 1 for P element only. These findings provided bases for the
identification of candidate genes involved in mineral accumulation and cold tolerance in
rice at booting stage.

Keywords: chilling stress, minerals, QTLs, booting stage, tolerance

INTRODUCTION

Oryza sativa (an Asian cultivated rice), one of the most valuable food crops universally, is more
vulnerable to freezing stress than other cereal crops such as barley (Hordeum vulgare) and wheat
(Triticum aestivum), may be due to originated from subtropical or tropical zones (Sasaki and Burr,
2000; Zhang et al., 2014; Li et al., 2021). The O. sativa comprises of two subspecies indica and
japonica, cultivated from two wild (O. nivara and O. rufipogon) rice (Sang and Ge, 2013, 2007), and
are contradictory in many physiological and morphological attributes (Lv et al., 2016). Among all

Edited by:
Muhammad Sajjad,

COMSATS University, Pakistan

Reviewed by:
Chunlin Long,

Minzu University of China, China
Amin Mirshamsi Kakhki,

Ferdowsi University of Mashhad, Iran
Yinghua Pan,

Guangxi Academy of Agricultural
Sciences, China

*Correspondence:
Muhammad Kazim Ali
ali.kazimm@gmail.com

Ya-Wen Zeng
zyw@yaas.org.cn

Specialty section:
This article was submitted to

Evolutionary and Population Genetics,
a section of the journal
Frontiers in Genetics

Received: 05 October 2021
Accepted: 29 October 2021

Published: 18 November 2021

Citation:
Ali MK, Sun Z-H, Yang X-M, Pu X-Y,
Duan C-L, Li X, Wang L-X, Yang J-Z
and Zeng Y-W (2021) NILs of Cold
Tolerant Japonica Cultivar Exhibited

New QTLs for Mineral Elements
in Rice.

Front. Genet. 12:789645.
doi: 10.3389/fgene.2021.789645

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7896451

ORIGINAL RESEARCH
published: 18 November 2021

doi: 10.3389/fgene.2021.789645

9

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.789645&domain=pdf&date_stamp=2021-11-18
https://www.frontiersin.org/articles/10.3389/fgene.2021.789645/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.789645/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.789645/full
http://creativecommons.org/licenses/by/4.0/
mailto:ali.kazimm@gmail.com
mailto:zyw@yaas.org.cn
https://doi.org/10.3389/fgene.2021.789645
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.789645


abiotic factors temperature is a critical environmental component
influencing plant growth and development therefore japonica
cultivars are mostly freezing tolerant, as compared to the indica
subspecies, letting japonica to lead in the moderate zones. Under
the pace of climate change, severe freezing climate incidents are
becoming more common and low temperature reduces rice
production and distribution worldwide (Jacobs and Pearson,
1994; Pan et al., 2015). Therefore, it is estimated that the
losses in the production of rice in China alone are accounted
for 3–5 million tons per annum (Liu and Deng, 2009) while ≥1.5
million hectares of rice producing fields are threatened due to
cold stress damages. Chilling damage in rice happens at all
phenological stages, together with the vegetative (germination
and seedling) and reproductive (booting and flowering) phases.
Chilling stress at booting stage may cause floret deterioration and
sterility by limiting the food supply chain and the accumulation of
essential mineral elements consequently reduction in rice yield
and grain quality attributes is significant (Cruz et al., 2013).
Although growth stage specific various quantitative trait loci
(QTLs) have been linked with cold tolerance in rice (Zhou
et al., 2010; Shinada et al., 2014; Endo et al., 2016; Li et al.,
2018), only some genes have been functionally depicted,
including CTB4a, Ctb1, qPSR10, qLTG3-1, HAN1, bZIP73,
and COLD1 (Fujino et al., 2008; Saito et al., 2010; Ma et al.,
2015; Zhang et al., 2017; Liu et al., 2018, 2019; Xiao et al., 2018;
Mao et al., 2019). Because cold stress tolerance is a complicated
characteristic influenced by many genes and proteins. Among all,
only CTB4a and Ctb1 grant chilling tolerance at the booting stage
(Saito et al., 2010; Zhang et al., 2017). Taking into account the
significance of chilling tolerance in rice production, investigating
more alleles/genes that can be employed to produce new cold-
tolerant rice cultivars at the booting stage is highly imperative.

Essential mineral elements are more important to cope with
malnutrition or hidden hanger particularly in developing
countries where access to nutritious food is limited. Because
food containing essential mineral elements have indirect and
direct influence on the physiological and cellular metabolism of
humans and plants. Therefore, the Chinese Nutrition Society
recommends daily intake of some mineral elements in Chinese
adults because the intake of these elements is not enough and
recommended to improve the food chain to meet the
requirements (Wang et al., 2017). Moreover, the poor intake
of many important minerals or lack of nutritious food may cause
disturbance in the function of many organs of human body which
can lead to severe diseases (Sautter et al., 2006; Sun et al., 2011).
Among all the nutrients, the deficiency of iron (Fe) and zinc (Zn)
are the most important elements, and it affected ≥2 billion people
all over the world (Kennedy et al., 2003; Hambidge and Krebs.,
2007). Therefore, developmental delay and stunted growth are
more common in Zn deficient patients while Fe deficient diets
leads to develop anemia (Umeta et al., 2000). For example, the
appropriate level of selenium level (0.3–0.5 μg·g−1) in rice or in its
products are considered a successful way of supplying selenium
for prevention of cancers (Finley et al., 2001; Sautter et al., 2006),
because various epidemiological research manifested intake of
selenium inversely correlates with mortality rate of cancer. Intake
of approximately 400 g of se-enriched rice products per day can

provide 100–200 μg of Se. Similarly, Ca is also the most essential
nutrients lacking in many peoples including the Chinese people.
The national per capita intake of calcium is 405 mg per day,
accounting only 49.2% of Recommended Dietary Allowance
(RDA) requirements (800 mg/day) therefore about 1.2 billion
people are calcium deficient (Ma et al., 2005). According toWorld
Health Organization (WHO), 50% women are iron deficient
anemia in Africa and Asia. Economic loss of iron deficiency
anemia (IDA) disease in China is equivalent to 3.6% of gross
national product (GDP) and it is expected that the economic loss
led by iron deficiency anemia in adults will reach 70 billion yuan
in the next 10 years. According to another report, the total loss
caused by anemia will reach 2,178.7 billion yuan (Guo et al.,
2016). Likewise, Zinc is also one of the 16 essential trace elements
important to human health and life. According to an estimate Zn
deficiency affects the health of about two billion people around
the world. Because Zn plays a catalytic or constructive role for a
variety of metalloenzymes, transcription factors and proteins
essential for human health (Prasad 2003; Noulas et al., 2018).

Although rice is most important staple food, but it is not a
good source of minerals therefore can’t fulfill the requirements of
essential microelements particularly in rural areas where people
can’t afford healthy foods and they only rely on rice for their
energy intake. However, there are many possible ways to
developed micronutrient rich rice varieties including
biofortification method to cope with malnutrition or hidden
hanger (Zimmermann and Hurrell, 2002; Bouis and Welch,
2010; Bashir et al., 2013). Numerous reports on genotypic
dissimilar rice accessions for accumulation of mineral elements
in rice revealed indicating that the variation in the uptake and
accumulation of minerals elements are species specific. Therefore,
the increment of essential micronutrients in rice grain though
modern breeding techniques is a vital task and the best way to
cope with malnutrition (Chen et al., 2002). Currently significant
attempt has been made to the enhancement of the nutritional
caliber of rice grain through genetic engineering and other
breeding techniques (Bao, 2014). Using mapping population of
doubled haploid, many QTLs were finemapped for Fe, Mn, P, Cu,
and Zn contents (Stangoulis et al., 2007). Some other reports
showed 41 QTLs for 17 mineral elements content (Norton et al.,
2010). Similarly, the concentration of Ca, Fe, Mn, Cu and Zn were
supposed to regulated by ten QTLs and twenty-eight interactions
of digenic QTLs (Lu et al., 2008). Likewise, another report on
analysis of introgression lines derived from the cross between the
Oryza ruf ipogon (wild rice) and Teqing an indica elite variety
manifested 31 putative QTLs for K,Mg, P, Zn, Ca, Mn, Fe, and Cu
contents and among them many QTLs for these attributes were
contributed by the wild rice types (Garcia-Oliveira et al., 2009). In
addition, QTLs for various minerals were discovered the same
position; these congregate QTLs also contribute valuable
knowledge for concurrent upgrade of content of various
minerals in rice kernel through molecular breeding (Ishikawa
et al., 2010). For example, Zhang and his coworkers mapped
about 134 trait loci (QTLs) associated with 16 minerals using two
mapping populations of rice which were distributed into 39
genomic parts (Zhang et al., 2014). In another report, 14
QTLs were identified for Zn and Fe content of rice seed.
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While the genes (OsNAS1, OsARD2, OsNAS2, OsIRT1, and
OsMTP1, and OsYSL1) were reported as high priority
candidate genes for Zn and Fe accumulation (Anuradha et al.,
2012). Elucidating the molecular markers and its expression and
regulation systems for production and accumulation of essential
mineral elements is obligatory for improvement of mineral
elements in rice through biofortification techniques (Masuda
et al., 2013). But despite the several reports, the total QTLs
responsible for accumulation and distribution of mineral
elements in rice grains are still need some insight particularly
when plant itself are under stress condition.

Based on the importance of nutritious rice, this paper analyzes
the correlation between the content of 17 mineral elements and
the cold-tolerance traits of rice and aims to clarify the relationship
between cold tolerance and mineral element content at the
booting stage and provide a biochemical basis for the study of
cold tolerance mechanism. To understand the variation and
mutual relationship of mineral elements in near-isogenic lines
and to provide theoretical support for improving the content of
beneficial elements in brown rice. To enhance the content of
mineral elements in rice grain through biofortification and
influence of environmental fluctuations in this process need
additional work to identify and validate new QTLs. In this
study, we explored some new QTLs governing the
concentration of minerals and at the same time some cold
tolerance attributes using populations of NILs and the
objectives were 1) to explore the genotypic variation in the
content of 17 mineral elements and their correlation with
phenotypic markers, 2) to identify the association of mineral
elements with each other, and 3) to determine new QTLs
responsible for mineral content and to elucidate the QTL
combine for micronutrient elements and cold tolerance. This
study should furnish the understanding of production and
control of mineral elements content in rice under cold stress
and may boost improvement of rice cultivars in times of climate
change.

MATERIALS AND METHODS

Plant Material
This study was carried out at two locations, namely
experimental farm of Yunnan Academy of Agricultural
Sciences, Kunming, China, and the second in a
mountainous village of Aziying located 40 km away from
Kunming, China, having 1,916 and 2,150 m altitude,
respectively. Some details of the experimental condition
including geographical locations, temperature, planting
period, and the cold stress treatment are summarized in
supporting Table 1 (Supplementary Table S1). The
mapping population (261 lines including two parents) of
nearly isogeneic lines (NILs) were developed as described
previously by Li et al. (2018). The cold tolerant NILs
progenies was obtained and selected in each backcross
generation after successful crossing of cold tolerant rice
cultivar (Lijing2) with cold sensitive rice cultivar
(Towada). All the 261 NILs were planted in end of May

and harvested in first week of October for three consecutive
years (Supplementary Table S1). Standard protocols were
adopted for nutrient and pest management along with
conventional practices for field management and soil
analysis (Supplementary Table S2) in production of rice
in this area. After harvesting the rice seeds were air dried
followed by dehusking on a Rice Machine (Satake Co., Tokyo,
Japan).

Analysis of Cold Tolerance Based on
Growth and Yield Attributes
Rice adaptation under cold stress, particularly at the booting
stage was assessed through number of plant growth attributes
specific to booting. Therefore, rice growth attributes
including anther length (AL), anther width (AW), plant
height (PHt), effective tillering (ET), panicle length (PaL),
flag leaf length (FLL), flag leaf width (FLW), uppermost leaf
length (ULL), reciprocal first leaf length (RFLL), reciprocal
first leaf width (RFLW), reciprocal secondary leaf length
(RSLL), reciprocal secondary leaf width (RSLW), internode
length below spike (ILBS), uppermost internode length
(UIL), second internode length (SIL), first and second
internode length (1-2IL), spike length (SL), full grains
(FG), blighted grains (BG), and number of grain per
panicle (NOGP) recorded during this study. Three
individual plants per line in every repetition were noted
and the mean of the two repetition (including six
individual plants) as corresponding morphological traits.
Full grains (FG), blighted grains (BG), number of grains
per-panicle (NOGP), anther length (AL), and anther width
(AW) were obtained in lab. Number of grains per panicle and
rate of seed setting were determine using the following given
formula.

Number of grains per panicle (NOGP) � FG + BG
Rate of seed setting (RSS) � (FG/NOGP × 100%).
Three inflorescences of individual plants per line in every

repetition were measured by the Universal Projection meter and
the mean of two repetitions (including 18 inflorescence), as the
corresponding anther was evaluated. The correlations between
RSS with 19 other morphological traits were determined by using
statistical software SPSS 20.0 (SPSS Inc., Chicago, IL,
United States).

Quantitative Analysis of Mineral Elements
For further analysis of mineral elements, samples of rice seeds
were smashed to powder form while the preparation of sample
and quantification of mineral elements were carried out
according to Jiang et al. (2007). Approximately 0.5 g of
powdered rice weighed out and carbonized on an electro
thermal plate at 250°C, placing it into a crucible until the
sample changed into black. The samples plus crucibles were
dry-ashed at 550°C for 10–12 h in a muffle furnace. A white
remainder was acquired, after incineration of the sample,
followed by careful shift into a volumetric flask (50 ml).
Approximately 5 ml of HCl (6 M) were added in the flask to
dissolve the residue and 50 ml with water were used to dilute it.
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The solutions (diluted) then used to determine mineral element
content by inductively coupled plasma mass spectroscopy (ICP-
MS) (Agilent 7500A; Agilent Technologies, CA).

QTL Analysis
Total DNA was extracted by CTABmethod using the fresh leaves
of rice (Rogers and Bendich, 1989). For the design and synthesis
primers, molecular markers of simple sequence repeat (SSR) were
selected from the database of Gramene (http://www.gramene.
org). To perform the amplification of DNA through PCR, the
reaction mixtures (10 µl) was prepared with 10 µmol of forward
and reverse primers, PCR buffer (10X), Taq DNA polymerase,
dNTPs (10 mM), and 30 ng of template DNA. The condition of
PCR reaction was set at: Initial denaturation at 95°C for 5 min
(one cycle), followed by 35 cycles of denature at 95°C for 30 s,
annealing at 55°C for 30 s and extension at 72°C for 30 s, and after
these 35 cycles, reaction was set at 72°C for 10 min for final
extension. To make the DNA single stranded the PCR products
were subjected to 95°C for 5 min followed by electrophoresis in
denaturing polyacrylamide (6%) gels followed by silver staining
(Panaud et al., 1996).

According to International Rice Genome Sequencing Project
(IRGSP, 2005) rice entire genome constitutes 1,526.8 cM and
with mean interval cM are 2.5, and we used 647 SSR markers
evenly distributed over all 12 chromosomes to assess
polymorphisms between two parents. The DNA amplification
followed by polyacrylamide gel electrophoresis revealed
approximately 183 differential bands of SSR markers showing
polymorphisms between parents and later these SSR makers used
to genotype the NILs population. After performing the bulked
segregation analysis (BSA), the DNA of five highest calcium
containing lines were mixed and pooled as one group and the
DNA content of the five lowest calcium containing lines were
mixed and pooled as one group. Approximately, 125 pairs of SSR
primers were used to determine the polymorphism between
parents and NILs pool to identify QTLs for calcium content in

brown rice seeds. There is a common banding pattern in the
amplification bands of the two pools of Lijing2 and high calcium
gene pools, but not in the Towada and low calcium gene pools.
The selected primers are expanded to apply for the amplification
of DNA of the entire population. The result of the amplification
and the calcium content of brown rice was significant (One-way
ANOVA). Similarly, SSR primers associated with iron and zinc
were screened as described above. Analysis of QTL was carried
out using QTL IciMapping 3.2 software and interval method was
analyzed according to Wang et al. (2012).

Statistical Tools for Correlation Analysis
General linear model (GLM) procedure was used to perform
ANOVA test with the help of SAS program (SAS Institute, Cary,
NC). To determine significant variation among NILs, a new
multiple-range Duncan’s test was accomplished while PROC
CORR procedure used to analysis of correlation.

RESULTS

Phenotypic Traits and Correlation Analysis
Quantitative analysis of mineral elements was significantly
variable between the parents and among the population. The
average value, SD, coefficient of variation and minimum/
maximum value of 17 mineral elements of NILs of Towada
brown rice and their parents has been compiled in Table 1.
Among the 17 mineral elements, phosphorus showed the highest
(3,253.23 mg/kg, Lijiang2 japonica) amount followed by
potassium (2,485.05 mg/kg, Lijiang2), while the Sr (0.26 mg/kg,
Towada) and B (0.34 mg/kg, Lijiang2) had lowest in both parents
and NILs. However, the content of three mineral elements (Ca,
Fe, and Zn), was significantly higher in the donor (Lijiang2)
parent than that of the recurrent (Towada) parent. While in the
population, the coefficient of variation of Na was the largest
(95.93%), followed by Ni (77.65%) and K had smallest variation

TABLE 1 | The mean, SD, coefficient of variation and ratio between maximum and minimum content of 17 mineral elements in the parent (Towada and Lijiang2) and in the
population of near-isogenic lines (NILs) of Towada brown rice subjected to cold stress at booting stage.

Mineral element Parental parents Near isogenic line NIL-s

Towada Lijing2 Mean Std. D CV (%) Min/max

P (mg/kg) 2,977.32 3,253.23 3,376.34 ± 34.52 557.68 16.52 2020.87/5,143.92
K (mg/kg) 2,234.58 2,485.05 2,341.96 ± 16.24 262.4 11.2 1,448.95/3,113.77
Ca (mg/kg) 147.07 182.18 152.24 ± 1.24 20.01 13.14 92.07/213.38
Mg (mg/kg) 1,131.05 1,162.38 1,135.91 ± 8.82 142.56 12.55 645.92/1,580.99
S (mg/kg) 1,035.58 1,207.05 1,054.14 ± 7.56 122.1 11.58 398.55/1,370.84
Fe (mg/kg) 11.61 24.01 11.28 ± 0.19 3.00 26.64 5.40/23.62
Mn (mg/kg) 26.56 26.67 31.27 ± 0.32 5.17 16.53 16.64/54.96
Cu (mg/kg) 12.74 12.13 10.72 ± 0.42 6.79 63.32 0.00/47.60
Zn (mg/kg) 33.85 42.23 43.06 ± 0.46 7.37 17.11 23.03/67.56
B (mg/kg) 11.79 0.34 2.08 ± 0.07 1.08 51.89 0.00/9.04
Mo (mg/kg) 1.37 1.47 2.03 ± 0.08 1.24 61.28 0.00/5.08
Al (mg/kg) 7.40 6.68 10.13 ± 0.33 5.40 53.27 0.00/31.87
Cr (mg/kg) 0.93 1.05 1.29 ± 0.05 0.89 68.84 0.00/5.14
Na (mg/kg) 17.11 25.63 12.97 ± 0.77 12.44 95.93 0.00/87.43
Ni (mg/kg) 1.21 1.21 1.63 ± 0.08 1.27 77.65 0.00/6.53
Sn (mg/kg) 3.51 2.82 3.63 ± 0.12 1.96 54.02 0.00/11.85
Sr (mg/kg) 0.26 0.34 0.36 ± 0.01 0.13 36.66 0.00/0.71
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(11.20%), followed by S (11.58%). Therefore, coefficient of
variation of 17 elements has been found as, Na > Ni > Cr >
Cu >Mo > Sn > Al > B > Fe > Zn > Sr >Mn > P > Ca >Mg > S >
K. The SD showed that the distribution of P elements in the
population has the largest average dispersion of the average
(557.68), while the average dispersion degree of Sr element is
the smallest (0.13). Therefore, the SD of the 17 elements found as:
P >K >Mg > S >Ca >Na > Zn >Cu >Al > -Mn > Fe > Sn >Ni >
Mo > B > Cr > Sr. Comparing the content of other elements with
the content of the trace element revealed the coefficient of
variation of various elements is smaller than that of trace
elements while the SD is greater than that of trace elements.
Comparing the differences of the 17 elements in the parents and
the population, it was found that the content of the other
elements except the iron element appeared in the descendant
group above and below the parent, Cu, B, Mo, Al, Cr, Na. The Ni,
Sn and Sr elements have undetected lines in the progeny
population.

The statistical values of the kurtosis and skewness of the
17 mineral elements content in brown rice are presented in
Table 2 while the normal distribution of only six minerals is
presented in figures (Figure 2). Among the 17 mineral elements,
ten elements (P, K, Ca, Mg, Fe, Mn, Zn, Al, Cr, and Sn) are
normally distributed (KS-p >0.05), and the proportion of
normal distribution of large elements (80%) is larger than
that of trace elements (25%). Moreover, the maximum peak
value was exhibited by B (11.86) and Na (10.24) while Zn and K
showed minimum (0.01 and 0.17) peak value, respectively.
Compared with kurtosis, the variation of skewness of
17 mineral elements is quite different. The five elements (K,
Mg, S, Mo, and Sr) are left-biased, and the other twelve are right-
biased, indicating that most of the 17 mineral elements have
high content (relative and average) of the elements accounted
for a large proportion. Combining the distribution of elements
from parental line, in the normal distribution map, it is
preliminarily concluded that the population satisfies the

characteristics of the distribution of Ca, Fe, and Zn in the
near isogenic lines.

Similarly, the correlation among 17 mineral elements
quantified in brown rice of the Towada near isogenic lines are
presented in supporting information (Supplementary Table S3).
It is observed that among the 17 mineral elements, Fe is most
closely related to the other 16 elements and showed highly
positive significant with all other elements except S. The B
element is the second which showed significant positive
correlation with 15 elements while the P and Sr elements are
significantly correlated with the 14 elements. Cu showed
significant positive correlation with only seven elements, with
the least of the 17 elements, followed by Zn, which is significantly
correlated with the eight elements, indicating that the other
elements with higher copper and zinc content are relatively
less. Further analysis of the correlation between the elements
found that except for the significant negative correlation between
Ca and Sn elements, the others were positively correlated with
each other. The supporting information (Supplementary Table
S3) showed that there is a correlation between most of the
elements however considering the antagonistic or promoting
effect of the element on absorption and accumulation, the
partial correlations (Table 3) of the three elements of calcium,
iron and zinc with the remaining 17 elements was calculated to
eliminate the effect. Among the three elements, calcium showed
extremely significant partial correlation with ten elements (P, Mg,
S, Fe, Mn, Cu, Mo, Al, Cr, and Sr), in which P, Mo, Al, and Cr
were negatively correlated with Ca while rest were positively
correlated. Iron showed very high significant positive correlation
with all elements except three (P, Ca, and Cr) elements, which
showed relatively low significance level. The zinc and the six
elements (Mg, S, Mo, Al, Cr, and Ni) manifested significant
correlation, in which Mo and Cr were negatively correlated and
the rest were positively correlated. The elements that have
reached a very high significant partial correlation with iron

TABLE 2 | The statistical analysis (Skewness and Kurtosis) for normal distribution
test of mineral elements and their results in Near-isogenic lines (NILs) of
Towada brown rice.

ME KSZ KS-p Skewness Kurtosis

P 0.92 0.37 0.51 0.18
K 0.68 0.74 −0.13 0.17
Ca 0.57 0.90 0.15 0.21
Mg 0.42 0.99 −0.03 0.34
S 1.54 0.02 −1.74 8.83
Fe 1.45 0.05 1.07 1.88
Mn 0.66 0.77 0.48 1.51
Cu 3.59 0.00 0.53 4.82
Zn 0.68 0.75 0.31 0.01
B 2.10 0.00 2.36 11.86
Mo 1.83 0.00 −0.05 −0.97
Al 1.08 0.19 0.65 1.66
Cr 1.41 0.05 0.55 0.53
Na 3.10 0.00 2.61 10.24
Ni 2.08 0.00 0.42 −0.35
Sn 1.33 0.06 0.41 0.99
Sr 1.68 0.01 −0.65 1.34

TABLE 3 | The correlation (partial) result of calcium, iron and zinc with all 17mineral
elements content of brown rice of Towada NILs.

ME Calcium Iron Zinc

P −0.21** 0.19** 0.01
K 0.04 0.09 0.03
Ca 1.00 0.12* 0.06
Mg 0.21** −0.04 0.25**
S 0.14* −0.08 0.19**
Fe 0.12* 1.00 0.09
Mn 0.27** −0.10 0.01
Cu 0.21** 0.07 0.05
Zn 0.08 0.11 1.00
B −0.07 0.04 −0.04
Mo −0.13* −0.11 −0.12*
Al −0.16** 0.15 0.13*
Cr −0.22** 0.18** −0.13*
Na 0.09 −0.05 −0.09
Ni 0.01 −0.03 0.12*
Sn −0.09 0.04 0.02
Sr 0.52** −0.02 0.08

*Means that the data is significant statistically at p < 0.05.
**Means it is significant at p < 0.01.
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had a very significant in simple correlation, with the difference
that the coefficient of partial correlation with the three elements is
reduced. The simple correlation analysis showed that the iron
element and the other 16 elements have reached a high significant
level and comparing the two correlations it can be concluded that
iron is greatly affected by its elements. Compared with iron, the
partial correlation between calcium and zinc elements and other
elements is complicated. Among the ten elements that are
extremely significantly related to calcium, there is no
significant correlation between Cu, Mo, Al and Cr, and Ca, so
the correlation coefficients of these four elements decreased. A
simple comparison of the simple correlations and partial
correlations of the three elements Ca, Fe, and Zn reveals that
the correlation coefficient that reaches the significant or
extremely significant correlation level has only a change in
size, and there is no change in the relevant trend (positive and
negative).

Correlation analysis between mineral content and
morphological traits is conducive to the selection of high (or
low) elemental lines of brown rice and it supports the
improvement (or reduction) of brown rice element content
through cultivation measures. Correlation between the content
of mineral elements in 17 brown rice varieties and other
morphological traits in the Towada near-isogenic lines has
been presented in the supporting file (Supplementary Table
S4). Comprehensive analysis of the correlation between
mineral element (17) and morphological traits (20) manifested
that each element had significant correlation with only three traits
(average). Among the 20 morphological traits, the effective ear
and the second leaf length were most closely related to mineral
elements and were significantly correlated to the seven mineral
elements while the length of the ear and the length of the second
internode showed correlation with six elements. However, five
kinds of mineral elements had extremely significant correlation
for the plant height, leaf down, while four mineral elements
showed extremely significant correlation with the length and
unfilled grains. While the length of the stem, the length of the flag
leaf, the width of the flag leaf, the width of the inverted leaf, and
the length of the 1–2 section are the least correlated with the
mineral elements. No mineral element is significantly correlated
to the length of the anther and the width of the inverted leaf
however the number of solid grains and the seed setting rate
showed significantly correlated to a mineral element. Further
analysis revealed that the correlation between most mineral
elements and rice anther length showed maximum correlation
as compared to the width of rice grain. Similarly, anther length,
one leaf length, 2 s leaf length and two internode lengths are
extremely significant with P element and but with the anther
width, the width of the inverted leaf and the width of the inverted
two leaves, had no significant correlation. S element had
significant correlation with the length of the inverted leaf, the
length of the two internodes and the length of the ear. Among the
16 elements the negative correlations were more than the positive
correlations and the positive/negative ratio compiled in one table
(Table 4). Collectively, the correlation analysis data (Table 4 and
Supplementary Table S4 of supporting file) showed that Cu is
most affected by morphological traits and is significantly related

to ten morphological traits, ranking first among 17 mineral
elements. Secondly, P element is extremely significant and
correlated significantly with eight morphological traits. Ni and
Cr elements correlated significantly with six morphological traits;
K element is least affected by morphological traits, and there is no
form. However, the ten elements P, Mg, Fe, Mn, Cu, B, Mo, Cr,
Ni, and Sn in the 17 mineral elements had significant correlation
with one cold tolerance traits (Tables 4, 5). Further analysis of the
above-mentioned ten elements was positively correlated with the
cold-related morphological traits at the booting stage and found
that except for the positive correlation with the number of
glutinous grains, the others were negatively correlated,
indicating that the relationship between the ten elements and
the cold-tolerant traits at the booting stage was complicated. The
correlation between the above elements and morphological traits
was compared. The correlation coefficient between Cu and the
inverted two leaves was −0.24, followed by the correlation
coefficient between Fe and inverted two leaves had −0.21. In
the cold-tolerant traits, the length of the second leaf was most
closely related to the mineral element content and showed a very
high significant correlation with the seven elements. The results
of the Tables 1–5 showed that only ten of the 17 mineral elements
(P, Mg, Fe, Mn, Cu, B, Mo, Cr, Ni, and Sn) are related to the cold
tolerance at the booting stage. The frequency distribution of some
cold tolerance (Figure 1) attributes and some minerals (Figure 2)
elements are presented in the form figures. Based on this, we
constructed a near-isogenic pool of brown rice calcium, iron and
zinc to find its content QTL, aiming to evaluate its relationship
with cold tolerance at booting stage at the molecular level and to
improve the content of these beneficial mineral elements in rice.

Identification of QTLs
Screening of high calcium, iron and zinc lines were performed
using SSR primers followed by synthesis of new primers for
polymerase chain reaction. PCR amplification results of near-
isogenic pools of Lijian2 found that primers including RM8268,
RM5536, RM5644, RM5529, RM5480, RM3894, RM6364, and
RM-4608, showed high band amplification in DNA samples of
Lijian2 (higher mineral elements in gene pool) while there was no
amplification in the DNA samples of Towada (low mineral
elements in the gene pool). It is preliminarily judged that
these eight primers are linked with the markers controlling to
the content of calcium, iron, and zinc in Lijiang2. These eight
primer pairs were used to amplify the DNA of NILs populations,
and the amplification results marked as “1” common with
Towada parent and “2” common with Lijing2 while both
categories were marked as “3” and the missing ones marked as
“0.” The amplification results then tested by one-way variance
significance test with the population of calcium, iron and zinc.
According to the requirement of LSD (Least-Significant
Difference), the one-way variance significance test was
associated with the probability value p at 0.05. The test results
revealed only three primers (“RM5536,” “RM5529,” and
“RM4608”) had significant (p < 0.05) variation. The
amplification results of RM5536 and the one-way variance
significance test of calcium, iron and zinc content showed
association at p of 0.02, 0.05, and 0.05, respectively. The
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amplification results of primer RM5529 are accompanied by one-
way variance significance test of calcium and iron content showed
the probability values of p was 0.03 and 0.01, respectively. The
amplification results of the primer RM4608 and the one-way
variance significance test of the iron and zinc content were
accompanied by probability values p of 0.05 and 0.05 (Table 6).

Genome database search (http://www.gramene.org/) of these
three SSR markers revealed that the primer “RM5536” is located
on chromosome number 1 and the core sequence is 14 repeats of
adenine and cytosine (AC). The specific sequence is CACGTACCA
GCCTTGATGAATCC (pre), TGGGCTATACT-AATCCCGTC
ATCC (post) while the primer “RM5529” is located on
chromosome 2, and the core sequence is AC with 13 repeats.
The specific sequence is: GTACTACATCGGTTGTGTAGTTGG
(pre), CATACGTTAATGGCT-CATCTCG (post). The primer
“RM4608” was found located on chromosome 6 amplifying the
23 repeats of core sequence of AT (AT23), with the specific sequence:
ACCCAATATGGT-GCAATAGAGACC (former), CACCTCCAC
CAACTTTGACAGG (post). The content of the elements is related
so these three primers can be preliminarily determined to be with
calcium, iron, iron and zinc (or two of them). According to the
positions of these three primers on the genetic map of rice, 10 pairs

of SSR primers with similar distance were synthesized. Among them,
like the primer “RM5536” the ten primers are RM5794, RM5362,
RM5410, RM12171, RM12172, RM5310, RM12176, RM12177,
RM12178, and RM12179. Similarly, the ten primers were
synthesized as RM12406, RM12409, RM12431, RM12438,
RM12440, RM12448, RM123RM12455, RM12457, and RM12466
were designed like the primer “RM5529.” While the 10 primers
designed according to the primer “RM4608” were RM585, RM6536,
RM1163, RM6917, RM115, RM6119, RM2434, RM7-561, RM6773,
and RM2126. The newly synthesized thirty pairs of primers were
subjected to PCR amplification of the near isogenic line population,
and the amplification results were labeled in the same manner as
above. The linkage group was constructed and confirmed using
MAPMAKER 4.0 software at LOD score 3.0. 10 SSR primers
synthesized and used according to RM5536 (Total 11 markers)
and results showed four primers group: RM5536, RM5794, RM5362,
and RM12178. Similar protocol was adopted for synthesis of new
SSR markers for “RM5529” and “RM4608” also. Out of 11 primers
for each the amplification results revealed five primers group
including RM5529, RM12409, RM3495, RM12406, and RM12477
for former one (RM5529) and same group (five membered)
including RM4608, RM19491, RM19489, RM6119, and
RM19487, observed for later (RM4508) marker. A linkage group
was constructed for these three groups of primers, and a linkagemap
was drawn using MapDraw2.1 software. Three linkage groups were
analyzed and found that the primer four primers of RM5536 linkage
group are biased in favor of Lijing2 and Towada and the
contribution rate of the groups were 0.62 and 0.38, respectively.
The five primer amplification results of the primer RM5529 linkage
group, one primer (RM3495) was biased towards Lijing2, and the
others were biased towards Towada. The contribution rates of
Lijing2 and Towada were 0.48 and 0.52, respectively.

The results of the amplification of the five primers of the
primer RM4608 linkage group were all biased towards Towada,
and the average contribution rate of the population of Lijing2 and

TABLE 4 | Relationship between the total content of 17 mineral elements and cold stress tolerance attributes of Towada brown rice NILs at booting stage.

Mineral element
(ME)

Seed setting
rate (SSRa)

Real grain
number (FG)

Number of
grains (BG)

One section
length (UIL)

1-2 sections
long (1-2IL)

Inverted two
leaves long

(RSLL)

P −0.11 −0.06 0.16** −0.14* −0.02 −0.16**
K −0.07 −0.06 0.09 −0.10 −0.03 −0.04
Ca 0.07 0.03 −0.10 0.02 0.08 −0.04
Mg −0.11 −0.12* 0.10 −0.08 −0.01 −0.05
S −0.08 −0.09 0.08 −0.07 0.06 −0.08
Fe 0.08 0.01 −0.07 −0.02 0.08 −0.21**
Mn −0.08 −0.02 0.12* −0.09 −0.03 −0.14*
Cu 0.01 −0.04 −0.03 −0.20** −0.04 −0.24**
Zn −0.02 −0.03 0.04 −0.11 −0.09 −0.06
B −0.06 −0.08 −0.01 −0.03 0.01 −0.14*
Mo −0.10 −0.07 0.12* −0.05 −0.05 −0.06
Al −0.05 −0.06 0.05 −0.03 −0.05 −0.10
Cr −0.03 −0.03 0.04 −0.14* −0.04 −0.16**
Na 0.01 −0.07 −0.08 0.06 0.04 −0.08
Ni −0.03 −0.04 0.03 −0.13* −0.02 −0.15*
Sn −0.13* −0.10 0.14* −0.06 −0.03 −0.06
Sr 0.00 0.00 0.00 −0.02 0.00 −0.05

*Means that the data is significant statistically at p < 0.05.
**Means it is significant at p < 0.01.

TABLE 5 | The total number of phenotypic traits linked with mineral elements
content significance level of p 0.05 and p 0.01.

ME NoPC NoNC ME NoPC NoNC

P 1 7 B 0 1
Ca 1 1 Mo 1 1
Mg 0 2 Al 0 1
S 0 3 Cr 1 5
Fe 1 2 Na 0 1
Mn 1 1 Ni 0 6
Cu 1 9 Sn 1 3
Zn 0 1 Sr 0 2
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Towada was 0.43 and 0.56, respectively. QTL site detection and
analysis were performed on the three linkage groups established
by QTLMapper1.6 software (Table 7). The table shows a QTL site
for calcium located on chromosome 1 between the primers
RM12178-RM5362, with −0.63 additive effect, from Lijing2
and the contribution rate was 3.95%, which could not find
after querying and hence preliminarily concluded a new site
and temporarily named qBRCC-1, according to McCouch
(1997). The site controlling the zinc content was located on
chromosome six in between the markers RM4608 and
RM6119, and its additive effect was −1.77, from Lijing2, which
explained 5.10% of the phenotypic variation. The report related to
the site was found to be temporarily named qBRZC-6. The site
controlling the Cr content of brown rice was located on
chromosome 6 between RM19489-RM19491, and its additive
effect was −0.26. The additive effect came from Lijing2 with a
contribution rate of 8.54%. Another QTL identified responsible
for the content of magnesium, and it was located between
RM4608 and RM6119 on chromosome number 6, and the
additive effect (−28.22) came from Lijian2, which explained
3.98% of the phenotypic variation. The two sites (Cr and Mg)
temporarily named qBRCHC-6 and qBRMC-6, respectively.
Three QTLs found for iron content, one was located on
chromosome number 2, between marker RM12406 and
RM12477 and two were located on chromosome number 6,

between RM1948 and RM19489 and in between RM4608 and
RM6119, with −0.63, −0.79, and −0.92 additive effects Lijing2 and
the contribution rates were 3.95, 5.98, and 8.24%, respectively
while the cumulative contribution rate was 18.17%. After the
inquiry, no relevant sites were reported, and they were initially
judged to be new sites and named qBCIC-2, qBCIC-6-a, and
qBCIC-6-b, respectively. Furthermore, another QTL was also
found located on chromosome one between RM12406A-
RM12477 for P content with −0.12 additive effect from
Lijing2, and approximately 6.85% explain the phenotypic
variation and named qBCPC-1. The location of identified
QTLs and their intervals are also presented in graphical view
of chromosome (Figure 3). While the complete information
about other SSR markers between the interval markers, the
type of motif, number of repeats, SSR number, forward and
reverse primer, product size and start and end position are
summarized in the supporting Table 5 (Supplementary
Table S5).

DISCUSSION

High quality seed is not only essential for human health but also
ensures the maximum yield by establishing seedlings with deep
roots. Therefore, the level of mineral element’s content in rice

FIGURE 1 | Frequency distribution of cold stress tolerance traits based on growth (UIL, 1-2 IL, RSLL) and yield (BG, FG, RSS) related attributes of NILs of Towada
brown rice.
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FIGURE 2 | Frequency distribution of some mineral (Fe, P, Mg, Ca, S, and Zn) elements quantified in NILs of Towada brown rice subjected to chilling stress at
booting stage.

TABLE 6 | The location of polymorphic SSR markers on chromosome and the core sequence and number of repeats with flanking regions of the polymorphic SSR markers
(RM5536, RM5529, RM4608) used for primer synthesis.

S. No. Marker name Chrom. No. Core Seq. Repeats Flanking regions

1 RM5536 1 AC 14 CACGTACCAGCCTTGATGAATCC (pre) TGGGCTATACTAATCCCGTCATCC (post)
2 RM5529 2 AC 13 GTACTACATCGGTTGTGTAGTTGG (pre) CATACGTTAATGGCTCATCTCG (post)
3 RM4608 6 AT 23 ACCCAATATGGTGCAATAGAGACC (pre) CACCTCCACCAACTTTGACAGG (post)

TABLE 7 | This tables shows the number of QTLs identified for the content of iron (Fe), phosphorous (P), calcium (Ca), strontium (Sr), chromium (Cr), zinc (Zn) andmagnesium
(Mg) in the brown rice of Towada NILs. It also shows the location on chromosome, intervals of markers, marker position in terms of centi-morgen (cM), the log of odd ratio
(LOD) and percentage of phenotypic difference.

ME Chr. Interval markers Site (cM) LOD Additive effect Probability Percentage (%) of
variance explained

Fe 2 RM12406-RM12477 0.40 2.25 −0.63 0.0013 3.95
P 2 RM12406-RM12477 0.12 2.51 −0.12 0.0007 6.85
Ca 1 RM12178-RM5362 0.08 3.50 −6.23 0.0001 9.62
Sr 1 RM5362-RM5794 0.22 1.83 −0.03 0.0038 3.93
Fe 6 RM19487-RM19489 0.20 2.40 −0.79 0.0008 5.98
Fe 6 RM4608-RM6119 0.24 3.79 −0.92 0.0000 8.24
Cr 6 RM19489-RM19491 0.12 3.19 −0.26 0.0001 8.54
Zn 6 RM4608-RM6119 0.18 2.22 −1.67 0.0015 5.10
Mg 6 RM4608-RM6119 0.20 1.81 −28.22 0.0041 3.98
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seeds is an essential element to develop high yielding yet healthy
rice. Because there is a reasonable association between the quality
of rice seedling and the content of mineral elements. Although
some mineral elements became restrictive in natural conditions,
but the 13 essential mineral elements are detrimental for growth
and development of plant. Because seeds supply adequate
metabolic resources to let the productive seedling
establishment in the field condition. Moreover, the freshly
developed seedlings moved in autotrophs condition from
being heterotrophs are much depended on the reserves of
mineral elements of their parent seeds (Bewley and Black,
2013). But significant variation is reported in the content of
mineral element within the different genotypes of O. sativa. But
an insight into the identification and validation of major genetic
determinants for mineral elements accumulation in rice subjected
to chilling stress is highly imperative. Because plants confront
several abiotic stresses throughout their lifetime and extreme
temperature (low/high) is a major issue. Particularly, chilling
stress caused 10% reduction in rice yield per year (Wu and Garg,
2003). Because rice is more vulnerable to chilling stress than other
cereal crops owing to its beginning in the hot and semitropical
areas (Zhao et al., 2017). Therefore, chilling stress triggers main
stress for rice growing in twenty-five states (Cruz et al., 2013) and
≥15 million ha of rice produced worldwide (Bai et al., 2016). Like
other attributes, chilling stress tolerance of rice is most likely
regulated by various genes depending on phenological stages
(Cruz et al., 2013; Zhang et al., 2017) as well as the rice landraces.

Recently He et al. (2021), reported about genetic diversity of rice
landraces triggering a high degree of non-degradation
adaptability to the local environment of China. According to
the report, the diversity of natural and farmer choice in the course
of agricultural events advances to very balanced agronomic
characteristics within the population of landrace, (Pusadee
et al., 2009; Song et al., 2019). Although low temperature
stress tolerance related several QTLs have been mapped on all
12 chromosomes (Zeng Y. et al., 2009; Jiang et al., 2011; Kuroki
et al., 2007), however only few genes (COLD1, qLTG3-1, and
LTG1) conferring tolerance to low temperature at the vegetative
growth stage have been isolated (Fujino et al., 2008; Ma et al.,
2015). While only one gene Ctb1 (Saito et al., 2010) has been
identified and cloned to confer chilling stress tolerance at the
booting stage, and knowledge about the fundamental molecular
mechanisms of chilling stress tolerance at the booting stage are
still enigmatic. Therefore, it has been a big task to map loci linked
with abiotic stress tolerance markers owing to the polygenic
disposition of the loci (Shakiba et al., 2017). Kunming and
Yanji (China), a high-latitude area are naturally low
temperature areas, ideal for screening low temperature stress
tolerance in rice (Dai et al., 2004; Blum and Tuberosa, 2018).
Therefore, a study was conducted to explore the accumulation of
mineral elements in brown rice at booting stage because it is a
very important phenological stage. This stage enables seed
production that needs epigenetic and genetic reprogramming
and reassign of biochemical and metabolic resources which are

FIGURE 3 | The location and congregation of QTL affecting mineral elements content in NILs of Towada brown rice. QTL for Fe ( ), P ( ), Ca ( ), Zn ( ),
Cr ( ), Mg ( ), and Sr ( ) are graphically highlighted for chromosome number 1 (from left), 2 and 6.
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highly vulnerable to chilling stress (Zhenghai et al., 2019; Jagadish
et al., 2010).

Analysis of mineral elements content in the seeds of rice
subjected to chilling stress revealed that phosphorus (P,
3,253 mg/kg) and potassium (K, 2,485 mg/kg) content were
highest while strontium (Sr, 0.26 mg/kg) and boron (B,
0.34 mg/kg) were lowest among the 17 mineral elements.
Similarly, the correlation analysis revealed extremely positive
correlation of copper (Cu) and phosphorus (P) with most of
the morphological traits. Similar results were reported by Bolland
and Baker (1988) in which it is concluded that amount of P in the
seed was positively related to the yields of annual pasture legumes.
Similarly, a high content of P favored the early development of
wheat seedlings as compared to plants grown at low
concentration of P (Liao et al., 2008). Among the physical
attributes, the effective ear and the second leaf length showed
strong correlation with half of the mineral elements content.
Therefore, it is preliminary concluded from the cultivation
process of near isogenic lines and the distribution of calcium,
iron, and zinc in the near isogenic line population, that the test
population meets the requirements of brown rice high calcium,
high iron, and high zinc content therefore further processed for
QTL analysis. The distribution of calcium, iron and zinc in the
population indicated that these elements were higher in offspring
than the parental line. Moreover, all other elements showed
positive correlation except Ca and Sn as reported earlier
(Garcia-Oliveira et al., 2009). Approximately, 54% of the
population of the brown rice showed more zinc content than
Lijing2 while 37% of the brown rice had more iron and calcium
content than Lijing2 indicating that the three elements are
controlled by multiple genes in brown rice and there is an
additive effect, which is consistent with the previous work
(Pfeiffer and McClafferty, 2007; White and Brown, 2010).

Increasing the cold tolerance at the booting stage of rice can
increase the yield of rice, but whether this will reduce the content
of beneficial elements in rice has not been reported and only
mineral elements were analyzed in the core collection of Yunnan
(Zeng et al., 2010). However, correlation between morphological
trait and found some elements revealed that elemental content
and morphological traits were mostly negatively (Xihong et al.,
2008) and the same results were obtained in this study. It is
speculated that this may be related to the mechanism of elemental
absorption. The agronomic traits become taller, and the anther
length, ear length and leaf length are larger or wider, which means
that the accumulation of elements in these organs increases, while
the accumulation concentration in the grain is relatively reduced,
and thus the content is relatively low. Understanding the
correlation between mineral elements in brown rice has an
auxiliary effect on the selection of high-mineral rice varieties
of brown rice. The analysis showed high significant correlation up
to 16 elements, while the least is only seven as reporter before
(Zeng Y. W. et al., 2009; Huang et al., 2015; Yao et al., 2020). The
antagonism or promotion of mineral elements in absorption has
been confirmed in rice, such as Fe inhibits Cu and Mn absorption
while it promotes Zn absorption, and Zn inhibits Cr absorption
(Sasaki et al., 2016). Therefore, when performing correlation
analysis between mineral elements, simple correlation and

partial correlation should be analyzed simultaneously. By
analyzing the simple correlation and partial correlation
between the three elements of calcium, iron and zinc in brown
rice and other elements manifested that the change of iron
elements is relatively simple, however changes in accumulation
of calcium and zinc elements are more complicated (Shao et al.,
2007; Stangoulis et al., 2007).

According to the previous scientific literature, first to second
node length, anther volume, number of filled grains per panicle,
peduncle length, number of unfilled grains per panicle, length of
the node under panicle, anther length and level of seed setting rate
are phenotypic attributes strongly correlated with low
temperature stress tolerance at the reproductive stage of rice
(Xu et al., 2008; Shirasawa et al., 2012). Like other agronomic
traits, low temperature stress tolerance is also a composite trait
governed by various genes and gene products, under the influence
of gene and environment. Identification and cloning of cold
tolerance related QTLs have been carried out based on various
morphological attributes. For example, cloning of qLTG9 for
germination of rice under cold stress, qPSR2-1 and qLOP2 for
rice cold stress tolerance, Hd1 controlling date of heading in rice,
TGA1 main differences in ear development between maize and
teosinte, were carried out using NILs population (Cui et al., 2013;
Ma et al., 2015; Jing et al., 2018). In this study, we found that
Towada, are differed from its cold-sensitive recurrent parent
Lijiang2 only in mean spikelet fertility after being exposed to
cold stress and same were reported by Zhang et al. (2013). We
performed combined analysis QTLs associated with cold
tolerance and mineral elements in cold tolerant brown rice. It
is observed that QTL markers interval for mineral elements (Zn,
Ca, and Fe) content and QTL markers for cold tolerance interval
are not on the same chromosome. QTL associated with mineral
element content was reported on the chromosome number 6
while the QTL of cold tolerance was found on chromosome
number 7 at booting stage in Lijian2 and Lijiang1, however there
is no evidence that they have a linkage relationship. There is no
correlation between calcium and zinc content in brown rice and
cold tolerance at booting stage based on apparent correlation and
different QTL loci. Therefore, it is preliminarily believed that
there is no linkage between zinc content gene and cold tolerance
gene of brown rice at booting stage. So, any improvement of
mineral contents and cold tolerance in rice at booting stage may
require co-localization of QTLs.

Co-localization of QTLs for various element content in seeds
has formerly been stated in rice (Prasad, 2003; Stangoulis et al.,
2007; Norton et al., 2010; Masuda et al., 2013; Bao, 2014). For
example, co-location of QTL for Zn and Fe content was reported
previously on chromosome 12 (Prasad, 2003). Previously
adjacent QTLs for Zn and Fe minerals accumulations have
been reported on chromosome 7 and 12 in rice, where all of
Zn QTLs were co-located with the Fe QTLs except qZn7.3,
suggesting possibility of selection of high Zn lines with high
Fe lines using molecular (DNA) markers as selection criteria in
these two regions (Masuda et al., 2013; Bao, 2014). Garcia-
Oliveira et al. (2009), found 17 colocations of eight distinct
minerals (K, P, Mg, Ca, Fe, Zn, Cu, and Mn), using several
(85) introgression lines developed from a cross between the wild
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rice (Oryza ruf ipogon) and an elite indica cultivar Teqing. The
phenomenon “pleiotropy” of the genes associated with the
physiological processes and metabolism of several elements
genetically found colocalization positions on chromosomes
(Stangoulis et al., 2007; Norton et al., 2010). Second prospect
is the occurrence of grouped genes that are strongly linked
collectively and accountable for the accumulation of various
elements in rice grain (Du et al., 2013). For example, the high-
affinity iron regulated transporter 1 (IRT1) as a broad substrate
range metal ion transporter can transport not only iron but also
other divalent metals such as zinc andmanganese (Du et al., 2013;
Yan et al., 2015).

CONCLUSION

Cold tolerance of rice and brown rice are the key to food security
and human health. Brown rice is a wholegrain cereal and, as such,
is known to have valuable impacts on human health. Because the
brown rice is comprised of endosperm (about 90%), embryo
(2–3%), and bran layers (6–7%). In addition of mineral elements,
bran layer also contains bioactive molecules, such as gamma
aminobutyric acid (GABA), γ-oryzanol, and ferulic acid. The
nutritional value of brown rice decline under cold stress therefore
it is very imperative to explore the cold tolerance and the
accumulation of mineral elements in times of climate change.
This study was conducted to explore the genomic determinants of
cold tolerance and mineral elements content in near-isogenic
lines of japonica rice subjected to chilling stress at booting stage.
This paper not only revealed correlation between 17 mineral
elements of brown rice, but also localized nine QTLs for four
elements, especially a novel QTL (qBCPC-1) was identified on
chromosome 1 for P element only. These findings provided bases
for the genomic selection and identification of candidate genes
involved in mineral accumulation and cold tolerance in rice
which can be exploited to develop stress resilient yet healthy
rice through genome editing technologies.
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Khan, Pakistan, 9Department of Botany, GCWomen University, Faisalabad, Pakistan, 10Department of Biotechnology, Chonnam
National University, Yeosu, South Korea

The two-component signal transduction system (TCS) acts in a variety of physiological
processes in lower organisms and has emerged as a key signaling system in both
prokaryotes and eukaryotes, including plants. TCS genes assist plants in processes
such as stress resistance, cell division, nutrition signaling, leaf senescence, and chloroplast
division. In plants, this system is composed of three types of proteins: response regulators
(RRs), histidine kinases (HKs), and histidine phosphotransfer proteins (HPs). We aimed to
study theSorghum bicolor genome and identified 37 SbTCS genes consisting of 13 HKs, 5
HPs, and 19 RRs (3 type-A RRs, 7 type-B RRs, 2 type-C RRs, and 7 pseudo-RRs). The
structural and phylogenetic comparison of the SbTCSmembers with their counterparts in
Arabidopsis thaliana, Oryza sativa, Cicer arietinum, and Glycine max showed group-
specific conservations and variations. Expansion of the gene family members is mostly a
result of gene duplication, of both the tandem and segmental types. HKs and RRs were
observed to be originated from segmental duplication, while some HPs originated from
tandem duplication. The nuclear genome of S. bicolor contain 10 chromosomes and these
SbTCS genes are randomly distributed on all the chromosomes. The promoter sequences
of the SbTCS genes contain several abiotic stress-related cis-elements. RNA-seq and
qRT-PCR-based expression analysis demonstrated most of the TCS genes were
responsive to drought and salt stresses in leaves, which suggest their role in leaf
development. This study lays a foundation for further functional study of TCS genes for
stress tolerance and developmental improvement in S. bicolor.
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1 INTRODUCTION

The two-component system (TCS) was first recognized in
bacteria, and it has since been studied for signal transduction
pathways in fungi, slime molds, and plants (Stock et al., 2000). As
the name suggests, this system involves two primary components
in bacteria: a sensor histidine kinase (HK) and a response
regulator (RR) (Capra and Laub 2012). The sensor HK
contains two domains: the input domain and the transmitter
domain. The input domain perceives signals and, as a result, the
HK activity of the transmitter domain is modified after
autophosphorylation (kinase self-activation) of a conserved
histidine (H) residue. In the receiver domain of the RR (Rec),
the phosphate group is then transferred to a conserved Asp
residue (Aspartic acid). Another domain, known as the output
domain, is also found in many RRs; its activity is regulated by the
phosphorylation state of the Rec domain whereas, Rec domain is
a response regulator receiver domain. The output domain
commonly behaves as a transcription factor (Sun et al., 2014).
Over time, an additional protein family, whose members are
histidine phosphotransfer proteins (HPs), has been found to be
involved in developing a multi-step phosphorylation mechanism
in eukaryotes. In the corresponding signaling cascade, a
phosphate group is transferred among the HP family
members, and may involve as a linker between HKs and RRs
proteins (Wurgler-murphy 1997; West et al., 2001). In plants
such as Arabidopsis thaliana, there are three distinct subfamilies
of HKs: ethylene receptor, phytochrome receptor, and cytokinin
receptors (Hwang et al., 2002). Three additional A. thaliana HKs
(hybrid HKs; AHK1, ACKl1, and CKl2/AHK5) belong to no
known group. The overall structure of an HK involves an input
domain, a Rec domain, several transmembrane domains (at the
N-terminus), and a conserved H residue containing a transmitter
domain (the autophosphorylation site). However, due to a lack of
conserved residues and motifs, three ethylene receptors (AETR2,
ERS2, and AEIN4) and phytochromes cannot perform HK
activity; therefore, they are referred to as divergent HKs
(Ahmad et al., 2020). The ethylene receptor family has an
ethylene binding transmembrane domain at the N-terminal, a
His protein kinase domain, and a GAF protein-protein
interaction domain (Chen et al., 2020). ERS1 and ETR1 are
two further subdivisions of the ethylene receptor family based
on the similarity of their amino acid sequences. InA. thaliana, the
ethylene receptor family consists of five members (ETR1, ETR2,
EIN4, ERS1, and ERS2), which contain an ethylene (C2H4)
binding domain (Dhar et al., 2019). Phytochromes/
photoreceptors are involved in the regulation of plant growth
and development in response to light stimuli (Paik and Huq
2019). PHYA, PHYB, PHYC, PHYD, and PHYE are the five
phytochrome receptors present in A. thaliana; they contain two
main structural domains: the amino-terminal domain and the
carboxyl terminus. A linear tetrapyrrole chromophore is
covalently attached to the amino-terminal domain for light
absorption and photoreversibility. For signal transduction, the
carboxyl terminus contains two PAS domains and a His protein
kinase-related domain. Moreover, AHK2, AHK3, and AHK4 are
considered cytokinin receptors, which are recognized on the basis

of containing the cyclase/HK-associated sensing extracellular
(CHASE) domain (Hutchison and Kieber, 2002).

The HP family contains a domain called the phosphotransfer
(Hpt) domain which is essential for transferring a phosphate
group from the Rec domain of HKs to the Rec domain of RRs,
enabled due to the presence of a highly conserved motif
(XHQXKGSSXS) (Gupta et al., 2020; He et al., 2020; Tiwari
et al., 2021). The AHP1–AHP5 are the five A. thaliana genes that
encode the intermediate proteins with an Hpt domain. However,
AHP6 lacks an H residue of that motif; as a consequence, it is
called pseudo-His phosphotransfer protein (pseudo-Hp).
Furthermore, AHP6 cannot behave as a phosphotransfer
protein; thus, it is considered a cytokinin signaling negative
regulator. Based on the domains, signal nature, and conserved
sequences, the RR family is divided into three subgroups: type-A,
type-B, and type-C RRs. Type-A RRs are cytokinin response
proteins that have a Rec domain and a C-terminal extension.
Type-B RRs consist of an N-terminal Rec and a C-terminal
output domain. Type-C RRs have domain structures similar to
those of type-A RRs, but are induced by cytokinin. Type-C RRs
have still not been reported to have a role in cytokinin signaling.
There is another distinct class of RRs, known as pseudo-RRs
(PRRs), which lack a highly conserved phosphor-accepting
aspartate (D) residue that is needed for phosphorylation. The
CCT (Co, Col, and Toc1) motif in the C-terminal extension of
PRRs is necessary for regulating circadian rhythms. Although
PRRs are not involved in the transduction of phosphorelay
signals, they play key roles in the circadian clock, which is
implicated in a variety of distinct signal transduction processes
(light-stimulated) in plants (Ishida et al., 2009; Tsai et al., 2012).
The TCS is studied in various prokaryotes and eukaryotes,
including plants for signal transduction pathways (Mizuno
2005; Tiwari et al., 2017). The TCS genes play a significant
role in various abiotic stress responses, including to different
temperature, water, and salinity conditions (He et al., 2016a).
Signal transduction in plants is mediated by the TCS, which is
also involved in osmosensing and essential cellular processes such
as responses to ethylene, cytokinin, and red light. Studies on TCS
in an A. thalianamodel plant have been carried out and have led
to unprecedented advances in our understanding of the circadian
clock and the mechanisms of plant hormonal responses
(i.e., ethylene and cytokinin responses). the TCS is involved in
processes such as nutrient sensing, stress response, chemotaxis,
endosperm formation, and nodulation during plant development,
growth, and adaptation (Ishida et al., 2009; Zwack and Rashotte
2015). Several A. thaliana TCS genes work together with ABA to
adapt to low temperature, drought, and salt stresses. AHP1,
AHP2, and AHP3 are highly expressed in heat stress
conditions (Miyata et al., 1998). In O. sativa, drought and salt
stresses affect OsAHP1/2 knockdown seedlings in various ways.
Similarly, ABA-induced antioxidant defense occurs via OsHK3
(Sun et al., 2014). In G. max, dehydration affects the expression
level of most TCS genes (Le et al., 2011). Some TCS genes of
tomatoes are active in stress response. Pollen from the tomato
Never-ripe (Nr) HK mutant is highly susceptible to heat stress.
Some phytochromes act as HKs, helping plants respond to
drought stress (Firon et al., 2012).
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Sorghum is a C4 grass that ranks fifth in terms of acreage
after wheat, Z. mays, O. sativa, and barley, with a world annual
production of approximately 65.5 million tons derived from 45
million ha (Dicko et al., 2006). It is a self-pollinating and
extensively grown cereal crop that adapts to various purposes,
resulting in phenotypic variations between varieties. The
genetic and phenotypic diversity of S. bicolor has increased
due to its widespread distribution across Asia, India, the
Middle East, and Africa, which has resulted in divergent
botanical types mainly characterized by their seed
characteristics and floral architecture. This crop is grown in
both subsistence and commercial agriculture systems
worldwide for fuel, fiber, food (syrup and grain), and
animal feed. Since the rise in temperature and salinity are
two major constraints having multidimensional impact on
plant growth and development. So the crop improvement
must be accelerated to meet the expected global food
demand over the next few decades (Morris et al., 2013;
Cooper et al., 2019). The objective of our current study was
to identify the drought and salt stress responsive TCS genes
that are potentially useful for S. bicolor breeding. Since the TCS
genes are involved in several biological processes, it is essential
to thoroughly investigate these genes in S. bicolor.

2 MATERIALS AND METHODS

2.1 Identification of Two-Component
System Gene Family in Sorghum bicolor
Firstly, the A. thaliana full-length protein sequences of TCS were
retrieved from Ensemble plants database (http://plants.ensembl.
org/index.html). These sequences were used as query sequence to
execute a BLASTp program search to identify the TCS gene
family members in S. bicolor. All putative sequences were further
evaluated to check the presence of a specific domain using
different domain databases including, CDD (https://www.ncbi.
nlm.nih.gov/Structure/cdd/wrpsb.cgi) (Marchler-Bauer et al.,
2011), SMART (http://smart.embl-heidelberg.de/) (Letunic
et al., 2012) and Pfam (https://pfam.xfam.org/) (Punta et al.,
2012). This step was taken to eliminate the sequences that lacked
specific conserved domains required for TCS protein function.
The sequences were manually sorted to remove the redundancy,
and the remaining proteins were considered as identified TCS
proteins. Molecular weight (MW), theoretical isoelectric point
(pI), aliphatic index, instability index and the grand average of
hydrophobicity (GRAVY) values were calculated by using the
online tool ProtParam from ExPASY server (https://web.expasy.
org/protparam/) (Gasteiger et al., 2003). In addition, the
subcellular localization of SbTCS genes was determined by
using online CELLO v.2.5 (http://cello.life.nctu.edu.tw/) (Yu
et al., 2006).

2.2 Phylogenetic Analysis, Genetic
Structure and Conserved Motif
To comprehend the SbTCS genes’ evolutionary relationship,
multiple sequence alignment of the identified TCS proteins of

S. bicolor, and already reported sequences of A. thaliana, C.
arietinum O. sativa, and G. max was performed using
ClustalW tool, and the neighbor-joining (NJ) tree was
created using MEGA7 (https://www.megasoftware.net/)
(Kumar et al., 2016) with a bootstrap value of 1,000. The
exon and intron structures were visualized using the online
software Gene Structure Display Server (GSDS) (http://gsds.
gao-lab.org/) through matching the genomic sequences and
coding sequences (CDS) of identified TCS genes, which were
retrieved from NCBI (Hu B. et al., 2015). Furthermore, the
MEME (Multiple EM for Motif Elicitation) tool (https://
meme-suite.org/meme/tools/meme) was used to predict the
specific conserved motifs of each TCS protein sequence (Bailey
et al., 2015). The maximum number of motifs was set to 20, and
other parameters were at the default setting.

2.2.1 Cis-Regulatory Elements and Gene Ontology
Analysis
The upstream 1,000 bp genomic DNA sequences from the
transcription start site of SbTCS genes were extracted from
NCBI. Then they were submitted to an online plantCARE
database (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/) to predict the putative cis-regulatory elements
(Rombauts et al., 1999). Entrez gene id of TCS genes was used for
gene ontology enrichment analysis using the open-access DAVID
Bioinformatics Resources 6.7.

2.3 Chromosomal Localization, Gene
Duplication Events and Syntenic Analysis
By using TBtool advance Circos, a genetic relation map of
chromosomes was constructed. Moreover, NCBI-gene database
was used to predict the position of each TCS gene on the
chromosomes of S. bicolor (Yu et al., 2006; Brown et al.,
2015). The syntenic analysis was conducted using TBtool
(Chen et al., 2018). DnaSP v.6 tool was utilized to analyze the
gene duplication events. Synonymous and non-synonymous
substitution rates were calculated to determine the selective
pressure on the duplicated genes (Rozas et al., 2017).
Divergence time was also calculated to perceive the
evolutionary events. The following formula calculated the
duplication time: T � Ks/2x (x � 6.56 × 10–9) (He et al., 2016b).

2.4 Expression Patterns of Two-Component
System Genes in Sorghum bicolor
To understand the expression pattern of these identified SbTCSs
under saline/alkali and drought stress, RNA-seq data (BioProject:
PRJNA319738 for drought stress tolerance and BioProject:
PRJNA591555 for saline/alkali stress) was downloaded from
NCBI Sequence Read Archive (SRA) database (https://www.
ncbi.nlm.nih.gov/sra). The genome annotation in .fna and .gtf
extension were downloaded from (https://www.ncbi.nlm.nih.
gov/assembly/GCF_000003195.3/). Indexes of S. bicolor
genome sequence were built using bowtie2, and paired-end
clean reads with high quality were mapped to the S. bicolor
genome. The expression level of the annotated genes in the
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reference genome was then calculated by the cufflinks program.
The normalized FPKM (fragment per kilobase of transcript per
million fragments mapped reads) values of each SbTCS were
calculated, and differentially expressed genes were identified. The
heatmap was generated to envision the expression through
TBtool (Chen et al., 2018).

2.5 Plant Growth and Treatments
Plants (S. bicolor, JS2002) were grown for 28 days in a growth
chamber under controlled conditions: 25–27°C day-night
temperature with 12-h light and 65% humidity. Plants were
exposed to drought stress (well-watered and limited water
supply), 10 mM or moderate saline-alkali soil stress (6 and
24 h), and 50 mM or severe saline-alkali soil stress (6 and
24 h). The Saline-alkali solution was used to apply saline-alkali
soil stress; this solution was made of Na2CO3 and NaHCO3 (1:9,
v/v) with half-strength Hoagland’s nutrient solution including
Na+ at 150 mM and pH 9.5 (Hu G. et al., 2015). 3% salt content
were used for moderate and 5% salt content were used for severe
condition. For RNA extraction purposes, leaf samples were
collected from all the pots (Control, Drought, moderate saline-
alkali, and severe saline-alkali) with three biological replicates and
then speedily frozen in liquid nitrogen and kept at −80°C until
further use.

2.6 Validation of Quantitative Real Time PCR
In the presence of liquid nitrogen, leaf samples were grounded
into fine powder by using sterile pestles and mortar. By using the
Fastlane cell cDNA kit the complementary DNA (cDNA) was
synthesized (Qiagen, Switzerland). A Nanodrop
spectrophotometer (NanoDrop 2000 spectrophotometer,
Thermo Fisher Scientific) was used to quantify RNA. The
qPCR reactions were executed in Applied Biosystem Real-
Time PCR Detection System using SYBR Green Master kit
(Applied Biosystems, United Kingdom). Gene-specific primers
were designed through the online tool “Oligo Calculator” (http://
mcb.berkeley.edu/labs/krantz/tools/oligocalc.html), and
specificity of these primers was then confirmed by NCBI
Primer-BLAST program (https://www.ncbi.nlm.nih.gov/tools/
primer-blast/) (Supplemental Table S1). The glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) gene has been used as the
reference gene to normalize gene expression (Sudhakar Reddy
et al., 2016).

3 RESULTS

3.1 Comprehensive Identification of
Two-Component SystemGenes inSorghum
bicolor
A BLASTp search was performed to identify the putative
members of the TCS gene family in S. bicolor by employing
47 A. thaliana TCS query protein sequences. A total of 37 TCS
genes were identified in the genome of S. bicolor, which were
further divided into 13 HKs, 5 HPs, and 19 RRs.

3.2 Histidine Kinase Protein Family in
Sorghum bicolor
The genome of S. bicolor contains 13 HKs (SbHKs/SbHKLs). This
number is comparatively more significant than those present in
Oryza sativa L. (5), Zea mays (11), Triticum aestivum (7), and
Populus trichocarpa (12). However, other legumes such as A.
thaliana (17), Lotus japonicas (14), Cucumis melo L. (17), and
Physcomitrella patens (18) have a similar number of HKs, which
reveals their significance among plants (Table 1). We identified
six genes encoding members of the cytokinin receptor family in S.
bicolor, i.e., SbHK1, SbHK2, SbHK3, SbHK4, SbHK5, and SbCKl1.
The conserved residues required for HK activity were present in
all members. Domain analysis of these HKs confirmed that five
members (except for SbCKl1) contained a conserved HisKa
domain, having a conserved His phosphorylation site.
Moreover, all six members had a conserved RR (Rec) domain
in which a highly conserved Asp, which acts as the photoreceptor,
is present (Figure 1; Supplementary Table S2, ). Genetic and
molecular analyses of A. thaliana have shown that five ethylene
receptors are involved in ethylene response. These receptors have
a GAF protein-protein interactive domain, a HisKa domain, and
a HATPase_c domain. Similarly, four genes encoding ethylene
receptors were predicted in S. bicolor (SbERS1, SbETR1, SbEIN4.1,
and SbEIN4.2). Of these, SbERS1 and SbETR1 encoded almost the
same domains as those of A.thaliana. SbEIN4.1 was found to
contain GAF, HisKa, and a conserved Rec domain, whereas
SbEIN4.2 contained a GAF and a conserved Rec domain
(Figure 1; Supplementary Table S2).

Members of the phytochrome family/photoreceptors allow
plants to regulate their growth and developmental process and
respond to light stimuli. PHYA, PHYB, PHYC, PHYD, and PHYE
are the members of this family that have been reported in A.
thaliana. Phytochromes contain a PHY domain at the N-terminal
(involved in the absorption of light), a GAF domain, one HisKa,
and two PAS domains involved in the transduction of signals.
Sensor H proteins have a similar structure to that of
phytochromes, which are soluble proteins. They have a signal
transduction HisKa domain at the C-terminus and a sensor
domain at the N-terminus. Since the phytochrome family
lacks all five conserved motifs, they are referred to as
divergent HKs. Instead of having HK activity, they have
another Ser/Thr kinase activity (Ahmad et al., 2020). Three
members of the phytochrome family were found in S. bicolor
(SbPHYA, SbPHYB, and SbPHYC). All the domains (PAS, PHY,
GAF, and HisKa domains) necessary for the regulation of light
and signal transduction were present in their protein products,
making them actual photoreceptors.

3.3 Histidine Phosphotransfer Proteins
Family
Five out of six members of the A. thaliana HP (AHP1–AHP6)
family are true HPs; one member, AHP6, is considered a pseudo-
HP due to the absence of a conserved residue (H) required to
obtain phosphate from the donor proteins (Bleecker 1999).
Except for AHP6/APHP1, all the other members encode a
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conserved phosphorylation motif (XHQXKGSSXS). In AHP6/
APHP1, the N residue has replaced the H residue of the
phosphorylation motif. In S. bicolor, five members of the HP
family were discovered to have a conserved domain, “Hpt”
(Figure 1; Supplementary Table S2). Three of these five
members (SbHP1, SbHP2, and SbHP5) were classified as true
HPs since they have the phosphorylation motif, while the other
two members (SbHP3 and SbHP4) were considered pseudo-HPs
because the H residue is missing from their
phosphorylation motif.

3.4 The Response Regulators
RRs modulate the final responses to different environmental
stimuli. In this study, 19 RR family members were identified in
S. bicolor, including both standard and pseudo-RRs. Previous
studies have reported that A. thaliana has 32 members of the
RR family (Mochida et al., 2010) and that O. sativa has 22 (Du
et al., 2007). RRs act as terminal components in the TCS
signaling pathway, acting as phosphorylation-activated
switches. This RR functioning catalyzes the transport of
phosphoryl groups to the Asp residue of its conserved
domain. A significant feature of RRs is that they contain
conserved K (lysine) and D (aspartic acid) residues, which
are found in the Rec domain of A. thaliana RR family
members. On the basis of the domains that are conserved,
RR family members are further classified into three
subfamilies: type-A RRs, type-B RRs, and type-C RRs.
Type-A RRs have a Rec domain with a conserved D residue
and a C-terminal extension. The Rec and DNA binding
domains (Myb) are present in type-B RRs. Type-C RRs
have a similar structure to that of type-A RRs but do not
have a C-terminal extension. Another type of RR is known as
the pseudo-response regulator (PRR). These RRs have a
conserved Rec domain with an E residue (in place of the D
residue) and a C-terminal CCT motif (Ahmad et al., 2020).
Among the 19 S. bicolor RR family members, 2, 3, 7, and 7 are
type-C RRs, type-A RRs, PRRs, and type-B RRs, respectively.

Three members of the type-A RR family in S. bicolor were
identified, namely SbRR4, SbRR9, and SbRR10. These putative
members of the type-A RR family were similar to theirA. thaliana
counterparts, with all three possessing a conserved Rec domain.
Nuclear proteins are the most common members of the type-B
RR family. These are different from the members of the type-A
RR family since they contain a Myb-DNA binding domain. It has
been reported that type-B RRs act as transcription factors
(Ahmad et al., 2020). Seven members of this family were
identified in S. bicolor (SbRR16, SbRR17, SbRR18, SbRR19,
SbRR20, SbRR24.1, and SbRR24.2). This number is higher than
that in T. aestivum (2) and lower than that in many other plant
members, including A. thaliana andO. sativa. All seven members
were found to have conserved Rec and Myb domains, except for
SbRR24.1 and SbRR24.2, from which the Myb domain is missing.
In A. thaliana, there are two members of the type-C RR family
(ARR22 and ARR24). Like type-A RRs, they also have a conserved
Rec domain, but possess a very small C-terminal. They are not
very closely related to type-A RRs, according to phylogenetic
analysis. It has also been shown that they are not expressed during
cytokinin response. S. bicolor was found to contain two members
of the type-C RR family (SbRR13 and SbRR14). These members
exhibited significant homologous relationships with their A.
thaliana counterparts and possessed a conserved Rec domain.

Divergent RRs, also known as PRRs, are another type of RRs
found in a variety of plant species. In A. thaliana, there are nine
divergent RR family members (ARR1–9). They have the entire
Rec domain but lack a conserved DDK motif. Seven PRRs were
found in the S. bicolor genome: SbPRR1, SbPRR2.1, SbPRR2.2,
SbPRR3.1, SbPRR3.2, SbPRR5, and SbPRR9. PRRs have been
further divided into two groups based on the C-terminal
extension: type-B PRRs and clock-associated PRRs. In type-B
PRRs (SbPRR2.1 and SbPRR2.2), instead of the CCTmotif, a Myb
domain is present. While clock-associated PRRs (SbPRR1,
SbPRR3.2, SbPRR5, and SbPRR9) have the conserved amino
acids arginine and lysine in the CCT motif, in SbPRR3.1, only
a pseudo-rec domain is present.

TABLE 1 | Summary of the identified TCS gene members from different plants.

Species Cotyledons HK HP (Pseudo-HP) Type-A RR Type-B RR Type-C RR Pseudo RR Total References

Cucumis melo L. Eudicots 17 9 8 11 0 6 51 Liu et al. (2020)
Arabidopsis thaliana Dicot 8 6 (1) 10 12 2 9 47 Hutchison and Kieber (2002)
Citrullus lanatus Dicot 19 6 (2) 8 10 1 5 49 He et al. (2016b)
Cucumis sativus L. Dicot 18 7 (2) 8 8 0 5 46 He et al. (2016b)
Lotus japonicus Dicot 14 7 7 11 1 5a 40 Ishida et al. (2009)
Glycine max Dicot 36 13 18 15 3 13 98 Mochida et al. (2010)
Cicer arietinum Dicot 18 7 (2) 7 7 2 10b 51 Ahmad et al. (2020)
Populus trichocarpa Dicot 12 12 9 11 0 5 49 Singh and Kumar (2012)
Brassica rapa Dicot 20 8 (1) 21 17 4 15 85 Liu et al. (2014)
Solanum lycopersicum Dicot 20 6 (2) 7 23 1 8 65 Firon et al. (2012)
Triticum aestivum Monocot 7 10 41 2 0 2 62 Gahlaut et al. (2014)
Physcomitrella patens Monocot 18 3 7 5 2 4a 39 Ishida et al. (2010)
Zea mays Monocot 11 9 (2) 16 9 3 11a 59 Chu et al. (2011)
Oryza sativa L. Monocot 5 5 15 7 0 5 37 Du et al. (2007)
Zizania latifolia Monocot 25 8 14 14 2 6 69 He et al. (2020)
Sorghum bicolor Monocot 13 5 (2) 3 7 2 7b 37 Present Work

aOnly clock-associated.
bBoth clock associated and type-B PRRs.
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3.5 Features of the SbTCS Proteins
The detailed physio-chemical characteristics of 37 SbTCS
proteins are shown in Table 2 and Supplementary Table S4.
The SbTCSs are present in 10 chromosomes (Chr), Chr 1–10.
The exon numbers ranged from 2 to 14. The protein length
ranged from 132 (SbRR13) to 1,178 (SbPHYB) amino acids (aa).
ExPASy analysis revealed that the SbTCS proteins exhibited
very different isoelectric point (pI) values (ranging from 4.55 to
9.69), molecular weight values (ranging from 14,169.76 to
122,065.35), aliphatic index values (ranging from 57.62 to
106.71), and grand average of hydropathicity index
(GRAVY) values (ranging from −0.827 to 0.224). SbTCS
proteins were shown to be located in the cytoplasmic,
mitochondrial, and nuclear membranes.

3.6 Phylogenetic Analysis
This study aimed to look at the evolutionary pattern and
phylogenetic relationship of TCS proteins in S. bicolor; a

neighbor-joining tree was constructed using the full-length
protein sequence alignment of the identified TCS proteins
from S. bicolor, A. thaliana, G. max, O. sativa, and C.
aritenum (Figure 2). These proteins were divided into three
groups: RRs, phosphotransfer proteins (HPs), and HKs. HKs
were divided into five subgroups (CKl2, HK1 and CKl1, ethylene
receptor, cytokinin receptor, and phytochrome families)
according to the phylogenetic tree. Three cytokinin receptors
were present in A. thaliana (AHK2, AHK3, and AHK4), as well as
in S. bicolor (SbHK2, SbHK3, and SbHK4). Phylogenetic analysis
revealed that SbHK3 and SbHK4 were orthologues of AHKs.
Cytokinin receptors in A. thaliana have been functionally
characterized and shown to control a variety of cytokinin-
regulated processes, such as leaf senescence, stress responses,
seed size, vascular differentiation, and cell division. Based on
phylogenetic analysis, it can be suggested that the predicted
cytokinin receptors of S. bicolor have similar functions as their
A. thaliana counterparts.

FIGURE 1 | Symbolic domain structure of S. bicolor two component signaling elements, different shapes and color represents different domains.
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TABLE 2 | Features of cytokinin two component signaling system genes in S. bicolor.

Gene
name

Gene
symbol

Chr Start
site

End site CDS Exon Introns Protein
length

Molecular
weight(MW)

Isoelectric
point(PI)

Instability
index(II)

Aliphatic
index

Grand
average

of
hydropathicity

(GRAVY)

Cell
location

Histidine kinases (HKs)
SbHK1 LOC8059279 1 22266130 22269754 2451 5 4 743 8,0885.46 5.96 48.81-unst 91.33 −0.076 Cytoplasmic
SbHK2 LOC8075742 4 59266327 59273161 4149 10 9 973 108,350 5.91 38.85 87.58 −0.179 Plasma membrane
SbHK3 LOC110433965 3 71489995 71495445 3709 11 10 1,005 112,373.2 8.42 38.35 90.22 −0.226 Extracellular
SbHK4 LOC8060004 1 8870876 8878374 3669 11 10 996 109,153.9 5.51 46.05-unst 91.66 −0.09 Cytoplasmic
SbHK5 LOC8069360 10 55655919 55666166 4985 14 13 959 108,270.6 5.34 50.78-unst 80 −0.508 Nuclear
SbCKl1 LOC8076204 10 5136492 5152208 3457 8 7 1,138 122,065.4 5.63 42.59-unst 91.31 −0.055 Plasma membrane,

cytoplasmic, mitochondrial
SbERS1 LOC8063415 1 9801882 9806982 2470 6 5 635 70,635.29 7.07 37.87 106.71 0.144 Plasma membrane
SbETR1 LOC8076011 9 5018113 5022906 2920 6 5 632 70,153.82 6.84 37.48 106.19 0.144 Plasma membrane
SbEIN4.1 LOC8155512 4 67810845 67814687 3633 3 2 899 99,732.68 8.28 unst-50.1 100.46 0.078 Plasma membrane
SbEIN4.2 LOC8066019 6 3178416 3182964 3346 3 2 773 85,953.83 7.04 36.79 102.41 0.088 Plasma membrane
SbPHYA LOC8059991 1 8713754 8721151 3941 6 5 1,131 125,094.3 5.77 unst-49.69 92.6 −0.151 Cytoplasmic
SbPHYB LOC8081072 1 68035215 68043712 4750 4 3 1,178 129,046.6 5.75 unst-48.61 86.72 −0.167 Cytoplasmic, plasma

membrane
SbPHYC LOC8086232 1 6748035 6753340 4292 4 3 1,135 126,205 5.72 unst-51.31 97.24 −0.112 Cytoplasmic

Phosphotransfer Proteins (HPs)
SbHP1 LOC8062536 2 19797592 19801117 1,132 6 5 145 16,228.54 4.55 40 91.52 −0.079 Nuclear, extracellular,

cytoplasmic
SbHP2 LOC8057993 7 60641495 60644235 824 6 5 144 16,172.66 5.63 26.55 88.68 −0.089 Nuclear, extracellular
SbHP3 LOC8075559 3 62500906 62506524 962 7 6 151 17,252.52 7.58 56.36-unst 57.62 −0.645 Nuclear
SbHP4 LOC8068945 9 55183674 55186538 858 6 5 154 17,682.91 6.14 56.83-unst 60.19 −0.678 Nuclear
SbHP5 LOC8055697 9 8016183 8018505 900 5 4 151 17,800.24 8.42 60.23-unst 72.32 −0.754 Nuclear

Response Regulators (RRs)
Type-A RRs
SbRR4 LOC8077366 3 73177403 73181260 1873 5 4 245 26,365.79 5.24 51.26-unst 83.63 −0.41 Nuclear
SbRR9 LOC110435576 5 2740967 2743306 1,146 5 4 202 22,749.54 6.13 59.58-unst 79.11 −0.683 Nuclear
SbRR10 LOC8071408 8 1026753 1029205 1,304 5 4 279 30,788.82 6.56 69.03-unst 83.55 −0.352 Nuclear
Type-B RRs
SbRR16 LOC8056131 3 70434838 70438749 2055 5 4 579 64,700.22 5.04 45.88-unst 81.3 −0.424 Nuclear
SbRR17 LOC8079408 4 5416832 5421301 2579 6 5 631 68,631.82 6.12 39.97 77.4 −0.533 Nuclear
SbRR18 LOC8084640 4 66411416 66416077 3155 6 5 675 73,136.19 5.96 46.1-unst 80.99 −0.341 Nuclear
SbRR19 LOC8056866 1 72774008 72779535 2724 6 5 686 73,679.76 6.26 49.94-unst 77.76 −0.423 Nuclear
SbRR20 LOC8076203 10 5132133 5136115 2344 6 5 672 72,886.35 6.01 46.69-unst 80.45 −0.331 Nuclear
SbRR24.1 LOC8058416 10 55120219 55130513 2088 8 7 695 76,440.93 5.56 43.44-unst 74.46 −0.459 Nuclear
SbRR24.2 LOC8084794 8 9453701 9488726 2163 9 8 551 60,852.22 5.66 36.22 80.69 −0.536 Nuclear
Type-C RRs
SbRR13 LOC8083419 6 3752870 3753702 501 2 1 132 14,169.76 7.74 18.5 96.74 0.224 Cytoplasmic
SbRR14 LOC8085961 1 7312249 7313602 963 4 3 201 21,501.8 9.69 54.67-unst 88.41 −0.106 Chloroplast
Pseudo-RRs
SbPRR1 LOC8072479 4 56625637 56628735 2328 6 5 524 58,166 5.91 52.76-unst 66.37 −0.623 Nuclear
SbPRR2.1 LOC8078076 3 302694 310420 2682 6 5 395 42,195.43 6.06 56.94-unst 68.3 −0.385 Nuclear
SbPRR2.2 LOC8057890 10 8684841 8687455 1952 6 5 466 50,071.47 5.01 56.48-unst 68 −0.438 Nuclear
SbPRR3.1 LOC8070845 6 40305107 40316802 3093 10 9 291 31,977.47 5.08 55.20-unst 70.34 −0.646 Nuclear
SbPRR3.2 LOC8084889 1 69433326 69440358 3195 12 11 765 83,595.91 6 52.17-unst 59.52 −0.88 Nuclear
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AHK1 is a transmembrane protein which plays a role in
osmosensing. It is largely expressed in the roots of A. thaliana
in salt stress conditions. In S. bicolor, SbHK1 and SbCKl1 are the
two orthologues of AHK1. In the CKl2 group, phylogenetic
analysis indicated that SbHK5 is an orthologue of AHK5/
ACKl2. The ethylene receptors SbETR1 and SbERS1 are
present as direct homologs of ERS1 and ETR1. Similarly,
SbEIN4.1 and SbEIN4.2 proteins are present on another clade,
making a direct orthologue relationship with A. thaliana ETR2
and ERS2.

Phytochromes or photoreceptors are found to be involved in
growth and development in light stress conditions. A. thaliana
contains five photoreceptors. These contain a C-terminal, a GAF
domain, an N-terminal PHY domain, one HisKa, and two PAS
domains, which are involved in signal transduction pathways.
Three photoreceptors (SbPHYA, SbPHYA, and SbPHYC) were
identified in S. bicolor, with the same domains as those present in
A. thaliana. Five HPs were found in S. bicolor, showing close
phylogenetic relationships to the true HPs of A. thaliana and O.
sativa. These HPs were grouped according to their phylogenetic
relationships with their A. thaliana counterparts. SbHP1 and
SbHP2 were grouped as being AHP1-like. SbHP3, SbHP4, and
SbHP5 were grouped as being AHP4-like HPs.

Protein sequences of S. bicolor, O. sativa, A. thaliana, G.
max, and C. Arietinum were used for the phylogenetic analysis
of RRs. RRs are classified as PRRs (divergent RRs), type-A RRs,
type-B RRs, or type-C RRs. This third family of TCS genes
regulates the final responses to environmental stresses. PRRs
are not considered to be true RRs due to the absence of a DDK
conserved motif. It was confirmed that SbRRs are true RRs,
since they have close phylogenetic relationships with their A.
thaliana and O. Sativa counterparts. The evolution pattern of
this family in S. bicolor revealed that this is segmentally
duplicated. The same results have been found in O. sativa
and A. thaliana in which it is also segmentally duplicated.
Because type-A RRs are not found in unicellular algae and are
observed only in land plants, they are considered relatively new
members of the RR family and have been suggested to perform
some novel functions in those organisms. Their structure
contains a Rec domain and a conserved DDK motif that is
important for receiving the phosphate group. Mainly,
cytokinin activates type-A RRs, and this cytokinin induction
partially depends on type-B RRs.

3.7 Gene Structure and Conserved Motif
Analysis
A crucial evolutionary feature of a gene is its exon-intron
structure and it provides information about its functional
diversity. Therefore, the exon-intron organization of the
AtTCS and SbTCS genes was further analyzed (Figure 3). The
results showed that the members of the cytokinin receptor (HK)
family had exon numbers ranging from 5 in SbHK1 to 14 in
SbHK5 with introns 4–13. The A. thaliana HK family has exons
11–14 and introns 10–13. SbCKl1 was found to have 8 exons and
7 introns, whereas AtCKl1 contains 9 exons and 9 introns.
Ethylene receptor family members SbEIN4.1 and SbEIN4.2T
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were shown to contain 3 exons and 2 introns, whereas SbERS1
and SbETR1 contained 6 exons and 5 introns. A. thaliana ERS1
contains 6 exons and 5 introns, ETR1 contains 7 exons and 6
introns, and AtEIN4, ETR2, and ERS2 have 2–3 exons and 1–2
introns. In the phytochrome family members, SbPHYA was
found to have 6 exons and 5 introns. SbPHYB and SbPHYC
were both shown to have 4 exons. The HP family members have
5–7 exons and 4–6 introns. A. thaliana HP family members have
3–5 exons and 2–4 introns.

The S. bicolor RR family genes had a number of exons
varying from 2 to 12 and an intron number varying from 1 to
11. The maximum number of exons and introns in SbPRR3.2
was found to be 12 and 11, respectively. The same number of
exons and introns were found in AtRRs. These results showed
that the groups and members with closer phylogenetic
relationships contain a similar exon-intron structure.
Subsequently, we used the MEME software to predict the
conserved motifs of these TCS genes (Figure 5). The
overall number of identified motifs was 20. Motifs 2, 8, 15,
16, 17, and 18 were conserved in the whole cytokinin receptor
family of S. bicolor and A. thaliana . The same motifs were
present in SbCKl1 and CKl1. The members of the ethylene
receptor sub-family also contain similar motifs to those of the
cytokinin receptor family but with the additional conserved
motif 13; SbERS1 and SbETR1 lacked motifs 2 and 18. The S.
bicolor and A. thaliana phytochrome family members contain
an average of 10 conserved motifs (1, 4, 9, 11, 12, 14, 19, 15, 16,
and 17). Only motif 20 is conserved in the members of the HP
family.

Motifs 1, 2, 3, and 5 were conserved in all members of the
type-A RR family. Type-B RRs contain the same motifs as
type-A RRs and contain two more conserved motifs: motifs 6
and 7. The same motifs were present in two type-C RR
members (SbRR24.1 and SbRR24.2). SbRR13 and SbRR14
encoded only two conserved motifs (motifs 2 and 5). The
members of the PRRs family contain the same set of motifs as
type-A RRs, except for two members, which contain only two

motifs (motifs 6 and 7). The members of the same gene families
share the same motifs, indicating that there is no significant
functional and sequence divergence between them.
Collectively evolutionary analysis revealed that TCS is
conserved.

3.8 Genomic Distribution, Gene Duplication,
and Synteny Analysis of the Sorghum
bicolor Two-Component System Members
To examine the genomic distribution of the SbTCS genes, their
chromosome gene location and duplication events were identified
using syntenic analysis. All the identified S. bicolor TCS family
members were found to be distributed on 10 chromosomes
(Figure 4). These genes are unevenly distributed, since chr1
contains 9 (maximum number) genes, while chromosome 7
contains only one gene. The HK(L)s are randomly distributed
on all S. bicolor chromosomes, except for chr2, chr5, chr7, and
chr8. The members of the HP family are located on chr2, chr3,
chr7, and chr9. RR family members are distributed on all
chromosomes, except for chr7 and chr9.

The duplication events were analyzed for the SbTCS gene family.
Since gene duplication provides raw material for development, the
evolution of new genes in the genome was also analyzed. The
number of tandem and segmental duplication events was
observed to increase in a number of plant genes. When
identifying the potential genomic duplication events, five pairs of
TCS syntenic paralogs were found in the S. bicolor genome. This
indicated that the SbTCSs have a high gene family expansion
(Figure 6). In this study, the duplicated pairs resulting from
segmental duplication include SbPRR3.1/SbPRR3.2, SbPRR5/
SbPRR9, SbEIN4.1/SbEIN4.2, SbRR18/SbRR20, and SbRR9/
SbRR10. In S. bicolor, multiple pairs exhibited segmental
duplication, implying that the expansion of SbTCS genes is
mainly due to segmental duplication. A similar expansion pattern
exists in other plants, such as in G. max (Mochida et al., 2010), A.
thaliana (Hutchison and Kieber, 2002), and Chinese cabbage (Liu

FIGURE2 | Phylogenetic analysis of (A)HK, (B)HPs (C) of RR and PRRs proteins inS. bicolor, O. sativa, A. thaliana, G.max andC. arietinum. The bracket indicates
the relative divergence of examined sequences. Neighbour-joining method with bootstrap analysis (1,000 replicates) was used to drive tree from the alignment of protein
sequences. Evolutionary analysis was conducted in MEGA7 (Kumar et al., 2016).
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et al., 2014). The synonymous rate (Ks), non-synonymous rate (Ka),
and the Ka/Ks ratio of these duplications were calculated, and the Ks
values were used to speculate on the duplication time (Table 3). The
Ks of five segment duplicates ranged from 0.143 to 0.632. Therefore,
the divergent time ranged from 10.89939024 to 48.17073171Mya.

3.9 Promoter Analysis of the SbTCS Genes
For a better understanding of the transcriptional regulation and
functional role of the SbTCS genes, their promoter sequences
were investigated to predict the cis-regulatory elements. Several
hormone-related and abiotic stress-related cis-regulatory

elements were identified, of which TATA- and CAAT-box
were present in almost all of the 37 SbTCSs (Figure 5A;
Supplementary Table S3). Among them, the methyl
jasmonate (meJa)-responsiveness elements were found in
27 SbTCSs. The ABA-responsive element (ABRE) involved in
the abscisic acid response was present in 23 SbTCSs. A large
number of cis-regulatory elements were associated with light
signaling, including the GATA motif, ACE, box 4, G-box, and
the TCCC and TCT motifs. Gibberellin-responsive elements
(GARE motif, TATC-box, and P-box) were present in almost
10 SbTCSs. Auxin-responsive elements, such as AuxRR-core and

FIGURE 3 |Gene structure and conserved motifs of all HK(L), HP and RR family genes in S. bicolor. In gene structure, the exons, introns, and untranslated regions
are indicated by yellow boxes, black lines and blue boxes, respectively. In conserved motifs, different color represents different motifs.
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TGA-element, and salicylic acid-responsive elements (TCA
element and SARE) were also found. In addition, low
temperature-responsiveness (LTR) elements were present in
11 SbTCSs, and drought-inducibility element (MBS) was found
in 14 SbTCSs. These results demonstrate that the TCS genes are
potentially involved in growth and developmental processes
related to hormone metabolism and signal transduction
networks. The presence of LTRs, TC-rich repeats (defense-
responsive element), and MBS (MYB binding site), which are
associated with drought-inducibility, suggest that TCS plays a

vital role in the development of plant and multiple abiotic stress
responses.

3.10 Gene Ontology Enrichment Analysis of
SbTCS Genes
Gene ontology enrichment analysis of all the SbTCS genes was
performed. For this purpose, a well-known open-source DAVID
bioinformatics resource 6.7 was used. All the identified genes
were subjected to DAVID gene ontology analysis by using the

FIGURE 4 | Syntenic analysis of TCS family genes in S. bicolor. The genes on different circular bar-blocks indicate the chromosomal position of genes. Green, blue
and red color lines represent the duplicated pairs.
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entrez_gene_id. The results revealed the identified genes were
classified into three main functional biological categories
annotated by GO, that including molecular function, cellular
component and biological process (Figure 5B). In the category of
biological processes 23 out of 37 genes were found to be involved
and the highest proportion (14 out of 23) was found in the
phosphorelay signal transduction system. Moreover 9 out of 23
genes were found to be involved in transcription, DNA-
templated. In the category of molecular function 21 out of 37
genes were found to be involved in different functions, including
phosphorelay sensor kinase activity (10), protein histidine kinase
binding (4), histidine phosphotransfer kinase activity (4),
photoreceptor activity (3), transcription factor activity;
sequence-specific DNA binding (6), and DNA binding (7).
Lastly in the category of cellular component, 25 out of 37
genes were found to be involved in two components including
intracellular and nuclear.

3.11 Expression Analysis of the SbTCS
Genes
To examine the expression level of the 37 SbTCS genes under
different abiotic stress conditions, the publicly available RNA-seq
data of S. bicolor was obtained from the SRA-NCBI database. The
results showed that SbHK3, SbPHYA, SbHP3, and SbHP5 were
upregulated under drought stress in leaves. Most members of the
RR family were upregulated under drought stress, whereas the

expression levels of SbETR1, SbRR4, SbRR10, SbRR9, SbRR3.1,
SbPRR5, SbPRR1, and SbPRR9 were decreased (Figure 6A).

In the salt treatment, many HK family members were showed
to be upregulated, including SbPHYA, SbEIN4.1, and SbEIN4.1.
Almost all members of the HP family were upregulated during
salt stress conditions. The RR family members, including SbRR20,
SbRR16, SbRR18, SbRR19, and SbPRR1, were also upregulated.
There were no expression changes observed in SbHP3, SbPRR2.2,
SbRR10, SbRR9, and SbPRR3.2 (Figure 6B). These results indicate
that the S. bicolor TCS genes potentially play a crucial role in
diverse abiotic responses.

3.12 Expression Validation of the SbTCS
Genes Through qRT-PCR
To further endorse the expression of SbTCS genes, 15
differentially expressed SbTCS genes based on RNA-seq
analysis (belonging to different groups) were selected. The
findings revealed that the overall expression trend of these
genes obtained through qRT-PCR analysis was highly
consistent with the RNA-seq data (Figure 7). Furthermore,
compared with the control, the results revealed that drought
stress treatment enhanced the expression of the SbHK3, SbPHYA,
SbHP1, SbHP2, SbHP3, SbPR2.2, SbRR16, and SbRR18 genes up to
several folds higher. Meanwhile, compared with the control,
drought stress decreased the expression of the SbHK4,
SbPRR1, SbPRR3.1, SbRR9, and SbRR10 genes. Drought stress

TABLE 3 | Ks, Ka and Ka/Ks calculation and divergence time of the duplicated SbTCS gene pairs.

Duplicated gene
pairs

Ks Ka Ka/Ks Time (MYAa) Duplication type

SbEIN4.1/SbEIN4.2 0.3299 0.4709 1.427402243 25.14481707 Segmental
SbRR9/SbRR10 0.143 0.1004 0.702097902 10.89939024 Segmental
SbRR18/SbRR20 0.1715 0.2077 1.211078717 13.07164634 Segmental
SbPRR3.1/SbPRR3.2 0.2885 0.2357 0.816984402 21.98932927 Segmental
SbPRR5/SbPRR9 0.632 0.8932 1.413291139 48.17073171 Segmental

aMYA: million years ago.

FIGURE 5 | (A) Graphical representation of cis-regulatory elements presents in putative TCS promoter’s region. Different colors are representing different cis-
elements and numbers in bars represent number of elements. (B)Gene ontology enrichment statistics graph, red color bar represents biological processes, green color
bar represents cellular component, and blue color bar represent molecular function.
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seems to not have affected the expression of SbPRR2.1 and
SbPRR3.2.

Additionally, SbHK3, SbHP2, SbPRR1, SbRR16, and SbRR18
were shown to be significantly highly expressed and SbHP3,
SbPRR2.2, SbPRR3.1, SbRR9, and SbRR10 were shown to not be
significantly expressed in both mild and severe salt stress
conditions. No expression changes were observed for
SbPRR2.1 and SbPRR3.2 under salt stress conditions. SbPHYA
and SbPRR1 were found to be significantly overexpressed, by up
to three-fold, under salt stress conditions. All of these findings
show the potential functional importance of TCS genes in the
growth and development of S. bicolor under different abiotic
stresses.

4 DISCUSSION

Plants are subjected to a variety of environmental factors that can
inhibit their growth, development, and yield. Plants cannot avoid
these conditions since they are sessile; thus, they have developed
multiple signaling cascades to survive. The TCS gene family has a
vital role in the signal transduction pathway and, thus, in plant
growth and development. As a result, the identification and
functional validation of TCS in signal transduction and
metabolic pathways may aid in developing crops with
improved traits, such as stress tolerance, to meet global
climate change challenges. These investigations have been

carried out in a variety of model and non-model plant species.
In tomato, ethylene receptors have a role in pollen
thermotolerance (Firon et al., 2012). Elements from A.
thaliana TCS can play a role in phosphorelay interaction in
physiologically irrelevant fungal systems (Lohrmann and Harter
2002). In G. max, these genes are expressed under dehydration
stress (Le et al., 2011). However, little is known about this gene
family’s diversity in S. bicolor. In this research, a genome-wide
investigation of the TCS gene family was carried out in S. bicolor,
including the gene structure, conserved motifs, sequence
phylogeny, and chromosomal localization. RNA-seq and qRT-
PCR expression analyses of the SbTCS members was examined in
silico under drought and salt stress.

The TCS gene family has been identified in various species of
plants, including A. thaliana (Hwang 2002), C. arietinum
(Ahmad et al., 2020), banana (Dhar et al., 2019), melon (Liu
et al., 2020), cucumber, watermelon (He et al., 2016b), Chinese
cabbage (Liu et al., 2014), O. sativa (Du et al., 2007), tomato (He
et al., 2016a), and G. max (Mochida et al., 2010). In the S. bicolor
genome, 37 TCS genes were identified in the present study. This
number is the same as the number of members present in O.
sativa L. (37) and is lower than that of A. thaliana (47), L.
japonicus (40), G. max (98), S. lycopersicum (tomato) (65), T.
aestivum (62), Zizania latifolia (69), and P. trichocarpa (49)
(Table 1). SbTCSs are segmentally distributed on
chromosomes. Four pairs of duplicated genes were found.
Both tandem and segmental duplication were observed in the

FIGURE 6 |Heat map representing the response patterns of SbTCS genes under drought (A) and salt (B) stresses. Red color represents up-regulation, green color
represents down-regulation and black color represent there is no change in expression.
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genome of several plants, such as melon, Z. latifolia, A. thaliana,
and Chinese cabbage. The Chinese cabbage genome underwent
whole genome duplication after diverging from A. thaliana; and
its TCS genes originated mainly from segmental duplication (Liu
et al., 2014). Similarly, nineteen duplicated genes were observed
in Z. latifolia (He et al., 2020). In cucumber, one event of tandem
duplication has been found. In watermelon, one tandem and two
segmentally duplicated gene pairs have been identified. This
indicates that genome duplication plays an important role in
the duplication of this gene family.

In S. bicolor, five pairs of segment duplicates, including
SbEIN4.1/SbEIN4.2, SbRR9/SbRR10, SbRR18/SbRR20,
SbPRR3.1/SbPRR3.2, and SbPRR5/SbPRR9, were found, which
expanded the TCS gene family in S. bicolor. Similarly, in A.
thaliana, C. arietinum, and Chinese cabbage, the main TCS gene
duplication mechanism was segmental duplication. In 35.71% of
all A. thaliana species, 10 pairs of TCS genes were found to be
segmentally duplicated. In C. arietinum, 55.55% of the genes were
involved segmentally duplicated. In Chinese cabbage, 61 of the 85
identified TCS genes were found to be duplicated as a result of

FIGURE 7 | Expression profiling of TCS genes in response to drought (Yellow), mild salinity (Blue) and severe salinity (Red) stresses. Data represent means (SD) of
three biological replicates. Vertical bars indicate standard deviations.
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segmental duplication. Meanwhile, in tomato, both segmental
and tandem duplication events were identified (He et al., 2016a;
Ahmad et al., 2020). In this study, the Ks for segmental
duplication ranged from 0.143 to 0.632, which corresponds to
a divergence time from 10.9 to 48.17 Mya. In tomato, the Ks for
segmental duplication ranged from 0.6 to 0.79 with the
divergence time ranging from 46 to 60 Mya and tandem the
duplication time ranging from 5.96 to 26.55 Mya. In C. arietinum,
the time of divergence for the first duplication event was
256.7 Mya and the latest duplication, which resulted in the
production of a new gene, was a tandem duplication, and took
place at about 38.90 Mya. This suggests that compared with
segmental duplication, tandem duplication in plants occurred
more recently since these replicates were more likely to regulate
stress responses (Firon et al., 2012).

Phylogenetic analysis revealed the division of SbTCS genes
into the same subfamilies as reported in previous studies of A.
thaliana (Hutchison and Kieber, 2002), S. lycopersicum (Firon
et al., 2012), and Z. mays (Chu et al., 2011). All these plants
contain members from the three subfamilies: HK, HP, and RRs.
The subfamilies in S. bicolor, as well as those in A. thaliana, were
classified based on the conserved functional domains. In A.
thaliana, CKl1 was referred to as hybrid HK(L) due to its
involvement in cytokinin signaling (Ishida et al., 2009). SbHK5
is a true HK and has been kept in the CKl2 group. The domains
specifying the type RR family members in A. thaliana were the
Rec/Response_reg domains. The clades of the RR family in S.
bicolor had the same domains. In banana, MaERS1.A lacks the
domain required for ethylene binding and signaling; therefore, it
may not play a significant role in ethylene sensing (Dhar et al.,
2019). In melon, no members of the type-C RR family have been
found (Liu et al., 2020). In chickpea, the cytokinin receptors’ clade
was clearly separated via phylogenetic analysis due to the
presence of the CHASE domain. Conversely, various clades
were revealed based on the phylogeny of RRs. Some members
from one species clustered on same clade, while members of other
plants clustered on another clade, such as the O. sativa clade
(Type-B RRs), A. thaliana clade (Type-B3 RRs), and legume-
specific clade (Type-B RRs) (Tiwari et al., 2021).

In the promoter of SbTCS genes, the analysis of the cis-
elements helps to find the switches that are involved in
regulating the transcription of downstream genes. Our result
revealed the presence of several light-responsive, drought-
responsive, and hormone-responsive elements relevant to
stress and wounding responses. These elements have
previously been found in the promoters of genes belonging to
the TCS family in other plants. In banana, hormone- and light-
responsive elements were abundant in the HK family. Hormone-
responsive elements included TCA elements, ethylene- and
gibberellin-responsive elements (ERE and GARE motif), and
ABRE. Biotic and abiotic stress-responsive elements were also
found in the RR family (Dhar et al., 2019). In cucumber and
watermelon, a large number of similar stress responsive elements
have been found, including ABRE, MBS, ABA-responsive, as well
as drought-responsive ones (He et al., 2016b). In Chinese
cabbage, apart from these stress-responsive elements, GARP
binding sites are also present in type-A RRs. These promoters

may act as a binding site to type-B ARRs, resulting in
transcription stimulation. It has been shown that the induction
of cytokinin-dependent type-A RRs is partly reliant on type-B RR
transcriptional regulation (Liu et al., 2014). This suggests that the
TCS genes are activated not only by hormonal stimuli, but also by
other genes responding to stress or ripening conditions.

Abiotic factors such as drought, salt, and cold may have an
impact on plant growth and development. TCSs play a role in
controlling the plants’ response to abiotic stresses; thus, their
expression patterns were examined to learn more about their
involvement in coping with environmental changes. In A.
thaliana AHK1 is a positive regulator of drought and salt
stress responses (Tran et al., 2007). EIN2 of ethylene signaling
and histidine kinase 5 may also be involved in regulating salt
stress response (Lei et al., 2011; Pham et al., 2012). In current
study, the SbTCS gene family was shown to have a tissue-specific
expression. In leaves, SbHK3, SbPHYA, SbHP3, and SbHP5 were
upregulated under drought stress. SbPHYA, SbEIN4.1, and
SbEIN4.1, HP family members, and RRs were also upregulated
during high salinity conditions. Under drought stress, in
Cultivar-I, a number of TCS genes were overexpressed. Almost
similar results were observed in Cultivar-II. In moderate drought
stress, RRs showed higher expression levels. Under severe
drought stress, RRs were downregulated. In C. arietinum,
CarHK2, CarHK3, CarHKL3, and CarHK4 were expressed in
all tissues, and CarHK5 and CarHK1 were expressed in pods and
shoots. Members of the CarRR family were mostly expressed in
flower buds (Ahmad et al., 2020). Similarly, O. sativa HK family
members were expressed in the roots and leaves, HPs were
expressed in leaves, and RRs were expressed in roots, leaves,
stems, and spikelets (Du et al., 2007). Melon had the highest
expression levels of RRs, indicating that these genes are important
for root cytokinin signaling. Similar results were also observed in
Chinese cabbage.

Among the abiotic stresses, drought stress (Azeem et al., 2019)
and salt stress (Rasul et al., 2017) are the main threats to modern
agriculture. TCS genes are involved in diverse abiotic stresses,
according to mounting evidence. In this investigation, 37 SbTCS
genes were identified, and various drought and salt stresses were
shown to regulate these genes, some of which were downregulated,
while most were upregulated in response. However, drought
treatment induced the expression of 21 out of 37 genes. In A.
thaliana, drought stress caused the downregulation of these genes,
whereas in tomato, these stresses caused the upregulation of SlHPs
and SlRRs. In S. bicolor, these genes were upregulated under drought
stress. For example, SbRR16, SbRR18, SbRR20, and SbPRR1 were
upregulated and a few RRs showed negative expression but their A.
thaliana counterparts, ARR12 and ARR1, were downregulated in
response to drought stress. InC. arietinum,Drought and salt stresses
resulted in variable expression of these genes likeCarRR12 had lower
expression in salt stress whereas, it given a higher expression in
drought stress. Similarly, CarRR2 also shown expression in drought
stress. CarRR17 had a higher expression in response to heat stress. A
few genes including CarRR5 and CarRR12 were downregulated. In
salt stress, CarRR17, CarHK1, CarPHYA, CarHP1 andCarERS1 had
shown higher expression (Ahmad et al., 2020). In banana, ethylene
treatment shown that MaERS1.A, MaERS1.B and MaERS1.C had
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higher expression (Dhar et al., 2019). Very few SbTCS genes showed
a null expression. Similarly, in tomatoes, drought stress responses
were confirmed to be modulated by SlPHYA, SlPHB1, and SlPHB2.
These expression studies of TCS elements have crucial implications
for how these genes function under abiotic stresses.

5 CONCLUSION

In this study, we identified a total of 37 putative members of the
TCS protein family, which include 13 HK(L), 5 HPs, and 19 RRs.
Protein classifications, phylogenetic relationships, gene
structures, domains, chromosomal gene distribution, and gene
duplication events were investigated in detail. These TCSs
showed significant conservation of their sequence and
domains. SbTCS proteins showed a closer phylogenetic
relationship with the TCSs of other plants. Members of the
SbRR family experienced significant gene duplication events,
and segmental duplication resulted in the expansion of the
genes. These findings provide important functional and
regulatory information regarding the TCS genes of S. bicolor,
which will help better understand the signal transduction
pathways and improve the stress tolerance of this plant.
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Prospectus of Genomic Selection and
Phenomics in Cereal, Legume and
Oilseed Breeding Programs
Karansher S. Sandhu1*, Lance F. Merrick1, Sindhuja Sankaran2, Zhiwu Zhang1 and
Arron H. Carter1

1Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States, 2Department of Biological
System Engineering, Washington State University, Pullman, WA, United States

The last decade witnessed an unprecedented increase in the adoption of genomic
selection (GS) and phenomics tools in plant breeding programs, especially in major
cereal crops. GS has demonstrated the potential for selecting superior genotypes with
high precision and accelerating the breeding cycle. Phenomics is a rapidly advancing
domain to alleviate phenotyping bottlenecks and explores new large-scale phenotyping
and data acquisition methods. In this review, we discuss the lesson learned from GS and
phenomics in six self-pollinated crops, primarily focusing on rice, wheat, soybean,
common bean, chickpea, and groundnut, and their implementation schemes are
discussed after assessing their impact in the breeding programs. Here, the status of
the adoption of genomics and phenomics is provided for those crops, with a complete GS
overview. GS’s progress until 2020 is discussed in detail, and relevant information and links
to the source codes are provided for implementing this technology into plant breeding
programs, with most of the examples from wheat breeding programs. Detailed information
about various phenotyping tools is provided to strengthen the field of phenomics for a plant
breeder in the coming years. Finally, we highlight the benefits of merging genomic
selection, phenomics, and machine and deep learning that have resulted in
extraordinary results during recent years in wheat, rice, and soybean. Hence, there is a
potential for adopting these technologies into crops like the common bean, chickpea, and
groundnut. The adoption of phenomics and GS into different breeding programs will
accelerate genetic gain that would create an impact on food security, realizing the need to
feed an ever-growing population.

Keywords: genetic gain, genomics, high throughput phenotyping, machine and deep learning, plant breeding, root
phenomics

INTRODUCTION

Classical plant breeding has evolved considerably during the last century. This can be attributed to
the combined action of molecular markers, improved experimental designs, statistical methods,
understanding of the concepts of population and quantitative genetics, and integration of other
disciplines such as entomology, pathology, soil science, engineering, agronomy, and physiology
(Lopes et al., 2012; Ray et al., 2012). The evolution and adoption of all these techniques and tools has
pushed the annual genetic gain of grain yield approximately 1% for major cereals like maize (Zea
mays L.), rice (Oryzae sativa L.), and wheat (Triticum aestivum L.) (Lopes et al., 2012; Masuka et al.,
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2017a; Cobb et al., 2019). However, the rate of genetic gain in
these crops is insufficient to cope with a 2% annual increase in the
human population, which is expected to reach 9.8 billion by 2050
(Ray et al., 2012, 2013). Plant breeders and scientists are under
pressure to develop new varieties and crops having higher yield,
higher nutritional value, climate resilience, and disease and insect
resistance. The solution requires the merging of new techniques
like next-generation sequencing, genome-wide association
studies, genomic selection, high throughput phenotyping,
speed breeding, and CRISPR mediating gene editing with
previously used tools and breeder’s skills (Varshney et al., 2021).

Since the 1980s, various molecular marker systems such as
restriction fragment length polymorphism (RFLP), amplified
fragment length polymorphism (AFLP), randomly amplified
fragment polymorphic DNA (RAPD), simple sequence repeats
(SSR), and single nucleotide polymorphism (SNP) have been
developed and led to the identification of several quantitative trait
loci (QTL) by linkage mapping in most crops (Zhu et al., 2008;
Buerstmayr et al., 2009). This was further supported by the
development of high throughput genotyping tools like
diversity array technology (DArT), genotyping by sequencing
(GBS), SNP array platform (for instance in wheat, several high-
density SNP arrays are available including the IlluminaWheat 9K
iSelect, Wheat 15K SNP array, 35K Axiom array developed from
an 820K array, 55K SNP array developed from 660 arrays,
Illumina 90K iSelect SNP array, and the Axiom wheat 660K
SNP array), and next-generation sequencing, all of which provide
tremendous amounts of marker information for utilization in
mapping studies (Poland and Rife, 2012; Wang et al., 2014; Cui
et al., 2017). Linkage mapping started with great hype for
deciphering each trait’s genetic architecture and improving
traits. This hype was later unrealized and attributed to low
mapping resolution, QTL by genotype interaction, QTL by
environment interaction, and QTL specific to a particular
segregating population. However, there are some success
stories utilizing linkage mapping for cultivar development,
such as identification of Sub1 QTL for submergence tolerance
in rice, Fhb1QTL for providing tolerance to fusarium head blight
in wheat, and QTL for providing resistance to cyst nematodes in
soybean (Glycinemax L.) (Concibido et al., 2004; Anderson et al.,
2007; Septiningsih et al., 2009).

As the excitement about linkage mapping began to fade in the
early 2000s, association mapping emerged as a new technique for
studying marker-trait associations (Lander and Botstein, 1989;
Breseghello and Sorrells, 2006; Yu et al., 2006). Association
mapping has two main advantages over linkage mapping.
Firstly, it saves the time, cost, and effort required to create a
mapping population, as it uses a collection of germplasm, which
can be easily assembled. Secondly, QTL can be mapped with
higher resolution due to multiple historical recombination in the
germplasm (Korte and Ashley, 2013). Several statistical models
were developed, which varied from single locus to multi-locus
models and multivariate models, including genotype by
environment interaction, dominance, and epistasis components
depending upon the associated crop’s nature (Huang et al., 2018;
Tibbs Cortes et al., 2021). It was later realized that association
mapping suffers from several limitations and has not shown the

same potential as linkage mapping. The main reason for its low
success was that it detects variants common in the mapping panel
and thus has low power for detecting the rare variant. These rare
variants could be identified by linkage mapping with segregation
of alleles in the mapping population, which will provide higher
power to detect rare QTL. Furthermore, several nested
association mapping (NAM) and multi-parent advanced
generation intercross (MAGIC) populations have been
developed in most of the crop species discussed in this review
for marker trait associations (MTAs) with high power and
resolution during mapping studies (Yu et al., 2008; Diaz et al.,
2021; Sandhu et al., 2021d).

By the late 2000s, plant breeders realized that they needed a
technique that can not only identify associated QTL, but provides
enough information to improve complex quantitative traits, for
which previous mapping techniques had failed. Bernardo
(Bernardo, 1994) achieved the earliest success for predicting
breeding values by replacing pedigree based matrix with a
marker based kinship using RFLP markers in maize. The term
genomic selection (GS) was first coined in 2001 and uses whole
genome-wide markers for predicting genomic-estimated
breeding values (GEBVs) of individuals (Meuwissen et al.,
2001; Bassi et al., 2015). GS is a technique that is not a design
approach to create a cultivar with a specific QTL combination but
uses a predictive approach to identify the line with the best
breeding values using whole genome wide markers. It uses
hundreds to thousands of genome-wide markers and previous
years phenotypic data to build the GS model and predict the
performance of new lines for quantitative traits (Isidro et al.,
2015). If a marker is in linkage disequilibrium (LD) with the
associated QTL, it will capture a large proportion of the genetic
variance for predicting that trait’s performance. The interest of
GS in plant breeding started after it was reported in maize in 2007
(Bernardo and Yu, 2007), and subsequently, several studies
followed up utilizing this technique in different crop species
(Crossa et al., 2014; Sun et al., 2017b). Plant breeders are
rapidly adopting GS for selecting the parents of new crosses,
removing poorly performing lines, predicting the performance of
lines in untested environments, predicting quantitative traits
early in the breeding pipeline (which was previously difficult
due to less seed availability), and predicting the performance of
traits that were not expressed in a particular environment owing
to weather conditions (such as disease incidence) (Mohammadi
et al., 2015; Millet et al., 2019; Cui et al., 2020; Krause et al., 2020).

Techniques like linkage and association mapping, marker-
assisted selection (MAS), and GS need accurate phenotyping
information for obtaining the desired results. GS requires
phenotypic information for building models, and MAS
requires phenotypic information for validating that a
particular marker is associated with a trait (Kaur et al., 2021).
In a large-scale breeding program, especially institutes such as the
international maize and wheat improvement center (CIMMYT),
international crops research institute for the semi-arid tropics
(ICRISAT), international center for tropical agriculture (CIAT),
and many breeding programs, approximately one hundred
thousand breeding lines are screened every year at multiple
locations, and the ability to accurately collect phenotyping
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data from this many lines and locations is challenging (Araus and
Cairns, 2014; Araus et al., 2018; Zhang et al., 2020b; Juliana et al.,
2020). Until now, advancements in phenotyping have not able to
keep pace with developments in the field of genomics. However,
the period from 2010 to 2019 witnessed the development and
adoption of various phenomics tools in plant breeding under
controlled and field conditions. Phenomics has unlocked the
potential for phenotyping in plants for various traits like biotic
(disease, insects, pests, viruses, and weeds) and abiotic stresses
(drought, salinity, nutrient deficiency, flood, and other
environmental factors), physiological (water use efficiency,
photosynthesis mechanisms and different pigments), and
agronomic traits (plant height, ear count and yield estimation)
(Sankaran et al., 2015a; Zaman-Allah et al., 2015; Araus et al.,
2018; Zhang et al., 2019). Merging phenomics with current
genomics methods have improved progress in increasing the
rate of genetic gain in many plant breeding programs (Masuka
et al., 2017a, 2017b; Araus et al., 2018).

Several ground-based and aerial sensing platforms are being
used with multiple sensors for measuring various traits in plants
at different growth stages accurately, rapidly, and precisely
(Sandhu et al., 2021e). The advancements in imaging sensors
in plants varied from remote sensing to advanced autonomous
vehicles equipped with RGB (red, green, and blue), near and far
infrared, hyperspectral, light detection and ranging (LIDAR), 3D
laser scanning, fluorescence, thermal, and spectro-radiometry
imaging (Mewes et al., 2011; Atieno et al., 2017; Duan et al.,
2018; Jimenez-Berni et al., 2018). Advanced autonomous
platforms include ground robots, unmanned aerial vehicles
(UAVs), and moving carts, which can take real-time data
from several plots multiple times in a day to cover the whole
season, generating enormous data for the plant breeders
(Sankaran et al., 2019; Pattanashetti et al., 2020). Data
generated from these sensors are longitudinally distributed in
time and space, thus requiring skills from mathematics,
statistics, data science, and machine learning for obtaining
useful results, which could be merged with the genomic
datasets and field breeding notes to make the best selections
(Sun et al., 2017b; Sun et al., 2019).

The main objectives of this review are to 1) provide current
status and overview about the advancements in genomics and
phenomics for rice, wheat, soybean, common bean (Phaseolus
vulgaris L.), chickpea (Cicer arietinum L.), and groundnut
(Arachis hypogaea L). These six crops are chosen after
considering the different rate of development during the last
decade and importance in the human diet and crops were chosen
separately from each cereal, legume and oilseed category; 2) offer
an overview of GS and its implementation in cereal, legume, and
oilseed breeding programs; 3) present developments in
phenotyping platforms and imaging sensors for collecting
phenotypic data; 4) discuss the status of below ground
phenotyping techniques in plant breeding; and 5) discuss the
merging of GS, machine learning, and phenomics information for
increasing the genetic gain of breeding programs. This review is
unique as it combines GS and phenomics in several important
crops and will assist upcoming plant breeders understand the
progress of this technology.

OVERVIEW OF SIX CROPS USED IN THIS
STUDY

This review focuses on six important crops: rice, wheat, soybean,
common bean, chickpea, and groundnut, as described above.
Average productivity and area harvested from these crops are
provided in Figure 1 from 1961 to 2019 (FAO 2019) (https://
www.fao.org/statistics/en/). The average productivity increased
from 1.9 to 4.7 ton/ha in rice, 1.1–3.5 ton/ha in wheat, 1.1–2.
8 ton/ha in soybean, 0.5–0.9 ton/ha in common bean, 0.6–1.
0 ton/ha in chickpea, and 0.8–1.6 ton/ha in groundnut from
1961 to 2019 (Figure 1A). There was an approximately three-
fold increase in rice, wheat, and soybean productivity due to
breeding and agronomic efforts. However, in common bean,
chickpea, and groundnut, similar gains have not been
observed (Figure 1A). Total area harvested for rice, wheat,
and soybean constantly increased from 1961 to 2019
compared to common bean, chickpea, and groundnut
(Figure 1B). Organizations like CIMMYT, ICRISAT, and
CIAT are working on collaborative projects to increase the
crop’s yield and awareness among farmers to use better
agronomic practices in these crops (Pandey et al., 2020b;
Thudi et al., 2020). Figure 2 shows the productivity of these
six crops across continents from 1961 to 2019. The green
revolution has resulted in the highest increase in productivity
of rice and wheat in Asia, but since the last 2 decades, the rate of
increase is linear, which won’t be sufficient for the current
increasing population, thus, demanding additional scientific
and technological breakthroughs (Ray et al., 2013).

Rice is a major staple food consumed by more than one third
of the world’s populations and meets up to 80% of the daily
calorie intake for a vast majority of the Asian population
(Kearney, 2010). Rice is a diploid species and has the smallest
genome among the crops of economic importance, which assisted
in its genome sequence in early 2002 (Sun et al., 2017a).
Currently, several landraces, cultivar’s and wild relatives of rice
have been sequenced, providing novel insights into the genome
evolution of the crop and enhancing knowledge of new genes for
rice breeding programs (Sun et al., 2017a). Due to its ease of
transformation, abundant genetic and genomic resources
(including mutants, cultivated landraces, and wild species),
compact genome, and collinearity with other cereal crops, rice
has become a model plant for crop genetic studies (Chen et al.,
2014; Sun et al., 2017a). Rice was one of the crops which benefited
from next generation sequencing due to its relatively modest level
of repetitive sequences, making it easy to accurately align small
reads to its reference genome (Abe et al., 2012; Takagi et al.,
2013). Great success has been seen in rice for releasing cultivars
having disease resistance, stress tolerance, improved nutritional
value, and higher yield using CRISPR and other genome editing
tools compared to the other five crops studied in this review
(Mishra et al., 2018). The individual timeline for the genomics
breakthrough in rice are depicted in Figure 3A.

Wheat is one of the three most consumed cereal crops globally,
providing one-fifth of the total caloric input. It is grown on
approximately 200 M ha globally and has widespread adaptation
from 45 S in Argentina to 67 N in Scandinavia, including some
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FIGURE 1 | The trend for yield and area harvested for the six crops, namely, rice, wheat, soybean, common bean, chickpea, and groundnut, staring from 1961 to
2019. (A) shows the yield trend and (B) shows the total area harvested for each crop since 1961. Source FAO, 2019 dated 02/20/2021.

FIGURE 2 | The average productivity of the six crops, namely, rice (A), wheat (B), soybean (C), common bean (D), chickpea (E), and groundnut (F), across the
continents starting from 1961 to 2019. These trends show huge potential for improving the crops using genomics and high throughput phenomics approaches in the
coming years. Source FAO, 2019 dated 02/20/2021.
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high-altitude regions in the tropics and subtropics. Wheat went
through two green revolution events, one in the late 1960s and
another during the 1980s. During these green revolutions, the
amount of gain for grain yield was approximately 3% in Asia, but
has now declined to <0.9% annually, causing concern for breeders
(Pingali, 2012). In spite of its hexaploid nature (2n � 6x � 42),
wheat is one of the most widely studied crops at the genetic and
cytogenetic level (Chhabra et al., 2021). The hexaploid nature of
wheat has allowed the creation of major numerical and structural
changes in chromosome constitution, that was made possible due
to the efforts of Ernie Sears Sears et al, (1993). Sears et al. Sears
et al, (1993) created aneuploid stocks of wheat, which were later
used for several mapping and genome sequence studies. The last
3 decades witnessed a profound improvement in understanding
wheat genomics and genetics due to the rapid adoption of DNA-
based molecular markers such as RFLP, SSR, AFLP, DArT and
SNPs from the early 1990s (Saini et al., 2022). These molecular
markers have aided in conducting several QTL mapping studies
using interval mapping, single-marker analysis, and GWAS
(Muhu-Din Ahmed et al., 2020). Several development events
in wheat, such as the first QTL mapping study, map-based
cloning, first consensus map, adoption of high throughput

genotyping arrays, translational genomics, gene editing, GS,
and pangenome sequence are listed in Figure 3B to compare
the development of genomics among the six crops (Poland et al.,
2012; Rutkoski et al., 2016; Montenegro et al., 2017). Recently, the
wheat pangenome sequence was released, with an average of
128,656 genes in each cultivar used, providing insights into
genomic assisted crop improvement (Montenegro et al., 2017;
Khan et al., 2020).

Soybean is a unique legume and oilseed crop consumed by
humans, livestock, and poultry worldwide, as it is a rich source of
protein, oil, essential amino acids, and metabolizable energy. The
total protein and oil content is important for soybean, as 60% of
its value comes from its meal and the remaining 40% from its oil
(Warrington et al., 2015). Aminimum of 47.5% protein content is
required in soybean meal to develop livestock and poultry
properly (Hurburgh et al., 1990). Although the domestication
of soybean started in Asia, it found a welcomed home in the
United States and Brazil. Brazil led production in 2019 (37%),
closely followed by the United States (28%), Argentina (16%) and
China (5%) (http://soystats.com/). Advancement of genomics
started after 2010 in soybean with the genome sequence of
cultivated soybean variety Williams 82 (Wm82) in the

FIGURE 3 | Timeline for advancement of genomics in rice (A), wheat (B), soybean (C), common bean (D), chickpea (E), and groundnut (F).
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United States (Schmutz et al., 2010). In addition to the genome
sequence ofWm82, several other accessions/lines were sequenced
by China and Japan. The genome sequence was the base point for
developing millions of SNP markers and thousands of SSR
markers (Deshmukh et al., 2014). The development of next-
generation sequencing and complexity reduction methods,
namely GBS, restriction site-associated DNA (RAD)
sequencing, and reduced representation libraries (RRL), are
being routinely used. Technology advances have resulted in
the development of several SNP arrays such as Illumina
Infinium BeadChip (50K), Affymetrix Axiom (355K), Illumina
Infinium BeadChip (8K), and Affymetrix Axiom (180), with
many more routinely used for genotyping soybean plant
introduction lines (Xu et al., 2013; Deshmukh et al., 2014).
Recently, whole-genome assemblies released from 26 different
soybean varieties and lead to the structuring of the soybean
pangenome and the sequences of previously cultivated lines in
the United States, China, and Japan (Liu et al., 2020). QTLs have
been mapped for many quality, biotic and abiotic stress, and
agronomic traits in soybean using QTL mapping and GWAS
(Merry et al., 2019; Qin et al., 2019; Ravelombola et al., 2020;
Shook et al., 2021). The complete details about the adoption of
various genomic tools is presented as a timeline in Figure 3C.

Common bean is an important cultivated legume crop
consumed worldwide, especially in developing countries in the
tropics. It’s seed is rich in protein and other micronutrients like
zinc and iron and provides a cheap energy source to millions of
people in Africa, South Asia, and Latin America, where per capita
consumption can reach up to 65 kg annually (Keller et al., 2020).
Until now, the main hindrance in reaching the maximum
threshold in bean is challenging environmental conditions.
The important biotic and abiotic stresses affecting their
performance include drought, low phosphorus, and diseases.
Drought and low phosphorus have resulted in up to 70 and
50% yield loss and are the main focus for the common bean
breeding programs worldwide (Beebe et al., 2008). Another
important breeding objective is to reduce cooking time, as it
retains the minerals and proteins which usually get lost with long
cooking time. Less cooking time also saves energy and time for
other tasks (Diaz et al., 2021). Mesoamerican and Andean have
been described as two gene pools in common bean, with greater
diversity present in the Mesoamerican pool. More progress for
improving yield, disease resistance, and quality traits is reported
in the Mesoamerican pool, but moving of genes/QTLs from this
pool to the Andean pool has been challenging, especially due to
linkage drag and incompatibility (Schmutz et al., 2014).
Furthermore, with the sequencing of 100 landraces and 60
wild relatives, it is confirmed that there were two
independent domestication events for common bean
(Schmutz et al., 2014). MTAs have been performed for
different disease traits, quality attributes, and yield traits for
both pools in different studies (Giovannoni et al., 1991; Berry
et al., 2020; Diaz et al., 2021). The timeline for the adoption of
several genomic tools in common bean is provided in
Figure 3D.

Chickpea is an important food legume crop grown on
13.72 M ha in 55 countries globally, producing 14.25 M tons

(FAO 2019). Chickpea can produce 3.0–4.0 tons/ha, but
currently it is restricted to ∼1 ton/ha due to limited work on
biotic and abiotic stresses (Roorkiwal et al., 2018b). Total
production of chickpea increased from 1961 at a slow pace
due to the use and reuse of limited germplasm/donor parents
(Varshney et al., 2013). Important abiotic stresses include
drought and heat, while biotic stresses include ascochyta blight
(Ascochyta rabiei), collar rot (Sclerotium rolfsii), dry root rot
(Rhizoctonia bataticola), botrytis grey mold (Botrytis cinerea),
and fusarium wilt (Fusarium oxysporum) that reduce crop yield.
Chickpea is a rich source of dietary protein, minerals,
carbohydrates, and essential nutrients, thus has the potential
for improving malnutrition problems in south Asia and sub-
Saharan Africa, where it is mostly grown (Varshney et al., 2013;
Pandey et al., 2016; Roorkiwal et al., 2018b). The last couple of
years have witnessed the adoption of several whole-genome
sequencing and resequencing projects for sequencing several
cultivars and landraces to explore genetic diversity (Verma
et al., 2015; Varshney et al., 2019). The adoption of these
next-generation sequencing methods in this decade has
witnessed a shift from maker-based genotyping to sequenced
based genotyping of diversified germplasm and breeding lines
(Jaganathan et al., 2015; Li et al., 2018b). The development of
chickpea varieties is further strengthened by the adoption of GS
and speed breeding methods. The timeline for adopting several
genomic tools in chickpea is provided in Figure 3E for
comparison with other crops.

Groundnut or peanut is a nutritious oilseed and legume crop
grown on 29.5 M ha in more than 100 countries globally, with a
total productivity of 48.8 tons during 2019. Africa (55%) and Asia
(40.3%) together have more than 95% of the groundnut
cultivation area, account for 31.5 and 59.6% of the total
production, respectively (FAO 2019). All parts of groundnut
are a nutrition source for humans and animals. Groundnut
plays an important role in fighting malnutrition as 80% of its
seed consists of nutritious fats and proteins; furthermore, the crop
can improve soil fertility and break the disease cycle when grown
under rotation with cereal crops (Pandey et al., 2020b).
Previously, groundnut was used as an edible crop in western
countries, while in Asia and Africa, it was mainly used for oil
production. The development of high oleic acid groundnut lines
and awareness about its nutritional value has resulted in the rapid
adoption of this crop as a primary food source across the globe.
Genomic studies in groundnut gained momentum after the first
SSR based genetic map was developed in 2009 (Varshney et al.,
2009). Several MAGIC and NAM populations were developed for
deciphering the genetic architecture of complex traits like
aflatoxin contamination, oleic acid content, drought, and
disease tolerance (Pandey et al., 2016; Chu et al., 2018). The
last decade was the golden era for developing genomics in
groundnut and several resources, such as a reference genome
for cultivated tetraploid and progenitors, high density
genotyping, genome-wide genetic markers, gene expression
atlases, and MAGIC and NAM populations, were developed,
with a timeline shown in Figure 3F (Akohoue et al., 2020; Pandey
et al., 2020b, 2020a). Still, this crop has many other priorities for
coming years like reference genome sequence for wild diploids,
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functional genomics, and high throughput genotyping assays,
which might improve breeding for groundnut.

GENOMIC SELECTION AND ITS
IMPLEMENTATION IN THE BREEDING
PROGRAM
As mentioned in the introduction, GS is a technique for
predicting GEBVs using training and testing populations
(Bhandari et al., 2019; Crossa et al., 2019). GS has been
efficiently applied in wheat, rice, and soybean; however, in
crops like chickpea, common bean, and groundnut, its
progress is slow. Figure 4 summarizes the trends for GS
studies conducted from 2011–20, and it is clear that GS was
rapidly adopted in wheat, and other crops are following the trend
at a slower pace. The slow rate of adoption in chickpea, common
bean, and groundnut is due to the recent advancement of
genomics tools, genome sequences, assembly of the core
collection, pangenome, and whole-genome resequencing
(Verma et al., 2015; Roorkiwal et al., 2018a; Pandey et al.,
2020b). Thus, the coming years will see efforts in the adoption
of GS and other new genomics tools to improve the genetic gain
for these globally important crops.

Several factors affect the performance of GSmodels. They have
been explored in multiple studies during the last decade, ranging
from training population size, relatedness between training and
testing population, cross-validation strategy, marker density,
heritability of the trait, population structure, and prediction
model (Yabe et al., 2018; Frouin et al., 2019; Huang et al.,
2019). It is observed that a certain population size is required
for model training to avoid model overfitting (Liu et al., 2018). A
large training population size results in higher prediction
accuracy; however, a smaller than desirable size is often used
due to the costs associated with their phenotyping and
genotyping (Heffner et al., 2011). In wheat, it was observed
that prediction accuracy constantly increased when training
population size was increased from 24 to 96 (Heffner et al.,

2011). Similarly, another study in wheat showed the same trend
when population size was increased from 250 to 2000 (Heslot
et al., 2012). Relatedness between genotypes in the training and
testing sets significantly affects prediction accuracy (Lozada et al.,
2019). More related lines share common ancestors in a small
number of prior generations, have fewer recombination events,
and conserve marker and QTL linkage phases (Heslot et al.,
2012). The effect of training population size is not observed on
prediction accuracy when individuals are closely related in the
training and testing set (Mujibi et al., 2011).

Since GS uses genome-wide markers, proper genotyping is
required. To date, several genotyping platforms like RFLP, AFLP,
SSR, DArT, and SNP chips have been explored for GS; however,
since 2012, with the emergence of the GBS platform, it has
dominated all previous platforms due to the low cost, genome-
wide coverage, and reduced sampling bias compared to SNP chips
(Poland and Rife, 2012; Poland, 2015). It has been seen that large
marker density results in model overfitting, causing lower
independent prediction accuracies (Werner et al., 2018).
However, larger marker density is favored as it increases the
probability of LD between the QTL and marker. Lower LD
combined with a larger training population and higher marker
density largely improves prediction accuracy (Crossa et al., 2014;
Norman et al., 2018). Heritability and population size plays an
important role in prediction, as they determine the amount of
genetic variation that the associated prediction model could
capture (Guo et al., 2014). A strong correlation is observed
between the GS model’s prediction accuracy and the trait’s
heritability in the training population (Edwards et al., 2019).
Various parametric and non-parametric machine and deep
learning models have been explored for GS in all the
mentioned crops (Table 1). Until now, none of the models
have significantly demonstrated superiority for all traits in all
crops (Liu et al., 2019; Ravelombola et al., 2020; Sandhu et al.,
2021b). Breeders should explore various models in their
programs for different traits and use the best performing
model final predictions after considering accuracy, error and
computational burden (Wang et al., 2018). Table 1 provides
information about models explored for GS, with their associated
characteristics and links to the source codes, for breeders, if they
want to explore them in their crop of interest.

GS is being applied with two approaches in the plant breeding
program. Firstly, it is applied at the early generation (F1) or (F2:3)
for a rapid generation cycle with a short interval. This selection is
used to predict the breeding values and helps the researchers
select parents for new crosses or remove inferior performing lines
earlier in the pipeline (Bassi et al., 2015; Gaynor et al., 2017).
Therefore, linear additive models are sufficient for predicting at
this stage. The second approach involves predicting the plant’s
total genetic value by considering additive, dominance, epistasis,
and environmental effects (Monteverde et al., 2019; Francki et al.,
2020; Guo et al., 2020b). Genetic values are predicted for most
environments using different combinations of environment,
genotype by environment, and weather parameters in the GS
models (Monteverde et al., 2019; Francki et al., 2020). Rapid
progress is happening in the second approach for predicting traits
in an untested environment with better prediction accuracy

FIGURE 4 | Trends in publications mentioning/discussing the six crops
and genomic selection since last decade (2011–2020). Search was made
using associated crop and genomic selection keywork in the abstract. Source
PubMed dated 02/25/2021.
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TABLE 1 | The detailed information about various models explored for genomic selection in different crops, with associated model type, characteristics, and links to the
source codes that could be easily implemented in various breeding programs.

Model Model type Characteristics Codes References

Ridge regression best
linear unbiased prediction
(RRBLUP)

Mixed model/
parametric model

Ridge regression is equivalent to traditional
BLUP, which assumes each marker has a
small effect with constant variance and
obtain this by using ridge regression
parameter

https://github.com/cran/rrBLUP Endelman (2011)

Genomic best linear
unbiased prediction
(GBLUP)

Mixed model/
parametric model

GBLUP uses the relationship between
genotypes for predicting their performance

https://github.com/gdlc/BGLR-R/blob/
master/inst/md/GBLUP.md

Bernardo and Yu
(2007)

Bayes A Bayesian model/
parametric model

Marker effects are obtained assuming a
scaled inverted chi-square distribution of
variance parameters, and all the markers are
assumed to have an effect

https://github.com/gdlc/BGLR-R/blob/
master/inst/md/Validation.md

Meuwissen et al. (2001)

Bayes B Bayesian model/
parametric model

It losses the restrictions of Bayes A and
allows some markers to have zero effect

https://github.com/ShiuLab/
GenomicSelection/blob/master/working/
predict_BGLR.R

Meuwissen et al. (2001)

Bayes C Bayesian model/
parametric model

Bayes C uses the scaled-t mixture with a
point mass at zero with scaled-t distribution

https://github.com/cma2015/G2P/blob/
master/R/GSEnsemble.R

Pérez and De Los
Campos (2014)

Bayes Cpi Bayesian model/
parametric model

Bayes Cpi is a special case of Bayes B but it
assumes a constant variance for markers
with non-zero effect

https://github.com/gdlc/BGLR-R/blob/
master/inst/md/BayesianAlphabet.md

Pérez and De Los
Campos (2014)

Bayes D Bayesian model/
parametric model

Bayes D uses the scaled-t distribution by
estimating scale parameter from the
datasets

https://github.com/gdlc/BGLR-R/blob/
master/inst/md/BayesianAlphabet.md

Pérez and De Los
Campos (2014)

Bayes Lasso (BL) Bayesian model/
parametric model

BL assumes a fixed set of markers have zero
effect, and the remaining follow the double
exponential distribution for variance
components

https://github.com/Sandhu-WSU/Genomic-
Selection-tutorial/blob/master/
GSworkshop_InProg.R

Tishbirani (1996)

Elastic net (EN) Parametric model EN is the intermediate between ridge
regression and Lasso using an average
weight penalty for marker effect estimation

https://datadryad.org/stash/dataset/doi:10.
5061/dryad.7f138

Crain et al. (2018)

Bayesian threshold
GBLUP (TGBLUP)

Bayesian model/
parametric model

TGBLUP is a threshold models for ordinal
and categorical data

https://github.com/gdlc/BGLR-R Montesinos-López
et al. (2019a)

Bayesian multi-trait and
multi-environment model
(BMTME)

Bayesian model/
parametric model

BMTME is the multi-trait version of the
Bayesian models

https://www.g3journal.org/content/9/5/
1355#app-1

Montesinos-López
et al. (2018)

Reproducing kernel
Hilbert space (RKHS)

Bayesian kernel-
based/semi-
parametric model

RKHS uses the kernel functions on the set of
distances among markers to estimate the
relationship matrix between the individuals
and assumes the absence of linearity
assumption

https://github.com/gdlc/BGLR-R/blob/
master/inst/md/RKHS.md

Pérez and De Los
Campos (2014)

Reaction norm Mixed model/
parametric model

Reaction norm model the interaction
between the markers and environmental
covariates using covariate functions

https://github.com/gdlc/BGLR-R/blob/
master/inst/md/BayesianAlphabet.md

Jarquín et al. (2014)

Support vector
machine (SVM)

Machine learning/
semi-parametric
model

SVM is another semiparametric model that
uses kernel function, and its cost function is
sensitive to residuals coefficient

https://github.com/afiliot/Kernel-Methods-
For-Genomics

Ravelombola et al.
(2020)

Random forests (RF) Machine learning/
non-parametric
model

RF uses a network of the tree with varying
number of nodes, mtry, and depth for
building the final forest for predictions

https://github.com/xuanxu/nimbus Guo et al. (2020a)

Gradient boost
machine (GBM)

Machine learning/
non-parametric
model

GBM is an ensemble learning model and is
similar to tree-based models used to reduce
the subset the SNPs using linkage
disequilibrium for obtaining higher prediction
accuracy

https://cran.r-project.org/web/packages/
gbm/index.html

Li et al. (2018a)

Functional B spline Machine learning/
non-parametric
model

Functional B splines use the piecewise
polynomial of degree n-1 in a variable x.
Different spline functions are tried at a given
degree for predicting the output

Montesinos-López
et al. (2017)

Partial least square
regression (PLSR)

Machine learning/
non-parametric
model

PLSR is a dimensional reduction approach
which uses latent variables derived from
predictors to link with the response variables

https://datadryad.org/stash/dataset/doi:10.
5061/dryad.7f138

Crain et al. (2018)

Sandhu et al. (2021b)
(Continued on following page)

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8291318

Sandhu et al. Genomics and Phenomics in Plant Breeding

48

https://github.com/cran/rrBLUP
https://github.com/gdlc/BGLR-R/blob/master/inst/md/GBLUP.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/GBLUP.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/Validation.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/Validation.md
https://github.com/ShiuLab/GenomicSelection/blob/master/working/predict_BGLR.R
https://github.com/ShiuLab/GenomicSelection/blob/master/working/predict_BGLR.R
https://github.com/ShiuLab/GenomicSelection/blob/master/working/predict_BGLR.R
https://github.com/cma2015/G2P/blob/master/R/GSEnsemble.R
https://github.com/cma2015/G2P/blob/master/R/GSEnsemble.R
https://github.com/gdlc/BGLR-R/blob/master/inst/md/BayesianAlphabet.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/BayesianAlphabet.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/BayesianAlphabet.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/BayesianAlphabet.md
https://github.com/Sandhu-WSU/Genomic-Selection-tutorial/blob/master/GSworkshop_InProg.R
https://github.com/Sandhu-WSU/Genomic-Selection-tutorial/blob/master/GSworkshop_InProg.R
https://github.com/Sandhu-WSU/Genomic-Selection-tutorial/blob/master/GSworkshop_InProg.R
https://datadryad.org/stash/dataset/doi:10.5061/dryad.7f138
https://datadryad.org/stash/dataset/doi:10.5061/dryad.7f138
https://github.com/gdlc/BGLR-R
https://www.g3journal.org/content/9/5/1355#app-1
https://www.g3journal.org/content/9/5/1355#app-1
https://github.com/gdlc/BGLR-R/blob/master/inst/md/RKHS.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/RKHS.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/BayesianAlphabet.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/BayesianAlphabet.md
https://github.com/afiliot/Kernel-Methods-For-Genomics
https://github.com/afiliot/Kernel-Methods-For-Genomics
https://github.com/xuanxu/nimbus
https://cran.r-project.org/web/packages/gbm/index.html
https://cran.r-project.org/web/packages/gbm/index.html
https://datadryad.org/stash/dataset/doi:10.5061/dryad.7f138
https://datadryad.org/stash/dataset/doi:10.5061/dryad.7f138
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


(Jarquín et al., 2017; Gill et al., 2021) (Table 2). We provided an
outline of the implementation of GS in a plant breeding program
for self-pollinated crops, where GS could be either applied within
the cycle selection, across cycles, with multi-location selection
and the inclusion of genotype by environment interactions, and
utilization of phenomics datasets for improving prediction
accuracies for complex traits (Figure 5). In this outline, it is
assumed that a single generation is possible in a year until speed
breeding is used to reach homozygosity (Watson et al., 2018).

Figure 5 provides the outline for a breeding cycle for wheat
and few modifications can be made in this scheme in order to
adjust for other crops. In the first year two different parents are
crossed with subsequent chromosome doubling in the second
year using double haploid (DH) or any other technique for
reaching 100% homozygosity (i.e., speed breeding, single seed
descent, rapid generation advance, shuttle breeding or tissue
culture). These early stage testing lines are evaluated in the
third year, and selection is made for high heritable traits, like
pod type in groundnut and soybean cyst nematode resistance
(Akohoue et al., 2020; Ravelombola et al., 2020). Each set of early-
stage testing progenies has a specific set of genes, and the breeder
aims to identify the best combination for advancing to the next
generation and seed multiplication trial. The measurement of
several agronomic traits, such as grain yield and aflatoxin content
in groundnut, quality attributes in rice, common bean and wheat,
for which a large amount of seed is required, is not possible at this
stage (Battenfield et al., 2016; Pandey et al., 2020a). Seeds from the
selected lines are multiplied at a single location known as a
preliminary yield trial (PYT), and spectral information could be
collected using phenomics tools like unmanned aerial vehicles
(UAVs), remote sensing, handheld scanners, or tractor-mounted

instruments (Rutkoski et al., 2016; Sandhu et al., 2021c). The
information generated with these phenomics tools provides a
secondary source of trait information for selecting complex traits
by understanding G by E interaction, field variation, and
explanation of various physiological processes occurring in the
plants. Furthermore, these phenomics tools have been used to
measure several agronomic traits and disease severity more
efficiently and effectively. The lines selected from the PYT are
later planted for 1 year at various locations with different
replications depending upon the seed generated in the PYT
and constitutes the advanced yield trials (AYT). Spectral
information can be collected in a similar way as done during
PYT to increase selection efficiency. After AYT, breeders keep
reducing the population’s size, owing to limited resources and
space, and selected lines are continually planted at multiple
locations for measuring more quantitative traits. This step is
repeated for two-three years depending upon the trait and
constitutes elite yield trials (EYT) (Bassi et al., 2015; Gaynor
et al., 2017).

Across cycles, predictions are possible at early stages, when
seed is limited, to measure quantitative traits like grain yield, end-
use quality traits in rice and wheat, and protein content in
chickpea and common bean (Jernigan et al., 2018; Diaz et al.,
2021). Figure 5 shows that GS and phenomics data sets collected
at PYT and AYT from the previous cycle could be used to predict
quantitative traits for the F2-F4 population and early-stage testing
lines in a new selection cycle. Similarly, in the subsequent years,
data from previous cycles and the same cycle can predict AYT
performance at multiple locations (Montesinos-López et al., 2017;
Crain et al., 2018). Phenomics information provides a significant
advantage for within cycle and across cycle prediction in multi-

TABLE 1 | (Continued) The detailed information about variousmodels explored for genomic selection in different crops, with associatedmodel type, characteristics, and links
to the source codes that could be easily implemented in various breeding programs.

Model Model type Characteristics Codes References

Multilayer
perceptron (MLP)

Deep learning/non-
parametric model

MLP uses the combination of input, multiple
hidden and output layers using a large
number of neurons for building the
relationship between the predictors and
output

https://github.com/saeedkhaki92/Yield-
Prediction-DNN

Convolutional neural
network (CNN)

Deep learning/non-
parametric model

CNN employs convolutional, flattening,
pooling, and dense layer for prediction using
filers and kernels to reduce the excess
predictors from the model

https://github.com/Sandhu-WSU/DL_
Wheat

Sandhu et al. (2021b)

Dual CNN Deep learning/non-
parametric model

Dual CNN uses two parallel streams of CNN
and sums up layer is used for predictions

https://github.com/kateyliu/DL_gwas Liu et al. (2019)

Arc-cosine kernel (AK) Deep learning/non-
parametric model

AK estimates the stepwise covariance matrix
by adding more hidden layer in model
training

https://www.frontiersin.org/articles/10.
3389/fgene.2019.01168/full#h7

Crossa et al. (2019)

DeepGS Deep learning/non-
parametric model

DeepGS uses deep CNN consisting of one
input, one convolutional, one sampling, two
fully connected and one output layer for
building a relationship

https://github.com/cma2015/DeepGS Ma et al. (2018)

Recurrent neural
network (RNN)

Deep learning/non-
parametric model

RNN is best for predictions under the
presence of longitudinal or time-series data,
as it uses the memory state to retains the
information from previous data and update
its prediction with new information

https://figshare.com/s/
5cd5e5e4eaeef55b721f?file�24963563

Maldonado et al. (2020)
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TABLE 2 | Genomic selection studies covering important breeding traits conducted in 2019 and 2020 for rice, wheat, soybean, chickpea, common bean, and groundnut
throughout the world. Complete detail about the population size, validation strategy, marker density, model type, the accuracy obtained and country where the study
was conducted is provided.

Crop Trait Population
size

Validation
strategy

Marker
intensity

Model Single
or multi-trait

analysis

Accuracy Country References

Rice Arsenic content 228
accessions

CV and IV 22,370
SNPs

GBLUP, Bayes
A, RKHS

Single trait 0.43–0.48 France Frouin et al. (2019)

Days to heading 112 cultivars CV and IV 408,372
SNPs

GBLUP Single and
multi-trait
models

0.93–0.98 Japan Jarquin et al. (2020)

Drought
tolerance

280
accessions

CV 215,000
SNPs

GBLUP and
RKHS

Single and
multi-
environment
models

0.22–0.80 France Bhandari et al.
(2019)

Grain weight
distribution

128 cultivars CV 42,508
SNPs

GBLUP
and PLS

Single trait
models

0.28–0.53 Japan Yabe et al. (2018)

Grain yield and
quality traits

327 & 320
breedinglines

CV and IV 92,430
and
44,598
SNPs

GBLUP, PLS,
and reaction
norm mode

Single and
multi-
environment
models

0.11–0.82 Uruguay Monteverde et al.
(2019)

Rice blast 161 and 162
accessions

CV and IV 66,109
and
29,030
SNPs

GBLUP, Bayes
A, Bayes C
and MLP

Single and
multi-trait
models

0.15–0.72 United States Huang et al. (2019)

Ten agronomic
traits

1,495 hybrid
rice

CV and IV 232,935
SNPs

GBLUP,
additive and
dominance
model

Single trait 0.54–0.92 China Cui et al. (2020)

Wheat Anther extrusion 603 lines CV and IV 7,649
SNPs

Reaction norm
model

Single trait
models

-0.03–0.74 CIMMYT Adhikari et al. (2020)

Days to heading 286
accessions

CV 9,047
SNPs

RRBLUP, BA,
BB, BC, BL,
and BRR

Single trait
models

−0.04–0.45 Iran Shabannejad et al.
(2020)

Days to heading
and plant height

3,486 lines CV 2,083
SNPs

MTDL Multi-trait
models

0.39–0.62 CIMMYT Montesinos-López
et al. (2019b)

End-use quality
traits

401 lines CV and IV 4,598
SNPs

RRBLUP Single trait
models

0.38–0.63 Austria Michel et al. (2018)

End-use quality
traits

1912 lines CV and IV 21,210 GBLUP Single and
multi-trait
models

0.28–0.69 France Ben-Sadoun et al.
(2020)

End-use quality
traits

179 lines CV 16,383
SNPs

RRBLUP Single trait
models

0.10–0.48 Spain Mérida-García et al.
(2019)

Fusarium head
blight and
Septoria tritici
blotch

642 lines CV and IV 8,398
SNPs

RRBLUP Single trait
models

−0.41–0.88 Germany Herter et al. (2019)

Grain yield 1,325 lines CV and IV 9,290
SNPs

GBLUP Single and
multi-trait
models

0.18–0.31 Denmark Tsai et al. (2020)

Grain yield 1716 lines CV and IV 15,853
SNPs

RRBLUP Single trait −0.05–0.20 United States
of America

Lozada et al. (2020b)

Grain yield, days
to heading, and
plant height

270 lines CV and IV 14,163
SNPs

GBLUP
and DL

Single and
multi-
environment
models

0.02–0.91 CIMMYT Montesinos-López
et al. (2019c)

Grain yield and
end-use quality
traits

282 lines CV and IV 7,426
SNPs

BL, RF, RKHS,
and RRBLUP

Single trait 0.07–0.68 United States Hu et al. (2019)

Grain yield and
protein content

480 lines CV 7,300
SNPs

GBLUP Single and
multi-trait
models

−0.60–0.74 Austria Michel et al. (2019a)

Leaf and stripe
rust

1744 single
crosses

CV 15K SNPs GBLUP Single trait 0.16–0.50 Germany Beukert et al. (2020)

Powdery mildew 467 lines CV RRBLUP 0.36–0.67 Sarinelli et al. (2019)
(Continued on following page)
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trait GS models. Spectral reflectance indices (SRI) derived from
these phenomics measurements have increased prediction
accuracy in various GS studies in wheat (Rutkoski et al., 2016;
Crain et al., 2018; Sandhu et al., 2021c). Higher prediction

accuracies are obtained for grain yield due to lower heritability
and higher genetic correlation with SRI. Utilization of these SRI
in multi-trait GS models, and as a covariate in the GS models,
increases the capture of total variation for a particular trait and

TABLE 2 | (Continued) Genomic selection studies covering important breeding traits conducted in 2019 and 2020 for rice, wheat, soybean, chickpea, common bean,
and groundnut throughout the world. Complete detail about the population size, validation strategy, marker density, model type, the accuracy obtained and country
where the study was conducted is provided.

Crop Trait Population
size

Validation
strategy

Marker
intensity

Model Single
or multi-trait

analysis

Accuracy Country References

34,095
SNPs

Single trait
model

United States
of America

Septoria tritici
blotch

175 lines CV 6,097
SNPs

RRBLUP Single trait
model

0.47–0.62 Sweden Odilbekov et al.
(2019)

Snow mold 753 lines CV and IV 12,681
SNPs

RRBLUP,
GBLUP and
RKHS

Single trait −0.09–0.92 United States Lozada et al. (2019)

Winter hardiness
and frost
tolerance

504 lines CV and IV 1,413
SNPs

GBLUP Single traits −0.02–0.58 Austria Michel et al. (2019b)

Soybean Amino acids 249 lines CV 23,279
SNPs

RRBLUP and
GBLUP

Single trait
model

0.18–0.85 United States Qin et al. (2019)

Chlorophyll
content
tolerance

172 lines CV 4,089
SNPs

RRBLUP,
GBLUP, BL,
RF and SVM

Single trait
model

0.31–0.76 United States Ravelombola et al.
(2019)

Soybean cyst
nematode

234 lines CV 3,782
SNPs

RRBLUP,
GBLUP, BL,
RF and SVM

Single trait
model

0.05–0.53 United States Ravelombola et al.
(2020)

Yield, protein
content, oil and
height

5,000 lines CV 4,236
SNPs

DualCNN,
deepGS,
singleCNN and
RRBLUP

Single trait
model

0.23–0.47 United States Liu et al. (2019)

Yield 5,600 lines CV 4,600
SNPs

GBLUP Single trait
model

0.27–0.60 United States Howard and Jarquin
(2019)

Groundnut Leaflet length,
100 seed
weight, days to
maturity and
total yield

281
accessions

CV 493 SNPs RRBLUP Single trait
model

0.02–0.62 South Africa Akohoue et al.
(2020)

Seed weight,
oleic acid
content, total
yield, and days
to maturity

340 lines CV and IV 13,355
SNPs

Reaction norm
model

Single and
multi-
environment
models

0.19–0.89 India Pandey et al. (2020a)

Chickpea Grain yield,
podding time,
emergence
score and seed
number

132 lines CV 144,777
SNPs

BL and BRR Single trait
model

0.22–0.81 Australia Li et al. (2018b)

Seed weight,
biomass, harvest
index, and seed
yield

320 breeding
lines

CV and IV 89,000
SNPs

Reaction norm
models

Single and
multi-
environment
models

−0.01–0.94 India Roorkiwal et al.
(2018b)

Common
bean

Cooking time,
and water
absorption
capacity

922 lines CV and IV 5,738
SNPs

RKHS, BA, BC
and BL

Single trait
model

0.22–0.55 Colombia Diaz et al. (2021)

Grain yield and
days to maturity

481 breeding
lines

CV and IV 5,820
SNPs

GBLUP, BL,
BA, BB, and
RKHS

Single and
multi-
environment
models

0.6–0.8 Colombia Keller et al. (2020)
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helps explain various physiological phenomena that are difficult
to observe under field conditions (Rutkoski et al., 2016; Lozada
and Carter, 2019). We were not able to find any GS study which
used phenomics information in GS models in chickpea, common
bean, and groundnut. Table 3 provides the studies that have used
GS and phenomics information for predictions in wheat, and the
improvement in the model’s performances are provided. There is
a significant advantage of including phenomics datasets in GS
models due to observed increase in prediction accuracy,
suggesting that merging these two techniques can assist in
increasing the yield of these crops in the coming decade.

DEVELOPMENT IN PHENOTYPING
PLATFORMS AND IMAGING SENSORS

The last three-decades witnessed an unprecedented increase in
the adoption and development of genomics in plant breeding
programs, leading to a rise in genetic advances in the major cereal
crops (Thudi et al., 2020). However, genetic gain has stagnated in
major cereal crops globally, which requires the need to raise the
efficiency of breeding programs. It is perceived that limitations in
the progress and development of phenotyping tools and
platforms contribute to lower efficiency in breeding (Rincent
et al., 2018). With this in mind, several phenomic initiatives and
facilities have been launched at regional, national, and
international levels; still, breeders are skeptical about the
application of these tools (Atieno et al., 2017; Duan et al.,

2018). Breeders are concerned that results obtained from
phenotyping platforms under controlled conditions are not
indicative of field performance for complex traits, especially
under large environmental variability (Atieno et al., 2017;
Duan et al., 2018). Moreover, the high throughput platform’s
extensive phenotyping is onerous and not cost-efficient compared
to the benefits achieved so far. Lastly, data generated from these
tools results in data management and big data problems, causing
an issue for making a legitimate conclusion for decision-making
without understanding data science andmachine learningmodels
(Singh et al., 2016). In spite of these challenges, several phenomics
platforms, tools, and sensors have been developed, and their
improvement and adoption rate is fairly high with the hope of
breaking this stagnated genetic advance (Ashourloo et al., 2014;
Dobbels and Lorenz, 2019). The next one or 2 decades have
considerable potential for phenomics to reach the stage where
genomics is today, allowing collection of a large amount of data,
gaining understanding from previously unknown traits, and
making valid conclusions based on those.

Imagers and sensors have allowed collection of
multidimensional and high-resolution datasets from plants to
quantify crop growth, yield, biotic or abiotic stress, and other
physiological processes under both fields and controlled
conditions (Cai et al., 2016; Sankaran et al., 2019). These
sensors can measure spectral reflectance ranging from radio
waves to gamma waves of the electromagnetic spectrum and
create an abundance of information to select from. The resulting
imaging sensors varies from LIDAR, X-ray computed

FIGURE 5 | The standard breeding scheme outline for self-pollinating crops with the implementation of genomic selection and phenomics information for predicting
various traits earlier in the pipeline in different selection cycles. Three columns show the three separate breeding cycles starting from the cross initiation to the variety
release. The yellow arrows represent how genomic selection can be used on datasets from previous years to predict phenotype in F2-F4 stage and early-stage testing
stages. The red arrows show the stages where selection is imposed for low and high heritable traits in traditional breeding; however, with genomic selection,
decisions can be performed for low heritable traits earlier in the pipeline. Here it is assumed that a single generation is planted in a year. The DH represents the double
haploid, PYT is preliminary yield trial, AYT is advanced yield trial, and EYT is elite yield trial.
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tomography (CT), time-of-flight based systems, positron
emission tomography, thermal, visible to near-infrared,
multispectral, hyperspectral, fluorescence, and stereovision
(Kobayashi et al., 2001; Zhang et al., 2018). The field-based
platforms range from Internet-of-Things (IoT) based sensor
systems, field mounted system (e.g., tower), tractor/sprayer
modified systems (manually operated), small autonomous

systems, scanning platforms, UAVs, aircraft, and more
recently, low orbiting satellite systems (Sangjan et al., 2021). In
general, most of the phenotyping systems in controlled
environment are commercial systems developed by the private
industry. Recently, there has been interest in the development of
IoT based systems for customized operation in controlled
environment (Sangjan et al., 2021). The commonly used
sensors in the phenotyping platforms used in plant breeding
are RGB, multispectral, hyperspectral, thermal, and fluorescence
sensors employed on ground-based or aerial platforms. These can
cover large numbers of plots at a time by measuring absorption,
reflection, and refraction information from the plant canopy.
RGB sensors are most often used owing to their cost and
simplicity (Ashourloo et al., 2014). All these remote sensing
tools provide information about several physiological
parameters related to crop yield by considering the plant’s
nutrient, water, radiation, pigment contents, resource
allocation, and biomass partition (Duan et al., 2018; Dobbels
and Lorenz, 2019). Most imagers and sensors are equipped on
ground-based platforms, mainly stationary in the field or on
phenomobiles at experimental facilities to develop new
applications and require specialized training and
considerations for their use (Cai et al., 2016; Jimenez-Berni
et al., 2018). The increase in resolution and miniaturization
has lowered their cost and could be easily purchased by small
scale labs. The main success in plant phenotyping has come with
higher resolution andminiaturization of the sensors coupled with

TABLE 3 |Genomic selection studies that have used phenomics information in wheat is summarized. The traits or spectral information derived from the phenomics data sets
and the physiological parameters which they explain is provided with information about their effect on the final prediction accuracies when included in the genomic
selection model is added to show their potential.

Trait Population
size

Model Phenomics traits
used

Physiological trait explained Effect on
prediction

accuracy with
inclusion

of phenomic
information

Country/
institute

References

Grain yield 1,092 lines RRBLUP GNDVI, RNDVI
and CT

Canopy size, greenness,
chlorophyll content, and
temperature

70% increase in
prediction accuracy

CIMMYT Rutkoski et al.
(2016)

Grain yield 1,092 lines GBLUP, EN, and
PLSR

CT and NDVI Canopy temperature and
greenness

7% increase in
prediction accuracy

United States Crain et al.
(2018)

Grain yield 3,282 lines RRBLUP CT and GNDVI Canopy temperature and nitrogen
status

46% increase in
prediction accuracy

United States Sun et al. (2019)

Grain yield 456 lines Recommender
system & GBLUP

NDVI, NWI, and SR Biomass, greenness, and water
status

19% increase in
prediction accuracy

United States Lozada and
Carter (2020)

Grain
protein
content

650 lines RRBLUP NDVI, GNDVI, NWI,
WI, ARI, and PRI

Biomass, chlorophyll, nitrogen,
water, anthocyanin, and
photochemical pigments status

20% increase in
prediction accuracy

United States Sandhu et al.
(2021c)

Grain yield 4,368 lines GBLUP GNDVI Biomass and greenhouse 11–23% increase in
prediction accuracy

CIMMYT Juliana et al.
(2019)

Grain yield 242 lines GBLUP CT, SPAD, SGT,
NDVI

Canopy temperature, chlorophyll
content, stay green and
senescence traits

63% increase in
prediction accuracy

United States Guo et al.
(2020b)

Grain yield 1716 RRBLUP NDRE, NDVI,
and SR

Biomass, vegetation, and water
status

13% increase in
prediction accuracy

United States Lozada et al.
(2020a)

Grain yield 771 lines GBLUP Reflectance bands Whole spectrum from visible to
infra-red were used

10–16% increase in
prediction accuracy

CIMMYT Krause et al.
(2019)

Grain yield 630 lines Random regression
and GBLUP

CT and NDVI Canopy temperature and biomass 70% increase in
prediction accuracy

United States Sun et al.
(2017b)

FIGURE 6 | Trends in publications mentioning/discussing the six crops
and high throughput phenotyping since last decade (2011–2020). Search was
conducted using associated crop and high throughput phenotyping
keywords in the abstract. Source PubMed dated 02/20/2021.
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UAVs for covering a large number of plots in a limited time frame
and is preferred over the ground-based platforms in many
programs (Sankaran et al., 2015b; Gracia-Romero et al., 2019).

Figure 6 provides the studies using high throughput
phenotyping (HTP) in these six crops for the last decade
(2011–2020). An observed 3–4 fold increase in the number of
studies that are using HTP for rice and wheat can be found, but
for chickpea, common bean, groundnut, and soybean, there is no
improvement observed in this regard (Zhang et al., 2020a; Zhang
et al., 2021). Fewer number of studies using HTP in chickpea,
common bean, and groundnut might be attributed to the recent
adoption of genomics technology (Pandey et al., 2020b). These
crops can still benefit from the use of HTP technology to better

evaluate various agronomic, biotic, and abiotic stress-related
traits. Table 4 shows recent studies conducted for these six
crops where different phenotyping platforms and imaging
sensors were used for various agronomic, biotic, and abiotic
stress studies. In general, most of the studies used RGB or
multispectral imaging due to their lower cost, easy
management of data, and avoidance of problems related to big
data. Furthermore, UAVs have relatively high adoption rates over
ground-based platforms by utilizing the same imaging sensors
with better resolution and throughput in collecting data from
large plots.

RGB and multispectral imaging have shown a tremendous
adoption rate during the last decade for studying biotic and

TABLE 4 | Important studies conducted using phenomic tools in the last decade for the six crops explored in this study. Information about the trait, phenotyping platform,
sensor and study description is provided.

Crop Trait Platform Sensor/imager Discrimination References

Rice Rice blast Hand-held, simulating aircraft
imagery

Multispectral imaging Reflectance values in the visible and
near-infrared regions were used to link
with a disease severity rating

Kobayashi et al. (2001)

Rice sheath
blight

UAVs RBG and multispectral
imaging

Derived vegetation indices from
multispectral images and percentage of
infected leaf areas with RGB were used
for disease detection

Zhang et al. (2018)

Drought stress Greenhouse automated system
at the Rice Automatic
Phenotyping (RAP) facility in
Germany

RGB imaging Stay green values were used to assess
the stress tolerance ability of genotypes

Duan et al. (2018)

Wheat Powdery
mildew

German Aerospace Centre Hyperspectral imaging Powdery mildew was detected, and the
best hyperspectral bands were
identified for detecting this fungal
disease for application in breeding
programs

Mewes et al. (2011)

Leaf rust Hand-held ground-based
sensing

RGB imaging and
multispectral
(spectroradiometer) sensors

Vegetation indices from multispectral
imaging and percentage of infected
leaves from RGB imaging were used for
the classification of leaf rust

Ashourloo et al. (2014)

Plant biomass
and height

Phenomobile portable buggy 3D imaging with LIDAR Plant height, biomass, and canopy
cover was measured in a labor-
intensive way

Jimenez-Berni et al. (2018)

Soybean Seed yield UAVs RGB imaging Average canopy cover obtained at an
earlier stage was used as a covariate in
yield prediction models

Moreira et al. (2019)

Iron deficiency UAVs Multispectral imaging Image processing and unsupervised
classification models were used for
classifying the iron-deficient plots

Dobbels and Lorenz (2019)

Seed yield UAVs Hyperspectral imaging Feature selection approach was used
to identify best bands for predicting
seed yield with different ML models

Yoosefzadeh-Najafabadi
et al. (2021)

Chickpea Salinity
tolerance

Plant accelerator installed at
University of Adelaide

RGB imaging The plant growth rate was monitored
throughout the growth stages to study
the effect of salinity

Atieno et al. (2017)

Progression of
senescence

Camera established on a stand RGB imaging Color distortion correction algorithms
were applied on time series data to
quantify the onset and progression of
senescence

Cai et al. (2016)

Common
bean

Seed yield and
biomass

UAVs Multispectral imaging Derived vegetation indices showed a
strong relationship with seed yield and
biomass

Sankaran et al. (2019)

Root
architecture

Root excavation, ground-based RGB imaging and traits
estimation with DIRT

Genotypes were differentiated for their
root traits

Burridge et al. (2016)

Groundnut Iron deficiency Chlorophyll meter SPAD, Hand-
held

Infrared sensor Genetic loci associated with increasing
iron deficiency were identified

Pattanashetti et al. (2020)
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abiotic stresses in crops. Rice sheath blight (Rhizoctonia solani)
and blast (Magnaporthe oryzae) are devastating diseases of rice
observed worldwide, and accurate detection and management are
the focus of several breeding programs. RGB and multispectral
imaging sensors on UAVs are an affordable and user-friendly
option for disease detection and rating (Kobayashi et al., 2001;
Zhang et al., 2018). Color space transformation and color feature
extraction have been used to select the diseased varieties or
qualitatively detect the infected portions; however, estimation
of disease quantitatively was less effective. Vegetation indices
extracted from multispectral images showed high accuracy for
quantitatively predicting these diseases (Kobayashi et al., 2001;
Zhang et al., 2018). Hyperspectral imaging covers a broader
region of the electromagnetic spectrum (400–2,500 nm) with a
narrow bandwidth, non-destructively explaining various
biochemical and physiological changes occurring in the plant
due to environmental conditions. For example, in wheat,
hyperspectral imaging has been used to detect powdery
mildew severity and infection using feature selection
algorithms (Mewes et al., 2011). As hyperspectral imaging
provides information about various spectral bands, most of
which are unnecessary, feature selection is required. This
became possible due to the adoption of machine learning
models by plant breeders. Here, Mewes et al. (2011) used
support vector machine and spectral angle mapper
classification methods for feature selection to identify the most
important spectral band. Later, those selected bands showed
higher prediction accuracy for powdery mildew.

Phenomics aids in the collection of high-quality data earlier in
the breeding pipeline from thousands of breeding plots with high
temporal and spatial resolution (Krause et al., 2020). Data
collected at earlier stages in the growth cycle has shown an
advantage in soybean breeding, where canopy coverage during
vegetative growth stages have high heritability and genetic
correlation with seed yield (Moreira et al., 2019). UAVs are
commonly used for collecting canopy coverage with RGB
cameras, which is later used for predicting seed yield from
multiple plots (Moreira et al., 2019). In a recent study,
Yoosefzadeh-Najafabadi et al. (2021) used hyperspectral
imaging collected at vegetative stages in soybean and feature
selection with machine learning models and demonstrated 93%
prediction accuracy for seed yield prediction. There are various
other examples where phenomics is used in soybean for studying
biotic stresses (powdery mildew, phomopsis seed decay, and
target spot), abiotic stresses (nutrient deficiency, drought, and
waterlogging), and agronomic traits (seed yield, pod number and
biomass estimation) (Mo et al., 2015; Moreira et al., 2019;
Yoosefzadeh-Najafabadi et al., 2021). Multiple vegetation
indices [normalized difference vegetation index (NDVI),
normalized water index (NWI), photochemical reflectance
index (PRI)] derived from multispectral imaging were used to
find the best time point for predicting the above ground mass and
seed yield using correlation and regression analysis (Sankaran
et al., 2019). Furthermore, thermal sensors were used to obtain
the mean plot temperature and showed a high correlation with
plant biomass (Sankaran et al., 2019). A couple of studies have
shown the potential of multispectral imaging using UAVs for

common bean to predict the seed yield and biomass, but the total
number studies are limited when compared to wheat, rice, and
soybean (Figure 6) (Burridge et al., 2016; Sankaran et al., 2019).

Ascochyta blight is a devastating disease in chickpea, and
remote sensing has shown opportunities for its monitoring in the
field (Zhang et al., 2019). Multispectral and thermal sensors
deployed on UAVs were used to extract canopy area,
percentage of cover, and vegetation indices for predicting
disease severity and seed yield in chickpea. The study showed
the potential for timely management of the disease by monitoring
the crop with remote sensing techniques (Zhang et al., 2019). In a
different study, two hundred forty-five chickpea accessions were
evaluated using image-based phenotyping to study genetic
variation for salt tolerance (Atieno et al., 2017). Pod abortion
and pod filling inhibition are the main effects of salinity, and
imaging sensors were used to identify the accessions with salt
tolerance by phenotyping pod number and seed density (Atieno
et al., 2017). In groundnut, iron deficiency occurs when plants are
grown on neutral and alkaline soils, reducing the availability of
Fe2+ in plants. Infrared sensors were used in groundnut for
measuring chlorophyll and iron deficiency chlorosis systems
(Pattanashetti et al., 2020). The adoption of phenomics for
groundnut in high production countries like India and
Ethiopia offers an advantage for reducing yield gaps by
understanding various physiological and biochemical process,
along with genomic technologies, to improve yield performance.

GOING UNDERGROUND, A CHALLENGE
FOR A BREEDER

Although genomics and phenomics tools have helped plant
breeders study above-ground traits in great detail, limited
work has been done on belowground root systems, which play
a vital part in a plants affecting overall grain yield potential.
Figure 7 shows the trend for publications using HTP and root
phenomics, and it can be concluded that root phenotyping studies

FIGURE 7 | Trends in publications mentioning/discussing root
phenomics and high throughput phenotyping since last decade (2011–2020).
Search was conducted using root phenomics and high throughput
phenotyping keywords in the abstract. Source PubMed dated 02/
20/2021.
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are lagging behind other phenomics studies. Roots play an
essential role by directly influencing plant growth by
regulating water and nutrient uptake, regulating drought
stress, resisting soil-borne diseases, and maintaining the crop’s
yield and quality (Seck et al., 2020; Wu et al., 2021). The study of
root system architecture (RSA) is challenging in situ compared to
above-ground phenotyping. Several 2D transparent growth
mediums are available that allow sequential capturing of RGB
imaging to study growth dynamics and root hair development,
such as PlaRoM, Rhizoslides, RootPainter, SNAP, Rhizovision,
Rhizoponics, RADIX, and RhizoTubes (Le Marié et al., 2014;
Mathieu et al., 2015; Falk et al., 2020; Smith et al., 2020). Various
open-source image analysis tools like SmartRoot, RootNav,
RootTrace, and EZ-Root-VIS are available to study RSA
(French et al., 2009; Pound et al., 2013). To study 3D RSA, a
gel-based cylinder can be used to study up to 16 roots traits (Iyer-
Pascuzzi et al., 2010). Other 3D image reconstruction and image
analysis tools are RootReader3D and GiaRoots (Iyer-Pascuzzi
et al., 2010). All these platforms work under lab conditions.

The above-mentioned transparent media does not entirely
mimic field conditions. GROWSCREEN-Rhizo, an intelligent
mechanized root phenotyping platform, was developed to
phenotype roots and shoots simultaneously in transparent soil-
filled rhizotrons (Bodner et al., 2018). In a separate study, these
Rhizotrons were equipped with thermal and hyperspectral
cameras for measuring the temperature and root chemical
components like lignin change, water content, and mineral
observation capacity (Pound et al., 2013; Le Marié et al.,
2014). The difference in the X-ray attenuation capacity of
roots and soils is utilized to visualize the inner 3D structure in
the X-ray CT. Open-source tools like RootViz3D and RooTrak
are used for analyzing different X-ray attenuation capacity to

reconstruct the 3D RSA (Mairhofer et al., 2015). However, X-ray
CT suffers from some limitations, which vary from the impact of
soil type, compaction, and homogeneity of soil particles on X-ray
attenuation values. Furthermore, high doses of X-ray affect plant
and microbial growth in the soil, and lastly, scanning resolution
and volume increase the time of data collection for large pots,
limiting the frequency of data acquisition (Metzner et al., 2015).

Other root phenotyping approaches include positron emission
tomography (PET), magnetic resonance imaging (MRI), thermal
neutron tomography, and neutron radiography. MRI uses the
absorption and re-emission of electromagnetic radiation from the
nuclei to determine its root architecture and functional attributes
(Courtois et al., 2013; Beyer et al., 2019). But MRI is highly
sensitive to moisture content and is only applicable if the root
diameter is more than 1 mm. Similarly, PET uses the radiotracer
distribution for non-invasively studying root attributes. PET has
been used to scan the roots up to 85 mm deep non-invasively, and
used to monitor carbohydrate transportation assimilates over a
more extended period (Garbout et al., 2012). X-ray CT, MRI, and
PET have been used differently and have their own strengths and
limitations, and hence used interchangeably. For instance, 1) PET
has lower signal deterioration by water content and soil structure
compared to CT and MRI; furthermore, high water content
affects the performance of CT more than MRI (Garbout et al.,
2012); 2) CT is more effective for providing high-resolution
information from small pots; however, when pot size is large,
MRI provides more information about root structure than CT
(Pflugfelder et al., 2017); 3) MRI and CT provide higher spatial
resolution than PET, but PET provides better contrast between
roots and soil owing to gamma radiation; and 4) PET and MRI
scanning requires a large amount of time compared to CT, and is
problematic for genetic studies where a large number of samples

TABLE 5 | Description of the important root phenotyping techniques and associated growth media’s for studying the root system architecture.

Root phenotyping
technique

Growth media Description References

Shovelomics Soil (field based) Involved excavation of root samples from the soils to visually score various attributes. The
pipeline involves digging of sample, soaking and rinsing, picture collection and finally scoring
the characteristics

Garbout et al. (2012)

Digital imaging Liquid media (lab) Roots are scanned in a liquid media for length, diameter, topology, and branching patterns Piñeros et al. (2016)
Digital imaging Growth pouch system Roots are scanned in a growth pouchmedium for length, diameter, topology, and branching

patterns
Falk et al. (2020)

Soil coring Soil (field based) It uses tractor mounted hydraulic soil corer for digging steel alloy sampling tubes into soil and
assist in phenotyping roots

Iyer-Pascuzzi et al.
(2010)

Minirhizotrons Soil (field-based) A transparent tube is permanently inserted into the ground and growth of shoot and root is
continuously monitored throughout the growth stages

Le Marié et al. (2014)

Rhizolysimeters Soil (field-based) It uses underground concrete pipes, silos and corridor to house soil containing cores for
constant observation of root traits

Bodner et al. (2018)

Rhizoponics Liquid media (lab) It is combination of rhizotrons and hydroponics, where set up is immersed in tank filled with
media. Non-destructive 2D imaging of roots and shoots is performed

Mathieu et al. (2015)

X-ray CT Soil (greenhouse
and lab)

X-ray CT non-destructively measures the attenuating ionizing radiations for assessing the
root structure and constructing the 3D image of RSA

Metzner et al. (2015)

Ground penetrating radar Soil (field-based) It is mostly used for tree roots and uses electromagnetic pulse system for determining root
diameter, biomass, and other attributes

Garbout et al. (2012)

Positron emission
tomography

Liquid media (lab) It uses the functional and molecular imaging for tracing the radio tracer distribution in the
plant non-invasively

Garbout et al. (2012)

Magnetic resonance
imaging

Soil (greenhouse
and lab)

This study the magnetic moment of atomic particles using strong magnetic and radio
frequency

Pflugfelder et al. (2017)
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need to be screened (Metzner et al., 2015). In regard to the in-situ
root phenotyping in field conditions, there has been great interest
in utilizing ground penetrating radar (GPR) (Atkinson et al.,
2019). But similar to other techniques, there are limitations
associated with influence of soil type and condition on data
quality. Table 5 provides information about various other root
phenotyping techniques. Advancements in root phenotyping in
recent years shows the potential for improving below ground
traits in all the crop species by understanding traits better. Further
reading about the below-ground phenotyping can be found in
other review articles (Paez-Garcia et al., 2015; Wasaya et al.,
2018).

Developing crop varieties which remain productive on
marginal soils and under water deficit is the main aim of
several breeding programs, especially in Asia and Africa,
owing to climate change (Pattanashetti et al., 2020). Breeding
programs maintain yield by selecting combinations of traits like
increased harvest index, increased shoot biomass, resistance
against insects and pests, and altering the duration of the
growing season (Mathieu et al., 2015; Atieno et al., 2017).
However, these traits might be linked to root traits, but are
not explored to such an extent. This could be achieved using
several root phenotyping techniques under field, greenhouse, and
laboratory conditions (Iyer-Pascuzzi et al., 2010). Various QTLs
were identified controlling RSA for assistance in genomic assisted
breeding (Li et al., 2017; Zhao et al., 2019; Seck et al., 2020). QTLs
were identified controlling root branching, root length, root hair,
and other root traits in certain crops. Identification of QTLs or
genes controlling these traits requires accurate and reproducible
phenotyping information (Li et al., 2017; Seck et al., 2020).
Although several QTLs have been identified for these RSA
traits, information is still lacking, such as their mechanism,
effect under different genetic backgrounds, and role under
different environments and soil types. Most of the roots traits
identified so far are polygenic and demonstrate a tremendous
potential for utilization of GS for predicting RSA by building
reliable training sets for the crops (Li et al., 2017; Seck et al., 2020).

In a recent study, two hundred wheat lines were screened for
root dry matter, root diameter, seminal axis root length, root dry
matter, and branching pattern in seedling growth over the
hydroponic system for performing MTAs (Beyer et al., 2019).
From this study, 63 QTLs were identified to control these RSA
traits and have a minor effect on phenotypes, suggesting the
polygenic nature of these five traits in wheat (Beyer et al., 2019). A
root phenotyping study was conducted on 529 rice accessions
under controlled and drought conditions to identify MTAs for 21
traits. Researchers identified 264 QTLs controlling all 21 traits,
and most of them were already reported in previous studies in
rice, further validating the genetic architecture of root traits
(Courtois et al., 2013; Li et al., 2017). Similarly, in soybean,
GWAS has been performed in various studies to explore RSA
trait’s genetic architecture. A recent study using 137 soybean lines
grown under rhizoboxes and phenotyped with two-dimensional
imaging identified 10 QTLs controlling 15–20% variation for
primary root diameter and total root length (Seck et al., 2020). As
common bean is mainly grown under drought conditions, 196
QTLs were identified in 438 accessions for various root traits such

as root length/weight, lateral root length, taproot length, root
volume, root surface area, average root diameter, and lateral root
number under drought conditions (Wu et al., 2021). This study
provided the genetic basis for roots traits under drought
conditions, which will ultimately improve common bean (Wu
et al., 2021). There was no major finding related to the study of
genetic architecture for RSA traits for chickpea and groundnut,
providing opportunities for adoption of root phenotyping in the
coming years. We were also not able to find any study using GS
for predicting root traits. This will be an emerging research area in
coming decades due to rapid progress in root phenotyping that
will help understand the genetic architecture of root traits,
creating datasets for training GS models, and ultimately
helping the breeder select multiple traits simultaneously.

MERGING OF GENOMIC SELECTION,
PHENOMICS AND MACHINE LEARNING IN
BREEDING
As discussed previously, GS aids in predicting GEBVs and in
increasing genetic gain by reducing variety development time and
cost per cycle and increasing selection accuracy. Phenomics
allows generation of high-quality quantitative data and
effectively characterizes large breeding populations (Araus
et al., 2018). It has been seen that there is potential for
combining GS and phenomics for increasing efficiency and
precision while minimizing labor and lowering costs. This will
aid in increasing the selection intensity and accuracy within
breeding programs and subsequently the selection response
(Sun et al., 2017b; Sandhu et al., 2021c). Until now, data from
phenomics tools have been used as secondary traits for evaluating
disease and pest resistance, abiotic stresses, end-use quality traits,
and ultimately grain yield. Furthermore, phenomics datasets are
collected in a longitudinal framework that helps select individuals
with a specific spectral trajectory during a particular growing
stage and helps predict temporal breeding values for specific
periods (Moreira et al., 2020). Table 3 provides most of the
studies that have used phenomics datasets in multi-trait GS
models to predict grain yield in wheat and observed the
improvement in the prediction accuracy, either by using single
indices or multiple indices in the models.

Most of the GS studies conducted so far use a single trait
(univariate) statistical model to predict one trait at a time and do
not benefit from the genetic correlation among two or more traits
(Jia and Jannink, 2012; Galán et al., 2020). However, multi-trait
(multivariate) GS has demonstrated increased prediction
accuracy, reduced selection trait bias, high statistical power,
and increased parameter estimation accuracy (Sandhu et al.,
2021a). Multi-trait GS models have more advantages for traits
with low heritability values, like grain yield and end-use quality
traits, where secondary traits correlated with high heritability
values aid in increasing prediction accuracy (Crain et al., 2018;
Lozada and Carter, 2019; Sandhu et al., 2021c). Recently, several
studies from CIMMYT have demonstrated an increase in
prediction accuracy for grain yield in wheat when secondary
longitudinal data collected from phenomics is included as a
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covariate or in multi-trait GS models (Sun et al., 2019; Lozada
et al., 2020a). Furthermore, secondary traits extracted from
phenomics aid in selecting earlier in plant growth stages for
quantitative traits, allowing earlier program resource allocation to
the best individuals. In addition to increasing prediction
accuracy, selection response, and intensity, longitudinal
phenomics data can explain the various biological process
underlying plant growth, not limited to water status, biomass
accumulation, chlorophyll content, and photosynthetic
efficiency. Primarily SRI are extracted from these longitudinal
phenomics data which indirectly explain important physiological
processes and stresses in the plants and are mainly used in multi-
trait GS models.

Rutkoski et al. (2016) used SRI extracted from phenomics
datasets and included them into pedigree and GS models for
predicting grain yield in wheat. Doing this in earlier stages of the
breeding pipeline is advantageous to remove poorly performing
lines, but GS is sometimes not possible at this stage owing to
genotyping cost. They showed that pedigree information could
also be used with SRI for predicting grain yield earlier to enhance
genetic gain. Pedigree information removed the cost and effort of
genotyping a large number of plants, and their use also satisfies
Mendelian sampling. Rutkoski et al. (2016) observed a 56 and
70% improvement in prediction accuracy for grain yield for
within environment predictions using pedigree and genomic
relationship matrices when including SRI in the models. The
indices used in the study were canopy temperature and green
normalized difference vegetation index (GNDVI), which
provided information about canopy temperature and biomass
and were phenotypically and genetically correlated to grain yield
(Rutkoski et al., 2016). In another study, Sun et al. (2017a) used
NDVI and canopy temperature in a multi-trait, random
regression, and repeatability model for predicting grain yield
in wheat and observed a 70% increase in prediction accuracy
compared to the single trait GS model. Furthermore, the multi-
trait model’s average improvement in predictability was highest,
followed by random regression and repeatability model. Various
other studies obtained similar results by the inclusion of
secondary traits in wheat (Sun et al., 2017b; Crain et al., 2018).

Campbell et al. (2018) used longitudinal phenomics data for
fitting random regression models to predict shoot growth
trajectories in rice using pedigree and genomic relationships
by fitting a second-order Legendre polynomial. A random
regression model with longitudinal phenomics data
demonstrated improvement in prediction compared to a single
data point in traditional mixed linear models. They also showed
the future growth predictions could be performed with high
accuracy by using a genomic random regression model by
having a subset of early phenomics measurements (Campbell
et al., 2018). Similarly, another study in rice used random
regression models by fitting B-spline and second-order
Legendre polynomials to predict the projected shoot area
under water-limited and controlled conditions and
demonstrated that random regression models performed better
than the baseline multi-trait models (Campbell et al., 2019).
Furthermore, B-spline models fit a better curve compared to
Legendre polynomials (Campbell et al., 2019). Therefore, we have

seen that predominantly random regression models are used in
rice for fitting or predicting growth curves. In contrast, in the case
of wheat, multi-trait GS models have shown the advantage to
predict quantitative traits using longitudinal phenomics datasets,
which results in significant improvements compared to
traditional models. Additional studies suggest canopy cover
plays an important role in predicting the seed yield for
soybean. Jarquin et al. (2018) modeled the genetic covariance
between canopy cover collected by phenomics tools and seed
yield using various cross-validation schemes and molecular
markers to predict the seed yield. The prediction ability was
highest when both canopy cover and molecular markers were
included in the prediction models compared to only molecular
marker and canopy information (Jarquin et al., 2018).

Owing to the ability of phenomics to collect a large amount of
data due to its high spatial and temporal variation, it sometimes
creates the big data problem, where feature selection needs to be
performed, and complex machine and deep learning models are
needed to build the relationship between features and predictors.
Several machine and deep learning models, such as random
forests, ensemble-based methods, support vector machine,
multilayer perceptron, convolutional neural network, and
recurrent neural network, are often employed for analyzing
phenomics data and predicting traits with GS models. The
main interests for these models in plant breeding are useful
due to their powerful ability to learn the complex/hidden non-
linear relationship in the data to predict complex traits and
usually result in higher prediction accuracy than a mixed
linear GS model. Ma et al. (2018) and Sandhu et al. (2021e)
have shown the potential of deep learning models for predicting
grain yield in wheat and observed higher prediction accuracies
than the previous BLUP based models and open up a new class of
models that could be explored. Table 1 provides the various
machine and deep learning models, and their source code links,
which have been explored for GS so far. In the coming years, an
active area of research is merging machine and deep learning
models with phenomics datasets and molecular markers to
predict the breeding program’s complex traits.

CONCLUDING REMARKS

We explored six important self-pollinated crops consumed by
90% of the world population. Most of the advancements in
genomics and phenomics over the last decade have been
observed in wheat and rice. The genome sequencing of other
crops and the adoption of high throughput genotyping tools have
paved the way for understanding various underlying genetic
mechanisms. These crops can utilize phenomics in coming
years after seeing the progress and benefits achieved in wheat
and rice. Several GS models varying from traditional BLUP based
model to machine/deep learning models have been explored for
prediction. Furthermore, the inclusion of genotype by
environment interaction in these models has delivered good
prediction accuracy for predicting untested lines in new
environments. All the GS models discussed in this study,
including genotype and environment interaction, will assist the
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plant breeder in making improved selection decisions. Multi-trait
GS models also indicate their success for predicting low heritable
traits and will be explored in future years for prediction under
multi-environment scenarios, with the inclusion of phenomics
datasets, for understanding genotype by environment
interactions.

The yield trends of crops across different continents is very
diverse, and it is evident that in Asia and Africa, use of advanced
genomic and phenomic technologies can improve/enhance grain
yield. Furthermore, public breeding programs play a
predominant role in these crops. To translate the advantage of
GS and phenomics in their programs, low-cost genotyping and
phenotyping needs to be developed and used. In this context, easy
to handle, reliable, and affordable low throughput platforms pave
the way, and among such tools, RGB cameras make good
candidates. Below ground phenotyping is tedious for a plant
breeder and is being ignored by most programs. However, several
field and lab-based root phenotyping tools were launched in the
last decade and their potential is being realized. Further
refinement and throughput will pave a new way to better
understand root traits in field crops. This is extremely
important for continuously increasing drought, salinity,
aluminium, and heavy metal sensitivity to plants. As the total
number of studies for phenotyping the roots traits increase, this
will ultimately aid in predicting new genotypes using GS once
enough data are collected for each crop under the different
breeding programs.

This review highlights the advantages of combining genomics
and phenomics, especially in wheat and rice. There is a need to
merge and adopt these two disciplines at a fast pace in other crops

to increase their genetic gain. GS has been shown to increase
genetic gain by increasing selection accuracy and intensity with
reduction of cycle time, which can be further enhanced by using
phenomics, and machine/deep learning models in the breeding
programs due to big data sets. These tools could aid in screening
large number of lines with less phenotyping cost and efforts,
allowing better exploration of the genetic diversity of particular
crops for various traits. Phenomics is assisting plant breeders in
integrating physiological breeding in addition to using molecular
and genetic tools for selection. Thus, future studies in breeding
will focus on merging all these tools and domains to reach the
required rate of genetic gain for grain yield.
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Identification of the right parental combinations to maximize heterosis is the major goal of
hybrid breeding, which could be achieved through identification of heterotic groups. The
main objective of this study was to identify promising heterotic groups for future rice
breeding programs. A collection of 359 rice genotypes of diverse origins of China and
abroad, composed of inbreds, maintainers, restorers, and temperature-sensitive genic
male sterile (TGMS) lines were genotyped using 10K SNP chips. The SNP data set was
subjected to genomic analyses for estimation of genetic divergence and diversity.
Significant variations were observed in the germplasm with the identification of six
different genetic groups. These lines were assigned to the genetic groups independent
of their origin. Taking an account of commercially used heterotic groups present in each
cluster, three cytoplasmic male sterile (CMS) lines and 14 inbred and restorer lines with
moderate to high genetic distances selected from five heterotic patterns were crossed and
obtained 42 F1 hybrids. A total of 14 hybrids were found with significant maximum mid-
and better-parent heterosis, namely, TaifengA × Guang122, TaifengA × Wushansimiao,
and TaifengA × Minghui63 for earliness; Guang8A × Huazhan for dwarf stature; and
Guang8A × Huanghuzhan-1, TaifengA × Yuexiangzhan, Guang8A × Minhui3301,
TianfengA × Guang122, Guang8A × Yahui2115, TianfengA × Huanghuazhan,
TianfengA × Minghui63, TianfengA × Minhui3301, TaifengA × Gui99, and Guang8A ×
Yuenongsimiao for yield and yield-related traits. Mid-parent and better-parent heterotic F1
hybrids were in positive correlation with the genetic distances as that manifested by
commercially used heterotic groups, encouraging the use of genotypic data for
identification of heterotic groups. Our study provides an informative strategy for the
development of early maturing, lodging resistant and high-yielding commercial hybrids
and cultivars in future heterosis breeding programs.
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1 INTRODUCTION

Rice (Oryza sativa L.) is a staple food for over half of the world’s
population. The continuous increase in rice consumption due to
population increase (Khush, 2013) necessitates for higher rice
production, which could be potentially achieved through rice
genetic improvement. The development of hybrid varieties with
high yield potential and resistance against disease and
responsiveness to climatic changes could fulfill the future rice
demands. In hybrid breeding, the most crucial element is
identification of high-yielding heterotic patterns to achieve the
maximum heterosis (Zhao et al., 2015). Genomic analyses could
play a vital role in this regard. A heterotic group is a set of
genetically related genotypes that show similar hybrid
performance when crossed with individuals from another
genetically distinct germplasm group (Melchinger and
Gumber, 1984). Genetic relationship between genotypes of
various accessions serves as one of the basic criteria for the
outyielding potential of these heterotic groups (Thomson
et al., 2008). The identification of heterotic groups in different
germplasm pools is important for hybrid breeding (Xie et al.,
2013; Wang et al., 2014). In general, the more divergent the
heterotic groups are, the higher heterosis the offsprings have (Reif
et al., 2005). Some studies, however, have reported the otherwise,
which necessitates to include the phenotypic evaluation along
with molecular marker data to explore both phenotypic and
molecular diversity.

High genetic variations were detected in the Asian rice
germplasm (Huang et al., 2012), which were divided into three
indica subpopulations (South China origin, Southeast Asia origin,
and IRRI inbred lines) and two japonica subpopulations (tropical
and temperate; Wang et al., 2018a). The works on other groups
like the aromatic rice have elucidated further diversity in the rice
germplasm in different parts of the world (Civan et al., 2019).
Identification of the heterotic groups among these various genetic
stocks could be of immense importance for future hybrid
breeding.

In hybrid rice crops, heterotic groups can be determined
through marker-based genotyping (He et al., 2012). Molecular
characterization of genetic diversity, population structure, and
genetic relationships among breeding materials within a given set
of genotypes will help to understand the use of the collected
germplasm for further improvements, such as selecting parental
lines and assigning to heterotic groups (Wu et al., 2016). So far,
different kinds of molecular markers were used for diversity and
divergence analyses in different species (Huang et al., 2012; Ali
et al., 2016; Bueno-Sancho et al., 2017). Single-nucleotide
polymorphism (SNP) is the most abundant and robust DNA
sequence variation present in plant genomes, feasible for
automated high-throughput genotyping and available for
multiple assay options using different technology platforms to
meet the demand for genetic studies and molecular breeding in
crop plants (Steemers and Gunderson, 2007; Bernardo et al.,
2009; Singh et al., 2015). Only superior parents do not necessarily
produce superior heterotic combinations; rather, parents from
different heterotic groups with high divergence (Reif et al., 2005)
would give elite heterotic combinations (Zeng et al., 2007).

China is considered as the center of origin of indica rice and
serves as a leading and major contributor of the world’s hybrid
rice breeding (Cheng et al., 2007). Substantial diversity present in
the region could be used to identify potential heterotic groups
(Huang et al., 2012). Nowadays, the maintainer (sterile) lines and
restorer lines have been derived from two major heterotic groups,
widely used in the three-line indica hybrid rice breeding
programs of China (Wang et al., 2006; Wang and Lu, 2006).
The three-line system was first developed by Long Ping Yuan in
the 1970s, which consists of a sterile restorer and a maintainer
line (Yuan, 1986).

Presently, there has been little rigorous effort considering the
genetic diversity and divergence for identification of the heterotic
groups exploitable for hybrid rice development. Therefore, the
present investigation was made to identify the heterotic groups
based on genotypic characteristics of rice accessions of the South
China origin, along with reference out group accessions from the
United States, Philippines, Pakistan, Iran, and Thailand.

2 MATERIALS AND METHODS

2.1 Plant Materials and DNA Extraction
A set of 352 Indica and seven Japonica genotypes were selected
from different regions of China (Guangdong, Fujian, Guangxi,
Hainan, Heilongjiang, Hubei, Hunan, Jiangsu, Jiangxi, Jilin,
Sichuan, Yunnan, Taibei, Anhui, Chongqing, and Zhejiang),
Philippines, United States, Pakistan, Iran, and Thailand. The
set of these 359 lines was composed of 183 inbred lines, 53
maintainers, 120 restorers, one temperature-sensitive genic male
sterile (TGMS) line, and two unidentified lines (Supplementary
Table S1). These materials were used for genotyping through 10k
SNP chips. The genomic DNA was extracted by cetyl trimethyl
ammonium bromide (CTAB) method (Saghai-Maroof et al.,
1984), and the quality and concentration of DNA were
examined by agarose gel electrophoresis and Nano-Drop.

2.2 SNP Genotyping and In Silico Analysis of
Sequence Data
We performed SNP genotyping via genotyping by target
sequencing (GBTS) protocol GenoBaits, which is based on
sequence capture in solution (also called a liquid chip). A 10K
liquid rice chip developed by Mol Breeding Biotechnology Co.,
Ltd, Shijiazhuang, China was deployed. The protocol includes the
steps of DNA library construction and probe hybridization,
which was described in detail previously (Guo et al., 2019).

Sequence data generated by probe-in-solution target
sequencing were subjected to in silico analysis as follows: the
sequencing data were first checked for quality control; two-
terminal reads were merged using FLASH, and sequencing
data were then compared with the reference Nipponbare MSU
7.0 genome using BBMap. The alignment results were saved in
the SAM/BAM (binary alignment map) format. SNP variants
were detected from the BAM files using FreeBayes. The final
variant calling was generated through GATK (2.4) (using
Haplotype Caller in the gVCF mode) and joint genotyping
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(using Genotype GVCFs). The VCF file developed was filtered
using criteria of MAF (minor allele frequency) > 0.05 andmissing
data > 80% at both the genotype and SNP marker levels. Only bi-
allelic SNPmarkers with genotype quality > 20 and read depth > 5
were retained after using Vcftools v.0.1.12b (Danecek et al., 2011)
and PLINK v1.07 (Purcell et al., 2007) for filtering.

2.3 Genomic Data Analyses
The final set of SNP data was subjected to genomic analyses for
estimation of divergence and diversity. The genetic clusters were
identified through discriminant analyses of principal component
(DAPC) using the ADEGENET package implemented in
R-software (Jombart et al., 2010). DAPC represents the non-
parametric analyses which attempt to identify the genetic clusters
without considering the origin of lines or their status as breeding
lines (maintainer, restorer, etc.). Various numbers of clusters
could be considered, and the lines were assigned to these clusters
based on their genetic makeup. Thus, the DAPC analyses were
run considering the possible clusters ranging from K = 2 to K =
10, where the most probable number of clusters was identified
through the Bayesian Information Criteria (BIC) values (Jombart
et al., 2010). The phylogenetic tree was constructed using the
neighbor-joining method implemented in R-software based on
their genetic distances, while the distribution of lines from the
two ecotypes, various locations, and types of breeding lines was
constructed in MEGA software. Information regarding diversity
was estimated with POPPR applied on the GenLight object for
populations defined based on ecotypes, locations of origin, and
types of breeding lines (Kamvar et al., 2014). Genetic distances
between heterotic groups were estimated through the Identity by
Stat Distance Matrix method using TASSEL 5 software (Bradbury
et al., 2007).

2.4 Plant Materials, Crossing, Field
Experimentation, and Collection of
Phenotypic Data
A total of 17 genotypes, composed of three maintainers, five
inbreds, and nine restorer lines, were selected from five deduced
heterotic groups (G-I, G-II, G-IV, G-V, and G-VI) on the basis of
early maturity and high yielding performance with genetic
distances ranging from 19.3 to 35.9% (Supplementary Table
S6). In the late season of 2020, the three female lines, that is,
TianfengA (C2330), TaifengA (C2230), and Guang8A (C2228),
were crossed with the 14 male lines and obtained 42 new F1
hybrids. All the F1 hybrids and their parents were evaluated in
Randomized Complete Block Design (RCBD) with three
replications at Baiyun experimental base Guangzhou during
early season of 2021. Observations were recorded on six
earliness and yield-related traits, that is, days to 50% heading,
plant height, panicles per plant, number of grains per panicle,
1,000-grain weight, and grain yield per plant.

2.5 Phenotypic Data Analyses
Analysis of variance was performed using Statistix 8.1. The mid
parent and better parent (heterobeltiosis) were worked out as
suggested by Dan et al. (2014) in Microsoft excel 2013. The

correlation graphs of heterosis and genetic distances were also
constructed in Microsoft excel 2013

Heterosis(%) � �F1 −MP

MP
× 100

Heterobelt iosis(%) � �F1 − BP

BP
× 100

3 RESULTS

3.1 Summary Statistics on the SNPs
The 10,268 sites were evenly distributed on the short arm,
centromere, and long arm of all the 12 chromosomes, as
assessed for 359 rice genotypes. The number of SNPs on
chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 were
1,345, 1,097, 1,261, 914, 814, 899, 789, 672, 552, 573, 677, and
675, respectively. The average physical distance between SNPs is
about 34.08 Kb based on a genome size of 350 Mb. The average
minor allele frequency and the number of missing sites were
0.21989 and 0, respectively, whereas the proportion of
heterozygous sites was 1.52% (Supplementary Table S2).

3.2 Diversity of the Breeding Population
Divergent groups were identified using discriminate analysis of
principal components (DAPC) to represent potential diversity
in the rice germplasm tested in this study. Grouping was made
considering different K levels (K2-K10) of the DAPC analyses
(Figure 1A). While considering the BIC values and principal
component analysis grouping, six different genetic groups
were considered the optimum within the rice germplasm
(Figures 1B,C). In terms of the distribution of these genetic
groups, G1 was dominant in the overall Indica germplasm,
while the entire Japonica genotypes were grouped within a
single group, that is, G5, with limited divergence among
Japonica lines.

Considering the geographical origin, the most prevalent
genetic group, that is, G1, contained most of the genotypes
from the Guangdong origins, with a few genotypes from
Guangxi, Hainan, Hubei, Hunan, Jiangxi, Sichuan, and
Philippines present (≤3). Genetic group G2 was represented
mainly by the lines from Zhejiang (all genotypes placed in this
group), and group 3 contained all genotypes of the Yunnan origin
along with few genotypes from diverse origins. Group G5 had all
the genotypes of Heilongjiang, Jilin, Pakistan, and United States.
A few of Guangdong and Jiangsu genotypes also belonged to this
genetic group. Some of the Guangdong and Guangxi genotypes
were assigned to group G6 (Figure 1B).

The distribution of the four types of breeding lines (inbred
lines, maintainers, restorers, and the TGMS line) was also
assessed to various genetic groups. DAPC results showed that
the inbred lines, maintainers, and restorers were distributed
across different genetic groups, and no genetic group was
specific to any type of breeding lines. G1 was predominantly
composed of the inbred lines, along with some maintainer and
restorer lines. G6 was mainly represented by maintainer lines and
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FIGURE 1 | DAPC of rice accessions collected from different provinces in South China, Philippines, Thailand, Iran, Pakistan, and United States. Possible DAPC
clusters ranging from K2 to K10 (A). The cluster of 359 rice genotypes of diverse origins into different genetic groups set a siding geographical origin for the optimal
K-value (K = 6) in DAPC (B). Bayesian information criteria (BIC) supported six distinct genetic groups (C). The Eigen values of the analysis suggest that the first two
components explained the maximum genetic structure of the data set. Scatter plot of the 359 accessions divided into six genetic groups (D).

TABLE 1 | Amount of diversity index, heterozygosity, divergence, and number of alleles in ecotypes, breeding lines, locations, and genetic groups.

Grouping Category Sample size Number of alleles Diversity index Total heterozygosity Gst G’st

Rice Ecotypes Indica 352 704 0.291 0.304 0.095 0.548
Japonica 7 14 0.107

Breeding lines Unknown 2 4 0.139 0.304 0.051 0.093
Inbred 183 366 0.304
Maintainer 53 106 0.254
Restorer 120 240 0.282
TGMS 1 2 0.003

Genetic Group K1 161 322 0.202 0.304 0.324 0.427
K2 31 62 0.244
K3 75 150 0.303
K4 41 82 0.191
K5 15 30 0.144
K6 30 60 0.182
UN 6 12 0.243
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very few restorers but no inbred lines. G3 was represented by all
types of breeding lines, while G4 was represented by the restorers
and a few maintainer lines (Figure 1B and Supplementary Table
S3). This was in line with the cluster analysis-based grouping
where all types were dispatched across different groups. Thus, all
the genetic groups had substantial variability for these lines to be
utilized for breeding purposes (Figure 1B and Supplementary
Table S3).

3.3 Diversity Across Ecotypes and Breeding
Lines
Low genetic diversity was recorded between groups (ranging from
0.144 to 0.303; Table 1). G’st values between groups (ranging from
0.324 to 0.427) indicated high divergence between heterotic groups
suitable for future breeding programs. For all types of grouping
patterns, the global heterozygosity value was 0.304. At the subspecies
level, the highest value of 0.291 of diversity index was calculated for
Indica subspecies containing 704 alleles, whereas a low diversity
index of 0.107 was manifested by Japonica subspecies with 14 alleles
only. The divergence calculated at subspecies level grouping was the
maximum (0.548), as expected (Table 1). The number of alleles and
diversity index in breeding lines ranged from 2 to 366 and from
0.003 to 0.304, respectively. Inbred lines showed themaximum value
(0.304) of diversity index, followed by restorers (0.282), whereas the
divergence value was the maximum (0.093) between breeding lines
(Table 1). The genetic groups also revealed a high value of
divergence (G’st = 0.427). Moreover, allelic frequencies of genetic
groups ranged between 12 and 322, whereas the minimum value
(12) was manifested by the group with unassigned lines and the
maximum by group 1 (K1); however, the diversity index ranged
between 0.182 and 0.303. Group 2 (K2) revealed the second highest
value (0.244) of diversity index, followed by the group with
unassigned lines (UN) with 0.243. K2 and K3 contained

accessions from eight and 11 different locations, respectively, and
thus had high diversity indices (Table 1).

3.4 Identification of Heterotic Groups
Genetic grouping was further confirmed via cluster analysis. The
maximum number of accessions was recorded in cluster V
(32.31%), followed by cluster II with (25.07%; Supplementary
Table S4; Figure 2B). Similarly, cluster I contained 18.66%
accessions in total, which was further divided into two
subgroups, GI (12.3%) and GII (6.4%). Cluster II was further
divided into four subgroups, GI (1.7%), GII (8.1%), GIII (4.2%),
and GIV (11.1%). Cluster III was the smallest group that shared
1.39% of the accessions, whereas clusters IV and VI contained
10.6 and 11.14% of the total accessions, respectively
(Supplementary Table S4).

Indica lines were clustered into six groups, while those of
Japonicawere located only in cluster II with high divergence from
the rest accessions of the cluster (Figure 2B). The grouping of
“Indica”-type rice lines in this group could be due to potential
mismatches or erroneous labeling of these lines. Based on genetic
information, inbred lines were dominant in clusters I, V, and VI;
restorer lines were dominant in cluster II; and maintainer lines
were dominant in clusters I and IV (Figure 2A and
Supplementary Table S6). In cluster I, inbred lines (42),
restorers (11), and maintainers (14) from 11 locations, and all
the accessions from Zhejiang and Yunnan were present. The early
developed and widely used maintainers, such as Zhenshan 97B
(C288), BoB (C296), II-32B (C299), and the maintainer
LongtefuB (C290) used in the development of high-yielding
hybrids in South China, were also clustered into this group.
Maintainer lines Gang46B (C368) and XiandangB (C293) were
found very close to the commercial maintainer LongtefuB (C290)
in cluster I (Figure 2B). Similarly, cluster II consisted of 19
inbreds, 69 restorers, and two maintainers from 14 locations. The

FIGURE 2 | Distribution of breeding lines (inbreds, maintainers, restorers, TGMS, and unknown) into different clusters (A). Phylogenetic tree, showing the overall
distribution of 359 rice accessions into six different clusters (B).
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most famous commercially used restorer lines Minghui63 (C281,
C375), Guanghui998 (C203), and Gui99 (C536) were present in
this group. Moreover, restorer lines R122 (C298), R308 (C251),
R368 (C257), and R428 (C245), recently used for commercial
hybrids, were also grouped in cluster II. The positions of restorer
lines R998-3 (C533), R108 (C502), R122-3 (C537), Guang122
(C373), R721 (C303), R308-2 (C534), R390-1(C247), R290
(C299), R498 (C309), and R889 (C308) were close to the
commercially used restorers. Cluster III was the smallest
cluster with only two inbred (C377, C511) and three
maintainer lines, which include the widely used maintainer
9311B (C235). Cluster IV was dominated by maintainers (32
out of 38 lines), including the widely used maintainers TianfengB
(C330), WufengB (C272), RongfengB (C219), TaifengB (C230),
HengfengA (C227), and Guang8B (C228). The maintainers in
cluster IV are known as modern maintainer lines in China. Some
othermaintainer lines, such as JifengB (C217),WFB-TFB-derived
(C418), and ZaofengB (C216), were closely related (Figure 2B) to
the commercially used lines. Cluster V was composed of inbred
lines (84) and restorers (32) but no maintainers. Although
accessions from five different origins contributed to the
cluster, the predominant location and breeding lines were
Guangdong and inbred lines, respectively. Among the restorers

in this cluster, Yuehesimiao (C190), R308 (C251), and Huazhan
(C250) were widely used restorers. Using these commercially used
lines as a close reference, we found three inbred lines,
Yuehesimiao2 (C267), Guanghong3-3 (C538), and
Yuexianzhan8 (C199), and two restorer lines, R721 (C303) and
R308-2 (C534), which may also serve as heterotic group in the
development of high-yielding hybrids. Moreover, cluster VI
consisted of 40 inbreds and three maintainers from four
locations. Similar to cluster V, Cluster VI also showed the
greater contribution of inbred lines from Guangdong. The
widely used maintainer YexiangB (C231) and the most famous
aromatic Guangdong Simiao and the inbred varieties,
Meixiangzhan 2 (C487), Xiangyaxiangzhan (C344), and
Xiangzhuxiangsimiao (C428), were all placed in this cluster
(Figure 2B). The presence of commercially used heterotic
groups in all the six clusters indicated that we have six
herterotic groups’ clusters in our germplasm.

3.5 Identification of Heterotic Patterns
Between Groups
All the rice accessions have been divided into six clusters
(heterotic groups), and the heterotic patterns could be

TABLE 2 | Heterotic groups used for commercial hybrid production, genetic distance, and their deduced heterotic patterns.

Female parent (A) Cluster Male parent
(R)

Cluster Commercial hybrid Genetic distance Heterotic patterns

AnfengA (C478) IV Yuehesimiao (C190) V Antianyouyuehesimiao 0.351 IV × V
Guang8A (C228) IV Yuehesimiao (C190) V Guang8youyuehesimiao 0.277 IV × V
HengfengA (C227) IV Yuehesimiao (C190) V Hengfengyouyuehesimiao 0.290 IV × V
TaifengA (C230) IV Yuehesimiao (C190) V Taiyouyuehesimiao 0.285 IV × V
LongtepuA (290) I Yuehesimiao (C190) V Teyouyuehesimiao 0.294 I × V
TianfengA (C330) IV R122 (C298) II Tianyou122 0.341 IV × II
TianfengA (C330) IV R308 (C251) V Tianyou308 0.314 IV × V
TianfengA (C330) IV R368 (C257) II Tianyou368 0.309 IV × II
TianfengA (C330) IV R428 (C245) II Tianyou428 0.331 IV × II
WufengA (C272) IV Yuehesimiao (190) V Wuyouyuehesimiao 0.292 IV × V
Zhenshan97B (C288) I Minghui63 (C281) II Shan you 63 0.379 I × II
BoB (C296) I R998 (C203) II Boyou998 0.369 I × II
Zhenshan97A (C288) I Gui 99 (C536) II shan you Gui99 0.368 I × II
TianfengA (330) IV Guanghui 998(C203) II Tianyou 998 0.330 IV × II
WufengB (C272) IV R998 (C203) II Wuyou 998 0.325 IV × II
9311B (C235) III Huazhan (C250) V Quanyouhuazhan 0.304 III × V
RongfengB (C219) IV R463 (C269) I Rongyou 463 0.317 IV × I
Guang8A (C228) IV Yuenongsimiao (C265) V Guang8youyuenongsimiao 0.289 IV × V
Quan9311-A(235) III Wushansimiao (C320) V Quanyousimiao 0.310 III × V
Taifeng B(C230) IV R208(C248) II Rongyou Taiyou 208 0.325 IV × II
Jifeng B (C217) IV R1002 (C242) II Jifng you 1,002 0.335 IV × II
Tianfeng B(C330) IV Huazhan(C250) V Tian you huazhan 0.308 IV × V
Wufeng B(C272) IV R308(C251) V Wuyou 308 0.331 IV × V
Wufeng B(C272) IV Huazhan(C250) V Wuyouhuazhan 0.320 IV × V
Wufeng B(C272) IV Hanhui1179(C239) V Wuyou1179 0.314 IV × V
Tianfeng B (C330) IV R305(C381) V Taiyou 305 0.327 IV × V
Tianfeng B (C330) I R398 (C243) IV Taiyou 398 0.291 I × IV
Jifeng B (C217) I V1100(C300) IV Jiyou 1,100 0.317 I × IV
Te B (C290) I R721(C303) V Teyou 721 0.315 I × V
YexiangB (C231) VI Fuhui 676 (C319) II Yexiangyou 676 0.315 VI × II

Mean 0.319
Minimum 0.277
Maximum 0.379
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deduced based on the accessions which served already as the
parental lines of the heterotic hybrid combinations that existed,
widely used for commercial production in China. It was as
follows:

3.5.1 Heterotic Pattern I (Cluster I × Cluster II)
Many famous maintainer lines, such as Zhenshan97B (C288),
BoB (C296), LongtefuB (C290), and II-32B (C299), were located
in Cluster I, while the famous restorer line Minghui63 (C281),
R2156 (C263), R998 (C203), and Gui 99 (C201), were placed in
Cluster II (Table 2 and Figure 2B). Many heterotic hybrids
widely used for commercial production in China, such as
Shanyou 63 (Zhenshan 97A/Minghui 63), Boyou 998 (BoA/
R998), and ShanyouGui99 (Zhenshan 97A/Gui99), confirmed
this pattern. It indicated that the hybrids derived from accessions
of Cluster I and Cluster II had better heterosis; therefore, Cluster I
and Cluster II could be a heterotic pattern. All the early-maturing
inbred lines from Zhejiang Province and four accessions from
Yunnan were located in Cluster I, which could be used for
breeding new maintainer lines.

3.5.2 Heterotic Pattern II (Cluster IV × Cluster II)
A number of super hybrid rice varieties were derived from this
crossing pattern, including Tianyou998 from TianfengB (C330)
and R998 (C203), Wuyou998 from WufengB (C272) and R998
(C203), Taifengyou 208 from TaifengB (C230) and R208 (C248),
and Jifengyou 1,002 from JifengB (C217) and R1002 (C242). All
the female parents of these hybrids were taken from cluster IV,
and male parents were taken from cluster II (Table 2).

3.5.3 Heterotic Pattern III (Cluster IV × Cluster V)
The super rice hybrid “Tianyouhuazhan” was derived from
TianfengB (C330) and Huazhan (C250), “Wuyou308” from
Wufeng B (C272) and R308 (C251), Wuyouhuazhan from
WufengB (C272) and Huazhan (C250), Wuyou1179 from
WufengB (C272) and Hanghui1179 (C239), and Taiyou305
from TaifengB (C230) and R305 (C381), all supporting this
heterotic group pattern.

3.5.4 Heterotic Pattern IV (Cluster III × Cluster V)
The famous hybrid Quanyousimiao was derived from 9311B
(C235) and Wushansimiao (C320), and Quanyouhuazhan was
derived from 9311B (C235) and Huazhan (C250), supporting this
heterotic pattern.

3.5.5 Heterotic Pattern V (Cluster IV × Cluster I)
The widely planted early-maturing hybrid Taiyou398 derived
from TaifengB(C230) and R398 (C243) and Jiyou 1,100 derived
from Jifeng B (C217) and V1100 (C300) supported this pattern.

3.5.6 Heterotic Pattern VI (Cluster I × Cluster V)
The high-yielding hybrid rice hybrid Teyou 721 derived from
LongtefuB (C290) and R721 (C303) supported this pattern.

3.5.7 Heterotic Pattern VII (Cluster VI × Cluster II)
The fine-quality hybrid Yexiangyou 676 supported this pattern as
it was derived from YexiangB (C231) and Fuhui676 (C319).

All the six Clusters I–VI had already been involved in the
seven heterotic patterns mentioned above, so these clusters could
be considered as heterotic groups.

3.6 Heterotic Group and Genetic Distance
The diversity analyses of DAPC-based groups revealed
significant diversity for all the heterotic groups, that is, K1
(0.202), K2 (0.244), K3 (0.303), K4 (0.191), K5 (0.144), K6
(0.182), and UN (0.283; Table 1). Similarly, the G’st value
(0.427) also summarized the overall mean diversity (distances)
between the heterotic groups, which were at the optimum level
(Table 1). Genetic distances between the heterotic groups, the
deduced heterotic groups of commercially used hybrids, and
their nearby heterotic groups spotted on the Neighbor Joining
tree (Figure 2B) were estimated through the Identity by state
(IBS) matrix ranging between 0.01 and 0.391 with a mean value
of 0.276 (Supplementary Table S5). The maximum genetic
distance (0.391) was observed for the heterotic group Gang46B
(C368) × R498 (C309), followed by Gang46B (C368) ×
Minghui63 (C281) (0.389), whereas the minimum genetic
distance (0.010) was noted for R301-1 (C251) × R308-2
(C534), followed by (0.013) R998-3 (C533) × R998-1
(C203). However, the majority groups were found very
close to the average (0.28) genetic distances
(Supplementary Table S5). Among commercially used
heterotic groups, the maximum genetic distance (0.379) was
observed for Zhenshan 97B (C288) × Minghui63 (C281) of the
deduced heterotic pattern (GI ×GII), followed by Bo B (C296)
× R998 (C203) and Zhenshan 97A (288) × Gui 99 (536) with
genetic distances of 0.369 and 0.368, respectively, from
heterotic patterns (GI × GII) (Table 2). Majority of the
commercially used heterotic groups showed greater genetic
distances than the overall mean genetic distance of 0.276,
which reflected that the genetic distances between heterotic
groups have a positive effect on heterosis.

3.7 Variability for Earliness and
Yield-Related Phenotypic Traits in F1
Hybrids and Their Parents
Analysis of variance revealed highly significant (p < 0.01)
differences among genotypes for days to 50% heading, plant
height, panicles per plant, number of grains per panicle, 1,000-
grain weight, and grain weight per plant (Table 3;
Supplementary Table S7). Days to 50% heading ranged from
76.33 to 101.67 days, with a net difference of 25.34 days

TABLE 3 | Analysis of variance for earliness, plant height, yield, and yield-related
traits.

S.No Traits GMS Ems F-ratio CV (%)

1 Days to 50% heading (#) 120.63 1.13 106.54*** 1.19
2 Plant height (cm) 192.77 5.38 35.82*** 2.12
3 Panicles per plant (#) 6.42 0.44 14.61*** 8.95
4 Grains per panicle (#) 2,222.70 175.78 12.64*** 10.93
5 1,000-grains weight (g) 59.06 0.08 743.82*** 1.09
6 Grains weight per plant (g) 100.44 2.97 33.85*** 7.52
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(Supplementary Table S8). The plant heights varied from 88.00
to 131.00 cm, with a net difference of 43 cm and a majority of the
F1 hybrids close to the mean (110.60 cm). Themean values of 4.33
to 11.00 panicles per plant were observed among genotypes.
Almost all F1 hybrids revealed above-average performance for
panicles per plant. For grains per panicle, the genotypes ranged
from 30.41 to 173.61, showing a wide range of variability. A
majority of hybrids showed above-average performance, and
none of the hybrids was observed at par to the minimum. The
mean values for 1,000-grain weight varied from 20.893 to
32.013 g. For grain yield per plant, the mean values of the
genotypes ranged between 9.48 and 40.35 g, among which the
maximum grain yield was produced by the three hybrids
Guang8A × Yuenongsimiao (40.350 g), TaifengA × Gui99
(36.480 g), and TaifengA × Guang122 (35.250 g), followed by

two other F1 hybrids, TaifengA × Minghui63 (31.537 g) and
TaifengA × Huanghuazhan (30.823 g).

3.8 Heterosis Estimates on the Basis of
Phenotypic Performance
Heterosis over the mid parent and the best parent
(heterobeltiosis) was studied in 38 F1 hybrids for various
traits. For heading date, significant negative heterosis over mid
and better parents was exhibited by nine and two F1 hybrids,
respectively. Negative heterosis over the mid parent ranged from
−0.36% (Guang8A × Huanghuazhan-1) to −9.49% (TaifengA ×
Guang122), whereas ranging from 0.55% (Guang8A ×
Wushansimiao) to 10.02% (TianfengA × Huanghuazhan),
18 F1 hybrids manifested mid parent-positive heterosis

TABLE 4 |Mid-parent and better-parent heterosis estimates for days to 50% heading, plant height, panicles per plant, and genetic distances between their corresponding
parents.

Cross code F1 hybrid
name

Days to 50% heading Plant height Panicles per plant GD

MPH BPH MPH BPH MPH BPH

C330 × C373 TianfengA × Guang122 4.55** 18.22** 16.99** 20.83** −13.31** −20.2** 0.34
C330 × C205 TianfengA × Huanghuazhan-1 2.61** 19.63** 6.53** 17.55** −10.3 −22.8** 0.3
C330 × C250 TianfengA × Huazhan (HZ) 5.95** 20.56** 12.81** 23.99** −22.59** −24.1** 0.31
C330 × C375 TianfengA × Minghui63 2.50** 24.3** 16.00** 30.43** −4.99 −15.2** 0.35
C330 × C472 TianfengA × Wushansimiao 4.56** 17.76** 5.71** 21.59** 1.24 0 0.29
C330 × C447 TianfengA × Huanghuazhan 10.02** 25.7** 7.74** 16.92** −32.45** −35.5** 0.24
C330 × C268 TianfengA × Minhui3301 3.02** 27.57** 17.26** 31.69** −0.01 −25.3** 0.35
C330 × C493 TianfengA × Chenghui727 6.75** 25.7** 10.65** 27.28** −17.30** −30.4** 0.34
C330 × C492 TianfengA × Yahui2115 9.02** 27.1** 9.40** 34.47** −26.48** −36.7** 0.36
C330 × C201 TianfengA × Gui99 4.72** 19.16** 8.18** 21.97** 4.7 −1.28 0.34
C330 × C282 TianfengA × Yuexiangzhan 3.79** 21.5** 13.75** 30.56** −10.24 −27.9** 0.31
C330 × C386 TianfengA × Yuenongsimiao 7.16** 22.43** 9.56** 21.59** −0.03 −17.7** 0.27
C230 × C373 TaifengA × Guang122 −9.49** −2.97** 5.39** 7.82** −29.29** −31.9** 0.33
C230 × C205 TaifengA × Huanghuazhan-1 −0.96 9.32 4.30** 8.61** 5.57 −12.6** 0.31
C230 × C250 TaifengA × Huazhan (HZ) −2.95** 4.66** 3.82** 7.7** −11.66* −17.2** 0.29
C230 × C375 TaifengA × Minghui63 −7.58** 5.93** 6.09** 12.46** 14.07** −2.31 0.33
C230 × C472 TaifengA × Wushansimiao −8.73** −2.54** 0.36 8.72** −3.57 −6.9 0.31
C230 × C447 TaifengA × Huanghuazhan −0.59 7.63 0.66 3.17* −8.2 −16.1** 0.24
C230 × C268 TaifengA × Minhui3301 −5.07** 11.02** 11.55** 18.12** 20.63** −12.6** 0.32
C230 × C493 TaifengA × Chenghui727 −0.38 11.02 11.03** 20.27** 6.38 −13.8** 0.31
C230 × C492 TaifengA × Yahui2115 −1.34 8.9 3.92** 19.93** −13.89* −28.7** 0.33
C230 × C201 TaifengA × Gui99 −1.38 6.36 0.58 6.91** −0.63 −10.3* 0.32
C230 × C282 TaifengA × Yuexiangzhan −2.10** 8.47** 1.2 9.4** 28.89** 0 0.32
C230 × C386 TaifengA × Yuenongsimiao −2.54** 5.51** 1.57 6.34** −17.41** −34.5** 0.29
C228 × C373 Guang8A × Guang122 2.76** 2.2** 8.33** 1.99** −26.33** −33** 0.27
C228 × C205 Guang8A × Huanghuazhan-1 −0.36 1.83* 5.65** 5.65** 31.30** 14.24** 0.23
C228 × C250 Guang8A × Huazhan (HZ) −1.47 −1.47 −4.04** −4.39** −39.86** −40.3** 0.22
C228 × C375 Guang8A × Minghui63 −1.73** 4.03** 6.02** 7.85** −9.37 −18.2** 0.31
C228 × C472 Guang8A × Wushansimiao 0.55 1.49 −1.91 1.89 −24.06** −25.9** 0.19
C228 × C319 Guang8A × Fuhui676 5.54** 11.72** 7.35** 19.88** −29.89** −39** 0.29
C228 × C447 Guang8A × Huanghuazhan 0.73 1.1 3.77** 2.2 −10.05 −13* 0.22
C228 × C268 Guang8A × Minhui3301 −3.57** 4.03** 6.64** 8.37** 24.13** −6.51 0.29
C228 × C493 Guang8A × Chenghui727 −0.89 2.2** −0.3 3.56* 2.28 −13* 0.29
C228 × C492 Guang8A × Yahui2115 −1.43 0.73 3.08** 13.81** −19.41** −29.9** 0.33
C228 × C201 Guang8A × Gui99 0 0 2.26 4.29** −15.65** −19.5** 0.28
C228 × C307 Guang8A × Ce64 2.36** 3.3** 10.48** 3.14* −25.00** −33.3** 0.28
C228 × C282 Guang8A × Yuexiangzhan −1.07 1.47 7.67** 11.61** −15.21* −31.2* 0.24
C228 × C386 Guang8A × Yuenongsimiao 2.55** 2.93** 3.12** 3.66* −17.21** −31.2** 0.21

Mean 0.67 9.96 6.40 13.47 −8.29 −20.10 0.29
Minimum −9.49 −2.97 −4.04 −4.39 −39.86 −40.30 0.19
Maximum 10.02 27.57 17.26 34.47 31.30 14.24 0.36
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(Table 4). The better-parent heterotic performance ranged from
−1.47% (Guang8A×Huazhan) to −2.97% (TaifengA ×
Guang122). Better-parent significantly positive heterosis
ranged between 1.83% (Guang8A × Huanghuazhan-1) and
27.57% (TianfengA × Minhui3301). For heading date, negative
heterosis is favored because it leads to earliness. A total of 19 F1
hybrids showed mid-parent heterosis and three F1 hybrids
showed better-parent heterosis with negative values, in which
nine mid parents and two better parents reached a significance
level. Plant height revealed low tomoderate levels of positive mid-
and better-parent heterosis for a majority of F1 hybrids. One F1
hybrid (Guang8A × Huazhan) showed negative mid-parent and
better-parent heterosis (−4.04%). A total of 10 F1 hybrids revealed
positive mid-parent heterosis for panicles per plant, and maximum
heterotic values were exhibited by the F1 hybrid Guang8A ×

Huanghuazhan-1 (31.30%). Only one F1 hybrid (Guang8A ×
Huanghuazhan-1) showed positive heterobeltiosis (14.24%) for
panicles per plant. However, the remaining F1 hybrids
manifested negative heterosis over the better parent (Table 4).

More than half of the F1 hybrids depicted significant positive
mid-parent heterosis for grains per panicle (Table 5). Heterotic
effects varied from 17.49% (Guang8A × Huanghuazhan) to
74.39% (Guang8A × Minghui63) over their mid parents.
Significantly positive better-parent heterosis was recorded on
14 F1 hybrids, ranging from 16.73% (TianfengA ×
Minhui3301) to 45.01 (Guang8A × Yahui2115). A majority of
the F1 hybrids showed significant positive mid- and better-parent
heterosis for 1,000-grain weight (Table 5). The F1 hybrids
TaifengA × Minghui63 and TaifengA × Minhui3301 revealed
the highest values of 20.37 and 17.98% over their mid- and better-

TABLE 5 | Mid-parent and better-parent heterosis estimates for grains per panicle, 1,000-grain weight, grain weight per panicle, and genetic distances between their
corresponding parents.

Cross code F1 hybrid
name

Grains per panicle 1,000-grain weight Grain weight per plant GD

MPH BPH MPH BPH MPH BPH

C330 × C373 TianfengA × Guang122 60.06** 33.85** 13.25** 8.58** 11.1 7.88** 0.34
C330 × C205 TianfengA × Huanghuazhan-1 23.07** 17.79* −1.98** −9.73** 45.34** 22.53** 0.3
C330 × C250 TianfengA × Huazhan (HZ) 13.00 12.03 7.16** −3.61** −47.86** −43.2** 0.31
C330 × C375 TianfengA × Minghui63 62.23** 2.77 16.40** 14.05** 34.61** 25** 0.35
C330 × C472 TianfengA × Wushansimiao 5.03 4.77 8.70** 1.19 52.45** 20.2* 0.29
C330 × C447 TianfengA × Huanghuazhan 39.58** 32.63** 6.57** −0.15 21.95* 21.01* 0.24
C330 × C268 TianfengA × Minhui3301 50.48** 16.73* 18.63** 15.14** 20.73* 14.7 0.35
C330 × C493 TianfengA × Chenghui727 19.54* 12.91 5.99** −1.3* 26.13** 14.05 0.34
C330 × C492 TianfengA × Yahui2115 29.25** 23.98** 6.46** 6.33** 4.04 3.08 0.36
C330 × C201 TianfengA × Gui99 −3.41 −4.69 2.96** 1.99** −20.94* −30.8** 0.34
C330 × C282 TianfengA × Yuexiangzhan 18.26* 11.33 9.18** 2.5** 9.25 2.23 0.31
C330 × C386 TianfengA × Yuenongsimiao 5.21 −12.6* 1.75* −4.6** 49.39** 32.15** 0.27
C230 × C373 TaifengA × Guang122 37.44** 27.57** 7.86** 7.28** 60.08** 55.22** 0.33
C230 × C205 TaifengA × Huanghuazhan-1 18.10* 9.78* −8.05** −18.9** 71.19** 44.51** 0.31
C230 × C250 TaifengA × Huazhan (HZ) 13.54 2.13 16.43** 9.46** −11.76 −20.9** 0.29
C230 × C375 TaifengA × Minghui63 73.99** 16.57 20.37** 17.11** 59.01** 37.86** 0.33
C230 × C472 TaifengA × Wushansimiao 14.93 2.82 7.66** 4.93** −43.67** −55.5** 0.31
C230 × C447 TaifengA × Huanghuazhan −11.34 −24.3** 6.37** 4.39** 23.41** 22.64** 0.24
C230 × C268 TaifengA × Minhui3301 60.62** 36.71** 20.11** 17.98** 10.32 4.67 0.32
C230 × C493 TaifengA × Chenghui727 3.54 −2.5 12.30** 0.11 3.47 −6.31 0.31
C230 × C492 TaifengA × Yahui2115 34.40** 24.65** 8.87** 3.97** 25.88** 24.54** 0.33
C230 × C201 TaifengA × Gui99 11.12 −1.96 4.61** −1.12 94.99** 71.03** 0.32
C230 × C282 TaifengA × Yuexiangzhan 10.73 −6.25 9.61** 7.79** 8.01 0.92 0.32
C230 × C386 TaifengA × Yuenongsimiao 21.65** −7.58 5.63** 3.73** 27.29** 12.75 0.29
C228 × C373 Guang8A × Guang122 43.94** 20.37** 2.93** −1.86* −6.54 −14 0.27
C228 × C205 Guang8A × Huanghuazhan-1 −6.02 −10.1 −4.74** −19** 27.23* 12.52 0.23
C228 × C250 Guang8A × Huazhan (HZ) 40.59** 39.38** −0.29 −2.29** −9.66 −22.8** 0.22
C228 × C375 Guang8A × Minghui63 74.39** 10.48 9.70** 2.42** 17.85 15.52 0.31
C228 × C472 Guang8A × Wushansimiao 8.38 8.11 6.29** 4.48** 20.84 −0.52 0.19
C228 × C319 Guang8A × Fuhui676 53.68** 23.17** 6.92** −0.1 36.89** 24.58* 0.29
C228 × C447 Guang8A × Huanghuazhan 17.49* 11.64 −4.55** −6.82** 41.11** 34.5** 0.22
C228 × C268 Guang8A × Minhui3301 15.7 −10.3 5.58** −0.53 −7.18 −16.3* 0.29
C228 × C493 Guang8A × Chenghui727 12.05 5.83 −2.12** −15.9** 41.43** 34.77** 0.29
C228 × C492 Guang8A × Yahui2115 51.16** 45.01** 1.95* −6.5** 16.97 9.72 0.33
C228 × C201 Guang8A × Gui99 20.31** 18.72* −1.90* −10.9** −1.7 −9.44 0.28
C228 × C307 Guang8A × Ce64 44.50** 29.73** 0.14 −3.3** 9.87 0.74 0.28
C228 × C282 Guang8A × Yuexiangzhan 13.29 6.65 10.98** 8.12** 5.67 −6.08 0.24
C228 × C386 Guang8A × Yuenongsimiao 21.36** 0.81 −0.01 −2.46** 77.00** 60.33** 0.21

Mean 26.89 11.28 6.26 0.854 21.16 10.63 0.29
Minimum −11.34 −24.30 −8.05 −19.00 −47.86 −55.50 0.19
Maximum 74.39 45.01 20.37 17.98 94.99 71.03 0.36
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parental inbred lines, respectively. Regarding mid-parent
heterosis for grain yield per plant, 18 and 15 F1 hybrids
manifested significant positive mid- and better-parent
heterosis, respectively (Table 5). Mid-parent significantly
positive heterosis ranged from 20.73% (TianfengA ×
Minhui3301) to 94.99% (TaifengA × Gui99). The latter
promising F1 hybrid was followed by four other high-yielding
hybrids, Guang8A × Yuenongsimiao (77.00%), TaifengA ×
Huanghuazhan-1 (71.19%), TaifengA × Guang122 (60.08%),
and TaifengA × Minghui63 (59.01%). For better-parent
heterosis, the F1 hybrid TaifengA × Gui99 (71.03%) exhibited
the most significant positive heterotic effects.

3.9 Genetic Distance Effects on Heterosis
Genetic distances between the parents of 38 F1 hybrids were
estimated through IBS in TASSEL 5, which ranged between
19.00 and 36.00% (Table 5). For days to 50% heading, F1
hybrids of significant mid-parent-negative and mid-parent-
positive heterosis manifested slightly negative correlation with
genetic distances, whereas better-parent heterosis showed positive
correlation with the genetic distances (Figure 3B). Similarly,
heterosis over mid and better parents for plant height, panicles
per plant, number of grains per panicles, and 1000-grain weight also

showed positive association with the genetic distances. Amajority of
the F1 hybrids with highly significant heterosis were present at the
maximum end of genetic distances (Figures 3A,B). Mid-parent
heterosis for grain yield per plant in F1 hybrids was found in positive
correlationwith the genetic distances in their corresponding parents,
whereas better-parent heterosis was observed in slightly negative
correlation with genetic distances (Figures 3A,B).

4 DISCUSSION

Despite the success of hybrid rice since 1970s (Lin et al., 2020), the
understanding of the heterosis group and heterotic pattern in rice
is very limited (Wang et al., 2014). The maximum benefit out of
the heterotic vigor could be achieved through the assessment of
diversity and divergence in the rice germplasm for identification
of the potential heterotic groups, for which high-throughput
genotyping is of great help (Zhao et al., 2011; Wang et al.,
2014; Wang et al., 2018b). In this study, heterotic groups were
identified using a 10K SNP chip, in different Indicia and Japonica
genotypes selected from different origins of China and abroad,
including 183 inbred lines, 53 maintainers, 120 restorers, one
TGMS line, and two unknowns.

FIGURE 3 | Representation of mid-parent (A) and better-parent (B) heterosis association of F1 hybrids with the genetic distances between their corresponding
parents.
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Divergence analyses revealed the existence of six subgroups
among subspecies, breeding lines, origins, and genetic groups. Up
to K6, DAPC-based grouping was stable and was supported by
both PCA and BIC analyses. Along with the overall variability in
the tested germplasm, substantial variability was observed in each
genetic group, geographically collected lines, and breeding lines.
Geographical distribution of lines could also contribute to the
existence of subgroups (Zhang et al., 2011). However, in this
study, a no-population subdivision was observed due to
geography/locations, except that lines from two regions, that
is, Zhejiang and Yunnan, were grouped only in a single group
(G2 and G3, respectively). Effective evaluation of diversity
provides a considerable scope of choice of parents before
hybridization (Pandey et al., 2011). Phylogenetic analysis
showed that genotypes obtained from different origins had
significant variation and were assigned into different groups.
Huang et al. (2012) also find out a large-scale genetic variation
in the Asian cultivated rice germplasm. Moreover, cluster analysis
also confirmed that there are six different clusters, and the
maintainers were distributed in three independent clusters.
Almost similar principal components were identified in
previous studies (Rathnathunga and Geekiyanage, 2015, 2016,
2017; Rathnathunga et al., 2016), which recommended variable
levels of diversity in various rice germplasms.

Estimation of phenotypic and genotypic diversity provides
useful information for the establishment of heterotic patterns
(Agre et al., 2019). As all the six clusters contained the
commercially used high-yielding parents, each cluster was
considered as the basis for heterotic groups. From all
commercially used hybrids and new combinations, seven
heterotic patterns were identified. The higher genetic distance
among the commercially used lines reflected positive association
with heterosis; thus, new heterotic groups with higher genetic
distances could be predicted. As suggested previously, significant
differences among the rice genotypes were expected to provide
better hybrid vigor (Prasanna et al., 2010; Mvuyekure et al., 2018).

Following the heterotic pattern of cluster IV × cluster II, the
best modern maintainer lines in cluster IV could be used with the
best restorers of cluster II in the development of high-yielding
hybrids. Elite inbred lines from cluster V can be used as male
parents of two lines and three lines of hybrid rice. Moreover,
Cluster V was predominated by inbred cultivars of the
Guangdong origin, which usually have good grain quality and
better resistance to rice blast and bacterial blight, and is suitable to
be deployed in breeding new restorer lines.

Considering the aforementioned findings, 14 inbred and
restorer lines from groups I, II, V, and VI were crossed with
three CMS lines from group IV. The mean performance for
various parameters revealed a substantial variability. The F1
hybrids obtained from the partial diallel crosses and their
parents revealed significant variations for all the studied traits,
which can provide an ample scope for further improvement. A
majority of the F1 hybrids showed higher mean performance than
their parents. In agreement with our study, significant variation
for yield and yield-related traits among rice genotypes was
observed previously (Singh et al., 2006; Prasad et al., 2013;
Ganapati et al., 2014; Asem et al., 2019).

Heterosis is critical for the estimation and development of new
plant population (Cheng et al., 2019; Venkatesan et al., 2019;
Rasheed et al., 2021). Although the overall heterosis for heading
date and plant height was at low and moderate levels, some
TaifengA progenies and Guang8A × Huazhan for plant height
manifested significant negative heterosis over the mid and best
parents, similar to other studies (Selvaraj et al., 2011; Kumar et al.,
2012). Four F1 hybrids of TaifengA showed significant earliness
and can be used for developing early maturing and lodging-
resistant dwarf stature hybrids. The number of panicles per plant
also showed moderate levels of significant positive heterosis,
where the F1 hybrids such as TaifengA × Minhui3301
exhibited maximum heterosis. Corroborating results of similar
nature heterosis were reported (Gnanamalar and Vivekanandan,
2013; Rukmini et al., 2014; Lingaiah et al., 2019). Quantitative
traits, that is, grain weight, grain number per panicle, and number
of panicles, positively contribute to the yield (Rasheed et al.,
2021). High levels of mid- and better-parent heterosis were found
for the number of grains per panicle, and all the three maternal
lines showed significant heterotic effects with different inbred and
restorer lines in our study, which is in accordance with the
previous findings (Priyanka et al., 2014; Lingaiah et al., 2019).
Similarly, for 1,000-grain weight, which is one of the key
components of yield, F1 hybrids TaifengA × Minghui63 and
TianfengA ×Minhui3301 were found with moderately significant
positive heterosis over the mid and better parents, and TaifengA
×Minhui3301, TianfengA ×Guang122, and TaifengA ×Huazhan
showed mid-parent heterosis and TianfengA × Minghui63
manifested heterobeltiosis only. Mostly significant positive
mid- and better-parent heterotic performances were recorded
for 1,000-grain weight (Lingaiah et al., 2019). In the case of grain
yield per plant, a majority of F1 hybrids were found with above-
average positive heterosis. High levels of significant positive
heterosis over mid and better parents were manifested by F1
progenies such as TaifengA × Gui99, which can be used as
potential sources for the development of high-yielding hybrids
in future breeding. Advocating results of high heterosis over mid
parents and better parents were reported previously (Zhang et al.,
1994; Alzona and Arraudeau, 1995).

In the present study, a majority of mid-parent and best-
parent heteroses were with positive association with genetic
distances. Except mid-parent heterosis for days to 50% heading
and better-parent heterosis for grain yield per plant, which were
found in slightly negative correlation with genetic distances, all
the studied traits exhibited positive correlation with the genetic
distances. Considering the genetic variation as a source for
heterotic gain, several studies were conducted to unveil the
relationship between genetic distances and heterosis for
predicting the heterosis effect and found that to some extent,
heterosis is positively associated with genetic distances (Lee
et al., 1989; Smith et al., 1997; Zhao et al., 2009). Although
greater achievement of hybrid breeding depends on the
identification of complementary heterotic groups (Reif et al.,
2007; Zhao et al., 2015), the heterotic groups in rice are still not
clearly defined (Xie et al., 2012). Corroborating results were
obtained by maximizing the genetic distances for separation of
maize lines into groups, showing the advantage of a significant
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yield over within-group crosses. Thus, the groups estimated by
increasing the genetic distances could be a meaningful source
for heterotic group development (Suwarno et al., 2014). Wang
et al. (2014) estimated the magnitude of yield heterosis among
selected heterotic groups with greater genetic distances and
observed that hybrids had more yield than their parents, with
an average of 24.1% mid-parent heterosis, which is in line with
our findings. Similarly, the molecular marker approach was used
to estimate the genetic distances between breeding lines for
dividing the germplasm into heterotic groups (Prasanna et al.,
2010). Singh et al. (2015) also estimated the genetic diversity and
phylogenetic relationship among 128 diverse rice germplasms
using 50K rice SNP chips. Haplotype analysis separated the 128
genotypes into four major heterotic groups, revealing that the
genotypes are grouped on the basis of their genetic makeup
(genetic distances).

5 CONCLUSION

In conclusion, considering the mid-parent and better-parent
significant heterosis and promising mean performance, our
results have identified 14 heterotic combinations, that is,
TaifengA × Guang122, TaifengA × Wushansimiao, and
TaifengA × Minghui63 for earliness; Guang8A × Huazhan for
dwarf stature; and Guang8A × Huanghuzhan-1, TaifengA ×
Yuexiangzhan, Guang8A × Minhui3301, TianfengA ×
Guang122, Guang8A × Yahui2115, TianfengA ×
Huanghuazhan, TianfengA × Minghui63, TianfengA ×
Minhui3301, TaifengA × Gui99, and Guang8A ×
Yuenongsimiao for yield and yield-related traits. F1 hybrid
heterosis over the mid and better parents was in positive
correlation with the genetic distances. These F1 Hybrids
should be used in the development of early-maturing, lodging-
resistant, and high-yielding commercial hybrids and cultivars in
future heterosis breeding programs after multilocation and
multiyear testing. The use of genetic distance must
complement with phenotypic characterization for identification
of heterotic groups and generation of promising hybrids.
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Multi-Trait Multi-Environment
Genomic Prediction for End-Use
Quality Traits in Winter Wheat
Karansher S. Sandhu1, Shruti Sunil Patil 2, Meriem Aoun1 and Arron H. Carter1*

1Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States, 2School of Electrical
Engineering and Computer Science, Washington State University, Pullman, WA, United States1

Soft white wheat is a wheat class used in foreign and domestic markets to make various
end products requiring specific quality attributes. Due to associated cost, time, and
amount of seed needed, phenotyping for the end-use quality trait is delayed until later
generations. Previously, we explored the potential of using genomic selection (GS) for
selecting superior genotypes earlier in the breeding program. Breeders typically measure
multiple traits across various locations, and it opens up the avenue for exploring multi-
trait–based GS models. This study’s main objective was to explore the potential of using
multi-trait GS models for predicting seven different end-use quality traits using cross-
validation, independent prediction, and across-location predictions in a wheat breeding
program. The population used consisted of 666 soft white wheat genotypes planted for
5 years at two locations in Washington, United States. We optimized and compared the
performances of four uni-trait– and multi-trait–based GS models, namely, Bayes B,
genomic best linear unbiased prediction (GBLUP), multilayer perceptron (MLP), and
random forests. The prediction accuracies for multi-trait GS models were 5.5 and
7.9% superior to uni-trait models for the within-environment and across-location
predictions. Multi-trait machine and deep learning models performed superior to
GBLUP and Bayes B for across-location predictions, but their advantages diminished
when the genotype by environment component was included in the model. The highest
improvement in prediction accuracy, that is, 35% was obtained for flour protein content
with the multi-trait MLP model. This study showed the potential of using multi-trait–based
GS models to enhance prediction accuracy by using information from previously
phenotyped traits. It would assist in speeding up the breeding cycle time in a cost-
friendly manner.

Keywords: end-use quality, genomic prediction, heritability, machine learning, multi-trait, secondary traits, wheat

INTRODUCTION

Wheat (Triticum aestivum L.) is one of the most important staple crops worldwide, providing 18% of
the caloric intake (Awika, 2011; Saini et al., 2022). Hexaploid wheat is categorized into soft and hard
wheat classes based on protein strength, kernel texture, water absorption, and milling quality
(Kiszonas et al., 2013). In the United States, six major classes of wheat, namely, hard white wheat,
hard red spring wheat, hard red winter wheat, soft white wheat, soft red winter wheat, and durum, are
grown in different regions. Soft white wheat (SWW) is a predominant class in eastern Washington
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and the inland Pacific Northwest (Kiszonas and Morris, 2018).
SWW is one of the wheat classes with high demands from
overseas markets in countries like the Philippines, Korea,
Japan, and Indonesia, due to its high end-use quality. Soft
wheat is mainly used for making cakes, cookies, pastries,
Asian-style noodles, crackers, and pretzels (Morris et al.,
2008). In addition to having high grain yield, disease and
insect resistance, wide adaptability, and cold tolerance, the
released wheat cultivar needs to maintain high end-use quality
attributes required by millers, bakers, and grain markets (Morris
et al., 2009; Carter et al., 2012; Guzman et al., 2016; Sandhu et al.,
2021d).

Phenotyping for end-use quality traits is usually delayed until
advanced generations in wheat breeding owing to the associated
cost, labor, and amount of seed required (Battenfield et al., 2016).
Delayed phenotyping usually results in hindrance of releasing
promising cultivars due to lack of end-use quality data to make
decisions. Important end-use quality traits in wheat include
cookie diameter, flour sedimentation value, flour yield, grain
protein content, and milling score (Campbell et al., 2007;
Kiszonas et al., 2015). Linkage and association mapping have
been used to identify the genomic loci controlling end-use quality
traits, and most of the major effect genes are now fixed into the
breeding programs for different market classes (Jernigan et al.,
2018; Yang et al., 2020). Marker-assisted selection has been used
to screen for some major effect end-use quality genes in wheat
classes based on granule-based starch synthase 1, low and high
molecular weight glutenins, and kernel texture (Aoun et al.,
2021b). These major effect loci only assist in differentiating
between different classes but do not provide the complete
profile (Kumar et al., 2019). Association mapping studies in
wheat have shown that more than 300 small effect QTLs
control these end-use quality traits and suggest the
quantitative nature of these traits, requiring appropriate
strategies to be adopted in breeding programs for selection
(Breseghello and Sorrells, 2006; Bhave and Morris, 2008;
Jernigan et al., 2018; Yang et al., 2020).

The ultimate interest of a plant breeding program is to
enhance the long-term genetic gain, and in modern terms,
genetic gain is defined as ΔG � iσAr/t, where ΔG is the rate of
the gain/response to selection, σA is the square root of the
standard additive genetic variance, i is the selection intensity, r
is the correlation between genotypic and true breeding values,
and t is the length of the breeding cycle (Bernardo, 2016; Cobb
et al., 2019a; Cobb et al., 2019b). Genomic selection (GS) is the
approach adopted by most plant breeding programs, which
enhances the rate of genetic gain by estimating breeding
values using whole genome-wide markers without phenotyping
(Meuwissen et al., 2001). First, the GS model is trained using
previous year phenotypic and genotypic data to estimate marker
effect and the model’s performance is assessed using various
cross-validation approaches. The trained GS model predicts the
genomic estimated breeding values of the selection/breeding
population (Lorenz et al., 2011; Lorenz, 2013). Since the last
decade, increasing the prediction accuracies for GS has been the
main focus of research (Kaur et al., 2021). GS performance is
affected by the relationship between testing and training set, trait

heritability and architecture, population structure, population
size, and the statistical model (Herter et al., 2019; Monteverde
et al., 2019).

Most genomic selection studies use the uni-trait model, where
a single trait is predicted (Qin et al., 2019; Pérez-Rodríguez et al.,
2020; Sandhu et al., 2022). However, plant breeders have shifted
to multi-trait (MT) GS models that simultaneously predict two or
more traits and demonstrate improved accuracy (Calus and
Veerkamp, 2011; Sandhu et al., 2021a). MT models use the
shared genetic information between the traits using the same
set of predictors with the assumption of some structure in the
captured output. MT models leverage the correlation between
different traits and show a considerable advantage in other
domains, such as ecological modeling, weather forecasting,
forest management, and data mining (Voyant et al., 2017).
MT models using shared genetic information are important
for hard/expensive to phenotype traits having low heritability
(Juliana et al., 2019). Several studies have demonstrated the
improvement of prediction accuracy for a primary trait with
the inclusion of a secondary trait into the MT models in wheat.
Sandhu et al. (2021a) showed an improvement of 20 and 12%
prediction accuracies for grain yield and grain protein content in
wheat, respectively, by including correlated spectral reflectance
indices into the model as secondary traits in the MT approach.
Similarly, Hayes et al. (2017), Lado et al. (2018), and Bhatta et al.
(2020) observed the improvement of prediction abilities with MT
models over the uni-trait models for end-use quality traits in
cereals.

A previous study from our group showed that GS accuracies
varied from 0.27 to 0.81 for 14 end-use quality traits using nine
different uni-trait models (Sandhu et al., 2021c). Statistical
models used for training the uni- or multi-trait GS models
play an important role in evaluating performance (Jia and
Jannink, 2012). Ridge regression best linear unbiased
prediction (rrBLUP) is one of the most frequently used
models for quantitative traits assuming normal distribution of
marker effects with constant variances (Endelman, 2011). Bayes
Cpi uses variable selection, scaled-t distribution to estimate
marker effects and assumes different variances for adjusting to
the different genetic architecture of the trait (Pérez and De Los
Campos, 2014; Montesinos-López et al., 2019a). rrBLUP and
Bayes Cpi are known as parametric models as they assume a prior
relationship between features and predictors, and this opens up
the avenue for the nonparametric machine and deep learning
algorithms. Machine learning models such as random forest,
ensemble learning, and support vector machines use algorithms
that progressively learn the pattern from sample data to make
final predictions (Hastie et al., 2009). Deep learning is one of the
branches of machine learning focusing on the artificial neural
network for model training and predictions. Deep learning
models such as generative neural networks, convolutional
neural networks, and recurrent neural networks use different
combinations of layers and nonlinear activation functions to
transform the data at each layer to obtain a better fit for each
trait by considering genetic architecture (Lecun et al., 2015).

In previous studies, we have shown the advantages of multi-
trait GS models (Sandhu et al., 2021e) and machine and deep
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learning models for predicting complex traits in wheat (Sandhu
et al., 2021b; Sandhu et al., 2021c). Building upon the findings of
previous studies, this study’s objectives were to 1) optimize the
uni- and multi-trait GS models for seven end-use quality traits, 2)
compare the performances of four uni- and multi-trait GS models
using cross-validation and independent predictions, and 3) assess
the potential of across-location prediction using multi-trait
models and with the inclusion of genotype by environment
interaction component.

MATERIALS AND METHODS

Plant material: A total of 666 SWW genotypes from the
Washington State University winter wheat breeding program
were screened at two locations, namely, Lind and Pullman,
WA, United States, from 2015 to 2019. These genotypes
consist of preliminary and advanced yield lines, doubled
haploid lines, and F3:5 lines screened as part of the breeding
program. Genotypes in the advanced and preliminary yield trials
were screened for yield, and superior lines were later evaluated for
end-use quality traits. Double haploid lines and F3:5 derived lines
were screened for disease resistance and agronomic traits, and the
selected genotypes were screened for quality traits and not for
yield traits. As the dataset was from a breeding program, some
lines were continuously removed each year with new genotypes in
the subsequent year, resulting in an unbalanced dataset. More
information about the dataset is referred to Aoun et al., 2021a and
Sandhu et al., 2021b. End-use quality data were collected
separately at both locations for all the genotypes.

Phenotyping for the end-use quality traits: These genotypes
were tested for seven end-use quality traits, namely, cookie
diameter (CODI), grain protein content (GPC), flour yield
(FYELD), flour SDS sedimentation (FSDS), flour ash (FASH),
flour protein (FPROT), and milling score (MSCOR). Complete
information about all these traits and their summary is provided
in Table 1. To evaluate grain characteristics, GPC was measured
following AACC Approved Method 39–10.01 using an NIR
analyzer (Perten Elmer, Sweden). Flour parameters, namely,
FASH, FPROT, and FSD were measured using the extracted
flour. FASH and FPROT were measured using Approved
methods 08–01.01 and 39–11.01. The milling traits, that is,
FYELD and MSCOR were measured using the sample
obtained from the modified Quadrumat Senior Experimental
Milling System. FYELD was estimated as a ratio of total flour
by weight (reduction rolls and break). MSCOR was obtained

using FYELD and FASH. CODI is one of the baking parameters
and is estimated by following the AACC Approved Method
10–52.02. More information about the phenotyping is referred
to Aoun et al., 2021a and Sandhu et al., 2021b.

Genotyping: Genotyping by sequencing (GBS) was used for
genotyping the complete population using the facilities from
Genomics Sciences Laboratory, Raleigh, NC (Poland et al.,
2012). The complete details about the genotyping and SNP
calling was reported in Aoun et al. (2021a) and Sandhu et al.
(2021a). Initial SNP data consisted of 216,392 markers anchored
to the T. aestivum RefSeq v1.0 reference genome. Markers were
removed based on the minor allele frequency less than 5%,
heterozygosity more than 15%, and markers missing more
than 20% of data, and the whole pipeline was implemented in
R (R Development Core Team, 2020). At the end of the filtering,
we were left with 40,518 SNPs used for further analysis.

Phenotypic data analysis: To account for the unbalanced
dataset in this study, adjusted means were extracted using
residuals obtained from the unreplicated genotypes in
individual environments using the augmented complete
block design model implemented in the R statistical
program. Adjusted means were obtained according to the
method implemented in Sandhu et al. (2021b), and the model
equation is given as follows:

Yij � Blocki + Checkj + eij,

where Yij is the raw phenotype, Blocki corresponds to the fixed
block effect, Checkj is the replicated check cultivar effect; Blocki is
the fixed block effect, and eij is the residuals.

Adjusted means across the environments were obtained using
the models and are given as follows:

Yijk �µ+Checki+Blockj+Envk +Checkj ×Envk +Blocki ×Envk
+eijk ,

where Yijk is the raw phenotype value; Checkj, Blocki, and Envk
are the fixed effect of the ith check, jth block, and kth
environment, respectively; and eijk is the residuals.

Heritability of each trait was calculated using the model as
follows:

H2
C � 1 − �vBLUPΔ..

2σ
∧2
g
,

whereH2
C is the Cullis heritability, �vBLUPΔ.. is the mean–variance of

BLUPs, and σ
∧2
g is genotypic variance.

TABLE 1 | Summary statistics of seven end-use quality traits evaluated from the SWW population.

Trait Abbreviation Mean Standard error Heritability Units

Grain protein content GPC 10.73 0.05 0.56 percent
Flour protein FPROT 8.93 0.04 0.57 percent
Flour ash FASH 0.39 0.001 0.88 percent
Milling score MSCOR 85.6 0.10 0.81 unitless
Flour yield FYELD 69.9 0.09 0.91 percent
Cookie diameter CODI 9.2 0.008 0.89 cm
Flour SDS sedimentation FSDS 10.1 0.09 0.92 g/mL
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Genetic correlation among traits was obtained using the
multivariate models as follows:

[yA

yB
] � [XA 0

0 XB
][ bA

bB
] + [ZA 0

0 ZB
][gA

gB
] + [ εA

εB
],

where yA and yB are the BLUPs of the two traits, X and Z denote
the design matrix, g is the random genetic effects, and e is the
residual for each trait. Variance components were calculated

assuming [gA

gB
]~ N(0, H⊗G), where H is the genetic

variance–covariance matrix, G is the genomic relationship

matrix, and [ εA
εB

]~ N(0, I⊗R), where I is the identity matrix

and R is the residual variance–covariance matrix. The genetic
correlation is calculated as follows:

rG � cov(A, B)�������������
var(A) · var(B)√ ,

where cov(A, B) is the covariance between two traits, Var(A) and
Var(B) represent variances of two traits individually, and the analysis
was performed using JMP genomics (SAS Institute Inc, 2011).

Genomic selectionmodels:We evaluated the performances of
four uni-trait and multi-trait GS models for predicting seven end-
use quality traits, and prediction accuracy was compared under
different validation scenarios to mimic the breeding program.
These four models were GBLUP, Bayes B, RF, and MLP and were
tried under both uni-trait and multi-trait scenarios. Complete
information about the model structure and optimization is
provided below:

Genomic best linear unbiased predictor: The uni-trait
GBLUP model was used to train each trait individually, and
the model is represented as follows:

y � µ + Zu + e,

where y is the vector of end-use quality phenotype for each
genotype, µ is the overall mean, u is a vector of normally
distributed marker predictor effects as u~ N (0, I σ2u), Z is a
design matrix assigning markers to genotypes, and e is the
residual error with e ~ N (0, I σ2e). The multi-trait model is
represented as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1

.

.

.
yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X 0
. .
. .
. .
0 Xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
µ1
.
.
.
µn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Z 0
. .
. .
. .
0 Zn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u1

.

.

.
un

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε1
.
.
.
εn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where n is the number of traits, y1 to n represents the vector of
phenotypes of the end-use quality traits, X and Z are design

matrix, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u1
.
.
.
un

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ represents the random marker effects,

distributed as ~ N (0, G⊗H), where G is the genomic
relationship matrix, H is the variance–covariance matrix, and

ε1...n represents the standard normal error, distributed as ~ N (0,
I⊗R), where R is the residual variance–covariance matrix and I is
identify matrix.

Bayesian B: The uni-trait Bayes B model was used to train
each trait individually, and the model is represented as follows:

yi � µ +∑j�p
j�1

xijβj + εi,

where yi is the vector of end-use quality phenotype for each line,
xij is the identity of the SNP, βj represents the marker effect, µ is
the overall mean, and εi is residual error. MTM and BGLR
packages were used for the analysis with 5,000 burn-in and 15,000
test iterations (de los Campos and Grüneberg, 2016). Prior
distribution used for model training is as follows:

βj
∣∣∣∣∣σ2

j , Π � ⎧⎨⎩ 0 with probability π

N(0, σ2
j)with probability 1 − π

,

which is a mixture of distribution with mass at zero and same
prior for all remaining markers, that is, χ−2 (dfβ, Sβ) where Sβ is a
scaling parameter and dfβ is the degree of freedom (Pérez and De
Los Campos, 2014).

The MT Bayes B model is represented as follows:

y � µ + Zu + ε,

where y represents the vector of phenotypes of the end-use quality
traits, µ is the overall mean, u is the genotypic value distributed as
u~ N(0, H⊗G), and ε is residuals.

Bayesian multi-trait multi-environment model (BMTME):
Montesinos-López et al., 2016, Montesinos-López et al., 2019b
provided a BMTME model for predictions which is represented
as follows:

y � Xβ + Z1b1 + Z2b2 + ε,

where y is the matrix of order t x l, with t is the number of traits
and l = e x g, where g is the number of genotypes and e is the
number of environments; X, Z1, and Z2 are design matrixes for
environmental effect, genotypic effect, and genotype by
environmental interaction, respectively; β is beta coefficient
matrix of order e x t; b1 is the random genotypic effect
distributed as b1~ MN(0, G, Ʃt), where G is additive
relationship matrix and Ʃt is the unstructured covariance
matrix of order t x t; b2 is the random genotypic x trait x
environment effect matrix distributed as b2~ MN(0, Ʃe G, Ʃt),
where Ʃe is the unstructured covariance matrix of order e x e.
BMTME package was used for the analysis with 5,000 burn-in
and 15,000 test iterations (Montesinos-López et al., 2019b).

Random forests: RF is a tree-based machine learning model
where output is predicted from the collection of identically
distributed trees. Input features are split at each node of the
tree to create a new branch, and splitting is performed by
lowering the loss function. Bootstrap sampling was performed
over the training set to select the best set of features for tree
building (Ramzan et al., 2020). The model equation is given as
follows:
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ŷi �
1
B
∑B
b�1

Tb(xi),

where ŷi is the predicted value of the end-use quality trait with
genotype xi, T represents the number of trees, and B is the
number of bootstrap samples. The outline of model optimization
is as follows.

1) Bootstrap sampling was performed to select the plants from
the training set with replacement and was repeated for b =
(1,. . ., B) times.

2) Max feature (max_feature) function from the random forest
regressor library was used to identify the best set of features
(SNP) by lowering the loss function while building new trees.

3) Splitting at each node of the tree was performed using
genotypic data to lower the mean square error

4) The aforementioned three steps were repeated until a
minimum node or maximum depth was reached. The set
of these trees were used to predict the output of a genotype xi

by averaging the performance over the forest.

The hyperparameter space was explored using the grid search
cross-validation (CV) function to optimize the hyperparameters
for each trait by lowering the mean squared error. The important
hyperparameters used for RF training were number and depth of
trees, feature importance, and number of features sampled for
each iteration. Hyperparameters tried were number of trees (200,
300, 500, and 1,000), max features (auto and sqrt), and max depth
(40, 60, 80, and 100) using random forest regression and Scikit
learn libraries.

Multilayer perceptron (MLP):MLP is a special type of neural
network where information flows in one direction, starting from
input layer through different hidden (processing) layers to the
output layer. The output from the last hidden layer is used to
predict output and is represented as follows:

Yj � b(j−1) +Wjf(j−1)(x),
where Yj is the output from the jth hidden layer, f(j-1) is the
activation function,Wj is the neuron’s weight, and b(j-1) is the bias
associated with each layer. The number of vectors in the output
layer define the uni- and multi-trait models.

The hyperparameter space was explored using the Keras inner
grid search cross-validation (CV) function to optimize the
hyperparameters for each trait by lowering the mean squared
error. For hyperparameter optimization, 80% of the training data
were used, where 80% of this dataset was used for exploring the
hyperparameter space and the remaining 20% for validation.
Scikit learn and Keras libraries were used to optimize the model in
Python (Gulli and Pal 2017). A full-factor design was
implemented using grid search CV to explore parameters, that
is, solvers, dropout, learning rate, number of filters, activation
function, number of hidden layers and neurons, and
regularizations. Overfitting in the model was controlled using
early stopping, regularization, and dropout (Srivastava et al.,
2014). More information about the MLP models,
hyperparameter optimization, and overfitting control is used
in Sandhu et al., 2021c, Sandhu et al., 2021a.

Assessing the model’s prediction abilities: The genomic
selection model performance was evaluated as prediction
accuracy, which is the correlation between GEBVs and the
observed phenotype. The correlate function from the “corrr” R
package was used to assess prediction accuracy (Max et al., 2020).
Cross-validation approach, that is, a five-fold CV was used to
evaluate the prediction accuracies where each fold was used
separately as a testing fold, and this process was repeated two
hundred times. For each location, that is, Pullman and Lind,
performances of both uni- and multi-trait models were evaluated
separately using five-fold CV, and the results were reported
separately for each trait and model.

FIGURE 1 | Phenotypic correlation among the seven end-use quality
traits evaluated from the SWW population.

FIGURE 2 | Genetic correlation among the seven end-use quality traits
evaluated from the SWW population.
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Across-location prediction scenarios were also tested where the
dataset from one location was used to predict the performances of
genotypes at another location and environment. In our case, the
complete data set from one location, that is, Lind was used to train
the model, and predictions were made for 2019 Pullman
environment and vice versa. Genotype by environment
components was also included during across-location predictions.

RESULTS

Trait summary, heritability, and correlation: Table 1 provides the
summary and broad-sense heritability of seven end-use quality
traits evaluated from the SWW population planted at two locations
in this study. Most of the traits had moderate to high heritability,
except grain protein content and flour protein. Heritability of FSDS
and FYELD was 0.92 and 0.91, respectively, highest among all the
traits. Phenotypic and genetic correlation results provided evidence
that few traits were correlated (Figures 1, 2). The highest
phenotypic and genetic correlations were observed between GPC
and FPROT, which was 0.93 and 0.91, respectively (Figures 1, 2).

Some traits were negatively correlated with each other. Principal
component analysis showed the absence of structure in the
population, where first and second PCs only explained the 5.8
and 4.2% variation, respectively (Figure 3), and this was expected as
the population was from the same breeding program. Frequency
distribution for all the traits at both locations is shown in
Supplementary Figure S1. Furthermore, ANOVA results
showed that all the traits, except CODI, have significant GXE
interaction (Supplementary Table S1).

Hyperparameter optimization for the MLP model: Two
hundred iterations were performed for the MLP model using
Keras inner grid search CV function to optimize the
hyperparameters for each trait by lowering the mean squared
error. The hyperparameters optimized for each trait were later
used for predicting traits in the testing set. Tables 2, 3 provide the
set of hyperparameters optimized for each trait under the uni-
and multi-trait MLP model. Regularization and dropout were
used in the model to control the overfitting following Srivastava
et al. (2014). The number of hidden layers and neurons played a
critical role during model optimization compared to other
hyperparameters. For the uni-trait MLP model, some traits

FIGURE 3 | Principal component analysis for the 666 SWW genotypes obtained using 40,518 SNP markers.

TABLE 2 | Hyperparameters optimized for seven end-use quality traits using the uni-trait MLP model.

Hyperparameter GPC FPROT FASH MSCOR FYELD CODI FSDS

Activation function relu relu tanh relu relu tanh tanh
Epochs 200 200 100 150 150 200 150
Dropout 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Learning rate adaptive adaptive constant adaptive constant adaptive constant
No. of hidden layers 4 3 4 3 3 4 2
No. of neurons (30, 30, 30, 30) (24, 24, 24) (50, 50, 25, 25) (30, 30, 10) (90, 90) (100, 50, 25, 25) (50, 50)
Regularization 0.1 0.1 0.05 0.02 0.05 0.1 0.001
Solver Adam Adam SGD L-BFGS SGD L-BFGS SGD
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required different activation functions other than relu, while for
multi-trait MLP, all the traits gave the lowest MSE with a relu
activation function. Information about the hyperparameters is
provided separately for each trait, demonstrating that
different genetic architecture required specific combinations of
hyperparameters for best performance (Tables 2, 3).

Prediction accuracies within the location using cross-
validation: We compared the performance of four uni- and
multi-trait models using a five-fold CV approach to predict
seven quality traits. Average results for each trait in the multi-
trait GS were used to compare its performance with uni-trait GS
models. Figures 4, 5 show the uni- and multi-trait prediction
accuracies for the two locations, namely, Pullman and Lind,
respectively. Multi-trait prediction accuracies were higher for
all the traits, except CODI, for both locations (Table 4).
Prediction accuracies varied from 0.44 to 0.76 and from 0.40
to 0.79 for uni- and multi-trait models, respectively, for seven
traits evaluated in this study (Figures 4, 5). The Bayes B uni-
trait model obtained the lowest prediction accuracies, while the
MLP multi-trait model obtained the highest prediction

accuracies. On average, multi-trait GS models gave 5.5%
higher prediction accuracies than uni-trait GS models
(Table 4). There was no difference in the uni- and multi-
trait Bayes B model’s performance for most traits. In
summary, multi-trait GBLUP, Bayes B, RF, and MLP
performed 6.9, 1.8, 6.6, and 6.5% superior to their uni-trait
counterparts, respectively (Table 4).

The highest prediction accuracies were obtained using a multi-
trait MLPmodel for five of the seven traits evaluated in this study,
closely followed by the multi-trait–based RF and GBLUP model.
FPROT showed the greatest improvement in prediction accuracy,
that is, 36%, with the multi-trait model compared to uni-trait GS
models, while CODI showed the lowest improvement in
prediction accuracy, that is, -2.9%. Prediction accuracies for
the Pullman and Lind locations varied from 0.52 to 0.79 and
from 0.40 to 0.70, respectively, with higher accuracy for all the
traits at the Pullman location. Improvement in prediction
accuracies for GPC, FASH, MSCOR, FYELD, and FSDS with
multi-trait models was -0.1–31.6%, 5.4–15.4%, 9.6–31.6%,
1.5–2.3%, and 7.6–16.7%, respectively (Figures 4, 5).

TABLE 3 | Hyperparameters optimized for seven end-use quality traits using the multi-trait MLP model.

Hyperparameter GPC and
FPROT

FPROT and
FSDS

FASH and
MSCOR

FYELD and
MSCOR

CODI and
FSDS

Activation function relu relu relu relu relu
Epochs 200 200 200 200 200
Dropout 0.2 0.2 0.2 0.2 0.2
Learning rate adaptive adaptive adaptive adaptive adaptive
No. of hidden layers 5 4 5 4 4
No. of neurons (90, 90, 90, 90, 90) (100, 60, 60, 60) (50, 50, 50, 50) (30, 15, 15, 10) (100, 90, 90, 70)
Regularization 0.1 0.1 0.1 0.1 0.1
Solver Adam Adam Adam Adam Adam

FIGURE 4 | Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic selection models for the Pullman location.
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Prediction accuracies across the environments: Across-
location predictions were performed where data from the
Pullman environment was used for model training and
predictions were made for the Lind environment, and vice
versa. Across-location prediction accuracies were lower than
prediction accuracies within the environment using cross-
validation (Tables 4, 5). Figure 6 and Table 5 show the
prediction accuracies for 2019_Pullman when the model
was trained on Lind data, and predictions were made for
seven end-use quality traits with four different uni- and
multi-trait GS and one multi-trait multi-environment

model. Similarly, Figure 7 and Table 5 show the prediction
accuracies for 2019_Lind when the model was trained using
the Pullman dataset. Across-location prediction accuracies
varied from 0.25–0.50, 0.28–0.48, to 0.31–0.56 for uni-trait,
multi-trait, and multi-trait multi-environment models,
respectively, for seven traits evaluated in this study. Similar
to cross-validation results, Bayes B models performed inferior
compared to all other models.

We observed that multi-trait GS models performed 7.9%
superior compared to uni-trait GS models, and it further
strengthens the results obtained for within the environment

FIGURE 5 | Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic selection models for the Lind location.

TABLE 4 | Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic selection models for the two locations across the years,
namely, Pullman and Lind using the cross-validation approach.

Uni-trait models Multi-trait models

Location Trait GBLUP BayesB RF MLP GBLUP BayesB RF MLP
Pullman GPC 0.55 0.54 0.59 0.60 0.59 0.50 0.76 0.72

FPROT 0.58 0.58 0.61 0.62 0.64 0.61 0.66 0.79
FASH 0.55 0.59 0.58 0.59 0.63 0.58 0.62 0.63
MSCOR 0.58 0.52 0.60 0.63 0.66 0.57 0.64 0.68
FYELD 0.71 0.64 0.76 0.75 0.68 0.65 0.75 0.73
CODI 0.67 0.67 0.69 0.69 0.64 0.61 0.67 0.64
FSDS 0.67 0.66 0.69 0.70 0.71 0.72 0.73 0.77

Lind GPC 0.51 0.51 0.54 0.55 0.55 0.53 0.58 0.62
FPROT 0.48 0.46 0.51 0.53 0.53 0.50 0.56 0.54
FASH 0.51 0.44 0.54 0.56 0.59 0.40 0.62 0.60
MSCOR 0.48 0.53 0.50 0.52 0.57 0.57 0.55 0.63
FYELD 0.64 0.58 0.68 0.67 0.66 0.59 0.69 0.70
CODI 0.56 0.54 0.57 0.58 0.55 0.54 0.58 0.59
FSDS 0.59 0.59 0.62 0.63 0.64 0.62 0.67 0.64

Average 0.58 0.56 0.61 0.62 0.62 0.57 0.65 0.66

Highest prediction accuracies are bolded for each trait.
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scenario that multi-trait GS models are better for predicting
end-use quality traits. Multi-trait GBLUP, Bayes B, RF, and
MLP performed 8.1, 5.7, 5.0, and 10.0% superior to their uni-
trait counterparts, respectively (Table 5). Improvement in
prediction accuracies for GPC, FPROT, FASH, MSCOR,

FYELD, CODI, and FSDS with multi-trait models was
21.7–43.4%, -14.7–29.4%, 5.0–12.5%, -17.4–65.2%,
2.4–24.4%, 10.0–32.5%, and 13.3–60.0%, respectively, over
the uni-trait models (Figures 4, 5). There was no difference in
the performance of multi-trait machine and deep learning

TABLE 5 | Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic prediction models for the across-location predictions.
2019_Pullman_Lind represents the scenario where predictions were made on 2019_Pullman by training models on the Lind dataset.

Uni-trait models Multi-trait models Multi-trait
multi-environment models

Location Trait GBLUP BayesB RF MLP GBLUP BayesB RF MLP BMTME
2019_Pullman_Lind GPC 0.25 0.23 0.30 0.31 0.32 0.28 0.33 0.31 0.31

FPROT 0.35 0.34 0.40 0.40 0.40 0.29 0.39 0.44 0.47
FASH 0.40 0.41 0.41 0.41 0.42 0.45 0.44 0.43 0.45
MSCOR 0.27 0.23 0.30 0.30 0.33 0.27 0.35 0.38 0.36
FYELD 0.41 0.42 0.48 0.50 0.42 0.45 0.51 0.50 0.52
CODI 0.40 0.43 0.45 0.46 0.47 0.44 0.49 0.53 0.56
FSDS 0.36 0.30 0.44 0.43 0.38 0.34 0.47 0.48 0.46

2019_Lind_Pullman GPC 0.27 0.29 0.30 0.28 0.31 0.33 0.37 0.36 0.40
FPROT 0.34 0.37 0.42 0.42 0.37 0.39 0.42 0.47 0.38
FASH 0.41 0.38 0.42 0.42 0.48 0.46 0.44 0.45 0.47
MSCOR 0.28 0.28 0.29 0.31 0.31 0.28 0.31 0.34 0.31
FYELD 0.43 0.42 0.47 0.50 0.47 0.43 0.52 0.51 0.55
CODI 0.42 0.45 0.44 0.46 0.43 0.44 0.41 0.46 0.49
FSDS 0.38 0.35 0.41 0.40 0.42 0.39 0.45 0.45 0.42

Average 0.37 0.35 0.40 0.40 0.40 0.37 0.42 0.44 0.42

Highest prediction accuracies are bolded for each trait.

FIGURE 6 | Prediction accuracies across environment Pullman with training on the Lind dataset for seven end-use quality traits using four different uni- and multi-
trait and one Bayesian multi-trait multi-environment genomic prediction models.
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models from the multi-trait multi-environment model which
consisted of genotype by environmental interaction in the
model (Table 5).

DISCUSSION

Plant breeders routinely collect data for multiple traits from
multiple environments before making final selections.
Genomic selection is becoming popular to predict GEBVs
due to robust next-generation sequencing technologies and
its cost-effectiveness. However, few studies have utilized the
multi-trait and multi-environment prediction models due to
the model’s complexity, huge computational burden, and lack
of good quality phenotyping data (Cuevas et al., 2017). Multi-
environment prediction represents a perfect scenario to reduce
the number of locations or plots needed in subsequent
selection trials (Tolhurst et al., 2019; de Oliveira et al.,
2020). Multi-trait GS models showed improved prediction
accuracy in previous studies when traits are correlated and
have low heritability; these models provide an opportunity to
predict traits simultaneously by borrowing information from
each other (Gill et al., 2021; Larkin et al., 2021). This study
explored the potential of using multi-trait–based GS models to
predict seven end-use quality traits in soft white wheat
population planted at two locations in Washington,
United States, from 2015 to 2019. Prediction accuracies for
individual traits varied from 0.23 to 0.79 using different
models, with multi-trait models performing superior to uni-
trait models for the majority of the traits and validation
scenarios.

Seven out of the 14 end-use quality traits from our previous
study were selected for multi-trait and multi-environment
predictions, which showed lower prediction accuracies and
higher genotype by environment interactions (Aoun et al.,
2021a; Sandhu et al., 2021c). These higher values of the
genotype by environment interactions demonstrated the
potential of using multi-trait multi-location models in the
breeding programs. We observed a change in genotypes
ranking across the multiple environments for these seven traits
due to high genotype by environment interactions and negative
correlation among the environments. Multi-trait models
performed 5.5 and 7.9% superior to uni-trait GS models for
within-environment and across-location predictions, while
multi-trait multi-environment models performed 10.5%
superior to uni-trait GS models. Across-location prediction
accuracies for the seven traits varied from 0.23 to 0.53, which
were higher than those of previous studies for across-location
predictions for end-use quality traits (Lado et al., 2013; Hayes
et al., 2017). This was attributed to the reference population,
which included the progeny of different lines from the same
breeding program. Likewise, Heffner et al. (2011) showed higher
across-location prediction for end-use quality by using the same
set of biparental populations across the locations. The high
prediction accuracy in their study was reflected from a
biparental population where training and testing sets must
have a relationship and with little variation (Heffner et al.,
2011). Furthermore, we observed that genotype by
environment interaction components could improve across-
location prediction accuracies in the models. Similar work was
shown by Ward et al. (2019) and Monteverde et al. (2019) that
describe the advantage of including genotype by environment

FIGURE 7 | Prediction accuracies across environment Lind with training on the Pullman dataset for seven end-use quality traits using four different uni- and multi-
trait and one Bayesian multi-trait multi-environment genomic prediction models.
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and marker by environment interaction components into the
models when correlation among environments is lower.

Predicting breeding values of un-phenotyped individuals is
always a daunting task, but different strategies have been
employed in recent years for predictions under different
circumstances. Inclusion of correlated traits into multi-trait
models has been effective to increase predictions for primary
traits with low heritability when the secondary trait is highly
correlated with high heritability. However, some studies have
shown no improvement of prediction accuracies when secondary
correlated traits were included into the models for predicting
traits in rice (Oryza sativa L.) (Schulthess et al., 2016), avocado
(He et al., 2016), and mice (Jiang et al., 2015), which could be
attributed to some environmental changes or interactions not
captured by the associated models. Similarly, Jia and Jannink
(2012) showed no advantage of using multi-trait GS models even
when traits have high heritability differences. However, in our
study, we observed that even though traits have moderate to high
heritability, they still showed an increase in prediction accuracies
using multi-trait models when the traits have moderate to high
correlation. Highest improvement was observed for traits like
GPC, FPROT, and FSDS due to their high correlation, whereas
CODI showed lowest improvement due to low correlation with
other traits. Correlated traits help predict correlated responses
when traits of interest are not phenotyped; this will also help
predict expensive to phenotype traits. Previous works have shown
that prediction accuracies increase when traits have high
correlation, but not with low to intermediate correlation
among traits (Rutkoski et al., 2012; Jiang et al., 2015).

Our study showed that uni-trait– and multi-trait–based machine
and deep learning models performed superior to traditional GS
models. We observed that machine and deep learning models
performed 5–11% superior to Bayes B and GBLUP under cross-
validation and across-location predictions. Liu et al. (2019), Sandhu
et al. (2021a) and Zingaretti et al. (2020) also demonstrated the
advantage of using deep learning models in soybean (Glycine max
L.), wheat, and strawberries (Fragaris ananassa) over the traditional
mixed model–based approaches and supported our findings.
Similarly, Montesinos-López et al. (2018) demonstrated the
multi-trait–based deep learning model’s superiority over the
multi-trait Bayesian models for predicting four different traits in
wheat and maize (Zea mays L.). These machine learning models are
highly flexible for understanding complex interactions present in
these datasets, thus inferring the current trends in the datasets
compared to parametric models like GBLUP and Bayes B.
Furthermore, multi-trait machine learning models are more
suitable as they could further explore relationships between traits
and sets of predictors with the removal of redundant information
from the models with explicit programming. Due to these
characteristics of machine and deep learning models, we observed
their better performances under uni- and multi-trait scenarios than
under Bayes B and GBLUP.

As discussed, multi-trait machine and deep learning models
performed better than multi-trait Bayes B and GBLUP models;
however, the advantage of machine and deep learning models
diminishes when the genotype by environment interaction
component was included in the BMTME model. The

inclusion of genotype by environment components perfectly
models the environmental effects and correlation among the
traits for different environments, resulting in improvement of
prediction accuracy. Similarly, Guo et al. (2020) and Ibba et al.
(2020) showed an increase in prediction accuracies for yield-
related traits in U.S. soft wheat and end-use quality traits using
multi-trait multi-environment models over the uni-trait
models. The comparable performance of multi-trait
machine learning models and BMTME models could be
attributed to the capacity of BMTME models to provide
separate penalization for the genotypes, environment, and
genotype by environmental interaction, while working of
the machine and deep learning models follow the black-box
nature, creating problem for biological understanding of the
process.

CONCLUSION

We explored the potential of using multi-trait–based genomic
selection models for predicting seven end-use quality traits in soft
white wheat population. Uni-trait– and multi-trait–based
genomic selection models were optimized separately for each
trait, and optimized hyperparameters were used for testing.
Different cross-validation, independent, and across-location
prediction scenarios were applied to compare the model’s
performance. Multi-trait genomic selection models performed
superior to uni-trait models when traits were correlated with each
other. The inclusion of genotype by environment interaction
components further improves the across-location prediction
accuracies, a typical advantage shown by machine and deep
learning models. Prediction accuracies obtained in this study
using multi-trait models for within-environment and across-
location predictions open up the avenue to explore the use of
genomic selection to select for end-use quality traits in wheat. The
prediction accuracies obtained in this study further provide
evidence of the usefulness of genomic selection in wheat
breeding and will enhance the confidence of the breeder to
utilize this tool when making selections.
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Induction of Semi-Dwarf Trait to a
Three Pistil Tall Mutant Through
Breeding With Increased Grain
Numbers in Wheat
Ahsan Irshad1†, Huijun Guo1†, Shoaib Ur Rehman2, Jiayu Gu1, Rana Imtiaz Ahmed3,
Manzoor Hussain3, Ali Ammar3, Imtiaz Ali 3, Akash Zafar3, Chaojie Wang1, Chunyun Zhou1,
Lin Qiu1 and Luxiang Liu1*

1National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement,
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China, 2Institute of Plant Breeding and
Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan, 3Regional Agricultural Research Institute,
Bahawalpur, Ayub Agricultural Research Institute, Faisalabad, Pakistan

Multi-ovary wheat (three pistil) is a unique germplasm for the seed production of hybrid
wheat. The purpose of the present study was to transfer the multi-ovary trait to semi-dwarf
plants to increase the production of grains in wheat crops. Therefore, tall, semi-dwarf, and
dwarf plants were crossed with plants with the three-pistil trait. A three-pistil tall plant was
used as the female parent, while tall (Synthetic hexaploid), semi-dwarf, and dwarf plants
were used as male parents. F1 and F2 progenies with parents were planted in 2015-16
using RCBD. The outcome of the crosses showed that multi-ovary tall plants gave
significant difference for all five traits (days to maturity, plant height, number of seeds
per spike, grain weight per spike, and grain yield per unit area) in both generations. The
greatest number of grains per spike and grain yield per unit area were obtained from the
cross of three-pistil tall and dwarf parent (P1/P6) in the F1 and F2 generations. The cross
also resulted in a significant reduction in height (96 cm). Further heterosis studies
conducted with crosses between three-pistil tall and dwarf parent (P1/P6) showed the
greatest heterosis and heterobeltiosis for the number of grains per spike (60.0 and
26.19%, respectively) and grain yield per m2 (27.68 and 2.85%, respectively). In the
case of grain weight per spike, the heterosis value was also positive and significant (17.7).
Meanwhile, for other traits, their values were negative for heterosis and heterobeltiosis.
High numbers of grains and grain weight were found to be associated with positive
heterobeltiosis and in turn the grain yield per m2, but plant height andmaturity had negative
affirmation with heterobeltiosis. Heterosis studies also indicated the dominant gene action
for the three-pistil trait. Thus, the study clearly signified that grain yield can be increased by
using the multi-ovary genotype with the semi-dwarf height. This new germplasm will be
helpful for breeders to increase the production of wheat crops in the southern climate of
Pakistan.
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INTRODUCTION

Wheat (Tritium aestivum L.) is consumed as a major staple food
in almost all regions of the world and is grown on millions of
hectares of land. Several products of wheat are also consumed by
humans in different parts of the globe. One important product is
Chapatti which is used as a staple food in Asian countries
(Shitsukawa et al., 2009; Irshad et al., 2021). It accounts for
approximately 30% of global grain production, while it provides
20% of the calories and essential amino acids to the human
population (Howel et al., 2014). As the population of the world is
increasing, the demand for wheat (as a food) is also on the rise.
During the green revolution only one trait, i.e., plant height was
improved. Similarly, for the next green revolution, it will be
necessary to continue to increase production by improving the
yield-related traits of wheat to meet the future demands of food
security. To improve the yield potential of wheat, it is necessary to
increase the grain number per spike and unit area (Frederick and
Bauer, 1999). For this purpose, a wide range of genetic variations
are required in the morphological structure of wheat to achieve
high grain numbers per spike (Yang et al., 2015).

The female reproductive part is comprised of a multilocular
ovary containing ovules, two filamentous styles, and a feathery
stigma, while for the male reproductive part, a filament and an
anther constitute a stamen where the pollen grains are present in
the anther (Zhu et al., 2019). The three-pistil (TP) trait in wheat is
a very important trait, in which 2–3 ovaries (well developed) in a
floret are observed. The potential of yield in wheat can be
improved by increasing the number of seeds in a spike.
Therefore, wheat breeders have focused on morphological and
genetic variability for yield-related traits (Irshad et al., 2021). The
TP trait was first reported by Chen et al. (1983), which was an
excellent line to increase wheat yield. The previous genetic studies
revealed that the TP trait is controlled by a single dominant locus
pis1 (Peng et al., 2004) and located at chromosome 2D. Yang et al.
(2011) identified seven differentially expressed genes in TP
mutants using molecular technologies. The overexpression of
the gene is attributed to the development of TP. Thus, it is
imperative to use three-pistil germplasm in hybridization, which
can give encouraging results.

Breeding programs as an essential approach to enhance crop
yield and other quality parameters (Fu et al., 2014). A hybrid
offspring which is the outcome of two genetically diverse
individuals is superior to that of the mean of the parents
(heterosis) or the better parent (heterobeltiosis). This
phenomenon has been successfully utilized in fiber, cereals,
and oilseed crops (Ahmad et al., 2014). . Intriguingly, in a
self-pollinated crop like wheat, heterobeltiosis is much more
desired than heterosis in any breeding program (Zaazaa et al.,
2012). Although the hybridization of wheat has achieved
significant progress (Boeven et al., 2016), there is a lack of
large-scale effective utilization of wheat hybrids. The low
propagation coefficient of hybrids in wheat leads to a higher
cost of seed production. This proves to be a bottleneck for the
efficient utilization of hybrid wheat.

In the present study, a TP tall mutant was crossed with normal
tall, semi-dwarf, and dwarf genotypes. The foremost objective of

hybridization was to transfer the TP trait into wheat germplasm
cultivated in Pakistan and increase the grain number per spike for
semi-dwarf and dwarf height plants, to help increase wheat
production.

The other objective was to develop baseline parental material
to be used as a genetic resource and in hybridization programs to
create genetic diversity. The multi-ovary trait can be exploited for
hybrid wheat development as the parents exhibit significant
heterotic effects or may be used to develop conventional wheat
varieties by repeated cycles of selection in advance filial
generations, which is also evident from the results. The overall
scheme of the work is given in Figure 1.

MATERIAL AND METHODS

Plant Material and Construction of
Research Population
This experiment was conducted at the Regional Agricultural
Research Institute Bahawalpur, Pakistan. The goal was to
develop new plants carrying the multi-ovary trait with
desirable maturity (medium duration), number of seeds per
spike, and height. The multi-ovary genotype (tall) was
collected from the Wheat Wide Crosses Laboratory, National
Agriculture Research Centre, Islamabad, and it was crossed with
tall (normal ovary), semi-dwarf (normal), and dwarf (normal).

Tall 3-pistil parent was used as the female parent in all the
crossing schemes, which are as follows:

1) Three-pistil × tall 1 (normal)
2) Three-pistil × tall 2 (normal)
3) Three-pistil × semi-dwarf 1 (normal)
4) Three-pistil × semi-dwarf 2 (normal)
5) Three-pistil × dwarf 1 (normal)

FIGURE 1 | Schematic diagram for selection of desired semi-dwarf
three-pistil plant.
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6) Three-pistil × dwarf 2 (normal)

The parents were sown in 2014–2015 and the crossing was
done in February 2015 to get the F1 seeds. F1 and F2 were planted
during 2015–2016. The F2 seeds were produced by the planting of
F1 at Kaghan (off-season site) during 2016, and F3 was planted
during 2016–2017. The sowing of F1 and F2 was done in triplicate
RCBD with 5 m of single row length. The plant to plant distance
was 15 cm. The parents were also sown along with F1 and F2.

Morphological Analysis
A total of 30 plants from the F1 population from each cross and
75 plants from the F2 population of each cross were selected
randomly for data recording and analysis. Days to maturity, plant
height, number of grains per spike, grain weight per spike, and
grain yield per m2 were recorded. The mean values were used to
characterize the corresponding traits. Photographs of the parents
and selected plants were taken using Nikon D600 digital camera
(Nikon, Tokyo, Japan), whereas those of the pistils were taken
using a Nikon E995 digital camera (Nikon, Tokyo, Japan).

Analysis of the Genetic Basis of the
Multi-Ovary Trait
The multi-ovary trait was measured during the flowering season
and maturation stage, and the trait of each individual of the F1
and F2 populations was measured. The numbers of ovaries and
seeds in the florets of each spike were counted. Each plant with a
floret carrying more than one ovary during the flowering period
and setting more than one seed at the maturation stage was
recorded as a multi-ovary plant, while plants with florets
producing one ovary and setting one seed were recorded as
mono-ovary plants, a classification that followed that of Peng
et al. (2004) and Ma et al. (2006).

For the F1 generation, all 30 plants were measured. For each of
the F2 populations, 75 plants were randomly selected for
measuring. The numbers of multi-ovary and mono-ovary
plants were counted. For each population of the F3
generations, all plants were measured to determine whether
the multi-ovary trait segregated in each population. The
number of different segregations of the multi-ovary trait in
each population was counted.

Statistical Analysis
The recorded data were analyzed statistically by using the
technique as given by Steel et al. (1997). In F3, the selected

genotypes were compared with local checks, i.e.; Fareed-06 for all
four traits.

Also, heterosis, heterobeltiosis, and inbreeding depression
were computed following Matzinger et al. (1962) and Fonsecca
and Patterson, (1968). The following formulae were used for
heterosis and heterobeltiosis in each environment for all the
characters studied:

Heterosis over mid parent (H %) = ((F1-MP)/MPX100)
SE (F1-MP) = (3Me/2r) 1/2
Heterosis over better parent (HB %) = ((F1-BP)/BPX100)
SE (F1-BP) = 2Me/r)1/2
Inbreeding depression (ID %) = ((F1-F2)/F1X100)
SE (F1-F2) = 2Me/r) ½

Where Me = mean squared error; MP = mean mid parent
value; BP = mean better parent value; R = number of replications.
Standard error values were used to elucidate the significance of
heterosis and inbreeding depression for each character expression
under different environments.

RESULTS

Morphological Analysis
Different parents were used which were significantly different in
plant height in the crosses (Figure 2). On the basis of these
crosses, the best cross was selected with semi-dwarf height and
the TP trait (Figure 2). Statistical analysis of the data indicated
significant differences for all traits in the F1 and F2 generations
(Figures 3, 4; Table 1). The trait means of the parents, and of F1
with their parents are given in Figures 3, 4, while the mean square
of F2 is given in Table 1.

Firstly, all the yield-related traits had been studied in the
parent lines. The results are given in Figures 3, 4. Theheight
of the TP plants was 150 cm while the semi-dwarf and dwarf
were 97 and 72, respectively. Similarly, there was a significant
difference in grain number, in which the TP plants had 71
grains per spike, but the dwarf and semi-dwarf plants had
41–45 grains per spike.

Days to Maturity
The cross between TP tall and normal tall plants matured in
144.3 days in F1 and 143 days in F2 (Figure 3) which indicated
little reduction of duration. A similar trend was also observed in
cross P1/P3. When TP tall was crossed with semi-dwarf 1, the F1
and F2 generations matured in 142.3 and 140 days, respectively.
There was no significant change in maturity. Likewise, the results
of the P1/P5 cross (TP and dwarf 1) for F1 and F2 showed 137.6
and 136 days to mature, respectively. The same situation was
noticed in F1 and F2 for the cross between TP and dwarf 2. It
showed that there was a reduction in maturity duration in both
the F1 and F2 generations.

Plant Height
The results for the P1/P6 cross (TP and dwarf 1) in F1 and F2
resulted in plants having 93.3 and 90 cm height, respectively.

Parents Name of parents

P1 (Three-pistil and tall) Yr-Pastor-10
P2 (Normal and tall 1) SH Bahawalpur
P3 (Normal and tall 2) SH-220
P4 (Normal and semi-dwarf 1) Mairaj-08 (A commercial wheat variety)
P5 (Normal and semi-dwarf 2) V-6309 (Advance strain)
P6 (Normal and dwarf 1) TDB**-1
P7 (Normal and dwarf 2) TDB-2

*SH , synthetic hexaploid, **TDB , triple dwarf from bahawalpur.
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Similar findings were noticed in F1 and F2 for the cross between
TP and dwarf 2. These results show that there was a reduction in
plant height in both generations; F1 and F2 (Figure 3). The plants
selected in F1 and F2 from the cross of three-pistil and dwarf gave
plants with desirable height (semi-dwarf).

Number of Grains per Spike
In F1 and F2 generations of the cross between TP tall and normal
tall 1, the grain numbers recorded per spike were 63.6 and 60,
respectively, while in the case of the cross between three-pistil and
normal tall 2, the grain numbers were 66.3 and 62 in F1 and F2,
respectively (Figure 4). For both of these crosses, grains per spike
was increased but the plants did not show a desirable height, as
shown in Figure 3. Thus, the crosses further continued and a TP
tall was pollinated with semi-dwarf male parents (Mairaj-o8 and
V-6309), where F1 and F2 yielded 52–48 and 49–46 grains per
spike, respectively. Similarly, more grains were obtained from a
cross between the three-pistil tall line with a dwarf parent where
the grain numbers increased to 89.6 in F1 and 78.2 in F2
(Figure 4).

Grain Weight
The grain weights per spike were 2.06 and 2.00 in F1 and F2,
respectively, in the cross between TP tall and normal tall 1.
The cross between TP tall and normal tall 2 had grain weights
of 2.30 and 2.10 g in F1 and F2, respectively (Figure 4). The
crosses between TP tall and semi-dwarfs 1 and 2 (Mairaj-08
and V-6309) yielded grain weights per spike of 2.46 and 2.51 g
in F1 and F2, respectively, for the former, and 2.33 and 2.41 g
in F1 and F2, respectively, for the latter. The most desirable
cross appeared from a TP tall plant pollinated with dwarf
parents. This cross resulted in 4.04 and 4.00 g in F1and F2,
respectively, which is the greatest grain weight obtained
(Figure 4).

Grain Yield per m2

The cross between TP tall and dwarf gave a yield of 1.01 kg/m2 in
F1 and 0.8 kg/m2 in F2 (Figure 5). There was a significant change
in grain yield per unit area. Whereas the results of a cross P1/P2
(TP and tall) showed 0.432 and 0.38 kg/m2 in F1 and F2,
respectively.

Heterosis and Heterobeltiosis
Five traits (days to maturity, plant height, number of grains per
spike, grain weight per spike, and grain yield per m2) were studied
for heterosis and heterobeltiosis. For days to maturity, crosss P1/
P3, P1/P4, and P1/P6 gave highly significant superiority of F1,
while cross P1/P2 showed negative heterosis in F1. The feasibility
of exploitation of heterosis is useful to determine the superiority
of hybrids that are particularly better than parents.
Heterobeltiosis was negative and significant for days to
maturity in all crosses, which indicated that maturity remains
stable. In F2, the greatest value of inbreeding depression was 1.61
for the cross P1/P5, and the least value was .88 for the cross P1/P2.
With regard to plant height, the greatest heterosis was 3.7 for P1/
P5 and the least was −6.2 for P1/P7, which indicates a significant
change in plant height in the case of cross P1/P7. In
heterobeltiosis all the values were negative, indicating a
reduction in height in F1 (Table 2). Regarding inbreeding
depression for plant height, all the crosses showed positive
effects. No change in plant height was observed in F2. For
grain weight per spike, the greatest heterosis was observed in
cross P1/P6 (17.7) and the least was −39.7 in cross P1/P2
(Table 2). For the number of grains per spike, all the crosses
were positive and significant. While considering inbreeding
depression, there was no superiority in F2. Heterosis and
heterobeltiosis for grain yield per m2 were significant but
negative for all crosses except for the cross P1/P6 (27.68 and
2.85% in F1 and F2, respectively). So we can say the cross P1/P6

FIGURE 2 | Phenotypic characterization of mono ovary and multi ovary plants. (A) Parents used in crosses. (B) Selected semi-dwarf three-pistil plant in F3
generation. (C) Spikes of three-pistil plants. (D) Three-pistil in semi-dwarf plant. (E) Mature grains of the three-pistil semi-dwarf plant.
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was the best cross with semi-dwarf height, high grains per spike,
and high grain yield per m2.

Confirmation of Yield Traits in the F3
Generation
The selected cross from P1/P6 was given the name/MOB-13/1/
2016 and was compared with check variety Fareed-06 in the F3
generation to validate the results. The line MOB-13/1/2016 was
TP with desirable plant height (90 cm), a greater number of grains
per spike, and significantly increased grain weight per spike and
grain yield per m2 (Figure 6).

Genetic Analysis of the Multi-Ovary Trait
The multi-ovary trait was segregated in the F2 and F3 population
derived from the reciprocal crosses between multi-ovary tall and
mono-ovary semi-dwarf and dwarf plants. As shown in Table 3,
the F2 population was segregated into multi-ovary and

mono-ovary plants. The Chi-squared test indicated that the
segregation ratio of multi-ovary to mono-ovary plants was 3:1,
which is the typical segregation ratio according toMendel’s law in
all crosses. This indicated that the multi-ovary trait is controlled
by a single dominant gene.

DISCUSSION

Maturity is an important trait for successful cropping. Some
genotypes are of long duration, while some have a short
duration. In spring wheat, up to 120 days to maturity is
considered early maturity while more than 135 days to
maturity is considered long duration in Pakistan (Masood
et al., 2005). However, 135–150 days maturity is considered a
desirable period. Long-duration genotypes are often exposed
to high temperatures in the reproductive stage and lose grain
weight which results in low production (Ain et al., 2015). The

FIGURE 3 |Mean performance of parents and F1 hybrid for plant height and day to maturity traits. * = indicates significant from one parent at 0.01 probability level;
** = indicates significant from both parent at 0.01 probability level.
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overall situation indicated that maturity showed a significant
difference in the cross between TP and dwarf (P1/P6) but for
all other crosses maturity was not influenced.

Plant height plays an important role in production, particularly
when fertilizers are applied. Long maturity along with greater height

causes low production due to lodging (Gulnaz et al., 2011).
Generally, landraces are tall (115–120 cm), lower yield, and less
disease tolerant and so cannot be applied for wheat breeding
(Hasnain et al., 2006). Therefore, several outstanding modern
cultivars with high yield and disease tolerant characteristics from
Europe and America were widely adopted in breeding programs,
such as Nanda 2,419 (i.e., Mentana, Italy), Ardito (Italy), Lovrin 10
and Lovrin 13 (Romania), Songhuajiang 2 (i.e., Minn 2,761,
United States), Funo (Italy), Abbondanza (Italy), Orofen (Chile),
and Gansu 96 (i.e., CI12203, United States) (Ain et al., 2015). Wheat
breeding program in Pakistan started in the early 1930s and was
accelerated after theGreen Revolution. Earlier, the breeding program
was focused on the selection of landraces with higher yield and
disease tolerance (Khan et al., 2000). Later, it was extended to some
other characteristics of wheat grain. The semi-dwarf group is
characterized by a height range of 80–110 cm, while the dwarf

FIGURE 4 |Mean values of F1 with their parents in different crosses for number of grains per spike and grain weight per spike. * = indicates 5% probability level; ** =
indicates 1% probability level.

TABLE 1 |Mean squares of different traits in F2. * = indicates 5% probability level;
** = indicates 1% probability level.

Sr.No Traits F2 generation

Rep Genotype Error

1 Days to maturity 1.5 524.3* 5.5
2 Plant height (cm) .6 3.6** 3.0
3 No. of grains per spike 1.7 5.2** 2.5
4 Grain weight per spike (g) .3 7.0** 1.0
5 Grain yield (kg/m2) .9 2.3** 2.1
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FIGURE 5 | Mean performance of parents and F1 hybrid for grain yield (kg/m2). * = indicates significant from one parent at 0.01 probability level; ** = indicates
significant from both parent at 0.01 probability level.

TABLE 2 | Heterosis (H, %), Heterobeltiosis (HB, %) and Inbreeding depression (ID%) for five traits.

Sr.No Cross Days to maturity Plant height No. of grain/spike Grain weight/spike Grain yield (kg/m2)

H HB ID H HB ID H HB ID H HB ID H HB ID

1 P1/P2 −3.6 −3.8 .90 −2.5 −4.0 1.67 13.50** −10.40** 5.66** −39.7** −49.1** 2.91NS −44.40** −56.08** 12.03**
2 P1/P3 −1.8 −1.9 .88 −1.3 −2.9 1.07 16.01** −6.60** 6.48** −27.6** −41.4** 8.69** −38.96** −54.37** 13.28**
3 P1/P4 −4.2 −6.0 1.41 1.6 −8.5 1.13 −10.8** −26.70** 5.76** −24.7NS −37.4** 5.28** −28.64** −46.23** 16.15**
4 P1/P5 −3.0 −5.1 1.61 3.7 −7.7 2.86 −20.1** −32.30** 4.16** −23.7** −36.1** 83.67** −35.39** −48.87** 3.98 NS

5 P1/P6 −5.8 −8.2 1.16 −3.3 −25.3 3.53 60.0** 26.19** 12.94** 17.7** 2.8NS .24NS 27.68** 2.85 NS 20.79**
6 P1/P7 −5.8 −8.0 1.15 −6.2 −25.9 1.72 31.55** 7.46** 12.18** −3.1** −20.8** 3.21** −16.88** −35.33** 7.566**

***, Significance at p.05 and p.01 levels, respectively. H, heterosis; HB, heterobeltiosis; ID, inbreeding depression.
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group has a height range of 40–70 cm. In dry and low humidity
areas, a height range of 85–100 cm is desirable. For selection, height
is given more importance by breeders. Usually, shorter height is

associated with better tillering, and taller height with low tillering.
Thus, a three-pistil plant with reduced height is desired (Liu et al.,
2020).

FIGURE 6 |Comparison of selected crosses in F3 generation with commercial variety and parents. * = indicates significant from one parent at 0.01 probability level;
** = indicates significant from both parent at 0.01 probability level. *** = indicates significant from check at 0.01% probability level.

TABLE 3 | Genetic analysis of multi-ovary trait in F2 generation.

Combinations Multi-ovary: Mono ovary Theoretical ratio X2 p Value (df = 1)

P1/P2 60: 15 3:1 .401 .521
P1/P3 58: 17 3:1 .399 .572
P1/P4 55:20 3:1 .3.87 .580
P1/P5 63:17 3:1 .415 .520
P1/P6 59:16 3:1 .400 .516
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Grains per spike that is caryopsis contributes towards the high
yield in wheat thus as such more grain number signifies more
production (Mohsin et al., 2009). The number of grain is
dependent on the number of spikelets present in a spike, and
tillering capacity determines the later trait. It is an established fact
that increasing the number of grains per spike reduces the
number of spikes per plant due to negative correlation. The
reduced spikes per plant can be compensated agronomically
by increasing the number of spikes per unit area through
adjusting seed rate. This aspect is also under consideration,
and efforts are being made to incorporate high tillering
capacity through hybridization. Wheat breeders tend to select
plants with high numbers of grains per plant (Saleem et al., 2015).
In multi-ovary plants, one floret carries three pistils that result in
three grains, as compared to a normal floret which carries only
one pistil. While utilizing the multi-ovary trait, the number of
grains can be increased (Ayoub et al., 2019). So the plants/families
in the cross between three-pistil tall and normal dwarf 1 (P1/P6)
that had the three-pistil trait and medium height were selected
and promoted to F3. Peng et al. (2004) used three-pistil plants to
increase grain number. Dobrovolskaya et al. (2009) also suggested
the use of TP plants for increasing grain numbers.

Besides grain number, another yield attribute/trait that holds
significant importance for wheat production is grain weight.
Though the multi-ovary trait gives rise to greater grain
numbers, grain weight is affected by a large number of factors
such as genotypes, soil moisture, planting methods. and floret size
(Allah et al., 2010). Floret size in multi-ovary plants is also helpful
for healthy grains. The cross of three-pistil tall pollinated with
dwarf parents produced the following desirable traits in the
progeny: fewer days to maturity, appropriate plant height,
greater number of grains per spike, and greater grain weight
(Anjum et al., 2017).

The genetic basis for the expression of heterosis superior to the
parents has been described by Rasheed et al. (2016). In this study
the number of grains per spike was the focus due to the three-
pistil germplasm. The data regarding the number of grains per
spike showed superiority over the best parent. The situation
showed the dominance type of gene action for the three-pistil
trait. Peng et al. (2004) and Tiwari et al. (2011) also reported

dominance gene action for TP trait. The cross P1/P6 showed a
high number of grains per spike that was significantly different
from the parents (Table 3), which indicates that the TP trait was
due to positive and non-significant heterobeltiosis of grain weight
per spike and negative heterobeltiosis for plant height.

Based on this study it can be concluded that the TP
germplasm should be used as the female parent while
transferring the trait. Moreover, the development of TP
semi-dwarf germplasm will be helpful for breeders to
increase production. This study clearly suggests that
heterosis studies showed the dominance type of gene
action for the TP trait, and thus TP germplasm with
medium height should be used as the female parent with a
dwarf plant as the male parent in future breeding programs.
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Climate change is an undeniable threat to sustainable wheat production in the future as an
increased temperature will significantly increase grain loss due to the increased number of
generations per season of multivoltine species that are detrimental to plants. Among
insects, orange wheat blossom midge (OWBM), yellow wheat blossom midge (YWBM),
saddle gall midge (SGM), thrips, and frit fly (FF) are important wheat pests in the European
environments, which can be managed by the development of resistant cultivars. This
involves the identification, confirmation, and incorporation of insect resistance sources into
new high-yielding cultivars. We used two diverse and unrelated wheat [winter wheat (WW)
and spring wheat (SW)] panels to associate single-nucleotide polymorphism (SNP)
markers with the mentioned pests using the tools of association mapping. All in all, a
total of 645 and 123 significant associations were detected in WW and SW, respectively,
which were confined to 246 quantitative trait loci. Many candidate genes were identified
using the BLAST analysis of the sequences of associated SNPs. Some of them are
involved in controlling the physical structures of plants such as stomatal immunity and
closure, cuticular wax in leaf blade, whereas others are involved in the production of certain
enzymes in response to biotic and abiotic stresses. To our knowledge, this is the first
detailed investigation that deals with YWBM, SGM, thrips, and FF resistance genetics
using the natural variation in wheat. The reported germplasm is also readily available to
breeders across the world that can make rational decisions to breed for the pest resilience
of their interest by including the resistant genotypes being reported.

Keywords: wheat, OWBM, YWBM, SGM, candidate genes, SGM, frit fly, thrips

INTRODUCTION

Wheat (Triticum aestivum L.) productivity and global food security have become synonymous with
each other as wheat is the most important food crop in major parts of the world (Shiferaw et al., 2013;
Curtis and Halford, 2014). During the last decade, global wheat production increased from 655
million metric tons (MT) (in 2011–2012) to 772 million MT (in 2020–2021) (https://www.statista.
com/statistics/267268/production-of-wheat-worldwide-since-1990/), making a 10.76% increase in
10 years (1% per annum) (Table 1). Because there will be 9 billion people to be fed by 2050, the
current wheat yield should be doubled by 2050 (Ray et al., 2013). This is only possible, however, if the
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yield is increased at the rate of 1.66% instead of 1% per annum.
This prompts the demand to use, adopt, and utilize all the
available tools and resources to sustain and increase the
current wheat production (Hasan et al., 2020) to ensure food
security for next generations.

Recent reports (Deutsch et al., 2018) have shown that an
increased temperature will significantly increase the grain loss in
many parts of the world in wheat, maize, and rice. Likewise,
another impact of climate change would be an increased number
of generations per season of multivoltine species and their
accelerated development causing potentially more damage to
crops (Crespo-Herrera et al., 2019). Therefore, climate change
will likely threaten sustainable wheat production in the future
(Crespo-Herrera et al., 2019). In addition, wheat production has
been threatened by unexpected abiotic and biotic stresses due to
abrupt environmental changes or the movement of pathogens
(Bakala et al., 2021).

The agents responsible for biotic stresses include fungi,
viruses, insects, nematodes, arachnids, and weeds, directly
affecting plant growth and development by depriving them of
nutrition resulting into reduced plant vigor coupled with low
yield (Bakala et al., 2021). Among insects, orange wheat blossom
midge (OWMB), Sitodoplosis mosellana (Géhin), is recognized as
one of economically important insects (Zhang et al., 2020). Losses
due to this pest can go up to 30% in yield responsible for an
economic loss of 30 million dollars (Kamran et al., 2013). The
1950s’ and 1980s’ outbreaks of OWBM in China witnessed 50%
yield reduction in wheat production (Duan et al., 2013). The
emergence of adult OWBM is synchronized with wheat heading
where they lay eggs on the spikelets possibly due to certain wheat
odor components (Birkett et al., 2004). On the other hand, young
kernels are eaten by larvae; the result being reduced yield and
quality (Olfert et al., 1985; Lamb et al., 2000). After harvest, these
larvae overwinter in the soil, migrate to the soil surface in the
spring, re-enter the soil to pupate, and then emerge from the soil
as adults to infect the next crop cycle (Blake et al., 2011).

Another insect is the yellow wheat blossom midge (YWBM),
Contrinia tritici (Kirby) (El-Wakeil et al., 2013), that is a
univoltine species stayed overwinter in the soil, which pupate
while arriving at the soil surface under ambient conditions
culminating into adults in spring and starting mating. The
mated females find young spikes to lay eggs. Like OWBM,
YWBM larvae also feed on young kernels. In early July, larvae
slip from spikes/stems at the advent of rain and burrow into the
soil, where they enter diapause (Barnes, 1956).

An important biotic impediment in wheat productivity in
Europe, in addition to OWBM and YWBM, is the saddle gall
midge (SGM), Haplodiplosis marginata (von Roser, 1840).
Contrary to OWBM and YWBM, the larvae of SGM feed on
stems (Harris et al., 2001). SGM is the least studied of the three
midges and has caused severe damage in cereals in recent years in
Western Europe (Censier et al., 2012; Dewar, 2012). Its life cycle is
also like the OWBM and YWBM. Its emergence is favored by
warm and humid weather (Golightly, 1979). After emergence,
females mate and lay eggs on both sides of young leaves
(Golightly, 1979), which mature into larvae under conducive
circumstances. These larvae crawl under the leaves and feed on

the stem (Barnes, 1956). Each larva makes a small longitudinal
depression giving rise to galls. The stem tissue at end of the gall
forms two bulges (Balachowsky and Mesnil, 1935). Nutrient flow
in a plant stem is intercepted as a result (Golightly, 1979).

In addition to midges, wheat is also attacked by thrips. The
main species include Limothrips denticornis, L. cerealium,
Haplothrips tritici, and H. aculeatus (El-Wakeil et al., 2010).
Both winter wheat (WW) and spring wheat (SW) are affected
(Andjus, 1996; Moritz, 2006). The first generation is completed in
winter cereals followed by a second generation on SW (Köppä,
1970). Distortion, degeneration, and grain abortion is the result
after thrips feeding on juvenile ears. Major effects include partial
or complete discoloration of the ears (white ear effect), drying of
the flag leaf, partial ear fertilization, and incomplete grain filling
(15%–31% grain weight loss) (Larsson, 2005).

Frit fly (FF) (Oscinella frit) is another neglected biotic stress
insect as it is not identified inWestern European research. Hence,
the losses due to FF are seen in the Czech Republic, Germany,
Hungary, Romania, and Sweden (Ricroch, 2017). FF is a stem
borer capable of causing considerable loss to spring cereals (El-
Wakeil and Volkmar, 2011) and to winter cereals when sown
early. The larva of FF overwinters within the stems of cereal plants
(Lindblad, 1999) and pupates in spring. Females lay eggs on SW
seedlings behind the coleoptile (Jonasson, 1977). Main shoot
destruction is witnessed when the larva penetrates the plant
causing yield losses (Lindblad and Sigvald, 1999).

It is evident from the above introduction that these pests are to
be managed to improve farmers’ income and profitability. They
are, however, hard to manage due to their small sizes, ability to
use alternate hosts, and diapausing in the soil for prolonged
periods (Barnes, 1956; Capinera, 2008; Censier et al., 2015). The
main control strategies are based on insecticide treatments
(Chavalle et al., 2015; Censier et al., 2016; Chavalle et al.,
2018). However, because their occurrence is extremely
environment-dependent, it is difficult to time insecticide
applications and monitor populations to stop the outbreaks
(Chavalle et al., 2015). Other strategies are using biopesticides
such as insect pathogens (El-Wakeil et al., 2013; Shrestha and
Reddy, 2019).

TABLE 1 | The global increase in wheat yield per year in the last decade.

Year Global production % Increase or decrease

2011–2012 697

2012–2013 655 −6.02

2013–2014 717 9.46

2014–2015 728.3 1.57

2015–2016 735.9 1.04

2016–2017 756.5 2.799

2017–2018 762 0.72

2018–2019 730.9 −4.08

2019–2020 763.93 4.51

2020–2021 772 1.05

Decade 10.76%
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An alternate strategy to cope with the abovementioned insects
is the development of resistant cultivars, which involves the
identification, confirmation, and incorporation of insect
resistance sources into new high-yielding cultivars. Limited
success, however, has been achieved in the case of only
OWBM (DePauw et al., 2009; Vera et al., 2013; https://ahdb.
org.uk/) after the identification of the first antibiosis gene Sm1
mapped on chromosome 2BS from American wheat variety
“Augusta” (McKenzie et al., 2002; Berzonsky et al., 2003). This
gene has been incorporated in 30 bread and durum SW varieties
in Europe and North America (Lamb et al., 2001; Gaafar et al.,
2011; Blake et al., 2014). Two routes are available to determine the
number and location of candidate genes underlying natural
variation in any quantitatively inherited trait: via biparental
linkage mapping and via phenotype–genotype association
analysis (Zhu et al., 2008; Arif et al., 2017).

In this investigation, we aimed to get an insight into the genetic
architecture of OWBM, YWBM, SGM, thrips, and FF in two
different sets of wheat (WW and SW) panels using the latter. The
primary aim was to assess the natural phenotypic variation
against naturally existing populations of the abovementioned
insects in various parts of central Germany. Another objective
is to associate molecular markers with the differential phenotypic
response to map loci underlying the resistance to these pests.
Here, we reported that many promising novel quantitative trait
loci (QTL) control the resistance of multi-insects, which can be
implemented in wheat breeding for grain yield improvement.
Finally, using the sequences of the associated markers, the genes
located at the site of detected QTLs were sought.

MATERIALS AND METHODS

Plant Materials
The plant materials used to achieve the objectives mentioned in
introduction part consisted of two wheat panels known as WW
and SW panels. Both panels were grown in plots (2 × 1.5 m) in
one replication but on different experimental sites [Gatersleben at
Institute for Plant Genetics and Crop Plant Research (IPK-
Gatersleben) and Quedlinburg at Julius Kühn Institute (JKI,
Quedlinburg), state Saxony Anhalt; Rosenthal, state Lower
Saxony; Oberpleichfeld state Bavaria)] and in different years
between 2011 and 2016. Details are given in Supplementary
Table S8.

The WW panel was composed of 96 WW accessions
assembled at the Institute of Field and Vegetable Crops, Novi
Sad, Serbia; accessions were selected on the basis of their
phenotypic diversity with respect to a group of key agronomic
traits, and their provenance is spread over 21 countries (Alqudah
et al., 2020a). Initially, the panel was genotyped with 525 mapped
and 315 unmapped DArT markers (Arif et al., 2012a), which
resulted in the pioneer studies related to seed longevity (Arif et al.,
2012a), dormancy, and pre-harvest sprouting (PHS) (Arif et al.,
2012b). With the arrival of single-nucleotide polymorphisms
(SNPs), this panel was genotyped with 15K Infinium SNP
array, resulting in 11,139 SNPs that were mapped to all 21
linkage groups of bread wheat (Alqudah et al., 2020a).

Recently, a re-analysis of the data of Rehman-Arif et al. (Arif
et al., 2012a) with the new SNP data in this panel has revealed
interesting loci of seed longevity in wheat (Arif and Börner, 2020).

The SW panel was composed of 111 accessions assembled
from a very large collection of wheat resources at the IPK-
Gatersleben on the basis of the differential behavior of seed
survival. Initially, a set of 183 hexaploid wheat (129 spring
type and 54 winter type) accessions (Arif et al., 2017) was
selected from the collection maintained at the IPK Genebank
and last multiplied in 1974, constituting the oldest seed lots
available in the storage. In the beginning, it was mapped with
the 2,134 polymorphic DArT markers covering a genetic distance
of 2,875 cM (Arif et al., 2017). Later on, the panel was reduced to
111 on the basis of on-field behavior, provenance, and growth
habit. To attain better marker coverage, these accessions were re-
genotyped with a 15K Infinium SNP array. The result was the
mapping of 9,804 high-quality SNPs covering a distance of
3,624.71 cM (2.70 SNPs/cM) on all the linkage groups of
bread wheat (Arif and Börner, 2020). This 15K SNP Infinium
SNP array is an upgraded, refined, and narrowed version of the
90K iSELECT SNPchip (Wang et al., 2014). The panel has been
successfully used to elucidate the loci linked with anther extrusion
(Muqaddasi et al., 2017) and more recently with seed longevity
(Arif and Börner, 2020).

Phenotyping
The germplasm was screened for resistance to natural population
of the following five insects, viz., Sitodiplosis mosellana (OWBM),
Contarinia tritici (YWBM), Haplodiplosis marginata (SGM),
thrips, and Oscinella frit (FF).

For OWBM and YWBM, the numbers of larvae in spikes (LS)
and adults and larvae in white traps/shells (AWS and LWS,
correspondingly) were counted as a measure of resistance.
White water traps/shells were used to sample migrating (from
ears to soil) midges (adults and larvae). The traps consisted of
white plastic dishes: 12.5 cm diameter and 6.5 cm deep. One trap
was placed in each plot on the ground among wheat plants from
early June until the end of July. Traps were partly filled with water
plus few drops of detergent. Caught adults and larvae were
counted once per week using a magnifying glass (Gaafar et al.,
2011).

On the other hand, the numbers of larvae per ear were assessed
by collecting five to eight ears randomly per plot at approximately
Zadoks stage 73 (Zadoks et al., 1974). Samples were put into a bag
that was tightly sealed and stored at −20°C. After finishing the
growing season, the ears were dissected under a binocular
(SMZ645, Nikon), and the numbers of larvae were counted
(Gaafar et al., 2011).

This methodology has been successfully adopted to identify
wheat varieties most resistant to wheat ear insect pests in Central
Germany by Gaafar et al. (2011). They used two methods to
evaluate the degree of insect infestations in ears of different wheat
varieties. One was inspection of wheat ears to count the number
of spikelets and infested kernels and to identify the insect pests
present. The second was the use of white water traps/shells to
collect mature larvae of midges under consideration as an
indicator of potential crop risk.
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For SGM, ~20 tillers per plot were randomly selected at
approximately Zadoks stage 55 (Zadoks et al., 1974). Within
14 days after cutting, the number of saddles per tiller and the total
number of saddles caused by the insects were counted.

The numbers of larvae and adult individuals per ear in case of
thrips were assessed by collecting five to eight ears per plot. The
time of collection and the handling of the ears was the same as
described for OWBM and YWBM. Finally, the infestation with
Oscinella frit was examined in autumn (WW panel) and/or in
spring (WW and SW panels). The number of damaged seedlings
in two middle rows of the plots and on a length of 2 m was
counted.

Statistical and Genetic Analyses
All the basic phenotypic analyses including ANOVA and broad
sense heritability (h2) were conducted in RStudio version
1.3.1093. Histograms were constructed using “ggplot2”
package and pairwise comparisons were carried out using
“ggpubr” package. Pearson’s correlation coefficient among the
phenotypic traits were caclulated at p ≤ 0.05 for correlation
networks that were visualized using “qgraph” package
(Epskamp et al., 2012) for the significant correlations.

Details about genetic analyses and GWAS are provided in
(Arif and Börner, 2020; Alqudah et al., 2020b). Briefly, genotypic
data of both WW and SW were subjected to population structure
analysis prior to association mapping using STRUCTURE v.2.3.4
(Pritchard et al., 2000) applying the admixture model, a burn-in
of 100,000 iterations and 100,000 MCMC duration to test for a
K-value in the range 1–15. The results were subjected to Structure
Harvester (Earl and VonHoldt, 2012) for better visualization,
which is available elsewhere (Arif and Börner, 2020). According
to Arif et al. (Arif and Börner, 2020), there were three and four
subgroups in WW and SW panels, correspondingly. We carried
out the association analyses harnessing the program TASSEL
5.2.43 (Bradbury et al., 2007), employing mixed linear model (Yu
et al., 2006) considering the population structure (calculated from
STRUCTURE v.2.3.4) and kinship (calculated from TASSEL
5.2.43). Because the information about genetic analyses on
insect resistance is very scarce, we considered all the SNPs
significant that gave a p-value of 0.001 (−log10 value of 3) for
any trait. Highly significant p-values were calculated by taking the
reciprocal of the number of markers for each set. Therefore,
p-values of 8.97 × 10−5 and 1.019 × 10−-4 were considered for
highly significant association in WW and SW, respectively.
Results from TASSEL were visualized using the “CM plot”
package in R. For QTLs visualization, the “circlize” package
(Gu et al., 2014) was utilized. QTLs were named following the
rules set out in the Catalog of Gene Symbols (McIntosh et al.,
2008) and according to our previous reports (Arif and Börner,
2019; Arif et al., 2021). The markers were mapped on the basis of
their physical position in IWGSC RefSeq v1.1 (http://www.
wheatgenome.org/, IWGSC RefSeq v1.1). The highly
significant associated SNPs were used to identify the high-
confidence putative candidate genes on the basis of their
physical positions.

The sequences of flanking SNPs within the linkage
disequilibrium (LD) of associated SNP with all the insects

(i.e., multi-insect traits SNP) were obtained from the Wheat
15 and 90K SNP array database (Wang et al., 2014). These
sequences were used as a query in NCBI BLASTX (https://
blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_
TYPE=BlastSearch&LINK_LOC=blasthome) research tool
database for functional gene annotations. The topmost hits
with the smallest E-value and high percentage of query
coverage were reported as potential candidate genes.

RESULTS

Descriptive Natural Phenotypic Variation
Orange Wheat Blossom Midge
Among all insects, OWMB was the most intensively investigated
because of its frequent natural occurrence as compared to other
pests. All in all, it was scored in at least seven [for larvae in white
shells (WSL)] to 10 environments [for larvae on spikes/ears (SL)
and adults in the white shell (WSA)] in WW. The mean of SL,
among all 10 environments, was highest in G13 (13.30 ± 1.25)
followed by Q13 (4.50 ± 0.29) (Supplementary Figure S1,
Table 2). Likewise, mean SL was comparable between G11
(1.73 ± 0.16) and Q16 (1.79 ± 0.33) and between G12 (0.94 ±
0.14) and R12 (0.82 ± 0.10). Mean SL in R13 was 1.47 ± 0.13,
whereas it was 0.55 ± 0.12 in Q15. Finally, the lowest SL score was
observed in G15 (0.12 ± 0.02) followed by Q12 (0.39 ± 0.10).
From 44 pairwise comparisons, non-significant differences were
detected in only six pairs (G11 and R13, G12 and R12, G15 and
Q15, G15 and R13, Q12 and Q16, Q12 and R13, and Q15 and
R13) (Supplementary Figure S2A). WSL was highest in G14
(35.76 ± 3.20) followed by Q13 (25.37 ± 1.57) followed by G11
(23.96 ± 2.15) and lowest in Q12 and G15 (0.20 ± 0.05). WSL in
G12 and Q15 was 3.61 ± 0.36 and 7.88 ± 0.78, respectively.
Moreover, significant differences were also prevalent among all
combinations except between G11 and G15, G14 and Q13, and
G15 and Q12 (Supplementary Figure S2B). As per WSA was
concerned, it was highest in Q13 (46.03 ± 1.75), followed by R12
(35.76 ± 3.20). The scores of WSA were comparable between G13
(11.69 ± 1.17) and Q15 (13.69 ± 0.60) and between G11 (7.73 ±
0.61) and G15 (8.67 ± 0.39). Likewise, it was also comparable
between Q12 (0.63 ± 0.08) and G14 (0.82 ± 0.10). Finally, the
mean WSA was 4.87 ± 0.29 and 3.18 ± 0.20 in G12 and R13,
correspondingly. In addition, all 44 combinations of 10
environments were significantly different except between G11
and R13, G12 and R13, and G13 and G15 (Supplementary
Figure S2C).

In SW, scores were available from five environments (G12,
G13, G14, G15, and Q15). The SL score was highest in G12
(63.83 ± 4.00), followed by G13 (12.59 ± 0.68) in SW
(Supplementary Figure S3, Table 3). On the other hand, G15
exhibited the lowest SL score (1.69 ± 0.15), whereas Q15 exhibited
a score of 3.06 ± 0.23. To add to it, all scores were significantly
different from each other (Supplementary Figure S4A). WSL
was scored only in G13 and Q14 with corresponding values of
8.69 ± 1.02 and 11.37 ± 0.97. They were also significantly different
from each other (Supplementary Figure S4B). On the other
hand, WSA was scored in all five environments where the highest
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TABLE 2 | Descriptive statistics of various traits of investigated insects in winter wheat (WW) panel. For details, see materials and methods.

Trait Range Mean ± SE Var Kurtosis Skewness Confidence level (95.0%) Broad sense heritability
(combined)

O_SL_G11 0–7.83 1.73 ± 0.16 2.75 2.18 1.46 0.33 0.23
O_SL_G12 0–6.625 0.94 ± 0.14 2.01 5.4 2.33 0.28
O_SL_G13 0–65.75 13.30 ± 1.25 152.02 2.87 1.5 2.49
O_SL_G15 0–1.5 0.12 ± 0.02 0.05 12.49 3.19 0.04
O_SL_R12 0–1.5 0.16 ± 0.02 0.08 6.97 2.47 0.05
O_SL_R13 0–7 1.47 ± 0.13 1.64 2.66 1.22 0.26
O_SL_Q12 0–8.4 0.39 ± 0.10 1.01 45.44 6.01 0.2
O_SL_Q13 0–12 4.50 ± 0.29 8.23 −0.3 0.46 0.59
O_SL_Q15 0–6 0.55 ± 0.12 1.53 8.83 2.91 0.25
O_SL_Q16 0–17 1.79 ± 0.33 10.48 8.28 2.69 0.65

O_WSL_G11 1–113 23.96 ± 2.15 446.97 2.6 1.45 4.28 0.41
O_WSL_G12 0–21 3.61 ± 0.36 12.21 5.97 1.82 0.71
O_WSL_G15 0–4 0.20 ± 0.06 0.35 18.26 3.84 0.12
O_WSL_Q12 0–3 0.20 ± 0.05 0.29 9.63 3 0.11
O_WSL_Q13 0–64 25.37 ± 1.57 231.32 −0.27 0.46 3.13
O_WSL_Q15 0–34 7.88 ± 0.78 59.89 1.02 1.28 1.56
O_WSL_G14 0–192 35.76 ± 3.20 987.8 5.41 1.79 6.36

O_WSA_G11 0–27 7.73 ± 0.61 36.08 0.68 0.95 1.21 0.19
O_WSA_G12 0–14 4.87 ± 0.29 7.98 −0.02 0.52 0.57
O_WSA_G13 0–70 11.69 ± 1.17 131.32 6.86 2.13 2.33
O_WSA_G14 0–4 0.82 ± 0.10 1.09 0.7 1.2 0.21
O_WSA_G15 2–27 8.67 ± 0.39 15.08 4.06 1.34 0.78
O_WSA_Q12 0–4 0.63 ± 0.08 0.71 2.24 1.45 0.17
O_WSA_Q13 10–91 46.03 ± 1.75 285.01 −0.41 0.42 3.47
O_WSA_Q15 1–35 13.69 ± 0.60 34.76 1.17 0.74 1.19
O_WSA_R12 0–22 6.08 ± 0.50 23.88 1.8 1.41 1.01
O_WSA_R13 0–9 3.18 ± 0.20 4.11 −0.01 0.47 0.41

Y_SL_G11 0–12.83 1.03 ± 0.19 3.73 15.62 3.38 0.39 0.35
Y_SL_G12 0–8 1.03 ± 0.18 3.1 4.33 2.11 0.35
Y_SL_G13 0–31.12 6.36 ± 0.75 54.44 1.54 1.48 1.49
Y_SL_Q12 0–3.85 0.17 ± 0.07 0.45 21.42 4.62 0.14
Y_SL_Q13 0–5.2 0.47 ± 0.09 0.84 7.63 2.52 0.18
Y_SL_Q16 0–10 1.60 ± 0.25 5.96 2.6 1.83 0.49

Y_WSL_G11 0–46 10.55 ± 1.05 106.35 2.69 1.71 2.08 0.31
Y_WSL_G12 0–33 7.87 ± 0.73 50.65 1.05 1.16 1.45
Y_WSL_G13 0–8 1.48 ± 0.16 2.5 3.23 1.63 0.32
Y_WSL_G14 0–63 7.36 ± 1.12 120.9 109.3 3.09 2.22
Y_WSL_G15 0–51 8.44 ± 0.98 93.53 6.12 2.27 1.95
Y_WSL_Q12 0–29 4.54 ± 0.50 23.19 7.03 2.23 0.99
Y_WSL_Q13 0–42 7.04 ± 0.89 73.82 3.11 1.73 1.76
Y_WSL_Q15 0–11 1.33 ± 0.22 4.71 7.05 2.39 0.43

Y_WSA_G12 0–35 3.89 ± 0.54 27.48 17.84 3.68 1.07 0.69
Y_WSA_G13 0–284 60.74 ± 5.68 3072.4 2.92 1.57 11.29
Y_WSA_G14 0–6 0.88 ± 0.11 1.23 3.94 1.67 0.22
Y_WSA_G15 0–4 0.54 ± 0.07 0.54 4.75 1.77 0.14
Y_WSA_Q12 Feb-66 28.96 ± 1.17 125.98 1 0.62 2.32
Y_WSA_Q13 0–13 4.69 ± 0.25 6.03 0.41 0.53 0.5
Y_WSA_Q15 0–2 0.29 ± 0.05 0.31 2.32 1.8 0.11
H_O12 0–178 34.57 ± 4.48 1671.37 2.64 1.75 8.92 0.26
H_O13 0–149 39.6 ± 4.41 1854.43 −0.3 0.94 8.77
H_R13 0–15 1.34 ± 0.33 11.04 7.99 2.89 0.67

T_G11 0–27 8.88 ± 0.51 25.79 1.31 1 1.02 0.32
T_G12 2.25–28.62 10.10 ± 0.57 32.27 0.7 0.98 1.15
T_G13 1.87–35.12 13.13 ± 0.68 45.26 1.16 1.11 1.36
T_Q12 0–9.83 1.87 ± 0.18 2.98 5.18 1.94 0.35
T_Q13 0–14.125 3.15 ± 0.26 6.88 3.01 1.5 0.53
T_Q15 10–405 86.72 ± 7.19 4963.04 5.06 1.96 14.27
T_Q16 8–249 81.90 ± 4.46 1915.43 1.15 0.86 8.86

(Continued on following page)
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value was observed in G12 (13.63 ± 0.52), followed by G13
(12.72 ± 0.55). WSL in Q14 and Q15 was comparable (2.26 ±
0.19 and 1.91 ± 0.17, respectively), whereas it was 4.72 ± 0.129 in
G15. Furthermore, significant differences prevailed among all
comparisons except between G12 and G13 and between Q14 and
Q15 (Supplementary Figure S4C). ANOVA results also
indicated significant differences in all traits of OWBM in both
WW (Supplementary Table S1) and SW panels (Supplementary
Table S2).

Yellow Wheat Blossom Midge
In the WW panel, among the five environments in which the SL
(G11, G12, G13, Q12, Q13, and Q16) was measured, the highest
incidence was observed in G13 with a mean value (± standard
error) of 6.36 ± 0.75, whereas the lowest incidence was observed
in Q12 with a mean value of 0.17 ± 0.07 (Supplementary Figure
S5, Table 2). Mean SL in G11 and G12 was similar (1.03 ± 0.19),
whereas mean SL in Q13 and Q16 was 0.47 ± 0.09 and 1.60 ± 0.25,
respectively. Pairwise comparisons indicated that differences for

TABLE 2 | (Continued) Descriptive statistics of various traits of investigated insects in winter wheat (WW) panel. For details, see materials and methods.

Trait Range Mean ± SE Var Kurtosis Skewness Confidence level (95.0%) Broad sense heritability
(combined)

T_R12 0–22.625 5.30 ± 0.47 21.71 3.1 1.62 0.94
T_R13 0–8.89 4.42 ± 0.18 3.22 −0.41 0.26 0.36

F_GA13 0–3.53 0.90 ± 0.09 0.874 0.38 1.04 0.19 0.25
F_GA14 0–4.78 1.43 ± 0.08 0.75 2.24 1.11 0.17
F_QA13 0–10.60 3.98 ± 0.23 5.47 0.02 0.6 0.47
F_GS15 0–5.31 1.98 ± 0.10 1.01 1.3 0.78 0.2 0.25
F_QS14 2.77–87.67 28.99 ± 1.47 208.3 2.44 1.11 2.92

TABLE 3 | Descriptive statistics of various traits of investigated insects in spring wheat (SW) panel. For details, see materials and methods.

Trait Range Mean ± SE Var Kurtosis Skewness Confidence level (95.0%) Broad sense heritability
(combined)

O_SL_G12 3–192 63.83 ± 4.00 1781.5 0.92 1.01 7.93 0.3
O_SL_G13 1.6–41.2 12.59 ± 0.68 52.42 1.15 0.89 1.36
O_SL_G15 0–8.4 1.69 ± 0.15 2.58 3.65 1.64 0.3
O_SL_Q15 0–11 3.06 ± 0.23 6.33 1.3 1.1 0.47

O_WSL_G13 0–59 8.69 ± 1.02 116.1 4.72 2.03 2.02 0.42
O_WSL_Q14 0–59 11.37 ± 0.97 106.18 3.72 1.59 1.93

O_WSA_G12 Apr-31 13.63 ± 0.52 30.63 0.34 0.62 1.04 0.25
O_WSA_G13 Mar-45 12.72 ± 0.55 33.94 8.07 2 1.09
O_WSA_G15 0–16 4.72 ± 0.29 9.52 1.95 1.07 0.58
O_WSA_Q14 0–10 2.26 ± 0.19 4.32 1.75 1.23 0.39
O_WSA_Q15 0–10 1.91 ± 0.17 3.27 5.19 1.89 0.34

Y_SL_G12 7–265 74.60 ± 4.54 2290.15 1.35 0.94 9 0.22
Y_SL_G13 0–38.6 9.15 ± 0.62 42.58 3.19 1.32 1.23
Y_SL_G14 0–17.37 3.02 ± 0.33 12.36 3.23 1.73 0.66
Y_SL_G15 0–21 1.41 ± 0.31 10.75 15.43 3.65 0.61
Y_SL_Q15 0–10 0.43 ± 0.14 2.19 25.66 1.77 0.27

Y_WSL_G13 0–100 13.51 ± 1.50 250.41 8.63 2.5 2.97 0.21
Y_WSL_G14 0–223 31.36 ± 3.32 1226.39 9.74 2.7 6.58

Y_WSA_G13 0–6 1.60 ± 0.12 1.85 0.85 0.88 0.25 0.48
Y_WSA_G14 0–10 1.65 ± 0.17 3.48 4.8 1.86 0.35
Y_WSA_G15 0–8 1.11 ± 0.14 2.44 4.63 2 0.29
Y_WSA_Q15 0–5 0.82 ± 0.10 1.17 2.67 1.56 0.2

T_G13 2–35.25 10.95 ± 0.55 34.75 2.67 1.37 1.1 0.18
T_G15 0–26.2 9.49 ± 0.48 26.48 0.82 0.93 0.96
T_Q15 108–1095 461.48 ± 19.57 42521.27 0.3 0.71 38.78

F_G13 2.27–43.61 13.04 ± 0.76 65.21 2.58 1.5 1.51 0.14
F_G14 6.15–67.74 24.90 ± 0.16 151.23 1.5 1.11 2.31
F_G15 1.94–25.49 10.02 ± 0.44 21.86 1.06 0.98 0.87
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SL between G11 and G12, G11 and Q13, G11 and Q16, G12 and
Q13, and G12 and Q16 were non-significant. All other
combinations were significantly different from each other
(Supplementary Figure S6A). For WSL, among the eight
environments, the highest and lowest scores were observed in
G11 (10.55 ± 1.05) and Q15 (0.29 ± 0.05), respectively, whereas,
in G12, Q13, and G14, scores were quite similar (7.87 ± 0.73,
7.04 ± 0.89, and 7.36 ± 1.12, respectively). Mean WSL in G13,
Q12, and G15 were 1.48 ± 0.16, 4.54 ± 0.50, and 8.44 ± 0.98,
correspondingly. Moreover, WSL was significantly different
among all pairs except between G11 and Q13, G14 and Q13,
and G15 and Q13 (Supplementary Figure S6B). WSA was
highest in Q13 (60.75 ± 5.78) followed by Q12 (28.96 ± 1.17)
followed by Q13 (4.69 ± 0.25). MeanWSA in G12 was 3.89 ± 0.54.
On the other hand, the lowest WSA was observed in Q15 (0.29 ±
0.05) followed by G15 (0.54 ± 0.07) followed by G11 (0.64 ± 0.12)
and mean WSA was 3.89 ± 0.54 in G12. WSA was also
significantly different among all environments (Supplementary
Figure S6C) except between G11 and Q13 and between G11
and Q15.

In SW, traits were scored in five environments (G12, G13, G14,
G15, and Q15). For SL, the highest incidence was in G12 where the
mean SL was 74.60 ± 4.54 and the lowest incidence was in Q15with
a mean value of 0.43 ± 0.14 (Supplementary Figure S7, Table 3).
Mean SL was 9.15 ± 0.62, 3.02 ± 0.33, and 1.41 ± 0.31 in G13, G14,
and G15, respectively. In addition, all SL scores were significantly
different from each other (Supplementary Figure S8A). WSA was
highest in G14 (1.65 ± 0.17) and lowest in Q15 (0.82 ± 0.10),
whereas 1.60 ± 0.12 and 1.11 ± 0.14 were the scores in G13 and
G15, correspondingly. In pairwise comparisons, except G13, G14,
G15, andQ15, all pairs were significantly different (Supplementary
Figure S8B). Between G13 and G14, WSL was higher in G14
(31.36 ± 3.32) and lower in G13 (13.51 ± 1.50), which were also
significantly different from each other (Supplementary Figure
S8C). Significant differences were prevalent across the years in
all traits of YWBM in both WW (Supplementary Table S1) and
SW panels (Supplementary Table S2).

Saddle Gall Midge
SGM was recorded in only WW in three environments at
Rosenthal and Oberpleichfeld. The highest incidence of SGM
was observed in O13 (39.6 ± 4.48) followed by O12 (34.57 ± 4.48)
(Supplementary Figure S9), although there was no significant
difference between the two (Supplementary Figure S10A). The
incidence in R13 was quite low (1.34 ± 0.33), which was also
significantly lower than the other two.

Thrips
Because only one parameter (number of thrips) was measured
related to thrips across nine environments, the data were grouped
according to the location in both WW and SW. In WW, in
Gatersleben, the thripsmean values were 8.88 ± 0.51, 10.10 ± 0.57,
and 13.13 ± 0.68 in G11, G12, and G13, correspondingly
(Supplementary Figure S11, Table 2). Among the four
environments at Quedlinburg, the highest score was observed
in Q15 (86.72 ± 7.19) and Q16 (81.90 ± 4.46). On the other hand,
mean scores in Q11 and Q12 were 1.87 ± 0.18 and 3.15 ± 0.26,

respectively. At Rosenthal, the mean score was higher in R12
(5.30 ± 0.47) than in R13 (4.42 ± 0.18). Thrips scores were
significantly different between each other except between G11
and G12, Q15 and Q16, and R12 and R13 (Supplementary
Figure S10B).

Among the three environments in SW, the highest score for
thrips that was recorded in Q15 was 461.48 ± 19.57
(Supplementary Figure S12A, Table 2). On the other hand,
G13 and G15 scores were quite comparable (10.95 ± 0.55 and
9.49 ± 0.48, respectively) with no significant difference between
them (Supplementary Figure S13A). The other comparisons
were significantly different.

Frit Fly
FF was scored in two different seasons (S and A) in WW. Among
the three environments in the autumn season, the damage was
highest in Q13_A (3.98 ± 0.08) and lowest in G14_A (1.43 ±
0.08), whereas the damage was 0.90 ± 0.09 in G13_A
(Supplementary Figures S14A,B). Meanwhile, all scores were
significantly different from each other (Supplementary Figure
S15A). In the spring season, between Q14_S and G15_S, the
damage was higher in the former (28.99 ± 1.47) than the latter
(1.98 ± 0.10) with a significant difference between the two
(Supplementary Figure S15B).

FF damage in SW was also significantly different among the
three environments (Supplementary Figure S12B) where the
highest damage was observed in G14 (24.90 ± 0.16) and lowest in
G15 (10.02 ± 0.44). The damage in G13 was 13.04 ± 0.76
(Supplementary Figure S13B). Thrips and FF scores were
also significantly different according to ANOVA results in
both WW and SW (Supplementary Tables S1, S2).

Correlations
No definite template existed between various traits with respect to
correlation in WW. Some traits of the same insect were, however,
in moderate positive correlation (r2 > 0.3) (Figure 1,
Supplementary Table S3). For example, in the case of OWBM,
the correlation of OSL_G12 with OSL_G11, OSL_G13, OSL_G15,
andOWSL_G11 as well as OSL_G15 with OSL_G13, OWSA_G13,
and OWSA_G13 was >0.3. The maximum r2 within OWBM was
0.94 observed betweenOSL_Q13 andOWSL_Q13. The correlation
of YSL_G13 with YWSL_G11, YWSA_G13, YWSL_G15, and
YWSL_Q13 as well as YWSA_G13 with YWSL_G11,
YWSL_G12, YWSL_G14, YWSL_G15, and YWSA_G15 was
>0.3. In the case of thrips, T_G12 and T_G13 were associated
with each other at r2 = 0.34. The correlation of T_G13 with T_R12
and T_Q16 was 0.35 and 0.33, respectively. Likewise, r2 of T_G12
with T_R11 and T_Q15 was 0.3 and 0.32, respectively. T_G11 and
T_Q15 were also inmoderate positive correlation with r2 = 0.38. In
the case of FF, the only notable correlation was between F_GS15
and G_GA_14 (r2 = 0.59). For SGM, there was a correlation of 0.26
between O12 and O13.

Across years, the correlation between OSL_G11 and YSL_G11,
OWSA_G11 andYWSA_G11,OWSL_G11 andOSL_G11, as well as
OSL_G11 and T_G11 was >0.3 (Supplementary Table S3). The
correlation of YSL_G13 with YWSA_G13, YWSL_Q13, and
OSL_G13 was >0.3. Likewise, the correlation of OSL_Q13 with

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8289057

Arif et al. Insect Resistance in Bread Wheat

110

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


OWSA_G13 was 0.3, and the correlation of OWSA_G13 with
OWSL_Q13 and T_G13 was >0.3. There was no notable
correlation among traits recorded in 2014. In 2015, YWSL_Q15
andYWSL_G15were correlated at r2 = 0.34. Similarly, OSL_G15was
correlated with OSL_G15 and T_Q15 at 0.32 and 0.49 r2,
respectively. In 2016, YSL_Q16 and OSL_Q16 were correlated at
r2 = 0.31.

The correlation pattern did not reveal any specificity among
various traits in SW panel as well. The only correlation >0.3 in

OWBM traits was between WSL_Q14 and WSA_G12 (r2 = 0.33)
(Figure 2, Supplementary Table S4). Moreover, among the
YWBM traits, the highest r2 was 0.53 observed between
WSL_G13 and SL_G14. The r2 between WSL_G14 and
SL_G12 and between WSL_G14 and SL_G13 was 0.35 and
0.39, respectively. All other correlations within YWBM were
below 0.3. Likewise, in thrips, the r2 between G13 and G15
was 0.28. On the other hand, in the case of FF, the correlation
between F_G14 and F_G15 was 0.24.

FIGURE 1 | Correlation network among yellow wheat blossom midge (yellow), orange wheat blossom midge (orange), thrip (skyblue), frit fly (green) and seed gall
midge (dark gray) in winter wheat (WW) panel. Only correlations > 0.1 R2 and significant at at least 0.05 p-values are shown. Blue and orange lines indicate positive and
negative correlations, respectively where the thickness of the line is proportional to the strength of the correlation. For details, see Supplementary Table S1.
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Association Analyses
In WW, association analysis of 66 traits examined across a total of
13 environments in Gatersleben (G11, G12, G13, G14, and G15),
Quedlinburg (Q12, Q13, Q14, Q15, and Q16), Rosenthal (R12 and
R13), and Oberpleichfeld (O13) with 11,139 SNPs (66 × 11,139 =
735,174 data points) provided a total of 645 significant associations
(p-value < 0.001) where 61 associations were highly significant
(p-value < 8.98 × 10−5) (Supplementary Table S5)
(Supplementary Figures S16–S24). Thus, a total of 9.77 SNPs
[645 marker-trait associations (MTAs)/66 traits] were associated
with one single trait. The distribution of these associations on
chromosomes was not uniform. For example, the highestMTAs on
one single chromosome was 85 (chromosome 2B) and the lowest
was one (chromosome 4D). Among groups, the highest MTAs

have detected on group 2 chromosomes (176 MTAs), followed by
group 3 chromosomes (138 MTAs) and group 5 chromosomes
(101). On the other hand, the lowest number ofMTAs has detected
on group 4 chromosomes (29 MTAs), followed by group 6
chromosomes (60 MTAs) and group 1 chromosomes (63
MTAs). A total of 78 MTAs were revealed on group 7
chromosomes. Among the genome, the B genome carried the
most MTAs (269 MTAs), whereas the D genome carried the least
MTAs (123 MTAs). A genome carried 253 MTAs.

From a pest perspective, the highest numbers of MTAs were
detected for OWBM (279 MTAs) (Supplementary Figures
S16–S18A) followed by YBWM (203 MTAs) (Supplementary
Figures S19–S21A). For thrips, we detected 114 MTAs
(Supplementary Figure S23A). On the other hand, 20 MTAs

FIGURE 2 | Correlation network among yellow wheat blossom midge (yellow), orange wheat blossom midge (orange), thrip (skyblue) and frit fly (green) in spring
wheat (SW) panel. Only correlations > 0.1 R2 and significant at at least 0.05 p-values are shown. Blue and orange lines indicate positive and negative correlations,
respectively where the thickness of the line is proportional to the strength of the correlation. For details, see Supplementary Table S2.
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(Supplementary Figure S24A) were detected for FF, whereas a
total of 29 MTAs were uncovered for SGM (Supplementary
Figure S22).

Through the association analysis in SW of 28 traits studied in a
total of six environments in Gatersleben (G12, G13, G14, and
G15) and Quedlinburg (Q14 and Q15) with 9,804 SNPs (28 ×

9,804 = 274, 512 data points), we detected a total of 123 significant
MTAs (p-value < 0.001) with 11 highly significant associations
(p-value < 1.019 × 10−4) (Supplementary Table S6). The average
number of MTAs per trait was 4.39 (123 MTAs/28 traits). Like
WW, MTA distribution across the chromosomes was not
uniform in SW. For example, there were no MTAs detected

FIGURE 3 | Distribution of 246 QTLs [yellow (yellow wheat blossom midge), orange (orange wheat blossom midge), green (yellow/orange wheat blossom midge),
black (saddle gall midge), blue (thrip), pink (frit fly) and maroon (mixed pests)] in the inner circles. Light brown lines in the outer track indicate the SNP positions on each
chromosome; pink bars in the second circle indicate the maximum R2 provided by any SNP confided to that QTL. The corresponding lines under the track circle indicate
the span of QTLs for respective traits with small vertical lines point to the peak position of QTL.
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on chromosomes 1D, 3D, 4D, 5D, and 6D. The highest numbers
of MTAs were detected on group 2 and group 7 chromosomes (26
MTAs each), followed by group 1 chromosomes (25 MTAs) and
group 6 chromosomes (16 MTAs). The lowest numbers of MTAs
were detected on group 4 chromosomes (seven MTAs), followed
by group 5 chromosomes (10 MTAs) and group 3 chromosomes
(13 MTAs). B genome carried the most number of MTAs (76
MTAs) followed by A genome (40 MTAs) among the three
genomes. D genome carried the least number of seven MTAs.

From insects’ perspective, the highest numbers of MTAs were
detected for YWBM (63 MTAs) (Supplementary Figures
S19–S21B) followed by OBWM (34 MTAs) (Supplementary
Figures S16–S18B). The number of MTAs detected for thrips
and FF was 18 (Supplementary Figure S23B) and eight
(Supplementary Figure S24B), respectively.

DISCUSSION

The wheat yield should be increased at the rate of 1.66% against
the current rate of 1% per annum to feed the nine billion people
by the mid of 21st century. On the other hand, by that time,
growing season temperatures will likely exceed those recorded
during the 20th century and may substantially reduce crop yields
(Deutsch et al., 2018). Crop production losses to pests will
increase globally with rising temperatures in all climate models
and across all biological parameters. A careful estimate suggests

that a 2°C rise in the average global surface temperature will
increase the median increase in yield losses due to pest pressure
by 46%, causing total estimated losses of up to 59 metric
megatons per year. The primary reason for this loss is that
warming will increase pest population growth and overwinter
survival rates, leading to large population increases in the growing
season (Deutsch et al., 2018). It, thus, becomes imperative to
develop modern wheat varieties carrying resistant genes against
these pests.

Phenotypic Variation
According to pairwise comparisons, various pests in WW and
SW (Supplementary Figures S2, S4, S6, S8, S10, S12, S14)
differed mostly in various environments. For example scores of
YWBMwere higher in G13 and G15 inWW and G12 and G14 in
WW and SW, respectively. In OWBM, again, G12 exhibited
higher pest attack in SW, whereas the same response in WW was
highly variable. Thrips attack was highest in Q15 in both WW
and SW, whereas FF attack was comparable in bothWWand SW.
Weather data (rainfall, number of rainy days, and mean
temperature) indicate that the month of May in 2013 was the
wettest with 156.6-mm rain in 21 rainy days (Supplementary
Table S7) that proved decisive in the considerably higher
infection rates of YWBM and OWBM in WW. Before, no
such reports exist where a comparison between WW and SW
populations was made for any of the mentioned pests. Therefore,
comparison in this regard is not possible. Nevertheless, we

TABLE 4 | QTL distribution of insect resistance in either winter (WW) or spring (SW) wheat panel or both (WW/SW).

Panel Trait Chromosomes Total

1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D

WW YWBM 1 3 1 1 5 2 2 2 3 2 2 1 1 4 1 3 2 4 2 42

OWBM 6 2 1 3 2 5 3 5 6 3 3 1 2 2 3 47

YWBM/OWBM 1 1 1 3 2 5 4 2 1 3 2 2 2 2 1 2 34

Thrips 1 2 4 1 2 1 1 1 1 1 1 2 18

FF 1 1 1 3

SGM 2 1 1 4

Other QTLs 3 3 4 2 2 1 1 4 2 1 1 2 2 28

SW YWBM 1 3 2 2 1 1 2 3 2 17

OWBM 1 1 2 1 1 1 1 8

YWBM/OWBM 1 1 2
Thrips 1 1 1 1 1 5

FF 1 1 1 1 1 5

Other QTLs 1 1

WW/SW YWBM 1 1 1 3

OWBM 1 1 1 3

YWBM/OWBM 1 1 1 3 1 1 2 2 1 13

Thrips 1 1

Other QTLs 1 2 1 1 2 1 1 1 2 12

Total 12 14 3 15 25 12 13 17 12 9 6 1 16 16 6 12 13 3 17 15 9 246

Bold indicates highly significant association p-value < 0.001 in that QTL on that chromosome.
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conclude that both OWBM and YWBM attack differently on
WW or SW, which indicates the extraordinary influence of the
prevalent environmental conditions before the pest attack. On the
other hand, the thrips and FF attack did not differentiate between
SW and WW.

Genetic Analyses
Because both WW and SW were genotyped with the same SNP
chip, we will discuss both the SW and WW simultaneously. On
the other hand, for the purpose of discussion, we confined the 645
and 123 MTAs detected in WW and SW, correspondingly, to a
total of 246 QTLs (Figure 3, Supplementary Table S8) on the
basis of LD among the markers involved in associations (data not
shown), following the approach adopted by Dababat et al. (2021).
The average span of the QTLs was ~1.68 cM, whereas the
minimum span and maximum span were 1 and 2.76 cM,
respectively (on chromosome 5D), that were also variables for
the three wheat genomes (1.71, 1.57, and 1.86 cM for A, B, and D
genomes, correspondingly). Meanwhile, the average LD decay in
WW has been shown to by roughly 5 Mbp, which corresponds to
~1.2–1.3 cM. The same results were observed in SW population.
Real-time LD calculation of the SNPs within the QTLs also
indicated that >90% of markers were in absolute LD to each
other. The odd one to two SNPs from the cluster of SNPs confined
to the QTL were also linked to one of the traits of the main
clustered SNPs. We adopted this approach to discuss the genomic
regions in association with the traits for a relatively simplified
discussion to cater to wide variety of scientists (entomologists and
ecologists) who might have relatively less information about the
technical details of LD decay and related matters.

Of them, 176 QTLs carriedMTAs exclusively detected inWW,
38 QTLs carried MTAs detected exclusively in SW, whereas the
32 QTLs carried MTAs detected both in SW and WW (Table 4),
albeit with different insects. From an insect perspective, the
numbers of QTLs carrying exclusive QTLs of YWBM,
OWBM, thrip, FF, and SGM were 62, 58, 24, 8, and 4,
respectively. Another 49 QTLs were related to both YWBM
and OWBM (YWBM/OWBM) only. The rest of the 41 QTLs
carried at least two or more of the abovementioned pests.

A total of 58 QTLs of OWBM alone were detected on all the
chromosomes except chromosomes 2D, 3B, 4B, 4D, and 7D
where the highest numbers of QTLs were located on
chromosomes 1A (seven QTLs) and 5A and 5B (six QTLs
each) (Supplementary Table S9). The major genes include
laccase-19 [which plays role in the pathogen-induced
lignification of secondary cell walls in the rachis (Soni et al.,
2020)], DIBOA-glucoside dioxygenase BX6-like [wheat BX6 plays
role in the formation of benzoxazinoids in planta and contributes
to plant resistance against insect herbivores (Shavit et al., 2021)],
CLIP-associated protein-like isoform X2 [CLIP-associated protein
2 (spot 45) is known to be involved in microtubule orientation
and stabilization in the plant cell cortex, but the disease/stress
responsiveness of this protein is elusive (Ambrose et al., 2007)],
ubiquitin-protein ligase PRT6 and TOM1-like protein 2
[transporter of mugineic acid (TOM) are important in the
maintenance of micronutrient homeostasis (Sharma et al.,
2019)], and leucine-rich repeat–containing protein.

A very well-known gene for OWBM resistance, Sm1, is known
to be located at ~10- to 13-cM region on the distal portion of
chromosome 2BS (Kassa et al., 2016). It was first identified in a
collection of WWs from the United States (Thomas et al., 2005).
We, however, could not detect sm1 in our germplasm, probably
due to the nature of the germplasm. Although our WW panel
includes 20 genotypes that originated from the United States,
there was not much difference between the two groups (the
United States originated and non-US originated) (data not
shown) with regard to OWBM scores. Nevertheless, our
germplasm still carried 25 QTLs for insect resistance on
chromosome 2B, which is the highest among all chromosomes.

The 62 exclusive QTLs of YBWM were located on all the
wheat chromosomes except chromosomes 6D and 7D with
the highest number of QTLs on chromosomes 2B and 7A
(seven QTLs each). Several candidate genes were identified to
be probably involved in YWBM resistance. The major ones
include pentatricopeptide repeat–containing protein
[members of the pentatricopeptide repeat (PPR) protein
family are sequence specific RNA binding proteins that
play crucial roles in organelle RNA metabolism (Yan et al.,
2019)], tRNA ligase 1 isoform X1, chloroplastic
glycerophosphodiester phosphodiesterase GDPD1 [GDPDs
hydrolyze glycerophosphodiesters into alcohols and
glycerol-3-phosphate (G-3-P) suggesting their importance
in multiple physiological processes in plants (Nakamura,
2013)], chlorplastic short-chain dehydrogenase TIC32
[reduces the damage to photosynthetic system upon
infection (Hao et al., 2018)], AP-1 complex subunit sigma-
1, cytoplasmic iso-leucine-tRNA ligase, and transmembrane
emp24 domain-containing protein [transmembrane
emp24 domain-containing protein 6-like is recently
reported to be an important component of pea aphid
saliva-proteome (Caragea et al.)], and many others.

The 49 OWBM/YWBM QTLs were exhibited on
chromosomes 1B, 1D, 2B, 2D, 4B, and 6A and all the
chromosomes of groups 3, 5, and 7. The major genes located
in those regions include NF-1 related protein kinase regulatory
subunit gamma-1–like [kinases regulate cell growth and
proliferation as well as triggering and regulation of immune
responses (Theivendren et al., 2021)], serpin-Z2A-like
[expressed as a fusion protein with the maltose-binding
protein (le Roux et al., 2021)], gamma-secretase subunit APH1-
like [gamma-secretases are localized in the endomembrane of
protoplasts in Arabidopsis, and potential role is still unclear
(Thomelin, 2018)], polyubiquitin and WPP domain-interacting
protein 2 [located on chromosome 5A, this gene is key for nuclear
assembly and transport (Gardiner et al., 2019)], disease resistance
protein RGA5-like and ankyrin repeat domain-containing protein
2A [ankyrin repeats are 33-amino-acid sequence motif that are
part of protein–protein interaction (Sedgwick and Smerdon,
1999)], DNA binding protein HEXBP and 7-deoxyloganetin
glucosyltransferase [~266 homologous genes belong to 7-
deoxyloganetin glucosyltransferase-like gene family (Jiao et al.,
2018) which play their role in healing process (Yang et al., 2017)
after damage], protein FAR-RED ELONGATED HYPOCOTYL 3-
like (FHY3) [FHY3 and FAR1, two homologous transcription
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TABLE 5 | QTLs with SNPs in association with various pests in multiple environments.

QTL name Chr Environments SNPs Interval Candidate genes

Q.OWBM/Thrip/
SGM.ipk/jki.1B(WW)

1B OWBM (3), T (1),
SGM (1)

Ra_c69552_1419, Kukri_c29655_194, Ex_c64327_523,
RAC875_c42715_856

42.71–43.71 Uncharacterized protein
LOC109742350 (Aegilops tauschii
subsp. strangulata),
phosphoinositide phosphatase
SAC7-like (Triticum dicoccoides)

Q.OWBM/YWBM/Thrip/
FF.ipk/jki.1B(SW/WW)

1B YWBM (3), OWBM
(2), T(1), FF (1)

Ku_c11813_215, Kukri_c2332_1093,
Kukri_rep_c101799_95, RAC875_rep_c72356_51,
Kukri_c147_1620, BS00090553_51,
Tdurum_contig61425_242, IAAV1158, BS00067247_51

64.6–65.6 Putative clathrin assembly protein
At2g01600 (Aegilops tauschii
subsp. strangulata), pre-mRNA
splicing factor SR-like 1 isoform X1
(Brachypodium distachyon),
UPF0496 protein 4-like [Triticum
dicoccoides)

Q.YWBM/
OWBM.jki.1B(SW/WW)

1B OWBM (1),
YWBM (4)

TA004947_0758, BobWhite_c1318_691, IACX5764,
RAC875_c16136_1597

66.82–67.82 Serine/threonine-protein kinase
BSK1-2-like (Triticum dicoccoides),
putative clathrin assembly protein
At2g01600 (Aegilops tauschii
subsp. strangulata)

Q.FF.ipk.2A(SW) 2A FF (2) wsnp_Ex_c2138_4015881, Ku_c59581_1412,
wsnp_Ex_rep_c66615_64916512

103.7–104.7 Potassium transporter 1 (Triticum
urartu), protein DETOXIFICATION
16-like (Triticum dicoccoides)

Q.YWBM/Thrip.ipk/jki/
ros.2A.4(SW/WW)

2A YWBM (3), T (1) Tdurum_contig93508_295, RAC875_c25848_122,
IACX5800, Tdurum_contig49145_914, Ex_c10068_1509,
Tdurum_contig63071_67

141–142 Cysteine-rich receptor-like protein
kinase 5 (Triticum dicoccoides),
Putative cyclic nucleotide-gated ion
channel 8 (Triticum urartu),
uncharacterized protein
LOC119362705 (Triticum
dicoccoides)

Q.Thrip/YWBM/
OWBM.ipk/jki.2A(WW)

2A OWBM (2), YWBM
(2), T (2)

wsnp_Ex_c10555_17236072,
Tdurum_contig14482_1073, Ex_c36309_435,
Excalibur_c7971_712, IAAV5232, IAAV6102, IAAV8933,
Kukri_c25632_86, RAC875_c22328_1356,
RAC875_c22328_490, RAC875_c35688_178,
Tdurum_contig42282_10323, Tdurum_contig52350_902,
Tdurum_contig56321_179,BS00024643_51,
Excalibur_c16329_493, Excalibur_c62106_387,
Kukri_c26697_366, RAC875_c35200_230,
RAC875_c51459_311, tplb0025l18_1788,
BS00098033_51

151.1–152.1 3-Oxoacyl-[acyl-carrier-protein]
synthase 3 B, chloroplastic-like
(Triticum dicoccoides), hypothetical
protein CFC21_020035 (Triticum
aestivum), hypothetical protein
CFC21_026517, partial (Triticum
aestivum), pentatricopeptide
repeat–containing protein
At3g53700, chloroplastic-like
(Triticum dicoccoides), PREDICTED:
HBS1-like protein (Brassica
oleracea var. oleracea), probable
leucine-rich repeat receptor-like
serine/threonine-protein kinase
At3g14840 isoform X3 (Triticum
dicoccoides), sacsin-like isoform X1
(Triticum dicoccoides),
dihydroorotate dehydrogenase
(quinone), mitochondrial-like
(Triticum dicoccoides), HBS1-like
protein isoform X1 (Triticum
dicoccoides), Isocitrate and
isopropylmalate dehydrogenases
family (Macleaya cordata), unnamed
protein product (Triticum turgidum
subsp. durum), plastid division
protein CDP1, chloroplastic-like
(Triticum dicoccoides)

Q.YWBM/OWBM/
Thrips.ipk/jki.2A(WW)

2A OWBM (2), YWBM
(3), T(1)

CAP8_c3129_381, Tdurum_contig10048_207,
BS00062869_51

154.5–155.5 LOW QUALITY PROTEIN:
endonuclease MutS2-like (Aegilops
tauschii subsp. strangulata)

Q.Thrip.jki.2B.1(WW) 2B T (2) Kukri_c98858_299, BobWhite_c7145_355 24.3–26 Putative disease resistance RPP13-
like protein (Triticum turgidum)

(Continued on following page)
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TABLE 5 | (Continued) QTLs with SNPs in association with various pests in multiple environments.

QTL name Chr Environments SNPs Interval Candidate genes

Q.Thrip.jki.2B.2(WW) 2B T (2) Excalibur_c841_609, Excalibur_c41459_96,
Excalibur_c4748_360, Kukri_c52200_878,
RAC875_c2300_1021

26.8–27.8 Actin-related protein 9-like (Triticum
dicoccoides), Hypothetical protein
CFC21_014569 (Triticum aestivum),
unnamed protein product (Triticum
turgidum subsp. durum)

Q.Thrip.ipk.2B(SW/WW) 2B T (2) RAC875_c17720_570, wsnp_Ra_c407_862316 71.1–73.5 NAD-dependent deacetylase sirtuin-
6 (Triticum urartu)

Q.YWBM.ipk/jki.2B(WW) 2B YWBM (3) Ra_c6728_590, Ra_c106376_879, Kukri_c7139_6288,
BS00065418_51

91.1–93.2 Pentatricopeptide
repeat–containing protein
At4g20740-like (Triticum
dicoccoides), protein SSUH2
homolog (Triticum dicoccoides),
Transcription-associated protein 1
(Triticum urartu), tRNA ligase 1
isoform X1 (Aegilops tauschii subsp.
strangulata)

Q.YWBM/OWBM.ipk/
jki.2B.2(SW/WW)

2B OWBM (1),
YWBM (3)

Excalibur_c23723_141, RAC875_c7827_218,
BS00041921_51, IACX3325, RAC875_c46661_184

94.5–96.5 NF1-related protein kinase
regulatory subunit gamma-1–like
(Aegilops tauschii subsp.
strangulata)

Q.OWBM/Thrip.ipk/
jki.2B(SW)

2B OWBM (3), T (1) RAC875_c36614_344, JG_c2092_196,
Excalibur_c5064_765,
Excalibur_rep_c67411_210,Kukri_c24669_51,
Kukri_c6552_4243, RAC875_c7540_366,
wsnp_Ex_c1758_3326792,
wsnp_Ex_rep_c68194_66973531,
wsnp_Ra_c28955_38371323, IAAV3303,
Tdurum_contig66317_77

106.8–107.8 Serine racemase (Elaeis guineensis),
uncharacterized protein
LOC119365239 and 119365272
(Triticum dicoccoides), 5-amino-6-
(5-phospho-D-ribitylamino)uracil
phosphatase, chloroplastic-like
(Triticum dicoccoides), BEACH
domain-containing protein C2-like
isoform X3 (Triticum dicoccoides),
hypothetical protein
CFC21_031208 (Triticum aestivum)

Q.YWBM/OWBM/Thrip/
FF.ipk/jki.2B(WW)

2B OWBM (1), YWBM
(3), T (2), SGM (2)

Tdurum_contig54925_225, Kukri_rep_c68957_201,
Ra_c68109_376, BS00091068_51,
wsnp_Ex_c17845_26604587,
wsnp_Ex_c20182_29230528, Tdurum_contig18858_324,
BobWhite_c5543_492, Kukri_c49007_501,
Kukri_s115194_71, BS00077131_51

109.5–111.5 CNL3 (Triticum monococcum),
hypothetical protein TRIUR3_01841
(Triticum urartu), Kinesin-like protein
KIN-7G, partial (Cucurbita
argyrosperma subsp. sororia), rho
GTPase-activating protein 5-like
(Triticum dicoccoides), villin-4–like
(Triticum dicoccoides)

Q.YWBM/OWBM/
SGM.ipk/jki/
ros.3B(SW/WW)

3B OWBM (4), YWBM
(2), SGM (1)

BS00060073_51, BS00066467_51, BS00073011_51,
wsnp_Ex_c5547_9774195, Ku_c31046_525,
Ku_c25346_508, Kukri_c25794_863, tplb0024c09_1335,
BobWhite_c40455_116, BS00091643_51,
BS00062827_51, Excalibur_c15332_1194,
RAC875_rep_c115516_134, Tdurum_contig63110_433,
BS00097383_51

73.8–75.5 Transcription factor GAMYB-like
(Triticum dicoccoides), BAG family
molecular chaperone regulator 4
(Aegilops tauschii subsp.
strangulata), probable LRR
receptor-like serine/threonine-
protein kinase At2g28960 (Triticum
dicoccoides), uncharacterized
serine-rich protein C1E8.05
(Aegilops tauschii subsp.
strangulata), probable LRR
receptor-like serine/threonine-
protein kinase At2g28960 (Triticum
dicoccoides), dentin
sialophosphoprotein-like (Triticum
dicoccoides)

Q.YWBM/
OWBM.ipk.5A(WW)

5A OWBM (4),
YWBM (1)

IAAV1375, IAAV3832 61.2–64.2 Probable UDP-arabinose 4-
epimerase 1 (Sorghum bicolor),
disease resistance protein RGA5-
like (Triticum dicoccoides)

(Continued on following page)
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factors are essential for phytochrome A-mediated light signaling
(Xie et al., 2020)], and malate dehydrogenase [malate
dehydrogenases play an important role in central metabolism
in plants whose exact role, however, remains unclear (Schreier
et al., 2018)].

The use of population independent method (association
mapping tool) and different mapping panels allowed us to
explore WBM resistance loci in wheat on a very large scale.
Our reported QTLs/genes (Supplementary Table S7) have not
been reported for insect resistance in wheat before. We, therefore,
conclude that these resistance loci can be a potential starting
point to impart environment friendly and climate smart WBM
resistance in wheat. In addition, arrival of many new technologies
such as MACE (Massive Analysis of cDNA 3′ ends) and RNA
-sequencing (Duarte-Delgado et al., 2020) may help to
understand the mechanisms behind the resistance loci being
reported.

Chromosomes 3D, 6B, and 7B carried the four exclusive
QTLs for SGM where the most important gene located was
nucleolar GTP-binding protein 1, which has been reported to
act as a positive regulator of stomatal closure in response to
both abiotic and biotic stresses (Lee et al., 2017). This result
indicates that the candidate gene is involved in the SGM

tolerance pathway through its involvement in the stress
tolerance defense system. Further molecular genetic
investigations are required to understand the mechanism
of the candidate gene and if it influences the resistance to
other biotic and abiotic stresses.

For thrips exclusively, our germplasm revealed 24 QTLs
located on chromosomes 1A, 2A, 2B (three QTLs), 2D (four
QTLs), 3A (two QTLs), 3B (two QTLs), 4A, 6B (two QTLs), 6D,
7A, 7B (two QTLs), and 7D (three QTLs). The major genes
located in those QTLs include IAA–amino acid hydrolase ILR1-
like 8 [ILR1-like 1 plays its role in metabolic processes resulting in
cell growth by releasing IAA through hydrolysis (Du et al., 2017)],
brefeldin A–inhibited guanine nucleotide-exchange protein 1
(BIG1) [BIG regulates stomatal immunity and jasmonate
production in Arabidopsis (Zhang et al., 2019)], and putative
receptor-like kinase, serine/threonine-protein kinase, and ethylene
response factor 1 extended form L [known to play defense role in
various stresses (Arif et al., 2012a)]. Therefore, these QTLs are
very useful to be involved in breeding programs for improving
thrips resistance in wheat that, in turn, increase grain yield and its
quality.

The eight exclusive QTLs of FF are located on
chromosomes 1B, 2A (two QTLs), 3A, 3B, 4B, 6B, and 7A.

TABLE 5 | (Continued) QTLs with SNPs in association with various pests in multiple environments.

QTL name Chr Environments SNPs Interval Candidate genes

Q.YWBM/OWBM/
Thrip.ipk/jki.5B(SW/WW)

5B OWBM (1), YWBM
(2), T (2)

Tdurum_contig53926_455, Tdurum_contig11060_433,
Kukri_c95103_97, wsnp_Ra_c27733_37249132,
Excalibur_c17055_1451, TA001786-1535,
BobWhite_c16987_106

69.6–72.1 Hypothetical protein
CFC21_073134 (Triticum aestivum),
cytochrome b561, DM13 and
DOMON domain-containing protein
At5g54830-like (Triticum
dicoccoides), unnamed protein
product (Triticum turgidum subsp.
durum), serpin-Z1C (Triticum
dicoccoides)

Q.YWBM/Thrip.ipk/
jki.6A(WW)

6A YWBM (1), T (2) BS00109913_51, Kukri_c90942_274,
Tdurum_contig29607_294

140.7–142.2 Sucrose transport protein SUT4
isoform X2 (Aegilops tauschii subsp.
strangulata)

Q.YWBM.ipk/
jki.7A(SW/WW)

7A YWBM (3) Excalibur_c53632_204, BS00082180_51,
CAP7_c10038_214

130.5–134

Q.Thrip.ipk/jki.7B(WW) 7B T (2) GENE_4826_641, BobWhite_c10448_80,
GENE_4337_558, Ku_c46689_1653,
BobWhite_c23074_304, BS00003726_51,
BS00091302_51

57.8–60 Ethylene response factor 1 extended
form L (Triticum turgidum subsp.
durum), unnamed protein product
(Triticum turgidum subsp. durum)

Q.YWBM/OWBM.ipk/
jki.7B(WW)

7B OWBM (3),
YWBM (1)

Ku_c9598_2119, Excalibur_rep_c116920_300,
Tdurum_contig76683_147, wsnp_Ku_c21752_31528824

72.3–74.8 TBC domain-containing protein
C1952.17c isoform X3 (Aegilops
tauschii subsp. strangulata), serine/
threonine/tyrosine protein kinase
(Thinopyrum intermedium)

Q.YWBM/Thrips.ipk/
jki.7B(WW)

7B YWBM (1), T (2) RAC875_c68398_75, BS00022009_51, BS00105558_51 76.25–79.5 Mitogen-activated protein kinase
12-like (Triticum dicoccoides)

Q.YWBM.ipk.7B(WW) 7B YWBM (3) RAC875_c8752_1079, tplb0045c05_547 159–160.5 Uncharacterized protein
LOC109760071 isoform X2
(Aegilops tauschii subsp.
strangulata), signal peptide
peptidase-like 5 (Aegilops tauschii
subsp. strangulata)
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The major genes in those QTLs include nicotinamide/
nicotinic acid mononucleotide adenylyltransferase–like
[master enzyme in NAD biosynthesis in living organisms
(Zhai et al., 2009)] and transcriptional corepressor LEUNIG
among the others. The transcriptional corepressor LEUNIG
has been reported to be a product of an SNP Ex_c17379_1431
on chromosome 6B (Suliman et al., 2021). In our case, the
SNPs involved were wsnp_Ex_c17379_26073344 and
RAC875_c17347_312 on chromosome 6B. The SNP marker
Ex_c17379_1431 on chromosome 6B coding for the
transcription corepressor LEUNIG had a significant effect
on grain protein content, gluten content, and alveograph
strength (Suliman et al., 2021). LEUNIG has putative role
in the gene regulations in a number of different physiological
processes in Arabidopsis including disease resistance, DNA
damage response, and cell signaling (Gonzalez et al., 2007).

The rest of the 41 QTLs carried MTAs associated with
multiple pests. Fatty acyl-CoA reductase 1 [involved in
primary alcohol biosynthesis of the leaf blade cuticular
wax in wheat (Wang et al., 2015)], pentatricopeptide
repeat–containing protein (PRP) [PRP proteins are a large
family of modular RNA-binding proteins that mediate several
aspects of gene expression primarily in organelles but also in
the nucleus (Manna, 2015)], bidirectional sugar transporter
SWEET15 [a hormone signaling gene (Gauley and Boden,
2019)], DNA repair protein rhp54 and dentin
sialophosphoprotein-like [shell formation protein (Volk
et al., 2014)], villin-4–like [villin gene family members are
associated with multiple stress responses (Lv et al., 2021)],
pyruvate dehydrogenase [involved in various physiological
processes including dormancy, PHS, and seed longevity (Arif
et al., 2012a; Arif et al., 2012b)], and transcriptional
corepressor LEUNIG_HOMOLOG [LEUNIG plays putative
role in disease resistance (Gonzalez et al., 2007)].

Our investigation was carried out under natural infection that
was under serious environmental influence. Depending on the
number of environments in which the pests were scored, we
singled out QTLs expressed in multiple environments (for
OWBM and YWBM that carried MTAs in three or four
different environments and for FF, thrips, and SGM that
carried MTAs in two environments).

There were three (on chromosomes 1B, 2B, and 7B) and
two QTLs (on chromosomes 3B and 5A) for OWBM that
carried MTAs detected in three and four environments,
correspondingly. Likewise, there were eight QTLs [on
chromosomes 1B, 2A (two QTLs), 2B (three QTLs), 7A,
and 7B] that carried multi-environment MTAs discovered
in case of YWBM. On the other hand, chromosome 2A and 2B
carried QTL with MTAs of FF and SGM from two
environments, correspondingly. Furthermore, there were
eight chromosomes [chromosomes 2A, 2B (four QTLs),
5B, 6A, and 7B (two QTLs) that carried the multi-
environmental MTAs for thrips (Table 5)].

The use of population independent method (association
mapping tool) and different mapping panels allowed us to
explore WBM, FF, SGM, and thrips resistance loci in wheat
on a very large scale. Our reported QTLs/genes

(Supplementary Table S7) have not been reported for
insect resistance in wheat before. We, therefore, conclude
that these resistance loci can be a potential starting point to
impart environment friendly and climate smart insect
resistance in wheat. In addition, arrival of many new
technologies such as MACE and RNA sequencing (Duarte-
Delgado et al., 2020) may help to understand the mechanisms
behind the resistance loci being reported.

CONCLUSION

All in all, we comprehensively dissected two different wheat
germplasm sets for five different wheat pests over a period of
6 years at multiple locations in central Germany. This is the very
first report where natural variation in wheat is exploited to map
loci linked to YWBM, SGM, FF, and thrips resistance. Moreover,
multitude candidate genes are reported of which many are
potentially involved in controlling physical structures of plant
such as stomatal immunity [brefeldin A–inhibited guanine
nucleotide-exchange protein 1 (BIG1)] and closure (nucleolar
GTP-binding protein 1) and cuticular wax (Fatty acyl-CoA
reductase 1) of leaf blade to provide physical barriers of insect
entry in plants. Others are involved in the production of certain
enzymes in response to stress (DIBOA-glucoside dioxygenase BX6
like and villin-4–like) or play key roles in other physiological
processes (NF-1 related protein kinase regulatory subunit gamma-
1–like and nicotinamide/nicotinic acid mononucleotide
adenylyltransferase-like). Because this is the first
comprehensive report to gauge insect resistance exploiting the
natural variation in wheat, the reported SNPs need to be
validated. The validation can be achieved by converting
reported SNPs into molecular markers applicable felicitous to
molecular plant breeding (Cheon et al., 2018) such as KASP
(Kompetitive Allele Specific PCR) markers that have successfully
been achieved in wheat (Rasheed et al., 2016) for a number of key
economic traits. Future research should, therefore, focus on
testing this germplasm in other hotspots alongside the
development of KASP markers of the reported SNPs for wheat
improvement.
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Salinity tolerance is a multifaceted trait attributed to various mechanisms. Wild barley is
highly specialized to grow under severe environmental conditions of Tibet and is well-
known for its diverse germplasm with high tolerance to abiotic stresses. The present study
focused on determining the profile of the expression of isoforms of the HvNHX gene in 36
wild and two cultivated barley under salt stress. Our findings revealed that in leaves and
roots, expression ofHvNHX1 andHvNHX3 in XZ16 and CM72was upregulated at all times
as compared with sensitive ones. The HvNHX2 and HvNHX4 isoforms were also induced
by salt stress, although not to the same extent asHvNHX1 andHvNHX3.Gene expression
analysis revealed that HvNHX1 and HvNHX3 are the candidate genes that could have the
function of regulators of ions by sequestration of Na+ in the vacuole.HvNHX1 andHvNHX3
showed awide range of sequence variations in an amplicon, identified via single-nucleotide
polymorphisms (SNPs). Evaluation of the sequencing data of 38 barley genotypes,
including Tibetan wild and cultivated varieties, showed polymorphisms, including
SNPs, and small insertion and deletion (INDEL) sites in the targeted genes HvNHX1
and HvNHX3. Comprehensive analysis of the results revealed that Tibetan wild barley has
distinctive alleles of HvNHX1 and HvNHX3 which confer tolerance to salinity. Furthermore,
less sodium accumulation was observed in the root of XZ16 than the other genotypes as
visualized by CoroNa-Green, a sodium-specific fluorophore. XZ16 is the tolerant
genotype, showing least reduction of root and leaf dry weight under moderate
(150 mM) and severe (300 mM) NaCl stress. Evaluation of genetic variation and
identification of salt tolerance mechanism in wild barley could be promoting
approaches to unravel the novel alleles involved in salinity tolerance.

Keywords: salinity stress, wild barley, gene expression, polymorphism, SNP, vacuole

INTRODUCTION

Na+/H+, counter-transporters (NHXs) not only serve as essential membrane transporters but also
help catalyze the neutral exchange of K+ or Na+ for H+ and have been found to play a significant role
in pH and ion homeostasis, cell expansion, and salt tolerance. To develop crops with enhanced
tolerance to abiotic stresses, the establishment of a better understanding of the underlying
mechanisms is essential. With growing advances made within the last decade, researchers have
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revealed various mechanisms of adaptation and molecular details
of responses triggered by salt stress. Although barley is tolerant to
high salt stress compared to other cereals, its production is still
hampered by salinity (Qui et al., 2011). Salinity is one of the most
detrimental stress factors among the abiotic stresses (Stepien and
Klobus, 2005) which affected nearly 800 and 32 million hectares
of land around the world (Wani et al., 2020). Soil salinization
causes severe reduction in barley production all around the world
(Rengasamy et al., 2003; Mishra and Tanna 2017). In such a
scenario, to go for soil amendments is near to impossible. To cope
with soil salinity, the development of salt-tolerant cultivars could
be the best possible solution. Hence, understanding salt-tolerant
mechanisms is essential for the genetic improvement of crops.
Having unique features among cereal crops, barley is widely used
in physiological and genetic studies to unravel the mechanisms of
salt tolerance (Munns and Mark, 2008). However, the process of
domestication of the present cultivated barley (H. vulgare L.)
resulted in loss of vital allelic variations (Russell et al., 2004),
leading to limited genetic diversity in its gene pools in
comparison to their wild ancestors. Therefore, a narrow
genetic base could be a great obstacle in the development of
cultivars more adapted to the environment (Ellis et al., 2000;
Feuillet et al., 2008; Shavrukov et al., 2010). A wider range of
genetic variations has been reported in barley populations under
various stressful environments (Nevo et al., 1997). Moreover,
Tibetan wild barley (H. spontaneum L.), which habited the
Qinghai–Tibet Plateau of China years ago, is one of the
ancestors of cultivated barley (Dai et al., 2012).

The involvement of both osmotic and ionic components has
been elaborated in plant growth inhibition under salt stress
(Munns et al., 2006), for example, Na+ specifies not only
damage to leaf tissues but also causes many metabolic
problems in plants due to its high accumulation in shoots
(Munns et al., 2006). Low cytoplasmic Na+/K+ ratio is
maintained by multiple mechanisms that include
morphological and biochemical adaptations (Munns and
Mark, 2008). Vacuolar Na+/H+ antiporters belonging to the
NHX gene family, that is, AtNHX1, which serve to detoxify
the cytoplasm by compartmentalization of Na+ into the
vacuole, have emerged as a vital group of transporters that
helped in Na+ tissue tolerance mechanisms (Pardo et al.,
2006). According to previous studies, overexpression of the
NHX gene and its homologs from other plant species could
result in salt tolerance (Zhang and Blumwald 2001; He et al.,
2005).

Based on subcellular localization and physiological roles,
previous studies classified Na+ (K+)/H+ antiporters in plants
into two families, namely, plasma membrane transporter
(SOS) and intracellular transporter (NHX) (Brett et al., 2005).
(Brett et al., 2005). The NHX family can be further divided into
two distinct groups, class-I and class-II (Pardo et al., 2006). Class-
I includes NHX isoforms of A. thaliana (AtNHX1-4) with strong
vacuolar localization (Pardo et al., 2006; Barragan et al., 2012).
However, NHX proteins belonging to class-II, namely, AtNHX5-
6 exhibit endosomal localization in cells (Pardo et al., 2006;
Rodríguez-Rosales et al., 2008). Cytosol is the main site of
action for salts, affecting plant growth and development by

disturbing important physiological and biochemical processes.
Ion homeostasis, specific for each cellular compartment, is
necessary for plant cells to ensure the availability of optimal
conditions for gene expression, various enzymatic processes, and
protein structure and function (Paroutis et al., 2004). Moreover, a
range of physiological processes that include cell expansion,
osmotic adjustment, ion regulation, pH homeostasis, and
cellular stress responses are essential for plant cell homeostasis
and are regulated by NHX-type (cation/H+) antiporters (Pardo
et al., 2006; Bassil et al., 2012). These counter-transporters
emerged in the early evolution of plants and have been found
in entire sequences of plant genomes (Bassil et al., 2012; Chanroj
et al., 2012).

The NHX family found in barley consists of four isoforms,
mainly localized in the vacuole, called Na+/H+ antiporter genes
(HvNHX1 (AB089197.1), HvNHX2 (AY247791), HvNHX3
(DQ372061.1), and HvNHX4 (DQ314285) (Francisco et al.,
2012). Expression of genes responsive to salt stress could be
species-dependent, and it starts from significantly lower salt
levels, for example, 50–100 mM NaCl, which is sufficient for
most of the plant species. However, depending on the degree of
salt sensitivity, even lower concentrations could be considered for
higher salt-sensitive plants. On the contrary, halophyte species
could sustain their growth at higher salt levels (Shavrukov., 2013).
Plants have developed various mechanisms to get rid of higher
concentrations of Na+ ions, which include its transport from the
cytosol into the vacuole or out of the cell with the help of Na+/H+

exchanger machinery found in the vacuolar and plasma
membranes, respectively (Apse and Blumwald 2007). Thus,
enhanced efficiency of the vacuole to compartmentalize more
Na+ is a promising strategy to overcome both Na+ toxicity and
osmotic effect caused by high salinity (Vera-Estrella et al., 2005).

However, this mechanism could not be the sole remedy of the
problem as vacuoles have a limitation for accommodating Na+.
Therefore, a combination of more mechanisms needs to work as a
unit of the salt tolerance strategy. For instance, limiting Na+ entry
and increasing Na+ extrusion could effectively reduce Na+

accumulation in the cytosol. As salt tolerance, barely, is a
complex trait controlled by many factors (Zhu, 2001), only
one trait is not likely to result in any significant improvement.
The salinity problem can only be solved successfully if several
important traits are combined in a complementary manner.

Tibet provides a rich gene pool of wild barley with wider
variation in adaptation to abiotic stresses, including drought and
salinity (Wu et al., 2011; Dai et al., 2012). For the discovery of
novel alleles that are potentially related to salt tolerance in wild
barley, evaluation of the genetic diversity and identification of salt
tolerance mechanisms has been elaborated as important
approaches (Wu et al., 2011). Moreover, among various
available DNA molecular markers, SNPs are the most
abundant type and have been proven to be useful in genetic
studies. Barley seeds have been used in genotyping studies since
long and also act as important resources for the characterization
of genetic variation, which could ultimately pave the way for
developing cultivated varieties with enhanced tolerance to abiotic
stresses and other production challenges (Nevo and Chen, 2010).
SNP markers were initially developed for cultivated barley;
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however, its usage could also be expanded to wild resources
(Rostoks et al., 2005). In the present research, we aim to 1)
highlight the salt tolerance mechanism of four isoforms,
(HvNHX1 to HvNHX4), located in the vacuole and differing in
their level of K+ and Na+ accumulation and 2) determine allelic
diversity of HvNHX isoforms in wild and cultivated barleys.

MATERIALS AND METHODS

This experiment was conducted in two parts. First, seeds of
two cultivated barleys, CM72 (tolerant) Gairdner (sensitive),
and two wild barleys, XZ16 (tolerant) and XZ169 (sensitive),
were used to evaluate the salinity tolerance. Second, 36 wild
barley accessions were used from eight sub-populations of
Tibetan wild barley accessions to investigate the allelic
variation on the basis of single-nucleotide polymorphism
(SNP). The seeds were surface-sterilized with 3% H2O2 for
15 min and washed five times with double distilled water. The
seeds were transferred to germination boxes and incubated
(22/18°C, day/night) for 10 days. Uniform seedlings at the
two-leaf stage were transplanted onto 35 L rectangular pots.
Nutrient solution was prepared according to the method given
by Zahra et al., (2014). The pH of the hydroponic solution was
maintained at 5.5–6. After 2 weeks post transplantation,
barley plants were grown in three different levels of salt
stress, (1) 0 (control); (2) 150 mM NaCl; and (3) 300 mM
NaCl. For gene expression analysis, root and leaf tissues were
collected at four different time points between 0 and 24 h
under 150 and 300 mM salt stress from four genotypes. A
complete randomized design with three replications was used
in this experiment.

Determination of Sodium and Potassium
Concentration in Plant Tissue
The plants were harvested after 3 weeks of salt treatment. Samples
of roots and leaves were collected from plants of each treatment
separately, and fresh weight was recorded. Similarly, dry weight
was recorded by drying the plant samples at 70°C for 74 h
respectively. For measurements of root and leaf sample Na+

and K+ concentrations, 0.1 g of dry root and leaf samples was
dried to ash and then dissolved in 10 ml HNO3: H2O (1:1). An
atomic absorption spectroscope (Shimadzu, Japan) was used for
ion content measurements.

RNA to cDNA Synthesis for RT- PCR
RNA from roots and leaves of four genotypes was extracted
using a kit method (Tiangen Technology Co., Ltd.DP432),
according to the manufacturer’s protocol. Full-length strand
cDNA was synthesized from 2 μg of RNA using the Takara Bio
Inc., (RR037A). BIO-RAD Master Mix kit was used to carry
out RT-PCR reactions according to the manufacturer’s
protocol. Measurements were taken for two biological and
three technical repeats. The relative gene expression levels
were calculated by subtracting the threshold cycle (Ct) values
for Gapdh from those of the target gene (to give ΔCt) and then

calculating 2−△△Ct (Livak and Schmittgen, 2001). The primers
used for RT-PCR were designed using Primer-BLAST
(Supplementary Table S1).

Isolation and Sequence Analysis ofHvNHX1
and HvNHX3 cDNA
After confirmation of the gene expression analysis, out of four
isoforms, two (HvNHX1 and HvNHX3) were selected to
further investigate allelic variation based on SNPs and
small INDEL detection approach. To detect SNPs in the
cDNA pool from 38 barley genotypes, four primer pairs on
to HvNHX1 (Supplementary Figure S1; Supplementary
Table S2) and three pairs of primers to the HvNHX3 gene
were designed to amplify whole coding sequence (CDS)
regions for sequencing (Supplementary Figure S2;
Supplementary Table S2). PCR primers were designed
using Primer-BLAST. Each 50 μL PCR was carried out
using 25 μl (2x Easy Taq® PCR Super Mix), 2 μl (cDNA
template), 1/1 μl (Primer forward/reverse 10 μM), and 21 μl
(ddH2O). To confirm the primer amplification specificity,
samples were tested for gel electrophoresis, and the
required bandwidth obtained was then matched with a
wide range of DNA markers. The samples were then sent
to Shanghai Majorbio Co. Ltd., Shanghai, P.R. China for
sequencing. Gene-specific primers were used for SNP
identification. The sequences obtained from the company
were aligned using ClustalX software to observe SNPs.

Visualization of Na+ Ions Through
Fluorescence Dye
To observe tissue-specific Na ion accumulation, the roots were
stained with 25 mM specific fluorescent probe (Coro Na-Green
AM) and 0.02% pluronic acid (Invitrogen) for 3 h as described by
in our previous study by Zahra et al., (2014). The roots were
incubated in the dark for 3 h and then root tips were carefully
washed with deionized water and observed using a confocal
microscope (LSM 710 NLO Jena, Germany) at wavelengths of
492 and 516 nm.

Statistical Analysis
SPSS (17.0) software was used for data analyses. The sequences
were assembled using DNAStar. TASSEL was used to identify
single-nucleotide polymorphisms (SNPs) within the sequence of
the HvNXH1 and HvNXH3 genes.

RESULTS

The Difference in Tissue Dry Weight and Ion
Content Among Four Genotypes Under
Moderate and Severe Salt Stress
After 3 weeks of salt treatment, the treated plants showed a
significant reduction in root and leaf dry weight; however, the
level of reduction varied among the four genotypes (Table 1).
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XZ16 and CM72 are more tolerant genotypes, showing a
minimal reduction of root and leaf dry weight under
moderate (150 mM) and severe (300 mM) NaCl stress,
whereas the two salt-sensitive genotypes, Gairdner and
XZ169, exhibited a significanty reduction in root and leaf
dry weight reduced relative to the control. However, the
extent of reduction in dry weight of roots and leaves at
both salinity levels was in order of XZ16 < CM72 < XZ169
< Gairdner (Table 1).

Na+ concentrations in both roots and leaves of four genotypes
were noticeably enhanced under salt stress, while K+

concentrations in roots and leaves of the four genotypes
showed a remarkable reduction with increasing NaCl levels.
Hence, more increase of Na+ concentration and reduction of
K+ concentration was observed in Gairdner and XZ169 than that
in XZ16 and CM72. Therefore, Gairdner and XZ169 had a
considerably higher Na+/K+ ratios than XZ16 and CM72 in
both roots and leaves under moderate and severe salt stress
(Table 1).

Correlation Between Relative dry Weight
and Ionic Contents
Na+ concentrations in leaves and roots were significantly
negatively correlated with relative root and leaf dry weight
(Figures 1C,D). Moreover, K+ concentration in both the
tissues had a positive correlation with relative leaf and root
dry weight (Figures 1A,B). However, a significantly negative
correlation was observed between shoot and root Na+/K+ ratio
and relative leaf and root dry weight (Figures 1E,F).

Expression of Na+/H+-Antiporters (HvNHX)
Isoform in Response to Moderate and
Severe Salt Stress in Roots
We studied the influence of salt stress on HvNHX1, HvNHX2,
HvNHX3, and HvNHX4 gene expression in roots and leaves of
four barley genotypes after 0, 6, 12, and 24 h of exposure to
moderate and severe salt stress. Our results revealed that in the
case of XZ16, theHvNHX1 gene showed a higher expression level

in the root tissue at all time points under moderate and severe
salt stress than the control. The expression level of the HvNHX1
gene in CM72 was also upregulated at all time points under
moderate and severe salt stress; however, the expression level of
HvNHX1 in XZ16 was markedly enhanced as compared with
CM72 (Figures 2A,B), whereas in salt-sensitive genotypes
XZ169 and Gairdner, downregulation was observed in the
expression level of the HvNHX1 gene at all time points in
XZ169, except at 6 h, whereas in Gairdner at both the
salinity levels, downregulation was observed as compared
with the control (Figures 2A,B).

The expression level ofHvNHX2was significantly upregulated
in XZ16 at both salinity levels as compared with the control, but a
higher expression level was observed at 6 and 24 h (Figures
2C,D) However, the expression level of the HvNHX2 gene in
CM72 under moderate salt stress was slightly expressed as
compared with the control, but at 12 and 24 h exposure of
severe stress, the expression level in CM72 was more than that
of XZ16 under 300 mM salt stress. In contrast, the expression
level of HvNHX2 in Gairdner was downregulated under both
salinity levels, while the expression level in XZ169 was not
affected at the initial hour but then declined under moderate
salt stress, while the reverse was true for severe salt stress
(Figures 2C,D).

It was also found that the expression of theHvNHX3 gene in
XZ16 was highly upregulated at both salinity levels as
compared with other three genotypes, whereas the
expression level in CM72 was upregulated in moderate salt
stress, while at severe salt stress, slight increase was observed as
compared with the control (Figures 2E,F). Moreover, the
expression level in XZ169 and Gairdner was downregulated
at moderate salt stress, and no change was observed in
HvNHX3 gene expression in response to 300 mM NaCl
(Figures 2E,F).

The expression level of HvNHX4 was upregulated in XZ16
and CM72 under both levels of salt stress, but the expression
level was higher in XZ16 than CM72 under moderate salt
stress, whereas the reverse was true for CM72 under severe salt
stress. In the roots of XZ169 and Gairdner, the expression of
HvNHX4 was downregulated at moderate salt stress, whereas it

TABLE 1 | Comparison of root and leaf dry weight, Na+ and K+ content, and the Na+/K+ ratios among four barley genotypes under salt stress.

Salinity Levels
(mM)

Genotypes DW (g) roots and leaves K+(mg g−1 DW)
roots and leaves

Na+ (mg g−1 DW)
roots and leaves

Na+/K+ ratio roots
and leaves

0 XZ16 0.19 1.26 62.16 66.70 4.140 5.303 0.06 0.08
CM72 0.18 1.25 64.86 66.94 2.850 3.29 0.04 0.05
XZ169 0.18 1.23 64.99 68.90 3.54 4.83 0.05 0.07
Gairdner 0.17 1.25 70.73 71.07 3.38 4.00 0.05 0.06

150 XZ16 0.17(11%) 1.13(10%) 18.65 45.73 20.53 35.95 1.10 0.8
CM72 0.16(11%) 1.12 (10%) 17.93 39.05 23.78 36.57 1.33 0.9
XZ169 0.13(28%) 0.77(38%) 14.74 24.12 35.32 65.83 2.39 2.7
Gairdner 0.12(29%) 0.66(47%) 12.96 21.98 49.38 68.58 3.82 3.1

300 XZ16 0.13(24%) 0.71(37%) 9.43 30.75 35.75 52.42 3.79 1.7
CM72 0.12(25%) 0.68(39%) 9.04 29.88 43.87 62.20 4.85 2.1
XZ169 0.09(31%) 0.36(53%) 6.29 16.21 55.55 91.38 8.82 5.5
Gairdner 0.06(50%) 0.32 (51%) 5.95 14.27 62.53 96.48 10.50 6.7
p level ** ** ** ** ** ** ** **

Probability level (p)** significant at p ≤ 0.01.Bold values indicate the genes position.
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was slightly upregulated under severe salt stress
(Figures 2G,H).

Expression of Na+/H+-Antiporter (HvNHX)
Isoform in Response to Moderate and
Severe Salt Stress in Leaves
The expression level of HvNHX1 in leaves of XZ16 and CM72
was upregulated at all time points, but markedly increased in
XZ16 compared with CM72 under moderate and severe salt
stress (Figures 3A,B). In contrast, the expression level of
HvNHX1 in Gairdner was downregulated at 24 h of moderate
salt stress, while no change was observed at severe salt stress
compared with the control. However, the expression level in

XZ169 was slightly upregulated under both salinity levels
(Figures 3A,B Figures 3A,B). Moreover, the expression level
of HvNHX2 was significantly upregulated in XZ16 and CM72 at
both salinity levels. However, this gene was more highly
expressed in CM72 than XZ16 under both salinity levels,
except at 24 h of severe salt stress (Figures 3C,D). In
contrast, HvNHX2 in Gairdner was downregulated under
both salinity levels, whereas the expression level in XZ169
was slightly increased at 24 h of moderate salt stress as
compared with the control (Figures 3C,D). As shown in
Figures 3E,F, the expression of the HvNHX3 gene in XZ16
was highly upregulated at both salinity levels as compared with
the other three genotypes, except at 24 h of severe salt stress,
where expression of HvNHX3 was slightly downregulated as

FIGURE 1 | Correlation between K+ and Na+ contents and Na+/K+ ratios and relative leaf (A,C,E) and root (B,D,F) dry weight is based in of four genotypes.
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compared with CM72. In contrast, the expression ofHvNHX3 in
Gairdner was downregulated under both salinity levels.
Moreover, the expression level in XZ169 remained
unchanged under moderate salt stress but slightly induced at

6 and 12 h and then declined at 24 h of severe salt stress as
compared with the control (Figures 3E,F).

The expression of HvNHX4 was upregulated in XZ16 and CM72
under moderate and severe salt stress as compared with the control.

FIGURE 2 |Relative gene expression ofHvNHX isoforms in leaves of four genotypes after moderate and severe salt stress. Data are expressed asmeans ± SD of at
least three repeats.
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The expression was more pronounced in CM72 than XZ16, except at
24 h of severe salt stress in ZX16. In leaves, the overall expression level
of HvNHX4 in XZ169 remained unchanged but slightly induced at
6 h under moderate salt stress, whereas under severe salt stress, the

expression ofHvNHX4 in XZ169 was slightly upregulated at all time
points (Figures 3G,H).

In general, both moderate and severe salt treatment caused
fluctuations in the expression of allHvNHX isoforms in roots and

FIGURE 3 | Relative gene expression ofHvNHX isoforms in roots of four genotypes after moderate and severe salt stress. Data are expressed as means ± SD of at
least three repeats.
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leaves of both the salt-tolerant genotypes as compared with
sensitive ones. The strongest expression level in XZ16 roots
and leaves was ranked as
HvNHX1>HvNHX3>HvNHX4>HvNHX2 and in CM72 as
HvNHX2>HvNHX4> HvNHX1>HvNHX3. HvNHX isoforms
were also induced in XZ169, the salt-sensitive genotype, but to
a lesser extent. However, all the HvNHX isoforms were down
regulated in Gairdner.

It was also observed that less Na+ was accumulated in the roots
of XZ16 than the other genotypes visualized by CoroNa-Green, a
sodium-specific fluorophore (Figure 4). Bright images showed
that more Na+ content was accumulated in plant roots.

SNP Detection and Validation
In the present study, 36 wild barley accessions (from eight sub-
population of Tibetan wild barley accession) and two cultivated
barley genotypes were used to investigate the allelic variation in
HvNHX1 and HvNHX3 based on SNPs. The sequence of genes
HvNHX1 (AB089197.1) and HvNHX3 (DQ372061.1) was
downloaded from NCBI. Complete coding regions of mRNA
ofHvNHX1 (2564 bp) andHvNHX3 (1794 bp) were cloned. Four
primer pairs to HvNHX1 and three pairs of primers to the
HvNHX3 gene were designed to amplify the complete CDS
regions of candidate genes for sequencing. In order to confirm
the primer amplification specificity, few of the representative samples

were tested for gel electrophoresis, and the required bandwidth
obtained was then matched with a wide range of DNA markers
(Figures 5, 6). SNPs were detected using the sequencing and
alignment method. We successfully amplified and sequenced
HvNHX1 and HvNHX3 genes. Details of the nucleotide variations
among the barley accessions and/or genotypes forHvNHX1 genes are
presented in Table 2 and HvNHX3 genes are presented in Table 3.

Overall, evaluation of the sequencing data of 38 barley
genotypes showed mutation, including SNPs and small
insertion–deletion (INDEL) sites, for targeted gene HvNHX1.
Thirty-nine SNPs were observed in total 38 barley genotypes/
accessions as shown in Table 2. Moreover, the range of
polymorphic sites was 1–3, with an average of one SNP site
per barley genotype (Table 2). The HvNHX3 gene was amplified
by three primers. The range of polymorphic sites was 1–5, with an
average of two SNP sites per barley genotype. Eighty-four SNPs
were detected for the HvNHX3 gene in 38 barley genotypes/
accessions as shown in Table 3.

Moreover, SNP analysis revealed that in CM72 (salt-tolerant
genotype), A is deleted at 300bp and replaced by G at 1978bp
while in XZ16 (salt-tolerant genotype), C was replaced by T at
1843bp. For salt-sensitive Gairdner genotype, G, A, and C were
deleted at 267, 1,069, and 1,816 bp, respectively. In wild
XZ169 salt-sensitive genotype, C was deleted at 1,816 bp and
G was replaced by A at 1,820 bp as compared with the reference

FIGURE 4 | Fluorescence detection of Na+ accumulation in roots of four genotypes after moderate and severe salt stress. Scale bar10 µm.
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HvNHX1 gene. Moreover, in theHvNHX3 gene in CM72, A and
T was replaced by T and G at 373 and 1221bp, respectively,
while in XZ16, G was deleted at 11bp and replaced by T at 45bp
while A, T, and G were replaced by T, G, and A at 373, 1,221, and
1,661 bp, respectively (Table 3). For salt-sensitive Gairdner
genotype, A was replaced by T at 373bp. In XZ169, G was
replaced by T at 11 bp while A was replaced by T at 373 bp and
at 1190 bp. T was deleted as compared with the reference
HvNHX3 gene. It may be concluded that variations of SNP
in salt-tolerant wild barley might offer elite alleles for the
development of salt-tolerant barley.

DISCUSSION

Salinity tolerance in plants is a complex multigenic trait,
including physiological and molecular aspects (Flowers, 2004).
In salt stress conditions, Na+ first enters the cytosol of a plant and
disturbs important physiological, biochemical, and molecular

processes; consequently, it restricts plant growth, disruption of
ion homeostasis (Mane et al., 2010; Basu et al., 2020), and
development, therefore posing a serious threat to crop
production (Zhu, 2007). One of the key mechanisms in plants
to cope with salinity stress is their ability to reduce sodium ion
(Na+) transport at both the tissue and cellular level, either by
emitting Na+ into tissues (Tester and Davenport 2003), or by
maintaining ion homeostasis within the cell, including Na+

compartmentalization in the vacuole (Tester and Davenport
2003; Flowers and Colmer 2008). Barley is a well-known salt-
tolerant crop (Steppuhn et al., 2005; Jabeen et al., 2021); however,
in cultivated barley, the increase in sensitivity to salinity stress is
observed due to the increasingly narrow genetic diversity (Zhu,
2001). However, the Tibet plateau provides a rich pool of wild
barleys with a high degree of contrast in salt tolerance that could
be attributed to high genetic diversity compared with cultivated
barley (Shavrukov et al., 2010).

In this study, the salt tolerance mechanism of four isoforms
(HvNHX1 to HvNHX4) and their allelic diversity in wild and

FIGURE 5 | Pre-sequencing sample amplification trial to verify the gene and amplicon size for the selected primer pairs ofHvNHX1 primer 1 (A), primer 2 (B), primer
3(C), and primer 4(D). M = wide range DNA marker (100–2000 bp).
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cultivated barleys was evaluated after application of 150 and
300 mM salt stress in hydroponic conditions. Salt stress causes
several physiological, morphological, and biochemical changes in
plants (Uçarlı and Gürel 2020). The current results indicate that
XZ16 and CM72 are more tolerant genotypes with minimal
reduction of root and leaf dry weight under moderate
(150 mM) and severe (300 mM) NaCl stress. However, within
tolerant genotypes, wild barley XZ16 showed comparatively less
reduction than cultivated barley CM72. This suggested the
involvement of a rather different mechanism of salt tolerance
in XZ16 compared with CM72. The result was consistent with the
findings observed in our previous study (Wu et al., 2011; Zahra
et al., 2014). A high expression level of Na+/H+ antiporters in
tolerant plants could lead to enhanced Na+ compartmentalization
into vacuoles and ultimately improve plant growth by defending
the cytoplasm from harmful effects of Na+ (Blumwald et al., 2000;
Galvez et al., 2012). Moreover, in the present study, the increase
in Na+ and decrease in K+ concentrations in Gairdner and XZ169
was distinctly higher than those in XZ16 and CM72. A similar
trend was observed in the studies conducted by Qui et al., 2011;
Wu et al., 2011, describing that the reduction in growth was
caused by enhanced Na+ and reduced K+ tissue content, which
caused ion toxicity and damaged plant metabolism and growth
(Table 1).The tissue-specific Na ion accumulation was also
confirmed through fluorescence dye, which was directly

proportional to the Na+ ion accumulation in roots (Figure 4).
Genotypes with the lowest Na+ tissue accumulation produced
more biomass and vice versa (Munns and Mark, 2008). In the
present study, the expression level of HvNHX isoforms follows a
complex pattern, but the gene expression was more induced in
salt tolerant genotypes, indicating the important role of these
genes in the salt tolerance mechanism. In leaves and roots, the
expression of HvNHX1 and HvNHX4 in XZ16 and CM72 was
upregulated at all time points as compared with sensitive ones,
NHX1 (Quintero et al., 2009; Fukuda et al., 2004; Saqib et al.,
2005; Brini et al., 2007) and NHX4 (Gálvez et al., 2012) in wheat
and Arabidopsis, and a high expression pattern of NHX1
(Quintero et al., 2009; Fukuda et al., 2004; Saqib et al., 2005;
Brini et al., 2007) and NHX4 genes in tomato (Galvez et al., 2012)
was reported to be involved it in better plant growth because
NHX1 and NHX4 are the key molecular players in maintaining
plant cell homeostasis by regulating several physiological
processes, such as cell expansion, osmotic adjustment, cell
volume, pH, and ion regulation (Pardo et al., 2006).

Na+/H+ antiporter protein has different membrane
positions in the cell, and its function may be affected by
ion accumulation. Previously, the topological studies
elucidated that the position of N-terminal of AtNHX1 is
facing toward the cytosol, and its C-terminal, hydrophilic
region, residing in the vacuolar lumen could protect the

FIGURE 6 | Pre-sequencing sample amplification trial to verify the gene and amplicon size for the selected primer pairs of HvNHX3 primer 1 (A), primer 2 (B), and
primer 3(C). M = wide range DNA marker (100–2000 bp).
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cytoplasm from deleterious effects of Na+ (Yamaguchi and
Blumwald, 2005, Flowers and Colmer, 2008. The function of
Na+/H+ antiporters may not only be related to the regulation
of gene expression but could also be involved in
transcriptional modification of the proteins. The activity of
antiporters could be regulated by phosphorylation through
the interaction of various kinases with other cellular proteins.
So, the differential response of these binding factors in a
species-dependent manner could alter the activity of the
Na+/H+ antiporters. For instance, the binding of AtCaM15,
a calmodulin-like protein 15 (localized in plant vacuolar
compartment), to the C-terminal domain of AtNHX1 (a
tonoplast transporter) changed the Na+/K+ selectivity of
the antiporter in Arabidopsis (Yamaguchi and Blumwald,
2005; Munns and Mark, 2008). Moreover, similar to the
overexpression of HvNHX1 in tolerant genotypes, HvNHX3
was also expressed in wild barley XZ16 and CM72. These

results suggest that HvNHX1 and HvNHX3 may encode a
putative vacuolar NHX that could play an important role in
salt tolerance by mediating K+/H+ exchange in plants (Liu
et al., 2010).

In plants, H+V-PPase and H+-ATPase are the two different
vacuolar pumps that help the Na+/H+ antiporter in the
vacuolar lumen to transport Na+ from the cytoplasm to
vacuoles by generating the electrochemical gradient force.
Generally, under salinity stress, salt-tolerant plants
maintain higher K+/Na+ or lower Na+/K+ ratios in the
cytoplasm and regulate the osmotic balance of the cells by
sequestering Na+ in the vacuoles (Maeshima, 2000). Our
results are consistent with those of a previous study that a
lower Na+/K+ ratio was observed in tolerant genotypes
(Table 1) (Wu et al., 2011; Zahra et al., 2014). The
HvNHX2 and HvNHX4 isoforms were also induced by salt
stress, although not to the same extent as HvNHX1 and

TABLE 2 | Sequencing results showing single-nucleotide polymorphisms (SNPs) and insertion–deletions (INDEL) pattern in theHvNHX1 gene locus having Na+/H+ activity in
barley; del: deletion. Dots indicate the same nucleotide with the reference sequence; the letters in each sample represent nucleotide substitution sites. SPS = SNP per
sample. The letters in each sample represent nucleotide substitution sites.

Gene position (59 to 39)

267 300 340 695 825 1069 1816 1818 1820 1827 1588 1741 1828 1843 1936 1978 2010 SPS

REF-HvNHX1 G A A C A A C C G A G G G C T A C

CM72 . del . . . . . . . . . . . . . G . 1
G del . . . . del del . . . . . . . . . . 0
XZ1 . . . . . . . . . . . . . T . . . 1
XZ2 . . . . C . . . . . . . . . . . G 2
XZ4 A . . . . . . . . . . . . . . . . 1
XZ6 . . . . . . . . . . . . . . . . . 0
XZ9 . . . . . . del . A . A . . . . . G 3
XZ11 . . . . . . . del . . . . . . . . . 0
XZ13 del . . . C . . del . . . . . . . . . 1
XZ16 . . . . . . . . . . . . . T . . . 1
XZ18 . . T . . . . . . . . A . T G . . 3
XZ23 A . . T . . del del . G . . A . . . . 4
XZ36 del . . . . G . . . . . . A . . . . 2
XZ38 del . . . . . . . . . . . . . . . . 0
XZ41 . . . . . . . . . . . . . . . . . 0
XZ42 . del . . . G . . . . . . . . . . . 1
XZ50 del del . . . . . . . . . . . . . . G 1
XZ61 . . . . . . . . . . . . . . . . . 1
XZ66 del . . . . . . . . . . . . T . . del 1
XZ73 . . . . . . del del . G . . . . . . . 1
XZ74 . . . . . . . . . . . . . . . . . 0
XZ75 . . . . . G . . . . . . . . . . . 1
XZ78 . del . . . del . . . . . . . . . . G 1
XZ87 . . . . . . . . . . . . . . . . G 1
XZ113 . . . . . . . . . . . . A . . . . 1
XZ115 . . . . C . . . . . . . . . . . . 1
XZ120 . . . . . . . . . . . . . T . . G 2
XZ126 T del . . . . . . . G . . . . . . . 2
XZ146 . . . . . G . . . . . . . . . . . 1
XZ156 . . . . . . del . . . . . . . . . . 0
XZ161 . . . . . . . . . . . . . . . . del 0
XZ165 del . . . . . . del . . . . A . . . . 1
XZ166 . . . . . . . . . . . . . . . . . 0
XZ167 . . . . . . . . . . . . A . . . . 1
XZ169 . . . . . . del . A . . . . . . . . 1
XZ174 . . . . . . . . . . . . A . . . . 1
XZ179 . . . . . . del del . G . . . . . . . 1
XZ188 . . . . . . . del . . . . . . . . . 0
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HvNHX3. Expression of HvNHX2 and HvNHX4 in roots
under moderate salt stress was more upregulated in XZ16
than in CM72, whereas high expression levels of HvNHX2 and
HvNHX4 under severe salt stress in both roots and leaves were
observed in CM72. The results from previous studies showed
that HvNHX2 and HvNHX4 play an important role in the
maintenance of K+ concentration in plant tissues (Venema
et al., 2003; Rodriguez Rosales et al., 2008).

To study the polymorphism in terms of SNP detection in
the genes of interest is a powerful technique to investigate the
gene(s) function and get desirable mutations for crop
breeding. In our previous studies, more allelic variation in
Tibetan wild barley accessions was observed for HvCBF3,
HvCBF4, and HvHKT genes responsible for salt tolerance
(Qui et al., 2011; Wu et al., 2011). These findings are
further confirmed by the present study that Tibetan wild
barley could provide rich source of allelic variation for the

salt-responsive gene(s) as compared with salt-tolerant
cultivated barley CM72. So, evaluation of genetic variation
and identification of salt tolerance mechanism in wild barley
are important steps to unravel the novel alleles involved in
salinity tolerance. In conclusion, physiological and gene
expression analysis revealed that HvNHX1 and HvNHX3
are the candidate genes that function as regulating ions by
sequestration of Na+ in the vacuole. Moreover, Tibetan wild
barley could be used as a rich source of genetic variation to
explore the dynamics of abiotic stress tolerance in barley and
other cereal crops.
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Classification and Regression Models
for Genomic Selection of Skewed
Phenotypes: A Case for Disease
Resistance in Winter Wheat (Triticum
aestivum L.)
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Most genomic predictionmodels are linear regressionmodels that assume continuous and
normally distributed phenotypes, but responses to diseases such as stripe rust (caused by
Puccinia striiformis f. sp. tritici) are commonly recorded in ordinal scales and percentages.
Disease severity (SEV) and infection type (IT) data in germplasm screening nurseries
generally do not follow these assumptions. On this regard, researchers may ignore the lack
of normality, transform the phenotypes, use generalized linear models, or use supervised
learning algorithms and classification models with no restriction on the distribution of
response variables, which are less sensitive when modeling ordinal scores. The goal of this
research was to compare classification and regression genomic selection models for
skewed phenotypes using stripe rust SEV and IT in winter wheat. We extensively
compared both regression and classification prediction models using two training
populations composed of breeding lines phenotyped in 4 years (2016–2018 and 2020)
and a diversity panel phenotyped in 4 years (2013–2016). The prediction models used
19,861 genotyping-by-sequencing single-nucleotide polymorphism markers. Overall,
square root transformed phenotypes using ridge regression best linear unbiased
prediction and support vector machine regression models displayed the highest
combination of accuracy and relative efficiency across the regression and classification
models. Furthermore, a classification system based on support vector machine and
ordinal Bayesian models with a 2-Class scale for SEV reached the highest class
accuracy of 0.99. This study showed that breeders can use linear and non-parametric
regression models within their own breeding lines over combined years to accurately
predict skewed phenotypes.

Keywords: generalized linear model, non-parametric, ordinal regression, rrBLUP, stripe rust, support vector
machines, transformations
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1 INTRODUCTION

Genomic selection (GS) is posed to increase genetic gain and
reduce cycle time for complex agronomic traits that are difficult
to phenotype and analyze (Meuwissen et al., 2001). With the
advent of high-throughput genotyping, it is now feasible to
develop and implement GS models for categorical/ordinal
phenotypes that are common in most breeding programs and
often difficult to analyze. The difficulty in phenotyping and
analysis can be due to the traits’ genetic complexity,
environmental dependency to display variation, and the
inability of statistical models to model phenotypes adequately.
Most GS models are linear regression models that assume
continuous and normally distributed phenotypes (Montesinos-
López et al., 2015c).

When faced with data that do not follow the assumption of a
linear model, researchers have several options. They may either
ignore the lack of normality, transform the phenotypes, use
generalized linear models (GLMs), or use machine learning
(ML) algorithms and classification models. Machine learning
models have no restriction on the distribution of response
variables, which are less sensitive when modeling ordinal
scores (Montesinos-López et al., 2015a; González-Camacho
et al., 2018). Most GS models treat disease resistance as
continuous values and utilize regression models and
transformations for prediction whereas only a few studies have
used classification methods (Ornella et al., 2012; Ornella et al.,
2014; Rutkoski et al., 2014; Muleta et al., 2017).

When the number of categories is large and the data follow
more of a normal distribution, the ordinality of data can be
ignored (Montesinos-López et al., 2015b). However, ignoring the
lack of normality and using linear regression models imposes
various problems. Linear regression models are limited to
modeling additive effects only, whereas machine learning
models account for both non-additive and epistatic genetic
effects (Riedelsheimer et al., 2012). Modeling only additive
effects on quantitative resistance to stripe rust is not a major
issue, nonetheless, due to previous studies showing mainly
additive effects of high-temperature adult-plant (HTAP)
resistance to stripe rust (Chen et al., 1995a; Chen et al.,
1995b). Ultimately, linear regression models assume
continuous and normally distributed phenotypes, whereas
machine learning models are not restricted to a certain
distribution of response variable and this causes an issue on
the analysis of traits (González-Camacho et al., 2018).

Data transformation is another approach used to deal with
skewed and ordinal trait information. Logarithmic or square root
transformations are commonly implemented to transform data
for small sample sizes (Montesinos-López et al., 2015c), where
they are considered standard procedures to stabilize variance, but
fail to normalize inflated count data (O’Hara and Kotze, 2010;
Montesinos-López et al., 2015b). Moreover, transforming data
results in a loss of accuracy and power in models, especially in a
small sample size (Montesinos-López et al., 2015a). When
transformations are used on count data with a high number of
zeros causing overdispersion, transformations may not be able to
create a normal distribution (Montesinos-López et al., 2016).

Another issue with using transformations is the resulting negative
predicted values which are not plausible for disease resistance
scores.

Another approach is to use GLMs, which accommodate non-
normal data with heterogenous variance and correlated
observations (Montesinos-López et al., 2015a; Montesinos-
López et al., 2015b). GLMs provide more sensible results and
have greater power to identify model effects as statistically
significant (Montesinos-López et al., 2015b). Poisson and
negative binomial regression models are the most common
GLMs used for count and ordinal data (Montesinos-López
et al., 2015c). GLMs model a function of the response mean as
a linear function of the coefficients rather than modeling y as a
linear function. These models have advantages over linear models
due to their ability to model a skewed non-negative discrete
distribution towards lower numbers as seen in disease resistance
phenotypes (Montesinos-López et al., 2016). Several studies have
shown the feasibility of integrating GLM parametric approaches
into GS models such as Bayesian logistic ordinal regression
(BLOR), threshold genomic best linear unbiased predictor
(TGBLUP), and Bayesian mixed-negative binomial (BMNB)
genomic regression (Montesinos-López et al., 2015a;
Montesinos-López et al., 2015b; Montesinos-López et al.,
2015c, Montesinos-López et al., 2016) and observed that the
ordinal models present a viable alternative for predicting ordinal
traits.

The last approach is to use machine learning algorithms, and
classification models with no restriction on the distribution of
response variables are less sensitive whenmodeling ordinal scores
while also accounting for epistatic effects (Ornella et al., 2014;
González-Camacho et al., 2018). Support vector machines
(SVMs) previously displayed higher performance for relative
efficiency and Cohen’s kappa coefficient than traditional
regression models such as Bayesian LASSO, Ridge Regression,
and Reproducing Hilbert spaces (Ornella et al., 2014; González-
Camacho et al., 2018). For the classification models, Ornella et al.
(2014) further showed the superiority of SVM as the best-
performing model compared to random forest (RF).
Additionally, classification models displayed an advantage in
selecting the top performing lines.

Resistance to diseases, such as stripe rust (caused by
Puccinia striiformis Westend. f. sp. tritici Erikss.) in wheat
(Triticum aestivum L.) is commonly recorded in ordinal scales
and percentages that do not follow the assumptions of linear
regression models (Montesinos-López et al., 2015a; González-
Camacho et al., 2018). The unbalanced, skewed distribution
of resistant phenotypes is another issue for disease resistance
traits in breeding programs. For example, in most wheat
breeding programs, disease resistance is selected early
(i.e., headrow selection before yield trials) in the breeding
process. Consequently, this early selection and screening
process skews the lines in disease nurseries and yield
trials towards mostly resistant lines. Therefore, not only
are disease-resistant traits commonly expressed in ordinal
and categorical scales, but they can also be very skewed
towards resistance and no longer follow a normal
distribution.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8357812

Merrick et al. Regression vs. Classification

138

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Stripe rust is one of the most devastating diseases of wheat
worldwide (Chen, 2020) and is especially destructive in the
western United States (Chen et al., 1995b; Rutkoski et al.,
2014; González-Camacho et al., 2018; Liu et al., 2019) causing
more than 90% yield losses in fields planted with susceptible
cultivars (Liu et al., 2020). The use of resistant varieties and
fungicide applications are the primary methods to control stripe
rust (Chen et al., 1995b; Liu et al., 2020). Quantitative stripe rust
resistance, also known as adult-plant resistance (APR) or HTAP
resistance, is usually a non-race specific resistance associated with
durable resistance with some genes being effective for more than
60 years (Klarquist et al., 2016). APR is conferred by different
numbers of loci with varying effects and often displays partial
resistance, which makes it difficult to incorporate into new
cultivars (Liu et al., 2019). Therefore, APR must be improved
over multiple cycles of selection and can be approached similarly
to other agronomic traits (Rutkoski et al., 2014; Poland and
Rutkoski, 2016; González-Camacho et al., 2018). GS
approaches would be able to capture the additive effects of
APR and are therefore relevant for accumulating favorable
alleles for rust resistance (Rutkoski et al., 2014; Michel et al.,
2017).

However, most GS studies treat disease resistance as
continuous values and utilize regression models and
transformations for prediction whereas only a few studies have
used classification methods (Ornella et al., 2012; Ornella et al.,
2014; Rutkoski et al., 2014; Muleta et al., 2017). Therefore, this
study presents empirical research to 1) evaluate GS methods

using all transformations, GLMs, and non-parametric models for
handling ordinal categorical phenotypes; and 2) implement these
methods into selected and unselected training populations for
predicting stripe rust resistance. This study identified the most
accurate methods for dealing with complex phenotypes in the
context of disease resistance in winter wheat.

2 MATERIALS AND METHODS

2.1 Phenotypic Data
TheWashington State University (WSU)WinterWheat Breeding
Program takes stripe rust notes every year to select for stripe rust-
resistant lines. Two training populations were used to compare
the different methods. The first training population consists of F3:
5 breeding lines (BL) and doubled-haploid (DH) unreplicated
trials in Pullman and Lind, WA planted in 2016–2018 and 2020
growing seasons evaluated for stripe rust responses (Table 1).
Due to the unreplicated nature of the single plots, each trial in the
BL consisted of unique lines, which resulted in a total of 2,634
lines (1,009 in Lind and 1,625 in Pullman) over all years and
locations. The BL population was subjected to stripe rust
resistance screening and culling in headrows the previous year
in unreplicated trials and therefore represents our prior selected
population. The second training population consisted of a diverse
association mapping panel (DP) with 475 lines evaluated in
unreplicated trials in Central Ferry and Pullman, WA from
2013 to 2016. The DP consisted of varieties from various

TABLE 1 |Study populations for stripe rust infection type and disease severity for the diversity panel (DP) and breeding line (BL) training populations phenotyped from 2013 to
2016 and 2016–2020, respectively.

Location Triala Year Individuals ITb

1
SEVc

1
IT 2 SEV 2 IT 3 SEV 3

Central
Ferry

DP 2013 475 X X X X X X

Pullman DP 2013 475 X X X X - -
Central
Ferry

DP 2014 475 X X - - - -

Pullman DP 2014 475 X X X X X X
Central
Ferry

DP 2015 475 X X X X X X

Pullman DP 2015 475 X X X X X X
Central
Ferry

DP 2016 475 X X X X X X

Pullman DH 2016 136 X X X - - -
Pullman F5 2016 173 X X X - - -
Lind F5 2017 171 X X X - - -
Lind DH 2017 29 X X X - - -
Pullman DH 2017 34 X X X X X X
Pullman F5 2017 506 X X X X - -
Lind DH 2018 448 X X - - - -
Pullman DH 2018 732 X X X X X X
Pullman F5 2018 65 X X X X X X
Lind DH 2020 373 X X - - - -

aTrial: DP: Diversity panel; DH: Doubled-haploid.
bIT: Infection type.
cSEV: Disease severity.
X: Indicates measurement recorded.
-: No measurement recorded.
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breeding programs in the Pacific Northwest region of the US and
represented our unselected population.

The disease traits measured were stripe rust infection type (IT)
and stripe rust disease severity (SEV). The IT was based on a 0–9
scale (resistant: 0–3; intermediate: 4–6; susceptible: 7–9) (Line
and Qayoum, 1992), whereas SEV was measured as the
percentage of the total area of the leaf infected using a
modified Cobb Scale (Peterson et al., 1948). Stripe rust data
were dependent on natural infection and incidence at the time of
observation. Some trials had three observations and were
identified with sequential numbers. The trials with only one
observation were recorded right after anthesis to measure
stripe rust responses at the adult-plant stage. The reason there
was only one observation was that stripe rust was not present in
the field at earlier growth stages. If there were three
observations, stripe rust was present in the field at earlier
growth stages where the first, second, and third scores were
taken soon after flag leaf emergence, after anthesis, and at early
milk stage, respectively. Entries with a high infection type in the
first observation, but a low infection type in the following
observations may indicate that they have a HTAP resistance
(Chen, 2013). However, due to the nature of APR being effective
in the adult stage and that not all trials had multiple recordings,
only the last observation for each trial was used to measure the
stripe rust response.

2.2 Phenotypic Adjustments
In order to compare the regression and classification strategies,
we used multiple methods of phenotypic adjustments. For the
regression models, standard adjusted means were calculated
considering the field design used. The ability of ridge
regression best linear unbiased prediction (rrBLUP), GLM,
and SVM regression (SVMR) to predict the standard and
transformed [square root (SQRT), LOG, and boxcox (BC)
transformed] adjusted means was then compared (Table 2).
For the classification models, Bayesian and SVM classification

(SVM) models were used to predict the full-scale categories for IT
and SEV with the standard adjustments for field design as our
control values (Table 2). We then reduced both traits using
multiple number of classes to determine the scenario resulting
in the highest accuracy for breeding program implementation.

For the field design adjustment for controls for both the
regression and classification phenotypic adjustments, a two-
step adjusted means method was used, in which a linear
model was implemented to adjust both IT and SEV means
within and across environments. Then, a GS model was used
to calculate genomic estimated breeding values (GEBVs; Ward
et al., 2019). Adjusted means from the stripe rust data collected in
the unreplicated trials were adjusted using residuals calculated for
the unreplicated genotypes in individual environments and
across environments using the modified augmented complete
block design model (ACBD; Federer 1956; Goldman 2019). The
adjustments were made following the method implemented in
Merrick and Carter (2021), as follows:

Yij � μ + Blocki + Checkj + εij (1)
where Yij is the phenotypic value for the trait of interest of the ith
block and jth replicated check cultivar (i = 1, . . . ,I,j = 1, . . . ,J); μ is
the mean effect; Blocki is the fixed effect of the ith block; Checkj is
the fixed effect of the jth replicated check cultivar; and εij are the
residual errors with a random normal distribution of
ε ~N(0, σ2ε ). For adjusted means across environments, the
model is as follows:

Yijk � μ + Blocki + Checkj + Envk + Blocki: Envk

+ Checkj: Envk + εik (2)
where Yij is the phenotypic value for the trait of interest of the ith
block and jth replicated check cultivar in the kth environment (i =
1, . . . ,I, j = 1, . . . ,J, k = 1, . . . , K); μ is the mean effect; Blocki is the
fixed effect of the ith block; Checkj is the fixed effect of the jth
replicated check cultivar; Envk is the fixed effect of the kth

TABLE 2 | Regression and classification genomic selection models for stripe rust infection type (IT) and disease severity (SEV) in winter wheat.

Model Type Description References

rrBLUP Regression Linear ridge regression model using untransformed phenotypes Endelman (2011)
SQRT
rrBLUP

Regression Linear ridge regression model using square-root (SQRT) transformation Endelman (2011)

LOG rrBLUP Regression Linear ridge regression model using logarithmic (LOG) transformation Endelman (2011)
BC rrBLUP Regression Linear ridge regression model using Box-Cox (BC) transformation Endelman (2011)
GLM Regression Generalized linear model (GLM) with a Poisson distribution Hastie et al. (2016)
SVMR Regression Non-parametric regression support vector machine (SVMR) using a radial kernel Karatzoglou et al. (2019)
BOR Classification Bayesian ordinal regression (BOR) model using the full-scale IT (0–9) and SEV (0–100%) Pérez and de los Campos,

(2014)
BOR 3-Class Classification Bayesian ordinal regression (BOR) model using the reduced three class scale IT (0–2) and SEV (0–2) Pérez and de los Campos,

(2014)
BOR 2-Class Classification Bayesian ordinal regression (BOR) model using the reduced two class scale IT (0–1) and SEV (0–1) Pérez and de los Campos,

(2014)
SVM Classification Non-parametric classification support vector machine (SVM) using a radial kernel using the full- scale IT

(0–9) and SEV (0–100%)
Karatzoglou et al. (2019)

SVM 3-Class Classification Non-parametric classification support vector machine (SVM) using a radial kernel using the reduced three
class scale IT (0–2) and SEV (0–2)

Karatzoglou et al. (2019)

SVM 2-Class Classification Non-parametric classification support vector machine (SVM) using a radial kernel using the reduced two
class scale IT (0–1) and SEV (0–1)

Karatzoglou et al. (2019)
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environment; and εijk are the residual errors with a random
normal distribution of ε ~N(0, σ2ε ).

The BLUPs for heritability were calculated for each trial and
across trials using a mixed linear model for the full augmented
randomized complete block design in a single environment and is
as follows:

Yijk � μ + Blocki + Checkj + Genl(j) + εijk, (3)
where Yijk is the phenotypic value for the trait of interest of the lth
unreplicated genotype nested in the jth replicated check cultivar
of the ith block (i = 1, . . . ,I, j = 1, . . . ,J, k = 1, . . . ,K); μ is the mean
effect; Blocki is the random effect of the ith block with the
distribution Block ~N(0, σ2Block); Checkj is the fixed effect of
the jth replicated check cultivar; Genl(j) is the unreplicated
genotype l in the jth check with the distribution
Gen ~N(0, σ2Gen); and εijk are the residual errors with a
random normal distribution of ε ~N(0, σ2ε ). The full model
across environments is as follows:

Yijkl � μ + Blocki + Checkj + Genl(j) + Envk + Blocki: Envk
+Checkj: Envk + Genl(j): Envk + εijkl (4)

where Yijkl is the phenotypic value for the trait of interest of the
lth unreplicated genotype nested in the jth replicated check
cultivar of the ith block and in the kth environment (i = 1, . . .
,I, j = 1, . . . ,J,k = 1, . . . ,K, l = 1, . . . ,L); μ is the mean effect; Blocki
is the random effect of the ith block with the distribution
Block ~N(0, σ2Block); Checkj is the fixed effect of the jth
replicated check cultivar; Genl(j) is the random effect of the
genotype l in the jth replicated check cultivar with the
distribution Gen ~N(0, σ2Gen); Envk is the random effect of the
kth environment with the distribution Env ~N(0, σ2Env); and εijkl
are the residual errors with a random normal distribution of
ε ~N(0, σ2ε ). After adjustments were made, values outside of the
0–9 (IT) and 0–100 (SEV) scales were rounded back to 0–9 and
0–100, respectively, to avoid negative values for log
transformations or Poisson distributions and to have the
standard adjusted means for all comparisons.

Broad-sense heritability on a genotype-difference basis was
calculated using the variance components from the models (3)
and (4) implemented by Merrick and Carter (2021) and using
BLUP for both individual environments and across environments
(Cullis et al., 2006):

H2
Cullis � 1 − �vBLUPΔ..

2σ2̂g
(5)

where σ2g and �V BLUP are the genotype variance and mean
variance of a difference between two BLUPs for the genotypic
effect BLUPs, respectively (Schmidt et al., 2019). Trial evaluations
were compared using general summary statistics, coefficient of
variations (CV), skewness, kurtosis, and the non-parametric
Kruskal–Wallis test using the R package “ggpubr” (R Core
Team, 2018; Kassambara and Kassambara, 2020).

2.3 Genotypic Data
Wheat lines were genotyped using genotyping-by-sequencing
(GBS; Elshire et al., 2011) through the North Carolina State

University (NCSU) Genomics Sciences Laboratory in Raleigh,
North Carolina (https://research.ncsu.edu/gsl/) using a two-
enzyme (PstI/MspI) digestion protocol (Poland and Rife,
2012). Genomic DNA was isolated from individual seedlings
at the one- to three-leaf stage using Qiagen BioSprint 96 Plant kits
and the Qiagen BioSprint 96 workstation (Qiagen, MD,
United States). Genotyping by sequencing was conducted
using Illumina HiSeq® 2,500 and NovaSeq 6,000. Sequences
were aligned to the Chinese Spring International Wheat
Genome Sequencing Consortium (IWGSC) RefSeq v1.0
(Appels et al., 2018) using the Burrows-Wheeler Aligner
(BWA) 0.7.17 (Li and Durbin, 2009). GBS-derived single-
nucleotide polymorphism (SNP) markers were called using
TASSEL-GBS v2 SNP calling pipeline in TASSEL v5.2.35
(Bradbury et al., 2007; Glaubitz et al., 2014). Markers with
>20% missing data, minor allele frequency (MAF) <5%, and
those that were monomorphic were removed. Imputation of
missing genotypes was conducted using Beagle 5.0 (Browning
et al., 2018) and markers with <5% MAF were further excluded.
The remaining markers were binned together based on a linkage
disequilibrium threshold value of 0.80 (Ward et al., 2019). The
reduced genotype matrix was computed using JMP genomics
version 9 (SAS Institute, Inc, 2011). Principal components
analysis (PCA) using the SNP data was performed using
“prcomp” and a biplot with k-mean clusters was created using
the “autoplot” packages in R. Cluster number for k-means were
calculated according to the elbow method using a scree plot with
the optimal number of clusters identified when the total intra-
cluster variation was minimized.

2.4 Regression Models
2.4.1 Transformations
Transformations using SQRT, LOG, and BC approaches were
compared to determine the optimal method for phenotypic
adjustment for skewed phenotypes (Table 2). The BC
transformations were conducted using the “forecast”
package (Hyndman and Khandakar, 2008) that identifies
optimal lambda values using the “BoxCox.lambda” function
in R.

2.4.2 rrBLUP Model
rrBLUP was used as the standard GS model for comparing the
predictive ability of the adjusted means and transformed data.
The rrBLUP was selected due to its high predictive performance
for stripe rust resistance (Table 2; Rutkoski et al., 2014; Arruda
et al., 2016; Poland and Rutkoski 2016; Muleta et al., 2017;
Merrick et al., 2021). The model follows the basic mixed linear
model that treats the effects of markers as random effects as
described by Endelman (2011):

yi � WGu + εi (6)
where u ~ N(0, Iσ2u) is a vector of marker effects; yi is a vector
of phenotypes; G is the genotype matrix; and W is the
design matrix for y. The marker effects are then calculated
using û � (Z′Z + λI)−1Z′y with the ridge parameter of
λ � σ2ε /σ

2
u, which is the ratio of the residual and marker

variances.
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2.4.3 Generalized Linear Model
The GLM was implemented using “Glmnet” with a Poisson
distribution (Table 2; Hastie et al., 2016). Glmnet fits a GLM
via penalized maximum likelihood with the elastic net penalty
computed at grid values on the log scale for the regularization
parameter lambda. Glmnet solves the equation:

min
β0 ,β

1
N
∑N
i�1
wil(yi, β0 + βTxi) + λ[(1 − α)β2

2/2 + αβ1
], (7)

over a grid of values of λ; l(yi − ηi)2 is the negative log-likelihood
of i. The elastic net penalty is controlled by α and bridges the
game between lasso regression (α � 1) and ridge regression
(α � 0), with λ controlling the penalty. yi is a vector of
phenotypes; β is the genotype matrix; x is the design matrix
for y. Poisson regression is used to model count data under the
assumption of Poisson error, or otherwise non-negative data
where the mean and variance are proportional. Like the
Gaussian and binomial models, the Poisson distribution is a
member of the exponential family of distributions. We model
its positive mean on the log scale: log μ(x) � β0 + β′x.

2.5 Classification Models
2.5.1 Factor Adjustments
We used a Bayesian ordinal model and an SVM to compare factor
adjustments (Table 2). The adjusted means were used as control
for categorical factors but rounded to discrete values, so they
follow the initial ordinal scales for both IT and SEV. These scales
are 0–9 for IT and 0–100 for SEV. The original 0–9 IT scale and
0–100 SEV scale were reduced to a three-class 0–2 scale (resistant/
intermediate/susceptible), and a binary keep/discard scale of 0–1
in order to be more applicable to breeding programs and reduce
the effect of unbalanced classes.

2.5.2 Bayesian Ordinal Regression Model
The Bayesian Ordinal Regression (BOR) model implemented in
the BGLR package according to Pérez and de los Campos (2014)
follows:

yi � ∑p
k�1

xikβk + εi (8)

where yi is a vector of phenotypes; xik is the genotype of the kth
marker and ith individual, p is the total number of markers, βk is
the estimated random marker effect of the kth marker; and εi is a
vector of residuals with a random normal distribution of
ε ~ N(0, σ2ε ). Each version of the BOR model has its own
conditional prior distribution and a scaled-inverse chi-squared
density described in Pérez and de los Campos (2014) whose
hyper-parameters are set internally by the software. The BOR
model uses the probit link function in which the probability of
each of the categories is linked to the linear predictor according to
the link function outlined in Pérez and de los Campos (2014):

P(yi � k) � Φ(ηi � γk) − Φ(ηi � γk−1) (9)
whereΦ(.) is the standard normal cumulative distribution function,
ηi is the linear predictor, and γk are threshold parameters, with

γ0 � −∞, γk ≥ γk−1, γK � ∞. The BOR model was implemented in
the “BGLR” package in R with a burn-in rate of 10,000 and 80,000
iterations based on convergence of the models using trace plots
(Pérez and de los Campos (2014); Merrick and Carter, 2021).

2.5.3 Support Vector Machine
The SVM is a non-parametric model that can be used for both
classification and regression (SVMR) with no specific phenotypic
distribution requirement. The SVM performs well in a variety of
settings due its use of a maximal margin classifier. The maximal
margin classifier uses a hyperplane to classify and separate
observations by computing the maximum distance of an
observation to the hyperplane and then determining the class
of the observation based on which side of the hyperplane it falls
on (Gareth et al., 2013). Additionally, SVMs can enlarge the
feature space of the data using kernels to accommodate non-
linear boundaries between classes and simplify the inner product,
which overcomes the dimensionality of the data. For
classification, the radial basis function (RBF) was used due to
its wide adaption and ability to be applied to any distribution of
observations (Wang et al., 2018). Both SVM and SVMR were
implemented using the “caret” package in R, with the RBF model
using the “kernlab” function in R (Kuhn, 2008; Karatzoglou et al.,
2019; Meyer et al., 2019). Furthermore, model tuning was
completed using five replications of tenfold CV with
resampling within the training set of the training fold of the
cross-validation or validation sets. Additionally, for classification,
the SVM model was tuned using up-sampling, which randomly
samples the minority class to be the same size of the majority class
in order to deal with class imbalances that can have significant
negative impact on model fitting (Kuhn, 2008).

2.6 Prediction Accuracy and Scheme
Prediction accuracy for the regression models was reported using
Pearson correlation coefficients (r) and prediction bias was
reported using root mean square error (RMSE) between
GEBVs and their respective adjusted means using the function
“cor” in R. However, due to the unbalanced class type, the
classification models were evaluated using overall class
accuracy (R2) using the “confusionMatrix” function in the
“caret” package and reported as R2 (Kuhn, 2008). Cohen’s
kappa coefficient (kappa) was used to evaluate classification
model bias because it takes into account unbalanced classes
(Ornella et al., 2014; González-Camacho et al., 2018).

In order to compare regression and classification models,
relative efficiency (RE) was used. RE is based on expected
genetic gain when individuals are selected by GS compared to
the individuals selected by phenotypic selection. The model for
RE according to Ornella et al. (2014) is:

RE �
(∑α’

yi)
N

α’
− (∑Test

yi)
NTest(∑α

yi)
Nα

− (∑Test
yi)

NTest

, (10)

where α and α′ are the 15% of individuals selected by the ranking
of observed or predicted values, respectively. Nα � Nα′ is the

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8357816

Merrick et al. Regression vs. Classification

142

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


number of individuals selected; yi is the observed phenotypic

value of the ith individual; and
(∑Test

yi)
NTest

is the mean of the test

population. The denominator is the selection differential of the
individuals selected by phenotypic selection and the numerator is
the selection differential of the individuals selected by GS. The
15% selection intensity was chosen due to its performance of RE
when replacing phenotypic selection with GS (Ornella et al., 2014;
González-Camacho et al., 2018).

The prediction accuracy was assessed using a fivefold cross-
validation scheme and independent validation sets for IT and
SEV in the DP and BL training populations (Merrick et al., 2021).
The two populations were used to compare the effects of a
selected and unselected population with varying degrees of
resistance. Models for GS were conducted with fivefold cross-
validation by including 80% of the samples in the training
population and predicting the GEBVs of the remaining 20%
(Merrick and Carter, 2021; Merrick et al., 2021). One replicate
consisted of five model iterations, where the population was split
into five different groups.

Independent validation sets were then performed according to
Merrick and Carter (2021) on a yearly basis by combining the two
locations for each training population and predicting the
following year, which results in three continuous training
scenarios for each population. For example, the combination
of Pullman and Central Ferry trials for the DP in 2013 was used as
a training population to predict the combination of Pullman and
Central Ferry trials in the DP in 2014. Final validation set was
completed by combining all years and locations within a training
population and then predicting the combination of years and
locations for the other training population. All trials in the BL in
both Pullman and Lind combined across 2016 to 2020 were used
to predict all trials in the DP in both Central Ferry and Pullman
across 2013 to 2016. This allows the evaluation of models in a
realistic breeding situation in which we combine all available data
to build a training population. All cross-validations and
independent validations were replicated 10 times. All GS and
MAS models and scenarios were analyzed using WSU’s Kamiak
high-performance computing cluster (Kamiak, 2021). Model,
scenario, and training population comparisons were evaluated
by using a Tukey’s honestly significant difference (HSD) test
implemented in the “agricolae” package in R (de Mendiburu and
de Mendiburu, 2019). The comparison of models was then
plotted for visual comparison using “ggplot2” in R (Wickham,
2011).

3 RESULTS

3.1 Phenotypic Data
The stripe rust phenotypes for both IT and SEV demonstrated
variability for each scale (Table 3). For the DP, the IT and SEV
values ranged the entire scale of each trait for the majority of the
trials. Additionally, the means of the DP were higher than the BL
trials, with lower coefficients of variation (CV). Furthermore, the
BL trials ranged the entire scale for IT, but had lower means. The
SEV in the BL trials did not reach the maximum value of SEV.

Overall, the BL displayed a higher proportion of resistance than
the DP trials. Every trial and trait displayed a positively skewed
distribution, with the exception of SEV in the DP in Pullman in
2015. SEV for the majority of trials was extremely skewed for the
BL, with Lind in 2018 displaying the highest skew of any trial and
trait. Skewness decreased for combined analysis across
environments. Positive values above three display long skinny
tails as in the case for SEV for the BL population in Lind in 2018 at
19.77. The majority of distributions are skinny tailed,
demonstrating the large amount of similar disease resistance
around 0 and the large amount of resistance in the BL and
DP populations.

The skewness and kurtosis of the distributions were further
visualized (Figure 1). The DP is less skewed than the BL. For both
IT and SEV, the DP displayed more variation than the BL, except
for SEV in Central Ferry. Furthermore, there were significant
differences between most years for each population and location
(Figure 1). Heritability of the BL trials was moderately high for
both IT and SEV, with values ranging from 0.76 to 0.97 and
0.52–0.63, respectively. For the DP, heritability ranged from 0.65
to 1.00 for IT and 0.71–1.00 for SEV (Table 1).

3.2 Analysis of Principal Components
After filtering and imputation, a total of 19,861 SNP markers for
the 475 unique DP lines and the 2,630 BL lines were obtained
from GBS. Principal component analysis using SNP markers for
the DP and BL populations resulted in four clusters with Cluster 2
(green) overlapping with the other clusters (Figure 2). PC1
explained 5.8% of the variation whereas PC2 explained 3.4%
of the variation. The biplot displayed four main clusters over the
combined populations using k-means clustering. Cluster 1
consisted of lines common in both the BL and DP. Majority
of lines in both the DP and BL were included in Cluster 3, which
is composed of BL in Lind and Pullman and lines from the
DP. Cluster 4 consisted mainly of lines from the BL in Lind,
whereas majority of lines from the BL in Pullman comprised
Cluster 2.

3.3 Cross-Validations for Regression
Models
Multiple comparisons using HSD for RMSE and Pearson
correlations for accuracy were conducted for the regression
models in individual populations and years for IT and SEV.
The SVMR model resulted in the highest accuracy (r = 0.73) in
the 2018 Pullman BL trial for IT (Figure 3). Accuracy for the
GLM model in 2018 Pullman BL was 0.72. The GLM displayed
consistent high accuracies in the more skewed BL population
than the less skewed DP but displayed the lowest accuracy for the
most skewed trial in the BL in Lind in 2018 (0.23). Overall, there
were no significant differences for the BL, whereas the LOG
rrBLUP and the GLMmodel showed significant differences (HSD
test, p < 0.05) in the DP. Additionally, the BL trials had higher
mean accuracies than the DP trials with an increase in accuracy
with the combination of years. Altogether, the rrBLUP had the
highest accuracy over the transformed phenotypes (0.53). The
rrBLUP model had similar RMSE than the SVMR and GLM
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models with 2.15, 2.18, and 2.28, respectively (Supplementary
Figure S1). The SQRT rrBLUP model had the lowest RMSE
(0.51), and the BC and LOG rrBLUP models had the highest
RMSE (5.67 and 5.93, respectively). Using SQRT transformation
on the phenotypes reduced the error of the predictions compared
to the other transformations.

Similar to IT, the highest accuracies for SEV were obtained in
the 2018 Pullman BL trial, with the GLM reaching the highest

accuracy (0.76), followed by the SQRT rrBLUP (0.74) and SVMR
(0.73) models (Supplementary Figure S2). The lowest accuracies
were also achieved with the GLMmodel in the 2018 Lind BL trial
(0.18). The 2018 Lind BL trial had the lowest accuracies for the
majority of models. Similar to IT, there were no statistical
differences between models overall in the BL, and the SQRT
rrBLUP, rrBLUP, and SVMR reached the highest accuracies in
the DP. The SVMR and SQRT rrBLUP reached the highest

TABLE 3 | Stripe rust infection type (IT) and disease severity (SEV) heritability (H2) and trial statistics for unadjusted phenotypes in the diversity panel (DP) and breeding line
(BL) training population phenotypes from 2013 to 2016 and 2016 to 2020 growing seasons.

Population Location Trait Year H2 CVa Maxb Mean Minc SDd Kurtosis Skew

BL Lind IT 2017 0.82 87.97 8 2.91 0 2.56 −1.21 0.27
2018 0.97 260.58 8 0.66 0 1.73 7.08 2.78
2020 0.96 93.03 8 3.42 0 3.18 −1.60 0.20

2017–2018 0.79 124.19 8 2.03 0 2.52 −0.67 0.84
2017–2020 0.85 116.24 8 2.38 0 2.77 −0.97 0.70

SEV 2017 0.82 125.51 70 13.83 0 17.36 1.33 1.45
2018 0.76 304.83 30 1.29 0 3.93 19.77 4.15
2020 0.97 125.06 80 18.04 0 22.56 0.42 1.25

2017–2018 0.81 168.85 70 8.92 0 15.06 3.97 2.10
2017–2020 0.83 157.72 80 11.23 0 17.71 2.90 1.89

Pullman IT 2016 0.53 87.56 8 2.76 0 2.41 −1.05 0.33
2017 0.56 78.53 9 2.56 0 2.01 0.30 0.87
2018 0.54 150.59 8 2.20 0 3.31 −0.93 0.96

2016–2017 0.56 81.12 9 2.60 0 2.11 −0.17 0.70
2016–2018 0.57 111.41 9 2.43 0 2.70 −0.57 0.85

SEV 2016 0.63 152.31 80 8.49 0 12.94 6.06 2.36
2017 0.54 133.03 90 17.00 0 22.62 2.00 1.70
2018 0.53 177.64 80 15.58 0 27.68 0.76 1.55

2016–2017 0.52 140.51 90 14.96 0 21.03 2.96 1.90
2016–2018 0.53 158.47 90 15.23 0 24.14 1.78 1.73

DP Central Ferry IT 2013 — 55.97 8 3.14 1 1.76 0.55 1.03
2014 0.93 61.93 9 3.06 1 1.90 1.97 1.30
2015 1.00 42.38 9 4.57 1 1.94 −0.79 0.28
2016 0.96 46.23 9 4.19 0 1.94 −0.02 0.57

2013–2014 0.65 58.99 9 3.10 1 1.83 1.37 1.18
2013–2015 0.85 55.46 9 3.59 1 1.99 0.00 0.78
2013–2016 0.75 53.33 9 3.74 0 1.99 −0.07 0.71

SEV 2013 — 99.64 90 24.08 2 24.00 −0.89 0.70
2014 0.89 152.84 90 12.08 2 18.47 6.98 2.63
2015 1.00 73.44 90 36.36 2 26.70 −1.25 0.19
2016 0.97 70.57 100 36.15 0 25.51 −0.85 0.22

2013–2014 0.71 123.34 90 17.98 2 22.18 0.91 1.40
2013–2015 0.78 105.10 90 24.06 2 25.29 −0.47 0.90
2013–2016 0.85 95.59 100 27.06 0 25.87 −0.74 0.70

Pullman IT 2013 1.00 47.89 9 3.78 1 1.81 0.66 0.62
2014 1.00 46.38 9 4.83 1 2.24 −0.77 −0.02
2015 1.00 44.17 9 5.13 1 2.27 −0.82 −0.07

2013–2014 0.75 48.81 9 4.31 1 2.10 −0.42 0.33
2013–2015 0.86 47.89 9 4.58 1 2.19 −0.65 0.21

SEV 2013 0.97 117.71 100 20.33 2 23.93 2.46 1.67
2014 0.89 84.60 90 36.28 2 30.69 −1.41 0.32
2015 0.94 68.17 100 50.56 2 34.47 −1.34 −0.12

2013–2014 0.71 101.13 100 28.33 2 28.65 −0.52 0.87
2013–2015 0.85 91.07 100 35.54 2 32.37 −1.08 0.54

aCV: coefficient of variation.
bMax: maximum.
cMin: minimum.
dSD: standard deviation.
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FIGURE 1 |Comparison of unadjusted phenotypes for infection type (IT) and disease severity (SEV) over years and locations in the diversity panel and breeding line
training populations using Kruskal–Wallis test. Significant differences were based on p-values “*” < 0.05, “**” < 0.01, and “***” < 0.001.

FIGURE 2 | Principal component (PC) biplot and k-means clustering of SNP GBS markers from the diversity panel (DP) and breeding line (BL) training populations.
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accuracies of 0.60 (Supplementary Figure S2). For SEV, the
RMSE for the transformed rrBLUPmodels displayed much lower
RMSE values than the rrBLUP, GLM, and SVMR models
(Supplementary Figure S3). However, this discrepancy is
presumably due to the phenotypic range of the
transformations compared to the untransformed range for
SEV, which is 0–100. The BC rrBLUP model displayed an
extremely large RMSE in the DP in Central Ferry in 2015
(57.11). Overall, the rrBLUP models displayed statistically
similar RMSE values with the transformed rrBLUP models.

3.4 Cross-Validations for Classification
Models
Due to the difference between regression and classification
models, multiple comparisons using HSD for the kappa
coefficient and overall class accuracy were conducted for the
classification models in individual populations and years for IT
and SEV. In contrast to the regression models where the 2018
Lind BL trial had the lowest regression accuracies, the
classification models displayed the highest R2 values with the

2-Class and 3-Class BOR models reaching an overall class
accuracy of 0.88 for IT (Figure 4). Additionally, the SVM
models displayed much higher accuracies than the BOR
models overall. The full scale BOR model had very low
accuracy for the majority of trials with the BL in 2018 in
Pullman. The reduced class sizes, 2 and 3, displayed higher
accuracy than the full IT scales. Overall, the selected BL
displayed higher accuracies than the unselected DP. The 2-
Class SVM reached the highest overall class accuracy with 0.76
in the BL and 0.69 in the DP. The 2-Class SVM reached the
highest overall class accuracy of 0.72 in the overall comparison.
The high-class accuracies in the BL in Lind in 2018 can be
explained by the kappa values of 0 (Supplementary Figure
S4), displaying the highly skewed data and the inability for the
models to account for phenotypes of mostly zeros. The SVM
displayed lower kappa values in the DP than in the BL, but the
BOR models had the opposite trend. The BOR models displayed
higher kappa values than the SVM models, but the SVM models
showed higher accuracy.

The classification models for SEV had very similar results to
IT, with the BOR and SVM 2-Class models reaching an accuracy

FIGURE 3 | Pairwise comparisons of genomic selection regression model accuracy (r) using cross-validations for stripe rust infection type. Pacific Northwest winter
wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University breeding lines
phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall scenarios. Models
labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
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of 0.99 and 0.98, respectively (Supplementary Figure S5). This
was due to the very skewed and high levels of zeros in the data in
the BL in Lind in 2018. Additionally, in the DP that had less
skewed phenotypes, the BOR models showed very poor overall
class accuracy with the majority of trials having R2 values of 0.20,
with moderate accuracies for the 2-Class BOR. The 2-Class SVM
displayed the highest statistically significant class accuracy in
scenarios with R2 values of 0.86, 0.78, and 0.81 within the BL, DP,
and overall comparisons, respectively. The kappa values were
higher in the DP trials due to less skewed phenotypes and
displayed low values in the high accuracy trial of the BL in
2018 Lind. Overall, the 2-Class SVM had the highest kappa value
for SEV with 0.46 (Supplementary Figure S6).

3.5 Cross-Validation Relative Efficiency
RE was used to compare the selection differential between the GS
models and phenotypic selection for the phenotypes. Overall, the
highest relative efficiencies for IT were the regression models with
the majority of models having statistically similar relative
efficiencies. The regression models had very high RE values
with the rrBLUP models reaching a maximum value of 0.94 in

the 2018 Pullman BL trial (Figure 5). The SVMR model had
statistically similar RE values to the rrrBLUP models in the overall
comparisons. In contrast, the classification models had relatively low
RE in themajority of trials with the three-class BORmodel (−0.38) in
the combined 2017 to 2018 Lind BL trials. This confirmed the bias
seen in the kappa results with the majority of lines being predicted as
zeros. Interestingly, the two- and three-class BOR and SVMdisplayed
lower RE values overall than the full-scale models. Overall, the
rrBLUP and SQRT rrBLUP reached RE values of 0.62.

Similar to IT, the regression models had very high RE for SEV,
with the classification models reaching low to moderate values
ranging between −0.58 and 0.89 (Supplementary Figure S7). The
rrBLUP models had very high RE (0.98; BL Pullman 2018)
compared to phenotypic selection. The rrBLUP models
showed consistently higher REs than the GLM and SVMR
models. The GLM displayed similar RE values in the BL, but
lower in the DP. The SQRT rrBLUP model had the highest RE
overall (0.81). The classification models had very low RE except
the BL trials in 2018 Pullman and 2017 Lind, which showed very
high RE compared to the other years and populations.
Additionally, the combined trials for both the BL and DP

FIGURE 4 | Pairwise comparisons of genomic selection classification model overall class accuracy (R2) using cross-validations for stripe rust infection type. Pacific
Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University
breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall
scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
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displayed higher RE than some of the individual years indicating
an advantage of combining trials.

3.6 Validation Sets for Regression Models
The training populations were evaluated for validation sets on a
yearly basis and over combined years and trials. We used the
earliest trial to predict the following year and then a new model
with the addition of each subsequent trial to evaluate genotype-
by-environment interaction of a prediction model. We then
compared the combination of all trials for one population to
predict the combination of all trials in the other population. The
highest accuracy for IT was in the continuous training scenario of
the DP combined 2013–2015 to predict the DP 2016 with SQRT
rrBLUP reaching 0.65 (Figure 6). There were only a few
significant differences, with none in the overall BL or DP.
Overall, the SQRT rrBLUP displayed the highest accuracy
(0.46). Furthermore, there was an increase in accuracy as the
years were combined within the same population. However, the
accuracy was much lower when predicting into the combined
trials of the other population. Similar RMSE values to the cross-

validations were displayed with SQRT rrBLUP having the lowest
RMSE (1.31; Supplementary Figure S8).

The validation accuracy for SEV displayed similar trends to IT,
with the highest accuracy of 0.72 for the SQRT rrBLUP and
rrBLUP (Figure 6). Interestingly, the combined BL trials
predicting into the combined DP displayed the highest
accuracy in the BL prediction scenarios with BC rrBLUP
reaching 0.53. This trend was in contrast to IT. However, the
opposite was seen in the DP. The validation set accuracy for the
DP was higher than the validation sets for BL. In the overall
comparison, there were no statistical differences between the
models. The BC and Log rrBLUP displayed the highest accuracies
in some scenarios, which was not seen in cross-validations and
was only observed in the BL. The RMSE values were much higher
for SEV with the SQRT rrBLUP displaying similar RMSE to IT
(Supplementary Figure S9).

3.7 Validation Sets for ClassificationModels
The classification models had contrasting results for the
validation sets compared to the regression models. The

FIGURE 5 | Pairwise comparisons of genomic selection regression and classification model relative efficiency (RE) using cross-validations for stripe rust infection
type. Pacific Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State
University breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and
Overall scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
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validation set class accuracy for the classification models were all
relatively low except for the two- and three-class SVM model.
Furthermore, there was no trend in increasing overall class
accuracy by combining trials. The BL trials displayed the
highest overall class accuracy with R2 values reaching 0.78 for
the two class SVM model (Figure 7). The low accuracies were
presumably due to the increase in resistance and the models
predicting zeros in the IT scale. Similar to the cross-validation
scenarios, the reduced two class models reached a much higher
accuracy across the majority of trials. Furthermore, the prediction
accuracy can be accounted for by the low kappa values in the
majority of models except the 2-Class SVM model reaching 0.40
(Supplementary Figure S10).

SEV displayed similar results with IT, but the BOR model had
zero r for all scenarios. However, the accuracies increased in the
BOR with the reduced class scales (Figure 7). The two- and three-
class SVM models displayed very high accuracy with two-Class
SVM reaching an overall class accuracy of 0.83 and maintained
the high accuracy predicting the other population for both the BL
and DP validation scenarios. Combining years did not result in
improved accuracy. Furthermore, the kappa values were very low
except for the two- and three-Class SVM models reaching kappa
values of 0.63 in the DP (Supplementary Figure S11).

3.8 Validation Set Relative Efficiency
The RE of the regression models were high in the validation
scenarios reaching RE values of 0.85 using the SQRT rrBLUP
model (Figure 8). The BOR and SVMmodels displayed relatively

low RE values compared to the regression models. This was
presumably due to the BOR not being able to predict the
phenotypic values of the majority of the lines; however, the
RE was higher for the classification models than the cross-
validations with only one scenario having a negative value
(−0.20). For overall comparisons, there were significant
differences compared to the cross-validation scenarios. The
SQRT rrBLUP reached the highest overall RE with 0.60.
Furthermore, the RE values were higher in the DP than the
BL. Combining years was related to an increased RE for the
regression models.

Consistent trends for SEV were observed with the transformed
rrBLUP model RE values of 0.97, displaying very high RE
compared to phenotypic selection (Supplementary Figure
S12). The RE for SEV was relatively high for the rrBLUP and
SVMR models predicting into the other population using the DP
as the training population ranging from 0.58 to 0.86, further
displaying the ability for the regression models to accurately
predict across years and populations while dealing with skewed
phenotypes.

4 DISCUSSION

GS has many advantages over traditional phenotypic selection
and marker-assisted selection. Increased genetic gain and
improved trait selection can be achieved by using GS (Heffner
et al., 2010; Rutkoski et al., 2015; Michel et al., 2017).

FIGURE 6 | Pairwise comparisons of genomic selection regressionmodel accuracy (r) using validation sets for stripe rust infection type and disease severity. Pacific
Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University
breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall
scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
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Furthermore, GS can aid in selection for traits dependent on the
environment to display variation especially in years with little to
no phenotypic variation for phenotypic selection. Plant breeding
programs continually select and improve disease resistance due to
the evolving race and pathogen changes along with the
breakdown of resistance genes. Due to the high levels of
resistance targeted within most plant breeding programs,
positively skewed phenotypes generally result when selecting
for disease resistance. Furthermore, disease resistance is
commonly phenotyped in ordinal scales and percentages. The
skewed and ordinal phenotypes pose challenges to utilizing
regression models for GS (Montesinos-López et al., 2015a).
However, most GS studies treat disease resistance as
continuous values and utilize regression models and
transformations for prediction, while only a few studies have
used classification methods (Ornella et al., 2012, 2014; Rutkoski
et al., 2014; Arruda et al., 2016; Muleta et al., 2017; González-
Camacho et al., 2018; Merrick et al., 2021). In the current study,
we compared several regression and classification methods for
genomic prediction for skewed phenotypes in the context of
stripe rust resistance in winter wheat and identified the best
approaches to use for predicting traits with skewed distributions.

When utilizing GS for resistance to diseases such as stripe rust,
GS approaches can capture the additive effects of APR and are
therefore relevant for accumulating favorable alleles for rust
resistance. GS can reach high levels of accuracy for stripe rust
and other rust diseases (Ornella et al., 2012; Rutkoski et al., 2014,
2015; Muleta et al., 2017; Merrick et al., 2021). Because of the high

levels of resistance and high heritability of disease resistance in
most breeding programs, phenotypic selection and marker-
assisted selection have been shown to be successful (Lande
and Thompson, 1990). Even so, GS has been shown to be
superior to marker-assisted selection in selecting for APR in
the presence of major resistance genes (Merrick et al., 2021).

4.1 Accuracy of Regression Models
Regression models assume continuous and normally distributed
phenotypes (Montesinos-López et al., 2015c). In the current
study, the BL and DP populations displayed skewed
distributions for both IT and SEV with inflations of zero due
to the high levels of disease resistance. Among the primary
approaches used for phenotypes that do not follow a normal
distribution are disregarding the lack of normality or
transforming the phenotypes to a normal distribution
(Montesinos-López et al., 2015b). In the current study, we
observed that even with the skewed distributions, the rrBLUP
model without transformed phenotypes still displayed high
accuracies and performed similarly to the highest-performing
SQRT rrBLUP model in many scenarios. For example, there were
no significant differences between SQRT rrBLUP and rrBLUP in
the overall comparisons in the cross-validation (Figure 3) or
validation set scenarios (Figures 6, 7). These results support
previous studies that utilized rrBLUP models for disease
resistance (Rutkoski et al., 2014; Rutkoski et al., 2015; Juliana
et al., 2017; Muleta et al., 2017; Merrick et al., 2021). The
performance of the untransformed rrBLUP model may be due

FIGURE 7 | Pairwise comparisons of genomic selection classification model accuracy (R2) using validation sets for stripe rust infection type and disease severity.
Pacific Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University
breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BP_L), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall
scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
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to the central limit theorem, which argues that given a sufficient
number of observations, the sampling distribution of the means
can be assumed to be approximately normal (Stroup, 2015).

Transformations were introduced to stabilize variance and
fulfill the homogenous variance assumption of linear regression
models (Bartlett, 1947). However, transformations have shown to
produce a loss of accuracy and power in small sample size
(Stroup, 2015). Furthermore, in our study, the log and BC

transformations displayed lower accuracy than the SQRT
transformation. One of the problems with log transformations is
the large number of zeros due to the presence of highly resistant
lines in both the BL andDP populations. This occurrence constrains
the transformation to stabilize variance and transform the
phenotypes to follow a normal distribution (O’Hara and Kotze,
2010). Furthermore, log transformations yield downwardly biased
estimates, whereas SQRT does not (Stroup, 2015). The BC

FIGURE 8 | Pairwise comparisons of genomic selection regression and classification model relative efficiency (RE) using validation sets for stripe rust infection type.
Pacific Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University
breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall
scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
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transformations is a powerful transformation that raise numbers to
an exponent; nonetheless, BC requires lambda estimation and can
theoretically be the same as the SQRT transformation at λ = 0.50
(Osborne, 2010). Therefore, if the optimal λ is not chosen correctly,
the BC may not appropriately stabilize the variance of the data.

The SQRT transformation proved to perform very well for both
accuracy and RE across populations, cross-validations, and validation
scenarios in the current study. The SQRT transformations showed
the ability to have higher accuracy and reduced RMSE compared
with the untransformed data for the rrBLUP model. In Poisson
distributions similar to the skewed phenotypes of our study, the
variance is equal to the mean, and the SQRT is recommended to
stabilize variance in those scenarios (Bartlett 1947); this could have
resulted in increased performance for the SQRT transformation.
Overall, the appropriate method must be chosen carefully when
implementing data transformation on breeding programs.

Using the GLM model, high accuracy (0.66 and 0.76) in both
the DP and BL training populations were observed. The
performance of GLM was noted to be dependent on the
distribution of the phenotypes. The GLM performed similarly
to the rrBLUPmodel in the highly skewed selected BL population,
but displayed statistically significant lower accuracies in the less
skewed unselected DP population. Poisson GLMs, which were
implemented in the present work, have been shown to display
superior accuracy while correctly fitting the data (O’Hara and
Kotze, 2010; Montesinos-López et al., 2015b; Montesinos-López
et al., 2016; Montesinos-López et al., 2020; Stroup, 2015). The
Poisson GLM accurately models count and ordinal data and is
therefore suited for skewed phenotypes such as disease resistance
(Ornella et al., 2014; Montesinos-López et al., 2015a; Montesinos-
López et al., 2016). Furthermore, the GLM models outperformed
deep learning models in a previous study (Montesinos-López
et al., 2020). The utilization of GLMs should be implemented in
scenarios with the appropriate distribution of phenotypes.

Non-parametric models such as SVMR, which has no
underlying assumption on the distribution of the phenotypes,
performed better than the LOG and BC transformations, and
similar to the GLM model in the current study. Previously, the
SVMRmodel has been shown to have superior prediction and RE
values over parametric and semi-parametric models for
predicting disease resistance due to the skewed phenotypes
(González-Camacho et al., 2018). This demonstrates that the
SVMR can accurately predict skewed phenotypes without the
need to transform the data. SVM regression maps samples from a
predictor space to a high-dimensional feature space using a non-
linear kernel function and then completes linear regression in the
feature space (Jannink et al., 2010). Consequently, this creates the
ability for the SVMR to predict skewed phenotypes and allows the
model to learn the complexity of the training population without
imposing structure on the data (González-Camacho et al., 2018).

The SQRT rrBLUP models performed better than the SVMR
model in overall prediction accuracy across many scenarios. The
lack of advantage in regression scenarios was also observed by
Ornella et al. (2014), where reproducing kernel Hilbert Space
models were observed to be statistically significant for all yield
datasets over SVM and random forest models. In the current
study, the subordinate performance of the SVMR models is

presumably due to the mostly additive effect of stripe rust
resistance. Once the skewed phenotypes are properly modeled,
the advantage of non-parametric models that also model non-
additive effects disappears (Ornella et al., 2014; Poland and
Rutkoski, 2016).

4.2 Accuracy of Classification Models
In the present study, BOR models displayed the lowest accuracies
and RE across all the classification and regression models,
particularly in the DP population. Conversely, the BOR
models using reduced classes reached the highest overall class
accuracy over all models with r = 0.99 for the BL. In contrast,
when the accuracy was high in the BL, the kappa values were low.
The opposite was shown in the DP with low overall class
accuracies and moderate kappa values indicating that the high
overall class accuracy and low kappa values were a result of the
BOR model consistently predicting zeros and the inability to
predict the other classes. Furthermore, in the validation sets, the
BOR performed very poorly, and resulted in near-zero overall
class accuracy and kappa values for both IT and SEV. The BOR
model uses ordinal regression that is suitable for count and
censored data; nevertheless, the BOR model uses the probit
link function that does not explicitly model non-normal
distribution such as the Poisson distribution model by the
GLM model in our study (Montesinos-López et al., 2015a).
Altogether, our results showed that the BOR model is not
appropriate for the highly skewed phenotypes in our study.

We also used SVMs as the non-parametric machine learning
model for both regression and classification. The advantage in
classification and regression using SVM models for disease
resistance has been previously demonstrated (Ornella et al.,
2014; González-Camacho et al., 2018). Contrary to the BOR
results, the SVMs consistently displayed high accuracies
throughout the locations and years for both DP and BL
training populations. However, the SVM showed lower kappa
values than the BOR in many scenarios. This was not the trend in
the validation sets, where the full-scale BOR and SVM displayed
poor accuracy and kappa values. The consistent accuracy of SVM
over BOR may be due to the non-parametric nature of the SVM
models. The SVM model is implemented similar to the SVMR
model and uses soft classifiers to calculate the probability of the
class rather than hard classifiers that directly target the decision
boundary and allow the model to be flexible (Ornella et al., 2014).
Based on the results for BOR and SVM, classificationmodels need
to be compared by both overall class accuracy as well as a metric
such as kappa that accounts for individual class accuracy.

The precision of the classification models depends on the
number of individuals in a given class. In our study, we
implemented up-sampling (i.e., random sampling with
replacement) to increase the minority class to the same size of
the majority class and reduce the effect of class imbalance (Kuhn,
2008). However, our results showed that with imbalanced class
frequency due to skewed phenotypes, even resampling techniques
such as up-sampling failed to accurately predict disease
resistance. Another approach to deal with class frequency is to
reduce the number of overall classes. We then binned classes to
create 2- and 3-Class prediction scenarios. Reducing the class
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scale to two creates a binary classification model that has been
shown to outperform other regression and classification models
(Ornella et al., 2014). By reducing the number of classes, we also
decreased the effect of class imbalances. Accuracy as well as kappa
increased specifically for the SVM by reducing the class scales.
This observation was seen even in the validation sets, which
resulted in the SVM 2-Class models achieving both high accuracy
and kappa values, consistent with previous studies on the effects
of reduced classes (Ornella et al., 2014; González-Camacho et al.,
2016). Therefore, by reducing the class scale, classification models
such as SVM can accurately predict skewed phenotypes such as
disease resistance.

4.3 Relative Efficiency
RE compares the expected genetic gain when selecting based on
GEBVs compared to phenotypic selection. The RE can be used as
an indicator of the performance of a model when used for
truncation selection and expected genetic gain (Ornella et al.,
2014; González-Camacho et al., 2018). Since classification and
regression do not use the same metrics for performance, simply
comparing accuracies is not possible; hence, we used RE for
comparisons. A selection intensity of 15% was used based on a
previous study (Ornella et al., 2014). In the current work, the
rrBLUP models and SMVR displayed high RE values across both
cross-validation and validation sets for IT and SEV with values
above 0.90. SVMR models have been shown to have superior RE
values for classification in disease resistance (Ornella et al., 2014).
The high RE values indicated that accuracy is linear in the
regression models, but this was not the case for the classification
models. The classification models displayed relatively low RE values
and, in some cases, negative values. Both the SVM and BORmodels
displayed the inability to select the top 15% performers for stripe
rust resistance. The large amounts of zeros (i.e., disease resistant
phenotypes) skew the prediction accuracy for the classification
models to the very high, with low kappa and RE values. The
classification models failed to overcome the skewed phenotypes
even with up-sampling and reduction of classes. Therefore, similar
to our results for prediction accuracy, regression models
outperformed classification models and displayed their ability to
predict and select skewed phenotypes.

4.4 Training Population Comparison
We compared the performance of GS models in different training
populations, environments, and phenotypic distributions. The
effect of environment was less apparent than the effect of
distribution. The differences in distribution of phenotypes for
disease resistance is readily apparent between populations. The
two populations were used to compare the effects of a selected and
unselected population with varying degrees and sources of
resistance. The BL population, consisting of WSU breeding lines
that were selected for disease resistance prior to field trials, is
extremely skewed for both IT and SEV. Therefore, there is already a
selection pressure for high levels of resistance to stripe rust in the
current study. In contrast, the DP appears less skewed with more
variation for disease resistance, a consequence of the population
consisting of diverse varieties from multiple breeding programs in
the Pacific Northwest region of the US. The DP included lines from

the WSU breeding program, but the other varieties were not bred
and selected specifically for resistance to the stripe rust races
present in our study. Additionally, the sources of stripe rust
resistance genes vary more in the DP compared to the BL. The
frequency and type of stripe rust races along with major genes for
stripe rust resistance for these two populations were compared in
depth in Merrick et al. (2021).

The differences in skewness between the populations affected
the performance of the GS models in each population. The GLM
models accurately predicted the extremely skewed BL trials similar
to the other regression models because the skewed phenotypes
follow the Poisson distribution rather than the normal distribution.
However, the GLM model displayed lower accuracies in the less
skewed DP. In addition to the distribution that is modeled, the
skewness affects the frequency of classes used in classification
models. In the extremely skewed BL, the classification models
have high accuracy and low kappa, displaying the prediction of
mainly zeros. However, as mentioned previously, the reduction of
classes helps decrease the effect of class imbalance and increased
accuracy.

The differences in accuracies between populations can also be
attributed to the genetic relatedness of the populations (Asoro
et al., 2011). The effect of the population on accuracy is due to
both population structure and genetic relatedness (Habier et al.,
2007; Asoro et al., 2011; Mirdita et al., 2015). We used the elbow
method to determine the number of clusters when examining
PCs for our populations and resulted in four distinct clusters.
Consequently, the prediction accuracy for the BL cross-validations
was higher than the DP. When independently predicting other
populations as seen in the validations sets, we generally observe a
decrease in accuracy (Merrick and Carter, 2021; Merrick et al.,
2021). Interestingly, though, there was an increase in accuracy
when using the BL to predict the DP in the validation sets.
However, a decrease in prediction accuracy was observed when
the DP predicted the BL. However, this was only seen in the
regression models for predicting SEV in the validation sets.
Furthermore, this trend is not seen in the classification models
that display consistent accuracy across validation scenarios. This
may be due to the effect of predicting a less skewed population in
which regression models generally have better performance
compared to predicting more skewed distributions (Montesinos-
López et al., 2015a).

The increase in prediction accuracy with the increased
combination of years in both our cross-validation and
validation sets can be attributed to the increase of phenotypic
data points and decrease in skewness and accounting for the
genotype-by-environment interaction (GEI). The trials in our
study were dependent on the natural occurrence and pressure of
stripe rust. Therefore, the skewness of the populations, individual
years, and locations may be due to not only the levels of resistance
within the populations, but also the general disease pressure for
stripe rust. By combining environments, we can account for the
GEI in our phenotypic adjustments and increase our prediction
accuracy (Crossa et al., 2014; Jarquín et al., 2014; Haile et al., 2020;
Merrick and Carter 2021; Merrick et al., 2021). The increased
accuracy by accounting for GEI can be seen in the validation sets.
The DP displayed higher accuracies in the validation sets as the
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DP consisted of the same lines each year, whereas the BL consists
of different lines in both years and locations. By screening the
same lines each year, the environmental effect can be effectively
accounted for. However, the trend for increasing accuracy and RE
values by combining years was not seen in the classification
models. This was due to the continued large class imbalances even
when combining years. Therefore, there is a need to develop
training populations carefully to balance class frequencies for the
classification models. Even so, the reduced class SVM models
displayed the ability to overcome the class frequencies regardless
of year combinations. Overall, the rrBLUP and reduced class
classification models displayed the ability to accurately predict
populations and environments with skewed phenotypes.

4.5 Applications in Breeding
GS is becoming more cost-effective due to the decreasing costs of
high-throughput genotyping. With the increased use of GS comes
its utilization for the prediction of complex traits (e.g., disease
resistance), which do not always follow the assumptions of the
commonly used models (Montesinos-López et al., 2015a). Instead
of applying the same approach to every trait, breeders will need to
customize their GS models to achieve accurate GEBVs for
selection. With the integration of data science and plant
breeding, the availability of different prediction models has
resulted in an increased efficiency of implementing GS for a
wide range of traits. This study showed that with the appropriate
choice of model and transformation, even the commonly used GS
regression model, rrBLUP, can be utilized for predicting complex
traits, such as stripe rust resistance, that do not follow a normal
distribution. Furthermore, this study demonstrated the ability to
integrate selection decisions and GS by utilizing classification
models. Reducing classes resulted in higher predictions due to
decreasing the number of outcomes the models need to account
for, especially for classes with only a few observations. Moreover,
by reducing the number of classes, we not only predict resistance
more accurately, but also couple in selection decisions. By reducing
the number of classes for IT from ten to two, we can either keep or
discard lines. Ultimately, by using various GS schemes with
regression and classification models, breeders can reduce the
number of selection decisions made for disease resistance and
focus on selecting other important traits such as grain yield.

5 CONCLUSION

This study compared GS regression and classification models’
ability to accurately predict populations with different levels of
disease resistance and distributions. The varying results for the
classification and transformation methods displayed the need to
choose the prediction model carefully based on the phenotype
distribution. For trials that display a Poisson distribution that is
skewed to lower ordinal values, a GLM or reduced class binomial
classification model can be implemented. However, the SQRT
and SVMR models displayed the flexibility across varying
distributions, and consistently predicted stripe rust with high
accuracies. Moreover, combining years increased the prediction
accuracies for regression models, but failed to increase the overall

class accuracy for classification models due to imbalance class
frequencies. Additionally, regression models displayed high RE,
indicating their ability to select accurately like phenotypic
selection. Overall, SQRT transformation using rrBLUP and
SVM regression models displayed the highest combination of
accuracy and RE across the regression and classification models.
Furthermore, a classification system based on SVMwith a 2-Class
scale can be implemented not only to predict resistance more
accurately, but also to couple in selection decisions. This study
showed that breeders can use linear and non-parametric
regression models using their own breeding lines over
combined years to accurately predict skewed phenotypes.
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Identification of Candidate Genes for
Salinity and Anaerobic Tolerance at
the Germination Stage in Rice by
Genome-Wide Association Analyses
Mohammad Rafiqul Islam1†, Shahzad Amir Naveed1†, Yue Zhang1†, Zhikang Li1,2,3,
Xiuqin Zhao1, Sajid Fiaz4, Fan Zhang1,2, Zhichao Wu1, Zhiqing Hu1, Binying Fu1,
Yingyao Shi2, Shahid Masood Shah5, Jianlong Xu1,3* and Wensheng Wang1,2,6*

1Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of
Agricultural Sciences, Beijing, China, 2College of Agronomy, Anhui Agricultural University, Hefei, China, 3Shenzhen Branch,
Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of
Agricultural Sciences, Shenzhen, China, 4Department of Plant Breeding and Genetics, The University of Haripur, Haripur,
Pakistan, 5Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan,
6National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China

Multiple stress tolerance at the seed germination stage is crucial for better crop
establishment in the direct-seeded rice ecosystem. Therefore, identifying rice genes/
quantitative trait loci (QTLs) associated with salinity and anaerobic tolerance at the
germination stage is a prerequisite for adaptive breeding. Here, we studied 498 highly
diverse rice accessions Xian (Indica) and Geng (Japonica), and six traits that are highly
associated with salinity and anaerobic tolerance at germination stage were measured. A
high-density 2.8M Single Nucleotide Polymorphisms (SNP) genotype map generated from
the 3,000 Rice Genomes Project (3KRGP) was used for mapping through a genome-wide
association study. In total, 99 loci harboring 117 QTLs were detected in different
populations, 54, 21, and 42 of which were associated with anaerobic, salinity, and
combined (anaerobic and salinity) stress tolerance. Nineteen QTLs were close to the
reported loci for abiotic stress tolerance, whereas two regions on chromosome 4 (qSGr4a/
qCL4c/qRI4d and qAGr4/qSGr4b) and one region on chromosome 10 (qRI10/qCL10/
qSGr10b/qBM10) were associated with anaerobic and salinity related traits. Further
haplotype analysis detected 25 promising candidates genes significantly associated
with the target traits. Two known genes (OsMT2B and OsTPP7) significantly
associated with grain yield and its related traits under saline and anaerobic stress
conditions were identified. In this study, we identified the genes involved in auxin efflux
(Os09g0491740) and transportation (Os01g0976100), whereas we identified multistress
responses gene OsMT2B (Os01g0974200) and a major gene OsTPP7 (Os09g0369400)
involved in anaerobic germination and coleoptile elongation on chromosome 9. These
promising candidates provide valuable resources for validating potential salt and anaerobic
tolerance genes and will facilitate direct-seeded rice breeding for salt and anaerobic
tolerance through marker-assisted selection or gene editing.
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1 INTRODUCTION

As the staple food for most Asian people, rice productivity has
more than doubled since the “Green Revolution” in 1960s, when
the global breeding efforts have been largely focused on
improving yields under irrigated lands in Asia and rest of the
world (Khush, 2001; Jena and Nissila, 2017). However, abiotic
stresses (salinity, drought, cold, heat, etc.) are major obstacles to
establishment and yield of rice crops, especially in rainfed areas
(Khush, 2005). Rice is normally grown in the semiaquatic
environments, and transplanting has been the predominant
method in rice planting for decades. However, rice grown
areas by direct seeding have been increasing rapidly in recent
years because direct seeding offers many advantages such as
earlier maturity, reduced water use, planting costs, operational
simplicity, and so on, particularly in areas of double rice cropping
(Kumar and Ladha, 2011). However, direct seeding of rice (DSR)
tends to suffer more from anaerobic stress of flooding, heavy rain,
or saline water irrigation at the time of sowing, particularly in
fields of small-hold farmers of Asia (Flowers and Yeo, 1995;
Hakim et al., 2010). Further, DSR can be exposed to combined
stress of salinity in nonanoxic conditions during tidal in lowlands
of coastal areas of many Asian countries (Ray et al., 2016; Naveed
et al., 2018). Under this kind of scenario, flooding decelerates seed
germination and delays seedling establishment (Ismail et al.,
2008), whereas shoot growth of rice seedlings can be
simultaneously arrested under salt stress due to osmotic stress
and high accumulation of Na+ in shoot tissues (Munns and
Tester, 2008), because rice plants could not maintain their
normal energy level under hypoxia (low O2 concentration)
(Kurniasih et al., 2013). Thus, developing rice varieties with
superior ability to germinate under salinity and anaerobic
stress is essential for success of DSR.

Rice anaerobic germination tolerance (AGT) is a complex trait
and known to be associated with rapid coleoptile elongation at
germination stage because elongated coleoptiles allow plants to
obtain enough oxygen to meet the required metabolic activity
under anaerobic stress. The faster coleoptiles elongate, the more
likely rice seedlings can survive under anaerobic stress. Both AGT
and salinity germination tolerance (SGT) of rice are complex
phenomena controlled by multiple quantitative trait loci (QTLs)/
genes, and rice germplasm accessions are known to vary
considerably for their AGT and SGT (Ghosal et al., 2020).
Identification of important QTLs/ genes and their functional
haplotypes (alleles) is an important step to understand the genetic
and molecular bases of complex traits (Judson et al., 2002; Niu,
2004). Recently, the genome-wide association studies (GWASs)
have emerged as a powerful approach for direct identification of
QTLs and candidate genes associated with complex traits in
germplasm, particularly in discovering useful germplasm
accessions and mining underutilized allele/haplotype
combinations for crop improvements (Myles et al., 2009).
Association mapping using GWAS has multiple gains over the
traditional linkage mapping analysis using biparental
populations, including (1) higher mapping resolution, (2)
more and significant loci for associated phenotypes, and (3)
shortened study time (Yu and Buckler, 2006). In rice, GWAS

efforts have been greatly facilitated by the free availability of the
seeds and genomic sequences of a core collection of 3,010 rice
germplasm accessions (Wang W. et al., 2018). In the past
2 decades, several efforts have been taken to dissect rice AGT
and SGT by identifying QTLs/alleles to facilitate functional
genomic analyses of the traits and to provide target QTLs/
genes for marker-assisted selection breeding (Kamoshita et al.,
2002). After screening 8,000 rice accessions, Angaji et al. (2010)
reported that a Xian (Indica) landrace, Khao-Hlan-On, has
excellent AGT, which were largely controlled by five putative
QTLs (qAG-1-2, qAG-3-1, qAG-7-2, qAG-9-1, and qAG-9-2).
They further fine-mapped a major QTL, qAG-9-2, on the long
arm of chromosome 9 and determined OsTPP7 as the most likely
candidate gene for qAG-9-2 (Kretzschmar et al., 2015). Later,
ZhangM. et al. (2017) reported several novel genetic loci for AGT
in 432 Xian (Indica) accessions and demonstrated the Hap.2 of
one candidate gene (LOC_Os06g03520) associated perfectly with
flooding tolerance. Hsu and Tung (2015) reported a strong
correlation between the subpopulation groups and five
haplotypes of HXK6 gene; allelic variations of different
haplotypes contributes to the phenotypic variation of
coleoptile responses to anoxic conditions.

Mishra et al. (2016) reported the different haplotypes of HKT
genes were associated with varied salt tolerance. Using a panel of
208 rice mini-core accessions, Naveed et al. (2018) identified six
loci associated with rice salt tolerance on chromosomes 2, 3, 4, 6,
8, and 12. A similar GWAS by Chadchawan et al. (2017)
identified 10 loci/genes on chromosomes 1, 2, 5, 10, 11, and
12 for leaf Na+ content in Thai rice. Shi et al. (2017) used 478 rice
accessions and identified 11 loci associated with salt tolerance at
seed germination stage. Two hundred thirty-two diverse rice
accessions were used for photosynthesis measurement under
salinity stress and identified two genomic regions on
chromosome 5 highly associated with Photosystem II (PSII),
and it was reported that chloroplast biogenesis in response to
salt stress is important. However, the reported AGT and salt
tolerance loci and alleles represent only a small portion of the
expected loci/alleles involved in salinity and anaerobic tolerance
at the germination stage and few of the identified QTLs were
resolved into candidate genes for further validation and
application in rice improvement.

Haplotypes can be defined as a linear arrangement of the
genes/alleles (Judson et al., 2002) and can be determined through
genotypic data (Niu, 2004). Identification of candidate genes and
their functional haplotypes (alleles) for QTLs provides important
information to determine causal genes and facilitate further
validation and application of identified QTL in trait
improvement. This has been greatly facilitated with the
availability of large numbers of the 3,010 resequenced rice
genomes (Wang W. et al., 2018). For example, Naveed et al.
(2018) reported 22 candidate genes each with two to four
haplotypes for salt tolerance at the germination and seedling
stages in rice. Zhang J. et al. (2017) used 211 rice accessions and
identified 22 candidate genes each with two to five haplotypes for
ferrous iron and zinc toxicity tolerance at the seedling stage. This
study reports our recent effort to identify 99 QTLs for AGT, SGT,
and anaerobic plus salinity germination tolerance (ASGT), each
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of which was resolved into relatively few candidate genes’ strong
evidence from comprehensive analyses of gene–Coding sequence
(CDS) haplotypes (functional alleles). Our results should be
helpful to enhance the current knowledge and information on
the genetic and molecular bases of both AGT and SGT and to
facilitate further validation their functionalities by gene editing
and utilization in improving rice AGT and SGT in future marker-
aided breeding programs.

2 MATERIALS AND METHODS

2.1 Plant Material
A set of 498 accessions of diverse germplasm accessions
representing the major global rice-growing regions was
selected from 3,000 Rice Genomes Project (3KRGP) as the
materials. This pool of germplasm accessions consisted of five
subpopulations, including 312 Xian (Indica), 131 Geng
(Japonica), 14 Aus, 15 aromatic/basmati (Bas), and 26
admixture (Adm). Because the population structure may
significantly impact our results in the following QTL
identification by GWAS, we divided the 498 accessions into
two populations based on the genomic relationships (Wang
W. et al., 2018), the whole population with all 498 accessions
included, population Xian (Indica) consisting of 312 Xian, 14Aus
and 26 Adm accessions, and population Geng (Japonica)
consisting of 131 Geng and 15 aromatic/basmati (Bas) accessions.

2.2 Evaluation of the Rice Accessions for
Anaerobic and Salinity Germination
Tolerance
2.2.1 Evaluation of Anaerobic Germination Tolerance
Ten sterilized seeds of each of the 498 accession were placed in a
capped glass tube of 2.5 × 8 cm (diameter × height) filled with
distilled water up to 5 cm to submerge the seeds. Glass tubes were
incubated in a growth chamber at 27°C ± 1°C, with a 12-h light
(approximately 150 μmol m−2s−1)/12-h dark cycle and 60%–65%
moisture without changing water for 7 days. For the control
experiment, 10 sterilized seeds were placed on moist filter
paper in glass tubes. After 7 days, coleoptile lengths (CLs) of
seedlings were measured using a standard glass measuring scale,
and the anaerobic response index (RI) was calculated as:

Response index � Coleoptile length (submerged)
− Coleoptile length (control)

2.2.2. Evaluation of Salinity Germination Tolerance
Ten sterilized seeds of each accession were placed in two filter
papers soaked with 10 ml of 115 mM of sodium chloride in a petri
plate (9 cm) during the germination stage to screen salinity
tolerance. In the controlled treatment, the same number of
seeds per line was placed on a filter paper soaked in 10 ml of
distilled water in a petri dish. All petri dishes were incubated
under controlled conditions in the growth chamber at a
temperature of 27 ± 1°C, with 12 h of light and dark (day/

night) and 60%–65% moisture. This experiment was laid out
under completely random design with three replications for each
accession. The final germination rates (GRs in %) were measured
for all germinating seeds 10 days after germination. Total biomass
(BM) was taken as dry weight (g) of 5 plants; plants (root and
shoot) were dried at 70°C for 3 days and was weighted on a digital
high-accuracy balance.

Germination (%) � No. of germinated seeds
Total number of seeding seeds

× 100

2.2.3 Evaluation of Anaerobic Plus Salinity
Germination Tolerance
To identify promising accessions tolerant to the combined (salt
plus anaerobic) stress, 200 accessions tolerant to either salt or
anaerobic stress were selected from previous separate screening
experiments based on higher germination under stress
conditions. Ten sterilized seeds of each of the 200 accession
were placed in a capped glass tube of 2.5 × 8 cm (diameter ×
height) filled with saline solution (65 mM) up to 5 cm to
submerge the seeds. Glass tubes were incubated in a growth
chamber at 27°C ± 1°C, with a 12-h light period and 60%–65%
moisture without changing water for 7 days. For the control
experiment, 10 sterilized seeds were placed on moist filter
paper in glass tubes. After 7 days, CLs were measured using a
standard glass measuring scale and the anaerobic salt RI (ASRI)
was calculated as:

ASRI � Coleoptile length (submerged)
− Coleoptile length (control)

2.3 Data Analyses
Phenotypic data distribution and correlations among measured
traits and stress index were computed and plotted by using R
statistical software, corrplot package (http://www.R-project.org).
The 2.8M SNP genotypic data generated from the 3KRGP were
used in this study (Zheng et al., 2015). SNPs with missing rates of
more than 20% and minor allele frequency ≤0.05 were removed,
leaving a total of 2,760,730 high-quality SNPs used data analyses
for the whole population, 1,973,926 SNPs for the Xian (Indica)
population, and 1,371,057 SNPs for the Geng (Japonica)
population in the following GWAS.

2.4 Population Structure and Kinship
The 2.8M high-quality SNPs were used to calculate the
population structure (Q) and kinship (K) of the 498 rice
accessions based on Bayesian clustering and principal
components using the software STRUCTURE 2.3.4. The
program was run with the following parameters: k (1–5),
with a variable number of groups; five runs at each k value,
and for each run, 10,000 burn-in iterations followed by 10,000
MCMC (Markov Chain Monte Carlo) iterations. To calculate
the appropriate K value, the default method, Centered_IBS, was
applied using TASSEL 5.2.23 (Bradbury et al., 2007). The IBS
was scaled (1 + F) for the mean diagonal element, where F is the
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inbreeding coefficient for the whole population of 498
accessions. These Q and K matrix were used for associations
and analysis.

Linkage disequilibrium (LD) was measured using squared
allele frequency correlations (r2) values between pairs of the
SNP markers, calculated using the TASSEL 5.2.23 software
(Bradbury et al., 2007). To find the relationship between the r2

value and physical distance of the identical marker pair, the R
package ggplot2 was used to obtain the second-order polynomial
curve of r2 fitting of the filtered data. The LD decay rate was
measured by dropping r2 to a half along the chromosomal
distance (Huang et al., 2010).

2.5 QTLs and Candidate Gene Identification
by GWAS and Haplotype Analyses
The linear mixed-effects model was applied to determine the
association between each SNP and the measured traits (Zhang
et al., 2010) by using an efficient mixed-model analysis with the
EMMA expedited (EMMAX) software (Kang et al., 2010) to
determine genetic similarities among accessions. The effective
number of independent markers (N) was calculated using the
GEC software (Tumino et al., 2016). As mentioned previously, all
rice accessions used in this study were divided into three panel
populations, the whole (Xian + Geng + Adm, n = 498), Xian
(Indica) (n = 326), and Geng (Japonica) (n = 146) populations. It
is well-known that the smaller the population size is, the less the
power is in detecting QTLs by GWAS. Based on population sizes,
two thresholds of p = 1.0 × 10−5 and 1.0 × 10−6 were used to claim
significant SNP-trait associations in the Geng (Japonica)
population, Xian (Indica) and whole populations, respectively,
determined by the total number of SNPs (0.05/N) in GWAS.
Based on the LD estimates (r2) of 200, 170, and 220 kb of the
whole, Xian (Indica), andGeng (Japonica) populations (WangW.
et al., 2018), any two or more significant SNPs in <200-kb
distances were considered as a single QTLs. Genes inside the
QTLs with p = 1.0 × 10−4 were used for GO (Gene Ontology)
enrichment, and the group with false discovery rate ≤0.05 was
regarded as significantly enriched. The Pearson correlation
coefficient was calculated in R software version 3.5.0, and the
network was visualized using Cytoscape version 3.6.1.

Identification of candidate genes for important QTLs was
achieved by determining important QTLs for the measured
traits and then by identifying candidate genes for important
QTLs by bioinformatics and haplotype analyses. From those
QTLs identified by GWAS, anyone that met at least two of the
following three criteria was considered as important QTL: (1)
having large phenotypic effects with >10% of the total trait
variance and (2) the LOD peaks of significant SNPs mapped
to the same location (~1 Mb) of a fine mapped QTL/cloned gene
of functional relevance, (3) QTL region–containing
nonsynonymous SNPs in their CDS −log10 (p < 10−4). Then,
three steps were used to identify candidate genes for important
QTL regions by (1) searching all genes in the target region of
important QTL-containing nonsynonymous SNPs in their CDS
regions based on corresponding reference genomes (Minghui 63)
used as the Xian (Indica) reference genome and Nipponbare as

the Geng (Japonica) reference genome); (2) the presence of major
gene CDS haplotypes (gcHaps) in more than 10 accessions that
showed statistically significant differences between the major
haplotypes of selected candidate genes for the associated trait;
and (3) for each of the most likely candidate genes, a haplotype
network in the 3KRGPwas constructed using all nonsynonymous
SNPs downloaded from the Rice SNP-Seek Database (Alexandrov
et al., 2015) within its coding sequence regions using the RFGB
v2.0 (Wang et al., 2020) and the pegas package in R. Haplotypes
present in at least 150 rice accessions in 3KRGP were used for
comparing. The mean trait value of each haplotype was compared
using one-way analysis of variance (ANOVA) followed by
Duncan new multiple range tests (p < 0.05) with the agricolae
package in R. Then, each of the candidate genes was interpreted
according to its population organization and evolutionary
relationships of their major gcHaps in the 3KRGP
(Supplementary Figure S1).

3 RESULTS

3.1 Phenotypic Variation and Trait
Correlations
The 498 accessions showed huge variation for the measured
AGT and SGT traits (Table 1). On average, the Geng (Japonica)
population showed significantly higher values than the Xian
(Indica) population for most the AGT and SGT traits. ANOVA
showed that the genotypic differences among the accessions
explained 97.2%, 32%, and 97.5% of the total phenotypic
variances of GR under anaerobic condition (AGr), CL, and
RI contributing to AGT (Supplementary Table S1), and 97.4%,
90.3%, and 97.1% of the total phenotypic variances of GR under
salinity condition (SGr), and BM contributing to SGT,
respectively (Supplementary Table S1). As expected, highly
positive correlation was observed between the three AGT traits,
with r = 0.82 between AGr and CL, 0.82 between AGr and RI,
and 0.99 between CL and RI, indicating that CL was the
primary determinant of AGT. For the SGT traits,
moderately positive correlations were observed between SGr
and BM (r = 0.31), (Supplementary Figure S2). Based on the
screening result, we were able to identify 53 promising
accessions, including 33 AGT accessions (21 Geng and
11 Xian accessions) from 14 countries, which had mean
AGr >79%. There were 14 SGT accessions (5 Geng and
9 Xian lines) from 12 countries that had mean SGr >76%
(Supplementary Table S2). There were 17 RIs under anaerobic
and salinity condition (ASRI) accessions (16 Geng and 1 Xian)
from eight countries that had mean ASRI >2.9 cm. Ten of these
accessions were promising under more than one stress. Eight
accessions showed excellent performance under AGT and
ASRI, and one accession (IRIS_313-10710) showed excellent
germination under AGT and SGT stresses. One accession
(B068) showed excellent performance under three stresses:
AGT, SGT, and ASRI (Supplementary Table S2). These
accessions would be valuable sources of genetic variation for
genetic/molecular dissection and improvement of rice AGT
and SGT in the future.
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3.2 Population Structure
The population structure and kinship analyses using the
2,760,730 high-quality SNPs through STRUCTURE indicated
that k = 2 was most informative to describe the population
structure of the 498 accessions used in this study (Figure 1).
The huge amounts of variation for all measured AGT and SGT
traits (Table 1) were the foundation for our following GWAS
analyses, with the whole population consisting of all 498 lines, the
Geng (Japonica) population consisting of 146 accessions (Geng +
Bas), the Xian (Indica) population consisting of 326 (Xian +Aus).

3.3 Identification of QTLs for AGT and SGT
Traits by GWAS
Based on a stringent threshold (p = 1.0 × 10−5 for Geng and 1.0 ×
10−6 for Xian), we detected a total 99 QTLs associated with the six
traits measured under the salinity and anaerobic germination
stresses in different rice populations (Figure 2). For the 3 AGT
traits, we identified 54 QTLs. Nine QTLs associated with AGr

mapped to chromosomes 2, 4, 5, 8, 9, and 11, four of which
(qAGr2, qAGr5, qAGr8a, and qAGr8b) were identified only in
population Geng (Japonica), three QTLs (qAGr9, qAGr11a and
qAGr11c) only in population Xian (Indica), and the remaining
two (qAGr4 and qAGr11b) in both whole and Xian (Indica)
populations. These QTLs had main effects ranging from 7.1 for
qAGr11a to 19.5 for qAGr8b (Supplementary Table S3).
Eighteen QTLs affecting CL were identified and mapped to
chromosomes 1, 2, 3, 4, 6, 7, 8, 9, and 10. Eight of these QTLs
were detected only in population Geng (Japonica), qCL4a and
qCL9b were detectable only in population Xian (Indica), and
seven QTLs were detectable only in the whole population,
suggesting the allelic differences at these QTLs were primarily
reflected between the two subspecies. qCL4b was detected in the
whole and Geng (Japonica) populations. These QTLs had effects
ranging from 3.3 for qCL3d to 10.6 for qCL9b. Twenty-seven
QTLs affecting anaerobic RI were identified. Of these, 15 were
detected only in population Geng (Japonica), and eight were
detectable only in the whole population; qRI4b, qRI9b, and qRI11c

TABLE 1 | Performances of salt tolerance related traits measured at germination under salinity and anaerobic stresses.

Traits Geng (Japonica) Xian (Indica)

Range Mean ± SD CV (%) Range Mean ± SD CV (%)

Salt germination rate (SGr, %) 0.00–96.0 32.1 ± 29.2 38.9 0.00–90.0 25.4 ± 18.9 33.2
Biomass (BM, g*100) 0.53–1.99 1.06 ± 0.30 22.7 0.25–2.20 1.10 ± 0.35 25.4
Anaerobic germination rate (AGr, %) 15.0–96.0 47.5 ± 20.0 41.0 0.00–86.0 26.1 ± 26.5 36.3
Coleoptile length (CL, cm) 1.23–5.23 3.30 ± 0.76 19.8 0.93–4.00 2.50 ± 0.33 22.7
Response index (RI) 0.33–4.47 2.69 ± 0.76 24.8 0.53–3.42 1.90 ± 0.50 21.5
Anaerobic salt response index (ASRI) 0.69–2.53 1.68 ± 0.79 40.2 0.12–2.01 1.02 ± 0.82 38.1

FIGURE 1 | Population structure of germplasm showing NJ tree plot (A), PC (B), and Bayesian clustering (C) of germplasm.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8225165

Islam et al. GWAS for Germination Tolerances

161

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


only in population Xian (Indica); and qRI4c in both Geng
(Japonica) and whole populations. These RI QTL had effects
ranging from 2.3 for qRI11a to 16.3 for qRI12b. We noted that
nine pairs of CL and RI QTLs were mapped to the identical
locations with the same peak SNPs (Supplementary Table S3).
Each of these cases should be considered the same QTL affecting
both CL and RI because of the high positive correlation between
CL and RI.

Twenty-oneQTLswere identified for the SGT traits. Nine QTLs
associated with BM were identified and mapped to chromosomes
1, 4, 6, 9, 10, and 12. These included qBM1b, qBM4, qBM6a,
qBM9b, and qBM10 detectable only in populationGeng (Japonica),
qBM6b and qBM12 only in population Xian (Indica), and qBM1a
in both whole and Xian (Indica) populations. These QTLs had
effects ranging from 3.2 for qBM6b to 9.6 for qBM9a. Twelve QTLs
affecting salt GR (SGr) were identified and mapped to
chromosomes 3, 4, 5, 9, 10, 11, and 12. These included qSGr4b,
qSGr5, qSGr10a, and qSGr12 in populationGeng (Japonica); qSGr3,
qSGr4a, qSGr9b, qSGr10c, and qSGr11 in population Xian (Indica);
qSGr10b and qSGr10d in the whole population; and qSGr9a in the
Xian (Indica) and whole populations. These QTLs had effects
ranging from 4.7 for qSGr4a to 20.2 for qSGr4b (Supplementary
Table S3).

In addition, we identified 42 QTLs associated with ASRI and
mapped to all 12 rice chromosomes. Twenty of these QTLs were
detected in the whole population; seven QTLs (qASRI1a,
qASRI1d, qASRI2e, qASRI2g, qASRI3e, qASRI12a, and
qASRI12b) in the Xian (Indica) and whole populations;
qASRI4a and qASRI6d were in all three populations; seven
QTLs (qASRI1c, qASRI1e, qASRI2b, qASRI3f, qASRI4c,
qASRI4e, and qASRI12c) detected only in population Xian
(Indica); qASRI2d, qASRI4b, and qASRI6a in population Geng
(Japonica); and qASRI4d, qASRI11a, and qASRI11b in the Geng
(Japonica) and whole populations. These QTLs had effects
ranging from 2.1 ASRI for qASRI5b to 11.3 ASRI for qASRI3e
(Figure 2; Supplementary Table S2).

3.4 GO Enrichment Analysis
In total, 317 genes with significant SNP were used for GO
enrichment analysis, and significant GO terms for embryonic
development, nitrogen compound metabolism, nucleic acid
metabolism, carbohydrate metabolic process, response to
stress, and response to stimulus were identified. Four GO
terms (embryonic development, carbohydrate metabolic
process, response to stress, and response to stimulus) highly
associated with abiotic stress tolerance were targeted for

FIGURE 2 |Manhattan plots of AGT and SGT QTLs in the whole genome. Significant SNPs for six traits in Xian (Indica), Geng (Japonica), or whole populations are
displayed in different colors and shapes; each shape represents specific QTL identified in Xian (Indica), Geng (Japonica), or whole.
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further analysis, and 22 genes were found common for the target
GO terms. The results explained that the genes with significant
SNPs are associated with abiotic stress tolerance trait in rice
(Supplementary Figures S4, S5).

3.5 Candidate Genes for Important QTLs
Based on the GWAS results, we were able to determine seven
important QTLs: qRI1c, qRI1d, qSGr3, qAGr4, qBM9a, qSGr9a,
and qAGr9 (qCL9b and qRI9b), based on their large phenotypic
effects and LOD peaks of multiple highly significant SNPs
mapped to a small region of ~1 Mb or to a fine mapped QTL/
cloned gene of functional relevance. Based on the criteria, four
QTLs, qRI1c, qRI1d, qAGr4, and qAGr9 (qCL9b and qRI9b), with
large effects on AGT, appeared to be more important, and
candidate genes were identified in those regions. qAGr4 was
mapped in a confidence interval of 230 kb (34.60–34.83 Mb)
on chromosome 4 with 142 SNPs in the 32 genes, which
resulted in identification of six candidate genes, Os04g0677700,
Os04g0678300, Os04g0678700, Os04g0679050, Os04g0681600,
and Os04g0682100 (Table 2). Os04g0679050 encoding an
H0801D08.10 protein and has 3 major haplotypes consisted of
nonsynonymous SNPs. Hap1 presented in only 3 Xian (Indica)
and 11 Geng (Japonica) accessions and had a mean AGr of 45.4%,
significantly higher than the predominant Hap2 (mean AGr =
31.3%) and Hap3 (mean AGr = 11.3%) (Supplementary Figure
S3). Similarly, Os04g0682100 encodes a C2 calcium/lipid-binding
protein and has only two major haplotypes in the whole
population. Hap1 was predominant in population Geng
(Japonica) and associated with a mean AGr of 57.3%,
significantly higher than Hap2, which had a mean AGr of
21.8% and was predominant in population Xian (Indica)

(Supplementary Figure S3). We observed four major
haplotypes at Os04g0681600, which encodes a DUF580 family
protein of unknown function. Hap1 and Hap2 were present in
population Geng (Japonica) and had mean AGr of 54.4% and
44.2%, significantly higher than Hap3 and Hap4, which were
present primarily in population Xian (Indica) (Supplementary
Figure S3; Table 3). These results suggested Os04g0679050,
Os04g0681600, and Os04g0682100 were most likely candidates
for qAGr4. qAGr9 (qCL9b and qRI9b) mapped to an interval of
240 kb (12.20–12.44 Mb) on chromosome 9, which harbors a
cloned QTL gene, OsTPP7 (LOC_Os09g20390), encoding the
trehalose-6-phosphate phosphatase involved in trehalose-6-
phosphate metabolism and enhancing rice AGT by driving
growth kinetics of the germinating embryo and elongating
coleoptile under anaerobic conditions (Kretzschmar et al.,
2015). The haplotype analyses suggest seven candidate genes,
Os09g0369050, Os09g0369250, Os09g0369400, Os09g0369500,
Os09g0370500, Os09g0371000, and Os09g0372800. Of them,
Os09g0369400 encodes a protein similar to trehalose-6-
phosphate phosphatase 7 (TPP7) and has only three major
haplotypes in population Xian (Indica) with Hap1 associated
with significantly higher AGr and longer CL than Hap2
(Supplementary Figure S3; Table 3).

We discovered five major haplotypes (with frequency >150)
constructed from SNPs within the CDS regions of this gene in the
3,010 rice accessions (Figure 3A). According to their frequencies
in the five major rice populations, Hap1 and its derived one,
Hap4, were the predominant alleles in population Geng
(Japonica) and associated with high AGr in the tested
populations, whereas Hap2 was the predominant allele in
population Xian (Indica) and associated with lower AGr.

TABLE 2 | List of 25 candidate genes for seven important QTLs identified at under salinity and anaerobic stresses.

Sr. No QTLs Loci Annotation

1 qRI1c Os01g0772500 Glycosyl transferase
2 qRI1d Os01g0974200 RicMT (metallothionein-like protein), conserved hypothetical protein (MT2B)
3 qRI1d Os01g0976100 ABC transporter-like domain–containing protein
4 qSGr3 Os03g0230300 Regulation of stomatal closure, abiotic stress response
5 qSGr3 Os03g0231700 Squalene monooxygenase, putative, expressed
6 qSGr3 Os03g0231800 Similar to squalene monooxygenase
7 qSGr3 Os03g0233000 Protein of unknown function DUF607 family protein
8 qAGr4 Os04g0677700 Similar to H0402C08.11 protein
9 qAGr4 Os04g0678300 WD-40 repeat family protein, putative, expressed
10 qAGr4 Os04g0678700 Similar to protochlorophyllide reductase
11 qAGr4 Os04g0679050 Similar to H0801D08.10 protein
12 qAGr4 Os04g0681600 Protein of unknown function DUF580 family protein
13 qAGr4 Os04g0682100 C2 calcium/lipid-binding region, CaLB domain–containing protein
14 qAGr9, qCL9b Os09g0369050 Similar to DRE-binding factor 2
15 qAGr9, qCL9b Os09g0369250 Expressed protein
16 qAGr9, qCL9b Os09g0369400 Similar to trehalose-6-phosphate phosphatase 7 (TPP7)
17 qAGr9, qCL9b Os09g0369500 Endosperm-specific gene 127
18 qCL9b Os09g0370500 VQ domain–containing protein
19 qAGr9 Os09g0371000 Major facilitator superfamily protein
20 qAGr9 Os09g0372800 Serine/threonine protein kinase domain–containing protein
21 qBM9a Os09g0490200 Similar to ethylene signal transcription factor
22 qBM9a Os09g0490400 β-Glucosidase 29
23 qBM9a Os09g0491740 Auxin efflux carrier domain–containing protein
24 qBM9a Os09g0493700 Similar to CUC2
25 qSGr9a Os09g0306400 bZIP transcription factor, drought and salt tolerance
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TABLE 3 | Haplotype analysis of the candidate genes for important QTL regions.

QTLs Genes Hap SNPs Xian
(Indica)

Geng
(Japonica)

Other Total Mean SD

qAGr4 Os04g0679050 Hap-1 CC 3 11 0 14 45.4 8.0
Hap-2 CT 269 109 24 402 31.3 9.1
Hap-3 TC 30 0 0 30 11.3 5.2

Os04g0681600 Hap-1 GCA 0 12 5 17 54.4 9.9
Hap-2 ACG 0 12 0 12 44.2 9.3
Hap-3 GCG 14 0 4 18 28.1 7.6
Hap-4 GTG 293 56 5 354 23.4 6.5

Os04g0682100 Hap-1 T 3 90 9 102 57.3 9.1
Hap-2 C 291 5 12 308 21.8 9.1

qBM9a Os09g0490200 Hap-1 AGCT 11 3 0 14 1.5 0.2
Hap-2 GATC 271 113 22 406 1.1 0.1

Os09g0490400 Hap-1 GTT 286 0 4 290 1.4 0.2
Hap-2 GGT 5 104 3 112 1.1 0.2
Hap-3 AGC 2 0 15 17 0.9 0.1

Os09g0493700 Hap-1 TGG 75 0 1 76 1.4 0.2
Hap-2 TCA 19 0 10 29 1.1 0.2
Hap-3 GCG 4 29 1 34 0.9 0.1

qAGr9 Os09g0369400 Hap-1 CA 98 22 14 134 51.4 9.4
Hap-2 GA 152 4 0 156 27.3 10.8
Hap-3 GC 34 2 0 36 10.3 5.3

Os09g0369500 Hap-1 AAA 21 88 12 121 55.6 10.09
Hap-2 CGC 143 6 3 152 30.6 9.0
Hap-3 CGA 20 2 0 22 10.1 4.4

qCL9b Os09g0369400 Hap-1 CA 100 20 0 120 3.54 0.58
Hap-2 GA 146 4 0 150 2.85 10.8
Hap-3 GC 36 6 0 42 2.16 0.20

qSGr3 Os03g0231800 Hap-1 AGC 0 73 2 75 44.4 7.1
Hap-2 TGC 12 1 16 29 19.0 8.8
Hap-3 TTT 173 5 20 198 15.8 8.6
Hap-4 TGT 14 0 0 14 10.8 8.7

FIGURE 3 | (A) for OsTPP7 and (D) for OsbZIP71; Frequencies of (B), 5 haplotypes(Hap) of OsTPP7 and (E), 3 haplotypes(Hap) of OsbZIP71 in subgroups of
3RGP; The distribution of AG for the (C), 5 Haps of OsTPP7 and the distribution of SG the (F), 3 Haps of OsbZIP71. Different letters above each boxplot indicate
significant differences among haplotypes according to Tukey’s honest’s significant difference test (p < 0.05).
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However, two less frequent alleles, Hap3 and Hap5, which were
present almost only in population Xian (Indica), were associated
with greatly reduced AGr. Figure 3D explains thatOs09g0306400
has four haplotypes in the 3,010 rice accessions, and according to
the frequencies, haplotypes were the predominant alleles in
population Xian (Indica), and this allele is associated with
high SGr in the tested populations. On chromosome 1, three
candidate genes, Os01g0772500, Os01g0974200, and
Os01g0976100, were identified in two important QTLs (qRI1c
and qRI1d). Os01g0772500 encodes glycosyl transferase,
Os01g0974200 encodes RicMT (metallothionein-like protein),
conserved hypothetical protein (MT2B), and Os01g0976100
encodes protein contains domain for ABC transporter.

Three SGT important QTLs, qSGr3, qBM9a, and qSGr9a, were
analyzed for candidate gene identification. qSGr3 mapped to
chromosome 3 in the confidence interval of 360 kb
(6.83–7.19 Mb) where we detected 158 SNPs in the 41 genes
with LOD peaks in genes Os03g0230300 (regulation of stomatal
closure and abiotic stress response), Os03g0231700 (the squalene
monooxygenase), Os03g0231800 (similar to squalene
monooxygenase), and Os03g0233000 (a DUF607 family protein
of unknown function) (Figure 3), indicating that they were the
most likely candidate genes for qSGr3. Os03g0231800 is predicted
to encode a squalene monooxygenase and has four major
haplotypes in the mapping panel populations. Hap1 was
associated with significantly higher SGr than the other three
haplotypes based on ANOVA (Supplementary Figure S3). At the
other three candidate genes, no significant differences were
detected among their haplotypes, suggesting Os03g0231800 can
be candidate gene for qSGr3.

qBM9a was mapped to a confidence interval of 260 kb
(18.88–19.14) on chromosome 4–containing 118 SNPs with 3
LOD peaks in 21 genes, which led us to identify four most likely
candidate genes, Os09g0490200 (similar to ethylene signal
transcription factor), Os09g0490400 (β-glucosidase 29),
Os09g0491740 (an auxin efflux carrier domain–containing
protein), and Os09g0493700 (similar to CUC2). Os09g0490400
encodes the β-glucosidase 29 and has three major haplotypes in
the whole population. Hap1 was associated with the highest BM,
followed by Hap2 and Hap3 with the lowest BM (Table 3;
Supplementary Figure S3). Predicted to be an ethylene signal
transcription factor gene, Os09g0490200 has two major
haplotypes, and Hap1 was associated with significantly higher
BM (Supplementary Figure S3).Os09g0493700 is predicted to be
a CUC2 gene with three major haplotypes, and Hap1 was
associated with the highest BM, followed by Hap2, and Hap3
had the lowest BM (Supplementary Figure S3).

4 DISCUSSION

DSR has increased rapidly recently in different Asian countries
because of its being labor-saving and cost-effective. However,
developing high-yielding rice cultivars suitable for direct seeding
must have good AGT and SGT in order to achieve high and
sustainable yields under salinity and anaerobic stresses at the
germination stage. In this study, we have shown that there is

tremendous genetic variation for traits contributing to AGT and
SGT in the primary gene pool of rice and identified large numbers
of QTLs affecting the AGT and SGT traits in rice. While
providing a clear picture regarding the overall level and
pattern of this useful genetic diversity and materials, our
results shed some light on the genetic basis of SGT and AGT
in rice and suggest more efficient strategies how to exploit this
valuable genetic variation in future development of new and high-
yielding DSR varieties. In this study, huge amounts of phenotypic
variation were observed among accessions for the measured AGT
and SGT traits, primarily within the subspecific populations. On
average, Geng (Japonica) accessions showed significantly higher
AGT than Xian (Indica) accessions, which was also reflected by
more Geng (Japonica) accessions showing high level of AGT. The
subspecific differences in SGT traits were less pronounced. Thus,
future improvement of both AGT and SGT should focus on
exploitation of within-subspecies variation. In this respect, the
identification of 33 AGT accessions and 14 SGT accessions of
diverse origins (Table 2) provided excellent materials for future
genetic/molecular dissection and improvement of AGT and SGT.

With the threshold of −log10 (p < 10−5) for two or more SNPs
in 200 kb by GWAS, we were able to identify large numbers of
QTLs significantly associated with the AGT and SGT traits and
ASGT, indicating rice adaptation to AG, SG, and ASG stresses is
genetically complex. Clearly, most of the identified QTLs had
relatively small effects on the AG, SGT traits, and ASGT. We
noted that most (87.1%) of the identified QTLs were detected in a
single population, including 39 QTLs detectable only in
population Geng (Japonica), 22 QTLs in population Xian
(Indica), and 39 QTLs detected only in the whole population,
whereas 5 (qCL4b, qRI7a, qASRI4d, qASRI11a, and qASRI11b)
and 10 QTLs (qAGr11b, qBM1a, qSGr9a, qASRI1a, qASRI1d,
qASRI2e, qASRI2g, qASRI3e, qASRI12a, and qASRI12b) were
detected in whole in parallel with Geng (Japonica) and Xian
(Indica) populations, respectively, and 2 QTLs (qASRI4a and
qASRI6d) were detected in Geng, Xian (Indica) and whole
populations. While providing strong evidence for the impact
of population structure of the tested accessions on
effectiveness of GWAS, this result has important implications
for their potential application to improving rice AGT, SGT, and
ASGT in future breeding programs, for example, for those QTLs
identified in either population Xian (Indica) or Geng (Japonica).

Three QTL (qCL9b, qRI9b, and qAGr9) associated with AGT
were identified in the same region on chromosome 9
(12.20–12.44 Mb); this region was previously cloned and
reported as major anaerobic stress tolerance gene OsTPP7
(Kretzschmar et al., 2015). Two QTL qBM9a and qBM9b
associated with salinity stress were identified in the same
region on chromosome 9 (18.87–20.00 Mb); this region was
previously cloned from Xian (Indica) rice variety 9,311 and
reported as OsEATB, a major gene involved in the reduction
of plant height that is a major factor to increase plant yield (Qi
et al., 2011). One QTL (qRI1c) was identified on chromosome 1
(32.60–33.03 Mb); this region is adjacent to the previously cloned
gene OsKAT1, which was reported as a rice shaker potassium
channel that confers tolerance to salinity stress in rice (Obata
et al., 2007). One QTL (qSGr9a) was identified on chromosome 9

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8225169

Islam et al. GWAS for Germination Tolerances

165

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


(6.82–7.05 Mb); this region is adjacent to previously cloned gene
OsbZIP71, another rice shaker potassium channel conferring
salinity tolerance in rice (Liu et al., 2013). Two QTLs (qRI12b
and qSGr12) were identified in the same region on chromosome
12 (19.68–19.84) associated with SGr and AGr length; this region
is adjacent to previously cloned gene OsATG10b (Shin et al.,
2009), which plays an important role in the survival of rice cells
against oxidative stresses. One QTL (qRI1d) was identified on
chromosome 1 associated with root length; this region was
previously reported for salt tolerance as OrbHLH001, and
overexpression of OrbHLH001 from Dongxiang wild rice
(Oryza rufipogon) conferred salt tolerance in rice plants (Chen
et al., 2013). One QTL (qSGr3) was identified on chromosome 3
associated with salinity germination; this region was reported for
drought and salt tolerance as dsm3 (Du et al., 2011). One region
of chromosome 10 (8.29–8.58 Mb) had three QTLs (qSGr10b and
qBM10) associated with two traits measured under salinity stress;
these traits have positive correlations with each other. Association
of this region with three different traits predicts that this region
can produce salinity tolerance. A major advantage in our study
was the use of high-density genotypic data to identify QTL
through GWAS, allowing us to narrow down the QTL region
to <200 kb, which we further investigated to identify significant
SNPs >−log (p) > 3 in the CDS to mark candidate genes. In total,
24 candidate genes were identified for 7 QTL short-listed as
important. One candidate gene, Os01g0772500 for qRI1, encodes
glycosyl transferase, and in rice, this protein has been
characterized as leaf senescence protein and associated with
photosynthetic rate, stomatal conductance, and transpiration
rate (Wang M. et al., 2018).

Two candidate genes, Os01g0974200 and Os01g0976100, were
identified for qRI1d. Os01g0974200 encodes protein RicMT
(metallothionein-like protein), and metallothionein-producing
genes are involved in multiple types of abiotic stress tolerance
(Kumar et al., 2012). Identification of this locus in our study can be
cloned to find genes for abiotic stress tolerance. While
Os01g0976100 encodes a protein-containing ABC transporter-
like domains, these proteins are involved in plant
developmental processes and transporting various compounds/
elements across cell membranes (Hwang et al., 2016). Four
candidate genes, Os03g0230300, Os03g0231700, Os03g0231800,
and Os03g0233000, were identified for qGS3. Os03g0230300
encodes a protein involved in the regulation of stomatal closure
and the abiotic stress response (You and Chan, 2015).
Os03g0231700 encodes squalene monooxygenase, and
Manavalan et al. (2011) used RNAi-mediated disruption of
squalene synthase and found drought tolerance and
improvement in rice yield. Os03g0231800 expressed a putative
protein, andOs03g0233000 encodes a protein of unknown function
in the DUF607 family. DUF domain proteins are reported for
drought tolerance in rice (Cui et al., 2016). Six candidate genes,
Os04g0677700, Os04g0678300, Os04g0678700, Os04g0679050,
Os04g0681600, and Os04g0682100, were identified for qAGr4.
Os04g0677700 and Os04g0679050 expressed putative proteins
similar to H0402C08.11 and H0801D08 protein. Os04g0678300
expressed a WD-40 family protein; these proteins are associated
with plant tolerance to abiotic stresses (Kong et al., 2015).

Os04g0678700 expressed protochlorophyllide reductase.
Protochlorophyllide is a precursor of chlorophyll, which is the
most important component of photosynthesis and anabolic
processes (Dalal and Tripathy, 2012). Os04g0681600 expressed a
DUF580 domain protein.Os04g0682100 expressed a CaLB domain
protein, which is a novel repressor of abiotic stress responses (de
Silva et al., 2011). Five candidate genes, Os09g0369050,
Os09g0369250, Os09g0369400, Os09g0369500, and
Os09g0370500, were identified for qCL9b, and six candidate
genes, Os09g0369050, Os09g0369250, Os09g0369400,
Os09g0369500, Os09g0371000, and Os09g0372800, for qAGr9.
Four candidate genes (Os09g0369050, Os09g0369250,
Os09g0369400, and Os09g0369500) were significant for both
QTL qAGr9 and qCL9b. Os09g0369050 expressed a protein
similar to DRE-binding factor 2 protein. DRE elements are
present in the promoter regions of various gene involved in
abiotic stress tolerance. Os09g0369250 expressed a putative
protein of unknown function, and Os09g0369400 expressed a
protein similar to trehalose-6-phosphate, phosphatase 7, as
osTPP7, a cloned gene for anaerobic stress tolerance at
germination in rice (Kretzschmar et al., 2015), and it
participates in starch mobilization to promote embryo
germination and coleoptile elongation (Hsu and Tung, 2015).
Os09g0369500 expressed a conserved protein known as
endosperm-specific gene (OsEnS). The endosperm is a critical
factor for seed growth, and OsEnS gene was identified on
chromosome 9 in rice (Nie et al., 2013). Os09g0370500
expressed a VQ domain protein; VQ domain proteins are
involved in abiotic stress responses and developmental processes
(Jing and Lin, 2015). Os09g0371000 expressed a major facilitator
superfamily protein, and these proteins havemultiple roles in auxin
transport and drought stress tolerance in Arabidopsis (Remy et al.,
2013). Os09g0372800 expressed a serine/threonine protein kinase
domain–containing protein, and this protein causes resistance to
rice stripe disease (Lee and Kim, 2015). Four candidate genes,
Os09g0490200, Os09g0490400, Os09g0491740, and Os09g0493700,
were identified for qBM9a. Os09g0490200 encodes ethylene signal
transcription factor, and it is reported that ethylene signaling-
related genes respond to dehydration stresses (Ren et al., 2017).
Os09g0490400 expressed β-glucosidase; these proteins are involved
in abiotic stresses through the accumulation of antioxidant
flavanols (Baba et al., 2017). Os09g0491740 expressed auxin
efflux carrier domain protein, and auxin has been reported as a
key growth regulator that is involved in abiotic stress responses
(Sharma et al., 2015). Os09g0493700 expressed a protein similar to
CUC2; CUC is associated with drought and salt tolerance in rice.

Identification of the candidate gene based on its relevance in
the mechanism to the trait of interest leads us to identify trait-
controlling genes. Identification of new and previously reported
QTL/candidate genes in this study demonstrated the advantages
of GWAS using high genetic diversity and higher-resolution
mapping to identify candidate genes. However, few confines
were found for GWAS approach, as we had a limited ability
to detect rare QTL/alleles because minor alleles were removed,
and this method cannot detect epistasis. A further selection of
nonsynonymous SNPs in the coding regions of the gene for
haplotype analyses cannot cover the trait variation caused by
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SNP/mutation in the promoter or noncoding regions of the gene.
Moreover, use of a single reference genome (presence or absence
of gene) can cause errors in GWAS for the accuracy of QTL and
candidate genes.

5 CONCLUSION

In GWAS, using high genetic diversity is a powerful tool for the
identification of QTL candidate genes and haplotypes. In this
study, a total of 54 and 21 QTLs were identified related to
anaerobic and salt tolerance at the germination stage. Different
genomic regions of Xian (Indica) and Geng (Japonica) are
involved in AGT and SGT trait, which suggest specific QTL
for the subgroup. In total, 25 candidate genes were identified,
several of these in the genomic regions reported or cloned for
anaerobic and salt tolerance. It was also found the Geng
(Japonica) accession having more tolerance to anaerobic stress
as compared to the Xian (Indica). The identified anaerobic and
salt tolerant accessions that have high breeding values can be used
in future rice breeding for anaerobic and salinity tolerance at
germination stage. Identification of tolerant accessions and the
QTLs/genes in this study supports that results are useful for the
ongoing and future rice breeding programs.
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A Heterochromatic Knob Reducing
the Flowering Time in Maize
Renata Flávia Carvalho1, Margarida Lopes Rodrigues Aguiar-Perecin1,
Wellington Ronildo Clarindo2, Roberto Fristche-Neto1,3 and Mateus Mondin1*

1
“Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil, 2Department of General Biology,
Federal University of Viçosa, Viçosa, Brazil, 3International Rice Research Institute (IRRI) - Breeding Analytics and Data,
Management Unit, Laguna, Philippines

Maize flowering time is an important agronomic trait, which has been associated with
variations in the genome size and heterochromatic knobs content. We integrated three
steps to show this association. Firstly, we selected inbred lines varying for heterochromatic
knob composition at specific sites in the homozygous state. Then, we produced
homozygous and heterozygous hybrids for knobs. Second, we measured the genome
size and flowering time for all materials. Knob composition did not affect the genome size
and flowering time. Finally, we developed an association study and identified a knob
marker on chromosome 9 showing the strongest association with flowering time. Indeed,
modelling allele substitution and dominance effects could offer only one heterochromatic
knob locus that could affect flowering time, making it earlier rather than the knob
composition.

Keywords: maize, heterochromatic knobs, genome size, flowering time, DNA content, FISH

INTRODUCTION

The relationship between heterochromatic knobs, genome size, and flowering time (FT) in maize is a
long debate. Knobs have intrigued geneticists for more than 100 years, and since their discovery, their
functions remain under investigation. These maize genome regions are constitutive heterochromatin
with late replication during the cell cycle (Pryor et al., 1980), extensively composed of two highly
repetitive satellite DNA families, 180-kb, and TR-1 (Peacock et al., 1981; Ananiev et al., 1998). An
eminent observation was their wide variability among landraces, inbred lines, and hybrids, following
a biogeographic distribution (McClintock et al., 1981; Rayburn et al., 1985), suggesting a possible role
affecting the expression of some phenotypic features as flowering time (Jian et al., 2017).

Moreover, other exciting aspects of the heterochromatic knobs in the maize genome have been
elucidated by several studies. Knobs have been shown to affect local recombination (Ghaffari et al.,
2013; Stack et al., 2017) and genes adjacent to these regions reduce their expression level (Haberer
et al., 2020). The meiotic drive mechanism influences the number of knobs in different species of Zea
(Rhoades and Dempsey, 1966; Buckler et al., 1999; Higgins et al., 2018). Such a system would favor
knob transmissions preferentially during female meiosis by a knob neocentromere activity, which
might have contributed to maize genome remodeling throughout its evolutionary history. Response
to abiotic stress was observed in maize plants from the transcriptional activation of the knob
repetitive sequences, being this activation selective, temporary, and accompanied by epigenetic
changes (Hu et al., 2012). Lastly, associations between heterochromatic knobs and agronomic traits
have also been reported (Blumenschein, 1964).

There is a growing interest in the role of variation of genomic content in creating phenotypic
modifications within a species. These changes are due to copy number variation (CNV), which has
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been used to describe duplications, deletions, and insertions in
individuals of a species, and presence/absence variation (PAV)
that describes the presence or not of sequences on the genome of
different individuals of the same species. Together, they form the
pan-genome of species (Springer et al., 2009). Maize is also a
model species for studies of pan-genome. Differences in
chromosomal structure between maize landraces were firstly
identified through cytogenetic studies. Barbara McClintock
and colleagues analyzed the content and size of
heterochromatic knobs to characterize this variation in the
genome (McClintock et al., 1981). Currently, modern
cytogenomic techniques have sampled the wide variation of
the copy numbers resulting from repetitive sequences, which
make upmost of the maize genome (Kato et al., 2004; Albert et al.,
2010; Mondin et al., 2014; Bilinski et al., 2018).

Moreover, quantification of DNA content through flow
cytometry has documented significant variability in the maize
genome size (GS) between landraces and inbred lines (Laurie and
Bennett, 1985; Realini et al., 2015). New combinations of alleles
arise from the variation of genomic content within species,
contributing to phenotypic variation (Brohammer et al., 2018).
Therefore, this can have an influence on several important
characteristics, including flowering time (Bilinski et al., 2018).
Flowering time is a quantitative trait of extreme relevance for
cultivated plants since it controls plant adaptation to the
environment. Breeding programs through this feature outline
strategies to make earlier or later varieties, allowing their
expansion to other regions and consequently increasing yield
(Jung and Müller, 2009).

Recent studies on maize genome present the triangle formed
between genome size, knob content, and flowering time in natural
populations. These surveys have considered just the knob numbers
or estimated the knob abundances by low coverage sequencing
(Realini et al., 2015; Jian et al., 2017; Bilinski et al., 2018). However,
few studies have evaluated the knob effect depending on its
homozygous or heterozygous condition (Chughtai and
Steffensen, 1987). These authors reported that heterozygotes for
knobs had earlier flowering time in comparison with homozygotes.
Different researchers have attributed variation in maize genome
size to heterochromatin content differences, especially in knobs
(Chughtai and Steffensen, 1987; Chughtai et al., 1997; Jian et al.,
2017) However, knob content not corresponding with genome size
was also reported (Realini et al., 2015). Moreover, it is proposed
that there is a relationship between decreased genome sizes in high
altitudes with reduced flowering time. Besides, the same association
is observed for knob abundance occurring along altitudinal clines
(Poggio et al., 1998; Bilinski et al., 2018). However, no experimental
design has isolated the effects of homozygous or heterozygous
knobs and test whether they are correlated with flowering time. In
this case, the relationship between knobs and flowering time
remains unclear.

Here, we derived a panel of sister inbred lines and their hybrids
to verify the association between genome size, knob constitution,
and flowering time for male (MF) and female (FF) inflorescences.
Firstly, in chronological order, inbred lines with variable presence
or absence of the knobs K3L, K5L, K7S, and K9S were derived
until S9 generation from a segregating single seed of a Flint

variety (Decico, 1991). Then, we created hybrids between inbred
lines, and finally, we started to estimate the genome size and
flowering time.

These near-isogenic inbred lines and their hybrids, varying for
knob positions at K3L, K5L, K7S, and K9S were used to assay
flowering time under controlled environmental conditions and
their genome size was measured by flow cytometry. All data were
used to analyze the genome association study. We expected that
using sister inbred lines and their hybrids possessing a common
genetic background, the influence of knobs on genome size and
flowering time could be clearly detected (Carvalho et al., 2021).

MATERIALS AND METHODS

Plant Material
Origin of the Maize Inbred Lines and Knob
Composition
For this research, the development process of inbred lines was
idealized in the Department of Genetics at “Luiz de Queiroz”
College of Agriculture – ESALQ, University of São Paulo – USP.
The initial biological material was a commercial variety Jac-Duro
(JD – composed of Cateto varieties, Flint type endosperm),
donated by Agroceres Seeds, Brazil. Initially, the variety
segregated for the knob positions K3L, K5L, K7S, K9S (where
“K" refers to a knob, number corresponds to chromosome, L or S
is for long and short arm, respectively), and it was homozygous
for knob positions at K6L2, K6L3, K7L, and K8L1, K8L2. Thus,
over the self-fertilization cycles, the inbred lines were analyzed by
C-banding until they become homozygous for specific knob
positions (Supplementary Table S1). The knobs K6L2 and
K6L3, and K8L1 and K8L2 visualized at pachytene are seen as
a unique band in somatic chromosomes using C-banding or FISH
(Mondin et al., 2014). Analyses of the C-Band frequency in
somatic chromosomes were performed on S2 (240–14–4) and
S3 (240–14–1 and 240–14–2) until S9 progenies (Decico, 1991).
The S3 240–14–1 progeny segregated for two knob positions: K3L
and K9S, and progeny 240–14–2 for one locus: K9S. The S2
240–14–4 progeny segregated for the four loci: K3L, K5L, K7S,
and K9S. All the inbred lines maintained the homozygous knobs
for the positions K6L2, K6L3, K7L, and K8L1 and K8L2. S4 and
S5 inbred lines were obtained from these progenies, derived from
two self-fertilization cycles that became denominated in S5 � 14-
1-3 and 14-2-1 and S4 � 14-4-1 and 14-4-4. This designation was
abbreviated for JD 1-3, JD 2-1, JD 4-1, and JD 4-4 to characterize
the four families of lines. The inbred lines used in this research
were derived until S9 progenies (Supplementary Table S1)
(Decico, 1991), and the hybrids were obtained from crosses
between JD 1-3 and JD 4-4 inbred lines (Supplementary
Table S2). Therefore, we have a broad panel of
heterochromatic knob combinations, which can be
homozygous for the presence or absence or even heterozygous
in the hybrids. Figure 1 illustrates these conditions and Figure 2
shows a sample of the inbred lines and hybrids. Mondin et al.
(2014) described the karyotype of these lines through the analysis
of pachytene and somatic chromosomes using C-banding and
FISH procedures.
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METHODS

Fluorescence In Situ Hybridization - FISH
The 180 bp repetitive DNA sequence probe present in the knobs
(Peacock et al., 1981) was used to map the inbred lines and
hybrids. The steps of pre-treatment and in situ hybridization were
based on Mondin et al. (2014). Each chromosome preparation
was conducted using 20 μL of a probe mixture containing the
180 bp probe. The probe mixture was denatured by heating at
96°C for 10 min, cooled on ice, and then dropped onto the slide
preparations and covered with a coverslip. Preparations were
denatured in a thermocycler at 93°C for 10 min. The
hybridization was performed at 37°C for 16 h. Following the
hybridization, slides were washed twice in 2x SSC at 37°C and
42°C for 5 min, twice in 20% formamide in 0.5 x SSC at 42°C (74%
stringency) for 10 min and once in 0.5x SSC for 5 min at the same
temperature. The probe of the 180 bp knob repeat was directly
labeled by random priming with 6-Carboxyfluorescein (FAM).
The slides were counterstained with 0.2 μg/ml 4,6-diamidino-2-
phenylindole (DAPI) and mounted in 5 μL of Vectashield H-
1000.

Genome Size Measurements
The genome size of the inbred lines and hybrids was estimated
following Praça- Fontes et al. (2011). For these analyses, Z. mays
‘CE-777’ was used as an internal standard. Young leaves of the
sample and standard were chopped into a Petri dish containing a
solution of 0.5 ml of OTTO I nuclear extraction buffer (Otto,
1990). To this solution it was added 2.0 mM of dithiothreitol and
50 μg/ml of RNase. Later, it was added the same volume of buffer
solution. This homogenate was filtered, centrifuged for 10 min
and resuspended in OTTO I buffer. The samples were stained in
1.5 ml of OTTO-I:OTTO-II (1:2) staining buffer (Otto, 1990),
supplemented with 50 mM dithiothreitol, 50 µL RNase, and
75 µM propidium iodide, for 20 min, to define the size of the
nuclear genome (Dolezel et al., 2007). Five replicates were used
for each sample.

Nuclear suspensions were analyzed in a Partec PAS® flow
cytometer (Partec® Gmbh, Munster, Germany), equipped with a
laser source (488 nm) and a UV lamp (388 nm). The histograms
were used to measure the nuclear genome by comparing

fluorescence peaks corresponding to the G0/G1 stages of the
standard (CE 777) and samples (inbred lines and hybrids). The
genome size measurements were performed at the Laboratório de
Pesquisa em Citogenética e Citometria, at the Federal University
of Viçosa.

Experimental Design to Analyze Flowering
Time
Two experiments were conducted in a greenhouse under 28°C/
25°C day/light and 12 h light/12 h dark in two subsequent years
(2018/2019), for the analysis of flowering time. The first assay
totaling 8 inbred lines (parents) and 35 hybrids. The experiment
was carried out in a completely randomized design, with 3
replicates for parents (24 plants) and 5 replicates for hybrids
(175 plants). The second assay was performed with 20 inbred
lines with 5 replicates each one, totalizing 100 plants. Both
experiments were conducted from February to June, and the
maize plants were planted in 20 L pots with 50 cm spacing
between them. Flowering time was calculated as the number
of days from planting until the first day of flowering. Inbred lines
and hybrids with different knob constitutions were evaluated
individually for male flowering (MF) and female flowering (FF).

Association Study
A Mixed Linear Model (MLM) was run by the FarmCPU R
package (Liu et al., 2016) to determine the knob-trait associations.
The MLM equation used in the analysis was as follows:

y � Sα + Pβ + Kυ + ε

where: y is the adjusted mean (BLUE) of the genotypes for the
studied traits; α is the vector of fixed effects of the knobs; β is the
vector of fixed effect of the population structure (first principal
components used, depending on the trait); υ is the random effect
of the relative kinship, where ∼ N(0, Kσ2g).; ε is the error term,
where ε ∼ N(0, σ2e). S, P, and K are incidence matrices that relate
the independent vector effects from each matrix with the
dependent y vector.

The additive and heterozygous (dis)advantage models were
applied in adapted GWAS analyses using specifics encodings for
the knob matrix (in this case, replacing SNPs). Heterochromatic

FIGURE 1 | Representation of the knob conditions for chromosome 9 (K9S). (A) Absence of knob (B) heterozygous knob and (C) homozygous knob.
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knobs present a Mendelian inheritance pattern; therefore,
individuals could be homozygous for knobs, homozygous for
absence, or heterozygous for knobs (Aguiar-Perecin and Decico,
1988). This feature can be used analogously to the SNP marker,
which is co-dominant bi-allelic, precisely as the knobs behavior.
Concerning the additive knob effect with two alleles (A1 and A2),
the knob matrix was coded by 0 (A1A1), 1(A1A2), and 2 (A2 A2),

considering the A2 as the minor allele or knob absence. In this
context, the additive GWASmodel assumes a linear change in the
phenotype regarding the minor allele number of copies. On the
other hand, in the heterozygous (dis)advantage GWAS model,
the homozygous genotypes (A1A1 or A2A2) were assumed to
have the same effect. In contrast, the heterozygous genotypes
have a different one, implying an increase or decrease in the trait

FIGURE 2 | A sampling of genotypes used in the experiments on flowering time and genome size. (A–G) Somatic karyotypes of JD lines; and (H–L) hybrids, labeled
by FISH using a probe for the knob 180-bp repeat (green). Bar � 10 μm.
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effect. Therefore, the knob matrix was coded by 0 (A1A1), 1
(A1A2), and 0 (A2A2) (Tsepilov et al., 2015).

To determine the p-value threshold, we used a resampling
method. Therefore, first, the phenotypic values are shuffled,
breaking their association with markers, and then the random
association between all markers to the phenotype is estimated,
and the corresponding best marker score (minimum p-value
obtained among all markers) is recorded. This procedure was
repeated 50 times for each trait, and the 95% quantile from the 50
best scores was defined as the threshold to declare a significant
association.

RESULTS

Knob Composition and Maize Genome Size
The genome size of the inbred lines and hybrids was measured
to test whether knob composition contributes to the DNA
content variation. Supplementary Table S2 shows the values
of genome size and knob composition of the materials. Each
inbred line and hybrid can have different knob configurations at
the K3L, K5L, K7S, and K9S positions on the chromosomes.
These combinations can be homozygous for presence or absence
of knobs in the lines or heterozygous in the hybrids (Figures 1,

FIGURE 3 | Flowering time and Genome Size of the hybrid and inbred lines. Boxplots compare mean values between male and female flowering time and genome
size for inbred lines and hybrids. The flowering time is showed in days to flowering and the genome size in picograms. The boxes indicate the first quartile (lower line), the
second quartile or mean (central line), and the third quartile (upper line). Additionally, the whiskers represent the standard deviation with the dots as the outliers.
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2). Note that there are hybrids homozygous and heterozygous
for knobs.

The genome size was considered a quantitative trait, and its
heritability was estimated at 26%. The hybrids presented a higher
mean genome size than inbred lines, showing 5,477 Mbp (2C �
5.6 pg) and 5,281 Mbp (2C � 5.4 pg), respectively (Figure 3).
However, no significant differences in genome sizes were found
for either the inbred lines or the hybrids. Even when homozygotes
were compared with heterozygotes, no differences were observed
(Supplementary Figure S1).

The results showed that knob dosages are not enough to
explain the genome size increase or decrease in the inbred
lines and hybrids. However, genome size varied broadly,
despite the same knob composition. For instance, the hybrids
presenting the highest (441311/2 × 441324/1, 2C � 6.31 pg) and
the smallest genome size (442213/1 × 441311/2, 2C � 4.72 pg)
share the same knob constitution (Supplementary Table S2). For
inbred lines, the largest genome size (131311/1–04, 2C � 5.69 pg)
has a lower number of knobs than the smallest genome (442213/
1, 2C � 4.65 pg), which is homozygous for knob presence in the
four positions described (Supplementary Table S2).

An adapted genome-wide association study (GWAS), with the
heterochromatic knob full panel to identify associations with
genome size and flowering time, was performed, where the knobs
were used as genetic markers. Our hypotheses were that knobs on
the K3L, K5L, K7S and K9S positions correlate with genome size
and male and female flowering. To test our hypothesis, we used
the inbred lines and hybrids panel, to which all knobs were
mapped. The panel has amatrix-like structure with different knob
combinations for presence (++ or 1) or absence (00 or −1) when
homozygous and as heterozygous when just one of the
homologous has a knob (+0 or 0). Firstly, only the allele
substitution effect model was performed, and no significant
association was found between knobs and genome size
(Supplementary Figure S2). Moreover, this information was
supported by a null correlation between genome size and knob
dosage classes (Table 1).

The Knob On 9S (K9S) Association With
Flowering Time
Days to MF and FF were evaluated individually (Supplementary
Table S2) and heritability was estimated to be 51% for MF and
41% for FF. The mean values for days to MF and FF for hybrids
were 63 and 64 days, respectively, while the FT for inbred lines
was 70 days for MF and 72 days for FF (Figure 3).
Heterochromatic knob configurations as heterozygotes
exhibited shorter flowering times than those in homozygous
states (Supplementary Figure S1). The flowering time data
were also plotted showing its amplitude inside the inbred line
families and hybrids (Figure 4). It was observed synchronicity for
both traits (MF and FF) within each group analyzed, and hybrids
had shorter flowering time than inbred line families.

Further, the flowering time amplitude of hybrids was much
smaller than the other groups, ranging mainly between 60 and
70 days, in agreement with the observed mean values. A broader
variation in flowering time was observed for inbred line families

(58–114 days), with distribution densities mainly varying
between 60 and 80 days. The JD 4-4 family had a smaller
flowering time distribution for FF and FM among families.

Negative values for Pearson’s correlation were found
comparing female and male flowering time with knob dosage
classes (Table 1). The knob combinations were used to create
dosage classes and test their effects on genome size and flowering
time. The knob dosage classes were not correlated with the
flowering time, i.e., an increase in knob numbers did not
correlate with late flowering time. It was possible to observe
that the mean values of MF and FF were very similar for each
knob dosage class (Figure 5). It was also interesting to note that
the inbred lines with only two knobs (dosage class � 2) flowered
later than those with other dosage classes (dosage class � 3–8).
Figure 5 also shows that the knob dosage classes did not alter the
genome size.

Furthermore, two GWAS models to illustrate the interactions
between flowering time and knob conditions were used. The first
model took into account only the allele substitution effect of the
markers (Figures 6A, B, and Supplementary Figure S3), and the
second considered the dominance effect (Figures 6C,D, and
Supplementary Figure S4). This analysis showed only one
significant marker-trait association for both allele substitution
and dominance effect models regarding flowering time. This
significant association was observed just for the knob on the
short arm of chromosome 9 (K9S) (Figure 6). Regardless of the
GWAS model, the knob marker on chromosome 9 displayed the
same performance concerning the flowering time, showing the
p-value highly significant (Table 2), while for the knobs K3L, K5L
and K7S the p-value was not significant for flowering time and
genome size (Supplementary Table S3).

Regarding the allele substitution effect model, the presence
of the K9S was negatively correlated with the MF and FF of the
inbred lines and hybrids by -0.45 and −0.51 days, respectively.
While on the dominance effect model, this effect was even
more significant, negatively correlated with flowering time in
one and a half days (MF � -1.40 and FF � - 1.53) (Figure 7).
Only the knob on chromosome 9 significantly associated with a
reduction in the flowering time in the inbred lines and hybrids.
This correlation in flowering time was observed for the
presence of the knob in the homozygous or heterozygous
configuration. The heritability of the marker for both
models varied from 0.02 to 0.15 (Table 2). Our analysis
also showed slight effects of the knobs K3L, K5L and K7S
on flowering time, albeit these were not significant
(Supplementary Table S3). These results showed that the
knob composition was not essential to model the genotype
effects on the trait. The flowering time violin plot (Figure 4)

TABLE 1 | Pearson’s correlation between traits and knobs.

Male flowering Genome size Knob dosage classes

Female
flowering

0.95 −0.14 −0.20

Male flowering −0.17 −0.24
Genome size −0.08
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also supported the GWAS analyses (Figure 6), since all hybrids
are homozygous or heterozygous for the K9S, corroborating
the specific contribution of this knob or factors closely linked
to it or embedded within it.

DISCUSSION

Knob Composition Did Not Correlate With
Maize Genome Size
In our study no pattern was observed, which indicates that there
is not a linear relationship between the number of knobs present
in the lines and hybrids with the increase or decrease in the DNA
content. Interestingly, the hybrids presenting the highest and the
smallest genome size share the same knob constitution. For
inbred lines, the largest genome size has a lower number of
knobs than the smallest genome size, which is homozygous for
knob presence in the four positions described.

There is a wide variability of genome size in natural maize
populations. The maize genome size associated with knob
numbers and with flowering time is reported in some studies.
Most of these studies have shown positive correlations between
genome size and knob content (Rayburn et al., 1985; Tito et al.,
1991; Jian et al., 2017; Fourastié et al., 2018). However, in some
studies, a positive correlation between genome size and knob
composition was not found (Laurie and Bennett, 1985; Realini
et al., 2015). A recent study provided evidence that natural
selection plays a substantial role in reducing the maize
genome size at high altitudes (Bilinski et al., 2018). The
authors also showed that the abundance of transposable
elements (TEs) and heterochromatic knobs are significantly
correlated with altitude, and the knobs act as significant effect
loci in the genome size. Unlike what they found, our data did not
show this same relationship.

Our results corroborate the surveys showing no significant
correlation between maize population genome size and

heterochromatin percentage. One hypothesis is that as our
materials differ in the composition of only four knob
positions, measurements by flow cytometry would not detect
slight differences in genome size due to knobs. Furthermore, we
might infer that differences in the genome size among our inbred
lines and hybrids may result from transposable element (TE)
variability, once the loss of TE during selfing has been
demonstrated (Roessler et al., 2019). Knobs are additional
material in the chromosomes and alter the length of somatic
chromosome arms (Aguiar-Perecin and Vosa, 1985), therefore
they should increase the genome size, but this effect could be
masked by TE variability.

Genome Size and Knob Composition Did
Not Affect Maize Flowering Time
The genetic architecture of flowering time in maize has been
widely studied, given that this trait reflects the plant adaptation
to the environment. Since maize is distributed throughout
America and is adapted to a wide range of environments,
understanding how flowering time is regulated is of
paramount importance and generates valuable information
for breeding programs (Buckler et al., 2009). Besides this
study, in the last 2 decades, the days to flowering time in
maize was dissected using different approaches such as
linkage and association mapping (Chardon et al., 2004;
Ducrocq et al., 2009; Li et al., 2016; Romero Navarro et al.,
2017), population genetics (Wang et al., 2017; Guo et al., 2018),
archaeological DNA studies (Yang et al., 2019), genome-wide
association studies (Hung et al., 2012; Yang et al., 2013; Jian
et al., 2017; Liang et al., 2019), and gene analysis (Lazakis et al.,
2011; Alter et al., 2016; Minow et al., 2018; Stephenson et al.,
2019). In inbred maize lines, the genetic architecture of
flowering time has been attributed to the cumulative effect of
numerous quantitative trait loci (QTL), each with a small impact
on this trait (Buckler et al., 2009).

FIGURE 4 | Flowering time among inbred line families and hybrids. The violin plot shows the FT distribution in days for all analyzed materials. The violin shape
represents the estimated value of the density of the trait within each group. Hybrid, n � 175; JD 1-3, n � 36; JD 2-1, n � 25; JD 4-4, n � 63.
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Besides these reports on the genetic control of maize flowering,
a positive relationship between genome size and flowering in
maize have been reported (Rayburn et al., 1985; Rayburn et al.,
1994; Tito et al., 1991). In addition, significant positive
correlations between genome size, knob abundance, and
flowering time were found in maize inbred lines (Jian et al.,
2017). However, in this study, these correlations were lost when a
kinship matrix was introduced in the analyses. The authors
performed an association study where genome size was also
correlated with flowering time. Three genomic regions
associated with genome size were found, and mapped close to
the knob region on chromosome 8 (Jian et al., 2017). In contrast,

another study analyzing maize landraces in northern Argentina
found no correlation between genome size and days to flowering
time (Realini et al., 2015). Nevertheless, in this study a positive
relationship between the days to flowering time and
heterochromatin percentage was observed. Another report
argued that repetitive sequences would have indirect effects on
flowering time due to their impact on genome size and might
depend on the environment (Bilinski et al., 2018). However, this
effect was not found in our study since there was no relationship
between genome size, knob composition and flowering time. It is
interesting to note that the heterozygotes had an early flowering
time in comparison with lines. This result is in agreement with the

FIGURE 5 | Comparison between total knob number and male and female flowering time, and genome size. The flowering time is expressed in days to flowering
and genome size in picograms (y axis). The numbers on the X axis refers to the sum of the total number of knobs (dosage class) from chromosomes 3, 5, 7 and 9.
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findings by Chughtai and Steffensen (1987) that also showed a
positive correlation between knob content and flowering time.

In fact, the relationship between genome size and phenotype
in plants has been reported (Greilhuber and Leitch, 2013).
Especially, the genome size has been correlated with the
duration of the cell cycle and this feature could affect the
vegetative cycle. We could argue that as knobs have late
replication in the mitotic cycle, they would replicate
simultaneously, and then, differences in their number would
not affect the duration of the cell cycle. However, if we
compare populations differing in the size of knobs, we could
suppose that the larger knobs would increase the duration of the
mitotic cycle. As in our study we compared lines differing in few
knobs approximately with the same size, differences in flowering
time were not observed.

Another group of studies had already indicated that gene
groups responsible for the plant morphological and physiological
traits would be correlated with the presence of knobs

(Blumenschein, 1964; Rhoades and Dempsey 1966). According
to the authors, once close to these knobs, recombination in
adjacent regions was suppressed, influencing such traits. More
recently, through fluorescent in situ hybridization (FISH), it was
demonstrated that knobs are located in areas dense in genes,
where large knobs can reduce recombination locally (Ghaffari
et al., 2013). Comparisons between European maize genomes and
US Corn Belt revealed variation in their repetitive sequences and
gene content. The germplasms were separated by the intensity
and position of knob regions. However, additional sites with
small arrangements of knobs conserved in flint and dent lines
were observed. This study also showed that the knob sequences
could affect genes surrounded by them, decreasing their
expression level (Haberer et al., 2020).

In our study, the heterochromatic knob mapped on the short
arm of chromosome 9 was strongly associated with early
flowering time. Flowering time-related QTLs have been
found across the maize genome (Salvi, et al., 2007; Chardon
et al., 2004; Yang et al., 2019). In chromosome 9, flowering time-
related QTLs were found, and some genes were identified (Hung
et al., 2012; Huang et al., 2017). The main gene located in
chromosome 9 was ZmCCT9 (photoperiod sensitive) and
mapped on the long arm, opposite to the knob position.
Other candidate genes were found along this chromosome,
but the precise location was not defined yet (Miller et al.,
2008; Li et al., 2016). Further studies should be carried out to
map a gene influencing flowering time near the knob on the
short arm of chromosome 9.

Hence, other knob regions are targets to find possible
candidate genes linked to the heterochromatin due to the
inhibition of crossing over on their neighborhood. That leads

FIGURE 6 |Manhattan plots of GWAS for male (mf) and female (ff) flowering time using the knob positions K3L, K5L, K7S, and K9S. (A,B) are plots showing the
allele substitution effect model (C,D) the dominance effect model, both with p-values < 0.05. The green lines are the significance threshold, a Bonferroni-corrected
significance threshold used to identify significant associations.

TABLE 2 | Significant marker-trait association for flowering time. Male flowering
(MF), female flowering (FF), knob in the short arm of chromosome 9 (K9S), p-
value Bonferroni test, minor allele frequency (MAF), allele substitution model (A),
dominance model (D), and heritability (h2).

Trait Marker Chr. Position p-value MAF Effect (A or
D) h2

MF K9S 9 Short Arm 1.32 × 10–2 0.17 −0.51 (A) 0.05
K9S 9 Short Arm 4.21 × 10–3 0.46 −1.41 (D) 0.15

FF K9S 9 Short Arm 2.12 × 10–2 0.17 −0.45 (A) 0.05
K9S 9 Short Arm 3.75 × 10–3 0.46 −1.53 (D) 0.02
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us to infer that heterochromatic knobs may also have a role in the
maize genome, affecting certain phenotypic traits.

CONCLUDING REMARKS

Despite more than 100 years of studies on maize genetics, the role of
knobs remains a current issue and has shown that these regions are a
substantial fraction of the maize genome. Elimination dynamics of
components of the maize genome over successive self-fertilizations
were reported (Roessler et al., 2019). The authors comparing gene
content, ribosomal DNA, B chromosomes, TEs, and knobs, showed
TEs were the most significantly lost genome fraction. The results
provide insights into the constitutive role played by knobs in the
maize genome. Like TEs, knobs are repetitive sequences, whichmake
up about 10% of the maize genome and, for unknown reasons, are
not totally eliminated after generations of self-fertilization. That
strengthens the hypothesis that heterochromatic knobs may have an
important role within the maize genome, even composed almost
exclusively by repetitive sequences. It is interesting to note that over
nine cycles of self-fertilizations, the lines used in the present study
did not lose all the knobs and even some lines of the JD-4 family
conserved all of them.

Throughout the maize genome evolution, it was proposed that
flowering time was a trait influenced by changes in the genome
size. At high altitudes, maize flowering time was shorter than at
low altitudes, followed by a smaller genome (Rayburn et al., 1985;
Rayburn et al., 1994; Poggio et al., 1998; Realini et al., 2015). At
the same time, most studies have also indicated a positive

correlation between the genome size and the knob abundance
(Rayburn et al., 1994; Jian et al., 2017).

We found no significant association between knobs and genome
size from our data. The analyses of adapted GWAS carried out
showed the contribution of a single locus for the early maize
flowering time: the knob present in the short arm of chromosome 9
was associated with reduced flowering time when homozygous or
heterozygous. Our results suggest a role of the knobs in the
flowering time, different from those previously described. For
the first time, maize inbred lines were selected with knobs in
specific locations, and their hybrids were developed to carry
heterozygous and homozygous knobs. Although the lines have a
common origin, they differ in knob composition and in the
response to culture in vitro (Fluminhan and Aguiar-Perecin, 1998).

The maize flowering time is a complex trait, and several studies
have provided insights into its genetic architecture. To this complexity,
we add our data suggesting that components linked or embedded in
specific heterochromatic knobs, are capable of affecting the maize
flowering time. Furthermore, as knobs suppress local recombination
(Ghaffari et al., 2013), some genes would be associated with them.

As our results show, repetitive sequences might carry some
linked or hidden components into their heterochromatic structure
that affect some phenotypic traits. The search and study of such
interactions require a great deal of work to cytologically score knob
transmission into the pedigree, monitored by karyotype assembly
over the time of the inbred lines derivation, and finally in the
hybrids. Therefore, this collection of maize inbred lines represents
an essential tool for further studies, shortening the time to address
interactions between phenotypic traits and heterochromatic knobs.

FIGURE 7 | Boxplots show male (MF) and female (FF) flowering time for each knob condition in the K3L, K5L, K7S, and K9S positions, considering both allele
substitution and dominance effects. The x-axis shows the classification for each knob condition 00 � knob absence; +0 � heterozygous knob presence and ++ �
homozygous knob presence. The y-axis shows the genetic effects of flowering time for female and males plants.
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This kind of study is even more important for maize since its
genome comprises more than 85% of repetitive sequences
(Schnable et al., 2009).

We could infer that there would be an interaction between genes
controlling flowering time, knob composition and genome size. In
addition, transposable elements also contribute to genome size. So,
if populations with high content of larger knobs are compared with
populations with few smaller knobs, perhaps the effect of knobs on
flowering time would be detected, if the effect of genes controlling
flowering time were not higher.
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Supplementary Figure S1 | Flowering time and Genome Size versus knob
condition. Boxplots show the comparison between male and female flowering
time (days) and genome size (picograms) regarding heterozygous knobs or
homozygous knobs. The boxes indicate the first quartile (lower line), the second
quartile or mean (central line), and the third quartile (upper line). Additionally, the
whiskers represent the standard deviation with the dots as the outliers.

Supplementary Figure S2 | QQ-plot and Manhattan plot of GWAS for Genome
size. Plots characterize the allele substitution effect. Significant associations are not
found. The x axis shows the knobs K3L, K5L, K7S and K9S. The y axis shows the
logarithm of the value of significance.

Supplementary Figure S3 |QQ-plot of GWAS of flowering time. Plots characterize
the allele substitution effect for (A) male flowering (mf) and (B) female flowering (ff)
time. The dots represent the knobs K3L, K5L, K7S and K9S, respectively.

Supplementary Figure S4 |QQ-plot of GWAS of flowering time. Plots characterize
the dominance effect for (A) male flowering (mf) and (B) female flowering (ff) time. The
dots represent the knobs K3L, K5L, K7S and K9S respectively.
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Pakistan, 2Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan, 3Institute of Crop Science, Chinese Academy of
Agricultural Sciences, Beijing, China

Optimum soil water availability is vital for maximum yield production in rice which is
challenged by increasing spells of drought. The reproductive stage drought is among the
main limiting factors leading to the drastic reduction in grain yield. The objective of this
study was to investigate the molecular and morphophysiological responses of pre-
anthesis stage drought stress in green super rice. The study assessed the
performance of 26 rice lines under irrigated and drought conditions. Irrigated treatment
was allowed to grow normally, while drought stress was imposed for 30 days at the pre-
anthesis stage. Three important physiological traits including pollen fertility percentage
(PFP), cell membrane stability (CMS), and normalized difference vegetative index (NDVI)
were recorded at anthesis stage during the last week of drought stress. Agronomic traits of
economic importance including grain yield were recorded at maturity stage. The analysis of
variance demonstrated significant variation among the genotypes for most of the studied
traits. Correlation and principal component analyses demonstrated highly significant
associations of particular agronomic traits with grain yield, and genetic diversity among
genotypes, respectively. Our study demonstrated a higher drought tolerance potential of
GSR lines compared with local cultivars, mainly by higher pollen viability, plant biomass,
CMS, and harvest index under drought. In addition, the molecular basis of drought
tolerance in GSR lines was related to upregulation of certain drought-responsive genes
including OsSADRI, OsDSM1, OsDT11, but not the DREB genes. Our study identified
novel drought-responsive genes (LOC_Os11g36190, LOC_Os12g04500,
LOC_Os12g26290, and LOC_Os02g11960) that could be further characterized using
reverse genetics to be utilized in molecular breeding for drought tolerance.
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INTRODUCTION

Rice (Oryza sativa L.) is one of the primary staple food crops for
nearly 50% of the world population (Zafar et al., 2018). The
countries located in East Asia, South Asia, and Southeast Asia are
dominant in production and consumption of rice across the
globe. Historically, more than 90% of world rice production is
contributed from these countries (Barker et al., 1999). Its
production is needed to increase by 0.6%–0.9% per year until
2050 to feed the further 2 billion people (Desa, 2015). However,
different abiotic and biotic stresses are major limiting factors for
obtaining higher yield in rice (Zafar et al., 2017; Oliva et al., 2019;
Ahmed et al., 2021). Being a water-loving plant, rice is highly
sensitive to drought stress, which significantly affects its grain
yield (Shuxing, 2014). Drought is becoming a serious yield
constraint for various major crops due to global water scarcity
(Wattoo et al., 2018; Hussain et al., 2019; Shokat et al., 2020a). A
recent study using the yield and metrological data from 1980 to
2015 reported the yield decline up to 21% in wheat (Triticum
aestivum L.) and 40% in maize (Zea mays L.) due to drought on a
global scale (Daryanto et al., 2016). In rice, mild-drought stress
reduced grain yield by 31%–64%, while severe stress reduced
65%–85% yield compared with normal conditions (Kumar et al.,
2008). It affects the yield by altering different agronomic and
physiological traits including plant height, number of tillers, leaf
area, leaf rolling, transpiration rate, accumulation of
osmoprotectants, root system, and stomatal closure
(Nakashima et al., 2007; Islam et al., 2009; Tong et al., 2009).
Anthesis stage drought stress can interrupt flowering, floret
initiation (Bajji et al., 2002), pollen fertility (Zhou et al., 2011),
and grain filling, resulting in poor paddy yield. Rice growth is
affected by drought at different stages including booting (Shao
et al., 2014), flowering (Liu et al., 2006), and grain filling stage
(Zhang et al., 2018). However, drought stress at anthesis stage
restricts the availability of photosynthates by disturbing the sink
capacity (Do et al., 2010) and reduces the grain yield, plant
biomass, and ultimately the harvest index (Blum, 2018). It also
impairs anther dehiscence, pollen viability, and pollen
germination in rice resulting in spikelet sterility and more
sterile grains in the panicles (Prasad et al., 2017). Drought
induced spikelet sterility is considered as one of the major
causes of yield reduction.

To address the challenge, natural variation in rice germplasm
for drought tolerance could be exploited to identify the drought-
tolerant genotypes, the associated traits, and underlying genes
(Panda et al., 2021). In addition, induced variation via
hybridization and mutagenesis could serve as an important
genetic resource for target breeding (Zafar et al., 2020c). For
the purpose, scientists have started to put efforts to breed green
super rice (GSR), an elite rice type that could withstand multiple
stresses with high nutrient-use efficiency (Wing et al., 2018; Jewel
et al., 2019). The idea was given by a famous rice geneticist Qifa
Zhang in 2007 (Zhang, 2007), which was later implemented by a
team of international scientists from China and the International
Rice Research Institute (IRRI), Philippines (Yu et al., 2020). The
present study was conducted to evaluate 22 selected GSR lines
along with four local rice cultivars for drought tolerance in

Pakistan, and identify agronomic and physiological traits
associated with drought tolerance in GSR. In addition, the
contrasting drought tolerant and sensitive lines were assessed
for gene expression profile to identify underlying genes related to
drought tolerance in GSR. This study identified high-yielding
drought-tolerant GSR lines and provided us knowledge about
drought tolerance-related traits, and novel drought-related genes.

MATERIALS AND METHODS

Experimental site
The field experiment was conducted at the National Institute for
Genomics and Advanced Biotechnology, NARC, Pakistan
(33.684°N and 73.048°E) during rice growing period
(May–October, 2020). To minimize the water infiltration from
control to drought plot, a 6- to 8-feet path was made between both
plots, and furthermore, plastic film was applied under the soil
surface with a depth of 60 cm.

Experimental design
The 22 diverse GSR lines were selected based on diverse phenotypic
characteristics from the 552 GSR genotypes (Supplementary Table
S1). Twenty-two GSR lines along with four checks were evaluated
using split plot randomized complete block design with two
treatments (well-watered and drought) each having three
replications. Seeds were sown in nursery trays and 30-day-old
seedlings were transplanted in the field. Each plot consisted of five
rows of 10 plants with 30-cm row/row and plant/plant distance
(Yugandhar et al., 2017). Both plots were irrigated normally
(8–10 cm) until anthesis stage. Fertilizer, weedicide, and insecticide
application was done according to recommended dosage. Crop
cultivation was carried out according to normal cultural practices.

Drought was imposed for 30 days by withholding the applied
water at the beginning of anthesis stage. Physiological traits were
recorded during the last week of stress. After 30 days, the field was
rewatered. At physiological maturity, five representative plants
were selected for the measurement of agronomic traits from the
three middle rows of each replication to avoid confounding
border effects (Chaturvedi et al., 2017).

Physiological measurements
Cell membrane stability
Leaf samples were collected at the last week of drought stress to
examine the cell membrane stability by recording the electrolyte
conductivity using and electrical conductivity meter (HI 9811-5
Portable EC meter HANNA® Instruments, USA). Flag leaves
from three plants per replicate (of each genotype) were collected
from both control and drought stress fields in 20-ml glass vials.
Further measurement was recorded as proposed by Tripathy et al.
(2000). CMS was formulated as the reciprocal of cell membrane
injury by using the following formula (Blum and Ebercon, 1981):

CMS%= {[1 − (T1 / T2)] / [1−(C1 / C2)]} × 100
where, T and C refer to stressed and controlled, respectively. C1
(initial control), T1 (initial stress), and after autoclave, C2 (final
control), T2 (final stress) were the assumed conductance.
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Normalized difference vegetation index
Normalized difference vegetation index (NDVI) is a spectral
reflectance-based measure of the density of green vegetation
on a land area. NDVI measurements were taken using
GreenSeeker™ Handheld Optical Sensor Unit (NTech
Industries, Inc., USA), keeping the sensor at 0.5–1 m above
the central rows of all the genotypes individually in three
replications of both control and stress field plots (Govaerts
and Verhulst, 2010).

Pollen fertility test
About five to eight mature spikelets from five panicles (one from
each plant) were collected in the morning before anthesis.
Spikelets were fixed in FAA solution (formaldehyde:ethanol:
acetic acid with a ratio of 1:18:1, respectively) until staining.
Anthers were crushed with forceps on glass slide to release
pollens, which were immersed in 1% potassium iodide (I2-KI)
solution followed by observation under a light microscope
(NIKON DIGITAL SIGHT DS-Fi2). Pollens that stained black
and circular were considered fertile, while those stained red-
orange and of irregular shape were considered sterile (Zafar et al.,
2020b). Pollen fertility percentage (PFP) was calculated using the
following formula:

ΡFΡ � Number of fertile pollens/ total number of pollens × 100

Measurement of agronomic traits
Agronomic traits, including plant height per plant (PH), tillers
per plant (TPP), grain yield per plant (GY), straw yield per plant
(SY), total biomass per plant (TBM), 1,000-grain weight (TGW),
and grain length (GL) were recorded manually. Harvest index
(HI) was calculated as the ratio of GY to TBM. Drought
susceptibility index (DSI) was calculated as [(1−Y / YP) / D] as
described earlier (Khanna-Chopra and Viswanathan, 1999; Zafar
et al., 2020a). Here, Y is the grain yield under stress conditions,
and YP is the grain yield under normal conditions, while D
represents the stress intensity, which was calculated as
D = (1 − X / XP), where X and XP are means of Y and YP,
respectively. Measurements for these traits were carried out on
five randomly selected plants of each genotype from each
replication by following the method (IRRI, 2002).

RNA extraction and cDNA synthesis
Total RNA was extracted from the panicles of selected drought-
tolerant and -sensitive genotypes from both well-watered (WW)
and drought-stressed plants. Panicles were harvested from plants
and immediately kept in liquid nitrogen followed by storage at
−80°C to avoid the denaturation of RNA. The PureLink RNA
Mini kit (Thermo Fisher Scientific) was used to extract the total
RNA, in accordance with the manufacturer’s protocol. The
quality of isolated RNA was observed on 1.5% RNase-free
agarose gel and quantified using the BioSpec-nano
spectrophotometer. One microgram of total RNA was used to
reverse transcribe into cDNA using RevertAid Reverse
Transcriptase kit (Thermo-Fisher Scientific) following the
manufacturer’s instructions.

Differentially expressed gene selection and
quantitative real-time PCR
Ten differentially expressed genes (DEGs) under drought stress
were selected from a comparative transcriptome study in rice
(Huang et al., 2014). To our knowledge, these genes have not been
studied before specifically for drought response. In addition, we
studied the expressions of three known drought tolerance-related
genes: Oryza sativa Salt-, ABA- and Drought-Induced RING
Finger Protein 1 (OsSADR1) (Park et al., 2018), Drought-
Hypersensitive Mutant1 (DSM1) (Ning et al., 2009), Drought
tolerance 11 (OsDT11) (Li et al., 2017), OsDREB1E, and
OsDREB2B (Chen et al., 2008). Selected genes are listed in
Supplementary Table S2. Coding sequences (CDS) of the
selected DEGs were retrieved from the Rice Genome
Annotation project (http://rice.plantbiology.msu.edu/cgi-bin/
gbrowse/rice/). A gene-specific pair of primers was designed
using AmplifX version 1.7.0 software, and primer sequences
are listed in Supplementary Table S3.

Quantitative real-time PCR (qRT-PCR) was carried out to
determine the relative expression levels of 13 selected genes on
StepOne™ Real-Time PCR System (Thermo Fisher Scientific)
using Maxima SYBR Green. The delta cT method was used to
calculate the relative expression level of each gene, and riceActin1
gene was used to normalize the expression (Fang et al., 2021;
Zafar et al., 2021).

Statistical analysis
Morphophysiological traits data were analyzed by analysis of
variance using SPSS software according to split plot randomized
complete block design. Principal component analysis (PCA) was
done through the XL-STAT software (ver. 2018) to categorize
various physiological and morphological traits (Mohammadi and
Prasanna, 2003). Pearson’s correlation matrix analysis was done
using the “cor” package in R studio. The p-values for the
coefficient of correlation (r) were obtained by applying
Student’s t-test with the “cor.test” function in R-studio. In the
correlationmatrix plot, only significant relationships were labeled
with stars. Expression pattern significance was calculated using
t-test.

RESULTS

Analysis of variance showed significant
variation among green super rice
accessions under drought stress
Analysis of variance (ANOVA) was performed to see the
significant differences of variation among the genotypes and
water treatments for physiological and yield-related traits.
ANOVA showed significant variation (p < 0.01) among the
tested genotypes for PH, GY, HI, TGW, GL, and NDVI
(Table 1), while nonsignificant differences were observed for
TPP, SY, and PFP. There was no significant effect on the studied
traits among the replications, which strengthen the reliability of
this experiment. Drought significantly affected PH, GY, SY, HI,
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GL, PFP, and NDVI, while traits, such as TPP, TBM, and TGW,
were not affected by drought. The genotype × environment
interaction was also significant for PH, TPP, SY, HI, TGW,
PFP, and NDVI (Table 1) where pronounced reduction was
recorded under drought conditions. Since PH, GY, HI, GL, and
NDVI displayed significant differences for genotypes as well as
drought treatment, these traits could be key selection markers for
drought tolerance screening in rice.

Significance levels are indicated: *p < 0.05; **p < 0.01. df,
degrees of freedom; PH, plant height; TTP, tillers per plant;
GY, grain yield; SY, straw yield; TBM, total biomass; HI,
harvest index; TGW, thousand-grain weight; GL, grain length;
PFP, panicle fertility percentage; NDVI, normalized difference
vegetation index.

Principal component analysis revealed
genetic variation among green super rice
accessions under drought
Separated PCA analyses were performed to develop a trait–genotype
(T–G) biplot and to detect genetic variation among the studied
genotypes for various morphophysiological traits under well-
watered and drought-stressed conditions. Under WW
environment, a biplot was drawn between PC1 and PC2
explaining 31.3% and 25.6%, of total variation, respectively
(Figure 1A). Our results indicate that SY, GY, HI, and TBM

were in the opposite direction of NDVI, TGW, and GL
indicating their opposite relationship with each other. In
addition, the GSR lines were mostly clustered near the origin and
show less genetic variability, while checks Kashmir Basmati, Kissan
Basmati, and IR-64were widely distributed apart from the origin and
showed remarkable genetic variability (Figure 1A). In case of
drought treatment, the PC1 alone accounted for 51.10% of the
total variability, while PC2 shared 15.20% (Figure 1B). Results of this
experiment show GY were clustered closer to PFP, CMS, TBM, and
HI, while it was in opposite direction of NDVI and DSI. In contrast
with the WW treatment, many GSR lines, namely, NGSR-3, NGSR-
15, NGSR-18, NGSR-13, NGSR-21, and NIAB-IR-9, fall near the
apex of the biplot and show remarkable genetic variation under
drought stress (Figure 1B). The check varieties Kissan Basmati,
NIAB-IR-9, and Kashmir Basmati also showed considerable genetic
variability and reputation of these accessions for further selection in
breeding programs.

Mean performance of green super rice
accessions for studied traits
Drought stress showed a remarkable reduction in grain yield and
yield-related traits in all studied genotypes except NGSR-15 and
NGSR-18 (Figures 2 and 3). Among the 22 GSR lines, the
minimum PH (86.6 cm) under drought condition was attained
by NGSR-8 and the maximum (103.7 cm) was recorded by

TABLE 1 | Mean square values from the analysis of variance for the effect of genotype, environment, and their interaction on agronomic and physiological traits.

Source
of variation

DF Plant
height
(PH)

Tillers
per plant
(TPP)

Grain
yield
(GY)

Straw
yield
(SY)

Total
biomass
(TBM)
(ns)

Harvest
index
(HI)

1,000
grain
weight
(TGW)

Grain
length
(GL)

Pollen
fertility

percentage
(PFP)

Nomralized
difference
vegetative

index
(NDVI)

Genotype 25 687.55** 47.97 ns 956.25** 599.24 ns 2,136.97 0.0081* 42.40** 4.02** 727.03 ns 0.0042**
Replication 2 42.40 ns 107.97 ns 700.96 ns 875.40 ns 3,633.82 0.00056 ns 8.87 ns 0.38 ns 15.07 ns 0.02 ns

Treatment 1 1,243.68** 0.27 ns 19,649.7* 5,543.01* 2,969.05 0.36** 106.91 ns 6.31** 5,434.18* 0.14**
Genotype × treatment 25 57.59** 37.34** 236.93 ns 520.24* 1,029.61 0.0033** 3.72** 0.20 ns 771.38** 0.0013*

FIGURE 1 | PCA showing biplot for genotypes and studied traits (A) under normal condition and (B) under drought stress condition.
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NGSR-14, whereas among the four checks, the maximum PHwas
recorded for Kashmir Basmati (113.6 cm), and the minimum was
depicted by NIAB-IR-9 (52.3 cm). All GSR lines demonstrated
higher PH than the drought-sensitive check NIAB-IR-9
(Figure 2A). These results suggested that the GSR lines were
comparatively less affected by drought stress and maintained the
normal plant growth.

Overall, TPP were not significantly affected under drought stress
except for Kashmir Basmati, while a few of the GSR lines showed
increased TPP under drought (Figure 2B). GY is themost important
agronomic trait of economic importance, and drought stress affected
the GY in most genotypes except NGSR-15 and NGSR-18
(Figure 2C). Under drought stress, maximum GY was reported
byNGSR-15 (90.7 g) and theminimumbyNGSR-3 (48.6 g). Among
the checks, IR-64 showed the maximum GY−1 (53.1 g), whereas the
minimum was shown by the drought-sensitive NIAB-IR-9 (16.8 g).
All the GSR lines (except NGSR-3) demonstrated higher grain yield
than the check varieties; even the drought-sensitive NGSR-3
accounted for higher grain yield than the sensitive check NIAB-
IR-9 (Figure 2C). These results suggested that the grain yield of GSR
lines was less affected by drought stress compared with local checks.

SY was generally increased in most GSR accessions along with
two check varieties IR-64 and Kissan Basmati under drought
stress (Figure 2D). The maximum increase in SY was observed in
NGSR-15, NGSR-6, NGSR18, and NGSR-12. However, NGSR-3,
Kashmir Basmati, and NIAB-IR-9 showed a decrease in SY under

drought. It is noteworthy that SY was only decreased in the most
drought-sensitive GSR line and checks, thus, it is considered an
important trait for drought escape at the flowering stage. This is
because plants tend to continue their vegetative stage bypassing
the flowering stage until they got favorable conditions.

Generally, drought stress negatively impacted the HI in all
genotypes, but the non-GSR lines showed a higher decrease
compared with the GSR lines with the highest decrease observed
in our drought-sensitive check NIAB-IR-9 (Figure 3A). These
results suggest that GSR lines have the potential to maintain the
HI under drought stress conditions (Figure 2A).

TBM was not significantly affected under drought stress
except for Kashmir Basmati and NIAB-IR-9 (Figure 3B).
Similarly, TGW was not significantly affected under drought
stress in the tested genotypes (Figure 3C).

Drought stress had a significant effect on GL; however,
differences for genotypes were nonsignificant (Figure 3D).
Three genotypes, including NGSR-3, NGSR-1, and NGSR-15,
showed longer GLs. The genotypes NGSR-3 and NGSR-21
showed the highest (11.1 mm) and the lowest (7.3 mm) GL,
respectively. Among the experimental checks, the maximum
(10.9 mm) and the minimum (8.03 mm) GLs were depicted by
Kissan Basmati and Kashmir Basmati, respectively. Overall, GSR
lines maintained the grain length under drought stress compared
with sensitive checks (Figure 3D), except NGSR-21, which
showed a reduced grain length (7.3 mm).

FIGURE 2 | Effect of drought stress on (A) plant height/plant, (B) tillers/plant, (C) grain yield/plant, and (D) straw yield/plant. Values are means ± SD.
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Drought susceptibility index
DSI is an important indicator of drought tolerance, and a lower value
indicates better tolerance. Overall, the GSR lines showed lower DSI
compared with local varieties, and the genotypes NGSR-18, NGSR-
15, and NGSR-16 exhibited the lowest DSIs among 22 GSR lines,
showing their potential toward drought tolerance (Figure 4). In
contrast, the highest DSI was recorded for NIAB-IR-9 followed by
Kashmir Basmati, indicating the least drought tolerance among the

tested genotypes. Overall, these results demonstrated that GSR lines
generally performed better than the checks.

Pollen fertility percentage
Pollen fertility is an important indicator of drought tolerance as it
directly affects the seed setting and ultimately the grain yield. The
microscopic analyses of potassium iodide (I2-KI)-stained anthers
revealed significant differences in PFPs between tolerant and

FIGURE 3 | Effect of drought stress on (A) harvest index/plant, (B) total biomass/plant, (C) 1,000-grain weight, and (D) grain length. Values are means ± SD.

FIGURE 4 | Frequency distribution of drought susceptibility index for grain yield showing the degree of susceptibility to drought stress. Genotypes below the line are
declared as most drought-tolerant genotypes.
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sensitive genotypes. Overall, the GSR lines maintained higher
PFPs under drought stress compared with non-GSR checks
(Figure 5). While most of the GSR lines showed completely
fertile pollens under drought, a higher sterility up to 57.1% was
recorded in NGSR-3 (Figures 5 and 6A). In contrast, check
varieties except the Kissan Basmati showed lower PFP compared
with GSR under drought where NIAB-IR-9 showed only a 3.6%
PFP (Figure 6A). These findings suggest that PFP could be a good
indicator for drought tolerance in rice.

Normalized difference vegetative index
NDVI has recently emerged as an indicator of plant health. We
observed a considerable decrease in the value of NDVI under
drought stress for GSR and check varieties (Figure 6B). The
genotypes NGSR-13, IR-64, and Kissan Basmati showed the
highest NDVIs (>0.7) under drought. Among GSR lines, the
maximum NDVI (0.7) was reported in NGSR-13, whereas the
minimum (0.59) was reported in NGSR-1. Similarly, among the
check varities, the highest NDVI was depicted by IR-64 (0.72),
whereas it was minimum by Kashmir Basmati (0.6) (Figure 6B).

Since drought often causes leaf yellowing in plants, the reduced
NDVI values under drought could be associated with yellow leaves.

Cell membrane stability
CMS indicates the stress tolerance ability of plant cells. Again,
GSR lines showed higher CMS% than non-GSR, where NGSR-15
showed the highest (81.1%) CMS followed by NGSR-18
(Figure 6C), while the lowest was measured in NIAB-IR-
9 (29.5%).

Correlation of grain yield with other
agronomic traits
Understanding the correlation of grain yield with other agronomic
and physiological traits is of prime importance as it helps to identify
certain prebreeding traits that could be best indicators of grain yield.
Under WW environment, GY has shown a significant positive
correlation with SY (r = 0.59**), TBM (r = 0.90**), and HI
(r = 0.60**) (Figure 7). In addition, a significant negative
correlation was found for TPP with HI (r = −0.57**), which

FIGURE 5 | Examination of pollen fertility of the 22GSR lines and 4 checks with I2-KI solution staining of themature pollen grains. The sterile pollen grains failed to be
stained or stained weakly, indicating that they did not contain starch or contained irregularly distributed starch, whereas the viable pollen grains were stained deep brown.
Scale bars are 100 µm.
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suggests the importance of optimum number of tillers for better HI
and GY.

Under drought stress, GY has shown a significant positive
correlation with HI (r = 0.89***), CMS (r = 0.88***), TBM
(r = 0.85***), PFP (r = 0.80***), and SY (r = 0.79***), while a
significant negative correlation was found with DSI
(r = −0.72***) and GL (r = −0.43*) (Figure 8). In addition to
GY, PFP has shown a significant positive correlation with HI
(r = 0.82**), CMS (r = 0.77**), SY (r = 0.71**), and TBM
(r = 0.68**), while a significant negative correlation of PFP was
observed with DSI (r = −0.69**). Notably, DSI had significant
negative correlations with GY (r = −0.72**), HI (r = −0.72**),
CMS (r = −0.70**), SY (r = −0.69**), PFP (r = −0.69**), TBM
(r = −0.63**), and PH (r = −0.50**), which suggest the
importance of DSI being an important indicator of drought
susceptibility in rice (Figure 7). These findings revealed
important agronomic and physiological traits to be considered
as reliable selection criteria for screening rice germplasm against
drought tolerance.

Expression analysis of drought-related
genes
To see the role of drought responsive genes in drought
tolerance of GSR, we analyzed the expression pattern in
selected drought-tolerant and drought-sensitive genotypes

using quantitative real-time PCR (Figure 9). The genotype
NGSR-15 was selected as drought tolerant, and NGSR-3 and
NIAB-IR-9 were chosen as drought-susceptible genotypes
(Figure 10). Ten differentially expressed genes (DEGs) were
selected for qRT-PCR analysis from the comparative
transcriptome dataset between drought-sensitive (HHZ) and
-tolerant (H471) genotypes (Huang et al., 2014). These genes
have not been studied previously for their role in drought
tolerance, except the transcriptome analysis. In addition, we
analyzed the expression of five previously characterized genes
for drought tolerance in rice (OsSADRI, OsDSM1, OsDT11,
OsDREB1E, and OsDREB2B).

Our results indicated that four genes, namely,
LOC_Os11g36190 (receptor kinase), LOC_Os12g04500
(response regulator receiver domain-containing protein),
LOC_Os12g26290 (alpha-DOX2), and LOC_Os02g11960
(ABC transporter, ATP-binding protein), were upregulated
in drought-tolerant genotypes (NGSR-15) and downregulated
in drought-sensitive genotypes (NGSR-3 and NIAB-IR-9)
(Figure 9). This suggest that these genes may positively
regulate drought tolerance in rice. Three genes, namely,
LOC_Os05g23880 (lipoxygenase), LOC_Os05g08480
(cytokinin-O-glucosyltransferase 1), and LOC_Os01g28030
(peroxidase precursor), were downregulated in NGSR-15,
while they were upregulated in drought-sensitive genotypes
(NGSR-3 and NIAB-IR-9), suggesting a negative regulation for

FIGURE 6 | Effect of drought stress on (A) pollen fertility percentage, (B) normalized difference vegetative index (NDVI), and (C) cell membrane stability (CMS).
Values (except CMS) are means ± SD.
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drought tolerance (Figure 9). Two genes, LOC_Os07g43560
(protein kinase-like) and LOC_Os07g48450 (no apical
meristem protein), were downregulated under drought
stress in all genotypes and, thus, may not be related to
drought tolerance (Figure 9). The gene LOC_Os12g43450
(thaumatin family domain-containing protein) was
upregulated in NIAB-IR-9, while it was downregulated in
both NGSR-3 and NGSR-15, suggesting that this gene
might be related to nonGSR rice. These results revealed a
differential expression pattern of genes among drought-
tolerant and -sensitive genotypes and, thus, could be
employed for molecular identification of drought-tolerant
rice genotypes at large scale. Notably, we observed an
increased expression of previously known drought
tolerance-related genes (OsSADRI, OsDSM1, and OsDT11)
in NGSR-15, while the opposite was observed for NGSR-3
and NIAB-IR-9, which clearly indicated the role of these genes
in drought tolerance. In addition, OsDREB1E has shown a
sharp increase in expression under drought stress in all the
three genotypes, while OsDREB2B has shown a sharp decrease
in expression under drought stress in NGSR-15 and NIAB-IR-
9 (Figures 9N, O). This suggest that DREB genes are probably
not directly involved in drought tolerance in these tested

genotypes, and their expression is modulated by some
unknown genetic factors.

DISCUSSION

Rice being a prime diet of 50% of the global population and the staple
food of many countries is an important grain crop. However,
growing rice requires high delta of water where limited water
conditions affect its growth and grain yield. Water stress at
anthesis directly affects seed setting and grain filling and,
ultimately, the grain yield (Shokat et al., 2020a; Shokat et al.,
2020b). Green super rice (GSR) was developed by combining the
best global germplasm and has the potential to maintain the
optimum grain yield under different stress conditions (Jewel
et al., 2019). Moreover, this germplasm has never been evaluated
for pre-anthesis drought stress. In the current experiment, 22 GSR
genotypes and four local lines of Pakistan were used to understand
the mechanism of yield reduction at pre-anthesis stages of drought
stress. This germplasm was characterized for different
agrophysiological traits, and then the most diverse genotypes
were further evaluated by novel drought-responsive genes. Yield-
related traits are important indications of final grain yield (Zafar

FIGURE 7 | The scatter matrix below the histogram and correlation coefficient value with p-value above the histogram calculated from the means of all the studied
traits under well-watered (WW) environmental condition. The p-values of all correlations were 0.05* and 0.01**.
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et al., 2020a; Waqas et al., 2021). Studies reported that plant
genotypes that maintained higher plant biomass under drought
stress conditions often maintain higher grain number or weight and
ultimately the grain yield (Shokat et al., 2021). In the current study,
we identified NGSR-15 as a drought-tolerant line as it maintained
higher CMS, PFP, TBM, and GY. In contrast, NGSR-3 and NIAB-
IR-9 were ranked as drought-sensitive lines since they showed
significant reductions in GY probably due to reduced CMS, PFP,
and TBM. A phenotypic presentation of the performance of these
genotypes under drought stress is shown in Figure 10. Higher
biomass is usually linked with higher photosynthetic rate of the
genotypes (Morinaka et al., 2006). Our results indicate that biomass
partitioning toward grain filling was limited due to flowering stage
drought stress, and there could be a possibility that GSR-15 has
maintained a higher grain yield due to better seed setting under
moisture stress conditions. To explain the possible mechanism of
higher and lower grain yield for the genotype GSR-15 andNIAB-IR-
9, respectively, we associated yield data with the few parameters of
physiology to understand the physiological basis of yield reduction at
flowering stage drought stress.

DSI indicates the extent of susceptibility by drought stress in
terms of economically important traits particularly the grain
yield. In this study, genotypes NGSR-15 and NGSR-18 showed
the lowest susceptibility with values of −0.04 and −0.2,

respectively, whereas NIAB-IR-9 (check) showed the highest
DSI value of 3.6 (Figure 4). Under drought stress,
permeability of membranes and leakage of ions occur from the
weak or unstable membranes (Bajji et al., 2002). Likewise, seed
setting is dependent on the viability of pollen, while limited water
availability at the flowering stage can cause pollen abortion in
sensitive genotypes (Mehri et al., 2020). In contrast, plant
genotypes that show better cell membrane stability (CMS) or
pollen fertility could perform better under flowering stage
drought stress. In the current experiment, better cell
membrane stability and pollen fertile percentage (PFP) was
exhibited by the genotype NGSR-15, while the lowest values
were recorded for NGSR-3 and NIAB-IR-9 indicating the
physiological basis of drought tolerance and drought
susceptibility of these genotypes respectively. A correlation and
PCA was drawn to test the significance of these parameters in
relation to yield and yield-related traits, and we found a strong
significant and positive correlation of CMS and PFP with grain
yield (Figure 1B). In contrast, association of grain yield was
significant but negatively associated with DSI (Figure 1B)
indicating that these traits could be selected as prebreeding
traits for flowering stage drought stress in rice. To understand
the molecular basis of drought tolerance, these three genotypes
were further tested through gene expression.

FIGURE 8 | The scatter matrix below the histogram and correlation coefficient value with p-value above the histogram calculated from the means of all the studied
traits under drought stress condition. The p-values of all correlations were 0.05* and 0.01**.
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Stress conditions change the expressions of the stress-induced
regulatory or effector genes, which are usually involved in the
regulation of normal processes of the plants (Ouyang et al., 2010).
We investigated different categories of DEGs, controlling drought
tolerance and sensitivity by up-/downregulation of DEGs.
Furthermore, this analysis relied on two GSR genotypes and
one locally developed genotype, NIAB-IR-9, in order to provide
an accurate estimate of expression by comparing GSRs with
traditional cultivars under flowering stage drought stress. In
agreement with published literature, our expression results

suggest the involvement of DEGs in drought tolerance or
sensitivity (Chen et al., 2009; Narsai et al., 2013; Zhang et al.,
2015b). Leucine-rich RLKs, play a key role in the regulation of
plant growth under various abiotic stresses, and gene
LOC_Os11g36190 (a leucine-rich receptor-like kinase) is
predicted to be upregulated for bacterial leaf blight in rice
(Zhang et al., 2015a; Ahsan et al., 2019). LOC_Os12g04500 and
LOC_Os12g26290 are also reported as the core of the jasmonic acid
(JA) signaling pathway, and in the current experiment, expression
of these two genes was increased significantly under prolonged

FIGURE 9 | (qRT)-PCR analysis of drought-responsive genes in NGSR-3, NGSR-15, and NIAB-IR-9 revealed the relative expression in terms of fold change
(log2FC). Young panicle tissues (~1.5 cm) of three selected genotypes were employed in this analysis. Rice actin gene (OsACT1) was the internal control gene. Values of
three biological replicates (n = 3) were expressed as mean ± SD.
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drought period. Moreover, JA signaling genes are also reported to
be involved under critical phases of drought stress (Du et al., 2007).
We found that four genes, i.e., LOC_Os11g36190,
LOC_Os12g04500, LOC_Os12g26290, and LOC_Os02g119600,
were upregulated in drought-tolerant genotypes (NGSR-15) and
downregulated in drought-sensitive genotypes (NGSR-3 and
NIAB-IR-9) indicating their positive relationship with drought
tolerance. Likewise, an increased expression of previously known
drought tolerance-related genes (OsSADRI, OsDSM1, and

OsDT11) (Ning et al., 2009; Li et al., 2017; Park et al., 2018)
was observed in NGSR-15, while an opposite trend was observed
for NGSR-3 and NIAB-IR-9. This change in expression in the
tested genes could be due to a sequence variation in their promoter
region or mutation in a major upstream regulator, which is
currently unknown to us. Apart from gene expression, these
genotypes also showed a contrast for PFP, CMS, and DSI along
with clear differences in grain yield suggesting their role in
terminal-stage drought tolerance. Drought-responsive element-

FIGURE 10 | Phenotypic comparison of plants, grain length, and shape (husked and de-husked), pollen viability, and panicle fertility of NGSR-15, NGSR-3, and
NIAB-IR-9 under well-watered (WW) and drought stress. Abbreviations: F, fertile spikelets; S, sterile spikelets. White arrow heads denote fertile spikelets and yellow
arrow heads denote sterile spikelets. Spikelets with open tips represent sterile spikelets with no seed set. Scale bars are approximately 15 cm (A,G,M), 5 mm
(B,C,H,I,N,O), 5 cm (F,L,R), and 50 µm (D,E,J,K,P,Q).
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binding proteins (DREBs) are known to play important roles in
abiotic stresses especially drought (Chen et al., 2008). Interestingly,
in our study, expression of the DREB gene was either increased in
both tolerant and sensitive genotypes, or decreased under drought
stress (Figures 9M, O). This suggests that DREB genes are
probably not directly involved in drought tolerance in these
tested genotypes, and their expression is modulated by some
unknown genetic factors.

CONCLUSION

Through this study, we identifiedmolecular and physiological basis of
higher grain yield at the flowering stage drought stress and the role of
novel drought-responsive genes in drought tolerance. Importantly,
various morphophysiological traits (PFP,CMS, DSI, and HI) had
strong association with drought-responsive genes, and ultimately, the
grain yield indicating these parameters could be used as prebreeding
traits for drought tolerance. Our results also indicate that genotype
NGSR-15 was the most drought tolerant, while NGSR-3 and NIAB-
IR-9 were the most sensitive genotypes. These genotypes can further
be used to improve rice yield under drought stress; however, in-depth
mechanism is required to confirm our findings.
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Effect of Panicle Morphology on Grain
Filling and Rice Yield: Genetic Control
and Molecular Regulation
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The demand for rice is likely to increase approximately 1.5 times by the year 2050. In
contrast, the rice production is stagnant since the past decade as the ongoing rice
breeding program is unable to increase the production further, primarily because of the
problem in grain filling. Investigations have revealed several reasons for poor filling of the
grains in the inferior spikelets of the compact panicle, which are otherwise genetically
competent to develop into well-filled grains. Among these, the important reasons are 1)
poor activities of the starch biosynthesizing enzymes, 2) high ethylene production leading
to inhibition in expressions of the starch biosynthesizing enzymes, 3) insufficient division of
the endosperm cells and endoreduplication of their nuclei, 4) low accumulation of
cytokinins and indole-3-acetic acid (IAA) that promote grain filling, and 5) altered
expressions of the miRNAs unfavorable for grain filling. At the genetic level, several
genes/QTLs linked to the yield traits have been identified, but the information so far
has not been put into perspective toward increasing the rice production. Keeping in view
the genetic competency of the inferior spikelets to develop into well-filled grains and based
on the findings from the recent research studies, improving grain filling in these spikelets
seems plausible through the following biotechnological interventions: 1) spikelet-specific
knockdown of the genes involved in ethylene synthesis and overexpression of β-CAS (β-
cyanoalanine) for enhanced scavenging of CN− formed as a byproduct of ethylene
biosynthesis; 2) designing molecular means for increased accumulation of cytokinins,
abscisic acid (ABA), and IAA in the caryopses; 3) manipulation of expression of the
transcription factors like MYC and OsbZIP58 to drive the expression of the starch
biosynthesizing enzymes; 4) spikelet-specific overexpression of the cyclins like CycB;1
and CycH;1 for promoting endosperm cell division; and 5) the targeted increase in
accumulation of ABA in the straw during the grain filling stage for increased carbon
resource remobilization to the grains. Identification of genes determining panicle
compactness could also lead to an increase in rice yield through conversion of a
compact-panicle into a lax/open one. These efforts have the ability to increase rice
production by as much as 30%, which could be more than the set production target
by the year 2050.
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INTRODUCTION

Rice is a staple food crop satisfying the hunger of the majority of
the world population. It contributes greatly in 56% of the world’s
calories provided by the cereals in general besides contributing
substantially as animal feed (https://www.fao.org/3/Y4683E/
y4683e06.htm#TopOfPage). It is grown worldwide and forms
the main food crop for more than 50% of the world’s population
(Haque et al., 2015). The importance of the rice crop in human
life is also reflected from its long process of evolution through
domestication for the traits like grain size, grain number, panicle
size, grain quality, spikelet fertility, and so forth (Shomura et al.,
2008). These traits not only are linked to increasing the
production figure but also relate to the quality of the grain
produced. With the advancement of science, particularly in the
field of genetics, the world rice production dramatically increased
in the last half of the 20th century. The achievement was first
through the increase in the harvest index by the introduction of
the semi-dwarf gene that brought the “green revolution” and
second by the production of hybrids in 1970s that exploits
heterosis (Xing and Zhang, 2010). This led to doubling of the
rice production in 1960s. However, the production must get
doubled further by the year 2050 to feed the world’s ever-
increasing population (Voesenek and Bailey-Serres, 2009),
which would be approximately 9.6 billion during this period
(FAO, 2009; Virk et al., 2004). Despite the requirement to scale up
the production figure of the crop, it has been hovering at
approximately 500 million metric ton (mmt) for the past
decade (Shahbandeh, 2021) (Supplementary Figure S1),
making achievement of the projected production target nearly
impossible. It has also been emphasized that the world’s rice
production must increase at least at the rate of 1% per annum to
meet the growing demand for food as a result of the ever-growing
human population (Rosegrant et al., 1995; Lafarge and Bueno,
2009). In contrast, the annual increase in the production in 2000s
has been less than 1% (Normile, 2008), and it has been on a
declining trend since the past few decades. The annual increase in
the production was 2.7% in 1980s, which decreased to 1.1% in
1990s (Horie et al., 2005). The stagnation shown in the
production figure (Shahbandeh, 2021) is a result of such a
continuous decline in the annual increment production values
over the decades.

Despite stagnancy in the production, rice contributes
significantly in the production of cereals all over the world. Its
annual production stands at 2679.2 million metric ton (mmt) and
is only below maize and wheat in the production figure (OECD/
FAO, 2020). However, its cost of production (US$ 428.7/t) is
much higher compared to that of wheat (US$ 225.4/t) and maize
(US$ 165.2/t) (OECD/FAO, 2020). The high cost of production,
nevertheless, does not decrease its importance as a staple cereal as
it contributes to 23% of the consumed calories compared to 17%
and 10% contributed by wheat and maize, respectively. Thus, the
focus of the world and pressure on the researchers is extremely
high on pushing up its rate of increase in production substantially
so as to meet the projected production target by the middle of this
century. The approaches toward increasing the rice yield have
been focused on several lines, including breeding, genetics, and

biotechnology. The purpose of this review is to bring into lime
light such approaches and to provide a direction in which the rice
scientists could focus their efforts in enhancing the rice yield
based on our current understanding on the subject.

IDEOTYPE BREEDING APPROACH FOR
INCREASING RICE PRODUCTION

Since the domestication of the crop and the start of agricultural
practices that started almost 10,000 years ago, the production of
food grains reached to approximately 1 billion tons in 1960, and it
took only 40 years to reach the production to approximately 2
billion tons (Khush, 2001). The huge leap in the production of the
food grains in the latter half of the 20th century has been possible
because of application of the knowledge gained during the period
in the agricultural sciences, particularly that related to plant
breeding and genetics, and rice as a crop is no exception to
this benefit. Almost doubling of the world rice production, from
257 mmt in 1965 to 468 mmt in 1985 (Khush, 1987), has been
primarily a result of a well-planned breeding program at the
International Rice Research Institute (IRRI), Philipines, and in
China. The success came with the development of the semi-dwarf
Guang-chang-ai rice variety in 1959 by the transfer of the Sd-1
gene fromAi-zi-Zhan (Huang, 2001). However, the major success
was achieved by the breeders at IRRI through making crosses in
1962 to introduce dwarfing genes from several Taiwanese
varieties, including Dee-geo-woo-gen, Taichung Native 1, and
I-geo-tse to the tropical tall land races (Peng et al., 2008). The
resultant first semi-dwarf, high-yielding modern rice variety, IR8,
was released for the tropical irrigated lowlands in 1966 (Khush
et al., 2001). The short maturity duration, nearly 110 days, and
photo-period insensitivity (Supplementary Figure S2) were the
added advantages of the IR8 variety released. The yield potential
of the irrigated rice crop was nearly doubled, from 6 t ha−1 to
10 t ha−1, in the tropics (Chandler, 1982).

In pursuit of increasing the rice yield further, the breeders at
IRRI initiated a breeding program for a new plant type (NPT)
taking the ideotype breeding approach. “Crop ideotype” is an
idealized plant type having all good-to-have features, including
efficient photosynthesis, growth, and grain production (Donald,
1968). It was argued that the results of the breeding program
would be more fruitful if the desired characteristics are defined
beforehand and then the breeding program is initiated to achieve
these (Hamblin, 1993). Simulation models predicted that an
increase of 25% yield could be possible by modifying certain
traits of the current plant type. The modification could be as
enhanced leaf growth during the early vegetative stage, reduced
leaf growth during the reproductive stage, greater N partitioning
to the upper leaf, increased carbohydrate storage capacity in
stems, and most importantly a greater reproductive sink
capacity (Dingkuhn et al., 1991). Moreover, the increase in
sink capacity should accompany an extended period of grain
filling (Dingkuhn et al., 1991). Based on the results of the
simulation modeling, trait modifications to the high-yielding
indica plant type were formulated, which were mostly
morphological to make the breeding program relatively easy.
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The major trait to be introduced in the proposed NPT was to
increase the number of grains per panicle up to 200–250 (Peng
et al., 1994). Besides, the NPT should possess characters like low
tillering capacity; few unproductive tillers; a 90–100 cm plant
height; thick and sturdy stems; thick, dark-green, and erect leaves;
a vigorous root system; a 100–130 d growth duration; and an
increased harvest index (Peng et al., 1994). The NPT lines
developed used the bulu varieties or the tropical japonicas and
hence are referred to as NPT-TJ. The plant had the ideal features,
particularly of the panicle size and spikelet numbers, but showed
poor biomass and poor grain filling besides being susceptible to
diseases and insects (Peng et al., 2008). The cause-and-effect
relationship between low biomass and poor grain filling is yet to
be established. However, it was hypothesized that the poor grain
filling could be because of compact arrangement of spikelets on
the panicle (Yamagishi et al., 1996). Limited success of the first-
generation NPT lines led the breeders at IRRI to modify the
program and included elite indica parents for crossing with the
first-generation NPT lines, and the second-generation NPT lines
derived were referred to as NPT-IJ lines (NPT Indica-Japonica).
A few second-generation NPT lines had 45–75% greater number
of the spikelets than the check variety IR72 and showed a
significantly greater yield (Peng et al., 2004). However, if the
yield performance of the second-generation NPT lines is
compared with the newly developed indica inbred varieties,
the yield advantage of the former becomes insignificant (Peng
et al., 2004; Yang et al., 2007). Hence, the NPT program of IRRI
has largely been of limited success.

The breeding for high-yielding rice varieties, including
hybrids, has been a continuous process in China since 1959
(Yuan et al., 1994). In addition, the country formulated the “super
rice” or “super hybrid rice” program in 1996 to increase the yield
efficiency of the crop through the exploitation of heterosis of the
inter-subspecies crosses (Cheng et al., 2007; Peng et al., 2008).
Several “super” rice varieties have been released since then, and
among them, Xieyou9308 and Liangyoupeijiu are popular
because of their good grain quality in addition to the high
yield (Peng et al., 2008). The high yield of Xieyou9308 was
not only because of the large panicle size but also because of
the high grain-filling percentage, 89.6% in the superior spikelets
and 80.0% in the inferior spikelets (Wang et al., 2002; Peng et al.,
2008).

Both NPT and the “super” rice endeavors although increased
the yield of rice significantly; these have not been able to bring a
second green revolution in terms of the rice production, unlike
that brought by the introduction of the IR8 varieties. The reason
for somewhat significant success, although a little, of both the
programs was that these avoided the extremes of plant type traits
(Belford and Sedgley, 1991) and thus kept the targeted spikelet
numbers per panicle to not more than 250 initially and later on
not more than 150 spikelets per panicle. The goal was to reduce
the percentage of unfilled grains, although the modern generation
indica inbred varieties like Upahar show grain filling percentages
greater than 90% despite bearing approximately 250 spikelets per
panicle (Panda et al., 2015; Sahu et al., 2021). Thus, the strategy
adopted for the programs for improving the yield of rice needs a

revisit, including the interventions of the modern molecular
biology tools.

PANICLE MORPHOLOGY AND GRAIN
FILLING

The main and individual tiller shoots in rice plants are destined to
terminate as panicle-type inflorescence having rachis bearing
primary, secondary, and even higher-order branches, each
getting transformed into a spikelet that harbors a bisexual
flower (Figure 1A). The length of the panicle primarily
depends on how quickly the rachis gets transformed into a
spikelet. The formation of the entire panicle, the juvenile
panicle, including the number of spikelets happens inside the
boot leaf. The formation of the panicle branches and the spikelets
occurs in basipetal succession, that is, the spikelets at the basal
region of the panicle are formed earlier than those in the apical
region. Thus, the spikelet at the top that is formed by the
transformation of the main rachis is the newest. In contrast,
the development andmaturation of the spikelets start in acropetal
succession, that is, from top to bottom. Anthesis of the spikelets
progresses slowly from the apical to the basal region and gets
completed in approximately 7 days (Figure 2B). Accordingly, the
fertilization starts from top to bottom. The well-known
phenomenon of apical dominance is maintained in the
development and maturation of the spikelets into well-filled
grains. The order of dominance recedes from the top to the
base. The grain filling also follows the process of apical
dominance, with the apical spikelets getting filled first,
followed by the filling of the basal spikelets. The apical first
principle, however, has great repercussion on filling of the grain
in the large-size panicle, such as that developed under the NPT
program, where 10–15% of the spikelets, comprising mostly of
the basal ones, remain unfilled (Peng et al., 2008). The scenario is
even more precarious in the large-size panicles of the indica
inbred line bearing 300 or more spikelets where more than 30% of
the spikelets remain unfilled (Sekhar et al., 2015a; Panda et al.,
2015; Sahu et al., 2021). Thus, the failure of the spikelets to
develop into well-filled grains also leads to variation in yield of the
rice varieties in addition to the variation created by the number of
spikelets per panicle per se. Moreover, the rice varieties bearing
larger panicles also show a greater variation in yield within a
variety itself compared with the variety bearing small panicles
(Yang et al., 2002; Kato, 2004). Although the development of the
rice varieties bearing numerous spikelets on the panicle leads to
an increase in the sink size, it does not lead to any benefit in terms
of the effective yield. The increase in the number of spikelets on a
panicle generally leads to a decrease in the inter-grain space,
resulting in compactness of the panicle (Sekhar et al., 2015a;
Panda et al., 2015; Panda et al., 2016a; Chandra et al., 2021; Sahu
et al., 2021). Regression analysis of the relationship between the
inter-grain space and grain filling percentage considering several
compact- and lax-panicle cultivars has shown that an inter-grain
space lesser than 0.55 cm is not favorable for grain filling (Sahu
et al., 2021, Figure 2).

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8761983

Parida et al. Regulation of Rice Grain Filling

200

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Although the basal spikelets in compact panicles remain
unfilled, the spikelet thinning treatment, in which some of the
apical spikelets are removed, has shown that the basal spikelets
are also competent to develop into well-filled grains (Kato, 2004;
You et al., 2016). The results of the spikelet thinning treatment
thus prove further that the apical spikelets play an inhibitory role
in grain filling in the basal spikelets, displaying the phenomenon
of apical dominance. Moreover, it is not that the sink becomes a
limitation in poor filling of the grains in the compact panicle
suggested by Okamura et al. (2018), as the carbon assimilates
remain available to the basal spikelets, although these remain
unutilized or underutilized (Yang et al., 2006; Yang and Zhang,
2010; Panda et al., 2015). The poor filling of the grains in the basal
spikelets despite the availability of the carbohydrate assimilates
further ascertains the role of apical dominance in grain
development in compact panicles. However, information on
the genes controlling the inter-grain space and apical

dominance in the metabolism within the inflorescence is scant,
knowledge on which would greatly improve the chances of
enhancing grain filling in compact panicles. In addition, the
plant hormones like auxin, cytokinins, and ethylene also
greatly influence the process of grain filling, and hence,
spikelet-specific regulation of their contents/presence could be
of great benefit in improving grain filling in compact panicles.

GENETIC PERSPECTIVE OF PANICLE
MORPHOLOGY

Several genes/QTLs have been reported to influence flower
development and/or the panicle architecture in rice (Gupta
et al., 2006). However, this review will restrict the discussion
only to those related to panicle branching and grain traits that
influence the rice yield significantly.

FIGURE 1 | Spatial distribution and development of spikelets on the rachis of the rice panicle. (A) The spikelets are termed as terminal or lateral depending upon
whether these are derived from the modification of the axis, termed as terminal spikelets, or the lateral branches, termed as lateral spikelets. The lateral branches may be
primary, secondary, or tertiary in nature depending upon whether these are originated from the rachis, primary branches, or secondary branches, respectively. (B)
Pictorial representation of progression of anthesis of the spikelets on the rice panicle, which is an acropetal event with spikelet groups I, II, III, IV, V, VI, and VII
reaching anthesis progressively on the first, second, third, fourth, fifth, sixth, and seventh days (Mohapatra et al., 1993). Groups I to III represent the apical (superior)
spikelets, while groups V to VII represent the basal (inferior) spikelets. Panel 2A is reproduced with the permission of the author (Xing and Zhang, 2010). Panel 2B is
reproduced with the permission of the publisher (Mohapatra et al., 1993).
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Grain Numbers and Panicle Branching
Two genes/QTLs, Gn1a (Grain number 1a) and LOG (Lonely
guy), both located on chromosome 1, function through regulating
the level of cytokinin (Ashikari et al., 2005; Kurakawa et al., 2007).
Gn1a encodes cytochrome oxidase (OsCKX2) that degrades
cytokinin (Ashikari et al., 2005), while LOG codes for the
protein with phosphoribohydrolase activity that catalyzes
conversion of cytokinin nucleotides like iPRMP (N6-(Δ2-
isopentenyl) adenosine-5′-monophosphate) and tZRMP (trans-
zeatin-riboside-5′-monophosphate) to their free bases, iP (N6-
(Δ2-isopentenyl)adenine) and tZ (trnas-zeatin), respectively, the
metabolically active species of cytokinin (Kurakawa et al., 2007).
The loss of function mutation of Gn1a leads to an increase in the
number of spikelets. The loss of function mutation of LOG on the
other hand leads to several floral defects, including a decrease in
panicle size and spikelet numbers. These mutations indicate the
important role of cytokinins in differentiation of the shoot apical
meristem (SAM) into inflorescence, including panicle branching
and spikelet numbers. This is also reflected from the increase in
spikelet numbers upon an increase in iPR (iP-riboside) and tZR
(tZ-riboside) levels in the caryopses through aerial application of
6-benzylaminopurine (BAP) (Panda et al., 2018)
(Supplementary Table S1, Figure 3). The mechanistic details
of the hormone action in the regulation of SAM activity are,
however, yet to be known. Besides by the mutation of Gn1a and
LOG, the cellular level of cytokinin is also reportedly regulated by
two genes that influence the expression of OsCKX2. These are LP
(Larger panicle) and DST (Drought and salt tolerance), both
identified through mutagenesis, with the former as lp-1 and lp-
2 and the latter as reg1 (regulator of Gn1a). Both lp and reg1
mutants showed a significant increase in the number of both
primary and secondary panicle branches and grain numbers (Li
M. et al., 2011; Li S. et al., 2013). The LP gene was mapped on the
short arm of chromosome 2 and identified to code for a kelch
repeat-containing F-box protein that interacts with SKP1
(S-phase kinase-associated protein 1) of the SCF (Skp1-Culin-

F-box) E3 ligase complex. The lp mutants showed a severe
decrease in the expression of OsCKX2, indicating involvement
of LP in modulation of cytokinin equilibrium through direct or
indirect regulation of OsCKX2 expression (Li M. et al., 2011). In
contrast to LP, REG1, mapped on chromosome 3, directly
regulates the expression of OsCKX2 as it encodes a zinc finger
protein transcription factor DST that binds to the cis element
DBS (DST-binding sequence) present in the promoter region of
OsCKX2 (Li S. et al., 2013).

UnlikeGn1a,DEP1 (Dense erect panicle 1) is a gain of function
mutation that leads to an increase in the number of primary and
secondary branches on the panicle, resulting in dense and erect
panicles with an increased number of spikelets compared with the
wild type (Huang et al., 2009). The mutant (dep1) is the dominant
allele at the DEP1 locus on chromosome 9 resulted in by
replacement of a 637-bp stretch in exon 5 with a 12-bp
sequence, causing a loss of 230 amino acid residues from the
C-terminus (Huang et al., 2009). DEP1 codes for a
phosphatidylethanolamine-binding protein (PEBP)-like
domain protein, the role of which in panicle development is
not known yet, and so also the role of the mutated protein. Similar
to DEP1, mutation in another gene, FUWA, which encodes an
NHL domain-containing protein, leads to its premature
truncation, resulting in dense and erect panicles, although the
number of secondary branches is reduced (Chen et al., 2015). The
dense panicle morphology has been stated to be as a result of
increased cell division, including in the hull, that is otherwise
restricted by FUWA (Chen et al., 2015).

Mutation in three more genes/QTLs, EP2 (Erect panicle 2),
EP3 (Erect panicle 3), and qPE9-1, leads to an erect morphology of
the panicle. EP3was identified through chemical mutagenesis and
mapped to the short arm of chromosome 2 (Piao et al., 2009). The
gene encodes an F-box protein, and the mutation, a single base
pair change (G/C to A/T), leads to dense and erect panicles, but
with a reduced number of spikelets (Piao et al., 2009). In contrast,
the gene EP2, which encodes a novel protein of unknown
functions, results in dense panicles with an increase in the
number of spikelets (Zhu et al., 2010). Map-based cloning
revealed EP2 to be located on the long arm of chromosome 7.
The mutation of the candidate gene of a major QTL present on
chromosome 9, qPE9-1, and which codes for a keratin-associated
protein, on the other hand, converts a drooping panicle to an
erect type without any significant change in the spikelet number
(Zhou et al., 2008). The mutation was a result of one single-
nucleotide polymorphism (SNP), cytosine-to-tyrosine, and one
InDel in the coding region (Zhou et al., 2009). The mechanistic
details of action of all these genes are yet to be known, although
functionally characterized.

APO1 (Aberrant panicle organization 1) and SPIKE (Spikelet
number) are two genes that influence the spikelet numbers
without affecting the panicle compactness much, and unlike
Gn1a, these are not known to be related to panicle
development in any way. The APO1 locus has been mapped
on chromosome 6. The gene encodes an F-box protein, and one
nucleotide substitution mutation in it leads to immature
transition of the branch and rachis meristem to the spikelet
meristem that results in a decrease in the number of spikelets

FIGURE 2 | Polynomial regression analysis between the filled grain
percentage and inter-grain space. The correlation is significantly positive, and
the curve suggests that while the grain filling increases with an increase in the
inter-grain space, an inter-grain space greater 0.55 cm is of not much
benefit for grain filling.
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on the panicle (Ikeda et al., 2007). Although its role in
inflorescence/panicle development is not known, its
overexpression leads to an increase in inflorescence branches
and spikelets (Ikeda et al., 2007). Similarly, the overexpression of
SPIKE in IR64 leads to a significant increase in spikelet numbers,
resulting in 13–36% increase in yield over the non-transformed
IR64 together with other morphological changes in the plant
architecture as pleotropic effects of the gene (Fujita et al., 2013).
SPIKE was identified as QTL qTSN4 (total spikelet number per
panicle) on the long arm of chromosome 4 of a tropical japonica
rice landrace Daringan (Fujita et al., 2013) and was identical to
Nal1 (Narrow leaf 1) identified earlier (Qi et al., 2012), suggesting
SPIKE as an allele ofNal1 from tropical japonica.Nal1 is involved
in polar auxin transport necessary of differentiation of vascular
strands (Fukuda, 2004; Qi et al., 2012), indicating that auxin
could influence the spikelet number on the panicle by
strengthening the vasculature system. The possible role of

SPIKE in vasculature development is also evident from its
expression mostly in the vascular bundle at the panicle neck
and culm and in young panicles (Fujita et al., 2013).

The time taken for the transition of the vegetative phase to the
reproductive phase putatively determines the panicle size and
panicle numbers in rice. It is well established that during the
development of panicle inflorescence, the shoot apical meristems
(SAMs) give rise to primary branches, the SAMs of the primary
branches give rise to secondary branches, and so on. At the end,
the SAMs of the primary, secondary, or tertiary branches get
transformed into spikelets. InArabidopsis, it is known that a delay
in the individual transition steps allows a greater time to panicles
for development, and this is regulated by terminal flower 1 (TFL1)
and centtroradialis (CEN)-like genes that encode phosphatidyl-
ethanolamine-binding proteins (PEBPs) (Bradley et al., 1997;
Ohshima et al., 1997). RCN1 (Rice centroradialis 1) and RCN2
are the putative orthologs of TFL1/CEN in rice (Nakagawa et al.,

FIGURE 3 | Longitudinal sections of the caryopses sampled from the panicle of the control and that applied with 6-benzylaminopurine (BAP) and stained with the
antibody against trans-zeatin riboside (tZR) and N6-(Δ2-isopentenyl)adenine (iP) riboside (iPR), the precursors of trans-zeatin and isopentenyladenine, respectively, the
two cytokinins. The sections were observed under a fluorescence stereo-microscope for the detection of the fluorescence from these antibodies. The caryopses from
the basal spikelets of the control plant emitted much lesser fluorescence compared with that sprayed with BAP during the heading. Reproduced with the
permission of the author (Panda et al., 2018).
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2002). Their overexpression in rice produces a significantly
greater number of secondary and tertiary branches and three
times more spikelets, but with a reduced inter-grain space
showing a compact-panicle architecture (Nakagawa et al., 2002).

Two genes, LAX1 (Lax panicle 1) mapped on chromosome 1
(Komatsu K. et al., 2003) and FZP2 (Frinzy panicle 2) mapped on
chromosome 7 (Komatsu M. et al., 2003), work together toward
the development of panicle branches and spikelets or the
inflorescence per se. LAX1 and FZP2 code for the bHLH
domain and ERF domain-containing protein, respectively, and
thus, both are reportedly transcriptional regulators (Komatsu K.
et al., 2003; Komatsu et al., 2003 M.). Analysis of their mutants
revealed that lax1 lacked in the development of lateral spikelets,
while fzp2 showed excessive ramification of the rachis branches at
the point of initiation of the spikelet meristems without initiation
of development of spikelets (Komatsu et al., 2001). The
observations led Komatsu et al. (2001) to conclude that while
LAX1 is required for the development of rachis-branchmeristems
and lateral meristems, FZP2 specifies them to take the terminal
and lateral spikelet identities, respectively.

A recent genome-wide association study (GWAS) has revealed
that the number of spikelets on a panicle bears highly significant
correlation with the number of secondary branches on it but only
to a lesser extent with the number of primary branches (Ta et al.,
2018). The variation in the secondary branches explained 89–91%
variation in the spikelet numbers, while the variation in the
primary branches could explain only 37–42% variation in the
spikelet numbers (Ta et al., 2018). The GWAS of Ta et al. (2018)
thus supports that the genes like Gn1a, DEP1, APO1, RCN1, and
RCN2 could be regulating the number of spikelets by increasing
the number of secondary or both secondary and primary
branches (Yagi et al., 2001; Nakagawa et al., 2002; Ikeda et al.,
2007; Ikeda et al., 2007; Huang et al., 2009), although the
mechanistic details of the relationship between the two traits
are yet to be understood. However, the genes Gn1a, DEP1, APO1,
RCN1, and RCN2 were not detected in the QTLs identified to be
regulating the panicle morphology, indicating the involvement of
a complex genetic network in the development of the traits
determining spikelet numbers; the number of the primary,
secondary, and higher-order branches; and the size of the
panicle per se (Ta et al., 2018).

A QTL named WFP (Wealthy farmers’s panicle) was
identified on chromosome 8 by a cross between two japonica
rice varieties, Nipponbare and ST-12. The panicle of Nipponbare
contained approximately 152 grains and 11 primary branches and
that of ST-12 contained approximately 475 grains and 29 primary
branches (Miura et al., 2010). TheWFPQTL carried no gene, but
carried OsSPL14 adjacent to it. The gene expressed much more in
the shoot apices and the young panicles in ST-12 compared with
Nipponbare (Miura et al., 2010) and hence was assumed to be the
real gene regulating panicle branching and spikelet numbers
(Miura et al., 2010). The gene OsSPL14 has also been found to
be one among the 12 ORFs identified as the Ideal plant
architecture 1 (IPA1) locus present in the QTL qTn8 mapped
on the long arm of chromosome 8. IPAI explained 29.9% of
variation in the tiller numbers identified through a cross between
the indica TN1 or Hui7 and japonica SNJ varieties (Jiao et al.,

2010). Cloning and sequencing of OsSPL14 from TN1 and SNJ
revealed that the gene in the latter carried a point mutation that
prevented the degradation of its product by the miRNA osa-
miR156, which was not there in TN1 (Ta et al., 2018). Thus,
OsSPL14 plays an important role in determining panicle
branching and spikelet numbers, the mechanistic details of
which are of course yet to be worked out.

The panicle branches and spikelet numbers in rice
inflorescence are also reportedly controlled by the SP1 (Short
panicle 1) gene mapped on chromosome 11 (Li et al., 2009). The
gene encodes a member of peptide transporter family proteins (Li
et al., 2009). The inflorescence development in rice occurs in two
stages. The first stage involves meristematic activities resulting in
branch primordium initiation and spikelet differentiation that
gets completed while the panicle is only 4 mm in length or so. The
second stage involves elongation of the panicle and panicle
branches that ends up with the heading (Li et al., 2009).
Mutation in SP1 leading to 31-bp deletion in the exon causes
reduction in the length of the panicle, together with the formation
of a much lesser number of primary branches, and drastic
reduction in the number of spikelets on the panicle (Li et al.,
2009). The mutation causes a drastic decrease in the expression of
the gene, the reason for which is yet to be known (Li et al., 2009).
The importance of transition of meristematic activity in flower
development has been shown in another study where the rice
Supernumerary bract (SNB), identified through a T-DNA
insertion mutation study, was found to play an important role
in the transition of a spikelet meristem to a floral meristem
leading to proper development of the florets (Lee et al., 2007). An
AP2 family gene highly homologous to SNB was also identified,
and since it was closely related to the maize Indeterminate spikelet
1 (IDS1), it was named OsIDS1 (Lee and An, 2012). A T-DNA
insertion mutant line of the gene was also identified, which had a
defective floret. Further studies on characterization of the two
genes revealed that the snb osids1 double mutant developed a
significantly reduced number of panicle branches and spikelet
numbers with simultaneous delay in the transition of the spikelet
meristem into the floral meristem, and thus, SNB and OsIDS1 are
probably involved in preventing precocious determination of
inflorescence and branch meristems (Lee and An, 2012).

Grain Traits
The yield of a rice cultivar is dependent not only on the numbers
of grains produced per unit area but also on the size and weight of
the individual grain. The overall size of the rice grain is largely
regulated by four genes/QTLs, including SMG1 (Small grain 1),
SMOS1 (Small organ size 1), GS3 (Grain size 3), and GS5 (Grain
size 5). The SMG1 locus was found to harbor four open reading
frames (ORFs). Out of these, only that encoding mitogen-
activated protein kinase kinase 4 (OsMKK4) was found to
have a C to T transition in the mutant smg1 that produced a
much smaller size of the grain compared with the wild type, and
thus, OsMKK4 was referred to as the candidate gene of the locus
SMG1 (Duan et al., 2014). The decrease in cell proliferation in the
lemma of smg1 was believed to be the most likely cause of the
smaller grain size in it compared with the wild type as the cell
length of both the inner and outer epidermal layers was
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indistinguishable between the mutant and the wild type. The
observation was in accordance with the fact that OsMKK4
regulates the expression of the brassinosteroid (BR) pathway-
related genes and so also affects BR responses that positively
influence cell proliferation, essential for growth of an organ
(Duan et al., 2014). In fact, grain size and shape have been
reported to be largely determined by cell proliferation in the
hull and endosperm (Orozco-Arroyo et al., 2015; Zhang D. et al.,
2019). A decrease in endosperm cell division has also been
reported to be one among the causes of poor-quality grain
formation in indica rice varieties (Sahu et al., 2021). Unlike
SMG1, the loss of function mutation in GS3 results in the
formation of larger grains (Fan et al., 2006). The QTL GS3
was identified on chromosome 3 by analysis of the mapping
population generated from a cross between the large grain
Minghui 63 and the small grain Chuan 7. The GS3 locus was
found to be represented by only one gene encoding a putative
transmembrane protein of 232 amino acids. The loss of function
was found to be a result of a non-sense mutation in the second
exon of GS3 causing a 178-aa truncation in the C-terminus end
(Fan et al., 2006). Mutation in GS5, which encodes a putative
serine carboxypeptidase, is a result of polymorphism in the
promoter region, which leads to a decrease in its expression
concomitant with reduction in the grain size (Li Y. et al., 2011).
Although the actual function of the gene in regulating the grain
size is unknown, a higher expression of GS5 leads to an enhanced
cell division (Li et al., 2009). Further research on GS5 functions
has revealed that GS5 occupies the extracellular leucin reach
domain of OsBAK1-7 [brassinosteroid-insentive1 (BRI1)-
associated receptor kinase 1–7] and thus competitively inhibits
its interaction with OsMSBP1 (membrane steroid-binding
protein 1), preventing OsBAK1-7 from endocytosis (Xu et al.,
2015). Since BAK1-7 together with BRI1 is involved in perception
of BRs, the role of BR signaling in enhancement of cell division by
GS5 may not be ruled out.

Unlike GS3, GL3.1 (Grain length 3) regulates the grain
length. Two amino acid substitution causes an increase in
its phosphatase activity, resulting in the formation of shorter
grains in the mutant variety FAZI compared with the wild type
WY3 (Qi et al., 2012). GL3.1 is involved in dephosphorylation
of Cyclin-T1;3 and hence influences the cell proliferation; the
higher the dephosphorylation, the lesser the cell proliferation
and the shorter the grain (Qi et al., 2012). In contrast to GL3.1,
mutation in LGS1 (Large grain size 1) (Chen et al., 2019) and
GS2 (GRAIN SIZE 2) (Hu et al., 2015) results in the formation
of larger and longer grains. Both encode growth-regulating
factor 4 (GRF4), which regulates cell division and the
hormonal response pathway, producing pleotropic effects
on the panicle morphology, including panicle branching
and grain length (Chen et al., 2019). The mutation is in the
form of substitution of TC to AA in exon 3 that produces the
target site for the miRNA osa-miR396, leading to a decrease in
transcript abundance of the genes and so also a decrease in the
grain length (Hu et al., 2015; Chen et al., 2019). GS2 differs
from LGS1 in having other substitutions as well (Hu et al.,
2015). Similar to LGS1, SLG7 (Slender grain on chromosome 7)
and GW7 (Grain width 7) are associated with the formation

slender grains (Wang S. et al., 2015; Zhou et al., 2015). The
common among the two is that the grain length is positively
related with their expression. SLG7 is homologous to
Arabidopsis LONGIFOLIA1 and LONGIFOLIA2, which
activate longitudinal organ expansion (Zhou et al., 2015).
GW7 on the other hand encodes a homolog of the
Arabidopsis thaliana TNNEAU1 (TON1) recruiting motif
(TRM) protein, and its expression positively correlates with
increased cell division in the longitudinal direction and
decreased cell division in the transverse direction in the hull
(Wang S. et al., 2015). Thus, both SLG7 and GW7 probably
provide a slender grain shape by promoting longitudinal cell
division in the hull. The promoter of both SLG7 and GW7
showed polymorphism in terms of several SNPs and indels
between the parents involved in crossing for the generation of
the mapping population. Nucleotide sequence analysis of the
GW7 promoter revealed the presence of OsSPL16 binding
motifs that were affected because of the indels leading to
poor expression of the gene in the long grain variety
TaifengA, indicating that OsSPL16 probably controls the
grain shape via repression of GW7 (Wang S. et al., 2015).

Mutation, whether by deletion or by indel, resulting in
changes in properties of the protein appears to be a very
common cause of changes in the grain shape and size. A great
benefit of it is noted in the development of Basmati rice. It is
resulted in by a 10-bp indel in the promoter of GW8 (Grain
weight 8) that encodes squamosa promoter-binding like
protein 16 (OsSPL16). OsSPL16 is believed to influence the
cell cycle machinery and contribute to organ size, and thus, a
decrease in its expression causes development of slender
grains, much is in demand, compared with the cultivar
showing a high expression of the gene (Wang et al., 2012).
A point mutation in TGW6 (Thousand grain weight 6) in
Nipponbare on the other hand results in a significant increase
in grain weight, measured as thousand grain weight (TGW),
with respect to that in the Indian landrace Kasalath harboring
the active TGW gene (Ishimaru et al., 2013). Moreover, it was
found that TGW6 encodes indole-3-acetic acid (IAA)-glucose
hydrolase that hydrolyses IAA-glucose to release IAA
(Ishimaru et al., 2013), and thus, a greater thousand grain
weight in Nipponbare than in Kasalath is linked to the
regulation and management of IAA level.

The size of the grain in rice is also regulated by changes in the
hull size, as revealed by a few mutation studies. One among them
is mutation in GW2 (Grain width 2) that encodes E3 ubiquitin
ligase (Song et al., 2007). The gene catalyzes ubiquitination of
expansin-like 1 (EXPLA1), a cell wall-loosening protein (Choi
et al., 2018). Mutation causes loss of its functions, resulting in an
increased cell number in the hull and consequently leading to the
formation of a wider hull that allows enhanced filling of the grain
milk resulting in the development of heavier grains compared
with the wild type (Song et al., 2007). Similarly, mutation in BG1
(Big grian 1), encoding a hypothetical protein, caused by T-DNA
insertion in the promoter region of the gene results in a 10-fold
increase in its expression that increases the size of the hull as well,
leading to an increase in the grain size (Liu et al., 2015).
Furthermore, map-based cloning revealed that Nipponbare
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carries 1212-bp deletion in the region of qGW5 (QTL for the seed
width on chromosome 5) identified in Kasalath that shows a
lesser grain width than Nipponbare (Shomura et al., 2008).
Through the complementation test, it was found that the
1212-bp deleted region in Nipponbare was associated with its
greater grain width than Kasalath (Shomura et al., 2008). It was
also found that the greater grain width of Nipponbare was
associated with a greater number of the cells in its outer
glume compared with that of Kasalath (Shomura et al., 2008),
suggesting the size of the hull to be a determinant of size of the
rice grain.

The importance of hull size in determining the grain width
is also reflected from the identification of two more QTLs,
namely, GW6 (Grain width 6) on the short arm of
chromosome 6 (Shi et al., 2020) and GLW7 (Grain length
and weight on chromosome 7) (Si et al., 2016). The QTL GW6
harbored five genes, but the promoter of one of them carried
four SNPs and one 3-bp (CCT) insertion in the 1-kb region.
This mutation was found in the large-grain variety Nan-Yang-
Zhan (NYZ) but not in the small-grain variety Hua-Jing-Xian
74 (HJX74), and thus, the concerned gene was called as the
candidate gene and referred to as GW6 (Shi et al., 2020). The
cross section of the hull showed a larger outer parenchymal
cell size in NYZ than in HJX74 without any difference in the
cell number. Several cell expansion-related genes also showed
significantly higher expression in the panicle of NYZ
compared with HJX74, indicating cell expansion to play an
important role in increasing the hull size and so also the grain
width (Shi et al., 2020). GLW7 was identified by GWAS
involving 381 japonica varieties of varying grain weights
and lengths (Si et al., 2016). GLW7 harbored 11 genes, but
the expression of only one, identified as OsSPL13, differed
significantly between the small grain and large grain varieties,
with the latter showing greater expression than the former,
and hence referred to as the candidate gene. The differential
expression was a result of a tandem repeat polymorphism in
the promoter region of the gene. Furthermore, it was found
that the cell density per millimeter in the lemma was
significantly higher in glw7 and the wild-type Dongjing
plants (a small seed variety) compared with the Dongjing
transgenic lines transformed with the 8-kb genomic sequence
of OsSPL13 from the large grain variety. The opposite was the
case for the cell size. These findings strongly suggested that the
increase in the grain length and weight associated with GLW7
was a result of cell expansion rather than any increase in the
cell numbers (Si et al., 2016). In addition, the mutation study
also ascertains a significant influence of the hull cell length
and width on the grain length and width, as was observed in
the wtg1 (wide and thick grain 1) rice mutant obtained by
gamma ray irradiation (Huang et al., 2017). The mutant
produced a wide, thick, and short grain concomitant
having shorter and wider cells in the outer epidermis and
inner epidermis compared with the wild type (Huang et al.,
2017).WTG1 was found to encode an otubain domain protein
(OTUB1) with deubiquitination activity and could be
targeting the cell expansion factors, such as SPL13 and GS2
(Huang et al., 2017).

GRAIN FILLING BIOCHEMISTRY

The grain filling in rice, or the cereals in general, is a process of
systematic deposition of starch in the triploid endosperm cells
forming the edible grains. Sucrose from the phloem entering into
the endosperm cells is catabolized primarily to uridine diphosphate-
glucose (UDP-G) by sucrose synthase (SUS) using its preferred
nucleotide UDP (Figure 4). Adenosine diphosphate-glucose (ADP-
G) may also be formed utilizing the less preferred substrate ADP.
SUS is a very important enzyme of the starch synthesis pathway as
the inhibition in expression of its gene by RNAi leads to reduction in
starch accumulation to the extent of 40% (Chourey and Nelson,
1976). The overexpression of SUS on the other hand increases the
accumulation of sucrose significantly (Li J. et al., 2013). UDP-G
synthesized is converted first to glucose-1-phosphate (G1P) and then
to ADP-G by the action of UDPG-pyrophosphorylase and ADPG-
pyrophosphorylase, respectively. Thus, ADPG-pyrophosphorylase,
encoded by GIEF2 (Grain incomplete filling 2), plays a crucial role in
starch biosynthesis, leading to grain filling, as the further progress in
the synthesis of starch depends on the cellular level of ADP-G (Wei
et al., 2017). Adenosine triphosphate (ATP) required for driving the
second reaction is met from the cytoplasm through the ATP/ADP
translocator (Bahaji et al., 2014). ADP-G is joined together by the
∝-1, 4-glucosidic linkage step by step by granule-bound starch
synthase (GBSS), leading to the formation of the linear chain of
∝-1,4-polyglucan. Starch-branching enzymes (SBEs) cleave the
∝-1,4-glucosidic linkage and reattach the cleaved fragment with
the reducing end to C6 hydroxyl of the glucose moiety of another
∝-1,4-polyglucan chain, creating a branch chain structure, referred
to as amylopectin. The elongation of the ∝-1,4-polyglucan in
amylopectin is ensured by soluble starch synthase (SS) that adds
up the glucosemoiety in the∝-1,4-polyglucan in a fashion similar to
GBSS. GBSS elongates only the non-branched ∝-1,4-polyglucans,
referred to as amylose. SS and SBEs act in concert to ensure the
growth of amylopectin. The starch-debranching enzymes (DBEs),
namely, pullalanase and isoamylase, cleave the growing amylopectin
to reduce the branching and give a proper shape to the starch crystals
being formed. The action of DBEs provides the required
hydrophobicity and crystallinity to the starch getting deposited in
terms of the edible quality, gelatinization temperature, and cooking
time (Fitzgerald et al., 2008).

REGULATION OF GRAIN FILLING AND
PANICLE MORPHOLOGY

Grain filling is a post-fertilization phenomenon. In cereals,
primarily it involves development of the triploid endosperm
cell formed after the fusion of the central cell with the polar
nucleus. The development of the endosperm and embryo goes
hand in hand, and the entire ovary develops in caryopsis that
matures into a grain. During the course of the development of
caryopsis, the endosperm cell divides and redivides and gets filled
primarily with starch, referred to as grain filling. The
development of spikelets and the panicle as a whole, on the
other hand, is a pre-fertilization phenomenon. Both grain filling
and panicle development are regulated at the biochemical and
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molecular levels at several steps, each step being independent of
others.

Endosperm Cell Division and
Endoreduplication
The first level of control of grain filling occurs at the level of the
endosperm cell division. In an ideal situation, the endosperm cell
division rate is at peak from 6 to 9 days after fertilization (DAF)
and generally ceases after 18 DAF (Panda et al., 2009; Sahu et al.,
2021) (Figure 5). It has been reported that the greater and quicker
the cell division, the higher is the grain filling in rice (Sahu et al.,
2021). The cell division is largely regulated by the cell cycle
regulators, and in this context, it has been reported that a slow
rate of cell division is linked to a poor expression of CycB;1 and
CycH;1 (Sahu et al., 2021). Besides, a high expression of KRP;1
and KRP;4 also suppresses the cell division in the endosperm
(Sahu et al., 2021). The inhibitory effect of KRP on endosperm
cell division is also evident from the fact that overexpression of
KRP decreases cell division (De Veylder et al., 2001; Jasinski et al.,
2002; Mizutani et al., 2010).

Post cellularization of the endosperm and completion of the
endosperm cell division, the grain filling is also affected by the
level of endoreduplication of the endosperm nuclei.
Endoreduplication is a result of sequential and alternate
completion of the G- and S-phases of the endosperm cells, but
without entering into G2/M transition and karyokinesis, which
results in the repeated synthesis of chromatids without their
segregation. Endoreduplication thus increases the ploidy status of
the endosperm cells, providing a platform for enhanced

expression of the genes required for the purpose of grain
filling. Studies have shown a positive relationship between
endoreduplication and grain filling in rice (Panda et al., 2016a;
Sahu et al., 2021) (Figure 6).

Transcriptional Regulation
The next level of regulation of grain filling occurs through the
regulation of expression of the starch-biosynthesizing enzymes by
transcription factors. The earliest report in this regard is the
regulation of expression of the Wx gene (GBSS1) by two
transcription factors, MYC protein (OsBP-5) and an ethylene-
responsive element binding protein (EREBP), OsEBP89. Both
bind at the 31-bp sequence ranging from -840 to -810 bases (Yao
et al., 1996; Zhu et al., 2003). Within the 31-bp sequence, OsBP-5
binds to the sequence CAACGTG and OsEBP89 binds to the
adjacent sequence GCCAAC, and their interaction drives the
expression of the gene (Zhu et al., 2003). The expression of the
Wx gene is also influenced by an NAC transcription factor asWx
co-expresses with NAC26 (Wang et al., 2019). A moderate soil
drying condition increases the expression of both the genes
significantly with a concomitant increase in the individual
grain weight of the inferior spikelets (Wang et al., 2019).
Moreover, NAC26 has been shown to interact directly with
the promoter of the Wx gene (Wang et al., 2019), suggesting
direct involvement of the transcription factor in the grain filling
process in rice. In addition, NAC has also been indicated to play a
key role in activating the expressions of the starch-synthesizing
genes in general under moderate soil drying conditions (Wang
et al., 2020a), although the details of the mechanism involved are
not known. Unlike NAC, the transcription factor OsbZIP58

FIGURE 4 | Schematic presentation of starch synthesis from sucrose, the end product of photosynthesis, in the rice grain. Sucrose unloaded from the phloem
enters the endosperm cells via the plasmodesmata or through the apoplast with the help of the sucrose transporter. The reactions leading to the synthesis of starch are
described in the text. Suc, sucrose; SUS, sucrose synthase; UDP-G, uridine diphosphate glucose; UGPase, UDPG-pyrophosphorylase; AGPase, ADPG-
pyrophosphorylase; sol SS, soluble starch synthase; GBSS, granule-bound starch synthase.
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(basic leucin zipper 58) is known to directly regulate the
expression of as many as six starch synthesis pathway genes,
including Wx, OsSSIIa, SBEI, OsBEIIb, OsAGPL3, and ISA2 by
binding with the ACGT element in their promoter (Wang et al.,
2013). Since the promoter of theWx gene contains as many as 16
ACGT elements, its expression is most affected by OsbZIP58
(Wang et al., 2013).

Furthermore, co-expression analysis has revealed that the
protein rice starch regulator1 (RSR1), an APETALA2/EREBP
family transcription factor, negatively regulates the expression of
many type I starch-synthesizing genes, including that of OsSS
(starch synthase), OsBE (starch-branching enzyme), OsGBSS
(granule-bound starch synthase), OsISA (starch-debranching
enzyme: isoamylase), OsAGPL (ADP-glucose
pyrophosphorylase large subunit), OsAGPS (ADP-glucose
pyrophosphorylase small subunit), and OsPHOL (starch
phosphorylase L) (Fu and Xue, 2010). Besides, RSR1 has also
been found to regulate the expression of GBSS1 in rice caryopses
(Sekhar et al., 2015a). However, the mechanism underlying
downregulation of expression of the starch-synthesizing genes
by RSR1 is not yet understood.

Unlike RSR1, two important transcription factors, the rice
prolamin-box binding factor (RPBF), which is a DOF (DNA
binding with one finger) family transcription factor, and a basic

leucine zipper transcription factor, RISBZ1, positively regulate the
expression of the type I starch-biosynthesizing enzymes
(Kawakatsu et al., 2009; Fu and Xue 2010; Schmidt et al.,
2014). RPBF and RISBZ1 in fact act synergistically to
modulate the expression of the starch-synthesizing genes, as is
seen by their overexpression; the two transcription factors
overexpressed together in a plant produced greater expression
of starch-biosynthesizing enzymes compared with the sum total
of the expression produced by their individual overexpression
(Yamamoto et al., 2006).

Grain filling and seed development in rice are affected not only
by the activities of the starch-biosynthesising enzymes but also by
the factors that determine the size and shape of lemma and palea,
the hull. It has been seen that the atypical basic helix-loop-helix
(bHLH) gene (Os03g0171300) having no DNA binding domain
expresses in a high amount in the hull (Heang and Sassa, 2012a).
The overexpression of the atypical bHLH leads to an increase in
length and weight of the rice grain, and hence, it is named Positve
regulator of grain length 1 (PGL1) (Heang and Sassa, 2012a).
Subsequently, another atypical bHLH (Os02g0747900) was
functionally characterized and named PGL2 (Heang and Sassa,
2012b). It is known that atypical bHLH proteins act as inhibitors
of typical bHLH proteins that function as transcription factors
since these have a DNA-binding domain as well along with the

FIGURE 5 | Spatio-temporal depiction of the rate of endosperm cell division in two lax-panicle rice cultivars, Upahar and Lalat, and two compact-panicle rice
cultivars, Mahalaxmi and OR-1918. The peak of the endosperm cell division rate in the apical spikelets reaches earlier in the lax-panicle cultivars compared with compact-
panicle cultivars, and in the basal spikelets, the arrival of the peak is delayed greatly in the compact-panicle cultivars compared with the lax-panicle cultivars. The
cessation of the endosperm cell division in the basal spikelets of the compact-panicle cultivars is also delayed greatly, almost 3 days, when compared with that of
the lax-panicle cultivars, leading to poor grain filling in the former. Reproduced with the permission of the author (Sahu et al., 2021).
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helix-loop-helix region (Toledo-Ortiz et al., 2003). The inhibition
occurs through heterodimer formation. The interacting partner
of PGL1 and PGL2 was identified and named APG (antagonist of
PGL1/2) (Heang and Sassa, 2012a; Heang and Sassa, 2012b). As

the overexpression of PGL1/PGL2 led to an increase in length and
width of the rice grains, APG was considered as a negative
regulator of rice grain length and width. This was proved by
generating knockdown of APG by RNAi that showed the

FIGURE 6 | Ploidy status of the endosperm nuclei in the developing caryopses of the apical and basal spikelets during the mid-grain filling stages (12 and 15 days
after fertilization, DAF) in a lax-panicle cultivar, Upahar, and a compact-panicle cultivar, Mahalaxmi. The gates P2 and P3 represent the ploidy statuses 3C and >3C,
respectively. The ploidy statuses of both apical and basal spikelets in Upahar are more or less similar, whereas they differ greatly in Mahalaxmi with the basal spikelet
showing amuch lesser number of the endosperm nuclei having the ploidy status of >3C compared with that of the apical spikelets. Reproduced with the permission
of the author (Sahu et al., 2021).

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 87619812

Parida et al. Regulation of Rice Grain Filling

209

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


formation of longer grains than the wild type (Heang and Sassa,
2012a; Heang and Sassa, 2012b). Furthermore, it was observed
that the formation of the longer grain in the transgenic plants was
associated with an increase in length of the inner epidermal layer
cells, indicating the size of the hull as an important determinant of
the size of grains. However, the information on the expression of
the genes influenced by APG is scant.

Three plant-specific transcription factors, namely, OsSPL13,
OsSPL14, and OsSPL16, have also been observed to play diverse
roles in determining the panicle morphology, without influencing
the grain filling biochemistry. OsSPL13 is encoded byGW7, and it
promotes cell expansion in the grain hull and positively regulates
the grain length and yield. OsSPL16 encoded by GW8 on the
other hand functions as a repressor of expression of GW7 that
encodes OsSPL13. Thus, the control of grain length is linked to
expression of both OsSPL13 and OsSPL16. The function of
OsSPL14 that encodes OsSPL14 is, however, not linked to the
grain trait. Rather, it controls the panicle branching and the
number of grains per panicle, the mechanistic details of which are
yet to be known. The involvement of OsSPL14 in determining
panicle morphology is also indicated from the overexpression of
miR164b-resistant NAC2, which leads to a better plant
architecture with longer panicles and more grains compared
with the non-transformed plant concomitant with
upregulation of IPA1 (Jiang et al., 2018). Overexpression of
NAC2 also leads to upregulation of DEP1, which also plays an
important role in determining the panicle morphology in rice
(Jiang et al., 2018).

Another plant-specific transcription factor is OsGRF4
(Growth-Regulating Factor 4), encoded by LGS1 and GS2,
which unlike OsSPL13 and OsSPL14 regulates both grain
length and width (Hu et al., 2015; Chen et al., 2019). OsGRF4
interacts with the transcriptional co-activator OsGIF1 (GRF-
interacting factor 1) (Li et al., 2016). As GIF1 has been
reported to participate in the control of cell proliferation
during leaf development (Kim and Kende, 2004), the
interaction of OsGRF4 and GIF1 seems to be an important
aspect of regulation of grain length and width in rice. The
view is strengthened from the fact that the transgenic rice
overexpressing OsGIF1 produced larger and heavier grains
than the wild type (Li et al., 2016).

Post-Translational Regulation
Regulation of grain filling at the post-translational level has been
reported first through the 14-3-3 protein interaction. The first line
of evidence to this is the presence of 14-3-3 protein associated
with the starch granules (Sehnke et al., 2000; Sehnke et al., 2001).
Besides, SSIII family proteins have been found to carry the
consensus motif for 14-3-3 binding. Furthermore, pull-down
experiments considering His-tagged SS, SUS2, and AGPS show
clear interactions with the GST-GF14f recombinant protein
(Zhang Z. et al., 2019). A comparative study considering
superior and inferior spikelets showing good and poor grain
filling, respectively, shows that poor grain filling is associated with
a greater expression of the 14-3-3 protein (You et al., 2017; Zhang
Z. et al., 2019). The evidence for a negative role of the 14-3-3
protein in grain filling also stems from an RNAi study in which

GF14f-RNAi plants showing reduction in expression of the 14-3-
3 protein also showed a significant increase in grain weight and
length (Zhang Z. et al., 2019). As opposed to the interaction of the
14-3-3 protein with the starch-biosynthesizing enzymes limiting
grain filling, a major QTL, GFR1 (Grain filling rate 1), has been
mapped on the long arm of chromosome 10 that influences the
grain filling by regulating the grain filling rate (Liu E et al., 2019).
The candidate gene for GFR1 was identified to encode the
DUF461 domain protein of unknown functions that interacts
with the Rubisco small subunit, leading to an increase in the grain
filling rate, the mechanism of which is not yet clear (Liu M et al.,
2019). However, it is known that Rubisco is an important enzyme
determining the rate of carbon assimilation during
photosynthesis, and thus, the interaction of the GFR1 product
with the enzyme might be increasing its carbon assimilation
efficiency and the grain filling rate per se.

Post-Transcriptional Regulation
Evidence From Differential Expression Studies
Post-transcriptional regulation of grain filling occurs through the
action of miRNAs, which is reflected from several direct and
circumstantial pieces of evidence. The circumstantial pieces of
evidence of the regulatory role of miRNAs were initially reflected
from their differential expressions in the caryopses during
different stages of the grain development. Such differential
expressions influenced the transcript abundance of MYB,
MADS-box, GRF, ARF, and the Brassinosteroid insensitive 1-
associated receptor kinase 1 precursor (BAK1), regulating
various aspects of grain filling and development (Zhu et al.,
2008; Xue et al., 2009; Peng et al., 2013; Yi et al., 2013). Later
on, the differential expressions of miRNAs in the spikelets based
on their spatial locations have also been studied in order to throw
light on the possible influence of miRNAs in differential grain
filling in the superior and inferior spikelets of compact and heavy
panicles (Peng et al., 2011; Peng et al., 2014; Chandra et al., 2021;
Panigrahi et al., 2021; Teng et al., 2021). These studies revealed
that several miRNAs, including miR164/miR167, miR159,
miR1861, and miR396h targeting auxin-responsive factor
ARF8, MYB, beta-amylase, and auxin efflux carrier protein,
respectively, were expressed higher in the poorly filled inferior
spikelets compared with the well-filled superior spikelets,
indicating negative regulatory role of these miRNAs in grain
filling. It has also been shown that the miRNAs may regulate the
grain filling positively as well. For example, miR819a in rice
spikelets correlates positively with grain filling (Peng et al., 2011),
and the loss of function of its target, an E3 ubiquitin ligase,
accelerates the grain filling (Song et al., 2007), although the nature
of the role of the protein in grain filling is yet to be known.
Similarly, miR812f/miR812j also seems to have a positive
regulatory role in grain filling, expressing more in the spikelets
that are filled well and less in those filled poorly (Song et al., 2007).
The target prediction revealed that the miRNA cleaves 1-
aminocyclopropane-1-carboxylate oxidase (ACO), the enzyme
that catalyzes the final step of ethylene biosynthesis. The finding
fits well with the observation that the poorly filled spikelets
produce more ethylene than the well-filled spikelets (Panda
et al., 2015; Sekhar et al., 2015a; 2015b).
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Chandra et al. (2021) reported six miRNAs, including osa-
miR444e, osa-miR156c, osa-miR2118o, osa-miR12477, osa-
miR1861, and osa-miR1436, that expressed significantly more
in the poorly filled spikelets than that in the well-filled spikelets
and emphasized that the poor filling of the grains could be linked
to the cleavage of 1) the MADS-box transcription factor (the
target of osa-miR444e) that plays an important role in seed
development (Liu E et al., 2019), 2) SPL19 (the target of osa-
miR156c), an isoform of which (SPL16) controls grain size (Wang
et al., 2012), 3) pullalanase (the target of osa-miR2118o), a starch-
debranching enzyme responsible for the proper crystalline
structure of the starch molecules, 4) SS1 (the target of osa-
miR12477 and osa-miR1436), which is involved in the
extension of the ∝-1,4-polyglucan chain of the amylopectin,
and 5) ARF8 (the target of osa-miR164 and -miR167), which
is possibly involved in rice grain filling by maintaining the cellular
IAA level (Peng et al., 2014). The important regulatory role of
miRNAs in grain filling is also reflected from differential miRNA
expression in the Nipponbare rice variety in which moderate soil
drying conditions (MD) improve grain filling in the otherwise
poorly filled inferior spikelets (Teng et al., 2021). The
improvement in grain filling in the inferior spikelets under
MD accompanied significant upregulation of miR1861 and
miR397, leading to a decrease in the transcript abundance of
OsSBDCP1 (encoding repressor of starch synthase IIIa) and
OsLAC (Laccase), the negative regulators of SSIIIa expression
and BR signaling, respectively, essential for grain filling (Teng
et al., 2021). In contrast, the expression of miR1432 was
downregulated in the inferior spikelets, resulting in
upregulation of OsACOT (acyl-CoA thioesterase), consequently
elevating the level of abscisic acid (ABA) and IAA, both playing a
positive role in grain filling (Teng et al., 2021). The negative
regulatory role of miR1432 in grain filling is also indicated from
its higher expression in the poorly filled inferior spikelets
compared with the well-filled superior spikelets of the compact
panicle Mahalaxmi (Chandra et al., 2021).

Evidence From Developing Genetically Modified
Plants
In somewhat direct evidence of miRNAs in grain filling, it has
been found that the overexpression of osa-miR397 leads to an
increase in seed size as a result of an increase in brassinosteroid
signaling caused by downregulation of the LAC (Laccase) gene,
the target of the miRNA (Zhang et al., 2013). The transgenic rice
overexpressing OsLAC produced smaller grains than the wild
type (Zhang et al., 2013), suggesting that OsLAC negatively
influences grain size, in confirmation with the positive
regulatory role of miR397 (Teng et al., 2021). However, the
molecular mechanism as to how LAC regulates brassinosteroid
signaling is yet to be known. In contrast to the LAC gene,
enhanced expression of the Growth-Regulating Factor 4
(OsGRF4) leads to an increase in the grain size, both length
and width, and the locus is kept under suppressed conditions by
the action of osa-miR396c (Hu et al., 2015; Li et al., 2016).
Another miRNA that negatively regulates grain size is osa-
miR1432 that targets OsACOT. Transgenic experiments have
also revealed that the downregulation of expression of osa-

miR1432 increases the seed size significantly, while its
overexpression decreases the seed size and the seed
development (Zhao et al., 2019). The increase in the grain size
was found to be because of an increase in the grain filling rate,
probably because of an increase in the IAA and ABA levels as the
miR1432-defective mutant and the OXmACOT plant whose
miR1432 target site was mutated showed increased
accumulation of both the hormones (Zhao et al., 2019).
OsACOT encodes thioesterase protein, which is an enzyme
that hydrolyses Acyl-CoA liberating free fatty acid. It was
postulated that the downregulation of osa-miR1432 might be
increasing the cellular free fatty acid, leading to an increase in the
fluidity of the membrane favoring transport of auxins into the
endosperm cells that might be promoting the grain filling (Liu
et al., 2016; Zhao et al., 2019). In a similar but somewhat indirect
relationship between miRNA expression and grain quality, it has
been observed that the overexpression of miR1848 reduces the
grain length compared with the wild type (Xia et al., 2015).
Further study revealed that miR1848 targets OsCYP51G3
encoding obtosifoliol 1,4-α-demethylase, which could be
governing the transcript levels of GS3 and GS5 through
brassinosteroid homeostasis (Xia et al., 2015), discussed above.

MiRNAs not only influence the grains trait but also the panicle
morphology, including panicle branching and grain numbers.
This is evident from the fact that the transgenic rice
overexpressing osa-miR156b and -miR156h, which target
several OsSPL genes, shows significant reduction in panicle
size concomitant with delay in flowering (Xie et al., 2006).
Subsequently, it was found that the WFP (Wealthy farmer’s
panicle) locus in rice encoding OsSPL14 carries a point
mutation that abolishes the binding site to osa-miR156a, and
the mutation is associated with increased panicle branching and
grain yield in rice (Jiao et al., 2010; Miura et al., 2010). Besides,
miR156, miR529, and miR535 also target OsOSPL14 but at
slightly shifted binding sites (Peng et al., 2019). The evidence
of cleavage ofOsSPL14 by the twomiRNAs comes from the plants
overexpressing miR529a and miR535. These transgenic plants
show smaller panicles with lesser grain numbers compared with
the non-transformed plants (Wang L. et al., 2015; Sun et al.,
2019). Furthermore, through the generation of miR529a
overexpressing (miR529a-OE) and miR529a target mimicry
(miR529a-MIMIC) transgenic plants, it has been seen that the
miRNA negatively regulates panicle branching and grain
numbers by altering the expression of five OsSPL genes,
namely, OsSPL2, OsSPL7, OsSPL14, OsSPL16, OsSPL17, and
OsSPL18 (Yan et al., 2021). The presence of the miR164b
target site on NAC2 also keeps the expression of NAC2
suppressed, which in turn keeps the expression of OsSPL14 in
control, finally leading to no ideal plant architecture (Jiang et al.,
2018).

OsGRF6 is another important gene that greatly influences
panicle branches and the number of spikelets, as revealed
from its overexpression (Gao et al., 2015). The loci are kept
under suppressed conditions by the action of osa-miR396b, and
the transgenic plants with reduced expression of miR396b show a
significant increase in yield (Gao et al., 2015). OsGRF6 acts by
directly binding with the promoter of OsARF2 and OsARF7 and
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the auxin-biosynthesis related genes like OsYUCCA (Gao et al.,
2015). With regard to GRF, it has further been discovered that
OsGRF4, OsGRF6, and OsGRF8 are targeted by miR396e and
miR396f, and the mir396ef mutants, generated by knockout of
MIR396ef (MIR396e and MIR396f), showed an increase in grain
size and increased panicle branching, suggesting the negative
regulatory role of these miRNAs in grain development and
panicle morphology (Zhang et al., 2020). Unlike that of
OsGRF, OsUCL8, an uclacyanin (UCL) of the plastocyanin
family, is a negative regulator of panicle branching and grain
number, and in accordance, the overexpression miR408 that
targets the gene results in increased panicle branching and
grain numbers in the transgenic plant compared with the wild
type (Zhang et al., 2017). It has been seen that UCL8 affects
copper homeostasis negatively, leading to a decrease in
plastocyanin abundance required for photosynthesis (Zhang
et al., 2017). However, any relationship between expression of
the gene and panicle morphology is yet to be delineated.

Sometimes, a single miRNA may be involved in regulating the
expression of two genes combined in determining a phenotype as
that of SNB and OsIDS1 determining the inflorescence structure
and panicle morphology (Lee and An, 2012). Both the genes are
targeted by miR172, and overexpression of the miRNA results in
severe defects in the phenotype concomitant with significant
reduced expression of SNB and OsIDS1 (Lee and An, 2012).

Hormonal Control of Grain Filling
Plant hormones play important roles in all aspects of the plant
development, including grain filling, some details for which are
available for auxins, gibberellins, cytokinins, ABA,
brassinosteroids, and ethylene. A large transient increase in
the concentrations of cytokinins (CKs), gibberellins (GAs),
IAA, and ABA observed in the endosperm liquid during grain
development is indicative of their important role in grain filling
(Yang et al., 2000; Eeuwens et al., 1975; Lur and Setter, 1993; Kato
et al., 1993). Several other studies also elaborate important roles of
the plant hormones in grain filling: 1) the levels of CKs and IAA
reach to their maximum values just before the grain filling rate
becomes the maximum and the endosperm cell division rate is at
its peak (Yang et al., 2001), 2) the level of ABA in the endosperm
cells reaches to the maximum level at the mid- and late-mid-grain
filling stage and positively correlates with 14C partitioning,
suggesting that the hormone mobilizes carbon assimilates into
the grain during the grain filling (Yang et al., 2001), 3) application
of CKs at the early stage of grain development increases the
endosperm cell numbers and cell area, much required for efficient
grain filling (Yang et al., 2003; Panda et al., 2018), 4) the rice
spikelets that show good grain filling contain a higher level of CKs
(Figure 3), IAA, and ABA compared to that showing poor grain
filling (Zhang et al., 2009; Panda et al., 2018), and 5) CK increases

FIGURE 7 | Ploidy status (DNA class) of the endosperm nuclei of the
apical and basal spikelets of a compact-panicle rice cultivar, OR-1918,
sampled on the 9 days after fertilization from the control plant and that
sprayed with 6-benzylaminopurine (BAP) during the heading. (A) The
endosperm nuclei ploidy status is much lesser in the caryopses of the basal

(Continued )

FIGURE 7 | spikelet compared with that in the apical spikelets. (B) Upon the
BAP application, the ploidy status of the endosperm nuclei in the basal
spikelets increased significantly. Reproduced with the permission of the
author (Panda et al., 2018).
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the ploidy level of the endosperm cells and improves grain filling
in the otherwise poorly filled basal spikelets in rice (Panda et al.,
2018) (Figure 7).

The maintenance of the level of at least two of the plant
hormones, namely, ABA and cytokinin, in the caryopses by
decreasing their degradation rather than by promoting their
synthesis has also been shown to play important roles in grain
and panicle development. The best known among these is the
prevention of breakdown of cytokinin through the
downregulation of expression of cytokinin oxidase (OsCKX2)
mediated by the loss of function mutation of Gn1a (Ashikari
et al., 2005) and LP (Li M. et al., 2011). It has also been observed
that under moderate soil drying conditions, the individual grain
weight of the inferior spikelets is increased significantly compared
with the well-watered control concomitant with nearly 50%
increase in the level of ABA in the caryopses, and the increase
in the level of ABA accompanied nearly a 5-fold decrease in the
expression of ABA8OX2, an ABA oxidase (Wang et al., 2019).

Several recent studies have given more emphasis to the role of
the plant hormones in carbon resource remobilization from the
straw to the grains rather on the development of the grain per se
in enhancing the rice yield. It has been stressed upon that
remobilization of the carbon reserves from the straw to the
grains is very important in grain filling in rice, and a higher
ABA level in the straw favors this remobilization (Wang et al.,
2020a, 2020b; Wang and Zhang, 2020). Although the mechanistic
details of role of ABA in the carbon resource remobilization are
not known, the level of ABA increased in the straw as much as by
10 times under moderate soil drying conditions that favored grain
filling compared with that under the well-watered control (Wang
et al., 2020b). The increase in the level of ABA accompanied a
significant decrease in the expression of ABA8OX1 and
ABA8OX2, both involved in degradation of the hormone
(Wang et al., 2020a; 2020b). Furthermore, the level of ABA in
the straw has also been related to the grain filling in the inferior
spikelets as the conventional rice in which the grain filling is
proper in the inferior spikelets contains a higher level of ABA in
the straw compared with the super rice that shows poor filling of
grains in the inferior spikelets (Wang et al., 2017).

Similar to ABA, brassinosteroid (BR), which is comparatively
a recent addition in the plant hormones influencing panicle
morphology, also appears to significantly influence grain filling
through remobilization of the carbon resources from the straw to
the grains (Wang et al., 2020b). This is reflected from a significant
increase in the expression of the gene of brassinosteroid receptor
kinase-interacting protein 135 as well as of the protein itself in the
straw during the grain filling stage under the moderate soil drying
conditions that improve grain filling in the inferior spikelets
(Wang et al., 2017; Wang et al., 2020b). However, the functional
significance of expression of this protein in regulation of the
carbon resource remobilization is not yet clear.

Unlike the other plant hormones, ethylene is gaseous in nature
and plays an inhibitory role in grain filling in rice (Sekhar et al.,
2015a, 2015b; Panda et al., 2015; Das et al., 2016; Sahu et al.,
2021). The hormone rapidly produces its effect as it diffuses in
and out of the cells freely. The ethylene signal is perceived by
plants through the endoplasmic membrane-bound receptors,

including ERS1, ERS2, ETR2, ETR3, and ETR4, that contain
the histidine kinase domain, CTR1 (Constitutive Triplet
Response1), at the cytoplasmic side. The presence of ethylene
inhibits the kinase activity of CTR1, leading to detachment of the
C-terminal end (CEND) of the membrane-bound protein EIN2
that is phosphorylated otherwise. The EIN2 C-terminus (CEND)
moves to the nucleus where it regulates the expression of EIN3
and EIL1 (EIN3-like). EIN3 activates the transcription of an
ethylene-responsive element binding protein (EREBP)
transcription factor, ERF1 (ethylene responsive factor1), and
other EREBPs, the products of which in turn interact with the
GCC-box present in the promoter of other ethylene-responsive
genes and regulate their expression (Figure 8).

Although hypothesized, the inhibitory role of ethylene in grain
filling is not understood well and is only reflected from the
circumstantial pieces of evidence, such as the following: 1) the
inferior spikelets of the compact panicle of rice showing poor
grain filling produce more ethylene than the superior spikelets
producing well-filled grains (Panda et al., 2015; Sekhar et al.,
2015a; 2015b; Das et al., 2016); 2) application of ethylene
synthesis inhibitors like cobalt nitrate on the panicle at the
initiation of heading significantly increases the grain filling in
the inferior spikelets of the compact panicle (Mohapatra et al.,
2000); 3) application of CEPA (2-chloroethylphosphonic acid),
an ethylene-releasing compound, on the panicle at heading
reduces the grain filling in the spikelets (Naik and Mohapatra,
2000); 4) application of 1-MCP, a blocker of ethylene receptors,
on the panicle during heading leads to a significant increase in
grain filling in the inferior spikelets producing a significantly
higher amount of ethylene compared with the superior spikelets
(Panda et al., 2016a; Zhang et al., 2015); 5) the spikelets of the
compact-panicle cultivars, particularly the inferior ones showing
poor grain filling, show higher expression of the ethylene
receptors than that of the open-panicle cultivars, indicating
that the response to ethylene is greater in the former than in
the latter and hence the poor grain filling (Sekhar et al., 2015a);
and 6) overexpression of ETR2 results in reduced seed setting and
a decrease in the thousand grain weight, whereas knockdown of
the receptor by RNAi results in an increase in the thousand grain
weight (Wuriyanghan et al., 2009). In addition, it has been seen
that the compact panicle showing poor grain filling shows a
greater expression of the downstream ethylene signaling
components, such as ERF2, ERF3, and EREBP5, compared
with the lax panicle showing good grain filling (Sekhar et al.,
2015a). Moreover, in the compact panicle, the expression of RSR1
(rice starch regulator1), an APETALA2/EREBP family
transcription factor that shows a negative relationship with the
expression of GBSS1, is higher in the inferior spikelets showing
poor grain filling compared with the superior spikelets showing
good grain filling (Sekhar et al., 2015a; Panda et al., 2016b).
Overall, the inhibitory role of ethylene in grain filling in rice is
well documented (Figure 9). In addition, the inhibitory role of the
ethylene in grain filling can be perceived from the fact that CN− is
formed as a byproduct during ethylene biosynthesis (Machingura
et al., 2016), and it is well known that cyanide is a potent inhibitor
of mitochondrial electron transport (Solomonson, 1981). The
inhibitory role of ethylene on the mitochondrial electron
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transport is reflected from a comparative analysis of the JC-1
fluorescence signal from caryopsis of the inferior and superior
spikelets of a compact panicle, with the former showing lesser JC-
1 staining than the latter (Sekhar et al., 2015b). A lower JC-1
staining is suggestive of inhibition of the mitochondrial electron
transport, and thus a poor generation of ATP, in the inferior
spikelets compared with the superior ones showing intense JC-1
staining (Sekhar et al., 2015b). Since starch synthesis is an ATP-
consuming process, its synthesis is likely to be inhibited in the
inferior spikelets in which the mitochondrial electron transport is
inhibited (Sekhar et al., 2015b).

CONCLUSION AND PERSPECTIVES

It is well recognized that rice is a staple crop and its production
must increase with the increase in the population of the world.
The undergoing research studies the world over focusing on
increasing the rice yield have also raised concern, which the

scientific community has on near stagnation of the rice
production during the past decade (https://www.statista.com/
statistics/271972/world-husked-rice-production-volume-since-
2008/). So far, the green revolution in rice production the world
has experienced is only through breeding and advanced
agricultural practices. The two modern pillars of applied
research, molecular biology and biotechnology, have so far
contributed little in increasing the rice yield, despite our
current in-depth understanding on the biochemistry,
molecular biology, and genetics of the yield characteristics in
rice. An important phenomenon related to grain filling that has
been discovered is the positive correlation between grain filling
and the inter-spikelet distance, that is, the grain filling is poor,
particularly in the basal spikelets, when the panicle is compact
bearing numerous spikelets (Sahu et al., 2021). Although the
spikelet thinning treatment of heavy panicles confirms that all the
spikelets, including the poorly filled inferior ones, are genetically
competent to develop into well-filled grains (Kato, 2004; You
et al., 2016), it does not provide any information on if the poor

FIGURE 8 | Cartoon showing the molecular mechanism of ethylene action. The histidine kinase domain of CTR1 (constitutive triplet response1) of the ethylene
receptors (ERS1, ERS2, ETR2, ETR3, ETR4) keeps on phosphorylating the CEND (C-terminal end) of the membrane bond protein EIN2 (ethylene insensitive2). This
follows its recognition by the F-box proteins ETP1/2 (EIN2 targeting protein1/2) for ubiquitination by the SCF (Skp1-Culin-F-box) E3 ligase complex that additionally
contains RBX, a RING box protein, and the E2 ubiquitin-conjugating enzyme and degradation of the ubiquitinated protein by the 26S proteosome system. Upon
binding of ethylene to the receptors, the CTR1 kinase activity is inhibited, and the CEND gets detached and moves to the nucleus where it blocks the ubiquitination of
EIN3 (ethylene insensitive3)/EIL1 (ethylene insensitive3 like1), preventing its 26S proteosomal degradation. Accumulation of EIN3 promotes it to bind to the EBS (Ein3/
EIL1-binding site) in the promoter of the ethylene responsive factor1 (ERF1) and other ethylene-responsive element binding proteins (EREBPs) to drive their expression.
ERF1/EREBPs in turns bind to the GCC-box in the promoter of the ethylene-responsive genes, leading to ethylene response. In the absence of EIN2 in the nucleus, EIN3
is recognized by the F-Box proteins EBF1/2 (EIN3-binding F-Box Protein1/2) for ubiquitination through the SCF (Skp1-Culin-F-box) E3 ligase complex, followed by its
degradation by the 26S proteosome. Adapted from Ji and Guo (2013).
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grain filling was related to a low inter-spikelet distance. The
discovery that the panicle branching is greatly regulated by the
genes like Gn1a, APO1, LOG, DEP1, RNC1, RNC2, and so forth,
nevertheless, does indicate genetic control on the inter-spikelet
distance. Hence, it is perceivable that the inter-spikelet distance is
genetically controlled. If so, the identification of such gene(s)
would provide the researchers a chance to manipulate the inter-
spikelet distance through biotechnological interventions, and
hence, it might be possible to convert a compact panicle into
an open architecture without altering the number of spikelets
borne on them. Considering the fact that an inter-spikelet
distance greater than 0.5 cm favors grain filling, converting a
compact panicle into an open architecture should certainly lead
to improvement in grain filling. In such a case, it is highly possible
that the production of rice could be increased by as much as 30%
as in a compact panicle, more than 30% of the spikelets remain
unfilled. Thus, it would be possible to achieve the production
target set for the year 2050. Working on the hypothesis, breeding

is in progress in our lab for identification of the QTLs for panicle
compactness. It is also possible to increase the production of the
crop by taking a targeted molecular biology approach to increase
the grain size and weight as currently, our knowledge on the genes
regulating these traits is also sufficiently enough for such an
attempt. However, although such an approach may lead to an
increase in rice production, it would be of limited implication as
the demand of rice is greatly dependent on its quality, which
might be compromised. On the other hand, if rice production is
increased by increasing grain filling in the heavy and compact-
panicle cultivars producing grains of desired quality, it would be
possible to achieve both the quality and the production target. In
this regard, the discovery of a positive relationship between the
levels of ABA and BRs in the straw and the carbon resource
remobilization from the straw to the grains leading to
improvement of grain filling in the inferior spikelets (Wang
et al., 2020a; 2020b) is of immense significance. On this basis,
genetic manipulation leading to an increase in the synthesis of the

FIGURE 9 | Pictorial presentation of ethylene biosynthesis and ethylene action. Ethylene is synthesized from methionine by the action of ACC synthase that forms
ACC (1-aminocyclopropane-1-carbooxylic acid), which is catalyzed by ACC oxidase (ACO) to yield ethylene and HCN as the byproduct. Methionine is regenerated via
the Yang cycle. Ethylene action leads to the synthesis of Rice Starch Regulator1 (RSR1), which reportedly inhibits the expression of the type I starch-biosynthesizing
enzymes, leading to inhibition of starch biosynthesis and poor grain filling. Inhibition of ethylene synthesis by AVG (2-aminoethoxyvinyl glycine), AOA (2-
aminoooxyacetic acid), AIB (aminoisobutyric acid), Co2+, and the miRNAs miR812f/j and blocking of the ethylene action by the use of ethylene receptor blockers like 1-
MCP (1-methylcyclopropene), Ag+, and NBD (2,5-norbornadiene) lead to no ethylene action resulting in proper filling of the grain. MTA, methylthioadenine; Ado-Met,
adinosyl-methionine; ERS, ETR, ethylene receptors; AC, apical caryopses; BC, basal caryopses.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 87619818

Parida et al. Regulation of Rice Grain Filling

215

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


hormones in the straw, particularly during the grain filling stage,
could increase the rice yield significantly. To achieve this, the
enzymes acting as the rate-limiting step in the synthesis of these
hormones may be identified and their genes may be
overexpressed using the promoters that become active in the
straw during the grain filling period.

The modern biotechnological intervention techniques can also
be utilized in many other ways for increasing the rice production.
First, as the expressions of the starch-biosynthesizing enzymes
have been noted to be significantly less in the poorly filled inferior
spikelets (Panda et al., 2015), their overexpression, particularly of
SUS, using a seed-specific promoter could be of much help in
increasing the grain filling of these spikelets and the rice
production per se. Second, increasing scavenging of the CN−

formed during ethylene biosynthesis by seed-specific
overexpression of β-CAS, the scavenger of CN−, may improve
the grain filling significantly as CN− is a potent inhibitor of
enzyme activity. Work on this line is also in progress in our lab.
Third, and most importantly, since ethylene biosynthesis is
supposedly the root cause of inhibition of grain filling, genetic
manipulation may be considered in reducing the ethylene
biosynthesis itself for improvement in grain filling. One way of
approaching a solution to the problem would be the spikelet/
seed-specific RNAi-mediated silencing of ACO catalyzing the
final and crucial step of ethylene biosynthesis. Besides, the
synthesis of ethylene can also be reduced by spikelet/seed-
specific overexpression of miR812f,j that targets the product of
ACO. The spikelet/seed-specific inhibition of ethylene
biosynthesis would not only lead to a decrease in
accumulation of the toxic CN− but also lessen the level of
ethylene signaling components, such as RSR1, believed to
inhibit the expression of the type I starch-biosynthesizing
enzyme. Keeping in view the stagnation of rice production

since the past decade and inability of the breeders to improve
the rice yield further substantially, biotechnological intervention
is probably the only way left out in increasing the rice yield
further to achieve the production target by the year 2050.
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QTL Mapping of Adult Plant
Resistance to Stripe Rust in a Doubled
Haploid Wheat Population
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Rust Research Center (RCRRC), Izmir, Turkey, 5International Maize and Wheat Improvement Center (IWWIP-Turkey), Ankara,
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Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici. is a major bread wheat
disease worldwide with yield losses of up to 100% under severe disease pressure. The
deployment of resistant cultivars with adult plant resistance to the disease provides a long-
term solution to stripe rust of wheat. An advanced line from the International Winter Wheat
Improvement Program (IWWIP) 130675 (Avd/Vee#1//1-27-6275/Cf 1770/3/MV171-C-
17466) showed a high level of adult plant resistance to stripe rust in the field. To identify the
adult plant resistance genes in this elite line, a mapping population of 190 doubled haploid
(DH) lines was developed from a cross between line 130675 and the universal stripe rust-
susceptible variety Avocet S. The DH population was evaluated at precision wheat stripe
rust phenotyping platform, in Izmir during 2019, 2020, and 2021 cropping seasons under
artificial inoculations. Composite interval mapping (CIM) identified two stable QTLs
QYr.rcrrc-3B.1, and QYr.rcrrc-3B.2, which were detected in multiple years. In addition
to these two QTLs, five more QTLs, QYr.rcrrc-1B, QYr.rcrrc-2A, QYr.rcrrc-3A, QYr.rcrrc-
5A, and QYr.rcrrc-7D, were identified, which were specific to the cropping year
(environment). All QTLs were derived from the resistant parent, except QYr.rcrrc-3A.
The significant QTLs explained 3.4–20.6% of the phenotypic variance. SNP markers
flanking theQTL regions can be amenable to marker-assisted selection. The best DH lines
with high yield, end-use quality, and stripe rust resistance can be used for further selection
for improved germplasm. SNP markers flanking the QTL regions can aid in identifying
such lines.

Keywords: QTL mapping, yellow rust, adult plant resistance, doubled haploid (DH), wheat

INTRODUCTION

Wheat stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is one of the
most important and devastating diseases of common wheat (Triticum aestivum L.) around the world
(Hovmøller et al., 2011). It remains a significant threat to wheat yield loss, and under severe disease
pressure, yield losses of up to 100% are observed (Ali et al., 2014). Stripe rust was historically
considered a disease of wheat-growing areas with cool temperatures; however, with the emergence of
adapted races to high temperatures and more aggressive races, the disease is now spreading to areas
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where it was previously considered unfavorable (de Vallavieille-
Pope et al., 2012; Muleta et al., 2017; Godoy et al., 2018). Today,
the new pathotypes of stripe rust are prevalent from Europe to
Australia, Asia, and America and as a result threatens the wheat
production on a global scale (Ali et al., 2014).

The continuous occurrence of new stripe rust races requires
the identification of new sources of resistance and the deployment
of resistant varieties in a timely manner. The conventional
approaches for controlling stripe rust include cultural practices
like early sowing and crop rotation to avoid infection during the
disease infestation period (Boyd 2005). Additionally, fungicide
application is also an effective way of controlling stripe rust;
however, it is not the most economical and recommended
method (Brar et al., 2018). The most effective strategy to
control stripe rust outbreaks is the exploitation of genetic
resistance and pyramiding of multiple minor and major stripe
rust resistance genes conferring seedling and adult plant
resistance (APR) (Chen et al., 2014; Tadesse et al., 2014;
Muleta et al., 2017; Cobo et al., 2018). Most breeding
programs in the world rely on two types of genetic resistance
based on major and minor genes (Chen et al., 2014). Genetic
resistance due to major genes is termed as a seedling and/or all-
stage resistance and is often race-specific and based on the gene
for gene hypothesis and is effective throughout a plant’s life
(Burdon et al., 2014; Tehseen et al., 2021). However, such
resistance in commercial wheat cultivars is often short-lived
and is overcome by new races of stripe rust pathogens virulent
on the major resistance gene (Boyd 2005; Ellis et al., 2014; Hulbert
and Pumphrey 2014), whereas the minor gene resistance is often
not expressed until in the later stages of plant life and is
commonly referred to as horizontal or adult plant stage
resistance (Steele et al., 2001; Boyd 2005). Therefore, many
wheat breeding programs consider pyramiding of both
seedling and APR genes for enhancing the durability of
resistance to multiple prevalent races of stripe rust, hence
minimizing yield losses. Due to new emerging races of the
stripe rust pathogen virulent to numerous seedling or race-
specific genes, the best strategy would be to stack multiple
non-race-specific or APR genes in combinations for durable
stripe rust resistance (Rajaram 2015). Therefore, although the
characterization of seedling resistance genes from highly resistant
lines is crucial, the elite breeding lines with multiple adult plant
QTLs having high to moderate resistance levels should be
considered more important. Elite breeding lines having higher
agronomical, biotic, and abiotic stress resistance and end-use
quality traits tend to be the ideal candidates for gene mapping as
they can be readily used in the ongoing breeding programs.

The bread wheat has a very large genome size; additionally, the
allopolyploidy further hampers the progress of mapping new
quantitative trait loci (QTLs) and as a result slows down the
breeding process (Liu et al., 2021). The whole genome of the
common wheat cultivar Chinese Spring was completed 14 years
later than some of the other gramineous crops such as rice; thus, it
made genetic association comparisons at the whole genome level
more complex than other crops (Yu et al., 2002; Wang et al.,
2018). Recently, with advances in wheat genome sequencing,
multiple versions of the annotated wheat genome have been

published consequently accelerating forward genetic research
(Clavijo et al., 2017; Zimin et al., 2017; Appels et al., 2018).
Today, due to high-throughput sequencing platforms, the
development of a large number of high-quality markers is
possible, thus facilitating more efficient mapping techniques to
analyze a large number of traits across different treatments and
environments and opening new opportunities in wheat breeding
for biotic and abiotic studies (Rimbert et al., 2018). The
International Centre for Agricultural Research in Dry Areas
(ICARDA) and the International Maize and Wheat
Improvement Centre (CIMMYT) have both played pivotal
roles in the development of high-yielding, abiotic stress-
tolerant, disease-resistant, higher end-use quality, and widely
adaptive global wheat germplasm (Wu et al., 2021).

An improved wheat line 130675 from the International
Winter Wheat Breeding Program (IWWIP) (Avd/Vee#1//1-27-
6275/Cf 1770/3/MV171-C-17466) selected from the Facultative
andWinterWheat Observation Nursery (FAWWON 2013-2014)
possesses several desirable traits, including yield and early
maturity, and showed APR to stripe rust in multiple field
trials in Turkey. However, it was susceptible to PstS2 and
Warrior races at the seedling stage, indicating typical APR for
both races. The resistance to stripe rust of the wheat line 130675
has not been characterized. Therefore, the current study aimed to
map and characterize adult plant stripe rust resistance loci in the
doubled haploid (DH) population derived from a cross between
wheat line 130675 and universal stripe rust-susceptible variety
Avocet S.

MATERIAL AND METHODS

Plant Material and Pathogen
The panel of 190 DH lines from the cross of an improved IWWIP
line 130675 (Avd/Vee#1//1-27-6275/Cf 1770/3/MV171-C-
17466) and Avocet S (AvS) were evaluated for adult plant
stripe rust resistance. The DH lines derived from the F1
generation (F1DH) were developed using the wheat maize
hybridization protocol (Sadasivaiah et al., 1999). The parents
were selected due their diverse genetic backgrounds and different
levels of stripe rust resistance. The stripe rust isolates PstS2 and
Warrior (PstS7) were used in artificial field inoculations, and both
belonged to PstS2v27 and PstS7vWarrior lineages, and the
virulence/avirulence formula of the two races are given in
Table 1.

Field Adult Plant Resistance Assessment
The field experiments were carried out at the precision wheat
stripe rust phenotyping platform, Regional Cereal Rust Research
Center (RCRRC), Izmir, Turkey, during the cropping seasons
2019, 2020, and 2021. The experiment was laid out as an
augmented design with un-replicated test entries and repeated
check rows in 12 blocks. Each block contained 16 test entries and
seven checks. Thirty seeds from each accession were planted in a
1-m row with 30-cm spacing between the rows. To ensure
sufficient inoculum production for disease infection, a mixture
of the universally susceptible varieties “Morocco,” “Seri 82,” and
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“Avocet S” along with the locally susceptible varieties “Bolani,”
“Basribey” (also derived from the CIMMYT cross “Kauz”), and
“Cumhuriyet 75,” “Kunduru,” “Kasifbey,” and “Gonen” were
planted as spreader after every 20 rows, as well as spreader
rows bordering the nurseries. The experiments were managed
as per the standard local agronomic practices during the crop
season.

PstS2 and Warrior (PstS7) pathotypes of stripe rust preserved
at RCRRC were multiplied using susceptible variety AvS, and the
freshly collected urediniospores were used for field inoculations.
The DH panel along with the spreader rows bordering the
experiment was artificially sprayed with a mixture of the two
races in talcum powder using a backpack sprayer at the seedling,
tillering, and booting stages. The field was irrigated through a
mist irrigation system.

Field scoring started when disease severity reached 100% on
the susceptible checks, “Morocco” and AvS. Adult plant
responses were recorded three times at 10-day intervals for the
major infection types resistant (R), moderate resistant (MR),
moderate (M), moderate susceptible (MS), and susceptible (S)
(Roelfs et al., 1992), and the disease severities (0-100%) following
the modified Cobb’s scale (Peterson et al., 1948). All the three
recordings were averaged, and the coefficients of infection (CI)
were calculated. The CIs were calculated by multiplying the
constant values of the infection types and disease severity. The
constant values of infection types were used as R = 0.2, MR = 0.4,
M = 0.6, MS = 0.8, and S = 1 (Saari and Wilcoxson 1974; Stubbs
et al., 1986).

DNA Extraction and Genotyping
Genomic DNA was extracted from fresh leaves collected from
three individual 10-day-old seedlings using a modified
cetyltrimethylammonium bromide (CTAB) method (Doyle
and Doyle 1987). The seedling leaves were collected in labeled
Eppendorf tubes and stored in an Ultra freezer at −80°C for
subsequent DNA extraction. The leaf samples were grounded
using a mortar in liquid nitrogen until a fine powder was
obtained, and 0.1 g of the powdered leaf samples were used
for DNA extraction using the CTAB method (Doyle and
Doyle 1987). The extracted DNA was dissolved in 100 µl
Tris–EDTA (TE) buffer. The samples were analyzed on 1%
agarose gel for the purity test and quantified with a
biophotometer (BioPhotometer, Eppendorf). The DNA
samples were then kept at −80°C. The extracted DNA samples
of the DH panel and two parental lines were sent to Diversity
Arrays Technology Pty Ltd. (Canberra, Australia, http://www.
DiversityArrays.com/) for genotyping. The genotypic data
obtained for 172 DH lines including parents were filtered, and

markers with > 10% missing data and < 0.1% minor allele
frequency were eliminated and not used in the subsequent
analysis.

Statistical Analysis
Descriptive statistics and analysis of variance (ANOVA) were
performed using the R package “AugmentedRCBD”. Broad-sense
heritability was estimated as the ratio of genetic variance (σ2g) to
phenotypic variance (σ2g + σ2ε), where σ2ε represents error variance
and is represented as follows:

H2 � σ2
g

σ2g + σ2ε
.

Linkage Map Construction and QTL
Mapping
The marker genetic data were used to construct the linkage
map using the software QTL Ici-Mapping software V4.2. The
Kosambi function was used to calculate the genetic distances
between the markers (Kosambi 1944). The stripe rust
resistance QTLs were estimated in the DH population
based on the CI of the 3 years. The composite interval
mapping (CIM) method was used for the detection of QTL
using QTL Ici-Mapping software V4.2. The threshold value
for the logarithm of odds (LOD) score was calculated after
running a permutation test of 1,000 runs and was 2.1, 2.0, and
2.4 for 2019, 2020, and 2021 experiments, respectively, with a
walking step of 1 cM (Van Ooijen 1999). The QTLs were also
reported significant at a threshold of 2.0 if found in multiple
years. The effects of QTLs were calculated as the proportion of
phenotypic variance explained by the QTL. The genomic
locations of the significant QTL were indicated using the
software Map Chart V2.3.

Gene Annotation
The candidate genes with their putative proteins/enzymes
were predicted within the interval of 500 kb upstream and
downstream from the closest significant markers using
Ensembl, a plant database available at http://plants.ensembl.
org/Triticum_aestivum/Info/Index, and the International
Wheat Genome Sequencing Consortium (IWGSC) RefSeq
v1.1 annotations (Appels et al., 2018) available at https://
wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations.
The nearby genes in the linkage regions of significant markers
with putative functions that could be related to the trait were
selected as candidates.

TABLE 1 | Virulence/avirulence formula for the PstS2 and Warrior pathotypes of Pst.

Pathotype Avirulence formula Virulence formula

Warrior
(PstS7)

Yr5, Yr10, Yr15, Yr24, and Yr27 YrA, YrAvS, Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr32, YrSp, YrSu, YrND,
YrSD, and YrTres

PstS2 Yr1, Yr3, Yr4, Yr5, Yr10, Yr15, Yr17, Yr24, Yr32, YrSp, YrND, YrSD,
and YrTres

YrA, YrAvS, Yr2, Yr6, Yr7, Yr8, Yr9, Yr25, Yr27, and YrSu
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RESULTS

Field Assessment of Resistance
In adult plant assessment, the estimates of genetic variance identified
significant differences among the DH lines (Table 2). A small
variation was observed in the disease severity scores of the tested

accessions during the 3 years as in 2021, and the data were more
skewed toward the resistance side (Figure 1). Overall, during the
3 years 34.9, 36.9, and 47.92% of the DH lines showed resistance
response. Themean values of CI for 2019 and 2020were 34.5 and 37,
respectively, whereas in 2021, the mean value dropped to 21.6. The
mean values for the parents ranged from 0.2 to 20 for the resistant
parent, while 79 to 90 for the susceptible parent. The broad-sense
heritability was 87.04, 91.14, and 77.18 for 2019, 2020, and 2021,
respectively. Significant positive correlations were found between the
3 years of field data. The highest correlation (0.69) was found
between the CIs from 2019 and 2020, whereas the lowest CI
correlation (0.38) was observed between 2019 and 2021 (Figure 1).

Linkage Map and Identification of QTLs for
Adult Plant Resistance to Stripe Rust in the
DH Population
After filtering for quality parameters such as missing data and
segregation distortion, a set of 590 skeleton SNP markers were
used to construct a linkage map for the 130675 × AvS DH
population. The markers covered the whole genome and were
divided into 28 linkage groups, marker order in the linkage group

TABLE 2 | Basic statistics of adult plant response of bread wheat DH lines against
PstS2 and Warrior pathotypes of stripe rust, estimates of variance
components, and broad-sense heritability.

Parameter DH-2019 DH-2020 DH-2021

Minimum 2 1 0.2
Mean 34.5 37 21.6
Maximum 100 97 100
σ2G 875.49*** 742.35*** 523.41***
σ2E 130.25 72.1 391.88
σ2P 1,005.74 814.45 915.29
Heritability 87.04 91.14 77.18

***Significance at 1% probability level.
σ2G = estimates of genotypic variance.
σ2E = estimates of error variance.
σ2P = estimates of phenotypic variance.

FIGURE 1 | Scatter plot (lower triangle) with the distribution of phenotypic data during 2019, 2020, and 2021 field years from left to right anticlockwise, respectively;
density plot (diagonal line) and Pearson correlation analysis (upper triangle) between the 3 years of DH population in field condition. The X-axis and Y-axis represent the
stripe rust coefficient of infection (CI).
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was generally in agreement with the published consensus map (Li
et al., 2015). Genomes A, B, and D had 244 (41.33%), 237
(40.17%), and 109 (18.47%) markers, respectively, and the
total map length was 2,232 cm. Composite interval mapping
identified 10 QTLs in 3 years on seven genomic regions across
the genome for resistance to yellow rust (Yr) at the adult plant
growth stage; the QTLs’ were named QYr.rcrrc.1B, QYr.rcrrc.2A,
QYr.rcrrc.3A, QYr.rcrrc.3B.1, QYr.rcrrc.3B.2, QYr.rcrrc.5A, and
QYr.rcrrc.7D. Out of these 10 QTLs, three were detected in the
2019 and 2021 field years, while four were detected in 2020. The
QTLs were detected on seven genomic regions in chromosomes
1B, 2A, 3A, 3B, 5A, and 7D (Figure 2).

The phenotypic variance explained by an individual QTL
ranged from 3.4 to 20.6%. Two stable QTLs on chromosome
3B, that is, QYr.rcrrc.3B.1 and QYr.rcrrc.3B.2 were detected in
multiple years and contributed 5.2–19.8% toward phenotypic
variation. The QTL that explained a phenotypic variance of more
than 10% was considered as a major QTL. All QTLs were
contributed by the resistant parent 130675 except one on
chromosome 3A, which was contributed by the susceptible
parent AvS (Table 3).

QTL Region Physical Positions and
Candidate Gene Prediction
The alignment of significant QTLmarkers with reference genome
confirmed their physical positions according to chromosome

assignments (Table 4). The largest physical distance of
53.7 Mb spanned between the flanking markers of QYr.rcrrc-
5A. The QYr.rcrrc-5A also spanned a large interval on the genetic
map compared with other QTLs (Figure 2). The physical
distances between QYr.rcrrc-2A, QYr.rcrrc-3B.1, and QYr.rcrrc-
7D were 1.1, 4.7, and 0.6 Mb, respectively. The expressed genes
between the flanking markers of the QTL were identified using
the BLASTn searches from the flanking markers sequences
(Table 5). The high confidence genes which were previously
reported to be associated with disease resistance were selected as
candidate genes.

DISCUSSION

Stripe rust is a devastating disease of wheat and could result in
100% yield loss under high disease pressure (Manickavelu et al.,
2016). Historically, it was considered a disease in wet and cool
climates but with the emergence of new races adapted to high
temperatures the disease has sporadically spread to areas that
were once considered unsuitable for its growth and disease
development (Hovmøller et al., 2016; Ali et al., 2017). The
most effective strategy to manage the continuous appearance
of new stripe rust races is genetic resistance and the development
of lines harboring both minor and major genes (Chen et al.,
2014). The plant breeders tend to stack multiple different traits in
elite backgrounds; therefore, breeding for one trait is not always

FIGURE 2 | Segments of genetic linkage maps of QTL conferring adult plant stripe rust resistance. Single-nucleotide polymorphism (SNP) markers are shown on
the left and their genetic positions (cM) are on the right of chromosomes. The region containing the QTL is indicated by a vertical bar on the right and followed by the name
of the QTL. The markers in red are associated with the QTL.
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simple and even in the presence of highly resistant germplasm
breeders do not necessarily always utilize it due to the undesirable
linkage drag associated with resistance locus. Hence, to
circumvent the potential linkage drag, the breeders focus on
identifying and mapping resistance genes from elite breeding
lines with accumulated favorable morphological and agronomic
traits. The current study used an advanced breeding line with a
distinct resistance response to stripe rust from the IWWIP
breeding program.

Overall, 10 QTLs in seven genomic regions across the three
environments (years) were detected in the current study. The
phenotypic variance explained by the QTL ranged from 3.4 to
20.6% confirming their significant effects in reducing stripe rust
severity. The significant QTLs detected in the study were
compared with the previously published stripe rust known
genes and QTL based on their chromosome location, physical
position, pedigree, linked markers, and rust resistance.

The QYr.rcrrc-1B detected in the current study on
chromosome 1B overlapped the several previously reported Yr
QTL and an APR gene Yr29 (William et al., 2003; Bansal et al.,
2014; Maccaferri et al., 2015). The pleiotropic locus Yr29/Lr46/
Sr58 on chromosome 1B has been widely used in breeding
programs around the world, including CIMMYT wheat
germplasm (Gebrewahid et al., 2020). The Yr29/Lr46/Sr58
locus is associated with a wide-spectrum resistance level
explaining 2.9–74.5% of the phenotypic variation in different
bi-parental mapping populations and under different
environmental trials (Zhang et al., 2019). The stripe rust Yr29
is a slow rusting adult plant resistance gene and its effect decreases
with the increase in the inoculum load. This could be the plausible
reason why QYr.rcrrc-1B was detected only in the 2019 crop year.
QYr.rcrrc-1B is most likely the Yr29/Lr46/Sr58 complex.

The QYr.rcrrc-2A detected in the current study does not
correspond to any of the previously identified Yr QTL and/or
genes. A seedling resistant gene Yr1 is also located on the long
arm of chromosome 2A; however, according to the physical position
of Yr1, the gene and theQYr.rcrrc-2A are 15.4Mb apart at the distal
end. QYr.wpg-2A.6 (IWA966) a minor effect APR QTL was also
reported on chromosome 2A and is the closest QTL toQYr.rcrrc-2A
and the two are 6.79Mb apart (Naruoka et al., 2015). Since

TABLE 3 | Quantitative trait loci (QTLs) associated with adult plant stripe rust resistance in DH population in different environments.

Year QTL Flanking
marker

Chromosome LOD PVE
(%)

Resistance
source

Previous
QTL/gene

Reference

2019 QYr.rcrrc-
1B

3953714–1001398 1B 2.49 3.42 130675 Yr29/Lr46; QYr.sun-
1B_Wollaroi; QYr.ucw-1B
(IWA3892)

William et al. (2003); Bansal et al.
(2014); Maccaferri et al. (2015)

QYr.rcrrc-
3B.1

5971264–1685999 3B 3.7264 5.20 130675 Yr4; Yr57; QYr-3B_Opata85;
QYr.tam-3B_Quaiu

Singh et al. (2000); Suenaga et al.
(2003); McIntosh et al. (2014);
Basnet et al. (2014)

QYr.rcrrc-
3B.2

5370854–4909542 3B 2.2211 10.63 130675 QYr.cim-3B_Pastor ;QRYr3B.2;
SNP1863248

Rosewarne et al. (2012); Jighly
et al. (2015); Tehseen et al. (2021)

2020 QYr.rcrrc-
3A

2253031–3022046 3A 2.3805 3.68 Avocet S QYr.cim-3A_Avocet Rosewarne et al. (2008)

QYr.rcrrc-
3B.1

5971264–1685999 3B 8.2825 12.84 130675 Yr4; Yr57; QYr-3B_Opata85;
QYr.tam-3B_Quaiu

Singh et al. (2000); Suenaga et al.
(2003); McIntosh et al. (2014);
Basnet et al. (2014)

QYr.rcrrc-
3B.2

5370854–4909542 3B 2.6826 11.58 130675 QYr.cim-3B_Pastor ;QRYr3B.2;
SNP1863248

Rosewarne et al. (2012); Jighly
et al. (2015); Tehseen et al. (2021)

QYr.rcrrc-
7D

1276810–985416 7D 3.5807 5.04 130675 Novel Current study

2021 QYr.rcrrc-
2A

1091012–4991129 2A 11.6495 20.63 130675 Novel Current study

QYr.rcrrc-
3B.2

5370854–4909542 3B 5.765 19.83 130675 QYr.cim-3B_Pastor ;QRYr3B.2;
SNP1863248

Rosewarne et al. (2012); Jighly
et al. (2015); Tehseen et al. (2021)

QYr.rcrrc-
5A

1141822–1087201 5A 2.5222 3.81 130675 Yr34; QYrdr.wgp-5AL
(IWA2646); QYr-5A_Opata85;
QYr.cim-5AL_Pastor

Chen et al. (2021); Hou et al.
(2015); Boukhatem et al. (2002);
Rosewarne et al. (2012)

TABLE 4 | Physical position of the SNPmarkers that flank the quantitative trait loci
(QTLs).

QTL Flanking markers Physical position (Mb)a

QYr.rcrrc-1B 3953714 667.138
1001398 --b

QYr.rcrrc-2A 1091012 755.80
4991129 756.91

QYr.rcrrc-3A 2253031 655.66
3022046 701.93

QYr.rcrrc-3B.1 5971264 5.58
1685999 10.35

QYr.rcrrc-3B.2 5370854 580.06
4909542 --

QYr.rcrrc-5A 1141822 612.914
1087201 666.70

QYr.rcrrc-7D 1276810 104.88
985416 104.21

aPhysical position was mapped by aligning the sequence against Chinese Spring
assembly from the International Wheat Genome Sequencing Consortium (IWGSC)
RefSeq ver. 1.0.
bNo hit.
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QYr.rcrrc-2A is a major QTL and does not overlap with any of the
previously reported Yr QTL/gene; furthermore, the closest gene to
QYr.rcrrc-2A is Yr1 which is a seedling resistant gene and is
ineffective against the Warrior (PstS7) race used in the study.
Therefore, based on the physical locations of the close-by QTL
and resistance pattern of the nearby genes, the QTL QYr.rcrrc-2A is
considered novel.

QYr.rcrrc-3A was found significant to the stripe rust resistance
in the field. The locus overlapped a previously reported Yr QTL
QYr.cim-3A_Avocet (Rosewarne et al., 2008). The QYr.cim-
3A_Avocet was found in a RIL population derived from a
cross between AvS and Pastor, the two QTLs expressed similar
total phenotypic variation and the source of resistance in both the
populations was cultivar AvS. Therefore, based on the physical
overlapping positions, a similar effect of QTL, and sources of
resistance in both studies, it was concluded that both QYr.rcrrc-
3A and QYr.cim-3A_Avocet represent the same genomic region.

Two stable QTLs such as QYr.rcrrc-3B.1 and QYr.rcrrc-3B.2
were detected on the short and long arms of chromosome 3B,
respectively.QYr.rcrrc-3B.1 lies in the same genomic region as the
several Yr QTLs and genes reported earlier on the short arm of
chromosome 3B (Singh et al., 2000; Suenaga et al., 2003; Basnet
et al., 2014; McIntosh et al., 2014). The seedling resistance gene
Yr4 is avirulent on one of the pathotypes that is PstS7 used in the
study for artificial inoculation. Based on the physical position and
virulence/avirulence pattern it is likely that QYr.rcrrc-3B.1
represent is linked to Yr4; however, further studies are
required to confirm the relationship as some studies have
reported a different APR locus in the absence of Yr4
(Buerstmayr et al., 2014). QYr.rcrrc-3B.2, the second stable
QTL detected in all three field experiments was found on the
long arm of chromosome 3B and overlapped the previously
reported QYr.cim-3B_Pastor, QRYr3B.2, and SNP1863248
(Rosewarne et al., 2012; Jighly et al., 2015; Tehseen et al.,
2021). The three previously reported QTLs conferred APR;
therefore, it is likely that QYr.rcrrc-3B.2 is linked to these QTLs.

A minor effect of QTL QYr.rcrrc-5A was detected on the long
arm of chromosome 5A and overlapped the same genomic region
previously reported to be linked with several APR and high-
temperature adult plant (HTAP) YrQTL (Boukhatem et al., 2002;
Rosewarne et al., 2012; Hou et al., 2015). An APR gene with a
moderate level of resistance is also located in the same genomic
location (Chen et al., 2021). Since QYr.rcrrc-5A is a minor effect
on QTL and Yr34 also shows moderate resistance it is likely that
QYr.rcrrc-5A is linked with Yr34; however, further genetic
analysis is required to confirm the relationship as no source of

resistance with Yr34was used in the differential set for race typing
of the pathotypes used in the current study.

Two Yr resistant genes and a seedling resistance marker are
previously reported on chromosome 7D (Maccaferri et al., 2015;
Bulli et al., 2016; Tehseen et al., 2021). However, the locus
QYr.rcrrc-7D detected in the current study is outside the
genomic regions of the two genes and the QTL. The
approximate distance between QYr.rcrrc-7D and the gene Yr33
and the seedling resistant locus QYr.7D_seedling is 33Mb and
17 Mb, respectively. Thus, based on the physical distances
QYr.rcrrc-7D is a novel QTL region.

Regarding the predicted proteins in the current study, the
candidate genes include NB-ARC domain proteins, which are
involved in pathogen recognition and subsequent activation of
plants’ defense mechanisms (Van Ooijen 1999; Van Ooijen et al.,
2008; Steele et al., 2019); protein kinase domain proteins, which
modify other proteins and are vital in several signaling and
regulatory pathways in addition to apoptosis and cell division
(Brueggeman et al., 2008); and leucine-rich repeats (LRR), which
play a vital role in plants’ defense mechanism and are typically
annotated to resistance genes (Jones and Jones 1997; Yuan et al.,
2018), F-box domain proteins; they are involved in plant
vegetative and reproductive growth and development. These
proteins are reported to regulate cell death and defense when
the pathogen is recognized in the tobacco and tomato plant (van
den Burg et al., 2008), and NAC domain proteins which are
involved in several processes, including the formation of
secondary walls, senescence, and abiotic and biotic stresses
(Puranik et al., 2012; Ng et al., 2018; Yuan et al., 2019). All
candidate genes have been previously reported to play role in the
plant’s defense mechanism; therefore, it is highly likely that they
could be one of the candidate genes for stripe rust resistance.
However, these putative candidate proteins should be used with
caution as they are not the only proteins found within the
confidence intervals of the linked markers but are the ones
that have been reported to be involved in plant defense and
disease and/or stress resistance mechanisms.

Marker-assisted breeding (MAB) is a valuable tool and is being
utilized in many breeding programs around the world for different
kinds of crops. MAB allows successful introgression of biotic and
abiotic stress-resistant genes in high-yielding susceptible
backgrounds (Ren et al., 2012). Therefore, detection of
significant and tightly linked markers is desirable, which can be
converted into breeder-friendly markers to be utilized in the
breeding programs through MAB. In this study, we identified
sevenQTLs associated with APR to stripe rust across environments

TABLE 5 | List of candidate genes for each QTL with putative proteins/enzymes.

QTL Gene Chromosome Protein/enzyme

QYr.rcrrc.1B TraesCS1B01G447000 1B NB-ARC domain
QYr.rcrrc.2A TraesCS2A01G547500 2A Protein kinase domain
QYr.rcrrc.3A TraesCS3A01G411400 3A Leucine-rich repeat domain
QYr.rcrrc.3B.1 TraesCS3B01G012400 3B F-box domain
QYr.rcrrc.3B.2 TraesCS3B01G368000 3B Leucine-rich repeat domain
QYr.rcrrc.5A TraesCS5A01G500400 5A NAC domain protein
QYr.rcrrc.7D TraesCS7D01G192900LC 7D Leucine-rich repeat domain
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including QYr.rcrrc-1B, QYr.rcrrc-2A, QYr.rcrrc-3A, QYr.rcrrc-
3B.1, QYr.rcrrc-3B.2, QYr.rcrrc-5A, and QYr.rcrrc-7D, and they
were closely linked to SNP markers 3953714, 1091012, 2253031,
5971264, 5370854, 1141822, and 1276810, respectively. With new
extensive research and cloning of APR genes, the overall function
of the APR genes is better understood. However, the durability of
any APR gene or the combination of APR genes is still a mystery
and is based on prediction and time (Lowe et al., 2011).
Nevertheless, the QTL reported in the current study particularly
QYr.rcrrc-2A and QYr.rcrrc-7D were new QTL for APR to stripe
rust. They should enhance the genetic basis of resistance to stripe
rust, and their closely linked markers can be converted into
breeder-friendly markers and utilized in MAB and stacking of
multiple APR genes in common wheat backgrounds for durable
resistance to stripe rust.
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ICARDA Genebank
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Landraces are considered a valuable source of potential genetic diversity that could be used in
the selection process in any plant breeding program. Here, we assembled a population of 600
bread wheat landraces collected from eight different countries, conserved at the ICARDA’s
genebank, and evaluated the genetic diversity and the population structure of the landraces
using single nucleotide polymorphism (SNP) markers. A total of 11,830 high-quality SNPs
distributed across the genomes A (40.5%), B (45.9%), and D (13.6%) were used for the final
analysis. The population structure analysis was evaluated using the model-based method
(STRUCTURE) and distance-based methods [discriminant analysis of principal components
(DAPC) and principal component analysis (PCA)]. The STRUCTURE method grouped the
landraces into twomajor clusters, with the landraces fromSyria and Turkey forming two clusters
with high proportions of admixture, whereas the DAPC and PCA analysis grouped the
population into three subpopulations mostly according to the geographical information of
the landraces, i.e., Syria, Iran, and Turkey with admixture. The analysis of molecular variance
revealed that themajority of the variationwasdue to genetic differenceswithin thepopulations as
compared with between subpopulations, and it was the same for both the cluster-based and
distance-based methods. Genetic distance analysis was also studied to estimate the
differences between the landraces from different countries, and it was observed that the
maximum genetic distance (0.389) was between the landraces from Spain and Palestine,
whereas theminimumgenetic distance (0.013) was observed between the landraces fromSyria
and Turkey. It was concluded from the study that the model-based methods (DAPC and PCA)
could dissect the population structure more precisely when compared with the STRUCTURE
method. The population structure and genetic diversity analysis of the bread wheat landraces
presented here highlight the complex genetic architecture of the landraces native to the Fertile
Crescent region. The results of this study provide useful information for the genetic improvement
of hexaploid wheat and facilitate the use of landraces in wheat breeding programs.
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(AMOVA)
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INTRODUCTION

Wheat crop is grown and cultivated on more land area than other
commercial crops and provides basic human nutrition. Wheat as
food is a source of energy and protein for about two billion people
and plays an indispensable role in food security as it provides 20%
of world caloric consumption (Lawlor and Mitchell, 2000; Bhatta
et al., 2017). With the growing population, climate constraints,
changes in lifestyles, globalization of taste, urbanization, and
development, there is a need for genetic improvement in
wheat for yield and quality. It has been estimated that there
should be a 50% increase in wheat production by 2050 (Grassini
et al., 2013; Ray et al., 2013; Marcussen et al., 2014; Yang et al.,
2020). As the environment plays an important role in wheat
performance, it is difficult to find an area free from (biotic/
abiotic) stress (Fan et al., 2012). Therefore, it is essential to
measure each potential line performance across many years
and under wide geographical regions to get higher yield potential.

Hexaploid wheat is comprised of three genomes (A, B, and D)
as a result of natural hybridization and thus does not share any
direct wild ancestor with the same genomic constitution
(Terasawa et al., 2009). Triticum urartu, Aegilops speltoides,
and Aegilops tauschii are the parental sources of genomes A,
B, and D, respectively (Kunert et al., 2007; van Ginkel and
Ogbonnaya, 2007; Charmet, 2011; Nielsen et al., 2014). Hence,
it is essential to protect and sustain the existing genetic variability
among hexaploid wheat accessions.

The success of breeding programs relies on the presence of
significant genetic variability in a source population. High genetic
variability boosts the chances to select superior genotypes from a
population (Khan et al., 2015). On the other hand, a narrow
genetic base is one of the major constraints, as it makes the plants
more vulnerable to stress (biotic/abiotic) conditions (Novoselović
et al., 2016; El-Esawi et al., 2018; Tehseen et al., 2021b).
Continuous breeding practices such as artificial selection for
the quality and yield traits have narrowed the genetic diversity
in bread wheat over the past years (Novoselović et al., 2016; El-
Esawi et al., 2018). Collection and evaluation of a large number of
landraces from different regions to dissect the genetic diversity
and variability would be the first step to broadening the genetic
base of the wheat crop. Landraces are locally adapted distinct
species and produce relatively higher yields under natural
conditions with low or no agricultural input and show
maximum resistance to the stress environments (Zeven 1998).
They are supposed to be the best source for transferring their
economically important traits to elite cultivars of different crops
such as maize, legumes, rice, and wheat (Hargrove and Cabanilla,
1979; Feldman and Sears, 1981; Isemura et al., 2001; Malvar et al.,
2004; Reif et al., 2005; Zhang et al., 2009). Therefore, the
characterization of the genetic diversity of landraces can
provide precious information that can be utilized to broaden
the narrow genetic base in crops (El-Esawi et al., 2018).

Morphological traits are not the best indicators to evaluate
genetic diversity as largely influenced by environmental
conditions (Yang et al., 2020). Hence, DNA molecular markers
can now be used to tag and locate numerous interacting genes
that regulate complex traits. Combining the marker-assisted

selection (MAS) with conventional methods of plant breeding
schemes can enhance the overall selection gain and therefore
increase the efficiency of breeding programs. Various molecular
markers have been used to find the genetic diversity among
different wheat genotypes such as amplified length fragment
polymorphism (AFLP) (Lage et al., 2003; Das et al., 2016;
Bhatta et al., 2017), randomly amplified polymorphic DNA
(RAPD) (Khan et al., 2015), inter-simple sequence repeats
(ISSRs) (Khan et al., 2015), simple sequence repeat (SSR)
(Belete et al., 2020), and single nucleotide polymorphisms
(SNPs) (Bhatta et al., 2017; Joukhadar et al., 2017; Mourad
et al., 2020). SNPs are one of the most common marker
systems for evaluating genetic diversity which provide
numerous polymorphisms in single plant genomes (Yang
et al., 2020). This study was initiated and fulfilled to address
subsequent objectives: 1) to decipher the population structure
and unlock the genetic diversity among the bread wheat landraces
from eight different countries, 2) to provide useful information
about the genetic diversity and population structure of these
landraces for future breeding programs, and 3) to evaluate the
different approaches used for determining the population
structure. The outcomes of this study will help in the
utilization of these landraces effectively to broaden the genetic
base of hexaploid wheat and facilitate the discovery of new
genomic regions providing resistance to economically
important biotic and/or abiotic stresses.

MATERIAL AND METHODS

Plant Material
A wheat diversity panel containing 600 landraces from the
International Centre for Agricultural Research in the Dry
Areas (ICARDA) was used in this study. The landraces in the
panel were obtained from 8 countries, which were Syria (376),
Turkey (157), Iran (47), Greece (7), Iraq (7), Spain (3), Jordan (2),
and Palestine (1).

DNA Isolation and Genotyping
Fresh leaves were collected from 10-day-old seedlings in
labeled Eppendorf Tubes and sunk immediately into liquid
nitrogen; then, they were transferred to the lab and stored at
−80°C. Leaf samples were grounded using a tissue lyser
(TissueLyser II from QIAGEN). Genomic DNA was
extracted from 0.1 g powdered leaf samples by using the
cetyltrimethylammonium bromide (CTAB) method (Doyle
and Doyle, 1991). Extracted DNA was dissolved in 100 μl tris-
EDTA (TE) buffer. The DNA samples were run on 1% agarose
gel for purity test, and a spectrophotometer (NanoDrop ND-
1000) was used to quantify the DNA. The samples were then
stored at −80°C.

A high-throughput genotyping by sequencing (GBS) method
using Diversity Arrays Technology (DArT) (Sansaloni et al.,
2011) was used for all samples at the Genetic Analysis Service
for Agriculture (SAGA) at the International Maize and Wheat
Improvement Center (CIMMYT) in Mexico and supported by
the CGIAR Research Program (Sansaloni et al., 2011).
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Population Structure Analysis
To reveal the population structure of the wheat diversity panel, a
model-based Bayesian cluster analysis was performed with
STRUCTURE software (v. 2.3.4) (Pritchard et al., 2000). The
program was run for ten replicates for each putative
subpopulation ranging from k = 1 to k = 10 under the
admixture model of population structure and was assessed
with a burn-in period of 50,000 followed by 50,000 Markov
Chain Monte Carlo (MCMC) replications. The best K value
was used to identify the optimum number of clusters/
subpopulations. The best K value was estimated as Delta K
(ΔK) from Structure Harvester (Evanno et al., 2005) using the
log probability of the successive structure iterations. For the
optimal K value, to generate both individual and population
Q-matrices by using the membership coefficient matrices of three
replicates from the STRUCTURE, the CLUMPP (Jakobsson and
Rosenberg, 2007) was used. Afterward, the DISTRUCT program
was used to generate the bar plot from the integrated geographical
information (Jakobsson and Rosenberg, 2007).

The discriminant analysis of the principal components
(DAPC) was used as a second approach to analyze the
population structure. DAPC uses the K-means clustering of
principal components to identify the group of each individual.
The numbers and nature of the clusters are assessed using the
Bayesian Information Criterion (BIC). The DAPC analysis was
conducted by using the R package “adegenet” (Jombart et al.,
2010) in R studio (R Development Core Team 3.0.1., 2013).

Genetic Diversity and Analysis of Molecular
Variance
Various diversity parameters like the number of different alleles
(Na), number of effective alleles (Ne), Shannon’s index (I),
diversity index (He), unbiased diversity index (uHe), and
percentage of polymorphic loci (PPL) were measured using
GenAIEx v. 6.503 (Peakall and Smouse, 2006) to analyze the
genetic variation among the 600 bread wheat landrace from 8
countries. The subpopulations obtained from STRUCTURE and
DAPC were used for analysis of molecular variance (AMOVA),
the calculations of Nei’s genetic identity, and genetic distance
among populations. R package “adegenet” was used to perform
the principal component analysis (PCA), while “poppr” (Kamvar
et al., 2014) was used to construct the minimum spanning
network (MSN) and neighbor-joining phylogenetic tree based
on simple matching dissimilarity coefficient without the
assumption of an evolutionary hierarchy.

RESULTS

Single Nucleotide Polymorphism Markers
Distribution
A total of 600 landraces collected from 8 countries were
genotyped using the GBS method. A set of 25,169 SNPs were
discovered. The SNPs were filtered for quality control (QC) based
on >20% missing data and minor allele frequency (MAF) <5%.
After QC and SNP filtering, the set of the 11,830 SNPs on the 21

chromosomes was selected for analysis. The highest number of
markers was mapped on the B genome (5,430) followed by the A
genome (4,796) and D genome (1,604) (Figure 1). The highest
number of markers was found on chromosome 2B (948) followed
by 5B (917) and 7A (901), while the lowest number of markers
was mapped on 4D (136) followed by 6D (182) and 7D (241)
(Figure 1).

Population Stratification and Genetic
Relationships
Two different approaches, STRUCTURE and DAPC were used
to identify the underlying stratification in the whole
population panel. For the STRUCTURE program as the first
approach, the optimum number of subpopulations was
determined by the change of likelihood (ΔK). The results
suggested that the optimum population structure was at K
= 2. To find the optimal subpopulation number, the plot of K
against ΔK (Figure 2C) was used. The plot showed that the
optimal K value was 2, which was the peak of the graph.
Among the two subpopulations, 362 landraces were grouped in
subpopulation 1, while 238 landraces were grouped in
subpopulation 2 (Table 1). It can be seen from
STRUCTURE results that the landraces were not grouped
based on their geographic origin (Figure 2A). For example,
the landraces from Syria and Turkey were grouped in both
subpopulation 1 and subpopulation 2. The values of fixation
index (Fst) as the indicator of the genetic variation among the
landraces in each cluster were 0.23 and 0.21 for subpopulation
1 and subpopulation 2, respectively.

The results of the PCA revealed that the landraces were
grouped into three groups. The first, second, and third PCs
explained 15, 18, and 22% of the total variation, respectively.

The DAPC was used as the second approach, and the scree
plot of ΔK against the proportion of explained variance showed
that the landraces were divided into at least three subpopulations
(Figure 2B). The three subpopulations comprised 181, 193, and
226 landraces, respectively. According to the DAPC analysis, the
landraces from Syria, Turkey, and Iran were in distinct groups
with mild admixture. The landraces from Greece were genetically
more similar to Turkish landraces, whereas the Iraqi landraces
were found to have similarities with both Iranian and Syrian
landraces (Figure 3).

The results from both STRUCTURE and DAPC analyses
showed that there was an admixture between the different
geographic regions which can be seen from the results of the
minimum spanning network (MSN) and neighbor-joining based
clustering analyses (Figures 4, 5).

Genetic Differentiation Among
Subpopulations
Three AMOVAs were generated based on the results of
STRUCTURE and DAPC, as well as on the geographic origin
of the landraces (Table 2.). The STRUCTURE-based AMOVA
showed that a small amount of genetic variation (2.5%) was
observed between the two subpopulations and a big portion of
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genetic variation (97.5%) was observed within the
subpopulations. The genetic variance between two
subpopulations was 4.2% in DAPC-based AMOVA, which

implies 95.8% genetic variance within three subpopulations.
The highest genetic variance among the subpopulations (5.9%)
was obtained from origin-based AMOVA (Table 2).

FIGURE 1 | Distribution of 11,830 SNPs across 21 chromosomes of bread wheat landraces from 8 countries.

FIGURE 2 | (A) Population structure of 600 bread wheat landraces for k = 2, 3, and 4. Different colors represent the subpopulations, and each bar represents the
estimated membership of a single genotype. The horizontal line under the figure indicates the geographic origins of the landraces. (B) The scree plot of ΔK against the
proportion of explained variance states the optimal subpopulation number in DAPC analysis. (C) The plot of K against ΔK to determine the optimum K value for
STRUCTURE analysis. (D) The PCA of 600 bread wheat landraces.
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TABLE 1 | The STRUCTURE results of 600 bread wheat landraces for the fixation index (Fst), average distances (expected heterozygosity/He), gene flow (Nm), and the
number of genotypes assigned to each subpopulation.

Population Inferred clusters Mean Fst Exp. Het Nm No. of
genotypes

Pop1 0.619 0.2307 0.31 0.833 362
Pop2 0.381 0.2078 0.3455 0.953 238

FIGURE 3 | Inference of the subpopulations by DAPC analysis grouping landraces from different countries together.

FIGURE 4 | Minimum spanning network (MSN) of 600 bread wheat landraces.
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The low genetic variability among the subpopulations implies a
high amount of gene flow between the landraces evaluated in this
study. Besides, the higher values of genetic variability within the

populations for STRUCTURE (97.5%), DAPC (95.8%), and origin-
basedAMOVA(95.5%) suggest that the landraces fromeight countries
shared common ancestries and were highly admixed (Table 2).

FIGURE 5 | Neighbor-joining clustering of 600 bread wheat landraces.

TABLE 2 | Analysis of molecular variance (AMOVA) revealing genetic diversity in bread wheat landraces.

Method Source df SS MS Est. var %

Model based (STRUCTURE) Among Pops 1 26356.26 26356.26 80.95107 2.5
Within Pops 598 1858696 3108.187 3108.187 97.4
Total 599 1885052 3189.138 1

Distance based (Cluster, DAPC) Among Pops 2 59508.97 29754.49 133.9296 4.2
Within Pops 597 1825543 3057.861 3057.861 95.8
Total 599 1885052 3191.791 1

Based on origin Among Pops 7 147767.9 21109.71 328.5178 5.9
Within Pops 592 3622336 6118.811 6118.811 94.1
Total 599 3770104 6293.997 6447.329 1

df; degrees of freedom, SS; Sum of squares, MS; Mean square, Est. var; Estimated variance.
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The genetic distances were calculated to decipher the levels of
diversity between the subpopulations (Table 3). The genetic
distance between the two subpopulations formed by
STRUCTURE was 0.013, which implies a high admixture level.
In terms of DAPC, the maximum genetic distance (0.032) was
calculated between subpopulations 1 and 3, while the minimum
genetic distance (0.015) was found between subpopulations 2 and
3 (Table 3). The clustering in terms of geographic origins yielded
the maximum genetic distance of 0.289 between the landraces
from Palestine and Spain followed by a genetic distance of 0.246
between landraces from Palestine and Jordan. On the other hand,
the lowest genetic distance was observed between Syria and
Turkey (0.013) (Table 3).

Genetic Diversity Across Subpopulations
The mean values for the number of different alleles (Na) and
number of effective alleles (Ne) of two subpopulations

determined by STRUCTURE were 1.993 and 1.476,
respectively (Table 4). The averages of the Shannon index (I),
diversity index (He), and unbiased diversity index (uHe) of the
two subpopulations were 0.443, 0.288, and 0.288, respectively.
STRUCTURE-based analysis showed that subpopulation 2 (I =
0.445, He = 0.289, uHe = 0.290) had a slightly higher genetic
diversity than subpopulation 1 (I = 0.441, He = 0.286, uHe =
0.286).

For the DAPC approach, the mean Na value of the three
subpopulations was 1.983 and the mean Ne was 1.464. The
averages of I, He, and uHe were 0.433, 0.281, and 0.282,
respectively (Table 4). According to the DAPC results,
subpopulation 2 showed a higher diversity (I = 0.449, He =
0.292, uHe = 0.293) than subpopulations 1 and 3.

The mean values of the genetic indices obtained by geographic
origin-based grouping for seven countries (Palestine was not
taken into consideration since it has one landrace) were Na =

TABLE 3 | Nei’s genetic identity (above diagonal) and genetic distance (below diagonal).

Model

Model based (STRUCTURE) Pop1 Pop2
Pop1 0.987
Pop2 0.013

Distance based (Cluster, DAPC) Pop1 Pop2 Pop3
Pop1 0.977 0.969
Pop2 0.023 0.985
Pop3 0.032 0.015

Based on origin SYRIA TURKEY IRAN GREECE IRAQ JORDAN PALESTINE SPAIN
SYRIA 0.987 0.948 0.915 0.908 0.870 0.818 0.889
TURKEY 0.013 0.954 0.916 0.920 0.872 0.819 0.897
IRAN 0.053 0.047 0.937 0.912 0.862 0.855 0.848
GREECE 0.089 0.087 0.065 0.878 0.833 0.804 0.819
IRAQ 0.096 0.083 0.092 0.130 0.841 0.803 0.847
JORDAN 0.139 0.137 0.148 0.182 0.173 0.782 0.815
PALESTINE 0.201 0.200 0.157 0.219 0.219 0.246 0.749
SPAIN 0.118 0.109 0.165 0.199 0.165 0.205 0.289

TABLE 4 |Mean of different genetic parameters: number of different alleles (Na), number of effective alleles (Ne), Shannon’s index (I), diversity index (He), unbiased diversity
index (uHe), and percentage of polymorphic loci (PPL) in each of the two subpopulations.

Method Pop Na Ne I He uHe PPL (%)

Model based (STRUCTURE) Pop1 1.988 1.472 0.441 0.286 0.286 99.38
Pop2 1.997 1.479 0.445 0.289 0.290 99.84
Mean 1.993 1.476 0.443 0.288 0.288 99.61

Distance based (Cluster, DAPC)
Pop1 1.970 1.434 0.410 0.264 0.266 98.35
Pop2 1.987 1.483 0.449 0.292 0.293 99.32
Pop3 1.992 1.474 0.440 0.286 0.287 99.49
Mean 1.983 1.464 0.433 0.281 0.282 99.05

Based on origin
SYRIA 1.988 1.474 0.442 0.287 0.287 99.40
TURKEY 1.987 1.472 0.440 0.285 0.287 99.22
IRAN 1.762 1.412 0.381 0.248 0.254 85.63
GREECE 1.242 1.320 0.282 0.188 0.209 54.02
IRAQ 1.021 1.253 0.222 0.148 0.166 42.47
JORDAN 0.614 1.137 0.117 0.080 0.107 19.39
PALESTINE 0.297 1.000 0.000 0.000 0.000 0.00
SPAIN 0.738 1.177 0.154 0.104 0.129 26.79
Mean 1.887 1.447 0.416 0.270 0.273 53.36
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1.887, Ne = 1.447, I = 0.416, He = 0.270, and uHe = 0.273. The
landraces originating from Syria showed the highest diversity
with the diversity parameters of I = 0.442, He = 0.287, and uHe =
0.287, and the lowest genetic diversity was observed within Jordan
landraces (I = 0.117, He = 0.080, and uHe = 0.107).

Clustering via Geographic Origin
The membership coefficients of 600 landraces were presented as
bar plots in Figure 6. The graph had two major groups and one
minor group which suggested that almost all landraces had a
similar ancestry to the genotypes from Syria or Turkey. Some of
the landraces from Iran had genetic similarities with Turkey and
Syria. For example, almost all genotypes from Iran were
somewhat genetically similar to the landraces from Syria.
However, a relatively low admixture level was observed for the
landraces originating from Turkey. Also, it can be seen from
Figure 6 that the majority of genotypes from Spain admixed with
the landraces from Iran and Syria.

DISCUSSION

Global wheat production is facing new challenges in terms of
climate change and biotic stress resistance; thus, the studies of
genetic diversity could prove to be helpful for the effective
conservation and improvement of the existing germplasm
(Rao and Hodgkin, 2002). In breeding programs, the breeder’s
emphasis is on mainly increasing and sustaining wheat
production, and the enhanced breeding and conversation
strategies can be used to broaden the genetic base of the wheat
crop by the information derived from genetic diversity,
population structure, and their relationships (El-Esawi et al.,
2018). Wheat landraces are used in several wheat breeding
programs, as they provide unique potential and diversity of

key genes controlling both biotic and abiotic stresses
(Manickavelu et al., 2016).

The current study was conducted on a total of 600 bread wheat
landraces from 8 different countries preserved at ICARDA’s
genebank to evaluate the genetic diversity and population
structure through GBS-derived SNPs. It could be beneficial to
open up the genetic constituents to identify novel genes and loci
to improve plant resistance and further breeding programs. A
total of 11,830 SNP markers distributed across the hexaploid
wheat genomes A, B, and D were used to evaluate the population
structure of the wheat landraces. Greater sequence diversity was
found in genome B (5,430 SNPs), followed by genome A (4,796
SNPs), and D (1,604 SNPs), and these findings are in agreement
with previous studies (Poland et al., 2012; Alipour et al., 2017).
The results showed that the D genome is the least polymorphic
probably due to the low frequency of recombination rates (Chao
et al., 2009; Alipour et al., 2017). The low polymorphism of
markers on the D genome is unique to wheat than to its ancestor
Aegilops tauschii (Akhunov et al., 2010). The numbers of SNPs in
genomes B and A were more than three times higher than in
genomeD, which is similar to many previous reports (Iehisa et al.,
2014; Eltaher et al., 2018; Bhatta et al., 2019). Similar to the
previous study, the current study also reported the least number
of SNPs on homologous chromosome 4 in all three genomes
(Rimbert et al., 2018). After QC, the minimum number of SNPs
was found on chromosome 4D, which is similar to previously
reported studies (Alipour et al., 2017; Rimbert et al., 2018).

The understanding of the population structure is crucial for
further downstream analysis, for example, genome-wide
association studies (GWAS). The evaluation of genetic
diversity also provides vital information which can help in the
preservation strategies and broadening of the genetic base of
crops (Eltaher et al., 2018; Tehseen et al., 2021a). The presence of
subpopulations in the panel can be attributed to the selection of

FIGURE 6 | Estimated population membership probability of 600 bread wheat landraces from eight countries where each bar represents a landrace.
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desirable traits and genetic drift (Kumar et al., 2020). In the
current study, the population stratification estimated by
STRUCTURE identified two potential subpopulations in the
landraces panel. The two subpopulations were broadly divided
into Syrian and Turkish landraces. Although a large number of
landraces (n = 533) were collected from these two countries and
two subpopulations seemed like an acceptable clustering,
nevertheless, the two populations were highly admixed with
no clear differentiation, therefore further analyses were
conducted in order to find the genetic diversity and
population clustering of these 600 landraces. Furthermore, it
has been reported that the value of k = 2 in STRUCTURE
sometimes means that the STRUCTURE could not correctly
identify the genetic structure of the population (Janes et al.,
2017). We used DAPC and PCA to further dissect the true
structure of the landrace population. The PCA and DAPC
results identified three potential subpopulations. Although
there was admixture within the populations, the clusters were
primarily based on landraces from Syria, Turkey, and Iran, which
was initially expected from the population as well because the
landraces were mainly collected from these three geographical
regions, and the landrace native to these lands were supposed to
show some overlapping and genetic differentiation as previously
reported by Yang et al. (2020). Therefore, it was concluded that
the results of DAPC and PCA were more precise in comparison
with STRUCTURE. A previous study of 804 bread wheat
accessions from 30 different countries identified that the
European accessions were separated from the majority of
Asian and Middle Eastern accessions and the latter showed
overlapping (Winfield et al., 2018). Similarly, Balfourier et al.
(2007) used 3,942 wheat genotypes originating from 73 countries,
characterized them with a set of 38 SSR markers, and observed a
close relationship between the accessions from Turkey, Iran, and
Iraq. Another study of 78 wheat landraces from 22 countries
reported that the landraces were primarily divided into Asian and
European clusters; furthermore, the landraces from Turkey and
Iran were placed in the same subgroup thus further confirming
the results of the current study showing admixture within Iranian
and Turkish landraces (Strelchenko et al., 2005). Chen et al.
(2019) reported that the landraces from Western Asia (Turkey,
Syria, Iran, and Iraq) were clustered together and also showed a
degree of admixture within the two major clusters identified
which separated the landraces from this region from the rest of
the landraces and cultivars of other regions. A study of 1,068
wheat landraces from East Asia and West Asia divided the panel
into three main subpopulations, interestingly Syrian and Turkish
landraces were clustered together, whereas the Iranian landraces
showed more genetic similarity with the Afghan landraces than
the Syrian and Turkish ones (Lee et al., 2018). The Fertile
Crescent which includes modern-day Turkey and Syria is
considered the center of origin of the wheat crop, which
explains the complex background and admixture present
among the landraces collected from these countries (Karagöz,
2014; Baloch et al., 2017). The genetic structure of the current
population divided the panel into three major clusters based
mainly on their geographic origins with admixture revealing high
genetic differentiation between the geographic origin, and the

results were similar to previous studies (Morgounov et al., 2016;
Baloch et al., 2017; Wang et al., 2017; Rufo et al., 2019). The
presence of admixture may be attributed to the historical seed
exchange among the regions due to close geographical proximity
(Lopes et al., 2015; Morgounov et al., 2016; Alemu et al., 2020).

The fixation index (Fst) is used to measure the genetic
differentiation among the populations (Tehseen et al., 2021a).
An Fst value of 0.15 and more predicts the presence of a
significant genetic differentiation in the subpopulations
(Frankham et al., 2002). As a result of high genetic
differentiation between the subpopulations, lower levels of
gene flow between the subpopulations were expected. The low
levels of gene flow could be due to the cultivation of newly
developed cultivars in all the countries and less use of traditional
bread wheat landraces in the breeding programs. Rufo et al.
(2019) also reported low levels of gene flow among the wheat
landrace population of Mediterranean origin. Significant
differentiation in the two subpopulations was further validated
with the analysis of molecular variance (AMOVA), where the
majority of the variation (97.4%) was from within the
subpopulations. A similar trend was observed when the
population stratification was estimated by the DAPC, and
when the geographic origin of the landraces was used as a
proxy for clustering the populations, most of the genetic
variation was observed within the three (95.8%) and eight
subpopulations (95.5%), respectively. Whether the genetic
variation within the subpopulations is due to the variation that
occurred during different domestication events or as a result of
introduction from other regions by farmers and traders is still
unknown. Many previous studies have reported similar results
where most of the variation was accounted for within the
subpopulations when compared with between the populations
in different hexaploid wheat populations (Zhang et al., 2011;
Arora et al., 2014; Joukhadar et al., 2017; Eltaher et al., 2018;
Bhatta et al., 2019; Bhattacharjee et al., 2020). Therefore, the
selection of parental genotypes from within the subpopulation
could be more useful compared with a selection from between the
subpopulations. However, this can be changed depending on the
breeding objectives. The DAPC analysis divided the landraces
into three subpopulations in which most of the landraces of
Syrian, Turkish, and Iranian origin were grouped in their
respective clusters, and this grouping was in accordance with
the geographic proximities of the landraces. The landraces from
Iraq and Jordan were genetically closer to the Syrian group,
whereas the landraces from Spain, Greece, and Palestine were
grouped with Turkish landraces. The countries from these
regions have previously been reported to show similar
clustering (Kilian et al., 2010; Baloch et al., 2017; Rufo et al.,
2019).

Based on the genetic diversity indices when the population
stratification was estimated by the STRUCTURE program,
subpopulation 2 showed higher genetic diversity than
subpopulation 1. Subpopulation 2 consisted of 238 landraces
and was mainly composed of landraces from Syria and Turkey, in
addition to some landraces from Iran, Greece, and Iraq, whereas
subpopulation 1 contained 362 landraces. The presence of higher
genetic diversity in subpopulation 2 indicated the potential of this
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group to be used in breeding programs. In the case of three
subpopulations, as estimated by DAPC and PCA, subpopulation
2 was the most diverse as it showed the highest values for genetic
diversity indices and was composed of landraces from Syria and
Iran. The higher genetic diversity in the Syrian and Iranian
landraces has also been previously reported (Zhang et al.,
2011; Alipour et al., 2017; Zarei Abbasabad et al., 2017). It is
to be noted that there was substantial overlapping of Turkish
landraces in both the subpopulations showing their importance
which can be utilized for potential economical traits in bread
wheat. Several previous reports have reported higher genetic
diversity in different panels of Turkish landraces, and it was
also reported that in the case of larger population panels, Turkish
and Syrian accessions have tended to be genetically closer to each
other (Baloch et al., 2017; Yang et al., 2020). When the landraces
were divided into different clusters with geographic origin as a
proxy, then the highest genetic diversity was observed in Syrian
landraces followed by Turkish and Iranian. The results were as
expected because 97% of the total landraces belonged to these
three geographical regions. There was no significant difference in
genetic diversity between the landraces from these three
countries, however, it is to be noted that only 8% of the total
landraces were from Iran when compared with 62 and 26% from
Syria and Turkey, respectively, identifying high genetic diversity
in Iranian landraces and their potential use for the exploitation of
economically essential traits in breeding programs. The
importance of the landraces from these geographic regions has
been previously reported as well, which supports the results of the
current study (Alipour et al., 2017). Previously, various studies
have also reported the genetic diversity among the wheat cultivars
from the Mediterranean regions (Nazco et al., 2012; Amallah
et al., 2015; Soriano et al., 2016; Rufo et al., 2019). It was observed
that almost in all cases, the genetic diversity among the landraces
was higher in the landraces than in the cultivars in the region.
This could be due to the presence of high genetic variability and
their documented durability against biotic and abiotic stresses
(Pecetti et al., 1994). The population stratification between the
landraces and cultivars has also grouped them both separately
because of selected cycles of breeding and allele accumulation in
the cultivars (Soriano et al., 2016). The local landraces with high
genetic diversity are potential sources of new alleles for the
improvement of biotic and abiotic stress resistance when
introgressive in the modern cultivars (Nazco et al., 2012).

From these results, we can report that the 600 bread wheat
landraces used in the current study, in particular, subpopulation
2, estimated via STRUCTURE and DAPC methods, potentially
provide broad and important genetic diversity. This diversity
could be used in current and future wheat genetic enhancement
and breeding research programs around the world. High genetic
diversity is an important factor in conducting association
mapping studies (GWAS) and marker-assisted selection for
the mapping and identification of economically important
traits in wheat. In addition, these landraces were collected
from eight different countries with diverse agroclimatic
conditions, therefore these landraces should also be a useful
source of genes to be used in breeding programs addressing
the challenges of changing global climate.

CONCLUSION

The study provided a detailed population structure and genetic
diversity analysis of 600 bread wheat landraces collected from eight
countries preserved at the ICARDA genebank. Clustering analysis
showed distinct population structures in the landraces. The landraces
were mainly divided into Turkish, Syrian, and Iranian groups with
significant overlapping. This admixture is a result of historical seed
exchange between these countries through farmers and traders due to
their close geographical proximity to each other. The genetic diversity
indices represented high genetic diversity in these wheat landraces.
These landraces were collected from a wide range of agroclimatic
zones, as a result possess high diversity and capacity to tolerate and
resist various abiotic and biotic constraints, and could hence be used as
a potential source of new genes/alleles for the genetic enhancement of
hexaploid wheat. Therefore, sustainable conservation and use of these
landraces preserved in the genebank is important for future breeding
strategies of wheat breeding programs worldwide.
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The NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) gene
family plays a critical role in plant development. However, our understanding of the
mechanisms of how NB-ARC genes regulate plant development in the plant panicle is
still limited. Here, we subjected 258 NB-ARC genes in rice to genome-wide analysis to
characterize their structure, function, and expression patterns. The NB-ARC genes were
classified into three major groups, and group II included nine subgroups. Evolutionary
analysis of NB-ARC genes in a dicotyledon plant (Arabidopsis thaliana) and two
monocotyledonous plants (Oryza sativa L. and Triticum aestivum) indicated that
homologous genome segments were conserved in monocotyledons and subjected to
weak positive selective pressure during evolution. Dispersed and proximal replication
events were detected. Expression analysis showed expression of most NB-ARC genes in
roots, panicles, and leaves, and regulation at the panicle development stage in rice Ce253.
The GNP12 gene encodes RGH1A protein, which regulates rice yield according to panicle
length, grain number of panicle, and grain length, with eight major haplotypes. Most
members of NB-ARC protein family are predicted to contain P-loop conserved domains
and localize on the membrane. The results of this study will provide insight into the
characteristics and evolution of NB-ARC family and suggest that GNP12 positively
regulates panicle development.
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INTRODUCTION

NB-ARC (nucleotide-binding adaptor shared by APAF-1, R
proteins, and CED-4) proteins are critical regulators of
signaling pathways and play important roles in effector
recognition and signal transduction in healthy plant growth
and development (Jacquemin et al., 2014; Wen et al., 2017;
Chen et al., 2018). NB-ARC proteins contain an NB-ARC
domain that is proposed to act as a molecular switch, with a
nucleotide-binding (NB) subdomain including a P-loop, a
C-terminal extension that forms a four-helix bundle (ARC1),
and a winged-helix fold (van der Biezen and Jones, 1998; Albrecht
and Takken, 2006). The NB subdomain can bind and hydrolyze
ATP in vitro (Tameling et al., 2002). NB-ARC belongs to the
STAND (signal transduction ATPases with numerous domains)
family of NTPases, and is proposed to work as an NTP-
hydrolyzing switch by binding and hydrolyzing NTP and
regulating signal transduction by conformational changes
(Leipe et al., 2004). Recent studies revealed NB-ARC proteins
with similar central nucleotide-binding-ARC domain
architectures act in metazoan innate immunity and
programmed cell death pathways (Slootweg et al., 2009). For
example, NB-ARC genes share homology with human APAF-1
and C. elegans CED-4, proteins that regulate cell death (Yildirim-
Ersoy et al., 2011). RPP1A belongs to the NB-ARC gene family
and reduces plant growth with broad-spectrum resistance to
virulent strains of H. parasitica in Arabidopsis (Michael
Weaver et al., 2006). Constitutive expression of TIR-NB-ARC-
LRR geneVpTNL1 in Arabidopsis resulted in either a wild-type or
dwarf phenotype (Wen et al., 2017). NB-ARC genes might
contribute to R. glutinosa consecutive monoculture problems
(Chen et al., 2018). Domains can work together as a platform
to mediate downstream signal transduction events (Lukasik and
Takken, 2009). In wheat, many NB-ARC gene clusters include
highly similar genes likely formed by tandem duplications
(Andersen et al., 2020). Some NB genes have been reported to
be regulated in response to morphological development (Igari
et al., 2008). AhRAF4 was observed to correlate with
morphological changes in development in maize (Dolezal
et al., 2014). NB-ARC-containing sequences in wheat exhibit
maximum homology with proteins from indica and
Brachypodium distachyon, and distributions of NB-ARC
sequences are balanced among the three wheat sub-
genomes (Chandra et al., 2017). In indica, Oryza
glaberrima (Slootweg et al., 2009), and Oryza brachyantha
(FF), conserved NB-ARC genes were subjected to strong
purifying selection but selection was more relaxed for
expanded homologous genes (Jacquemin et al., 2014). NB-
ARC protein function has been studied in wheat, rice, and
Arabidopsis, but the mechanism of NB-ARC protein function
in rice panicle development remains poorly understood.

Rice is one of the most important cereal crops in the world
and feeds half population of the world (Zhao et al., 2015). In
recent years, many important genes controlling rice grain
yield have been isolated and functionally characterized. LP1
encodes a Remorin_C-containing protein of unknown
function and the LP1 allele of Xiushui79 leads to reduced

panicle length (Liu et al., 2016). Grain Number per Panicle1
(GNP1), Rice GA20ox1 encoding a cytokinin (Tameling et al.,
2002), and the biosynthesis gene for gibberellins upregulate
cytokinin activity to increase grain number and grain yield in
rice (Wu et al., 2016). GW8 encodes an SBP-domain
transcription factor that regulates grain width by binding
directly to the GW7 promoter to repress its expression
(Wang et al., 2015). OsMKK3 encodes a MAP kinase that
controls rice grain size and chalkiness (Pan et al., 2021).
Although few studies have focused on NB-ARC proteins in
rice, these important plant proteins likely have multiple
regulatory roles. For example, the gain-of-function
mutation of NB-ARC protein RLS1 (Rapid Leaf
Senescence1) causes high-light-dependent HR-like cell
death in rice (Wang et al., 2020). Overall, a greater
understanding of mechanisms underlying grain yield will
strengthen our understanding of regulatory mechanisms for
these traits and facilitate the breeding of crop varieties with
high-yield potential.

In this study, members of the NB-ARC gene family were
identified from analysis of the rice genome. The motif
composition and gene structures of these genes were
systematically analyzed, and tandem duplication and gene
replication events were identified. Collinear relationships
between rice, wheat, and Arabidopsis were compared. The
expression levels of 11 subgroups of NB-ARC genes in
different tissues and panicle development of rice Ce253 were
analyzed by RNA-Seq and the expression levels of 18 genes were
measured via qPCR. Functional analysis was performed of a
selected NB-ARC gene, GNP12. This gene serves as a positive
regulator in panicle development and panicle length. The results
of this research provide expand our understanding of the function
of the NB-ARC gene family and provide guidance for future
efforts to improve rice breeding.

MATERIALS AND METHODS

Rice Materials
The rice variety Ce253, widely planted in Guangxi Province,
China, was selected for this study and was obtained from the
Rice Research Institute, Guangxi Academy of Agricultural
Sciences. Rice was planted under natural field conditions at
the Rice Research Institute of Guangxi Academy of
Agricultural Sciences, Nanning, China in 2020. The
distance between plants within rows was 16 cm, and the
distance between plants in separate rows was 20 cm. Field
management, including irrigation, fertilizer application, and
pest control, were performed according to normal agricultural
practices. Fully filled grains were subjected to grain width,
length, and weight measurement with a Wanshen SC-G
automatic seed test system. All trait measurements were
repeated at least three times.

Identification of Gene Family Members
Genome-wide identification of NB-ARC genes from three species
of monocotyledonous and dicotyledonous plants was performed.
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Hidden Markov Model (HMM) (Punta et al., 2012) (version
3.0) analysis was used for the search. HMM profiles of NB-
ARC genes (PF00931.2) were obtained from the Pfam
database (http://pfam.xfam.org/) with an e-value≤1e-3. The
results of the HMMER sequence alignment were screened to
remove protein sequences that were at least 45% longer than
the length of the HMM model domain, while retaining the
longest protein sequence in the variable shear. Simple
Modular Architecture Research Tool (SMART) (version 8.
0) (http://smart.embl-heidelberg.de) was used for further
analysis with all non-redundant protein sequences (Schultz
et al., 1998). Finally, 258 NB-ARC genes models were
identified in the rice genome for further analysis. The basic
information of the identified NB-ARC proteins was obtained
using the tools at the ExPasy website (http://web.expasy.org/
protparam/). CDS coordinate information is listed in
Supplementary Table S1. Gene family data were analyzed
by Gene Denovo Biotechnology Co., Ltd. (Guangzhou,
China). A BLASTP search of the NCBI nonredundant
protein database was used to assign the NB-ARC domains.
Multiple alignments of NB-ARC domains with 11 different
plant NB-ARC domains of 11 subgroups were performed
using MEME. The submotifs were analyzed through http://
weblogo.berkeley.edu/logo.cgi. The 3D model of the NB-ARC
genes was predicted by Jpred and SWISS-MODEL. We used
the intersection results of Pfam (pfoo31, - e 1e-20) + smart (- e
0.1 -- dome 0.01) and blast (- e 1e-14 and identity >28%) as the
identified homologous genes.

Gene Structure Analysis, Chromosomal
Distribution, and Gene Duplication
The exon-intron structural information for the collected
rice NB-ARC genes was acquired from reference
genome annotation files (Os-Nipponbare-Reference-IRGSP-
1.0 pseudomolecules) to compare genomic and coding
sequences (http://rice.uga.edu/). The cDNAs were aligned
with their corresponding genomic DNA sequences. To map
all NB-ARC genes, the chromosome distribution and
conserved regions were confirmed by analysis of reference
genome annotation files. A chromosome distribution diagram
was drawn using the SVG package in Perl. Gene duplication in
rice was identified using the replicate gene classifier program
of MCScanX software (Wang et al., 2012). All protein-coding
sequences were aligned using blastp, and the alignment
results were used as input files for MCScanX software to
predict gene replication. A gene was identified as a
replication gene according to e-value<1e-5 or e-value<1e-
10. Five replication events were identified: segmental,
tandem, proximal, and decentralized (dispersed).

Motifs, Phylogenetic, Combination
Diagram, and Closely Related Species
Analysis
Conserved motifs in the gene family sequences were identified
using the MEME program (http://alternate.meme-suite.org/

tools/meme) with statistical significance (Bailey et al., 2015).
The MEME program was run with default settings, maximum
motif search value of 15, and an optimum motif width of
10–100 amino acid residues. A phylogenetic tree was
constructed with the neighbor-joining algorithm in MEGA
(version 7.0) with bootstrap test of 1,000 times and drawn
with iTOL (https://itol.embl.de/) (Kumar et al., 2016). ML
(maximum likelihood method) evolutionary tree was showed
in Supplementary Figure S1. Genome annotations and
corresponding protein sequences were downloaded from
EnsemblPlants (Brassica_rapa. IVFCAAS v1.36, Brassica_
oleracea.v2.1.36, Arabidopsis_thaliana.TAIR10) and GenoScope
(Brassica_napus.annotation_v5). The gene structure and motifs
were analyzed by systematic evolutionary relationships. Synteny
detection was performed by McScanX and drawn with Circos
software.

Ka/Ks Analysis
We compared the Ka/Ks ratios as a proxy of the selective
pressures acting on gene pairs for reciprocal best match gene
pairs from Arabidopsis, rice, and wheat. Ka/Ks was
calculated as the ratio of the number of nonsynonymous
substitutions per non-synonymous site (Ka) in a period to
the number of synonymous substitutions per synonymous
site (Ks) in the same period. Ka, Ks, and Ka/Ks values are
based on coding sequence alignment and calculated using
the KaKs_calculator software package based on the Nei and
Gojobori model (Nei and Gojobori, 1986). Positively or
negatively selected sites were identified based on Ka/Ks
ratios with a confidence interval for each ratio given by a
p value and an adjusted p value (Adj.Pval) from multiple
comparisons (Massingham and Goldman, 2005).
Homologous genes with a Ka/Ks ratio above 1 were under
strong positive selection, between 0.5 and 1 were considered
to be under weak positive selection, and below 0.1 were
considered to be under negative selection (purifying
selection).

Vector Construction and Rice
Transformation and Subcellular
Localization
To assess subcellular localization, sgRNA-Cas9 plant
expression vectors were constructed as described previously
(Mao et al., 2013). The targeting sequence (5′- TAGTCGACG
ACAATGCTGCCAGG-3′), corresponded to +400 to +422
within the third exon encoding the C-terminal end of
GNP12 (starting at amino acid residue 134). To construct
the GFP plasmids, the cDNAs of LOC_Os101g458510 were
amplified from Nipponbare and the cDNA for
LOC_Os12g36720 was amplified from Ce253. The cDNAs
were cloned into the pBWA(V)HS-ccdb-GLos-GFP vector
to generate the insertion. Plasmids CaMV35S:GFP,
CaMV35S:LOC_Os101g458510-GFP and CaMV35S:GNP12-
GFP were transformed into rice leaf protoplasts for
subcellular localization. GFP was excited with a 488 nm
laser and imaging was performed.
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DNA Extraction, RNA Extraction,
Expression Analysis, and RNA-Seq
Panicles of Ce253 of different lengths (3, 5, 10, 15, 20, and 25 cm)
at the booting stage were flash-frozen in liquid nitrogen. Total
RNA was extracted from these tissues using a EasyPure® Plant
RNA Kit (Trans, Catalog no. ER301-01). RNA purity was
determined by assaying 1 µl of total RNA extract on a
NanoDrop 1,000. We measured the optical density (OD) ratio
between 260 and 280 nm from samples, where pure RNA eluted
in H20 (pH 7.0–8.5) or TE (pH 8.0) is expected to exhibit a ratio
of 2.0–2.1. Total RNA (2.0 μg) was used for cDNA synthesis with
a PrimeScript™ RT Reagent Kit with gDNA Eraser (TransScript®
II One-Step RT-PCR SuperMix, Tran, Catalog no. AH411-02).
The resulting cDNA samples were diluted five-fold and used as
templates for qRT-PCR using a TransStart® Green qPCR
SuperMix and a CFX96 RealTime system (Bio-RAD,
Hercules, CA, United States) following the manufacturer’s
instructions. The qRT-PCR reactions were performed as 10 µl
mixtures containing 5 µl of 2× Green qPCR MasterMix, 1 µl of
cDNA, 0.25 µl of each primer (10 µM), and 3.5 µl of ddH2O.
Amplification steps were 95°C for 30 s, 40 cycles of 95°C for
5 s, and 60°C for 30 s, followed by 65°C for 5 s, 95°C for 15 s,
60°C for 30 s, and 95°C for 15 s. Each experiment was repeated
at least three times. The qRT-PCR analysis was performed
using the ΔΔCt method. Details on gene-specific primers used
for real-time PCR are provided in Supplementary Table S1.
The ubiquitin gene (LOC_Os03g13170) (Chen et al., 2019) was
used as a control (*p < 0.05; **p < 0.01; Student’s t-test). RNA
samples used for RNA-seq analysis were prepared from
different panicles of Ce253 grown under normal field
conditions with three biological replicates. RNA library
sequencing was performed on an Illumina Hiseq™ 2,500/
4,000 platform by Majorbio. Sequence analysis was
performed using the method provided by Majorbio (http://
www.majorbio.com/). RNA-Seq data for NB-ARC genes in
different tissues were obtained from http://expression.
ic4r.org/.

Haplotype and Evolutionary Analysis
The single-nucleotide polymorphisms (SNPs) of 827
accessions used for haplotype analysis were acquired from
the 3K rice genomes (3K-RG) dataset. The grain length data
for 827 accessions were downloaded from the Rice SNP-Seek
Database. One-way ANOVA followed by Duncan’s new
multiple-range test were performed using SPSS 21.0
software. The genomic sequences of 1,400 cultivated and 58
wild accessions were obtained from the 3K rice genomes (3K-
RG) dataset and OryzaGenome (http://viewer.shigen.info/
oryzagenome/), respectively, and were used to construct a

FIGURE 1 | Phylogenetic tree representing the relationships among 258
genes of rice. Phylogenetic tree (A), exon/intron structure. Number is
bootstrap values. (B), and motif composition (C) of NB-ARC genes in rice.
Neighbor-Joining (NJ)-Phylogenetic trees shown in a and b were
prepared using the same methods. The widths of Gy bars at the bottom

(Continued )

FIGURE 1 | indicate relative lengths of genes and proteins. Yellow boxes and
blue lines in b represent exons and introns, respectively. Different boxes in c
represent different motifs. Different background colors represent different
groups and subgroups.
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minimum spanning tree for RGH1A. Arlequin version 3.5
software was used to calculate a haplotype network and the
distance matrix output was used in Hapstar-0.6 to draw a
minimum spanning tree. The average nucleotide diversity (π)

and Tajima’s D for each subpopulation in RGH1A and 40-kb
flanking regions were calculated using DnaSP 5.10 software
(Librado and Rozas, 2009). The nucleotide diversity curves
were generated using 60 bp window and 15 bp step length.

FIGURE 2 | Chromosomal distribution of NB-ARC gene duplication events. (A) Distribution of NB-ARC genes with indicated duplication types. (B) Numbers of
duplicated genes for different duplication types. (C) Collinearity of replicative genes in the protein family.
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RESULTS

NB-ARC Genes in Rice Were Analyzed and
Subgroup IIf Was Identified as a
Representative Subgroup
A total of 258 rice NB-ARC genes were identified in the
Nipponbare genome (Supplementary Table S2). The lengths
of the CDS for these genes range from 624 (LOC_Os02g27680)
to 7,773 (LOC_Os06g41690) bp. Analysis revealed that 49.22% of

these NB-ARC genes contain 2–6 introns and 86.04% NB-ARC
genes contain 1–4 exons (Supplementary Table S2). Most of the
NB-ARC genes have a long CDS and show a highly conserved
structure (Figure 1). To explore the expansion of NB-ARC family
members in rice, these sequences were used to generate an
unrooted phylogenetic tree. The NB-ARC family members
were divided into three major groups. Group I contained 29
genes, Group II contained 226 genes, and group III contained
only three genes. The NB-ARC genes in group II were further
classified into nine subgroups (groups IIa, IIb, IIc, IId, IIe, IIf, IIg,

FIGURE 3 | Phylogenetic, Ka/Ks, and synteny analysis of NB-ARC genes from rice, Arabidopsis, and Triticum aestivum. (A)Group I, Group II, Group III, IIa, IIb, IIc,
IId, IIe, IIf, IIg, IIh, and IIi were identified in the rice genome; 1,052 and 50 NB-ARC genes were identified in Triticum aestivum and Arabidopsis thaliana. Genes from rice,
Arabidopsis, Triticum aestivum are indicated with the prefixes Os, At, and Tran, respectively. (B) Synteny analysis of Oryza sativa, Arabidopsis, and Triticum aestivum.
Gray lines in the background indicate collinear blocks of plant genomes. Different color bars represent the chromosomes of different species. The chromosome
number is labeled at the top or bottom of each chromosome. (C) Ka/Ks analysis of NB-ARC genes from rice, Arabidopsis and Triticum aestivum.
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IIh, and IIi). Of these, the two groups with the most members
were IIf with 35 genes and IIi with 37 genes. Group IIc
contained the fewest number of genes, 13. A total of 15
motifs were identified by MEME, and two of these, M2 and
M6, were present in 98.83 and 97.28%, respectively, of the NB-
ARC genes. Genes on a single branch contained similar
numbers of introns and similar distribution and number of
motifs. In a given subtribe of genes, the positions of motifs
were highly conserved. In group IIf, the genes contained 1-4
introns and 2–12 exons. Most genes in this group share 10
similar motifs (motifs 1, 2, 3, 4, 6, 8, 9, 10, 11, and 12)
(Figure 1). Group IIf was representative in motifs and
numbers of NB-ARC genes. Overall, NB-ARC genes were
unevenly distributed across all 12 chromosomes, with 29
(11.24%), 61 (23.64%), and 34 (13.18%) genes located on
Chr 8, 11, and 12, respectively. (Figure 2A). Gene analysis
revealed duplication events including segmental, tandem,
proximal, and dispersed, but not singleton duplications.
Dispersed (110) and proximal replication 82) most
frequently occurred in NB-ARC genes across all
chromosomes (Figure 2B). Segmental replication was
detected only on Chr2, Chr4, Chr7, and Chr11
(Figure 2B). Pairwise replication of genes was also detected
in NB-ARC genes (Figure 2C). The genes in Group IIf,
mapped to eight chromosomes, with dispersed, tandem,
and proximal replication. In general, genes in subgroup IIf
of group II showed typical structure with main motif and
contain more genes, and analysis suggested that replication
events were the main driving force of NB-ARC evolution.

Conservation of NB-ARC Homologous
Genome Segments in MonocotyledonsWith
Weak Positive Selective Pressure During
Evolution
To study the relationships between the NB-ARC genes of rice and
other model plant species, including gramineous plants, we
performed cluster analysis (Figure 3A). The NB-ARC genes of
a dicotyledon plant, Arabidopsis, and two monocotyledonous
plants, rice and wheat, were compared. Pfam was used to
compare 1,052 and 50 NB-ARC genes in wheat and
Arabidopsis, respectively. Next, based on the highly conserved
NB-ARC domains of rice, wheat, and Arabidopsis, a phylogenetic
tree was built. The 50 genes of Arabidopsis belonged to a single
subgroup, and every subgroup contained rice and wheat
genes (Figure 3A). Within each subgroup, genes from the
homologous chromosome group generally clustered into a
clade (Figure 3A); for example, LocOs12g36690,
LocOs12g36720, and LocOs12g33160 were clustered in a
subgroup. To further study the relationships between the NB-
ARC genes of rice and other plants, we next performed whole
genome synteny analysis (Figure 3B). A total of 65 homologous
genome segments were distributed on 12 chromosomes in wheat
(Supplementary Table S3). The highest number of homologous
genome segments, 19, mapped to the syntenic locus in
chromosome 4 and wheat chromosomes 2A, 2B, 2D. Two
homologous genome segments mapped to chromosome 5 in

Arabidopsis (Figure 3B) For further evolutionary analysis, the
Ka, Ks, and Ka/Ks values of homologous gene pairs were
calculated based on the comparative synteny map (Figure 3C).
Ka/Ks ratios of 2,571 gene pairs were evaluated in rice and wheat
in protein coding genes. Fifty-two gene pairs had Ka/Ks > 1, 2,412
gene pairs had 0.5 <Ka/Ks < 1, and no gene pairs had <0.1. Ka/Ks
ratios were similarly evaluated for 70 gene pairs in rice and
Arabidopsis thaliana to examine in protein coding genes. Five
gene pairs had Ka/Ks > 1, 59 gene pairs had 0.5 < Ka/Ks < 1, no
gene pairs had <0.1, and the remaining had no data so could not
be calculated. In rice, 15 gene pairs had Ka/Ks > 1, 431 gene pairs
had 0.5 < Ka/Ks < 1, no gene pairs had <0.1, and five gene pairs
had 0.1 < Ka/Ks < 0.5 (Supplementary Table S4). Because the
majority of homologous NB-ARC gene pairs had 0.5 < Ka/Ks < 1,
this suggests that the NB-ARC gene family in these three plant
species experienced weak positive selective pressure during
evolution. Evolution of the few NB-ARC genes in rice was
governed by strong constraints that may have contributed to
their structural and functional stability (Figure 2C and
Supplementary Table S5). Interestingly, some homologous
genome segments mapped between rice and wheat were not
observed between rice and Arabidopsis, which may indicate
that these homologous pairs formed after the divergence of
dicotyledonous and monocotyledonous plants. Overall, the
analysis shows that the NB-ARC gene family is highly
conserved in monocotyledons and homologous genome
segments suggest that segmental duplications may be the main
cause of the extension of this gene family. Multiple copies of genes
have arisen during the evolution of dicotyledons and
monocotyledons.

Most NB-ARC Genes Regulate Panicle
Development
To study the spatial and temporal expression patterns of NB-ARC
genes, transcriptomic profiling was profiled across eight different
tissues (anther, callus, leaf, panicle, pistil, root, seed, and shoot) to
analyze the role of these genes in rice organ development
according to the Rice Expression Database (Supplementary
Table S6 and Figure 4A). In our findings, 23 genes exhibited
no expression in any tissues, five genes showed expression in eight
tissues, and the remaining 88 genes showed FPKM values higher
than 1 in more than three tissues. LOC_Os02g25900 and
LOC_Os12g36720 exhibited FPKM values higher than 1 in
anther, callus, leaf, panicle, pistil, root, seed, and shoot.
Expression of these genes varied for different tissues, with
expression of 141 genes in root, 94 genes in panicle, and only
nine genes in anther.

For the IIf subgroup, one gene was most expressed in callus
and 14 genes were most expressed in panicle. Six genes of IIf were
most expressed in pistil and 23 genes of IIf were most expressed in
root. IIf, a typical subgroup in the NB-ARC gene family, includes
genes such as LOC_Os12g36720 that was expressed in eight
different tissues (Figure 4A). To confirm the expression
patterns, expression levels of 11 genes of different subgroups
were detected by qRT-PCR. The results showed that six of these
genes exhibited similar expression patterns to the transcriptomic
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data (Figure 4B). Most of these genes showed high expression in
root. LOC_Os12g36720 in IIf was most highly expressed in anther
and panicle.

Few studies have explored the roles of NB-ARC genes in
normal plant growth and development. To investigate a possible
function of these genes to regulate plant panicle development, the
expression of selected NB-ARC genes was analyzed at the panicle
development stage of cultivated rice (Figure 4B, c). In rice Ce253,
40, 34,32, 46, and 64 genes exhibited FPKM values higher than
1 at 5, 10, 15, 20, and 25 cm panicle length stages, respectively,
and 215, 221, 223, 209, and 191 genes had FPKM values lower

than 1 in 5, 10, 15, 20, and 25 cm panicle length stages,
respectively. Most genes of the first subgroup of IIf had FPKM
values lower than 1 at the early stage of young panicle
differentiation (5, 10 cm), 12 and 11 genes exhibited FPKM
values higher than 1 at 20 and 25 cm panicle length stages,
respectively, and two, four, and four genes at 5, 10, and 15 cm
panicle length stages, respectively (Figure 4B). The observed
expressional activation in panicle development for
LOC_Os12g36690, LOC_Os11g45970, and LOC_Os12g36720
suggests these genes play a crucial role in panicle development
of rice.

FIGURE 4 | Expression profiles of NB-ARC genes. (A) Expression patterns of rice NB-ARC genes. The expression data are RNA-Seq data from the Rice
Expression Database. The white box indicates no expression (zero fragments per kb of exon per million mapped reads (FPKM)) in this tissue. The transcript abundances
in different tissues in the heat map were estimated by Log2 (FPKM) values. (B) Expression patterns of rice NB-ARC genes in Ce253 at 5, 10, 15, 20, and 25 cm panicle
lengths. (C) Expression of rice NB-ARC genes in root, anther, shoot, bud, leaf, and panicle of Ce253. (D) Expression of key genes that control panicle development
in 5, 10, 15, 20, and 25 cm panicle lengths in Ce253. Data are given as mean ± s. e.m. (n = 3).UBQ (ubiquitin) was used as a control. Error bar indicates 95% confidence
interval.
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FIGURE 5 | The effect of GNP12 on cell proliferation length of panicle, grain number of panicle and grain size. (A) Length of panicle of Ce253 and Cr-lines. Scale
bars, 5 cm. (B) Length of grains from Ce253 and Cr-line. (C) Width of grains from Ce253 and Cr-line. Scale bars, 1 cm. (D) Scanning electron microscopic images of
chalkiness in transgenic plants and Ce253. Bar, 50 μm. e-l Panicle length (cm) (E), grain number of panicle (F), primary branch number (G), setting percentage (%) (H),
grain of length-width ratio (I), grain length (mm) (J), grain width (mm) (K), CTK content in Ce253 and Cr-line (l). Data are given as mean ± s. e.m. (n = 12). Error bar
indicates 95% confidence interval. Student’s t tests were used to generate p values. Haplotype and evolutionary analysis of GNP12 in rice (M) Major haplotypes of
GNP12 using 32 single-nucleotide polymorphisms (SNPs) in the coding sequence region in 827 accessions (N) Phenotypic evaluation of haplotype grain length in
different subgroups (O) Haplotype network analysis of GNP12 (P) Nucleotide diversity of GNP12.
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GNP12 Regulates Rice Yield With Effects on
Panicle Length, Panicle Grain Number, and
Grain Length
To test the ability of NB-ARC genes to regulate plant panicle
development, LOC_Os12g36720 was selected as a representative
IIf gene. Expression of this gene was detected in anther, callus,
leaf, panicle, pistil, root, seed, and shoot, and exhibited a
remarkably high level of expression in Ce253 during panicle
development. Interestingly, LOC_Os12g36720 encodes GNP12, a
Resistance Gene Homologs (RGH1A) gene (Supplementary Table
S7). Therefore, LOC_Os12g36720, GNP12, was selected for
further characterization (Supplementary Table S6). To further
characterize the function of this gene, we used a CRISPR-Cas9
system for targeted gene mutation of GNP12 in Ce253 (Cr line)
(Figure 5A). The resulting deletions lead to frameshifting
mutations that result in incomplete peptides of GNP12 that
exhibit a loss of NB-ARC domain function. Compared to
Ce253, the three Cr lines Cr-1, Cr-2, and Cr-3, were reduced

13.68, 3.71, and 9.39%, respectively, in panicle length (Figure 5B);
23.80, 8.50, and 24%, respectively, in panicle grain number; 2.76,
0.7, and 2.51%, respectively, in grain length; and 26.58, 8.79, and
10.98% in setting percentage, respectively. The three Cr lines
showed significant reductions in panicle length, grain number of
panicle, grain length, and setting percentage (Figure 5A, b, e, f, h,
j). To investigate the tissue structures affected by GNP12,
microstructures of grain chaff were observed by scanning
electron microscopy (Figure 5D). The chaff of Cr was shorter
than that of Ce253 (Figure 5D), but the Cr lines did not differ in
length-width grain ratio or grain width (Figure 5C, i, k).

Cytokinin (CTK) is a primary determinant of plant
architecture (Tameling et al., 2002). To investigate whether
GNP12 influences CTK levels, we compared the CTK content
in wild-type and Cr lines. The CTK content in Cr lines was
reduced to 30.28% of that in the wild-type (Figure 5l). The results
suggest that GNP12 may affect panicle development and grain
production in rice through changes in CTK content.

TABLE 1 | Haplotype analysis of GNP12.

Hap1 Hap2 Hap3 Hap4 Hap5 Hap6 Hap7 Hap8

22,488,973 T T T T G T T T
22,488,980 T T T T C T T T
22,489,046 A A A A C A A A
22,489,052 A A A A T A A A
22,489,099 C C A C C C C C
22,489,112 T T T T C T T T
22,489,124 G G G G C G G G
22,489,273 T T T T A T T T
22,489,347 G T T T G G T T
22,489,410 A T T T T A T T
22,489,411 A C C C C A C C
22,489,412 A T T T T A T T
22,489,447 G G G G A G G G
22,489,482 A A A A T A A A
22,489,489 C C C C T C C C
22,489,499 G G G G T G G G
22,489,559 T C C C C T C C
22,489,568 T C C C T T C C
22,489,600 C A A A C C C A
22,489,759 G G G G T G G G
22,489,794 T T T T G T T T
22,489,825 C C C C T C C C
22,489,831 T T T T C T T T
22,489,832 G G G G A G G G
22,489,838 C C C C A C C C
22,489,841 T T T T C T T T
22,490,008 T T T C T T T C
22,490,063 C C C C C C C T
22,490,105 A A A C C A A C
22,490,129 T T T G G T T G
22,490,179 C C C T C C C T
22,491,343 T T T C C C C T
All 178 320 220 27 13 29 20 20
Adm 1 11 5 3 0 0 0 5
Aus 0 13 0 21 0 0 0 15
Bas 0 49 0 2 0 0 0 0
Geng-tmp 0 97 7 0 0 0 0 0
Geng-trp 0 23 186 0 0 0 0 0
Xian 177 127 22 1 13 29 20 0
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To investigate natural variation in GNP12, we analyzed the
polymorphism ofGNP12 in the 3K rice genomes (3K-RG) dataset
(Wang et al., 2018). We identified eight major haplotypes of
GNP12 with 32 single-nucleotide polymorphisms (SNPs) in the
coding sequence region in 827 accessions of the 3K-RG dataset
(Figure 5m and Table 1). Except for Hap2, the frequencies of the
major haplotypes differed significantly among different
subgroups. Hap1, Hap5, Hap6, and Hap7 were specifically
found in indica rice cultivars, with Hap1 being the most
prevalent. Hap2 was mainly identified in indica, temperate
japonica, tropical japonica, and Bas rice cultivars. Hap3 was
mainly present in tropical japonica and indica rice cultivars.
Hap4 and Hap8 were mainly found in Aus rice cultivars
(Figure 5n). Phenotypic evaluation showed that Hap1, Hap3,
Hap5, and Hap6 in the indica subgroup and Hap3 in the japonica
subgroup showed longer grain length than other haplotypes.
Haplotype network analysis showed that favorable haplotypes
ofGNP12may have different origins. Favorable indica haplotypes
Hap3 and Hap6 may have come directly from O. rufipogon I and
favorable indica haplotypes Hap1 and Hap5 may have come from
novel favorable mutations during indica domestication.
Favorable haplotype Hap3 in japonica may have arisen during
the differentiation of temperate and tropical japonica (Figure 5o).

To determine whether selection acted on GNP12, we analyzed
the nucleotide diversity of GNP12 among different rice
subgroups. On average, the nucleotide diversities of GNP12 in
tropical japonica and indica subgroups were respectively much
lower and higher than those in other haplotypes. To assess
whether the DNA sequence evolved randomly or under a non-
random process, Tajima’s D values were calculated for GNP12 in
tropical japonica and indica and were negative and positive,
respectively. Both values deviated significantly from zero,
implying potential positive selection and balancing selection
acting on GNP12 in tropical japonica and indica, respectively
(Figure 5p). To further test whether the observed reduction in
nucleotide diversity in tropical japonica was due to positive
selection or a bottleneck effect, we calculated the nucleotide
diversity of 40-kb flanking regions of GNP12. We found that
the average nucleotide diversity of the GNP12 flanking regions in
tropical japonica was significantly lower than that in other

regions, suggesting that the decrease of nucleotide diversity of
GNP12 in tropical japonica may be largely caused by positive
selection (Table 2).

NB-ARC Proteins Contain Conserved
P-Loop Domains
To further investigate the subdomains and functions of NB-ARC
genes, 11 predicted proteins from group I, group II, and group III
were selected for further analysis. Strong conservation was
identified for several subdomains: αC, αM, αS, β3, β2-β5, and
P-loop (Figure 6A, b). The most conserved residues in the
putative NB-ARC domains were found in the P-loop (G193
and S223) and αS (L468) subdomains (Figure 6A). Analysis of
the gene structure and conserved motifs revealed high
conservation of rice NB ARC genes with no obvious variation
in the amino acid residues of the P-loop region among
homologous genes (Figure 6C). We observed few variants of
the 11 amino acids in the P-loop core, with substantial variation
in genic frequency of these variants in rice. These results indicate
the significant conservation of the P-loop in most rice NB-ARC
proteins. The predicted 3D structures of the identified rice NB-
ARC proteins were conserved, which was consistent with the
phylogenetic, gene structure, and conserved domain analysis.
LOC_Os02g02670, LOC_Os06g41670, LOC_Os06g22460,
LOC_Os012g36720, LOC_Os12g17490.1, and LOC_Os10g10360
were predicted to share similar structures (Figure 6C). Predicted
models were constructed to heuristically maximize alignment
coverage, identity percentage, and confidence score for the tested
sequences. For the 11 predicted NB-ARC proteins, α-helix was
most highly predicted as secondary structure (37.41–63.56%),
followed by random coil (20.03–35.64%), extended strands
(7.3–20.84%) and β-strands (0–5.29%) (Figure 6C and
Supplementary Table S8). The 3D modeling results revealed
similarity of predicted tertiary structures, implying that NB-ARC
proteins may have evolved from a shared ancestor and/or under
purification selection force for stabilization during long-term
acclimation after initial divergence.

To further characterize the function of the NB-ARC genes,
subcellular localization studies were performed. We randomly

TABLE 2 | Pi and Tajima’s D of GNP12.

Region Parameter Adm (94) Aus (109) Bas (75) Xian
(1,487)

Geng-
Tmp
(270)

Geng-Trp
(300)

Geng
(570)

Cultivated
(2,335)

Wild
Rice
(47)

Upstream 40 kb S 417 267 242 506 251 198 257 520 416
π 0.13228 0.15248 0.03796 0.19926 0.03453 0.02692 0.03253 0.16843 0.168
θ 0.15647 0.09736 0.09503 0.12323 0.09219 0.06052 0.0825 0.11978 0.15491
Tajima’s D −0.52663 1.89298 −2.07817* 1.7679 −1.94536* −1.70608 −1.7997 1.14314 0.30965

RGH1A S 17 15 11 16 18 14 18 18 29
π 0.28385 0.1991 0.06583 0.284 0.10599 0.02777 0.06628 0.2748 0.32441
θ 0.18464 0.15831 0.12502 0.12688 0.16198 0.13115 0.14447 0.12001 0.18239
Tajima’s D 1.53066 0.70509 −1.28911 2.68133* −0.88196 −1.89673* −1.27709 2.8384* 1.87248

Downstream
40 kb

S 420 314 360 479 402 347 405 489 460
π 0.20758 0.18333 0.05493 0.20429 0.08986 0.04999 0.07115 0.23071 0.21806
θ 0.15405 0.11605 0.12831 0.12253 0.11344 0.09627 0.10193 0.11855 0.17358
Tajima’s D 1.18392 1.94233 −1.98862* 1.9106 −0.6511 −1.49276 −0.90395 2.66024* 0.94009
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selected two NB-ARC genes, LOC_Os12g36720 (IIf),
LOC_Os101g458510 (IIi), for subcellular localization in rice
protoplast cells. LOC_Os12g36720-GFP and
LOC_Os101g458510-GFP expression vectors were constructed
and transformed into rice protoplasts for transient expression.
Control GFP expression was observed throughout the membrane,
cytoplasm and nucleus, and the GNP12 and LOC_Os101g458510
proteins were mainly expressed in the nucleus and membrane,
respectively. This result indicated that these proteins are widely
present in various organelles.

DISCUSSION

Conserved Domains and Polymorphisms of
NB-ARC Genes Maintained a Dynamic
Balance During Evolution
NB-ARC proteins play central roles in recognizing pathogens,
initiating defense cascades, and maintaining cell development.
The NB-ARC conserved domain maintains stable similar
structures in different species, likely due to convergent
evolution, suggesting these proteins may perform similar
recognition and activation mechanisms (Slootweg et al., 2009).
In the Fabaceae family, eight conserved motifs of NB-ARC
domains have been identified (Pal et al., 2007). Plant NOD-
like receptor (NLR) proteins contain NB-ARC domains with
structural similarities to their mammalian homologues (Steele
et al., 2019). However, there is high polymorphism in some NB-
ARC genes in some species. The combination of conserved motifs
and the evolution of rich polymorphisms may allow response to
environmental signal stimulation to achieve coevolution by
replication events. In Arabidopsis, analysis of the NLR family
revealed that positive selection and recombination occurred
frequently in the leucine-rich repeat (LRR) domain but there
was negative selection in the nucleotide-binding (NB-ARC)
domain (Mondragón-Palomino et al., 2017). In peanut,
AhRAF4 of NB-ARC proteins evolved by recombination with
duplications and point mutations from Arachis duranensis (Deng
et al., 2018). Among O. sativa (Slootweg et al., 2009), O.
glaberrima (Slootweg et al., 2009), and O. brachyantha (FF), a
high number of paralogs suggests that the NB-ARC family
experienced highly dynamic evolution, with a large number of
tandem arrays and duplicated genes observed in the O. sativa
subspecies (Jacquemin et al., 2014). NB-ARC genes diversified
through duplication to encode receptors adapted to external
signals (Andersen et al., 2020). IPm21 encodes a coiled-coil,
nucleotide-binding site, leucine-rich repeat (CC-NBS-LRR)
protein, and evolutionary analysis of 38 non-redundant Pm21
alleles indicated that the nucleotide diversity of the LRR domain

FIGURE 6 | Predicted structures and subcellular localization of putative
NB-ARC protein domains based on 11 proteins from each 11 subgroups. (A)
Conservation of key motifs, residues, and secondary structure between
putative NB-ARC domains. Dashed lines indicate positions within
secondary structure elements. The histograms above the motifs represent the
degree of conservation (% of identical to conserved residuals) for putative NB-
ARC domains (blue columns) among 11 proteins from 11 subgroups. (B)

(Continued )

FIGURE 6 | Sequence logos representing the conservation of key motifs and
neighboring sequences. The size of the letters corresponds to information
content. (C) 3D model of 11 proteins from 11 subgroups in NB-ARC family.
(D) Subcellular localization of three proteins from groups I, IIf, and IIi.
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was significantly higher than those of the CC and NB-ARC
domains (He et al., 2020). NB-ARC genes can form genomic
clusters adjacent to LRR-RLK-XIIs by mechanisms other than
genomic clustering (Ngou et al., 2022). Overall, the evolution of
NB-ARC genes allows these genes to maintain key function
through conservation of the NB-ARC domain while the
C-terminal regions of these proteins exhibit polymorphisms to
allow these genes to co-evolve with the environment through
replication events.

GNP12 May Regulate Rice Yield by
Influencing Hormone Activity
Panicle grain number and length of panicle are important
agronomic characteristics, but the genetic determinants of
these traits remain unclear. Many genes regulate grain
number per panicle, length of panicle, and grain length by
influencing hormone activity. ERECTA1 (OsER1) is a
cytokinin oxidase/dehydrogenase that negatively regulates
grain number per panicle (Ashikari et al., 2005). ERECTA1
acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade,
and the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway is
required to maintain cytokinin homeostasis (Guo et al.,
2020). OsASP1 encodes a TOPLESS-related transcriptional
co-repressor, is closely associated with auxin action, and
regulates spikelet development (Yoshida et al., 2012). TGW6
encodes a protein with indole-3-acetic acid (IAA)-glucose
hydrolase activity that can control IAA supply at the
transition from the syncytial to the cellular phase to limit cell
number and grain length (Ishimaru et al., 2013). GW6 encodes a
GA-regulated GAST family protein and positively regulates
grain width and weight (Shi et al., 2020).

NB-ARC genes regulate plant development by catalyzing ADP
through ARC structure. NB-ARC proteins carry a central
nucleotide-binding-ARC domain that binds ADP/ATP rather
than GDP/GTP (Chattopadhyaya and Pal, 2008). The NB-
ARC domain may be a molecular switch between ADP
(repressed) and ATP (active) binding forms (Steele et al.,
2019). A tomato (Lycopersicon esculentum) R protein I-2 with
NB-ARC domain is impaired in ATP hydrolysis, but not in ATP
binding, suggesting a molecular switch whose state (on/off)
depends on nucleotide binding (ATP/ADP) (Tameling et al.,
2006). NRTP1 encodes a CC-NB-LRR type protein, and semi-
dominant mutant nrtp1-D contains an amino acid substitution in
the NB-ARC domain that causes constitutive auto-activation of
the NRTP1 protein for a short-root phenotype in rice (Yu et al.,
2018). ATP/ADP opentenyltransferases are likely responsible for
most isopentenyladenine- and tZ-type cytokinin synthesis
(Miyawaki et al., 2006) and catalyze prenylation of adenosine
diphosphate (ADP) or triphosphate (ATP) biosynthesis (Kieber
and Schaller, 2014). The hydrolysis of adenosine triphosphate
(ATP) is directly coupled to the primary active transport of CTK
(Nedvěd et al., 2021). In peach, ATP/ADP PpIPT genes are key
genes for cytokinin biosynthesis in nodal stems (Li et al., 2018).

The NB-ARC domain of GNP12 protein may act in panicle
development by influencing hormone activity to control grain
number of panicle, length of panicle, and grain length. Future
work is required to test this hypothesis and investigate the
regulation of these important genes to better develop
molecular tools for improved genetic breeding.

CONCLUSION

In summary, we successfully analyzed the NB-ARC family of
genes with conserved P-loop domains and identified conservation
of NB-ARC homologous genome segments in monocotyledons.
Most NB-ARC genes regulate panicle development in Ce253. We
identified GNP12 as an important regulator of panicle length,
panicle grain number, and grain length.
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Multi-Trait Genomic Prediction
Models Enhance the Predictive Ability
of Grain Trace Elements in Rice
Blaise Pascal Muvunyi 1, Wenli Zou1, Junhui Zhan1, Sang He1* and Guoyou Ye1,2*

1CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen,
Chinese Academy of Agricultural Sciences, Shenzhen, China, 2Rice Breeding Innovations Platform, International Rice Research
Institute, Los Baños, Philippines

Multi-trait (MT) genomic prediction models enable breeders to save phenotyping
resources and increase the prediction accuracy of unobserved target traits by
exploiting available information from non-target or auxiliary traits. Our study evaluated
different MT models using 250 rice accessions from Asian countries genotyped and
phenotyped for grain content of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), and
cadmium (Cd). The predictive performance of MT models compared to a traditional single
trait (ST) model was assessed by 1) applying different cross-validation strategies (CV1,
CV2, and CV3) inferring varied phenotyping patterns and budgets; 2) accounting for local
epistatic effects along with the main additive effect in MT models; and 3) using a selective
marker panel composed of trait-associated SNPs in MT models. MT models were not
statistically significantly (p < 0.05) superior to ST model under CV1, where no phenotypic
information was available for the accessions in the test set. After including phenotypes from
auxiliary traits in both training and test sets (MT-CV2) or simply in the test set (MT-CV3), MT
models significantly (p < 0.05) outperformed ST model for all the traits. The highest
increases in the predictive ability of MT models relative to ST models were 11.1% (Mn),
11.5 (Cd), 33.3% (Fe), 95.2% (Cu) and 126% (Zn). Accounting for the local epistatic effects
using a haplotype-based model further improved the predictive ability of MT models by
4.6% (Cu), 3.8% (Zn), and 3.5% (Cd) relative to MT models with only additive effects. The
predictive ability of the haplotype-based model was not improved after optimizing the
marker panel by only considering the markers associated with the traits. This study first
assessed the local epistatic effects and marker optimization strategies in the MT genomic
prediction framework and then illustrated the power of the MT model in predicting trace
element traits in rice for the effective use of genetic resources to improve the nutritional
quality of rice grain.

Keywords: rice, trace elements, multi-trait genomic prediction, local epistatic effect, seletive marker panel

INTRODUCTION

Over half of the world’s population relies on rice as a staple crop (Bandumula, 2018). Growing and
consuming rice has relative merits, as rice is themajor dietary source for both toxic and essential trace
elements (Yang et al., 2018). For instance, Cd is a potent environmental and human health toxicant
(Arao and Ae, 2003; Uraguchi and Fujiwara, 2012; Lien et al., 2021) transported into rice grain via the
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same channels with other trace elements Zn, Fe, Cu, and Mn
(Sasaki et al., 2012; Hao et al., 2018; Han et al., 2021) of essential
nutritional and physiological functions to plants, animal and
humans species (Miller, 1970; Olivares and Uauy, 1996; White
and Broadley, 2009; Aschner and Erikson, 2017; Gao and Xiong,
2018).

Recent advancements in genomic research and the increasing
number of germplasm resources in gene banks offer a great
opportunity to develop safe and nutritious rice varieties cost-
effectively. The trait’s heritability indicates the potential that a
given trait can be genetically improved. Previously, broad sense
heritability of grain Zn, Fe, Cu, Mn, and Cd was found to be low
(0–0.3), moderate (0.4–0.6) to high (0.6 or higher) (Norton et al.,
2010; Pinson et al., 2015; Naik et al., 2020), indicating the
practical possibility to improve these traits via selective
breeding methods. Furthermore, many molecular genetic
studies have identified numerous quantitative trait loci (QTLs)
responsible for trace element uptake, transport, and
accumulation into different rice tissues through genome-wide
association studies (GWAS) or QTL mapping (Lu et al., 2008;
Garcia-Oliveira et al., 2009; Ueno et al., 2010; Du et al., 2013;
Huang et al., 2016; Meng et al., 2017; Swamy et al., 2018; Yang
et al., 2018; Descalsota-Empleo et al., 2019; Frouin et al., 2019; Liu
J. et al., 2021). As a genomics-enabled breeding approach,
marker-assisted selection (MAS) is useful to improve trace
element traits when genes/QTLs with large additive genetic
effects exist (Wu et al., 2020). However, prominent non-
additive gene action has also been reported for trace element
traits, making MAS-based strategies ineffective (Sharma V. et al.,
2021). In addition, MAS-based breeding methods are practically
ineffective at simultaneously exploiting information from
multiple genes (Spindel et al., 2016) or traits (Van Der
Straeten et al., 2020).

In contrast, genomic selection (GS) approaches make use of
total genome-wide markers with either large additive effects or
minor effects to derive the genomic estimated genetic values of
genotypes (Meuwissen et al., 2001), which overcomes the
constraints of MAS-based methods (de los Campos et al.,
2009). Also, GS models can be modified to a multi-trait
(MT) form to exploit available information from multiple
traits simultaneously. The MT models used in GS heavily
rely on genetic correlation between traits (Henderson and
Quaas, 1976). This correlation possibly results from the
pleiotropic effect (multiple traits controlled by the same
QTL) or linkage disequilibrium (LD) between genes
(Falconer, 1996). Exploiting multi-trait information in GS
has been awarded with an increase in prediction accuracy
ranging from 24% to 105% relative to single trait (ST) models
(Rutkoski et al., 2016; Sun et al., 2017; Arojju et al., 2020).
Besides gains in prediction accuracy, integrating MT models
with appropriate cross-validation (CV) schemes compensated
for the negative effect of small population size without
affecting the prediction accuracy, enabling breeders to
minimize phenotyping budgets (Lado et al., 2018; Arojju
et al., 2020). The benefits of MT models under various CV
schemes are yet to be studied in diverse rice collections.
Nevertheless, MT models have shown their potential in

predicting complex traits in rice, such as grain arsenic
content (Ahmadi et al., 2021), grain yield (Wang et al.,
2017), and root index architecture (Sharma S. et al., 2021).

Most of the MT genomic prediction studies discussed above
only modeled the additive genetic effects. Non-additive effects
are also essential components of the genetic effect and can
benefit the predictive ability of MT models if accommodated
(dos Santos et al., 2016; Lyra et al., 2017). However, non-
additive effects such as dominance or global epistatic effects
may not be conserved during breeding due to chromosomal
recombination events (Falconer, 1996; Breseghello and
Sorrells, 2006; He et al., 2017). In contrast, the local
epistasis that spans short segments of chromosomes can be
preserved over generations (Akdemir and Jannink, 2015), as
adjacent loci normally hold a strong LD (Ardlie et al., 2002).
Earlier GS studies with ST models illustrated that accounting
for local epistatic effects along with the main additive model
increased the prediction accuracy of agronomic traits in wheat
accessions (Akdemir and Jannink, 2015; Akdemir et al., 2017;
He et al., 2017; Jiang et al., 2018; He et al., 2019). However, the
benefits of modeling local epistasis effects in MT models
remain unknown in crop or animal species.

Genomic prediction models can be extended to incorporate
markers associated with causal QTLs, such as trait-associated
SNPs (TA-SNPs), bridging the gap between biology and
mechanistic GS models using uninformative genome-wide
markers. Also, genomic prediction with markers derived
from functional QTL is less reliant on LD patterns shared by
training and target populations, possibly allowing robust
prediction, especially across unrelated populations where LD
decays more rapidly (Snelling et al., 2013). Simulation and
empirical studies have shown that accounting for known
QTLs improves the performance of genomic prediction
models compared to models using uninformative genome-
wide markers (Bernardo, 2014; Owens et al., 2014). Alemu
et al. (2021); Zhou et al. (2021) reported a two- to four-fold
gain in prediction accuracy using GS + de novo GWAS (Spindel
et al., 2016), in which the most significant TA-SNPs from a
GWAS conducted on the training population are fitted as fixed
effects in the model along with the polygenic background. Other
groups (Bhandari et al., 2019; Ahmadi et al., 2021) also reported
gains in prediction accuracy ranging from 16% to 32% by
exploiting GWAS-derived TA-SNPs using trait-specific
genomic relationship matrices (Zhang et al., 2014) in which
markers with stronger association signals are assigned higher
weights than markers with weaker associations. However, the
application of the above methods has not always been beneficial
(Veerkamp et al., 2016; Rice and Lipka, 2019) and has been
shown to depend on the genetic architecture of the traits of
interest, trait heritability, the number of underlying causal
mutations, and their effect sizes (Huang and Mackay, 2016).
In addition, the use of TA-SNPs in genomic prediction has been
scarcely investigated in models accounting for the non-additive
effects. The potential of GWAS-derived TA-SNPs on the
predictive ability of MT models accounting for the local
epistatic effects in diverse rice populations is yet to be
demonstrated and worth inspecting.
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There is a great scope for applying MT models to evaluate
trace elements in large germplasm collections such as those
archived in gene banks. Earlier studies using ST models
showed that GS is a robust and cost-efficient tool to
predict the genetic merit of individuals in large germplasm
collections for various agronomic traits, such as grain yield in
rice (Tanaka et al., 2021), biomass yield in sorghum (Yu et al.,
2016), oil, protein, and yield in soybean (Jarquin et al., 2016),
total root length in maize (Pace et al., 2015), and days to head
and days to maturity in wheat (Crossa et al., 2017). However,
the application of MT or even ST models to predict the
concentrations of trace elements in food crops is still
limited to a few studies involving arsenic (Frouin et al.,
2019; Ahmadi et al., 2021), Mn (Leplat et al., 2016), and
Zn (Guo et al., 2020) in rice, barley, and maize grain,
respectively. Therefore, the overall goal of the present
study is to compare the robustness of ST and MT models
in predicting concentrations of four essential trace elements,
Fe, Zn, Cu, and Mn, and one toxic metal, Cd, in rice grain.
Different CV schemes, implying varied phenotyping patterns
and costs, were examined in our study to seek the most
efficient phenotyping strategy when multiple traits are
planned to be measured. In addition, we investigated
whether incorporating local epistatic effects and using a
selective marker panel of TA-SNPs derived from GWAS
into MT models could further enhance the predictive
ability of MT models.

MATERIALS AND METHODS

Rice Materials
Our study used 250 rice accessions, including indica and japonica
ecotype accessions from Asian countries (Supplementary Table
S1). Accessions from China are mainly landrace indica varieties
mostly cultivated on Cd-polluted soils in Guangdong province,
China (Long et al., 2014).

Plant Cultivation and Quantification of
Trace Elements in Rice Grain
The procedures followed for growing the 250 accessions and
determining concentrations of trace elements in rice grain
were as previously described by Liu S. et al. (2021). Briefly,
seeds from the 250 accessions were first cultivated in pots filled
with soil collected from the experimental station of the
Agricultural Genomics Institute at Shenzhen, China. Next,
germinated seeds were selected and cultivated in seedling
trays for 4 weeks. Healthy seedlings were then transferred
into pots containing soil amended with an initial
concentration of Cd of 0.5 mg kg−1. Finally, all the seedlings
were planted in an augmented randomized complete block
design with two replicates of 25 accessions from 20 July 2019 to
2 October 2019. Our study was limited to a single environment.
Multi-environment data would be essential for understanding
the environmental correlations and their stability and
genotype effects by environment interactions (GxE). To

determine grain concentrations of Zn, Fe, Cu, Mn, and Cd,
grain samples were first peeled and dried at 65°C for 3 days.
The dried samples were then crushed, wet-digested in
concentrated nitric acid (HNO3) at 120°C for 30 min, and
further digested with perchloric acid (HClO4) at 180°C until
the samples became transparent. The samples were then
diluted with ultrapure water. Finally, the grain
concentration of each trace element was determined using
the Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
machine (Houk et al., 1980).

Genotyping
The 250 accessions were genotyped following the re-
sequencing and variants-calling procedures of the rice 3K
project as reported by Wang et al. (2018). The following
steps were implemented for all the genotypes to merge the
variants-calling: First, raw reads were aligned to the R498
reference genome (Du et al., 2017) using the program bwa-
mem alignment software (Li, 2013). Next, the PCR duplicates
were identified with Picard software, version 2.9.0 (http://
broadinstitute.github.io/picard/), and discarded. Following
that, the GATK HaplotypeCaller engine (McKenna et al.,
2010), with the option “-ERCGVCF,” was used to call
genotypes at each site. The resulting genomic variants called
format (gVCF) for each genotype were combined using the
GATK Genotype GVCFs engine. Next, the GATK hard filter
pipeline was used to individually call SNP and INDEL variants
from the population variant file. All the variants within 5 bp of
an INDEL were discarded. A variant was confirmed if at least
one genotype supported it with a QUAL parameter greater
than 30. After that, VCF tools indicated (Danecek et al., 2011)
sites for which genotypes were not called in at least 20% of the
used genotypes. The above procedures yielded 30,089,814 bi-
allelic SNPs for the 250 genotypes. SNP quality control steps
were implemented using PLINK software (Chang et al., 2015)
with standards that remove SNPs with 1) minor allele
frequency lower than 0.5, 2) call rate less than 0.9, and 3)
pairwise LD (r2) greater than 0.01. Finally, 36,171 SNPs were
available for the 250 accessions.

Estimation of Genomic Heritability and
Traits Genomic Correlation
The mixed linear model was used to estimate genomic heritability
as follows:

y � 1nμ + g + e

Where y is the vector of concentration of trace element under
consideration, 1n is the vector of ones, n is the number of
genotyped cultivars, μ is the intercept, g is the vector of
the genetic effects of accessions, e is the residual vector. g
and e are assumed as random effects, respectively, following
g ~ N(0,Gσ2g) and e ~ N(0, Iσ2e) where G is genomic
relationship matrix estimated following (Yang et al., 2010)
and I is identity matrix. The genomic heritability was
estimated as
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h2g �
σ2g(σ2

g + σ2
e)

Where σ2g is the additive genetic variance component and σ2e is
the residual variance component. GCTA software (Yang et al.,
2011) was used to compute the genomic relationship matrix and
genomic heritability.

The genomic correlation between traits was estimated using
the formula: cor � covi,j

σ iσj
where covi,j is the genetic covariance

between ith trait and jth trait, σ i and σj are the square root of the
genetic variance of ith trait and jth trait. The genetic covariances
and variances were estimated using the R package MTM (De los
Campos and Grüneberg, 2016).

Genetic Diversity
A hierarchical cluster analysis based on the Euclidean’s distance
matrix computed with the SNP genomic profiles was performed
to inspect the genetic diversity among the 250 genotypes. In
addition, a heat plot based on the cluster analysis was drawn to
visualize the genetic dissimilarities.

Genomic Prediction Approaches
The genomic prediction models used were the ST and MT
models. The ST model only captured additive genetic effects,
while the MT models accommodated both additive and local
epistatic effects. ST model was the commonly used genomic
best linear unbiased prediction (GBLUP) model and same as
the mixed model estimating genomic heritability:
y � 1nμ + g + e, where y, 1n, μ and ε were exactly as afore
denoted, g is the vector of additive genetic effect in genotype-
based model or additive plus local epistatic effects in the
haplotype-based model. In the genotype-based model, we
assumed g ~ N(0,Gσ2a), where G is an n × n-dimensional
additive genomic relationship matrix, and σ2a is the additive
genetic variance component. In the haplotype-based model,
we assumed g ~ N(0,Hσ2h) , where H is an n × n-dimensional
haplotypic relationship matrix derived from the haplotypic
profile matrix with values 0, 1, and 2 indicating the number of
copies for a specific haplotypic allele (Jiang et al., 2018; He
et al., 2019). To obtain the haplotypic profile matrix, the
genotypic data of SNPs were phased using software
SHAPEIT (Delaneau et al., 2012) with default augment
settings. The phased genotypic data was recoded to
haplotypic profiles using a fixed-length haplotype of 2, 3, 4,
or 5 SNPs. G and H were established using software GCTA
(Yang et al., 2010; Yang et al., 2011) based on the genotypic
and haplotypic data, respectively.

For MT models, we used two approaches considering no
correlation between traits; the Bayesian multi-output regressor
stacking (BMORS) proposed by Montesinos-López et al. (2019);
the MT-GBLUP; and two methods accommodating correlation
between traits; the factorial analytic (FA) model and the
unstructured (UN) model. For genotype-based approaches, the
MT-GBLUP model was formulated as y � μ + u + ε, where

y � (y′1, y′2, . . . , y′m)′, μ � (μ′1, μ′2, . . . , μ′m)′, u � (g ′1, g ′2, . . . , g ′m)′,
ε � (e′1, e′2, . . . , e′m)′, m is the number of traits included in the
model. We assumed u ~ N((0′, 0′, . . . , 0′)′,Ψu ⊗ G),
ε ~ N((0′, 0′, . . . , 0′)′,Ψε ⊗ I)

where Ψu �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2g1
/ 0 / 0

..

.
1 ..

.
1 ..

.

0 / σ2gj
/ 0

..

.
1 ..

.
1 ..

.

0 / 0 / σ2gm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ψε �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2ε1 / 0 / 0

..

.
1 ..

.
1 ..

.

0 / σ2εj / 0

..

.
1 ..

.
1 ..

.

0 / 0 / σ2εm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, σ2gj

and σ2εj are respectively the

genetic and residual variance of jth trait, and ⊗ denotes Kronecker
product of matrices.

BMORS was a two-stage process. The first stage is the same as
the MT-GBLUP, but instead of directly using the GBLUP
predicted values as the final output, BMORS implemented a
second stage that integrated the GBLUP predicted values of
each trait in the first stage and fitted a ridge regression model.
In this way, the prediction of a single trait could be corrected by
the predictions of other traits in the first stage using the second
stage model (Spyromitros-Xioufis et al., 2012; Spyromitros-
Xioufis et al., 2016; Montesinos-López et al., 2019). The FA
model was also based on the formula of the MT-GBLUP
model but assuming a covariance structure between traits, that is

Ψu �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2g1
/ covg1gj / covg1gm

..

.
1 ..

.
1 ..

.

covgjg1 / σ2gj / covgjgm

..

.
1 ..

.
1 ..

.

covgmg1 / covgmgj / σ2gm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� (ΛΛ′ +Π) �FA(k)

where k is the number of latent factors, Λ is a j × k dimensional
matrix containing trait loadings, Π is a j × j diagonal matrix
(Burgueño et al., 2012). Theoretically, the FA model requires
at least three traits to be simultaneously included in the
model. The UN model (Burgueño et al., 2012; Cuevas et al.,
2017) tried to estimate all variances and covariances in Ψu,
i.e., σ2gj

and covgigj, i, j ∈ {1, . . . ,m}, which may cause
convergence problems when a large number of traits are
considered. The haplotype-based approach was only implemented
in the MT-UN model by replacing the relationship matrix G
by H .

The ST-GBLUP model was implemented in R (R Core Team,
2016) using the BGLR package (De los Campos and Pérez-
Rodríguez, 2015). The MT-GBLUP, FA, and UN approaches
were realized using the R package MTM (De los Campos and
Grüneberg 2016). BMORS was fitted using the R package
BMTME (Montesinos-López et al., 2019). The number of
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iterations of all models was set to 20,000, and the first 12,000 were
discarded as burn-in.

Cross-Validation Schemes and Evaluation
of Genomic Prediction Accuracy
Four different CV schemes, referring to those reported by Lado
et al. (2018) and Arojju et al. (2020) were used in our study
(Table 1). CV1 was applied to both ST-GBLUP and MT models,
referring to a scenario where the target trait was predicted
without the support of auxiliary traits (ST-CV1) or with
auxiliary traits only available in the training set (MT-CV1).
CV2 and CV3 were only assessed for MT models. Under CV2
scheme, genotypes in both training and test sets had phenotypic
data for all the auxiliary traits. Under CV3, phenotypes of the
auxiliary traits were only available in the test set.

To assess the genomic prediction accuracy across the above
CV schemes, the entire population of 250 genotypes was
randomly divided into five equal-sized folds. Four folds
collectively constituted the training set, and the remaining fold
was the test set. Stochastic partitioning of training and test sets
was repeated 20 times, yielding one hundred times (5 folds × 20
replicates) calibrations and predictions. The genomic prediction
accuracy of the target trait was estimated using the Pearson
correlation coefficient between the genomic predicted genetic
values and the observed phenotypic values of 250 accessions
when incorporated in the five test sets of each repeat of CV. The
Student t-test was used to test the statistical difference in genomic
prediction accuracies among the prediction models.

Selective SNP Marker Panel
To investigate whether the predictive ability of MT genomic
prediction on rice grain trace elements concentration could be

boosted by optimizing the SNP marker panel, we applied a
(GWAS) to identify the trait-associated SNPs (TA-SNPs) and
establish the selective marker panel. The CV scenarios in
which the MT-UN haplotype-based models disregarding the
length of haplotypes (two to five SNPs) constantly showed
statistically significantly (p < 0.05, t-test) higher prediction
accuracies than their genotype-based counterparts and the ST-
GBLUP model were used to validate the efficacy of using the
TA-SNPs to train the genomic prediction models. In more
detail, GWAS using the total SNP marker panel was performed
in the training set of the designated CV scenarios. First, the
TA-SNPs with p values less than 0.01 were recorded. Then each
chromosome was divided into bins spanning 300 kb (the bin
size is decided by the LD decay, with the physical distance
between pairs of SNPs based on the total population). Finally,
the most trait-associated SNPs with the lowest p-value in
each bin was picked together with the TA-SNPs (p < 0.01)
and recorded to constitute the selective SNP marker panel
of each repeat of CV. The MT-UN genotype-based model
was implemented using the genotypic data of the selective
SNPs. Contrastingly, the adjacent selective SNPs located
within 300 kb (highly possible as the position of the
selective SNP from each bin is unfixed) were combined to
compile the haplotypes using the phased genotypic data as the
LD decay implied a non-negligible LD among them. The
remaining SNPs without close neighbors within 300 kb were
maintained, and their genotypic profiles were used. Therefore,
the MT-UN haplotype-based model took advantage of both
haplotypes and genotypes. The GWAS was implemented using
GCTA software (Yang et al., 2011; Yang et al., 2014). The
additive genomic relationship matrix was exclusively used in
the GWAS model to account for the relatedness between
accessions.

TABLE 1 | Investigated single trait (ST) and multi-trait (MT) cross-validation (CV) schemes.

Training set Test set

Target traits Auxiliary traits Target traits Auxiliary traits

ST-CV1 Zn/Cu/Fe/Cd/Mn — Zn/Cu/Fe/Cd/Mn —

MT-CV1 Zn Mn, Fe, Cu, Cd Zn
Cu Mn, Fe, Zn, Cd Cu
Fe Mn, Cu, Zn, Cd Fe
Cd Mn, Fe, Cu, Zn Cd
Mn Fe, Cu, Zn, Cd Mn

MT-CV2 Zn Mn, Fe, Cu, Cd Zn Mn, Fe, Cu, Cd
Cu Mn, Fe, Zn, Cd Cu Mn, Fe, Zn, Cd
Fe Mn, Cu, Zn, Cd Fe Mn, Cu, Zn, Cd
Cd Mn, Fe, Cu, Zn Cd Mn, Fe, Cu, Zn
Mn Fe, Cu, Zn, Cd Mn Fe, Cu, Zn, Cd

MT-CV3 Zn — Zn Mn, Fe, Cu, Cd
Cu Cu Mn, Fe, Zn, Cd
Fe Fe Mn, Cu, Zn, Cd
Cd Cd Mn, Fe, Cu, Zn
Mn Mn Fe, Cu, Zn, Cd

Phenotypes for auxiliary traits are not available The unobserved target traits to be predicted are highlighted with bold font.
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RESULTS

Linkage Disequilibrium Decay, Kinship, and
Population Structure
The LD decay distance between all SNP markers for the 250
accessions was ~250–300 kb when the cut-off value (r2) was set at
0.1, assuming non-negligible SNP pairwise correlation (r = 0.3)
(Figure 1A). The kinship between accessions was determined
based on pairwise Euclidean distances. Pairwise distances among
accessions ranging from 0 to 0.2 accounted for less than 5% of all the
pairwise distances. Pairwise distances from 0.6 to 0.8 were the most
frequent and accounted for 12%–23% of all the pairwise distances
(Figure 1B). Further, no genetically structured sub-populations were
observed among the 250 varieties used in this study. However, several
families were detected (Supplementary Figure S1).

Distribution of Phenotypes, Genomic
Heritability, and Genetic Correlation
The distributions of phenotypes (adjusted phenotypic means) based
on the 250 accessions varied among the five traits studied. The
distribution of Zn was almost symmetrical. The skewness was high
and negative for Cu, and moderate and negative for Fe, Cd, and Mn
(Supplementary Figure S2). The genomic heritability for all studied
traits ranged from low (Zn: 0.14 and Cu: 0.21) tomedium (Mn: 0.35)
and high (Fe: 0.5 and Cd: 0.62) (Table 2). The genetic correlation
estimated with the MTM model was highest between Fe and Cd
(0.95) and Cu and Zn (0.95) and lowest between Mn and Cd (0.39)
and Mn and Fe (0.44). Zn had the highest genetic correlations with
all the other studied traits, ranging from 0.67 to 0.95 (Table 2).

Prediction Accuracy of Single-Trait Model
Versus Multi-Trait Model Using
Whole-Genome Markers
The average prediction accuracy with the traditional ST-
GBLUP model under the CV1 scheme was the highest for

FIGURE 1 | Linkage disequilibrium (LD, r2) decay and Euclidean distance for the 250 diverse rice accessions used in this study. (A) LD decay for the studied
accessions. The X-axis represents the physical distance between SNP pairs in kilobases (kb). (B) Pairwise Euclidean distance for the studied accessions.

TABLE 2 | Genomic heritabilities (diagonal and bold) and genetic correlations
(upper triangle) of the trace elements traits studied.

Traits Cd Fe Mn Cu Zn

Cd 0.62 0.95 0.39 0.71 0.67
Fe 0.5 0.07 0.79 0.76
Mn 0.35 0.59 0.7
Cu 0.21 0.95
Zn 0.14

Diagonal and bold are genomic heritabilities as indicated.

FIGURE 2 | Genomic prediction accuracies of the studied traits were
assessed using a single trait GBLUP (ST-GBLUP) model.
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Cd (0.52), followed by Fe (0.39), Mn (0.36), Zn (0.23), and Cu
(0.21) (Figure 2). Also, under the CV1 scheme, prediction
accuracies of MT models were not statistically significantly
(p < 0.05) superior to those of ST-GBLUP irrespective
of the models and traits studied (Supplementary Tables
S2–S6).

As compared, when phenotypes of the auxiliary traits were
made available in both training and test sets (MT-CV2) or merely
in the test set (MT-CV3), the MT models, namely FA or UN,
significantly (p < 0.05) outperformed the ST-GBLUP model
(Figures 3, 4). For most of the studied traits, the highest
performance of MT models was observed under the MT-CV2
scheme (Figures 3, 4). However, MT-GBLUP and BMORS MT
models were not significantly (p < 0.05) superior to the ST-
GBLUP model for all the CV schemes studied (Supplementary
Tables S7–S11).

We further compared scenarios where the prediction of the
target traits was assisted with a single auxiliary trait or a

combination of multiple auxiliary traits in MT models.
Supporting the prediction of Zn with one of its correlated
traits (Cu, Fe, Mn, or Cd) was sufficient to significantly (p <
0.05) increase the prediction accuracy MT-UN model relative to
ST-GBLUP model in MT-CV2 (Figure 3A). Cu was the best
single auxiliary trait for predicting Zn. Incorporating
observations from Cu in MT-UN model (under MT-CV2)
significantly (p < 0.05) increased the prediction accuracy of Zn
by 82.6% (0.23–0.42) relative to the ST-GBLUP model. However,
the highest increase in prediction accuracy (126% or 0.23–0.52) of
MT models was observed when observations from Mn, Fe, and
Cu were combined as supporting traits for Zn under the MT-CV2
scheme (Figure 3A). Under MT-CV3, the MT-UN model
outperformed the ST-GBLUP model only after multiple
auxiliary traits were used to support the prediction of Zn
(Figure 3A).

Similarly, compared to ST-GBLUP, the prediction accuracy of
Cu by the MT-UN model significantly (p < 0.05) increased by

FIGURE 3 | Genomic prediction accuracies of the genotype-based single trait (ST) model (ST-GBLUP) and multi-trait (MT) models (MT-FA and MT-UN) under
different cross-validation (CV) schemes (ST-CV1, MT-CV2, andMT-CV3). The target traits are (A) Zn, (B)Cu, and (C) Fe. The first box-whisker in each portrayal indicates
the accuracies of the ST-GBLUP model in the ST-CV1 scheme. Other box-whiskers refer to the accuracies achieved by MT models with different trait combinations.
Asterisks above box-whiskers indicate that the prediction accuracies of the MT model for the specific trait combination were statistically significantly (p < 0.05,
t-test) higher than those of the ST-GBLUP model.
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95.2% (0.21–0.41) and 38% (0.21–0.29) in MT-CV2 and MT-
CV3, respectively, when Zn was used as a single supporting trait
(Figure 3B). Yet, after including other traits inMT-CV2 (Mn and
Zn) andMT-CV3 (Zn and Cd), the prediction accuracy improved
by 109.5% (0.21–0.44) and 57.1% (0.21–0.33) relative to ST-
GBLUP, respectively.

Similarly, when Fe was the target trait, MT-UN model
accounting information from Cd significantly (p < 0.05)
outperformed ST-GBLUP by 23% (0.39–0.48) and 12.8%
(0.39–0.44) under MT-CV2 and MT-CV3 schemes,
respectively (Figure 3C). Nevertheless, considering phenotypes
frommore auxiliary traits in MT-CV2 (Zn and Cd) and MT-CV3
(Zn and Cd) provided 33.3% (0.39–0.52) and 23% (0.39–0.48)
gains in the prediction accuracy of Fe with the MT-UN model,
respectively (Figure 3C).

Furthermore, the prediction accuracy of Cd (the most
heritable trait) with the MT-UN model was significantly (p
< 0.05) improved by 3.8% (0.52–0.54) when Fe, its strongly
correlated trait, was used as a single auxiliary trait under the
MT-CV2 scheme (Figure 4A). As observed for the other
traits, 7.6% (0.52–0.56) and 11.5% (0.52–0.58) gains in
prediction accuracy were attained after using combined
information from multiple auxiliary traits (Mn, Fe, and Cu)
in MT-UN and MT-FA models under MT-CV2, respectively
(Figure 4A). Similarly, under MT-CV3, MT models did not
significantly outperform ST-GBLUP models in scenarios
where a single auxiliary trait was used. However, when
information from Fe and Zn or Fe and Cu was considered,
an improvement of 5.7% (0.52–0.55) in the prediction

accuracy of the MT-FA model over the ST-GBLUP model
was observed (Figure 4A).

Finally, when Mn was the target trait, MT-UN with a single
auxiliary trait failed to improve its prediction accuracy under
both MT-CV2 and MT-CV3 schemes (Figure 4B). However,
considering information from additional traits (Cu, Zn, and
Cd), using the MT-FA model significantly (p < 0.05) improved
the prediction accuracy of Mn up to 11.1% (0.36–0.40) over
ST-GBLUP under MT-CV2 (Figure 4B). On the other hand,
under the MT-CV3 scheme, MT-UN or MT-FA did not
significantly outperform ST-BLUP even after using multiple
auxiliary traits.

Prediction Accuracy of Haplotype-Based
Model Versus Genotype-Based Models
We further investigated the benefits of accommodating local
epistatic effects on the prediction accuracy of MT models by
using haplotypes instead of genotypes in the UN model.
Comparing to the genotype-based UN model, the observed
largest and significant (p < 0.05) increment of prediction
accuracies using haplotype-based models was 3.8% for Zn
(0.52–0.54), 4.6% for Cu (0.43–0.45), and 3.5% (0.56–0.58) for
Cd underMT-CV2. For Zn, the above improvement in prediction
accuracy was achieved with a haplotype length of 3 SNPs, and
when Mn, Fe, Cu, and Cd were collectively used as auxiliary traits
(Figure 5A). For Cu, the observed gains were realized with a
haplotype length of 4 SNPs and when auxiliary traits Mn and Zn
were used together (Figure 5B). For Cd, the gains were from the

FIGURE 4 | Genomic prediction accuracies of the genotype-based single trait (ST) model (ST-GBLUP) and multi-trait (MT) models (MT-FA and MT-UN) under
different cross-validation (CV) schemes (ST-CV1, MT-CV2, and MT-CV3). The target traits are (A) Cd and (B) Mn. The first box-whisker in each portrayal indicates the
accuracies of the ST-GBLUP model in the ST-CV1 scheme. Other box-whiskers refer to the accuracies achieved by MT models with different trait combinations.
Asterisks above box-whiskers indicate that the prediction accuracies of the MT model for the specific trait combination were statistically significantly (p < 0.05,
t-test) higher than those of the ST-GBLUP model.
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MT-UNmodel with a haplotype length of 2 SNPs, and when Mn,
Fe, Cu, and Zn were combined as the auxiliary traits (Figure 5C).
Under MT-CV3, the haplotype-based UN model was

significantly (p < 0.05) superior to the genotype-based UN
model by 12.5% (0.32–0.36) for Zn (Figure 5A) and 6%
(0.33–0.35) for Cu (Figure 5B).

FIGURE 5 |Genomic prediction accuracies of the genotype-based single trait (ST) model (ST-GBLUP) and haplotype-based multi-trait (MT) model (MT-UN) under
different cross-validation (CV) schemes (ST-CV1, MT-CV2, and MT-CV3). The target traits are (A) Zn, (B) Cu, and (C) Cd. The number of SNPs contained in haplotype
blocks ranged from three to five. The first box-whisker in each portrayal indicates the accuracies of the ST-GBLUP model in the ST-CV1 scheme. Other box-whiskers
refer to the accuracies achieved by MT models with different trait combinations. Asterisks above box-whiskers indicate that the prediction accuracies of the
haplotype-based MT-UN model for the specific trait combination were statistically significantly (p < 0.05, t-test) higher than those of the ST-GBLUP approach. Pounds
above box-whiskers indicate that the prediction accuracies of the haplotype-based MT-UN model were statistically significantly (p < 0.05, t-test) higher than those of its
corresponding genotype-based counterparts. Only the scenarios where the haplotype-basedMT-UNmodel were statistically significantly outperformed (p < 0.05, t-test)
the genotype-based MT-UN model are presented.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8838539

Muvunyi et al. Multi-Trait Genomic Prediction in Rice

266

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Compared to the ST-GBLUP model, the haplotype-based UN
models were significantly (p < 0.05) superior with an increment of
prediction accuracy of 134.7% (0.23–0.54), 114.2% (0.21–0.45),
23% (0.39–0.48), and 11.5% (0.52–0.58) for Zn (Figure 5A), Cu
(Figure 5B), Fe (Supplementary Figure S3), and Cd (Figure 5C),
respectively.

Prediction Accuracy of a Haplotype-Based
Model Capitalizing on Trait-Associated
SNPs
With this study, we sought to investigate whether the
prediction accuracy of Zn, Cu, and Cd with the haplotype-
based model can be improved by using the selective marker
panel made by TA-SNPs derived from GWAS (Supplementary
Table S12). We purposely selected Zn and Cu because for
both traits the haplotype-based MT model performed
superiorly for several scenarios irrespective of the lengths of
haplotypes (2–5 SNPs) (Figure 5). We also investigated Cd in
addition to Zn and Cu since successive significant (p < 0.2) TA-
SNPs were observed in GWAS based on the total population
(Supplementary Figures 4A–C). The non-negligible LD
(r2≥0.1) observed between the TA-SNPs, especially in Cu

and Cd, underpinned the necessity of modelling local
epistatic effects among TA-SNPs (Figures 6A–C). The
haplotype-based UN model accounting for TA-SNPs
significantly (p < 0.05) outperformed their genotype-based
counterparts; however, it was significantly (p < 0.05) inferior to
the model using all genome-wide markers for all the traits and
scenarios evaluated (Figures 7A–C).

DISCUSSION

Quantifying trace element content in food crops is labor- and
time-intensive. As a result, trace element traits have been the
subject of few genomic prediction studies (Owens et al., 2014;
Leplat et al., 2016; Frouin et al., 2019; Guo et al., 2020; Ahmadi
et al., 2021) compared to agronomic or physiological traits. This
study demonstrates how MT models with appropriate CV
strategies can be useful in saving phenotyping resources for
trace element traits in diverse rice collections without
compromising the prediction accuracy. It also provides the
first proof of concept in diverse rice for incorporating local
epistatic effects and trait-associated SNPs into MT genomic
prediction models.

FIGURE 6 | Linkage disequilibrium (LD, r2) heatmaps for the trait-associated SNPs (TA-SNPs, p < 0.01) identified from a genome-wide association study (GWAS)
using the total population for (A) Zn, (B) Cu, and (C) Cd. The physical distance indicates the distance between the first and last TA-SNPs found on each chromosome.
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Multi-Trait Models Improved the Prediction
Accuracy of Trace Elements in Rice Grain
In this study, MT models did not significantly outperform ST-
GBLUP under the CV1 scheme for all the scenarios evaluated
(Supplementary Tables S2–S6). Earlier studies also reported
insignificant differences in the prediction accuracies of MT-
CV1 and ST-CV1 (Calus and Veerkamp, 2011; dos Santos
et al., 2016; Bhatta et al., 2020), implying that MT models are
not always robust over ST models, especially when information
on auxiliary traits is only available in the training set and the
unobserved accessions are predicted only based on genotypic
data. In contrast, when phenotypes of the auxiliary traits were
present in the training and test set (MT-CV2) or merely in the test
set (MT-CV3), the prediction accuracy of MT models (MT-UN
andMT-FA) for the unobserved target traits (Zn, Cu, Fe, and Cd)
was significantly improved relative to ST-GBLUP (Figures 3, 4).
Previous studies attributed the predictive performance of MT
models to both higher heritability of the auxiliary trait and strong

genetic correlation between the target and auxiliary traits (Sun
et al., 2017; Fernandes et al., 2018).

Accounting for the Information From
Multiple Auxiliary Traits Boosted the
Predictive Ability of Multi-Trait Models
Using a single auxiliary trait in the MT-UN model significantly
(p < 0.05) improved the prediction accuracy of target traits Zn,
Cu, Fe, and Cd relative to the ST-GBLUP model (Figures 3, 4).
When a strong genetic correlation exists between target and
auxiliary trait, the prediction accuracy of MT models could
still be improved under MT-CV2 or MT-CV3 regardless of
trait heritability. For instance, supporting the prediction of Cu
with Zn, its strongly correlated trait (cor Zn, Cu = 0.95) but with
lower heritability (h2Zn = 0.14; h2Cu = 0.21) significantly improved
the prediction accuracy of Cu with the MT-UN model
(Figure 3B). Also, supporting Cd with Fe, its strongly
correlated trait (cor Cd, Fe = 0.95) but with lower heritability

FIGURE 7 |Genomic prediction accuracies of the haplotype-based multi-trait model (MT-UN) with uninformative genomic markers (all SNPs haplotype-based) and
haplotype- or genotype-based multi-trait model (MT-UN) with trait-associated SNPs (TA-SNPs) under MT-CV2 and MT-CV3. The target traits were (A) Zn, (B) Cu, and
(C)Cd. The size of the haplotype blocks containing the TA-SNPs is maximally 300 kb. Different letters above box whiskers indicate statistically significant (p < 0.05, t-test)
differences among compared groups. The average number and the coefficient of variation (CV) of the used TA-SNPs for the observed predictions are shown for
each trait.
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(h2Cd = 0.62; h2Fe = 0.50), improved the prediction accuracy of Cd
with the MT-UN model (Figure 4A). Arojju et al. (2020) also
indicated that the genetic correlation was the main cause of
the observed gain in prediction accuracy of MT models. The
same study further showed that when a trait in strong genetic
correlation with the target trait is used in the MT model, the
predictive performance of the MT model was still superior to
the ST model even after reducing the training population size
by 50%.

Collectively accounting for phenotypes of multiple
auxiliary traits further improved the predictive ability of
the MT models compared to the MT models with a single
auxiliary trait. For example, the highest increase in the
prediction of Zn was 82.6% when a single auxiliary trait
was used in MT-UN models. Yet, using multiple traits
collectively in the same model improved the prediction of
Zn by 126% compared to the ST-GBLUP model (Figure 3A).
Also, MT models with one auxiliary trait showed no benefit
over the ST-GBLUP model when predicting Mn, with relative
medium heritability and no strong genetic correlation with
any other studied trait. However, when auxiliary traits were
collectively used in the MT-FA model, significant
improvements in the prediction accuracy over the ST-
GBLUP model were observed (Figure 4B). Multiple
auxiliary traits would optimize MT models, though the
assisting trait per se is neither strongly genetically
correlated with the target trait nor highly heritable.
Therefore, when no single auxiliary trait meets the
criterion of heritability or genetic correlation, combining
multiple auxiliary traits in the MT model could be an
effective approach to enhance the predictive ability of MT
models. These findings are concurrent with previous findings
by Wang et al. (2017), indicating that the prediction accuracy
of MT models was highest when eight different traits were
used as auxiliary traits to predict grain yield in rice.

Modeling Local Epistatic Effects is
Beneficial in Multi-Trait Models Irrespective
of Using Total or Selective Marker Panel
Previous studies demonstrated that accounting for local
epistatic effects besides the additive effect in genomic
prediction could improve the prediction accuracy of ST
models (Akdemir and Jannink, 2015; Akdemir et al., 2017;
Jiang et al., 2018; He et al., 2019). Here, we are the first to
attempt to model the local epistatic effects in the context of
MT genomic prediction. Accounting for the local epistatic
effects in haplotype-based MT models significantly improved
the prediction accuracy of Zn, Cu, and Cd relative to
genotype-based MT models, only capturing additive effects
(Figures 5A–C). Relative to ST-GLUP, the highest increase in
prediction accuracy, 134.7% for Zn, was observed after
incorporating the local epistatic effects into the MT-UN
model (Figure 5A). These findings imply that the potential
of MT models can be maximized by accounting for local
epistatic effects besides additive effects in the model.

Using a selective marker panel based on approaches exploiting
the trait biological and genetic background knowledge such as
GWAS has been proven effective to improve the predictive ability
of GS models (Owens et al., 2014; Wang et al., 2019). Our study
did not show any improvements of prediction accuracy by using
the TA-SNPs instead of all genome-wide SNPs for Cu, Zn, and Cd
(Figures 7A–C). These findings could be attributed to the
complex genetic architectures of the trace elements we studied
(Supplementary Figures S4A–C). Our approach was slightly
similar to previous methods using GWAS-derived TA-SNPs to
construct the trait-associated matrix (Zhang et al., 2014; Ahmadi
et al., 2021), except that we did not assign weights to haplotype-
or genotype-based genomic relationship matrices. Though
numerous studies reported improved gains from using the
above strategy (Bhandari et al., 2019; Ahmadi et al., 2021),
Veerkamp et al. (2016) showed that the proportion of total
variance explained by the TA-SNPs combined in a GRM was
considerably smaller than that explained by all variants in
Holstein-Friesian cattle population. A potentially more
promising way to use TA-SNPs would be to fit them as fixed
effects in the GP model along with all other SNPs as random
effects (Spindel et al., 2016). However, the latter approach is best
suited for features with a few large-effect QTLs in a polygenic
context (Poland and Rutkoski, 2016; Bian and Holland, 2017;
Rice and Lipka, 2019). Therefore, the genetic architecture of the
target traits must be studied before applying this strategy to a
breeding program. The marked advantage of the haplotype-based
UN model over their genotype-based counterparts using the TA-
SNPs (Figures 7A–C) substantiates the existence of local epistasis
in trace element traits (Sharma V. et al., 2021) and the merit of
modelling local epistatic effects in MT-GP program.

Factors Affecting the Observed Prediction
Accuracies: Trait Heritability, Genetic
Correlation, and Population Relatedness
Various factors affect the predictive ability of GP models used in
GS (Crossa et al., 2017; Xu et al., 2021). In this study, the genomic
heritabilities spanned a wide range from 0.14 to 0.62 (Table 2),
which enabled the evaluation of the performance of MT models
under contrasting levels of genomic heritability. The genomic
heritability of Zn was the lowest (h2 = 0.14, Table 2), which
contradicts several previous studies that reported moderate to
high heritability of Zn (Norton et al., 2010; Pinson et al., 2015;
Naik et al., 2020). The poor heritability estimate of Zn in this
study could be due to potential environmental effects.
Unfortunately, our study does not include multi-environment
trials and therefore does not provide insight into environmental
factors and GxE interactions on genomic prediction of trace
element traits.

Strong genetic correlations (Cor > 0.75) were observed
between pairs of the studied trace element traits (Table 2).
This was expected due to their overlapping genetic and
physiological mechanisms (Sasaki et al., 2012; Cu et al., 2020).
For example, transporter gene families like zinc-iron permease
(ZIP), natural resistance-associated macrophage proteins
(NRAMPs), and heavy metal transporting, ATPases (HMAs)
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have been associated with uptake and translocation of several
trace elements in plants (Fernández-Paz et al., 2021;
Vanderschueren et al., 2021; Zhang et al., 2022). As a result,
borrowing information from correlated traits overall improved
the prediction accuracy of the MT models.

The success of GS is also highly dependent on the LD
between markers and unknown causal variants. The
genetically distant training and test sets would have
different LD decay patterns and consequently impede the
prediction (Snelling et al., 2013; Desta and Ortiz, 2014;
Thistlethwaite et al., 2020). Such a problem is typically
prominent in germplasm accessions, limiting the power of
GP (Crossa et al., 2017). This is also the case for the diverse rice
population used in this study, as most accession pairs were
distantly unrelated (Figure 1B). As a result, the predictive

ability for ST-GBLUP was poor (Figure 2), particularly for
traits with the lowest estimated heritabilities, namely Zn and
Cu (Table 2). Adding related materials to the training
population has been suggested to overcome the problem of
low relatedness between training and test populations and
improve the accuracy of genomic prediction (Arenas et al.,
2021). Nevertheless, increasing relatedness will damage
genetic gain in the long term because genetic variation will
be limited or exhausted if related populations are overused
(Jannink et al., 2010; Moeinizade et al., 2019). We show that
MT models are powerful tools for predicting trace element
traits in populations with diverse backgrounds. However,
further studies with larger datasets are needed to elucidate
the utility of different populations and marker optimization
strategies in the context of MT genomic prediction.

FIGURE 8 |General recommendations for using cross-validation (CV) schemes and multi-trait (MT) models. (A) An illustration of the different CV partitions and trait
combination scenarios evaluated. (B) Expected prediction accuracy and phenotyping cost for different CV schemes and MT models. Green dots represent models
which account only for additive effects. Black dots represent models considering both additive and local epistatic effects. The GBLUP model under ST-CV1 is
economically advantageous because the main effort is just devoted to phenotyping one target trait in the training set. However, in terms of prediction accuracy, it is
less robust than the UN and FA MT models under MT-CV2 or MT-CV3. Compared to ST-GBLUP, using MT models under MT-CV1 has no advantage in phenotypic
resource-saving or prediction accuracy. In contrast, MTmodels implemented underMT-CV2 andMT-CV3 can improve prediction accuracy. However, high phenotyping
efforts can be expected with MT-CV2, mainly when multiple auxiliary traits need to be phenotyped. MT-CV3 saves resources by only phenotyping the test set population
(20% of the total population in our case). Accounting for local epistatic effects may further improve the predictive ability of MT models under MT-CV2 or MT-CV3.
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The Prospect of Multi-Trait Models for the
Evaluation of Genetic Resources in Gene
Banks
Expediting genomic selection in gene banks to predict the genetic
merit of the unobserved accessions would enable accurate
identification of promising donor accessions without a
comprehensive phenotypic test of all the accessions in the field
(Pace et al., 2015; Yu et al., 2016; Crossa et al., 2017; Tanaka et al.,
2021; He et al., 2022). In fact, as the traits of breeders’ interest are
extensive, the genetic resources archived in gene banks would be
evaluated for several traits. MT genomic prediction is an effective
method to realize this comprehensive evaluation. Our study tested
several MT models under three different CV schemes, implying
different phenotyping layouts and costs. We found that high
prediction accuracy of MT models can be achieved under
prediction schemes MT-CV2 and MT-CV3. The MT-CV2
scheme requires more budget for phenotyping auxiliary traits in
both training and test sets. Therefore, breeders may kindly MT-
CV2 if phenotypes for the auxiliary traits can be inexpensively
obtained. Otherwise, MT-CV3 is more cost-effective as phenotypes
for the auxiliary traits are only required for the test set (i.e., 20% of
the entire population). Since using multiple auxiliary traits
collectively in the MT model can improve prediction even if the
individual auxiliary traits do not fully meet the heritability and
genetic correlation conditions, an ideal situation would be to
phenotype less expensive and more manageable traits (e.g., root
system architecture, 100-grain weight, data to heading, etc.) to
support the prediction of expensive target traits with the MT
models. Besides, accounting for local epistatic effects in MT
models would help to improve the predictive ability. The
different scenarios studied here and their respective potentials in
terms of prediction accuracy and phenotyping cost are illustrated in
Figures 8A,B.

To breed safe and nutritious crop varieties, further studies
using the genomic selection index (Habyarimana et al., 2020), for

example, are desired to provide a comprehensive understanding
of the strategies to optimize essential nutrients and toxic metals
such as Cd in food crops.
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Mining candidate genes for rice
cadmium accumulation in the
shoot through a genome-wide
association study and
transcriptomic analysis
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Tifeng Yang, Yamei Ma, Lian Zhou, Jiansong Chen, Bin Liu* and
Junliang Zhao*
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China

High cadmium (Cd) accumulation in rice is a serious threat to human health. The

genetic mechanism of Cd accumulation in rice is highly complicated. To

identify the low Cd accumulation in rice germplasm, investigate the genetic

mechanism underlying Cd accumulation, andmine the elite genes of significant

importance for rice breeding of low Cd accumulation varieties, we performed a

genome-wide association study (GWAS) for rice Cd concentration in the shoot.

The rice accessions were 315 diverse indica rice accessions selected from the

1568 rice accessions with 700,000 SNPs. Within the high rate of linkage

disequilibrium (LD) decay, eight QTLs related to rice Cd accumulation were

identified. Transcriptomic analysis showed there were 799 differentially

expressed genes (DEGs) in the root and 857 DEGs in the shoot, which are

probably considered to be the cause of the significant difference in Cd

accumulation between high and low Cd accumulation varieties. In qCd11-1,

we detected a crucial candidate gene, LOC_Os11g11050, which encodes an

initiation factor, expressed differently in the root between the high and low Cd

accumulation varieties. Furthermore, under Cd treatment, the expression levels

of LOC_Os11g11050 significantly decreased in both the high and low Cd

accumulation varieties. Sequence comparison and qRT-PCR revealed that

there were indel sequences and base substitutions in the promoter region of

LOC_Os11g11050 correlated with the LOC_Os11g11050 expression level, as

well as the phenotype of Cd concentration differences in shoot between the

high and low Cd accumulation accessions. LOC_Os11g11050 might play

important roles in Cd accumulation. The results of our study provide

valuable resources for low Cd accumulation in indica varieties and the

candidate functional gene, as well as molecular mechanisms for Cd

accumulation in indica rice. The genetic architecture underlying Cd

accumulation in indica can be used for further applying the low Cd gene

existing in indica for decreasing Cd accumulation in rice.
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Introduction

Cadmium (Cd) is one of the most dangerous heavy metals.

Excessive intake of Cd may lead to severe health problems,

including cancers of the lung, gallbladder, prostate, and

urinary bladder (Nawrot et al., 2006). Rice tends to take up

and accumulate a higher amount of Cd than other crops. As a

staple food feeding almost half of the world population, efficient

uptake of Cd by rice and transfer into the food chain pose a severe

problem to human health and food safety (Clemens and Ma,

2016). In the past 3 decades, the rapid industrial development

and lack of sufficient environmental protection have already

resulted in widespread heavy metal pollution, and Cd

contamination of rice has been reported in many major rice

production countries, including China, India, Thailand, and

Indonesia (Hu et al., 2016; Sui et al., 2018; Shi et al., 2020).

Treatments of soil, such as removal and replacement,

chemical washing, or phytoremediation, can repair

contaminated soil and reduce the Cd concentration of rice,

but these methods may suffer from some disadvantages, such

as high cost or time-consuming (Tang et al., 2017). Reducing the

Cd concentration in rice by breeding low Cd accumulation

varieties is a promising and cost-effective method to reduce

the risks of Cd to human health without additional cost to

farmers (Zhou et al., 2019).

Genetic variations contributing to lower Cd accumulation in

rice are fundamental for breeding low Cd accumulation varieties.

Fortunately, it had been reported Cd accumulation is genetically

controlled in rice, and rice germplasm carries plenty of genetic

variations related to low Cd accumulation (Rasheed et al., 2020).

With the help of functional genetic tools (Gu et al., 2022; Sun

et al., 2022), many genetic variations conferring low Cd

accumulation in rice have been identified and functionally

characterized, including OsHMA3 (Ueno et al., 2010),

OsNRAMP5 (Sasaki et al., 2012; Tang et al., 2017),

OsNRAMP1 (Chang et al., 2020), OsIRT1 (Lee and An, 2009),

OsIRT2 (Nakanishi et al., 2006), OsCd1 (Yan et al., 2019),

OsHMA2 (Takahashi et al., 2012; Yamaji et al., 2013), OsZIP7

(Tan et al., 2019), OsCCX2 (Hao et al., 2018), OsCAL1 (Luo et al.,

2018), OsLCT1 (Uraguchi et al., 2011), and OsLCT2 (Tang et al.,

2021). These have provided insights into the Cd accumulation

mechanisms in rice and valuable genetic basics for breeding low

Cd varieties.

However, most of the functional alleles or genetic variations

related to low Cd accumulation were characterized by map-based

cloning from japonica varieties, since japonica cultivars

accumulated much lower concentrations of Cd than cultivars

of other subpopulations (Li et al., 2017). Natural genetic

variations contributing to low Cd accumulation in indica have

not been reported, which greatly hampers the progress of

breeding low Cd indica varieties, while the Cd contamination

problem is much more severe in indica than japonica. So

identifying low Cd accumulation accessions from indica

germplasms and then characterizing genetic variations leading

to low Cd accumulation, as well as dissecting molecular

mechanisms underlying the high Cd accumulation in indica,

offer a more practical and acceptable alternative way for breeding

low Cd indica varieties.

In the previous study, we have successfully identified a few

indica accessions with low Cd accumulation in grain from an

international rice panel. Further GWAS analysis characterized

a functional gene leading to a low Cd accumulation phenotype

in indica (Zhao et al., 2018). These results indicated that

highly diverse international germplasms are valuable

resources in identifying low Cd accumulation indica

accessions and then facilitate characterizing functional low

Cd accumulation genes.

In the present study, we used the international rice panel

to further identify indica accessions with low Cd accumulation

in the shoot of the seedling stage. GWAS and whole-genome

transcriptomic analysis were then conducted to characterize

genes and mechanisms related to Cd accumulation in the

shoot of the seedling stage. In the present study, we focused on

Cd accumulation in the shoot of seedling, which is a combined

indicator for Cd absorption by root and the following

translocation from the root to the shoot. Generally, four

key processes contribute to Cd accumulation in rice grains:

1) uptake and transport in roots, 2) translocation from the

root to the shoot, 3) redistribution at nodes, and 4)

remobilization to grains via the phloem (Hart et al., 2006;

Uraguchi and Fujiwara, 2013; Huang et al., 2019). It has been

reported that the reason for higher Cd concentration in indica

than in japonica may be owing to the more efficient long-

distance transport of Cd from the xylem to the shoot

(Uraguchi and Fujiwara, 2013). Therefore, Cd translocation

from the root to the shoot may be vital in determining Cd

content differences between indica and japonica. The present

study aimed to identify indica accessions with low Cd

translocation and the functional genes conferring this

phenotype in indica.

In order to address the aforementioned questions, in the

present study, we focused on the shoot’s Cd content in the

seedling stage under hydroponic culture using an international

indica panel (McCouch et al., 2016), which include 315 diverse

indica accessions from 45 countries. A genome-wide association

study (GWAS) was then conducted for shoot Cd concentration

with 700,000 single-nucleotide polymorphisms (SNPs) as the

genotype. A total of 27 indica rice varieties with low Cd

Frontiers in Genetics frontiersin.org02

Wang et al. 10.3389/fgene.2022.944529

276

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.944529


accumulation (< 20 mg/kg) in the shoot and eight QTLs related

to low Cd accumulation were identified. One candidate gene

LOC_Os11g11050 for a significant QTL (qCd11-1) was predicted

by combining results from GWAS, gene annotations, and

transcriptomic analysis. This study provided valuable

resources and a candidate functional gene for low Cd

accumulation in indica, which are the basis for breeding of

low Cd accumulation indica varieties. This study also

dissected the molecular mechanisms underlying Cd

accumulation in the shoot of the rice seedling stage, which

provides novel insights into Cd accumulation in indica rice

varieties.

Results

Phenotypic variations of the shoot’s
cadmium concentration in 315 indica rice
accessions

A total of 315 diverse indica rice accessions from 45 countries

were selected from an international panel with 1568 rice

accessions (McCouch et al., 2016). Phenotypic analysis of the

Cd concentration in the shoot of a seedling revealed a wide range

of phenotypic variations among these accessions and

approximately emerged on the normal distribution

FIGURE 1
(A) Frequency distribution of the Cd concentration in 315 rice accessions. Blue line: trendline, red line: normal distribution line, black line: mean
of the Cd concentration, and mean = 32.58. (B) Principal component analysis on 399,200 SNPs of 315 rice accessions. PC1, PC2, and PC3 represent
the three principal components of the population. The color from red to blue represents the PC2 value. (C) Genome-wide average LD decay
estimated in 315 rice accessions. (D)QQplot for the GWAS of the Cd concentration in the shoot. y-axis: observed -log10(p) and x-axis: expected
-log10(p) under the assumption that p follows a uniform[0,1] distribution. The red lines and gray region show the 95% confidence interval for the QQ
plot under the null hypothesis of no association between the SNP and the trait. (E) Manhattan plots of the GWAS of shoot Cd accumulation in
12 chromosomes. The red arrow represents the loci close to previous genes. The gray dash line represents the significant threshold (p = 1.00 × 10–4).
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(Figure 1A). The Cd concentration for individual accession

ranged from 4.07 to 92.14 mg/kg, with an average of

32.58 mg/kg. The indica cultivar “Cheriviruppu” from India

had the lowest Cd concentration in the shoot, while the indica

cultivar “P 660” from Pakistan had the highest Cd accumulation.

In total, 27 rice accessions had Cd concentrations lower than

20.0 mg/kg (Table 1).

QTL mapping for cadmium accumulation
in the shoot by a genome-wide
association study

According to the criteria of minor allele frequency (MAF)

being larger than 5% in the natural population, 399,200 SNPs

were selected for GWAS from the 700,000 SNP dataset

(McCouch et al., 2016). Principal component analysis (PCA)

was performed with SNPs to estimate the population structure of

these 315 rice accessions. Three distinct clusters were observed in

the score plot of principal components (Figure 1B,

Supplementary Figure S1). To enable visualization of the

evolutionary history or relationship in the population, a

phylogenetic analysis was performed. It showed that 315 rice

accessions could be divided into three major clades

(Supplementary Figure S2). In order to determine the rough

region a QTLmay span, we analyzed linkage disequilibrium (LD)

decay on each chromosome in our GWAS population. LD

analysis revealed that significant LD decays were observed at

about 150–200 kb on all 12 chromosomes (Figure 1C). To control

false positives by the population structure, a GWAS was

conducted using a mixed linear model (MLM) model in

GAPIT (Tang et al., 2016). The mixed linear model (MLM) is

one of the most effective models which simultaneously

incorporate both population structure and cryptic relationship

(Yu et al., 2006). The quantile–quantile (QQ) plot was a useful

tool for assessing howwell the model used in the GWAS accounts

for the population structure and familial relatedness. In the QQ

plot (Figure 1D), the majority of the points lie on the diagonal

TABLE 1 Rice accessions with the Cd concentration lower than 20 mg/kg in the shoot.

Accession name Subpopulation Origin Cd concentration in
the shoot (mg/kg)

CHERIVIRUPPU indica India 4.07

WAS 200-B-B-1-1-1 indica Senegal 10.42

EPAGRI 109 indica Brazil 11.26

ICTA PAZOS indica Guatemala 13.49

ERH CHIANG TSAO 8 indica China 13.88

KHAO DAW TAI indica Thailand 14.75

TSAKA indica Bhutan 15.44

E ZI 124 indica China 15.62

UP 1537 indica Colombia 15.65

RTS 5 indica Vietnam 16.43

ARC 14500 indica India 17.12

POONAGARI PERUMAL indica Sri Lanka 17.35

WAS 194-B-3-2-5 indica Senegal 17.49

JARIYU indica India 17.71

EMBRAPA 6 CHUI indica Brazil 17.81

CIMARRON indica Venezuela 17.86

IR 70758-17-2-1 Admixed-indica Philippines 17.93

JINLING 78-102 indica China 18.52

CR 762022 indica United States of America 18.63

DJOGOLON DJOGOLON indica Burkina Faso 18.73

WAS 207-B-B-3-1-1 indica Senegal 19.06

VARY MADINIKA 3494 indica Madagascar 19.65

JUMA 51 indica Dominican Republic 19.71

ER MO ZHAN Admixed-indica China 19.8

IR 74371-3-1-1 indica Philippines 19.8

MEKEO WHITE indica Papua New Guinea 19.84

BOL ZO indica Republic of Korea 19.97
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line, which means most of the SNPs tested were probably not

associated with the trait. The QQ plot results indicated that the

false positive was well controlled in our GWAS analysis. It is

expected that the SNPs on the upper right section of the graph

deviate from the diagonal, which are most likely associated with

the trait under study.

In summary, all the results from the abovementioned analysis

demonstrated the reliability of our GWAS analysis. According to

the LD decay results mentioned previously, a region was

considered as one QTL where it had more than two SNPs

with log10(P) >= 4 (FDR = 0.3) within a 200-kb window. The

results of GWAS were shown using the Manhattan plot, which

showed that eight QTLs with 27 SNPs were significantly

associated with shoot Cd accumulation in the 315 indica rice

accessions (Figure 1E). The SNPs with the highest significant

signal on each chromosome are shown in Table 2. These QTLs

(designated as qCd hereafter) are distributed on chromosomes 3,

7, 8, 11, and 12, which explained 4.36%–8.98% of the phenotypic

variations. The MAF of the eight QTLs ranged from 0.07 to 0.38.

The differences in the mean of shoots’ Cd concentration between

the minor alleles and major alleles in the eight QTLs ranged from

2.57 to 13.26 mg (Figure 2).

TABLE 2 QTLs associated with Cd accumulation identified by the GWAS.

QTL Chr SNP Allele Position MAF p-value FDR Phenotype
contribution
(%)

qCd3-1 3 SNP-3.25 G/A 25,581,506 0.23 8.79E-05 0.30 4.36

qCd3-2 3 SNP-3.28 T/C 28,476,700 0.07 2.68E-08 0.01 8.98

qCd7 7 SNP-7.06 A/G 6,211,855 0.25 3.94E-05 0.25 4.8

qCd8 8 SNP-8.18 C/A 18,489,250 0.17 1.61E-05 0.18 5.3

qCd11-1 11 SNP-
11.06

C/T 6,106,271 0.38 4.43E-06 0.10 6.02

qCd11-2 11 SNP-
11.09

G/A 9,186,018 0.16 4.11E-05 0.25 4.77

qCd12-1 12 SNP-
12.01

C/T 1,813,881 0.21 2.33E-05 0.21 5.09

qCd12-2 12 SNP-
12.19

C/T 19,902,055 0.08 1.35E-05 0.17 5.39

FIGURE 2
Boxplot of the phenotype analysis between the peak SNPs in the QTLs and phenotypic difference between minor alleles and major alleles. Δm,
the difference of the mean of shoots’ Cd concentration between the minor alleles and major alleles at the seedling stage with three replications.
Statistical comparison was performed by a one-sided t-test.
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Whole-genome gene expression profile
analysis between high- and low-cadmium
accumulation accessions

In order to identify functional genes underlying QTLs, as well

as dissect molecular mechanisms underlying Cd accumulation in

the shoot of seedlings in indica, a whole genome expression

profile was conducted by RNA-seq using roots and shoots from

two high Cd accumulation accessions and two low Cd

accumulation accessions. To detect whether the two high Cd

content accessions have different gene expression patterns, we

conducted a correlation analysis of the gene expression between

the two high Cd accumulation accessions. The two high Cd

accumulation accessions showed strong correlations of gene

expression in the shoot (r > 0.95) and root (r > 0.85). The

two low Cd accumulation accessions also showed strong

correlations of gene expression in the shoot (r > 0.90) and

root (r > 0.75) (Supplementary Figure S3). These results

indicated the two high and two low Cd accumulation

accessions have similar gene expression patterns.

Without Cd treatment (0 h), we identified 2,716 (1971 up-

and 745 downregulated) differentially expressed genes (DEGs)

in the root and 2047 (1430 up and 617 down-regulated) DEGs

in the shoot between high and low Cd accumulation accessions

(HR_LR_0 h for root samples; HS_LS_0 h for shoot samples). A

total of 1423 (989 up- and 434 downregulated) DEGs in the root

and 1424 (1013 up- and 411 downregulated) DEGs in the shoot

were identified between the high and low Cd accumulation

varieties under Cd treatment for 12 h (HR_LR_12h;

HS_LS_12 h). Under Cd treatment for 48 h, 1327 (968 up

and 359 down-regulated) DEGs in the root and 899 (604 up-

and 295 downregulated) DEGs in the shoot were identified

between the high and low Cd accumulation varieties

(HR_LR_48h; HS_LS_48 h). The distribution patterns of

DEGs were shown by the scatter plot (Supplementary

Figure S4).

FIGURE 3
Analysis of differentially expressed genes (DEGs). (A) Venn diagram representing the number of DEGs between high and low Cd accumulation
varieties in 0 h, 12, and 48 h after Cd treatment in the root. H and L represent two rice accessions with high Cd accumulation and two rice accessions
with low Cd accumulation, respectively. R and S represent RNA extracted from the root and shoot, respectively. (B)Number of DEGs in the shoot. (C)
GO enrichment of 20 important terms. The size of the circles represents gene numbers enriched in the GO terms.
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In order to investigate the differential gene expression

patterns between the high and low Cd accumulation

accessions and the possible molecular pathways that

responded to Cd treatment, Venn’s analysis was performed on

six gene sets to obtain the subset of genes related to Cd

accumulation differences between high and low Cd accessions

(Figure 3). The results revealed that 799 DEGs in the root and

857 DEGs (region within red digital, in Figure 3) in the shoot

responded to Cd treatment but were not included in DEGs of Cd

non-treatment samples. These genes may be the functional genes

related to Cd content differences.

To determine those genes which respond to Cd treatment, we

compared the DEGs at 0 h with those at 12 h (or 48 h) with Cd

treatment in the high Cd accumulation varieties and the low Cd

accumulation varieties. Venn’s analysis (Supplementary Figure

S5) was performed to reduce the influence on gene expression

caused by different genetic backgrounds. We found 3,656 and

8,931 upregulated genes in the root and shoot, respectively,

between control (no Cd treatment) and Cd treatment for 12h,

containing 171 genes only in the root of the low Cd accumulation

varieties (LR_0-12 h) and 450 genes only in the shoot of the low

Cd accumulation varieties (LS_0-12 h). Meanwhile, 423 and

293 upregulated genes were found in LR_0-48 h and LS_0-

48 h, respectively. Then, 113, 286, 383, and

341 downregulated genes were found in LR_0-12h, LS_0-12h,

LR_0-48 h, and LS_0-48 h, respectively. The DEGs (the yellow

region with red digital, in Supplementary Figure S5) which only

exist in the low Cd accumulation varieties between control and

Cd treatment are identified as genes probably related to lower Cd

accumulation in the rice.

All the DEGs (red digital in Figure 3 and Supplementary

Figure S5) were subjected to gene ontology analysis by agriGO

v2.0 (Tian et al., 2017). The 10,853 DEGs were enriched in

105 GO terms, of which 64 were biological processes (BPs), three

were cellular components (CCs) and 38 were molecular functions

(MFs). The most significant enriched GO terms in BP were GO:

0006950 (response to stress), GO: 0044281 (the small molecule

metabolic process), GO: 0050896 (response to stimulus), GO:

0006979 (response to oxidative stress), and GO: 0043436 (the

oxoacid metabolic process). Interestingly, the “transport” (GO:

0006810) (Figure 3C) was among the most significant GO terms.

Candidate gene identification in qCd11-1

Among the eight QTLs, qCd3-2 had the most significant SNP

at 28,476,700 in the region of 28.38-28.58 Mb on chromosome 3.

Transcriptomic analysis results indicated only one gene

(LOC_Os03g50160) showed a different expression pattern

between roots from high and low Cd accumulation accessions

(Supplementary Table S2). Furthermore, sequence difference

analysis surrounding LOC_Os03g50160 between high and low

Cd accumulation accessions was conducted. However, no

significant correlation was discovered between the sequence

differences and Cd accumulation.

Interestingly, the qCd3-1 identified from our GWAS results

co-localized with a previously characterized gene (OsCCX2) that

functioned in promoting upward transport of Cd in the xylem.

Therefore, OsCCX2 may be the candidate functional gene

underlying qCd3-1. However, no expression differences were

found between high and low Cd accumulation accessions in

our transcriptomic results. Sequence comparison was also

conducted in accessions of our GWAS population, but no

SNPs or small indels were found in the coding region of

OsCCX2. Further investigations are needed to characterize the

functional variations of OsCCX2 related to Cd accumulation in

the natural population.

The second significant QTL in our GWAS result is qCd11-1,

which has a large phenotype contribution (6.02%, Table 2) and a

proper MAF (0.38), and may be one of the major QTLs

controlling Cd accumulation in the indica panel. Candidate

functional genes in qCd11-1 were further analyzed in the

present study. Then, results from transcriptomic analysis, gene

annotation, and genome sequences analysis were combined to

infer the candidate genes. The LD decay analysis in the qCd11-1

interval delimited qCd11-1 into an approximately 200-kb region

(from 6.0 to 6.2 Mb on chromosome 11) (Figure 4). There were

31 genes annotated in the 200-kb region based on release 7 of the

MSU Rice Genome Annotation Project (http://rice.uga.edu/).

Transcriptomic analysis demonstrated that five genes were

FIGURE 4
Candidate region estimation of qCd11-1 on chromosome 11.
(A) Local Manhattan plot of the GWAS for the Cd concentration in
the shoot. (B) LD heatmap around the most significant SNP.
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differentially expressed in the root or shoot between the high and

low Cd accumulation accessions (Supplementary Table S2).

Based on the expression pattern, LOC_Os11g11050, which

encodes an initiation factor, was predicted to be the possible

candidate gene of qCd11-1 (Figure 5).

LOC_Os11g11050 showed a relatively higher level of

expression in the root than in shoot (Figure 5A). In the root,

LOC_Os11g11050 had a relatively higher level of expression in

the high Cd accumulation accessions than the low Cd

accumulation varieties. Under Cd treatment, the expression

levels of LOC_Os11g11050 significantly decreased in both the

high and low Cd accumulation accessions. The results were

further confirmed by qRT-PCR assays with six rice accessions

with high Cd accumulation and eight rice accessions with low Cd

accumulation (Figure 5B; Table 3).

Sequence comparisons between the aforementioned

accessions with contract Cd accumulation phenotypes and

LOC_Os11g11050 expression patterns were further

investigated by sequencing of PCR production to identify

whether there are sequential differences leading to the

differences between Cd accumulation and the expression of

LOC_Os11g11050. The results revealed that there were a few

indels and base substitutions in the promoter region of

LOC_Os11g11050 between the high and low Cd

accumulation accessions (Figure 5C), which constitute two

haplotypes. The haplotypes showed a strong correlation with

the expression level of LOC_Os11g11050 and the Cd

concentrations in the shoot (Figures 5B,C). The correlation

between the haplotypes and Cd concentration was further

investigated in the whole GWAS panel. The results showed

accessions with Hap1 (with a deletion in the promoter) had

more Cd concentration in the shoot than the accessions with

Hap2 (without deletion in promoter) (Figure 5D). It seemed

that the transformation of the LOC_Os11g11050 promoter

sequence resulted in a change in the gene expression and

further altered the phenotype of Cd concentration in the

shoot. LOC_Os11g11050 might be a possible candidate gene

for qCd11-1.

FIGURE 5
Expression changes of the candidate gene LOC_Os11g11050 in the root and shoot after Cd treatment between high and low Cd accumulation
varieties. (A) Detecting LOC_Os11g11050 expression by transcriptomic analysis. (B) Detecting LOC_Os11g11050 expression in the root with qRT-
PCR. (C) Sequence comparisons of the LOC_Os11g11050 promoter. HCd, high Cd accumulation varieties. LCd, low Cd accumulation varieties. (D)
Boxplots for the Cd concentration based on haplotypes (Hap1 and Hap2; Hap1 had the deletions in the promoter, Hap2 did not have the
deletions) of the LOC_OS11g11050 promoter. # The deletion position is based on the initiator codon ATG of LOC_OS11g11050. Statistical
comparison was performed by a one-sided t-test.
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Discussion

Cd accumulation in rice poses a severe risk to human health.

Indica varieties generally accumulate higher Cd than japonica. So

for most of the Cd-related QTLs or functional genes, the

favorable alleles for reducing Cd accumulation were mainly

derived from japonica rice varieties, which limited their

breeding application in indica rice varieties. Since indica

varieties are mainly planted in South China and Southeast

Asia, where the Cd pollution problem is relatively more

severe, it is of urgent need to identify low Cd accumulation

accessions, as well as functional genes controlling Cd

accumulation derived from indica germplasm.

In the previous study, we successfully identified indica

accessions with low Cd accumulation in grains using an

international diverse panel (Zhao et al., 2018). These results

not only implied natural genetic variations controlling low Cd

accumulation may exist in indica germplasm but also highlight

the importance of utilizing highly diverse germplasm in

screening and identifying these variances from indica. This is

extremely important for Cd accumulation investigation and

breeding in indica.

In the present study, we focused on the Cd accumulation in

the aerial part of rice seedlings, which is determined by both Cd

uptake by the root and the following transfer from the root to the

aerial part. Previous studies had indicated these two factors are

the key factors determining the Cd accumulation phenotype

variations between indica and japonica (Chen et al., 2019; Liu

et al., 2020). Therefore, we used a diverse rice collection

consisting of 315 international indica rice accessions as

materials, which represents an excellent resource for genetic

diversity covering a wide geographical variation, and then

facilitated natural genetic variation characterization.

Furthermore, in the present study, the Cd content in the

aerial part was assayed in seedlings treated under hydroponic

culture conditions. Hydroponic culture can provide a uniform

condition for Cd accumulation assays. All three replicates of

315 accessions were treated in a water pool by regular stirring,

which provide a constant and uniform Cd concentration for all

seedling samples. The phenotype results in the present study

clearly demonstrated a wide range of Cd content in the aerial part

of seedlings among 315 Indica rice accessions, which ranged from

4.07 mg/kg to 92.14 mg/kg, which further proved our previous

assumption that many natural genetic variations controlling low

Cd accumulation exist in indica germplasm. From the results, a

few low Cd indica accessions were successfully identified from

our diverse panel, which may be valuable for future breeding of

low Cd indica varieties.

GWAS was then conducted using the Cd accumulation as the

phenotype and the 700-K SNP dataset as the genotype. A total of

eight QTLs related to Cd accumulation in the shoot of seedlings

were identified by the GWAS. Chromosomal position

comparisons revealed that qCd3-1 co-localized with OsCCX2,

a gene encoding a putative transporter, which had been identified

to participate in root-to-shoot translocation of Cd in rice

(Figure 1E). It has been reported that OsCCX2 can promote

an upward transport of Cd in the xylem. Knockout of the

OsCCX2 gene can reduce the transfer rate of Cd from roots to

the aerial organs (Hao et al., 2018). Therefore, OsCCX2 may be

the candidate gene underlying qCd3-1. These results indicated

the reliability of the GWAS results of this study. However, no

expression pattern differences and small variations were found in

OsCCX2 in our GWAS panel. Further investigations are needed

to further identify if there are structural variations in OsCCX2 in

TABLE 3 High and low Cd accumulation varieties for qRT-PCR and sequence analysis.

SEQ Accession name Subpopulation Origin Cd concentrationin
shoot (mg/kg)

442 BADA DHAN indica Bangladesh 58.16

721 GEETA indica India 46.84

464 CCT 3-37-3-3-3-1 indica Philippines 45.93

18 CO 25 indica India 61.44

595 MOTTA SAMBA indica Sri Lanka 59.61

14 CHITRAJ (DA 23) indica Bangladesh 78.79

542 JUMA 51 indica Dominican Republic 19.71

491 DJOGOLON DJOGOLON indica Burkina Faso 18.73

521 ICTA PAZOS indica Guatemala 13.49

494 E ZI 124 indica China 15.62

1367 WAS 200-B-B-1-1-1 indica Senegal 10.42

497 EPAGRI 109 indica Brazil 11.26

541 JINLING 78-102 indica China 18.52

1128 CR 762022 indica United States of America 18.63
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the natural population, which may be related to Cd accumulation

in rice.

Interestingly, we also found one QTL (qCd8) identified in the

present study co-localized with another QTL (qCd8-2)

controlling grain Cd accumulation in our previous study

(Zhao et al., 2018). These results demonstrated this QTL may

function both in Cd accumulation of the shoot and grain.

We found that most of the QTLs in the present study are

novel QTLs related to Cd accumulation. There were three unique

characteristics of GWAS in the present study for contributing to

the discovery of novel QTLs. First, all 315 accessions in the

GWAS population were indica, which were highly diverse

international germplasm. The phenotypic distribution showed

the indica population has a large range of Cd accumulation. Most

of the previous studies were focused on populations containing

both indica and japonica rice accessions, which may readily

characterize QTLs controlling Cd accumulation differences

between indica and japonica. Here, while using all indica

varieties as the GWAS population, the specific genetic

variations controlling low Cd accumulation with indica are

possibly identified. Second, all accessions grew in a uniform

hydroponic culture condition. The environmental variance in

hydroponic culture conditions was less than that in the paddy

field environment. Also, it would facilitate more accurate

phenotyping. Third, we focused on the Cd concentration of

the shoot at the seedling stage and used it as a phenotype for

the GWAS, which was less investigated in previous studies. The

phenotype ensured identification of QTL controlling both Cd

absorbed by the root and Cd translocation from the root to shoot

as well. It has been reported that the more efficient long-distance

transport of Cd from the xylem to the shoot may be essential for

higher Cd concentration in indica than in japonica (Uraguchi

and Fujiwara, 2013).

In the present study, we were able to identify a candidate

functional gene, LOC_Os11g11050, for qCd11-1 by combining

the GWAS and whole genome expression profile. The most

significant SNP of qCd11-1 locates 632 bp downstream from

the candidate gene LOC_Os11g11050. Transcriptomic analysis

demonstrated LOC_Os11g11050 was expressed differently in the

root between the high and low Cd accumulation varieties.

Moreover, LOC_Os11g11050 expression showed a significant

response to Cd treatment. The qRT-PCR assays with six high

Cd accumulation varieties and eight low Cd accumulation

varieties further confirmed LOC_Os11g11050 had a relatively

higher level of expression in the high Cd accumulation varieties

than in the low Cd accumulation varieties. Under Cd treatment,

the expression levels of LOC_Os11g11050 significantly decreased

in both the high and low Cd accumulation varieties.

LOC_Os11g11050 encoded an initiation factor 2 subunit

family domain-containing protein. It may initiate other Cd

translocation genes’ expression in the root for the transport of

Cd from the root to shoot. The sequence comparison of

LOC_Os11g11050 between high and low Cd accumulation

varieties indicated that there were a few indels and base

substitutions in the promoter region of LOC_Os11g11050

between the high and low Cd accumulation varieties and

constitute two haplotypes (Hap1 and Hap2). The haplotypes

strongly correlated with the expression level of LOC_Os11g11050

and the phenotype of the Cd concentration in the shoot. The

indica accessions harboring Hap2 in the LOC_Os11g11050

promoter had a lower Cd concentration than the indica

accessions with Hap1. We thus regarded Hap2 in the

LOC_Os11g11050 promoter as a favor haplotype contributing

to lower Cd accumulation in the shoot in indica rice. Applying

the haplotype for marker-assisted breeding may have a potential

application value in low Cd indica cultivars.

In conclusion, the present study provided a genetic

analysis of Cd accumulation in the shoot within indica

germplasm. Our results highlight the importance of diverse

germplasm in studying Cd accumulation in rice, especially for

indica. Using the international diverse indica panel and state-

of-the-art functional genomic methods, we were able to

identify novel QTLs and the underlying candidate gene for

low Cd accumulation in the shoot of the seedling stage. These

results provided novel resources, QTL, candidate genes, and

molecular markers, which are essential for breeding low Cd

indica varieties. The present study also provided novel

insights into Cd transfer and accumulation in the aerial

part of rice seedlings, which may be valuable for future

studies on molecular mechanisms underlying Cd

accumulation in rice.

Materials and methods

Rice accessions

A total of 315 rice Indica accessions (Supplementary Table

S1) from 45 countries were selected according to the 1568 diverse

rice accessions based on their 700,000 SNP genotypes and their

origins (McCouch et al., 2016). Seeds of all 315 lines were

provided by the International Rice Research Institute (IRRI).

Sampling and cadmium detection

All 315 accessions were germinated and planted in a

cultivation pot treated with 1.8 mg/kg Cd at the greenhouse

for a month. Each line had three replicates. To determine the

shoot Cd concentrations of the 315 rice accessions, the shoots of

10 seedlings in each replicate were pooled and dried in an oven at

70°C for 24 h. Then, the dried shoot was ground into powder and

digested with an acid mixture of HNO3–HClO4. The Cd

concentration was determined by inductively coupled plasma

optical emission spectrometry (ICP-OES, iCAP6000, Thermo

Scientific, United States).
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Genotyping, population structure, and
genome-wide association study

GAPIT version 2 was used for GWAS analysis (Tang et al.,

2016). The raw SNPs were exactly the same as the 700 K assay of a

previous study (McCouch et al., 2016). The SNPs were selected for

GWAS analysis by the criteria of having less than 15% missing data

and minor allele frequency (MAF) > 0.05. The GWAS was

conducted using the mix linear model (MLM) with the kinship

matrix, and PC was set to three in GAPIT. We set the parameter

“model. selection =Ture,” soGAPIT can find the optimal number of

PC from 0 to 3. Considering the high complexity of the Cd

accumulation mechanism and the specification of materials and

tissue in the present study, we adopted a threshold p = 10–4 (false

discovery rate = 0.3) at the genome-wide level. Manhattan and QQ

plots were produced using the R package CMplot.

The rice genome sequence version of MSU V7.0 was used as a

reference for analysis (Kawahara et al., 2013). We follow the criteria

of having one associated locus between any two significant SNPs

within a 200-kb interval. After determining the QTLs of GWAS

analysis, the candidate genes were searched from 200 kb upstream

and downstream of the most significant SNP in each QTL. All the

genes located in the QTL region were predicted by the Rice Genome

Annotation Project (MSU-RGAP, Nipponbare version 6.1).

Transcriptomic analysis

We defined the varieties with shoot Cd concentrations less than

20 mg/kg as low Cd accumulation varieties (top 10% of the varieties

with extreme low Cd phenotypes) and the varieties with shoot Cd

concentrations of more than 45 mg/kg as high Cd accumulation

varieties (top 10% of the varieties with extreme high Cd phenotypes).

We chose two varieties (Supplementary Table S1, SEQ: 1294 and

517) from the high Cd accumulation variety group and two varieties

(Supplementary Table S1, SEQ: 1154 and 808) from the low Cd

accumulation variety group by random for transcriptome analysis.

All samples were germinated and planted in a cultivation pot without

Cd at the greenhouse. Three weeks later, the samples were treated

with CdCl2. Two biological RNA replicates of the shoot and root

under 1 μmol/L CdCl2 for 0, 12, and 48 h were extracted with the

RNeasy Kit (AiDeLai, China). The RNA samples were evaluated on

agarose gels, quantified in a spectrophotometer, and stored at −80°C.

The RNA samples were then sequenced using a HiSeq-2500

instrument, and 10 Gb of raw sequencing data were obtained.

The raw RNA-seq reads were initially processed to remove the

adapter sequences and low-quality bases with Trimmomatic

version 0.33 (Bolger et al., 2014) in the paired-end mode with

recommended parameters. The virus-like and rRNA-like RNA-seq

reads were further removed with fastq_clean (Zhang et al., 2014).

Finally, the clean RNA-seq reads were mapped to the reference

genomes using STAR (Dobin and Gingeras, 2015) version 2.5.0b. To

improve spliced alignment, STAR was provided with exon junction

coordinates from the reference annotations. The parameters

‘–runMode alignReads –twopassMode Basic –outSAMstrandField

intronMotif –outFilterMultimapNmax 1 –genomeDirGenomeIndex

–sjdbGTFfile Msu70.gft –alignIntronMax 30,000 –sjdbOverhang

100 –outSAMattributes All –outSAMattrIHstart 0 –outSAMtype

BAM SortedByCoordinate –quantMode GeneCounts’ were used,

and the outSAMattrIHstart parameter was changed to 0 for

compatibility with downstream software Cufflinks. Strong

correlations (r > 0.95) of gene expression were detected in the

biologically replicated samples. Gene expression was measured

using Cufflinks and cuffdiff2 (Trapnell et al., 2013) with the

parameters‘–library-norm-method classic–fpkm –emit-count-tables

–L label1,label2 Msu70.gtf sample1.rep1.cxb, sample1.rep2.cxb

sample2.rep1.cxb, and sample2.rep2.cxb’. Fragments per kilo-base

of exon permillion fragmentsmapped (FPKM)were obtained. Genes

with low expression values (FPKM < 1) were filtered for downstream

analysis. The rice genome sequence version ofMSUV7.0 was used as

a reference. Genes that were differentially expressed between the two

high Cd accumulation varieties and the two low Cd accumulation

varieties were identified based on their corrected p-values. Gene

ontology (GO) analysis was performed through agriGO2 (http://

systemsbiology.cau.edu.cn/agriGOv2/).

Differential expression analysis of genes
by qRT-PCR

RNA reverse transcription reactions were performed using the

PrimeScript TM RT reagent kit (TaKaRa, Japan). The primers for

qRT-PCR were designed by Primer Premier 3.0. The ubiquitin was

used as endogenous normalized genes for mRNA. Real-time PCR

was carried out using the SYBR Premix ExTaq TM kit (TaKaRa,

Japan) on a Bio-Rad CFX 96 Real-Time System. All reactions were

run in triplicate. Primers used to amplify the selected genes are listed

in Supplementary Table S3.

Haplotype analysis

The leaves of rice seedlings were collected and subjected to

DNA extraction by the CTAB method. The primers for gene

LOC_Os11g11050 PCR amplification are listed in Supplementary

Table S3. The productions of PCR were sequenced, and the

sequences were assembled by the software codon code at (https://

www.codoncode.com/aligner/).

Data analysis

The phylogenetic tree was constructed by MEGA 7.0 using

the SNP abovementioned data. A t-test was conducted using

Excel to detect the significant differences in gene expressions of

high and low Cd accumulation varieties.
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With the rapid generation and preservation of both genomic and phenotypic

information for many genotypes within crops and across locations, emerging

breeding programs have a valuable opportunity to leverage these resources to

1) establish the most appropriate genetic foundation at program inception and

2) implement robust genomic prediction platforms that can effectively select

future breeding lines. Integrating genomics-enabled1 breeding into cultivar

development can save costs and allow resources to be reallocated towards

advanced (i.e., later) stages of field evaluation, which can facilitate an increased

number of testing locations and replicates within locations. In this context, a

reestablished winter wheat breeding program was used as a case study to

understand best practices to leverage and tailor existing genomic and

phenotypic resources to determine optimal genetics for a specific target
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population of environments. First, historical multi-environment phenotype

data, representing 1,285 advanced breeding lines, were compiled from

multi-institutional testing as part of the SunGrains cooperative and used to

produce GGE biplots and PCA for yield. Locations were clustered based on

highly correlated line performance among the target population of

environments into 22 subsets. For each of the subsets generated, EMMs and

BLUPs were calculated using linear models with the ‘lme4’ R package. Second,

for each subset, TPs representative of the new SC breeding lines were

determined based on genetic relatedness using the ‘STPGA’ R package.

Third, for each TP, phenotypic values and SNP data were incorporated into

the ‘rrBLUP’ mixed models for generation of GEBVs of YLD, TW, HD and PH.

Using a five-fold cross-validation strategy, an average accuracy of r = 0.42 was

obtained for yield between all TPs. The validation performed with 58 SC elite

breeding lines resulted in an accuracy of r = 0.62 when the TP included

complete historical data. Lastly, QTL-by-environment interaction for

18 major effect genes across three geographic regions was examined. Lines

harboring major QTL in the absence of disease could potentially underperform

(e.g., Fhb1 R-gene), whereas it is advantageous to express a major QTL under

biotic pressure (e.g., stripe rust R-gene). This study highlights the importance of

genomics-enabled breeding and multi-institutional partnerships to accelerate

cultivar development.

KEYWORDS

breeding, winter wheat (Triticum aestivum L.), historical data, training populations,
genomic selection, prediction accuracy, yield

1 Introduction

Wheat (Triticum aestivum L.) is a major cereal crop

worldwide as its production ranks third in the US

(49.7 million tonnes) and globally (895.2 million tonnes)

behind maize and soybean. Wheat has a high production

value of US$8.7 billion in the United States and $188.1 billion

globally (FAOSTAT 2022). The effects of climate change,

including warming temperatures, variable precipitation and

more frequent extreme weather events (Simpson and Burpee

2014), as well as diseases (Singh et al., 2016), are challenging

wheat yield potential and causing increased yield instability

across years (Hatfield and Dold 2018). Development of

resilient, high-yielding wheat cultivars with stable grain

production across target population of environments is

essential (Braun et al., 1992; Langridge and Reynolds

2021). Multi-environment trials in major production areas

facilitate yield potential and stability assessment of advanced

breeding lines and provide information to identify and

understand complex genotype-by-environment interactions

(GE) (Dwivedi et al., 2020). However, collecting data in

multiple locations and years for many early-stage breeding

lines has high labor and economic costs, which imposes a

need to integrate genomics-enabled breeding (e.g., genomic

selection) and data-driven methods to accelerate the breeding

process (Rincent et al., 2017; Juliana et al., 2020). Establishing

an alliance of breeding programs that share target

environments is crucial for data sharing, germplasm

exchange, and for conducting advanced regional trials of

candidates for release (Chenu 2015; Spindel and McCouch

2016; Sarinelli et al., 2019).

Genomic selection (GS) is becoming a valuable technology

for modern crop breeding programs, and its implementation for

cultivar development has been shown to accelerate the rate of

genetic gain by shortening the breeding cycle and/or increasing

selection accuracy (Crossa et al., 2017; Voss-Fels et al., 2019).

Genomic selection uses established genotype and phenotype data

of a training population (TP) to calibrate a prediction model,

which is then used to estimate trait genomics breeding values

(GEBVs) of untested new genotypes. Based on GEBVs, superior

breeding lines are selected at preliminary stages prior to

phenotyping (Voss-Fels et al., 2019). Earlier selection allows

breeders increase breeding efficiency and save costs (Crossa

et al., 2017) by reducing the number of promising breeding

lines that need to be evaluated in advanced multi-environment

and replicated field trials (Wartha and Lorenz 2021).

There is increased interest in incorporating historical

datasets into genomic prediction models (Dawson et al.,

2013). Here, historical data refers to preexisting data collected

by breeding programs over time that were not generated

specifically for genomic selection modeling. Using historical

datasets could be beneficial for GS if the target population of

environments have been accurately evaluated within advanced

trials over time, the dataset is large, and the focal trait possesses
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high heritability (Rutkoski et al., 2015). Several studies have

incorporated historical data into genomic prediction models

to predict economically important traits including grain yield

(YLD) in wheat, with reports of moderate-to-high accuracies in

local breeding programs of r = 0.50 in France (Storlie and

Charmet 2013) and r = 0.64 in the US (Sarinelli et al., 2019),

as well as accuracies of r = 0.85 in an international cultivar

development program (Dawson et al., 2013). GS has been used to

enhance the primary target trait YLD, but it is also useful to

predict and select other important traits such as disease

resistance, including stem rust resistance (Rutkoski et al.,

2015) and Fusarium head blight resistance (FHB) (Rutkoski

et al., 2012), agronomic traits such as test weight (TW),

heading date (HD) and plant height (PH) (Gill et al., 2021)

and quality-related traits including protein content, starch

content, and flour yield (Tsai et al., 2020; Sandhu et al., 2022).

Lastly, GS can be applied for selection of low-heritable complex

traits that are expensive or difficult to measure, or by including

high-heritable correlated secondary traits into models (Rutkoski

et al., 2016; Sapkota et al., 2020).

This study was conducted to understand how new or

reestablished breeding programs should leverage existing

historical genomic, and multi-environment and multi-trait

phenotype data of elite breeding lines. The Clemson

University winter wheat breeding program was reestablished

in 2017 and used as a case study to understand the

foundational genetics and requirements to maximize

predictive ability of genomic models to successfully develop

cultivars adapted to a target population of environments. To

accomplish this, historical genotypic and phenotypic

information for advanced soft red winter (SRW) wheat

breeding lines, evaluated as part of the Southeastern

University small grains (SunGrains) breeding alliance, was

used to predict YLD, TW, HD and PH using optimized TPs

for a set of untested SC-derived breeding lines. Two validation

strategies were completed to assess and compare fitted models’

prediction accuracy. Finally, QTL-by-environment (QE)

interaction analysis was completed using 18 major effect QTL

to identify whether there was a favorable effect on yield across

three major testing regions. The use of comprehensive datasets

and genomic models have great value to securing the needed

increases in genetic gain and enhance the efficiency of cultivar

development.

2 Materials and methods

2.1 Plant materials

Annually, advanced SRW wheat lines entered into the Gulf

Atlantic wheat nursery (GAWN) and advanced wheat nursery

(SunWheat) are evaluated across the greater southeastern US,

which is coordinated by SunGrains and partnering public wheat

breeding programs. The SunGrains cooperative includes seven

land-grant university breeding programs (Clemson University,

NC State University, Louisiana State University, Texas A&M

University, University of Arkansas, University of Florida, and the

University of Georgia) having very strong collaborations for field

evaluation and unfettered distribution of adapted germplasm and

data exchange. As part of this historical cooperative, a total of

1,285 lines were tested in 19 locations (Figure 1 and

Supplementary Table S1) from 2008 to 2021. On average,

108 breeding lines (ranging from 56 in 2011 and 161 in 2021)

along with several commercial checks were evaluated annually in

field trials. The MapCustomizer2 web plotting tool was used to

generate a map with trial locations. Data from 2008 to 2020 was

used for GS analysis, and data from 2008 to 2021 was used for QE

analysis.

2.2 Historical phenotype data

Historical phenotypic data consisted of a multi-location,

multi-year and multi-trait dataset generated and maintained

by SunGrains. A total of 1,285 elite SRW wheat breeding lines

were tested in two regional nurseries (GAWN and SunWheat) in

19 trial locations in the southeastern US (Figure 1 and

Supplementary Table S1). The number of observations for

YLD (kg ha−1), TW (kg hl−1), HD (Julian days) and PH (cm)

was 17,645, 14,942, 11,092 and 8,678, respectively. The number

of replications ranged from one to three, depending on location-

year combination.

Two analyses were performed to determine appropriate

subsets of location-year combinations to include in the

phenotypic dataset for optimizing the GS model for the target

population of environments. First, the historical phenotypic

dataset was used to display principal component (PCA) plots

from Pearson’s correlation matrix using the ‘princomp’, ‘cor’ and

‘corrplot’ packages in R; second, biplots showing the relationship

among environments (Yan et al., 2000) were obtained using a

genotype plus genotype-by-environment (GGE) model using the

‘gge’ (Wright and Laffont 2018) and ‘GGEBiplots’ (Dumble et al.,

2017) packages in R. This analysis was repeated for the GAWN,

SunWheat, and combined (GAWN + SunWheat) phenotypic

datasets to select eight, four and ten subgroups of trial locations,

respectively (Supplementary Table S1).

For each of the subsets of locations (except for one group that

had low number of datapoints for estimation of genetic values),

the following linear model (Yao et al., 2018) was fitted using the

function ‘lmer’ of the ‘lme4’ package in R (Bates et al., 2015) to

estimate genetic values for YLD, TW, HD, and PH:

2 https://www.mapcustomizer.com/
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Yijk � µ + Gi + Ej + Rk(j) + GEij + eijk

Where Yijk represents the phenotypic observation of

genotype i in environment j and replication k, µ is the overall

mean; Gi is the effect of genotype i, Ej is the effect of environment

(location-year combination) j; Rk(j) the effect of replication k

nested in environment j; GEij the G × E interaction between

genotype i and environment j; and eijk the residual effect

associated with genotype i in environment j and replication k.

All terms except genotype were set as random effects. Genotype

was defined as fixed effect (Lado et al., 2017) to estimate marginal

means (EMMs) using the ‘emmeans’ package in R, and as random

effect (Yao et al., 2018) to calculate best linear unbiased

predictors (BLUPs) using the ‘coef’ and ‘ranef’ functions of the

‘lme4’ package in R. Pearson’s correlations between EMMs and

BLUPs were analyzed with the ‘corrplot’ packages in R (Wei and

Simko 2017). Variance components of the linear models fitted

with the ‘lme4’ package were used to estimate broad-sense

heritability (H2) with the ‘H2cal’ function of the ‘inti’ R

package (Lozano-Isla 2022). The Cullis method (Cullis et al.,

2006), recommended for unbalanced, multi-environment

datasets (Covarrubias-Pazaran 2019), was used according to

the following equation where genotype was a random effect:

H2
Cullis � 1 − �V

BLUP
Δ

2pσ2G

where �VBLUP
Δ is the mean variance of genotypic BLUPs and σ2G

represents the genetic variance (ΔG, genetic gain).

2.3 Genotype data

Genotyping was performed similarly to methods

previously described (Sarinelli et al., 2019; Winn et al.,

2022). DNA was extracted using sbeadex plant maxi kits

FIGURE 1
Map indicating the three major target population of environments (regions) (Boyles et al., 2019). In red indicating the Atlantic coastal plain
correlated trial locations (region 1), in blue Georgia and Florida locations (region 2) and in green the gulf coast locations (region 3). Pinpointed are the
19 locations in eight states of the Southeastern US region were SunGrains breeding lines are evaluated annually.
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(LGC Genomics, Middlesex, United Kingdom) according to

the manufacturer’s instructions. Genotyping-by-sequencing

(GBS) was performed as previously described (Poland JA.

et al., 2012) and libraries were sequenced on an Illumina

HiSeq 2500 or NovaSeq 6000 at the USDA-ARS Eastern

Regional Small Grains Genotyping laboratory (Raleigh,

NC). Reads were mapped to the wheat genome assembly

(RefSeq 1.0) (Appels et al., 2018) using the Burrows-Wheeler

aligner (BWA) (v.0.7.12) (Li and Durbin 2009) and single

nucleotide polymorphism (SNP) discovery was completed

with Tassel-5GBSv2 (v.5.2.35) (Glaubitz et al., 2014). Data

was filtered by removing taxa with >85% missing data, while

retaining SNPs with ≥5% minor allele frequency

(MAF), ≤10% of heterozygous proportion and missing data

of ≤20%. Finally, missing data was imputed with Beagle v5.1

(Browning and Browning 2007; Browning et al., 2018).

Exported VCF file containing 1,149 elite lines tested in

advanced trials from 2008 to 2020 and the 1,133 breeding

lines from SC sequenced in 2020 and 2021 was filtered. SNPs

with MAF of less than 5% were discarded and a maximum

heterozygous proportion of 10% was allowed (Juliana et al.,

2020). A total of 15,077 SNPs for 9,137 genotypes were

exported as a HapMap file and converted into a numerical

matrix (0,1,2) using GAPIT (v.3.1.0) with default parameters

in R (Lipka et al., 2012).

2.4 Training population selection

Training population optimization was performed to target

strategic production environments within the southeastern US. A

total of 998 (361 from 2020 to 637 from 2021) new SC breeding lines

were used to identify the best TP using each of the subsets of trial

locations (Supplementary Table S1). The best TPs of 400 individuals

were selected from the 1,149 SunGrains breeding lines based on the

genetic relatedness (Norman et al., 2018) to the 998 lines in the

prediction set. The R ‘STPGA’ package (Akdemir et al., 2015;

Akdemir 2017) was utilized using the historical high-density

genotype dataset with the following parameters: the genetic

algorithm was GenAlgForSubsetSelection’, the optimality criteria

was ‘PEVmean’, ‘nelite’ was set to 10, population size was set to

400 (Isidro et al., 2015; Michel et al., 2017; Sarinelli et al., 2019), and

other parameters were set with default values (Sarinelli et al., 2019).

The first 100 principal components calculated from the genotype

data were chosen for prediction of error variance. Optimal TPs were

selected after 300 iterations and 10 replications.

The frequency and percentage (%) of breeding lines by

breeding program selected by STPGA was calculated for each

TP and normalized by number of lines by program. A stacked

barplot was displayed with ‘ggplot’ package in R (Wickham 2016).

A heatmap was obtained with ‘pheatmap’ package (Kolde 2012),

and PCAs using genotypic data were calculated with ‘prcomp’

package and plotted with ‘ggplot’.

2.5 Genomic selection and cross-
validation

Genomic best linear unbiased prediction (GBLUP) mixed

models were fitted to estimate GEBVs for YLD, TW, TW and PH

with the following equation:

y � Xβ + Zμ + e

Where y represents the vector of BLUEs for each genotype; X

and Z represent the design matrices for fixed and random effects,

respectively; β is the vector of fixed effects; μ is the vector for

random genotypic effects; and e is a vector of residuals (Sarinelli

et al., 2019). EMMs and BLUPs of each of the 22 TPs selected by

STPGA (Supplementary Table S2) and the SNP dataset were

entered into the ‘mixed.solve’ function of the R ‘rrBLUP’ package

(Endelman 2011) for marker-based predictions. The restricted

maximum-likelihood method (REML) was used, and other

parameters were set as default.

Two types of validation were implemented to assess and

compare each model’s prediction ability using each TP for each

trait. First, five-fold cross-validation (CV) is a procedure that

randomly divides the TP into five groups of approximately equal

size (20%). One random group is masked and GEBVs are

calculated for the masked set using the remaining four folds

(80% of lines) (Lozada and Carter 2019). After completing this

step for all five folds, the correlations between observed values

(EMMs/BLUPs) and the predicted values (GEBVs) were used to

assess the accuracy of prediction by averaging the five

correlations. Second, a validation was performed using data

from 58 advanced breeding lines that were selected and

developed in SC for regional testing in 2021; six lines tested

in GAWN, 14 in SunWheat, 19 in SunGrains preliminary early

(SPE) nursery and 19 in SunGrains preliminary late (SPL)

nursery. For GAWN and SunWheat nurseries, YLD was

measured in nine locations (Warsaw, VA; Kinston, NC;

Clemson, SC; Florence, SC; Plains, GA; Citra, FL; Marianna,

AR; McGregor, TX, Winnsboro, LA.). SPE and SPL included

phenotypic data from seven locations (Marianna, AR; Plains, GA;

Gainesville, FL; Winnsboro, LA; Kinston, NC; Florence, SC; and

McGregor, TX.). EMMs and BLUPs were calculated for data

collected in all locations, as well as data collected exclusively in

Florence, SC and its most similar trial location Kinston, NC

(Boyles et al., 2019). These two datasets were used for comparison

with GEBVs calculated with the 22 TPs selected by STPGA.

Four-quadrant plots showing the correlation between observed

and predicted values were displayed with the ‘ggplot’ package in

R. Means of observed and predicted values were calculated to

divide the plot into four quadrants: A (upper-right) and B (lower-

left) for correctly classified lines, and C (lower-right) and D

(upper-left) for wrongly categorized genotypes.

Furthermore, GBLUP mixed models were fitted to estimate

GEBVs for the 998 breeding lines developed by the Clemson
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University breeding program. Using the EMMs and BLUPs of the

TP with highest prediction accuracy, predictions of YLD, TW,

HD and PHwere performed with the ‘mixed.solve’ function of the

R ‘rrBLUP’ package as previously described. With the aim to

select a subset of lines as the foundation for the breeding program

as well as first year advanced field testing, one hundred and five

superior lines were identified based on GEBVs for YLD, and

20 low-ranked lines were identified for comparison. Advanced

field evaluation for these lines is in progress (data not shown).

2.6 QTL-by-environment

SunGrains’ elite breeding lines have been evaluated every

year with Kompetitive allele-specific PCR assays (KASP, LGC

Biosearch Technologies, Hoddesdon, United Kingdom) to

generate composite calls for major effect genes at the Eastern

Regional Genotyping Small Grains Laboratory (Raleigh, NC).

Over the course of 14 years (2008–2021), 4,426 breeding lines

were tested for 75 molecular markers associated with disease/

pest resistance, photoperiod, vernalization, dwarfing, grain

texture and kernel color (Díaz et al., 2012; Guedira et al.,

2016; Mason et al., 2018; Sarinelli et al., 2019). For this study,

18 of the 75 major genes were selected due to a given

association with one or more of the following: FHB

(Fusarium graminearum) resistance, leaf rust (Puccinia

triticina) resistance, stem rust (P. graminis) resistance,

stripe rust (P. striiformis) resistance, Hessian fly

(Mayetiola destructor) resistance, powdery mildew

(Blumeria graminis) resistance, septoria nodorum blotch

(Parastagonospora nodorum) susceptibility, or photoperiod

sensitivity (Supplementary Table S3). In addition to their

association with important traits, these genes were also

selected because of their high frequency among regional,

SRW wheat lines and their perceived value to resiliency

and productivity.

Historical phenotype data from 1,285 breeding lines was used

to assess the effect on agronomic traits when the expression of a

major effect QTL differs under different environmental pressure

(e.g., low or high pest/disease pressure) across production

locations (Lowry et al., 2019). The historical dataset was

compartmentalized into two different ways: 1) target

population of environments (Boyles et al., 2019), which was a

set of three mega-environments herein referred to as regions

based on testing location; and 2) breeding line origin which

considered potential genetic background bias. Region 1 included

all data collected in states located in the Atlantic Coastal Plain

(NC, SC, VA), Region 2 comprised data from GA and FL

locations, and Region 3 represented data from Gulf Coast

states (TX, AR, LA) (Figure 1 and Supplementary Table S4).

Breeding line origin was categorized using the same three groups.

A total of 1,172 lines shared between this historical phenotypic

dataset and the Eastern Regional Marker Report were selected for

QE analysis.

For each of the 18 major genes, only absent/present calls were

considered for analysis by discarding heterozygous, null, and

failed calls. The following linear mixed model was calculated to

test the significance of QTL-by-environment (region/origin)

interactions for YLD, TW and HD using the function ‘lmer’

of ‘lme4’ package in R:

Yijk � μ + Gi + Ej + Rk(j) + GEij +QE + eijk

Where Yijk represents the phenotypic observation of

genotype i in environment j and replication k, µ the overall

mean; Gi is the effect of genotype i, Ej is the effect of environment

(location-year combination) j; Rk(j) the effect of replication k

nested in environment j; GEij the G x E interaction between

genotype i and environment j; QE the QTL-by-environment

interaction effect; and eijk the residual effect associated with

genotype i in environment j and replication k. QE effect was

considered fixed and all the remaining effects were considered

random.

Using the mixed model, EMMs were calculated using the

‘emmeans’ function in R for the fixed effect of the interaction

between major gene (absent/present) and region (1, 2 and 3). To

estimate the significant difference at 0.05, p-values were

calculated using pairwise comparisons between groups with

the option ‘pairwise’ and adjusted with the Tukey correction

method. Plots for EMMs and p-values were displayed with

‘ggplot’ in R. The same analysis was performed for YLD using

the classification of locations by origin to assess for genetic

background bias.

3 Results

3.1 Summary of historical phenotype data

The historical phenotypic dataset was used to calculate

biplots and PC plots showing the relationship among

environments (Supplementary Figure S1). These plots allowed

for the classification of locations by similarity of line performance

into 22 subsets as follows: eight groups using data collected in

GAWN nursery, four groups using data from SunWheat nursery

and ten groups using the whole dataset. For 22 subgroups, EMMs

and BLUPs were estimated in R (Supplementary Table S1).

Histogram plots for the four traits using the full dataset

revealed a normal distribution of EMMs and BLUPs

(Supplementary Figure S2). Correlation plots exhibited strong

positive relationships between predictors for each trait

(Supplementary Figure S3). Because there was complete

correlation (r = 1) between BLUPs calculated with ‘coef’ and

‘ranef’ R functions, hereinafter only results using BLUPs

estimated with ‘coef’ function are presented.
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Broad-sense heritability (H2) using the Cullis method was

moderate to high for YLD (r2 = 0.56), TW (r2 = 0.74), HD (r2 =

0.85) and PH (r2 = 0.83).

3.2 Training population selection

A genotypic dataset of 15,077 SNPs and 9,137 genotypes,

which included 998 SC lines and 1,149 SunGrains advanced

breeding lines, was used to establish optimal TPs. Subsetting was

based on genetic relatedness calculated using the ‘STPGA’ R

package. TPs containing 400 SunGrains advanced breeding lines

that most represented the SC prediction population were

selected, with the exception of three TPs (Set11_TP and

Set13_TP with 350 and Set15_TP with 300 lines) where fewer

lines were selected due to a lower number of available entries. The

normalized frequency of lines selected by breeding program

showed that overall representation of breeding

programs within TPs was LA (µ = 13.9%), NC (µ = 13.8%),

AR (µ = 13.3%), GA (µ = 13.2%), TX (µ = 12.9%), FL (µ = 12.5%),

FIGURE 2
PCA plot of first two principal components is showing the genetic relationship between SunGrains’ elite lines (gray, green and red dots), the SC
new breeding lines (light blue) and SC lines used for validation (dark blue). Lines selected in the combined TP (SetAll_TP) are indicated in green and
lines present in at least 20 TPs (Supplementary Figure S5) are highlighted in red. Percentage represent the proportion of variance explained by each
principal component.
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VA (µ = 11.7%), and SC (8.8%). After normalizing the number of

lines included from each program by the total lines available from

each program (n included/t available * 100 = normalized %), it

was apparent that STPGA included approximately one-third of

individuals from every program, with a mean over all 22 sets

ranging from a high of 36.3% (LA) to a low of 24% (SC)

(Supplementary Figure S4 and Supplementary Table S2). The

heatmap showed the lines selected by STPGA across TPs (within

nursery clustering), and that 12 lines were selected in at least

20 TPs (Supplementary Figure S5). The SunGrains’ elite breeding

lines and SC lines were genetically compared using PCA plots

(Figure 2). STPGA selected SunGrains’ lines (Figure 2, in green)

that best captured the genetics present in the new SC lines

(Figure 2, in blue). The PC1 that explained 10.3% of the

variation divides the genotypes into two distinct

subpopulations associated with the presence/absence of the

t2BS:2GS·2GL:2BL translocation derived from T. timopheevii

(Sarinelli et al., 2019).

3.3 Genomic selection and cross-
validation

GBLUPmixed models were fitted to predict GEBVs for YLD,

TW, HD and PH using the selected 22 TPs. Using five-fold CV, a

mean accuracy of r = 0.42 was observed across the 22 TPs when

TABLE 1 Five-fold CV using estimated values (EMMs and BLUPs) of 22 TPs (Supplementary Table S2) and the prediction accuracy to predict GEBVs for
YLD, TW, HD and PH.

Nursery TP YLD
EMMs

YLD
BLUPs

TW
EMMs

TW
BLUPs

HD
EMMs

HD
BLUPs

PH
EMMs

PH
BLUPs

GAWN Set01_TP 0.53 0.42 0.34 0.33 0.46 0.45 0.54 0.53

GAWN Set02_TP 0.44 0.35 0.30 0.26 0.37 0.35 0.43 0.45

GAWN Set03_TP 0.55 0.45 0.36 0.28 0.51 0.53 0.43 0.37

GAWN Set04_TP 0.47 0.37 0.30 0.24 0.45 0.43 0.46 0.45

GAWN Set05_TP 0.47 0.41 0.36 0.31 0.34 0.37 0.42 0.44

GAWN Set06_TP 0.46 0.36 0.37 0.33 0.33 0.33 0.38 0.39

GAWN Set07_TP 0.47 0.42 0.34 0.27 0.40 0.43 0.45 0.47

GAWN Set08_TP 0.46 0.35 0.37 0.30 0.37 0.40 0.52 0.53

SunWheat Set09_TP 0.37 0.27 0.26 0.21 0.48 0.39 0.37 0.42

SunWheat Set11_TP 0.29 0.13 0.17 0.17 0.37 0.32 0.38 0.40

SunWheat Set12_TP 0.47 0.28 0.22 0.17 0.49 0.45 0.39 0.42

SunWheat Set13_TP 0.29 0.20 0.23 0.17 0.41 0.30 0.48 0.47

GAWN + SunWheat Set14_TP 0.52 0.44 0.45 0.36 0.55 0.54 0.50 0.51

GAWN + SunWheat Set15_TP 0.16 0.15 0.03 0.05 0.45 0.45 0.34 0.35

GAWN + SunWheat Set16_TP 0.21 0.11 0.12 0.13 0.39 0.39 0.45 0.49

GAWN + SunWheat Set17_TP 0.36 0.21 0.42 0.28 0.38 0.44 0.40 0.44

GAWN + SunWheat Set18_TP 0.41 0.25 0.39 0.29 0.49 0.50 0.38 0.42

GAWN + SunWheat Set19_TP 0.49 0.34 0.39 0.27 0.43 0.46 0.44 0.45

GAWN + SunWheat Set20_TP 0.40 0.29 0.38 0.23 0.44 0.45 0.47 0.46

GAWN + SunWheat Set21_TP 0.50 0.38 0.40 0.30 0.45 0.46 0.43 0.43

GAWN + SunWheat Set22_TP 0.42 0.31 0.41 0.33 0.43 0.44 0.51 0.52

GAWN + SunWheat SetAll_TP 0.45 0.35 0.37 0.33 0.45 0.46 0.48 0.49

Average 0.42 0.31 0.32 0.26 0.43 0.42 0.44 0.45

Notes: Accuracies between 0.4–0.5 highlighted in light green and accuracies higher that 0.5 in dark green. Here presenting analysis was completed using BLUPs estimated with ‘coef’

function (BLUPs calculated with ‘coef’ function and ‘ranef’ function resulted in the same accuracies).
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TABLE 2 Validation using estimated values (EMMs and BLUPs) of 22 TPs (Supplementary Table S2) and the prediction accuracy to predict GEBVs for
YLD of 58 lines developed in Florence, SC.

Nursery Pred. GEBVs
calculated using
TP (predicted
values)

YLD (Obs.
EMMs)

YLD (Obs.
BLUPs)

YLD (Obs.
EMMs SC
& NC
only)

YLD (Obs.
BLUPs SC
& NC
only)

GAWN Set01_TP (EMMs) 0.48 0.42 0.26 0.23

Set01_TP (BLUPs) 0.41 0.34 0.26 0.19

GAWN Set02_TP (EMMs) 0.31 0.26 0.26 0.22

Set02_TP (BLUPs) 0.09 0.04 0.17 0.12

GAWN Set03_TP (EMMs) 0.26 0.24 0.10 0.10

Set03_TP (BLUPs) 0.09 0.05 −0.01 −0.04

GAWN Set04_TP (EMMs) 0.23 0.18 0.02 −0.02

Set04_TP (BLUPs) 0.08 0.03 −0.08 −0.12

GAWN Set05_TP (EMMs) 0.24 0.21 0.29 0.23

Set05_TP (BLUPs) 0.15 0.10 0.21 0.14

GAWN Set06_TP (EMMs) 0.22 0.17 0.22 0.15

Set06_TP (BLUPs) 0.12 0.06 0.08 0.01

GAWN Set07_TP (EMMs) 0.27 0.22 0.21 0.15

Set07_TP (BLUPs) 0.14 0.10 0.15 0.09

GAWN Set08_TP (EMMs) 0.19 0.13 0.14 0.07

Set08_TP (BLUPs) 0.06 0.01 0.05 −0.03

SunWheat Set09_TP (EMMs) 0.48 0.43 0.16 0.11

Set09_TP (BLUPs) 0.46 0.41 0.16 0.11

SunWheat Set11_TP (EMMs) 0.23 0.18 −0.01 −0.01

Set11_TP (BLUPs) 0.26 0.20 0.04 0.02

SunWheat Set12_TP (EMMs) 0.31 0.25 0.06 −0.01

Set12_TP (BLUPs) 0.30 0.22 0.03 −0.04

SunWheat Set13_TP (EMMs) 0.26 0.23 0.04 0.09

Set13_TP (BLUPs) 0.07 0.08 0.02 0.09

GAWN + SunWheat Set14_TP (EMMs) 0.34 0.32 0.32 0.29

Set14_TP (BLUPs) 0.37 0.33 0.26 0.23

GAWN + SunWheat Set15_TP (EMMs) 0.52 0.53 0.37 0.39

Set15_TP (BLUPs) 0.51 0.51 0.37 0.38

GAWN + SunWheat Set16_TP (EMMs) 0.21 0.21 0.06 0.11

Set16_TP (BLUPs) 0.15 0.14 0.04 0.10

GAWN + SunWheat Set17_TP (EMMs) 0.41 0.35 0.09 0.05

Set17_TP (BLUPs) 0.45 0.41 0.17 0.16

GAWN + SunWheat Set18_TP (EMMs) 0.43 0.39 0.10 0.10

Set18_TP (BLUPs) 0.41 0.37 0.13 0.14

GAWN + SunWheat Set19_TP (EMMs) 0.45 0.41 0.15 0.13

Set19_TP (BLUPs) 0.44 0.39 0.15 0.12

GAWN + SunWheat Set20_TP (EMMs) 0.49 0.45 0.14 0.12

Set20_TP (BLUPs) 0.47 0.44 0.15 0.14

GAWN + SunWheat Set21_TP (EMMs) 0.47 0.41 0.19 0.16

Set21_TP (BLUPs) 0.45 0.39 0.2 0.17

GAWN + SunWheat Set22_TP (EMMs) 0.39 0.34 0.21 0.15

Set22_TP (BLUPs) 0.37 0.32 0.25 0.18

GAWN + SunWheat SetAll_TP (EMMs) 0.62 (Figure 3A) 0.56 0.34 0.29

SetAll_TP (BLUPs) 0.59 (Figure 3B) 0.52 0.38 0.30

Notes: In parenthesis the estimated values used for predictions. Accuracies between 0.4–0.5 highlighted in light green and accuracies higher that 0.5 in dark green. In bold the higher

prediction accuracies. Here presenting analysis was completed using BLUPs estimated with ‘coef’ function (BLUPs calculated with ‘coef’ function and ‘ranef’ function resulted in the same

accuracies).
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using EMMs as the observed data for YLD. When using BLUPs,

the average prediction accuracy was reduced to r = 0.31. For TW,

mean prediction accuracies ranged from r = 0.26 to 0.32 when

using BLUPs and EMMs, respectively. Prediction accuracies

oscillated from r = 0.42 to 0.45 for HD and PH (Table 1).

A smaller set of 58 new breeding lines, developed by the

reestablished Clemson breeding program and evaluated for YLD

in several locations in the 2020–2021 growing season, were used

for additional validation. Observed and predicted values were

compared to assess the predictive ability of each TP

(Supplementary Table S5). Overall, YLD predictions generated

from EMMs of the combined TP (historical phenotypic data-

SetAll_TP) had the greatest correlation with observed data

(Table 2). A prediction accuracy as high as r = 0.62 was

obtained when comparing predicted GEBVs (predicted with

the EMMs of the combined TP) and EMMs of observed YLD

data. The four-quadrant plot for this comparison, where 69%

(40 of 58) of breeding lines were accurately categorized into the

proper quadrant (A and B) and 31% of the breeding lines were

categorized in quadrants C and D (Figure 3A). A prediction

accuracy of r = 0.59 was obtained by comparing the GEBVs

(predicted with the BLUPs of the combined TP), versus the

EMMs of YLD. In this case, 74.1% of the breeding lines with high

or low observed YLD were categorized in quadrants A and B,

whereas 25.9% of the breeding lines fell into quadrants C and D

(Figure 3B). Finally, GEBVs demonstrated low correlations with

observed data collected only in Florence, SC and its nearest trial

in Kinston, NC (Table 2).

The TP that was optimized with historical data and possessed

the highest prediction accuracy (r = 0.62) (Figure 3 and Table 2)

was used for calculating GEBVs of YLD, TW, HD and PH for

998 breeding lines developed in SC (Supplementary Table S6).

Based on YLD, the 105 most promising breeding lines predicted

to have a superior performance (4691–5036 kg ha−1) were

selected for field testing. This set of lines had predicted values

of 73.8–74.6 kg hl−1, 100–104 Julian days and 82.9–88.9 cm for

TW, HD and PH, respectively (Supplementary Table S6, in

green). Additionally, 20 lines with low predicted yield

(3899–4056 kg ha−1) were included for comparison. These

lines had predicted values for TW, HD and PH of

72.6–73.5 kg hl−1, 103–105 Julian days and 84.9–86.8 cm,

respectively (Supplementary Table S6, in red).

3.4 QTL-by-environment

The historical phenotypic dataset containing YLD, TW, HD and

PH measurements from many location-years (19 locations and

14 years, 2008–2021) (Figure 1 and Supplementary Table S4),

along with information for presence/absence of 18 major effect

QTL (Supplementary Table S3) for 1,172 for elite breeding lines,

was used to study whether or not it was advantageous to harbor QTL

FIGURE 3
Four-quadrant plots showing the correlation between predicted (GEBVs, x-axis) and observed yield (EMMs, y-axis) for 58 SC advanced breeding
lines using the combined TP data (SetAll_TP). Correlation between observed and predicted values for YLD using TP EMMs (A) and TP BLUPs (B). Mean
of observed and predicted values is dividing the plot into 4 quadrants, A (upper-right section in red), B (lower-left section yellow), C (lower-right
section in green) and D (upper-left section in blue). Percentage (%) of total lines classified in each quadrant is displayed.
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under variable abiotic and biotic pressures across geographic space

(Lowry et al., 2019). Using a linear mixed model, EMMs were

calculated for six pairwise combinations of QTL (absent/present)

and regions (1, 2 and 3) (Supplementary Table S7), and p-values

(Supplementary Table S8) for nine pairwise comparisons across

combinations. To consider genetic background bias, EMMs for

YLD and p-values (p < 0.05) were also calculated based on origin

of the breeding lines (Supplementary Tables S7, S8).

For each of the studied QTL (Supplementary Table S7), lines

tested in region 1 had the highest EMMs of observed YLD followed

by region 2, with region 3 demonstrating the lowest YLD potential.

For each QTL, significant differences in YLD between regions 1 and

3 were most frequent. In most QTL-by-environment combinations,

there were no significant differences in EMMs of YLDwithin regions

when carrying or not carrying the major QTL (Supplementary Table

S8). For test weight, region 2 showed the lowest EMM values

(Supplementary Table S7); however, there were no significant

differences with regions 1 and 3, nor within regions when

comparing major effect QTL presence/absence (Supplementary

Table S8). According to EMMs, heading date was later in region

1 (Supplementary Table S7) as expected, which was significantly

different from regions 2 and 3 (Supplementary Table S8). Refer to

Supplementary Tables S7, S8 for detailed information for each

comparison of all 18 QTL and three testing mega-environments.

Five genes that are relevant for target population of

environments across the southeastern US were more

rigorously assessed individually for YLD trends within testing

regions and by breeding program (e.g., region 1 observed data

only included breeding lines developed and selected from a

program located within region 1):

• Fhb1
The FHB resistance gene Fhb1 (Yao et al., 1997), which

first originated from ‘Sumai 3’, is located on chromosome 3BS

had an overall frequency of 7.3% among 1,147 breeding lines.

We found that wheat breeding lines harboring this gene had

lower grain yield in all testing environments; however, this

difference was only significant in the Gulf Coast (region 3)

(Figure 4A).

• Fhb_1BJ
Fhb_1B (Wright 2014), an additional FHB resistance

QTL derived from the cultivar ‘Jamestown’ (Griffey et al.,

2010), had an overall frequency of 23.8% among

689 breeding lines. Lines carrying the resistance allele

exhibited significantly lower YLD in region 2. Yields were

similar for Fhb_1B carrying or non-carrying lines in regions

1 and 3 (Figure 4B).

• Fhb_1AN
This third FHB resistance QTL under study (Petersen et al.,

2016) was derived from the cultivar ‘NC-Neuse’ (Murphy et al., 2004)

and is located on chromosome 1A. The resistance allele at Fhb_1A

exhibited a relatively high frequency of 34.3% among 664 breeding

lines. Comparisons between lines with or without Fhb_1A mirrored

Fhb_1B, where only region 2 exhibited a significantly lower YLD for

lines possessing the resistance allele (Figure 4C).

• Yr17_Lr37_Sr38
The multi-functional rust resistance QTL is located in the

2NVS:2A translocation segment derived from Aegilops ventricosa

(Gao et al., 2021). This QTL showed a consistently high

introgression frequency of 53.9%, based on data from

1,072 breeding lines. The favorable allele for rust resistance

had a consistent, positive effect on YLD (Figure 4D),

especially in regions 2 and 3 where rust often threatens wheat

production (Aboukhaddour et al., 2020).

• H13
This effective Hessian fly resistance gene was introgressed

from Aegilops tauschii and is located on 6DS (Liu et al., 2005).

H13 displayed an overall frequency of 11.0% among

1,104 breeding lines. Assessing its impact on productivity

across the regions, the resistance allele at H13 had a

significantly positive effect on YLD (Figure 4E).

When narrowing phenotypic data by only including breeding

lines that originated within region, similar trends between presence/

absence of these five major effect QTL and YLD were observed

(Supplementary Figure S5). In other words, YLD trends largely held

true to suggest genetic background was not impacting this analysis. A

notable exception was lines that originated in region 1 and carried the

Yr17_Lr37_Sr38 introgression segment yielded significantly greater

than lines not harboring this QTL for rust resistance (Supplementary

Figure S6).

4 Discussion

4.1 Application and benefits of genomic
prediction in cultivar development
programs

Integration of GS and molecular breeding technologies into the

cultivar development pipeline has enabled established programs to

accelerate the rate of genetic gain for complex traits and speed up the

breeding process (Voss-Fels et al., 2019), while helping to minimize

costs (Crossa et al., 2017). Implementation of GS into existing

breeding programs that once fully relied on phenotypic selection

comes with the challenge of restructuring the breeding pipeline to

efficiently deploy genomics-enabled breeding (Merrick et al., 2022).

Merrick et al. (2022) reviewed the specific aspects to consider that

affect a given model’s predictive ability in GS including: 1)

establishment of optimum TPs where size, structure and

composition, and genetic relatedness to the target population
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impact accuracy (Isidro y Sánchez and Akdemir 2021); 2)

genotyping and incorporation of major genes into the GS

models; 3) speed breeding to reduce generation time and double

haploids for accelerated fixation of traits; 4) leveraging phenotypic

data by conducting multi-environment (multiple locations and

years) trials and accounting for genotype-by-environment

interaction of complex traits (e.g., yield); 5) incorporating

multiple, high-heritable correlated traits to improve prediction

accuracy for low heritable complex traits (Merrick et al., 2022);

6) incorporating new technologies to aid GS models, such us high-

throughput phenotyping of secondary traits to select complex traits

(Rutkoski et al., 2016); and 7) utilizing machine (Montesinos-López

et al., 2018) or deep learning (Montesinos-López et al., 2021) for

model building to increase statistical power.

The Clemson University winter wheat cultivar development

program was recently reestablished in 2017 and served as a case

study. New or reestablished breeding programs often have limited

resources and must make difficult decisions on how to best adopt

genomics-enabled breeding. Though challenging, these programs

have a unique flexibility in deploying technology to inform critical

decisions such as sourcing initial germplasm to establish the genetic

foundation, determining crossing combinations for greatest

population variance, and capturing genotype-by-environment

interaction for a specific target population of environments.

FIGURE 4
QTL-by-environment plots for YLD when five major genes are present or absent within three major testing regions (target population of
environments or mega-environments). Fusarium head blight (FHB) (F. graminearum) resistance genes, Fhb1 (A), Fhb_1B derived from ‘Jamestown’
cultivar (B), Fhb_1A derived from ‘Neuse’ cultivar (C), stripe rust (P. striiformis) resistance gene Yr17_Lr37_Sr38 (D) and hessian fly (M. destructor)
resistance gene H13 (E). Three regions in x-axis and EMMs calculated for YLD in y-axis. p-values are indicated for each pairwise comparison.
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Existing historical genomic and phenotypic resources formany lines

tested across locations and years could significantly benefit emerging

or re-emerging breeding programs. These comprehensive datasets,

previously shown to enhance prediction accuracy (Tomar et al.,

2021; Zhao et al., 2021), were leveraged through the SunGrains

multi-institutional collaborative program, which continues to

successfully develop and release commercial cultivars for the

southeastern US. This study utilized historical data generated and

compiled by SunGrains to identify best practices for leveraging

available genomic and phenotypic data to determine optimal genetic

foundation for a specific target population of environments, and to

incorporate robust GS models with high prediction accuracy. Here,

grain yield data was used to cluster locations by correlated line

performance (Boyles et al., 2019) into 22 groups, and optimization of

TPs was implemented for each set with STPGA. Selecting TPs

genetically related to new lines being evaluated should lead to an

increase in prediction accuracy (Norman et al., 2018). In addition, it

has been shown that accuracy in wheat increases with the increase of

TP size, with 300 individuals (Isidro et al., 2015; Michel et al., 2017)

or even greater (Sarinelli et al., 2019) being reported as the optimal

number. As such, 400 individuals were selected for each TP in this

winter wheat case study (based on unpublished tests).

When correlating GEBVs with observed phenotypic data,

validation using 58 SC breeding lines demonstrated that using

the combined TP (complete data from all regional trials and

years) produced the highest prediction accuracy for grain yield

(as high as r = 0.62), and outperformed predictions made with TPs

with reduced data. The complete dataset not only included more

high-quality data for predictions, but also TPs selected from a

historical pool of lines tested in multiple years and geographic

regions aids in capturing a broader range of environmental

conditions when compared to newly generated, population-

specific TPs. In this case study, it was apparent that the historical

phenotypic dataset using all data (combined GAWN + SunWheat

over 14 years) effectively captured environments that were

representative of the collection of locations in 2021 where the

58 SC breeding lines were tested. Specifically, grain yield GEBVs

for 40 of the 58 lines (69%) used for validation correctly grouped

with observed data (Figure 3A). This result reinforces the utility and

value of preserving and using historical data for building genomic

selection models for new programs, as well as the importance of

having strong regional alliances to share data across breeding

programs. These collaborative networks enable genomics-enabled

breeding to reach its theoretical potential for enhancing genetic gain

(Spindel and McCouch 2016; Xu et al., 2020). A separate GS

validation study leveraging historical winter wheat data reported

a similar prediction accuracy of r = 0.64, which consisted of 483 lines

grown over a 9-year period (Sarinelli et al., 2019). Meanwhile, lower

accuracies (r = 0.28–0.50) were observed when using training data of

318 lines collected over 11 years at six locations in France (Storlie

and Charmet 2013) and data from 254 lines tested inMexico during

2010 (Poland J. et al., 2012). Although quality of phenotype data was

high, and GS has the potential to improve grain yield, these results

also imply that the complex nature of this trait with a moderate

broad-sense heritability (r2 = 0.56) is highly affected by genotype-by-

environment interactions (Crossa et al., 2017).

4.2 Assessment of the presence/absence
of major effect QTL on regional
productivity

Grain yield remains the primary target trait for winter wheat

improvement, but there are other agronomic, quality (Tsai et al., 2020;

Sandhu et al., 2022) and resiliency traits that undergo intensive

selection (Singh et al., 2016; Laidig et al., 2021; Langridge and

Reynolds 2021). In this study, trends between grain yield and allele

presence at major effect QTL were examined using existing PCR-

based markers (Díaz et al., 2012; Guedira et al., 2016; Mason et al.,

2018) and historical multiyear, multi-location phenotypic data. For

this specific case study in southern SRW wheat, selection for broad

adaptation is of interest as seed companies desire covering large

market regions with fewer products. Thus, determining the best

combination of major effect QTL would be a valuable selection

tool to guide future breeding decisions. Broad adaptation for

winter wheat in the southeastern US is elusive because there are

myriad diseases and pests that threaten yield but often to various levels

across the entire region. This study sought to provide evidence for the

most appropriate combination of resistance QTL with high yield

potential in absence of any biotic stress.

Several major effect QTL conferring resistance to FHB were

examined because the primary threat fromF. graminearum infection is

reduced grain quality and deoxynivalenol (DON) toxin

contamination, with FHB not known to severely hinder yield

unless present at epidemic levels (Rod et al., 2020). Thus, there was

interest in determining whether yield drag was observed from

introgression of exotic (e.g., Fhb1) or native (‘Jamestown’ Fhb_1B

and ‘Neuse’ Fhb_1A) resistance QTL and assessing how environment

influenced the yield/QTL relationship. Although Fhb1 is widely used

in many breeding programs, it was present at very low frequency

(~7%)within the SunGrains’wheat lines, and genotypes harboring this

gene exhibited lower yield regardless of testing region. Fhb1 is derived

from an unadapted cultivar (Yao et al., 1997), and progenies using this

source of resistance could inherit undesired agronomic traits due to

linkage drag. Therefore, breeding lines harboring this QTL might be

discarded by breeders in the field when looking and selecting for

outstanding performance and adaptation. Marker-assisted

backcrossing using adapted recurrent parents is a strategy to break

the linkage and develop lines that combine the Fhb1 resistance gene

with desired agronomic traits (Jin et al., 2013). Otherwise, use of native

FHB resistance genes, present at higher frequency (Fhb_1Bwith ~24%

and Fhb_1A ~34%) and without yield penalty, is highly

recommended. For instance, one of the most productive and

adapted SRW wheat lines in the southern US, ‘Hilliard’, harbors

FHB resistance derived from ‘Jamestown’ (Griffey et al., 2020). Further

opportunities to improve and provide durable FHB resistance is the

Frontiers in Genetics frontiersin.org13

Ballén-Taborda et al. 10.3389/fgene.2022.964684

300

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964684


pyramiding of native resistance genes with complimentary (or novel)

QTL (Castro Aviles et al., 2020).

The recent study by Gao et al. (2021) found a positive yield effect

of Yr17_Lr37_Sr38 in the USGreat Plains and across an international

performance trial led by the International Maize and Wheat

Improvement Centre (CIMMYT). Indeed, this same trend was

observed in SRW wheat adapted to the southeastern US,

irrespective of region, where lines that possessed the introgression

segment from A. ventricosa exhibited significantly higher mean yields

than lines not carrying this introgression. As such, it was not

surprising to observe that approximately 50% of breeding lines in

the study carried Yr17_Lr37_Sr38. Fixing this QTL in a breeding

program would be suggested, given its multi-purpose rust resistance

benefit and purported linkage to favorable yield gene(s). For H13, the

QTL that confers strong resistance to the local biotype L Hessian fly,

was present at much lower frequency (11%). Because of the tendency

of Hessian fly biotype L to be more frequent and impactful along the

Atlantic Coastal Plain (regions 1 and 2, Figure 1), it was not surprising

to see that lines harboring the resistance allele at H13 had higher yield

than non-H13 lines in these regions, especially given thatHessianfly is

a yield-threatening pest. In region 3, whereHessian fly biotype L is less

common, there were no yield differences between lines with or

without H13 (Ratcliffe et al., 1994; Ratcliffe et al., 2000; Onstad

and Knolhoff 2014).

Conclusion

Formostmajor food crops, there are extensive resources available,

including in the public domain, that can be leveraged to rapidly scale

new or reestablished breeding programs that do not have direct access

to valuable germplasm, data, or selection tools at program inception.

This study examined the reestablished soft red winter wheat breeding

program at Clemson University to establish processes for integrating

available resources to accelerate the time from program inception to

cultivar release. These steps included 1) utilizing a combination of

historical phenotype data and genome-wide SNP markers to build a

reliable GS model for predicting best lines for a target population of

environments, and 2) identifying major effect QTL using existing

PCR-based marker reports that were favorable, within the context of

region and biotic pressure. This study highlights the importance of

cooperative efforts between breeding programs that share a target

population of environments to not only perform extensive multi-

environment field trials but also to compile genotypic and phenotypic

datasets that are key to enhancing genetic gain through robust

genomic prediction models.
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