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Potential Impacts of Fukushima
Nuclear Leakage on China’s Carbon
Neutrality—an Investigation on
Nuclear Power Avoidance and
Regional Heterogeneity
Chengyu Li1, Xiangwu Yan1*, Baoquan Liu2, Zhenbing Yang3 and Li Zhou4

1Zhengzhou University of Light Industry, Zhengzhou, China, 2Shanghai International Studies University, Shanghai, China, 3Nanjing
University of Finance and Economics, Nanjing, China, 4Inner Mongolia University of Technology, Hohhot, China

Ten years have passed since the Fukushima nuclear accident, but its impact on the
environment and energy consumption structure has continued up to now. This accident
delayed the process of China’s nuclear power construction and may have a certain
potential impact on China’s goal of carbon neutrality by 2060. This paper aims to properly
understand the negative impact of the Fukushima nuclear leakage on China’s nuclear
power industry, to reawaken the attention of Chinese academic and governmental
departments to nuclear energy, and to explore a reasonable path to achieve carbon
neutrality. Based on the idea of a quasi-natural experiment, this paper collected the carbon
emissions data of 30 provinces and cities in China from 2000 to 2017, and explored the
accident impact andmechanism on carbon emissions in the provinces with nuclear power.
The research results showed that the Fukushima nuclear accident had different impacts on
China’s nuclear power provinces. Due to the large proportion of manufacturing industry
and high dependence on energy, the carbon emissions in Jiangsu Province rose after
being impacted by the incident, in contrast, the research results in Guangdong and
Zhejiang provinces were opposite. Through the mechanism test, it was found that the
incident impact had reduced the carbon emissions of Guangdong and Zhejiang by
improving the industrial structure and energy efficiency, with the explanation ratios of
10.45 and 15.1%, respectively. Technological innovation had obscured the emission
reduction effect of the incident impact, and the innovation driving force for green
development in nuclear power base provinces was insufficient. These findings are
helpful to analyze the regional layout of China’s nuclear power and have implications
for achieving carbon neutrality. Finally, this study offers relevant policy recommendations.

Keywords: fukushima nuclear leakage, carbon neutrality, nuclear power avoidance, regional heterogeneity,
synthetic control method
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INTRODUCTION

In September 2021, under the dual pressure of insufficient power
supply and actions to control the total and intensity of energy
consumption, Northeastern China experienced widespread
power outages, causing huge problems for industrial
production and residential life, indicating that China’s energy
demand and emission reduction targets are in a complex
interaction relationship. China needs to find a pathway to
meet its continuously expanding energy demand and achieve
its carbon neutrality targets. In addition to the divergence from
energy demand, China’s carbon-neutral goal is facing three
challenges: First, some effective policy tools and realization
paths are needed. Second, the carbon-neutral target reflects the
long-term equilibrium of production activities and the natural
environment. This goal cannot be realized with a simple method
of total amount control. Almost all of the important economic
departments will be involved in the project. At the same time, the
negative effect of market competition may be revealed, especially
the surge and waste in high-carbon consumer products. Third,
the path to carbon neutrality is excessively tilted to exploit clean
energy, consequently forming a “limping” development. It may
create risks for energy security and energy system optimization,
especially taking into account indirect and unstable power
generation methods such as wind energy and solar energy.
The development of the nuclear power industry can overcome
these challenges. Therefore, it can be considered as an option for
achieving carbon neutrality.

However, since the Fukushima nuclear accident, the public has
become sensitive to the construction of nuclear power plants. The
deeper reasons for resident’s concerns about nuclear power are
their dissatisfaction with untimely information disclosure and
imperfect participation mechanisms and the like (Huang et al.,
2013). Richard AMeserve, chairman of the United States Nuclear
Regulatory Commission, pointed out that public attitude may
determine whether nuclear technology can become a part of
energy technology. So, how to coordinate the relationship
between nuclear power construction projects and residents has
become the key point to nuclear energy development.

Also, influenced by public sentiment, countries that originally
worked hard to develop nuclear energy had to face the problem of
nuclear power evasion. In which, China had issued
countermeasures called National Four Articles. It brought the
following impacts: 28 nuclear power units, already approved by
the National Development and Reform Commission and started
construction, can continue to be constructed. The construction of
6 nuclear power units, which have obtained the construction
permit but have not yet started, had been suspended. 14 units that
had been approved to enter the preliminary work cannot
continue until the safety planning work was completed. Also,
although inland provinces were striving for construction, at least
25 nuclear power plants here run aground. After the accident, the
national policy for nuclear power development changed from
active development to safe development, indicating that China’s
nuclear power will shift from high-speed development to slow
and steady development. Further, the decreased scale and
slowdown of nuclear power development may impact China’s

carbon neutralization goal in 2060. In the post epidemic period,
the use of nuclear energy may change many existing economic
behaviors and economic results.

The changed nuclear energy policy also impacted China’s
energy structure and emission reduction effect. Considering
China’s commitment to global climate change, if avoid
developing nuclear power, accelerating the installed capacity of
renewable energy may become a good choice. Economic intuition
shows that the proportion of renewable energy in China will rise,
accompanied by less total carbon emissions. However, due to the
terrain limitation of hydropower and the intermittence of wind
energy and solar energy, nuclear energy cannot be fully replaced.
This situation urges China to find a new balance between energy
policy and environmental protection. Potential impacts like these
are a complex matter, whether there exists a relation between the
nuclear leakage accident and China’s carbon emission needs
further investigation.

The possible marginal contributions of this paper are three:
First, the SCM used in this paper effectively overcomes the
endogeneity of the model and the subjectivity of sample
selection, and obtains more accurate estimation results. The
robustness of the empirical results was tested by using
Permutation Test, Falsification Test, PSM-DID, and
controlling other policy influences. Second, this paper
examines the impact of the Fukushima nuclear accident on
China’s nuclear power industry, especially inland nuclear
power, and provides early recognition of the possible impact
of nuclear accidents on China’s carbon neutrality targets. Third,
due to the nuclear power industry is related to national strategic
security, many data are not available, making it difficult for the
relevant literature to validate the model empirically through
accurate figures, but only through cases. In addition, most of
the research on nuclear power in recent years has been conducted
from the legal and regulatory perspectives, and there is very little
literature and research results from the economic perspective.
This paper fills the relevant research gap and enriches the study of
China’s nuclear power industry.

LITERATURE REVIEW

Impact of Major Emergency Safety
Incidents on Clean Energy
The Fukushima nuclear accident is the biggest nuclear disaster
since the Chernobyl nuclear accident in 1986, which once again
arouses people’s attention to nuclear safety around the world
(Butler et al., 2011; Hayashi and Hughes, 2013; Huang et al., 2013;
Visschers and Siegrist, 2013), and moral issues related to nuclear
safety, such as energy, pollution, environment, and health, have
also become hot topics (Butler et al., 2011; Mao et al., 2015; Du
et al., 2016).

The first clue is the direct impact of nuclear accidents on the
development of nuclear power. After the nuclear accident, some
countries changed their nuclear energy development strategy or
even gave up nuclear power (Lee and Wang, 2014). Generally
speaking, after the accident, the attitudes of various countries
towards nuclear power development can be divided into two
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camps: the nuclear abandonment faction, represented by Japan
and Germany, and the nuclear improvement faction, represented
by China and the United States (Butler et al., 2011; Joskow and
Parsons, 2012; Kim et al., 2013; Ming et al., 2016). Nuclear
abandonment refers to achieving the goal of abandoning
nuclear energy by gradually reducing the number of nuclear
power plants. In contrast, nuclear improvement emphasizes
strengthening the rational development and utilization of
nuclear energy, thus improving the safety of nuclear power.
Some factors, such as the contradiction between the shortage
of energy supply and the urgency of energy demand, and the
advantages of nuclear power in terms of emission reduction and
cost compared with traditional energy, determine that the overall
trend of China’s nuclear power development will not be reversed
after the accident. However, the Fukushima nuclear accident did,
to a certain extent, impacted the low-carbonization process of
China’s established energy structure, and inhibited the
development of China’s nuclear power. This is reflected in the
following aspects: First, the speed of nuclear power development
was affected. By the judgment of the State Grid Energy Research
Institute, slowing down the start-up of nuclear power for
1–2 years will probably reduce the installed capacity by more
than 10 million kW in 2020. Second, the shelving of China’s
inland nuclear power construction plan will affect the
development of the central and western regions, which have a
large population and are in urgent need of nuclear power (Zhu
and Krantzberg, 2014). Third, the slow restart of nuclear power
has a greater impact on equipment manufacturers, such as
Dongfang Electric and China Yizhong, by November 2014, they
had not even received orders for nuclear power equipment for the
second year, which is bound to put pressure on China’s
subsequent nuclear power construction.

The second clue is the indirect effect of the nuclear accident,
which means the impact of the nuclear fear triggered by the
nuclear leakage. In general, due to the NIMBY effect, residents
living near nuclear power plants have a negative attitude towards
nuclear energy (Dan, 2007; Guo and Ren, 2017). This sentiment
became more significant after the Fukushima nuclear accident
(Kessides, 2012; Srinivasan and Rethinaraj, 2013; Lee and Wang,
2014). According to a survey of 18,787 adults in 24 countries by
Laes et al. (2011), 62% of respondents opposed nuclear energy,
and 26% reported that the Fukushima accident changed their
original views. Among them, the Chinese people’s attitude
towards nuclear power has changed obviously, and residents
around nuclear power plants are generally unwilling to build
new nuclear power projects (Huang et al., 2013; Huang et al.,
2018).

Under the nuclear fear sentiment, many anti-nuclear
demonstrations and mass incidents broke out one after
another in China. The nuclear fuel treatment plants in Heshan
City, Guangdong Province, Lianyungang Nuclear Cycle
Treatment Station Project, and Pengze Nuclear Power Plant
Construction Project were all shelved due to opposition from
residents. Under this situation, to balance the deviation between
the international development trend and the domestic public
opinion demand, the government adopted a conservative
approach in formulating the nuclear power policy agenda. At

present, the fear of nuclear has brought far more losses to China
than the nuclear leakage itself.

The third clue is the impact of the Fukushima nuclear accident
on the rapid development of other clean energy sources in China.
Before this nuclear leakage, scholars were already highly
concerned about the development of clean energy, especially
solar energy (Du et al., 2014). Studies have shown that more
people support renewable energy than nuclear energy (McGowan
and Sauter, 2005; Pidgeon et al., 2008). This trend was more
obvious after the Fukushima nuclear accident. Research from
Wallard et al. (2012) showed that the public prefers renewable
energy sources, such as solar energy (97%), wind energy (93%),
and hydropower (91%) to nuclear energy (38%). A group of
scholars has turned their attention to renewable energy that may
replace nuclear energy (Notter, 2015; Sorensen, 2017; Bilgili et al.,
2021).

Methods for Evaluating the Impact of
Exogenous Incidents
As a natural disaster and exogenous event, the Fukushima nuclear
accident had different impacts on China’s areas that had built
nuclear power plants (Guangdong, Jiangsu, and Zhejiang), and
those not. It can be regarded as a natural experiment. To study the
impact of Fukushima nuclear accident on regional carbon
emissions, we compared the changes of carbon emissions in
experimental areas before and after the exogenous shock.
However, many factors can affect regional carbon emissions.

A common measurement method to eliminate the general
factors affecting regional carbon emissions is the Difference in
DifferenceMethod (DID). Its principle is to construct a treatment
group with incident influence and a control group not. When
studying the influence of exogenous shock effect on the treatment
group, the control group naturally becomes a reference. The
application of DID must satisfy the randomness hypothesis and
the homogeneity hypothesis, in which the randomness
hypothesis requires the sample selection to be random, and
the homogeneity hypothesis requires the treatment group and
the control group to have similar development trends before the
implementation of exogenous shocks. But these hypotheses are
often difficult to meet.

Compared to DID, the Synthetic Control Method (SCM)
proposed by Abadie and Gardeazabal (2003) gives different
weights to different control group individuals. Based on these
weights, a counterfactual control group of policy intervention
individuals is constructed to simulate the characteristics of the
treatment group before being affected by a event, and the real
treatment group value is compared with the synthetic value to
obtain the event effect. SCM uses a data-driven method to give
weights to synthetic individuals, and calculates out the
contribution of each synthetic individual to the counterfactual
control group. It effectively overcomes the subjectivity and
endogeneity of sample selection, and makes up for the
limitations of DID method in policy evaluation. In recent
years, SCM has been applied to policy evaluation research in
different fields. For example, Adhikari and Alm (2016) evaluated
the economic effects of single tax reform through SCM and Kim
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and Kim (2016) used it to test the implementation effects of green
gas initiative policies implemented in the northeastern
United States.

Methodology and Data
Based on the idea of counterfactual analysis, this paper used SCM
to analyze the impact of Fukushima nuclear accident on China’s
nuclear power-owning provinces. The carbon emission (CE)
index used in this paper was calculated according to energy
consumption data and emission factors, following the emission
accounting method of the Intergovernmental Panel on Climate
Change (IPCC). The inventory includes energy-related emissions
(17 fossil fuels in 47 fields) and process-related emissions (cement
production). The calculation formula is as follows:

CEik � ADik ×NCVk × CCk × Oik (1)

CEik refers to carbon dioxide emissions in area i; ADik is the
consumption of fuel in area i; NCVik refers to the net calorific
value, that is, the calorific value generated per unit of fossil fuel
combustion. CCk is CO2 emissions per unit of net heat generated
by fossil fuel k;Oik refers to the oxidation rate of fossil fuels during
combustion.

According to existing research, factors such as population size,
economic development level, industrial structure, energy
intensity, and opening-up level will affect carbon emissions.
This paper selected these indicators as control variables,
among which the urbanization level is the proportion of the
urban population at the end of the year, and the data was taken
from the National Bureau of Statistics. The level of economic
development is expressed by the logarithm of regional GDP per
capita. The data was taken from the National Bureau of Statistics
and deflated with 2000 as the base period. The level of opening to
the outside world is the ratio of total exports of domestic
destinations and sources of goods to GDP. Import and export
data came from the General Administration of Customs and was
converted by the average exchange rate of RMB against the
United States dollar in the current year. Data related to coal
consumption and thermal power generation were taken from
China Energy Statistics Yearbook (2001–2018). The energy
intensity is the ratio of 10,000 tons of standard coal to the
constant price of 10,000 yuan GDP. The relevant data came
from China Energy Statistics Yearbook (2001–2018). The
industrial structure is the ratio of regional industrial added
value to regional GDP, and the data came from China
Statistical Yearbook (2001–2018). The symbols and meanings
of each variable were shown in Table 1 and Table 2 includes the
descriptive statistics of the main variables.

Impact Effect Evaluation of Fukushima
Nuclear Accident
With the different weights of the control group, SCM can
minimize the Root Mean Square Prediction Error (RMSPE) of
the experimental and synthetic control group before the
exogenous event. The fitting of predictive control variables is
shown in Table 3. It shows that the difference of RMSPE among
Guangdong, Jiangsu, and Zhejiang is small, which are all less than

10. The predictive control variables, such as economic
development level (lngdppc), population size (lnpop),
urbanization level (urb), and industrial structure (is) in each
area are very close to the real level. Among them, the carbon
emissions of the synthetic area in 2000 and 2005 are highly
similar to those of the experimental area, indicating that the SCM
method in this paper fitted well.

The synthetic regional weights of the experimental provinces
were shown in Table 4. Synthetic areas of Guangdong Province
are Hebei (0.592), Liaoning (0.094), and Shanghai (0.315),
indicating that the carbon emissions in Guangdong Province
were closest to those in Hebei. Synthetic areas of Jiangsu Province
are Liaoning (0.353), Shandong (0.489), and Shanghai (0.158),
indicating that the carbon emissions in Shandong were most
similar to those in Jiangsu. For Zhejiang, synthetic areas are
Fujian (0.162), Henan (0.276), Shandong (0.154), and Shanghai
(0.408). The basic situation in Shanghai was closest to Zhejiang.

Taking the time of the Fukushima nuclear accident as a
boundary, we divided the sample divided into two parts: the
pre-incident period (2000–2010) and the post-incident period
(2011–2017). Then, we carried out SCM on three experimental
areas with completed nuclear power facilities (Guangdong,
Jiangsu, and Zhejiang), and the results were shown in
Figure 1. Before the Fukushima nuclear accident, the actual
carbon emissions of Guangdong, Jiangsu, and Zhejiang
provinces generally had a good fit with the synthetic areas.
After the incident, the carbon emissions of Guangdong and
Zhejiang showed a downward trend, in contrast, Jiangsu
showed a significant upward trend. This result is inconsistent
with economic intuition: due to other clean energy in China
cannot be increased quickly after the nuclear suspension, thermal
power naturally became an important energy source to make up
the energy gap, carbon emissions in the three provinces will then
increase. We realize that this may be an important finding, and in
subsequent analyses we will examine the reasons for this anomaly
based on regional heterogeneity.

Validity and Robustness Test
A core issue, whether any relationship between Fukushima
nuclear leakage and China’s carbon emissions exists, needs to
be confirmed. Because of losing the supply of nuclear energy,
carbon emission increased in Jiangsu is foreseeable. However,
carbon emission decreased in Guangdong and Zhejiang may be
affected by other factors, for example, the carbon trading pilot
policy launched in 2011, and other emission reduction
measures implied by regional provinces. In general, carbon
emission reduction is a global trend, even if there was no
nuclear leakage, China’s carbon emissions may present a
decline. However, the occurrence of the Fukushima nuclear
accident has almost affected all nuclear power countries,
especially Japan and Germany, which changed energy
strategy for public opinion and energy security. The
prospect of China’s nuclear power had been doubted by the
mass and even some scientists. Some government officials
believed China’s nuclear power may fall into long-term
stagnation. To address possible energy crises and emission
reduction pressure, governments that lost nuclear power
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adopted new energy policies and stricter environmental
regulations. Although nuclear power accounts for a small
proportion of primary energy, the Fukushima nuclear
leakage had a profound impact on regional and even
national energy strategies.

To confirm the relationship between the nuclear leakage and
China’s carbon emissions, as well as test the robustness of the
previous research results, we combined with the research
experience of Abadie and Gardeazabal (2003), Abadie et al.
(2010), and conducted the Permutation Test, Falsification Test,
PSM-DID, and a method of controlling other policy impacts.

Permutation Test
The permutation test was used to eliminate the interference of
other factors. We assumed all the control group areas had nuclear
power and were impacted by the Fukushima nuclear accident in

2011. The synthetic objects are re-constructed through SCM, and
compared with the actual carbon emission observations of each
region (the impact effect is the difference between the actual
observation values and the synthetic values of the region). Then,
we got the distribution curves of placebo tests in the control
group, and compared them with Guangdong, Jiangsu, and
Zhejiang province, respectively. If there was a significant
difference in the two kind curves, the exogenous impact
significantly affected the real experimental area. Otherwise,
further tests are needed.

We had 27 control group areas outside Guangdong, Jiangsu,
and Zhejiang provinces. However, if the fitting effect of a certain
area is poor (the mean square prediction error MSPE is very
large) before the incident, the fitting result is not credible (Abadie
et al., 2010). We calculated the MSPE of all areas according to Eq.
2 in the pre-incident period, in which, y1t is the area treated as an
experimental object, yjt, and w* are control group areas and their
weights respectively. Finally, areas whose MSPE twice the
experimental area before the incident were excluded. The
placebo test results of the remained 21 areas were listed in
Figure 2.

MSPEpre ≡
1
T0

∑T0

t�1
⎛⎝y1t −∑J+1

j�2
wp

jyjt
⎞⎠2

(2)

As shown in Figure 2, before the impact of the exogenous
incident, the difference of the curves between the experimental
province and other areas was little. But after 2011, the curves of
Guangdong and Zhejiang was outside and different from
others. If random disposal is given, only a 4.5% probability

TABLE 1 | Main indexes and calculation methods of synthetic control method research.

Variable type Variable name Symbol Definition

Explained variable Carbon emissions CE Calculated based on energy consumption data and emission factors. Unit: million tons
Economic development level lngdp The logarithm of real regional GDP. Unit: 100 million yuan
Industrial structure is The added value of secondary industry/regional GDP.

Control variable Population size lnpop The logarithm of the population at the end of the year. Unit: 10,000 persons
Coal consumption lncoal The logarithm of regional raw coal consumption. Unit: 10,000 tons
Thermal power generation lnthe The logarithm of regional thermal power generation. Unit: 100 million kWh
Energy intensity ei Consumption of standard coal (10,000 tons)/constant price GDP (10,000 yuan)
Level of opening to the outside world open Total regional exports/regional GDP.
Urbanization level urb Year-end urban population/year-end total regional population

TABLE 2 | Descriptive statistics for key indicators.

(1)
N

(2)
Mean

(3)
Sd

(4)
Min

(5)
Max

CE 540 236.141 177.377 8.700 842.200
lnthe 540 6.457 0.985 3.262 8.545
lngdppc 540 10.342 1.011 7.923 12.357
lnpop 540 8.155 0.757 6.248 9.321
lncoal 540 8.920 0.954 5.256 10.668
ei 540 1.683 0.933 0.459 7.102
open 540 0.235 0.295 0.008 1.787
is 540 0.463 0.078 0.190 0.615
urb 540 0.498 0.152 0.232 0.896

TABLE 3 | RMSPE comparison chart.

Area Prediction quality of applying composite control method before the exogenous event

RMSPE CE
(2000)

CE
(2005)

lngdppc lnpop lncoal lnthe ei is open urb

Real Guangdong 5.6147 199.60 341.80 10.35 9.15 9.23 7.46 0.95 0.51 1.29 0.60
Synthetic Guangdong 197.67 348.12 10.27 8.40 9.43 6.97 1.76 0.50 0.42 0.54
Real Jiangsu 9.9997 199.40 396.10 10.37 8.94 9.65 7.55 0.99 0.54 0.71 0.51
Synthetic Jiangsu 189.09 395.93 10.30 8.61 9.59 7.14 1.50 0.52 0.41 0.52
Real Zhejiang 4.3937 131.40 255.80 10.46 8.53 9.16 7.04 0.99 0.53 0.69 0.56
Synthetic Zhejiang 132.02 263.40 10.37 8.35 9.08 6.85 1.21 0.50 0.55 0.57
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that such an impact effect like Guangdong and Zhejiang will
occur in other areas.

In contrast, the carbon emissions in Jiangsu kept growing at a
high speed after 2011. Until 2013, the curve was located outside
other areas, but after that, the curve fell and was surpassed by
another one. It was not until 2 years later that the growth rate of
Jiangsu’s carbon emission decreased. However, on the whole, the
curve of Jiangsu Province was located outside other areas. This
impact effect was significant at the 5% level.

PSM-DID Robustness Test
Propensity Score Matching (PSM) can overcome the subjectivity
in sample selection. The principle is as follows: for the individuals

FIGURE 1 | Carbon emissions of experimental provinces and their
synthetic control objects (from top to bottom:Guangdong, Jiangsu, Zhejiang).

FIGURE 2 | Shock effects of experimental provinces and other regions
(from top to bottom: Guangdong, Jiangsu, Zhejiang).

TABLE 4 | Weights of synthetic regions of experimental provinces.

Experimental area Synthetic region (weight)

Guangdong Hebei 0.592 Liaoning 0.094
Shanghai 0.315

Jiangsu Liaoning 0.353 Shandong 0.489
Shanghai 0.158

Zhejiang Fujian 0.162 Henan 0.276
Shandong 0.154 Shanghai 0.408
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in the treatment group, finding individuals with similar
characteristics in the control group to match. Then the
counterfactual results of the control group are estimated by
the results of the control group. We selected variables such as
economic development level, population size, and industrial
structure as matching variables, constructed a logit model,
matched samples following the kernel matching principle, and
then carried out DID regression. The test results were shown in
Table 5. The test results were negative in Guangdong and
Zhejiang, and the opposite in Jiangsu, but the number of test
samples in Jiangsu was small. It may be due to the particularity of
Jiangsu’s industrial structure, which makes it difficult to find
matching samples. On the whole, the research results of PSM-
DID are consistent with the previous studies, which proved the
robustness of the above research conclusion.

Controlling Other Policy Impacts
In 2011, China launched carbon emission trading pilot projects in
Guangdong, Shenzhen, and other places, which may overlap the
impact effect of Fukushima incident in terms of carbon emissions.
To avoid this interference, we excluded the sample involved in the
project and re-conducts the PSM-DID. The results were shown in
Table 6, the impact effect of the Fukushima nuclear accident was
still significant, indicating that the Fukushima nuclear accident
has a robust inhibitory effect on carbon emissions in some
nuclear power bases in China.

All these results confirmed the Fukushima nuclear accident is
an important factor that led to the decrease of carbon emissions in
Guangdong and Zhejiang provinces, and the increase of carbon
emissions in Jiangsu Province, rather than an accidental and
insignificant factor.

An Analysis of the Influence Mechanism of
Nuclear Leakage on China’s Carbon
Emissions
The results of validity and robustness tests confirmed that the
Fukushima nuclear leakage affected China’s carbon emissions.
Furthermore, we were also concerned about the influence
mechanism of nuclear leakage on carbon emissions in
Guangdong and Zhejiang provinces.

Combined with existing research experience, the
government’s policies for carbon emission reduction mainly

start from three aspects: technological upgrading, optimization
of regional pollution level, and energy structure. Consequently,
three emission reduction effects: industrial structure effect,
technological innovation effect, and energy efficiency effect
were generated. Referred to the methods of Wang et al.
(2020), we used the intermediary effect test procedure to verify
the transmission mechanism of the accident impact on emission
reduction. The model is shown as Eqs. 3–5. Hausman test results
showed that the fixed effect model is more suitable than the
random effect model.

Yit � α1 ×Di × Tt + βm ∑×C + μi + ]t + εit (3)

Mit � α2 ×Di × Tt + βn ∑×C + μi + ]t + εit (4)

Yit � α3 ×Di × Tt + α4 ×Mit + β0 ∑×C + μi + ]t + εit (5)

Where: Di is a virtual variable. If region i was affected by nuclear
leakage, Di takes 1, otherwise 0; T denotes the time dummy
variable, if t > 2011, T � 1, otherwise 0. Mit represents the
intermediary variable of the impact of nuclear leakage. C is all
kinds of control variables that affect carbon emissions, including
economic development level, urbanization level, etc. u, v
represent individual and year fixed effects respectively,
controlling individual variables and time variables that may be
missed, and ε is error term.

Nuclear Leakage Impact and Industrial Structure
Normally, for regional emission reduction, the regional
governments will adjust the industrial structure through a series
of environmental regulation tools. China’s industrial sector is the
main source of carbon emissions. Through a series of policies,
governments increased the cost of production factors in industries
with high energy consumption, forcing enterprises to reduce the
elasticity of resource consumption of their products. Consequently,
the development of enterprises was restricted. If enterprises want to
survive, they must adjust their production methods and processes
to increase the green degree of production. At the same time,
industries in low-carbon life were encouraged to develop and
expand. These factors drove the adjustment of the regional
industrial structure, and the regional carbon emissions were
reduced. We used the proportion of the added value of the
manufacturing industry to GDP as the proxy variable of the
industrial structure. The test results were shown in Table 7.

TABLE 5 | PSM-DID robustness test.

Carbon
emissions

Control group
before

adjustment

Processing group
before

adjustment

Difference between
processing

group and control
group before
adjustment

Adjusted
control group

Adjusted
processing group

Difference
between process
group and control

group after
adjustment

DID test
results

Guangdong,
Zhejiang

380.758 281.343 −99.415*** 583.877 377.203 −206.674*** −107.259**
(−3.82) (5.4) (2.32)

Jiangsu 379.389 387.23 7.841 542.01 693.247 151.237*** 143.396***
(0.27) (4.12) (3.05)

Note: The total number of control group samples in Guangdong and Zhejiang was 207, Jiangsu was 69, and R2 was 0.37 and 0.63 respectively. There are standard errors in parentheses,
and ***, **, * represent significant at the level of 1%, 5%, and 10% respectively.
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In the table, the coefficient of D × T in the first column is
negative, indicating that the loss of the nuclear energy supply,
in Guangdong and Zhejiang, failed to increase their carbon
emissions, in contrast, their carbon emissions were reduced
due to their stricter emission reduction policies. The
coefficient of D × T in the second column was also
negative, indicating that the industrial structure decreased
after the accident. Industrial production is the main source
of regional carbon emissions, and industrial governance is the
fastest way to reduce carbon emissions. After the Fukushima
nuclear accident, to complete the task of reducing emissions,
the local governments shifted attention from developing clean
energy to changing industrial structure, imposing restrictions
on cement, steel, and other industries, forcing these high
energy consumption industries to develop in a green way.
Owing to Guangdong and Zhejiang provinces had transferred
out part high-energy consuming industries, compared with

Jiangsu, the proportion and energy dependence of the
manufacturing industry were low. As a result, the two
provinces can quickly respond to the accident and issue
policies to restrict the development of high-energy
consuming enterprises, thus realized regional emission
reduction.

In contrast, the main source of GDP in Jiangsu was the
manufacturing industry with high energy consumption.
Higher energy demand will further increase the share of
fossil resources in the energy mix (Alvarez-Herranz et al.,
2017). Measures to limit energy consumption and reduce
emissions do not play well here and are more likely to fall into
a high carbon lock-in effect. Cheap and readily available
thermal power was used to meet the needs of industry.
Statistics from the National Bureau of Statistics show that,
started from 2011, in all nuclear power base regions, the ratio
of the added value of the manufacturing industry to the GDP
in Jiangsu was highest. After the nuclear power construction
was restarted in 2015, the speed of new nuclear power
construction still cannot meet the energy demand of
Jiangsu Province.

In the third column, the coefficients of D × T and is are
significant, and the direct effect (α3) and indirect effect
(α2 × α4) had the same sign. It is worth noting that
|α1|> |α3|, indicating the nuclear leakage impact played a
partial intermediary role in reducing regional carbon
emissions. We used the Sobel test to analyze the
intermediary effect of industrial structure. The results were
listed in Table 7, which proved that the research results of this
intermediary effect are robust. After calculating, the
explanation ratio of reduced industrial structure to emission
reduction is 10.45%.

Due to a different industrial structure, the Fukushima nuclear
accident had a completely different impact on China’s provinces
with nuclear power.

Nuclear Leakage Impact and Technological
Innovation
Technological innovation is another key factor in carbon
emission reduction. Appropriate environmental regulations
can promote enterprise innovation and improve
competitiveness (Porter and Van der Linde, 1995). If the
benefits brought by technological innovation are higher
than the costs increased by environmental regulation,
enterprises will increase investment in green innovation.

TABLE 6 | Robustness test for controlling other policy impacts.

Carbon
emissions

Control group
before

adjustment

Processing group
before

adjustment

Difference between
processing

group and control
group before
adjustment

Adjusted
control group

Adjusted
processing group

Difference
between process
group and control

group after
adjustment

DID test
results

Zhejiang 303.421 247.809 −55.612** 524.858 377.203 −147.655*** −92.043 **
(−2.39) (4.75) (2.37)

The total number of control group samples in Guangdong and Zhejiang was 207, Jiangsu was 69, and R2 was 0.37 and 0.63 respectively. There are standard errors in parentheses, and
***, **, * represent significant at the level of 1, 5, and 10% respectively.

TABLE 7 | Intermediary test of industrial structure.

(1)
Lnce

(2)
is

(3)
Lnce

D × T −0.0821*** −0.0133* −0.0735***
(0.0204) (0.0073) (0.0192)

is 0.6451***
(0.1282)

lnpop −0.5707*** −0.2261*** −0.4248***
(0.1396) (0.0358) (0.1319)

lnthe 0.4533*** 0.0517*** 0.4199***
(0.0247) (0.0087) (0.0259)

open 0.0268 0.0444*** −0.0019
(0.0344) (0.0128) (0.0336)

urb 0.2443** 0.0720 0.1979*
(0.1158) (0.0480) (0.1029)

Provincial effect yes yes yes
Time effect yes yes yes
_cons 6.7823*** 2.0786*** 5.4413***

(1.2157) (0.3370) (1.1585)
R2 0.987 0.835 0.988
N 540 540 540
Sobel-Goodman Mediation Tests
Sobel −2.641*** 0.0083
Goodman-1(Aroian) −2.621*** 0.0088
Goodman-2 −2.661*** 0.0078

There are standard errors in parentheses, Sobel test reports z value and p value
respectively, and ***, **, * represent significant at 1, 5, and 10% respectively.
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When most enterprises realized green production, the regional
carbon emission decreased. In general, local governments will
allocate carbon emission quotas to enterprises, or levy carbon
taxes on enterprises based on certain standards.
Environmental protection enterprises take the lead in
completing emission reduction tasks and can sell surplus
quotas. To avoid buying more carbon emission quotas or
paying more carbon taxes, enterprises with high energy
consumption and high emissions will increase green
investment, so as to improve production methods and
reduce carbon emissions. Based on the research experience
of Choi and Choi (2021), we selected the natural logarithm of
research and experimental development personnel (R&D) to
measure the effect of technological innovation (lntech). The
estimation was based on Eqs. 3–5, and the results were listed in
Table 8.

Table 8 shows that the coefficient of D × T in the first
column is negative, indicating that the emission reduction
effect from the accident is significant. Similarly, the
coefficient of D × T in the second column was also
positive, indicating that the nuclear accident impact
increased the investment in innovative resources in the
regions. In the third column, the coefficient of D × T was
negative, but the coefficient of lntech was positive, indicating
that technological innovation failed to reduce regional
emissions. The coefficients of indirect effect and direct
effect were different and |α1|< |α3|. It indicates that the
technological innovation was a masking effect in the
emission reduction effect, and weakened the effect.
Combined with China’s actual situation, this unexpected
discrepancy may be explained by the lack of enthusiasm
for low-carbon innovation among China’s high energy
consumption and high emission enterprises.

Compared with investing in green innovation, enterprises aremore
willing to invest to improve productivity (Yang et al., 2017). The
improvement of production efficiency can help enterprises to upgrade
to the high end of the value chain, and the corresponding benefits can
offset the increased cost caused by environmental regulations. The
continuous expansion of energy demand from enterprises led to
increasing carbon emissions. Therefore, only when enterprise’s
innovation investment turns to reduce pollution emissions per unit
production, realizing the optimization and upgrading of industrial
structure, can technological innovation plays a positive role in reducing
carbon emissions.

Nuclear Leakage Impact and Energy Efficiency
To reduce the impact of environmental regulation, enterprises
will include the increased environmental costs in the production
costs. The internalization of enterprise environmental costs leads
to the decline of enterprise profit (Copeland and Taylor, 2004). In
the long run, if enterprises do not develop green production
technology and improve energy efficiency, they may lose
competitiveness and be forced to withdraw from the market.
We used the ratio of regional GDP (reduced based on 2000) to
regional energy consumption (10,000 tons of standard coal) to
measure energy efficiency (ee). The estimated results were shown
in Table 9.

The test results in Table 9 shows that after the nuclear
accident in 2011, the energy efficiency in Guangdong and
Zhejiang had further improved. Energy efficiency played a
partial intermediary role in the relationship between the
accident impact and the reduced carbon emissions. Sobel
test results showed that the research results on the
intermediary effect of energy efficiency were stable. After
calculation, the explanation ratio of energy efficiency to
emission reduction is 15.1%. The improvement of energy
efficiency can be reflected by the optimization of energy
structure. The China Energy Statistics Yearbook showed
that, after 2011, the thermal power generation in Jiangsu
Province maintained high-speed growth. In contrast, the
thermal power generation in Zhejiang and Guangdong
slowed down, indicating that the two provinces were trying
to find alternative energy sources and reduce their dependence
on thermal power. All these show that, to cope with the
pressure of carbon emission reduction after the lack of
nuclear power, governments of Guangdong and Zhejiang
issued a series of policies. The production costs of polluting
and high-emission enterprises were increased. To reduce
environmental costs, these enterprises gradually improved
the energy structure or adopted efficient and energy-saving
production methods. As a result, the energy efficiency was
improved, industries transformed to green development, and
carbon emissions were reduced.

On the whole, the carbon emissions of China’s nuclear
power base provinces showed a downward trend after the
Fukushima nuclear accident. However, the development
process of China’s nuclear power industry has indeed been
delayed. According to the statistics of the World Nuclear
Association, as of February 2020, there were about 45
nuclear power reactors in operation and 12 under
construction in the Chinese mainland. The government’s
long-term goal was to reach 58 GWe capacity by 2020, with
30 GWe under construction. Judging from this data alone,

TABLE 8 | Technological innovation intermediary test.

(1)
Lnce

(2)
Lntech

(3)
Lnce

D × T −0.0956*** 0.5651*** −0.1799***
(0.0234) (0.0813) (0.0262)

lntech 0.1492***
(0.0267)

lnpop −0.7748*** 0.5916*** −0.8631***
(0.1975) (0.1981) (0.1887)

open 0.0608 0.1496 0.0384
(0.0608) (0.1099) (0.0586)

urb 0.3307 0.6882* 0.2280
(0.2131) (0.3744) (0.1717)

Provincial effect yes yes yes
Time effect yes yes yes
_cons 11.2469*** 4.8770*** 10.5193***

(1.7053) (1.7320) (1.5373)
R2 0.975 0.976 0.977
N 540 540 540

There are standard errors in parentheses, and ***, **, * represent significant at 1, 5, and
10%, respectively.
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China’s nuclear power development process has not
reached the expected target. As an important part of clean
energy, the lagging development of the nuclear power
industry will affect the realization of China’s carbon
neutrality in 2060.

However, the impact of Fukushima nuclear leakage on
China’s carbon neutrality target goes far beyond these direct
impacts. China’s central and western regions have a large
population and are in urgent need of nuclear power for
development. The large energy demand has led to great
pressure on carbon emission reduction in Shanxi, Inner
Mongolia, Shaanxi, Ningxia, and other central and western
regions (Li et al., 2021). The stranding of nuclear power
construction projects in the central and western regions,
which was caused by the Fukushima nuclear leakage, has
not only become an energy bottleneck restricting the
development of inland cities, but also hindered the early
realization of China’s carbon neutrality goal.

Conclusion and Policy Enlightenments
We treated the Fukushima nuclear accident as an exogenous
shock, utilized the data of 30 provinces and cities in China
from 2000 to 2017, and used the SCM to study the impact of
the accident on carbon emissions in nuclear power base
provinces. Furthermore, we examined the mediating effect
of nuclear leakage on regional carbon emissions reduction
from three aspects: industrial structure, technological

progress, and energy efficiency. The conclusion of this
paper are as follows: 1) After the Fukushima nuclear
accident, the nuclear power plants in China’s nuclear
power-owning provinces (Guangdong, Jiangsu, Zhejiang)
were suspended, and the nuclear power gap was filled by
thermal power. However, under the pressure of national
carbon emission reduction and doubts about nuclear power
prospects, these provinces carried out endogenous changes,
such as formulating stricter emission reduction policies and a
new energy strategy, to reduce carbon emissions. On the whole,
the carbon emissions in the three provinces did not rise but fall.
However, considering the stranding of inland nuclear power
projects, the potential impact of Fukushima nuclear leakage on
China’s carbon emission reduction may far exceed the direct
impact already revealed. 2) Due to heterogeneous industrial
structures, the impact of Fukushima nuclear leakage on
provinces is different. Jiangsu Province, which had a high
industrial structure, increased its demand for thermal power
after losing the supply of nuclear power. Contrary to
Guangdong and Zhejiang, carbon emissions in Jiangsu increased
rapidly after 2011. 3) The emission reduction effect of nuclear
leakage, in Guangdong and Zhejiang, was mainly realized through
promoting the upgrading of industrial structure and improving
energy efficiency, with explanation ratios of 10.45 and 15.1%,
respectively. 4) The effect of technological progress on carbon
emission reduction is a masking effect. It indicates the innovation
driving force of China’s green development is insufficient, and
enterprises are more willing to put innovation investment into
improving enterprise productivity, and make up for the increased
environmental costs with the benefits brought by productivity
improvement.

Based on these research conclusions of this paper, the
following policy suggestions were put forward:

First of all, breaking the NIMBY effect and promoting
coastal and inland nuclear power construction. The eastern
nuclear power bases need to conduct a dynamic assessment
of the safety of nuclear power development and publish
the results promptly to improve public acceptance. For the
central region in urgent need of nuclear power, the National
Development and Reform Commission and local governments
need to establish inland nuclear power pilot and advance
areas after assessing the environment, population
distribution, and public acceptance of each region, then
promote nuclear power construction inland.

Secondly, realizing a rational industrial layout in China
based on regional heterogeneity. Manufacturing costs in the
eastern region remain high and the restrictions on resources
and the environment are increasingly obvious. So, some
industries in the eastern region began to shift to the central
and western regions. Guangdong, Zhejiang, and other places
have taken the lead. Compared to them, Jiangsu relies much on
the manufacturing industry, most of which are labor-intensive
and energy-intensive. This development path is unsustainable,
so Jiangsu, and other areas similar to it, need to consider
industrial transfer and realizing an advanced and green
industrial structure. On the other hand, the cost of labor
and land factors in central China is low, so under the

TABLE 9 | Energy efficiency intermediary test.

(1)
Lnce

(2)
ee

(3)
Lnce

D × T −0.1053*** 0.0669*** −0.0894***
(0.0121) (0.0207) (0.0135)

ee −0.2376**
(0.1176)

lngdp 0.0916*** 0.5277*** 0.2170***
(0.0352) (0.0324) (0.0699)

lnthe 0.2140*** 0.0543*** 0.2269***
(0.0270) (0.0208) (0.0252)

lncoal 0.3714*** −0.4154*** 0.2727***
(0.0319) (0.0265) (0.0549)

lnpop −0.1002 −0.0026 −0.1008
(0.0784) (0.0932) (0.0735)

open 0.0137 −0.0311 0.0063
(0.0249) (0.0296) (0.0243)

urb 0.1090 −0.1374 0.0763
(0.0915) (0.0952) (0.0765)

Provincial effect yes yes yes
Time effect yes yes yes
_cons 0.2769 −0.1534 0.2405

(0.7817) (0.9360) (0.7312)
R2 0.993 0.942 0.993
N 540 540 540
Sobel-Goodman Mediation Tests
Sobel −1.662* 0.0964
Goodman-1(Aroian) −1.632 0.1027
Goodman-2 −1.695* 0.0901

There are standard errors in parentheses, Sobel test reports z value and p value
respectively, and ***, **, * represent significant at 1, 5, and 10% respectively.
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premise of ecology is not destroyed, they can undertake the
transferred high energy consumption enterprises.

Thirdly, adopting appropriate policy tools. Environmental
regulation tools, such as environmental standards and emission
limits have strong control, in contrast, carbon emission trading and
environmental subsidies provide continuous incentives for low-
carbon innovation of enterprises. According to the research,
environmental regulation can reduce carbon emissions in
Guangdong and Zhejiang provinces by improving industrial
structure and energy efficiency. However, when it comes to the
whole country, it is necessary to consider the regional economic
heterogeneity and adopt differentiated environmental regulation.
In the eastern developed areas, such as Guangdong and Zhejiang,
people have higher demands for green development, so it is suitable
to adopt stricter environmental policies like environmental
standards and emission limits. For the central and western
regions with many resource-intensive industries, the adoption of
strict policy may directly curb the lifeblood of regional
development. Therefore, incentive policy tools, such as carbon
emission trading and environmental subsidies, are suitable choices.

Finally, paying more attention to green innovation. Green
innovation technology is an important factor to achieve high-
quality development of the regional economy. Ignoring green
innovation and focusing only on improving productivity will
eventually bring a vicious impact on the environment. The
reason for this situation may be that, the short-term income of
green investment is not high, and external constraints are not
enough to force enterprises to realize low-carbon transformation.
Compared with traditional industries, the new energy industry has
positive externalities, such as energy security and environmental
friendliness, but it also faces the risk of insufficient competitiveness.
Therefore, while the government continues to strengthen the
environmental regulation on high energy consumption and high
emission enterprises, it also needs to subsidize low-carbon
development enterprises to enhance their competitiveness.
Similarly, to avoid the transformation difficulties caused by high
costs, the government needs to use financial tools to help high-
energy-consuming enterprises transform into green production.

This paper presents a preliminary analysis of the potential
impact of the Fukushima nuclear accident on carbon neutrality
in China, but there are shortcomings. The study data in this
paper are provincial, but the service area of a nuclear power
plant is limited, so a larger study scale may bias the estimation
of the impact level. In addition, the impact of the nuclear
accident on carbon emissions in inland areas could not be

analyzed quantitatively due to limitations in research data and
research methods. Finally, now that Japan has decided to
discharge its nuclear wastewater into the ocean, the
potential impact of a nuclear accident on China goes
beyond the nuclear power industry, other industries, such
as fishing and mariculture, are likely to be affected by
nuclear wastewater. Therefore, future research can be
conducted in three aspects. First, based on this study, the
scale of studies can be narrowed down to further analyze the
impact of nuclear accidents on cities where nuclear power is
located, and second, inland areas can be included in the study
to explore the heterogeneity of the impact of nuclear accidents
on coastal and inland cities. Third, scholars can analyze the
impact of the Fukushima nuclear accident on China from
multiple perspectives and industries, not just limited to the
energy and environmental fields.
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HowDoes Land Urbanization Promote
CO2 Emissions Reduction? Evidence
From Chinese Prefectural-Level Cities
Maogang Tang1 and Fengxia Hu2*

1School of Business, East China University of Science and Technology, Shanghai, China, 2School of Statistics and Mathematics,
Shanghai Lixin University of Accounting and Finance, Shanghai, China

The process of land urbanization may result in a great change in land use structure, land
use intensity, and efficiency, which could further lead to an increase in carbon dioxide (CO2)
emissions. Despite rich literature on the link between urbanization and CO2 emissions, the
mechanism through which land urbanization promotes CO2 emissions reductions has not
been fully investigated. To address this gap, this study theoretically and empirically
explores the mechanism of land urbanization’s influence on CO2 emissions by
integrating land use optimization and high-quality industrial development into a unified
framework. Firstly, the theoretical mechanism analysis indicates that low-level industrial
development and land use management promote the increase of CO2 emissions per unit
of land at the extensive land use stage; however, high-quality industrial development and
land use optimization lower CO2 emissions per unit of land at the intensive land use stage.
Subsequently, a STIRPAT model and a spatial adaptive semi-parametric model are
employed to verify the relationship between the land urbanization rate and total CO2

emissions. The results indicate that the land urbanization rate and total CO2 emissions
present an inverted U-shaped relationship. In addition, the mediating mechanism of the
advanced industrial structure, CO2 emissions per unit of GDP, and CO2 emissions per unit
of land, are studied using the mediating effect model. Results indicate that CO2 emissions
reduction can be achieved by promoting the advanced industrial structure, reducing CO2

emissions per unit of GDP or reducing CO2 emissions per unit of land. Ultimately, this study
showed that the Chinese government may reduce CO2 emissions by promoting land use
structure optimization, land use intensity regulation, land use efficiency improvement, and
adjusting energy consumption structure, upgrading industrial structure, and promoting
emission efficiency technologies.

Keywords: land urbanization, carbon mitigation, land use optimization, industrial structure adjustment, China

INTRODUCTION

Urbanization involves an important change: the conversion of large areas of cultivated land into
urban land. This process is called “land urbanization” (Zhang and Xu, 2017). China has greatly
promoted economic growth through land urbanization and land resource allocation. However, the
rapid expansion of urban land can lead to land use/cover change (LUCC), unreasonable land
allocation structures, and uncontrolled land development intensity (Yang et al., 2019). Important to
note here is that LUCC is the main driving force for carbon storage in terrestrial ecosystems (Chuai
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et al., 2014). During the process of land urbanization, a large
amount of agricultural land is converted into construction land.1

For instance, the area of urban construction land in China
increased from 20,877 km2 in 1999 to 55,155.5 km2 in
2017—an increase of 164%. The proportion of secondary
industrial land to construction land in China has always been
maintained at approximately 20%, which greatly exceeds the
international average of 5–8%. In cities with more developed
manufacturing industries, such as those in the Pearl River Delta
and the Yangtze River Delta, the proportion of secondary
industrial land generally exceeds 40%. A high proportion of
secondary industrial land leads to slow industrial structure
upgrading, unclean energy consumption structures, and low
energy efficiency, which cause more carbon emissions (CO2)
to be released into the atmosphere (Zhou et al., 2019b).
Furthermore, China’s land development intensity also exceeds
a reasonable level, and the levels of economically developed cities
such as Shanghai and Shenzhen are even close to 50%. Excessive
land development intensity seriously impacts the ecosystem’s
balance, which in turn affects carbon sequestration (Xie et al.,
2018; Li et al., 2018). Since unreasonable land urbanization has
increased carbon emissions, there is a need to investigate in-depth
the mechanism through which land urbanization affects CO2

emissions. Research on exploring this mechanism is conducive
for promoting the coordinated development of urbanization and
CO2 emissions reduction through land use optimization and
industrial structure adjustment.

The links between urbanization and CO2 emissions have
recently been extensively investigated by existing research (Lai
et al., 2016; Chuai et al., 2016). Previous studies have also
addressed multiple effects of different aspects of urbanization,
including economic, population, land, and social urbanization, on
CO2 emissions (Zhou et al., 2019a). Generally, previous studies
on the relationship between urbanization and carbon emissions
focused on four lines. The first line of studies assert that rapid
urbanization increases CO2 emissions both in the short and long-
run (Sheng and Guo, 2016), while the second line of studies insist
that urbanization can contribute to declines in the carbon
emission scale, carbon emissions per capita, and carbon
intensity (Yao et al., 2018). The third line of studies supposed
that the urbanization exerts no significant effect in the carbon
emissions (Rafiq et al., 2016; Behera and Dash, 2017). Finally, the
results of the fourth line of studies show an inverted U-shaped
relationship between urbanization and CO2 emissions (Martínez-
Zarzoso and Maruotti, 2011; Zhang et al., 2017). Furthermore, a
few mediating variables (such as technological progress,
industrial structures, energy consumption structure, and
foreign direct investment) have also been investigated when
analyzing the relationship between urbanization and CO2

emissions (Wang et al., 2013; Wang et al., 2018b). In addition,
certain studies are related to regional and industry-based
heterogeneity and spatial spillovers (Zhang et al., 2016; Liu

and Liu, 2019). Despite various studies explored the effect of
urbanization on CO2 emissions and the mechanism to achieve the
coordination of economic growth and carbon mitigation (Bekun
et al., 2019; Bekun et al., 2021a), two limitations continue to
restrict our understanding of sustainable development. First, the
mechanism of the effect of land urbanization on CO2 emissions
reduction has not yet been thoroughly explored, which limits the
possibility to achieve a win-win situation of economic
development and carbon mitigation through land use
optimization and industrial structure adjustment. Second,
previous studies employed parametric econometric models,
which may have led to model setting misspecification. To fill
these research gaps, this study theoretically explores the
mechanism of land urbanization to promote CO2 emissions
reduction, and verifies it empirically by employing a
semiparametric model and mediation effect model.

In fact, the impact mechanism of land urbanization on
carbon emissions is greatly different from population
urbanization or economic urbanization. The urbanization in
the existing literature generally refers to population
urbanization or economic urbanization. The research from
the perspective of population urbanization or economic
urbanization is mainly to explore the impact of changes in
residential consumption, industrial structure, and technical
efficiency on carbon emissions after population or industry
agglomeration in cities. It is worth noting that land
urbanization is very different from population urbanization.
The impact of land urbanization on CO2 emissions is affected by
natural, economic, social, and other factors. On the one hand, in
the process of land urbanization, changes in land use types will
cause changes in direct carbon emissions. For example, if land is
transformed from forest land, wetland, etc. to urban
construction land, the carbon emission coefficient will be
greatly increased. On the other hand, the land urbanization
process will also cause changes in the industrial structure,
technical efficiency, energy use efficiency, and carbon
emission efficiency by anthropogenic activities carried on the
land elements, which in turn affects the level of indirect carbon
emissions. Accordingly, it is essential to explore the mechanism
of land urbanization affecting CO2 emissions thoroughly
regarding factors such as land use change, and changes in
industrial structure and technological efficiency caused by
human activities carried on the land elements.

LUCC and anthropogenic activities carried out on land are the
two main drivers of terrestrial ecosystem carbon storage. In the
process of land use conversion from high to low vegetation
biomass, carbon is released into the atmosphere; this affects
carbon emission levels (Peters et al., 2019). With the
development of land urbanization, more and more cultivated
lands, forest lands, and grass lands have been converted to urban
construction land; put differently, such lands are converted from
carbon sinks to carbon sources (Chuai et al., 2013; Chuai et al.,
2014; Chuai et al., 2016). Existing studies have extensively
explored the influence of LUCC on CO2 emissions (Muñoz-
Rojas et al., 2011; Chuai et al., 2013; Dang et al., 2014; Chuai et al.,
2016; Bossio et al., 2020). However, the impact of effective land
use management and industrial structure adjustment on CO2

1The land use structure is calculated according to the proportion of industrial,
mining, and storage land in the total land supplied, which is a negative indicator of
the land use structure optimization
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emissions reduction has received relatively less attention.
Sustainable land use management promotes optimization of
land use structure, reasonable control of land use intensity,
and improvement of land use efficiency through operating
mechanisms, price systems, land ownership systems, and so on
(Bateman et al., 2013; Cavender-Bares et al., 2015). Notably, land
use structure optimization, land use intensity regulation, and land
use efficiency improvement all directly or indirectly affect the
carbon emission process and carbon emission level (Cumming
et al., 2014; Chen et al., 2020). However, existing research does
not integrate these three perspectives and fails to fully explore the
internal and mediating mechanisms of land urbanization that
reduce CO2 emissions. Therefore, our study integrates factors
such as land use structure optimization, reasonable control of
land use intensity, and land use efficiency improvement into a
complete theoretical framework to explore the mechanism of
land urbanization promoting carbon mitigation. This is exactly
where the most important innovation of this study lies.

This study makes two key contributions: First, this study
explored in-depth the influential mechanism of land
urbanization on CO2 emissions theoretically by integrating the
land use optimization and high-quality industrial development
into a unified framework. Second, this study applied a stochastic
impact by regression on population, affluence and technology
(STIRPAT) model and a spatially adaptive semi-parametric

(SASP) model to investigate the relationship between land
urbanization and CO2 emissions to accommodate stochastic
factors and spatial heterogeneity. Additionally, this study
employed a mediation effect model to investigate the role of
advanced industrial structure, CO2 emissions per unit of GDP,
and CO2 emissions per land regarding land urbanization’s effect
on total CO2 emissions.

The rest of this paper is organized as follows. Section Theory
provides the theoretical analysis, Section Methods describes the
method, Section Data describes the data, Section Results presents
the empirical results, Section Discussions discusses the results, and
Section Conclusion and Policy Recommendations offers the
conclusion.

THEORY

In this section, we adopt the Kaemissions into fours aspects:
Landya identity to decompose the driving factors of CO2

emissions into fours aspects: Land scale, land use structure,
land use intensity, and carbon emission intensity (Grossman
and Krueger, 1995; Wu et al., 2015). According to a country
or region’s land use patterns, industrial structure, technological
level, government regulation policies, and residents’ lifestyles,
land urbanization can be roughly divided into two stages:

FIGURE 1 | Diagram of the influence mechanism between land urbanization and CO2 emissions.
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extensive and intensive modes. This study explores the impact
mechanism of land urbanization on CO2 from two stages:
Extensive and intensive land use (Figure 1).

Kaya Decomposition to the Driving Factors
of Carbon Dioxide Emissions
First, we adopt the Kaya identity to decompose the driving factors
of CO2 emissions into fours aspects: Land scale, land use
structure, land use intensity, and carbon emission intensity
(Grossman and Krueger, 1995; Wu et al., 2015). The carbon
dioxide emissions decomposition model based on land use is
presented in Eq. 1. The total CO2 emissions are first decomposed
into the carbon emissions of different land use types. Next, CO2

emissions on each land use type are decomposed into the product
of the total land scale, land use structure, land use intensity, and
carbon emission intensity. As a result, we are able to decompose
carbon emissions per unit of land into the sum of the product of
land use structure, land use intensity, and carbon emission
intensity for different land use types, as shown in Eq. 2.

Ct � ∑n
i�1

Cit � ∑n
i�1

Cit

GDPit
· GDPit

Lit
· Lit

Lt
· Lt (1)

Ct

Lt
� ∑n

i�1

Cit

GDPit
· GDPit

Lit
· Lit

Lt
� ∑n

i�1
Iit ·Dit · Sit (2)

In Eqs 1, 2, Ct is the total CO2 emissions in period t, Cit

represents the CO2 emissions of the i type of land use in period t,
Lt is the total area of land in period t, Sit � Lit/Lt is the area of the i
type of land use in the proportion of total land and can be
represented as land use structure, Dit � GDPit/Lit is the
economic output of the i type of land use in period t and can
be expressed as land use intensity, and Iit � Cit/GDPit is the CO2

emissions per unit of GDP for the i type of land use in period t and
can be regarded as carbon emission intensity.

To reduce CO2 emissions per unit of land, it is essential to
optimize the land use structure, reduce carbon emission intensity,
and regulate the impact of land use intensity on CO2 emissions
according to the carbon emission decomposition model. For the
central government and local governments, the impact of land
use on CO2 emissions can be reduced in two ways: 1) by
optimizing the structure of spatial land use and 2) by
innovating spatial land governance. Notably, CO2 emissions
can be effectively reduced by controlling the expansion of
urban construction land and the intensity of land
development, compressing the scale and proportion of
industrial and mining land, optimizing the structure of
construction land, and optimizing the pattern of land
development (Sadorsky, 2014). Simultaneously, we can
promote the formation of low-carbon development by
accelerating the transformation of land use types. The
government should promote intensive land use in accordance
with the principles of strictly controlling the total amount,
revitalizing the inventory, optimizing the structure, and
improving efficiency.

Extensive Land Urbanization Stage
When the economy is in the initial stage of urbanization and
industrialization, the mode of land urbanization is mainly
extensive (Jiang and Lin, 2012; Dong et al., 2019). At this
stage, the industrial structure is dominated by high-carbon
industries, and the company’s technical level and low energy
efficiency have led to high carbon emission intensity. Moreover,
the government’s efforts to reduce carbon emissions are relatively
weak, and residents’ consumption preferences are not based on
low-carbon and energy-saving products (Zhang and Da, 2015).
All these factors lead to high levels of carbon emissions.

First, because the economic development stage is still in its
infancy and the technical level is relatively not high, companies
have mainly invested in high-carbon industries such as energy,
power, chemical industry, and construction, thus making it
difficult to upgrade and transform the industrial structure (Lu
et al., 2019). Furthermore, the limitation of companies’
technology level leads to low energy utilization efficiency,
which further leads to higher carbon emission intensity,
thereby increasing companies’ carbon emission level.

Second, the government’s efforts to control carbon emission
reduction are not effective enough, and reasonable carbon
emission control policies have not been issued in neither
industrial development nor land use (Yuyin and Jinxi, 2018).
On the one hand, local government officials have to vigorously
improve local economic performance based on economic
performance appraisal and political promotion in the process
of industrial development (Liu et al., 2020). From a rational point
of view, local officials will not impose strict restrictions on the
investment of companies in high-carbon industries, leading to a
significant increase in carbon emissions. On the other hand, the
government’s land use management methods are unreasonable.
For example, a large number of low-carbon land, such as forest
land and wetland, are converted into urban construction land,
leading to a large increase in carbon emissions (Zhang et al.,
2020). Since construction land is a net source of carbon emissions,
the expansion of urban construction land has led to a surge in
carbon emissions (Lai et al., 2016). Furthermore, improper land
use management methods lead to a series of problems such as
unreasonable land use structure, out of control of land use
intensity, and low land use efficiency (Yue et al., 2017).
Changes in the land allocation structure alter the carbon
emission process and modify the energy consumption
structure, thereby impacting the urban carbon emissions level.
Excessive land development intensity will destroy the original
carbon balance of the biosphere, affect the carbon emission
process, and promote the increase of carbon emission levels
(Li et al., 2021a). Land use efficiency affects energy use
efficiency, which in turn influences the carbon emissions level.

Finally, residents’ awareness of energy saving and emission
reduction is limited, which has also led to an increase in carbon
emission levels to a certain extent. In the absence of publicity and
guidance from the government and third-party organizations,
residents will not state green, low-carbon and energy-saving
products as their main consumer preference, but may instead
choose high-carbon products (Rosner et al., 2021).
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At the early stage of urbanization and industrialization, local
governments are actively attracting investment because of the
assessment pressure of economic growth and fiscal revenue.
Accordingly, agricultural land or unused land is mainly
converted into high-carbon industrial land. The land use
structure under land resource allocation leads to the
concentration of high-carbon industries, which has undesirable
consequences for the carbon cycle in the biosphere system (Chen
and Zhao, 2019). Meanwhile, highly energy-intensive, heavily
polluting, and carbon-intensive industries form a high-carbon
industrial structure dominated by low-end manufacturing
industries (Liu et al., 2012; Huang et al., 2018). Moreover,
local government land supply strategies and unreasonable land
use management often further strengthen the rigidity of the
industrial structure and suppress high-carbon to low-carbon
industrial structure transformations (Xie et al., 2018; Yang
et al., 2018). The unit land output is not relatively high at this
stage; here, economic growth occurs at the expense of excessive
energy consumption. Energy use efficiency is also low, and carbon
intensity is relatively high, which causes a large amount of CO2

emissions to be released during industrial production (Zhang
et al., 2016). At this stage, such highly energy-intensive, carbon-
intensive and energy inefficient industrial structures, and
unreasonable land use management increase CO2 emissions
per unit of land. Therefore, the CO2 emissions level from the
production process and land use conversion is relatively high
during the extensive land use stage (Zhang and Xu, 2017).

Given below is a simple economic model to illustrate the
impact of land urbanization on carbon emissions during the
extensive land use stage. The input for carbon emission reduction
causes a certain loss in economic output, as shown in the
production function of Eq. 3. More specifically, the production
function establishes that economic output Yt is the function of
technology level At, capital Kt, energy consumption Et, and land
resources consumption Nt. In addition, D (EMt) is the output loss
function, and EMt is the CO2 emissions level.

Yt � (1 −D(EMt))AtK
α
t E

β
t N

c
t (3)

The function of the CO2 emissions level is shown in Eq. 4. CO2

emissions are mainly caused by energy consumption in industrial
production activities and land use changes (such as changes in
land types, e.g., forest and grass lands into cultivated land, wet
land into construction land, and agricultural land into
construction land).

EMt � EMind(t) + EMLand(t) � BtE
ρ
t + CtN

λ
t (4)

In Eq. 4, EMt is the CO2 emissions level; EMind denotes CO2

emissions caused by energy consumption in industrial
production activities; EML and indicates CO2 emissions caused
by land use change; Et and Nt respectively signify energy and land
resource consumption; Bt and Ct respectively signify energy
efficiency and land use efficiency; and ρ and λ respectively
signify elasticity of energy and land resource.

At the extensive land use stage, the high-carbon industry-
based industrial structure, low energy efficiency, and high-carbon
intensity increase CO2 emissions. Meanwhile, the limited land use

management level and low land use efficiency also further raise
CO2 emissions (Chuai et al., 2013; Lai et al., 2016). All these
factors augment carbon emissions per unit of land during this
period.

Intensive Land Urbanization Stage
However, when economic development reaches the stage of high-
quality land use, agricultural land is mainly converted into
construction land for low-carbon industries. Here, the land-
use structure has shifted from low efficiency to high efficiency
(Yang et al., 2019). Optimizing the land use structure can
promote a low-carbon industrial structure and a clean energy
consumption structure (Xu et al., 2018). For our study, it is
important to note that a low-carbon industrial structure and a
clean energy consumption structure can reduce the negative
impact of production processes and land use changes on CO2

emissions (Huang et al., 2018; Zhou et al., 2019b; Bekun et al.,
2021b, 2021c). This effect is reflected in two aspects: 1) the
structural optimization effect, that is, a reduction in highly
energy-intensive and heavily polluting industries also reduces
the degree of human interference in carbon emissions (Li et al.,
2017; Zhou et al., 2017) and 2) the technology spillover effect, that
is, the development of high-end industries promotes
technological progress, which leads to an increase in energy
efficiency (Liu et al., 2012; Zhou et al., 2017). As a result,
carbon emissions per unit of land declines during this period.

At the stage of high-quality land use, the government
implements policies regarding land use and carbon emission
reduction to induce enterprises to engage in technological
transformation, upgrading, or innovation. The production
function for this period is shown in Eq. 5. Notably, the
technological transformation, upgrading, or innovation
activities of enterprises have a spillover effect on economic
output.

Yt � ΦtAtK
α
t E

β
t N

c
t (5)

where Φt denotes the spillover effect of technological
transformation, upgrading, or innovation.

At this stage, energy and land use efficiency due to the spillover
effect of technological innovation increase; thus, the carbon
emission level declines. Meanwhile, the sustainable land use
management (caused by the policy of the land use regulation)
further leads to a decline in carbon emission levels. By
formulating reasonable and effective land use regulation
policies, the government can promote the land use structure
optimization, land use intensity control, land use efficiency
improvement to reduce the negative impact of land use on
carbon emissions. In addition, the government can also
encourage the transformation of residents’ consumption to
green, low-carbon, and energy-saving products through policy
propaganda and guidance, thereby further reducing carbon
emissions (Bekun et al., 2021d). The function of CO2

emissions levels during this period is shown in Eq. 6. The
low-carbon industrial structure, sustainable land use
management, structural optimization effect and the spillover
effect of technological innovation ultimately reduce carbon
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emissions, which further lead to a decline in carbon emissions per
unit of land during this phase (Poumanyvong and Kaneko, 2010).

EMt � EMind(t) + EMLand(t) � Bt
Eρ
t

Φt
+ Ct

Nλ
t

Φt
(6)

An Inverted Relationship Between Land
Urbanization and Carbon Emissions
From the above analysis, we hypothesize that an inverted
U-shaped relationship exists between land urbanization and
carbon emissions (Figure 2). The left side of the U-shaped
curve (stage I) corresponds to extensive urban land use and
high-carbon industrial structure. The right side of the
U-shaped curve (stage III) corresponds to intensive urban
land use and low-carbon industrial structure. However, there
is a policy adjustment stage in the middle (stage II). The
Chinese government needs to actively optimize land-use
management, adjust environmental regulations, industrial
policies, and fiscal and tax policies, so China can quickly
enter the third stage of intensive land use and low-carbon
industrial structure.

METHODS

Econometric Model: STIRPAT Model
According to the Influence, Population, Affluence, and
Technology (IPAT) model proposed by Ehrlich and Holdren
(1971), environmental impact is determined by three factors:
population (P), affluence (A), and technology (T). Specifically, the
IPAT theoretical framework has been widely employed in the
research field of environmental assessment (Kassouri et al., 2021).
Thereafter, Dietz and Rosa (1997) extended the IPAT framework
to include a stochastic component that is called the stochastic
IPAT model (STIRPAT) model. According to the STIRPAT
model, the effects of human activities on the environment (I)
can be showed as the following equation:

Iit � aiP
b
itA

c
itT

d
iteit (7)

where Iit denotes the respective environmental impacts, Pit is the
population size, Ait is the affluence, and Tit is the technology level
for prefecture-level city i and time period t. ai is the constant
term, and b, c, and d denote the exponents of P, A and T
respectively. The variable eit represents the random error term.
By taking the logarithms of both sides of Eq. 7, a linear equation is
obtained:

ln Iit � ui + b lnPit + c lnAit + d lnTit + εit (8)

Some studies, such as Poumanyvong and Kaneko (2010),
Zhang et al. (2017), and Kassouri (2021) added the variable
“urbanization” into the STIRPAT model. In this study, we
added the variable “land urbanization” into the model
following the log-linear version of the STIRPAT model widely
used in several previous studies (Poumanyvong and Kaneko,
2010; Kassouri et al., 2021; Kassouri, 2021). The expanded
STIRPAT model can be rewritten as follows.

lnCit � ui + b lnPit + c lnAit + d lnTit + β · landrate + εit (9)

where landrate denotes the land urbanization rate. Cit is the total
carbon emissions for prefecture-level city i and time period t.
Since this study also analyzes the impact of land urbanization on
the CO2 emissions of the secondary industry, tertiary industry,
energy, and household sectors, Cit also represents the CO2

emissions of these sectors.
Furthermore, to study the nonlinear relationship between land

urbanization and CO2 emissions, a model including a quadratic
term of the land urbanization rate is given as follows:

ln Cit � ui + b lnPit + c lnAit + d lnTit + β · landrate + c

· landrate2 + εit (10)

Additionally, we replace the dependent variable “the total
carbon emissions (Cit)” with sectoral CO2 emissions in Eq. 10,
including secondary industrial (C1it), tertiary industrial (C2it),
energy (C3it), and household (C4it) sectors, to investigate the

FIGURE 2 | Inverted U-shaped relationship between land urbanization and CO2 emissions.
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relationship between land urbanization and sectoral CO2

emissions.

Econometric Model: A Spatially Adaptive
Semi-Parametric Model (SASP)
We assume that the variable “land urbanization rate” exists in the
above STIRPAT model in the form of a quadratic term. In fact,
there may be a misspecification in the model setting.
Furthermore, the impact of land urbanization on CO2

emissions presents spatial heterogeneity and spatial spillover
effects (Li et al., 2021b). To avoid model setting
misspecification and the curse of dimensionality in the
nonparametric model, and to accommodate spatial
heterogeneity among different cities, we applied the SASP
model to analyze the influential mechanism of land
urbanization on CO2 emissions. The SASP model established
in this study is shown below in Eq. 11 (Ruppert et al., 2003).

lnCit � β0 + β1 lnPit + β2 lnAit + β3 lnTit + f(landrate)

+∑Km

k�1
bk(landrate − κmk )p+ (11)

where β0 is a constant; βi(i � 1, 2, 3) are the coefficients for each
linear variable; f(landrate) is the non-parametric term;
κmk (k � 1, 2,/, Km) are knots; Km is the dimension of knots;
(x1 − κmk )p+ is equal to (x1 − κmk )p if (x1 − κmk )> 0 and bk is its
coefficient; m is the type of knot; and p is the exponential power
of the k-th knot.

Empirical Models: Mediation Effect Model
The mediation effect model was used to examine whether Z
mediates the effect of X on Y. To test whether the independent
variable affects the dependent variable through the mediation
variable, the structural equation model can be used for analysis
(Gonzalez and Mackinnon, 2016). The specific equations of the
mediation effect model are as follows:

ln Cit � c · landrateit + δZit + μi + εit (12)

Mit � a · landrateit + δZit + μi + εit (13)

ln Cit � c′ · landrateit + bMit + δZit + μi + εit (14)

were Mit presents the mediating variables, i.e., advanced
industrial structure, CO2 emissions per unit of GDP or CO2

emissions per unit of land, Zit indicates the control variables, μi
signifies the fixed effect, and εit is the random error term.

In Eqs 12–14, if coefficients a, b, and c are all significant
and c’ is also significant, then there is a partial mediating
effect for the mediating variables. Alternatively, if the
coefficient c’ is not significant, then there is a complete
mediating effect for the mediating variables. In Eqs
12–14, the mediating effect is identical to indirect effect
(ab). The relationship between total effect (c), direct effect
(c′), and indirect effect (ab) is as follows (Mackinnon et al.,
1995; Yao et al., 2018):

c � c′ + ab (15)

DATA

The research sample of this study included 285 prefecture-level cities
in China in 2012 and 2015. CO2 emissions data consisted of these
types: Total CO2 emissions, CO2 emissions of secondary industrial,
tertiary industrial, energy, and household sectors, CO2 emissions per
unit of GDP, and CO2 emissions per unit of land. CO2 emissions data
were taken from the 2012 and 2015 Greenhouse Gas Emission
Dataset of Chinese Cities established by the China Urban GHG
Working Group. The data is based on the Chinese High-Resolution
Emission Gridded Database (CHRED 3.0). Notably, this dataset
establishes a spatialization bottom-up method based on point
emissions sources, line emission sources, and area sources to
achieve 1 km of greenhouse gas emission grid data. The advanced
industrial structure is calculated according to themethod inChen and
Zhao (2019). Land urbanization rate was characterized by the
proportion of construction land allocated for urban land area. The
data were collected from the China Land and Resource Statistical
Yearbook. In addition, data on population, GDP per capita and
number of patents granted were also collected from the China City
Statistical Yearbook. Descriptive statistics for each variable are
presented in Table 1.

RESULTS

Empirical Results Between Land
Urbanization and Total CO2 Emissions
Using the STIRPAT and SASP models, the empirical results of
land urbanization and total CO2 emissions are shown in
Table 2, and the fitting graph of land urbanization and
total CO2 emissions is shown in Figure 3. The results in
column 1) of Table 2 are estimated according to the model
of Eq. 9, while the results in column 2) of Table 2 are estimated
according to the model of Eq. 10. The third column in Table 2
shows the parametric estimation results based on the model of
Eq. 11, and the non-parametric estimation results of Eq. 11 are
shown in Figure 3. The results indicate that the impact of the
land urbanization rate on total CO2 emissions is positive;
however, the relationship between land urbanization rate
and total carbon emissions presents an inverted U-shaped
curve after adding the quadratic term of the land urbanization
rate. The results of Figure 3 show that as the land urbanization
rate increases, total carbon emissions also rise, but the speed of
increase slows down during the sample period. When the land
urbanization rate is relatively low, highly energy-intensive and
energy inefficient industrial structures promote the increase in
total CO2 emissions. With the increase in the land
urbanization rate, resource and environmental restraints
and government regulations promote structural
optimization and technology spillover effects. Similarly, the
Chinese government could promote land use structure
optimization, land use intensity regulation, land use
efficiency improvement by optimizing land use regulatory
policies to achieve carbon emissions reduction. These
effects lead to a decrease in total CO2 emissions, which is
consistent with the results of Martínez-Zarzoso and Maruotti
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(2011), Yao et al. (2018) and Wang et al. (2021b). The rise in
China’s CO2 emissions has slowed down in the current stage.
The Chinese government should implement effective policies
to promote sustainable land use management, low-carbon

industrial structure transformation, energy structure
optimization and technological innovation, and enter the
win-win phase of land urbanization rate increasement and
CO2 emissions reduction as soon as possible.

Reverse causality and omitted variables could lead to
endogeneity between land urbanization and carbon
emissions (Zhang et al., 2017; Wang et al., 2021b). To
further conduct the robustness check of the benchmark
regression results in Table 3 and resolve the endogeneity
problem, we chose the instrumental variables of land
urbanization and applied the two-stage least squares (2SLS),
generalized moment method (GMM), and limited information
maximum likelihood (LIML) methods to perform regression
analysis (Xu et al., 2021; Nepal et al., 2021; Safiullah et al.,
2021). Following the existing literature, we chose night-time
light data, the number of plots of land leasing, and the area of
land leasing as the instrumental variables of land urbanization,
respectively. The night-time light data were derived from the
Visible Infrared Imaging Radiometer Suite sensor on the
Suomi NPP satellite, which provides spatially explicit
observations of artificial lighting sources across human
settlements at night without moonlight (Wang et al.,
2018a). The data of the number of plots of land leasing,
and the area of land leasing were obtained from the

TABLE 1 | Descriptive statistics of each variable.

Variable Abbreviation Unit Average Max. Min.

Total CO2 emissions Cit 10,000 tons 3,840.42 27,677.32 229.9
CO2 emissions of secondary industrial sector C1it 10,000 tons 3,010.69 17,518.99 10.1
CO2 emissions of service sector C2it 10,000 tons 101.41 3,276.29 0.53
CO2 emissions of energy sector C3it 10,000 tons 3,218.69 22,098.15 165.65
CO2 emissions of household sector C4it 10,000 tons 105.99 2,146.5 0.71
GDP per capita Ait yuan 59,370.73 293,346 10,981
Population Pit 10,000 persons 148.23 2,129.09 15.1
Number of patents granted Tit item 4,243.7 90,298 1
Land urbanization rate landrate % 8.99 77.32 0.19
Advanced industrial structure AISit none 6.74 7.59 4.76
CO2 emissions per unit of GDP CEGit tons per 10,000 yuan 2.48 25.61 0.16
CO2 emissions per unit of land CENit tons per square kilometers 4,417.62 43,648.19 39.89

TABLE 2 | Estimating results between land urbanization and total CO2 emissions based on the parametric and semiparametric model.

Variable STIRPAT model 1 STIRPAT model 2 SASP model

Population 0.3106*** (0.000) 0.3111*** (0.000) 0.3366*** (0.0000)
GDP per capita 0.5090*** (0.000) 0.4985*** (0.000) 0.5092*** (0.0000)
Technology level 0.0672** (0.023) 0.0623** (0.038) 0.0591** (0.0347)
Land urbanization rate 0.0087*** (0.005) 0.0145** (0.043) —

Land urbanization rate square — −0.0001 (0.370) —

Constant term 0.3886 (0.549) 0.5033 (0.447) 0.3230 (0.6127)
N 570 570 570
F statistic 82.21 65.9 —

Time effect yes yes —

Individual effect yes yes —

Degree of freedom — — 1
Spar Statistics — — 51,130
Number of knots — — 34

Note: p-values in the parentheses; ***, **, and * denote statistical significance at the 1, 5, and 10% levels, respectively.

FIGURE 3 | The fitting curve of land urbanization and total CO2

emissions.
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Chinese Land and Resources Yearbook and Chinese Land and
Resources Statistical Yearbook. The night-time light data is a
good instrumental variable for economic development,
including land urbanization (Mellander et al., 2015; Xu
et al., 2021). Land leasing scale and area are also reasonable
instrumental variables for land urbanization, because they are
directly related to land urbanization, but they are also
exogenous variables controlled by the Chinese central
government. The regression results between land
urbanization and total CO2 emissions based on the
instrumental variable analysis are shown in Table 3. The
results indicate that the impact of land urbanization on the
total CO2 emissions was robust. Land urbanization had
positive and significant effects on the total CO2 emissions
in the 2SLS, GMM, and LIML methods, and were consistent
with the results of OLS method and Table 2.

In order to further analyze which sectors caused the increase in
total carbon emissions, we empirically analyzed the relationship
between land urbanization and sectoral carbon emissions. The
estimated results are shown in Table 4. The results indicate that
as the land urbanization rate increases, CO2 emissions of the
secondary industrial, tertiary industrial, energy, and household
sectors also increase. Moreover, when the land urbanization rate
increases by 1%, the increase in CO2 emissions from the tertiary

industrial and household sectors is higher than that in the
secondary industrial and energy sectors. This may be caused
by the industrial agglomeration effect and the adjustment of
energy supply and consumption structure. However, the activities
of the tertiary industrial and household sectors are relatively
scattered, their green consumption concepts have not been firmly
established, and energy-saving products are not widely used.
Therefore, the Chinese government must further reduce CO2

emissions in the secondary industrial and energy sectors. It is also
necessary to implement effective policies to promote CO2

emission reduction in the tertiary industrial and household
sectors.

Empirical Results of the Mediating Effect of
the Advanced Industrial Structure
To verify whether land urbanization can promote CO2 emissions
reduction through industrial structure optimization, we
employed the mediating effect model to perform an empirical
analysis. The results of the mediating effect of land urbanization
on reducing CO2 emissions through promoting the advanced
industrial structure are shown in Table 5.

Table 5 shows that the impact of the land urbanization rate on
total CO2 emissions and on the advanced industrial structure is
positive and significant.1 When land urbanization and the advanced
industrial structure are included in a single model, the land
urbanization rate’s impact on total CO2 emissions is positive and
insignificant, while the advanced industrial structure’s effect on total
CO2 emissions is negative and significant. From the mediating effect
model, we can conclude that the advanced industrial structure has a
complete and negative mediating effect on the land urbanization
rate’s influence on total CO2 emissions. As shown in Table 5, the
mediation effect of the advanced industrial structure is −0.0047
[0.0088*(−0.5356) ≈ −0.0047], indicating that each 1% increase
in land urbanization rate can result in 47 tons of carbon emissions
because the effect of land urbanization on the advanced industrial
structure when other conditions remain unchanged. The findings are
in line with previous studies such as Wang et al. (2013) and Wang
et al. (2021a), which stated that land urbanization reduced its
promotion effect on carbon emissions possibly due to the
industrial upgrading, energy consumption transition, and energy
efficiency improvement. The impact of the industrial structure on
CO2 emissions is the result of energy use efficiency, energy

TABLE 4 | Estimating results between land urbanization and sectoral CO2 emissions.

Variables Secondary industrial sector Service sector Energy sector Household

Population 0.2961*** (0.000) 0.7252*** (0.000) 0.3278*** (0.000) 0.5625*** (0.000)
GDP per capita 0.6481*** (0.000) 0.3947*** (0.000) 0.5769*** (0.000) −0.2352*** (0.005)
Technology level 0.0488 (0.234) −0.0666 (0.136) 0.0427 (0.197) 0.0615 (0.119)
Land urbanization rate 0.0097** (0.025) 0.0166*** (0.000) 0.0103*** (0.003) 0.0262*** (0.000)
Constant term −1.2843 (0.155) −3.5297*** (0.000) −0.4981 (0.494) 3.3457*** (0.000)
N 570 570 570 570
F statistic 48.09 49.79 68.72 57.09
Time effect yes yes yes yes
Individual effect yes yes yes yes

Note: p-values in the parentheses; ***, **, and * denote statistical significance at the 1, 5, and 10% levels, respectively.

TABLE 3 | Estimating results between land urbanization and total CO2 emissions
based on the instrumental variable analysis.

Variables OLS 2SLS GMM LIML

Land urbanization rate 0.009*** 0.065*** 0.069*** 0.112***
(0.003) (0.019) (0.018) (0.034)

Population 0.337*** 0.478*** 0.467*** 0.594***
(0.052) (0.080) (0.079) (0.124)

GDP per capita 0.509*** 0.375*** 0.339*** 0.265**
(0.062) (0.089) (0.085) (0.135)

Technology level 0.059** −0.073 −0.058 −0.183*
(0.028) (0.056) (0.049) (0.094)

Constant term 0.323 1.545* 1.848** 2.553*
(0.638) (0.902) (0.856) (1.337)

R2 0.389 0.007 — —

N 570 570 570 570

Note: Standard errors in the parentheses; ***, **, and * denote statistical significance at
the 1, 5, and 10% levels, respectively.
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consumption structure, and technological progress, which is complex
to a certain extent. With the increasing output value of China’s
tertiary industry and the improvement in urbanization quality, the
demand for energy is decreasing in industrial development (Li et al.,
2017). The industrial structure advancement produces a reduced and
negative impact on CO2 emissions, and the optimization and
updating of the industrial structure can be regarded as an effective
means of lowering CO2 emissions in China (Wang et al., 2019).
Ultimately, this implies that the more the government allocates land
indicators to advanced manufacturing, high-tech industries or digital
economy, the more it is likely to optimize the land use structure and
promote the advanced industrial structure, which can further reduce
CO2 emissions.

Empirical Results of the Mediating Effect of
CO2 Emissions Per Unit of GDP
To verify whether land urbanization can promote CO2 emissions
reduction through lowering CO2 emissions per GDP, we
employed the mediating effect model. The results are shown
in Table 6.

Table 6 shows that the impact of the land urbanization rate
on total carbon dioxide emissions is positive and significant,
while its impact on carbon dioxide emissions per GDP is

negative and significant. When the land urbanization rate
and carbon dioxide emissions per GDP are put in a single
model, the land urbanization rate’s impact on total carbon
emissions is positive and significant, and the effect of carbon
dioxide emissions per GDP on total carbon dioxide emissions is
also positive and significant. From the mediating effect model,
we can conclude that carbon dioxide emissions per GDP has a
partial and negative mediating effect on the land urbanization
rate’s influence on total carbon dioxide emissions. As shown in
Table 6, the coefficient of total effect c is 0.0087 with a 1%
significance level, while the effect of direct effect c′ is 0.0093
with a 1% significance level. Accordingly, the mediation effect
of CO2 emissions per unit of GDP is −0.0006
(−0.00281*0.1974 ≈ −0.0006, and 0.0087 � 0.0093-
0.00281*0.1974), indicating that there is a masking effect of
land urbanization on the total carbon emissions. The results are
consistent with those of Rafiq et al. (2016), Wang et al. (2019)
and Wang et al. (2021b), which insisted that energy
consumption structure transformation, energy efficiency
improvement, and technological progress brought by land
urbanization led to energy intensity and carbon emissions
reduction. Ultimately, this implies that in the process of
land urbanization, the Chinese government can reduce
carbon dioxide emissions per GDP by optimizing the land

TABLE 5 | The mediating effect of the advanced industrial structure.

Variables Total CO2 emissions Advanced industrial structure Total CO2 emissions

Land urbanization rate 0.0087*** (0.005) 0.0088*** 0.0136 (0.204)
— (0.000) —

Advanced industrial structure — — −0.5356*** (0.000)
Population 0.3111*** (0.000) −0.0254 (0.252) 0.3247*** (0.000)
GDP per capita 0.5096*** (0.000) 0.1377*** (0.000) 0.4358*** (0.000)
Technology level 0.0677** (0.020) 0.0478*** (0.000) 0.0422 (0.143)
Constant term 0.3773 (0.559) 4.9481*** (0.000) −2.2727*** (0.005)
F statistics 83.57 53.99 76.07
R2 0.3746 0.2868 0.4042
Observations 570 570 570
Time effect yes yes yes
Individual effect yes yes yes

Note: p-values in the parentheses; ***, **, and * denote statistical significance at the 1, 5, and 10% levels, respectively.

TABLE 6 | The mediating effect of CO2 emissions per unit of GDP.

Variables Total CO2 emissions CO2 emissions per unit
of GDP

Total CO2 emissions

Land urbanization rate 0.0087*** (0.005) −0.00281*** (0.005) 0.0093*** (0.000)
CO2 emissions per unit of GDP — — 0.1974*** (0.000)
Population 0.3111*** (0.000) — 0.3640*** (0.000)
GDP per capita 0.5096*** (0.000) — 0.4719*** (0.000)
Technology level 0.0677** (0.020) — 0.1580*** (0.000)
Constant term 0.3773 (0.559) 2.7508*** (0.000) −0.5823 (0.233)
F statistics 83.57 7.99 203.25
R2 0.3746 0.0134 0.6444
Observations 570 570 570
Time effect yes yes yes
Individual effect yes yes yes

Note: p-values in the parentheses; ***, **, and * denote statistical significance at the 1, 5, and 10% levels, respectively.
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use structure and improving land use efficiency to achieve
carbon emissions reduction. To reduce the intensity of
carbon emissions per unit of GDP, active measures should
be taken from the following three aspects: The first is for the
government to take measures to adjust the energy consumption
structure, reduce fossil energy consumption, and increase the
proportion of clean energy consumption (Zhang et al., 2021).
The second is to improve energy efficiency by promoting
technological innovation of enterprises and improving the
degree of marketization (Chen et al., 2021). The third is to
strengthen the guidance of land management policies to
promote low-carbon industrial development. For example,
local governments restrict the entry of high-carbon
industries from land indicators.

Empirical Results of the Mediating Effect of
CO2 Emissions Per Unit of Land
To verify whether land urbanization can promote CO2 emissions
reduction through reducing CO2 emissions per land, we
employed the mediating effect model to perform an empirical
analysis. The results of the mediating effect of land urbanization
on CO2 emissions reduction through reducing CO2 emissions per
land are shown in Table 7.

Table 7 shows that the impact of land urbanization rate on
total CO2 emissions is positive and significant, and the impact of
land urbanization rate on CO2 emissions per land is positive and
significant. When the land urbanization rate and CO2 emissions
per land are put in a single model, the impact of the land
urbanization rate on total carbon emissions is positive and
significant, and the effect of CO2 emissions per land on total
CO2 emissions is also positive and significant. From the
mediating effect model, we can conclude that CO2 emissions
per land plays a partial and positive mediating effect over the
influence of land urbanization rate on total CO2 emissions. As
shown in Table 7, the coefficient of total effect c is 0.0087 with a
1% significance level, while the effect of direct effect c′ is 0.0051,
with a 10% significance level. Accordingly, the mediation effect of
CO2 emissions per unit of land is 0.0036 (66.9749*5.43E-05 ≈
0.0036, and 0.0087 � 0.0051 + 66.9749*5.43E-05), which accounts
for 41% of the total effect. The results are in accordance with that

of Wang et al. (2021b), which believed that land use efficiency
improvement and land use intensity optimization can mitigate
the increase in carbon emissions. Ultimately, this implies that in
the process of land urbanization, the Chinese government can
achieve CO2 emissions reduction through reducing CO2

emissions per land. Accordingly, Chinese central and local
governments should take effective measures to promote land
use optimization and green and low-carbon development. On the
one hand, the government should focus on optimizing the
structure of construction land and greatly reduce the scale and
proportion of secondary industrial and mining land (Liu et al.,
2018a). Meanwhile, the government should promote the increase
in the scale of forest land and wetland to increase carbon sinks.
On the other hand, the government should reasonably control the
land development intensity and maintain the carbon balance and
sustainability of the biosphere (Wang and Feng, 2015; Guo et al.,
2017; Dong et al., 2018). Finally, the government should further
improve the efficiency of land use to promote ow-carbon
industrial structure transformation, energy structure
optimization and technological innovation.

DISCUSSIONS

The increase in urban CO2 emissions is mainly caused by
LUCC and anthropogenic activities (including both
production and residential activities). Existing literature has
conducted an in-depth examination of CO2 emissions caused
by LUCC, which is the main driving force for carbon storage in
terrestrial ecosystems (Chuai et al., 2014). First, LUCC can
change vegetation’s coverage, biomass, carbon density, and
carbon storage, and thus, directly affect CO2 emissions (Zhu
et al., 2019). Second, LUCC also has a profound effect on soil
organic carbon (Zhu et al., 2019). Among the main land use
types, forest land, wetland, and unused land facilitate net
carbon absorption, while cultivated land, grassland, and
urban construction land facilitate net carbon emissions. The
changes from forest land, wetland, and unused land to other
types, and especially alterations to urban construction land, will
greatly reduce vegetation biomass and release more carbon into
the atmosphere (Houghton, 2003; Bailis and McCarthy, 2011).

TABLE 7 | The mediating effect of CO2 emissions per land.

Variables Total CO2 emissions CO2

emissions per land
Total CO2 emissions

Land urbanization rate 0.0087*** (0.005) 66.9749*** (0.001) 0.0051* (0.077)
CO2 emissions per land — — 5.43*E-05*** (0.000)
Population 0.3111*** (0.000) 879.1059** (0.013) 0.2745*** (0.000)
GDP per capita 0.5096*** (0.000) 2,275.299*** (0.000) 0.3929*** (0.000)
Technology level 0.0677** (0.020) 506.8069*** (0.009) 0.0312 (0.254)
Constant term 0.3773 (0.559) −28592.5*** (0.000) 1.8705*** (0.003)
F statistics 83.57 42.86 93.60
R2 0.3746 0.2363 0.4575
Observations 570 570 570
Time effect yes yes yes
Individual effect yes yes yes

Note: p-values in the parentheses; ***, **, and * denote statistical significance at the 1, 5, and 10% levels, respectively.
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With increased development, more and more cultivated land,
woodland, and grassland are transformed into urban
construction land. Another main driving force for CO2

emissions is the energy consumption required for
production activities on industrial and mining lands, exhaust
emissions from transportation lands, and heating in residential
areas. The carbon emission intensity of urban construction
land is much higher than that of other land types. Among
various kinds of construction land, the carbon emission
intensity of industrial and mining land is the highest,
transportation land is second, and that of urban and rural
residential land is the lowest.

This study creatively explores the possibility of synergistic
promotion of land urbanization and carbon reduction from the
perspective of land use structure optimization, land use intensity
regulation, and land use efficiency improvement. More importantly,
we found strong evidence to support the environmental Kuznets
curve hypothesis between land urbanization and carbon emissions
based on land use optimization. In addition, this study provided new
insights into the validity of the environmental Kuznets curve
hypothesis and focused on how optimized land urbanization can
mitigate carbon emissions. China’s land is state-owned, and the
government controls the land indicators for conversion of
agricultural land or unused land to urban construction land.
Under this framework, the government can regulate the supply of
urban construction land to influence the urban land use structure,
and then affect the CO2 emissions levels through optimization of land
use types. Increasing the proportion of land use types with low CO2

emission intensity is conducive to reducing carbon emission levels.
Meanwhile, the government can also promote CO2 emissions
reduction by regulating land use intensity. Excessive land use
intensity could disrupt the balance of the atmosphere and
biosphere. It could, in turn, affect the impact of ecosystems on
carbon sequestration, thereby increasing CO2 emissions. In
addition, the improvement of land use efficiency contributes to
reducing CO2 emissions. The improvement of land use efficiency
is reflected in the improvement of technical levels, energy use
efficiency, and so on, resulting in the reduction of CO2 emissions.

It is noteworthy that this study integrated land use optimization
and industrial development into a unified framework to analyze
the impact of land urbanization on carbon emissions. High-quality
land use and land urbanization contribute to declines in the scale of
carbon emissions, per capita carbon emissions, and carbon
intensity (Yao et al., 2018). The results of this study are
consistent with those of Yao et al. (2018), Xie et al. (2018), and
Wang et al. (2021a), which showed that reasonable, efficient, and
sustainable land urbanization is beneficial for CO2 emissions
reduction. High-quality, and sustainable land urbanization
promotes low-carbon development mainly by influencing these
mediating variables including industrial structure, energy
intensity, energy consumption structure, and technological
innovation (Li et al., 2018). More importantly, in the process of
land urbanization, the government can promote land use structure
optimization, rational land use intensity regulation, land use
efficiency improvement by implementing innovative land use
policies, which could vigorously promote carbon emissions
reduction and low-carbon development.

The government should introduce land policies to promote the
optimization of land use structure, land use intensity control, and
land use efficiency improvement. First, the government should
scientifically formulate spatial land-use planning, with a focus on
low-carbon development (Zhang et al., 2018). Indicators such as
carbon emissions per unit of land should be included in spatial land-
use planning (Wang et al., 2021a). Local governments could control
regional land use intensity, optimize land use structure by setting
carbon emissions caps, or evaluating energy consumption per unit of
industrial land for industrial parks. Second, the Chinese central
government should strictly control the land quotas of arable land,
forest land, wetland, etc. that are converted into urban construction
land. This can promote the optimization of land use structure and
reduce the conversion of low-carbon land to high-carbon land.
Third, the government should establish a perfect development
intensity control system and implement the principle of plot ratio
control to restrain the damage of excessive land development
intensity to the carbon balance of the biosphere. Finally, local
governments should further optimize industrial policies and
improve regional land use efficiency. Relevant government
departments could conduct performance appraisals on enterprises
in the development zone by using indicators such as land use and
energy use. In addition, the government could introduce fiscal and
tax preferential measures to encourage enterprises to improve their
land use and energy use efficiency.

Furthermore, the government should further adjust the energy
consumption structure and foster a low-carbon industrial structure,
increase the efficiency of energy use, and decrease the intensity of
carbon emissions. First, the government should promote energy
consumption structure optimization and reducing carbon intensity
(Wang et al., 2021a). It should gradually decrease the proportion of
high-carbon energy such as coal and coke, and shift away from fossil
fuels to renewable low-carbon energy resources such as solar energy,
wave energy and wind energy. It also should greatly develop new
environment-friendly energy sources to promote the optimization of
its energy consumption structure (Wang et al., 2013). At this point, it
is also necessary for the government to implement policy measures
such as fiscal subsidies and tax incentives to encourage enterprises to
optimize their energy consumption structure. Second, the
government should pay great attention to upgrading the industrial
structure. It will be necessary to optimize the industrial structure,
make an appropriate reduction of the secondary industry, greatly
develop the tertiary industry, develop the emerging low-carbon
industry and boost the upgrade and cluster development of the
traditional high energy consumption industry (Wang et al., 2013).
Finally, the government should also actively promote technological
level advancements and improve carbon emissions efficiency (Wang
et al., 2021b). To this end, the government should set target cuts in
carbon emissions per unit of GDP. It should also take various
measures such as accelerating research and development in low-
carbon technology, popularizing new energy-saving products and
new technologies, and implementing incentive policies and so on to
strengthen energy saving and emission reduction, thus improving
energy efficiency (Wang et al., 2013; Wang et al., 2016).

In addition, the government should also make a greater effort
to improve the public’s awareness of low-carbon technologies,
strengthen the generalization of a low-carbon economy, foster
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low-carbon consumption and green consumption, and encourage
households to keep to a sustainable consumption mode (Wang
et al., 2013; Liu et al., 2018b). The government can promote low-
carbon development by building low carbon eco-cities,
encouraging residents to adopt low-carbon lifestyles, including
developing low-carbon transportation habits, e.g., green
commuting, shared bikes, metro system, electric and hybrid
car (Li et al., 2021b). Specifically, evaluation criteria of local
government by the central government should be diversified.
Economic evaluation can be weakened, and environmental
performance, such as green and low-carbon development
indicators, can be emphasized accordingly. Eventually, this
approach could lead to a decline in the level of carbon
emissions per unit of land, thereby achieving a win-win
situation through the synergy of land urbanization and carbon
emissions reduction.

Although we only use 2 years of cross-section data to form
panel data for empirical analysis, our findings will stimulate
research on land use to reduce CO2 emissions and achieve
low-carbon development for developing countries. In the
future, more micro and high-resolution data can be used to
analyze the relationship between land use and CO2 emissions.

CONCLUSION AND POLICY
RECOMMENDATIONS

This study explored the mechanism of land urbanization’s effect on
CO2 emissions in China. First, it sought to uncover thismechanism at
different stages of economic development. Theoretical analysis
showed that at the stage of extensive land use, the energy-
intensive industrial structure, low energy use efficiency, low-level
of land use management, and low land use efficiency led to an
increase in CO2 emissions per unit of land. However, at the stage of
high-quality land use, structural optimization effects, such as an
advanced industrial structure and clean energy consumption
structure, the spillover effects of technological innovation, and the
high-level of land use management caused declines in the CO2

emissions scale and CO2 emissions per unit of land. Secondly, a
STIRPATmodel and a SASP model were used to explore the impact
mechanism of land urbanization on CO2 emissions to accommodate
for stochastic factors and spatial heterogeneity among different cities.
Meanwhile, the mediating mechanism of the advanced industrial
structure, CO2 emissions per unit of GDP and CO2 emissions per
unit of land was studied using a mediating effect model. The
empirical results show that high-quality land use can promote the
optimization of land use, thereby reducing carbon emissions per unit
of land or carbon emissions per unit of GDP and achieving CO2

emissions reduction and low-carbon development. Moreover, high-
quality land use can achieve CO2 emissions reduction by promoting
the advanced industrial structure. To be sure, the government would
dowell to work to reduce carbon emissions by optimizing spatial land
use regulation and innovating spatial land governance.

There are several actions that can be taken by the government to
reduce CO2 emissions. First, the government should optimize land
use structure, rationally control land use intensity, and promote the
efficient use of urban construction land by formulating scientific

spatial land-use planning and sensible land-use policies. Indicators
such as carbon emissions per unit of land could be included in spatial
land-use planning. Local governments could set carbon emissions
caps, energy consumption caps for enterprises to limit investment in
high-carbon industries and promote low-carbon development.
Meanwhile, the local governments can further use fiscal and
taxation policies to encourage enterprises to improve their
technological level, land use efficiency, energy use efficiency, and
so on. In addition, the central government should strictly control the
land indicators for the conversion of low-carbon land to high-carbon
land, establish a perfect land development intensity control system,
and implement floor area ratio control. Second, the government
should particularly focus on cultivating low-carbon, energy-saving,
and environmental protection industries and encourage the
development of these industries to promote an advanced
industrial structure. Efforts should be made to explore, exploit,
and apply renewable, new, and green energy by developing and
introducing new energy technologies and environmentally friendly
technologies to achieve the targets of carbon mitigation. Finally, the
government should also make an effort to increase the public’s
awareness of low-carbon technologies and encourage the
households to adopt a low-carbon consumption mode.

This study takes the first step to investigate the effect of land
urbanization on carbon emissions by integrating land use
structure optimization, land use intensity regulation, land use
efficiency improvement, industrial structural optimization, and
carbon efficiency improvement. However, this study still exists
some limitations. Due to data limitation, the time-frame for this
study was restricted to only 2 years of high-resolution gridded
data. The endogeneity in the empirical process needs to be
further resolved. In the further studies, with more available
high-resolution data, this study can be extended to obtain more
information on the relationship between land urbanization and
CO2 emissions. The treatment effect model or the method of
randomized control trials could be used to resolve the
endogeneity problem of this study in future. Further research
regarding the nonlinear relationship between land urbanization
and carbon emissions by integrating land use optimization,
industrial structure upgrading, and energy use efficiency
improvement remains to be done.
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Carbon Emission Trading Scheme,
Carbon Emissions Reduction and
Spatial Spillover Effects:
Quasi-Experimental Evidence From
China
Zhaofu Yang, Yongna Yuan* and Qingzhi Zhang

School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing, China

The carbon emission trading scheme (ETS) is an essential policy tool for accomplishing
Chinese carbon targets. Based on the Chinese provincial panel data from 2003 to 2019, an
empirical study is conducted to measure the effects of carbon emission reduction and
spatial spillover effect by adopting the difference-in-differences (DID) model and spatial
difference-in-differences (SDID) model. The research findings show that: 1) The ETS
effectively reduced the total carbon emissions aswell as emissions from coal consumption;
2) such effects come mainly from the reduction of coal consumption and the optimization
of energy structure, rather than from technological innovation and optimization of industrial
structure in the pilot regions; and 3) the ETS pilot regions have a positive spatial spillover
effect on non-pilot regions, indicating the acceleration effect for carbon emission reduction.
Geographic proximity makes the spillover effect decrease due to carbon leakage.

Keywords: carbon emission trading scheme, coal removal, spatial spillover effect, carbon emissions reduction
effects, SDID

1 INTRODUCTION

Net zero is a necessary step to mitigate global warming and has become an international
consensus. In confronting climate change, the Paris Agreement stipulated objectives to limit the
rise of global average temperature within 1.5 and 2°C (UNFCCC, 2015). The Intergovernmental
Panel on Climate Change then addressed this act by setting the goal “to achieve global carbon
neutrality around 2050, leading to an eventual 1.5°C global warming target by 2100” (IPCC,
2018). However, the published national reduction contributions under the Paris Agreement
continue to face challenges in meeting the 1.5°C temperature control target (Duan et al., 2021).
Most countries have pledged carbon neutrality targets through legal provisions and policy
declarations. As one of the largest energy consumption countries, China signed the Paris Climate
Accord and pledged to “peak emission by 2030 and reaching carbon neutral by 2060.” However,
China’s total carbon emissions reached 929 million tons in 2019, approximately one-third of
total global emissions, and its coal consumption accounted for nearly 60% of the country’s total
energy consumption (Wang and Yang, 2021). “Going carbon neutral” in China requires
implementation of a combination of policies across the next 4 decades. At the early stages,
the focus should be set on achieving optimal energy structures, deepening industrial structural
reform, and constructing a green industrial chain (Huang and Zhai, 2021). In mid-to-late stages,
attention should be shifted to fossil energy decommissioning and development of technologies
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related to Carbon Capture and Storage (CCS) (Xu et al., 2021)
and Bioenergy Combined with Carbon Capture and Storage
(BECCS) (Huang et al., 2020).

The Carbon Emission Trading Scheme (ETS) provides price
signals for carbon emission reduction, creates an essential path
towards carbon neutrality, and mitigates global warming (Wang
et al., 2020). In October 2011, China carried out measures to
promote the ETS, authorizing seven provinces and cities to
launch pilot projects in carbon emissions trading. In 2021, the
long-awaited national carbon emissions trading market was
officially launched in China, establishing the world’s largest
greenhouse gas (GHG) emissions trading market.

Past research focused on the ETS in China through two
streams: ex ante analysis and ex post analysis. Ex ante analysis
develops Computable General Equilibrium (CGE) models (Lin
and Jia, 2018), the Integrated Assessment Model (IAM) (Zhao
et al., 2020), or Agent- Based Model (ABM) (Tang et al., 2017) to
study the influence of the ETS parameters on emission reduction
effect and economic development. Topics discussed involved
initial allocation, coverages, reasonable carbon price range,
effects on carbon emissions, economic costs, and the
interactions between the ETS and other complementing
policies (Li et al., 2017; Wu and Li, 2020; Weng et al., 2021).
The results of ex ante analysis are potentially affected by multi-
parameter settings and model assumptions.

The ex post analysis is focused on assessing operational
effectiveness and the impact of such mechanisms based on
historical archival data. Most studies concluded that the ETS is
an effective policy tool in carbon emissions reduction at
provincial, municipal, and corporate levels (Gao et al., 2020;
Shen et al., 2020; ZhangW. et al., 2020; Zhang Y. et al., 2020), The
emission reduction effect increases annually with the
implementation of the policy (Zhang and Zhang, 2019). Some
researchers suggest that such action also reduces other pollutants
such as PM2.5 and SO2, promoting China’s low-carbon
innovation and economic development and finally bringing in
more environmental dividends (Feng et al., 2021b; Liu et al.,
2021). Wang et al. (2020) adopted the difference-in-differences
(DID) model to demonstrate a positive correlation between the
ETS and low-carbon economic transformation; however,
researchers also argued that the ETS may improve the
efficiency of emission reduction, but the actual effect remains
relatively weak (Zhu et al., 2020). Due to the immaturity of the
regulations andmarket systems for the ETS pilots (Qi et al., 2021),
the ETS market lacks vitality. Such efficiency of emission
reduction has slowed (Zhu et al., 2020). Studies on the impact
mechanism of the European Union Emissions Trading System
(EU ETS) have argued that the EU ETS reduces carbon emissions
mainly through technological innovation (Jaraitė and Di Maria,
2012; Calel and Dechezleprêtre, 2016). In a similar scenario,
certain Chinese scholars have argued that China’s ETS reduces
carbon emissions by reducing energy consumption and
optimizing energy structure, while the emission reduction
effect of technological innovation is not significant (Xuan
et al., 2020; Liu et al., 2021).

The emission reduction effects of the pilot regions provide a
direct signal and information for the implementation of China’s

ETS, therefore, this study analyzes the effect of the ETS through
six pilot regions. Unlike European countries, coal consumption
took a dominating role in the current Chinese energy
consumption structure (Wang and Yang, 2021). The ETS will
be the main driver in supporting China’s carbon neutrality goal.
Few studies have analyzed the impact of the ETS on carbon
emissions caused by coal consumption, and no empirical
evidence has shown the effect and extent of the ETS in coal
removal process.

A growing number of studies have focused on the spatial
spillover effect and the carbon leakage caused by the ETS. These
ex ante analyses were adopted by CGEmodels or IAM (Antimiani
et al., 2016; Yu et al., 2021). Researchers argued that the EU ETS
leads to carbon leakage, shifting carbon emissions from regions
with strong environmental constraints to those with weak
environmental constraints (Paroussos et al., 2015; Böhringer
et al., 2017). Similarly, some scholars have demonstrated that
carbon leakage is inevitable in China’s ETS using CGE model
(Tan et al., 2018; Wang et al., 2018), but the simulation results of
the ex ante analysis depend heavily on the model setup and the
assumptions of the model (Yu et al., 2021). Such methods often
underestimate or ignore the efforts of non-pilot regions in carbon
emissions reduction.

Empirical analysis on the ex-post spatial spillover effect and
carbon leakage are inadequate. As policy implementation
increases, more attention has shifted to this area of study.
Naegele and Zaklan (2019) find no evidence supporting that
the EU ETS leads to carbon leakage based on evidence from
European manufacturing development data. Some scholars used
the DID model based on the historical data of the ETS pilot
regions to test its positive spatial spillover effect. In particular, Liu
et al. (2021) adopted the DID model to investigate whether cities
adjacent to pilot cities also benefit from the implementation of the
ETS and if there is a positive spillover effect of the ETS observed
in reducing air pollution. Significantly, Zhou et al. (2020) shows
that the ETS can lead to reverse carbon leakage. Pilot regions with
larger industries have more industrial transfers in contrast to
non-pilot regions, leading to a shift of carbon emissions from
non-pilot to pilot regions. However, these empirical findings are
far from sufficient to provide ex post data. Local pilots and
national carbon markets will co-exist in China with
heterogenetic intensity of environmental legislation across
regions. Analyzing the existence of a spatial spillover effect of
the ETS and the direction of spillover is vital.

As observed, the DID model are widely used to study the
emission reduction effect and spatial spillover effect of the ETS,
without considering spatial interactions among units. The DID
model violates the SUTVA hypothesis of independent and
identical distribution, which says one unit should not be
affected by the treatment of the other (Cox, 1958; Rosenbaum,
2010), This issue will lead to bias or potential error. Chagas et al.
(2016) determined that by performing a treatment group and
control group between spatial decomposition, the spatial
difference-in-differences (SDID) model was shown to be
effective in addressing this challenge, and it is gradually being
adopted in the corresponding analyses (Feng et al., 2021a; Yu and
Zhang, 2021).
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This paper applies both the DID model and SDID model to
respond to whether the ETS is effective in the reduction of total
carbon emissions and these from carbon emissions. What is the
impact of the mechanism? How much is the spatial spillover
effect? The main contributions of this research lie in the following
three aspects: 1) we analyzed the impact of the ETS on total
carbon emissions and those caused by coal consumption,
focusing on the effects of the ETS on coal removal; 2) we
adopted the DID model to evaluate the emission reduction
effect and the impact mechanism of the ETS; 3) we adopted
the SDIDmodel to analyze the spatial spillover effect of the policy
and its stimulating effect on carbon leakage. The results are more
robust and expand the spatial perspective for the study of policy
impact effects. The rest of the paper is organized as following:
Section 2 explains the model setup and the selection of variables;
Sections 3, 4 show the empirical processes and results; and
Section 5 concludes the paper and offers corresponding policy
recommendations.

2 MODEL DESIGN AND DATA
DESCRIPTION

2.1 Difference-in-Differences Model
The data sample is divided into the treatment and control groups.
The treatment group (Policy � 1) is made up of the two pilot
provinces and four municipalities directly under the central
government that implemented the ETS, and the control group
(Policy � 0) is made up of the non-pilot provinces and
autonomous regions. Official approval of the ETS
implementation was granted in 2011, and the actual year of
implementation was 2013. Therefore, Post-2013 (2013
included) is the policy implementation period (Post � 1) and
pre-2013 is the non-policy period (Post � 0). Therefore, DID
estimation is specified as following:

Yit � β0 + β1didit + α1Xit + μi + ct + εit (1)

where Yit is the dependent variable, denoting the total carbon
emissions and carbon emissions caused by coal consumption in
province i at year t. didit is a cross-term of the pilot policy dummy
variable (Policy) and the year dummy variable (Post). Both dummies
are the explanatory variable of the estimation. Its estimated
coefficient β1 indicates the impact of the ETS on both types of
carbon emissions. Since the natural logarithm of the dependent
variable has been taken, the estimated coefficient β1 represents the
proportional change in carbon emissions before and after 2013 in the
provinces and cities with the ETS (experimental group) relative to
those without ETS (control group).Xit is the set of control variables
that may affect CO2 emissions. μi is a province-fixed effect, ct is a
time-fixed effect, and εit denotes the random error term.

2.2 Spatial Difference-in-Differences Model
To study spatial spillover effect of ETS, the SDID estimation was
carried out using a spatial lag model (SLX) (Chagas et al., 2016).
The spatial spillover effect of the ETS can be correctly estimated
for both pilot and non-pilot regions. This produces the following
SDID specifications:

Yit � β0 + β1didit + +β2WT.TDit + β3WNT.TDit + α1Xit + α2WXit

+ μi + ct + εit

(2)

where W denotes the spatial weight matrix. WT.TDit denotes the
spatial spillover effect within pilot regions, and its estimated
coefficient is denoted by β2. WNT.TDit represents the spatial
spillover effect from pilot regions to non-pilot regions, and its
estimated coefficient is denoted by β3. In addition, other
parameters are set the same as in Eq. 1.

The spatial distance weight matrixW1 represents the between-
region spatial weight effect; to clarify, geographical distance only
represents the influence of geographical features and carbon
emissions, as the result of human activities have other non-
geographical impact factors. Therefore, this paper draws on
the method of Li et al. (2010) to establish the economic
distance weight matrix W2. W2 characterizes the economic
distance by the difference of regional GDP per capita, which
reflects regions with higher levels of economic development
having a stronger influence than those with low level
economic development. In addition, to identify carbon leakage
from the pilot regions to the adjacent regions, this paper also
analysed a local spatial distance weight matrix where 200 km,
300 km, 400 km, and 600 km are the range thresholds analyzed.

2.3 Variables Description
Restricted by data availability of the balance sheets and missing
data at the provincial level, this paper focuses on carbon
emissions from coal consumption. The sample included data
from 29 provinces and municipalities from 2003 to 2019,
excluding Hong Kong, Macao, Taiwan, Fujian Province, and
Tibet Autonomous Region due to the special research setting.
The ETS in Fujian Province was established in 2017, which is
different from other pilot regions and the pilot operation period is
relatively short, so Fujian Province is excluded from the sample in
this paper. Original data were obtained from China Urban
Statistical Yearbook and China Energy Statistical Yearbook
from 2004 to 2020.

1) Dependent Variable: Total carbon emissions and those from
coal consumption. Based on the energy balance sheets of 29
provinces, the total carbon emissions and those from coal
combustion are aggregated by multiplying the amount of
energy consumed by the average low level of heat
generation, the CO2 oxidation factor, and the oxidation
rate based on varied energy sources. This research excludes
the double-counting of consumption during energy
conversion. Finally, the two dependent variables are
normalized by logarithms and denoted as lnCE and
lnCCE, respectively.

2) Treatment Variable (did): an interaction term of the pilot policy
dummy variable and the year dummy variable: pilot regions
receive valued of 1 during the post-2013 period. Non-pilot
regions and those pre-2013 pilot regions receive the value of 0.

3) Control Variables: Based on previous literature, the following
variables have been included: Industrialization level (IL):
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share of secondary sector in GDP of each province; economic
development level (lnPGDP): logarithm of the real GDP of
each province (based on 2003) as a share of the total
population at the end of the year; Population density
(lnPOP): logarithm of the total population of each province
at the end of the year as a proportion of the geographical
region of the province; international direct investment (FDI):
share of foreign direct investment in each province in the GDP
of the year; service industry development level (SL): share of
tertiary industry in the GDP of each province; degree of
openness to the world (IET): share of the total trade of
import and export of each province to the GDP of the year.

4) Mediators: Mediators adopted to study the mechanism of the
impact of ETS are shown as follows: industrial structure (IL):
share of value added of secondary industry in GDP;
technological innovation (RD): share of R&D expenditures
in GDP; energy structure (ES); share of coal consumption in
total energy consumption; coal consumption (lnCOAL):
logarithm of coal consumption in each province. Table 1
shows the descriptive statistics.

3 EMPIRICAL RESULTS

3.1 Baseline Regression
The estimated results of ETS abatement effects are shown in
Table 2; columns 1–2 show the results of the baseline regression
of the ETS on total carbon emissions. Column 2 adds the control
variables to the baseline model. The results show that the
coefficients of did in columns 1–2 are negative and statistically
significant at the 1% level, suggesting that the ETS has
significantly reduced the total carbon emissions. The policy
effect is significant. Columns 3–4 show the results of the
baseline regression of the ETS on carbon emissions from coal
combustion. Column 4 adds control variables to Column 3. The
results show that the coefficients of did in columns 3–4 are
negative and statistically significant at the 5 and 1% levels,
respectively. The absolute value of the regression coefficient of
did in column 4) is larger than the absolute value of the regression
coefficient of did in column (2). Results suggest that under the
ETS, reducing carbon emissions from coal combustion has a
larger effect than that of total carbon emissions. Possible

explanations might be that most of the pilot firms of the ETS
are located in high energy-consuming industries. Coal dominates
their energy consumption structure, and these firms prioritize the
reduction of carbon emissions by reducing coal consumption. To
support this conclusion, we analyzes the effects of ETS on carbon
emissions from petroleum and natural gas consumption
separately, and the results are shown in Supplementary Table
S1. The results show that the coefficients of did is not significant,
indicating that the implementation of ETS does not affect the use
of these two energy sources, but has a significant effect on
reducing coal consumption; our results provide evidence for
the beneficial side of the ETS in the process of coal removal in
the pilot regions.

3.2 Parallel Trend Test
DID model is valid only if the parallel trend hypothesis is
satisfied. The hypothesis, when satisfied, indicates that the
carbon emission trends in the pilot and non-pilot regions are
homogeneous. They do not differ significantly before the ETS is
implemented, while the emission reduction impact of the ETS
only occurs after the policy is implemented. Therefore, this paper
establishes a regression model to test the parallel trend
hypothesis, and the model structure is shown in :

Yit � β0 + ∑ 2019

t�2007
βtdidit + α1Xit + μi + ct + εit (3)

We set 2013 as the base year. βt denotes a series of estimates
during three periods of time, including 6 years before the base
year, the base year itself, and the 6 years after the base year. The
regression results are shown in Figure 1, and the results of the two
dependent variables are shown separately in Figures 1A,B. The
regression coefficients of did before the base year are not
significant, suggesting that before the ETS was implemented,
no obvious difference in carbon emissions between the pilot and
non-pilot regions was observed, satisfying the parallel trend
hypothesis. The regression coefficient of did is significantly
negative from the start of the ETS implementation in the base
year, and the emission reduction effect of the ETS gradually
increases along with the increases of the implementation year. At
the same time, when the ETS was implemented in 2013, the effect
of reducing total carbon emissions and carbon emissions from
coal combustion was roughly the same. As the policies were
implemented over the years, the effect of the ETS on reducing

TABLE 1 | Descriptive statistics.

Variable Mean SD Min Max Observation

lnCE 9.946 0.825 7.267 11.58 493
lnCCE 9.658 0.972 5.677 11.54 493
Did 0.0850 0.279 0 1 493
IL 45.59 8.445 16.20 61.50 493
SL 43.09 9.490 28.60 83.50 493
lnPGDP 10.29 0.765 8.190 11.91 493
lnPOP 5.420 1.285 2 8.257 493
FDI 0.0230 0.0190 0 0.105 493
IET 0.303 0.380 0.0130 1.721 493
RD 0.0110 0.0230 0 0.164 493
lnCOAL 7.939 0.970 4.171 9.659 493
ES 0.440 0.158 0.0120 0.802 493

TABLE 2 | The impact of ETS on carbon emissions.

Variables lnCE lnCE lnCCE lnCCE

(1) (2) (3) (4)

did −0.263*** −0.282*** −0.575** −0.488***
(0.0739) (0.0772) (0.263) (0.152)

Control variables No Yes No Yes
Province FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 493 493 493 493
R-squared 0.808 0.829 0.537 0.571

Robust SE in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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carbon emissions from coal combustion becomes more obvious,
indicating that the ETS has a positive and far-reaching effect on
coal removal.

3.3 Placebo Test
Other unobserved regional variables affecting carbon emissions
are possible in this study due to data availability issue, and this
may result in estimation bias. Therefore, a placebo test needs to be
applied to verify whether the omitted and unobserved variables
affect the baseline results. The placebo test is adopted to test the
robustness of the baseline regression through the random
selection of several dummy experimental groups in full
samples to perform a regression consistent with the baseline
regression (Chetty et al., 2009). Specifically, all samples were
sampled 1,000 times in our study. Six regions were randomly
selected as the dummy experimental group for each sampling.
The rest of the samples were regressed as the control group
according to Eq. 1 to obtain the regression coefficients and
p-values.

Figure 2 reports the distribution of regression coefficients,
where the x-axis represents the regression coefficients from the
1,000 randomly assigned experimental groups of did, and the
curve is the kernel density distribution of the regression
coefficients. The blue dots are the p-values corresponding to
the regression coefficients. The red dashed lines present the true
regression coefficients with p-values for columns (2) and (4) of
Table 2, respectively. It is observed that the distribution of the
coefficients, estimated based on the random sample, is around 0
with p-values greater than 0.1. The coefficients estimated from
the baseline regression are almost independent according to the
coefficient distribution. This is in line with Placebo Test’s
expectation. Thus, the significant abatement impact of the ETS
is unlikely to be influenced by unobserved factors, and previous
estimation analysis are robust.

3.4 Instrumental Variable Approach
When studying the effect of ETS on CO2 emissions using DID
analysis, the presumed assumption is that the selection process of

FIGURE 1 | Parallel trend test. (A) Parallel trend test (Total carbon emissions). (B) Parallel trend test (Carbon emissions from coal combustion).

FIGURE 2 | Placebo test. (A) Placebo test (Total carbon emissions). (B) Placebo test (Carbon emissions from coal combustion).
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the ETS pilot regions is random and maintains invariant when
changes occur in other potential factors. However, pilot regions
are not selected randomly but rather chosen by policy. To prevent
the influence of other unobserved potential factors, this paper
draws on Tsoutsoura (2011) approach in adopting the
instrumental variable approach to address the endogeneity
issue of experimental group selection.

Specifically, this paper follows Hering and Poncet (2014) in
selecting the ventilation coefficient as an instrumental variable to
explain whether a pilot regions has the policy treatment. First, for
regions with smaller ventilation coefficients, larger pollutant
concentrations are monitored and will incentivize local
government to adopt more aggressive and effective
environmental regulation policies. This region then gains a
better chance to be selected as an ETS pilot. The regression
results of the ventilation coefficient and the region selected as a
ETS pilot are negatively correlated. Thus, the selection of
ventilation coefficient as an instrumental variable satisfies the
correlation hypothesis. In addition, because the ventilation
coefficient is determined by the meteorological and
geographical conditions of each region, it satisfies the
exogeneity assumption. In this study, we match the boundary
layer height and wind speed information at 10 m height from the
ERA dataset of the European Centre for Medium-RangeWeather
Forecasts to the latitude and longitude of the 29 provinces and
cities in the sample. The multiplication of wind speed and
boundary layer height for each cell is the circulation
coefficient. We then normalized through logarithm of
circulation coefficients for 29 sample regions from 2003 to
2019 is selected.

The results of instrumental variable are shown in Table 3.
Column (1) is listed as the regression results of the first stage: the
regression coefficient of the interaction term iv*post is significantly
negative at the 5% level, and the F-statistic is greater than the critical
value of 10, indicating that the instrumental variable satisfies the
correlation condition and there is no weak instrumental variable. In
the second-stage regression, the regression coefficient of did is still
significantly negative, which is consistent with the baseline
regression, indicating that after eliminating the endogeneity
problem in pilot selection, the ETS can still significantly reduce

total carbon emissions and carbon emissions from coal combustion.
The previous findings remain robust.

4 FURTHER ANALYSIS

4.1 Analysis of Impact Mechanism
Previous analysis in our study shows that the ETS has had a
significant abatement effect on the local pilot. Next, this paper
uses a two-stage mediating effect model for validation (Baron and
Kenny, 1986) to initially analyze the mechanism of the abatement
effect generated by the ETS. The mediating effect model is
established as follows:

Mit � β0 + β1didit + α1Xit + μi + ct + εit (4)

Yit � β0 + β1didit + β2Mit + α1Xit + μi + ct + εit, (5)

where M denotes the mediators including industrial structure
(IL), technological innovation (RD), energy structure (ES), and
coal consumption (lnCOAL). Other model settings are consistent
with Eq. 1, and the coefficients of the treatment variable did in Eq.
4 and the coefficients of the mediatorsM in Eq. 5 are tested. The
results are shown in Table 4.

The regression coefficients of did in columns (1) and (2) in
Table 4 are not significant suggesting the industrial structure and
technological innovation in the pilot regions are not affected by
the ETS. The mediating effect is tiny. The regression coefficients
of did in columns (3) and 5) are significantly negative, indicating
that the energy structure and the absolute coal consumption in
the pilot regions are reduced by the ETS. The second stage
estimation of the mediating effect is conducted according to
Eq. 5, columns (4) and (6) showing that the treatment
variable did and the mediators ES and lnCOAL are significant,
implying that the mediating effect is significant. According to the
conclusion, the ETS reduces carbon emissions mainly by
reducing the absolute consumption to reach for an optimal
energy structure. However, reading an optimal industrial
structure is an incremental and lengthy process, and our study
had a relatively short window for observation. Although the
carbon trading mechanism will reduce the share of traditional
industry, such an effect is not significant. Intuitively, the ETS also
should boost R&D investment. Research findings also suggest
that such an impact is not significant. Technological innovation
usually takes more time, and large investments do not always
result in the development of effective abatement technologies
(Wicki and Hansen, 2019; Zhang Y. J. et al., 2020). At the same
time, large investments may increase firms’ costs level and reduce
firms’ market competitiveness.

In summary, the reduction effect of ETS comes mainly from
the absolute emission reduction from coal combustion and its
share in the energy structure, rather than from the technological
innovation and optimization of the industrial structure in the
pilot regions.

4.2 Analysis of Spatial Spillover Effect
Based on Eq. 2, the SDIDmodel under the spatial distance weight
matrixW1 and economic distance weight matrixW2. The spatial

TABLE 3 | Regression results of instrumental variable approach.

Variables IV first stage IV second stage

did lnCE lnCCE

(1) (2) (3)

iv*post −0.266**
(0.111)

did −0.835** −1.455**
(0.405) (0.720)

Control variables Yes Yes Yes
Province FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 493 493 493
R-squared 0.534 0.742 0.374
The first stage of F-test 91.99

Robust SE in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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influence of the ETS on total carbon emissions and carbon
emissions from coal combustion is studied. Results are shown
in Table 5.

The regression coefficients of did are still significantly negative
upon consideration of the spatial effect. The absolute values of the
regression coefficients of did increase with the introduction of
spatial control, except for column (4). By comparing the results
with those of baseline regression, we can conclude that the DID
model has a more significant carbon reduction effect of ETS on
local pilot regions after taking into account the spatial influence of
policy, which is consistent with previous studies (Chagas et al.,
2016; Yu and Zhang, 2021).

ETS has two possible pathways in affecting the non-pilot
regions’ reduction activities. On one hand, the establishment
of the ETS pilot regions is a prelude of the national carbon
market, and the non-pilot regions may have realized China’s
determination to reduce emissions through the
implementation of the ETS; thus, the ETS pilot regions
could act as role models to stimulate the non-pilot regions’
reduction activities. On the other hand, pilot regions could
crowd out high emission production activities to non-pilot

regions, thus promoting the increase of carbon emissions in
these regions. In Table 5, the regression coefficient ofWT.TD is
not significant, except for column (4). Possible explanations
include that the ETS pilot regions are dispersed, resulting in
less production and economic relations among pilot regions.
Pilot regions alone are lack of spatial connectivity. The
regression coefficients of WNT.TD are significantly negative
except for column (2), suggesting that the ETS can play a role
in promoting emission reduction in non-pilot regions. A
positive spatial spillover effect is observed. For the non-
pilot regions, the role-modeling effect of the ETS pilot
regions is greater than that of carbon leakage effects
resulting from the effect of crowding out high emission
production activities.

To investigate the spatial spillover effect of the ETS on
different range regions, the SDID model adopts the local
spatial distance weight matrixes. The results are shown in
Table 6.

The regression coefficients of did remain significantly
negative. As shown in column (1), the regression coefficient
of WNT.TD is positive but not significant within the 200 km
range of the pilot regions, which supports that the ETS will
increase carbon emissions in the proximity regions with a
negative spatial spillover effect. For the neighboring non-
carbon pilot regions, the role-modeling effect and economic
relation of the ETS pilot have less emission reduction effect
than that of carbon leakage effect resulting from the crowding
out of production activities. As shown in column (2), the
regression coefficient of WNT.TD becomes negative yet
insignificant within 300 km of the pilot regions, and the
regression coefficient of WNT.TD becomes significantly
negative as the range around the pilot regions continues to
expand. Evidence suggests that the positive spatial spillover
effects become even greater as the geographical range around
the pilot regions expands. One potential explanation could be
that as physical distance increases, it becomes more difficult to
transfer production activities to non-pilot regions, allowing
the role-modeling effect of the ETS pilot to dominate non-pilot
regions.

TABLE 4 | Impact mechanism analysis.

Variables (1) (2) (3) (4) (5) (6)

IL RD ES lnCE lnCOAL lnCE

did −0.0463 0.00773 −0.0290* −0.249*** −0.341*** −0.175***
(0.479) (0.00722) (0.0166) (0.0680) (0.123) (0.0504)

ES 1.130***
(0.240)

lnCOAL 0.315***
(0.0732)

Control variables Yes Yes Yes Yes Yes Yes
Province FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 493 493 493 493 493 493
R-squared 0.925 0.377 0.642 0.853 0.479 0.879

Robust SE in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 5 | The estimation results of the SDID model.

Variables W1 W2

lnCE lnCCE lnCE lnCCE

(1) (2) (3) (4)

did −0.431*** −0.514*** −0.415*** −0.471***
(0.106) (0.145) (0.111) (0.167)

WT .TD 0.187 −0.311 −0.137 −0.922*
(0.174) (0.413) (0.167) (0.458)

WNT .TD −0.561** −0.609 −0.480** −0.652**
(0.247) (0.437) (0.185) (0.260)

Control variables Yes Yes Yes Yes
Province FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 493 493 493 493
R-squared 0.853 0.707 0.842 0.673

Robust SE in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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5 DISCUSSION

Based on the panel data of Chinese ETS pilot regions and non-
pilot regions from 2003 to 2019, this paper examines the emission
reduction effect of the ETS using the DIDmodel. Further analysis
on the impact mechanism and spatial spillover effect of the policy
is also conducted. The findings are as follows: 1) the ETS can
effectively reduce the total carbon emissions and emissions from
coal consumption. The relative effect of carbon emissions from
coal consumption appears to be better, suggesting an acceleration
effect of the ETS in coal removal. 2) China is at the initial stage of
moving towards carbon neutrality, and the reduction effect of the
ETS comes mainly from the absolute reduction of coal
consumption and its share in the energy structure. 3) The ETS
has a positive spatial spillover effect, which drives other non-pilot
regions to commit to carbon reduction activities through role-
modeling effect. The ETS may incentivize pilot regions to crowd
out production activities to neighboring non-pilot regions,
increased the carbon emissions and thus hindering the carbon
reduction process in neighboring regions.

Based on these conclusions, the following recommendations
are made. First, China’s goal for 2060 carbon neutrality will
require the full use of the ETS to reduce emissions and coal
removal. With more stringent emission reduction targets, the
carbon trading mechanism is to be designed for coverage of a
wide range of sources, such as involving sectors and units with a
high level of electricity, petroleum and gas consumption. Second,
the government should continue to improve the design of the
national carbon market. Promote the synergistic development of
the local carbon market with the national carbon market to
ensure that the ETS can effectively achieve emission reduction
effect and positive spatial spillover effect. Then, regional
governments should strengthen their interaction and the
national carbon market should balance the intensity of the
policies of each region to prevent the transfer of high-carbon
emitting industries to neighboring regions and thus the
occurrence of carbon leakage. Finally, to give the full play to
the effect of the carbon market, governments should focus on a
high-quality development model and reduce consumption of coal

and other energy. Although the reduction emission effect of the
ETS does not come from technological innovation and
optimization of industrial structure, in order to achieve the
long-term goal of carbon neutrality, the government still needs
to stimulate the innovation drive of enterprises, encourage the
development of low-carbon green technology, improve energy
utilization efficiency, and promote industrial structure
optimization. Through the above measures, with the support
of carbon trading mechanism, the emission reduction effect will
be significantly improved.

Restricted to the availability of the data and methods, there are
three main limitations in this paper. 1) This paper focuses on the
impact of the ETS on emissions from coal consumption, but due to
the limitation of coal consumption data, it cannot be studied at the
city level. 2) The ETS has synergy effects with various policies, such
as the air control policy and the vigorous development of clean
energy policy. It is also worthwhile to consider the clean effect of the
carbon emission reduction policy upon the removal of the effects of
these competing policies. 3) This paper focuses on the carbon
emission reduction effect of the ETS and the impact factors but
does not further measure the cost of emission reduction policies.
Comparative analysis among emission reduction effects and the cost
of different carbon markets and the cost of carbon emission
reduction of different policies are important research directions
for future carbon emission reduction policy analysis.
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Vulnerability Assessment of Climate
Change in Vietnam: A Case Study of
Binh Chanh District, Ho Chi Minh City
Dinh Duc Truong1, Tran Tho Dat2*, Nguyen Dieu Hang1 and Le Huy Huan1

1Faculty of Environmental, Climate Change and Urban Studies, National Economics University, Hanoi, Vietnam, 2CFVG, Hanoi,
Vietnam

Climate change poses additional obstacles to poverty eradication and social justice. Rising
temperatures, abnormal rainfall increases, storms, floods, and droughts have become
more frequent and severe phenomena in Vietnam. This causes serious consequences for
the livelihood security of the poor. Binh Chanh district (Ho Chi Minh City) is an area subject
to severe risks of climate change in theMekong River Delta, Vietnam. Here, the low-income
groups are the most vulnerable because their adaptive capacity is still limited and low. This
study uses the livelihood vulnerability index (LVI) to assess the level of vulnerability to
climate change in households and communes in the Binh Chanh district. LVI includes three
components: exposure (E), sensitivity (S), and adaptive capacity (AC) based on 23
indicators selected by reviewing the literature and consulting with experts. The article
also conducted surveys with 931 households in 16 administrative communes in Binh
Chanh for primary data. The research results showed that Tan Kien and An Phu Tay
communes have the highest level of vulnerability since they are areas with mainly low-lying
terrain and contiguous location rivers; the people in these towns are also vulnerable groups
because they do not have a stable source of income, skills, and have low education and
experience in climate change adaptation. The study also proposes some solutions to
improve the capacity to adapt to climate change of vulnerable communes specifically: 1)
creating diversified livelihoods with stable incomes; 2) deploying community-based climate
change adaptation models for communes adjacent to rivers; 3) implementing adaptive
agriculture and improving social capital for vulnerable households; 4) building resettlement
areas for households heavily affected by disasters; and 5) raising awareness among low-
income households to respond to natural hazards in the context of climate change.

Keywords: climate change, vulnerability, exposure, sensitivity, LVI, Ho Chi Minh City

INTRODUCTION

Climate change has impacted so many communities, making them exposed to increasing threats and
becoming more vulnerable. In the years to come, climate change will become more apparent and will
spell disaster for many communities (IPCC 2007; ADB 2015; UNDRR 2019; World Bank 2020). For
effective adaptation planning, scientific analyses of climate change in a macro context are essential
(Garschagen 2013; Moe and Pathranarakul 2016; Mojtahedi and Oo, 2017). However, at the local
level, it is the analysis and conclusions of regional stakeholders that provide the most relevant
information and knowledge (Eakin and Bojorquez, 2008; Adger et al., 2009; Below et al., 2012;
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Kootval et al., 2015). Indigenous knowledge is also a reliable
source of information, serving as a basis for policymaking and
influencing policy. To ensure that development programs reduce
people’s vulnerability to the effects of climate change, it is
imperative that we understand who is vulnerable and why. We
must then apply this information to design, implement, monitor,
and evaluate activities (Cutter et al., 2003; Ford and Smit 2004;
Vincent 2007; Deressa 2010).

Vietnam is one of the five countries most heavily affected by
climate change (ADB 2013; ADPC 2021). In Vietnam, Ho Chi
Minh City (HCMC) in the Mekong Delta is the economic engine
of the country. However, according to the World Bank (2020),
this is also the most vulnerable area to climate change due to its
natural, economic, and social characteristics (Bubeck et al., 2012;
Chau et al., 2013; Hung et al., 2014; Zevenbergen et al., 2018).

Binh Chanh district is a suburban district of HCMC with a
convenient river system for agricultural development and waterway
traffic. However, due to low-lying terrain, adjacent to large rivers,
Binh Chanh is one of the districts at the highest risk of vulnerability
to climate change, in which low-income households (poor and near-
poor families) are the most affected because they have few resources
and conditions to maintain and adapt to climate change (UNDP
2015; World Bank & GFDRR 2018, HCMC People Committee
2020). In recent years, the Binh Chanh district has been heavily
affected by natural disasters and sea-level rise. The frequency of
heavy rain tends to increase and concentrate in the rainy season,
causing flooding and narrowing the arable land; the infrastructure
system (production equipment, factories, internal traffic, drainage
system, etc.) of industrial zones was heavily flooded, affecting the
production process of enterprises. The rising sea level causes salinity
in rice-growing areas and aquaculture ponds, leading to large
economic damage. In addition, the climate change increases
tropical diseases that threaten the people’s health (World Bank &
GFDRR 2018, HCMC 2020).

To respond to climate change, the Binh Chanh district must
conduct adaptation and mitigation actions simultaneously, in
which the building capacity to adapt to climate change is the
focus. However, the community’s ability to adapt to climate
change is still limited, in which the ability to adapt to climate
change of low-income households is still low, so they are the most
vulnerable. Therefore, in order to actively respond to the climate
change for households in the Binh Chanh district, the capacity
building to adapt to climate change needs to be improved to
effectively and promptly respond to the unpredictable changes of
climate change.

The objective of this study was to assess the climate change
vulnerability of communes in the Binh Chanh district, HCMC,
and to evaluate the perception of households on adaptation and
response to impacts of climate change, thereby proposing some
solutions to improve the awareness and enhance the adaptive
capacity to climate change for the district and its communities.

STUDY AREA

Binh Chanh is a rural district located in the southwest of HCMC,
Vietnam. It covers an area of 253 km2. The Bình Chanh district

borders the Bình Tân district, Hoc Môn district, and Nha Be
district (Figure 1). The natural area of the Binh Chanh district is
fairly wide and long, of which the agricultural land still occupies a
large part. In recent years, many technical and social
infrastructure projects have been invested, helping to expand
the urban space in the Binh Chanh district, the rural face
“changing flesh” day by day. A part of the Binh Chanh district
has also become a new urban area in the South of HCMC.
Infrastructure, transport network synchronously connected
with the central districts of Saigon, and convenient travel and
trade make Binh Chanh’s population tend to increase rapidly
(Binh Chanh District People Committee 2020; HCMC People
Committee 2020,World Bank 2020).

Positioned as a gateway to trade with theMekong Delta, a large
economic region in the South, the Binh Chanh district has
gradually become a bridge for economic exchange between the
Mekong Delta and the southeast economic region key industrial
zones. From a district with a large area of agricultural land, the
agricultural production reached a significantly higher share in the
economic structure than in the inner city districts; Binh Chanh’s
economic structure has quickly shifted to the industrial
group—construction and trade services. With the advantage of
a special location in regional linkages and convenient access to 13
provinces and cities of the Mekong Delta, Binh Chanh is a peril-
urban district with potential for economic development and is
now in the process of industrialization (Bubeck et at. 2012; Chau
et al., 2014; Arouri et al., 2015).

The high urbanization rate has made Binh Chanh become one
of the high population growth districts in the city. As of 2019, the
district had a population of 680,000 with a population density of
2,793 people/km2. The Binh Chanh district has 16 affiliated
commune-level administrative units, including Tan Tuc town
(district capital) and 15 communes: an Phu Tay, Binh Chanh,
Binh Hung, Binh Loi, Da Phuoc, Hung Long, Le Minh Xuan,
Pham Van Hai, Phong Phu, Quy Duc, Tan Kien, Tan Nhut, Tan
Quy Tay, Vinh Loc A, and Vinh Loc B (Binh Chanh District
People Committee 2020).

During the 2015–2020 period, the district’s economy has
developed stably, the proportion of industries and services has
gradually increased, and the structure of the agricultural sector
has shifted toward urban agriculture. In Binh Chanh, rice is the
most important crop. It is grown in most of the communes. The
other main food crops are maize, potatoes, and nuts. There are
also plantations of banana and coconut, and most of them are
found in Tan Qui Tay, Binh Loi, and Binh Hung communes.
Agriculture is fairly labor-intensive in the district with farming
activities being performed manually. During the tenure, the
district has maintained an average annual growth rate of
20.5%/year, of which the industry—construction industry—has
had a stable growth rate over the years, increasing by 20.9% on
average; the trade, service industry has grown quite well, reaching
an average of 20.6%/year; the average agricultural sector achieves
5.1%/year (Binh Chanh District People Committee 2020).

In terms of climate change impacts, due to its lowland natural
features (nearly 60% of the total area is below the elevation of
1.5 m of sea level) and the terrain being divided by a system of
rivers and canals, the Binh Chanh district is heavily affected by
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climate change. Currently, the district faces frequent flooding
problems during the rainy season from June to November and the
high tide cycle from September to December every year and the
discharge from upstream of the Sai Gon–Dong Nai River. The
atrophy of the tidal–rain—flood updated scenario (MONRE
2017) shows that the annual cropland area of the Binh Chanh
district that is likely to be deeply flooded is 82.1% total annual
acreage of the whole district (Figure 2). The flooded area of
perennial crops in Binh Chanh is about 3,208 ha (77% total
cultivation area). The majority of low-income households in
Binh Chanh have their main livelihoods from farming, animal
husbandry, and aquaculture and thus are highly vulnerable to bad
weather and climate factors (Binh Chanh District People
Committee 2020; HCMC People Committee 2020).

METHODOLOGY AND DATA

Approaches to Assess Climate Change
Vulnerability
According to IPCC (2012), vulnerability to climate change is
defined as “the degree to which a system is susceptible to or
unable to cope with the effects of climate change, including
climate change and extremes”. McCarthy et al. (2001) also
identified the three variables needed to assess vulnerability:
exposure, sensitivity, and adaptive capacity. Exposure (E) is
the nature and extent to which a system is exposed to
significant changes in climate. Sensitivity (S) is the degree to
which a system is affected either for good or bad by climate-
related agents. The adaptive capacity (AC) reflects the ability of a
system to adapt to climate change (including extreme events) or
to mitigate its potential damage.

Vulnerability � f(exposure, sensitivity, adaptive capacity)
Although climate change is a global process, vulnerability is

very site-specific (Hassan and Ringler 2009). Many scholars have,
therefore, recommended the localized assessment of climate
change vulnerability (Vincent 2007; Pandey and Jha, 2012a;
Ahsan and Warner, 2014; Bosher et al., 2019). Hahn et al.
(2009) and Urothody et al. (2010) recommended testing
climate change vulnerability at the community level so that
vulnerability of communities within a district or region can be
compared. The indicator methods are widely used to assess
climate change vulnerability. Because of the simplicity of
aggregating indicators to form an index, different vulnerability
indexes have been developed (Duriyapong and Nakhapakorn,
2011; Tessema et al., 2013; Wolf et al., 2013; Didar et al., 2015;
Seinn et al., 2015).

This study uses the livelihood vulnerability index (LVI)
developed by Hahn et al. (2009) for assessing the climate
change vulnerability of the communes in Binh Chanh. This
index can be estimated using primary data from households
and commune levels.

LVI consists of seven main components including the socio-
demographic profile (SDP), livelihood strategy (LS), natural
hazards (NH), social network (SN), food (F), water (W), and

health (H). Each component is composed of several indicators
or sub-components. The indicators are standardized as
follows:

Index Xij � (Xij −MinXi)/(MaxXi −MinXi)
Xij: normalized value of the indicator in commune j, Min Xij:
minimum actual value of the indicator ij in all communes, and
Max Xij: maximum actual value of the indicator ij in all
communes.

The LVI uses a balanced weighted average approach where
each sub-component contributes equally to the overall index. The
LVI was calculated based on the sub-components of each of the
major components. The average sub-component can be
calculated after each index has been standardized by the
following equation:

Mt � ∑n
i�1indexSti

n
where Mt represents one of seven main components of LVI for
the commune t, index St denotes the subcomponent, index by i
and n is the number of sub-components in each major
component. After sub-components of the commune t for each
of the main components have been deduced, the LVI can be
calculated as follows:

LVIt � ∑7
i�1 −WitMit∑7

i�1−Wit

where LVIt is the livelihood vulnerability index for commune t,
and i is the index of different households in commune t.

In addition, in this study, we also used an alternative method
by IPCC for calculating LVI by combining the components of
exposure, sensitivity, and adaptive capacity with the following
equation:

CFj � ∑n
i−1WmiMij∑n

i−1Wmi

CF j is contributing the components (exposure, sensitivity, and
adaptive capacity) for commune j, Wmi is determined by sub-
components setting up the vulnerability component, and Mij is
the major component for j commune indexed by i.

LVI-IPCC is calculated by the following formula:

LVI − IPCC � (E − AC) × S

where E is the exposure index, AC is the adaptive capacity index,
and S is the sensitivity index. LVI-IPCC ranges from –1 to +1,
where –1 is the least vulnerable (adaptive capacity is more than
exposure), 1 is extremely vulnerable (exposure is higher than the
adaptive capacity), and 0 is moderately vulnerable (exposure and
adaptive capacity are equal) (Khan 2012; Oo et al., 2018).

Selection of Indicators for Assessing LVI
The study selected a combination of vulnerability indicators that
represent the seven components abovementioned from the
studies of Hahn et al. (2009), Pandey and Jha (2012b), and Oo
et al. (2018). The initial 37 indicators were taken out from these
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studies. Then, we interviewed experts on vulnerability, climate
change, and livelihoods to filter out the most suitable indicators
for LVI for the study. The authors consulted 10 experts including
management agencies, local leaders, key farmers and NGO
project leaders to assess the validity of indicators based on a
5-level Likert scale for each indicator (score 5 is very suitable, and
score 1 is not very suitable). The final 23 indicators were chosen
by all experts as suitable and very suitable, as follows: socio-
demographic profile: household income per month (SDP1), the
dependency ratio (SDP2), rate of poor households (SDP3),
percentage of households with a head having no secondary
school (SDP4), and percentage of households who have the
burden of loan (SDP5).

Natural hazard: number of high tides causing flooding in the
year (HZ1), percentage of flooded areas (HZ2), percentage of
households with family members injured in recent disasters
(HZ3), percentage of households reporting loss of livestock
due to disaster (HZ4), percentage of households reporting a
loss of assets due to disasters (HZ5), and percentage of
households reporting not received early warning information
(HZ6). Livelihood strategy: percentage of households using the
natural resource for livelihood (LS1) and percentage of
households dependent solely on agriculture as an income
source (LS2).

Social network: number of local civic organizations attended
by households (SN1), percentage of households not in receipt of
government loans (SN2), and access to information (radio,
television, and internet) (SN3).

Food: percentage of households lacking food in the last
year (F1).
Water: percentage of households not using clean water (W1),
percentage of households that utilize the natural water source
(W2), and average for collecting water in a day by
households (W3).
Health: percentage of households with a family member
having health support from the local government (H1) and
average time to the nearest health center (H2).

Data Collection
This study combines qualitative and quantitative data collection
methods. From August to October 2021, the research team
surveyed households in 16 communes of Binh Chanh to
collect data.

The household sample was selected in two phases. First, we
implemented a household spatial mapping in all communes.
Then, we selected the households in each commune using
random sampling based on a list of households provided by
16 communes’ People Committee (local government). According
to Ho ChiMinh City Statistical Office (2020), 119,298 households
are living in 16 studied communes with about 680,000 people (on
average, each household has 5.7 people). The study uses the
following formula (Creswell 2014) to estimate the number of
sampled households:

n � N
1 + Ne2

where n is the sample size, N is the total number of households in
the population, and e is the accepted errors. With e = 0.05 (the
estimated error is 5%) and for a total population, the estimated
number of households surveyed to ensure reliability was 931.
Thus, 931 households were chosen (0.78% of total households).
To ensure the representation, researchers selected 0.78% of
households of each commune for the survey (Table 1).

In addition, data on flooded areas, inundation depth, and
inundation time under exposure component are collected from
data of the HCMC Flood Control Center; other data on the
sensitivity and adaptive capacity indicator are collected from the
data sources of the Statistical Yearbook of the Binh Chanh district
in 2019 and 2020.

RESULTS AND DISCUSSION

Overall Results of the Vulnerability
Assessment
The results of the vulnerability assessment to climate change for
major components of 16 communes in Binh Chanh district and
LVIs are presented in Table 2. As shown, the normalized value of
vulnerability indicators ranges from 0.445 to 0.812. From the
result, the studied communes are divided into three groups: the
first group is those with high exposure and sensitivity and low
adaptive capacity (Da Phuoc, Quy Duc, Hung Long, An Phu Tay,
and Tan Kien); the second group is the communes with medium
exposure, sensitivity, and adaptive capacity (Tan Qui Tay, Tan
Nhat, Tan Tuc, Binh Hung, and Phong Phu); and the third group
is the communes with high adaptive capacity and low exposure
and sensitivity (Binh Loi, Binh Chanh, Pham Van Hai, Le Minh
Xuan, Vinh Loc A, and Vinh Loc B).

The LVI index values are compared for 16 communes of Binh
Chanh. Tan Kien is found to be the commune with the highest
vulnerability to climate change (score: 0.812), followed by An Phu

TABLE 1 | Distribution of surveyed households by the communes in the Binh
Chanh district.

Commune Number of households Number
of households surveyed

1 Tan Tuc 7,135 56
2 An Phu Tay 4,689 37
3 Binh Chanh 4,908 38
4 Binh Hung 6,120 48
5 Binh Loi 10,025 78
6 Da Phuoc 11,567 90
7 Hung Long 9,543 74
8 Le Minh Xuan 8,331 65
9 Pham Van Hai 9,043 71
10 Phong Phu 8,123 63
11 Quy Duc 7,589 59
12 Tan Kien 6,980 54
13 Tân Nhut 7,842 61
14 Tan Quy Tay 5,640 44
15 Vinh Loc A 4,890 38
16 Vinh Loc B 6,873 54

Total 119,298 931

Source: Original data from the study.

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 8802544

Truong et al. Climate Change Vulnerability Assessment—Vietnam

4645

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


TABLE 2 | Livelihood vulnerability index (LVI) of components for the communes of the Binh Chanh district.

Component
of the
LVI

Vulnerability
indicator

Da
Phuoc

Pham
Van
Hai

Tan
Qui
Tay

Hung
Long

Tan
Tuc

Quy
Duc

Le
Minh
Xuan

Binh
Chanh

Tan
Kien

Tan
Nhat

Binh
Loi

Phong
Phu

An
Phu
Tay

Vinh
Loc
A

Bình
Hung

Vinh
Loc
B

SDC Household income per month 0.45 0.76 0.45 0.52 0.62 0.37 0.81 0.81 0.69 0.49 0.67 0.75 0.64 0.85 0.67 0.92
Dependency ratio 0.51 0.69 0.42 0.45 0.6 0.49 0.79 0.78 0.67 0.53 0.72 0.72 0.47 0.81 0.64 0.87
Rate of poor households 0.37 0.73 0.53 0.39 0.45 0.52 0.78 0.56 0.68 0.59 0.67 0.69 0.61 0.79 0.64 0.85
Percentage of households with head
having no secondary school

0.33 0.81 0.49 0.45 0.47 0.58 0.76 0.68 0.71 0.41 0.78 0.68 0.55 0.86 0.73 0.78

Percentage of households who have
burden of loan

0.32 0.76 0.42 0.32 0.59 0.59 0.87 0.76 0.75 0.5 0.67 0.79 0.45 0.92 0.71 0.86

AVERAGE 0.40 0.75 0.46 0.43 0.55 0.51 0.80 0.72 0.70 0.50 0.70 0.73 0.54 0.85 0.68 0.86
Natural
hazards

Number of high tides causing flooding in
year

0.62 0.51 0.32 0.61 0.71 0.59 0.45 0.52 0.94 0.45 0.32 0.81 0.79 0.64 0.65 0.72

Percentage of the flooded area 0.61 0.44 0.44 0.83 0.54 0.79 0.64 0.41 0.85 0.67 0.45 0.67 0.69 0.57 0.77 0.65
Percentage of households with family
members injured in recent disaster

0.75 0.59 0.46 0.78 0.48 0.87 0.71 0.58 0.74 0.45 0.61 0.77 0.93 0.48 0.65 0.78

Percentage of households reporting loss
of livestock due to disaster

0.83 0.53 0.51 0.83 0.61 0.91 0.62 0.41 0.67 0.58 0.34 0.82 0.85 0.69 0.61 0.56

Percentage of households reporting loss
of assets due to disaster

0.72 0.41 0.56 0.67 0.54 0.62 0.42 0.26 0.96 0.32 0.23 0.64 0.77 0.61 0.67 0.67

Percentage of households reporting not
received early warning information

0.68 0.45 0.52 0.62 0.49 0.77 0.53 0.45 0.95 0.57 0.56 0.76 0.83 0.67 0.59 0.73

AVERAGE 0.70 0.49 0.47 0.72 0.56 0.76 0.56 0.44 0.85 0.51 0.42 0.75 0.81 0.61 0.66 0.69
Livelihood
strategy

Percentage of households using natural
resources for livelihood

0.71 0.51 0.43 0.48 0.61 0.87 0.61 0.48 0.88 0.46 0.31 0.69 0.78 0.61 0.57 0.71

Percentage of households dependent
solely on family farm for food

0.87 0.48 0.57 0.67 0.43 0.71 0.66 0.41 0.76 0.57 0.48 0.78 0.87 0.68 0.73 0.78

AVERAGE 0.79 0.50 0.50 0.58 0.52 0.79 0.64 0.45 0.82 0.52 0.40 0.74 0.83 0.65 0.65 0.75
Social
networks

Number of local civic organizations
attended by households

0.31 0.69 0.41 0.48 0.61 0.48 0.82 0.69 0.59 0.47 0.65 0.81 0.47 0.86 0.68 0.83

Percentage of households not in receipt
of government loan

0.38 0.78 0.39 0.39 0.62 0.36 0.86 0.74 0.69 0.43 0.81 0.78 0.68 0.87 0.72 0.88

Percentage of households with no
access to information (radio, television,
and internet)

0.56 0.79 0.51 0.51 0.59 0.41 0.79 0.73 0.71 0.61 0.69 0.72 0.57 0.78 0.75 0.79

AVERAGE 0.42 0.75 0.44 0.46 0.61 0.42 0.82 0.72 0.66 0.50 0.72 0.77 0.57 0.84 0.72 0.83
Water Percentage of households not using

clean water
0.61 0.44 0.44 0.76 0.54 0.79 0.64 0.47 0.85 0.67 0.45 0.67 0.73 0.57 0.77 0.65

Percentage of households using natural
water source

0.48 0.39 0.51 0.78 0.61 0.69 0.62 0.42 0.71 0.43 0.47 0.74 0.83 0.68 0.69 0.57

Average time for collecting water in a day
by households

0.76 0.48 0.37 0.81 0.55 0.81 0.51 0.33 0.85 0.52 0.41 0.72 0.85 0.52 0.66 0.65

AVERAGE 0.62 0.44 0.44 0.78 0.57 0.76 0.59 0.41 0.80 0.54 0.44 0.71 0.80 0.59 0.71 0.62
Health Average time to the nearest heath center 0.81 0.52 0.41 0.77 0.49 0.72 0.61 0.45 0.88 0.51 0.37 0.79 0.79 0.53 0.72 0.69

Percentage of households with family
member having health support from the
local government

0.72 0.41 0.56 0.67 0.54 0.67 0.42 0.46 0.93 0.37 0.41 0.68 0.77 0.61 0.67 0.75

AVERAGE 0.77 0.47 0.49 0.72 0.52 0.70 0.52 0.46 0.91 0.44 0.39 0.74 0.78 0.57 0.70 0.72
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Tay (score: 0.752). In contrast, the least vulnerable commune is
Tan Qui Tay (score: 0.445).

In terms of the exposure components, the score is highest in
the Tan Kien commune (0.85) and the lowest in Binh Loi town
(0.42). Tan Kien is also the commune with the highest sensitivity
(0.86). This is a riverside commune, heavily affected by
inundation and saltwater intrusion, and has many poor
households and low socioeconomic conditions, leading to low
adaptive capacity. In contrast, the Binh Loi commune is located
deep in the mainland and has a fairly flat topography, not
adjacent to rivers, so the impact of climate change/flood is not
high compared to the communes adjacent to the rivers. In
addition, because the income source of the people of Binh Loi
commune is stable, their livelihood is less dependent on the
climate, so they have the economic potential to purchase
equipment and tools to cope with climate change. In terms of
adaptive capacity, Da Phuoc commune has the lowest score (0.4),
which is the best-adapting capacity town to climate change.

Socio-Demographic Profile
The first component of the LVI conceptual framework is SDP. As
indicated in Table 2, Vinh Loc B is the most vulnerable town in
terms of socioeconomic profile, with an average score of 0.86,
followed by Vinh Loc A (0.85). Da Phuoc has the lowest
vulnerability in this component (0.32). Zooming into this
component, Vinh Loc A has the highest percentage (85%) of
household heads with no secondary education, whereas in Tan
Qui Tay, this number is only 33%. In fact, in the communes where
the education level is low, then levels of formal and informal skills
are also low and they affect the score of socio-demography in the
studied communes. Also, Vinh Loc B has a higher dependency
ratio than Vinh Loc A and Da Phuoc. The findings show that
socioeconomic indicators and water and natural disaster
indicators are most influential indicators of exposure and
sensitivity in Vinh Loc B, Vinh Loc A, and Da Phuoc. This
might lead to greater socioeconomic and climate change
vulnerability in these communes than in the others. In this
research, Hung Long has the lowest water, electricity, and
health scores than other towns since this town is now fairly
weak in providing clean water, sanitation equipment, health
service, and basic infrastructure. In addition, An Phu Tay and
Tan Kien have the highest exposure to the impact of natural
disasters and climate change in terms of this vulnerability
component index. In climatic events, such as the 2018–2019
floods, the agricultural lands in these towns were severely flooded
and could not be used for cultivation. After floods, some areas of
cultivable land would be lost, and some cannot be restored for
planting. In addition, after disasters, households also lost cattle
and household assets. Although the local government has worked
hard for rehabilitation of the impacted areas, the situation has not
fully recovered.

Natural Hazard
Tan Kien is shown as the highest vulnerability town (score: 0.85);
the second most vulnerable commune is An Phu Tay, while Binh
Loi is the least vulnerable (0.42). The farming households said
that the loss of livestock impacted their livelihoods most, evenT
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more than assets or housing damages and losses. They also
reported that the loss of human livestock is caused by the lack
of climate change awareness by the local people and lack of
disaster preparedness by the local government, as well as poor
restoration and reconstruction processes after hazards. Thus, it is
imperative to carry out climate change awareness-raising
programs, preventive measures, and climate change adaptation
solutions in the district.

Livelihood Strategies
The livelihood strategies of the households in the study area are
diverse as the households’ knowledge and experience of disaster
adaptation are different. Among the study communes, the
livelihood index is best at Tan Nhat (0.40) and Binh Chanh
(0.45) compared to the other towns. Of all the respondents in An
Phu Tay, 78% reported that agriculture is still their main
livelihood activity. The farming households say that lack of
alternative income chances, especially off-season, is a big
constraint for their livelihoods. As a result, the household
members have to migrate to cities for jobs; 46.9% of the
respondents in An Phu Tay indicated insufficient loan
provision by the government. In addition, the lack of
infrastructure and accessible markets are also the main
challenges for developing households’ livelihoods in the
study site.

Social Network
With the social network component, Vinh Loc A is the most
vulnerable commune (0.84), while Vinh Loc B is the second most
vulnerable town (0.83), and Da Phuoc is the least vulnerable
commune (0.42). The households in Vinh Loc B town reported
having an average of 3.3 local civic organizations to participate by
their family, whereas this number for An Qui Tay and Quy Duc
are only 2.7 and 2.4, respectively. The households indicated that
participating in local organizations is good not only for
livelihoods and networks but also for sharing hazard
information among the community members and local
agencies. A better access to credit and information can be
ensured by improving the social capital. Thus, enhancing the
social capital and social involvement is important to reduce the
risks of disasters for poor households in light of a changing
climate.

Water and Health
In terms of water indicators, Tan Kien and An Phu Tay are the
most vulnerable towns with a score of 0.8, whereas Binh Chanh is
found to be the least vulnerable commune with a score of 0.41.
The majority of the households in Tan Kien and An Phu Tay
limited access to clean piped water, rather they have to take water
from ponds or rain. The average time spent collecting water is
maximum at An Phu Tay and Tan Kien (nearly 3 h a day). Water
is normally collected by women, and spending more time
collecting water might affect the time for the
household—caring with females. In addition, the lack of access
to clean water would result in water-related illnesses and diseases.
Therefore, the farmers reported that improving water
management and provision is crucial in the Binh Chanh district.

Two indicators are used to make up the health component
(“percentage of households with family members having health
support from the local government” and “average time to the
nearest health center”). When aggregated, Tan Kien again is
found to be the most vulnerable health commune (0.91). The
average time for reaching the nearest health center is the highest
in this town due to poor infrastructure and communication
systems. The poor access to health care services might result
in a decrease in public health, hence increasing community
vulnerability to natural hazards and climatic events.

Food
Foodstuff is another important item for adaptation to disasters
and climatic impacts. These indicators are worse in Tan Kien and
Vinh Loc B, whereas tan Qui Tay and Binh Lo have the lowest
score (0.32). The survey indicates that farming is the primary
profession for households in Binh Chanh. On average, 32.5% of
the total households in Binh Chanh rely on non-cash food
sources. The local people reported that on average, 2.9 months
annually they have to struggle to provide sufficient food for
families, especially during the off and inter-cultivation times.

Table 3 represents the vulnerability scores with a ranking
according to LVI-IPCC for all communes of the study area. For
LVI-IPCC index, the results are fairly consistent where
households in Tan Kien and An Phu Tay towns are more
vulnerable than those in other communes. This is because
households in the three aforementioned communes are more
exposed to disasters such as salt intrusion and flood while having
low adaptive capacity. This LVI-IPCC index indicates that Vinh
Loc A is the least vulnerable commune.

In both LVI assessment approaches, Binh Loi and Tay Qui Tay
are the communes least affected by natural hazards and climate
change in Binh Chanh. This is because these communes have
medium exposure levels and better socioeconomic conditions
and adaptive capacity. Among the 16 communes, Tan Kien is the
most vulnerable commune with the highest level of exposure to
natural disasters while having a low level of adaptive capacity,
making this town more vulnerable than the others.

RECOMMENDATIONS TO IMPROVE
CLIMATE CHANGE ADAPTATION
CAPACITY OF HOUSEHOLDS IN THE BINH
CHANH DISTRICT

Based on the abovementioned finding and combined with in-
depth interviews relating livelihoods and climate change
management stakeholders in Binh Chanh, some
recommendations are raised as follows:

First, preparing disaster risk management strategies to
reduce exposure, promoting climate change adaptation
strategies, and strengthening the adaptive capacity of farm
households should be the top priority. The study results show
that the lack of households’ access to fundamental
infrastructure, opportunities for additional income, and sole
dependence on agriculture make households more sensitive to
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the impacts of climate change. Thus, their capacity needs to be
improved so that they can make choices and turn these choices
into actions to respond to climate change/disaster to ensure
more stable current and future livelihoods.

Community-based adaptation (CBA) can be a good strategy
for climate change management at Binh Chanh. CBA is a critical
component of avoidance and management of climate change
impacts by local community. It provides information on the
potential impacts of CC and mitigation measures with location-
specific and community-managed characteristics. CBA also
provides information needs that can be replicated in a suitable

way acceptable by the local communities (UNDP 2015). For
example, i

_
n Binh Chanh, converting rice farming to high-tech

shrimp farming is a new direction (Le Minh Xuan is the leading
commune to deploy an effective high-tech shrimp farmingmodel,
which is now being replicated in other communes for
development). The shrimp farming model applying high
technology in the Le Minh Xuan commune has effectively
contributed to changing the community’s awareness and
income, which improves the capacity to adapt to climate
change. In addition, strengthening the capacity and
participation of the community, focusing on local response

FIGURE 1 | Binh Chanh district location in Ho Chi Minh City.

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 8802548

Truong et al. Climate Change Vulnerability Assessment—Vietnam

5049

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


experiences, the role of grassroots mass organizations develop,
multiplying traditional models, and experiences in climate
change adaptation should also be carried out since the more
social capital a household has, the better they can access to a
source of information and resource for enhancing the adaptive
capacity.

Second, this study has shown that the lack of adaptive capacity of
local people (socioeconomic, social networks, and livelihood

strategies) is a main cause of climate change vulnerability.
Therefore, it would be good if the local governments encourage
increased investments in education and income diversification.
Moreover, we should develop a micro-finance mechanism for
local farmers, providing basic infrastructure, sanitation
equipment, clean water, electricity, and setting up more health
community centers. In addition, HCMC government managers
need to implement a detailed assessment of the impacts of

FIGURE 2 | Inundation map of the Binh Chanh district.

TABLE 3 | LVI-IPCC for communes in the Binh Chanh district.

Commune Exposure index (E) Sensitivity index (S) Capacity index (AC) LVI- IPCC Ranking

1 Da Phuoc 0.702 0.694 0.404 0.207 3
2 Pham Van Hai 0.488 0.484 0.751 −0.127 14
3 Tan Qui Tay 0.468 0.453 0.453 0.007 6
4 Hung Long 0.723 0.729 0.439 0.207 4
5 Tan Tuc 0.562 0.573 0.569 −0.004 9
6 Tan Kien 0.758 0.747 0.475 0.211 1
7 Le Minh Xuan 0.562 0.560 0.810 −0.139 15
8 Binh Chanh 0.438 0.441 0.719 −0.124 13
9 Quy Duc 0.852 0.859 0.686 0.143 5
10 Tan Nhat 0.507 0.499 0.504 0.001 7
11 Binh Loi 0.418 0.406 0.708 −0.118 12
12 Phong Phu 0.745 0.743 0.743 0.001 8
13 An Phu Tay 0.810 0.813 0.555 0.207 2
14 Vinh Loc A 0.601 0.612 0.843 −0.148 16
15 Binh Hung 0.657 0.691 0.693 −0.025 10
16 Vinh Loc B 0.685 0.688 0.848 −0.112 11

Source: Original data from the study.
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disasters on local livelihoods so that they can design suitable
preventive measures aimed at promoting the adaptive capacity
and reducing vulnerability to climate change.

Third, this study found that lack of early warning systems and
climate information is also a major indicator of climate change
vulnerability of households to saltwater intrusion and natural
hazards. Therefore, an early warning climate information system
should be established in the communes to reduce the potential for
loss of property through natural disasters. The localities located
adjacent to rivers need to build proper flood control facilities and
tidal control infrastructure, including rigid flood control systems
(e.g., tidal sluices and flood barriers). Building resettlement areas for
households affected by climate change should also be performed. Da
Phuoc, An Phu Tay, and Tan Kien communes need to plan
resettlement areas for the low-income households living near the
banks of rivers and canals that are at the risk of landslides and
flooding. At the same time, the commune authorities need to
support the jobs and sustainable livelihood transformation
solutions (e.g. agricultural and fishery extension services).

Fourth, it is necessary to continue raising public awareness of
disaster risk management, specifically the awareness of local
authorities and people working in disaster prevention,
businesses, and residents with the motto “prevention is key”.
This is an important solution to limit risks from natural disasters.
Also, it would be good to diversify the forms of training activities,
training and drills on natural disaster prevention and control,
information, propaganda, communication and knowledge
dissemination activities, and organize seminars and
conferences to share the lessons learned in disaster prevention.
Along with that, HCMC authorities should deploy the
acquisition, research, and transfer of information technology
and support tools to the vulnerable people, at the same time
carrying out natural disaster awareness raising activities in the
school system in disaster vulnerable areas.

CONCLUSION

This study examines the vulnerability to climate change of
households in the Binh Chanh district in the Mekong River
Delta in Vietnam. It estimates the LVI assessment method and
compares the vulnerability indexes for 16 communes in the studied
district. The indicators of different components show different
vulnerability levels for different communes. The LVI and LVI-
IPCC indexes indicate that residents in Tan Kien town are the
most vulnerable people. This study confirms that farm households
that fail to adopt any strategies for adaptation to the impacts of
climate change are more vulnerable than adapted households.

The results also indicated that majority of the communes are
highly vulnerable with high exposure and sensitivity levels compared
to adaptive capacity. The local people still depend much on natural
resources for maintaining livelihoods which means that the
livelihoods of poor and nearly poor households are regulated by
nature. The dependency on primary occupation makes the situation
worse. Unskilled citizens have fewer employment opportunities and
hence move to other areas for survival. The social ties facilitate local
networks and improve support from local associations and
government. The impacted people have to live to survive in poor
situations by struggling with various natural hazards and lacking the
capacity for changing their situation.

If the vulnerable areas get special supports and priorities by
enhancing the perception of local households about climate
change vulnerability (social, economic, and environmental
factors), they can improve their resilience to face the
challenges of climate change. This study has proposed some
solutions to improve the awareness, adaptive capacity, and
response to climate change for impacted households. In
addition, this study consults managers and scientists to have a
multidimensional view of the capacity to adapt to climate change
for local households. The results are intended to provide a
database to serve the overall socioeconomic planning and
development of the locality toward climate change adaptation.
However, this study is limited in terms of spatial investigation, so
it is necessary to expand the research area in the future.
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Analysis of Industrial Carbon Transfer
in Beijing-Tianjin-Hebei City Cluster
and Surrounding Areas
Gao Siqin1 and Wang Huijuan2*

1School of HSBCBusiness, Peking University, Beijing, China, 2School of Statistics andMathematics, Central University of Finance
and Economics, Beijing, China

To achieve the goal of carbon neutrality and win the blue-sky defense battle, the
environmental situation in Beijing-Tianjin-Hebei and surrounding areas is still grim, and
the optimization of its industrial structure and energy structure is imminent. With the rapid
development of interregional trade in intermediate products, carbon emissions are
transferred across regions with the trade. Due to the large differences in the
technology, industrial structure, and economic development of cities, extending the
environmental governance chain of Beijing-Tianjin-Hebei and surrounding areas is
indispensable. In this article, based on the interregional input-output tables in 2002,
2007, and 2012, we establish the average propagation length (APL) model and the
structural path analysis model Structural Path Analysis model for analyzing the carbon
conduction relationship in Beijing-Tianjin-Hebei. And we also compare the situation of the
Yangtze River Delta and the Pearl River Delta. The results show that: i) From perspective of
the whole urban clusters, Beijing-Tianjin-Hebei has obvious characteristics of coal-fired
urban clusters. More than 65% of the carbon-containing resources in Hebei’s coal industry
are transferred to the electricity and heat industry. In the carbon conduction chain, the
carbon emissions caused by electricity and heat industry, which acts as an intermediary,
account for more than 85% of the total emissions. ii) From the perspective of industrial
structure transfer within the urban clusters, Hebei Province has an important resource
support position. Its secondary industry can not only effectively alleviate the shortage of
energy supply in other resource provinces, but also has great development potential in the
improvement of economic benefits. iii) From the perspective of specific industry sectors,
resource provinces such as Shanxi and Inner Mongolia have high carbon emission
coefficients in the electricity and heat industry, which is the main reason for the high
carbon emissions in the transfer chain.

Keywords: beijing-tianjin-hebei, carbon transfer, coordinated emission reduction, inputoutput, average propagation
length model, structural path analysis model

INTRODUCTION

The Beijing-Tianjin-Hebei regional plan was first proposed by the National Development and
Reform Commission in 2004, and the plan involves 11 cities including Beijing, Tianjin and Hebei. It
was not until 2011 that the Beijing-Tianjin-Hebei urban clusters included all cities in Hebei Province
to achieve integrated and coordinated development. However, since the Beijing-Tianjin-Hebei urban
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clusters was proposed, its economic contribution has not been
outstanding. From 2011 to 2019, the average contribution rate of
Beijing-Tianjin-Hebei to economic growth was 7.52%, while the
average contribution rates of the Yangtze River Delta and Pearl
River Delta were 19.67 and 10.61%, respectively. The
insufficiency of Beijing-Tianjin-Hebei economic drive is closely
related to the positioning of its urban cluster. Compared with the
maintaining growth in the central and eastern regions, Beijing-
Tianjin-Hebei, as a new growth pole of the Chinese economy, is
more rational in terms of economic growth. In terms of the
general development strategy, government emphasizes the
transformation of economic mode, improvement of economic
quality, and emphasis on energy conservation and emission
reduction while maintaining stable growth.

In order to achieve the goal of “stabilizing growth and
adjusting structure”, energy conservation and emission
reduction must be the focus of improving the quality of
regional economic growth. The current international situation
is becoming more and more complex, China’s export-oriented
economy has been seriously affected, and the role of the core
engine of the regional economy has become increasingly
prominent. How to play the role of regional clusters and take
into account of their ecological benefits is also the focus and
difficulty of future development. In recent years, despite of the
positive changes in the coordinated development of Beijing-
Tianjin-Hebei, environmental issues have always been a major
pain point. Due to the unbalanced regional development, the
Beijing-Tianjin-Hebei has obvious urbanization gap. And the
influx of population into the economically developed cities,
namely Beijing and Tianjin, has caused huge pressure on the
two cities’ resources, environment, electric power transportation,
etc. The positioning and development of Beijing’s “Four Centers”
faces greater challenges. As the hinterland of Beijing and Tianjin,
Hebei’s functional status has always been relatively clear, that is,
as a resource support area for Beijing-Tianjin-Hebei economic
development and an experimental area for industrial
transformation and upgrading. However, at present, Hebei
Province still has problems such as the insufficient supply of
its own energy, unreasonable energy consumption structure, and
low energy efficiency. With the proposal of the Beijing-Tianjin-
Hebei coordination strategy and the establishment of the Xiongan
New Area, higher requirements have been placed on the
environmental conditions and pollution emissions of Hebei.
Hebei is also facing the dual dilemma of energy conservation,
emission reduction, and increased resource use.

How to meet the higher requirements of the national strategy
on regional environmental conditions and energy conditions
while ensuring the resource needs of economic development in
the Beijing-Tianjin-Hebei is the focus of this study. Based on this,
we first analyze the Beijing-Tianjin-Hebei urban cluster as a
whole, compare the carbon transmission chain and industry
linkages in the Yangtze River Delta and the Pearl River Delta,
and study the focus of the overall emission reduction of the urban
cluster. Secondly, based on the main resource provinces identified
by the overall carbon transmission chain of the urban cluster, we
further study the carbon transfer of industries in the Beijing-
Tianjin-Hebei and other resource provinces. Finally, considering

the current situation of insufficient self-sufficiency of some
resources and the increasing proportion of external energy in
Hebei, we focus on the key industries in Hebei and explore the
characteristics of carbon transfer docking with industries in other
provinces.

LITERATURE REVIEW

At the end of the 20th century, many scholars studied energy
consumption and carbon emissions, and they found that with the
increasing frequency of international trade and inter-regional
trade, changes in the demand for products or resources often
resulted in energy consumption and total carbon emissions in the
areas where the resources were provided. Usually, the carbon
emission in the consumption area is very small, but the resource
supply area is limited by the production technology and cost, and
the total carbon emission may be very large (Williams et al., 1987;
Xie and Chen, 2007; Zhu et al., 2018). Since then, more and more
scholars have carried out a lot of research on the transfer of
carbon emissions from domestic and foreign trade.

From the perspective of foreign trade, most scholars mainly
focus on global and national alliances to study the impact of
carbon transfer. As early as the end of the 20th century, Burniaux
and Oliveira Martins (2012) discussed the key mechanisms
behind the scale of carbon leakage based on three types of
fossil fuels (coal, oil, and low-carbon energy), international
trade and capital flows. Subsequently, Baker et al. (2007) used
a static equilibrium model to estimate that the carbon leakage in
the EU from 1995 to 2005 was generally within 5–20%, but the
technology spillover effect in some regions alleviated the “carbon
leakage” to a certain extent. Essandoh et al. (2020) studied the
relationship between CO2 and trade in developed and developing
countries. The study found that with the increase in trade and
foreign direct investment, the emissions were transferred from
developed to developing countries. Barker et al. (2007) and
Muhammad et al. (2020) verified the conclusion from the
perspectives of trade and embodied carbon emissions in the
Belt and Road countries and ASEAN five countries,
respectively. These findings confirm the long-term and
widespread impact of international trade-induced carbon
emissions shifts on global carbon emissions totals and patterns.

From a domestic point of view, there are also many scholars
taking Chinese provinces and cities as examples to measure the
scale of carbon emissions across regions. Feng et al. (2020)
studied the implied carbon emissions in China in 2010, and
the results showed that the inter-provincial trade increased the
national carbon emissions by 247t, and the four trillion stimulus
plan promoted a large amount of carbon growth in energy-related
trade. Wang and Chen (2016) calculated the amount of pollutant
transfer in eight regions in China and pointed out that the
phenomenon of implied pollution transfer was detrimental to
the interests of late-developing regions. Once the threshold of the
ecological environment was exceeded, it would damage the
achievement of coordinated regional development. Liao and
Xiao (2017) found that there was a phenomenon of carbon
emission reduction in the northern and southern coastal areas,
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while the “carbon leakage” effect was more serious in the
southwestern region. Mi et al. (2019) analyzed the carbon
emissions of 11 cities in Hebei from the perspective of
consumer responsibility, and found that 50% of the carbon
emissions in these cities were imported from external regions,
and believed that policy cooperation between carbon-consuming
and carbon-producing regions should be strengthened to
effectively mitigate climate change. Based on the pollutant
discharge and development levels of Hebei and Beijing, Zhao
and Wu (2020) also found that there was serious transfer
pollution in Hebei. Shen and Huang (2015) pointed out that
Guangdong was still a “pollution refuge” for international
pollution-intensive industries, but with the strengthening of
environmental control, pollution-intensive industries have
gradually shifted from the Pearl River Delta to non-Pearl
River Delta regions. Shao et al. (2020) analyzed the changes
and driving forces of carbon emissions on the urban consumption
side by taking Shanghai as an example and found that the
consumption-based carbon emissions in Shanghai increased by
32.82% since 2007, which was much higher than the production-
based carbon emissions, and technological changes had greatly
reduced carbon leakage.

The transfer of carbon pollution usually did not only depend
on area transfer, but the industrial transfer was the main body of
carbon transfer (Liao and Xiao, 2017). Most studies were also
based on this, focusing on the carbon ripple effect inside and
outside the region, and studying the characteristics of carbon
transfer in industries. Wei et al. (2020) quantified the
environmental inequality behind regional trade and believed
that electricity-related carbon emissions are closely related to
more than 40% of China’s carbon emissions, and 20–80% of
electricity-related carbon emissions in developed provinces and
15–70% of the added value were outsourced to other provinces.
Sun et al. (2010) used the IPCC inventory method to explore the
carbon footprint characteristics of Chinese foreign trade and
domestic industrial sectors, and found that the electricity and
heat industry was highly dependent on carbon emissions. The
total emissions from the electricity and heat industry, agriculture
and manufacturing industry account for more than 80% of the
total emissions. Yang (2015) focused on the carbon emissions of
23 industrial sectors in China and found that the carbon transfer
between sectors constituted the main part of the complete carbon
emissions of the industrial sector. Li J. et al. (2019), Zhang Y. et al.
(2016) focused on Beijing-Tianjin-Hebei and pointed out that
among the three regions, Hebei was the main energy producer,
Beijing and Tianjin were the consumers, and electricity and heat,
coal, and aquatic products were the most important high-carbon
industries (Shen and Huang, 2015).

To sum up, the articles about carbon pollution transfer and
carbon leakage mostly explores international trade, China’s inter-
provincial and eight major regional levels. There are few research
on typical urban clusters (such as Beijing-Tianjin-Hebei and the
Yangtze River Delta). Most of the research focused on the
direction and total amount of carbon transfer unilaterally in
regions and industries, but there were few studies about the dual
effects of regions and industries on carbon emissions. Among the
research methods, the input-output method could more

comprehensively reflect the regional and industrial linkages.
However, limited by the data, few studies started from the
inter-regional input-output table with multiple industries to
screen the key paths of carbon transfer. Thus, we would use
the inter-regional input-output table in 2002, 2007, and 2012,
focus on the research inside and outside the Beijing-Tianjin-
Hebei region, compare the two major urban clusters in the Pearl
River Delta and the Yangtze River Delta, study their carbon
transfer characteristics and try to give policy recommendations
for reducing total regional carbon emissions.

METHODOLOGY

Interregional Input-Output Model
The inter-regional input-output model connects every region’s
input-output models and systematically reflects the connection of
goods and services. Compared with the traditional tabular
representation of the input-output relationship between
sectors, it divides the input-output table according to the
region and industry, and more fully reflects the economic
relationship between regions and industries. In the study of
the relationship between trade and environmental pollution,
through combining the interregional input-output model with
relevant data, the interregional input-output model clearly
clarifies the resource consumption and pollution transfer
problem (Zhang B. et al., 2016).

The basic structure of the input-output table between regions
is roughly the same as the general input-output table, but it
further divides products and services between regions in the final
use and final demand parts. The specific structure is shown in
Supplementary Table S1:

Average Propagation Lengths
The Average Propagation Lengths (APL) model was proposed by
Dietzenbacher and Romero (2007). This model explores the
interrelationship between regional sectors from the perspective
of the production chain and reveals their inputs sequence of
output impacts. We introduce the carbon coefficient into the APL
model.

Lc � CL � C(I − A)−1 � C(I + A + A2 + . . .) (1)
Gc � CG � C(I − R)−1 � C(I + R + R2 + . . .) (2)

Where C is a diagonal matrix formed by the carbon emission
intensity of each industrial sector in each region, and the diagonal
element is ci. A is the direct consumption coefficient matrix,
aij � xij

xj
. R is the direct distribution coefficient matrix, rij � xij

xi
,

and R � X−1AX. Lc and Gc are complete carbon consumption
coefficient matrix and complete carbon distribution coefficient
matrix respectively. Lc reflects the impact of the final demand of
an industry in a certain area on the direct or indirect carbon
emissions of each unit. Eq. 1 can also be understood as the
emissions caused by an increase in the final demand of the
industrial sector by one unit. It means that Lc includes the
direct impact on its own department C, the direct impact on
all departments CA2, the indirect impact of the second step CA3.
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Simarly, Gc reflects the impact of the initial investment on the
carbon emissions of other industrial sectors by one unit, which
can also be decomposed into the initial impact C, which directly
affects CR of other sectors. In order to obtain the impact and
spread of carbon emissions, we take the impact of each round as a
weight, and get the average round, that is, APL. Based on the
influencing factors, APL can be divided into backward and
forward APL, and the calculation formulas are 3–6.

Uij �
(1 × ci × aij + 2Σciaikakj + . . . )

lcij
, i ≠ j (3)

Uij �
(1 × ci × aij + 2Σciaikakj + . . . )

lcij − ci
, i � j (4)

Vij �
(1 × ci × rij + 2Σcirikrkj + . . . )

gcij
, i ≠ j (5)

Vij �
(1 × ci × rij + 2Σcirikrkj + . . . )

gcij − ci
, i � j (6)

ci is the intensity of carbon emissions. Uij is the backward APL
value, which represents the average backward distance of the impact
of a change in the final demand of sector j on the carbon emissions of
sector i. Vij is the forward APL value, which represents the forward
carbon distance of sector j’s initial investment to change the impact
of one unit on the carbon emissions of industry sector i. The smaller
the carbon APL, the stronger the carbon ripple effect between the
two sectors. May wish H � A + 2A2 + 3A3 + . . . � ∑∞

n�1nAn,
�H � R + 2R2 + 3R3 + . . . � ∑∞

n�1nRn. Knowing that R � X−1AX,
�H � R(R − I) � X−1L(L − 1)X � X−1HX, we can get hij � hij/xi

andR � X−1AX, that isUij � Vij. Then the forward APL is equal to
the backward APL, collectively called APL (Li Y. et al., 2019).

Before calculating the APL value, in order to screen industries
and regions with a greater degree of correlation, it is necessary to
calculate the degree of correlation between industries (Ma et al.,
2018) as the threshold for carbon chain identification, namely:

F � 1
2
(Lc + Gc) (7)

Structural Path Analysis
Structural Path Analysis (SPA) was proposed by Defourny and
Thorbecke (2014). It is mainly based on input-output technology to
identify the main production chain and is mostly used for energy,
water resources, and other physical quantities in the economy
(Lenzen, 2003;Wood and Lenzen, 2003; Peters andHertwich, 2006).

In the calculation process, the SPAmodel expands the Leontief
inverse matrix by Taylor andmultiplies the corresponding carbon
intensity coefficient to quantify the direct or indirect carbon
conduction effects of other sectors caused by the final demand of
the sector and the initial investment. In this way, it clearly reveals
the carbon conduction relationship. It is calculated as formula 8:

Ŝ � C(I − A)−1F̂ (8)
In Eq. 8, S represents the total carbon emissions caused by the

path, C represents the diagonal matrix composed of carbon

emission intensity vectors and F̂ represents the final demand
vector. Decomposing Eq. 8 into conduction paths at all levels can
be written as Eq. 9:

Ŝ � C(I + A + A2 + A3 + . . . )F̂ (9)
In Eq. 9, the first CF̂ represents the total direct carbon

emissions of each sector brought by the final demand, which
is called the zero-order effect and CAF̂ represents the total
indirect carbon emissions brought by the final demand shift,
which is called the first-order influence, and so on.

The APL model can effectively identify the main carbon
conduction chain, and the SPA model can calculate the carbon
emissions in the carbon conduction chain. Therefore, we combine
the two models. We use the APL model to identify the carbon
conduction chain of high-dimensional data, and obtain the main
carbon-sweeping provinces and cities in a certain area and their
sequential positions, and then combine formula 9 in the SPA
model to obtain the total amount of carbon transfer in each step.
The formula for calculating the total amount of carbon transfer in
each step is Eq. 10.

Sinjn � Ci0ai0j0 . . . ainjnF̂jn
(10)

In Eq. 10, in and jn represent the transfer-in and transfer-out
parties in the carbon conduction chain, and i0 and j0 represent
the initial transfer-in and transfer-out parties in the conduction
chain. The absolute amount of specific carbon transfer in the
carbon chain can be calculated by Eq. 10.

EMPIRICAL ANALYSIS

This paper mainly uses the multi-regional input-output (MIRO)
model proposed by Xia and Tang (2017) and Wu et al. (2017),
and the regional social accounting matrices (SAMs) of China in
2002, 2007 and 2012. The carbon emission factor is calculated
according to the IPCCmethod based on the energy balance sheet.
Subsequently, based on the Average Propagation Length Model
(APL) and the Structural Path Analysis Model (SPA), using the
IRIO table and the calculated carbon emission coefficients, we
first study the overall carbon emissions of the Beijing-Tianjin-
Hebei urban clusters and compare it with the Yangtze River Delta
and Pearl River Delta. Further, we explore the carbon transfer
relationship of the industrial structure in the Beijing-Tianjin-
Hebei urban clusters and its surrounding areas. Finally, we study
the carbon correlation of major resource transfer industries in the
cluster.

Beijing-Tianjin-Hebei Total Carbon
Emission and Carbon Emission Coefficient
The proportions of total emissions of the Beijing-Tianjin-Hebei
region are shown in Supplementary Figure S1. From 2002 to
2012, the total carbon emissions in the Beijing-Tianjin-Hebei
region accounts for about 11.03% of the total carbon emissions in
30 provinces and cities across the country. Among the urban
clusters, Hebei has the highest total carbon emissions, accounting
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for 72.15% of the total carbon emissions, while Tianjin and
Beijing account for 16.12 and 11.74% respectively. Affected by
resource endowment and economic development levels, Hebei
undertakes many high-carbon emission industries in Beijing and
Tianjin and bears most of the carbon emission pressure. This is
the main reason why Hebei’s carbon emissions are much higher
than the other two places.

To achieve the coordinated development of the Beijing-
Tianjin-Hebei, Hebei’s resource support is indispensable, but
how to reduce the pressure of regional emissions while
ensuring the complementarity of its industries is the focus of
this study. In this regard, we first compare the industries and
carbon emissions of the other two major urban clusters to explore
their reference points. Then, we calculate the direct carbon
emission coefficients (unit: tCO2/10,000 yuan) of the three
industrial sectors in the Beijing-Tianjin-Hebei, Yangtze River
Delta, and Pearl River Delta regions from 2002 to 2012, as shown
in Supplementary Table S2:

It can be seen from Supplementary Table S2 that from 2002
to 2012, the carbon emission coefficient of the three major
industries in the three major urban clusters in China shows an
overall downward trend. Among the three major urban
clusters, the secondary industry has the highest carbon
emission intensity, followed by the tertiary industry and
primary industry. Comparing the three major urban
clusters, it can be seen that the three major industries in the
Pearl River Delta have relatively low carbon emission
coefficient and high efficiency, followed by the Yangtze
River Delta and Beijing-Tianjin-Hebei.

In terms of the primary industry, from 2002 to 2012, the
proportion of the added value of the primary industry in the three
major urban clusters is almost maintained at about 5% of their
total added value. The volume of the primary industry in the
Beijing-Tianjin-Hebei and Pearl River Delta are similar, and it
accounts for 2/3 of the Yangtze River Delta. Due to the strong
support for the secondary and tertiary industries in Beijing,
Tianjin, and the Pearl River Delta, large amounts of labour
and land are separated from agriculture, and the scale of the
primary industry is gradually shrinking. However, the
agricultural policy support is strong in the Yangtze River
Delta, with an annual investment of about 300 million yuan to
build farmland infrastructure. And it also develops tourism and
other related industries in the corresponding agricultural chain,
and the scale of the primary industry is relatively high. Zhang and
Wang (2014) mentioned that the scale expansion of the primary
industry will accelerate the growth of total carbon emissions at a
certain stage, which may be the main reason for the relatively low
carbon efficiency of the primary industry in the Yangtze River
Delta. As for the Beijing-Tianjin-Hebei and the Pearl River Delta,
they are similar in the size of the primary industry, but there is a
certain gap in carbon emission efficiency. The main reason is that
the added value of the primary industry in the Beijing-Tianjin-
Hebei accounts for more than 90%. Compared with the Pearl
River Delta, the agricultural industry structure of Hebei is
relatively simple, the degree of specialization is not enough,
and the rural financial system is relatively backward, resulting
in a relatively low carbon emission efficiency.

In terms of the secondary industry, the carbon emission
efficiency of Beijing-Tianjin-Hebei is lowest among three
clusters. The Pearl River Delta has always been known as the
“world’s factory”, and its labor-intensive manufacturing industry
has always occupied an absolute advantage. Limited to the local
energy situation, the total carbon emissions of high-carbon
industries in the Pearl River Delta, such as coal mining and oil
processing, are not high, accounting for only about 5% of the
high-carbon industries in the three major urban clusters. And its
total added value is relatively low. Additionally, the secondary
industry in the Yangtze River Delta strongly leads the economic
growth. During the study period, nearly 50% of its economic
growth is contributed by industrial growth. Beijing-Tianjin-
Hebei is dominated by heavy chemical and capital-intensive
industries. It is the industrial base of Chinese heavy chemical
industry and equipment manufacturing industry. Most of these
industries are carbon-intensive industries. Although the three
major urban clusters have different priorities for the development
of the secondary industry, the Beijing-Tianjin-Hebei region has
the lowest degree of regional cooperation. Hebei, as an important
supporting hinterland for agricultural resources and industrial
energy in Beijing and Tianjin, has always been in a state of
weakness. Lack of industrial supporting service and the weak
technical radiation of universities in Beijing and Tianjin are the
main reasons for the falling gap.

In terms of the tertiary industry, the carbon emission
efficiency of Beijing-Tianjin-Hebei has a slight advantage. The
main reason is that 46.9% of the added value of the tertiary
industry in Beijing-Tianjin-Hebei from 2002 to 2012 was
contributed by Beijing, and Shanghai contributed 25.6% in the
Yangtze River Delta. As the center of “scientific and technological
innovation”, Beijing has 61 colleges and universities, 1/3 of the
national scientific research institutions, and the density of
technical personnel is the highest in China. The penetration of
new technologies into the tertiary industry has significantly
improved the technological content of the tertiary industry,
and the service methods have become increasingly electronic
and low-carbon. However, although Hebei’s tertiary industry
contributes about 30% to the tertiary industry of the Beijing-
Tianjin-Hebei, its carbon emission coefficient is about 1.5 times
that of Beijing. Beijing’s technological radiation effect on Hebei’s
tertiary industry is not significant.

Regional Carbon Conduction in
Beijing-Tianjin-Hebei
In order to further explore the implied carbon emissions of inter-
regional trade, we use the APL model to identify the transfer-in
and transfer-out parties in the carbon conduction relationship in
Beijing-Tianjin-Hebei through the forward and backward APL
values.We take the transfer-in direction of carbon emission as the
direction of the arrow, identify the carbon ripple relationship, and
calculate the total carbon emissions (tCO2/10,000 yuan) along the
chain based on the carbon chain relationship based on the SPA
model. The result is shown in Supplementary Figure S2:

It can be seen from Supplementary Figure S2 that during the
study period, the carbon conduction relationship brought about
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by the foreign trade links between the Beijing-Tianjin-Hebei and
other provinces is always relatively stable, and the provinces with
the strongest carbon spread are always Shanxi and Inner
Mongolia. The carbon chain in the Yangtze River Delta is not
stable. Except for the close carbon sweep effect with Anhui, most
of the regions in the carbon chain are in flux. The carbon sweep
cities in the Pearl River Delta are mainly concentrated in the
southwest and southeast.

Using the main related provinces and cities of Beijing-Tianjin-
Hebei and other urban clusters revealed in Supplementary
Figure S2, we study the degree of carbon correlation between
these provinces and cities based on the industrial correlation
index proposed by Ma et al. (2018). Specific as formula 11:

ξij �
APLij

Fij

APL
�F

(11)

In Eq. 11, the APL value measures the economic distance
between regions and industries with the average step length of the
conduction chain, and the F value can be used to measure the
degree of correlation between industries at the same level. The
smaller the industry correlation index, the closer the relationship
between the region (industry) and other regions (industry) is.

We use 0.05 as the threshold of the industrial correlation index
to identify the main related industries of the three major urban
clusters. Beijing-Tianjin-Hebei, as a coal-based emission city
cluster, also has similar characteristics in its cross-provincial
and municipal industry linkages. During the study period,
electricity and heat industry in the carbon conduction chain of
Beijing-Tianjin-Hebei is the main carrier industry for carbon
transfer. For example, during the period from 2002 to 2007,
Beijing-Tianjin-Hebei is the carbon transfer-in party of Shanxi,
and the main carbon transfer-in industries is electricity and heat.
Until 2012, that the transfer industries of Beijing-Tianjin-Hebei
changed, which included electric and heat, non-metallic mining
and transportation industry. In summary, we further identify the
main chains of carbon transfer in Beijing-Tianjin-Hebei and
other resource provinces, and calculate that the implied
carbon emissions during the transfer of electricity and heat
account for more than 85% of the total carbon emissions.
Different from the Beijing-Tianjin-Hebei carbon transmission
chain, in the Yangtze River Delta, most of the industrial linkages
are related to the resource extraction industry and related
manufacturing industries, such as metal product
manufacturing, boiler manufacturing, motor manufacturing
and metallurgical industries. Electricity and heat industry does
not play a pivotal role in industry transfer.

In order to further explore the characteristics of the electricity
and heat industry in the Beijing-Tianjin-Hebei, we further
compare the carbon emission coefficients of the industry in
the three major urban clusters. The results show that Beijing-
Tianjin-Hebei has obvious characteristics of coal-fired carbon
emission urban clusters. The carbon emission coefficients of
electricity and heat industry and coal mining industry are not
only far higher than other industries in the region, but also

significantly higher than the other two major urban clusters. The
average carbon emission coefficient of the Beijing-Tianjin-Hebei
electric power industry is 18.25tCO2/10,000 yuan, which is about
2 times that of the Pearl River Delta and 2.5 times that of the
Yangtze River Delta. In the process of carbon transfer in the coal
industry in Hebei, more than 65% of the resources are transferred
to the electricity and heat industry in Hebei and then to the
electricity and heat industry in Beijing and Tianjin. It is true that
the Beijing-Tianjin-Hebei is limited by the input of factors and
the consumption structure. Unlike the Yangtze River Delta or the
Pearl River Delta, Beijing-Tianjin-Hebei cannot almost
completely avoid the intermediary role of electricity and heat
from the perspective of carbon transfer. However, it is one of the
key points of emission reduction whether to reduce carbon
leakage in the electricity and heat industry while ensuring the
supply of resources in Beijing and Tianjin. In order to reduce the
overall carbon emissions in the region, improving the electric and
heating efficiency in the Beijing-Tianjin-Hebei may be a good
starting point. The Yangtze River Delta belongs to the East China
Power Grid and is one of the models of cross-provincial and
cross-regional power cooperation in China. Although it is
difficult for Beijing Tianjin Hebei region to realize the mutual
assistance and mutual protection of energy similar to the Yangtze
River Delta, it is feasible to optimize the power grid structure and
develop new energy technologies.

Internal Carbon Conduction Paths in
Beijing-Tianjin-Hebei
We aim to further explore the internal correlation of carbon
spillover in the three regions of Beijing-Tianjin-Hebei and other
provinces with close spillover effects, such as Shanxi, Inner
Mongolia, etc. Thus, we consolidated the IRIO table into a
whole at the provincial level, set the threshold as 0.1, and take
Beijing-Tianjin-Hebei as the center of investment and demand.
The relationship between them is identified as shown in
Supplementary Figure S3:

It can be seen from Supplementary Figure S3 that the
relationship between the transfer-in and transfer-out parties in
Beijing-Tianjin-Hebei and other places basically remains
unchanged. During the study period, Beijing and Tianjin have
been the transfer-in sources of carbon emissions from Hebei,
Shanxi, and Inner Mongolia, and Shanxi is mainly the transfer-
out party. In terms of the total amount of direct carbon transfer,
from 2002 to 2012, the amount of carbon emission transfer in the
region continued to increase. The total amount of carbon transfer
in Beijing was always the largest, and the total amount transferred
from Hebei to Beijing dominated, increasing from 2.26 × 105 t in
2002 to 1.56 × 106 t in 2012.

It can be seen from Supplementary Figures S2, S3 that the
dependence of Beijing-Tianjin-Hebei on resource provinces like
Shanxi and Inner Mongolia is strong, and the total amount of
carbon transfer within the urban cluster gradually decreases. To
further analyze the carbon transfer changes in the industrial
structure of the urban clusters, we take Shanxi, Inner
Mongolia and Hebei as carbon transfer-out parties, take
Beijing and Tianjin as carbon transfer-in parties, and calculate
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the total carbon transfer changes of the three industries. The
calculation formula is Eq. 12:

Ŝij � Ci(I − A)−1ij F̂j (12)
Through calculation, it is found that whether it is resource

provinces outside the urban cluster (such as Shanxi and Inner
Mongolia) or the main energy hinterland within the urban cluster
(Hebei), the total carbon transfer-out of the three major
industries is basically increasing year by year. The resource
status of Hebei Province is also highlighted year by year and
the proportion of its total carbon transfer has increased from
47.8% in 2002 to 62.10% in 2012. From the perspective of the
structural proportion of industrial carbon transfer, the direct
support of the secondary industry in resource provinces to Beijing
and Tianjin showed a trend of rising first and then decreasing.
The proportion of the secondary industry first increased from
71.73% in 2002 to 81.34% in 2007, and finally fell to 54.81% in
2012. The main reason for the decline in 2012 is that Shanxi has
always had a “coal-based” industrial structure (Hu et al., 2016). In
2012, the growth rate of domestic coal demand declined, coal
prices plummeted, and most coal enterprises fell into a state of
cessation of production. Its economy experienced a “cliff-like”
decline (Jiang et al., 2014). But for Hebei, the support structure of
its three major industries has been relatively stable, and the
proportion of the secondary industry and the tertiary industry
has always been about 3:1. And in 2012, although the coal price
drop had a greater impact on the coal mining enterprises in
Hebei, unlike the overall economic weakness in Shanxi, the coal
mining enterprises and power plants in Hebei showed a trend of
ebb and flow. The “coal fullness” of power plants in Hebei
completely compensated for the reduction in carbon transfer
caused by the reduction in the proportion of secondary industries
in resource provinces, especially for Shaanxi.

In Summary, it is known that Hebei plays an important role in
resource security, and the secondary industry can effectively alleviate
the pressure of insufficient supply in resource provinces. So, can the
economic benefits of Hebei be improved while ensuring the total
supply of resources in Beijing and Tianjin? In response to this
problem, we further calculate the carbon productivity of Hebei, that
is, the change in value-added per tCO2 emitted (Pan and Zhang,
2011). During the study period, the carbon productivity of the
secondary and tertiary industries in Hebei was 6,300 yuan and
48,700 yuan respectively, of which the carbon productivity of the
secondary industry was 43.52% lower than the national average, and
the tertiary industry was 26.72% higher than the national average. It
can be seen that the carbon productivity of the secondary industry in
Hebei Province still has a large room for growth.When Hebei meets
the energy needs of Beijing and Tianjin, it can improve the economic
benefits and achieve the goal of economic growth by optimizing the
production structure and energy efficiency of the secondary industry.

Major Industrial Carbon Conduction Paths
in Beijing-Tianjin-Hebei
The mismatch between energy pressure and efficiency upgrades
in Hebei makes its energy supply more dependent on foreign

transfers. From the analysis of carbon transfer inside and outside
the Beijing-Tianjin-Hebei urban cluster, we can see that the
electricity and heat industry in Hebei Province plays an
important intermediary role in the introduction of resources
from other provinces. Based on this, we take Hebei electricity
and heat as the center to explore the situation of related industries
outside the province under the situation of resource transfer.

It can be seen from Supplementary Figure S4 that when Inner
Mongolia, Hebei, and Shanxi transfer carbon resources to Beijing
and Tianjin, most of them are transferred through the electricity
and heat industry in each province. For example, in 2002, when
Hebei metallurgy’s resources are transferred to Beijing
Metallurgical, it is mainly transferred to Beijing metallurgy
through Shanxi electricity and heat industry and Hebei
electricity and heat industry, and then Beijing metallurgy is
transferred to other industries in the city. Judging from the
absolute amount of carbon emissions transferred in each step,
the carbon generated by the electricity and heat industries in
Inner Mongolia and Shanxi accounts for more than 95% of the
entire carbon conduction chain. To further explore the causes of
high carbon production in Inner Mongolia and Shanxi, we
compare the direct carbon emission coefficients of Beijing-
Tianjin-Hebei and major resource provinces such as Shanxi
and Inner Mongolia, as shown in Supplementary Table S3:

It can be seen from Supplementary Table S3 that compared
with the carbon emission coefficients of the electricity and heat
industry in the three places of Beijing, Tianjin and Hebei, Shanxi
and Inner Mongolia, especially for Shanxi, are obviously at a
higher level. Based on this, it is not difficult to propose that when
Beijing-Tianjin-Hebei electricity is transferred out, if the
transmission efficiency of the power grid in Shanxi and Inner
Mongolia can be optimized to a certain extent, the overall carbon
emissions of the region can be reduced. However, as far as the
actual situation is concerned, Shanxi has long used coal as its
pillar industry. In recent years, the domestic demand for coal,
including coal from Shanxi, has not been strong, resulting in
greater financial pressure in Shanxi and other places. The
upgrading of the structure may lead to a long-term fiscal
deficit, which will have a greater negative impact on its
economic development (Jiang et al., 2014). Therefore, when
reducing the carbon emissions caused by the consumption
side in the Beijing-Tianjin-Hebei, it is necessary to include
Shanxi, Inner Mongolia and other places into the scope of
collaborative governance and share their emission
reduction costs.

CONCLUSION

Based on the input-output methodology, the APL model, and the
SPA model, combined with the regional input-output tables in
2002, 2007 and 2012, we explore the carbon spillover effect and
industrial evolution inside and outside the Beijing-Tianjin-Hebei.
The main conclusions drawn are as follows:

First, from the perspective of the internal urban cluster, the
electricity and heat industry plays a key role in the main carbon
transmission chain, and the carbon emissions brought by it as an
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intermediary account for more than 85% of the total carbon
emissions in the transmission chain. The carbon emission
coefficient is relatively high, and the characteristics of coal-
fired power are obviously the main characteristics of the
electricity and heat structure in the Beijing-Tianjin-Hebei.
When considering reducing the total amount of carbon
emissions in the region as a whole, due to the limitation of
resource endowment, external energy transfer is inevitable, but
the development of the power grid in the Yangtze River Delta still
has strong reference significance. The Beijing-Tianjin-Hebei, as a
national science and innovation base, can make full use of its
technological advantages. In terms of new energy development,
vigorously developing the abundant wind and solar energy
resources in northern Hebei to expand power varieties is
essential. In terms of improving energy efficiency, gradually
promoting the UHV transmission grid could reduce the coal
consumption in Hebei and improve the power receiving capacity
outside the area.

Second, from the perspective of the transfer of industrial
structure, the secondary industry in Hebei can alleviate the
pressure of insufficient supply in resource provinces to a certain
extent, and the economic benefits brought about by its emissions
have a large room for development. The average carbon
productivity of the secondary industry in Hebei is 6,300
yuan, which is only 56.47% of the national average. One of
the strategic orientations of Hebei is to ensure the energy supply
between Beijing and Tianjin, so given the total amount of
resources that Hebei needs to provide to Beijing and Tianjin,
its economic benefits still have a lot of room for growth.
Therefore, gradually transforming the energy structure
dominated by coal, accelerating the development of clean
energy, and dealing with “zombie enterprises” in industries
such as steel and cement can reduce carbon costs. Increasing
carbon productivity could also maximize economic benefits
when ensuring resource supply.

Third, from the perspective of major industries, compared
with Beijing, Tianjin and Hebei, resource provinces such as
Shanxi and Inner Mongolia have high carbon emission
coefficients in the electricity and heat industry, which is the
main reason for the high carbon emissions in the main
transmission chain. Although Hebei has provided energy

support for the development of Beijing and Tianjin, the
external resource transfer is inevitable. If the total regional
carbon emissions are reduced from the perspective of external
resource allocation, it is more difficult to rely solely on resource
provinces outside the urban cluster, which is likely to lead to
conflicts caused by long-term local fiscal deficits. Therefore, when
considering the reduction of carbon emissions caused by external
resource transfer. Shanxi, Inner Mongolia and other resource
provinces should be included in the scope of coordinated
governance, and the funds for the implementation of the
power transfer strategy should be reasonably apportioned and
multi-sourced, and provide themwith improved energy efficiency
and technical support for clean energy.
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Chinese government has proposed ambitious targets to combat climate change. As
carbon emissions of China’s transportation have been rapidly increasing in past decades,
massive efforts for carbon reduction need to be taken by transportation sector. Research
on practical action paths for transportation sector’s low-carbon development are critical to
achieving the Paris Agreement goals and China’s “Dual-Carbon” Target. Based on the
transportation’s historical carbon emissions and the new possible trends in the future, this
paper uses a forecast model to predict transportation’s carbon emission. Then we adopt a
scenario analysis to analyze the total transportation demand in the transportation sector
from 2021 to 2060. We quantitatively simulated the emission reduction effects of different
policy measures under different scenarios, such as optimization of transportation
structure, application of energy-saving and emission-reduction technologies, and new
energy vehicles. The results provide paths and measures for the low-carbon development
of transportation, and provides policy suggestion for the scientific formulation of the low-
carbon development.
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1 INTRODUCTION

Global efforts against climate change are currently being strengthened. Numerous nations,
including China, have realized that a fair and sustainable development system needs to be
established to meet future generations’ needs and further contribute to current social and
economic developments. With the rapid development of the transportation sector in the world,
the proportion of transportation’s carbon emissions continued to grow, which has exceeded 25%
of the world’s total carbon emissions (Liu et al., 2021). In 2020, President Xi Jinping announced
that China aimed to peak carbon emissions by 2030 and achieved carbon neutrality by 2060 (so-
called “Dual-Carbon” target). The transportation sector, accounting for above 10% of China’s
total carbon emissions, is estimated to be the hardest sector to reach the peak (He, 2020).
According to predictions by the International Energy Agency (IEA), all other sectors in China
will peak carbon emission before 2028, while the transportation sector is predicted to reach its
peak after 2040 (IEA, 2017). In order to contribute to “Dual-Carbon” target, the efforts to
decarbonize the transportation sector need to be strengthened.

With the rapid development of China’s economy and society, the turnover of
transportation goods has increased significantly. The carbon emissions of transportation
increased from 372 million tons in 2005 to 983 million tons in 2020, increased 264%, and the
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average annual growth rate reached 6.2%. The carbon
emissions’ proportion of transportation sector in total
China’s carbon emission has increased steadily, from 6.4%
in 2005 to 9.9% in 2020, as shown in Figure 1.

In nowadays, China’s transportation sector is still powered by
fossil fuel consumption, and the proportion of clean energy
use is very low. Transportation sector will face increasingly
fierce challenges to meet “Dual-Carbon” target. Firstly, the
total demand of transportation will continue to grow, and the
whole society will have higher requirements for
transportation timeliness, personalization, comfort, which
will lead to increasing difficulty in controlling total carbon
emissions and carbon intensity of transportation. Secondly,
clean energy has not yet formed a large-scale application in
the transportation sector, which highly relying on the
breakthrough of new energy equipment technology.
Thirdly, the emergence of technologies such as
autonomous driving, electric vehicles, the application of
shared travel will significantly affect and re-shape the
transport sector development and emission reduction
pathway. The emission growth rate of the transportation
sector may will continue to increase, and become the
largest contributor to CO2 emissions in China (Tang et al.,
2019). As the transportation sector is a fundamental industry
for China’s economic and social development, reducing
emissions is crucial for its long-term decarbonization
pathway. However, Therefore, it is necessary to carry out
research and implementable policy recommendations on the
low-carbon development path of the transportation sector.

Many scholars pay close attention to low-carbon
development of transportation research and they mainly
focus on two aspects. On one hand, some scholars have
studied and identified the influencing factors of China’s
transportation carbon emissions. Guo and Meng (2019)
adopted the LMDI model to analyze the driving factors of
carbon emissions from the transportation sector in Beijing-
Tianjin-Hebei region. Lv et al. (2019) analyzed the driving
factors of China’s freight carbon emissions and the impact of

urbanization on freight carbon emissions. Xu and Lin (2018)
used an econometric model to analyze the driving factors of
transportation sector’s carbon emissions. The result showed
that the main influencing factors included population size, per
capita GDP, transportation energy intensity, urbanization
level, freight turnover and passenger turnover. Lo et al.
(2020) used an econometric model to study the influencing
factors of aviation carbon emissions and concluded that
aviation fuel prices, flight distance and aircraft type were
the main influencing factors. To sum up, most studies at
this stage mainly explain the influencing factors of
transportation carbon emissions, including the level of
economic development, population size, total transportation
turnover, urbanization rate, urban space and distribution (Lim
et al., 2019), land use (Fei et al., 2009), transportation structure
(Hao et al., 2011), transportation efficiency (Talbi, 2017),
industrial structure (Wang et al., 2017), scale of private car
ownership and fuel prices (Wu et al., 2016), etc., On the other
hand, some studies focus on how to achieve carbon emission
reduction goal in transportation sector. For example, Acar and
Dincer (2020) believed that one of the most effective way to
achieve green transportation was replacing traditional fuel
vehicles with new energy vehicles. Yang et al. (2017)
simulated the carbon emissions of daily travel in Beijing
based on the micro-simulation model to evaluate the key
low-carbon transportation policies, including public
transport improvement, public bicycle policy, energy
efficiency improvement policy and electric vehicle
promotion policy. The results showed that when the four
policies were used together, Beijing’s daily travel carbon
emissions could be reduced by 43%. Based on the CIAM/
NET-Transport model, Tang et al. (2019) simulated China’s
future carbon emissions path. The results showed that by
adopting joint measures, including optimizing
transportation structure, improving energy efficiency,
promoting alternative fuels can reduce 8447 Mt CO2 from
2015 to 2050. In general, the existing researches on low-
carbon development mainly focus on the influencing factors

FIGURE 1 | China’s transportation carbon emissions.
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of transportation carbon emissions and the forecast of future
carbon emissions. Few studies have been able to clarify the
low-carbon development path of the transportation sector and
evaluate the emission reduction effects of different policy
measures.

In this paper, we aim to propose a suitable low-carbon
development path for China’s transportation sector and
simulate the effects of diverse policy measures. Overall, three
questions are explored in this study: 1)What is the future trend of
transportation carbon emissions and when will the China’s
transportation carbon emissions peak? 2) What will the core
indicators associated with energy efficiency and low-carbon
transportation (such as electrification rate, green travel ratio,
etc.) be at key nodes (peak period, rapid decline period)? 3)
How will China’s transportation sector achieve more sustainable
development and how to develop implementable policy
measures? Under the background of national “Dual-Carbon”
policies and technologies, we design an Energy and Carbon
emission Assessment Scenario model of China’s transportation
sector to project the carbon emissions to 2060 under different
scenarios and provide a roadmap of sustainable low-carbon
transport.

The rest of the paper is structured as follows: In Section 2, we
present the model used in this paper. Section 3 analyzes
future trends and key factors that influence the carbon
emissions of China’s transportation sector. Then based on
these factors, three different emission scenarios for China’s
transport sector are examined. In Section 4, we obtain the
carbon emissions of the transportation sector under different
scenarios. Section 5 shows the conclusions and policy
recommendations.

2 MATERIALS AND METHODS

2.1 Review of Existing Models
Carbon emissions of transportation sector are mainly mobile
source emissions. According to the IPCC Guidelines for National
Greenhouse Gas Inventories (Hayama, 2006), mobile source
emission accounting methods can be divided into two
categories: “top-down” method and “bottom-up” method. The
“top-down” model bases on vehicle energy consumption and
energy carbon emission conversion factors. The approach has
been used in different studies worldwide. Salvatore and Daniela.
(2002) applied it to the estimation of carbon emissions from road
transport in Italy. Xie and Wang (2011) used the “top-down”
model to calculate the carbon emissions of various modes of
transportation in China and the carbon emission intensity of
major transportation vehicles. The results showed that there was a
general downward trend of carbon intensity, and the civil aviation
had the largest carbon intensity, while the waterway had the
smallest carbon intensity. Cai. (2011a) calculated the carbon
emissions of national and regional road transport in 2007
based on the “top-down” model. The results showed that
China’s road transport carbon emissions in 2007 was 377
million tons, accounting for 86.32% of the carbon emissions in
the transportation sector. Chi (2012) calculated the carbon

emissions of China’s transportation sector from 1991 to 2009
and compared the carbon emissions of various modes of
transportation, concluding that the waterway was the
transportation mode with the highest carbon emission
efficiency from the top-down model.

The “bottom-up”model, first applied in transportation field by
Schipper et al. (2000), use the data of different transportation
modes’ ownership, mileage, and fuel consumption per unit of
mileage to calculate transportation’s carbon emissions. Li et al.
(2018) used the “bottom-up”model to calculate and compare the
carbon emissions of four types of public transport (bus, rail
transit, taxi and private passenger cars) in urban city and
concluded that the annual carbon emissions and carbon
intensity of rail transit were the smallest. Chen et al. (2010)
calculated the total carbon emissions of transportation sector in
Shanghai and compared the carbon emissions of different
transportation modes. Cai. (2011b) adopted the “bottom-up”
model and calculated carbon emissions of road, railway, air
and water transportation of the whole country and each
province, the results showed that the road emissions were the
largest both in national level and regional level.

2.2 Models in this Paper
Overview, the “top-down” model can well reflect the
interrelationship between the transportation system, the
energy system, and the economic system. The “bottom-up”
model, on the other hand, can describe in detail the energy
consumption and carbon emissions of various transport
models. Considering that China’s transportation demand
will grow rapidly, and different policies and technological
advances will be used for transportation energy consumption
intensity decrease and energy consumption structure
improvement, it is difficult to only use top-down or
bottom-up models, which needs detailed data. Therefore,
in this paper, we apply comprehensive model and scenario
design, which simulates the future technological development
and analyzes the carbon emissions of different fields of
transportation sector in the future. Specifically, we first
apply traffic demand model by fully considering the factors
that affect the carbon emissions of transportation, to get the
traffic activity data. Considering that the passenger transport
and freight transport have distinct growth trends, we analyze
passenger transport and freight transport separately. Then,
according to different modes of transportation we build
emission model to calculate transportation’s carbon
emissions. Detailed classification could be seen in
Figure 2. Energy application of different modes of
transport could be seen in Supplementary Appendix A1.

2.2.1 Transportation Demand Model
1) Passenger turnover prediction model

The first sub model simulation is the prediction of total
China’s passenger turnover. The detailed method is that
identifying the major drivers of travel demand and
modeling the mathematical relationship between travel
demand and these factors.
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We used the cumulative Weibull function to simulate the
growth trend of km traveled per capita in China, as Eq. 1
shows.

Ti � Tp
i × (1+aie−axi + bie

−byi + cie
−cmi)

and Tui � Ti × Poi (1)
Where, Ti refers to traveled distance per capita in year i, km. Tp

i
saturates traveled distance, which is regressed from the historical
transport data and economic data in China during 2000 and 2020.
xi refers to GDP per capita in year i. ai refers to constants for GDP
per capita in year i. yi refers to urbanization rate in year i. bi refers
to constants for urbanization rate in year i.mi refers to population
size in year i. c refers to constants for population size in year i. Tui
is the turnover of passenger in year i, Poi is the China’s population
in year i.

Different passenger transport modes bear different
proportions of passenger turnover. Therefore, we apply
Kaya model to calculate the passenger turnover of railway,
road, aviation and waterway.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tui × Tai share � Tai

Tui × Tri share � Tri

Tui × Twi share � Twi

Tui × Tci share � Tci

Tui × Tpi share � Tpi

Tui × Ttai share � Ttai

Tui × Tsubi share � Tsubi

Tui × Tmoi share � Tmoi∑ (Tti share + Tri share + Tai share + Twi share + Tci share

+Tpi share + Ttai share + Tsubi share + Tmoi share) � 1

(2)

Where,Tai,Tri,Twi,Tci,Tpi,Ttai,Tsubi,Tmoi refer to the passenger
turnover of railway, road, water, aviation in intercity passenger
transport, and the turnover of city bus, private car, taxi, subway,
motorcycle in city passenger transport in year i, respectively. Tui

refers to total passenger turnover in year i. Tti share, Tri share,
Tai share , Twi share , Tci share , Tpi share, Ttai share, Tsubi share,
Tmoi share refer to the proportion of those transport model,
which are simulated by cumulative Weibull function. Take
Tti share as an example:

Tti share � Tti−1 share × (1 − e−x
γ
i ) (3)

Tt2020 share � Tt2020

Tu2020
, when, i � 2020 (4)

Where, Tti−1 share refers to the railway passenger turnover
proportion of total passenger transport turnover in the
previous of year i. xi refers to per capita GDP. γ refers to a
parameter that determines the shape of curve, which is regressed
from the historical transport data and economic data in China
during 2005 and 2020. Tt2020 share refers to the railway passenger
turnover proportion of total passenger transport turnover in
2020. Tt2020 refers to the railway turnover in the 2020. Tu2020

refers to the total passenger transport turnover.
The calculation of Tri share, Tai share , Twi share , Tci share ,

Tpi share, Ttai share, Tsubi share, Tmoi share are similar to Tti share.
The difference is that the γ of different modes of transportation is
affected by different influence factors.

2) Freight turnover prediction model

The freight turnover prediction model can be expressed as:

Tfi � b0 + b1 × ji + b2 × ki + b3 × mi + b4 × ni (5)

FIGURE 2 | Transport-related carbon emissions calculating model.
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Where, Tfi represents the turnover of freight in year i. ji refers to
total GDP in year i. ki refers to population size in year i.mi refers
to urbanization rate in year i. ni refers to secondary industry
added value in year i. b0, b1, b2, b3, b4 are undetermined
coefficients, which are determined by the least squares method.

Different freight transport modes have different proportions
of freight turnover. Therefore, we applied Kaya model to calculate
the freight turnover of railway, road, aviation and waterway.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Tfi × Tfti Share� Tfti

Tfi × Tfri Share� Tfri

Tfi × Tfai Share� Tfai

Tfi × Tfwi Share� Tfwi∑(Tfti Share + Tfri Share + Tfai Share + Tfwi Share) � 1

(6)

Where, Tfti, Tfri, Tfai, Tfwi respectively represent the freight
turnover of railway, road, aviation and waterway in year i. Tfi

refers to total freight turnover in year i. Tfti share, Tfri share,
Tfai share, Tfwi share, refer to the proportion of those transport
model, which are simulated by cumulative Weibull function.
Take Tfti share as an example:

Tfti share � Tfti−1 share × (1 − e−x
α
fi) (7)

Tft2020 share � Tft2020

Tf2020
, when, i � 2020 (8)

Where Tfti−1 share refers to the railway turnover proportion of
total freight transport turnover in the previous of year i. xfi refers
to the total GDP. α refers to a parameter that determines the
shape of curve, which is regressed from the historical transport
data and economic data in China during 2005 and 2020.
Tft2020 share refers to the railway freight turnover proportion
of total freight transport turnover in 2020. Tft2020 refers to the
railway freight turnover in the 2020. Tf2020 refers to the total
freight transport turnover.

The calculation of Tfri share, Tfai share , Tfwi share are similar
to Tfti share. The difference is that the α of different modes of
transportation is affected by different influence factors.

2.2.2 Carbon Emission Computation Model
According to the 2006 IPCC Guidelines for National Greenhouse
Gas Inventories, carbon dioxide emissions from transportation
are mobile source emissions. Based on data availability, two
methods are used.

1) Turnover emission model

The formula for calculating the carbon emission of the
turnover method is as follows:

ECiz � ∑
j

(Tijz × FTijz × ej) (9)

where, ECiz represents the carbon emissions of z in year i. z refer
to different transportation modes, including railway passenger
and freight, air passenger and freight, water passenger and freight,
subways. Tijk represents the turnover of different modes z
transportation, which is calculated in Eqs. 2, 6. j refers to the

type of fuels that z used, which is shown in attachment A1. FTijk

refers to the fuel consumption per turnover. ej represents the
emission factor of j type of fuel, which is shown in attachment A1.

2) Ownership emission model

In this study, City public bus (CBs), Private car (PCs),
Motorcycle (Mos), Taxi (Tas), road passenger (Bus), Road
freight, which includes: heavy trucks (HTs), medium trucks
(MTs), light trucks (LTs), mini vans (MVs), uses the
ownership emission model. This bottom-up model is an
aggregate time-series model with prediction step of 1 year
(Hao et al., 2011). The structure of the model is presented by
Figure 1.

As shown in Figure 3, the numbers of newly registered all the
types of vehicles are estimated by using vehicle production,
import and export, as Eq. 10 shows.

NVi,j,p � NVi−1,j,p + VRi,j,p − VOi,j,p (10)
Where, NVi,j,p refers to the number of j type of fuel of p type of
vehicle in year i. p includes: CBs, PCs, Mos, Tas, Bus, HTs, MTs,
LTs, MVs. VRi,j,p refers to the newly registered of j type of fuel of
p types of vehicles in year i.VOi,j,p refers to the vehicles out of the
market.

CEVi,p � ∑
j

(NVi,j,p × Disi,j,p × VFRi,j,p ×ej⎞⎠ (11)

Where, CEVi,p refers to the carbon emission of p type of vehicle
in year i.Disi,j,p refers to the distance driven the j type of fuel of p
type of vehicle in year i. VFRi,j,p refers to the fuel-consumption
rate per 100 km (L/100 km) consumed by the j type of fuel of p
type of vehicle in year i. ej represents the emission factor of j type
of fuel.

2.2.3 Data Source
The research scope includes railway, highway and water
transport, aviation, pipelines, urban transportation and civil
vehicles, etc., mainly the energy consumption of the
transportation operation department, excluding the energy
consumption of self-provided vehicles of enterprises and
institutions.

The turnover data and unit consumption data are mainly
from statistical bulletins, including the Statistical Yearbook of
the Transportation Industry, the Statistical Bulletin of the
Development of the Transportation Industry, the Railway
Statistics Bulletin and the Civil Aviation Statistics Bulletin.
In addition, the car ownership data is derived from the China
City Statistical Yearbook and the China Urban Construction
Statistical Yearbook and related research reports.

The energy used by vehicles typically includes gasoline,
diesel, kerosene, fuel oil, natural gas, liquefied natural gas, and
electricity. According to the General Principles of
Comprehensive Energy Consumption (GB/T5892008),
China Energy Statistical Yearbook 2016, 2005 China
Greenhouse Gas Inventory Research, Provincial Greenhouse
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Gas Inventory Guidelines (Trial), 2006 IPCC National
Greenhouse. We calculate the average low calorific value,
carbon content per unit calorific value and carbon oxidation
rate given in the Gas Inventory Guide and the Guide to the
Calculation of Greenhouse Gas Emissions from Source
Consumption (version 2.1). The emission factors of diesel,
kerosene, fuel oil, natural gas and liquefied natural gas are then
obtained according to the standard coal index.

3 SCENARIO DESIGN

3.1 Scenarios Overview
In this study, we set up a baseline scenario, a dual-carbon policy
scenario and a radical scenario. We compare the characteristics of
the transportation sector at different stages of urbanization at
home and abroad, consider the evolution of new technologies in
the transportation sector and the implementation of policies, and
combine the future social and economic trends of China with the
development status of China’s transportation system. Combined
with China’s “Dual-Carbon” target and typical near-zero carbon
emission development paths of transportation, the scenarios’
parameters are determined.

1) Baseline Scenario

Based on the existing policy measures and technical level, we
assume that there will be no major changes or major
technological breakthroughs in China’s industrial layout,
passenger and freight structure, energy efficiency
improvements in different transportation modes, and the
development of alternative fuel technologies.

2) Dual-carbon policy scenario

Under this scenario, we review the recently issued “dual-
carbon” policies and the related China’s 14th Five-Year Plan
in transportation. The main “dual-carbon” policies include:

optimizing the transportation structure, continuous application
of energy-saving and emission-reduction technologies, increasing
the proportion of green travel, and increasing the penetration rate
of new energy vehicles and ships. By summing up these low-
carbon policies and measures before 2035, we quantify policy
measures into model parameters. In addition, with reference to
the results and predictions of some research institutions, the
relevant parameters are deduced to 2060.

3) Radical scenario

Based on the dual-carbon policy scenario, we assume that t
the application of accelerated emission reduction measures is
emphasized, with rapid emission reduction as the primary
goal. Specific measures include: intensifying the policies of
“transfer from road to railway” and “transfer from road to
water”, to encourage residents to adopt greener travel modes;
to improve the energy consumption efficiency by strengthen
the application of “Internet + transportation” and the
construction of intelligent transportation; to; to improve
the fuel structure by speeding up the elimination of
existing and old vehicles and adopting more aggressive
measures to improve the penetration rate of new energy
vehicles.

3.2 Factors Affecting Transportation
Demand
Transportation demand is closely related to macroeconomic
and social development indicators such as industrialization,
industrial structure and population income levels. According to
many studies, there are mainly 13 factors in 4 aspects that affect
the transportation demand, including macroeconomic demand
factors such as GDP (GDP per capita), industrial structure,
urbanization and population; structural factors such as
transportation structure adjustment and green travel; energy
efficiency improvement factors brought by the application of low-
carbon technologies promotion; factors of new energy

FIGURE 3 | Diagram of ownership model structure.
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transportation equipment application (see Figure 4). Detailed
scenario parameters could be seen in Supplementary Appendix A2.

1) Macro factors

According to the “Outline of the 14th Five-Year Plan
(2021–2025) for National Economic and Social Development
and Vision 2035 of China” and the World Bank CGE team’s
forecast of China’s economy, China’s economy will continue to
grow and will basically achieve socialist modernization by 2035.
China’s economic aggregate and per capita income of urban and
rural residents will reach a new level. From 2022 to 2025, it will
grow at an average annual rate of 5.2%, and the average annual
rate will be 4.4% from 2026 to 2035. By 2035, the per capita GDP
of China will reach the level of moderately developed countries,
and the middle-income group will expand significantly. China’s
urbanization rate will increase from 63.89% in 2020 to 65% in
2025 and to around 72% in 2035. According to research forecasts
such as the National Population Development Plan (2016–2030)
issued by the State Council, China will gradually enter an aging
stage by 2030. China’s total population was 1.41 billion in 2020
and will peak around 2028, reaching 1.44 billion, and then will
drop to 1.401 billion by 2035.

2) Structural factors

The energy consumption intensity of railway freight and
waterway freight is 1/7 and 1/9 of that of road freight
respectively. Promoting the transfer of bulk cargo and
medium and long-distance road freight transport to railway
and water transport will be an important measure for green
and high-quality development of transportation for a long
time in the future. According to the government’s
requirements on cargo transport structures, it is

expected that railway freight volume will increase by 700
million tons and 1.4 billion tons in 2025 and 2030
compared with 2020; inland water freight volume will
increase by 500 million tons and 1 billion tons respectively;
coastal freight volume will increase by 200 million tons and
500 million tons.

3) Energy efficiency improvement

Advances in energy-saving technologies will further improve
the fuel economy of conventional fuel vehicles. There is still room
for improvement in the efficiency of gasoline and diesel engines.
According to reports such as “Energy-saving and New Energy
Vehicle Technology Roadmap 2.0”, with the application of
lightweight and engine fuel-saving technologies, engine energy
efficiency can reach up to 45–50%. With the technical
applications such as large-scale ship technology and ship type
standardization, the energy efficiency improvement potential of
waterway transportation is about 20% as shown in Table 1.

Technological advances, such as autonomous driving, can
also improve energy efficiency. It is widely believed that the
use of autonomous driving technology in public transportation
and in specific locations will prevail in the personal
passenger vehicle market. According to China’s
“Technology Roadmap for Energy Saving and New Energy
Vehicles”, the market share of driver assistance/partially
autonomous vehicles will reach 50% by 2030. The market
share of fully self-driving vehicles will be nearly 10% by
2035 and will exceed 50% by 2060.

4) New energy Utilization

In 2021, the number of new energy vehicles has reached 7.84
million, accounting for 2.6% of the total vehicles. The annual sales

FIGURE 4 | The 13 factors affecting the transportation demand.
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of new energy vehicles have reached 3.4 million, with a
penetration rate of 12.7%. Developing new energy vehicles will
still be a key national strategy in the future.

As the new energy vehicles industry enters a period of rapid
growth, terminal sales and penetration rates will continue to rise. In

accordance with the “New Energy Vehicle Industry Development
Plan (2021–2035)”, “Carbon PeakAction Plan before 2030”, “Energy
Saving and New Energy Vehicle Technology Roadmap 2.0”, other
policy documents and research reports, the sales of new energy
vehicles will reach about 20% of the total sales of new vehicles by

TABLE 1 | Goals of vehicles on energy saving.

2025 2030 2035

Private cars Fuel consumption of traditional energy private car
5.6L/100 km

Fuel consumption of traditional energy private car
4.8L/100 km

Fuel consumption of traditional energy private car
4L/100 km

Commercial
vehicles

Fuel consumption of trucks reduces by 8%–10%
compared with 2020

Fuel consumption of trucks reduces by
15%–20% compared with 2020

Fuel consumption of trucks reduces by
25%–30% compared with 2020

Fuel consumption of passenger cars reduces by
10%–15% compared with 2020

Fuel consumption of passenger cars reduces by
20%–25% compared with 2020

Fuel consumption of passenger cars reduces by
30%–35% compared with 2020

FIGURE 5 | The number and proportion of new energy private vehicles in the future.

FIGURE 6 | The carbon emissions of transportation under Baseline Scenario.
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FIGURE 7 | Different fuel consumption trends under the baseline scenario.

FIGURE 8 | Trends of carbon emissions using different policies and measures under the dual carbon policy scenario.

FIGURE 9 | Deconstruction of carbon emissions under the dual carbon policy scenario in 2035.
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2025, reach 40% by 2030, and will reach 100% in 2045. Based on the
vehicle Sale-Ownership prediction model, we obtain the detailed
number and proportion of new energy vehicles in China from 2020
to 2060, which are shown in Figure 5.

4 RESULTS

4.1 Baseline Scenario
Under the baseline scenario, the penetration rate of new
energy vehicles is low, especially in the field of freight
transportation, where the proportion of new energy
vehicles is only 50% in 2060; the adjustment of the
transportation structure is small and the improvement of
energy efficiency is limited, resulting in a continuous increase

in the total carbon emissions of transportation. The carbon
emissions will reach 1.45 billion tons in 2030, peak at 1.62
billion tons in 2045, and drop to 1.13 billion tons in 2060.
Road transportation is the most important source of carbon
emissions, and the proportion of carbon emissions in the
transportation sector will drop from 87% in 2020 to 82.2% in
the peak year in 2040, and continue to decline to 77.4% in
2060. The proportion of carbon emissions from aviation
transportation will continue to rise, from 7.1% in 2020 to
16.9% in 2060, with an increase of 138%, as shown in
Figure 6.

In the baseline scenario, traditional fossil fuels are still the
main energy sources. By 2040, gasoline, diesel and aviation
kerosene will account for 16.1%, 41.9%, and 13.6% of the total
transportation energy, respectively. Clean energy such as

FIGURE 10 | Deconstruction of carbon emissions under the dual carbon policy scenario in 2060.

FIGURE 11 | Different fuel consumption trends under the dual carbon policy scenario.
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electricity will only account for 24.1%. By 2060, electricity will
become the most important transportation energy, accounting
for 39.5%, while diesel, aviation kerosene and gasoline will
account for 34.1%, 12.2% and 4.3%. Hydrogen will be used to
a certain extent, accounting for 3.3% (Figure 7).

In general, under the baseline scenario, if effective low-
carbon measures are not taken in the transportation sector, it
will result in insignificant effects of transferring from road to
railway and water transportation and “green travel”, and
limited improvement of energy efficiency. The penetration
rate of new energy vehicles will not be high, which will lead

to the carbon emissions of transportation to be maintained at a
high level.

4.2 Dual-Carbon Policy Scenario
Under this scenario, the total carbon emissions from
transportation will show a trend of first increasing and then
decreasing, reaching a peak around 2035, with a peak carbon
emission of 1.33 billion tons. In 2050 and 2060, carbon emissions
will drop to 680 million tons and 1.8 billion tons respectively, a
decrease of 57.3% and 83.4% respectively compared with the
baseline scenario (Figure 8).

FIGURE 12 | Trends of carbon emissions with different policy measures under the radical scenario.

FIGURE 13 | Deconstruction of carbon emissions under the Radical scenario in 2030.
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By 2035, when different policy measures are adopted, as
shown in Figure 9, the emission reduction effects of the three
types of measures, namely, the adjustment of transportation
structure, the improvement of energy efficiency, and the
application of new energy, will enhance in turn. The
emission reductions are 55, 66 and 142 million tons,
respectively and will reduce the total emissions by 21%,
25%, and 54% when implementing three different types of
measures separately.

As shown in Figure 10, by 2060, the reduction effect of
transportation structure adjustment and energy efficiency
improvement will be further weakened, while the reduction
effect of new energy application will be the most prominent.
The emission reduction contribution of these three policies
accounted for 10%, 15% and 75% respectively when
implementing three different types of measures separately.

Under the dual-carbon policy scenario, electricity will
gradually become the most important energy source. By
2035, the proportion of gasoline, diesel and aviation
kerosene will be 16.6%, 35.2% and 13.1% respectively, and
the proportion of clean energy such as electricity will increase
to 34.2%. By 2040, electricity will become the main
transportation energy, accounting for 41.5% and will
continue to increase. By 2060, it will account for 72.8% and
the proportion of hydrogen energy and biomass fuel will
increase to 5.9% and 6.8% As shown in the Figure 11.

4.3 Radical Cenario
Under the radical scenario, the total carbon emissions from
transportation are expected to peak around 2030, with peak
carbon emissions of 1.26 billion tons, a 22.2% decrease from
the peak in the baseline scenario. In 2050, 2055, and 2060,

FIGURE 14 | Deconstruction of carbon emissions under the Radical scenario in 2060.

FIGURE 15 | Different fuel consumption trends under the radical scenario.
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carbon emissions will drop to 350, 190 and 66 million tons,
respectively, an 81.3% decline from 2050 to 2060 As shown in
Figure 12.

In the radical scenario, by 2030, when different policy
measures are adopted, as shown in Figure 13, it can be seen
that the emission reduction effect of the three types of measures,
will increase sequentially compared with the baseline, specially,
will contribute 0.46, 0.61, and 93 million tons of emission
reductions, and the emission reduction contribution ratios are
23%, 31%, and 47%, respectively. Compared with the dual-carbon
policy scenario, in the peak emission year of the radical scenario,
the contribution rate of new energy applications is slightly
smaller. The main reason is that in 2030, the technology of
some new energy delivery vehicles is immature and the
penetration rate is relatively low.

By 2060, as shown in Figure 14, the reduction effect of
policies such as transportation structure adjustment and
energy efficiency improvement will be further weakened,
and the emission reduction effect of new energy
application will be the most prominent. The emission
reductions are 110, 236, and 700 million tons, accounting
for 11%, 23%, and 67% of the emission reduction
contribution respectively. Compared with the dual-carbon
policy scenario, the contribution of new energy applications
in the radical scenario is slightly smaller, and the emission
reduction from energy efficiency improvement is larger. The
main reason is that in this scenario, in order to speed up the
peak emission time of the transportation sector, the
application of energy-saving and emission-reduction
technologies for traditional fuel vehicles has been
accelerated. Compared with the dual-carbon policy
scenario, the emission reduction effect of the energy
efficiency policy increases by 41.3%.

In the radical scenario, electricity will quickly become the
dominant energy source. By 2030, the proportion of gasoline,
diesel and aviation kerosene will be 21%, 34.7%, and 11.3%,
respectively. The proportion of clean energy such as electricity
will increase to 28.6%, and will reach 36.8% in 2035, becoming the
most important source of energy consumption. By 2060, the
proportion of clean energy will reach 75.4%, and hydrogen energy
and biomass fuel will increase to 9.4% and 8.5%, while the
traditional fuel will only account for 6.7% as shown in the
Figure 15.

5 CONCLUSION AND DISCUSSIONS

Based on a scenario analysis of the total transportation demand in
the transportation sector from 2020 to 2060, this paper
quantitatively simulates the carbon emission reduction effects
in the transportation of different policy measures under different
scenarios, such as optimization of transportation structure,
application of energy-saving and emission-reduction
technologies, and new energy applications. The results show
that the application of new energy applications and increase in
freight efficiency pose the highest potential in reducing emissions
in transport sector.

Based on the scenario analysis and results, we put forward
several policy recommendations that may contribute to the
“Dual-Carbon” target:

First of all, promote the cleanliness and low carbonization of
transportation energy systems. Transportation vehicles account
for a relatively high proportion of carbon emissions, especially for
trucks, which account for more than 50% of carbon emissions in
transportation sector. Therefore, it is necessary to promote clean
energy vehicles, and take the lead in promoting the realization of
fully electrification of urban public transport, and set a timetable
for the withdrawal of traditional fossil energy vehicles. The
government should continue to support breakthroughs in the
research and development of key technologies for low
carbonization of transportation equipment, and create a
favorable market environment for the application of clean
energy equipment through the improvement of systems,
standards and norms. The government should also adopt a
combination of finance and market policies to reduce new
energy application costs and improve electric charging
(replacement), hydrogen refueling and maintenance services.

Secondly, encourage green travel. The government and
relevant institutions should carry out green transportation
missions, strengthen citizens’ environmental awareness, and
let the residents participate in the construction of green
transportation, encourage the public transportation to
achieve green and environmental protection. Besides, create
a high-quality, fast and diversified urban passenger
transportation service system. To make public transport
more attractive, it is necessary to promote quality public
transportation, further increase the proportion of public
transport vehicles in barrier-free cities and improve the
passenger comfort, convenience and speed of transportation
equipment. The introduction of commercial bus, travel bus,
customized bus and other vehicle types will be necessary
complements to adapt to increasingly diverse travel needs,
making public transport a priority for people to travel, and
constantly improve the share of public transport travel. In
addition, the incentive of market measures, such as national
green travel carbon credit system, should also be implemented.
Specially, if residents adopt green travel, they can earn carbon
credits, which can obtain corresponding economic benefits in
the carbon emissions trading system.

Thirdly, increase the energy efficiency of freight. The
government should improve the energy consumption limit
standard for transportation vehicles and establish a vehicle
carbon emission standard system. Accelerating the elimination
of high-consumption and low-efficiency vehicles by economic
compensation, strict supervision of excessive emissions,
vehicle inspection and maintenance systems. Promoting
vehicle energy-saving driving technology and publish best
operating practices are also essential. The local government
should incorporate energy-saving driving and energy-saving
sailing as independent modules into driver (crew) training and
examinations. Besides, the government should accelerate the
application of smart transportation technologies. Cost-
effective and intelligent transportation are key to modern
freight logistics. The government and businesses need to
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improve the organization and intensification level of freight
logistics so as to effectively reduce the empty driving rate by
promoting the freight network platform and integrating of
logistics resources. At the same time, the government could
gradually popularize automatic vehicle driving technology and
promote intelligent ship driving technology in pilot areas.
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The effects of drought on stock
prices: An industry-specific
perspective

Xinbin Cheng1, Yudong Wang2 and Xi Wu2*
1School of Public Affairs, Nanjing University of Science and Technology, Nanjing, China, 2School of
Economics and Management, Nanjing University of Science and Technology, Nanjing, China

In this study, we examine the effect of drought on industry stock prices using a

balanced panel of monthly data for 15 industries classified by China Securities

Regulatory Commission in 2012. By combining the results of ordinary least

squares (OLS) estimation and quantile regression models, we present a

comprehensive evaluation of the relationship between drought and industry

stock prices. The OLS regression results generally show that drought is

negatively correlated with industry stock prices. However, quantile

regression reveals that the effect of drought changes from positive to

negative from the lowest to the highest stock price quantile. In addition,

drought resistance capacity varies by industry. We further use threshold

regression to determine the effects of investor sentiment on the relationship

between drought and stock prices and identify two different regimes: low

sentiment and high sentiment. In the low sentiment regime, drought has a

significant negative effect on industry stock prices, while in the high sentiment

regime, drought has a significant positive impact on industry stock prices.

KEYWORDS

drought, quantile regression, threshold regression, industry perspective, stock prices

Introduction

The global climate system is undergoing a major change characterized by global

warming. Increasing climate change is becoming one of the main drivers of drought, as it

speeds up the global water cycle, making wet areas wetter and dry areas drier (Wanders

and Wada, 2015). Disintegrated planning, weak governance, and myopic water

management can also lead to socioeconomic drought1. As a result, water resource

management has become more important and difficult. Undoubtedly, a more detailed

understanding of the economic impact of drought, including the identification of at-risk

industries and the mechanisms contributing to drought hazards, are key steps toward a

stronger risk-based approach to drought management. In a relatively efficient market, the
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impact of a disaster such as drought should be reflected by

changes in short-run stock prices, which indicate market views

on expected changes in the value of assets (Beatty and Shimshack,

2010; Balvers et al., 2017; Ding et al., 2022). In this study, the

effect of drought is approached from the perspective of its effect

on industry stock prices.

According to the Chinese Ministry of Water Resources,

although China is rich in fresh water resources, its per-capita

water resource level is only around a quarter of the global level.

Consequently, China is one of 13 countries considered “water-

poor” worldwide. This issue is exacerbated by the uneven

distribution of China’s water resources, which is characterized

by greater water availability in southern areas but a higher

distribution of cultivated land in northern areas. More than

400 of China’s 660 cities face water shortages (i.e., two-thirds

of cities have insufficient water supply)2. Regions across China

exhibit significant cross-sectional variations in climate. Together

with regional diversity, climate change has exacerbated the

uneven distribution of water resources, thus increasing the

disconnect between supply and demand in northern China

and perpetuating regional drought in southern China. In

addition, China is both a big agricultural country and an

industrial country. Agriculture is most vulnerable to drought.

Industrial production process is often accompanied by water

pollution, which making the problem of drought and its impact

more serious. A wrong or lack of intervention is likely to trigger

socioeconomic drought. China’s geographic vastness, distinct

industrial and climatological features provide a unique setting

for a study on the economic impact of drought in an Asian

country and enable new insights.

Initially, we estimate drought trends using the Palmer

Drought Severity Index (PDSI)3, a widely used resource in

climatology studies on drought (Palmer, 1965; Dai, 2011;

Trenberth et al., 2014). Our sample comprises the monthly

stock return data of 15 industries from 2000 to 2014. We

then analyze the effect of drought by industry to account for

industry heterogeneity, as this effect depends on both the

industry’s water demand and the upstream and downstream

water demands. From the perspective of the capital market on the

economic impact of drought, we successively examine the

responses of stock prices in different quantiles and the role of

investor sentiment. We mainly use the quantile regression model

to study the effect of drought on the conditional distribution of

industry stock prices. The weather-related literature reveals that

climate factors can affect stock prices by influencing investor

sentiment (Kamstra et al., 2000; Hirshleifer and Shumway, 2003;

Kamstra et al., 2003; Lu and Chou, 2012; Schmittmann et al.,

2015) and that investor sentiment can lead to asymmetric stock

price reactions (Chen et al., 2013; Ni et al., 2015). Inspired by this

earlier work, we introduce the threshold regression model and

find a threshold effect of investor sentiment on the relationship

between drought and industry stock prices.

The OLS regression results generally show that drought is

negatively correlated with industry stock prices. However,

quantile regression reveals that the effect of drought changes

from positive to negative from the lowest to the highest stock

price quantile. In addition, drought resistance capacity varies by

industry. We further use threshold regression to determine the

effects of investor sentiment on the relationship between drought

and stock prices and identify two different regimes: low

sentiment and high sentiment. In the low sentiment regime,

drought has a significant negative effect on industry stock prices,

while in the high sentiment regime, drought has a significant

positive impact on industry stock prices.

This study makes two contributions to the literature. First, by

using data from China, a unique setting, to analyze whether and

how drought affects stock prices, we contribute to a poorly explored

area of research on the effects of climatological factors, climate

change, and environmental disasters on economic factors. Second,

we present the first industry-wide analysis of the effects of drought

on stock prices. Previous studies in this areamainly focus on specific

industries, such as agriculture, mining, and real estate (Bonnafous

et al., 2017; Farzanegan et al., 2019; Hong et al., 2019), which usually

have large water demand and undoubtedly are affected directly by

drought. The potential effects of drought on other industries have

received little attention. Our study addresses this gap in the

literature.

The remainder of this paper is organized as follows. Section 2

describes the channels from drought to industry stock prices.

Section 3 presents our data. Section 4 includes an introduction

and demonstration of the model and discussion of the empirical

results. Section 5 presents the robustness test. The final section

contains our concluding remarks.

Why does drought affect industry
stock prices?

Drought has direct and indirect economic effects on agriculture

and non-agriculture industries through soil moisture, rivers,

2 http://www.ches.org.cn/ches/kpyd/szy/201703/t20170303_
879724.htm.

3 The Palmer Drought Index (PDSI) is based on the relationship between
water supply and demand. A situation wherein the local water supply
falls short of demand is defined as drought; otherwise, it is considered
humid. Water supply data are relatively easy to obtain and are usually
expressed by precipitation. In contrast, water demand calculations are
more complex because they involve the influences of temperature, soil
properties, land use, and other factors. To solve this problem, Palmer
put forward the concept of “climatically appropriate for existing
conditions,” defined water demand as “climatically appropriate
precipitation,” and use the difference between actual precipitation
and climatically appropriate precipitation to determine water profit
and loss status. The PDSI considers not only the current water supply
and demand but also the influence of previous dry and wet conditions
and their durations on the current drought situation. Although this
index is not perfect, it is the most widely used and readily available
resource for climate studies (Alley, 1984).
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groundwater, wetlands and reservoirs. In an efficient market, these

effects will be reflected in industry stock prices. We call this

phenomenon the market impacts of the drought on industry

stock prices. From a non-market point of view, government

departments and civil society organizations assist affect industries

and individuals. For individuals, in addition to the risk of property

loss, drought and the environmental chain reaction also brings

threats to life and health. These consequences affect investor

sentiment, which in turn feeds into risk-taking behavior and

stock prices. In short, the effects of drought on industry stock

prices can be divided into market and non-market levels. Among

them, we focus on two more specific components, the economic

impact and investor sentiment. Figure 1 is an overview of drought

effects on industries stock prices.

A market-oriented perspective

It is a common practice in the literature to classify the

economic effects of natural hazards, including drought into

direct and indirect categories (Parker et al., 1987; Cochrane,

2004; Rose, 2004; Van der Veen, 2004). However, a unified and

clear definition of the two categories is lacking. Defining the

direct effects of drought as physical damage to buildings, crops

and natural resources without considering large-scale economic

damage does not meet the practical needs of drought economic

impact assessment. Therefore, we follow Cochrane (2004), Rose

(2004) and Ding et al. (2011) to expand the direct effects of

drought to include both physical damage and consequences such

as business disruption and unemployment. The indirect impacts

are defined as the interaction between industries and the cost of

transaction.

For direct effects, agriculture is the most vulnerable industry

to drought. Inadequate soil moisture results in crop failure. The

economic losses and distribution caused by negative supply

shocks of agricultural products depend on the market

structure and the supply-demand relations. Farmers can get

compensation by buying insurance, or transfer economic

losses through high prices. In extreme cases, they can even

profit from drought. However, offsets are widespread across

vast territories. That is, higher crop prices will attract the

inflow of crops from non-arid areas, which curbing local crop

prices increase.

Drought also has a direct economic impact on non-

agricultural industries by affecting rivers, groundwater,

wetlands and reservoirs. Utilities such as water management

and water supply need to pay for a balance between supply and

demand. In the tourism industry, the development space of

forest, grassland, ice and snow, and wetland becomes smaller.

The safety and accessibility of the shipping industry are

threatened by the drying up of rivers. Other industries are

more or less directly affected by drought due to water and

environmental needs.

For indirect effects, the direct effects of drought on an

industry spread upstream or downstream. In the shipping

industry, for example, 2.93 billion tons of goods pass along

the Yangtze River in 2019, including large quantities of iron

ore, thermal coal and mining and construction materials4. Poor

transportation of thermal coal will aggravate electricity shortage,

while shortages of iron ore and mining materials will affect

manufacturing, real estate and mining industries. The increase

in raw material prices is expected to pass through the price

transfer, but is also likely to cause a decline in income. Any form

of economic losses will influence the economic decisions of

FIGURE 1
An overview of drought effects on industry stock prices.

4 Website of the Ministry of Transport of the People’s Republic of China:
https://www.mot.gov.cn/.
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market participants in the next stage, thus driving a new round of

economic impacts.

A sentiment-oriented perspective

A number of psychological results show that natural disasters

have a great influence on sentiment (Nolen-Hoeksema and

Morrow, 1991; Krug et al., 1998; Jha et al., 2021). The space-

time character of drought should be considered when analyzing

its impacts on sentiment. Spatially, drought affects sentiment in

arid area and non-arid area through different mechanisms.

Direct and indirect gains and losses of assets, as well as life

and health crises, may be the main channels through which

drought affects the sentiment of arid communities (Bica et al.,

2017). Finance can be the savior or the oppressor. Financial

Insurance promotes risk-sharing, but insurance contracts and

intermediaries are usually designed to prevent subsequent

renegotiations (Diamond and Rajan, 2001; Agarwal et al.,

2017). When uninsured disasters occur, economic losses are

usually concentrated in a small group of people, leading to

dissatisfaction and negative emotions (Chetty et al., 2020;

Mongey et al., 2021). However, insurance measures may also

be ineffective in compensating for property losses and mitigating

negative sentiment. Gennaioli et al. (2020) show that insurance

claims are often disputed and lead to non-payment or reduced

payment. Government aid can act as a backstop and stabilize

market sentiment (Jha et al., 2021). In addition, drought may

have a positive emotional impact on those who profit from it,

such as producers of drought resistance devices and farmers

outside the disaster zone.

Social media has changed the way the public engages in

disasters and other mass emergencies (Palen and Hughes, 2018).

People outside the disaster area can easily communicate

sentiment with people in the disaster area through social

media, and get witness texts, photos, videos, maps and other

information about the disaster. Bica et al. (2017) find that locals

are more focused on human suffering and losses, while non-

locals are more concerned about recovery and relief efforts.

Individual orientations reflected by different positions and

concerns produce different sentiments (Bravo-Marquez et al.,

2014). Sentiment analysis through machine learning using social

media data has become a popular topic in recent years. Yoo et al.

(2018) argue that real-time generated content in social media

includes information about social issues and events such as

natural disasters. They developed the Polaris system to use the

real-time information to analyze and predict the emotional

trajectories of users. Neppalli et al. (2017) use Twitter data to

visualize users’ emotions around hurricanes, and then analyze

their emotional communication.

From the timeline, public sentiment is evolving at different

stages of disaster development. Gruebner et al. (2017) use social

media data to surveilla New York population mental health after

disasters. They find 24 sentiments spatial clusters. Among them,

sadness and disgust are the most prominent sentiments. Anger,

confusion, disgust and fear clusters appear pre disaster, surprise

is found peri disaster, and sadness emerges post disaster. Han and

Wang (2019) use microblog data to analyze people’s sentiments

during the flood in Shouguang City, China in 2018, and detect

nine sentiments. They prove that these sentiments have different

time trends.

The psychological literature shows that affective states induce

emotional congruence bias in risk decision making, which is

expressed as a preference for risk in positive sentiments, and risk

aversion in negative sentiments (Yuen and Lee, 2003; Schulreich

et al., 2014; Otto et al., 2016). This phenomenon is also fully

supported by clinical observations. People with depression tend

to ignore the positive aspects, while people with mania tend to

ignore the potentially negative consequences of their actions

(Beck, 2008; Edition, 2013; Huys et al., 2015). Inspired by this,

behavioral economics and finance researchers have identified

events that appear to affect asset prices, particularly stock prices,

through their impacts on the affective state of investors. Edmans

et al. (2007) find a significant stock market decline after soccer

losses. Frieder and Subrahmanyam (2004) believe that stock

prices are boosted by anticipation and optimism ahead of

Patrick’s Day and Rosh Hashanah. Lepori (2015) finds that

endings of hit teleplay trigger negative emotions in viewers,

leading to a drop in stock prices. Saunders (1993) confirms

that weather-related sentiment has a significant effect on stock

prices. The average stock price on a sunny day is higher than on a

cloudy one. Bassi et al. (2013) provide further experimental

evidence that sunshine and good weather promote risk-taking

through sentiment channel.

In summary, the drought can affect industry stock prices

through economic impact and investor sentiment. Given China’s

vast territory, people’s complex positions and emotions, and

the complex space-time nature of the drought, we cannot

accurately predict the size and direction of drought impacts

on industry stock prices. Therefore, it becomes a major

problem to be studied in this paper. Another question we are

interested in is whether the effects of drought vary depending on

investor sentiment.

Data and variables

Sample selection and data sources

Our sample comprises a monthly balanced panel of data

from 15 industries classified as follows by the China Securities

Regulatory Commission in 2012: agriculture, forestry, animal

husbandry, and fishery (AFAHF); mining (Min); manufacturing

(Man); electricity, heat, gas, and water production and supply

(EHGWPS); construction (Con); wholesale and retail (W&R);

transportation, storage, and postal services (TSPS);
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accommodation and catering (A&C); information transmission,

software, and information technology services (ITS); finance

(Fin); real estate (RE); leasing and business services (LBS);

water, environment, and public facilities management

(WEPFM); culture, sports, and entertainment (CSE); and

comprehensive industry (Com). The data span the

2000–2014 period. Economic and financial data are obtained

from the China Securities Market and Accounting Research

database. As a quantitative measure of drought, PDSI data are

taken from the website of the National Center for Atmospheric

Research.

Variables

Industry stock return is the dependent variable and drought

trend is the independent variable. We first calculate the industry

stock return (Indreturn) by weighting the monthly stock return

of A-share listed companies in a given industry by the circulating

market value and subtracting the risk-free interest rate as follows:

Indreturnit � ∑nwntrnt∑nwnt
− Rt (1)

where subscripts i, t, and n represent the industry, time, and

number of companies in the industry, respectively. wnt is the

outstanding market value of stock n at time t-1. The monthly

stock return of each company (rit) is defined as the ratio of the

comparable closing price on the last trading day of each month,

considering the reinvestment of cash dividends, to the

corresponding value of the previous month, minus 1. The

risk-free rate (Rt) is based on the 3-month time deposit rate.

The industry classification of each company follows the industry

classification rules set by the China Securities Regulatory

Commission (CSRC) in 2012. We set the following two types

of company stock returns as missing values: stocks whose prices

rise by 300% or more in 1 month and fall by 50% or more in the

next month (rise and then fall), and stocks whose prices have

risen by more than 1000% in a month. Finally, all stock prices are

winsorized at the 1st and 99th percentiles to reduce the impact of

outliers on our results. We focus on A-shares because they

account for 99.5% of total market capitalization; in contrast,

B-share stocks are small and illiquid. The circulation market

value-weighted return heavily weights large and more liquid

stocks, which alleviates the disturbance caused by outlying

small firms.

As the drought trend (Trend) is calculated based on the PDSI

index, it is beneficial to understand the ranges and trends of the

PDSI values at the sample sites. The PDSI usually falls

between −4 and 4; values greater than 0 indicate the degree of

moisture, while lower values indicate the degree of dryness.

Table 1 presents the correspondence between the PDSI values

and drought severity. Figure 2 plots the time series of monthly

PDSI values for China from 1930 to 2014 with a fitted trend line.

The PDSI fluctuates violently within a range of roughly −6 to 6.

The downward-sloping fitted trend line indicates the increasing

drought trend in China. The average PDSI from 1930 to

2014 is −1.096, compared with −2.774 during the sample

period of 2000–2014; thus, the drought situation in China has

changed from slight to moderate drought. Together with the

short-term violent fluctuations, these data demonstrate that

China is affected by long-term drought and threatened by

short-term floods.

We focus on the impact of the long-term drought trend

because it has greater economic value and policy guidance

implications. Following Hong et al. (2019), we measure Trend as

PDSIt � a + bt + cPDSIt−1 + ε. (2)

This AR(1) model is augmented with a deterministic time

trend t. The coefficient b of the deterministic time trend is the

parameter of interest that captures the long-term drought trend.

We define Trend as equal to b. A smaller value of Trend indicates

a more serious long-term drought trend. The recursive window

method is applied to estimate the above model. Trendt is

estimated using PDSI data from January 1990 to month t. In

addition to considering the impact of quarterly precipitation

differences, we use two alternative measures of drought in the

robustness test. One measure is the drought index calculated

based using the entire Box–Jenkins iterative process; the other is

the lag period drought index.

We introduce some control variables according to the actual

situation and the relevant theoretical model. First, we include the

36-month moving average PDSI (PDSI36) in the control

variables to capture the short-term drought effect. As shown

in Figure 2, China faces long-term drought problems but short-

term flood hazards.

Our analysis of industry stock prices is based mainly on the

Fama–French three-factor model. Therefore, we add the market

factor (RP), the size factor (SMB), and the book-to-market factor

(HML) to the control variables.

RP is the difference between the monthly A-share market

return and the monthly risk-free interest rate. The monthly

market return rate is calculated using the weighted average

method for the market value of circulation, and cash dividend

reinvestment is considered.

SMB is the difference between themonthly returns of a small-

cap stock portfolio and a large-cap stock portfolio. Portfolio

division is based on the Fama 2 × 3 portfolio division method.

The monthly return of the portfolio is calculated using the

weighted market value of circulation.

HML is the difference between the monthly returns of

a combination of the high book-to-market ratio and the low

book-to-market ratio. The portfolio division is based on the

Frontiers in Environmental Science frontiersin.org05

Cheng et al. 10.3389/fenvs.2022.978404

8281

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.978404


Fama 2 × 3 portfolio division method. The monthly return of the

portfolio is calculated using the weighted market value of

circulation.

Summary statistics

Table 2 describes the statistical results, including the means,

medians, standard deviations, skewness, kurtosis, and results of

tests of normal distribution and stability. These data are intended

to facilitate a preliminary understanding of the properties and

distribution of industry stock returns and the key variables used

in this study. As shown in Table 2, stock returns in various

industries have similar statistical characteristics, and mean

industry stock prices and associated SDs fluctuate widely. All

of the stock return series are fat-tailed and right-skewed,

suggesting asymmetry. The Jarque–Berra test provides further

evidence that the stock returns in nearly all industries are not

normally distributed. The last column of Table 2 presents the

results of the augmented Dickey–Fuller test. All of the time series,

including Trend and PDSI36, are stationary.

Empirical results

Degree and structure of dependence

We use the classical ordinary least-squares (OLS) multiple

linear model and quantile regression model to examine the effect

of drought on stock prices by industry. The basic model is as

follows:

yt � a + bxt + εt, (3)

where yt represents the industry stock return (indreturnt) and
xt is a vector consisting of the explanatory variable (Trendt) and
the control variables mentioned above.

The OLS method gives the conditional mean of the target

variable as

E(yt

∣∣∣∣xt) � a + bxt. (4)

The conditional expectation E(yt|xt) indicates the

concentrated trend of the conditional distribution of yt|xt;

however, we focus on the influence of Trendt on the whole

conditional distribution of yt|xt.

Quantile regression, as proposed by Koenker and Bassett

(1978), provides comprehensive information about the

conditional distribution of yt|xt. For a given xt, the

conditional quantile function yt at quantile τ is defined as

Qτ(yt|xt) � aτ + bτxt + F−1
εt
(τ), (5)

where Fεt is the distribution function of the error term εt. The

estimated coefficient b̂τ of the quantile regression is given by the

following function:

b̂τ � arg min
aτ ,bτ∈R

∑T

t�1ρτ(yt − (aτ + bτxt)), (6)

where T is the sample size and ρτ is the check function, defined as

ρτ(ε) � (τ − 1)ε if ε< 0 and ρτ(ε) � τε otherwise. Because the

TABLE 1 The correspondence between PDSI values and drought degree.

PDSI value Drought degree PDSI value Drought degree

≤−4 Extreme drought 0.5–1 Initial moisture

−4 to −3 Severe drought 1–2 Slight moisture

−3 to −2 Moderate drought 2–3 Moderate moisture

−2 to −1 Slight drought 3–4 Heavy moisture

−1 to −0.5 Initial drought ≥4 Extreme moisture

−0.5 to 0.5 normal

This table reports the correspondence between PDSI values and drought degree. The bold part shows the drought situation of our sample period.

FIGURE 2
Historical PDSI for China. This figure plots the time series of
monthly PDSI value for China. The sample period is from January
of 1930 to December of 2014. The PDSI value is displayed on the
blue line. The red line is the fit line.
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objective function of quantile regression cannot be differentiated,

we usually use the linear programming method to calculate b̂τ .

Furthermore, we apply a bootstrap method to estimate the

quantile regression model, thus avoiding the hypothesis of

identically distributed errors and accounting for

heteroscedasticity.

Table 3 reports our empirical results. Column (1) presents

the results of the OLS estimation and columns (2) to (8) list the

results of the quantile regression estimation. For brevity, we

report only the coefficients of Trend. Notably, the OLS and

quantile regression estimations are distinct, with relatively

fewer significant values in the OLS regression. We first focus

on column (1). Among the 15 coefficients of Trend, only one is

negative and is not significant. However, 4 of the 14 positive

coefficients are significant. Because Trend is negatively correlated

with the degree of drought, positive coefficients of Trend indicate

that drought poses downside risks to stock prices in various

industries, with significant risks in the AFAHF, Man, Fin, and

WEPFM industries. A study by the National Academy of

Sciences (1999) classifies the effects of drought as direct, such

as “physical destruction of buildings, crops and natural

resources,” and indirect, such as “consequences of such

destruction, such as temporary unemployment and business

disruption.” The Man, WEPFM, and particularly AFAHF

industries have high water demand and are more directly

affected by drought (Deschênes and Greenstone, 2007). In

contrast, the effect of drought on the Fin industry reflects

more indirect costs related to drought-related business

disruptions and backward and forward multiplier economic

effects, such as non-performing loans.

Quantile regressions can comprehensively reveal the effect of

drought on industry stock prices. Columns (2) to (8) of Table 3

reveal that in addition to the four industries listed above, another

six industries are affected by drought to various degrees. The

strongest effects are observed in the RE and LBS industries, which

are both widely associated with other industries. The RE industry

is affected by many upstream industries, such as steel, cement,

machinery, and home decoration. The LBS industry affects many

downstream industries because it includes a wide range of areas,

such as business management services, legal consulting, market

management, advertising services, conferences and exhibitions,

and other business services. As a result, these industries are

affected more severely by droughts through subtle, indirect

mechanisms involving industrial chains.

Lines 4, 7, and 8 of Table 3 demonstrate that drought does

not significantly affect the EHGWPS, TSPS, and A&C industries.

This phenomenon may be attributable to various factors,

including an active governmental intervention policy and the

nature of company ownership. As mentioned above, China’s

drought problem is local, not global; dry and wet conditions not

TABLE 2 Summary statistics.

Industry N Min Mean Med Max Std Skew Kurt JB ADF

AFAHF 180 −0.262 0.015 0.008 0.256 0.097 0.151 3.112 0.780 −2.362***

Min 180 −0.286 0.019 0.011 0.300 0.097 0.214 3.965 8.368** −4.319***

Man 180 −0.239 0.019 0.020 0.301 0.087 0.078 3.771 4.644* −3.706***

EHGWPS 180 −0.223 0.014 0.010 0.364 0.087 0.385 4.752 27.462*** −4.216***

Con 180 −0.235 0.014 0.012 0.386 0.098 0.590 4.285 22.845*** −3.139***

W&R 180 −0.250 0.018 0.012 0.323 0.091 0.274 3.720 6.135** −3.262***

TSPS 180 −0.253 0.013 0.010 0.257 0.083 0.129 3.949 7.257** −3.759***

A&C 180 −0.297 0.016 0.010 0.295 0.101 0.169 3.151 1.028 −3.148***

ITS 180 −0.256 0.016 0.011 0.358 0.089 0.223 4.452 17.318*** −3.184***

Fin 180 −0.272 0.014 0.008 0.357 0.096 0.559 4.730 31.824*** −3.614***

RE 180 −0.261 0.019 0.011 0.364 0.103 0.529 4.161 18.498*** −4.162***

LBS 180 −0.222 0.018 0.013 0.274 0.090 0.230 3.172 1.805 −4.043***

WEPFM 180 −0.234 0.012 0.006 0.440 0.097 0.798 5.422 63.104*** −3.629***

CSE 180 −0.279 0.019 0.007 0.382 0.115 0.361 3.693 7.518** −5.549***

Com 180 −0.239 0.016 0.012 0.400 0.098 0.332 3.968 10.328*** −3.766***

Trend 180 −0.378 −0.096 −0.090 0.116 0.115 −0.801 2.936 289.520*** −2.800***

PDSI36 180 −4.578 −3.093 −3.434 −0.279 1.233 0.564 2.064 241.750*** −2.090**

This table reports the summary statistics of each industries’ stock returns and drought related indicators, including the means, medians, SDs, skewness, kurtosis, and results of tests of

normal distribution and stability. Our sample period is 2000–2014. The 15 industries are Agriculture, forestry, animal husbandry and fishery (AFAHF); Mining (Min); Manufacturing

(Man); Electricity, heat, gas and water production and supply (EHGWPS); Construction (Con); Wholesale and retail (W&R); Transportation, storage and postal services (TSPS);

Accommodation and catering (A&C); Information transmission, software and information technology services (ITS); Finance (Fin); Real estate (RE); Leasing and business services (LBS);

Water, environment and public facilities management (WEPFM); Culture, sports, and entertainment (CSE); Comprehensive industry (Com). JB is the Jarque-Berra test statistic, and the

null hypothesis of the test is that variables obey normal distribution. ADF is the augmented Dickey-Fuller test statistic, and the null hypothesis of this test is that unit roots exist. ***, ** and *

imply the rejection of the null hypothesis in the case at 1, 5 and 10% levels of significance, respectively.
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only follow an uneven spatial distribution but also a highly

variable temporal distribution. To address this long-term

imbalance in water resource distribution and complement

current resources, the government has developed the South-

to-North Water Diversion and West-to-East Electricity

Transmission projects. The construction of reservoirs,

desalination of seawater, prevention and control of water

pollution, and protection of the environment have also

effectively enhanced the resilience of these industries to

drought. Furthermore, resources considered vital to

livelihoods and the economy, such as water, electricity, and

transportation, are mostly controlled by the state, and thus

the stock prices in these industries are more strongly

influenced by national policies. The food industry also is not

significantly affected by drought for several reasons. First, the

allocation of water resources can alleviate the problem of food

production at its source. Second, national grain reserves and

imported food supplies can be used as needed to address food

shortages. Third, policies to control food prices can prevent

excessive inflation.

TABLE 3 Coefficients of Trend in OLS and quantile regressions by industry.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

OLS QR05 QR10 QR25 QR50 QR75 QR90 QR95 N

AFAHF 0.073** −0.090 −0.056 0.017 0.055** 0.111** 0.236*** 0.308*** 5

(0.035) (0.064) (0.045) (0.033) (0.026) (0.045) (0.059) (0.071)

Min 0.009 −0.022 −0.028 0.026 0.019 0.002 −0.010 −0.030 0

(0.032) (0.043) (0.040) (0.033) (0.042) (0.055) (0.068) (0.103)

Man 0.043** −0.017 0.013 0.009 0.042* 0.047** 0.090*** 0.110*** 5

(0.018) (0.045) (0.033) (0.016) (0.023) (0.020) (0.025) (0.040)

EHGWPS 0.019 −0.021 −0.030 −0.015 −0.014 −0.0005 0.086 0.095 0

(0.032) (0.050) (0.046) (0.037) (0.031) (0.042) (0.074) (0.073)

Con 0.056 0.026 −0.054 0.002 0.063* 0.053 0.086 0.078 1

(0.036) (0.066) (0.055) (0.031) (0.036) (0.052) (0.124) (0.140)

W&R 0.018 −0.033 −0.036 −0.005 −0.004 0.044* 0.062 0.070 1

(0.026) (0.037) (0.030) (0.025) (0.021) (0.023) (0.053) (0.062)

TSPS 0.014 −0.092 −0.058 −0.028 −0.010 0.030 0.025 0.075 0

(0.029) (0.099) (0.050) (0.023) (0.022) (0.033) (0.071) (0.090)

A&C 0.019 0.090 −0.003 0.010 0.018 0.029 −0.007 −0.036 0

(0.033) (0.065) (0.042) (0.040) (0.033) (0.055) (0.088) (0.091)

ITS 0.056 −0.017 −0.007 0.031 0.083*** 0.119** 0.178* −0.027 3

(0.036) (0.047) (0.036) (0.027) (0.031) (0.048) (0.102) (0.187)

Fin 0.054* 0.092* 0.063 0.080* 0.074* 0.015 0.013 −0.043 4

(0.030) (0.053) (0.061) (0.045) (0.044) (0.049) (0.058) (0.072)

RE −0.004 −0.208*** −0.155*** −0.090*** −0.034 0.058 0.168** 0.260*** 5

(0.043) (0.055) (0.038) (0.032) (0.031) (0.037) (0.080) (0.096)

LBS 0.029 −0.100* −0.080* −0.031 0.021 0.095** 0.157*** 0.219*** 5

(0.036) (0.054) (0.046) (0.040) (0.032) (0.037) (0.057) (0.072)

WEPFM 0.087** 0.049 0.064 0.091** 0.067* 0.054 0.082 0.0005 3

(0.037) (0.126) (0.060) (0.044) (0.037) (0.054) (0.112) (0.213)

CSE 0.070 0.040 −0.025 0.035 0.060 0.003 0.198 0.396*** 1

(0.059) (0.122) (0.093) (0.060) (0.052) (0.096) (0.132) (0.145)

Com 0.033 0.003 0.049 −0.017 0.009 0.041 0.049 0.089 0

(0.027) (0.060) (0.053) (0.037) (0.029) (0.038) (0.048) (0.075)

N 4 3 2 3 6 5 5 5

This table reports the OLS and quantile regression results of monthly stock returns on the long-term trend of drought by industry. Our sample period is 2000–2014. To save space, we only

report the coefficients of Trend. From left to right column are the regression results of OLS and quantile regressionmodels on the 5, 10, 25, 50, 75, 90 and 95 quantiles. The rightmost column

and the bottom row count the number of significant coefficients by row and column, respectively. The bold part are the industries significantly affected by drought, i.e. there are at least three

coefficients of Trend are significant in OLS regression and quantile regressions. Numbers in parentheses are standard errors. *, ** and *** denote statistical significance at 10, 5 and 1%,

respectively.
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The coefficients of Trend tend to change from negative to

positive from the lowest to the highest stock price quantile. In

high quantiles, however, the marginal effect is usually significant.

We conclude that co-movement tends to exist in booming

markets with high expected returns. A long-term drought

trend is not conducive to economic prosperity.

Figure 3 plots changes in the coefficients of Trend across

quantiles by industry. The 95% confidence interval is indicated

by shading. The shift in the basic shape from negative to positive

in Figure 3 confirms the overall trend of the coefficients in

Table 3. For all industries, the 95% CI widens at both ends of

the conditional distribution, indicating that the estimated

coefficients are less accurate. The estimated OLS coefficients

and 95% CIs (indicated by the dotted line) again demonstrate

the superior ability of quantile regression to fully explore the

relationship between drought and industry stock prices.

Quantile regression can reveal the effect of drought on the

conditional distribution of industrial stock returns. However, a

study of the effect of the degree of drought on industrial stock

prices is also interesting and can provide more information about

the dependence and structure of the relationship between these

variables. We build model (7) as follows:

Indreturnt � α0 + β1Trendt + β2Dumt + θ′xit + εit, (7)
where subscript t represents the month and xit represents the
control variables, which include PDSI36t, RPt, SMBt, and

HMLt. Dumt is a dummy variable that equals 1 when the

PDSI of month t is smaller than the mean PDSI of the sample

period from January 1990 to month t, and 0 otherwise. Thus, a

Dumt value of 1 represents drought conditions that are more

severe than the historical average (i.e., extreme).

Table 4 shows the regression results produced by model (7),

classified by industry. In all industries, the coefficients of Trend

remain positive, again proving that a trend of long-term drought

is not conducive to an increase in industry stock prices, as shown

in Table 3. However, a discussion of Table 4 should focus on the

coefficient estimates of Dumt, which are negative but not

significant in only 2 of 15 industries. In contrast, 6 of the

FIGURE 3
Quantile slope coefficients of Trend. The blue line is the coefficient values of Trend, and the shadow is the corresponding 95% CI. The dotted
line is the coefficient value of ordinary least square estimation of Trend and its corresponding 95% CI.
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TABLE 4 The impact of different degrees of drought on industry stock price.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

AFAHF Min Man EHGWPS Con W&R TSPS A&C ITS Fin RE LBS WEPFM CSE Com

Trend 0.079** 0.038 0.061*** 0.021 0.082** 0.041 0.029 0.043 0.058 0.052 0.017 0.051 0.092** 0.074 0.032

(0.037) (0.034) (0.019) (0.034) (0.038) (0.027) (0.031) (0.035) (0.039) (0.032) (0.046) (0.039) (0.040) (0.063) (0.029)

Dum 0.004 0.017** 0.010** 0.001 0.015* 0.014** 0.009 0.014* 0.001 −0.001 0.012 0.013* 0.003 0.002 −0.001

(0.008) (0.007) (0.004) (0.007) (0.008) (0.006) (0.007) (0.007) (0.008) (0.007) (0.010) (0.008) (0.008) (0.013) (0.006)

PDSI36 −0.006* −0.005 −0.004** −0.002 −0.001 0.001 0.003 0.002 0.001 −0.004 0.002 0.003 −0.003 −0.001 −0.002

(0.003) (0.003) (0.002) (0.003) (0.003) (0.002) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.004) (0.006) (0.003)

RP 0.921*** 1.091*** 0.981*** 0.920*** 1.035*** 0.963*** 0.912*** 0.941*** 0.890*** 1.058*** 1.099*** 0.917*** 0.990*** 0.939*** 1.036***

(0.041) (0.037) (0.021) (0.037) (0.042) (0.030) (0.034) (0.039) (0.043) (0.036) (0.050) (0.043) (0.044) (0.070) (0.032)

SMB 0.741*** −0.343*** 0.432*** 0.239*** 0.296*** 0.511*** 0.123** 0.859*** 0.410*** −0.625*** −0.101 0.309*** 0.451*** 0.808*** 0.631***

(0.068) (0.062) (0.035) (0.062) (0.069) (0.050) (0.057) (0.064) (0.071) (0.059) (0.084) (0.071) (0.072) (0.115) (0.053)

HML −0.256** 0.092 −0.116** 0.466*** 0.278** −0.234*** 0.133 −0.232** −0.304*** 0.047 −0.413*** −0.387*** −0.170 −0.195 −0.175**

(0.111) (0.101) (0.058) (0.101) (0.113) (0.082) (0.093) (0.105) (0.116) (0.097) (0.136) (0.116) (0.118) (0.188) (0.086)

Constant −0.010 −0.011 −0.004 −0.003 −0.004 0.005 0.010 0.004 0.016* 0.004 0.014 0.017* −0.001 0.008 0.003

(0.010) (0.009) (0.005) (0.009) (0.010) (0.007) (0.008) (0.009) (0.010) (0.008) (0.012) (0.010) (0.010) (0.016) (0.007)

N 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180

R-squared 0.806 0.841 0.936 0.800 0.801 0.880 0.817 0.838 0.749 0.849 0.742 0.758 0.779 0.606 0.885

This table reports the regression results of different degrees of drought and industry stock prices. Our sample period is 2000–2014.Dumt is a dummy variable.When the PDSI index of month t is smaller than themean of PDSI index of the sample period from

January 1990 tomonth t, it is 1, otherwise it is 0. In this way, a value of 1 forDumt represents extreme drought conditions that are more severe than the historical average. The last two rows show the goodness of fit and sample size. Numbers in parentheses are

SEs. *, ** and *** denote statistical significance at 10, 5 and 1%, respectively.
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13 positive coefficient estimates are significant, corresponding to

Min, Man, Con, W&R, A&C, and LBS. These regression results

show that extreme drought drives up stock prices in these

industries, possibly because of market speculation. The PDSI

index trend in Figure 2 suggests that China faces frequent

droughts and floods, and extreme droughts usually do not

persist. Furthermore, the literature proposes that stock prices

have the characteristics of mean reversion (Kim et al., 1991;

Barberis et al., 1998; Gropp, 2004). In a drought, industry stock

prices fall as climatological conditions worsen. When either

drought conditions or stock prices reach a certain threshold,

investors expect an immediate reversal and increase their

investment, leading to a positive correlation between extreme

drought and industry stock prices.

Regimes of investor sentiment

The results of quantile regression show that drought has a

complex effect on industry stock returns. This relationship may

be affected not only by fundamental factors but also by irrational

factors, such as investor sentiment. The signs of the coefficients of

Trend in each quantile are inconsistent, indicating that the

relationship between drought and industry stock returns may

be nonlinear due to variable investor sentiment. Therefore, we

consider the threshold effect of investor sentiment. To avoid

error caused by an artificial division of the investor sentiment

interval, we use the threshold panel model developed by Hansen

(1999). This model can be used to specify the threshold variable,

namely investor sentiment, and endogenously divide the

intervals according to the characteristics of the data, allowing

a study of the relationship between drought and industry stock

returns in different sentiment regimes.

We first focus on a single threshold model and expand it to a

multi-threshold model. The single threshold model is set as

follows:

Indreturnit � αi + θ′xit + δ1TrendtI(TOit ≤ τ1)
+ δ2TrendtI(TOit > τ1) + εit. (8)

Unlike the empirical evidence above, our threshold model (8)

is based on panel data of industry stock returns: subscript i

represents the various industries and t is the month. Indreturnit
and Trendt remain the dependent and independent variables,

respectively. xit represents the control variables, including

PDSI36t, RPt, SMBt, and HMLt. TOt is the threshold

variable that represents investor sentiment. Following Baker

et al. (2012) and Huang et al. (2015), we use the turnover rate

to measure investor sentiment, given the positive correlation

between these variables. τ1 is a specific threshold value and I(·) is
an indicator function. Finally, αi reflects the individual effects of

the industry, such as the life cycle, location preference, natural

ecological attributes, and other unobservable factors. Of these

industry effects, the natural ecological attributes are not easily

changed in a short time. Some industries exist harmoniously with

nature, whereas others inevitably cause harm to the environment.

For example, the mining industry tends to pollute water and

damage vegetation, thereby increasing the probability of drought.

Various government departments have imposed environmental

protection requirements on the mining industry. These policies

have increased production costs in this industry, which are

ultimately reflected in stock prices. To address these

variations, we study the threshold effect of investor sentiment

using an individual fixed effect model that can control the effects

of unobservable factors, such as natural ecological attributes, that

are difficult to change in the short term but can affect both

drought and stock returns.

To obtain the parameter estimator, we subtract the intra-

group mean from each observation to eliminate the individual

effect αi. The transformed model is as follows:

Indreturnpit � δ1Trendpt I(TOit ≤ τ1) + δ2Trendpt I(TOit > τ1)
+ θ′xpit + εpit.

(9)
Coefficients δ1 and δ2 correspond to the different regimes.

Given the threshold value τ1, we can obtain the parameter

estimates δ̂1(τ1) and δ̂2(τ1) and the residual sum SSR(τ1) of

model (9). Finally, by minimizing SSR(τ1), we obtain

the estimated value τ̂1 and parameters δ̂1(τ̂1) and δ̂2(τ̂1).
Next, we perform two tests to determine whether the

threshold effect is significant and whether the estimated

threshold value is equal to the actual value. For the first test,

the null hypothesis states that there is no threshold effect,

H0: δ1 � δ2, and the corresponding alternative hypothesis is

H1: δ1 ≠ δ2. The test statistic is

F � SSRp − SSR(τ̂1)
σ̂2 , (10)

where SSRp is the square sum of the residuals of the model under

the null hypothesis. σ̂2 � SSR(τ̂1)
n(T−1) is the uniform estimation of the

variance of the disturbance term, n is the sample size, and T is the

length of time. The larger the value of SSRp − SSR(τ̂1), the more

SSR increases with constraints; further, the likelihood of rejection

of the null hypothesis H0: δ1 � δ2 increases. Under the null

hypothesis, the threshold value τ1 is unrecognizable, so the F

statistic has a nonstandard distribution. The bootstrap method

can be used to obtain the asymptotic distribution and p value. For

the second test, the null hypothesis states that the estimated

threshold value is equal to its actual value, H0: τ̂1 � τ0. The

corresponding likelihood ratio test statistic is

LR(τ1) � SSR(τ1) − SSR(τ̂1)
σ̂2

. (11)

If τ̂1 � τ0 is true, then the statistic also has a nonstandard

distribution. However, its cumulative distribution function is
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(1 − e−x/2)2, so its critical value can be calculated directly. The

statistic LR can be used to calculate the CI of τ1. The above model

assumes that there is only one investor sentiment threshold.

From an econometric perspective, however, there may be

multiple thresholds. By assuming a known value of estimated

τ1 in the single threshold model and then searching for τ2, the

single threshold model can be easily extended to a scenario with

multiple thresholds.

We also divide the sample according to the empirical results

in Table 3 to better test the threshold effect of investor sentiment.

We divide the sample using a cut-off value of 3 for the total

significant number of Trend coefficients in the OLS regression

and quantile regression of an industry. Industries with a cut-off

value greater than 3 comprise the first sub-sample, which

includes AFAHF, Man, ITS, Fin, RE, LBS, and WEPFM.

Drought has a significant effect on these industries, and it

TABLE 5 Threshold effect test of investor sentiment.

H0 H1 Fstat Prob Crit10 Crit5 Crit1

Full sample Liner Single 35.84 0.000 11.677 15.046 21.742

Single Double 23.71 0.100 23.542 34.303 55.909

The first subsample Liner Single 29.44 0.000 11.107 13.747 22.221

Single Double 7.23 0.623 21.153 25.245 38.709

The second subsample Liner Single 18.23 0.003 9.593 12.784 16.304

Single Double 8.79 0.277 12.311 14.852 20.673

This table reports the threshold effect test results of investor sentiment in three samples. Our sample period is 2000–2014. The full sample is the monthly stock return panel data of

15 industries. The first subsample includes industries significantly affected by drought, i.e. there are at least three coefficients of Trend are significant in OLS regression and quantile

regression in Table 3. The other industries are included in the second subsample. This table shows the original hypothesis, alternative hypothesis, F statistic, probability value, and critical

values at 10, 5 and 1% from left to right columns.

TABLE 6 Threshold regression results of investor sentiment.

Full sample The first subsample The second subsample

Liner Single Liner Single Liner Single

Trend 0.039*** 0.034*** 0.048*** 0.042*** 0.030*** 0.024***

(0.007) (0.006) (0.011) (0.011) (0.008) (0.006)

−0.288*** −0.356** −0.109***

(0.075) (0.097) (0.029)

PDSI36 −0.002* −0.0004 −0.002 −0.0001 −0.001 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

RP 0.985*** 0.977*** 0.984*** 0.972*** 0.986*** 0.965***

(0.018) (0.017) (0.030) (0.029) (0.024) (0.023)

SMB 0.313** 0.304** 0.229 0.215 0.387** 0.383**

(0.108) (0.107) (0.171) (0.169) (0.141) (0.139)

HML −0.116* −0.103 −0.243*** −0.225** −0.005 0.029

(0.065) (0.066) (0.065) (0.069) (0.095) (0.090)

Constant 0.005** 0.007*** 0.007 0.010** 0.004 0.009**

(0.002) (0.002) (0.004) (0.003) (0.002) (0.003)

Threshold 52.3 52.0 21.9

95% CI [50.5, 53.7] [50.7, 55.6] [20.6, 22.0]

R2 0.739 0.743 0.739 0.746 0.743 0.747

N 2700 2700 1260 1260 1440 1440

This table reports the linear and threshold regression results of investor sentiment in three samples. Our sample period is 2000–2014. The full sample is the monthly stock return panel data

of 15 industries. The first subsample includes industries significantly affected by drought, i.e. there are at least three coefficients of Trend are significant in linear regression and quantile

regression in Table 3. The other industries are included in the second subsample. The last four rows show the threshold value, 95% CI of the threshold value, goodness of fit and sample size.

Numbers in parentheses are SEs. *, ** and *** denote statistical significance at 10, 5 and 1%, respectively.
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thus increases the probability of observing the threshold effect of

investor sentiment. The remaining industries comprise the

second sub-sample; here, drought has a lesser effect, so the

evidence of a threshold effect of investor sentiment may not

be observed. Table 5 presents the F-statistics, probability values,

and critical values at the 10, 5, and 1% levels for each test of each

sample. We use a bootstrap method to calculate the critical

F-statistic value. The bootstrap number is 300.

In the test of the linear model, the F-statistics for the whole

sample, the first and the second sub-sample are 35.84, 29.44, and

18.23, each of which rejects the null hypothesis at a 1% level of

significance. However, the null hypothesis is not rejected in all

samples during the test of the single-threshold model. Therefore,

the single-threshold model is suitable for studying the threshold

effect of investor sentiment on the relationship between drought

and industry stock returns.

To verify the robustness of the results, we present the

estimation results for both the linear model and the single-

threshold model in Table 6, which also lists the regression

results of the full sample and the subsamples. All of the linear

models show positive coefficients of Trend, again verifying the

results of OLS regression for each industry in Table 3. In other

words, the correlation between drought and stock prices is

generally negative. After the threshold feature is introduced,

the SD of the model error decreases and the determinable

coefficient increases, indicating that this feature captures at

least some of the nonlinear components of the variable

relationship. We first focus on the full sample. The estimated

threshold value of 52.3 falls within the 95% CI [50.5,53.7],

indicating that the estimated threshold value is consistent with

the true value. We can sample into a low sentiment regime

(TO≤ 52.3) and a high sentiment regime (TO> 52.3). In the low

sentiment regime, the coefficient of Trend is 0.034, which means

that drought has a significant negative effect on industry stock

prices in this regime. This result is consistent with the fact that

drought is not conducive to economic development. In the high

sentiment regime, the coefficient of Trend is −0.288, which is

significant at the 1% level. In other words, the effect of the

drought on industry stock prices shifts from negative to positive.

This phenomenon reflects the irrational or speculative behavior

of investors. The regression results in Table 6 are consistent with

the findings of research on the effect of investor sentiment on the

stock market (Brown and Cliff, 2005; Baker and Wurgler, 2006;

Lemmon and Portniaguina, 2006; Kaplanski and Levy, 2010;

Mian and Sankaraguruswamy, 2012). Consistently, these studies

demonstrate that when investor sentiment is high, investors tend

to have a high propensity toward speculation and thus overvalue

risky assets such as stocks. The reverse is true during low

sentiment periods, as investors’ pessimism leads them to

undervalue stocks.

The results of regression are the same in the subsamples as in

the whole sample. Specifically, as investor sentiment shifts from

low to high, the correlation between drought and industry stock

prices shifts from negative to positive. The first subsample has a

threshold value of 52.0, which is very close to that of the whole

sample. Although we also observe a significant threshold effect of

investor sentiment in the second subsample, its threshold value

of 21.9 is less than half of the corresponding values of the whole

sample and the first subsample. Therefore, the effect of drought

on industry stock prices is more likely to be distorted by investor

sentiment in the second subsample, although we note that the

effect of drought on industry stock prices is smaller in the second

than in the first subsample. In the low sentiment regime, the

coefficients of Trend are 0.034, 0.042, and 0.024 in the whole

sample, first subsample, and second subsample, respectively. In

the high sentiment regime, the coefficient of Trend in the second

subsample is −0.109, which is approximately half of the

corresponding value in the full sample which is −0.288 and

one-third of that in the first subsample which is −0.356. These

results are consistent with the results of regression in Table 3,

which demonstrate drought has a less significant effect on

industry stock prices in the second subsample. In summary,

the results of regression of the threshold model confirm the

influence of the investor sentiment threshold on the relationship

between drought and industry stock prices.

Robustness checks

Consideration of differences in quarterly
precipitation

China has a pronounced monsoon climate, with seasonal

variations in precipitation. According to the China

Meteorological data network5, precipitation is more frequent

in the second and third quarters than in the first and fourth

quarters. This pattern may affect estimation of the drought trend.

To determine whether our regression results are affected by this

phenomenon, we add quarter dummy variables to the long-term

drought trend measurement model:

PDSIt � a + bt + cPDSIt−1 + d1D1 + d2D2 + d3D3 + ε. (12)

This AR(1) model is augmented with a deterministic time

trend t and quarter dummies. D1, D2, and D3 are the dummy

variables for the first, second, and third quarters, respectively.

The coefficient of the deterministic time trend in model (12) is

the alternative measure of the long-term drought trend.

Table 7 shows the OLS and quantile regression results of

individual industries based on this alternative measure of Trend.

Again, the OLS regression results show a negative correlation

between drought and industry stock prices, and this relationship

is significant in four industries, although Fin is replaced with ITS.

5 http://data.cma.cn/.
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The results of quantile regression demonstrate that more than

half of the industries are significantly affected by drought, and

this effect is usually positive when stock prices are low and

negative when prices are high. The coefficient estimation

accuracy is higher at high stock price quantiles. The AFHAF,

Man, ITS, RE, and LBS industries are most affected by drought,

similar to the results shown in Table 3. In summary, the OLS and

quantile regression results are in line with our previous findings.

As shown in Table 8, the results of the threshold effect

reveal a single-threshold effect in the whole sample and the

first subsample but a double-threshold effect in the second

subsample. Table 9 reports both the linear and threshold

regression results. The results of linear regression still show

a negative correlation of drought with stock prices. No

significant changes are observed in the results of threshold

regression in either the whole sample or the subsamples.

Despite the double-threshold effect in the second

subsample, the regression results do not differ substantially

from those in Table 6. Specifically, the threshold values in the

second subsample are 16.3 and 18.5. At turnover rates higher

TABLE 7 Robustness check Ⅰ: OLS and quantile regressions considering quarterly precipitation difference.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

OLS QR05 QR10 QR25 QR50 QR75 QR90 QR95 N

AFAHF 0.085** −0.096 −0.059 0.025 0.061** 0.124** 0.208*** 0.328*** 5

(0.038) (0.074) (0.052) (0.038) (0.030) (0.052) (0.063) (0.076)

Min 0.016 −0.028 0.004 0.027 0.031 0.002 −0.010 −0.030 0

(0.035) (0.050) (0.045) (0.037) (0.044) (0.062) (0.067) (0.110)

Man 0.049** −0.009 0.016 0.011 0.037 0.049** 0.076*** 0.112*** 4

(0.020) (0.047) (0.036) (0.019) (0.024) (0.023) (0.027) (0.043)

EHGWPS 0.021 −0.021 −0.029 −0.017 −0.018 −0.015 0.107 0.100 0

(0.035) (0.058) (0.055) (0.044) (0.035) (0.044) (0.080) (0.079)

Con 0.060 0.030 −0.011 0.005 0.064 0.059 0.081 0.089 0

(0.039) (0.072) (0.064) (0.034) (0.041) (0.064) (0.141) (0.159)

W&R 0.019 −0.034 −0.038 −0.006 −0.005 0.046* 0.067 0.072 1

(0.028) (0.039) (0.034) (0.028) (0.024) (0.025) (0.058) (0.071)

TSPS 0.017 0.157 −0.024 −0.019 −0.011 0.028 0.028 0.083 0

(0.032) (0.118) (0.065) (0.025) (0.024) (0.036) (0.072) (0.088)

A&C 0.014 0.088 −0.006 0.014 0.014 0.008 −0.008 −0.041 0

(0.036) (0.071) (0.042) (0.044) (0.039) (0.061) (0.098) (0.098)

ITS 0.073* −0.017 0.010 0.037 0.088*** 0.133** 0.216** 0.207 4

(0.040) (0.058) (0.042) (0.031) (0.033) (0.055) (0.100) (0.176)

Fin 0.045 0.087 0.027 0.067 0.040 −0.013 0.013 −0.053 0

(0.033) (0.059) (0.068) (0.048) (0.052) (0.052) (0.067) (0.106)

RE −0.010 −0.228*** −0.176*** −0.118*** −0.037 0.063 0.160* 0.273** 5

(0.047) (0.062) (0.039) (0.033) (0.033) (0.043) (0.086) (0.110)

LBS 0.032 −0.102* −0.089* −0.032 0.024 0.096** 0.149** 0.224*** 5

(0.040) (0.061) (0.051) (0.044) (0.036) (0.041) (0.062) (0.080)

WEPFM 0.096** 0.040 0.070 0.084* 0.079** 0.061 0.088 0.0005 3

(0.041) (0.126) (0.061) (0.050) (0.040) (0.062) (0.123) (0.196)

CSE 0.086 0.047 −0.024 0.039 0.072 0.024 0.250* 0.393*** 2

(0.064) (0.130) (0.102) (0.068) (0.062) (0.106) (0.143) (0.143)

Com 0.037 0.003 0.057 −0.019 0.010 0.044 0.084 0.106 0

(0.030) (0.063) (0.060) (0.040) (0.031) (0.039) (0.051) (0.079)

N 4 2 2 2 3 5 6 5

This table reports the OLS and quantile regression results based on the alternative measure of the long-term trend of drought, which considering quarterly precipitation difference. To save

space, we only report the coefficients of Trend. From left to right column are the regression results of OLS model and quantile regressionmodels on the 5, 10, 25, 50, 75, 90 and 95 quantiles.

The rightmost column and the bottom row count the number of significant coefficients by row and column, respectively. The bold part are the industries significantly affected by drought,

i.e. there are at least three coefficients of Trend are significant in OLS regression and quantile regressions. Numbers in parentheses are SEs. *, ** and *** denote statistical significance at 10,

5 and 1%, respectively.
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than 16.3, the impact of drought on stock prices changes from

negative to positive, and this positive impact becomes stronger

at turnover rates higher than 18.5. Once again, these results

demonstrate that the threshold effect of investor sentiment is

more likely to distort the relationship between drought and

stock prices in the second subsample. A comparison of the

subsamples shows that drought has a greater negative effect on

the first subsample but nearly identical positive effects on both

subsamples, and the second subsample has a significantly lower

threshold value. In summary, our main findings are not altered

TABLE 8 Robustness check Ⅰ: Threshold effect test of investor sentiment considering quarterly precipitation difference.

H0 H1 Fstat Prob Crit10 Crit5 Crit1

Full sample Liner Single 35.84 0.000 11.649 12.986 19.172

Single Double 23.71 0.100 23.687 30.644 41.112

The first subsample Liner Single 31.73 0.003 12.988 16.581 24.591

Single Double 3.09 0.887 19.824 25.362 36.092

The second subsample Liner Single 22.04 0.000 10.167 12.127 15.538

Single Double 9.27 0.067 8.194 9.659 13.178

Double Triple 4.69 0.613 15.707 21.777 31.558

This table reports the threshold effect test results of investor sentiment in three samples based on the alternative measure of the long-term trend of drought. Our sample period is 2000–2014.

The full sample is the monthly stock return panel data of 15 industries. The first subsample includes industries significantly affected by drought, i.e. there are at least three coefficients of

Trend are significant in OLS regression and quantile regression in Table 7. The other industries are included in the second subsample. This table shows the original hypothesis, alternative

hypothesis, F statistic, probability value, and critical values at 10, 5 and 1% from left to right columns.

TABLE 9 Robustness check Ⅰ: Threshold regression results of investor sentiment considering quarterly precipitation difference.

Full sample The first subsample The second subsample

Liner Single Liner Single Liner Single Double

Trend 0.039*** 0.034*** 0.047** 0.040** 0.033*** 0.036*** 0.033***

(0.007) (0.006) (0.013) (0.013) (0.007) (0.007) (0.006)

−0.288*** −0.352** −0.077** −0.076**

(0.075) (0.107) (0.033) (0.033)

−0.376***

(0.077)

PDSI36 −0.002* −0.0005 −0.001 0.0002 −0.002* 0.001 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

RP 0.985*** 0.977*** 0.972*** 0.959*** 0.994*** 0.974*** 0.970***

(0.018) (0.017) (0.032) (0.029) (0.023) (0.021) (0.021)

SMB 0.313** 0.304** 0.371** 0.359** 0.275 0.270 0.266

(0.108) (0.107) (0.113) (0.108) (0.168) (0.168) (0.167)

HML −0.116* −0.103 −0.292*** −0.271*** 0.001 0.027 0.030

(0.065) (0.066) (0.050) (0.060) (0.084) (0.080) (0.081)

Constant 0.005** 0.007*** 0.007 0.011** 0.004 0.008** 0.009***

(0.002) (0.002) (0.005) (0.003) (0.002) (0.002) (0.002)

Threshold 52.3 51.9 16.3 16.3, 18.5

95% CI [50.5, 53.7] [50.5,53.2] [15.0, 16.6] [14.8,16.6], [18.3,18.7]

R2 0.739 0.743 0.767 0.776 0.726 0.731 0.732

N 2700 2700 1080 1080 1620 1620 1620

This table reports the linear and threshold regression results of investor sentiment in three samples based on the alternative measure of the long-term trend of drought. Our sample period is

2000–2014. The full sample is the monthly stock return panel data of 15 industries. The first subsample includes industries significantly affected by drought, i.e. there are at least three

coefficients of Trend are significant in OLS regression and quantile regression in Table 7. The other industries are included in the second subsample. The last four rows show the threshold

value, 95% CI of the threshold value, goodness of fit and sample size. Numbers in parentheses are robust SEs. *, ** and *** denote statistical significance at 10, 5 and 1%, respectively.
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by considering the quarterly effects in our calculation of the

long-term drought trend.

Alternative drought index

Following the literature, we use Trend calculated based on the

AR(1) model in our main empirical analysis. To improve

robustness, we use the Box–Jenkins process to reselect the

model, determine the order, and calculate Trend. As PDSI is a

stationary time series, we calculate the autocorrelation coefficient

and partial autocorrelation coefficient to determine the suitability

of the ARMA, AR, and MA models. The autocorrelation

coefficient tails off to zero, and the partial autocorrelation

coefficient is truncated. Although the third-order partial

autocorrelation coefficient is significantly different from zero,

values above the third order can be considered equal to zero.

Therefore, we extend model (2) to the AR(3) model to recalculate

Trend and repeat our empirical analysis of the economic impact

of drought.

TABLE 10 Robustness check Ⅱ: OLS and quantile regressions based on Trend calculated by Box-Jenkins process.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

OLS QR05 QR10 QR25 QR50 QR75 QR90 QR95 N

AFAHF 0.060** −0.074 −0.043 0.006 0.046** 0.090** 0.171*** 0.240*** 5

(0.027) (0.050) (0.038) (0.028) (0.021) (0.035) (0.044) (0.054)

Min 0.015 −0.018 −0.017 0.020 0.023 0.029 −0.005 −0.028 0

(0.025) (0.032) (0.031) (0.026) (0.030) (0.043) (0.057) (0.082)

Man 0.038*** −0.009 0.010 0.007 0.035** 0.044*** 0.075*** 0.090*** 5

(0.014) (0.031) (0.025) (0.013) (0.017) (0.015) (0.020) (0.030)

EHGWPS 0.014 −0.016 −0.020 −0.016 −0.016 0.004 0.069 0.084 0

(0.025) (0.034) (0.030) (0.029) (0.025) (0.032) (0.058) (0.056)

Con 0.051* 0.020 −0.042 0.002 0.054* 0.051 0.065 0.095 2

(0.028) (0.051) (0.048) (0.026) (0.029) (0.038) (0.092) (0.111)

W&R 0.022 −0.025 −0.020 −0.004 0.002 0.049*** 0.050 0.060 1

(0.020) (0.028) (0.025) (0.020) (0.017) (0.017) (0.039) (0.049)

TSPS 0.012 −0.068 −0.048 −0.028 −0.008 0.025 0.057 0.116* 1

(0.023) (0.052) (0.032) (0.017) (0.018) (0.023) (0.045) (0.061)

A&C 0.019 0.080 −0.002 0.008 0.013 0.017 0.010 −0.020 0

(0.026) (0.051) (0.034) (0.035) (0.026) (0.041) (0.070) (0.072)

ITS 0.046 −0.012 −0.005 0.019 0.069*** 0.097** 0.132* 0.134 3

(0.028) (0.036) (0.025) (0.021) (0.024) (0.038) (0.079) (0.150)

Fin 0.046* 0.070 0.053 0.063* 0.059* 0.016 0.010 0.004 3

(0.023) (0.045) (0.046) (0.033) (0.034) (0.037) (0.044) (0.058)

RE 0.004 −0.159*** −0.122*** −0.078*** −0.017 0.044 0.124** 0.203*** 5

(0.033) (0.043) (0.032) (0.026) (0.025) (0.030) (0.056) (0.074)

LBS 0.027 −0.074* −0.062* −0.022 0.020 0.077*** 0.111** 0.163*** 5

(0.028) (0.042) (0.034) (0.030) (0.025) (0.028) (0.043) (0.050)

WEPFM 0.068** 0.051 0.052 0.073** 0.053* 0.049 0.072 0.0003 3

(0.029) (0.120) (0.052) (0.036) (0.029) (0.041) (0.089) (0.182)

CSE 0.059 0.030 −0.020 0.031 0.054 0.025 0.193* 0.299*** 2

(0.046) (0.096) (0.070) (0.044) (0.041) (0.079) (0.102) (0.107)

Com 0.026 0.002 0.037 −0.014 0.009 0.020 0.052 0.066 0

(0.021) (0.045) (0.039) (0.028) (0.025) (0.031) (0.036) (0.049)

N 5 2 2 3 6 5 6 6

This table reports the OLS and quantile regression results of monthly stock returns on the long-term trend of drought by industry. Our sample period is 2000–2014. To save space, we only

report the coefficients of Trend. From left to right column are the regression results of OLSmodel and quantile regressionmodels on the 5, 10, 25, 50, 75, 90 and 95 quantiles. The rightmost

column and the bottom row count the number of significant coefficients by row and column, respectively. The bold part are the industries significantly affected by drought, i.e. there are at

least three coefficients of Trend are significant in OLS regression and quantile regressions. Numbers in parentheses are SEs. *, ** and *** denote statistical significance at 10, 5 and 1%,

respectively.
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Table 10 presents the results of OLS and quantile regression

of the relationship between drought and industry stock prices,

which are very close to the results in Table 3. OLS regression

reveals a negative effect of drought on industry stock prices.

Further consideration of the quantile regression results reveals

that for almost all of the industries, the effect of drought shifts

from positive to negative with the transition from the low to high

quantile and is more significant in the high quantile. This

evidence shows that drought is not conducive to economic

prosperity and has a negative overall effect on industry stock

prices. Individually, OLS regression captures the significant

effects of drought on the AFAHF, Man, Fin, and WEPFM

industries, while quantile regression further captures the

significant effects of drought on the ITS, RE, and LBS

industries. These results are consistent with our earlier findings.

It is also interesting to study the delayed response of industry

stock prices by directly lagging Trend by one period. Here, we

replace Trendt with Trendt−1 in model (3). Table 11 reports the

results of regression between industry stock returns and the lag

Trend. A comparison of the regression results in Tables 3, 11

TABLE 11 Robustness check Ⅲ: OLS and quantile regressions based on Trendt−1.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

OLS QR05 QR10 QR25 QR50 QR75 QR90 QR95 N

AFAHF 0.067* −0.135** −0.068 0.009 0.057** 0.072 0.201*** 0.248*** 5

(0.035) (0.062) (0.044) (0.035) (0.028) (0.049) (0.061) (0.068)

Min 0.008 −0.016 −0.030 0.028 0.020 0.006 −0.008 −0.028 0

(0.032) (0.044) (0.042) (0.035) (0.047) (0.052) (0.070) (0.101)

Man 0.044** −0.012 −0.012 0.007 0.040* 0.054*** 0.079*** 0.113*** 5

(0.018) (0.042) (0.033) (0.018) (0.022) (0.019) (0.025) (0.039)

EHGWPS 0.016 −0.056 −0.048 −0.023 −0.018 −0.001 0.089 0.079 0

(0.032) (0.046) (0.041) (0.041) (0.034) (0.045) (0.075) (0.078)

Con 0.055 0.027 −0.052 0.003 0.058 0.055 0.085 0.114 0

(0.036) (0.059) (0.051) (0.029) (0.036) (0.047) (0.119) (0.141)

W&R 0.021 −0.030 −0.047 −0.006 −0.004 0.043* 0.053 0.053 1

(0.025) (0.040) (0.032) (0.024) (0.021) (0.022) (0.049) (0.057)

TSPS 0.018 −0.126* −0.035 −0.034 −0.002 0.031 0.073 0.136* 2

(0.029) (0.069) (0.040) (0.023) (0.023) (0.029) (0.060) (0.075)

A&C 0.029 0.092 −0.003 0.006 0.021 0.050 0.019 −0.034 0

(0.034) (0.063) (0.044) (0.041) (0.043) (0.065) (0.097) (0.099)

ITS 0.048 −0.028 −0.022 0.023 0.083** 0.142*** 0.124 −0.037 2

(0.036) (0.044) (0.034) (0.026) (0.034) (0.048) (0.117) (0.211)

Fin 0.061** 0.103* 0.064 0.078* 0.084* 0.022 0.010 −0.039 4

(0.030) (0.053) (0.055) (0.042) (0.045) (0.054) (0.067) (0.090)

RE 0.005 −0.218*** −0.153*** −0.099*** −0.031 0.062* 0.173** 0.304*** 6

(0.043) (0.060) (0.040) (0.031) (0.031) (0.034) (0.072) (0.101)

LBS 0.020 −0.121** −0.083* −0.044 0.017 0.093** 0.068 0.230*** 4

(0.035) (0.056) (0.046) (0.041) (0.034) (0.041) (0.057) (0.082)

WEPFM 0.073** 0.060 0.069 0.089** 0.053 0.045 0.092 0.0005 2

(0.037) (0.127) (0.066) (0.043) (0.037) (0.050) (0.121) (0.226)

CSE 0.062 0.057 −0.026 0.042 0.055 −0.0002 0.205 0.330** 1

(0.059) (0.134) (0.085) (0.060) (0.049) (0.096) (0.132) (0.148)

Com 0.030 −0.010 0.050 −0.020 0.013 0.036 0.038 0.066 0

(0.027) (0.065) (0.054) (0.035) (0.032) (0.039) (0.047) (0.081)

N 4 5 2 3 4 5 3 6

This table reports the OLS and quantile regression results of monthly stock returns on the long-term trend of drought lagged one period by industry. Our sample period is 2000–2014. To

save space, we only report the coefficients of Trend. From left to right column are the regression results of OLS model and quantile regression models on the 5, 10, 25, 50, 75, 90 and

95 quantiles. The rightmost column and the bottom row count the number of significant coefficients by row and column, respectively. The bold part are the industries significantly affected

by drought, i.e. there are at least three coefficients of Trend are significant in OLS regression and quantile regressions. Numbers in parentheses are SEs. *, ** and *** denote statistical

significance at 10, 5 and 1%, respectively.
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reveals similar responses of industry stock prices to drought in

the previous period and in the current period, although drought

in the previous period has a relatively smaller and less significant

effect on industry stock prices. Out of curiosity, we also examine

the effect of monthly changes in Trend on industry stock prices.

However, our empirical results show that this monthly change

has no significant effect on the stock prices of various industries,

possibly because monthly variations in the long-term drought

trend are too small and difficult to detect (data not shown

because of space limitations).

Conclusion

In China, drought is a frequent form of natural disaster

characterized by a relative long duration and wide range of

effects. Increases in global warming and changes to

atmospheric circulation patterns have exacerbated the drought

trend in China in recent years. This paper uses the PDSI to

examine the effects of long-term drought trends on stock prices

in various industries from 2000 to 2014.

The structure and strength of the relationship between

drought and stock prices vary according to industry. The

results obtained using OLS regression models show that

drought generally has a negative correlation with industry

stock prices. However, our OLS regression models only

identify four industries that are significantly affected by

drought. The quantile regression model provides a more

comprehensive analysis of the relationship between drought

and industry stock prices, revealing that drought significantly

affects stock prices in 10 of the 15 studied industries to various

degrees. The AFAHF, Man, ITS, Fin, RE, LBS, and WEPFM

industries are particularly vulnerable to drought. Furthermore,

the effect of drought on industry stock prices shifts from positive

to negative as the analysis moves from low to high quantiles and

is more significant in the high quantiles latter group. This result

indicates that drought is not conducive to economic prosperity.

The results from our threshold model based on panel data

show that the effects of drought on industry stock prices vary

according to the threshold effect of investor sentiment. In the low

sentiment regime, drought is negatively correlated with industry

stock prices, whereas in the high sentiment regime, this

correlation positive. This pattern suggests that investors are

overly cautious or pessimistic during periods of low sentiment

period, leading to the undervaluation of stocks, whereas they tend

to speculate during periods of high sentiment, leading to the

overvaluation of stocks.

Our findings have many implications for policy-makers,

practitioners, and academics. First, they confirm the industry-

based heterogeneity in the economic effect of drought and the

threshold effect of investor sentiment. This confirmation will

help the government to guide market investors and formulate

drought-response policies for specific industries. Second, our

findings may help investors to build portfolios that control their

risk of exposure to drought. Third, our results demonstrate

the need for more in-depth, detailed studies of the economic

effect of drought that combine the effects of different scenarios

and other factors, such as industry heterogeneity and investor

sentiment.

Although the effects of drought are extensive and complex,

research on these effects in the field of economics is still in its

infancy. Constrained by the availability of data on drought, this

paper mainly studies the economic effect of drought from a

capital market perspective, focusing on different quantiles of

stock prices and the role of investor sentiment. However, the field

of economics still holds considerable scope for drought research.

When regional drought data collected over longer time spans and

at a higher frequency and greater density become easy to obtain,

studies based on panel data and time series data can be carried

out smoothly. For example, regional drought indicators can be

matched to company addresses, enabling the construction of

panel data to study the effect of drought at the firm level.

Regarding time series, the overall drought index can be used

to study the effects of drought on stock price indexes and

commodity futures prices and to predict stock price indexes

or inform the construction of commodity futures hedging

strategies.
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Background: Inclusive green development aims to combine economic

inclusiveness with greenness, which is an important goal of current

economic development for China to achieve common prosperity. Measuring

inclusive green total factor productivity (IGTFP) is of great significance for

evaluating the quality of inclusive economic growth and accelerating

inclusive economic growth.

Method: This study establishes an index evaluation system of IGTFP from four

aspects of high quality, efficient, fair, and sustainable development, using super-

SBM to measure IGTFP based on panel data of 276 cities in China from 2006 to

2019, and conducts empirical comparative analysis from national central cities,

provincial capitals, and ordinary prefecture.

Result: 1) The IGTFP and technical progress rate in the central city and the

provincial capital are significantly higher than that of the ordinary prefecture, but

there is no significant difference in technical efficiency; the growth rate of IGTFP

in the most central city remains around 10%, which is significantly higher in the

south than that in the north. 2) According to the index decomposition result, all

cities have basically realized the double-line improvement of technological

efficiency and technological progress rate, but the technological efficiency is

mostly lower than the technological progress rate. 3) From the perspective of

economic convergence, only the IGTFP of provincial capitals shows the σ

convergence feature, that is, the phenomenon of intra-group convergence;

the IGTFP of all cities in three levels shows the β convergence feature, indicating

that there is an obvious catch-up phenomenon within the group.

Conclusion: The integration of “technology” and “efficiency” is the main driving

force and path to realize the sustainable improvement of IGTFP in cities.

Inclusive green growth needs to break “regional boundaries,” including

north–south boundaries and urban boundaries.

KEYWORDS

inclusive green total factor productivity, index evaluation system, urban level, super-
SBM, economic convergence
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Introduction

Common prosperity is the essential requirement of socialism

and an essential feature of Chinese-style modernization. Since

the 18th National Congress of the Communist Party of China

(CPC), China has taken various measures to ensure and improve

people’s livelihood and achieved comprehensive poverty

alleviation in 2020. However, over the past 40 years of reform

and opening-up, China’s economic development has paid a

substantial environmental and social cost. On the one hand,

the extensive growth with high input, high consumption, heavy

pollution, and low efficiency leads to resource exhaustion,

environmental pollution, and ecological destruction. On the

other hand, the development opportunities brought by

economic growth are not distributed equally among members

of the society, and the achievement of growth is not equally

distributed, which leads to the widening income gap and the

aggravation of social inequality (Wan, 2010). Based on this

background, the Chinese government put forward in the

“14th Five -Year Plan” that “coordinated development and

inclusive growth must be the trend of China’s economic and

social development.” This means that the future of China’s

economic development should improve the total factor

productivity and improve the efficiency of inclusive green

growth, and promote inclusive economic development.

Since the Asian Development Bank put forward the concept

of inclusive growth in Strategy 2020 in 2008, the academia has

not formed a unified definition of inclusive growth. Regarding

the theoretical connotation and policy significance of inclusive

growth, the research of Sun et al. (2018) shows that the essence of

inclusive growth was to reduce the income gap. Rachel thought

that inclusive growth should include income growth and welfare

growth (Rachel, 2012; World Bank., 2012), while Ali and Son

(2007) focused on the opportunity of intergroup welfare access

(Ali and Son, 2007). On this basis, some scholars incorporated

“green” into the inclusive growth system to comprise inclusive

green growth. Similar to inclusive growth, inclusive green growth

has not constituted a unified definition. D. Doumbia et al.

believed that inclusive green growth should pay attention to

current and future generations’ welfare growth and

intergenerational inheritance when weighing the relationship

between economic growth, inclusiveness, and green (Grosse

et al., 2008; Dinda, 2014; Doumbia, 2019). Berkhout et al.

(2017) show that “inclusive green growth is an economic

growth path that aims to reduce regional differences, takes

into account ecological environmental protection, and

provides more opportunities for poor areas and people” (Hill

et al., 2012; Dinda, 2013; Berkhout et al., 2017). By combing

through relevant studies on inclusive green growth, we can know

that inclusive green growth has not formed a unified concept, but

its connotation includes three aspects: economic growth,

ecological environmental protection, and social inclusion

(Dollar et al., 2014; Ahmad, 2021; Gu et al., 2021; He and Du,

2021). Therefore, the inclusive green growth in our research is an

economic development path that takes economic growth as its

goal and simultaneously considers ecological environmental

protection and social opportunity equity.

Total factor productivity is an important engine of economic

growth. The report of the 19th National Congress of the

Communist Party of China has made a critical judgment that

China’s economy has shifted from a high-speed growth stage to a

location of high-quality development and put forward urgent

requirements for improving total factor productivity. Due to the

limited resources and increasingly serious environmental

pollution, the concept of green development and sustainable

development has attracted people’s attention. Resources and the

environment are not only endogenous variables that affect

economic development, but also rigid constraints that limit

the quality of economic development. Compared with the

total factor productivity that only considers the expected

output, the green total factor productivity that incorporates

unexpected output such as pollutant emissions into the

indicator system is more comprehensive and objective.

Therefore, some scholars (Wang et al., 2019; Song et al., 2020;

Wang et al., 2020) have begun to use resource consumption and

environmental pollution as measurement indicators and

incorporated them into the calculation system of total factor

productivity to evaluate industrial development and economic

growth. The total factor productivity obtained from this is green

total factor productivity.

At the same time, the expansion of the income gap and

socially sustainable development poses a severe challenge. On

this basis, some scholars (Chen and Qin, 2014; Li and Dong,

2021) have begun to consider the inclusiveness of GTFP. They

believe that the government should pay attention to the

environmental protection and benefit equity of economic

achievements while increasing the TFP. Therefore, IGTFP was

proposed. How to realize the common prosperity and realize the

harmonious development become the urgent need to solve the

strategic problem, inclusive green growth will become a new

opportunity, and crack the issue of reasonable measure IGTFP is

particularly important.

Compared with the total factor productivity that only

considers the expected output, the green total factor

productivity that incorporates undesired outputs such as

pollutant emissions into the indicator system is more

comprehensive and objective. Therefore, many scholars

began to use resource consumption and environmental

pollution as measurement indicators and incorporated

them into the calculation system of total factor productivity

to evaluate industrial development and economic growth. The

total factor productivity obtained from this is green total

factor productivity.

The research on total factor productivity has been relatively

complete. Song et al. (2018) studied the traditional total factor

productivity and the green total factor productivity with
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environmental factors, which significantly improved the

scientific and accurate estimation of total factor productivity

(Chirisa et al., 2016; Song et al., 2018; Cui et al., 2019; Peng et al.,

2020). However, China’s current development goal is to achieve

inclusive economic growth by protecting the environment and

saving resources to achieve common prosperity, so social equity

is also one of the urgent issues that should be solved. The study of

Chen and Qin (2014) shows that the income gap is an undesired

output in economic development and incorporated it into the

input–output system. However, it only studies the provincial

level and does not consider the increasingly severe imbalance in

economic development within provinces and among different

urban strata. Although Sun et al. (2018) took cities as the research

object, they only studied green total factor productivity in the

traditional sense and did not involve the fundamental problem of

the income gap in the input–output system. The existing

measurement methods on inclusive green growth, whether

through depicting the opportunity function or building a

comprehensive index system, are all essentially measured by a

current indicator. It is difficult to judge whether its economic

growth is an extensive development with high input and high

output or an efficient development with low input and high

output. Using super-efficiency SBM to measure inclusive green

growth by measuring total factor productivity, on the one hand,

we can observe whether China’s economic operation keeps

efficient development; second, it can analyze whether

“inclusive” and “green” achieved at the same time of

economic growth (Zhang et al.,2019; Zhu and Azhong., 2018;

Sun et al., 2020; Xin et al., 2022).

To sum up, this study first incorporates the income gap as the

core concept of inclusive growth. The IGTFP was defined under

the new input–output system and was estimated and analyzed

based on the super-efficiency SBM model. While observing

whether China’s economic operation has maintained efficient

growth, it also examines whether it has realized “inclusive” and

“green,” which can scientifically grasp the basis of China’s high-

quality economic development and promote China’s green

coordinated development and high quality, balanced

development (Parikh, 2014; Chen et al., 2020; Ren et al.,

2022). This study empirically investigates the spatial–temporal

evolution characteristics of IGTFP growth. It is of great

theoretical and practical significance for formulating

differentiated regional development policies, realizing

coordinated development of economic growth, resource

conservation, and environmental protection in various regions

of China, and realizing common prosperity.

The marginal contributions of this study are as follows. First,

the concept of IGTFP is defined. It is considered that IGTFP is a

measurement system about high-quality economic development

based on economic growth while including ecological

environmental protection and equal distribution of social

resources. Second, the income gap index and environmental

index are incorporated into the input–output system as

“green” and “inclusive” indicators, respectively, to construct

the input–output system from the inclusive perspective and

carry out positive measurement and analysis of IGTFP based

on the city level.

Measurement system of inclusive
green total factor productivity

The essence of inclusive green growth is to reduce the gap

between the rich and the poor while achieving green

economic development and balanced development, and

common prosperity (Re and Grosskopf, 2010; Li et al.,

2021; Sun et al., 2022). Therefore, based on the

connotation of inclusive green growth, in the measurement

of IGTFP, based on the measurement system of total factor

productivity, this study adds “three industry wastes” and

urban–rural income ratio that hinders “green” and

“inclusive” (Table 1).

In terms of input factors, this study mainly measures from

four dimensions. It includes not only the labor and capital

factors that are common in the macro production function,

but also the measurement of technology and resources. In the

dimension of output factors, in addition to the GROSS

regional product, urban and rural residents’ income and

consumption levels are also included in the expected

output. Undesired output includes “three industrial

wastes” and the urban–rural income ratio. The total factor

productivity is judged to be “green” and “inclusive,”

respectively.

Input indicators

Labor input
The total number of employed persons represents the labor

input of each city, and employed persons include employees of

units, individuals, and private enterprises.

Capital input
Fixed capital stock, with 2000 as the base period, is expressed

by the perpetual inventory method.

Resource input
The balance between economic development and

resource utilization is the primary basis of inclusive

economic development (Xin et al., 2021; Zhao et al., 2022).

Efficient utilization of resources is an essential symbol of

high-quality economic transformation. This study selects the

total amount of industrial and agricultural land, power

consumption, and water supply as the land, energy, and

water resources metrics. Land resources are the necessary

conditions for production and the most basic means of
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production. In terms of energy input, this study draws lessons

from the practice of Li et al. (2020), taking power

consumption as the measurement index of energy input.

Water resources are the essential input of economic

activities (Li et al., 2020). In this study, the total water

supply is selected as the measurement index of water

resources.

Technology input
This study adopts public service expenditure, science and

technology research expenditure, and education expenditure

as the measurement index of expenditure input. Public

service expenditure in this study refers to the expenditure

part of public finance expenditure except science, technology,

and education expenditure, such as medical treatment,

pension, housing security, and other related expenditure.

Expenditure on public services is the most direct way to

increase the well-being of people. And education

expenditure is the way to improve the core

competitiveness of the next generation in poor areas, to

avoid intergenerational transfers of poverty and make

economic growth more inclusive; science and technology

expenditure can realize green economic development to a

certain extent and improve the “green proportion” in total

factor productivity.

Output indicators

Expected output
This study selects GDP as the measurement indicator of

expected output.

Unexpected output
IGTFP should be “inclusive” based on green total factor

productivity. Therefore, this study takes “three industrial wastes”

as the unexpected output and incorporates the “urban–rural

income ratio,” which measures the urban-rural income gap,

into the undesired output system. The “three industrial

wastes” are industrial waste gas emissions, industrial

wastewater, and solid waste emissions, respectively, by sulfur

dioxide, industrial smoke, and industrial wastewater emissions.

The urban–rural income ratio is the ratio of the per capita

disposable income of urban residents to rural residents’ per

capita net income.

Theoretical models

Based on relative efficiency, the Data Envelopment Analysis

(DEA) could use mathematical programming and statistical data

to evaluate the relative effectiveness of decision-making units.

However, traditional non-parametric DEA measures efficiency

from radial and Angle (Wang et al., 2019; Feng et al., 2020; Yang

et al., 2022). Therefore, it lacks the slack of considering input and

output and cannot distinguish whether multiple decision units

are effective or not. Therefore, the accuracy of the efficiency value

obtained is difficult to guarantee. However, the SBM model and

super-efficiency DEA can directly put the “relaxation” variable

into the objective function (Zhou and Wu, 2018; Li et al., 2020).

Moreover, it can sort and distinguish multiple decision units.

Since the input–output system in this study includes “three

industry wastes” and the urban–rural income gap as

undesired outputs, this study attempts to use the super-

efficiency Slack Based Measure (SBM) model containing

TABLE 1 Input–output system and interpretation.

Indicator type Indicator meaning Indicator measuring Unit

Input Labor Total number of employees (Per 10,000 people) Ten thousand people

Capital Fixed capital stock Ten thousand yuan

Technology Public service spending Billion yuan

Education expenditure Billion yuan

Scientific expenditure Billion yuan

Resource Land Resources Industrial and agricultural land Universal

Energy Electricity consumption Billion Kilowa

Water resource Total water supply Billion cubic meters

Output Expect output GDP Ten thousand yuan

Unexpected output Industrial waste water emissions Billion ton

Industrial waste gas emissions Billion cubic meters

Industrial solid waste emissions Ten thousand tons

Urban-rural income ratio %
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undesired outputs toMeasure IGTFP of 276 cities in China under

the condition of variable returns to scale. There are n DMU

(decision units), and each DMU has m kinds of inputs, q1
expected outputs, and q2 unexpected outputs. The expression

of super-efficiency SBM containing unexpected outputs is as

follows:

minδ � 1 + 1
m∑m

i�1
S−i
xik

1 − 1
q1+q2 (∑q1

r�1
s+r
yrk

+∑q2

t�1
sb−i
btk
) (1)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n

i�1,j ≠ k
xjλj − s−i ≤ xjk

∑n

i�1,j ≠ k
yjλj − s+r ≥yrk

∑n

i�1,j ≠ k
bjλj − sb−t ≤ btk

1 − 1
q1 + q2

⎛⎝∑q1

r�1
s+r
yrk

+∑q2

t�1
sb−t
btk

⎞⎠> 0

λj, s
−
i , s

+
r , s

b−
t ≥ 0

i � 1, 2,/, m; r � 1, 2,/, q1;

t � 1, 2,/, q2; j � 1, 2,/, n; j ≠ k.

(2)

In Eqs. 1, 2 ,δ is the efficiency value, j is the decision-making unit,

λj is the intensity variable, s represents the relaxation variable of

each variable, si represents the relaxation variable of input, and sr
and st are relaxation variables of expected output and unexpected

output, respectively. x represents input (for example, xik is the

input item i of the kth decision unit), y and b represent expected

output and unexpected output, respectively, yrk represents the

expected output item r of the kth decision unit; btk represents the

undesired output of the tth term of the kth decision unit.

The Inclusive Global Malmquist–Luenberger (IGML) index

represents IGTFP, reflecting the efficiency of inclusive and green

economic growth with current factor inputs. IGML index also

includes the relative relationship between actual production and

production frontier as well as the change of production frontier

boundary of each DMU. Therefore, it can be decomposed into

GTC (Global Technical Change) and GEC (Global Efficiency

Change). GEC refers to the change of relative efficiency under the

condition of constant return to scale and free disposal of

elements. It measures the degree to which the production

system catches up with the production possibility boundary

from the current period to the next period. If GEC>1,
technical efficiency is improved. On the contrary, it means

that technical efficiency decreases; GTC represents the change

degree of the production technology of the production system

from the current period to the next period, that is, the innovation

degree of production technology. If GTC>1, it indicates that the
production technology has improved. Conversely, explain

production technology retreat.

IGML � GEC × GTC � Eg(xt+1, yt+1)
Eg(xt, yt)

� Et+1(xt+1, yt+1)
Et(xt, yt) ×

Eg(xt+1, yt+1)
Et+1(xt+1, yt+1) Et(xt, yt)

Eg(xt, yt) (3)

GEC � Et+1(xt+1, yt+1)
Et(xt, yt) (4)

GTC � Eg(xt+1, yt+1)
Et+1(xt+1, yt+1) Et(xt, yt)

Eg(xt, yt) (5)

In the above formula, xt represent the input and yt represent the

output value of the evaluated unit in t period, Eg and Et represent

the efficiency value of the global frontier and frontier t period,

respectively.

Empirical results

This study takes 276 prefecture-level cities in China as the

research object and analyses the IGTFP at the national, regional,

and urban levels. The data were obtained from China Statistical

Yearbook, China Energy Statistical Yearbook, and China Urban

Statistical Yearbook and China Economic Network (Table 1).

General characteristics

The contribution of different urban economic conditions to

IGTFP is different. This study takes the proportion of urban GDP

in the total urban GDP as the weight and obtains the IGTFP.

IGTFP in China basically maintained positive growth from

2006 to 2019 (Figure 1). This shows that China’s economic

development in recent years has considered both “equity” and

“efficiency” to some extent. From the perspective of time,

Chinese cities’ IGTFP has maintained positive growth during

the 11th Five-Year Plan period (2006–2010), except for less than

1 in 2007. The rest showed positive growth; from the

decomposition point of view, the rate of technological

progress has already exceeded the technical efficiency by the

end of the eleventh Five-Year Plan. This indicates that the rate of

technological progress has increasingly become the primary

driver of IGTFP.” During the 12th Five-Year Plan period

(2011–2015), the growth of the three indexes showed a

relatively stable trend. Although the technical efficiency was

lower than 1 in some years, it generally maintained positive

growth.” IGTFP maintained a high growth level in the first

2 years of the 13th Five-Year Plan period. IGTFP exceeded

1.5 in 2017 and maintained a positive growth trend in the

following 2 years, although the growth rate slowed down. In

the report to the 19th CPC National Congress in 2017, the CPC

Central Committee, for the first time, proposed “establishing and

improving the economic system of green, low carbon, and

circular development.” China has paid more attention to
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environmental protection while building a “modern economic

system.”

Inclusive green total factor productivity in
regions

The establishment of national strategic urban

agglomeration is an important measure to strengthen the

leading role of central cities to surrounding cities, strengthen

inter-city cooperation and promote regional integration in

China. Yangtze River Delta Economic Zone, Pearl River

Delta Economic Zone, and Bohai Rim, as three national

strategic city clusters in China, represent the highest level of

China’s economic development to a large extent and shoulder

the responsibility of taking the lead in realizing modernization.

Therefore, this study takes the three economic zones as the

research object and explores the “inclusiveness” of China’s

regional economic growth by analyzing their total inclusive

factor productivity.

Figure 2 shows IGTFP and fluctuations in the three economic

zones. In general, the PEARL River Delta economic zone’s IGTFP

level is slightly lower than that of the Yangtze River Delta

Economic Zone and the Bohai Rim Economic Zone. From

2006 to 2010, the IGTFP of the three economic zones

remained the same. Since 2010, the Bohai Rim economic

FIGURE 1
National IGTFP and its decomposition.

FIGURE 2
IGTFP in three major economic zones.
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Zone’s IGTFP has been significantly improved, especially in

2011 and 2015. It ranked first among the three economic

zones. Since 2016, the inclusive total factor productivity of the

Yangtze River Delta Economic Zone and Bohai Rim Economic

Zone has gradually opened a gap with that of the Pearl River

Delta Economic Zone. From 2017 to 2019, there was a trend of

“Yangtze River Delta ‘>’ Bohai Rim ‘>’ Pearl River Delta.” The
reason for this difference is that there are great differences in the

level of economic development between cities in the Pearl River

Delta. For example, in 2018, the per capita GDP of the core area

of the Pearl River Delta has reached over 100,000 yuan, which has

reached the level of high-income countries or regions. For

example, the per capita GDP of eastern, western, and

northern Guangdong is around 40,000 yuan, far lower than

the national average. The low-level cities in the Pearl River

Delta economic zone have a relatively low level of professional

production technology, and a large number of input production

factors cannot get the corresponding except output, while the

difference in the level of urban economic development in the

Yangtze River Delta is small, and its convenient transportation

conditions facilitate the high-frequency technical exchanges

between cities, thus promoting the formation of a low input

and high-yield industrial chain, It has promoted the overall

improvement of inclusive green total factor productivity. As a

result, the IGTFP of the PEARL River Delta economic Zone is

lower than that of the other two regions.

The IGTFP of the Bohai Rim Economic Zone and the Yangtze

River Delta Economic Zone was the same from 2006 to 2017. Only

in 2011 and 2015, the Bohai Rim Economic Zone was slightly higher

than the Yangtze River Delta Economic Zone. However, from 2016,

the inclusive total factor productivity of the Yangtze River Delta

economic Zone exceeded that of the other two regions. The reason is

that the total economic volume of Shanghai and Zhejiang provinces

in the Yangtze River Delta economic zone has declined slightly.

Nevertheless, the proportion of Jiangsu province and Anhui

province has achieved different rising degrees. The balanced

economic development has promoted IGTFP in the Yangtze

River Delta region.

Inclusive green total factor productivity in
urbans

From the perspective of city classification, the IGTFP of cities

of different sizes is different. The specific performance is shown

in Table 2. According to the classification of city size, IGTFP

showed a phenomenon of “national central city > provincial

capital city > prefecture-level city.” It indicates that cities’ level of

economic development and political status positively affects

IGTFP to a certain extent. This also confirms the significance

of establishing a national central city from the perspective of

urban green development. It also shows that China’s economic

growth still has a certain degree of agglomeration effect. The

higher the administrative level of a city, the better it is equipped

with transportation and other infrastructure. At the same time,

more universities, scientific research talents, and even leading

enterprises will gather in this city, thus stimulating the

agglomeration effect of urban economic growth.

TABLE 2 Measurement and decomposition of IGTFP.

City
category

National central city Provincial capital city Ordinary prefecture-level city

Index
category

IGML GEC GTC IGML GEC GTC IGML GEC GTC

2006 1.3045 1.2379 1.0538 1.2494 1.2198 1.0242 1.1169 1.1729 0.9523

2007 1.4380 1.1708 1.2282 1.3338 1.3225 1.0085 1.0741 1.1153 0.9631

2008 1.1080 1.0250 1.0810 1.0854 1.0352 1.0486 1.0326 0.9574 1.0785

2009 1.1548 1.1439 1.0096 1.0863 1.0954 0.9917 0.9974 1.0639 0.9375

2010 1.1497 1.0675 1.0770 1.1284 1.0603 1.0643 1.0580 0.9436 1.1212

2011 1.1847 0.9798 1.2091 1.1388 0.9987 1.1404 1.0457 1.0009 1.0502

2012 1.1594 1.0664 1.0873 1.1503 1.1363 1.0123 1.0012 1.0328 0.9694

2013 1.0912 1.0747 1.0153 1.0455 0.9914 1.0837 1.0082 1.0027 1.0054

2014 1.2052 0.9817 1.2276 1.0328 0.9706 1.0640 1.0184 1.0136 1.0047

2015 1.1263 1.0695 1.0530 1.1120 1.0969 1.0138 1.0005 1.0230 0.9780

2016 1.1171 1.0343 1.0800 1.0733 1.0496 1.0465 1.0648 1.0685 1.0012

2017 1.6454 1.1484 1.4328 1.6707 1.0681 1.5642 1.2193 1.0147 1.2017

2018 1.2601 1.2088 1.0424 1.2174 1.1003 1.1064 1.1147 1.0896 1.0231

2019 1.1934 1.0747 1.1105 1.1670 1.1591 1.0068 1.1663 1.0080 1.1570
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From the decomposition results of IGTFP, there is not much

difference between the technical efficiency coefficients of the

national central city, provincial capital city, and ordinary

prefecture-level city, and even the technical efficiency

coefficients of the ordinary prefecture-level city exceed that of

the provincial capital city and national central city in some years.

On the one hand, China’s ordinary prefecture-level cities have

relatively sufficient land, labor, and other factors of production.

On the other hand, the utilization of resources in Chinese cities is

relatively complete. The resources of ordinary prefecture-level

cities have been brought into full play through policy. However,

we can see that the rate of technological progress of ordinary

prefecture-level cities is significantly lower than that of provincial

capitals and central cities. This is why the IGTFP of ordinary

prefecture-level cities is lower than that of national central cities

and provincial capitals. It also shows that the production

technology of ordinary prefecture-level cities is different from

that of national central cities and provincial capital cities. The

dividend of the vigorous development of science and technology

in China is more applied in major cities.

The national central city is the top-level legal planning in urban

and rural planning. It is the overall arrangement of urban

development and urban spatial layout, a vital policy basis for

actively and steadily promoting urbanization, and the basis for all

localities to formulate regional urban system planning and overall

urban planning. The development of national central cities has a

maximum effect on other cities and even society. Therefore, national

central cities’ IGTFP is analyzed separately. According to the analysis

results in Table 3, the IGTFP of central cities in each country

increased from 2006 to 2019. Among them, the geometric mean

productivity growth rate of most cities like Chongqing and Beijing

reached more than 10%, and five cities like Chongqing, Beijing,

Wuhan, Chengdu, and Shanghai even exceeded 14%. The southern

cities have comprehensively surpassed the northern cities in terms of

region. Among the northern cities, only Beijing and Xi’’an have

achieved an average growth rate of more than 10%, while all the

southern cities have exceeded 10%. This also shows that China’s

economic development center is still in the south. In the future, more

attention should be paid to the economic development of the

northern central cities. On the other hand, it also reflects the

more stable and “inclusive” development of central cities in the

south. The income gap between urban and rural areas in northern

China is relatively large, and the “inclusive” level of economic growth

is slightly delayed.

From exponential decomposition, all cities have realized the

double-line improvement of technological efficiency and

progress rate. Although the technical efficiency coefficients of

Guangzhou and Tianjin are lower than 1, it also reaches more

than 0.99, basically maintaining a stable state. The analysis shows

that the technical efficiency coefficients of almost every city are

lower than the technological progress rate coefficients. The

reason is that China’s economy has been growing faster in

recent years. The economic growth rate of the country’s

central cities is leading the country. Large base and resources

have been fully utilized, resulting in a slow growth rate of

technical efficiency. In recent years, the level of scientific and

technological development in China has developed rapidly, and

the number of scientific and technological output in China has

jumped to the second place in the world. The application of many

scientific and technological achievements promotes rapid

technological progress in China’s production process.

Convergence analysis of inclusive
green total factor productivity

In order to further analyze the trend of IGTFP in China, our

research uses the σ convergence model and absolute β

convergence model to quantitatively study the convergence

characteristics of IGTFP. This will provide a more directional

reference for promoting China’s economy’s “green” and

“inclusive” development.

σ convergence

The σ convergence reflects the deviation degree of IGTFP of a

single city from the overall city level where the city is located. σ

convergence of IGTFP means that the divergence of IGTFP

among cities tends to decline over time. The convergence

model of IGTFP can be expressed as:

σt �

��������������������
1
n
∑n
i�1
⎛⎝lnsit − 1

n
∑n
i�1
lnsit⎞⎠

2
√√

(6)

In the above formula, t is the year, i is the city, and n is the

number of cities at the corresponding level. ln sit represents the

TABLE 3 National center city.

City Beijing Chengdu Guangzhou Shanghai Tianjin Wuhan Xi’an Zhengzhou Chongqing

IGML 1.2458 1.3146 1.1024 1.1427 1.0970 1.2708 1.2511 1.0826 1.1087

GEC 1.0423 1.1497 1.0368 1.0620 0.9992 1.1063 1.0993 1.0467 1.0708

GTC 1.1952 1.1435 1.0634 1.0518 1.0978 1.1487 1.1380 1.1678 1.0272
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log value of IGTFP of i city in t year, and σt represents the σ

convergence test coefficient of IGTFP in t year. If σt+1 < σt, there

is σ convergence in IGTFP.

According to the national σ convergence coefficients

(Figure 3), the σ convergence feature of IGTFP in China is

not apparent. Although there were occasional fluctuations,

the σ convergence coefficients of IGTFP in national central

cities showed a downward trend from 2006 to 2017. However,

the overall downward trend is pronounced, indicating that

the overall gap between central cities of the country was not

large during this period. From 2017 to 2019, the σ

convergence coefficients of national central cities increased

first and then decreased. The reason is that in 2018, the

IGTFP of Wuhan city has been dramatically improved.

However, some provinces’ green total factor productivity

(such as Chongqing) decreased this year, leading to a more

extensive convergence coefficients of national central cities

this year. Since 2007, the σ convergence coefficients of

provincial capital cities have shown a declining trend,

indicating that these cities’ IGTFP has a particular

convergence phenomenon. The σ convergence coefficients

of ordinary prefecture-level cities generally decreased first

and then increased, indicating a significant difference within

this kind of city group. The reason is that the IGML

coefficients of some provinces have been lower than

1 since 2015 (for example, the IGTFP of Huludao in

2016 was less than 0.7, while the IGML coefficients of

Xuzhou were close to 1.9). The expansion of IGTFP

among cities leads to an increase in the σ convergence

coefficients of ordinary prefecture-level cities. Therefore,

there are still significant differences in IGTFP among cities

in China. Except for provincial capital cities, the convergence

of other tier cities is not apparent, further indicating

significant differences in economic growth efficiency,

income gap, and eco-environmental protection intensity.

Absolute β convergence

Absolute β convergence means that cities with low initial

IGTFP have a faster growth rate than cities or regions with high

IGTFP without considering external factors. And all cities’

IGTFP will converge to the same state. Its specific expression is:

(lnsit − lnsi0)
t

� α + βlnsi0 + εit (7)

Sit and Si0 represent IGTFP of city i in phase t and early stage,

respectively, t represents the period. α, β, and εit represent

constant term, absolute β convergence coefficients, and the

random error term, respectively. β< 0 indicates that cities’

IGTFP at this level have absolute β convergence, and the

larger |β| is, the faster the convergence rate is.

Table 4 shows the absolute β convergence coefficients of

cities’ IGTFP at different levels. From the results, the absolute β

convergence coefficients are significantly negative at both the

national and each city levels. It indicates that China’s IGTFP

exists in apparent absolute β convergence. In other words, cities

with low inclusive total factor productivity are catching up with

cities with high IGTFP. In terms of the convergence rate, the

absolute value of the absolute convergence coefficients at all

levels shows national central city > provincial capital city >
prefecture-level city. This indicates that the convergence rate of

absolute β convergence in national central cities is significantly

faster than others, and further indicates that the higher the city

level is, the larger the city size is, the more pronounced the

catch-up effect is.

FIGURE 3
σ convergence coefficients.
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Conclusion

From the perspective of inclusive green growth, we

establish the index evaluation system of inclusive green

growth. By using the method of super-SBM, we measure

the inclusive green total factor productivity (IGTFP) of

China from the city level and explore and analyze the

IGTFP index and its decomposition and evolution trend of

coefficients of economic convergence. Empirical analysis

results are as follows.

First, IGTFP in China has maintained a steady but rising

trend both at the national level and at all levels of city,

especially after 2008. Second, from the decomposition of

IGTFP, there is a positive correlation between the rate of

technological progress and the scale of urban development. In

addition, the technical efficiency of the country and higher-

level cities are generally lower than the rate of technological

progress. Third, from the economic region level, the regional

development of IGTFP in China is unbalanced. Fourth, the

IGTFP of southern cities is significantly higher than that of

northern cities, indicating that the southern cities are more

substantial than the northern cities in terms of green

economic development and social equity. Finally, from the

economic convergence, only the IGTFP of provincial capitals

shows the σ convergence feature, that is, the phenomenon of

intra-group convergence; the IGTFP of all cities in three

levels shows the β convergence feature, indicating that

cities with a lower level of IGTFP are catching up with

that with a higher level.

The policy implications of this study are as follows: first,

we should adhere to the concept of inclusive green

development and achieve high-quality economic

development through energy conservation and emission

reduction and promoting social equity. On the one hand,

it is necessary to increase investment in enterprise R&D and

create a more relaxed R&D environment for enterprises, such

as R&D incentives and tax exemptions. On the other hand, we

should improve the income distribution system and

strengthen the guidance of tertiary distribution on the

basis of giving full play to secondary distribution to realize

the organic unity of efficiency and fairness. Second, we need

to break down the “regional” boundaries including the

geographical boundaries (such as the north–south

boundary) and the boundaries at the city level, between

city scales, and within the economic zone. Third, we

should strengthen the core driving function of green

technology innovation and progress. The integration of

technology and efficiency is the main driving force and

path to realize the sustainable improvement of IGTFP in

cities. For example, promoting the cooperation between

“resource-first” enterprises in underdeveloped cities and

“technology-first” enterprises in developed cities,

accelerating the upgrading of industrial structure, and

realizing the “two-wheel drive” of IGTFP. In addition,

cities with low IGTFP can develop rural tourism,

e-commerce, and other related industries according to

local characteristics, and form an economic form with low

input, high output, and lower-income gap with business

models such as “New Economy” and “Digital Economy.”

While promoting rural revitalization, the “digital

economy” can also reduce the income gap between urban

and rural areas, which can not only promote the

improvement of IGTFP level, but also achieve China’s

common prosperity goal.
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The usage of data production factor (DPF) has been extensively studied in

academic research and industry. The purpose of this study is to examine the

causal effects of DPF adoption on company performance. We firstly provide a

measurement of DPF adoption by text mining, which is superior to previous

studies that use only single metric. Then, based on PSM-DID method, we use

the data of China’s listed companies from 2011 to 2019 to identify the causal

relationship between data elements adoption and company’s performance. We

find that the adoption of DPF can significantly increase companies’

performance. Further heterogeneity tests show that companies from the

service industry and state-owned companies achieve a significant

improvement in the performance after adopting DPFs in production.

Altogether, this study provides the micro evidence on the relationship

between the adoption of DPFs and company performance, providing

significant implications for the development of digitalization and intelligence

production.

KEYWORDS

data production factor, performance, text mining, PSM-DID, causal effect

1 Introduction

The widespread application and innovation of new-generation information

technology have greatly promoted the digital transformation of companies and the

reconstruction of productivity and production relations. For the first time, the Fourth

Plenary Session of the 19th Central Committee of the Communist Party of China

recognized data production factor (DPF) as the seventh production factor, reflecting

the important role of data in improving productivity in the context of high-quality

development. In April 2020, the State Council of the CPC Central Committee issued a

document specifically for production factor market, clearly emphasizing the need to

“accelerate the cultivation of DPF market, enhance the value of social data resources, and

cultivate new industries, new business models and new modes of the digital economy.”
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DPF provides the main source of potential for companies to

achieve exponential and significant growth. Consequently,

companies are gradually increasing their dynamic investments

in DPF. The two-way promotion of DPF and companies has

enhanced the rate of marketization of DPF and laid the technical

foundation for companies to enter the new era of the digital

economy. Considering that production factor is a new and

powerful resource, there are two major strategic issues that

need to be urgently addressed. Is DPF able to create higher

value in the process of interaction with traditional production

factors, such as labor, capital, land, technology, knowledge, and

management? Is DPF conducive to improve the dynamic

capability and innovation capacity of companies?

There is already a good number of literatures on the topic of

DPF’s role in productivity (Evangelista et al., 2012; Enrique et al.,

2018). It has been believed that DPF do not act in a single form on

economic development, but mainly realize the duty of data

empowerment through interaction with traditional production

factors. Specifically, DPF do not automatically provide the

required information and values without going through

appropriate steps, such as data filtering and processing. This

means that companies need to use various analytical tools to filter

out the useful information contained in data as a scientific basis

for decision-making (Baesens et al., 2016). For example, by

adopting big data technology in the “precision marketing”

strategy, companies can comprehensively grasp consumer

demand and market trends in a timelier manner through

market analysis, pinpoint the target group of products, and

increase marketing interaction (Xue, 2021). The combination

of DPF with traditional production factors has shown innovative

effects on the development of companies. For instance, when

DPF is combined with capital, the increasing investments in

R&D lead to a significant increase in the technological innovation

of companies. Similarly, a combination with DPF and labors can

effectively improve production efficiency. Furthermore, the most

significant results are achieved when combining DPF with

technology, which can help advance robust technological

progress and establish an efficient digital system for

companies by taking advantage of the multidimensionality

and large capacity of big data (Lin and Meng, 2021). While

the accumulation of data capital will further improve data

processing efficiency, the combination also increases the

overall productivity of companies and boosts economic

growth. In summary, DPF provide new resources and strong

guarantees for companies to transform and accelerate their

adaptation to the era of the digital economy, activate

industrial digitization, and promote productivity, innovation,

and development.

Recent years have witnessed an increase of literatures

concerning the effect of DPF adoption on company

performance (Ferreira et al., 2019; Nasiri et al., 2020). The

ease of access to DPF is an important reason for the widening

gap in size and performance between large- and medium-sized

companies (Begenau et al., 2018). The combination of data

collected and published by the government and various

statistical agencies, as well as companies’ own data, enhances

the efficiency of companies’ decision-making (Hughes-

Cromwick and Coronado, 2019). To further evaluate the

impact of DPF adoption, some scholars have proposed to

open the “black box” of the value realization process and

multidimensional value creation mechanism of DPF by

establishing the benchmark model of “factor-mechanism-

performance,” combining its social attributes and dynamic

integration theory (Yin et al., 2022). This can provide effective

theoretical and practical insights into the sustainable

development of companies.

However, the existing literatures on the impact of DPF on

company performance is still inadequate. A primary drawback is

the lack of comprehensive measurement of DPF adoption.

Common measurements include property (Liu et al., 2022),

the quality of the corporate website (Bernal et al., 2018), AI

related technologies or Big Data analytics. Besides, executives’

subjective perception of the technology application is also

frequently used, which is measured by questionnaire (Tsou

and Chen, 2021; Nasiri et al., 2020). Another shortcoming is

that previous literatures have largely failed to focus on causal

effects of DPF on company performance. The endogenous issues

between company performance and its decision on DPF

adoption should not be ignored. In light of this, causal

inference methods, such as Difference-In-Difference model

(DID), should be used in the empirical studies.

In this paper, we aim to answer the question: does DPF

adoption has a positive influence on company performance?

Empirical results with 3,233 Chinese listed companies are

provided. Compared with previous works, this paper

contributes to two points. First, a method for accurately

determining whether a company adopts DPF is proposed

based on text mining. Second, the adoption of DPF is treated

as a quasi-natural experiment, and causal inference is performed

through the PSM-DID model to accurately estimate the average

gain in performance due to the adoption of DPF. Based on this,

the channels of causal effects are further analyzed through

heterogeneity analysis of industry and ownership.

The followings are organized as below: Section 2 presents the

data sources and indicator settings, Section 3 describes the model

setting, Section 4 shows the empirical results, and Section 5

concludes the paper.

2 Data

2.1 Sample and data sources

The initial sample of this paper is all A-share listed

companies in the Shanghai and Shenzhen stock markets. The

research interval is from 2011 to 2019. Before 2011, there were
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more missing values in the data of companies. Due to the

outbreak of the COVID-19 pandemic in 2020, which greatly

impacted companies, there was a certain incompatibility

compared to previous years. After removing sample

companies with missing data and stocks with ST label, in

short of Special Treatment, we finally obtain a sample of

3,366 companies.

Two sources of data are used in this paper. On the one hand,

financial data disclosed by listed companies’ annual statements

are from the Wind Economic and Financial Database. On the

other hand, the Guotaian database provides textual data of

companies’ basic information, such as company history, main

business, technical innovation, and shareholding, which are

reported annually.

2.2 Variables

2.2.1 Determination of data production factor
adoption

We provide a measurement method of DPF adoption in a

two-step process.

2.2.1.1 Step 1: Definition of data production factor

The measurement of DPF adoption in the aspect of

company has been little studied. Therefore, the primary

aim of this paper is to clarify the definitions of DPF.

China’s 14th Five-Year Plan highlighted “giving full play to

the advantages of massive data and rich application scenarios,

promoting the deep integration of digital technology and the

real economy and growing new engines of economic

development” and discussed the specific path to activate

the potential of DPF from three aspects: strengthening the

application of key digital technology innovation, accelerating

digital industrialization, and promoting industrial digital

transformation. Accordingly, this paper defines companies

that applying DPF from three perspectives: the

supporting hardware facilities, the supporting digital

technology, and the application in industrial development.

Therefore, a list of keywords was selected according to the

above definition.

1) Hardware-facility-supporting DPFs

To improve the complete system and industry chain

composed of information collection, mining, analysis, and

application, as well as the sharing of DPF, companies should

establish a mature new digital infrastructure. Therefore, this

paper selected the key terms as the Internet of Things, cloud

computing, edge computing, artificial intelligence, blockchain,

data center, big data, data technology, information technology,

information system, information software, platform support, and

database.

2) Technology-supporting DPFs

The existing forms of data elements mostly depend on the

development of “big data” and have the characteristics of large

flow, diversity, and multiple levels, which are distinctive from

traditional data, especially with the role of newmedia, such as the

internet, which expands the channels and scale of data collection,

requiring companies to have high data processing and analysis

TABLE 1 List of keywords for identifying DPFs.

Categories Keywords

Hardware-facility-supporting DPFs Internet of Things, cloud computing, edge computing, artificial intelligence, blockchain, data center, big data, data
technology, information technology, information system, information software, platform support, database

Technology-supporting DPFs Data processing, machine learning, cloud technology, data analysis, data transmission, information and intelligent
manufacturing, data drive, information and system integration, internet information application, software definition,
intelligent leadership

Application of DPFs in industrial development Digital economy, electronic commerce, digital industrialization, digitalization, company informatization

TABLE 2 Total number of companies using DPFs by year.

Year Total number of
companies that adopt
DPFs

2011 270

2012 310

2013 367

2014 389

2015 431

2016 490

2017 550

2018 572

2019 605
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capabilities and to be able to fully exploit the value of data. Based

on this, we identified the following keywords: data processing,

machine learning, cloud technology, data analysis, data

transmission, information and intelligent manufacturing, data

drive, information and system integration, internet information

application, software definition, and intelligent leadership.

3) Application of DPFs in industrial development

The adoption of DPF has accelerated the upgrading of

industrial structures and the transformation of companies.

The rise of the digital economy has greatly contributed to the

rapid development of online platforms. It is worth mentioning

that the labor results of its formation are all digital results. In

other words, after being applied to basic industries, such as

industry, agriculture, and services, the digital economy has

made outstanding contributions to the value of the products

created. As such, this paper selected digital economy, electronic

commerce, digital industrialization, digitalization, and company

informatization as keywords.

The list of keywords in the above three cases is shown in

Table 1, with a total of 29 keywords.

2.2.1.2 Step 2: Determination of companies adopting

data production factors

We perform a text mining process to determine whether a

company adopt DPFs. First, we perform word splitting on the

text data of the basic company profile, which is a required

disclosure for China’s listed companies including the

information of company history, main business, technological

innovation, shareholding, etc. Then, the keywords contained in

Table 1 are automatically checked by computer to see whether it

appears in the word splitting results for each company. Further,

we manually examine whether the appeared keywords conform

to the semantic meaning. For example, the business scope of

Company No. 2177 is related to the provision of “digital

processing services” and other businesses involved in “data

and information processing services.” The semantic meaning

of the keywords “digital,” “data” and “information” here is

consistent to our study. Therefore, the company is classified

as a data element company. Another example is Company No.

2074, who has a business scope that includes “digital electrical

equipment.” Since this product is a traditional production

equipment, the keyword digitalization here is not in line with

the semantic meaning. Therefore, the company is considered as

not to adopt DPFs. The year in which the eligible keywords first

appear is used as the initial year for adopting DPFs.

Table 2 presents how many companies use data elements as

production inputs in each year from 2011 to 2019. In 2011,

McKinsey reported that data have swept into every industry and

business function and are now an important factor of production,

alongside labor and capital (Manyika et al., 2011). Therefore, we

consider 2011 as the initial year of our sample. Obviously, the

number of companies using DPFs increase more than double in

the sample period.

2.2.2 Dependent variable and control variables
To reflect the economic efficiency of companies, this paper

selected Earnings Per Share (EPS) as the dependent variable. EPS

reflects the after-tax profit created per share and is one of the

most important financial indicators of the profitability of listed

companies. Generally speaking, the higher the EPS, the better the

economic efficiency of the company.

To control for the factors that may trigger changes in the

economic efficiency of companies other than the adoption of

DPFs, this paper referred to Sheng et al. (2020) and Yang and

Yang. (2019) on the factors influencing earnings per share.

Details of the control variables are shown in Table 3.

Additionally, the effects of province, company ownership, and

industry on earnings per share are controlled as the fixed effects.

TABLE 3 Control variables.

Variable Unit Meaning Definition

Gross profit margin (GPM) % The percentage of gross profit and sales income (or operating income),
in which gross profit is the difference between income and operating
costs corresponding to income

(main business income − main business
cost)/main business income × 100%

Total assets (TA) Yuan All assets owned or controlled by the company To mitigate the effects of magnitude, take the
logarithm of it

Asset-liability ratio (ROL) % Total end-of-period liabilities divided by the percentage of total assets,
in other words, the ratio of total liabilities to total assets, reflecting how
much of total assets are financed through borrowing

Asset-liability ratio = total liabilities/total
assets

Net cash flow from operating activities per
share of the company (CFPS)

Yuan The ratio of net cash flow to total equity used to reflect the ability of
companies to pay dividends and capital expenditures

Net cash flow/total equity of business
activities
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3 Methodology

3.1 Baseline model

To investigate the effects of adopting DPFs on the growth of

economic efficiency, a Difference-In- Difference (DID) method

was used. The baseline model is set as follows:

EPSit � β0 + β1DATAit + β2YEARit + β3DATAi × YEARit

+θnX i,t−1 + μi + λi + ηi + εit

(1)
The dependent variable EPSit represents earnings per share

of the i -th company in year t. DATAit denotes a dummy

variable, which takes value of 1 if the i -th company uses DPFs

in any year of the sample period; otherwise, it equals to 0.

YEARit denotes the year dummy variable. If the ith company

began to use DPFs in year tp, YEARit equals to 1 for

t � tp,/, 2019. Otherwise, YEARit is set to 0. The

coefficient β3, which corresponds to the cross term of

DATAit × YEARit, is the focus of this study. If β3 is

significantly positive, it means that the input of DPFs in

production improves the EPS of companies. X denotes a set

of control variables, including the logarithm of the company’s

total assets TA, gross sales margin GPM, net cash flow from

operating activities per share CFPS , and asset-liability ratio

ROL To prevent the problem of reverse causality, all the control

variables are lagged by one period. In addition, fixed effects of

province, ownership, and industry are included, denoted as μi,

λi, and ηi, respectively.

3.2 Propensity score matching

There may be a reverse causal relationship between DPF

adoption and a company’s economic efficiency; that is, the

behavior of a company using data elements in production may

have a self-selection effect. The company will decide whether

to use DPFs in production according to its own production

situation. If we want to identify the causal effect of DPF

adoption on the company’s economic efficiency, we need to

solve the endogenous problem of reverse causality. Therefore,

we draw on the practices of Heckman et al. (1998) and Loecker

(2007) and use the PSM-DID method to identify the causal

effects of DPF adoption on the company’s economic

efficiency. The PSM-DID method is based on the PSM

method. It further differentiates the outcome variable,

effectively eliminating the common trend between the

treated and control groups. Thus, using the PSM-DID

method in analysis can help solve the problems of sample

selection bias and reverse causality.

Specifically, we establish a logit model, as shown in Eq. 2,

whose dependent variable is DATAit and independent variables

are the logarithm of total company assets TA, the intensity of

company R&D investment RDIntensity , the logarithm of

company operating income Taking , and company net assets

per share NAPSDetailed descriptions of the variables are shown

in Table 4. Using this model, the probability of a company using

DPFs can be estimated according to its propensity score. And we

use the nearest neighbor method with a 1:1 ratio to match a

control company for each treatment company.

logit(DATAit�1)
�f(TAi,t−1,RDIntensityi,t−1,Takingi,t−1,NAPSi,t−1)

+εit
(2)

A total of 3,323 company samples that adopt DPFs were

selected as the treatment group through the company screening

method described in the previous section, and

3,184 company samples were selected as the control group

through Model (2). Table 5 presents descriptive statistics of

the main variables.

TABLE 4 PSM control variables.

Variables Unit Meaning Definition

Company R&D investment
intensity (RDIntensity)

% The proportion of R&D investment in business income reflects the investment in
technology R&D

Company R&D investment/company
business income

Total company assets (TA) Yuan All assets owned or controlled by companies embody the company scale To mitigate the effect of magnitude, take
the logarithm of it

Company operating income
(Taking)

Yuan Income earned by an company in its main business or other business To mitigate the effect of magnitude, take
the logarithm of it

Company net assets per share
(NAPS)

Yuan The ratio of shareholders’ equity to total shares; the higher net assets per share,
the more value of assets per share owned by shareholders

Total equity/total stock
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4 Results

4.1 Baseline model results

The results of the baseline regression model are shown in

Table 6, where the coefficient of the dummy variable cross term

DATA × YEAR reflects the net effect of using DPFs on the

economic efficiency. The results showed that the coefficient of the

cross term was significantly positive, indicating that the

companies that adopted DPFs have obtained significant

improvements in their earnings per share.

From the regression coefficients of the control variables, the

coefficient of total asset size TA was significantly positive,

indicating a positive effect of company size on company

earnings per share, which is consistent with the analysis of the

factors influencing earnings per share conducted by Sheng et al.

(2020). The coefficient of gross profit margin GPM was

significantly positive, which is consistent with the analysis of

Yang and Yang. (2019). The coefficient of net cash flow from

operating activities per share CFPS was significantly positive,

which is consistent with Song (2019) study on the effect of cash

capacity on stock prices. The coefficient of ROL was significantly

negative, and the higher the asset–liability ratio of a company, the

higher the fixed financial expenses, thus negatively affecting

earnings per share, which is consistent with the study by

Meng et al. (2018).

TABLE 5 Descriptive statistics of the main variables.

Variables Average value Standard deviation Minimum value Maximum value

Data dummy variables 0.511 0.500 0.000 1.000

Year dummy variable 0.799 0.401 0.000 1.000

Gross sales margin 29.681 18.267 −62.921 97.957

Net cash flow from operating activities per share 1.230 5.939 −134.039 136.058

Asset liability ratio 36.863 21.281 0.797 169.560

Logarithm of operating income 21.137 1.425 16.075 28.656

R&D investment intensity 0.051 0.059 0.000 0.984

Log of total assets 21.741 1.269 18.067 28.508

Net assets per share 4.412 2.779 −3.856 31.544

TABLE 6 Baseline model results.

Explained variable: Earnings per share (EPS)

Sample interval: 2011–2019

Explanatory variables Coefficient Standard error t-statistic p-value

DATAit × YEARit 0.076 0.0377 2.02 0.043

DATAit −0.123 0.0462 −2.28 0.023

log(TA) 0.022 0.0122 1.84 0.066

GPM 0.006 0.0007 9.24 0.000

CFPS 0.017 0.0013 12.99 0.000

ROL −0.004 0.0006 −6.37 0.000

Wald statistic 435.56 p-value of the Wald test 0.000

TABLE 7 Parallel trend test results.

Processing effects Coefficient estimates

δ−3 0.0153

δ−2 0.2777

δ−1 −0.344

δ 0.2010

δ+1 0.0667

δ+2 0.0219

δ+3 0.0830*

δ+4 0.1850***

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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4.2 Parallel trend test

In the DID model, “parallel trends” is a very important

assumption. If the parallel trend assumption holds, then there

should be no significant difference between the treatment and

control groups before the point at which the company adopts

DPFs. The multi-period DID model used in this paper examined

the treatment effects before and after the treatment period to test

whether the model satisfies the parallel trend assumption. The

model was set up as follows.

EPSit � α +∑m

τ�1δ−τDi,t−τ + δDi,t +∑q

τ�1δ+τDi,t+τ
+θnXi,t−1 + μi + λi + ηi + εit

(3)

whereDi,t is the treatment year dummy variable, which means that

it takes value of 1 when year t is the year when the ith company

initially adopts DPFs, otherwise it is 0. Similarly, if a company adopts

DPFs in period t, the company’s Di,t+τ was 1 when the observation

year was t + τ. In the rest of the cases, Di,t+τ was 0. δ−τ and δ+τ
respectively denote the impact from the τ period before and after the
treatment. δ denotes the impact generated in the treatment current

period. Therefore, δ−τ was the focus of the test, and if it was not

significant, it indicates that there was no significant difference

between the trends in the control and treatment groups before

the treatment, satisfying the parallel trend hypothesis.

This paper examinedm � 3, q � 4, i.e., three periods before and

four periods after treatment. The test results are shown in Table 7,

and the parallel trend tests diagram is shown in Figure 1. The

coefficients are close to 0 in the three periods before treatment,

indicating that the model satisfied the parallel trend hypothesis. The

significantly positive coefficients of the third and fourth periods after

the treatment confirm that there was a significant positive effect on

earnings per share after the adoption of DPFs in the two periods.

4.3 Heterogeneity analysis

4.3.1 Industry heterogeneity analysis
Since there are some differences between technical

conditions and economic benefits among different industries,

FIGURE 1
Parallel trend test chart.

TABLE 8 Impact of DPF adoption on earnings per share (results of industry heterogeneity model regression).

Dependent variable: Earnings per share (EPS)

Sample period: 2011–2019

Industry Service industry Industrial sector

Explanatory variables Coefficient p-value Coefficient p-value

DATA × YEAR 0.110 0.094 0.0460 0.319

DATA −0.885 0.090 −0.1287 0.000

log(TA) 0.004 0.860 0.0367 0.013

GPM 0.002 0.200 0.0088 0.000

CFPS 0.122 0.000 0.0190 0.000

ROL −0.002 0.111 −0.0046 0.000

Wald statistic 92.97 398.56

p-value of the Wald statistic 0.0001 0.0000

Sample size 4,653 1854
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to explore the heterogeneous effect of adopting DPFs on the

economic benefits of companies between industries. We divided

the sample into two groups, i.e., industrial and service companies,

according to the Classification of Industries of National Economy

(GB/T 4754-2017), and perform regressions separately.

Additionally, the fixed effects of the subsectors are controlled.

The regression results of the industry heterogeneity model are

shown in Table 8.

In the regression results for the sample of service-sector

companies, the coefficients of the dummy variable cross term

DATA × YEAR were significantly positive, and the

coefficients of the control variables were consistent with the

results of the benchmark model. The process of adopting

DPFs in service industry companies is generally to adopt

data-related technologies in the traditional service industry

and to use data as a production factor to enhance economic

benefits for companies through collecting, processing, and

analyzing data. Take the traditional commerce service

industry as an example. It has been upgraded to

e-commerce with the support of computer and internet

technologies, and e-commerce platforms have gradually

undergone a digital transformation with the development

of DPF support technologies, such as cloud computing, big

data technology, and deep learning. Furthermore, it has

incorporated data as a production factor into production

and operations activities. For example, in the traditional

business service industry, user demand analysis is often

based on the historical experience and business intuition of

operators, and its decision-making lack a scientific basis. After

the adoption of DPFs, e-commerce platforms could collect

user data and analyze user profiles, demand, and other

information with the help of data processing technology to

promote product sales and enhance the economic efficiency of

companies in a targeted manner. For service industry

companies, there are two paths for adopting DPFs to

improve economic efficiency: direct and indirect. Data

information and data analysis technology not only improve

the economic efficiency of companies directly by improving

product design and optimizing sales channels, but also

provide an impetus for strategic planning and business

model innovation in the context of big data, which

indirectly promotes company economic benefits (Sun, 2018).

In the regression results for industrial companies, the

coefficient of the dummy variable cross term

DATA × YEAR was positive but not significant. We

speculate that the main reasons come from two aspects,

i.e., the intensity of R&D investment on DPF supporting

technology, and the imperfect development of DPF markets.

First, R&D investment has long been considered important to

DPFs. On the one hand, it has been proved there is a threshold

effect of the impact of R&D investment intensity on company

economic performance (Dai and Cheng, 2013). Specifically,

R&D investment intensity can significantly contribute to

company performance only when the first threshold value is

TABLE 9 Impact of DPF adoption on earnings per share (ownership heterogeneitymodel with regression results for SOEs and non-SOE classification).

Explained variable: Corporate earnings per share

Sample interval: 2011–2019

Ownership State-owned companies (SOEs) Non-state-owned companies
(nSOEs)

Explanatory variables Coefficient p-value Coefficient p-value

DATA × YEAR 0.2661 0.001 0.0120 0.782

DATA −0.1412 0.017 −0.1156 0.000

log(TA) 0.1008 0.000 −0.0078 0.571

GPM 0.0104 0.000 0.0050 0.000

CFPS 0.0127 0.000 0.0176 0.000

ROL −0.0051 0.000 −0.0031 0.000

Wald statistic 151.6312 370.6134

p-value of the Wald statistic 0.0000 0.0000

Sample size 5,191 1,315
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reached. Since DPF is an emerging concept, the R&D

investments of industrial companies engaged in DPF

supported technology development may not have yet reached

the first threshold value, resulting in insignificant improvement

in their economic benefits. On the other hand, Zhao et al. (2012)

found that there is a very significant lagged effect of R&D

investment on the company performance of listed companies in

China, and the most significant lag is 2 years. Second, the

imperfect development of the DPF market may also affect

the economic efficiency of companies. As an emerging

production factor, the market development of DPFs still

suffers from unclear data ownership, inconsistent pricing

standards, difficulties in data security, and weak data

circulation capacity. Limited by the development degree of

DPF market, industrial companies adopting DPFs have not

yet experienced insignificant improvements in their economic

benefits. In summary, the above two points can explain that the

adoption of DPFs does not significantly improve the economic

performance of industrial companies during the sample period.

4.3.2 Ownership heterogeneity analysis
In the following, we examine the heterogeneity of ownership,

mainly caused by varying degrees of influence by macro policies,

different channels and management mechanisms for the

introduction of new technologies and new elements. We

divide the whole sample into two sub-samples, including

state-owned companies (SOEs) and non-state-owned

companies (nSOEs).

Table 9 shows the regression results of SOEs and nSOEs.

Regarding to SOEs, the coefficient of the dummy variable cross

term DATA × YEAR is significantly positive, and the

coefficients of the control variables are consistent with the

results of the baseline model. There are three main reasons.

First, the importance of data as a factor of production is very

much valued by top-level design, and one of the important

manifestations is that SOEs are vigorously promoting the

introduction and application of DPFs. The Action Plan for

Promoting the Development of Big Data promulgated by the

Fifth Plenary Session of the 18th Central Committee particularly

emphasized that SOEs must follow the requirements of the

market-oriented allocation of DPFs, strengthen data

infrastructure management and data mining applications, use

data to improve operational quality and efficiency, accelerate the

cultivation of new growth momentum, and win the initiative in

competitive development. SOEs have a greater advantage in the

implementation of policies and related safeguards, so the

adoption of DPFs is more likely to obtain a greater increase

in economic efficiency. Second, concerning the lag effects of R&D

investment on company performance, Ferreira et al. (2019)

found that it is not significant for SOEs, while significant fort

nSOEs. Third, SOEs have an advantage over non-SOEs in

implementing national policies on DPF and the adoption of

DPFs generally occurs earlier. Therefore, the adoption of DPFs

has significantly improved the economic efficiency of SOEs

during the sample period.

In the regression results for nSOEs, the coefficient of the dummy

variable cross term DATA × YEAR is positive but not significant.

Another remarkable difference is that the coefficient of total assets is

insignificantly negative. We speculate that a major reason is because

these companies experience more uncertainty in the business

environment. Since DPF is an emerging concept and the DPF

market is not well developed, the stability of the market

environment corresponding to DPF still needs to be improved.

Moreover, policies related to DPF have only been proposed for a

relatively short period, and the stability of related policies remains to

be observed. Therefore, nSOEs often have more concerns in the

process of adopting DPFs, and thus do not deeply integrate DPFs

into the production and operation processes.

5 Concluding remarks

This paper focused on the role of data production factor in

the context of the digital economy. We conducted an empirical

study to test whether the adoption of DPFs has a significant

impact on company performance, which addresses a current

concern in economic development.

The study showed that 1) the adoption of DPFs has a positive

effect on the earnings per share of companies, which will lead to a

significant improvement in company performance; 2) in the

study of the heterogeneity of company industries, it was

found that the economic efficiency of the service industry

companies that adopting DPFs showed a significant

improvement, but this could not indicate a significant

improvement in the performance of industrial companies; and

3) to analyze the heterogeneity effect of company ownership, this

paper divided the sample into SOEs and non-SOEs. From the

perspective of the lag in R&D investment on company

performance, SOEs have a certain time advantage over non-

SOEs in implementing the national policy in DPF, so

improvements in SOEs’ performance are significant.

Based on the research findings, this paper put forward the

following three policy recommendations: 1) Standardize the market

for DPF, including the decision mechanism of data value,

contribution, and remuneration as well as trading rules, and

focus on the integration of data and knowledge management,

while establishing and developing a knowledge value-oriented

remuneration policy. 2) Vigorously promote the construction of

infrastructure technical facilities, such as cloud computing, 5G

networks, and distributed data centers, and improve the big data

application environment. A large amount of data resources alone is

not enough to support the improvement of company performance,

and only by strengthening companies’ own data analysis capabilities

and dynamic innovation capabilities can we achieve scientific

decision-making and win in the market competition. 3)

Implement various national development policies on DPF,
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especially for non-SOEs, as the uncertainty of the policy business

environment will have a greater impact on the business vitality of

companies. Furthermore, because DPF is an emerging concept, their

developmental immaturity leads to instability, and adaptability to

the market environment still needs to be improved. Therefore,

various supporting policies should be improved as soon as possible.

There are three limitations of this study. First, collecting data only

from Chinese listed companies may bias the findings and lack

generalization. In future studies, more countries and industries

should be investigated to enrich the existing theory and practice of

data production factor. Second, measuring company performance

through only a single metric is not comprehensive enough. Beyond

Earnings Per Share (EPS), other performance measurements should

be included, such as Tobin’s Q and Return on Equity (ROE). Finally,

there are some factors that may affect company’s digital innovation,

such as company’s status (Liu et al., 2021) and the attitudes of

managers and staff concerning DPF adoption. Future study should

consider the mediate effects of these factors.
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How to design renewable energy
support policies with imperfect
carbon pricing?

Ye Wang1, Xiao Cui1, Weisheng Bu1 and Li Li2*
1Department of Management, Tianjin Normal University, Tianjin, China, 2School of Economics and
Management, Tianjin University of Science and Technology, Tianjin, China

Based on the emission trading scheme (ETS), this study built a design framework

of renewable energy support policies (RES), which is employed to assess the

interaction between RES and ETS. For RES, we consider two policy instruments:

feed-in-tariff (FIT) and renewable portfolio standards (RPS). Based on the partial

equilibrium model, taking the case of China’s electricity market, this study

quantitatively discusses the implementation effects of six different policy mix

scenarios from three aspects: emission reduction, production of green

electricity, and social welfare. According to the results, there were big

differences among the implementation effects of different RES instruments

based on ETS. The renewable subsidy policy, on the whole, is better than

renewable portfolio standards in terms of emission reduction, but worse in

terms of improving the production of green electricity. In addition, different

from the renewable subsidy policy, the renewable portfolio standards can

reduce social welfare. When the emission quota is eased, RES can be

implemented to significantly improve social welfare. These simulation results

inspire China for the design of effective energy policies.

KEYWORDS

carbon pricing, renewable portfolio standards, social welfare, feed-in tariffs, emission
trading scheme

1 Introduction

In recent years, energy shortage and environmental pollution have become

increasingly serious, and the energy transition by promoting, developing, and utilizing

renewable energy sources has become a consensus and concerted action of the

international community (IEA, 2020). However, due to immature technologies and

the high cost of renewable energy sources, its market competitiveness is weak. To

support the development of the renewable energy industry, many OECD countries

have implemented different types of renewable energy support policies. For example,

the renewable energy feed-in-tariff (FIT), renewable portfolio standards (RPS), and other

policies that can directly stimulate the installed capacity of renewable energy. Different

from FIT where a fixed amount of money is paid for each kWh of green electricity, RPS

compulsorily stipulates the market share of green electricity in the form of law. Fossil fuel

power generation companies can meet RPS by purchasing renewable energy credits

(RECs) from the green electricity generation companies or paying heavy fines; thus REC is
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a policy instrument to implement RPS. Moreover, an emission

trading scheme (ETS) is also widely applied. Although it was not

specifically designed for renewable energy, it can indirectly

stimulate investment in renewable energy by increasing the

cost of fossil energy. Since 2013, the Chinese government has

formulated a series of policies for the production of green

electricity and determined RES as a key component of its

development plan (Mischke and Karlsson, 2014; Wang et al.,

2014).

Among many renewable energy support policies, FIT is

considered to be more effective because it can provide

investors with long-term financial stability, but the high cost

of subsidies imposes a heavy financial burden on the

governments (Zhang et al., 2018). To reduce the

aforementioned burden, RPS and REC become alternatives in

different jurisdictions (Zhou and Zhao, 2021). Meanwhile, REC

can bring economic incentives to cost-effective renewable energy

companies, but there is still the risk of price volatility. When the

primary goal is reducing emissions, a single RES-E policy

(whether FIT or RPS) is always less cost-effective than a

carbon pricing policy (Palmer and Burtraw 2005; Fischer and

Newell 2008). Some scholars point out that a single policy cannot

effectively meet multiple policy goals at the same time (Fischer

and Carolyn, 2010). The successful transition to a low-carbon

economy depends on the joint effect of low-carbon technology

investment and renewable energy development, so it is necessary

to adopt policy mixes (Gugler et al., 2021). But due to the

volatility and intermittency of RES, these policies may restrain

each other to some extent.

To avoid the possible negative effects or to take advantage of

the potential synergistic effect of multiple policies, it is necessary

to understand how different policy mechanisms interact with

each other. In the case of two competing energy sources, which

policy can bring more renewable energy investment, lower

carbon emissions, and higher social welfare? How does the

emission cap in ETS affect the implementation effect of

renewable energy support policies? If the goal of the

government is to raise the renewable energy share, what does

the impact of the subsidy instruments and market mean?

However, these issues are seldom talked about in current

studies (Kök et al., 2018).

The research objective of this study is to quantify the

effectiveness and interaction of ETS and renewable energy

support policies. First of all, we built a partial equilibrium

model to discuss the interaction mechanisms between ETS

and renewable energy support policies. Then, we, combining

the theoretical model and numerical model and taking the case of

China’s electricity market, assessed the performances of different

policies in emission reduction, production of green electricity,

and social welfare. According to the model result, there were big

differences among the implementation effects of different

renewable energy support policy instruments based on ETS.

The renewable subsidy policy is better than RPS in terms of

emission reduction and social welfare, but less effective in terms

of improving the production of green electricity.

The rest of this study is organized as follows: the second part

introduces the studies on ETS and renewable energy support

policies conducted by domestic and foreign scholars. The third

part presents the analytical model and describes the supply and

demand situation of the electricity market under different policy

scenarios as well as the decision-making behavior of two major

market players—producers and consumers. The fourth part

describes the numerical model and method design. The fifth

part discusses the results, and the sixth part draws a conclusion

and gives policy implications.

2 Literature review

Domestic and foreign scholars have conducted a series of

studies on ETS and renewable energy support policies. First,

according to the investigations and research, ETS alone cannot

realize the emission reduction and energy objective. Second, we

reviewed the necessity, implementation effects, and interactions

of the policy mixes.

The economic theory clearly emphasizes that market means

should be made full use of to fix a price for social losses caused by

greenhouse gas emissions, which will help to stimulate the

internalization of externalities of carbon emissions (Pigou,

1920). Therefore, many economists (Branger et al., 2015;

Metcalf, 2009) have always considered the emission trading

scheme (ETS) as an important emission reduction instrument

for a long time, because it can realize emission reduction at the

lowest cost. In the real world, however, there are many

restrictions on making environmental policies. The

economically effective and optimal emission trading market

requires a valid high carbon price, which is difficult to realize.

This is also proven by the empirical evidence from the EU

emission trading market (Perino and Jarke, 2015). The

supply–demand imbalance of emission quotas and various

uncertainties in the electricity market lead to a low carbon

price (Lecuyer and Quirion, 2016). Therefore, ETS alone is

not enough to stimulate emission reductions (IEA, 2020). The

energy transition requires the deployment of green electricity, but

ETS has a limited effect on renewable energy development and

cannot provide sufficient incentives for technological innovation.

Another reason why ETS is not enough is that ETS is indirect.

Firms can also decarbonize by using efficiency measures or

switching fuel (e.g., from coal to gas). Firms can even reduce

their production to decarbonize, especially under the historical

allocation mechanism. On the demand side, many of them only

have such measures. For electricity firms, it is the same.

Furthermore, under the historical allocation mechanism in

ETS, the production reduction of the steel sector can lead to a

lower carbon price and reduce the renewable investment in the

electricity sector. The experience of the EU tells us that apart
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from ETS, a specific renewable energy objective is also needed

(Schmidt et al., 2012).

To achieve multiple policy goals, it is particularly important

to mix ETS and renewable energy support policies (Duan et al.,

2018). However, the effect of policy mixes has always been a focus

of controversy in academic circles. Many scholars have

considered the synergistic effect between ETS and renewable

energy support policies and confirmed the importance of policy

mixes to achieve desired emission reduction and energy

objectives in the most cost-effective manner (Cheng et al.,

2016; Fan et al., 2016). Some studies employed the

computable general equilibrium model or partial equilibrium

model to assess the social and economic impact of policy mixes.

For example, some scholars have discussed the interaction

between emission cap and REC or the interaction between

emission cap and FIT (Böhringer and Behrens, 2015; Jos,

2005). Lots of quantitative studies have shown that although

policy mixes can reduce social welfare and cause GDP losses, they

can more efficiently reduce the electricity generation from fossil

fuels and increase the production of RE, thus promoting the

energy transition (Mu et al., 2017; Wu et al., 2017; Wu et al.,

2020). There are some similar viewpoints that the policy mixes

can help to realize deep decarbonization of energy systems

quickly (Hepburn et al., 2020; Rosenbloom et al., 2020).

However, mixed policies may also cause conflicts and even

lead to the failure of some policy instruments, thus increasing the

social cost of policy implementation. Some scholars pointed out

that the impact of renewable energy support policies on ETS

should be admitted (Fischer et al., 2010). The implementation of

renewable energy support policies can help ETS meet the

emission cap and reduce the carbon price, which is thus

relatively beneficial to fossil energy. In some studies, it is

believed that excessive renewable energy objectives will

restrain the demand for carbon emission quotas, thus leading

to a low carbon price (Nordhaus, 2011; Berghet al., 2013;

Lindberg, 2019). Similarly, the trials of ETS in China also

show that the risk of emission quota over-allocation may lead

to a drop in carbon price and reduce market efficiency (Wu et al.,

2017). Therefore, to achieve climate goals and low-carbon

transition, we must fully understand the interaction

mechanism between different policies and give play to the

advantages of each policy instrument, which is of great

significance for China to achieve carbon peak and carbon

neutrality.

To sum up, it is necessary and important to study policy

mixes, but most of the previous studies focused on quantitative

research and ignored the theoretical discussion. Specifically, there

is no study on the interaction between China ETS and renewable

energy support policies. Based on the partial equilibrium model,

this study analyzes how ETS and different renewable energy

support policies affect the game behavior of market players. In

addition, based on China’s electricity market, it simulates CO2

emissions, production of green electricity, and social welfare

under different policy scenarios, which inspires China’s design

of energy policies.

3 Theoretical model

3.1 Policy description

To explore the interaction mechanism between renewable

energy support policies and carbon emission trading, we built a

partial equilibrium model and described the supply and demand

situation of the electricity market as well as two major market

players—producers and consumers—and their decision-making

behaviors. The following policies are involved in the model.

An emission trading scheme refers to a mechanism where a

certain number of emission credits are assigned to the

participants. These credits thus become a commodity, which

can be “consumed” by the participants themselves or “traded”

with others in the carbonmarket, which depends on the marginal

abatement cost. As a market-driven instrument, it first sets

emission caps and then fixes a price for CO2 produced by

burning fossil fuels. Feed-in tariff (FIT), also known as

renewable subsidy policy, means that the governments give

subsidies for each kWh of electricity to renewable energy

power generators (such as PV electricity generators, wind

electricity generators, etc.). Many countries have adopted this

policy to support and stimulate the green electricity markets at an

early stage (such as several member states of the EU, Australia,

and several states of the United States). Because high policy cost

is needed to implement the renewable subsidy policy, it is not as

good as the marketized instruments in the long run and the

policy should gradually retreat. To reduce the financial burden

caused by subsidies, renewable portfolio standards (RPS) and

purchased renewable energy credits (REC) are two alternative

market instruments. Green electricity generation companies can

make extra profit by selling purchased renewable energy credits.

In the model, the electricity price depends on the

supply–demand relationship in the state of equilibrium. ETS

can affect the production cost of fossil fuel companies through

the carbon price. Renewable energy support policies can change

the equilibrium price and production by affecting the electricity

generation cost and electricity demand. By comparing the

differences among carbon emissions, production of green

electricity, and social welfare, we can assess the impact of

policies on the economy, environment, and society.

3.2 Behavior of market players

3.2.1 Electricity generators
When fossil fuels are used to generate electricity, pollutants

are discharged, leading to environmental externalities. In such a

case, the policymakers need to choose the optimal policy
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instrument to realize the externality, and such intervention is

bound to affect other economic agents in the market. The

electricity generators are all in pursuit of profit maximization.

They will measure the marginal cost and marginal revenue of

electricity generation according to policymakers’ decisions and

then adjust their production (Xi , i � f, r) to ensure their profit

maximization.

Suppose that the production cost functions of each

technology i are Ci(Xi), i � f, r, and it is a continuous convex

function (Lecuyer and Quirion, 2016): C′
i(Xi) �

z(Ci(Xi))/zXi > 0 and C″
i (Xi) � z2(Ci(Xi))/zX2

i > 0.
Considering the great space change in the availability of wind

energy resources and solar energy resources, the sites with the

highest resource quality will be used, followed by the sites with

the lower quality. The cost function of each technology i is

described with the most classical linear quadratic form:

Ci(Xi) � aiX
2
i + biXi , i � f, r (1)

In this function, ai and bi are parameters to the cost function of

each technology i. The profit of the electricity generator is as

follows:

∏(p, xf, xr, κ, π, a, b) � p ·Xf + π ·Xr − Cr&f(Xr&f) − κ · u
·Xf

(2)
In this function, p stands for electricity price in the market,

which is also the marginal revenue of conventional technology

companies. π stands for the marginal revenue from the sale of

renewable energy, which depends on which renewable energy

support policy the regulator chooses. Considering RPS and REC

scenarios, π � p + η, in which η stands for renewable energy

credits price and endogenously calculated by the following

constraint:

Xr ≥ γ · (Xf +Xr) ⊥ η≥ 0 (3)

That requires that a certain share of γ must be from

renewable energy sources to form a green certificate

equilibrium price η. In the case of the FIT policy, π � S, in

which S stands for tariff level. When ETS is alone, the benefits of

renewables just come from electricity price, so π � p.

In an ETS system, κ stands for the shadow price formed

under the constraint of emission cap Ω, and represents the

carbon price, which is endogenously determined by the

following constraint:

Ω≥ u ·Xf ⊥ κ≥ 0 (4)

When the emission capΩ is binding, κ will be positive. When

the emission cap Ω is equal to the total amount of CO2, the

emission cap will lose its constraining force and the carbon price

κ � 0.

3.2.2 Consumers
Consumers are always in pursuit of utility maximization, but

since China’s electricity price is regulated by the government, it

can be considered that changes in demand will not lead to

significant changes in electricity price. Although the functional

relationship between electricity price in the market and electricity

demand is not clear, there is still a functional relationship

between electricity price in the market p and electricity

demand D. We assume that there is a linear relationship

between consumer demand D and electricity price in market

p in the model (Liu et al., 2019), which is defined as follows:

D � B − Ap (5)

If the inverse demand function is defined as p(D), the consumer

surplus is as follows:

CS(p) � ∫q
0

p(x)dx − p ·D(p) (6)

In this function, x stands for the production of electricity. The

consumer surplus function CS is a strictly convex function:

CS′> 0 and CS″> 0.

3.3 Supply–demand equilibrium model of
electricity

First, a perfectly competitive market with symmetric

information was assumed in the model (Lecuyer and Quirion,

2016). Second, we considered two technological types of

electricity companies i, whose electricity generation is Xi. For

conventional energy electricity generation companies, i � f

stands for fossil fuel technologies (coal, gas, etc.). For clean-

energy electricity generation companies, i � r stands for carbon-

free technologies (wind, PV, etc.). Each technology cannot

produce more than its available capacity in any period of time

(Abrell et al., 2019):

αi ·Mi ≥Xi ⊥ μi ≥ 0∀i (7)

Considering the intermittency of renewable energy resources,

the electricity generation from wind and solar energy is greatly

affected by weather conditions and geographical location, so αiis

used to measure the availability of renewable energy resources in

this study. For conventional technologies, it can also reflect the

service condition of electricity generators (there is the possibility

of maintenance or downtime). Mi stands for the total existing

installed capacity of each energy technology. μi is the shadow

price of the generating capacity of each technology, which is

determined by Eq. 1. If the production is below the capacity limit,

the shadow price will be zero (μi � 0); if they are equal, the

shadow price will be positive (μi > 0).
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In a perfectly competitive market, no company will be

hindered from entering or leaving the market, and no seller

or buyer can determine the price, which meets Pareto optimality.

In the equilibrium model, the production costs and benefits of

electricity generators determine the production of each

technology i (Abrell al., 2019). For fossil fuel technologies:

Cf(Xf)/zXf + κ + μf ≥p ⊥ Xf > 0 (8)
For carbon-free technologies:

Cr(Xr)/zXr + μr ≥ π ⊥ Xr > 0 (9)

where Ci(Xi) stands for the production cost of each technology.

When the marginal cost is higher than the marginal revenue, if

the company continues the production, it will lead to losses, so

Xi � 0. When they are equal, the company will increase

production, so Xi > 0. Meanwhile, the aggregate demand Dfor

electricity in the market should be equal to the aggregate supply

in any period of time.

∑
i

Xi � D∀i (10)

3.4 Social welfare maximization

When analyzing the interaction between renewable energy

support policies and ETS, wemainly examined the ability to solve

the pollutant externalities under two policy scenarios. In a

decentralized market economy, the equilibrium decision of

energy supply and demand depends on utility maximization

for consumers and profit maximization for electricity generators.

Therefore, policymakers should focus on social welfare

maximization. The social welfare function is as follows

(Lecuyer and Quirion, 2016; Abrell et al., 2019):

max
Ω,γ,s

W � CS(p) + Π(p, xf, xr, π, κ, γ) − E(xf) − Sub(xr)
+ T(xf)

(11)
E(xf) � δ · u · xf (12)

E(xf) is the loss function. δ stands for the social cost of carbon,
implying the constant marginal loss in a certain period of time. u

stands for the carbon intensity of fossil fuels in the power sector

(in the model, different coals and natural gases are

distinguished).

Sub(xr) � (π − p) · xr (13)
T(xf) � κ · u · xf (14)

Sub(xr) is the cost of subsidies, meaning the total cost paid

by the governments to the renewable energy producers as

subsidies under the scenario of renewable energy support

policies. T(xf) means that the carbon emission costs paid by

fossil energy enterprises are transferred to the government

regulatory revenue and then used for redistribution. The last

two formulas stand for changes in social welfare under different

policy scenarios.

4 Empirical quantitative framework
and results

4.1 Description of numerical model

To quantify the implementation effect of the policy mixes, we

built a numerical model which was calibrated with data about

China’s electricity market in 2018. First of all, we found out the

differences between different electricity generation technologies i

(coal, gas, wind, PV, etc.) including carbon intensity, production

cost, installed capacity, and other indicators. Importantly, since

China’s electricity market is still dominated by coal electricity

generation, we further classify coal into coal and coal gangue, so

that we can describe policy-induced changes of each technology

portfolio on the production and supply sides from the

perspective of finer granularity. Then, two renewable energy

support policy instruments, renewable subsidy policy and

REC, were introduced to the model, and the efforts to

implement the policies were also considered. With ETS alone

as the benchmark, this study analyzed the effect of policy mixes

on social welfare, production of green electricity, and CO2

emissions.

4.2 Data sources and explanation

Taking the case of China’s electricity market in 2018, we

conducted an empirical analysis based on the aforementioned

theoretical model. In the model, the following parameters are

required: α, the availability of renewable energy (wind energy

and solar energy) resources which changes over time (Wu et al.,

2013; Chang et al., 2014; Yang et al., 2012), and κi, the

cumulative installed capacity of various energy technologies i

(National Energy Commission Administration, 2017). We

found that the installed capacity of renewable energy

accounted for 20%, but its electricity production only

accounted for 8%, which indicates that there is still partial

wind and PV curtailment in China, and the availability of

renewable energy is low. In combination with the data of α,

this study can better describe the heterogeneity and

intermittency of renewable energy resources. When

calculating the social losses caused by carbon externalities,

we got the result by multiplying carbon emissions during

electricity production by the social cost of carbon. We got

the result of carbon emissions by multiplying the sum of carbon

intensity and annual service hours of various conventional

technologies by the installed capacity (National Energy
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Commission Administration, 2017) (see Supplementary

Appendix S1 for other data mentioned in the text).

According to the data about carbon intensity, compared with

Germany, the carbon intensity of China’s coal electricity plants

and the electricity market is dominated by coal electricity in

China, which partly contributes to the high ratio of China’s

carbon emissions over global carbon emissions. Later, we

obtained data about China’s social cost of carbon (Ricke et al.,

2018; Tianet al., 2019). Last, the production cost functions and

emission cost functions of various technologies were obtained

(Abrell et al., 2019; Liu et al., 2014; Feng et al., 2018). Through the

calibration unit, we obtained the electricity demand function (Liu

et al., 2019; Lin and Purra, 2019; Pu et al., 2020). The

aforementioned data were all calibrated again in the

numerical model.

4.3 Design of empirical methods

Based on the partial equilibrium model, we made use of the

mixed complementarity formula to describe China’s electricity

supply–demand market. All nonlinear inequalities can be divided

into two kinds: zero profit and market clearing, which form

complementary conditions with production X and ω shadow

price, respectively. In addition, there is a dynamic game between

the two types of competitive companies and policymakers, namely

the former pursues profit maximization, while the latter aims to

maximize social welfare. In this process, the decision-making

variables of the other side need to be taken into account. This is

a two-level optimization problem, that is, a low-level constraint set

equilibrium problem of maximization objective function. Therefore,

we should transform the part of the low-level equilibrium problem

into a mixed complementarity problem (MCP). To solve it, we

employed the general algebraic modeling system, namely, the path

solver in General Algebraic Modeling System (GAMS) software.

In addition, we need to explain some parameters in the

model. The emission cap Ω is always an exogenous variable,

which should be constantly adjusted during the program run

before the optimal solution is found. When policy mixes are

implemented, the subsidy S to renewable energy and renewable

energy quota γ are also exogenous variables. The optimal value S

may fall at any point of the interval 0.05 yuan/kWh–0.5 yuan/

kWh, and the optimal value γmay fall at any point of the interval

6%–12%. At this point, we discretize and assign values to Ω, S,

and γ at the same time, and the model will constantly be iterated

until the optimal solution is found.

4.4 Basic settings of the model

4.4.1 Policy scenarios and benchmark setting
In the empirical analysis, we assessed the interaction between

ETS and two alternative renewable energy support

policies—purchased renewable energy credits (REC) and

renewable subsidy policy. Later, we considered the efforts to

implement each renewable energy support policy and divided

them into different policy scenarios. The specific scenarios are

shown in Table 2. Scenario 1 and Scenario 2 differ in mandatory

market share in RPS: S1 = 0.08 and S2 = 0.1. Scenario 3, Scenario

4, and Scenario 5 differ in the amount of policy in renewable

subsidy policy: S4 = 0.1, S5 = 0.2, and S6 = 0.3. Moreover, ETS

alone is used as the benchmark in this study to compare the

different policy scenarios.

4.4.2 Scale setting
As shown in Figures 2, 5, to better show the changes in CO2

emissions during the implementation of policy mixes compared

with those during the implementation of ETS alone, ΔR is

defined in this study, which represents emissions during the

implementation of ETS alone minus emissions during the

implementation of both ETS and renewable subsidy policy.

ΔR � ES3−S5 − ES0. Similarly, to better show the changes in

social welfare during the implementation of policy mixes

compared with those during the implementation of ETS

alone, ΔW is defined in this study, which represents social

welfare during the implementation of both ETS and renewable

subsidy policy minus social welfare during the implementation of

ETS alone. ΔW � WS3−S5 −WS0.

As shown in Figures 1, 3, 4, % is defined in this study, which

represents the changing rate of CO2 emissions, production of

green electricity, and social welfare under the policy mix

scenarios S1–S5 compared with benchmark scenario S0,

namely, % � (S1−5 − S0)/S0.

5 Analysis of empirical results

5.1 CO2 emissions

Figure 1 shows the changes in emission reduction in

scenarios S1–S5 compared with benchmark scenario S0.

According to this figure, we can see that when the emission

cap is relatively stringent, implementing ETS and renewable

energy support policies at the same time may promote

emission reduction more than implementing ETS alone, but

the effect varies according to the types of RES and the efforts

to implement the policy. The emission reduction effect of

implementing renewable subsidy policy (S3–S5) is generally

better than that of RPS and RECs (S1, S2), and the greater the

subsidy amount and the higher the mandatory market share, the

better the emission reduction effect. When the cap is 10 million

tons, the emission reduction ratio of S1 and S2 is between 0.9%

and 1.3%, while that of S3–S5 is between 1% and 2.8%.

In fact, the subsidies could decrease the carbon price. As

shown in Supplementary Table S1, for the same cap, the carbon

price decreases with the increase of subsidies. The more
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renewables are deployed, the greater the impact on the carbon

price. According to the scenarios of S1–S5, the proportions of

renewables in the FIT scenarios are much less than in the RPS

scenarios, so the former leads to higher carbon prices than the

latter. For example, when the cap = 6 million tons and the tariff is

0.5 RMB, the shares of green electricity are just 2.04%. This is far

lower than the green certificate case, which is at least 8.02% under

the same cap, see Supplementary Tables S1, S3. The descending

carbon price encourages coal-fired generation; therefore, the

emission reduction ratio of S1 and S2 is lower than those of

the scenarios of S3–S5.

5.1.1 The implementation effect of ETS mixed
with FIT

Figure 2 more clearly shows the interaction between

renewable subsidy policy and the emission cap. However,

whether FIT policies actually contribute to CO2 reduction

when overlapping with an ETS is a question. Under the

mixed policy scenario of renewable energy subsidies and

carbon market at the same time, through the interaction

between subsidy price and emission cap, we find that the

results are divided into the following two cases:

On the one hand, when the emission cap of the carbon

market is very loose, the carbon price will be much less than the

social cost of carbon (SCC) (SCC = 156 RMB/ton, κ = 74.9 RMB/

ton), and it is necessary to implement the subsidy policy with a

low subsidy level. This is because when the subsidy level is low,

the effect of renewables on carbon prices is limited. In addition,

low carbon prices cannot or can only trigger a small part of fuel

switching between coal and natural gas, and also the renewable

energy target cannot be reached. Meanwhile, in such a case, it is

necessary to combine the renewable subsidy policy with ETS to

TABLE 1 Variables and parameters in the analysis model.

Variables and parameters
in the analysis
model

Value Dimension Description

xr - MWh Electricity from renewable sources

xf - MWh Electricity from fossil fuels

αi - —— Availability of capacity

Mcoal 1007940 MW Existing production capacities

Mgas 83130 MW Existing production capacities

Mwind 184665 MW Existing production capacities

Mpv 175016 MW Existing production capacities

a(coal) 3.69*10−4 MWh2/RMB Slope of generation cost functions

b(coal) 17.24 MWh/RMB Slope of generation cost functions

μi - RMB/MWh Shadow price of e-generating capacity

p - RMB/kWh Electricity price

κ - RMB/ton CO2 price

η - RMB/MWh Renewable energy credits price

Ω 8–30 Million tons Emissions cap

u - tCO2/MWh CO2 intensity of fossil-based electricity

δ 156 RMB/ton Social carbon costs

γ 8%–10% —— Share of RE in total electricity

π - RMB/kWh Effective marginal revenue of renewables

A - —— Intercept of demand function

B - —— Slope of demand function

S 0.05–0.5 RMB/kWh Subsidy price

TABLE 2 Policy scenarios.

Scenario Subsidy (RMB/kWh) Renewable
energy share (γ)

Emission trading scheme only (Benchmark)

S0 × ×

Emission trading scheme and tradable green certificates

S1 × 8%

S2 × 10%

Emission trading scheme and renewable subsidy policy

S3 0.1 ×

S4 0.2 ×

S5 0.3 ×
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promote the increase of renewable energy sources, which will

achieve emission reduction by a greater order of magnitude.

However, with the high subsidy level combined with the

loose emission cap, the situation is unclear. In this situation, the

carbon price may be much lower, and high subsidies exacerbate

this situation. Since the dirtier coal-fired generation benefits from

the carbon price decrease, to maintain the same level of

emissions, it must decrease natural gas generation more than

FIGURE 1
CO2 emissions under different policy scenarios.

FIGURE 2
Carbon emissions of subsidy and carbon market combination policy.
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coal-fired generation. Meanwhile, the emissions may exceed the

alternative emission reductions which brought about

encouraging renewable deployments. Just as shown in

Figure 2, when the cap = 30 million tons, the emission in the

case of 0.50 yuan/kWh is surprisingly higher than that of the

0.05 yuan/kWh. Moreover, with the increase in the amount of

subsidies, the emission reduction effect will be more significant,

but at the same time, it will require greater policy costs.

On the other hand, when the cap is strictly stringent, the

carbon price will be approximately equal to 156 RMB/ton. Since

implementing ETS alone can achieve the theoretically optimal

emission reduction effect, it is unreasonable to implement a

subsidy policy at the same time.

5.1.2 The emission reduction path of ETS mixed
with FIT

The emission reduction path of scenarios S3–S5 where ETS

and FIT are implemented at the same time is shown in Table 3.

Under benchmark scenario S0, the production of coal electricity

is 17,789.941 TWh, that of natural gas electricity is

6,263.900 TWh, that of wind electricity is 101.627 TWh, and

that of photoelectric power is 90.260 TWh. We found two

reasons for this:

First, S3–S5 promote fuel conversion among fossil fuels,

realizing the transition from high-emission coal electricity

generation to natural gas electricity generation. After the

introduction of a subsidy policy based on the emission cap

control alone, cap = 6 million tons, S = 0.1 RMB/kWh, the

terminal demand increases by 0.9%. This part of electricity

demand is mainly met by electricity generated from natural

gas, supplemented by wind electricity and PV electricity, while

the proportion of coal electricity decreases.

Second, S3–S5 promote an increase in the production of

renewable energy, so that renewable energy can replace fossil

fuels. According to the results of the model, compared with wind

electricity, the increase in the production of PV electricity is more

significant, which is because the investment in wind electricity

generation is larger than that in PV electricity generation. If they

are given the same amount of subsidies without considering

different renewable energy technologies, the investors may invest

more in the PV industry, thus making the proportion of the

increase in production of PV electricity larger. For example,

when the cap is 6million tons, as the amount of subsidy gradually

increases to 0.3 RMB/kWh from 0.1 RMB/kWh, the proportion

of the increase in production of PV electricity becomes 4.416%

and that of wind electricity becomes 1.737%. Therefore, when

implementing the subsidy policy, the government should take

both policy cost and investment benefit into account and

implement differentiated subsidies for different renewable

energy technologies.

5.1.3 The carbon emissions of ETS mixed
with RPS

The performance of the mixed policy of the green certificate

and carbon market in carbon emissions are further discussed in

the following. As shown in Figure 3, with the increase of the

proportion of green electricity, the emission reduction has a

fluctuation phenomenon of first decreasing and then

increasing, then decreasing and then increasing again. For

example, when cap = 6 million tons, when the proportion

γ = 16% (see Supplementary Appendix S1 and Table 3), the

emission is the lowest, and then increases. This is the very

famous phenomenon of “green promotes dirty.” The main

reason is that when the renewable energy market share

increases, the demand for fossil energy power will decrease,

resulting in a decline in fossil energy power generation and

carbon emissions (cap = 6 million tons, γ = 10% or 16%) (see

Supplementary Appendix S1 and Table 3). However, with the

increase in proportion, the demand for carbon emission quotas

of fossil energy will be further reduced. See Supplementary

Appendix S1, Table 3. At this time, the market carbon price will

be reduced (γ=16%, κ = 61.2 RMB/ton) and the power

generation cost for coal-fired power enterprises will be

reduced, which will seize the fossil energy power market and

squeeze cleaner natural gas power generation out of the market.

For example, when the renewable energy market share γ = 18%,

compared with 16%, coal power increases by 1.6%, natural gas

power generation decreases by 3.6%, and the total emissions

also increase accordingly (see Supplementary Appendix S1 and

Table 3). Therefore, there is a situation where “cleaner power” is

replaced by “dirty power”-based market (see Supplementary

Appendix S1 and Table 4).

TABLE 3 Electricity generation.

Renewable energy subsidy
[RMB/kWh](S)

Electricity generation change (%)

Coal Gas Wind PV

Cap = 6 million tons

S3 0.10 −0.303% +1.161% +0.567% +1.463%

S4 0.20 −0.602% +2.301% +1.134% +2.926%

S5 0.30 −0.947% +3.459% +1.737% +4.416%
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Lastly, we will explain why the emission reduction effect in

S1 and S2 are lower than those of S3–S5 on the whole. There

might be two reasons: under scenarios S1 and S2, the carbon

price is relatively low and the natural gas electricity generation

transits to coal electricity generation within the fossil fuels. In

some studies, some scholars believe that excessive renewable

energy objectives will restrain the demand for carbon emission

quotas, thus leading to a low carbon price (Lindberg et al., 2019).

This is consistent with the results of the model. As shown in

Table 4, the lower case is compared. S0, S1, and S3 deliver similar

green electricity generation while leading to quite different

carbon prices. For example, the carbon price under scenarios

S1 = 85 RMB/ton, far lower than S0 and S3. Moreover, the

mandatory renewable energy share will make investors invest in

renewable energy electricity generation, which will lead to

underinvestment in natural gas electricity generation.

However, wind electricity generation and PV electricity

generation are intermittent, so backup coal electricity

generation units are required for peak-load regulation. At last,

the result might be over-reliance on backup (coal-fired)

generators (Aflaki and Netessine, 2017), which is consistent

with the results of the model. According to the results of the

model, when the share of green electricity increased from 10% to

12%, the share of coal electricity increased by 2%.

5.2 Production of green electricity

Figure 4 presents the changes in the production of green

electricity under scenarios S1–S5 compared to benchmark

scenario S0. We can see that compared with S0, all scenarios

S1–S5 can improve the production of green electricity, among

which S1 and S2 have better effects. When cap = 10 million tons,

increasing proportion under scenarios S1 and S2 ranges from

FIGURE 3
Carbon emissions of green credits and carbon market combination policy.

TABLE 4 Comparison of policy scenarios.

Scenario Carbon price (RMB) Electricity price (RMB) Credits price (RMB)

S0 225.8 0.38

S1 85.6 0.39 1.401

S3 234.3 0.38
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13% to 18%, while that under scenarios S3–S5 ranges from 8% to

15%. In addition, we can find that S1 and S5 have similar effects

on increasing the production of green electricity, but S5 has

higher policy costs and cannot solve the long-term incentive

problem in the development of the renewable energy industry.

Therefore, with a similar effect, REC, as a marketized instrument,

maybe a better choice.

First, according to the results of the model, we will analyze

the reasons why S1 and S2 can stimulate the increase in the

production of green electricity. First, the government stipulates

the market share of green electricity, which directly stimulates the

investment in RES; as the proportion of γ increases, the share of

renewable energy also increases. In the case of cap = 8 million

tons, when γ is 0.08, the share of RE is 7.42%; when γ is 0.1, the

share of RE is 7.86%. Second, the price of a green certificate can

bring extra benefits to renewable energy companies. In the case of

cap = 6million tons, when γ = 0.08, the quota price is 1.401 RMB/

kWh. Since China’s quota and green certificate market are still in

the early stage, the price of green certificates is low and has

volatility risk, but there is still a large space for development.

Second, we will discuss the effect of the interaction between

renewable subsidy policy and ETS on the production of green

electricity, as shown in Table 3. First, with the same cap, as the

amount of subsidy increases, the production of green electricity

increases. For example, when cap = 8 million tons, if S increases to

0.5 RMB/kWh from 0.1 RMB/kWh, the shares of green electricity

increase by 6.5% and 17.3%, respectively. Since the cost of

investment in such renewable energy as wind electricity and PV

energy is high, coupled with their natural intermittency and

technical thresholds, renewable energy is not very competitive

in the electricity market. Nonetheless, the implementation of a

renewable subsidy policy can make up for its disadvantage in cost

and promote technological innovation. However, the amount of

subsidy and the opportunity to retreat should be well grasped.

Second, a gradually relaxed cap requirement for ETS that could

render the same RPS percentage is correspondingly difficult to

achieve. For example, when the RPS percentage requirement is

0.08, if the cap increases to 8 million tons from 6 million tons, the

shares of green electricity will decrease by 8.66% and 6.58%,

respectively. The scholars believe that raising the carbon price

may reduce the overall proportion of green electricity (Aflaki et al.,

2017), which is consistent with the result of our model. This means

that controlling the emission cap alone can directly stimulate

emission reduction, but cannot achieve the goal of renewable

energy development. Therefore, to achieve the multiple policy

objectives of China, renewable energy support policies must be

implemented as supplementary means.

5.3 Social welfare

Figure 5 shows the changes in social welfare of scenarios

S1–S5 compared with the benchmark scenario S0. With S0 as the

benchmark, scenarios S1 and S2 will reduce social welfare, while

scenarios S3–S5 will improve social welfare. In the case of cap =

10 million tons, the social welfare decreases by about 0.0468%–

FIGURE 4
Production of green electricity under different policy scenarios.
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FIGURE 5
Social welfare under different policy scenarios.

FIGURE 6
Social welfare under subsidy and carbon market combination policy.
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0.0491% under scenarios S1 and S2, while social welfare increases

by 0.0162%–0.0587% under scenarios S3–S5. In the following, we

will explain the differences between the two renewable energy

support policies according to the results of the model.

First, Figure 6 presents the effect of interaction between

renewable subsidy policy and ETS on social welfare. In the

practice of China’s carbon market, the carbon price is always

lower than its theoretical optimal level. When the carbon price is

lower than the optimal level, whether the combination of the

carbon market and renewable energy support policies is optimal

or cost-effective depends on the deviation degree of the carbon

price from the optimal level (Abrell et al., 2019). First, when the

cap setting is loose, there is an interval of the carbon price and the

combination of the carbon market and renewable energy support

policies can improve the social welfare, which is consistent with

the scholars’ conclusion (Abrell et al., 2019). Second, when the

cap is set to be valid, the carbon price is close to the social cost of

carbon (SCC = 156 RMB/ton). In such a case, it is unnecessary to

adopt the renewable subsidy policy at the same time, which can

only increase the policy cost. That is because high carbon price

has effectively made use of all the emission reduction channels. If

subsidies are given to renewable energy technologies in this case,

a twist effect will be produced. According to the results of the

model, there is an inflection point when the high carbon price is

210 RMB/ton, at which the implementation of subsidy policy will

have a negative effect and lead to the situation where the more

subsidies are given, the worse the situation will be.

Second, as shown in Figure 7, with the increase of renewable

energy market share, γ social welfare is decreasing, which is

consistent with the classical economic theory. We find that there

is a nonlinear relationship between the increase in proportion and the

decrease in welfare. For example, when cap = 6 million tons and the

proportion γ = 0.16, social welfare is the most optimal (see

Supplementary Appendix S1 and Table 3). The reason for this

phenomenon is that with the increase of renewable energy market

share, the cost of purchasing green certificates by enterprises

increases, and the market electricity price increases. The green

certificate price will be transmitted to consumers, resulting in the

reduction of consumer surplus, thereby reducing social welfare. In

addition, we find that carbon prices and the price of green certificates

fluctuate at times. Specifically, the price of green certificates fluctuates

greatly. According to the results of themodel, the carbon price ranges

from 63 RMB/ton to 85 RMB/ton, and the price of green certificates

ranges from 0.713 RMB/kWh to 1.401 RMB/kWh. Price volatility

has led to fluctuations in the production of electricity from both

conventional energy and renewable energy sources.

6 Conclusion and policy implications

6.1 Conclusion

In recent years, policymakers in many countries have begun

to implement or seriously consider renewable energy support

FIGURE 7
Social welfare under green credits and carbon market combination policy.
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policies. With the widespread application of renewable energy

support policies, the overlap of different policy instruments of RES

and ETS may have an important impact on the implementation of

regulatory policies. To avoid the possible negative effects or to take

advantage of the potential synergistic effect of multiple policies, it is

necessary to understand how different policy mechanisms interact

with each other.

Based on the aforementioned problems, we, first of all, built a

partial equilibrium model to discuss the interaction mechanisms

between ETS and renewable energy support policies. Then, we,

combining the theoretical model and numerical model and taking

the case of China’s electricity market in 2018, conducted an

empirical analysis and specifically presented the interactions

between different policies from three aspects—emission

reduction, production of green electricity, and social welfare.

According to the results of the model, there were big

differences among the implementation effects of different

renewable energy support policy instruments. Based on ETS,

the renewable subsidy policy (S3–S5) is better than REC (S1 and

S2) in terms of emission reduction, but worse in terms of

improving the production of green electricity. In addition,

different from the renewable subsidy policy (S3–S5), REC

(S1 and S2) can reduce social welfare.

6.2 Policy implications

A renewable subsidy policy is the starting point of the low-

carbon transition, but it cannot serve as the core driver for long.

Although the policy effect of the renewable subsidy policy

completely depends on the government’s willingness to reduce

emissions, it still faces a large policy cost. According to Figures 2,

5, when the subsidy level is set, the setting of the emission cap should

be fully considered, but should not be only based on the investment

cost and environmental value of renewable energy sources. In short,

the renewable subsidy policy is not a long-term solution and should

gradually “retreat.” One of the preconditions for subsidy retreat is

that the carbon market is efficient. According to the result of the

model, when the cap is loose, the carbon price will bemuch less than

the social cost of carbon (SCC= 156 RMB/ton), and it is necessary to

implement the subsidy policy. When the carbon market runs

effectively, the carbon price will be approximately equal to

156 RMB/ton, it is unnecessary to implement the subsidy policy

at the same time. Therefore, to realize subsidy retreat, an effectively

running carbon market is needed.

In the trend of subsidy retreat, the country encourages

renewable energy enterprises to sell renewable energy green

electricity certificates, and the income from it can be used for

financial expenditure. According to the result of the model, under

scenarios S1 and S5, the effects of increasing the production of

green electricity were similar. The income of the renewable energy

companies under scenario S1 is approximately equal to the policy

cost paid under scenario S5, and at this moment, κ = 85.62 RMB/

ton and η = 1.40 RMB/kWh. Therefore, it is the core of policy

design to gradually improve the carbon market and green

certificate market and give full play to the pricing and incentive

function of their externalities. In addition, the results of the model

show that if the market share goal of green electricity is too radical,

there will be a transition from “clean” to “dirty.” For example,

when the share of green electricity increases from 10% to 12%, the

share of coal electricity increases by 2%. Therefore, the government

should well grasp the development rhythm of renewable energy

and strengthen macro-control with the carbon price and price of

green certificates as signals.

Certified emission reduction (CER) is an emerging offset

mechanism that can theoretically serve as a complementary

instrument to the carbon market. It is a project with certified

emission reduction as the main commodity based on the clean

development mechanism. In addition, CER can not only further

reduce the emission reduction cost of emission reduction entities,

but also promote the development of renewable energy. According

to the data of the model, it can be inferred that if this market is

opened, CER will bring benefits to renewable energy companies that

are approximately equal to the amount of subsidy S = 0.15 RMB/

kWh, which will thus greatly save the policy cost. Therefore, we

believe that the country should open this market and rely onmarket

means to drive China’s energy transition.
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Does digital transformation
promote green innovation? A
micro-level perspective on the
Solow Paradox

Yi Sun1 and Moyan He2*
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Digitalization and sustainability, as emerging trends, have long attracted both
academic and industrial focuses, yet the topic has not been sufficiently
investigated at the micro-firm level. Selecting Chinese listed companies from
2010 to 2021 as the research sample and adopting the two-way fixed effects
model, the impact of firms’ digital transformation on their green innovation as well
asthechannelsandmechanismsinvolvedareinvestigated.Theempiricalresultsshow
that,firstly, thedigital transformationoffirmscansignificantlypromotethequalityand
quantity of their green innovation. Secondly, internal control is a mediating path for
digital transformation to promote green innovation, while financing constraints
suppress the above effects, and top management team’s environmental attention
positively moderates the promotion of green innovation by corporate digital
transformation. Thirdly, the promotion effects are more pronounced in firms that
are state-owned, large-scale, ecologically cost-free, and relatively highly financing
constrained. The findings suggest that digital transformation has advantages in
revealing the “Solow paradox” that persists in the digital era, and the synergistic
development of digitalization and greening at the firm level is realistic and feasible.

KEYWORDS

green innovation (GI), digital transformation (DT), sustainable development, Solow
Paradox, mediating effect, suppressing effect, moderating effect

1 Introduction

In the 1970 s, the global ecological environment problems brought about by
industrialization became increasingly prominent, and the threat of “the limits to growth"
(Meadows, 1972) received extensive academic attention. In this protracted debate, the
concept of sustainable development (SD) has become an important milestone and has
gradually become an ongoing global initiative. Following the Millennium Development
Goals (MDGs), 17 Sustainable Development Goals (SDGs) were adopted at the 2015 UN
Sustainable Development Summit, and these globally shared goals and sustainability efforts
have played an important role in promoting global sustainable development (ElMassah and
Mohieldin, 2020a).

In the overall global effort toward sustainable development, technological change is both
the source and solution of many environmental problems related to human activities
(Hekkert et al., 2007; ElMassah and Mohieldin, 2020b; Sun and Guo, 2022). On the one
hand, digitization can be a disruptive force and negatively affect sustainable development.
For instance, 4% of global CO2 emissions can be attributed to digitization, while global data
centers as infrastructure for digital transformation consume about 1% of total global
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electricity consumption (Masanet et al., 2020). On the other hand,
rapid digitalization has also been shown to be associated with less
carbon emissions, lower haze concentrations, higher air quality, and
a more comprehensive energy system transition (e.g., Wang J. et al.,
2022).

Sustainable development and digitalization together are noted as
emerging megatrends and lead to paradigm changes in economic
and social systems. Government departments and leading
companies have begun to focus on integrating environmental
sustainability into the digital revolution. However, digitalization,
despite the many benefits it can bring to sustainable development,
has not yet been fully discussed in academia (George et al., 2020).
Existing studies mainly focus on national, regional, and industry
levels, while the large lack of data from the firm level hinders the
systematic assessment of these impacts (Ghobakhloo et al., 2021).

To fill this gap, this paper aims to establish a dialogue between
digitalization and sustainability at the micro-enterprise level. In this
vein, the “digital transformation” and “green innovation” of
companies become viable indicators to build this bridge. On the
one hand, “digital transformation” is an organizational change
triggered and shaped by the widespread proliferation of digital
technologies and has become a central driver of technological
innovation (Berger et al., 2019). Given the consensus on the
“digital imperative”, the transition to digitalization has become a
key strategic decision and an inevitable choice for companies in
modern management and information systems upgrading
(Bharadwaj et al., 2013). On the other hand, innovation is
considered as a vehicle for achieving sustainable development,
thus discussing innovation through the lens of sustainability has
become an important trend in the field of innovation (Freeman,
1996). “Green innovation”, which reflects both ecological and
productivity elements and has significant “dual externalities”, is
an ideal indicator of micro-firms’ practice of sustainable
development (Sun and Guo, 2022).

A few studies on this micro topic have confirmed that firms’
digital transformation can promote their green innovation, and
further, factors such as human and financial investment in
innovation, government subsidies and taxes, firms’ information
processing and knowledge integration capabilities, and firms’
internal and external costs are considered as intermediate
mechanisms by which digital transformation affects their green
innovation (e.g., Feng et al., 2022; Sun and Guo, 2022; Xue et al.,
2022), and this facilitative effect is heterogeneous across firms. As
can be seen, the existing literature partially points out the
intermediate mechanisms by which digital transformation affects
green innovation, while the moderating role is largely neglected.
Therefore, we hope to further explore the channels and mechanisms
to provide more micro-level evidence for business managers and
policymakers.

Another benefit of this study is that this paper helps to provide
evidence to unravel the Solow paradox at the micro-firm level. Solow
paradox, also known as the productivity paradox, states that
computers are everywhere but are not reflected in productivity
(Solow, 1987) and has been widely debated in academia (e.g.,
Acemoglu et al., 2014). In the digital era, Solow paradox
manifests itself in the disproportion between societal investment
in digital technologies and the productivity gains resulting from
their progress. Possible explanations for this phenomenon have been

proposed, with some arguing that the digitization process is still in
its early stages and its potential has not yet been fully realized, and
others arguing that the social goals undertaken by IDT, such as
improving the ecological environment, are not reflected in the
statistical indicators, making the output of digitalization
underestimated. Therefore, this paper examines the role of digital
transformation of micro firms on their green innovation, which
would add a footnote to the Solow paradox if positive externalities of
digital transformation do exist.

This paper then focuses on the following questions: 1) Can the
digital transformation of firms promote their green innovation? 2) If the
facilitation effects exist, what are the potential channels and
mechanisms involved? 3) Are the effects heterogeneous for firms
with different characteristics and features? Furthermore, by
examining the above questions, this paper will provide evidence for
the unraveling of the Solow paradox in the digital era at the micro-firm
level. China is chosen as the research context for this study. As the
second largest digital economy after the United States, China is leading
the synergistic development of digitization and greening to consolidate
its leadership in the digital domain. We examine data for A-share listed
companies from 2010 to 2021 and find that firms’ digital
transformation can promote their green innovation, with internal
control and financing constraints as intermediate mechanisms,
where the former plays a mediating role while the latter plays a
suppressing role. The executive team’s environmental attention
positively moderates the promotion of green innovation by digital
transformation. Moreover, digital transformation promotes better
performance of green innovation characterized by double
externalities, suggesting that the positive consequences of digital
transformation may be reflected beyond productivity, adding new
evidence to the Solow paradox.

The possible marginal contributions of this paper are: first, this
paper establishes the interaction between digital transformation and
sustainable development at the enterprise level from the perspective of
green innovation, and the empirical results further support the
findings of Sun and Guo (2022), bridging the gap in microscopic
research in this area and providing an exegesis for the Solow paradox
in the digital era. Second, this paper expands the understanding of the
interaction channels and mechanisms between digital transformation
and green innovation from the perspective of micro-structured
subjects, reveals the path to realize the compatibility between
digital and green transformation at the enterprise level, and paves
the way for opening the “black box” of digital transformation and
green innovation of enterprises. Third, the digital transformation of
enterprises with different characteristics and in different contexts
elicits heterogeneous green innovation outcomes, and this paper
highlights these heterogeneities and examines them through
effective empirical means, which further enriches the relevant
research.

The rest of the paper is organized as follows: in Section 2, we
formulate four hypotheses based on a review of the existing literature
and details of the study design, including data sources, sample
selection, variable definitions, regression model settings, and
descriptive statistics of the variables; in Section 3, the results of
our work are presented, including basic regressions, intermediate
and moderating effects, endogeneity issues and robustness tests, and
heterogeneity analysis. Section 4 discusses the conclusions and
implications.
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2 Materials and methods

2.1 Theoretical analysis and research
hypothesis

2.1.1 Corporate digital transformation and green
innovation

Green innovation is considered as technological innovation
involving energy saving, pollution prevention, waste recycling,
green product design or corporate environmental management
(Chen et al., 2006), which can significantly reduce the negative
environmental impact in addition to adding value to the firm and its
stakeholders. The goal of green innovation is not only to reduce the
environmental burden, but to pursue better environmental benefits.
The “first mover advantage” that early movers in green innovation
may enjoy is tempting, such as demanding higher prices for green
products, projecting a green corporate image, and gaining a
sustainable competitive advantage (Hart, 1995). Therefore, green
innovation is gradually rising as a corporate strategy and is
considered as an effective means for firms to gain sustainable
competitive advantage in a whole new arena (Taklo et al., 2020).

The importance of green innovation has been widely
emphasized in academic studies (e.g., Kunapatarawong and
Martínez-Ros, 2016), with the natural resource base view,
institutional theory, and stakeholder theory serving as its
theoretical cornerstones. Scholars believe that the internal drivers
of green innovation mainly include the green orientation of firms,
green technological capabilities, green culture and environmental
ethics, etc. (e.g., Sharma and Vredenburg, 1998; King and Lenox,
2002), while external factors are reflected in environmental climate,
environmental regulation, economic and institutional pressures,
government subsidies, green financial policies, stakeholder
pressure, etc. (e.g., Wang et al., 2021; Zhang et al., 2019; Chen
et al., 2012).

Despite the numerous incentives, there are still many challenges
for corporate green innovation. On the one hand, green innovation
is characterized by high R&D costs, high risks, and long cost
recovery time (e.g., Martínez-Ros and Kunapatarawong, 2019),
which may negatively impact short-term economic benefits.
Organizations can be skeptical about taking green innovation
actions when there is insufficient understanding of green
initiatives within the organization, lack of an appropriate
organizational culture, or inefficient government support. On the
other hand, compared to general technological innovation, green
innovation has significant double externalities (Rennings et al.,
2006), i.e., the technological efforts of green innovators may be
“free-riding” by others, and the social costs of environmental
pollution are much higher than the costs borne by polluters. As a
result, green innovators may not fully reap the benefits of their
innovations, which may inhibit firms’ willingness to engage in green
innovation.

In this context, digital transformation, spearheaded by the
application of digital technologies, may provide support to break
the green innovation puzzle. Digital transformation is considered as
the process that combines next-generation information and
communication technologies to trigger significant changes and
drive improvements in the attributes of organizational operations,
products, management, business models, production processes, etc.

In line with the Sustainable Development Goals (SDGs), reducing
pollution emissions and implementing green innovations are
laudable, and these actions require significant additional
management efforts, including redesigning complex processes
within companies and developing green capabilities (Kock et al.,
2011). Digital transformation of companies requires redefining and
redesigning strategic orientations and business processes, and if
efforts are made to embed environmental responsibility in this
process, it is expected to not only make green innovation less
costly and more efficient, but also positively respond to the
concerns of internal and external stakeholders and provide them
with a considerable level of satisfaction (Miles, 2019).

Currently, digital transformation has become an inevitable
requirement for many industries and firms to respond to the call
for sustainable development and promote green innovation, as well
as an important guarantee for achieving a win-win situation for
economic and environmental development (Acemoglu et al., 2012).
The digital transformation of firms has brought about the
widespread use of digital technologies, which has led to lower
information and transaction costs, accelerated the deep
integration and sharing of internal and external information and
resources, and further alleviated the information asymmetry
problem of enterprises. On this basis, the division of labor and
green R and D resource allocation of enterprises are also optimized,
which empowers innovation activities and further promotes green
innovation in enterprises (Li and Shen, 2021; Feng et al., 2022).

The existing normative literature on the relationship between
digital transformation and green innovation is relatively limited and
focuses on the national, regional, and industry levels. A small
number of studies on micro-firms confirm that the application of
one of the Frontier technologies, such as manufacturing intelligence,
blockchain, and big data, can promote green innovation in
enterprises. Moreover, several scholars have also confirmed that
digital transformation of firms has a positive impact on their green
innovation activities, which helps to enhance their competitive
advantage (El-Kassar and Singh, 2018). Regarding the effect of
digital transformation on the quantity and quality of green
innovation, some studies argue that to seek policy support or
financial subsidies with observable innovation output, enterprises
may be more inclined to pursue rapid growth in “quantity” of
innovation in the short term at the expense of “quality”. However,
Xiao and Zeng (2022) believe that digital transformation can help
mitigate such short-term behavior and facilitate enterprises to strike
a balance between “quality” and “quantity” in the pursuit of green
innovation. This paper argues that digital transformation, as a
systematic and holistic project, contributes to the “quality and
quantity” of green innovation and proposes Hypothesis 1.

Hypothesis 1: Digital transformation of enterprises can
significantly improve the quality and quantity of their green
innovation.

2.1.2 Corporate digitalization, internal control, and
green innovation

Internal control is the process of establishing systems,
regulations, and control methods in an enterprise to achieve a set
of economic and operational objectives, with the aim of improving
operational efficiency and achieving corporate strategy (Jensen,
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1993). High-quality internal control is the basis for ensuring that
business processes are compliant and efficient. According to
enterprise risk management theory, internal control is an
important guarantee for the implementation of corporate
innovation strategies, and its role in promoting corporate
innovation has been confirmed by numerous studies (e.g.,
Hoskisson et al., 2002). In addition, it has been noted that firms’
green innovation activities are vulnerable to their level of internal
controls (Gordon and Wilford, 2012) and that exposure to poorer
governance has a negative impact on green patents (Amore and
Bennedsen, 2016).

Digital transformation has brought about the popular
application of a new generation of information technology such
as artificial intelligence, blockchain, cloud computing and big data,
which has greatly improved the digital coverage of key areas and
links of enterprise activities, as well as provided technical guarantee
and implementation support for the iteration and reshaping of the
enterprise internal control system. First, the continuous deepening
of digital transformation has introduced the digital model with the
characteristics of high efficiency, intelligence and precision into the
internal control system of enterprises. The intervention of the digital
system has largely reduced the potential risks of fraud and errors
brought about by manual operations, making the execution of
internal control much more efficient and effective, and reducing
supervision costs while improving management efficiency. Second,
digital transformation effectively remedies internal control
deficiencies, enhances internal control, and improves corporate
governance (Skaife et al., 2013), as well as enables greater
precision in internal decision making and increased risk
assessment and response capabilities. Firms are allowed to pry
digital controls to enhance monitoring and supervision of all
aspects of green innovation activities (Wang P. et al., 2022), and
to pre-empt and mitigate risk potential in green R and D (Gordon &
Wilford, 2012), which further stimulates green innovation. Third,
good internal controls are strongly associated with better
information quality, which can improve information
transparency and reduce information asymmetry. External
investors have easier access to internal information, which in
turn affects the ability of firms to obtain financial support and
low-cost financing.

Therefore, when digital transformation leads to improved
internal controls, corporate executives tend to be more proactive
in taking actions to fulfill social responsibility, such as increasing
environmental investment or implementing green innovations to
cater to the environmental concerns of their stakeholders. Based on
the above analysis, this paper proposes Hypothesis 2.

Hypothesis 2: Digital transformation of enterprises promotes
green innovation by improving their internal controls.

2.1.3 Corporate digitalization, financing
constraints, and green innovation

In the case of market imperfections such as information
asymmetry and agency problems, firms face financial frictions
when seeking external financing support, and the phenomenon
that external financing is more costly than internal financing is
known as financing constraints (Whited and Wu, 2006). Financing
constraints are thought to be highly correlated with firms’

innovation decisions, innovation capabilities, and innovation
outcomes. According to free cash flow theory, tighter financing
constraints result in less free cash flow within the firm, alleviating
agency problems and prompting firms to make investment decisions
that are in the long-term interest, such as boosting R and D
investment and developing new products, which has a positive
impact on innovation performance. This view is also supported
by innovation theory, which suggests that resource constraints force
firms to improve the efficiency of their available resources and make
optimal investment decisions, thus helping to improve their
innovation performance. Conversely, an alternative view is that
financing constraints tend to hamper innovation. Resource
constraints may limit the advancement of sustainable
development, especially given the long payback period, high
investment risks and “double externalities” that characterize
green innovation, and studies have argued that financing
difficulties, as well as perceived financing barriers, can discourage
firms from investing in green technologies and green projects.

The influencing factors of financing constraints are mainly
studied from the perspectives of government and market. In the
context of digital upgrading becoming an unavoidable strategic
choice for firms to achieve high-quality development, there are
high expectations for digital transformation to ease financing
constraints. First, in the Chinese context, the government actively
supports firms’ digital upgrading initiatives and has introduced a
series of policies to provide financial support, which directly
enhances firms’ ability to access credit financing and alleviates
their internal capital pressure (Hinings et al., 2018). Second,
digital transformation strengthens enterprises’ information
processing capabilities and reduces information asymmetry,
facilitating interconnection and signaling between enterprises and
credit institutions, which in turn alleviates credit resource mismatch
and empowers enterprises with financing advantages. Third, digital
transformation involves companies leveraging digital technologies
to reinvent and reengineer their processes, organizational structures,
and business models, thereby enabling them to reduce operational
risk, seize growth opportunities and achieve better financial
performance, which makes it less of a barrier for companies to
seek external financing.

However, the existence of the Solow paradox may make the
reality less “ideal”. Asongu and Moulin (2016) show that the role of
ICTs in facilitating the availability of finance is very limited. On the
one hand, digital transformation often implies significant internal
resource investment and additional financing needs, which can
exacerbate business risks in the short term, while external
investors may demand higher returns to address potential risks,
resulting in higher financing costs for firms. On the other hand,
digital transformation of firms is a systematic change of technology,
organization and process, and there is a time lag for its positive
effects to appear, especially when “going digital” becomes a trend
and enterprises are scrambling to jump on the bandwagon, there will
be a “black hole” period with only inputs but no obvious outputs,
when the financing constraints faced by enterprises may
subsequently increase.

Taken together, the analysis above shows that scholars’ views on
how digital transformation of firms affects financing constraints and
how financing constraints influence green innovation are
contradictory. It is affirmed that financing constraints do play an
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important role in the path of digital transformation affecting green
innovation, while the mechanism and direction are not yet fully
clear. This paper thus considers financing constraints as an
intermediate mechanism by which firms’ digital transformation
affects their green innovation and proposes Hypothesis 3.

Hypothesis 3: Financing constraints play an intermediate role in
the process of digital transformation of enterprises affecting their
green innovation.

2.1.4 Corporate digitalization, TMT environmental
attention, and green innovation

The upper echelons theory emphasizes the dominance and
centrality of the executive team within a firm and suggests that
an organization’s strategies and behaviors can be viewed as a
mapping of the value preferences and psychological perceptions
of its top managers (Hambrick and Mason, 1984). Tushman and
O’Reilly (2007) believe that only the top management team (TMT)
can repeatedly and intentionally coordinate and allocate the assets
and resources of the enterprise, as well as put potentially conflicting
strategic agendas into action. Furthermore, the attention-based view
argues that cognitive factors such as attention, in addition to the
personal characteristics of executives, also have an impact on a firm’s
strategic decisions (Ocasio, 1997). Attention is considered a key
ability to sense, identify, and create opportunities (Helfat and
Peteraf, 2014), and with top managers’ attention being a scarce
resource, understanding how the attention of the senior
management team is allocated and managed can help explain
corporate behavior and decisions (Hambrick and Mason, 1984;
Ocasio, 1997).

Studies have concluded that the environmental attention of top
managers leads the strategic orientation of firms in terms of
environmental protection and green innovation. When top
management teams devote more time and effort to ecology-
related topics, they are more likely to identify potential
opportunities in green innovation, such as government
environmental incentives, pricing power for green products, and
possible competitive advantages. Therefore, these enterprises
possess a stronger willingness for green innovation and tend to
develop forward-looking environmental strategies that proactively
address environmental issues. Accordingly, some proactive actions
may be taken, including developing green products to meet
consumer demand, enhancing R and D collaboration on green
innovation to share risks, and soliciting government support to
offset the cost of green innovation. In contrast, executives who pay
less attention to environmental issues or have a negative attitude
toward environmental protection may choose to meet only the
minimum requirements of relevant environmental regulations
(Cordano and Frieze, 2000). During the migration to
digitalization, senior management teams with low environmental
attention may not purposely allocate resources to green innovation
activities, in which case the facilitative effect of digital
transformation on green innovation may be significantly
diminished. Accordingly, this paper proposes Hypothesis 4:

Hypothesis 4: The role of corporate digitalization in green
innovation is more prominent when TMT environmental
attention is high.

2.2 Study design

2.2.1 Sample selection and data sources
Our sample combines multiple data sets. We obtained data of

A-share listed companies from 2010 to 2021 from China Stock
Market and Accounting Research Database (CSMAR). Green patent
data is collected from China Research Data Service Platform
(CNRDS); Corporate digital transformation and TMT
environment attention data are in-scribed through text mining of
annual reports of listed companies; Internal control data comes from
DIB Internal Control and Risk management database (DIB).
Referring to the mainstream literature practice, the raw data are
cleaned as follows: 1) samples from the financial industry are
excluded; 2) ST and PT companies are excluded; 3) samples with
missing regression variables are excluded; 4) observations that do
not comply with general accounting standards are excluded, and
finally 20,408 sets of observations are obtained. To avoid the impact
of extreme values on the regression results, all micro-level
continuous variables are winsorized at the 1% level.

2.2.2 Definition of main variables
2.2.2.1 Dependent variables

Green innovation (LNInv, LNInvUti). Patent data are output
indicators in innovation activities, and green patents have the
inherent advantage of measuring green innovation, such as being
widely available and continuously documented across industries and
time scales. Given that the patent approval process is cumbersome
and time-consuming, and the number of applications is more time-
sensitive than the number of grants, this paper selects the number of
green patent applications as a proxy variable for green innovation.
Specifically, the number of green invention patent applications is
used to measure the quality of green innovation (LNInv), and the
sum of the number of green invention patent and green utility model
patent applications is used to measure the number of green
innovation (LNInvUti) (Xiao and Zeng, 2022). The number of
green patents is added by one and logarithmically processed due
to the right-skewed distribution of the data.

2.2.2.2 Independent variable
Digital transformation (DIG). Drawing on the ideas of Yuan

et al. (2021), this paper portrays the level of digital transformation of
listed companies based on text analysis methods. Firstly, a dictionary
of enterprise digital transformation terms is constructed based on
the texts of digital economy-related policies, and 197 key words are
obtained by retaining the words that appeared more than 5 times;
secondly, text analysis is conducted on the MD&A section of annual
reports of listed companies based onmachine learning methods, and
the frequency of 197 words appeared in the annual reports is
counted; finally, the sum of the obtained word frequencies is
divided by the length of the MD&A discourse of the annual
report of the year and multiplied by 100 (Sun and Guo, 2022),
which became the evaluation index of the degree of digital
transformation of enterprises (DIG). The higher the index, the
higher the degree of digital transformation of the enterprise.

2.2.2.3 Intermediate variables
Internal control (INCON). With reference to existing studies,

the “DIB-Chinese listed companies internal control index” is used to
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reflect the level of internal control of enterprises (Shen et al., 2012).
The index is designed based on 11 indicators under the five major
objectives of internal control and corrected for internal control
deficiencies, with good comprehensiveness and reliability. The larger
the index, the higher the quality of internal control.

Financing constraint (SA). This paper adopts the SA index
method proposed by Hadlock and Pierce (2010) to measure
financing constraints. The SA index is built on two variables
with little time variation and strong exogeneity, namely firm size
and firm age, and is calculated as follows: SA = -0.737 × Size
+0.043 × Sizê2–0.04 × Age, where Size is the natural logarithm of
the firm’s total assets. In this paper, we use the absolute value of
SA index to represent the degree of financing constraint, and the
larger the absolute value, the higher the degree of financing
constraint.

2.2.2.4 Moderating variable
TMT Environmental attention (EA). The attention-based view

holds that attention is mapped onto the lexical language used, that
frequently used lexical information reflects attentional focus, and
that the frequency of lexical use changes as attention and
perception of things change (Sapir, 1944). Therefore, the text
data released by listed companies provide a relatively reasonable
data source for identifying their TMT attention allocation.
According to the China Listed Companies Association, only
about 30% of Chinese listed companies have disclosed their
social responsibility reports for 2021, and the disclosure
behavior itself may imply that these companies have a relatively
high level of environmental concern. To avoid sample selection
bias, this paper selects the MD&A section of listed companies’
annual reports as the material for textual analysis.

The textual analysis method is used to measure TMT
environmental attention. Specifically, we sort and summarize
the words related to ecology and environmental protection in
500 annual reports, and then supplement their close synonyms
with the Chinese Synonyms Dictionary, after which 200 annual
reports are randomly selected for verification and 79 keywords
are defined. Further, the frequency of TMT environmental
attention keywords in the MD&A part of the annual report is
counted, and their ratio to the total word frequency of the MD
and A text is taken as the TMT environmental attention proxy
variable (EA).

2.2.2.5 Control variables
Drawing on previous studies (e.g., Wu et al., 2021; Sun and Guo,

2022), this paper introduces a series of control variables in the
regressions, including firm age (Age), firm size (Size), financial
leverage (Lev), firm performance (ROA), cash flow (Cash), board
size (Board), board independence (Indep), equity concentration
(Top1), CEO duality (Dual) and ownership (SOE). In addition,
industry (IND) and year (Year) dummy variables are also
introduced. The definition and construction of these variables are
shown in detail in Table 1.

2.2.3 Empirical model design
2.2.3.1 Basic regression model

First, we use a fixed effects (FE) panel regression to test H1,
i.e., whether the digital transformation of firms can promote their

green innovation. The fixed effects regression is chosen over the
random effects regression based on the Hausman test, which is not
detailed here to save space, and the OLS model is:

Devi,t � α0 + α1DIGi,t + α2CVsi,t + INDi + Yeart

+ εi,t i � 1, . . . ,N; t � 1, . . . ,T( ) (1)

Where i and t stand for enterprise and year respectively. Devi,t
are explained variables (LNInv and LNInvUti), DIGi,t are
explanatory variables, CVsi,t represent a set of control variables.
Coefficient α1 measures the impact of a firm’s level of digital
transformation on its green innovation. The model includes
industry fixed effects INDi and year fixed effects Yeart, while εi,t
is the random disturbance term.

2.2.3.2 Intermediate effects model
Second, H2 and H3 consider internal control and financing

constraints as intermediate variables in the digital transformation of
firms affecting their green innovation, and we build the following
regressions:

Devi,t � β0 + β1Medi,t + β2CVsi,t + INDi + Yeart + εi,t

Medi,t � γ0 + γ1DIGi,t + γ2CVsi,t + INDi + Yeart + εi,t

Devi,t � μ0 + μ1DIGi,t + μ2Medi,t + μ3CVsi,t + INDi

+ Yeart + εi,t
(2)

Where Medi,t denotes the intermediate variables (internal control
and financing constraints).

2.2.3.3 Moderating effects model
Third, H4 proposed TMT environmental attention (EA) as a

moderating factor, tested as follows:

Devi,t � φ0 + φ1DIGi,t + φ2EAi,t + φ3 DIGi,t × EAi,t + φ4CVsi,t

+ INDi + Yeart + εi,t

(3)
Where EAi,t is the moderator. If H4 is correct, the coefficient φ3 will
be positively significant.

3 Results

3.1 Correlation analysis

Table 2 reports the variable correlation coefficient matrix. DIG
shows a significant positive correlation with LNInv and LNInvUti,
which is consistent with. Hypothesis 1 and suggests that the
benchmark model is reasonable. DIG is significantly and
negatively correlated with Size, Lev, Board and SOE, indicating
that smaller, less indebted, smaller board size and non-state-owned
enterprises are more likely to implement digital transformation.
Correlations between other variables are also plausible. For example,
there is a significant positive correlation between Size and Cash,
indicating that larger enterprises have stronger cash flow. INCON is
significantly and positively correlated with ROA, indicating that
firms with better profitability have higher levels of internal control.
The multicollinearity test is adopted, and the average VIF value is
1.720, less than the threshold value of 10, which proves that there is
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no serious multicollinearity problem among the independent
variables in the model.

3.2 Descriptive statistics

Table 3 reports the descriptive statistics of the variables. The
means of green innovation quality (LNInv) and green innovation
quantity (LNInvUti) are 0.7358 and 1.0663, respectively, and the
standard deviations are larger than the means, indicating that the
level of green innovation varies widely among the sample
companies. The mean value of DIG is 0.8810, which is greater
than its median value of 0.5114, indicating that more than half of the
sample enterprises’ digital transformation degree does not reach the
mean value, reflecting the limited or relatively low digital
transformation degree of Chinese A-share listed companies in
general; the standard deviation of DIG (0.9747) is higher than its
mean value (0.8810), which indicates that there may be prominent
individual or category differences in the degree of digital
transformation of the sample companies.

3.3 Benchmark regression results

Table 4 reports the results of the benchmark regressions. When
the fixed effects of industry and year are controlled, corporate digital

transformation has a significant positive effect on both the quality of
green innovation (LNInv) (α1 = 0.096, p < 0.01) and the quantity of
green innovation (LNInvUti) (α1 = 0.085, p < 0.01). After the
introduction of control variables, R square of the model becomes
larger and the above two coefficients remain significantly positive at
the 1% level, which indicates that as the degree of digital
transformation of enterprises increases, both the quality and
quantity of green innovation have significantly improved.
Hypothesis 1 is supported.

3.4 Examination of the intermediate effect of
internal control

We test the mediating effect of internal control by Bootstrap
method with 5000 repetitions of sampling, and the results are shown
in Table 5. At 95% confidence level, the confidence interval of both
indirect paths of DIG and LNInv/LNInvUti do not contain zero,
which proves the existence of the mediating effect. The direct effects
of digital transformation on the quality of green innovation and
quantity of green innovation are 0.12165397 (p < 0.01), 0.09412338
(p < 0.01), respectively. The coefficients of the mediating effect of
internal control (INCON) are 0.0011982 (p < 0.05) and 0.00116049
(p < 0.05), and the percentages of the mediating effect are 0.975%
and 1.218%, respectively. The empirical results confirm that internal
control (INCON) is a functional channel in the process of digital

TABLE 1 Variable definitions.

Variable Name Explanation Definition Data
source

Explained variable LNInvUti Quantity of Green
Innovation

Number of Green Patent Applications CNRDS

LNInv Quality of Green Innovation Number of Green Invention Patent Applications CNRDS

Explanatory
variable

DIG Degree of digital
transformation

The ratio of word frequency of digital transformation keywords to the length of phrases in
the MD&A section

Manual
collection

Intermediate
variables

INCON Internal control Internal Control Index DIB

SA Financing constraints |SA| = |- 0.737×Size +0.043×Sizê2–0.04×Age| CSMAR

Moderating
variable

EA TMT environmental
attention

Ratio of word frequency of TMT environment attention keywords to total word frequency
in MD and A section

Manual
collection

Control variables Age Firm age The natural logarithm of the difference between the current year and the year of
establishment plus 1

CSMAR

Size Firm size The natural logarithm of total assets at the fiscal year end CSMAR

Lev Financial leverage Total liabilities/total assets CSMAR

ROA Return on assets The ratio of net income to total assets CSMAR

Cash Cash flow Monetary fund/total assets CSMAR

Board board size The natural logarithm of the number of the board of directors plus 1 CSMAR

Indep board independence The ratio the number of independent directors to the number of all directors CSMAR

Top1 Largest ownership Shareholding ratio of the largest shareholder CSMAR

Dual CEO duality A dummy variable which equals one if the firm’s board chair is also its CEO and zero
otherwise

CSMAR

SOE Ownership A dummy variable that equals one if a firm is a state-owned enterprise and zero otherwise CSMAR
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TABLE 2 Correlation matrix.

LNInv LNInvUti DIG INCON SA EA Age Size Lev ROA Cash Board Indep Dual Top1 SOE

LNInv 1 0.8957*** 0.2785*** 0.0715*** -0.0127* 0.2087*** 0.0539*** 0.3434*** 0.0991*** 0.0406*** 0.0215*** 0.0395*** 0.0304*** 0.0160** 0.0000 0.0395***

LNInvUti 0.9298*** 1 0.2806*** 0.0642*** -0.0015 0.2598*** 0.0590*** 0.3601*** 0.1129*** 0.0336*** 0.0270*** 0.0394*** 0.0211*** 0.0112 0.0022 0.0232***

DIG 0.2355*** 0.2047*** 1 -0.0505*** 0.0968*** -0.1168*** 0.0639*** -0.0163** -0.1868*** 0.0753*** -0.0065 -0.1302*** 0.0541*** 0.1609*** -0.1538*** -0.2417***

INCON 0.0995*** 0.0893*** -0.0273*** 1 -0.1349*** -0.0363*** -0.0746*** 0.2304*** 0.0486*** 0.3951*** 0.1693*** 0.0946*** -0.0028 -0.0472*** 0.1580*** 0.1150***

SA -0.0968*** -0.0828*** 0.0792*** -0.1554*** 1 0.0298*** 0.8807*** 0.0653*** 0.0080 -0.0130* 0.0016 -0.0155** -0.0395*** -0.0416*** -0.1259*** 0.0479***

EA 0.1984*** 0.2551*** -0.1556*** -0.0339*** 0.0296*** 1 0.0406*** 0.1290*** 0.1075*** -0.0755*** 0.0484*** 0.0598*** -0.0452*** -0.0490*** 0.0598*** 0.0751***

Age 0.0501*** 0.0507*** 0.0394*** -0.0758*** 0.8248*** 0.0449*** 1 0.1727*** 0.1013*** -0.0482*** 0.0039 0.0102 -0.0081 -0.0550*** -0.0890*** 0.1041***

Size 0.4102*** 0.4218*** -0.0388*** 0.2482*** -0.0953*** 0.1255*** 0.1504*** 1 0.4635*** 0.0226*** 0.0693*** 0.2205*** 0.0079 -0.1244*** 0.2279*** 0.2754***

Lev 0.1278*** 0.1432*** -0.1554*** 0.0228*** -0.0178** 0.1150*** 0.1110*** 0.4576*** 1 -0.3717*** -0.1530*** 0.1393*** -0.0106 -0.0935*** 0.1162*** 0.2433***

ROA 0.0245*** 0.0186*** -0.0083 0.3849*** -0.0178** -0.0436*** -0.0496*** 0.0608*** -0.3123*** 1 0.4099*** 0.0241*** -0.0402*** 0.0093 0.0908*** -0.0852***

Cash 0.0219*** 0.0264*** -0.0265*** 0.1507*** 0.0007 0.0363*** -0.0004 0.0625*** -0.1661*** 0.3882*** 1 0.0572*** -0.0207*** -0.0228*** 0.1005*** 0.0138**

Board 0.0550*** 0.0577*** -0.1122*** 0.0913*** -0.0258*** 0.0549*** 0.0136* 0.2419*** 0.1475*** 0.0430*** 0.0522*** 1 -0.5384*** -0.1886*** 0.0398*** 0.2449***

Indep 0.0437*** 0.0329*** 0.0575*** -0.0032 -0.0589*** -0.0408*** -0.0105 0.0228*** -0.0095 -0.0336*** -0.0143** -0.5101*** 1 0.1032*** 0.0177** -0.0557***

Dual 0.0105 0.0035 0.1485*** -0.0421*** -0.0341*** -0.0481*** -0.0569*** -0.1160*** -0.0921*** -0.0125* -0.0196*** -0.1807*** 0.1094*** 1 -0.1021*** -0.2780***

Top1 0.0195*** 0.0231*** -0.1595*** 0.1516*** -0.1495*** 0.0507*** -0.0921*** 0.2546*** 0.1193*** 0.1177*** 0.0940*** 0.0532*** 0.0282*** -0.1054*** 1 0.3097***

SOE 0.0614*** 0.0447*** -0.1911*** 0.1044*** 0.0204*** 0.0541*** 0.1122*** 0.2808*** 0.2432*** -0.0326*** 0.0057 0.2480*** -0.0510*** -0.2780*** 0.3064*** 1

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Pearson correlation coefficients are displayed below the diagonal, while the Spearman correlation coefficients are above the diagonal.
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transformation (DIG) for green innovation, validating H2 and
answering question 2): corporate digital transformation promotes
green innovation by improving the quality of a firm’s internal
control. In other words, digital transformation of enterprises
leverages digital technology to accelerate the standardization and
speed up the flow of information, improving the efficiency and
agility of all aspects of internal control, effectively preventing and
mitigating enterprise risks, and exerting a certain “governance
effect”, i.e., contributing to the improvement of the quality of
internal control. Moreover, higher quality of internal controls
increases the transparency of corporate information and exposes
companies to greater internal and external scrutiny, which further
motivates firms to actively shoulder social responsibility and engage
in green innovation activities. Thus, internal controls play a
mediating role in the digital transformation of companies to
promote their green innovation.

3.5 Examination of the intermediate effect of
financing constraints

As mentioned earlier, digital transformation requires firms to
redirect and reallocate the investment of financial resources, which
will affect their green innovation. Following the suggestion of Jiang
(2022), this paper adopts the following steps to test the indirect
effects of financing constraints. First, the impact of financing
constraints on corporate green innovation is examined, and the
results are shown in Table 6. The regression results of financing
constraints on the dependent variables (quality and quantity of

green innovation) in columns 1) 2) are both significantly negative at
the 1% confidence level, i.e., a higher degree of financing constraints
inhibits green innovation of enterprises. This result is inextricably
linked to the characteristics of green innovation activities such as
high investment, long payback period and unpredictable benefits,
whose innovation results have the attributes of public goods and can
be easily imitated and replicated. When firms are rich in liquidity
and redundant resources, they are more inclined to invest in green
innovation to gain a differentiated and sustainable competitive
advantage; while when financing constraints are high, funds will
be prioritized into agendas directly related to the firm’s production
and operations to cope with current uncertainties, while investments
in green innovation activities related to long-term sustainability will
be curtailed.

Second, the paper further examines the impact of digital
transformation on financing constraints. As shown in columns 3)
4), the regression results of digital transformation on the degree of
financing constraints are significantly positive at the 1% confidence
level, and the results are still robust when lagging DIG by one period,
suggesting that digital transformation exposes firms to a higher
degree of financing constraints rather than the “alleviating effect”
advocated by some scholars (e.g., Xue et al., 2022). The “Solow
paradox” clarifies this result. Firstly, there is a time lag in the
effectiveness of digital transformation, and its potential has not
been fully realized. In particular, the current digital transformation
of the sample firms is generally low, information asymmetry is not
significantly reduced, and there is no immediate “profitability effect”
in terms of firm performance or growth, and financial institutions
often have difficulty in effectively overcoming adverse selection

TABLE 3 Descriptive statistics.

VarName Obs Mean SD Median Min Max

LNInv 20,438 0.7358 1.0544 0.0000 0.0000 4.4773

LNInvUti 20,438 1.0663 1.2518 0.6931 0.0000 4.9628

DIG 20,438 0.8810 0.9747 0.5114 0.0000 4.8926

INCON 20,438 656.4738 82.3547 667.0100 306.2400 863.5300

SA 20,438 3.8185 0.2461 3.8263 1.8049 5.1965

EA 20,438 0.0099 0.0109 0.0059 0.0000 0.0577

Age 20,438 2.9249 0.2891 2.9444 2.0794 3.4965

Size 20,438 22.4635 1.2965 22.2958 19.8632 26.3153

Lev 20,438 0.4622 0.1990 0.4629 0.0695 0.8883

ROA 20,438 0.0338 0.0557 0.0317 -0.2157 0.1901

Cash 20,438 0.0455 0.0684 0.0444 -0.1572 0.2406

Board 20,438 2.1439 0.2013 2.1972 1.6094 2.7081

Indep 20,438 0.3747 0.0541 0.3333 0.3333 0.5714

Dual 20,438 0.2277 0.4194 0.0000 0.0000 1.0000

Top1 20,438 33.7319 14.9101 31.3077 8.3218 74.0177

SOE 20,438 0.4406 0.4965 0.0000 0.0000 1.0000
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caused by information asymmetry. Secondly, the application of new
technologies requires a corresponding “organizational”
transformation, which requires a “painful” period of friction,
debugging, and integration, during which the implementation of
digital transformation may be characterized by increased
organizational redundancy rather than output or profitability.
Thirdly, digital transformation generates additional financing
needs for firms, crowding out their limited funds, which in
turn may lead to higher interest costs, thus pushing up the
financing constraints of firms. Finally, when digital

transformation becomes a “must” and firms rush to this track,
it may result in a redistribution of market share rather than a
“bigger cake”, and the incentive of credit sector to grant “special
allowances” is therefore gone. Moreover, the regression results of
the control variables show that smaller firms with less adequate
cash flow face a higher degree of financing constraints, which
supports the scholars’ view that large firms rely more on internal
funds for innovation while SMEs rely more on exogenous
financing and are more likely to face financing constraints (Lei
et al., 2022).

TABLE 4 Benchmark regression results.

LNInv LNInvUti

(1) (2) (3) (4)

DIG 0.096*** 0.078*** 0.085*** 0.062***

(0.016) (0.016) (0.018) (0.017)

Age -0.230 -0.214

(0.180) (0.192)

Size 0.261*** 0.330***

(0.022) (0.025)

Lev -0.053 -0.090

(0.070) (0.082)

ROA -0.085 -0.060

(0.130) (0.147)

Cash -0.039 -0.047

(0.084) (0.097)

Board 0.035 0.016

(0.074) (0.086)

Indep 0.212 0.219

(0.221) (0.259)

Dual 0.029 0.012

(0.021) (0.024)

Top1 -0.001 -0.001

(0.001) (0.001)

SOE 0.080* 0.032

(0.045) (0.051)

Year Yes Yes Yes Yes

IND Yes Yes Yes Yes

_cons 0.281 -4.909*** 0.364* -6.290***

(0.171) (0.699) (0.201) (0.761)

N 20,438 20,438 20,438 20,438

r2 0.147 0.172 0.197 0.224

r2_a 0.144 0.168 0.194 0.221

Notes: ***p < 0.01, **p < 0.05, *p < 0.1; The numbers in parentheses are Cluster-robust standard error.
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Third, financing constraints are added to the regressions, and
the results are presented in columns 5) 6). The direct effect
coefficients of DIG on the quality and quantity of green
innovation are 0.086 (p < 0.01) and 0.070 (p < 0.01),
respectively, which are larger than its total effect of 0.078 (p <
0.01) and 0.062 (p < 0.01) (see columns 2) 4) of Table 4). In addition,
the product of the indirect effect coefficient γ1 (0.007, p < 0.01) and
the coefficient μ2 (-1.260 and -1.298, p < 0.01) is negative, in the
opposite direction of the direct effect μ1. According to MacKinnon
(2000), the indirect effect of financing constraints on digital
transformation and green innovation is the “suppressing effect”,
which means that financing constraints suppress the effect of digital
transformation on green innovation to a certain extent. Specifically,
the effect of digital transformation on green innovation is weakened
by raising the level of financing constraints. Once the financing
constraint is controlled for, the difference in the regression
coefficients of digital transformation on green innovation widens.

The measured share of the suppressing effect of financing
constraints in the path of digital transformation on the quality
and quantity of green innovation is 6.370% and 7.587%, respectively.
Therefore, H3 passes the test and answers question 2): digital
transformation exposes firms to higher financing constraints, and
higher levels of financing constraints hinder firms’ green innovation
efforts, thus showing an overall weakening of the impact of digital
transformation on green innovation, a result that reflects the
lingering power of the Solow paradox, despite the promising
potential and prospects of digital transformation. The positive
externalities of digital transformation may be reflected in better
environmental performance and higher levels of green innovation,
but they do not address the financing constraint.

We note that this empirical finding that digital transformation
pushes up firms’ financing constraints is not consistent with some
existing studies (e.g., Xue et al., 2022), and we dissect the reasons for
this may lie in measurement errors and miscalculations. First,

TABLE 5 Mediation effect of internal control.

Mediating variables Explained variables Effect Observed Coef Std. Err 95%CI

LLCI ULCI

INCON LNInv Ind_eff 0.0011982 0.00047464 0.0004173 0.0022722

Dir_eff 0.12165397 0.00971791 0.1033456 0.1411055

LNInvUti Ind_eff 0.00116049 0.00052405 0.0002473 0.0023111

Dir_eff 0.09412338 0.01050338 0.0735492 0.1150003

Notes: ***p < 0.01, **p < 0.05, *p < 0.1; Cluster-robust standard error in parentheses; Ind_eff represents indirect effect, Dir_eff represents direct effect; CI, represents confidence interval; LL,

represents lower limit; UL, represents upper limit; Model includes year and industry dummy variables. Sample size: 20,438.

TABLE 6 Intermediate effect of financing constraints.

(1) (2) (3) (4) (7) (8)

LNInv LNInvUti SA SA LNInv LNInvUti

SA -1.223*** -1.268*** -1.260*** -1.298***

(0.168) (0.167) (0.166) (0.166)

DIG 0.007*** 0.086*** 0.071***

(0.002) (0.016) (0.017)

L.DIG 0.010***

(0.002)

Controls Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes

IND Yes Yes Yes Yes Yes Yes

_cons -0.787 -2.008** 3.406*** 2.162*** -0.616 -1.868**

(0.811) (0.882) (0.127) (0.122) (0.801) (0.879)

N 20,438.000 20,438.000 20,438.000 16,551.000 20,438.000 20,438.000

r2 0.179 0.231 0.814 0.773 0.182 0.232

r2_a 0.175 0.227 0.813 0.771 0.178 0.229

Notes: ***p < 0.01, **p < 0.05, *p < 0.1; Cluster-robust standard error in parentheses; Model includes year and industry dummy variables. Sample size: 20,438.

Frontiers in Environmental Science frontiersin.org11

Sun and He 10.3389/fenvs.2023.1134447

145144

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1134447


various measures of the level of digital transformation, such as the
proportion of digitization-related intangible assets, the share of IT
personnel, IT investment and telecommunication expenditures, and
the frequency of digital transformation words, are widely used in a

large number of literatures, and scholars have obtained different
datasets based on different measures, which in turn have produced
different empirical results. Second, financing constraints themselves
are difficult to quantify, scholars have used some variables as

TABLE 7 Moderation effect of TMT environmental attention.

(1) (2)

LNInv LNInvUti

DIG 0.089*** 0.070***

(0.017) (0.018)

EA 6.300*** 9.200***

(1.292) (1.400)

DIG × EA 4.499*** 3.854**

(1.640) (1.629)

Age -0.227 -0.211

(0.180) (0.191)

Size 0.259*** 0.327***

(0.022) (0.024)

Lev -0.055 -0.090

(0.070) (0.081)

ROA -0.094 -0.071

(0.130) (0.147)

Cash -0.044 -0.052

(0.084) (0.097)

Board 0.041 0.027

(0.073) (0.084)

Indep 0.213 0.224

(0.219) (0.256)

Dual 0.028 0.010

(0.021) (0.024)

Top1 -0.002 -0.001

(0.001) (0.001)

SOE 0.078* 0.029

(0.044) (0.051)

_cons -4.954*** -6.313***

(0.696) (0.609)

Year Yes Yes

IND Yes Yes

N 20,438 20,438

r2 0.175 0.229

r2_a 0.171 0.225

Notes: ***p < 0.01, **p < 0.05, *p < 0.1; Cluster-robust standard error in parentheses; Model includes year and industry dummy variables. Sample size: 20,438.
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indicators to measure the degree of corporate financing constraints,
and representative indices include FC index, KZ index, SA index and
WW index, etc., and the differences of different indices may yield
different calculation results. Finally, this paper selects the SA index,
which is constructed only by two strongly exogenous variables,
namely, firm size and age, to measure financing constraints.
However, the SA index calculates a negative value, which has
been ignored by some literature, misinterpreting positive effects
as negative ones. In this paper, text mining method is used to
measure DIG, and the absolute value of SA index is used to represent
the degree of financing constraint, which has high credibility. In
summary, different measurement approaches may lead to different
conclusions, and we believe that the impact of digital transformation
on the financing constraints faced by firms is an interesting topic
worthy of further exploration and discussion.

3.6 Examination of the moderating effect of
TMT environmental attention

Table 7 reports the results of the regression analysis of model 3),
with the quality and quantity of green innovation as dependent
variables, the coefficients of the cross product term DIG × EA
(Interaction term between digital transformation and TMT
environmental attention) are 4.499 (p < 0.01) and 3.854 (p <
0.05), respectively, and are in the same direction as the
coefficients of DIG in columns 2) and 4) in Table 4, indicating
that TMT environmental attention positively moderates the
facilitation of digital transformation on green innovation. The
regression results of model 3) are consistent with. Hypothesis 4,
which enriches the interpretation of question 2) and further

supports the findings of existing studies (e.g., Sun and Guo,
2022). Cognitive factors such as attention have been shown to
play an important role in strategic decision making and resource
allocation in companies. In particular, the environmental attention
of the executive team directs corporate environmental and green
actions, and our findings suggest that the role of digital
transformation in promoting green innovation is more significant
when TMT environmental attention is higher. That is, executive
teams with higher environmental attention are more likely to
perceive and capture environmental opportunities and tend to
allocate more resources to green innovation activities during the
digital transformation process, thus achieving better performance in
terms of both quality and quantity of green innovation.

3.7 Robustness analysis and endogeneity
problem

3.7.1 Re-measurement of digital transformation
Considering that different measurement methods may bring

errors, this paper constructs a new digital transformation indicator
DIG2 based on the idea of Wu et al. (2021), and then further
decomposes the indicator according to two levels, “underlying
technology” and “practical application”, and notates them as
DIG_ba and DIG_ap, respectively. These indicators are regressed
separately according to model 1) and the results are shown in
Table 8. After replacing the digital transformation measure and
breaking down the dimensions, the coefficient of model 1) remains
significantly positive. Specifically, before adding the control
variables, the regression coefficients of DIG2 on LNInv,
LNInvUti are 0.077 and 0.069 (columns 1) and 5)),

TABLE 8 Test results of re-measurement of independent variable.

LNInv LNInvUti

(1) (2) (3) (4) (5) (6) (7) (8)

DIG2 0.077*** 0.055*** 0.069*** 0.040***

(0.010) (0.009) (0.010) (0.010)

DIG_ba 0.064*** 0.063***

(0.015) (0.017)

DIG_ap 0.036*** 0.019*

(0.010) (0.011)

Controls No Yes Yes Yes No Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes Yes Yes

IND Yes Yes Yes Yes Yes Yes Yes Yes

_cons 0.274 -4.728*** -4.844*** -4.862*** 0.357* -6.160*** -6.219*** -6.276***

(0.172) (0.703) (0.704) (0.704) (0.204) (0.763) (0.763) (0.764)

N 20,438 20,438 20,438 20,438 20,438 20,438 20,438 20,438

r2 0.149 0.172 0.171 0.170 0.199 0.224 0.224 0.223

r2_a 0.146 0.168 0.167 0.166 0.195 0.221 0.221 0.220

Notes: ***p < 0.01, **p < 0.05, *p < 0.1; Cluster-robust standard error in parentheses; Model includes year and industry dummy variables. Sample size: 20,438.
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respectively; after adding the control variables, the above
coefficients are 0.055 and 0.040 (columns 2) and 6)),
respectively, both of which are significantly positive at the 1%
level. The regression coefficients of digital transformation
underlying technology (DIG_ba) on the quality and quantity
of green innovation are 0.064 and 0.063 (columns 3) and 7)),
respectively, both of which are significantly positive at the 1%
level, indicating that the underlying technology of digital
transformation (DIG_ba) contributes equally to the quality
and quantity of green innovation. The regression coefficients
of digital technology application (DIG_ap) on green innovation
quality and quantity are 0.036 and 0.019 (columns 4) and 8)),
which are significantly positive at the 1% and 10% levels,
respectively, indicating that digital technology application
(DIG_ap) has a greater contribution to green innovation
quality. These results confirm the robustness of the findings of
this paper.

3.7.2 Two-stage least squares
The green innovation of enterprises may have prompted the

increase of R&D investment and the application of new
technologies, which stimulated the improvement of digital
transformation level, so the endogeneity problem of reverse
causality may exist. Therefore, this paper further uses the two-
stage least squares (2SLS) method to mitigate the endogeneity
problem. The independent variables are lagged, and the
estimated results are shown in Table 9. The first-stage
regression coefficients are significantly positive at the 1% level
(columns 1) and 4)), and the lagged variables satisfy the
correlation condition. Columns 2) and 5) report the results of
the second-stage regression of the lagged variables on the quality
of green innovation (LNInv), where the regression coefficient of
DIG is significantly positive at the 1% level, and columns 3) and
6) report the results of the second-stage regression of the lagged
variables on the quantity of green innovation (LNInvUti), where
the regression coefficient of DIG is significantly positive at the 1%
and 5% levels, respectively. The above results fully demonstrate
that the main findings of this paper remain robust and reliable
after considering the lagged effect.

3.7.3 Addition of control variables
To mitigate the impact of other potential channels on corporate

green innovation, more variables are included in the control
variables.

External Environmental Uncertainty (EU). When faced with
a highly uncertain external environment, firms may choose to
“stay put” and wait for the right opportunity to invest in green
innovation, or they may “take a chance” to gain a competitive
advantage or external support. Therefore, this paper treats
environmental uncertainty (EU) as a control variable, where
the EU indicator is constructed by referring to the study of
Ghosh and Olsen (2009). The impact of external
environmental changes on firms eventually leads to
fluctuations in sales revenue or operating performance, so the
latter is used to characterize the former (EU), and the
measurement process is as follows: 1) The abnormal sales
revenue of each sample company for the past 5 years is
estimated separately using the following formula: Sale =
φ0+φ1Year+ε, where Sale is the sales revenue, Year is the
annual variable, and the current year is taken as 5, four if last
year, and so on, the annual variable is regressed to exclude the
change of sales revenue brought by the stable growth of the
company, and the residual result obtained from the regression is
the abnormal sales revenue; 2) the standard deviation of
abnormal sales revenue in the past 5 years is divided by the
average value of sales revenue in the past 5 years to obtain the
unadjusted environmental uncertainty of the industry; 3) the
result of the second step is divided by the industry environmental
uncertainty (the median of the non-industry-adjusted
environmental uncertainty of all firms in the same industry in
the same year) to obtain the industry-adjusted environmental
uncertainty (EU). The higher the value, the higher the
environmental uncertainty faced by the firm. After including
EU in the control variables, the regression results are reported in
columns 1) and 5) of Table 10, where the regression coefficient of
DIG remains significantly positive.

Government Ecological Attention (GEA). Local governments
with higher ecological attention are likely to actively introduce
policies that favour green innovation, releasing positive signals

TABLE 9 Test results of two-stage least squares.

IV = L.DIG IV = L2.DIG

(1) (2) (3) (4) (5) (6)

DIG LS_LNInv LS_LNInvUti DIG LS_LNInv LS_LNInvUti

DIG 0.229*** (5.62) 0.175*** (4.00) 0.374*** (3.29) 0.296** (2.46)

IV 0.728*** (74.88) 0.164*** (16.30)

Controls Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes

IND Yes Yes Yes Yes Yes Yes

N 16,345 16,345 16,345 14,014 14,014 14,014

R2 0.145 0.196 0.097 0.173

Notes: ***p < 0.01, **p < 0.05, *p < 0.1; Cluster-robust standard error in parentheses; Model includes year and industry dummy variables. Sample size: 20,438.
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that prompt local enterprises to undertake green innovation
activities. Adopting a text mining approach, we measure the ratio
of ecological keyword frequencies to all word frequencies in
government work reports as a proxy for the government’s
ecological attention (GEA) and added it to the control variables.
Columns 2) and 6) of Table 10 report the relevant regression results.
After controlling for GEA, the regression coefficient of digital
transformation (DIG) remains significantly positive.

Government Environmental Subsidies (GS). Studies have
shown that policymakers can promote private R&D
investments through subsidies. On the one hand, government
environmental subsidies can, to some extent, alleviate the
financial pressure and compensate for the high costs and risks
associated with green innovation in the private sector, and on the
other hand, the government may incentivize firms to reduce
emissions or enhance green innovation through environmental
subsidies. Therefore, the data of government subsidies obtained
by listed companies due to their environmental actions are
calculated, and government environmental subsidies (GS) are
included in the control variables. The results in columns 3) and 7)
of Table 10 demonstrate that the regression coefficient of digital
transformation remains significantly positive after controlling
government environmental subsidies (GS).

Tax Incentives (TAX). Fiscal policy incentives play an important
role in the development and diffusion of green innovation, and tax

incentives are one of the main instruments of fiscal policy incentives
in addition to direct subsidies. Government R&D tax incentives may
promote green innovation by firms through direct stimulation or
leveraging effects. In this paper, we add tax incentives received by
firms (TAX) to the control variables, and as shown in columns 4)
and 8) of Table 10, the regression coefficient of digital
transformation remains significantly positive when controlling for
tax incentives (TAX).

In summary, after multiple robustness and endogeneity
treatments, the core findings of this paper remain highly
consistent.

3.8 Heterogeneity analysis

In the previous test, this paper examines the impact of
corporate digital transformation on green innovation using the
full sample, and the results show that corporate digital
transformation can significantly improve the quality and
quantity of green innovation. However, it is worth noting that
the above effects may be asymmetric under different external
environments and different corporate attributes. Further, the
sample firms are tested by group based on the nature of
enterprise ownership, enterprise size, ecological expenditures
and financing constraints.

TABLE 10 Test results with added control variables.

LNInv LNInvUti

(1) (2) (3) (4) (5) (6) (7) (8)

DIG 0.078*** 0.078*** 0.077*** 0.078*** 0.062*** 0.062*** 0.061*** 0.062***

(0.016) (0.016) (0.016) (0.016) (0.017) (0.017) (0.017) (0.017)

EU -0.005 -0.004

(0.006) (0.007)

GEA 0.845 2.906

(4.355) (5.202)

GS -0.000*** -0.000***

(0.000) (0.000)

TAX -0.000 -0.000***

(0.000) (0.000)

Controls Yes Yes Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes Yes Yes

IND Yes Yes Yes Yes Yes Yes Yes Yes

_cons -4.970*** -4.913*** -4.931*** -4.907*** -6.344*** -6.305*** -6.307*** -6.287***

(0.696) (0.699) (0.698) (0.699) (0.758) (0.760) (0.760) (0.760)

N 20,438 20,438 20,438 20,438 20,438 20,438 20,438 20,438

r2 0.172 0.172 0.172 0.172 0.224 0.224 0.225 0.225

r2_a 0.168 0.168 0.168 0.168 0.221 0.221 0.221 0.221

Notes: ***p < 0.01, **p < 0.05, *p < 0.1; Cluster-robust standard error in parentheses; Model includes year and industry dummy variables. Sample size: 20,438.
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3.8.1 Heterogeneity analysis of property rights of
enterprises

The impact of digital transformation on green innovation may
differ among enterprises with different property rights, so the
sample enterprises are grouped according to property rights, and
the test results are shown in Table 11. In both groups, the promoting
effect of corporate digital transformation on green innovation
quality (LNInv) has passed the 1% statistical significance test
(Columns 1) and 2)). The p-value of the difference between
groups is 0.048, indicating that the coefficients are comparable.
The coefficient of digital transformation in the group of state-owned
enterprises (SOEs) is 0.131, which is higher than that of non-state-
owned enterprises (non-SOEs) at 0.047, which means that the
promotion effect of digital transformation on the quality of green
innovation in SOEs is more significant than that in non-SOEs.
Columns 3) and 4) show the regression results of corporate digital
transformation on the quantity of green innovation (LNInvUti).
Although the coefficient is positive and significant, however, the
difference in its coefficient between groups is not significant (p =

0.188) and not comparable, indicating that there is a facilitative
effect of corporate digital transformation on green innovation
quantity, and there is no significant difference in this effect
between state-owned and non-state-owned enterprises.

The reasons for this result are multiple. On the one hand, green
innovation quality implies higher technological capacity and
correspondingly more investment in R&D resources, while SOEs
have natural advantages in terms of strength endowment and
resources accessibility due to the endorsement of state credibility,
and the government also encourages and guides SOEs to actively
implement digital transformation, which in turn facilitates their
green innovation. On the other hand, SOEs are held to higher
expectations in terms of social responsibility commitment. In the
process of digital transformation, SOEs are more motivated to
undertake green innovation with high investment and positive
externality characteristics in response to the call for green
transformation development, and thus their performance in
terms of green innovation quality is better than that of non-
SOEs. In contrast, the threshold for increasing the quantity of

TABLE 11 Heterogeneity test based on property rights.

Variables LNInv LNInvUti

(1) (2) (3) (4)

SOEs Non-SOEs SOEs Non-SOEs

DIG 0.131*** (0.016) 0.047*** (0.012) 0.097*** (0.018) 0.038*** (0.013)

Controls Yes Yes Yes Yes

_cons 0.012 (0.071) -0.041 (0.085) -0.009 (0.081) -0.077 (0.099)

Firm/Year/IND Yes Yes Yes Yes

N 9,006 11,432 9,006 11,432

Adj.R2 0.210 0.118 0.261 0.160

p-value 0.048** 0.188

Note: The inter-group difference p-values are used to test the significance of the inter-group “DIG” coefficient differences, which are obtained through Bootstrap 1,000 times.

TABLE 12 Heterogeneity test based on firm size.

Variables LNInv LNInvUti

(1) (2) (3) (4)

Large-size Small-size Large-size Small-size

DIG 0.112*** (0.015) 0.046*** (0.011) 0.087*** (0.017) 0.037*** (0.014)

Controls Yes Yes Yes Yes

_cons -0.201* (0.115) -0.035 (0.055) -0.302** (0.128) -0.035 (0.066)

Firm/Year/IND Yes Yes Yes Yes

N 10,219 10,219 10,219 10,219

Adj.R2 0.181 0.108 0.233 0.145

p-value 0.0107** 0.0851*

Note: The inter-group difference p-values are used to test the significance of the inter-group “DIG” coefficient differences, which are obtained through Bootstrap 1,000 times.
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green innovation is relatively low, the required resource investment
is relatively small, and firms of different ownership that undergo
digital transformation can more easily increase their green
innovation quantity output. In conclusion, SOEs have stronger
strength and incentives to drive green innovation and thus
actively undertake social responsibility, as evidenced by higher
green innovation quality compared to non-SOEs; while there is
no significant difference between SOEs and non-SOEs in terms of
green innovation quantity promoted by digital transformation.

3.8.2 Heterogeneity analysis of firm size
To examine the impact of digital transformation on green

innovation in enterprises of different sizes, the sample firms are
grouped according to the median of their size, and the results are
presented in Table 12. In both groups, the coefficients of digital
transformation on the quality of green innovation (LNInv) and the
quantity of green innovation (LNInvUti) are significantly positive at
the 1% level with comparable values (p = 0.0107 and 0.0851,
respectively). Specifically, compared with smaller enterprises,
digital transformation has a more significant effect on the quality
and quantity of green innovation in larger enterprises. On the one
hand, this result may be due to the fact that larger enterprises tend to
have stronger financial strength and risk resistance, and they have
more strength andmotivation to actively engage in digital upgrading
and thus empower green innovation; on the other hand, large size
also implies higher industry status, with significant advantages in
seeking external resource support and leading industry
development, large enterprises are therefore more likely to take
the initiative to seize the opportunities of digital transformation,
actively implement green innovation, shape the green image of
enterprises and meet the expectations of stakeholders.

3.8.3 Heterogeneity analysis of ecological
expenditures

Proactive eco-environmental pollution control and
environmental protection investment is also one of the initiatives
for enterprises to actively assume environmental responsibility and
implement sustainable development strategies. On the one hand,
eco-expenditures reflect the subjects’ environmental awareness to

some extent, and it is inferred that these enterprises may have the
willingness to actively carry out green innovation activities; on the
other hand, ecological expenditures imply that funds are tied up,
which may crowd out funds for green innovation, so firms with eco-
expenditures may be associated with lower levels of green
innovation. In this paper, the sample firms are divided into two
groups for group testing based on the presence or absence of
ecological expenditures, and the results are shown in Table 13.

In the group with ecological expenditures, the effect of digital
transformation on both green innovation quality (LNInv) and
green innovation quantity (LNInvUti) was not significant
(columns 1) and 3)); while in the group of firms without
ecological expenditures, digital transformation significantly
contributed to the improvement of green innovation quality
(LNInv) and green innovation quantity (LNInvUti) (columns 2)
and 4)). This indicates that firms almost always face resource
constraints, and it is often difficult to achieve both “terminal
treatment” and “green innovation” at the same time. In the
process of digital transformation, when firms invest more
resources in direct terminal treatment, digital transformation no
longer has a positive effect on green innovation.

3.8.4 Heterogeneity analysis of financing
constraints

In this paper, we find that financing constraints suppress the
promotion of digital transformation of enterprises for green
innovation, and furthermore, we wonder whether there are
differences in the aforementioned impact paths when
enterprises face different levels of financing constraints. The
sample firms are divided into two groups according to the
median of financing constraints, and the regression results
are shown in Table 14. As can be seen, the coefficients are
comparable between the groups at the 1% level (p-values are
0.007 and 0.000, respectively). From columns 1) 2), digital
transformation promotes green innovation quality (LNInv) in
both the groups with high and low financing constraints, and
this boosting effect is more pronounced in the group facing
higher financing constraints. According to columns 3) and 4),
digital transformation has a significant enhancement effect on

TABLE 13 Heterogeneity test based on ecological expenditures.

Variables LNInv LNInvUti

(1) (2) (3) (4)

EE_Yes EE _No EE_Yes EE _No

DIG 0.027 (0.049) 0.077*** (0.017) 0.021 (0.056) 0.064*** (0.019)

Controls Yes Yes Yes Yes

_cons -1.163 (1.775) -5.407*** (0.775) -2.666 (2.037) -6.760*** (0.852)

Firm/Year/IND Yes Yes Yes Yes

N 3,417 17,021 3,417 17,021

Adj.R2 0.142 0.168 0.216 0.215

p-value 0.024** 0.099*

Note: The inter-group difference p-values are used to test the significance of the inter-group “DIG” coefficient differences, which are obtained through Bootstrap 1,000 times.
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the quantity of green innovation (LNInvUti) in the group with
high financing constraints, while this effect is not significant in
the group with low financing constraints. This result supports
the idea of innovation theory that when firms face higher levels
of financing constraints, limited financial resources leave firms
with fewer options and instead stimulate their creativity. Under
such circumstances, firms are more motivated to maximize their
available resources, make the best investment decisions, and
actively seize potential opportunities for green innovation,
which leads to better performance in terms of quality and
quantity of green innovation.

4 Discussion

To establish an interaction on the synergistic development
of digitalization and greening at the micro level, this paper
examines the impact of firms’ digital transformation on their
green innovation by constructing a two-way fixed-effect model,
and explores the role of internal control, financing constraints
and TMT environmental attention in this impact path. The
main findings are as follows: 1) Digital transformation of firms
has a significant positive impact on promoting both the quality
and quantity of their green innovation, and this finding still
holds after multiple robustness tests, which provides a
theoretical basis for achieving the synergistic development of
digital transformation and green sustainability at the firm level;
2) Digital transformation can improve the level of internal
control of firms, thus positively influencing the quality and
quantity of green innovation; digital transformation may raise
the financing constraint faced by firms, thus suppressing the
promotion effect of digital transformation on green innovation;
the effect of digital transformation on green innovation is more
pronounced when TMT environmental attention is high; 3)
Heterogeneity analysis shows that the impact of digital
transformation on green innovation is more effective among
state-owned enterprises, large-scale enterprises, enterprises

without ecological expenditures, and enterprises with higher
financing constraints.

4.1 Theoretical contributions

This study makes several theoretical contributions to the
existing literature. Firstly, this study echoes the call of the
academia to establish an interaction between the two tides of
digitalization and sustainable development (Luo et al., 2022),
builds a bridge between the interaction of digital transformation
and green innovation at the micro-firm level, provides a systematic
review of the literature on the topic, and further expands the
determinants of green innovation in firms. Secondly, this paper
helps to open the “black box” of the process of digital transformation
empowering green innovation (Sun and Guo, 2022), finding that
internal control is the mediating path of digital transformation
promoting green innovation, while financing constraints suppress
the impact, besides, TMT’s environmental attention positively
moderates the contribution of corporate digital transformation to
green innovation. The study of these channels and mechanisms
enriches existing theoretical studies on the impact of digital
transformation and provides new perspectives. Thirdly, this paper
uses Chinese listed companies as the research sample to analyze the
heterogeneity and dissect the potential causes in terms of ownership,
firm size, ecological expenditures, and financing constraints,
enriching the existing research.

In addition, this study also provides empirical evidence to
reveal the Solow paradox in the era of digital economy from a
microscopic perspective. On the one hand, we find that digital
transformation of firms can promote green innovation
characterized by double externalities, i.e., although digital
transformation does not initially aim to reduce environmental
burdens, it does generate positive environmental benefits,
suggesting that digital transformation generates benefits beyond
productivity, adding micro-level evidence to the Solow paradox in
the digital era. On the other hand, digital technologies are expected

TABLE 14 Heterogeneity test based on financing constraints.

Variables LNInv LNInvUti

(1) (2) (3) (4)

SA_high SA_low SA_high SA_low

DIG 0.097*** (0.025) 0.050** (0.023) 0.098*** (0.026) 0.037 (0.025)

Controls Yes Yes Yes Yes

_cons -3.057* (1.602) -3.140** (1.283) -5.297*** (1.741) -3.997*** (1.415)

Firm/Year/IND Yes Yes Yes Yes

N 10,219 10,219 10,219 10,219

Adj.R2 0.148 0.168 0.203 0.212

p-value 0.007*** 0.000***

Note: The inter-group difference p-values are used to test the significance of the inter-group “DIG” coefficient differences, which are obtained through Bootstrap 1,000 times.
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to fundamentally reshape business strategies, business processes,
corporate capabilities, products and services, as well as expand
relationships among focal companies in business networks
(Bharadwaj et al., 2013), however, the manifestation of these
effects requires a long period of exploration, debugging and
integration. Overall, most enterprises are still in the initial stage
of digital transformation, and the potential positive effects of
digital transformation have not yet been fully revealed, as
evidenced by the fact that the initial investment in digital
transformation is much higher than its visible benefits;
meanwhile, the high failure rate of digital transformation makes
the future benefits highly uncertain. In this context, the credit
sector demands higher risk premiums, which exposes firms to a
higher degree of financing constraints when seeking external
financial support for their digital initiatives. At this stage, IT
inputs are not significantly reflected in productivity, and higher
inputs and relatively lower outputs make external financing more
costly for firms, which may in turn discourage firms’ willingness to
undertake digital transformation, and firms remain plagued by the
Solow paradox.

4.2 Managerial implications

This paper provides some enlightenment for policy making.
Firstly, the government should strengthen the construction of
digital infrastructure, create the foundation conditions for the
wide application of digital technology and the value mining of
data elements, consolidate the empowerment base for enterprises
to grasp digital opportunities and implement digital
transformation. Secondly, the government should flexibly
adopt measures such as government subsidies and tax
incentives to increase financial support for enterprises’ digital
upgrading actions, and financial institutions should be
supervised to moderately lower the financing threshold to
mobilize enterprises’ willingness to shift to digitalization and
greening. Thirdly, the government should recognize the positive
externalities of corporate digital transformation and create a
supportive macro environment through multi-level
institutional arrangements. The asymmetry of the benefits of
green innovation brought by digital transformation is
noteworthy, and more preferential treatment for non-state
enterprises and SMEs should be considered in the formulation
of relevant support policies to improve the overall efficiency of
green innovation.

Business entities can also draw inspiration from this paper. First,
enterprises should raise the awareness of digital transformation
opportunities, take the initiative to assess the gap between
strategic objectives and the current situation, actively employ
external supportive conditions and environment to take digital
actions, promote the deep integration of cutting-edge
technologies and business, thus improving their digital
transformation level. Second, enterprises should be keenly aware
of the positive impacts of digital transformation, such as efficiency
gains, cost reductions, reduced information asymmetry, and
improved quality of internal controls, and release these positive

signals externally to respond to stakeholder concerns and project a
corporate image that espouses sustainability and creates conditions
for securing external resources. Third, the allocation of attention by
the executive team on environmental issues has a significant impact
on the quality and quantity performance of green innovation. As
green development is expected to shape a firm’s green image and
gain a sustainable competitive advantage, enterprises should keep
track of the latest trends and relevant policy support of the
government on environmental protection, and ensure that their
executive teams allocate sufficient attention to environmental issues
through various means.

5 Conclusion

Digitalization-led green sustainability is attracting widespread
attention. Focusing on China’s practice of promoting synergistic
digitalization and greening, this paper examines the potential impact
of corporate digital transformation on contributing to sustainable
development through the lens of green innovation. The findings
further support the study by Sun and Guo (2022), which clarifies the
advantageous role of digital transformation in elucidating the
“Solow paradox” in the digital economy and reveals compatible
paths for corporate digital transformation and green innovation.
Our study provides inspiration for policy makers, academics, and
practitioners, broadens feasible pathways for common global
challenges and opportunities, and provides empirical references
for different countries and regions in developing synergistic
strategies for digital transformation and green sustainability.

Several limitations deserve mention. First, the measurement of
corporate digital transformation is a long-standing challenge (Yuan
et al., 2021). This paper uses a textual analysis approach to portray it
and further distinguish it from perspectives of underlying
technologies and practical applications, however, such a division
is still relatively rough and subjective, and more efforts are needed in
future research. Second, green innovation is a comprehensive
concept that contains different dimensions such as green product
innovation and green process innovation (Chen et al., 2006), green
innovation input and green innovation output (e.g., Zhao et al.,
2021), green technology innovation and green management
innovation (e.g., Shu et al., 2014), etc. This paper uses green
patent outputs to portray green innovation, and future research
could delineate green innovation in more detail and further
investigate the heterogeneous impact that digital transformation
may have on it. Third, there may be multiple pathways through
which a firm’s digital transformation affects its green innovation.
This study explores the role played by internal control and financing
constraints, and the study of the channels and mechanisms involved
still needs to be further expanded. Finally, this study takes China as
the research context, while firms in different countries and regions
are at different stages of the digital revolution, it is worthwhile to
examine in depth whether the promotion effect of corporate digital
transformation on green innovation is prevalent, what are the
boundary conditions for the occurrence of this impact, and what
kind of heterogeneity exists among firms with different
characteristics, etc.
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