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To provide stroke patients with good rehabilitation training, the rehabilitation robot should

ensure that each joint of the limb of the patient does not exceed its joint range of

motion. Based on the machine vision combined with an RGB-Depth (RGB-D) camera,

a convenient and quick human-machine interaction method to measure the lower limb

joint range of motion of the stroke patient is proposed. By analyzing the principle of the

RGB-D camera, the transformation relationship between the camera coordinate system

and the pixel coordinate system in the image is established. Through the markers on the

human body and chair on the rehabilitation robot, an RGB-D camera is used to obtain

their image data with relative position. The threshold segmentation method is used to

process the image. Through the analysis of the image data with the least square method

and the vector product method, the range of motion of the hip joint, knee joint in the

sagittal plane, and hip joint in the coronal plane could be obtained. Finally, to verify the

effectiveness of the proposed method for measuring the lower limb joint range of motion

of human, the mechanical leg joint range of motion from a lower limb rehabilitation robot,

which will be measured by the angular transducers and the RGB-D camera, was used

as the control group and experiment group for comparison. The angle difference in the

sagittal plane measured by the proposed detection method and angle sensor is relatively

conservative, and the maximum measurement error is not more than 2.2 degrees. The

angle difference in the coronal plane between the angle at the peak obtained by the

designed detection system and the angle sensor is not more than 2.65 degrees. This

paper provides an important and valuable reference for the future rehabilitation robot to

set each joint range of motion limited in the safe workspace of the patient.

Keywords: joint range of motion, machine vision, human-robot interaction, rehabilitation robot, human-machine

systems

INTRODUCTION

According to the World Population Prospects 2019 (United Nations, 2019), by 2050, one in six
people in the world will be over the age of 65 years, up from one in 11 in 2019 (Tian et al.,
2021). The elderly are the largest potential population of stroke patients, which will also lead to
an increase in the prevalence of stroke (Wang et al., 2019). The lower limb dysfunction caused
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by stroke has brought a great burden to the family and society
(Coleman et al., 2017; Hobbs and Artemiadis, 2020; Doost et al.,
2021; Ezaki et al., 2021). At present, the more effective treatment
for stroke is rehabilitation exercise therapy. According to the
characteristics of stroke and human limb movement function,
it mainly uses the mechanical factors, based on the kinematics,
sports mechanics, and neurophysiology, and selects appropriate
functional activities and exercise methods to train the patients
to prevent diseases and promote the recovery of physical and
mental functions (Gassert and Dietz, 2018; D’Onofrio et al., 2019;
Cespedes et al., 2021). The integration of artificial intelligence,
bionics, robotics, and rehabilitation medicine has promoted the
development of the rehabilitation robot industry (Su et al.,
2018; Wu et al., 2018, 2020, 2021b; Liang and Su, 2019). With
the innovation of technology, the rehabilitation robot has the
characteristics of precise motion and long-time repetitive work,
which brings a very good solution to many difficult problems of
reality, such as the difficulty of standardization of rehabilitation
movement, the shortage of rehabilitation physicians, and the
increasing number of stroke patients (Deng et al., 2021a,b; Wu
et al., 2021a). Lokomat is designed as the most famous lower limb
rehabilitation robot that has been carried out in many clinical
research (Lee et al., 2021; Maggio et al., 2021; van Kammen
et al., 2021). It is mainly composed of three parts: gait trainer,
suspended weight loss system, and running platform. Indego is a
wearable lower limb rehabilitation robot, designed by Vanderbilt
University in the United States (Tan et al., 2020). The user can
maintain the balance of the body with the help of a walking
stick supported by the forearm or an automatic walking aid.
Physiotherabot has the functions of passive training and active
training and can realize the interaction between the operator
and the robot through a designed human-computer interface
(Akdogan and Adli, 2011). However, accurate training, based
on the target joint range of motion of the patient, is helpful
to limb rehabilitation efficiency of the patients. Joint range of
motion, as an important evaluation of the joint activity ability
of patients, refers to the angle range of limb joints of the
patients to be allowed to move freely. In terms of the human-
machine interaction of rehabilitation robots, it is very important
to determine the setting of limb safe workspace of the patient and
especially setting safety protection at the control level.

The traditional method of measuring joint range of motion
is a goniometer. It is mainly composed of three parts: dial
scale, fixed arm, and rotating arm. When measuring the joint
range of motion, the center of the dial scale should coincide
with the axis of the human joint. The traditional goniometer
is easy to measure the joint range of motion in the human
sagittal plane. However, it is difficult and inaccurate to determine
the measurement base position in the human coronal plane.
Meanwhile, it requires two rehabilitation physicians to complete
the measurement task, one for traction movement of the limb of
the patient and the other one formeasurement of limbmovement
of the patient, respectively. The result through a goniometer has
low accuracy and is also easily affected by the subjective influence
of the physician. Humac Norm is an expensive and automatic
measuring device. It includes many auxiliary fixation assemblies
(Park and Seo, 2020). During the measurement, the measured

human joint is fixed on the auxiliary assembly. It calculates the
joint range of motion by detecting the changes of the auxiliary
mechanical assembly. The researchers have also carried out
extensive research on the measurement method of joint range of
motion by combining a variety of sensor technologies.

An inertial sensor is commonly used to capture the human
joint range of motion (Beshara et al., 2020). An inertial
measurement unit is developed to accurately measure the
knee joint range of motion during the human limb dynamic
motion (Ajdaroski et al., 2020). An inertial sensor-based three-
dimensional motion capture tool is designed to record the knee,
hip, and spine joint motion in a single leg squat posture. It is
composed of a triaxial accelerator, gyroscopic, and geomagnetic
sensors (Tak et al., 2020). Teufl et al. proposed a high effectiveness
three-dimensional joint kinematics measurement method (Teufl
et al., 2019). Feng et al. designed a lower limb motion capture
system based on the acceleration sensors, which fixed two inertial
sensors on the side of the human thigh and calf, respectively
(Feng et al., 2016). A gait detection device is proposed for
lower-extremity exoskeleton robots, which is integrated with a
smart sensor in the shoes and has a compact structure and
strong practicability (Zeng et al., 2021). With the development of
camera technology, machine vision technology is also introduced
into the field of human limb rehabilitation field (Gherman
et al., 2019; Dahl et al., 2020; Mavor et al., 2020). However,
most of the human limb function evaluation systems based on
machine vision require a combination of cameras. The three-
dimensional motion capture systems with 12 cameras provide
excellent accuracy and reliability, but they are expensive and need
to be installed in a large area (Linkel et al., 2016). At present,
the MS Kinect (Microsoft Corp., Redmond, WA, USA) is a low-
cost, off-the-shelf motion sensor originally designed for video
games that can be adapted for the analysis of human exercise
posture and balance (Clark et al., 2015). The Kinect could extract
the temporal and spatial parameters of human gait, which does
not need to accurately represent the human bones and limb
segments, which solves the problem of event monitoring, such
as the old people fall risk (Dubois and Bresciani, 2018). Based on
a virtual triangulation method, an evaluation system for shoulder
motion of patients based on the Kinect V2 sensors is designed,
which can solve the solution of a single shoulder joint motion
range of patients at one time (Cai et al., 2019; Çubukçu et al.,
2020; Foreman and Engsberg, 2020). However, how to improve
the efficiency of a multi-joint range of motion measurement
combined with the teaching traction training method of the
rehabilitation physician, how to use a single camera to accurately
solve the problem of multi-joints spatial motion evaluation
of human lower limbs, and how to avoid camera occlusion
in the operation process of the rehabilitation physicians are
an important basis for accurate input of lower limb motion
information of rehabilitation robot.

In this paper, a measurement method for the multi-joint
range of motion of the lower limb based on machine vision is
proposed and only one RGB-D camera will be used as image
information acquisition equipment. Through the analysis of the
imaging principle of the RGB-D camera, the corresponding
relationship between the image information and coordinates in
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FIGURE 1 | Spatial motion diagram of rigid linkage mechanism of the human lower limb.

three-dimensional space is established. The markers are arranged
reasonably on the patient and the rehabilitation robot, and
the motion information of the lower limb related joints is
transformed into the motion information of the markers. Then,
the threshold segmentation method and other related principles
are used to complete the extraction of markers. The hip joint
range of motion in the coronal plane and sagittal plane and knee
joint range of motion in the sagittal plane were calculated by the
vector product method. Finally, the experiment is conducted to
verify the proposed method.

MATERIALS AND METHODS

Spatial Motion Description of the Human
Lower Limbs
The human lower limb bones are connected by the joints, which
could form the basicmovement ability. To accurately describe the
motion of human lower limb joints in the sagittal plane and the
hip joint in the coronal plane, the human hip joint is simplified as
two rotation pairs, which rotates around the parallel axis, such as
the sagittal axis and the coronal axis, respectively. The knee joint
and ankle joint are simplified as one rotation pair, which rotates
around the parallel axis of the coronal axis. The thigh, calf, and
foot on the human lower limb are simplified as connecting rods.
Figure 1 shows the spatial motion diagram of the rigid linkage
mechanism of the human lower limbs. Set the direction ofmotion

for counterclockwise rotation of the hip joint and ankle joint as
positive, while the direction of knee joint motion for clockwise
rotation as positive. For the description of the motion of the
hip joint in the sagittal plane, the x-axis is taken as the zero-
reference angle of the hip joint range of motion, and the angle
θH2 between the thigh and the positive direction of the x-axis is
taken as the hip joint range of motion. The extension line of the
thigh rigid linkage is taken as the zero-reference angle of the knee
joint movement angle, and the angle θ2 between the extension
line of the thigh rigid linkage and the calf rigid linkage is the knee
joint range of motion. For the hip joint range of motion in the
coronal plane, the sagittal plane is taken as the zero-reference
plane, and the angle between the plane containing the human
thigh and calf and the zero reference plane is taken as the hip joint
range of motion θH1 in the coronal plane, in which the outward
expansion direction is set as the forward direction of the joint
range of motion.

Motion Information Abstraction of Lower
Limb Based on Machine Vision
Three Dimensional Coordinate Transformations of

Pixels in the Image
Because of the movement of the limb in the three-dimensional
space, the depth information of the object is lost from the RGB
camera imaging, and the plane information is scaled according
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FIGURE 2 | Image pixel coordinate system and image physical coordinate system.

to certain rules. Meanwhile, the lens of the depth camera and
the RGB camera is inconsistent, the corresponding pixels are not
aligned, so the depth information obtained by the depth camera
cannot be directly used for the color images. It is necessary
to analyze the relationship between the RGB camera and the
depth camera and determine the three-dimensional coordinates
of the target object by combining the color images and the
depth images. The color camera imaging model is actually
the transformation of a point from three-dimensional space to
a pixel, involving the pixel coordinate system in the image,
the physical coordinate system in the image, and the camera
coordinate system in three-dimensional space. The process of
camera imaging is that the object at the camera coordinate
system in three-dimensional space is transformed into the pixel
coordinate system.

As shown in Figure 2, an image physical coordinate system
x-o1-y is created. The origin of the coordinate system is the
center of the image, the x-axis is parallel to the length direction
of the image, and the y-axis is parallel to the width direction of
the image. The image pixel coordinate system u-o0-v is created.
The origin of the coordinate system is the top left corner vertex
of the image, the u-axis is parallel to the x-axis of the physical
coordinate system, and the v-axis is parallel to the y-axis of
the physical coordinate system. Let point P be

(

up, vp
)

in the

pixel coordinate system of the image and be
(

xp, yp
)

in the
physical coordinate system. Relative to the pixel coordinates,
the physical coordinate system is scaled α times on the u-axis
and β times on the v-axis; relative to the origin of the pixel
coordinate system, the translation of the origin of the physical
coordinate system is (u0, v0). According to the relationship
between the above-mentioned coordinate systems, it can
be obtained:

{

up = αxp + u0
vp = βyp + v0

(1)

Let the focal distance of the camera lens be f, the main optical
axis of the camera is perpendicular to the imaging plane and
passes through O1, where the optical center of the camera is
located on the main optical axis and the distance from the
imaging plane is f. As shown in Figure 3, the camera coordinate
system is created with the optical center as the coordinate origin.
The X-axis and Y-axis are parallel to the x-axis and y-axis of
the image coordinate system, respectively. Then, the Z-axis is
created according to the right-hand rule. Let the coordinates of
point P in the camera coordinate system be (Xp,Yp,Zp), and
the corresponding projection coordinates in the image physical
coordinate system be

(

xp, yp
)

. According to the relationship
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FIGURE 3 | Relationship between the camera coordinate system and image physical coordinate system.

between the camera coordinate system and image coordinate
system, the relationship can be obtained:

Zp

f
=

Xp

−xp
=

Yp

yp
(2)

The minus sign in the formula indicates that the image obtained
on the physical imaging plane is an inverted image, which can be
translated to the front of the camera, and the translation distance
along the positive direction of theZ-axis of the camera coordinate
system is 2f. After the phase plane is translated along the positive
direction of the z-axis, according to the imaging principle, the
imaging at this time is an equal size upright image, and equation
(2) is transformed into the following:

Zp

f
=

Xp

xp
=

Yp

yp
(3)

Let fx = αf ,fy = βf , then by combining formula (1) and formula
(3), we can get:





Xp/Zp
Yp/Zp
1



=





fx 0 u0
0 fy v0
0 0 1





−1 



up
vp
1



 (4)

Where (Xp/Zp,Yp/Zp, 1) is the projection point of point P in

the normalized plane, let K=





fx 0 u0
0 fy v0
0 0 1



, which represents the

internal parameter matrix of the camera.
In the actual imaging process, due to the physical defects of

the optical elements in the camera and the mechanical errors
in the installation of the optical elements, the images will be
distorted. This distortion can be divided into radial distortion
and tangential distortion. For any point on the normalized
plane, if its coordinate is

(

x, y
)

and the corrected coordinate will
be (xdistorted, ydistorted), then the relationship between the point
coordinate and corrected coordinate can be described by five
distortion coefficients, and be expressed as follows:

{

xdistorted = x(1+ k1r
2 + k2r

4 + k3r
6)+ 2p1xy+ p2(r

2 + 2x2)

ydistorted = y(1+ k1r
2 + k2r

4 + k3r
6)+ 2p2xy+ p1(r

2 + 2y2)
(5)

Where r =
√

x2 + y2,k1,k2, and k3 are the correction coefficients
of radial distortion, p1 and p2 are the correction coefficients of
tangential distortion.

As the depth image and color image are not captured
by the same camera, they are not described in the same
coordinate system. For the same point in space, their coordinates
are inconsistent. Because the pixel coordinate system and
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FIGURE 4 | Position arrangement of the camera and markers.

camera coordinate system of depth camera and color camera is
established in the same way, and the relative physical positions of
the depth camera and color camera are invariable on the same
equipment, the rotation matrix R and translation vector t can
be used to transform the coordinates between the two camera
coordinate systems. Set depth camera internal parameter as Kd

and color camera internal parameter as Kc. Let the coordinates of
point p in the image be (ud, vd), and the depth value of the point
p be zd. Let the coordinates of the point P in the space coordinate
system from the color camera be

(

Xp,Yp,Zp
)

, then





Xp

Yp

Zp



 = R



zdK
-1
d





ud
vd
1







 + t (6)

It is easy to obtain the coordinate in the color coordinate system
from Equation (4), and depth information is added to the pixels
on the color plane based on Equation (6).

The Position Arrangement of Markers and RGB-D

Cameras
To improve the accuracy of joint motion information acquisition,
a marker-based motion capture method is adopted. By placing
specially designed markers on the seats of the human lower limb
and the lower limb rehabilitation robot, the task of obtaining
the motion information of human limbs is transformed into the
task of capturing and analyzing the spatial position changes of
markers. The color information provided by the markers is used
as the analysis object. As the detection angle of the target is the
hip joint range of motion in the coronal plane and the sagittal
plane, and the knee joint range of motion in the sagittal plane,
the marker is set as a color strip. The markers of human lower
limbs are, respectively, arranged on one side of the thigh and calf,
and the direction is along the direction of thigh and calf. When
the angle of the knee joint is zero, the two markers should be
collinear. The color of the selected marker should be obviously
different from the background color, select the blue color here,
as shown in Figure 4. Because the zero reference angle of the hip
joint needs to be set in the sagittal plane, a marker is arranged
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FIGURE 5 | Measurement of the hip joint range of motion in the sagittal plane.

on one side of the seat of the lower limb rehabilitation robot, and
its length direction is required to be parallel to the seat surface,
which is the zero reference of the thigh movement angle. When
placing the RGB-D camera, it should face the sagittal plane of the
patient, and all markers should be within the capture range of the
camera during the movement of the limb of the patient.

Acquisition of Image Information
When measuring the joint range of motion of the patient, the
rehabilitation physician drags the leg of the patient in a specific
form, then the pictures are collected as shown in Figure 5. This
section will describe the measurement method of a volunteer.
When measuring the hip joint range of motion in the sagittal
plane, the rehabilitation physician shall drag the thigh of the
patient to move in the sagittal plane, and set no limit on the state
of the calf. The rehabilitation physician needs to drag the hip joint
of the patient to his maximum and minimum movement limited
angle in a sitting position. When measuring the knee joint range
of motion in the sagittal plane, the hip joint should be kept still.
The rehabilitation physician drags the foot of the patient to drive
the calf to move in the sagittal plane. The RGB image collected
is shown in Figure 6. When determining the hip joint range of
motion in the coronary plane, the knee joint of the patient is bent
at a comfortable angle. Then, the leg of the patient is dragged to
rotate the hip in the coronal plane. The RGB image is shown in
Figure 7. It should be noted that in the process of dragging, the
marker should not be blocked, so as not to affect the camera’s
acquisition of image information.

Marker Extraction Based on Threshold Segmentation
After the completion of the image acquisition, the motion
information of the patient is contained in the markers of each
frame of the image. The task at this time is converted to
the extraction of markers from the color images. Because the
color of the designed marker is obviously different from the
background color, the information will be used as the basis of
marker extraction.

The rehabilitation training is carried out indoors, and the light
is more uniform, and the information of the designed markers
will be known, so the color of the markers in RGB space can
be obtained in advance and the reference value (R1,G1,B1) can
be set. By obtaining the RGB values (Ri,Gi,Bi) of each pixel
in the processed image, the distance L between the pixel and
the reference value can be obtained. Comparing L with the set
threshold T, the pixel whose distance value is less than the set
threshold T is set to (255, 255, 255), otherwise, it is set to (0, 0, 0),
which can be expressed as follows:

(R,G,B) =

{

(0, 0, 0) L ≤ T
(255, 255, 255) L ≤ T

(7)

Then, the image is binarized, and the three channels image is
converted into a single channel. When the pixel value is (255,
255, 255), the single channel value is set to 255, and when the
pixel value is (0, 0, 0), it is set to 0. Then, the extraction task
of the markers is completed as shown in Figure 8. It shows
the binary image results of the measurement of the hip joint
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FIGURE 6 | Measurement of the knee joint range of motion in the sagittal plane.

FIGURE 7 | Measurement of the hip joint range of motion in the coronal plane.

range of motion in the sagittal plane, which is processed by
threshold segmentation.

Range of Motion Determination of Hip and
Knee Joint Based on Image Information
Establishment of the Coordinate System in the

Sagittal Plane
For the motion of the hip and knee joint in the sagittal plane, to
facilitate analysis, a coordinate system is created in the sagittal
plane, as shown in Figure 4. As the coordinates of the markers

are described in the camera coordinate system, it is necessary to
establish the transformation relationship between the coordinate
system and the camera coordinate system. The image data are
collected according to the motion mode of the measurement of
the range of motion of the knee joint in the way described in
section Acquisition of Image Information, and the coordinates
of the obtained markers on the calf in the camera coordinate
system are plane fitted. In the pixel coordinates of multiple
pixels, only one pixel is selected to participate in the analysis,
and the depth value of the point should be the median value of
the depth value of the group of pixels. The coordinates of the
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FIGURE 8 | Binary image processed by threshold segmentation.

required pixels in the pixel coordinate system, combined with
their depth values, are transformed into the camera coordinate
system for description, and the coordinate

(

xi, yi, zi
)

in the
camera coordinate system can be obtained, where the maximum
value of i is equal to k, which is the number of pixels.

Let the fitted plane equation be:

ax+ by+ cz + d = 0 (8)

The least square method is used to solve the related unknown
parameters, that is, to minimize the value f,

f = min(
k
6
i=1

(axi + byi + czi + d)2) (9)

where, a2 + b2 + c2 = 1, a > 0.
Taking the marker information of each frame image obtained

above in section Motion Information Abstraction of Lower
Limb Based on Machine Vision as the processing object, the
coordinates

(

xkij, ykij, zkij
)

,
(

xxij, yxij, zxij
)

, and
(

xlij, ylij, zlij
)

of the
pixel points of the thigh marker, the calf marker, and the marker
on the seat in the camera coordinate system can be obtained,
respectively. Where j represents the number of frames of the
picture, i represents the number of pixels of the marker described
at frame j. It should be noted that the value range of j in the
three groups of coordinates is the same, but the value range of i is
not the same. By projecting the above coordinates on the sagittal

plane, the camera coordinates
(

x′kij, y
′
kij, z

′
kij

)

,
(

x′xij, y
′
xij, z

′
xij

)

,

and
(

x′lij, y
′
lij, z

′
lij

)

can be obtained.

As the relative position of the seat and the camera does not
change during the measurement of joint range of motion, the
markers placed on the seat in a frame of the image are taken
for line fitting. The fitting space line L must pass through the
center of gravity

(

x̄, ȳ, z̄
)

of the marker. Let the direction vector
of the line be

(

l,m, n
)

. The least square method is used to fit the
following equation:

k
∑

i=1

(xi − x̄)2 +
(

yi − ȳ
)2

+ (zi − z̄)2 −
[

l (xi − x̄)

+ m
(

yi − ȳ
)

+ n (zi − z̄)
]2

(10)

The formula has a constraint:

{

l2 +m2 + n2 = 1
l > 0

(11)

The unit vectors (u, v,w) perpendicular to the straight line in
the plane can be obtained from the obtained direction vectors
(

l,m, n
)

and the fitted plane equation, where v is a non-negative
value. Take one point

(

xo, yo, zo
)

in the plane as the coordinate
origin, the direction of the unit vector

(

l,m, n
)

is the positive
direction of the x-axis, and the direction of the unit vector

(u, v,w) is the positive direction of the y-axis. The mathematical
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description of the z-axis is determined by the right-hand rule.
So far, the establishment of the coordinate system x-o-y-z is

completed. The coordinates
(

x′kij, y
′
kij, z

′
kij

)

,
(

x′xij, y
′
xij, z

′
xij

)

,

and
(

x′lij, y
′
lij, z

′
lij

)

in the camera coordinate system are

transformed into the coordinate system x-o-y-z, and the
coordinates are transformed into

(

x′′ki1, y
′′
ki1, 0

)

,
(

x′′xi1, y
′′
xi1, 0

)

,
and

(

x′′li1, y
′′
li1, 0

)

. Since the value z of each coordinate is 0, the
three-dimensional coordinate task has been transformed into a
two-dimensional task in the coordinate system x-o-y.

Determination of the Hip and Knee Joint Range of

Motion in the Sagittal Plane
The markers on the thigh and calf in each frame are all based
on the least square method. Take any marker on the thigh in an
image as an example to analyze. Let the fitted linear equation be:

0 = ax+ by+ c (12)

The least square method is used to solve the parameters a,
b, and c, that is, to minimize the value of the polynomial
k
6
i=1

(axki1 − byki1 + c)2, and there is a constraint a2+ b2 = 1. We

can get the coefficients ak of x and bk of y, that is, the direction
vector ek = (bk, ak) of the straight line is obtained. Similarly, the
direction vector ex = (bx, ax) and el = (bl, al) representing the
fitting line of the calf marker and seat marker, respectively, can
also be obtained. The parameters bk, bx, and bl are non-negative,
and the motion angle of the thigh is given as follows:

θk =

{

arccos ek·el
|ek||el|

(el × ek ≥ 0)

− arccos ek·el
|ek||el|

(el × ek < 0)
(13)

The motion angle of the calf is:

θx =

{

arccos ex·ek
|ex||ek|

(ek × ex ≥ 0)

− arccos ex·ek
|ex||ek|

(ek × ex < 0)
(14)

Using the same processing method, the angles of hip and knee
joints in the different frames can be obtained. Let the angle of
the hip joint in frame j be θkj and the angle of the knee joint in
frame j be θxj. Then, the maximum and minimum of the angle
θkj

(

1 ≤ j ≤ k
)

could be obtained, which will be defined as θkmax

and θkmin, respectively; the maximum andminimum of the angle
θxj

(

1 ≤ j ≤ k
)

could be also achieved, which will be defined as
θxmax and θxmin, respectively.

Determination of the Hip Joint Range of Motion in the

Coronal Plane
When measuring the patient’s hip joint range of motion in the
coronal plane, the plane of the thigh and calf of the patient is
parallel to the side of the chair at the start, that is, the angle of
the hip joint in the coronal plane is 0 degrees. According to the
above methods, the images are collected and processed, and the
markers on the thigh and calf of each frame are fitted in the way
of formula (11), and the normal vectors ej = (aj, bj, cj) of each

plane are obtained, where j is the number of frames of the image.
The motion angle of the hip joint in the coronal plane is:

θj = arccos

∣

∣ej · e1
∣

∣

∣

∣ej
∣

∣ · |e1|
(15)

Let the angle of the hip joint in the coronal plane of frame j be
θkgj, the maximum and minimum values of θkgj

(

1 ≤ j ≤ k
)

can
be obtained, which can be set as θkgmax and θkgmin, respectively.

RESULTS

Precision Verification Experiment of the
Proposing Detection System
To verify the feasibility of the proposed method based on an
RGB-D camera for patients’ limb joint range of motion detection,
considering the frame rate, resolution, and accuracy of cameras,
the L515 camera, produced by Intel Company (CA, USA), is
selected. The resolution of the color image and depth image of
the camera can reach 1280∗720, and both the frame rates can
reach 30 fps. As the experiment needs to obtain the coordinate
information of the marker in three-dimensional space, the
accuracy of depth information will have a direct impact on the
accuracy of the detection system. The accuracy of the L515
camera is <5mm when the distance is at 1m, and <14mm at
9m. It is necessary to ensure that the camera can capture the
markers during the movement of the limb of the patient, and
the distance between the camera and the affected limb is 0.8–
1.5m. As the control group cannot be set accurately to prove
the correctness of the angle measured in the human lower limb
experiment, the mechanical leg that replaced the human lower
limb is adapted as shown in Figure 9.

The designed joint range of motion detection system needs to
realize the range of motion detection of the hip and knee joint in
the sagittal plane. The thigh and calf of the mechanical leg can
be regarded as two connecting rods, which are connected by the
rotating pairs, and the markers are set up on the thigh and calf,
respectively, on one side of themechanical leg. Themotion angles
of both the hip and knee in the sagittal plane are represented by
the angles between the lines fitted by the strips. Angle sensors
WT61C are set on the thigh and calf on the mechanical leg
for real-time angles acquisition, and the data from the angle
sensors are used as the control group. The dynamic measurement
accuracy of the angle sensor (WT61C) is 0.1 degrees, and the
output data will be the time and angle.

The red strips are used for the color of the markers as shown
in Figure 10. The angles between the line fitted by the marker
on the mechanical calf and the line fitted by the marker on the
mechanical thigh are analyzed and obtained. In order to verify
the repetitive accuracy of the designed joint range of motion
detection system in the sagittal plane, the calf is designed to
move back and forth many times while the thigh is still, and
the maximum and minimum values of the motion angle in each
back and forth movement are randomly determined. The specific
data are shown in Figure 11A. The corresponding peak values of
angles obtained by the above two methods in time are analyzed
here, and the analysis results are shown in Figure 11B.
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FIGURE 9 | The prototype of the robot with two mechanical legs. (A) The prototype of the robot; (B) The structure design of the mechanical leg.

FIGURE 10 | Setting up the experimental scene. (A) Experimental arrangement in the sagittal plane; (B) Experimental arrangement in the coronal plane.

The method of measuring the hip joint range of motion in
the coronal plane is essentially based on the plane fitting of two
line-markers with a certain angle. At first, the acquired fitting
plane is used as the measurement base plane; as the measurement
continues, the angle between the new fitting plane and the
measurement base plane is obtained again, that is, the solution
representing the hip joint range of motion in the coronal plane.
The designed joint range of motion detection system also uses

the mechanical leg mentioned above to verify the joint range
of motion in the coronal plane. The position arrangement of
the markers is shown in Figure 10B. In the experiment, the
knee axis of the mechanical leg is equivalent to the human
hip joint axis in the coronal plane. The calf of the mechanical
leg is equivalent to the human lower limb. The calf from the
mechanical leg is designed to move round and forth around the
rotation knee joint axis many times while the thigh is still, and
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FIGURE 11 | The results from the joint range of motion detection system for the joints in the sagittal plane. (A) The detection of motion angle in the sagittal plane; (B)

Error diagram between the control group and experiment group for comparison in the sagittal plane.

FIGURE 12 | The results from the joint range of motion detection system for the joints in the coronal plane. (A) The detection of motion angle in the coronal plane; (B)

Error diagram between the control group and experiment group for comparison in the coronal plane.

the data information of the angle sensors and the RGB-D camera
are collected synchronously. To prevent the detection error of
the maximum angle caused by the possible pulse interference,
the median value average filtering processing is carried out for
the obtained motion angles in the coronal plane, and the result
is shown in Figure 12A. The corresponding peak values of the
angles obtained by the above two methods in time are analyzed,
and the analysis results are shown in Figure 12B.

DISCUSSION

In the precision verification experiment of the proposing
detection system, the angle information obtained by the proposed
detection system is highly consistent with the angle information
obtained by the angle sensor (WT61C), which verifies the
correctness of the joint range of motion detection system in
the sagittal plane and the coronal plane. When measuring joint

range of motion in the sagittal plane, it is concerned with
the maximum and minimum values of the joint angles being
measured. Therefore, the corresponding peak values of angles
obtained by the proposed method and method through the angle
sensor (WT61C) in time are analyzed here, and the analysis
results are shown in Figure 11B. It shows the difference δ

between the angle at the peak obtained by the proposed detection
system and the angle sensor. It can be seen from Figure 11B that
the angle in the sagittal planemeasured by the proposed detection
system designed is relatively conservative, and the maximum
measurement error is not more than 2.2 degrees. It also shows
the difference δ in the coronal plane between the angle at the peak
obtained by the proposed detection system and the angle sensor.
It can be seen from Figure 12B that the maximum measurement
error between the angle measured by the proposed detection
system and the angle sensor is not more than 2.65 degrees.

To our knowledge, no studies have investigated the machine
version to achieve the multi-joints spatial motion evaluation of
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TABLE 1 | The mean differences through different detection methods.

Measurement method Abduction/◦ Flexion/◦ Extension/◦

MDCGK 0.33 −2.83 −0.10

MDDGK 1.1 −1.63 0.03

MDALC −0.56 −1.87 −0.88

human lower limbs. Most studies focus on the gait parameters
and their method of estimation using the OptiTrack and
Kinect system, such as step length, step duration, cadence, and
gait speed, whose messages are different from our study. The
reliability and validity analyses of Kinect V2 based measurement
system for shoulder motions has been researched in the literature
(Çubukçu et al., 2020). The mean differences of the clinical
goniometer from the Kinect V2 based measurement system
(MDCGK), the mean differences of the digital goniometer from
the Kinect V2 based measurement system (MDDGK), and
the mean differences of the angle sensor from the proposed
method based on the L515 camera (MDALC) are shown
in Table 1. Compared with the measurement effectiveness of
coronal abduction and adduction and sagittal flexion and
extension of the shoulder, the proposed lower limb spatial motion
measurement system based on the L515 camera also has good
relative effectiveness.

Compared with the other methods through the inertial
sensors, the proposed method is much easier to obtain the joint
range of motion. In terms of operation, it is more convenient
for rehabilitation physicians to operate. For the patients with
mobility difficulties, only setting marks on the human thigh
and calf will not make the patient have a big change in their
posture. This paper provides an important parameter basis for
the future lower limb rehabilitation robot to set the range
of motion of each joint limited in the safe workspace of
the patient.

CONCLUSION

This paper proposed a new detection system used for data
acquisition before the patients participating in rehabilitation
robot training, so as to ensure that the rehabilitation robot does
not over-extend any joint of the stroke patients. A mapping
between the camera coordinate system and pixel coordinate
system in the RGB-D camera image is studied, where the range
of motion of the hip and joint, knee joint in the sagittal plane,
and hip joint in the coronal plane are modeled via least-square
analysis. A scene-based experiment with the human in the
loop has been carried out, and the results substantiate the

effectiveness of the proposed method. However, considering the
complexity of human lower limb skeletal muscle, the regular
rigid body of rehabilitation mechanical leg was used as the test
object in this paper. Therefore, in practical clinical application,
especially for patients with dysfunctional limbs, there are still
high requirements for the pasting position and shape of the
makers. As the location of the makers, the uniformity of its own
shape, and the light intensity of the measurement progress will
also affect the measurement results. In future, we will further
study the subdivision directions, such as the uniformity of
makers, the light intensity of the camera, and the clinical trials.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the Ethics Committee of Faculty of
Mechanical Engineering & Mechanics, Ningbo University.
The patients/participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

YF: conceptualization and formal analysis. XW: methodology.
GL: software. JN and WL: validation. ZG: investigation,
resources, visualization and supervision, and project
administration. XW: writing—original draft preparation. YF
and ZG: writing—review and editing and funding acquisition.
All authors have read and agreed to the published version of
the manuscript and agree to be accountable for the content of
the work.

FUNDING

This research was funded by the Shanghai Municipal Science and
Technology Major Project, grant number 2021SHZDZX0103;
the Natural Science Foundation of Zhejiang Province, grant
number LQ21E050008; the Educational Commission of Zhejiang
Province, grant number Y201941335; the Natural Science
Foundation of Ningbo City, grant number 2019A610110; the
Major Scientific and Technological Projects in Ningbo City,
grant number: 2020Z082; the Research Fund Project of Ningbo
University, grant number XYL19029; and the K. C.Wong Magna
Fund in Ningbo University, China.

REFERENCES

Ajdaroski, M., Tadakala, R., Nichols, L., and Esquivel, A. (2020). Validation of a

device to measure knee joint angles for a dynamic movement. Sensors 20:1747.

doi: 10.3390/s20061747

Akdogan, E., and Adli, M. A. (2011). The design and control of a therapeutic

exercise robot for lower limb rehabilitation: physiotherabot. Mechatronics 21,

509–522. doi: 10.1016/j.mechatronics.2011.01.005

Beshara, P., Chen, J. F., Read, A. C., Lagadec, P., Wang, T., and

Walsh, W. R. (2020). The reliability and validity of wearable

Frontiers in Neurorobotics | www.frontiersin.org 13 October 2021 | Volume 15 | Article 75392416

https://doi.org/10.3390/s20061747
https://doi.org/10.1016/j.mechatronics.2011.01.005
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wang et al. Joint Range of Motion Measurement

inertial sensors coupled with the Microsoft Kinect to measure

shoulder range-of-motion. Sensors 20:7238. doi: 10.3390/s202

47238

Cai, L. S., Ma, Y., Xiong, S., and Zhang, Y. X. (2019). Validity and reliability of

upper limb functional assessment using the Microsoft Kinect V2 sensor. Appl.

Bionics Biomech. 2019, 1–14. doi: 10.1155/2019/7175240

Cespedes, N., Raigoso, D., Munera, M., and Cifuentes, C. A. (2021). Long-

term social human-robot interaction for Neurorehabilitation: robots as a

tool to support gait therapy in the pandemic. Front. Neurorobot. 15, 1–12.

doi: 10.3389/fnbot.2021.612034

Clark, R. A., Vernon, S., Mentiplay, B. F., Miller, K. J., McGinley, J. L., Pua, Y. H.,

et al. (2015). Instrumenting gait assessment using the Kinect in people living

with stroke: reliability and association with balance tests. J. Neuroeng. Rehabil.

12, 1–9. doi: 10.1186/s12984-015-0006-8

Coleman, E. R., Moudgal, R., Lang, K., Hyacinth, H. I., Awosika, O.

O., Kissela, B. M., et al. (2017). Early rehabilitation after stroke: a

narrative review. Curr. Atheroscler. Rep. 30, 48–54. doi: 10.1007/s11883-017-0

686-6

Çubukçu, B., Yüzgeç, U., Zileli, R., and Zileli, A. (2020). Reliability and

validity analyzes of Kinect V2 based measurement system for shoulder

motions. Med. Eng. Phys. 76, 20–31. doi: 10.1016/j.medengphy.2019.

10.017

Dahl, K. D., Dunford, K. M., Wilson, S. A., Turnbull, T. L. (2020). Wearable sensor

validation of sports-relatedmovements for the lower extremity and trunk.Med.

Eng. Phys. 84, 144–150. doi: 10.1016/j.medengphy.2020.08.001

Deng, S., Cai, Q. Y., Zhang, Z., and Wu, X. D. (2021a). User behavior

analysis based on stacked autoencoder and clustering in complex power

grid environment. IEEE T Intell Transp. 1–15. doi: 10.1109/TITS.2021.30

76607

Deng, S., Chen, F. L., Dong, X., Gao, G. W., and Wu, X. (2021b).

Short-term load forecasting by using improved GEP and abnormal

load recognition. ACM T Internet Techn. 21, 1–28. doi: 10.1145/34

47513

D’Onofrio, G., Fiorini, L., Hoshino, H., Matsumori, A., Okabe, Y., Tsukamoto,

M., et al. (2019). Assistive robots for socialization in elderly people: results

pertaining to the needs of the users. Aging Clin. Exp. Res. 31, 1313–1329.

doi: 10.1007/s40520-018-1073-z

Doost, M. Y., Herman, B., Denis, A., Spain, J., Galinski, D., Riga, A., et al. (2021).

Bimanual motor skill learning and robotic assistance for chronic hemiparetic

stroke: a randomized controlled trial. Neural Regen. Res. 16, 1566–1573.

doi: 10.4103/1673-5374.301030

Dubois, A., and Bresciani, J. P. (2018). Validation of an ambient system

for the measurement of gait parameters. J. Biomech. 69, 175–180.

doi: 10.1016/j.jbiomech.2018.01.024

Ezaki, S., Kadone, H., Kubota, S., Abe, T., Shimizu, Y., Tan, C. K., et al. (2021).

Analysis of gait motion changes by intervention using robot suit hybrid

assistive limb (HAL) in myelopathy patients after decompression surgery for

ossification of posterior longitudinal ligament. Front. Neurorobot. 15, 1–13.

doi: 10.3389/fnbot.2021.650118

Feng, Y. F., Wang, H. B., Lu, T., Vladareanuv, V., Li, Q., and Zhao, C. S. (2016).

Teaching trainingmethod of a lower limb rehabilitation robot. Int. J. Adv. Robot

Syst. 13, 1–10. doi: 10.5772/62058

Foreman, M. H., and Engsberg, J. R. (2020). The validity and reliability of the

Microsoft Kinect for measuring trunk compensation during reaching. Sensors

20:7073. doi: 10.3390/s20247073

Gassert, R., and Dietz, V. (2018). Rehabilitation robots for the treatment of

sensorimotor deficits: a neurophysiological perspective. J. Neuroeng. Rehabil.

15, 1–15. doi: 10.1186/s12984-018-0383-x

Gherman, B., Birlescu, I., Plitea, N., Carbone, G., Tarnita, D., and Pisla, D.

(2019). On the singularity-free workspace of a parallel robot for lower-limb

rehabilitation. Proc. Romanian Acad. Ser. A 20, 383–391.

Hobbs, B., and Artemiadis, P. (2020). A review of robot-assisted lower-

limb stroke therapy: unexplored paths and future directions in gait

rehabilitation. Front. Neurorobot. 14, 1–16. doi: 10.3389/fnbot.2020.

00019

Lee, H. Y., Park, J. H., and Kim, T. W. (2021). Comparisons between

Locomat and Walkbot robotic gait training regarding balance and

lower extremity function among non-ambulatory chronic acquired brain

injury survivors. Medicine 100:e25125. doi: 10.1097/MD.00000000000

25125

Liang, X., and Su, T. T. (2019). Quintic pythagorean-hodograph curves based

trajectory planning for delta robot with a prescribed geometrical constraint.

Appl. Sci. Basel 9:4491. doi: 10.3390/app9214491

Linkel, A., Griskevicius, J., and Daunoraviciene, K. (2016). An objective evaluation

of healthy human upper extremity motions. J. Vibroeng. 18, 5473–5480.

doi: 10.21595/jve.2016.17679

Maggio, M. G., Naro, A., Manuli, A., Maresca, G., Balletta, T., Latella, D.,

et al. (2021). Effects of robotic neurorehabilitation on body representation

in individuals with stroke: a preliminary study focusing on an EEG-

based approach. Brain Topogr. 34, 348–362. doi: 10.1007/s10548-021-0

0825-5

Mavor, M. P., Ross, G. B., Clouthier, A. L., Karakolis, T., and Tashman, S.

(2020). Validation of an IMU suit for Military-Based tasks. Sensors 20:4280.

doi: 10.3390/s20154280

Park, J. H., and Seo, T. B. (2020). Study on physical fitness factors

affecting race-class of Korea racing cyclists. J. Exerc. Rehabil. 16, 96–100.

doi: 10.12965/jer.1938738.369

Su, T. T., Cheng, L., Wang, Y. K., Liang, X., Zheng, J., and Zhang,

H. J. (2018). Time-optimal trajectory planning for delta robot based

on quintic pythagorean-hodograph curves. IEEE Access. 6, 28530–28539.

doi: 10.1109/ACCESS.2018.2831663

Tak, I., Wiertz, W. P.,Barendrecht, M., and Langhout, R. (2020). Validity of a

new 3-D motion analysis tool for the assessment of knee, hip and spine

joint angles during the single leg squat. Sensors 20:4539. doi: 10.3390/

s20164539

Tan, K., Koyama, S., Sakurai, H., Tanabe, S., Kanada, Y., and Tanabe, S.

(2020). Wearable robotic exoskeleton for gait reconstruction in patients

with spinal cord injury: a literature review. J. Orthop. Transl. 28, 55–64.

doi: 10.1016/j.jot.2021.01.001

Teufl, W., Miezal, M., Taetz, B., Fröhlich, M., and Bleser, G. (2019). Validity

of inertial sensor based 3D joint kinematics of static and dynamic

sport and physiotherapy specific movements. PLoS ONE 14:e0213064.

doi: 10.1371/journal.pone.0213064

Tian, Y.,Wang, H. B., Zhang, Y. S., Su, B.W.,Wang, L. P.,Wang, X. S., et al. (2021).

Design and evaluation of a novel person transfer assist system. IEEE Access. 9,

14306–14318. doi: 10.1109/ACCESS.2021.3051677

United Nations (2019). World Population Prospects 2019: Highlights. Availabe

online at: https://www.un.org/development/desa/publications/world-

population-prospects-2019-highlights.html (accessed June 17, 2019).

van Kammen, K., Reinders-Messelink, H. A., Elsinghorst, A. L., Wesselink,

C. F., Meeuwisse-de Vries, B., van der Woude, L. H. V., et al. (2021).

Amplitude and stride-to-stride variability of muscle activity during

Lokomat guided walking and treadmill walking in children with cerebral

palsy. Eur. J. Paediatr. Neuro. 29, 108–117. doi: 10.1016/j.ejpn.2020.

08.003

Wang, L. D., Liu, J. M., Yang, Y., Peng, B., and Wang, Y. L. (2019). The

prevention and treatment of stroke still face huge challenges ——brief

report on stroke prevention and treatment in China,2018. Chin. Circ. J.

34, 105–119. doi: 10.3969/j.issn.1000-3614.2019.02.001

Wu, D., Luo, X., Shang, M. S., He, Y., Wang, G. Y., and Wu, X. D.

(2020). A data-characteristic-aware latent factor model for Web service

QoS prediction. IEEE T Knowl. Data En. 1–12. doi: 10.1109/TKDE.2020.30

14302

Wu, D., Luo, X., Shang, M. S., He, Y., Wang, G. Y., and Zhou, M. C. (2021a).

A deep latent factor model for high-dimensional and sparse matrices in

recommender systems. IEEE Transac. Syst. Man Cybernet. Syst. 51, 4285–4296.

doi: 10.1109/TSMC.2019.2931393

Wu, D., Luo, X., Wang, G. Y., Shang, M. S., Yuan, Y., and Yan, H.

Y. (2018). A highly-accurate framework for self-labeled semi-supervised

classification in industrial applications. IEEE T Ind. Inform. 14, 909–920.

doi: 10.1109/TII.2017.2737827

Wu, D., Shang, M. S., Luo, X., and Wang, Z. D. (2021b). An L1-and-L2-norm-

oriented latent factor model for recommender systems. IEEE T Neur. Net Lear.

1–14. doi: 10.1109/TNNLS.2021.3071392

Zeng, D. Z., Qu, C. X., Ma, T., Qu, S., Yin, P., Zhao, N., et al. (2021).

Research on a gait detection system and recognition algorithm for lower limb

Frontiers in Neurorobotics | www.frontiersin.org 14 October 2021 | Volume 15 | Article 75392417

https://doi.org/10.3390/s20247238
https://doi.org/10.1155/2019/7175240
https://doi.org/10.3389/fnbot.2021.612034
https://doi.org/10.1186/s12984-015-0006-8
https://doi.org/10.1007/s11883-017-0686-6
https://doi.org/10.1016/j.medengphy.2019.10.017
https://doi.org/10.1016/j.medengphy.2020.08.001
https://doi.org/10.1109/TITS.2021.3076607
https://doi.org/10.1145/3447513
https://doi.org/10.1007/s40520-018-1073-z
https://doi.org/10.4103/1673-5374.301030
https://doi.org/10.1016/j.jbiomech.2018.01.024
https://doi.org/10.3389/fnbot.2021.650118
https://doi.org/10.5772/62058
https://doi.org/10.3390/s20247073
https://doi.org/10.1186/s12984-018-0383-x
https://doi.org/10.3389/fnbot.2020.00019
https://doi.org/10.1097/MD.0000000000025125
https://doi.org/10.3390/app9214491
https://doi.org/10.21595/jve.2016.17679
https://doi.org/10.1007/s10548-021-00825-5
https://doi.org/10.3390/s20154280
https://doi.org/10.12965/jer.1938738.369
https://doi.org/10.1109/ACCESS.2018.2831663
https://doi.org/10.3390/s20164539
https://doi.org/10.1016/j.jot.2021.01.001
https://doi.org/10.1371/journal.pone.0213064
https://doi.org/10.1109/ACCESS.2021.3051677
https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html
https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html
https://doi.org/10.1016/j.ejpn.2020.08.003
https://doi.org/10.3969/j.issn.1000-3614.2019.02.001
https://doi.org/10.1109/TKDE.2020.3014302
https://doi.org/10.1109/TSMC.2019.2931393
https://doi.org/10.1109/TII.2017.2737827
https://doi.org/10.1109/TNNLS.2021.3071392
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wang et al. Joint Range of Motion Measurement

exoskeleton robot. J. Braz. Soc. Mech. Sci. 43:298. doi: 10.1007/s40430-021-0

3016-2

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Wang, Liu, Feng, Li, Niu and Gan. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 15 October 2021 | Volume 15 | Article 75392418

https://doi.org/10.1007/s40430-021-03016-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


ORIGINAL RESEARCH
published: 27 October 2021

doi: 10.3389/fncom.2021.760554

Frontiers in Computational Neuroscience | www.frontiersin.org 1 October 2021 | Volume 15 | Article 760554

Edited by:

Song Deng,

Nanjing University of Posts and

Telecommunications, China

Reviewed by:

Yi He,

Old Dominion University, United States

Ji Xu,

Guizhou University, China

*Correspondence:

Xiaoyu Shi

xiaoyushi@cigit.ac.cn

Received: 18 August 2021

Accepted: 28 September 2021

Published: 27 October 2021

Citation:

Chen L, Gong S, Shi X and Shang M

(2021) Dynamical Conventional Neural

Network Channel Pruning by Genetic

Wavelet Channel Search for Image

Classification.

Front. Comput. Neurosci. 15:760554.

doi: 10.3389/fncom.2021.760554

Dynamical Conventional Neural
Network Channel Pruning by Genetic
Wavelet Channel Search for Image
Classification
Lin Chen 1, Saijun Gong 2, Xiaoyu Shi 1* and Mingsheng Shang 1

1Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences (CAS), Chongqing, China, 2 School

of Information Science and Technology, Tibet University, Lhasa, China

Neural network pruning is critical to alleviating the high computational cost of deep

neural networks on resource-limited devices. Conventional network pruning methods

compress the network based on the hand-crafted rules with a pre-defined pruning ratio

(PR), which fails to consider the variety of channels among different layers, thus, resulting

in a sub-optimal pruned model. To alleviate this issue, this study proposes a genetic

wavelet channel search (GWCS) based pruning framework, where the pruning process

is modeled as a multi-stage genetic optimization procedure. Its main ideas are 2-fold:

(1) it encodes all the channels of the pertained network and divide them into multiple

searching spaces according to the different functional convolutional layers from concrete

to abstract. (2) it develops a wavelet channel aggregation based fitness function to

explore the most representative and discriminative channels at each layer and prune the

network dynamically. In the experiments, the proposed GWCS is evaluated on CIFAR-10,

CIFAR-100, and ImageNet datasets with two kinds of popular deep convolutional

neural networks (CNNs) (ResNet and VGGNet). The results demonstrate that GNAS

outperforms state-of-the-art pruning algorithms in both accuracy and compression rate.

Notably, GNAS reducesmore than 73.1% FLOPs by pruning ResNet-32 with even 0.79%

accuracy improvement on CIFAR-100.

Keywords: neural network pruning, neural architecture search, wavelet features, neural network compression,

image classification

1. INTRODUCTION

Deep convolutional neural networks (CNNs) have achieved substantial progress in many research
fields, such as computer vision (Wang et al., 2019), natural language processing (Giménez et al.,
2020), and information recommendation (Wu et al., 2021a,b). However, the number of parameters
in deep CNN-based models (e.g., ResNet-50 He et al., 2016) generally exceeds hundreds of
megabytes. It needs billions of floating number operations (FLOPs) to run these deep models,
bringing a significant challenge to deploy large networks on devices with limited resources (e.g.,
mobile phone, robot, drone). Thus, the huge storage and the expensive computational costs
have become significant problems to hinder practical applications of deep CNNs in complex
real-world scenarios.
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Neural network compression (Renda et al., 2020; Xu
et al., 2020) has been proposed to accelerate the deep CNNs
computation. Network pruning is one of the most intuitive
methods to create a small-scale network by reducing redundant
and non-informative weights (Li et al., 2016; Yang et al., 2017).
The critical point in network pruning is finding a proper
metric to measure the importance of the pruned parts. One
solution is deleting the weights with small absolute values (Liu
et al., 2017) under the presumption that the smaller value
of a weight parameter is, the less impact it has on the final
result. But this intuitive assumption has been proved invalid in
some cases (Ye et al., 2018). On the other hand, many other
pruning algorithms have been developed, such as judging the
influence of parameter clipping on training loss (Molchanov
et al., 2016) or the reconstruction errors of feature outputs (He
et al., 2017). However, such algorithms mainly rely on human
expert knowledge and hand-crafted pruning rules.

In addition, prevailing methods usually ignore the variety of
channels among layers (He et al., 2018, 2019). The candidates
of sub-networks are chosen according to various evaluation
criteria with the pre-defined pruning ratio (PR) for each layer
or block. In this case, no matter which specific channels are
pruned, the compressed network architecture remains the same.
As mentioned in Gu et al. (2018) and He et al. (2020), the
channels of different layers have various functions. Thus, the
truly informative (or discriminative) channels might be wrongly
removed if the PR is fixed (Yang et al., 2018; Liu et al., 2019),
resulting in a decrease in the test accuracy of the pruned
network. Furthermore, these manually-set pruning parameters
may be the sub-optimal trade-off between the model size and
prune accuracy.

Recently, automatic pruning algorithms with neural
architecture search (NAS) approaches (Chen et al., 2021;
Jia et al., 2021; Liang et al., 2021; Wang et al., 2021a; Xu et al.,
2021; Yang et al., 2021) are identified as a promising way to
automate network compression. It casts the network pruning
problem into the NAS framework, i.e., the search space of NAS
is the parameters of the pre-trained network to be pruned.
A typical NAS-based pruning model (Dong and Yang, 2019;
Jiahui and S., 2019; Liu et al., 2019) explores the potential
sub-network architectures from the pre-trained network. Then
the intermediate compressed model is evaluated and fine-tuned
sequentially to construct the final output. However, prevailing
NAS-based algorithms (Jiahui and S., 2019; Liu et al., 2019)
usually simplify the network at a coarse-grained level while
ignoring the critical specific channels.

This study proposes a novel NAS-based pruningmodel named
GWCS. It can dynamically prune a pre-trained network at the
channel level while maintaining the model accuracy. First, we
formulate the network compression task as a combinatorial
optimization problem. Specifically, we genetically encode each
channel in the pre-trained network and prune it adaptively using
a dynamic selection operation in multiple stages with a wavelet
channel aggregation (WCA) based fitness function. As shown
in Figure 1, our dynamic network pruning model yields much
higher prune accuracy than the hand-crafted pruning method for
ResNet series models on CIFIA-100. Notably, our model even

FIGURE 1 | We compare classification accuracy vs. computational complexity

(FLOPs) with ResNet series models on CIFIA-100. Our pruning method with a

more flexible optimization procedure obtains more promising results than filter

pruning algorithm based on geometric median (FPGM) (He et al., 2019) with

the fixed pruning rate.

accelerates ResNet32 and ResNet56 three times, along with the
improved classification results.

This study makes innovative contributions in the automatic
network pruning process for image classification as follows:

(1) We develop a GWCS pipeline to prune the pre-trained
network dynamically. It models the channel-wise network
pruning task as a multi-stage genetic optimization procedure.
(2) We introduce a WCA based fitness function to evaluate and
exploit the most informative channels. (3) Extensive experiments
are conducted to demonstrate the effectiveness of the proposed
dynamic channel pruning model on some popular benchmark
datasets, including CIFAR-10, CIFAR-100, and ImageNet. Our
GWCS outperforms the tested state-of-the-art models regarding
pruning accuracy and network compression rate.

The rest of the study is organized as follows: Section 2
presents the proposed genetic wavelet channel search scheme.
The experimental results are provided in section 3, following the
discussion in section 4.

2. METHODS

2.1. Overview of GWCS
This study aims to remove the redundant channels from the pre-
trained networkM for generating a pruned outputOwith reliable
classification results. We approach the problem of compressing
the network with flexible pruning layers as a genetic search
framework. It contains three steps which are shown in Figure 2:
(1) Training a large CNNs (the pre-trained network M), (2)
Using GWCS to prune the channels in pre-trained network M
layer by layer, (3) Knowledge distilling (KD) the pruned network
to recover the model accuracy. In the search process, the most
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FIGURE 2 | Overview of GWCS model. The input CNNs M is the pre-trained model. The circles in figures mean channels. The pre-trained CNNs M can be encoded

and pruned through GGS during the iteration process. Finally, the pruned network containing the most informative channels can be fine-tuned by KD.

critical part is to effectively and flexibly remove the inadequate
channels in the pre-trained network M without significantly
compromising accuracy. Next, we will introduce our GWCS
model to address this problem.

2.2. Genetic Wavelet Channel Search
2.2.1. Gradual Genetic Search (GGS)
Initialization. Our proposed GWCS strategy is an iterative
process in which the initial network is made gradually better
as a group called a population. At first, all the channels of pre-
trained networkM can be encoded into random binary genotypes
to generate the population A, in which we denote the candidate
compressed network Xi ∈ A standing for the ith instance inA:

Xi = {c1i , c
2
i , . . . , c

N
i } (1)

where i ∈ {1, 2, . . . ,NP}, and NP and N is the total number of
population individuals. N is the total number of the channels

in Xi, and c
j
i means the j-th channel code of Xi, while c

j
i = 0

represents the corresponding channel to be pruned; otherwise,

c
j
i = 1 means the channel will be reserved.
All the individuals of Xi are grouped into the population set

A, defined in Equation (2):

A =































X1 = [1, 0, 1, 1, 0, 1, 0, . . . , 0, 1, 1, 1]

X2 = [0, 1, 1, 0, 0, 1, 0, . . . , 0, 1, 0, 1]
...

XNP = [1, 0, 1, 0, 0, 1, 1, . . . , 0, 0, 1, 0]
︸ ︷︷ ︸

channels′ code

(2)

Gradual Genetic Search. Searching the entire space with
millions of channels in Xi is intractable. In this study, we
proposed a new strategy, named GGS, to examine the valuable

channels hierarchically, rather than directly inspecting all the c
j
i

in Xi as a whole.

The success of CNN mainly attributes to its hierarchical
structures from the concrete level to the abstract level, i.e., the
convolutions in shallow layers extract coarse features such as
color and edges. In contrast, those in deep layers acquire more
abstract or semantic features related to the concept of category.
The proposed GGS is consistent with this theory. As shown in
Figure 2, we divide the neural network searching process into
multiple stages according to the down-sampling sizes in CNNs,
i.e., we can divide the whole search space into several sub-spaces
with multi-scale feature sizes down-sampling from 4× to 32×,
e.g., an individual network Xi can also be divided as:

Xi = [X
(1)
i ,X

(2)
i ,X

(3)
i ,X

(4)
i ] (3)

where the sub-network X
(st)
i ∈ Xi and st ∈ [1, 4]. Note that the

maximum iteration number of T(st) is set variously in each stage

due to the total number of channels in X
(st)
i is different.

Crossover. In every iteration, we can produce a new group of
offspring (i.e., new codes of the pruned network) using variations
through the crossover operator. First, we randomly selected

two chromosomes as parents, e.g., X
(st)
r1 and X

(st)
r2 are chosen

to exchange channel bits at certain points. After that, a new

offspring X
(st)
cr can be generated by using the multipoint crossing

strategy based on the selected parents X
(st)
r1 and X

(st)
r2 , which can

be formulated as:

X(st)
cr = G ◦ (X

(st)
r1 )+ |1− G| ◦ (X

(st)
r2 ) (4)

whereG is a random vector of bits (0 or 1) to disrupt the codes of
selected parents.

Mutation. The mutation operator is applied to further
enhance the diversity of offspring and the ability of the model
to escape from local optimization. We use the binary mutation

strategy by flipping the bit randomly in X
(st)
cr to produce a new

individual X
(st)
m , defined as follows.

X(st)
m = H(X(st)

cr ) (5)
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where H(·) means that a total of p_m% of binary codes in
randomly selected channels will be flipped. In our study, the
bit flip in the genotype space could potentially create a different
pruned network.

Selection. Every candidate of the lightweight network in
the population (including both parents and offspring) will be
evaluated for survival and reproduction (becoming a parent)

in each iteration. For each network at stage X
(st)
i , the top K

individuals with the highest fitness are selected based on the
Roulette Wheel algorithm with a survival probability of p_s%, to

form the next generation. In this study, the P
(st)
i of each X

(st)
i at

the stth stage can be denoted as follows:

P
(st)
i =

Ft(X
(st)
i )

∑NP
i=1 Ft(X

(st)
i )

(6)

where the Ft(·) is the fitness function, which determines whether
a potential pruned network could survive and will be introduced
in detail below.

2.2.2. Fitness Function
In GWCS, we aim to find the best individual network
after removing the redundancy channels through the fitness
evaluation. Considering that the most informative channels
should have the minimal reconstruction error of feature maps,
our fitness function Ft(·) is designed based on the similarity
of feature maps between the pre-trained network and pruned
network. The output Ft can be used as a pruning criterion to
identify the best-pruned networks.

Wavelet transform has been successfully applied in image
processing. Its primary purpose is to extract the specific
properties of the image with the wavelet basis function, which
can be formulated as:

F⋆ =
1
√
a

∫ +∞

−∞

F ∗ ψ(
t − τ

a
)dt (7)

where a is the scale that controls the stretching of the wavelet,
and τ is the translation that affects the translation of the wavelet.
F represents the feature maps of the last CNN layer in the input
network. In our GWCS algorithm, we adapt the Haar wavelet
function (Porwik and Lisowska, 2005) to extract the frequency
features due to its simplicity and effectiveness.

To calculate the similarity between the networks with different
sizes of features maps (i.e., the total number of channels of the
network is variable after the dynamic pruning), we aggregate all
the wavelet feature maps into one vector, which is formulated in
Equation (8).

F∗ = max(F⋆HH)⊕ Avg(F⋆LL) (8)

where HH and LL represent high-frequency and low-frequency
information. ⊕ is the element-wise addition. The final fused
feature vectors F∗ are generated by the maximum values
of HH and the average values of LL using ⊕ operation.
Comparing to conventional aggregate functions, including
global average pooling (GAP) or global max pooling (GMP),

Algorithm 1: Algorithm of the gradual genetic search.

Input: The original networkM
Output: A pruned network O

1: Randomly initialize the binary codes in networks
{X1,X2, · · · ,XNP} to form the initial population A0 by
Equation (2).

2: Set the maximum iteration number T=[T1,. . . ,T4] for each
searching stage.

3: for st = 1 to 4 do
4: while t in Tst

do

5: Calculate F∗(st) and {f
∗(st)
i }NPi=1 by Equation(7, 8).

6: Calculate the fitness {s
(st)
i }NPi=1 by Equation (9).

7: Select top K individuals fromA
(st)
t by Eq. (6).

8: Crossover and mutate the top K individuals using
(Equation 4, 5).

9: GenerateA
(st)
t+1

10: Update t = t + 1
11: end while

12: end for

13: Select the best individual as the pruned network O
14: return O

more rich information contained in both high- and low-
frequency components are more helpful for improving the
classification (Qin et al., 2020), i.e., it can further boost the feature
similarity estimation.

As is illustrated in Figure 3, both F(st) and f
(st)
i can

be transformed and aggregated by wavelet operation using

(Equations 7, 8), denoted as F∗(st) and f
∗(st)
i , respectively. We can

obtain the similarity s
(st)
i based on the cosine distance, which can

be formulated as:

s
(st)
i =

F∗(st) · f
∗(st)
i

‖ F∗(st) ‖‖ f
∗(st)
i ‖

(9)

The best-pruned network O can be achieved by selecting the
best individual with the highest fitness from population A after
maximum iterations. The detailed steps of GGS are shown
in Algorithm 1, from which we can observe that the time
complexity of our GWCS is O[st ∗ Tst ∗ (NP ∗N ∗ size(F)+NP ∗

N + N)].

2.3. Knowledge Distillation
The fine-tuning (FT) process is crucial for recovering the original
performance (Dong and Yang, 2019). In this study, knowledge
distillation (KD) (Hinton et al., 2015) is applied to improve the
performance of the pruned network. In our model, the pruned
network derives from the pre-trained network. Thus, we take
the pre-trained network as the teacher network and transfer its
knowledge into the pruned network (i.e., the student network).

In the classification task with CNNs, the softmax layer is
adopted as the classifier. The softmax output is a one-hot vector,
i.e., the classification result is the label with the largest value.
However, such logit outputs contain very little information as
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FIGURE 3 | Details of GGS. We divide the network searching process into multiple stages with different maximum iterations numbers. The final output is the code of

the pruned network.

we cannot learn the relationship between classes except the
prediction labels. The output results can be further softened as:

qk =
exp(zk/T)

6jexp(zj/T)
(10)

where z is the softmax vector from the pre-trained network. T
stands for temperature. When T tends to zero, the output qk
is degraded into the one-hot vector. The pruned network can
take the soft target output qk as the training loss to transfer the
knowledge from the original unpruned network.

Following the prevailing study in Dong and Yang (2019), we
use the middle layer transfer of KD to optimize the searched
network via (Equation 11).

L = ρ1L1 + . . . + ρnLn + (1− ρ1 − . . . − ρn)Lhard (11)

where L is the total loss function of KD and Ln is the loss function
of each training stage.

3. RESULTS

3.1. Experimental Setting
3.1.1. Datasets
In our experiment, we evaluated the tested models on CIFAR-
10, CIFAR-100 (Krizhevsky, 2009), and ImageNet (Russakovsky
et al., 2015) for image classification tasks. CIFAR-10 consists of 50
k training and 10 k testing 32× 32 images in 10 classes. Similar to
CIFAR-10, the CIFAR-100 dataset has 100 categories. There are
500 training images and 100 verification images for each class.
The ImageNet dataset (ISLVRC 2012) (Russakovsky et al., 2015)
is a large visual database collected from the real world. it consists
of 1,281,167 training images and 50,000 validation images in
1,000 classes. Data augmentation techniques, including random
resize, crop, brightness changing, and horizontal flipping are also
employed to improve accuracy.

3.1.2. Implementation Details
Following the previous studies (He et al., 2018, 2019; Dong
and Yang, 2019), ResNet series networks (He et al., 2016), and
VGGNet-16 (Simonyan and Zisserman, 2015) are chosen as

the baseline networks in our pruning experiment. We trained
them using the standard stochastic gradient descent (SGD)
optimization with batch size 128. Our initial learning rate is set
to 0.1, which is gradually reduced with a weight decay of 0.0005.
For CIFAR-10, we train the Resnet for 150 epochs and train
the VGGNet-16 for 200 epochs, respectively. For CIFAR-100, we
train the Resnet for 200 epochs and train the VGGNet-16 for 300
epochs, respectively. For ImageNet, we train the Resnet for 150
epochs and train the VGGNet-16 for 300 epochs, respectively.
All models are implemented on dual NVIDIA GTX1080ti GPUs
in PyTorch.

3.1.3. Specific Searching and Training Setting
We take the unpruned network as the initial input for our
algorithm in the process of pruning. First, the codes of 50
individuals (which have the same number of channels as the
unpruned network) are randomly initialized. Each individual
will be evaluated as a candidate pruned network. Then, we
search the optimal channels using GGS in multiple stages, i.e.,
we divided the searching procedure into four stages with the
maximum number of iterations in [10, 10, 5, 5]. The top 20
individuals are chosen for crossover and mutating based on the
fitness values. Specifically, in crossover operation, two individuals
are randomly selected for exchanging 50% of codes with each
other. In mutation, 10% of codes of individuals are chosen for
mutating, i.e., 0 and 1 interchange. Finally, a new population
can be generated by selecting the top 30 individuals for the
next iteration.

3.2. Comparison With State-of-the-Art
Methods
We compare several state-of-the-art network pruning models
published in most recent years in our experiments.

Soft Filter Pruning (SFP): He et al. (2018) proposes a SFP
method. After training the model at each epoch, the L2 norm of
the corresponding channel is calculated. Meanwhile, the lower-
ranked channel is set to zero according to a manual pruning rate.
Still, the pruned ones will also participate in the next round of
iterations instead of deleting them directly.
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TABLE 1 | Comparison results on CIFAR-10 with ResNet-32, 56, and 110.

Network Method Baseline Acc (%) Prune Acc (%) Drop (%) FLOPs(PR)

FPGM 92.63 92.31 0.32% 4.03E7(41.5%)

SFP 92.63 92.08 0.55 4.03E7(41.5%)

ResNet-32 TAS 93.88 92.92 0.96 3.78E7(45.4%)

LFPC 92.63 92.12 0.51 3.27E7(52.6%)

ManiDP 92.66 92.15 0.51 2.54E7(63.2%)

Ours 93.08 92.97 0.11 1.82E7(73.6%)

HRank 94.46 93.52 0.94 6.58E7(37.9%)

JST 94.41 93.68 0.73 6.32E7(49.7%)

ResNet-56 FPGM 93.59 92.89 0.70 5.94E7(52.6%)

SFP 93.59 92.26 1.33 5.94E7(52.6%)

TAS 94.46 93.69 0.77 5.95E7(52.7%)

Ours 94.23 93.75 0.48 5.05E7(60.3%)

SFP 93.67 92.97 0.70 1.21E8(52.3%)

ResNet-110 TAS 94.97 94.33 0.64 1.19E8(53.0%)

LFPC 93.68 93.07 0.61 1.01E8(60.3%)

Ours 95.03 94.78 0.25 1.12E8(56.0%)

The best results are highlighted in bold and the second-best results are underlined. “Drop” means accuracy drop, “FLOPs (PR)” represents FLOPs of the compressed model with the

corresponding pruning ratio (PR).

Discrimination aware channel pruning (DCP): Zhuang
et al. (2018) implements a pruning method called DCP, which
adds discriminative losses into the network and obtains pruned
network after a greedy algorithm for channel selection.

Genetic channel pruning (GCP): Hu et al. (2018) also uses
a genetic algorithm to code and prune the network. However,
the GCP searches the entire pre-trained network as a whole and
prunes it with a group of manually assigned compression rates
and the layer-wise error is estimated with the Hessian matrix.

Filter pruning algorithm based on geometric median

(FPGM): He et al. (2019) proposes a filter pruning algorithm
based on geometric median. FPGM deletes the redundant filters
instead of the relatively less important ones with a manual setting
of pruning rate.

Transformable architecture search (TAS): Dong and Yang
(2019) proposes a TAS approach for compressing CNNs by
channel-wise probability distribution and knowledge transfer.
TAS aimed to search for the appropriate width and depth of the
pruned network.

High-rank pruning (HRank): Lin et al. (2020) reveals a rule
of CNNs even if the input image is different, there is always a large
rank in the same part of the feature graph. The results suggest
that the latent rank information is essential in the network so
that the redundancy weights can be compressed with low-rank
feature maps.

Joint search-and-training (JST): Lu et al. (2020) implements
an automatic search algorithm by training and pruning
simultaneously. It saves the pre-training time in the automatic
pruning algorithm with competitive classification accuracy.

Discrete model compression (DMC): Gao et al. (2020)
proposes a discrete compression model, which attaches a gate
for each channel to control whether the channel is opened or

not. Then the pruned network is obtained by gradient descent to
optimize the gate parameters.

Learning filter pruning criteria (LFPC): He et al. (2020)
introduces a LFPC to select a set of suitable measures for
different layers adaptively. LFPC evaluates the importance of
the filters based on the proposed differentiable criteria sampler
with Gumbel-softmax.

Structural redundancy reduction with graph redundancy

(SRR-GR):Wang et al. (2021b) assumes that the performance of
the pruning filter in the more redundant layer is better than that
of pruning the least important filter in all layers. Based on this
assumption, this method establishes an undirected graph for each
layer, in which each vertex represents a filter and edge denotes
the distance between filter weights. The quotient space size and
covering number are calculated according to the redundancy
rates of each graph.

Manifold regularized dynamic pruning (ManiDP): Tang
et al. (2021) develops a (ManiDP) strategy that identifies the
complexity and feature similarity of the training data set. The
network is pruned dynamically by exploiting the manifold
regularization, and the appropriate sub-network is allocated for
each instance.

3.3. Main Results With ResNet
3.3.1. Results on CIFAR-10 and CIFAR-100
The pruning result of ResNet series networks on CIFAR-10
and CIFAR-100 are shown in Tables 1, 2. Among all the tested
pruning algorithms, our GWCS model consistently reduces the
largest number of channels to generate the minimum FLOPs
among all the tested pruning models. Notably, our model
produced the highest pruning rates of 73.6 and 73.1% by
pruning ResNet-32 on CIFAR-10 and CIFAR-100, respectively.
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TABLE 2 | Comparison results on CIFAR-100 with ResNet-32, 56, and 110.

Network Method Baseline Acc (%) Prune Acc (%) Drop (%) FLOPs(PR)

FPGM 69.77 68.52 1.25 4.03E7(41.5%)

ResNet-32 TAS 70.62 71.74 –1.12 3.80E7(45.0%)

Ours 71.09 71.88 –0.79 2.29E7(73.1%)

FPGM 71.41 69.66 1.75 5.94E7(52.6%)

ResNet-56 JST 72.89 70.63 2.26 6.72E7(51.1%)

TAS 73.18 72.25 0.93 6.12E7(51.3%)

Ours 73.14 73.75 –0.61 5.12E7(59.7%)

FPGM 74.14 72.55 1.59 1.21E8(52.3%)

ResNet-110 JST 74.42 72.26 2.16 1.08E8(58.0%)

TAS 75.06 73.16 1.90 1.20E8(52.6%)

Ours 75.05 75.00 0.05 1.07E8(58.2%)

The best results are highlighted in bold and the second-best results are underlined.

TABLE 3 | Comparison results on ImageNet with ResNet-50 and ResNet-101.

Network Method
Top-1

Prune Acc (%)

Top-5

Prune Acc (%)

Top-1

Drop
(%)

Top-5

Drop
(%) FLOPs(PR)

HRank 74.98 92.33 2.48 1.22 2.62E9(40.8%)

TAS 76.20 93.07 1.26 0.48 2.31E9(43.5%)

JST 75.51 92.43 1.01 0.66 2.25E9(44.9%)

FPGM 74.83 92.32 1.32 0.55 2.58E9(53.5%)

ResNet-50 DMC 75.35 92.49 0.80 0.38 2.01E9(55.0%)

SRR-GR 75.76 92.67 1.02 0.51 2.01E9(55.1%)

DCP 74.95 92.32 1.06 0.61 1.99E9(55.6%)

Our 76.64 93.78 1.09 0.36 1.83E9(59.1%)

SFP 77.51 93.71 –0.14 –0.20 6.43E9(30.0%)

ResNet-101 FPGM 77.37 93.56 0.05 0.00 6.43E9(30.0%)

Our 77.65 93.65 –0.13 0.33 4.36E9(58.7%)

The best results are highlighted in bold, and the second-best results are underlined.

It saved more than half of GPU computational cost compared
to FPGM. Turning to the pruning accuracy, our model achieves
the lowest accuracy drops by pruning the ResNet networks on
CIFIA-10 and obtains the best prune accuracy with ResNet-
56 and ResNet-110 on CIFIA-100. For example, when pruning
ResNet-110, our model achieves the highest pruning accuracy
of 75%, outperforming the second-best model (FPGM) by
more than 1.54% in terms of accuracy drop, along with much
fewer computations. Note that the proposed GWCS model also
achieves a very close result (only 0.05% of the drop of accuracy)
to the original ResNet-110 with the highest FLOPs reduction
(nearly 2.39× compression rate). These results suggest that the
proposed GWCS is an effective and reliable network pruning
model, achieving a better trade-off between pruning accuracy and
model size.

3.3.2. Results on ImageNet
The effectiveness of GWCS is further validated by the transferred
performance on ImageNet using ResNet-50 and ResNet-101.
As shown in Table 3, The proposed approach can produce a
promising test accuracy (0.36 and 0.33% Top-5 accuracy drop

on ResNet-50 and ResNet-101, respectively) with the largest
compression rates. For example, GWCS outperforms TAS by
0.12% Top-5 accuracy drop with a significant FLOPs reduction
(less than nearly 15.6%). When pruning RedNet-101, our model
obtains a comparable test accuracy rate but removes nearly 2×
FLOPs than the SFP model.

We also visualize the pruned channels of ResNet-50 on
ImageNet in Figure 4. As can be seen from Figure 4, the pruning
rates are various in each layer, which could be more suitable for
channel searching as the information contained in layers may be
different, and the truly useful channels can be preserved with a
flexible pruning strategy.

3.4. Main Results With VGGNet
In Table 4, we show the comparison results in terms of Prune
ACC and FLOPs on CIFAR-10 and CIFAR-100 with VGGNet-
16. Among all the tested models, our proposed GWCS still
achieves the highest pruning rate and yields the lowest FLOPs. In
particular, we can see that the pruning reductions of our model
are 64.18 and 66.61% on CIFAR-10 and CIFAR-100, respectively,
which are much higher than HRank, GCP, and JST. Furthermore,
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our model produces a comparable accuracy with much fewer
FLOPs. For instance, compared with GCP, our model obtains a
very close test accuracy (0.58 vs. 0.20% accuracy drop) but prunes
more than 1.8× channels on CIFAR-100.

4. DISCUSSION

4.1. GGS vs. Overall Genetic Search
In our model, we proposed a hierarchical search method named
GGS algorithm to prune the network in multiple stages instead
of searching the whole space of all channels [i.e., Overall Genetic
Search (OGS)] at each iteration. We conduct the ablation
experiment for studying the effect of GGS comparing to the

overall search method on the CIFAR-10 dataset using ResNet-
32. The channels of the pre-trained network are divided into
four stages by using GGS, and the maximal number of iterations
in each stage is set to 10, 10, 5, and 5, respectively. Thus, the
total number of iterations in the pruning process is 30, which

TABLE 5 | Comparison of gradual search and overall search on CIFAR-10

with ResNet-32.

Method Prune Acc(Drop) FLOPs(PR)

Overall Genetic Search 92.19%(0.89%) 2.31E7(72.7%)

Gradual Genetic Search 92.97%(0.11%) 2.23E7(73.6%)

The best results are highlighted in bold, and the second-best results are underline.

FIGURE 4 | Visualization of pruned channels in ResNet-50 with GWCS on ImageNet, where layer on the x-axis represents the number of layers in ResNet-50, channel

means the number of channels in each layer. The bars in light blue indicate the number of channels in the pre-trained network. The purple ones indicate the number of

channels after pruning. The PR are shown on the top of the bars.

TABLE 4 | Comparing our model and other methods with VGGNet-16 on CIFAR-10 and CIFAR-100.

Datasets Method Baseline Acc (%) Prune Acc (%) Drop (%) FLOPs(PR)

GCP 92.71 92.74 –0.03 2.74E8(52.0%)

CIFAR-10 HRank 93.96 93.43 0.53 2.71E8(53.5%)

Ours 94.13 93.76 0.37 2.29E8(64.18%)

fine-tuning GCP 72.21 72.01 0.20 3.82E8(37.0%)

CIFAR-100 JST 75.75 74.63 1.12 3.22E8(45.0%)

Ours 73.75 73.17 0.58 2.21E8(66.61%)

We highlight the best and second-best results in bold face and underline, respectively. “Drop” means accuracy drop, “FLOPs (PR)” means FLOPs and pruning rate.
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is also set as the maximum iteration number for OGS. The
same FT operation with KD is applied in the OGS method to
recover the accuracy of the pruned network.We can inform from
Table 5 that, GGS generates a more accurate classification result
with more than 0.9% FLOPs reduction, compared to the OGS
method when pruning ResNet-32 on CIFAR-10, suggesting that
the proposed GGS proves a more optimal solution for identifying
the critical channels in a large search space.

4.2. Effect of WCA
Wavelet channel aggregation in the proposed GWCS model
is used to evaluate the performance of the pruned network
based on the fused wavelet transformed features. Comparing to
conventional feature aggregation methods used in deep CNNs,
including GAP, GMP, and GAP+GMP, we investigated the utility
of the fitness function based on the WCA method on CIFAR-
10 and CIFAR-100 in terms of prune accuracy and FLOPs. The
comparison results are reported in Table 6. We observed that
GAP prunes much more channels while producing much worse

TABLE 6 | Comparison of different feature aggregation methods applied in fitness

functions on CIFAR-10 with ResNet-32.

Fitness function Prune Acc(Drop) FLOPs(PR)

GAP 91.41%(1.67%) 2.15E7(75.4%)

GMP 91.25%(1.83%) 2.21E7(74.0%)

GAP+GMP 91.84%(1.24%) 2.23E7(73.5%)

WCA 92.97%(0.11%) 2.23E7(73.6%)

The best results are highlighted in bold, and the second-best results are underlined. GAP

is global average pooling. GMP is global max pooling. WCA is our proposed wavelet

channel aggregation method.

accuracy values. However, WCA achieves the best classification
accuracy with the comparable FLOPs. As mentioned in Qin
et al. (2020), GAP extracts the low-frequency information
(e.g., the contour of an object) of the image, while GMP
takes the high-frequency information (e.g., edge or texture).
Nevertheless, both the contour and texture features are essential
for image classification. Therefore, considering both high- and
low-frequency information in our WCA method could help
identify the best-compressed network.

As is shown in Figure 5, the feature maps of the pruned
network with selected channels based on the WCA contains
more information for categorization than those of the selected
ones using other conventional feature aggregation methods. The
results further prove that the proposed WCA can adequately
choose the channels with the most representational power for
the network.

4.3. Effect of FT Strategies
Knowledge Distillation (KD) is the last step in our GWCS
model for regaining the lost performance. In this sub-section,
we try to investigate the effectiveness of the GWCS for reducing
the redundancy channels instead of relying on KD technology
alone. Thus, two ablation experiments, i.e., the GWCS based
on KD (GWCS+KD), are conducted to compare with: (1) the
conventional FT technique by retraining the compact network
from scratch, named GWCS+FT. (2) The channels pruning
strategy with random selection and KD, named RS+KD.

As shown in Figure 6, we can observe that KD and
FT result in very similar classification accuracy but are
various in speeds of convergence. Specifically, GWCS+KD
can always reach the highest accuracy after about 2,000
iterations, while FT needs more than 3,500 iterations. This
suggests that GWCS+KD is more efficient for network pruning.

FIGURE 5 | Visualization of the feature maps of the pruned network obtained with different feature aggregation functions. Baseline is the pre-trained ResNet-50, GAP

is the global average pooling, GMP is the global max pooling, and WCA is our wavelet channel aggregation (WCA).
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FIGURE 6 | Test the effect of fine-tuning (FT) strategies on CIFAR-10 and CIFAR-10 with ResNet-32. (A) FT results on CIFAR-10. (B) FT results on CIFAR-100.

However, RS+KD does not outperform GWCS+KD and
GWCS+FT in the iterations. All of these demonstrate that
our GWCS algorithm with KD indeed obtains a promise
pruning result.

To summarize, in this study, we propose a novel genetic NAS-
based network pruning method to automate the channel-wise
network pruning. The main idea is to dynamically select the
most informative channels in each layer from the pre-trained
network using a multi-stage genetic optimization algorithm.
Furthermore, we presented a novel fitness function based on
the WCA to evaluate the performance of the pruned network.
We conduct large-scale experiments using several public datasets
to verify the performance of tested pruning models. The
results demonstrate that the proposed GWCS model achieves
a more compressed network with a promise classification
accuracy than other tested SOTA pruning methods. In the
future, we will further evaluate the effectiveness of our model
on some mobile devices and employ the proposed model to
compress the CNNs for other tasks, such as object detection or
image segmentation.
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Finger gesture recognition (FGR) plays a crucial role in achieving, for example, artificial
limb control and human-computer interaction. Currently, the most common methods
of FGR are visual-based, voice-based, and surface electromyography (EMG)-based
ones. Among them, surface EMG-based FGR is very popular and successful because
surface EMG is a cumulative bioelectric signal from the surface of the skin that can
accurately and intuitively represent the force of the fingers. However, existing surface
EMG-based methods still cannot fully satisfy the required recognition accuracy for
artificial limb control as the lack of high-precision sensor and high-accurate recognition
model. To address this issue, this study proposes a novel FGR model that consists
of sensing and classification of surface EMG signals (SC-FGR). In the proposed SC-
FGR model, wireless sensors with high-precision surface EMG are first developed for
acquiring multichannel surface EMG signals from the forearm. Its resolution is 16 Bits,
the sampling rate is 2 kHz, the common-mode rejection ratio (CMRR) is less than 70 dB,
and the short-circuit noise (SCN) is less than 1.5 µV. In addition, a convolution neural
network (CNN)-based classification algorithm is proposed to achieve FGR based on
acquired surface EMG signals. The CNN is trained on a spectrum map transformed
from the time-domain surface EMG by continuous wavelet transform (CWT). To evaluate
the proposed SC-FGR model, we compared it with seven state-of-the-art models. The
experimental results demonstrate that SC-FGR achieves 97.5% recognition accuracy
on eight kinds of finger gestures with five subjects, which is much higher than that of
comparable models.

Keywords: surface EMG, EMG sensor, finger gesture recognition, convolution neural network, artificial limb

INTRODUCTION

Comparing to traditional peripheral devices such as a mouse or a keyboard, finger gesture
recognition (FGR) is much more convenient and natural for users to control an artificial limb and to
interact with a computer (Rechy-Ramirez and Hu, 2015). As a result, FGR becomes more and more
important during the past few years (Rechy-Ramirez and Hu, 2015). Currently, the most common
methods of FGR are visual-based, voice-based, and surface electromyography (EMG)-based ones.
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Among them, surface EMG is the comprehensive photoelectrical
signal of potential muscle action on the surface of the skin (Botros
et al., 2020). It is a kind of non-stationary signal, and its strength
is sensitively proportional to the degree of muscle activity, which
makes it can accurately represent the gesture of fingers (Botros
et al., 2020). Therefore, surface EMG-based is widely adopted to
achieve FGR.

Surface EMG-based FGR has been researched for many years.
Among existing approaches, machine learning-based approach is
very popular and successful (Qi et al., 2020; Wong et al., 2021).
For example, Phinyomark et al. (2011) applied the critical index
analysis and fractal dimension to extract the characteristics of
surface EMG signals, and seven kinds of gestures were recognized
from eight-channel EMG signals. Ishii et al. (2012) divided hand
motions into six movements and classified finger motions using
two types of characteristics. Khushaba et al. (2016) proposed the
mutual component analysis (MCA) by improving the principal
component analysis (PCA) to deduct the noise and redundant
features. The recognition accuracy reached 95% for 15 kinds
of gestures by combining the feature selection and MCA from
eight channels of the surface EMG signals. Ngeo et al. (2014)
used the multi-output convolution Gaussian process to analyze
the dependence of multi-joint gesture and to estimate the finger
joint motion. Through the correlation between knuckles, the
regression model was modified to improve the recognition rate
of finger posture. AlOmari and Liu (2015) constructed a model
by combining genetic algorithm, particle swarm optimization,
and support vector machine (SVM). Arozi et al. (2020) identified
the hand gesture through the single channel of the surface EMG
signal with the time-domain feature extraction, PCA, feature
dimensionality reduction, and neural network. The recognition
accuracy is 86.7% for nine kinds of gestures.

Recently, since convolution neural network (CNN) was
proposed by Krizhevsky et al. in 2012 (Atzori et al., 2016), it
has achieved great success in many fields of image recognition,
natural language processing, and language translation (Wu et al.,
2019b; Yao et al., 2019). As it has much better performance of
feature extraction and non-linear fitting than traditional machine
learning models, many researchers employed CNN to classify
hand gestures from surface EMG signals. For example, Atzori
et al. (2016) and Geng et al. (2016) selected CNN to classify
hand gestures using the original surface EMG signals as the
input signal. A spectral map that was obtained by the short-time
Fourier transform (STFT) from the original surface EMG signal
was put into the convolution network (Du et al., 2017; Côté-
Allard et al., 2019a). Zia Ur Rehman et al. (2018) constructed a
simple network model consisting of one convolutional layer, one
pooling layer, and two fully connected layers. Then, the original
surface EMG was directly used as the input of the CNN. Wu
et al. (2018) proposed a model based on long short-term memory
(LSTM) and CNN, where LSTM reserves time information
and CNN extract features. Its performance was better than the
model proposed in the study by Santello et al. (2016). Chen L.
et al. (2020) designed a compact CNN with a small number of
parameters to improve the classification accuracy of EMG signals.
However, all these approaches mainly focus on developing a
CNN-based recognition model while ignoring to acquire the

high-precision surface EMG. Hence, they still cannot fully satisfy
the required recognition accuracy for real applications of artificial
limb control and human-computer interaction.

To address this issue, this study proposes a novel FGR model
that consists of two parts, namely, sensing and classification of
surface EMG signal (SC-FGR). First, wireless sensors with high-
precision surface EMG are developed for acquiring multichannel
surface EMG signals from the forearm. Second, a CNN-based
classification algorithm is proposed to classify the acquired
surface EMG signals for FGR, where we named it CNN-FGR.
A general chart of FGR with the proposed SC-FGR model is
shown in Figure 1. The surface EMG signals of each channel are
segmented by a moving window. A spectrum map is generated
by continuous wavelet transform (CWT) from the segmented
signals of each channel. Then, the spectrum maps of multiple
channels are put into the CNN-FGR for classifying.

The main research contents and contributions of this study are
as follows:

(1) The wireless sensors are specially developed to acquire
surface EMG from the forearm with high precision. Its
resolution is 16 Bits, the sampling rate is 2 kHz, the
common-mode rejection ratio (CMRR) is less than 70 dB,
and the short-circuit noise (SCN) is less than 1.5 µV.

(2) A new CNN-FGR algorithm is proposed to accurately
classify the surface EMG signals acquired by the developed
wireless sensors. It consists of a 5-layer CNN that is trained
on a spectrum map transformed from the time-domain
signals of surface EMG by CWT.

(3) A novel SC-FGR model is proposed for highly accurate
FGR. It comprises two parts of the developed wireless
sensors and the proposed CNN-FGR algorithm.

(4) A surface EMG dataset is collected and shared online. It
contains eight kinds of finger gestures with five subjects
collected by the developed wireless sensors.

In the experiments, we evaluated the proposed SC-FGR model
on the collected surface EMG dataset. The results demonstrate
that the proposed SC-FGR model achieves 97.5% recognition
accuracy, which is much higher than that of comparable models.

The rest of this article is organized as follows: A wireless
surface EMG acquisition system is designed in section “A
Wireless Surface EMG Acquisition System”; The data processing
and CNN-FGR algorithm are described in detail in section
“Data Processing and Network Architecture”; The proposed SC-
FGR model is compared with several related models in Section
“Experiment and Results”; and finally, section “Conclusion”
concludes this study.

A WIRELESS SURFACE EMG
ACQUISITION SYSTEM

The EMG is a weak electrophysiological signal of a muscle fiber
group. It can be detected by sensors placed on the surface of
skin or needle sensors implanted in muscle tissue (De Luca et al.,
2006). The EMG signal is closely related to neuron muscular
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FIGURE 1 | General chart of finger gesture recognition (FGR) using sensing and classification of surface electromyography (EMG) signals (SC-FGR).

FIGURE 2 | Multichannel surface EMG acquisition.

activity information so that the surface EMG signals of the
forearm can be used to analyze and recognize the finger gestures.

De Luca (1997) showed that the amplitude of the EMG signal
was random and could be expressed by the arithmetic mean value
of zero Gaussian distribution function. The surface EMG signal is
a weak signal whose amplitude ranges from 0 to 10 mV (Peak-to-
Peak) or 0 to 1.5 mV [root mean square (RMS)]. The frequency
range of the available energy signal is limited from 0 to 1,000 Hz,
and the dominant energy is distributed in the range from 50
to 150 Hz. In the same state of muscle motion, the amplitude-
frequency characteristic curve of the EMG signal is similar, and
the EMG signal has a certain regularity in the muscle motion state
of different detection points. According to the characteristics of
surface EMG, the frame of the acquisition module is designed as
shown in Figure 2.

Inspired by the surface EMG sensor on the market, the surface
EMG sensor consists of the surface EMG electrode and the
signal conditioning circuit. This surface EMG sensor uses three

parallel silver electrodes with a spacing of 10 mm, including
two measuring electrodes and one reference electrode, which
prevent saturation caused by the common-mode signals. The
silver electrode is put close to the skin for complete polarization,
forming a capacitor by surface skin and electrode. To improve
the accuracy, the front analog amplifier circuit is designed as
close as possible to the silver electrode. This measure is beneficial
to weaken the disturbance of white noise for the acquisition of
surface EMG signals. Then, the potential difference between the
two measuring electrodes is detected by the differential amplifier
circuit and converted into a digital signal for signal preprocessing.
Finally, the digital signal is transformed into a computer by the
Bluetooth data acquisition module.

The signal conditioning circuit plays a key role in amplifying
the weak signal to improve the performance of the whole
acquisition system. The expected conditioning circuit is with high
input impedance, high gain, wide frequency band, low noise,
and high CMRR. It should amplify surface EMG signals while
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FIGURE 3 | Conditioning circuit for the analog signal.

suppressing other noise signals (Khokhar et al., 2010). The signal
conditioning circuit uses instrument amplifier AD8220 with the
JFET as the input of the preamplifier. The rail-to-rail amplifier

FIGURE 4 | Multichannel wireless surface EMG acquisition device.

TABLE 1 | Characterization of different surface electromyography (EMG)
acquisition systems.

Delsys Trigno
Wireless EMG
(ADInstituments,

2020)

Biometrics
DataLITE

sEMG
(Côté-Allard

et al., 2019b)

Thalmic Labs
MYO

Armhand
(Côté-Allard

et al., 2019b)

This
design

Number of
channels

16 16 8 4–8

sEMG ADC 16 bits 13 bits 8 bits 16 bits

Sampling rate 2,000 Hz 2,000 Hz 1,000 Hz 2,000 Hz

Bandwidth 10–850 Hz 10–490 Hz 5–100 Hz 5–1,000 Hz

Contact
material

Sliver Stainless
Steel

Stainless
Steel

Sliver

Common-
mode rejection
ratio

>80 dB N.A N.A >70 dB

Short-circuit
noise

<0.75 µV <5 µV N.A < 1.5 µV

Transfer
protocol

BLE 4.2 WiFi BLE 4.0 BLE 4.2

OPA364 constitutes the band-pass amplifier. The instrument
amplifier AD8220 plays the role of first-order high-pass filtering,
while the amplifier OPA364 plays the role of second-order band-
pass filtering. All in all, the function of the analog conditioning
circuit is to amplify the original EMG signal 1,000 times and then
signal processing by the second-order band-pass filtering with
the range of 5–1,000 Hz. The schematic diagram of the signal
conditioning circuit (Fu et al., 2013) is shown in Figure 3. The
theoretical gain of the signal conditioning circuit is shown as
follows:

G =
Vo

Vi2 − Vi1

= (
49.4e3

RG + Rc1

+ 1)(
R3Rc3

Rc2 Rc3 + R2Rc2 + R2Rc3 + R2R3
) (1)

where G represents amplifier gain; Rc1 ,Rc2 , and Rc3 represent the
impedance of the capacitance C1,C2, and C3, respectively;Vi1,Vi2,
and Vi3represent the input of the detection points; and Vo is
the output of the signal conditioning circuit. The core design
principles of the surface EMG acquisition system are anti-
noise treatment, such as co-ground and anti-electromagnetic
interference. This EMG acquisition system uses a Bluetooth
module for physical isolation and anti-interference, avoiding 50-
Hz interference from a wired connection with the computer.
This data acquisition system contains a 16-bit AD conversion,
an ARM processor, and a Bluetooth communication module, as
shown in Figure 2. The output of the surface EMG sensor is
connected to the input port of the AD converter by shielding line.
It adopts the common ground technology between the analog
signal and the digital signal. There is photoelectric isolation
between the AD converter and the ARM microprocessor to
reduce the crosstalk from digital signals to analog signals. On
the one hand, the ARM controller stores the eigenvalues of the
collected signal and stresses it in the local SD card. On the other
hand, it transfers the collected signal to the HC-05 Bluetooth
module through the USRT serial communication protocol.
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FIGURE 5 | Spectrum maps transformed from surface EMG with different kinds of parent wavelet functions.

FIGURE 6 | The block diagram of the CNN-FGR algorithm.

Bluetooth communication realizes the information interaction
function between sensors and the computer. The Bluetooth
communication module uses low-energy radio communication
technology to realize data transmission, with the maximum rate
of 1 Mb/s (Song et al., 2020) and the effective communication
of 15 m. The multichannel wireless surface EMG module
is designed with a highly extending function and could be
extended to 4–8 channels. The surface EMG device is shown in
Figure 4.

The parameter comparison between the high-precision
wireless surface EMG acquisition system and the other surface
EMG acquisition systems on the market is shown in Table 1.

DATA PROCESSING AND NETWORK
ARCHITECTURE

Signal Feature Extraction of Surface
EMG
Since the surface EMG signal is non-stationary, it is limited to
analysis the signal with Fourier transform. The STFT, which
divides the signal into smaller segments by sliding windows and
calculates the Fourier transform of each segment separately, is an
effective method to solve that problem. A frequency spectrogram
can be obtained from the transformation of STFT. When the
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signal x(t) and window function w(t) are designed, the spectra
can be calculated as follows:

spectrogram (x(t), w(t)) =
∣∣STFTx(t, f )

∣∣2 (2)

STFTx
(
t, f
)
=

∫
+∞

−∞

[x(u)w(u− t)] e−j2πfudu (3)

where f represents the frequency. The wavelet transform (WT)
is similar to STFT, while it overcomes the disadvantage that the
window does not change with frequency in STFT. By adjusting
the width of the window, the WT adapts to the frequency
changes in the signal. When the frequency of the processed signal
increases, the WT improves the resolution by narrowing the time
window. Furthermore, WT is an ideal analysis tool, which can
obtain the amplitude and frequency of mutations in the signal.

X(a, b) =
1
√

b

∫
∞

−∞

x (t) φ

(
t − a

b

)
dt (4)

∫
+∞

−∞

|φ(ω)|2

ω
dω <∞ (5)

where the Fourier transform ϕ(w) must satisfy Equation 5. ϕ(t)is
named as the parent wavelet function, which is a signal with
limited duration, frequency change, and zero mean value. The
scaling factor b and the translation factor a control the scaling
and transform of the wavelet function, respectively. There are
many kinds of parent wavelet functions for the transform, such
as Mexican hat wavelet (MEXH), Gaussian wavelet (GAUS),
complex Morlet wavelet (CMOR), Shannon wavelet (SHAN),
frequency B-spline wavelet (FBSP), and complex Gaussian
wavelet (CGAU). MEXH function is defined by Equation 6 as
follows:

ψ(t) = c(1− t2)e−t2/2 (6)

where c = 2
√

3
π1/4. GAUS is the differential form derived from

the Gaussian function. It is defined by Equation 7 as follows:

ψ(t) = Cp1te−t2
(7)

where Cp1 =
4√2/π. CMOR is defined by Equation 8 in the time-

domain and by Equation 9 in the frequency domain as follows:

ψ(t) =
1√
πfb
• ej2πfct−(t2/fb) (8)

9(f ) = eπ2fb(f−fc)2
(9)

where fc is the center frequency and fb is the bandwidth. SHAN is
defined by Equation 10 as follows:

ψ(t) =
√

fb sin c(fbx)e2iπfcx (10)

where fc is the center frequency and fb is the bandwidth. FBSP is
defined by Equation 11 as follows:

ψ(t) =
√

fb

[
sin(

fbt
m

)

]m
e2jπfct (11)

where m is an integer parameter, fc is the center frequency, and fb
is the bandwidth. CGAU is defined by Equation 12 as follows:

ψ(t) = Cpe−ite−x2
(12)

where Cp is constant.
After the CWT of the surface EMG signals, the corresponding

spectrum map is similar to the image on the scale and also
contains the frequency domain information of the timing
sequence data. The six-channel surface EMG signals of the
forearm were collected by the high-precision wireless surface
EMG sensors, and the data of each channel were separated
by applying a sliding window of 264 samples (132 ms). The
parent wavelet of the CWT adopts the optimal wavelet function,
calculating the CWTs with 64 scales to obtain the 64 × 264
matrix of spectral information. The matrix is set as input to
the CNN-FGR algorithm. Thus, the input of the CNN-FGR
algorithm has six channels, each consisting of a matrix with the
size of 64 × 264. Figure 5 is the spectrum maps of the spectral
information transformed from 264 EMG data with different
kinds of parent wavelet functions, such as MEXH, GAUS, CMOR,
SHAN, FBSP, and CGAU.

CNN-FGR Algorithm
Chen L. et al. (2020) used a compact CNN to improve the hand
gesture recognition by surface EMG. Inspired from that model,
the CNN-FGR algorithm consists of four convolutional layers
and one mean pool layer as shown in Figure 6, and its design
details are listed in Table 2.

The loss function is calculated as follows:

Loss = −
n∑

i=1

yi log
(
y′i
)

(13)

where yi is the true value of the first class, n is the number of
categories, yi

′ is the first-class prediction value of the output.
Since one-hot coding was adopted, the true value of one class is 1,
while the true value of the other classes is 0.

The three quantities where accuracy rate (AR) is used to
evaluate the performance of the SC-FGR model, such as AR, the
mean AR (MAR), and the SD of AR (SD-AR), are, respectively,

TABLE 2 | Configuration of CNN of CNN-FGR algorithm.

Layers of Network Parameters of each layer

Convolutional layer 1
(Activation Function: ReLU)

kernel_size = 3, stride = 1
Number of feature graphs:16

Convolutional layer 2
(Activation Function: ReLU)

kernel_size = 3, stride = 2
Number of feature graphs:32

Dropout P = 0.5

Convolutional layer 3
(Activation Function: ReLU)

kernel_size = 3, stride = 1
Number of feature graphs:32

Convolutional layer 4
(Activation Function: ReLU)

kernel_size = 3, stride = 2
Number of feature graphs: 64

Convolutional layer 5
(Activation Function: ReLU)

adaptive_avg_pool2d
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computed as Equations 14–16. A test set composed of t number
of instances xi with ω known is used for the test stage.

AR =
1
t

t∑
i=1

9(w, f (xi)), 9(w, f (xi))

=

{
1, if w = f (xi)

0, else
(14)

MAR =
1
n

n∑
k=1

ARk (15)

SD− AR =

√√√√ 1
n

n∑
k=1

(ARk −MAR)2 (16)

where f (xi) represents the calculated label of xi, and n is
the repeated times of computing AR. MAR represents the
classification ability of the algorithm, and SD-AR represents the
robustness of the algorithm.

Advanced optimization methods were used for the
backpropagation of the CNN-FGR algorithm with the ultimate
goal to minimize the function loss. In the field of image
recognition, the common size of the convolutional kernel is
selected as 3 × 3, 5 × 5, or 7 × 7 (Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014). Therefore, the different sizes
of the convolutional kernel in the CNN-FGR algorithm model
are evaluated to get a better experimental result. Meanwhile,
the various layer feature maps of the model are also set smaller
to minimize the parameters of the model. The step length of
the convolution is set to 2, for reducing the feature parameters

FIGURE 7 | Eight kinds of finger gestures: (A) Thumb Flection (TF), (B) Thumb Extension (TE), (C) Thumb Swing (TS), (D) Index-finger Flection (IF), (E) Index-finger
Extension (IE), (F) Index-finger Swing (IS), (G) Middle-finger Flection (MF), and (H) Middle-finger Extension (ME).

FIGURE 8 | Six channels of the raw EMG signals from the high-precision sensors.
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by half. To further reduce the number of network parameters,
the output of the model used the convolutional layer with
adaptive mean sampling for classification, instead of the full
connection layer.

EXPERIMENT AND RESULTS

Finger Gestures
Before the experiment, the collection points of the surface EMG
from the forearm must be disinfected and cleaned to reduce skin
contact interference. In the experiment, the subject sat on a chair
with his left arm lying flat on the table and relaxed. In each group
of experiments, as shown in Figure 7, each subject completed
eight types of gestures, namely, Thumb Flection (TF), Thumb
Extension (TE), Thumb Swing (TS), Index-finger Flection (IF),
Index-finger Extension (IE), Index-finger Swing (IS), Middle-
finger Flection (MF), and Middle-finger Extension (ME).

Number of Sensors and Layout of
Detection Points
The surface EMG signal is closely related not only to the objective
factors such as human physical state and movement state but also
to the form and location of the detection electrode. The number
of electrodes also has a great impact on the accuracy of surface

TABLE 3 | The effects of continuous wavelet transform (CWT) on the accuracy of
gesture classification of five subjects (S1, S2, S3, S4, and S5).

S1 S2 S3 S4 S5 MAR SD-AR

Time-domain (%) 92.3 94.37 97.5 95.4 98.54 95.62 2.22

Spectrum map (%) 92.50 97.50 97.50 100.00 100.00 97.50 2.74

TABLE 4 | The accuracy of the CNN-FGR algorithm with the convolutional kernel
size of 3 × 3 on five subjects.

Loss Test_acc Train_acc

S1

S2

S3

S4

S5

EMG signal recognition. Extensive research and experiments
showed that the acquisition of surface EMG signals with six
channels can not only effectively identify single and multi-finger
movement information but also avoid the waste of resources
with over-channel detection. It was found that the electrodes
were placed on the nerve-dominated region, and the EMG
signals collected in the 10-tendon head or muscle edge area
were usually weak. When sensors were placed vertically on the
muscle fibers, the surface EMG signals were strongest. Since
the front group muscles of the forearm cover the flexor, it
mainly controls the bending movement of the elbow, wrist, and
knuckles. The muscles of the back group cover the stretched
muscles, which mainly control the stretching movement of each
joint. In this experiment, six surface electrodes were placed on
the corresponding muscle abs, and the electrodes were radially
perpendicular to the muscle fibers. The sensors were fixed on
the forearm with a bandage in moderate tension. Three sensors
were placed on the corresponding muscle abs at the front of
the forearm, mainly for detecting the bending movement of the
finger, while the other sensors were placed at the back of the
forearm for detecting the stretching movement of the fingers.
The raw EMG signals detected by six sensors on the forearm are
shown in Figure 8.

Classification Results
This experiment used the high-precision wireless surface EMG
sensors and DELSYS data acquisition system to collect six
channels of the surface EMG signal, with a frequency of 2 kHz.
Before classification, the collected surface EMG signal must be
pretreated and feature extracted. The original EMG signal is
preprocessed with a 264-sample-point (132 ms) sliding window
and a 100-sample-point incremental step. After the data segment
processing, each experiment of each gesture obtains 12 samples,
and 300 samples are collated after 25 repeating times. The total
datasets of eight gestures of five subjects (i.e., S1, S2, S3, S4, and
S5) are 12,000 samples. Each subject has 2,400 samples, where
1,920 samples are adopted as training set and 480 samples are
adopted as testing set.

To evaluate the effects of CWT in transforming the surface
EMG from time-domain to spectrum map, we, respectively,
trained the CNN-FGR algorithm on the time-domain and the
spectrum map of surface EMG. The comparison results on the
testing set are shown in Table 3, where we observed that the
CNN-FGR algorithm trained on the spectrum map of surface
EMG achieves much higher accuracy than that trained on the
time-domain of surface EMG. This observation demonstrates
that transforming the surface EMG from time-domain to

TABLE 5 | The comparison of accuracy with different convolution kernel sizes.

S1 S2 S3 S4 S5 MAR SD-AR

3 × 3 (%) 92.5 97.5 97.5 96.67 100 96.83 2.44

5 × 5 (%) 92.5 97.5 96.875 98.58 100 97.09 2.53

7 × 7 (%) 92.5 100 97.5 97.29 100 97.46 2.74

9 × 9 (%) 92.5 100 97.71 98.125 100 97.67 2.75
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spectrum map by CWT is beneficial for the CNN-FGR algorithm
to achieve a better performance of FGR.

There are two factors affecting the identification accuracy in
the SC-FGR algorithm model. One is the size of the convolutional
kernel, and the other is the parent wavelet function. Using the
same parent wavelet function “CGAU” for CWT transform, the
different sizes of the convolutional kernel are compared to get
a better recognition accuracy. The training accuracy curve, loss
curve during training, and testing accuracy curve are used to
analyze the results of FGR. The accuracy of the CNN-FGR
algorithm with the convolutional kernel size of 3 × 3 is shown
in Table 4.

From Table 4, we found that the training accuracy keeps
increasing and loss keeps decreasing with more epochs until
reaching convergence. Similarly, testing accuracy also keeps
increasing with more epochs until reaching convergence. These
findings verify that the CNN-FGR algorithm can be well applied

TABLE 6 | The comparison results of accuracy of various parent wavelet functions
on the dataset S3.

Loss Test_acc Train_acc

CGAU

GAUS

MEXH

SHAN

FBSP

CMOR

TABLE 7 | The comparison results of accuracy of various parent wavelet functions
on the collected datasets.

S1 S2 S3 S4 S5 MAR SD-AR

MEXH (%) 92.50 98.75 97.50 97.71 98.75 97.04 2.33

SHAN (%) 92.50 98.54 92.50 98.38 96.67 95.72 2.71

FBSP (%) 92.50 98.13 97.91 96.67 100.00 97.04 2.51

CMOR (%) 92.50 98.33 97.50 97.5 100.00 97.17 2.51

CGAU (%) 92.50 97.50 96.88 98.54 100.00 97.08 2.52

GAUS (%) 92.50 97.50 97.50 100.00 100.00 97.50 2.74

to classify these samples for FGR. In the experiment, we
compared the accuracy of the CNN-FGR algorithm with the
kernel size of 3× 3, 5× 5, 7× 7, and 9× 9 on collected datasets.

From Table 5, it can be observed that the classification ability
of the algorithm is improved, but the robustness of the algorithm
becomes worse, while the size of the convolution kernel increases.
The size of 5 × 5 is a better selection as the convolution
kernel, because not only the accuracy is high, but also the
robustness performed well.

To choose the suitable parent wavelet function for CNN-
FGR, the experiments are carried out on different parent wavelet
functions, such as MEXH, SHAN, GAUS, FBSP, CGAU, and
CMOR. For dataset S3, the comparison results of accuracy of
various parent wavelet functions with the same convolutional
kernel size of 5× 5 are shown in Table 6.

On all collected datasets, the comparison results of accuracy
of various parent wavelet functions with the same convolutional
kernel size of 5× 5 are shown in Table 7.

From Table 7, it is easy to get the results that the accuracy
of GAUS is higher than that of other wavelet functions, but the
robustness is worse. Considering the classification ability and
the robustness, the algorithm with the parent wavelet MEXH
performs better.

Finally, to evaluate the proposed SC-FGR model, we compared
it with several related models. Especially, enhanced time-domain
(EnhancedTD) (Khushaba et al., 2016; Fournelle and Bost, 2019),
time-domain cycle (TDC) (Tang et al., 2010), autoregression
(AR) (Soares et al., 2003), sample entropy (SampEn) (Delgado-
Bonal and Marshak, 2019), and wavelet package coefficient
(WPC) (Zhao et al., 2006) are selected as feature extractors.
The classical classifiers [e.g., probabilistic neural network
(PNN) (Zeinali and Story, 2017), linear discriminant analysis
(LDA) (Zhang et al., 2012), and SVM (Varatharajan et al.,
2018)], CNN (Chen H.F. et al., 2020), and CWT-EMGNet

TABLE 8 | The comparison results of accuracy of various models on the
collected datasets.

S1 S2 S3 S4 S5 MAR SD-AR

TDC-
AR+PCA+PNN (%)
(Fu et al., 2017)

90.84 89.39 93.88 95.8 95.7 93.12 2.59

TDC-
WPC+PCA+PNN
(%)

90.67 91.45 95.78 98.17 97.54 94.72 3.10

EnhancedTD+LDA
(%) (Zhang et al.,
2012)

89.58 92.41 94.13 95.81 97.48 93.88 2.73

EnhancedTD+SVM
(%)

88.29 90.57 94.06 93.59 95.03 92.31 2.50

SampEn+LDA (%) 89.67 92.75 96.22 95.77 94.07 93.70 2.36

SampEn+SVM (%) 87.44 90.77 93.18 94.44 93.82 91.93 2.57

CNN (%) (Chen H.F.
et al., 2020)

92.3 94.37 97.5 95.4 98.54 95.62 2.22

CWT+EMGNet (%)
(Chen L. et al.,
2020)

92.5 94.58 96.875 99.17 99.58 96.54 2.70

SC-FGR (%) 92.50 97.50 97.50 100.00 100.00 97.50 2.74
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(Chen L. et al., 2020) are adopted as classifiers. The comparison
results are recorded in Table 8, where we clearly observed that the
SC-FGR model achieves 97.5% accuracy, which is the best among
all the models. Hence, we concluded that the proposed SC-FGR
model is powerful for FGR.

CONCLUSION

This study proposes a novel SC-FGR model that consists of
two parts, namely, sensing and classification of the surface
EMG signal. First, wireless sensors are developed for acquiring
multichannel surface EMG signals from the forearm according
to the characteristics of the surface EMG signal. These sensors
can provide a high-precision signal source of surface EMG
for FGR. In addition, a CNN-based classification algorithm,
i.e., CNN-FGR, is proposed for FGR based on the acquired
surface EMG by the developed wireless sensors. The CNN-FGR
is trained on a spectrum map transformed from the time-
domain of surface EMG by CWT. The experimental results
demonstrate that the proposed SC-FGR model achieves 97.5%
recognition accuracy on eight kinds of finger gestures with
five subjects, which is much higher than that of comparable
models. In the future, we plan to adopt the techniques
of latent factor analysis (Wu et al., 2019a, 2020, 2021a,b),
cognitive computing (Wu et al., 2021c), and attention mechanism

(Zheng and Chen, 2021) to simultaneously recognize the
gesture and strength of the fingers based on the surface
EMG of the forearm.
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The emerging topic of privacy-preserving deep learning as a service has attracted

increasing attention in recent years, which focuses on building an efficient and practical

neural network prediction framework to secure client and model-holder data privately

on the cloud. In such a task, the time cost of performing the secure linear layers is

expensive, where matrix multiplication is the atomic operation. Most existing mix-based

solutions heavily emphasized employing BGV-based homomorphic encryption schemes

to secure the linear layer on the CPU platform. However, they suffer an efficiency and

energy loss when dealing with a larger-scale dataset, due to the complicated encoded

methods and intractable ciphertext operations. To address it, we propose cuSCNN, a

secure and efficient framework to perform the privacy prediction task of a convolutional

neural network (CNN), which can flexibly perform on the GPU platform. Its main idea

is 2-fold: (1) To avoid the trivia and complicated homomorphic matrix computations

brought by BGV-based solutions, it adopts GSW-based homomorphic matrix encryption

to efficiently enable the linear layers of CNN, which is a naive method to secure matrix

computation operations. (2) To improve the computation efficiency on GPU, a hybrid

optimization approach based on CUDA (Compute Unified Device Architecture) has been

proposed to improve the parallelism level and memory access speed when performing

the matrix multiplication on GPU. Extensive experiments are conducted on industrial

datasets and have shown the superior performance of the proposed cuSCNN framework

in terms of runtime and power consumption compared to the other frameworks.

Keywords: privacy-preserving, convolutional neural network, homomorphic encryption, GPU computation, deep

learning, cloud computing

1. INTRODUCTION

Deep learning (DL) has been applied to lots of fields [e.g., visual recognition (He et al., 2016),
medical diagnosis (Shen et al., 2017), risk assessment (Deng et al., 2021a,b), and a recommender
system (Shi et al., 2020; Wu et al., 2021a,b)], which achieves a superior performance in comparison
with human cognition. The DL with a complex neural network (DNN) structure usually requires
massive data for training a high-accuracy model. To alleviate the cost of using DL models,
cloud providers (e.g., Amazon, Alibaba, Microsoft) are now providing Deep Learning as a
Service (DLaS) that offers DL model training and inference APIs for clients. For example,
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Google AI1 provides a series of APIs for AI services (e.g., image
classification, personalization recommendation, etc.). By calling
these APIs, the client can upload their plaintext data to the cloud,
then receive the analysis results (e.g., predication or classification
task) by paying certain fees, as shown in Figure 1. Due to the fact
that users’ queries often involve personal privacy information,
such as X-ray images or user’s behavior trajectory data (Wu et al.,
2020), a natural yet essential question about the protection of
privacy has been raised: if massive personal data are collected for
model training and prediction, will the disclosing of user-sensitive
information increase? (Riazi et al., 2019; Liu et al., 2020).

Although those cloud providers claim that they will never
leak or use users’ data for commercial purposes, the increasing
number of user data leaks tell us that there is no guarantee
on what they promised (Abadi et al., 2016). An intuitive
solution to protect user’s privacy during DL inference is to give
users propriety to download the model from the server and
run the model on their platform locally. Nevertheless, this is
an undesirable result for the model-holder (e.g., company or
hospital) for at least two reasons: (1) The well-trained DL model
is considered as the core intellectual property for companies,
which is built on the massive collection of data. To avoid the
loss of profits, companies require confidentiality to preserve their
competitive advantage. (2) The well-trained DL model is known
to reveal information about the underlying data used for training.
In the case of medical data, this reveals sensitive information
about other patients, violating their privacy and perhaps even
HIPAA regulations (Assistance, 2003).

Therefore, the target of our work is to design a privacy-
preserving service framework where both the model-holder and
client can use the well-trained DLmodel and private data without
worries. Two important requirements should be considered:

1. For protecting the privacy of the data owner, their sensitive
queries should not be revealed to the model-holder;

2. For the proprietary of the model-holder, the DL model
should not be revealed to users, in order to preserve their
competitive advantage.

Following this mainstream, several solutions based on various
secure computing technologies have been proposed, such as
homomorphic encryption (HE)-based (Dowlin et al., 2016),
multi-party computing (MPC)-based (Rouhani et al., 2018), and
mixed-based solutions (Juvekar et al., 2018). Among them, HE
(Gentry and Craig, 2009) is an intuitive yet promising way
to evaluate it, which considers the whole neural network as a
function and evaluates it in the ciphertext domain thoroughly,
such as CryptoNet (Dowlin et al., 2016). Secure multi-party
computing is another option for secure function evaluation.
Secret sharing (SS) (Shamir, 1979) and garbled circuits (GC) (Yao,
1986) are two representational methods. They can transform a
neural network model into an oblivious form and evaluate it
with secure two-party computation, such as MinONN (Liu et al.,
2017). Besides, mixed-based solutions have been proposed to

1https://ai.google/

obtain better performance with trade-off for each advantage, such
as Gazzle (Juvekar et al., 2018).

We notice that the CNN inference task requires a lot of
inner product operations to finish the convolutional layer.
The existing mix-based methods usually adopt the Chinese
Remainder Theorem (CRT)-based Single Instruction Multiple
Data (SIMD) schemes to execute inner product operations of
privacy-preserving CNN. However, it is time-consuming, since
rotating operations in privacy-preserving CNN are required
to sum up the results among slots. Different with the above
solutions, we adopt the GSW-based method to design the matrix
multiplication method in the ciphertext space, which is the
main motivation of this study. The advantage of the GSW-
based solution is that the ciphertext operation is a natural
matrix operation without the expensive rotate-and-add strategy.
Furthermore, with the rapid development of graphics processing
hardware, a GPU is becoming the standard for cloud providers,
where CUDA programming makes it possible to harness the
computation power of GPU efficiently. Therefore, the use of
GPU technology to accelerate matrix multiplication is another
important motivation of this study.

On this basis, we introduce cuSCNN, a practical realization of
a mixed-based framework that supports the privacy-preserving
prediction of convolutional neural networks (CNNs). CNN
is one of the most popular neural network architectures in
DL. Generally, a CNN model consists of convolutional layers,
activation, pooling, and fully connected layers. Convolutional
and fully connected layers have linear properties, while activation
and pooling are non-linear layers. For cuSCNN, it employs HE to
perform the linear operations (e.g., homomorphic addition and
multiplication) in each layer, while conducting the non-linear
activation functions and pooling operations collaboratively by
employing HE and GC jointly. The main contribution of this
paper is as follows:

• We propose cuSCNN, an efficient and privacy-preserving
neural network prediction framework that keeps user and
server data secure. We employ the optimized homomorphic
matrix computations for the linear operations in CNN, while
adopting GC technology to execute the non-linear operations.
Our secure matrix-based computation implements linear
operations in the batch mode when dealing with a large-
scale dataset.
• We introduce an efficient and natural GSW-based

homomorphic matrix encryption scheme to support secure
matrix multiplication and addition operations. Furthermore,
we propose a hybrid optimization approach to matrix
multiplication on GPU to improve the computation efficiency,
which combines dual-optimization for I/O and computation.
• We implement cuSCNN on real-world data with varied

CNN models and evaluate its performance on the industrial
dataset. The experimental results show the superiority and
effectiveness of cuSCNN in terms of runtime and power
consumption, compared with state-of-the-art works.

The rest of this paper is organized as follows. Section 2 gives
the preliminaries. Section 3 overviews the cuSCNN framework.
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FIGURE 1 | The privacy question of the deep learning model deployed on an untrusted cloud.

Section 4 gives the implementation details of the cuSCNN
framework. Section 5 evaluates the performance of cuSCNN.
Finally, section 6 concludes this paper.

2. PRELIMINARIES

2.1. Related Work
2.1.1. Privacy-Preserving Neural Network Inference

Framework
As the representative solution of homomorphic encryption-
based solutions, CryptoNets (Dowlin et al., 2016) can evaluate
the trained neural network in the ciphertext domain via utilizing
leveled homomorphic encryption (LHE). However, the most
critical limitation of CryptoNets is that the computational
complexity drastically increases as the depth of layers in the
NN model increases. Moreover, due to only adopting the LHE,
non-linear functionalities such as the ReLU activation function
in CryptoNets cannot be supported. To support the non-linear
functionalities and pooling operations, DeepSecure (Rouhani
et al., 2018) leverages GC as its backbone cryptographic engine.
It can support various activations in the DL model. However,
since multiplication is an atomic operation in the DL model
and the number of Boolean gates in the multiplication circuit
grows 2x times concerning the bit width of operands, together
with multiple interactions between participants, DeepSecure
requires an extensive communication overhead when performing
secure privacy-preserving prediction. MiniONN (Liu et al., 2017)
transforms a neural network model into an oblivious form and
evaluates it with secure two-party computation. In detail, it
utilizes the GC to compute the non-linear activation function

while incorporating SS and HE-based methods to run the linear
operations in the DNN model. Moreover, GAZELLE (Juvekar
et al., 2018) is another mixed-protocol solution that uses an
intricate combination of HE and GC to carry out the inference
phase of the DNN model, which utilizes the GC to perform
the non-linear activation function and uses lattice-based HE
with packing technology to execute linear operations. As a
result, GAZELLE improves the runtime of private inference and
reduces communication between the user and the cloud. To
improve the efficiency of the ciphertext computations, FALCON
(Li et al., 2020) exploits the Fast Fourier transform to accelerate
the homomorphic computations in the convolutional and fully
connected layers. Unlike the method mentioned above, we
introduce GSW-based secure matrix computations to implement
the linear layers and leverage the GPU to accelerate the
computation efficiency of the proposed approach.

2.1.2. Matrix-Based Homomorphic Encryption

Scheme
Matrix-based computations are the core yet time-consuming
operations in the neural network. In this context, some matrix-
based homomorphic encryption schemes have been proposed.
Based on the SIMD technology, Wu and Haven et al. proposed
a safety inner product method on packed ciphertexts (Wu
and Haven, 2012). Lu et al. (2016) modified the matrix-vector
multiplication for secure statistical analysis over HElib. Duong
et al. (2016) proposed a homomorphic matrix multiplication
scheme on the packed ciphertext over RLWE. Later, Mishra
et al. (2017) designed an enhanced version of the matrix
multiplication, but there were useless terms in the ciphertexts.
Besides, it is only suitable for a one-depth homomorphic
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TABLE 1 | Meaning of notation in the homomorphic encryption scheme.

Notations The meaning

‖x‖∞ The maximum norm of x

‖x‖2 The Euclidean norm of x

< x, y > The inner product of two vectors x and y

xi The ith element of vector x

[X||Y] ∈ Z
m×(n1+n2 ) The column concatenation of X with Y, where

X ∈ Z
m×n1 ,Y ∈ Z

m×n2

[

Y
X

]

∈ Z
(m1+m2 )×n The row concatenation of X ∈ Z

m1×n with

Y ∈ Z
m2×n

Xi The ith column vector of X

X(p :q, r : s) The submatrix consisting of rows p to q and

columns r to s of the matrix X.

a
U
← D a is chosen from set D uniformly at random

Ir The identity matrix with size of r × r

Xij ∈ {0, 1}
r×r The matrix with 1 in the position (i,j) and 0 in the

others

λ Security parameters, the scheme can resist 2λ

attacks

modq Modulus q with the range of values is

[−(q− 1)/2, (q− 1)/2]

round(x) Rounding x ∈ R

⌈x⌉ Rounding up x ∈ R

⌊x⌋ Rounding down x ∈ R

multiplication scenario, due to the significant expansion rate of
ciphertexts. Wang et al. (2017) modified Duong’s methods for
flexible matrix computation, but their modification was much
less efficient for matrices of larger size. Jiang et al. (2018)
presented a novel matrix encoding method that can encrypt
more than one matrix in a single ciphertext and adapted an
efficient evaluation strategy for generic matrix operations via
linear transformations. However, the methods mentioned above
were all constructed based on the second-generation HE scheme
with unnecessary key switching, which suffers efficiency and
precision loss when dealing with large-scale data. Hiromasa
et al. (2016) first conducted a GSW-FHE scheme for matrix
homomorphism computations (i.e., HAO). They optimized the
bootstrapping technique proposed by Alperin-Sheriff and Peikert
(2014). However, all these improvements target binary plaintext,
which dramatically restricts its application in the real world.

2.2. Notations and Definitions
Assume that vectors are in column form and are written using
bold lower-case letters e.g., x, while bold capital letters are used
to denote matrices, e.g., X. We introduce gadget matrix G and
the function G−1 by lemma 1. In order to facilitate readers to
understand, the meanings of the notations mentioned in the
encryption scheme are shown in Table 1.

Lemma 1 (Micciancio and Peikert, 2012). Let matrix C ∈

Z
n×m
q , there are a fixed and primitive matrix G ∈ Z

n×nl
q and a

deterministic, randomized function G−1 that can be calculated by:

Z
n×m
q → Z

nl×m
q such that X

R
← G−1(C) is sub-Gaussian with

parameter O(1) and always satisfies GX = C.

Let l = ⌊log q⌋ + 1 and gT = (20, 21, . . . , 2l−1), In is the
unit matrix with n rank, then the gadget matrix can be defined
as G := In ⊗ gT ∈ Z

n×nl
q .

2.3. GSW-Based Homomorphic Matrix
Encryption Scheme
Generally, a HE scheme consists of four algorithms HE=(Keygen,
Enc, Dec, Eval) and can be illustrated as follows:

• KeyGen(params): Given the security parameter λ, the main
function of KeyGen(params) is to produce a secret key sk, a
public key pk, and a public evaluation key evk.
• Encpk(m): Based on the created public key pk, the encryption

algorithm encrypts a plaintextm ∈ M into a ciphertext c ∈ C.
• Decsk(c): Using the created secret key sk, it can recover the

original plaintextm from the ciphertext c.
• Evalevk(f , c1, . . . , cl): Under the ciphertext space C with the

evaluation key evk, the ciphertext cf can be calculated by using

the function f :Ml →M to c1, . . . , cl

The original GSW scheme is proposed by Gentry, Sahai, and
Waters (Gentry and Craig, 2009). It adopts the approximate
eigenvector method based on the plaintext space M to construct
the ciphertext spaceC. Based on this scheme, Bai et al. proposed a
homomorphic matrix encryption scheme (Bai et al., 2020), which
can be described as follows:

Given the security parameter λ and the multiplication depth
of circuit L, l = ⌊log q⌋ + 1. The integer modulus is q =
q(λ, L) := 2l−1, the lattice dimension n = n(λ, L), and the noise
distribution χ = χ(λ, L) follows a sub-Gaussian distribution
over Z. Meanwhile, let m = m(λ, L) : = O((n + r)l), and N : =

(n + r)l. G = In+r ⊗ gT ∈ Z
(n+r)×N
q can be calculated, where

gT = {20, 21, . . . , 2l−1}.

• HE.KeyGen(n, q,χ ,m): The key generation method mainly
includes two parts, i.e., the secret key sk and public key pk:

- For sk, it first samples a secret key matrix S̄ ← χ r×n, then
the secret key matrix can be obtained as follows:

S :=
[

Ir|| − S̄
]

∈ Z
r×(n+r)
q (1)

- For pk, it first generates a uniformly random matrix A
U
←−

Z
n×m
q , noise matrix E

R
←− χ r×m, and Rij

U
← {0, 1}m×N (for

all i, j = 1, . . . , r), then the public key matrix B is:

B :=

[

S̄A+ E

A

]

∈ Z
(n+r)×m
q (2)

Pij := BRij +

[

MijS

0

]

G ∈ Z
(n+r)×N
q (3)

Hence, the output of keygen(n, q,χ ,m) is sk : = S, pk : =
{

Pi,j,B||1 ≤ i, j ≤ r
}

.

• HE.SecEnc(sk,M): Sample the randommatrix Ā
U
← Z

n×N
q and

E
R
← χ r×N , then the ciphertext C can be computed by :

C :=

[

S̄Ā+ E

Ā

]

+

[

MS

0

]

G ∈ Z
(n+r)×N
q (4)
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• HE.PubEnc(pk,M): Sample a random matrix R
U
← {0, 1}m×N ,

and the ciphertext can be denoted by

C := BR+

r−1
∑

i=0

r−1
∑

j=0

Mi,j · Pi,j ∈ Z
(n+r)×N
q (5)

• HE.Dec(S,C): The processing of the decryption algorithm can
be described as follows:

Step 1: Compute the matrixH = SC ∈ Z
r×N
q ;

Step 2: Denote the matrix H′i,j ∈ Z
r×rl
q , where i ∈

{1, 2, . . . , r}, and j ∈
{

1, 2, . . . , rl
}

. Meanwhile, the noise
matrix E′ has the same size asH′. Hence,

H′ = E′ +







M0,0 · · · 2
lM0,0 · · · M0,r · · · 2

lM0,r

...
...

...
...

...
...

Mr,0 · · · 2
lMr,0 · · · M0,r · · · 2

lM0,r






(6)

Step 3: Recover each element (i.e., mi,j) in the plaintext
matrix M via the function Dec1Num(H′(i, jl :(j + 1)l − 2)),
where 1 ≤ i ≤ r and 1 ≤ j ≤ r. The implementation details of
Dec1Num can be found in Bai et al. (2020).
• HE.MatAdd(C1, C2): Given the two ciphertext matrices C1 ∈

Z
(n+r)×N
q and C2 ∈ Z

(n+r)×N
q , the homomorphic matrix

addition can be defined as:

Cadd = C1 + C2 ∈ Z
(n+r)×N
q (7)

• HE.MatMult(C1,C2): ForC1,C2 ∈ Z
(n+r)×N
q , it first computes

G−1(C2) ∈ 0, 1N×N , then outputs:

Cmult := C1 · C2 = C1G
−1(C2) ∈ Z

(n+r)×N
q (8)

To implement the privacy-preserving linear operations in
cuSCNN, two kinds of homomorphic computation should be
supported: HE.MatAdd and HE.MatMul. HE.Mat means that we
can encrypt the plaintext matrix as approximate eigenvalues of
the ciphertext matrix correspondingly, where the secret key is
the eigenvector. Since the ciphertext calculation of GSW is based
on the matrix computation, which cannot cause the expansion
of the ciphertext dimension, it can significantly eliminate the
unnecessary key conversion brought by BGV-based solutions.
HE.MatAdd represents the homomorphic addition between two
matrixes in the ciphertext domain, while HE.MatMul means the
homomorphic multiplication between two matrices.

2.4. GPU-Based Computing
A graphics processing unit (GPU) is a specialized electronic
circuit designed to rapidly manipulate and alter memory to
accelerate the creation of images in a frame buffer intended
for output to a display device. GPU adopts a large number
of computing units and ultra-long pipelines, but it only has
straightforward control logic and eliminates cache. Their highly
parallel structure makes them more efficient than CPUs for
algorithms that process large data blocks in parallel. CUDA
(an acronym for Compute Unified Device Architecture) is

a parallel computing platform and application programming
interface (API) model created by Nvidia, which allows GPU to
be compatible with various programming languages (e.g., C++,
Fortan, and Python) and applications. The CUDA platform is
a software layer that gives direct access to the GPU’s virtual
instruction set and parallel computational elements to execute
compute kernels. In CUDA, kernels are functions that are
executed on GPU, which are executed by a batch of threads.
Meanwhile, the batch of threads is organized as a grid of thread
blocks. Thus, a GPU with more blocks can execute a CUDA
program in less time than a GPU with fewer blocks. As shown
in Figure 2, threads in a block are organized into small groups
of 32 called wraps for execution on the processors, and wraps
are implicitly synchronous; however, threads in different blocks
are asynchronous. CUDA assumes that the CUDA kernel, i.e.,
CUDA program, is executed on a GPU (drive), and the rest of the
C program is executed on the CPU (host). CUDA threads access
data frommultiple memory hierarchies. Each thread has a private
register and local memory, and each thread block has shared
memory visible to all threads within the same thread block. All
threads can access global memory.

3. THE cuSCNN FRAMEWORK

In this section, we design a privacy-preserving CNN prediction
framework. Consider a cloud-based medical diagnosis scenario
where a user wants to know his health status from an X-ray
image. In our setting, we have two roles:

1. The cloud service provider (S) holds trained classifier models
and has resources for storage and processing. He has a
business interest in computation and making predictions on
encrypted data from clients.

2. Clients (C) are the customers of the service provider.
He uploads his private image to the cloud server via
API interference and receives the result by paying specific
service fees.

3.1. Overview
We introduce the execution flow of cuSCNN at a high level.
Suppose that client C owns the input data (e.g., an X-ray image)
and the server S holds a convolutional neural network model.
For client C, the input is private. For server S, the details of
the trained CNN model are also private, which includes the
weights of convolutional and fully connected layers. The target
of cuSCNN is to preserve privacy for the client and server when
performing the CNNmodel.

Hypothesis: Both S and C are semi-honest Paverd et al. (2014),
we presume they follow the cuSCNN protocol and never deviate
from it, although they might attempt to infer more information
based on the data they receive and transmit. Specifically, C
leaks no information about the input contents, intermediate
calculation result, and classified results to the cloud. The input
data are factual, never using fake data. For the cloud server, the
weights of the CNN model are kept secret from the client, but it
does not hide the model architecture.
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FIGURE 2 | CUDA kernel and memory hierarchies.

FIGURE 3 | Security interactive computation protocol of cuSCNN.

There are two phases of the framework, including off-line
and online phases. In the off-line phase, the cloud generates
shares r and r′ used for Yao’s garbled circuit. Besides, the
cloud encrypts these shares and their weight matrices using the
client’s public key. In the online phase, the convolutional and
fully connected operations are linear computations, while the

activation functions are non-linear. The execution flow of the
proposed cuSCNN is indicated in Figure 3.

• Evaluate linear layers (i.e., Conv and FC layer): For i ∈
[1, 2, ...l], l is the number of hidden layers, C firstly encodes
the input data into matrix Mi, then it encrypts Mi via
calling the public-key encryption algorithm, denoted by
ct.Mi = PubEnc(pk, Mi), and uploads ct.Mi to the cloud
server S. S utilizes the encryption scheme to execute matrix-
matrix multiplication in convolutional layers and vector-
matrix multiplication fully connected layers.

Take the Conv layer, for instance, C feeds the convolutional
layer with an encrypted input matrix ct.Mi, S computes Yi =

Wi ·ct.Mi.W is the filter’s matrices. The fully connected layer is
similar except for homomorphic vector-matrix multiplication.
• Evaluate non-linear functions (i.e., activation and pooling

layer): S and C perform designed secure computation
protocols, i.e., Yao’s garbled circuit to keep data secure.
Concretely, for layer i, S homomorphically adds encryption
of the share ri to obtain the encryption of Yi + ri, and send
it to the client. The client decrypts it using his private key to
obtain the plaintext Yi + ri. Next, Yi + ri is held by the client
and ri and r′i are held by the server as inputs are conducted in
garbled circuit evaluation. The output of it is f (Yi) + r′i (the
activation function is denoted by f ). Then the client encrypts
it using their public key and transmits the ciphertext to the
server, the server homomorphically adds the encryption of the
share r′i to get the encryption of f (Y)i.

3.2. Neural Networks Architecture
In DL, CNN is a popular category of neural network, most
commonly applied to analyzing visual imagery. It usually consists
of an input and output layer, as well as multiple hidden layers.
In most cases, a CNN takes an input and processes it through a
sequence of hidden layers to classify it into one of the potential
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TABLE 2 | Layers description of CNN.

Layers Description

Layer-1[Conv-1] Input image: 28× 28, kernel size: 5× 5, stride:

(1,1), number of output channels: 5, padding =

VALID, activation = ReLU.

Layer-2[FC-1] Fully connecting with 5× 3× 3 = 845 inputs and

100 outputs, activation = ReLU.

Layer-3[FC-2] Fully connecting with 100 inputs and 10 outputs

activation = softmax.

classes. Hidden layers typically consist of a series of linear
(e.g., convolutional, fully connected) layers and non-linear (e.g.,
activation function and pooling) layers.

For the Conv layer, the convolution operator forms the
fundamental basis of the convolutional layer. It has convolutional
kernels with size k × k, a stride of (s, s), and a mapcount of h.
Given an image I ∈ R

w×w and a convolution kernel W ∈ R
k×k,

the convolved image Y ∈ R
dk×dk can be computed as follows:

Y = Conv(I,W)i′ ,j′ =
∑

0≤i,j≤k

Wi,j · Is·i′+i,s·j′+j (9)

where the range of (i′,j′) is [0, ⌈
(w− k)

s
⌉ + 1], and ⌈·⌉ denotes

the least integer greater than or equal to the input. For multiple
kernel cases, it can be expressed as:

Y = Conv(I,W) =
(

(Conv(I,W(0)), · · · ,Conv(I,W(h−1))
)

∈ R
dk×dk×h (10)

For the FC layers, it connects nI nodes to nO nodes, which can
form as the matrix-vector multiplication of an nO × nI matrix.
Note that the output of the convolutional layer has a form of
tensor, so it should be flattened before the FC layer.

4. cuSCNN DESIGN

We next utilize a commonly used CNN in privacy protection
work (Dowlin et al., 2016; Rouhani et al., 2018) to describe the
design details. The network topology contains one convolutional
layer, one fully connected layer with ReLU activation function,
and the second fully connected layer applying the softmax
activation function for probabilistic classification. Table 2

describes our neural networks to the MNIST dataset and
summarizes the parameters.

4.1. Encryption of Images
We assume that a neural network is trained with the plaintext
dataset in the clear. For the CNN architecture in Table 2, w = 28,
k = 5, dk = 13, s = 2, and h = 5. Suppose that the client
has a two-dimensional image I ∈ Z

w×w. For 0 ≤ i, j < 5,
0 ≤ i′, j′ < 13, by taking the elements Is·i′+i,s·j′+j, we extract
the image feature to an extended matrix M with the size of
25 × 169. For bias, we add the vector [1, . . . , 1]169 to the first

row. For a matrix M with the size of 26 × 169, it is blocked
into bnum = 7 sub-matrices Mb for parallel computation, where
bnum = ⌈Ni/(k

2 + 1)⌉,Ni = dk × dk. Since this CNN can deal
with 846 images in FC-1, we design the framework to compute
846 images at once to achieve this maximum throughput. At the
encryption phase, the client C encrypts the Mb using the public
key of a HE scheme.

For PubEnc(pk, Mb), we first sample a random matrix R ←

{0, 1}m×N uniformly, then the encrypted image can be computed
by (11).

ct.Mb = PubEnc(pk,Mb) := BR+
∑

0≤i,j≤r

M[i, j] · P(i,j) ∈ Zq,

(11)

4.2. Encryption of Trained Model
The model provider encrypts the trained prediction model values
such as multiple convolution kernel values W and weights
(matrices) of FC layers.

The provider begins with a procedure for encrypting the
multiple convolutional kernels. Each kernel is extended into a
one-row vector of size k2, and the bias is connected to the first
column. Hence, h kernels are expanded into a matrix with a size
of 5 × 26. Then the provider pads (k2 + 1) − h (i.e., 21) rows
with zeros to form a square matrix. Finally, the model provider
encrypts the plaintext matrix into a ciphertext, denoted by ct.W1.

Next, the first FC and the second layer are specified by 100 ×
846 and 10 × 101 matrices. They can pad 746 and 91 rows with
zeros to become two square matrices. Then the model provider
encrypts the two matrices respectively, and the ciphertexts are
ct.W2 and ct.W3.

4.3. Homomorphic Evaluation of Neural
Networks
The public cloud takes ciphertexts of the images from the data
owner and the neural network prediction model from the model
provider at the prediction phase. Since the data owner uses a
batch of 864 different images, the FC-1 layer is specified as a
matrix multiplication: Z100×846 × Z

846×846→ Z
100×846, and the

FC-2 layer is represented as a matrix multiplication: Z10×101 ×

Z
101×101 → Z

10×101. The FC-1 layer inputs 846 computational
image results to the FC-2 layer, and the FC-2 layer can deal with
101 images at once, so the FC-2 layer needs to execute nine times
to finish the 846 image prediction task.

Homomorphic Conv-1 layer: For 0 ≤ i < 846, 0 ≤ j < 7,

the public cloud takes the ciphertexts ct.M
(i,j)

b
and ct.W1, and it

performs the following computation on‘ciphertexts:

ct.C1←
∑

0≤i<846,0≤j<7

Mult(ct.M
(i,j)

b
, ct.W1) ∈ Z

(n+r)×N
q . (12)

Secure activation layer: In order to protect the convolutional
result Y and safely compute the activation function, the
framework adopts Yao’s garbled circuits method similar to
GAZALLE and FALCON. The ReLU function is defined by
f (x) = max(x, 0), the cloud generates sharing r in the
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preprocessing phase, C and S share the input x additively, i.e.,
S holds r, while C holds max(x, 0) − r. The two parties jointly
compute GT and MUX circuits to get f (x) + r′, which is sent to
C. C loads the 846 images to form a square matrix M2, then we
encrypt it into ciphertext ct.M2 and send it to the cloud.

The FC-1 layer: The cloud firstly performs a homomorphic
addition operation to remove sharing, and then it carries out the
homomorphic matrix multiplication:

ct.C2← Mult(ct.M′2, ct.W2) ∈ Z
(n+r)×N
q . (13)

Next, the cloud and the user conduct the activation operation by
the garbled circuit. Afterward, the user sends the ciphertext ct.C3

to the cloud.
The FC-2 layer The homomorphic evaluation in FC-2 is

similar to FC-1, except for executing nine times to finish 846
image predictions.

ct.C
(i)
3 ← Mult(ct.M′

(i)
3 , ct.W3) ∈ Z

(n+r)×N
q , 0 ≤ i < 9. (14)

The activation operation of FC-2 is a softmax function, since yi =
ezi+r

′

∑num_out
j=1 e

zj+r
′ =

ezi
∑num_out

j=1 e
zj
, where zi is the ith i ∈ [1, num_out]

input elements of the last fully connected layer, D decrypts the
ciphertext and gets the prediction result directly.

Please note that the plaintext of the scheme is a square matrix,
and the length of the input vector is set to 846 (5× 13× 13+ 1)
in the example. Thus, to maximize the use of plaintext space
to improve operating efficiency, we need the number of input
images to be 846. In the general case, the number of input images
takes the max length of the fully connected layers input vectors in
the proposed framework.

4.4. Hybrid Optimization Approach on GPU
for Efficient Matrix-Based Computation
To improve homomorphic matrix multiplication efficiency and
utilize the powerful computing ability of GPU, we propose
a hybrid optimization approach to execute the homomorphic
matrix multiplication on GPU.

Given two matrices A and B with the size of r × r, the
straightforward way is to open a thread for computing each
element of its output matrix C. For parallel matrix multiply
operation, each thread loads a row ofA (i.e.,A(i, :)) and a column
of B (B(:, j)), then cij can be computed via making an inner
product of these two vectors (i.e., cij = A(i, :) · B(:, j)). However,
the delay in accessing the shared memory on the GPU is quite
significant (almost 100 clock cycles). For example, suppose that
the matrix elements are stored in the memory following the
rows first way, then a row of A can be saved in the memory
continuously, and it can utilize the super large shared memory
bandwidth of the GPU to load multiple elements with a short
accessing delay. However, for the matrix B with a large size r,
the memory address of elements in a column is internal with r
elements. It means that most of the data are useless except the
required column of elements in a load time. As a result, the
memory access efficiency of this parallel method is appalling,
since it is almost impossible for this access mode to hit the
cache line.

To address this problem, we introduce a partitioning
algorithm for matrix multiplication computation on GPU. For
the partition method as shown in Figure 4A, the key is to
determine how to maximize the use of limited shared memory
space. The shared memory (SM) is an on-chip cache located on
the GPU, which can be as fast as the first level cache, and threads
in the same thread block can exchange data through SM. The
only disadvantage is that the capacity of SM is limited. To use
this small piece of high-speed memory, we divide the matrix into
a set of small pieces in each dimension. Suppose that the slice size
is T, the output matrix C00 can be written as:

C00 =

bk−1
∑

i=0

A0,i · Bi,0 (15)

where bk = ⌈
r

T
⌉ is the block numbers of matrices A and B.

Note that the small slice matrix will degenerate into a single
element when the small slice size T becomes 1. If the small piece
is regarded as an element, the size of the whole matrix is reduced
by T times.

Each piece of the output matrix C can assign a thread block
with a group of threads to compute the result, where each thread
corresponds to an element in the piece. In detail as shown in
Figure 4B, each thread stores one element of block B(:, j) and
one column of Cij in its register. A(i, :) is stored in the shared
memory of Block(0,0), which can be accessed by the threads
in Block(0,0). Instead of using the inner product to perform
matrix multiplication, we adopt the outer product to optimize
the computation. For example, it first performs the outer product
between the first column of A(:, 0) and the first row of B(0, :)
and updates Cij. Then the Cij is updated via A(:, 1) and B(1, :).
Executing the iterations in a similar way until T times, the
updated Cij can be obtained. Finally, each thread stores one
column of Cij from its register to global memory.

As we know, the time complexity of naive matrix
multiplication is O(r3). Due to leveraging the proposed
partition method, the big matrices A and B can be divided into
bk blocks with slice size T. For each slice, the time complexity
is O(T) when calling T threads to perform it in parallel. Hence,
the total time complexity of the proposed matrix multiplication
on GPU is O((bk)2 × T).

4.5. Security Analysis
We prove that the encryption scheme defined above is IND-CPA
secure under the LWE hardness assumption.

Theorem 1. For any adversary A there exists an adversary such
that AdvCPA(A) < 2AdvLWE(B) .

Proof: G0: A challenger C first initializes the encryption scheme
and setup parameters, then generates a public key pk and a
private key sk. The adversaryA obtains the public key and selects
two challenge plaintexts m0 and m1 from the plaintext space,
and sends them to the challenger C. C chooses b ∈ [0, 1] at
random, and encrypts mb using the public key, then sends the
ciphertext to adversary A. The adversary guesses the plaintext
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FIGURE 4 | Hybrid optimization approach on GPU.

corresponding to the ciphertext and outputs b′. If b = b, the
adversary attacks successfully, and the advantage of the adversary
is AdvCPA(A) = |Pr[b = b′ in G0]− 1/2|.

G1: In G1, the public key pk : = P(i,j),B used in G0 is

substituted by a uniform random matrix B ← Z
(n+r)×m
q ,

and P(i,j) is substituted by a uniform random matrix P′
(i,j)
←

Z
(n+r)×N
q . It is possible to verify that there exists an adversary

B with the same running time, such that |Pr[b = b′ in G1] −
Pr[b = b′ in G0]| ≤ AdvLWE(B), since the circular security
and LWE assumption, to distinguish B and B′, P and P′ for B
is almost impossible.

G2: In G2, the value in the generation of the challenge
ciphertext C is substituted with uniform random elements to
form matrix C′ in G1. The adversary distinguishes C and C′

which is as hard as solving the LWE problem, so there exists
an adversary B with the same running time as that of |Pr[b =
b′ in G2]Pr[b = b′ in G1]| ≤ AdvLWE(B). Notice that in G2, the
values in C from the challenge ciphertext are independent of bit
b, hence, Pr[b = b′ in G2] = 1/2.

In summary, AdvCPA(A) < 2AdvLWE(B).

5. EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments on a real
network to evaluate the effectiveness of the proposed cuSCNN.
We mainly focus on the following questions (RQs):

• RQ1: How the performance of the proposed matrix
multiplication method performs;
• RQ2: How the proposed homomorphic matrix encryption

scheme performs compared to the existing methods;
• RQ3: How the performance of cuSCNN on each layer

compares to the state-of-the-art networks.

5.1. Experimental Settings
We implement cuSCNN in C++. Specifically, we use cuBLAS
library to implement thematrix multiply operations on GPU, and
utilize the ABT framework to implement Yao’s garbled circuits.
For the homomorphic matrix encryption scheme, we set the
plaintext module q = 230 (i.e., l = 30), which has a 30-
bit length and is enough for all the intermediate values. The
generation noise follows sub-Gaussian distribution with variance
var = q/8m, n = 600, the security level can achieve 128.

We tested cuSCNN on two computers, both of which are
equipped with Intel Xeon(R) E5-2680 CPU with 4 2.40 Hz
cores, and a GeForce GTX 1080Ti GPU. The operation system
is CentOS 7.9. One of them worked as client C, and the other
play as server S. We took experiments in the LAN setting similar
to previous work (Juvekar et al., 2018; Li et al., 2020). Each
experiment was repeated 100 times and we report the mean in
this paper.

The MNIST database (Modified National Institute of
Standards and Technology database) is a dataset of images
representing handwritten digits by more than 500 different
writers. It is commonly used as a benchmark for machine
learning systems. The MNIST database contains 60,000 training
images and 10,000 testing images. The format of the images is
28 × 28 and the integer value of each pixel represents a level of
gray with a range 0 to 255. Moreover, each image is labeled with
the digit it depicts.

5.2. Performance of Matrix Multiplication
on GPU
In this part, we test the timing performance of proposed
optimization methods on matrix multiplication, which is the
core and time-consuming operation in DL-based applications.
In our method, the matrix tile size (T) is a key factor. We set
the matrix size to 1,024 (i.e., r = 1, 024), and the range of
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FIGURE 5 | Performance of matrix multiplication methods on GPU.

tile size is [2, 4, 8, 16, 24, 32]. The test results are shown in
Figure 5A. We can observe that the runtime of the proposed
method varies with different matrix tiles, and the optimized
performance is achieved when the matrix tile size is 8. On the
one hand, the inner reason is that the number of threads in each
block is decreasing, but the amount of shared memory required
in each block is not decreasing, after continuously increasing
the matrix tile size. As a result, it will reduce the number of
active threads in a streaming multiprocessor (SMP) due to the
limited total number of blocks. That is, the occupancy will be
reduced. In addition, calculating more elements per thread uses
more registers. The number of registers in each thread will
in turn affect the number of active threads in SMP, and then
affect occupancy.

Then, we evaluate the proposed matrix multiplication method
with two baselines on GPU. In detail, we adopt three different
methods to execute matrix multiplication, including the naive
way (i.e., GPU-Naive), I/O optimization (i.e., GPU-IO) method,
and our optimization method. The GPU-Naive method
only adopts the straightforward method to perform matrix
multiplication, without considering the effect of matrix split and
reunion in memory, while the GPU-IO method adopts the block
matrix multiplication with matrix split, without considering the
matrix reunion in memory. Figure 5B is the running time of
HE.MatMult with different methods. We find that: (1) Our
proposed optimization method has the best effectiveness with
varying matrix size, since the running time of our methods is the
lowest compared to the othermethods; (2) with increasingmatrix
size, our method can maintain stable execution efficiency with
little running time increased. That is because our method can
effectively reduce the influence of IO bandwidth on performance
by jointly using shared memory and registers. Furthermore, it
has a higher computation efficiency via the fine-grained blocking
method. Therefore, it can make more efficient use of GPU
hardware computing resources.

TABLE 3 | The comparison result of homomorphic matrix encryption schemes.

Matrix size Method Enc(s) HE.MatAdd(s) HE.MatMult(s) Dec. (s)

32× 32

seIMC 6.998 7.345 10.639 0.0768

Jiang’s 0.09 0.01 15.592 0.0543

Ours 0.679 0.204 0.946 0.067

64× 64

seIMC 7.82 8.21 12.287 0.312

Jiang’s 0.196 0.01 37.793 0.705

Ours 0.8 0.233 1.24 0.222

128× 128

seIMC 9.843 10.402 15.824 1.305

Jiang’s – – – –

Ours 1.127 0.291 1.525 0.862

Bold values indicate our methods have a lower running time than the comparison

methods.

5.3. Performance of Homomorphic Matrix
Encryption Scheme
In this part, we test the performance of our method compared
with Jiang’s scheme (Jiang et al., 2018) and seIMC (Bai et al.,
2020). For Jiang’s method, it is a BGV-based secure matrix
computation scheme that includes a novel matrix encoding
method and an efficient evaluation strategy for basic matrix
operations (e.g., matrix addition and multiplication). For seIMC,
it is a GSW-based secure matrix computation scheme. We set
the security level of seIMC and Jiang to 80 in this experiment.
To achieve this security level, the cyclotomic ring dimension of
our homomorphic encryption is chosen as n = 450, based on
the estimator of Albrecht et al. (2015). The parameter settings
of Jiang’s and SeIMC schemes are the same as in Jiang et al.
(2018) and Bai et al. (2020). Table 3 is the comparison results
of the three mentioned secure matrix computation schemes.
From the result, we find that: (1) Compared to the BGV-based
scheme (i.e., Jiang’s scheme) and SeIMC, the running time of our

Frontiers in Computational Neuroscience | www.frontiersin.org 10 December 2021 | Volume 15 | Article 79997750

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Bai et al. cuSCNN

TABLE 4 | Benchmarks of cuSCNN in Conv and FC layers.

Layer Input Filter/output
Time (ms)

Time per image (ms)
Setup Online Total

Conv layer (28× 28× 1, 846) (5× 5× 1, 5) 2696.9636 0.0074 2696.971 3.19

FC layer
(846, 846) (100, 846) 820.523 0.077 820.6 0.97

(101, 846) (10, 846) 760.109 0.091 760.2 0.9

FIGURE 6 | Performance comparison of privacy-preserving neural network frameworks in runtime and power consumption.

GSW-based scheme is faster in terms of homomorphic matrix
multiplication and decryption. (2) GSW-based solutions can deal
with a large-scale matrix, while Jiang’s scheme fails to cope
with it. Hence, the results demonstrate that our secure matrix
computation solution is more suitable for real applications with
large-scale data.

5.4. Performance Evaluation for cuSCNN
In this part, we evaluated our cuSCNN framework in an
individual layer, and compared it with state-of-the-art methods.
By using the proposed homomorphicmatrix encryption to secure
matrix computations, Conv and FC layers are themain advantage
in cuSCNN. For the implementation of cuSCNN, we replace
implementations of Conv and FC layers in GAZELLE with
proposed optimization methods, while we also adopt the GC to
perform the ReLU operation.

Runtime of each layer required for cuSCNN are presented
in Table 4. Furthermore, we set T = 8 for all of the matrix
multiplication operations on GPU.

In Table 4, we present the timing result of Conv and FC
layers with different input sizes. We notice that: (1) Due to
adopting the GPU to accelerate the online computing part,
the running time of the online part is less then 1 ms either
in the Conv layer or FC layer. Hence, the dominant cost
of evaluating cuSCNN is that of performing the setup part,
including the memory switch between CPU and GPU, the
assignment, and initialization operations. (2) Compared to the

FC layer, cuSCNN spends almost 3× more time executing the
Conv layer’s convolutional operations.

Finally, we evaluate the performance of the cuSCNN
framework on the MNIST dataset, compared to the previous
approaches. For comparison with previous approaches, we
adopt the same CNN network architecture for all mentioned
models. The CNN model takes a gray scale image with size
28 × 28 as input and has one Conv, two FC, and two ReLU
layers. As the comparison framework is performed on a CPU
perform, to conduct a fair comparison, we present the runtime
(including computation time and communication time) and
power consumptions of different models when dealing with
10,152 images. The images are able to predict with 99.1%
accuracy. For the power consumption of each approach, we
adopt a similar method as proposed in Tian et al. (2018).
The compared results are shown in Figure 6. From the figure,
we can find that: (1) Compared to the existing MPC-based
framework, the mixed frameworks can enjoy a better runtime
and power consumptions, which can trade-off the advantage
of different secure computation technologies, as shown in
Figure 6A. (2) The performance of cuSCNN outperforms
GAZELLE in terms of runtime and power consumption, as
shown in Figure 6B. That is because cuSCNN adopts the
matrix-matrix multiplication to perform the Conv and FC
layers, while GAZELLE utilizes the matrix-vector multiplication
to finish these layers. Thus, cuSCNN can execute a set
of images in one iteration. With the advantage of GPU’s

Frontiers in Computational Neuroscience | www.frontiersin.org 11 December 2021 | Volume 15 | Article 79997751

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Bai et al. cuSCNN

powerful computing ability, cuSCNN designed a hybrid parallel
approach to implement the homomorphic matrix computations
in Conv and FC layers. Therefore, it demonstrates that cuSCNN
has a higher efficiency in executing the privacy-preserving
neural networks.

6. CONCLUSION

The increasing popularity of cloud-based deep learning poses a
natural question about privacy protection: if massive personal
data are collected for model training and prediction, will this
result in a rise in disclosing sensitive information? This paper
focuses on tackling the privacy-preserving deep learning problem
of a client that wishes to classify private images utilizing a
convolution neural network (CNN) trained by a cloud server.
Our target is to build efficient protocols whereby the cloud server
executes the prediction task but also allows both client andmodel
data to remain private. We find that matrix-based computations
are the core operations in the neural network prediction
task. However, the existing solutions have the limitations of
computational efficiency and perform in a serial mode. To track
it, this study proposes cuSCNN, a secure and efficient framework
to perform the privacy prediction task of a convolution neural
network, which utilizes the HE and GC jointly in a batch mode.
The hybrid optimization approach is proposed to accelerate the
execution of securematrix computations onGPU to deal with the
large-scale dataset. Extensive experiments conducted on the real
network show that cuSCNN achieves a better performance on
running time and power consumption than the state-of-the-art
methods, when dealing with the larger-scale dataset. In the next
step, we will conduct comprehensive experiments on different

GPUs to evaluate the performance of the proposed method,
including at the server level, desktop level, and embedded levels.
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Aiming at the situation that the structural parameters of the general manipulators are

uncertain, a time-varying impedance controller based on model reference adaptive

control (MRAC) is proposed in this article. The proposed controller does not need to use

acceleration-based feedback or to measure external loads and can tolerate considerable

structure parameter errors. The global uniform asymptotic stability of the time-varying

closed-loop system is analyzed, and a selection approach for control parameters is

presented. It is demonstrated that, by using the proposed control parameter selection

approach, the closed-loop system under the adaptive controller is equivalent to an

existing result. The feasibility of the presented controller for the general manipulators

is demonstrated by some numerical simulations.

Keywords: adaptive, intelligent control, time-varying, human–robot interaction, MRAC

1. INTRODUCTION

The control issues of a multi-degree-of-freedom (multi-DOF) mechanical system with force and
motion task constraints are significant for many advanced practical applications, such as minimally
invasive surgeries (Burgner-Kahrs et al., 2015), rehabilitation nursing (Jutinico et al., 2017; Ansari
et al., 2018), in-situ inspection, and machining for the repair of aeroengine parts (Dong et
al., 2017; Su et al., 2020), life rescues (McMahan et al., 2006), teleoperation based on haptic
interfaces (Sharifi et al., 2016), etc. The operation tasks with force and motion constraint include
force-position approximately decoupled operation tasks and more general force-position coupled
operation tasks. With regard to the operation task with decoupling force and motion constraint,
the closed-loop control system can be stabilized through hybrid force/motion control strategies
(Yip and Camarillo, 2016). As to the task with coupling force and motion constraints, in general,
an impedance controller has to be utilized to track the time-varying trajectories of the constraint
task (Kronander and Billard, 2016). At present, most researches focus on the invariant impedance
control of the robot system. The adjustment range of the manipulator’s dynamic characteristics
under the invariant impedance controller is limited, and it can only complete some rough human-
machine cooperation/coordination tasks. For mechanical assembly tasks, especially for those
relatively precise assembly operations, such as bearing press-mounting and quantitative fastening
of screws/nuts, it is necessary to accurately control the position and pose of the end-effector in
the direction of force, as well as the force/torque during the operations. Therefore, the application
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of invariant impedance control is relatively limited, and the time-
varying impedance control has important practical application
requirements in engineering tasks. Since the time-varying
impedance control has extensive and important application
requirements in complex systems or high-level applications such
as the universal operation of industrial robots, the interactive
motion of rehabilitation robots, human–machine fusion control
of exoskeleton robots, telepresence teleoperation robots, etc., in
recent years, scholars have conducted related research on time-
varying impedance control. The time-varying impedance closed-
loop system is a kind of time-varying dynamic system, and it is
difficult to analyze its global or large range asymptotic stability.
The integration of robotics and artificial intelligence promotes
the development of controllers under time-varying operation
tasks (Su et al., 2018; Wu et al., 2021a,b). The theoretical and
practical research of artificial intelligence control methods based
on fuzzy control, neural network and other theories have been
carried out internationally for more than 30 years (Deng et
al., 2021a,b; Wu et al., 2021c,e). Artificial intelligence control
methods often use large-scale inference rule bases or network
structures with a large number of nodes and layers in order to
ensure their large-scale effectiveness. Due to their good learning
ability, artificial intelligence methods are often used in the
cognitive science of human–machine interaction systems (Wu et
al., 2020b, 2021d).

In practical engineering applications, the control systems
often encounter comprehensive characteristics such as strong
non-linearity, uncertainty, and time-varying parameters (Liu et
al., 2020; Liang et al., 2021b), which will affect the stability
of the system. Because the accurate dynamic modeling of the
robot system is rather hard, which brings difficulties to the
control law design of the system and reduces the dynamic
characteristics of the closed-loop system, it is difficult for the
robot to achieve high-quality practical applications. Adaptive
control and its improvement (Tong et al., 2020; Liu et al.,
2021b), sliding mode control and its improvement (Zhai and
Xu, 2021), non-linear feedback control and its improvement,
observers and its improvement (Liang et al., 2021a; Li et al.,
2021; Liu et al., 2021a), and other methods (Yang et al., 2021)
can be used to solve this problem. In literature (Li, 2021), a
novel command filter adaptive tracking controller is designed
to achieve asymptotic tracking for a class of uncertain non-
linear systems with time-varying parameters and uncertain
disturbances by introducing a smooth function with positive
integrable time-varying function to compensate the unknown
time-varying parameters and uncertain disturbances. In this
article, we study adaptive time-varying impedance controllers.
In recent years, adaptive impedance control problems have
attracted the attention of many scholars due to the wide and
different application requirements (Xu et al., 2011; Jamwal et al.,
2017), such as the relevant developments about haptic interfaces
(Sharifi et al., 2016), upper/lower limb rehabilitation robots
(Li et al., 2017; Liu et al., 2017), robotic exoskeleton systems
(Hussain et al., 2013), and so on (Wu et al., 2020a; Deng
et al., 2021b). At present, most research studies on adaptive
impedance control are actually focused on online “impedance

planning,” which means online searching for a target impedance
profile for the purpose of improving the application effects
of robots. The stability issues of the time-varying closed-loop
systems with regard to the target impedance profile are not
analyzed except few works (Ferraguti et al., 2013; Kronander
and Billard, 2016). In some application-oriented research studies,
experiments are always used to demonstrate the stability of the
controlled plants (Hamedani et al., 2019; Pena et al., 2019; Perez-
Ibarra et al., 2019). However, demonstrating the stability of an
adaptive impedance control system by experiments is commonly
task-depended, and different operating tasks require different
experiments to verify the stability of the system. Therefore, an
analysis or control method that can ensure the stability of the
time-varying impedance control system is required. To this end,
the literature (Kronander and Billard, 2016) and (Ferraguti et
al., 2013) addressed this issue. Through an in-depth analysis of
the method presented in Ferraguti et al. (2013), the literature
(Kronander and Billard, 2016) presented the stability conditions
for the variable damping and stiffness system, and the proposed
stability conditions do not rely on the controlled plant’s states.
The benefit of the stability conditions is that they can be verified
offline before performing a task. However, this approach has
two main shortcomings: (1) accurate dynamics model of
the controlled plant is needed in the controller; and (2)
measurement of external loads or joint accelerations is required
in the controller.

In this article, aiming at the above two problems, a globally
uniform stability condition is proposed in which the variable
damping and stiffness are independent of the state of the robot.
As we all know, the closed-loop system under an adaptive
impedance controller is actually a time-varying dynamic system,
and it is also a complex non-linear system, which makes it
difficult to design the controller. To be specific, the main
contribution of this article is summarized as follows:

1) In this article, we use variable damping and stiffness control to
adjust damping and stiffness parameters to improve compliant
operation performance and use adaptive control to adjust the
parameters to achieve the stability of the system when the
system parameters are disturbed.

2) Under the frame of model reference adaptive control
(MRAC), the rigorous canonical reduction form of the
dynamics of the general robot system can be transformed
into linear or special non-linear “recursive canonical form.”
By using the recursive canonical expression and the design
method of the time-varying impedance controller of the
linear system, the analytical expression of the parameter
adaptive regulation law can be obtained, and the time-varying
impedance controller with parameter adaptive characteristics
can be designed.

3) The time-varying impedance controller is reconstructed
under the frame of MRAC, and the stability condition given in
Kronander and Billard (2016) remains unchanged. Therefore,
the stability condition under the adaptive control frame is
still state independent, while the above two shortcomings are
eliminated.
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The remainder of this article is organized as follows. Section
2 presents the stability condition provided by Kronander and
Billard (2016), since it does not depend on any controllers.
Section 3 presents our main contributions, the time-varying
impedance controller based on MRAC and a control parameter
selection approach. As an example, the method is tested through
an uncertain planar 2R manipulator in section 4. Section 5 gives
the conclusions.

2. EXISTING TIME-VARYING IMPEDANCE
CONTROLLER FOR MANIPULATORS

In general, the dynamic equation of the manipulators has the
following form

M(2)2̈ + C(2, 2̇)2̇ + N(2)− τe = τa (1)

where 2 ∈ ℜn represents the generalized coordinates of the
manipulator in configuration space, M(2) ∈ ℜn×n represents
the inertial matrix of the system, C(2, 2̇)2̇ ∈ ℜn represents
centrifugal and Coriolis torque vector, N(2) ∈ ℜn represents the
gravity and elastic force vector, τe ∈ ℜn represents an equivalent
torque caused by the external forces, while τa ∈ ℜn represents
the actuation torque.

For time-varying impedance control issues, the closed-loop
target dynamic equation of a manipulator can be given as follows

H ¨̄2 + D(t) ˙̄2 + K(t)2̄ = τe (2)

where 2̄ = 2 − 2d is defined to be an error vector of the
generalized coordinates and 2d denotes the desired position of
the generalized coordinates, H denotes a positive definite and
symmetric constantmatrix,D(t) denotes a time-varying damping
matrix, and K(t) denotes a time-varying stiffness matrix. Both of
D(t) and K(t) are also positive definite and symmetric. Usually,
K(t) should be determined by the designated operation tasks,
and D(t) should be selected to ensure the global asymptotic

stability at the origin (2̄, ˙̄2) = (0, 0) of the closed-loop system
(2) when the equivalent external torque satisfies τe = 0. If the
equivalent external torque τe does not equal to zero, then the

origin (2̄, ˙̄2) = (0, 0) of the closed-loop system (2) should be
globally stable in Lyapunov’s sense. An elegant result of designing
a time-varying impedance controller of the manipulator can be
stated as Lemma 1, which is an adapted result that was first
presented in the literature (Kronander and Billard, 2016).

Lemma 1. For the dynamic systems (1) and the target system
(2), suppose the stiffness matrix K(t) is continuous, then K̇(t)
is bounded, which means

∥

∥K̇(t)
∥

∥ ≤ �, where � is a positive
constant. Then there exists a positive constant α and a matrix D(t)
satisfying the following set of inequalities















α > 0
K(t)+ αD(t)− α2H > 0
−D(t)+ αH < 0

K̇(t)+ αḊ(t)− 2αK(t) < 0

(3)

which makes the following closed-loop system







M(2)2̈ + C(2, 2̇)2̇ + N(2)− τe = τa

τa = M2̈d + C2̇d + N + (M −H) ¨̄2 +
[

C − D(t)
] ˙̄2

−K(t)2̄

(4)

globally uniformly asymptotically stable at the origin (2̄, ˙̄2) =

(0, 0) when τe = 0. When τe 6= 0, then the origin (2̄, ˙̄2) = (0, 0)
is globally uniformly stable.

REMARK 1. By applying a Lyapunov candidate function

V( ˙̄2, 2̄, t) = 1
2 (

˙̄2 + α2̄)TH( ˙̄2 + α2̄) + 1
2 2̄

Tβ(t)2̄ with the
time-varying function definition β(t) = K(t) + αD(t) − α2H,
it is not hard to show that the first two inequalities in (3) are
used to ensure the positive definiteness of Lyapunov function

V( ˙̄2, 2̄, t), and the last two inequalities in (3) can ensure the

negative definiteness of V̇( ˙̄2, 2̄, t). Furthermore, by proving the

function V( ˙̄2, 2̄, t) is also a decrescent function, then the global
uniform asymptotic stability of the closed-loop system (2) can
be concluded. For the purpose of simplifying control parameters
selection, in He et al. (2020) the authors presented a simple
stability condition

D(t) = αH + εI (5)

where ε > 0 is a small constant and I denotes an identity matrix.
Even though the damping matrix given in (5) shows certain
conservatism for some applications, it is sufficient to show that
the solution of the inequality group (3) exists.

REMARK 2. Note that the torque controller τa(t) in (4) uses
acceleration feedbacks, and the dynamics model (1) is supposed
to be accurate. In real world applications, these two points may
not be easily achieved, since the acceleration sensors are not
standard accessories for many manipulators and it is also rather
difficult to accurately determine the dynamics parameters of a
multi-DOF mechanical system. In the next section, it will be
shown that these problems can be resolved by developing an
MRAC based time-varying impedance controller.

3. A MRAC BASED TIME-VARYING
IMPEDANCE CONTROLLER FOR
MANIPULATORS

For a controlled system with an adaptive controller, in general,
the uniformly asymptotical stability of the closed-loop system
cannot be concluded by following the same method as that
provided in Remark 1. The main reason is that a parameter
estimation law is also included in the closed-loop system besides a
control law, such that the Lyapunov candidate function cannot be
constructed as that presented in Remark 1. On the contrary, the
following lemma (Slotine and Li, 1991) can be utilized to analyze
the uniformly asymptotical stability of a closed-loop system with
an adaptive controller.

LEMMA 2. If a scalar function V(t) has the following properties,
then lim

t→∞
V̇(t) → 0.

Frontiers in Neurorobotics | www.frontiersin.org 3 March 2022 | Volume 16 | Article 78984256

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Liang et al. Adaptive Time-Varying Impedance Controller

(1). V(t) is lower bounded;
(2). V̇(t) is negative semi-definite;
(3). V̇(t) is uniformly continuous in time.

Now, we derive the adaptive time-varying impedance controller.
First, we define a virtual velocity error vector

s = ˙̄2 + 32̄ = 2̇ − 2̇d + 32̄ = 2̇ − 2̇r (6)

where 3 ∈ ℜn×n is a symmetric and positive definite matrix, or
more generally a matrix so that−3 is Hurwitz, 2̄ ∈ ℜn, and the
virtual reference velocity 2̇r ∈ ℜn in Equation (6) is defined as

2̇r = 2̇d − 32̄. (7)

It is well known that the dynamics of a mechanical system
commonly satisfies the linearly parameterized property, that is,
the left-hand side of the dynamic system (1) can be expressed as
the following form

M(2)2̈ + C(2, 2̇)2̇ + N(2)− τe = χ(2, 2̇, 2̈)ρ (8)

where χ(2, 2̇, 2̈) denotes a matrix, ρ denotes an unknown
parameter vector that describes the mass properties of a
mechanical system. If we replace the differential variables 2̇ and
2̈ of the system (1) with the virtual reference velocity 2̇r and its
differential variable 2̈r , then the linearly parameterized property
does not change, and the resulted virtual dynamic system can also
be expressed as a similar form

M(2)2̈r + C(2, 2̇)2̇r + N(2)− τe = χ(2, 2̇, 2̇r , 2̈r)ρ. (9)

By applying the linearly parameterized form Equation (9), we can
obtain the following result.

THEOREM 1. For the dynamic systems (1), by applying the
following controller

τa = χ(2, 2̇, 2̇r , 2̈r)ρ̂ − KDs (10)

and the following parameter estimator

˙̂ρ = −Ŵ−1χTs (11)

where KD in Equation (10) is a continuous positive definite
matrix, i.e., K̇D is bounded, ρ̂ denotes the estimation of ρ, and
the matrix Ŵ in Equation (11) is also positive definite, then the

origin (2̄, ˙̄2) = (0, 0) of the closed-loop system







M(2)2̈ + C(2, 2̇)2̇ + N(2)− τe = τa
τa = χ(2, 2̇, 2̇r , 2̈r)ρ̂ − KDs
˙̂ρ = −Ŵ−1χTs

(12)

is globally uniformly asymptotically stable when the external

loads τe = 0. If the external loads τe 6= 0, the origin (2̄, ˙̄2) =

(0, 0) of the system Equation (12) is globally uniformly stable in
the Lyapunov’s sense.

PROOF. Let us define ρ̄ = ρ̂ − ρ to be an error vector of the
parameter estimates ρ̂ and select a Lyapunov candidate function

V(t) =
1

2

(

sTMs+ ρ̄TŴρ̄

)

. (13)

By using the definition of the virtual velocity error vector given by
Equation (6), the time derivative of Equation (13) can be given as

V̇(t) = sTMṡ+ 1
2 s

TṀs+ ρ̄TŴ ˙̄ρ = sT
(

M2̈ −M2̈r

)

+ 1
2 s

TṀs

+ρ̄TŴ ˙̄ρ.
(14)

Since Ṁ − 2C is a skew-symmetric matrix (Murray et al., 1994),

which means that
(

Ṁ − 2C
)T

= −
(

Ṁ − 2C
)

, we have

ṀT + Ṁ = 2CT + 2C (15)

and since M is a symmetric and positive definite (Murray et al.,
1994), which means that M = MT, then from Equation (15) we
can get

ṀT + Ṁ = 2Ṁ = 2CT + 2C (16)

So

Ṁ = C + CT (17)

By using the equation above, Equation (14) can be written as

V̇(t) = sT
(

M2̈ −M2̈r

)

+
1

2
sT

(

C + CT
)

s+ ρ̄TŴ ˙̄ρ. (18)

Referring to the dynamics Equation (1), it is easy to obtain

M2̈ = τa − C2̇ − N + τe (19)

and from (6) we can obtain

2̇ = s+ 2̇r . (20)

Substituting Equations (20) into (19) and then bringing
Equations (19) into (18), it can be shown that

V̇(t) = sT
[

τa −M2̈r − C
(

s+ 2̇r

)

− N + τe
]

+
1

2
sT

(

C + CT
)

s+ ρ̄TŴ ˙̄ρ

= sT
[

τa −M2̈r − C2̇r − N + τe
]

+ ρ̄TŴ ˙̄ρ.
(21)

Due to ρ̄ = ρ̂−ρ and ρ is a constant for anymanipulator system,
we have ˙̄ρ = ˙̂ρ. Therefore, Equation (21) follows that

V̇(t) = sT
[

τa −M2̈r − C2̇r − N + τe
]

+ ρ̄TŴ ˙̂ρ. (22)

By applying the linearly parameterized form Equation (9),
Equation (22) can be expressed as

V̇(t) = sT
[

τa − χ(2, 2̇, 2̇r , 2̈r)ρ
]

+ ρ̄TŴ ˙̂ρ. (23)
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If we adopt the controller Equation (10), it is straightforward that
the Equation (23) can be rewritten as

V̇(t)= sT
[

χρ̂ − KDs− χρ
]

+ρ̄TŴ ˙̂ρ = sTχρ̄ − sTKDs+ ρ̄TŴ ˙̂ρ.
(24)

By using the parameter estimator Equation (11), which is given
as ˙̂ρ = −Ŵ−1χTs, then we can obtain

V̇(t) = −sTKDs ≤ 0 (25)

since KD is positive definite. This implies V(t) ≤ V(0), and
therefore, both of the vectors s and ρ̄ are bounded [see Equation
(13)]. To observe the uniform continuity of the function V̇(t), we
calculate the second order differential function of V(t), and it can
be written as

V̈(t) = −2sTKD ṡ− sTK̇Ds. (26)

See definition Equation (6), it shows the vector s is smooth. On
the other hand, the differential matrix K̇D is supposed to be
bounded. Then we can conclude that V̈(t) is bounded. According
to Lemma 2, we can get lim

t→∞
V̇(t) → 0, which means s → 0 as

t → ∞. It is obvious that ṡ is bounded.
On the surface s = 0, referring to the definition s = ˙̄2 + 32̄,

we can conclude the origin (2̄, ˙̄2) = (0, 0) of the closed-loop
system Equation (12) is uniformly asymptotically stable since−3

is Hurwitz. In addition, the function V(t) is unbounded, thus the
stability of the closed-loop system is globally effective.

REMARK 3. Theorem 1 shows that both the control law
Equation (10) and the parameter estimator (11) only use state

feedback s = ˙̄2+32̄. This is helpful for improving the feasibility
of the controller in real world applications. In particular, the
adaptive controller does not need an accurate dynamic model,
thus better robust stability of the closed-loop system Equation
(12) could be expected.

REMARK 4. Even though Theorem 1 gives an adaptive controller
for the dynamic system Equation (1), so far the adaptive
controller is not related to the time-varying impedance control
issues of the manipulators. By using the following result, we can
get that the time-varying impedance control problems can be
resolved under the adaptive control strategy.

THEOREM 2. If the control parameters3 andKD of the adaptive
controller Equation (10) are chosen as

3 = γM−1,KD =
1

γ
K(t)M − C (27)

where γ > 0 is a constant, then the origin (2̄, ˙̄2) = (0, 0) of the
closed-loop system Equation (12) is globally uniformly stable in
Lyapunov’s sense.

PROOF. By subtracting Equation (9) from Equation (1), we have

Mṡ+ Cs = τa − χρ (28)

where s = 2̇ − 2̇r is considered. Then, substituting the adaptive
control law Equation (10) into Equation (28), we can obtain that

Mṡ+ (C + KD) s = χρ̄ (29)

where ρ̄ = ρ̂ − ρ is considered. Since the vector also satisfies the

relationship s = ˙̄2 + 32̄, we can obtain

M ¨̄2 + (M3 + C + KD) ˙̄2 + (C + KD)32̄ = χρ̄. (30)

According to Equation (27), if we select 3 = γM−1 and KD =
1
γ
K(t)M − C, then Equation (30) can be written as

M ¨̄2 + D(t) ˙̄2 + K(t)2̄ = χρ̄ (31)

where

D(t) = M3 + C + KD = γ I +
1

γ
K(t)M. (32)

Comparing Equation (32) with Equation (5), it shows the
damping matrix given by (32) satisfies the stability condition
Equation (5) if we select α = 1

γ
K(t) and ε = γ . In addition,

on the basis of Theorem 1, under the control law (10) and the
parameter estimator Equation (11), the error vector ρ̄ is bounded.

According to Lemma 1, the origin (2̄, ˙̄2) = (0, 0) of the closed-
loop system Equation (31) is globally uniformly asymptotically
stable when ρ̄ = 0. If the error vector ρ̄ 6= 0, the origin

(2̄, ˙̄2) = (0, 0) of the system Equation (31) is globally uniformly
stable in Lyapunov’s sense.

REMARK 5. It is worth noting that, in Equation (2), the inertial
matrixH is generally different from the inertial matrixM, so that

the term (M − H) ¨̄2 is appeared in the controller Equation (4),
and then an accelerated feedback or sensing the external loads τe
is necessary. If we selectH = M, the closed-loop system Equation
(4) is given by

M ¨̄2 + D(t) ˙̄2 + K(t)2̄ = τe (33)

which is very similar to the adaptive control law based closed-
loop system Equation (31). However, if the dynamics model
Equation (1) is not accurate, then the error terms 1M(2)2̈,
1C(2, 2̇)2̇, and 1N(2) will appear in the closed-loop system
Equation (4), as well as in the system Equation (33), so that some
more complex robust controllers have to be used to overcome
the effects caused by the un-modeled errors for guaranteeing
the stability of the closed-loop system Equation (4). On the
contrary, the adaptive control law Equation (10) has considered
the un-modeled error and updated the virtual reference model
χ(2, 2̇, 2̇r , 2̈r)ρ̂ in the controller Equation (10) online by using
the parameter estimator Equation (11). This makes the virtual
velocity vectors s and the parameters errors ρ̄ be bounded, and
finally, the virtual velocity vectors s → 0 as t → ∞. On the

surface s = ˙̄2 + 32̄ = 0, the stability of the state (2̄, ˙̄2) of
the closed-loop system is ensured by the Hurwitz matrix −3.
Thus, the two problems mentioned in Remark 2 can be resolved
or relaxed by using the MRAC based time-varying impedance
controller.
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REMARK 6. It is also worth noting that, in general, the external
loads τe cannot be estimated by using the linearly parameterized
form Equation (9). Thus, for some accurate force tracking control
tasks, the linearly parameterized form Equation (9) should be
changed as

M(2)2̈r + C(2, 2̇)2̇r + N(2) = χ(2, 2̇, 2̇r , 2̈r)ρ (34)

then under the control law Equation (10) and the parameter
estimator Equation (11), the closed-loop system can be given as

M ¨̄2 + D(t) ˙̄2 + K(t)2̄ = χρ̄ + τe (35)

where the control parameter selection Equation (27) is
considered. Since the right side of Equation (35) is bounded
under control law Equation (10) with the parameter estimator

Equation (11), the origin (2̄, ˙̄2) = (0, 0) of the system Equation
(35) is still globally uniformly stable in the Lyapunov’s sense.
However, the error term χρ̄ on the right side of Equation (35)
will cause certain force tracking errors. Thus, for accurate force
tracking control tasks, measurement of external loads is required,
and the MRAC based control law should be changed as

{

τa = χ(2, 2̇, 2̇r , 2̈r)ρ̂ − KDs− τe
˙̂ρ = −Ŵ−1χTs

(36)

then the closed-loop system Equation (35) will changed to that
same as Equation (31).

4. NUMERICAL SIMULATIONS

To test the feasibility of the proposed adaptive time-varying
impedance controller, a model-uncertain planar 2R manipulator
is adopted as the plant. Suppose the mass of two links arem1 and
m2, respectively, the inertia of two links is I1 and I2, respectively,
the length of two links is L1 and L2, respectively, the distance
between the mass center of links and joint axes are Lc1 and Lc2,
respectively, the dynamic equation of planar 2R manipulator can
be given as

[

m11 m12

m21 m22

] [

θ̈1
θ̈2

]

+

[

c11 c12
c21 c22

] [

θ̇1
θ̇2

]

=

[

τ1
τ2

]

(37)

where θ1 and θ2 are the joint angles of the two links, m11 =

ρ1 + 2ρ3 cos θ2, m12 = ρ2 + ρ3 cos θ2, m21 = m12, m22 = ρ2,
c11 = −ρ3 sin θ2θ̇2, c12 = −ρ3 sin θ2(θ̇1 + θ̇2), c21 = ρ3 sin θ2θ̇1,
and c22 = 0 with ρ1 = I1 + m1L

2
c1 + I2 + m2(L

2
1 + L2c2), ρ2 =

I2 + m2L
2
c2, and ρ3 = m2L1Lc2. For the planar 2R manipulator,

the linearly parameterized form Equation (34) can be expressed
as

χρ =

[

χ11 χ12 χ13

χ21 χ22 χ23

]





ρ1
ρ2
ρ3



 (38)

TABLE 1 | Physical parameters of the planar 2R manipulator.

Parameter

Symbols

Initial value

used in ρ̂

Actual value

of the plant

Physical

Units

m1 0 2.0 kg

m2 0 2.0 kg

L1 0 0.5 m

L2 0 0.6 m

Lc1 0 0.3 m

Lc2 0 0.4 m

I1 = m1L
2
c1 0 0.18 Kg ·m2

I2 = m2L
2
c2 0 0.32 Kg ·m2

TABLE 2 | Control parameters of the adaptive controller.

Parameters Symbols Values Physical

Units

Coefficient γ 0.04 /

Inertial ma-

trix
M Given by (37) Kg ·m2

Coefficient

matrix
3 γM−1 (Kg ·m2 )

−1

Coefficient

matrix
Ŵ 80I /

Desired stif-

fness matrix
K(t)





5+ 4 sin(π t) 0

0 5− 4 cos(π t)



 Nm/rad

Coefficient

matrix
KD

1
γ
K(t)M− C /

Desired dam-

ping matrix
D(t) γ I+ 1

γ
K(t)M Nm/rad/s

where χ11 = θ̈1r , χ12 = θ̈2r , χ13 = (2θ̈1r + θ̈2r) cos θ2 − (θ̇2θ̇1r +
θ̇1θ̇2r + θ̇2θ̇2r) sin θ2, χ21 = 0, χ22 = θ̈1r + θ̈2r , χ23 = θ̈1r cos θ2 +
θ̇1θ̇1r sin θ2. In the simulation, the control task is described as



















θd1 (t) =
π

4
+

π

6
sin(2π t) t ≤ 6s

θd2 (t) = −
π

4
+

π

5
sin(2π t) t ≤ 6s

θd1 (t) =
π

4
, θd2 (t) = −

π

4
t > 6s

(39)

and










τe =
[

0 0
]T

t ≤ 10s

τe =
[

5 −5
]T

10s < t ≤ 14s

τe =
[

0 0
]T

t > 14s

. (40)

The physical parameters of themanipulator are shown inTable 1,
and the control parameters are shown in Table 2, then the
response results of the closed-loop system Equation (35) are
plotted in the Figures 1–5.

According to the numerical simulation results, even though
the physical parameters of the plant are supposed to be zero
at the initial moment (see Figure 3 and Table 1), it shows that
system Equation (35) is uniformly stable for the controlled planar
2R manipulator. From Figures 1, 2, it can be seen that the joint
trajectory tracking errors are bounded and converge to zero
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FIGURE 1 | Responses of the joint position and their desired trajectories.

FIGURE 2 | Responses of the joint position errors.

FIGURE 3 | Trajectories of the parameter estimates.

FIGURE 4 | Actuation torques of the 2R manipulator during the control task.

when the trajectory tracking task is switched to a stabilization
task after the time is larger than 6s. Meanwhile, from Figure 3,
it is observed that the parameter estimates ρ̂ are changed to
constant values, and from Figure 4, one sees that the actuation

FIGURE 5 | A local enlarged drawing of the actuation torques when the

external loads are acting.

FIGURE 6 | Responses of the joint position and their desired trajectories of

the comparison method.

torques converge to zero after the desired joint trajectories θdi (t)
are constants. When the time is falling in the interval t ∈

(10, 14](s), there are non-zero external loads τe =
[

5 −5
]T

acting on the joints, and then the joint angles demonstrate large
deviations (as shown in Figure 2) due to the small given closed-
loop stiffness K(t) (as shown in Table 2). Since the desired joint
stiffness K(t) is time-varying, the joint position deviations are
varying even though the external loads τe are constant. Figure 5
shows a local enlarged drawing of the actuation torques during
τe 6= 0. It is observed that the average values of the actuation

torques happen to be τa ≈
[

5 −5
]T
, since the planar 2R

manipulator moves in the horizontal plane [see Equation (37)
where the gravity of the manipulator is not considered here],
then the actuation torques τa should balance the external loads
τe. However, due to the desired time-varying stiffness K(t), the
parameter estimates ρ̂ show certain fluctuations (such that ρ̄ 6=

0), then the error term χρ̄ shown in Equation (35) causes the
actuation torques τa to show certain fluctuations. The selection
of controller parameters γ and Ŵ affect the performance of the
system. We make a performance analysis of the closed-loop
control system with different parameters γ and Ŵ. We found
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FIGURE 7 | Responses of the joint position errors of the comparison method.

FIGURE 8 | Actuation torques of the 2R manipulator during the control task of

the comparison method.

that with other conditions unchanged, when Ŵ increases within a
certain range, the root-mean-square error (RMSE) of the joint
position will increase, and the peak value of the error 2̄ will
also increase, while the RMSE of control torque will decrease.
When γ is too large or too small, the performance of the
control system will deteriorate. Therefore, the state-independent
property allows us to tune the controller parameters offline in
advance through simulation, which lays a good foundation for
ensuring the performance of the robot.

In order to verify the effectiveness of the controller proposed
in this article, we also compared it with the controller in He
et al. (2020). Under the same initial conditions and parameters
as the proposed controller, the simulation of the comparison
controller is carried out, and the response results of the closed-
loop system under the comparison controller are shown in
Figures 6–8. Comparing Figures 2, 7, we can get that the RMSE

of the joint position under the proposed controller in Figure 2

is 0.416 and 0.494, while the RMSE of the joint position under
the comparison controller in Figure 7 is 0.865 and 1.337. Then, it
can be concluded that the controller proposed in this article can
better realize the trajectory tracking control with higher accuracy.
From the simulation results, we can also get that the proposed
controller has a smaller peak error. All these simulation results
verify the effectiveness of the controller proposed in this article.

5. CONCLUSION

Under the design frame of an MRAC based control system, a
time-varying impedance controller is proposed for manipulators
with uncertain structure parameters. We show that the proposed
controller does not need to use acceleration-based feedback
or measurement of the external loads, and the adaptive
controller can tolerate considerable structure parameter errors.
By employing a Lyapunov-like stability analysis approach,
the globally uniform stability of the time-varying closed-loop
system is analyzed, and a simple controller parameters selection
approach is presented. Through a planar 2R manipulator, the
feasibility of the proposed control method is verified by some
numerical simulations. Our future work will focus on the anti-
interference ability of the proposed controller.
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Neural networks have played critical roles in many research fields. The recently proposed

adversarial training (AT) can improve the generalization ability of neural networks by

adding intentional perturbations in the training process, but sometimes still fail to

generate worst-case perturbations, thus resulting in limited improvement. Instead of

designing a specific smoothness function and seeking an approximate solution used

in existing AT methods, we propose a new training methodology, named Generative

AT (GAT) in this article, for supervised and semi-supervised learning. The key idea of

GAT is to formulate the learning task as a minimax game, in which the perturbation

generator aims to yield the worst-case perturbations that maximize the deviation of

output distribution, while the target classifier is to minimize the impact of this perturbation

and prediction error. To solve this minimax optimization problem, a new adversarial loss

function is constructed based on the cross-entropymeasure. As a result, the smoothness

and confidence of the model are both greatly improved. Moreover, we develop a

trajectory-preserving-based alternating update strategy to enable the stable training of

GAT. Numerous experiments conducted on benchmark datasets clearly demonstrate

that the proposed GAT significantly outperforms the state-of-the-art AT methods in terms

of supervised and semi-supervised learning tasks, especially when the number of labeled

examples is rather small in semi-supervised learning.

Keywords: neural networks, adversarial training, generative AT, worst-case perturbations, smoothness function,

trajectory-preserving-based alternating update strategy

1. INTRODUCTION

Neural networks have launched a profound reformation in various fields, such as intelligent driving
(Feng et al., 2021), neuro-inspired computing (Zhang et al., 2020; Deng et al., 2021b), smart
health (Khan et al., 2021), and human computer interaction (Deng et al., 2021a; Pustejovsky
and Krishnaswamy, 2021; Fang et al., 2022). However, in practical classification and regression
applications (Wu et al., 2021a), since the number of training examples is finite, the error rate
calculated by the training examples may be considerably deviated from the one by test examples.
This fact causes the overfitting problem (Wu et al., 2021b), which greatly impacts the generalization
performance of neural networks. In order to prevent the neural networks from overfitting, one
popular approach is to augment the loss function by introducing a regularization term, which
encourages the model to be less dependent on the empirical risk for the finite training examples.
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Based on Bayesian theory, this regularization term can be
interpreted as a prior distribution reflecting the preconceived
notion of the model (Bishop and Nasser, 2006; Wu et al., 2020).
Accordingly, the prior distribution of a model is usually assumed
to be smooth. That is to say, the outputs of a naturally occurring
system tend to be smooth with respect to the spatial or temporal
inputs (Wahba, 1990). This assumption indicates that the data
points close to each other should be highly likely to infer the same
predictions. Unfortunately, recent studies show that most of the
neural networks suffer from misclassifying some data points that
have only small differences from the correctly classified data
points (Goodfellow et al., 2014b; Strauss et al., 2017; Yuan et al.,
2019). These misclassified data points are called the adversarial
examples, which are crafted by the addition of some imperceptive
perturbations to the natural examples in the input space.

To overcome the problem that the neural networks are
vulnerable to small but malicious perturbations, adversarial
training (AT) is proposed (Goodfellow et al., 2014b; Wang
et al., 2019; Cui et al., 2021; Zhang et al., 2022). AT aims to
smooth the model outputs by penalizing the deviations caused
by the adversarial perturbations. The major challenge of AT
is how to accurately estimate such perturbations that alter
the output distribution around the input data points. To this
end, several perturbation-based methods have been proposed by
solving an internal optimization problem at the current status
of the model. For instance, random AT (RAT) (Zheng et al.,
2016) improves the model smoothness by adding the randomly
generated perturbations to the input data. These perturbed data
points are encouraged to produce the same prediction given by
its corresponding unperturbed versions. Since the perturbations
around the input appear in random directions, RAT is referred
to as an isotropic smoothing approach. However, it is shown that
the isotropic smoothing makes the model particularly sensitive
to adversarial examples (Szegedy et al., 2013; Goodfellow et al.,
2014b). Based on this consideration, Goodfellow et al. (2014b)
proposed a standard AT (SAT). SAT is an anisotropic method
that smoothes the output distribution by making the model
robust against perturbations in a specific direction. This specific
direction in the input space is called the adversarial direction,
in which the output of the model is the most sensitive. To
identify the perturbations in the adversarial direction, SAT
first formulates an objective function based on the differences
between the prediction and correct labels and then solves this
function with an efficient Frank-Wolfe optimizer. SAT requires
the use of labels when calculating the adversarial perturbations.
Hence, SAT cannot be applied to the regime of semi-supervised
learning. Virtual AT (VAT) (Miyato et al., 2018) extends the
notion of SAT in the sense that it defines the adversarial direction
without label information, and thus can be applied to both
supervised and semi-supervised learning tasks. We observe that
in order to generate the adversarial perturbations, the existing
ATmethods explicitly define a smoothness function to regularize
the neural networks. This leads to two limitations. First, it is
extremely difficult to find a universal smoothness function due
to the various output patterns and distance metrics. Second,
there is no analytical solution to such a box-constrained function.
Consequently, a numerical method is generally used to seek an

approximate solution, which greatly affects the performance of
identifying the worst-case adversarial perturbations.

Different from previous methodologies, we propose a novel
AT methodology, named generative AT (GAT) in this article,
to improve the smoothness of output distribution of neural
networks for the supervised and semi-supervised learning tasks.
The objective of the proposed GAT is to train the target
classifier such that it not only achieve the minimum prediction
error but also has the best robustness against the adversarial
perturbations. To this aim, we formalize the regularizing
process as a minimax game. To be specific, we exploit the
cross entropy method to construct a new adversarial loss
function. Moreover, we develop an effective alternating update
strategy to optimize the challenging non-convex problems. The
experimental results tested on benchmark datasets show that
the proposed GAT obtains the empirical equilibrium point and
state-of-the-art performance.

The main contributions of this article are summarized as
follows:

• We formulate the regularizing for the learning task as
a minimax game according to the outputs of the target
classifier from the natural example and its adversarial version
derived by a perturbation generator. As the game approaches
the empirical equilibrium, the target classifier achieves the
best performance.

• A new adversarial loss function is constructed based on
the cross entropy method, which not only accurately reflects
the deviation caused by the perturbation but also efficiently
assesses the confidence of network output.

• An effective alternating update strategy based on trajectory
preserving is proposed to control the minimax optimization
training to be stable.

• The proposed GAT regularizes the model without label
information, hence it can be applied to the supervised and
semi-supervised learning tasks.

It is worth emphasizing that our method differs from any one
of the generative-model-based AT methods (Kingma et al., 2014;
Maaløe et al., 2016; Salimans et al., 2016; Dai et al., 2017).
This family of methods is considered to be an improvement
of Generative Adversarial Network (GAN), in the sense that
the target classifier in their frameworks is the extension of the
GAN’s discriminator serving for distinguishing the natural and
generated examples. For our method, the discriminator is not the
target classifier; instead, it is manually designed according to the
outputs of the target classifier over the natural example and its
adversarial version.

2. PROBLEM SETTING AND RELATED
WORKS

Without loss of generality, we consider the classification tasks in
a semi-supervised setting. Let x ∈ X = RI be the input vector
with I-dimension and y ∈ Y = ZK be the one-hot vector of

labels with K categories. Dl =

{

xl
(i), y

l
(i)|i = 1, ...,N l

}

and Dul =
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{

xul
(j)

|j = 1, ...,Nul
}

denote the labeled and unlabeled dataset,

where N l and Nul are the number of labeled and unlabeled
examples. AT regularizes the neural network such that both the
natural and perturbed examples output the intended predictions.
That is, we aim to learn amapping F :X → [0, 1]K parameterized
with θ ∈ 2 via solving the following optimization problem

min
{

LS

(

D
l, θ

)

+ λ · LR

(

Dl,Dul, θ
)}

. (1)

The symbol LS in Equation 1 represents the supervised loss over
the labeled dataset, which can be expanded as

LS = E(xl ,yl)∼DlŴ

(

yl, Fθ

(

xl
))

, (2)

where Fθ

(

xl
)

denotes the output distribution vector of the

neural network on the input xl given the model parameter θ , yl

is the one-hot vector of the true label for xl. The operator Ŵ (·, ·)
denotes the distance measure used to evaluate the similarity of
two distributions. A common choice of Ŵ for the supervised cost
LS is themeasure of cross entropy.LR is the adversarial loss, which
is served as a regularization term for promoting the smoothness
of the model. The adversarial loss plays an important role in
enhancing the generalization performance while the number of
labeled examples is small relative to the number of the whole
training examples (i.e., N l << Nul + N l). λ is a non-negative
value that controls the relative balance between the supervised loss
and the adversarial loss.

Many approaches are presented to construct LR based on the
smoothness assumption, which can be generally represented in a
framework as

LR = Ex∼DŴ
(

Fθ (x; ξ) , F̃θ ′
(

x; ξ ′
))

, (3)

where x is sampled from the dataset D which consists of both
labeled and unlabel examples. Ŵ

(

Fθ (x; ξ) , F̃θ ′
(

x; ξ ′
))

is termed
as the smoothness function, which is comprised of a teacher
model Fθ (x; ξ) and a student model F̃θ ′

(

x; ξ ′
)

. The teacher
model is parameterized with parameter θ and perturbation ξ ,
while the student model is parameterized with parameter θ ′

and perturbation ξ ′. The goal of LR is to improve the model’s
smoothness by forcing the student model to follow the teacher
model. That is to say, the output distributions yielded by F̃ is
supported to be consistent with the outputs derived by F. To this
end, the teacher model, student model, and similarity measure
are required to be carefully crafted for formulating an appropriate
smoothness function against the perturbation of the input and
the variance of the parameters. Based on the implementations
of this smoothness function, some typical AT approaches can be
explicitly defined.

Random Adversarial Training: In RAT, random noises are
introduced in the student model instead of the teacher model,
and the parameters of the student model are shared with the
teacher model. Moreover, L2 distance is used to measure the
similarity of the output distributions derived by F̃ and F on the
whole training examples. That is, θ ′ = θ , ξ ′ ∼ N (0, 1), ξ = 0,
and D = Dul

⋃

Dl for Equation 3.

Adversarial TrainingWith5-Model: In contrast to RAT, 5-
model introduces random noises to both the teacher model and
student model, i.e., ξ ′, ξ ∼ N (0, 1). The reason for this is based
on the assumption that predictions yielded by natural example
may itself be an outlier, hence it is reasonable to make two noisy
predictions learn from each other. In this case, optimizing the
smoothness function for 5-model is equivalent to minimizing
the prediction variance of the classifier (Luo et al., 2018).

Standard Adversarial Training: Instead of adding random
noises to the teacher/student model, the perturbation adopted
in SAT is some imperceptible noise that is carefully designed to
fool the neural network. The adversarial loss Lsat

R of SAT can be
written as

L
sat
R = E(xl ,yl)∼DlKL

(

yl||F̃θ

(

xl; ξadv

))

s.t. ξadv = argmax
ξ ;‖ξ‖≤ε

KL
(

yl||F̃θ

(

xl; ξ
))

,
(4)

where the operator KL (·||·) denotes the similarity measure
of Kullback-Leibler (K-L) divergence. ξadv denotes adversarial
perturbation which is added into xl to make the output
distribution of the student model most greatly deviate yl. ε is
a prior constant that controls the perturbation strength. Note
that the teacher model, in this case, is degenerated into the
one-hot vector of the true label. Generally, we cannot obtain
the exact adversarial direction of ξadv in a closed form. Hence,
a linear approximation of this objective function is applied to
approximate the adversarial perturbation. For ℓ∞ norm, the
adversarial perturbation ξadv can be efficiently approximated by
using the famous fast gradient signmethod (FGSM) (Madry et al.,
2017). That is,

ξadv ≈ ε · sign
(

∇xlKL
(

yl||F̃θ

(

xl; ξ
)))

. (5)

Some alternative invariants such as the iterative gradient sign
method (IGSM) (Tramèr et al., 2017) and the momentum IGSM
(M-IGSM) (Dong et al., 2018) are available to solve the objective
function. By adding adversarial perturbations to the student
model, SAT obtains better generalization performance than
RAT and 5-model. Unfortunately, SAT can only be applied in
supervised learning tasks since it has to use the labeled examples
to compute the adversarial loss.

Virtual Adversarial Training: Different from SAT, the key
idea of VAT is to define the adversarial loss based on the output
distribution inferred on the unlabeled examples. In this regard,
the adversarial loss Lvat

R of VAT can be written as

L
vat
R = Ex∼Dl∪DulKL

(

Fθ (x) ||F̃θ (x; ξadv)
)

s.t. ξadv = argmax
ξ ;‖ξ‖≤ε

KL
(

Fθ (x) ||F̃θ (x; ξ)
)

. (6)

To obtain the adversarial perturbation εadv, Miyato et al. (2018)
proposed to approximate the objective function with a second-
order Taylor’s expansion at ε = 0. That is,

ξadv ≈ argmax
ξ ;‖ξ‖≤ε

1

2
ξTH (x, θ) ξ , (7)
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where H is a Hessian matrix which is defined by H (x, θ) =

∇∇ξKL
(

Fθ (x) ||F̃θ (x; ξ)
)

. This binomial optimization is an
eigenvalue problem that can be solved using power iteration
algorithm. Since VAT acquires the adversarial perturbation in the
absence of label information, this method is applicable to both
supervised and semi-supervised learning.

3. THE PROPOSED METHOD

Adversarial training methods regularize the neural network via
forcing the output distribution to be robust against adversarial
examples. To obtain intentional perturbations, the existing AT
methods require to explicitly define a smoothness function to
compute the perturbations. Due to the non-convex characteristic
of the smoothness function, the existing AT methods usually fail
to generate worst-case perturbation by approximation analysis.
To tackle this problem, we propose a novel AT framework termed
GAT for improving the smoothness of the neural network,
where the worst-case perturbation of the input is generated by a
generator. In the following sections, we construct our framework
by answering two central questions: (1) how to formulate the
loss function with the perturbation generator and target classifier
and (2) how to effectively optimize this loss function during the
training process.

3.1. GAT Loss Based on Minimax Game
In our framework, two neural networks are considered, i.e., the
target classifier Tθ (x) parameterized with θ and the perturbation
generator Gϕ (x) parameterized with ϕ. In our framework, the
target classifier is the optimization objective that will be required
eventually. The perturbation generator is constructed by an
auto-encoder-like neural network. Specifically, the perturbation
generator can be defined as a mapping Gϕ :X → X , which
takes a natural example in X and then transforms it into an
imperceptible perturbation in the same space X . For ℓ∞ norm,
such constraints can be represented as

∀x,
∥

∥Gϕ (x)
∥

∥

∞
≤ ε, (8)

where ε is the perturbation bounds that controls the adversarial
strength. To implement the constraints indicated by Equation 8,
the activation function of the last layer in Gϕ is particularly
defined as ε · tanh (·). Then, the generated perturbation is
added into the corresponding natural example to composite an
adversarial example.

The goal of Gϕ is to find a perturbation that most deviates the
current inferred output of the target classifier from the status quo,
while Tθ (x) is to minimize the prediction error for the natural
example as well as the deviation caused by such perturbation.
This problem can be formulated as a minimax game and the loss
function of which can be formulated as

min
θ

max
ϕ

E(xl ,yl)∼DlŴS

(

yl,Tθ

(

xl
))

+ λ · Ex∼Dl∪DulŴR

(

Tθ (x) ,Tθ

(

Gϕ (x) + x
))

.
(9)

Equation 9 is referred to as the GAT loss, which is comprised
of a supervised loss LS and an adversarial loss LR . LS is

determined by labeled examples, while LR is independent of the
labels and served as a regularization term smoothing the model.
The parameter λ controls the balance of LS and LR. For the
maximization and minimization loop of the minimax game, ϕ

and θ are the parameters required to be optimized. Since LR

is defined over the whole data set, our method is applicable
to semi-supervised learning. Note that for the adversarial loss,
the target classifier Tθ (x) is considered as the teacher model,
while the compound function of Tθ

(

Gϕ (x) + x
)

is served as the
student model.

In addition, the operatorŴS (·, ·) andŴR (·, ·) are the similarity
measures for LS and LR, respectively. Here, ŴR is crucial
for the construction of adversarial loss. Instead of using K-L
divergence to define the adversarial loss as VAT/SAT does, we
exploit cross entropy measures to formulate the adversarial loss
function. There are two beneficial effects for this implementation.
First, cross entropy overcomes the problem of zero avoiding, an
inward nature for the K-L divergence(Bishop and Nasser, 2006).
Second, since cross entropy can be represented as the sum of
K-L divergence and information entropy, LR not only implies
the deviation of the output distributions, but also signifies the
confidence of the prediction of the target classifier. In particular,
by substituting ŴR with cross entropy in Equation 9, LR in GAT
loss can be rewritten as

CE
(

Tθ (x) ,Tθ

(

Gϕ (x) + x
))

= KL
(

Tθ (x) ||Tθ

(

Gϕ (x) + x
))

+H (Tθ (x)) ,
(10)

where the operator CE (·, ·) and H (·) denote cross
entropy and information entropy. In Equation 10,
KL

(

Tθ (x) ||Tθ

(

Gϕ (x) + x
))

is termed as smoothness term,
which reflects the deviation of the output distributions, while
H (Tθ (x)) is termed as confidence term, which indicates the
confidence of the output distribution. Moreover, we observed
that the confidence term is independent with parameter ϕ.
Hence, for the maximization loop of the minimax game,
maximizing LR requires to maximize the smoothness term only.
Whereas, for the minimization loop, minimizing LR requires
to minimize both the smoothness term and confidence term.
Note that minimizing the confidence term facilitates boosting
of the prediction confidence of the neural network. Thus, our
adversarial loss has the effect of entropy minimization proposed
in Grandvalet and Bengio (2004) and Sajjadi et al. (2016).

3.2. Alternating Update Process Based on
Trajectory Preserving
Figure 1 depicts the framework of GAT, in which two neural
networks are required to be optimized, i.e., the target classifier
T and the perturbation generator G. G takes natural example x
from the full dataset comprising of both the labeled and unlabeled
examples and generates a perturbation Gϕ (x). Then, Gϕ (x) is
appended into x to composite an adversarial example. Both the
adversarial example and its corresponding natural example are
fed into T for constructing the adversarial loss LR. Meanwhile,
labeled example xl sampled from the labeled dataset is input to T

for formulating the supervised loss LS.
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FIGURE 1 | The overall framework of Generative AT (GAT).

The objective of our framework is to find stable θ and
ϕ such that G maximizes the GAT loss for the given fixed
θ , while T minimizes the GAT loss for the given fixed ϕ.
Due to the non-linear constraint of the perturbation and
non-convex properties of the loss function, this optimization
problem is very challenging. Inspired by the training pattern
of GAN (Goodfellow et al., 2014a) and some common tricks
in reinforcement learning (Mnih et al., 2015), we propose to
optimize the GAT loss by an alternative updating procedure and
stabilize this procedure based on trajectory preserving.
First, we decompose the minimax optimization problem into the
inner loop and outer loop. The inner loop aims to derive an
optimal ϕ for maximizing the loss, while the outer loop aims to
obtain an optimal θ for minimizing the loss. Due to the fact that
the parameter ϕ in the inner loop is independent of the supervised
loss during the maximizing procedure, then the optimal ϕ of G
under the fixed θ can be written as Equation 11. Meanwhile,
the optimal θ of T under the given fixed ϕ can be represented
as Equation 12.

ϕ = argmax
ϕ

Ex∼Dl∪DulCE
(

Tθ (x) ,Tθ

(

x+ Gϕ (x)
))

, (11)

θ = argmin
θ

E(xl ,yl)∼DlCE
(

yl,Tθ

(

xl
))

+

λ · Ex∼Dl∪DulCE
(

Tθ (x) ,Tθ

(

x+ Gϕ (x)
))

.
(12)

Second, since the perturbation generator and the target classifier
are assumed to be neural networks, the parameters θ and ϕ in
Equations 11 and 12 can be calculated by stochastic-gradient-
based methods (Liu et al., 2021; Jin et al., 2022). A traditional
solution to this minimax problem is to alternatively update ϕ by
gradient ascent over the full dataset and update θ by gradient
descent over the labeled dataset. However, since the number

Algorithm 1: Trajectory preserving training process.

1 Initialize randomly θ

2 for epoch = 1 : E do

3 Create empty list L
4 Initialize randomly ϕ0

5 for t = 0 : T do

6 Sample batch
{

x
(t)
i

}

of sizeM from Dul ∪Dl

7 Store
({

x
(t)
i

}

,ϕ(t)
)

into the list L

8 Update ϕ(t+1) by gradient ascent (Equation 13)

9 end

10 for t = 0 : T do

11 Retrieve
({

x
(t)
i

}

,ϕ(t)
)

from the list L

12 Pseudo-update ϕ′ by gradient ascent (Equation 14)

13 Sample batch
{(

xlj, y
l
j

)}

of size N from Dl

14 Update θ by gradient descent (Equation 15)

15 end

16 end

17 return θ

of labeled training examples is small, both ϕ and θ are not
easy to converge in practice. We develop a trajectory preserving
strategy to tackle this problem. In our method, for each epoch
of alternating, we update ϕ using gradient ascent and record the
update trajectories of ϕ. Then, based on these trajectories, we
retrieve the intermediate parameter ϕ′ by executing a pseudo-
update procedure for ϕ. Finally, we update θ by gradient descent
under the given ϕ′.

The implementation details of the proposed trajectory
preserving training procedure are illustrated in Algorithm 1,
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where E is the number of training epochs, T is the maximum
iterations in each epochs. Equations 13 and 14 represent
the updating and pseudo-updating for ϕ by gradient ascent.
Equation 15 describes the updating process for θ by gradient
descent. αg and αt are the learning rate for the perturbation
generator and target classifier, respectively.

ϕ(t+1) = ϕ(t) + αg∇ϕ(t)
1

M

M
∑

i=1

CE
(

Tθ

(

x
(t)
i

)

, Tθ

(

x
(t)
i + G

ϕ(t)

(

x
(t)
i

)))

(13)

ϕ′ = ϕ(t) + αg∇ϕ(t)
1

M

M
∑

i=1

CE
(

Tθ

(

x
(t)
i

)

, Tθ

(

x
(t)
i + G

ϕ(t)

(

x
(t)
i

)))

(14)

θ =θ − αt∇θ







1

N

N
∑

j=1

CE
(

ylj,Tθ

(

xlj

))

+
λ

M

M
∑

i=1

CE
(

Tθ

(

x
(t)
i

)

,

Tθ

(

x
(t)
i + Gϕ′

(

x
(t)
i

)))}

.

(15)

4. EXPERIMENTS

To validate the performance of our method on supervised and
semi-supervised task, we carried out experiments on synthetic
datasets and practical benchmarks by comparing with various
strong competitors.

4.1. Supervised Learning on a Synthetic
Dataset
This section tests the supervised learning performance of our
method for binary classification problems using two well-known
synthetic datasets, i.e., the “Moons” dataset (termed as M-
dataset) and the “Circles” dataset (termed as C-dataset). The
data points in the two datasets are sampled uniformly from two
trajectories over the space of R2 and embedded linearly into
100-dimension vector space. Each dataset contains 16 training
data points and 1,000 testing points. Figures 4, 5 provide the
visualizations for M-dataset and N-dataset, where the red circles
and blue triangles separately stand for the training examples with
labels 1 and 0. The target classifier used in this experiment is a

neural network with one hidden layer comprised of 100 hidden
units, where ReLU and softmax activation function are applied
to the hidden units and output units. We compare our method
with some popular AT methods, such as SAT (Goodfellow et al.,
2014b), RAT (Zheng et al., 2016), and VAT (Miyato et al., 2018).
These AT methods and the proposed GAT are conducted under
the setting of λ = 1 and ǫ = 0.2. Particularly, the perturbation
generator in our method has three hidden layers with the unit
number 128, 64, and 128, respectively.

Since the number of the training examples is extremely small
compared to the input dimension, the target classifier for binary
classification is very vulnerable to the problem of overfitting.
Figures 2A,B depict the transitions of the accuracy rates for the
target classifier with the GAT regularization and without this
regularization (termed as Plain NN). It can be observed that
the training accuracy of Plain NN and GAT achieved 100% for
the two datasets. Nevertheless, the test accuracy rate of GAT is
noticeably higher than that of Plain NN. Although our method
suffers from some fluctuations with the accuracy rate at the
initial stage of the training process, the test accuracy rate of
our method finally achieves a stable value after a few iterations,
thanks to the trajectory preserving training strategy. Figure 3
visualizes the output distributions of the trained target classifier
on the M-dataset and C-dataset with our method and Plain
NN. We can observe that compared to plain NN, GAT provides
more flat regions for the landscape of the output distribution.
This phenomenon indicates that our method is conducive to the
smoothness of the model in the sense that flat surfaces of the
landscape imply small deviations of the output.

Moreover, we plot the contours of the target classifier’s
predictions for label 1 on the two synthetic datasets by various
regularization methods. As shown in Figures 4, 5, the black line
in each plot stands for the contour of value 0.5, which is usually
used as the decision boundary for the binary classification tasks.
From these figures, we can see that the L2 regularization method
fails to acquire correct decision boundary on both theM-dataset
and C-dataset, hence, many false predictions are produced by
this method. RAT obtains convincing decision boundary for
M-dataset, but it generates an unreasonable decision boundary
for C-dataset. Among these methods, only SAT, VAT, and

FIGURE 2 | The transition curves of accuracy rates by Plain NN and the proposed GAT on M-dataset and C-dataset. (A) Plots the results for M-dataset, (B) plots the

results for C-dataset.
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FIGURE 3 | The visualization of model distributions of GAT and Plain NN on the synthetic datasets. (A,B) Show the distribution surface on M-dataset, (C,D) show the

distribution surface on C-dataset, where flat surface regions implicate small output deviations.

FIGURE 4 | The contour of output confidences for label 1 on M-dataset with various regularization methods. The red circles and blue triangles represent the data

points with labels 1 and 0, respectively. The decision boundaries with different confidences are plotted with different colored contours. Note that the black line

represents the contour of probability value 0.5, which is usually served as the decision boundary for the binary classification task. The accuracy rate of each method

for the test examples is displayed above the panel.

FIGURE 5 | The contour of output confidence for label 1 on C-dataset with various regularization methods. The detailed illustrations for this figure can be referred to

the caption of Figure 4.

our method yield applicable decision boundary for both the
M-dataset and C-dataset, because these methods employ an
anisotropic way to smooth the classifier. Compared to RAT and
VAT, the decision boundaries of our method for different contour
values are more compact. This phenomenon illustrates that our
method can provide more confidence predictions for the new
instances, thanks to the cross entropy measure for the adversarial
loss. Our method also achieves the highest test accuracy rate
against its competitors on both theM-dataset and C-dataset.

4.2. Supervised Learning on the
Benchmark Dataset
In this section, we evaluate the performance of our methods on
the MNIST dataset for a supervised learning scenario. The origin
60,000 training examples are split into 50,000 training examples
and 10,000 test examples. The target classifier is made up of four
hidden dense layers, whose unit numbers are 1200, 600, 300, and
150, respectively. The input dimension of the target classifier is
784 and the output dimension is 10. For each method, we use the
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setting of hyper-parameters that exhibits the best performance on
the test dataset to train the neural network and record their test
errors. The perturbation generator in our method is comprised
of hidden layers whose unit numbers are 1200, 600, 300, and
600, respectively. The control parameters of the methods by our
implementations are set λ = 1 and ǫ = 0.2. We compare our
method with some typical AT methods on the MNIST dataset for
supervised learning task. To verify the capability of the trajectory
preserving strategy, we also conducted an ablation experiment
for GAT-woTP, a method using the proposed GAT framework
but Without Trajectory Preserving strategy during the training.
The test error rates of these methods are reported in Table 1.
The experimental results demonstrate that our method surpasses
the previous state-of-the-art AT methods by a large margin.
Moreover, our method also outperforms advanced generation-
based algorithms such as Ladder network and CatGAN. Besides,
note that the error rate obtained by our method is much lower
than that acquired by GAT-woTP. This is because the trajectory
preserving strategy is benefit to ensure the stability of the training
process. Without this strategy, GAT is usually difficult to achieve
a favorable convergent point during the training.

4.3. Semi-supervised Learning on
Benchmark Dataset
This section validates the effectiveness of our method for semi-
supervised learning tasks on three popular benchmarks of
MNIST, SVHN, and CIFAR-10. According to the experimental
setups inMiyato et al. (2018), we take a test dataset with fixed size
1,000 from the training examples and train the classifier under
four sizes of the labeled dataset, i.e., Nl = {100, 600, 1000, 3000},
where Nl is size of the dataset. The rest instances of the training
examples are served as unlabeled examples. Then, we record
the test errors under different values of Nl. For our method,
we use a mini-batch of size 64 to calculate the supervised loss

TABLE 1 | Test error rates of various regularization methods for supervised

learning task on MNIST dataset.

Method Test error rate (%)

SVM (gaussian kernel) 1.40

Dropout 1.05

Maxout networks 0.94

DBM 0.79

Ladder network† 0.57

Conv-CatGAN† 0.48

Plain NN (Baseline) 1.15

RAT 0.85

SAT (L∞) 0.78

VAT 0.66

GAT-woTP 0.65

GAT (Our method) 0.45

The upper panel refers to the experimental results reported in prior work, the error

rates in the bottom panel are derived by our implementations. †Represents the

generation-based methods.

in Equation 11 and a mini-batch of size 256 to calculate the
adversarial loss in Equation 12. The control parameters of the
methods by our implementations are set at λ = 1 and ǫ = 0.2.
To test the performance of the trajectory preserving strategy for
semi-supervised learning, we make several ablation experiments
for GAT-woTP which is described in Section 4.2. For the reason
that SAT can only be applied to supervised learning task, the
results of SAT have not been reported in these experiments.

TABLE 2 | Test error rates of semi-supervised learning methods on MNIST

datasets.

Method Test error rate (%)

Nl = 100 Nl = 600 Nl = 1, 000 Nl = 3, 000

SVM 23.44 8.85 7.77 4.21

EmbedNN 16.9 5.97 5.73 3.59

PEA 10.79 2.44 2.23 1.91

Conv-CatGAN† 1.93 (±0.01) 1.86 (±0.11) 1.73 (±0.18) 1.67 (±0.12)

Ladder networks† 1.06 (±0.37) 0.93 (±0.07) 0.84 (±0.08) 0.79 (±0.09)

Auxiliary DGM† 0.96 (±0.02) 0.90 (±0.05) 0.86 (±0.13) 0.78 (±0.05)

RAT 6.62 (±1.02) 3.75 (±0.14) 1.61 (±0.09) 1.51 (±0.08)

VAT 2.38 (±0.11) 1.38 (±0.08) 1.35 (±0.12) 1.28 (±0.07)

GAT-woTP 1.97 (±0.87) 1.66 (±0.85) 1.58 (±0.96) 1.32 (±0.65)

GAT (Our method) 0.90 (±0.11) 0.85 (±0.09) 0.83 (±0.17) 0.75 (±0.08)

Nl denotes the number of labeled examples for the training dataset.

The results in the upper panel are referred to the reports in prior work, the error rates in

the bottom panel are derived by our implementations. †Represents the generation-based

methods.

TABLE 3 | Test error rates (%) of semi-supervised learning methods on SVHN and

CIFAR-10 datasets.

Method SVHN CIFAR-10

Nl = 1, 000 Nl = 4, 000

5-model 5.43 (±0.25) 16.55 (±0.29)

Mean teacher 5.21 (±0.21) 17.74 (±0.30)

ALI 7.41 (±0.65) 17.99 (±1.62)

Ban GAN† 4.25 (±0.03) 14.41 (±0.30)

Tripple GAN† 5.77 (±0.17) 16.99 (±0.36)

Improved GAN† 4.39 (±1.20) 16.20 (±1.60)

TNAR-LGAN (Small)† 4.25 (±0.09) 12.97 (±0.31)

TNAR-LGAN (Large)† 4.03 (±0.13) 12.76 (±0.04)

RAT (Small) 8.42 (±0.22) 18.58 (±0.26)

RAT (Large) 8.36 (±0.22) 18.23 (±0.16)

VAT (Small) 6.83 (±0.24) 14.87 (±0.13)

VAT (Large) 5.77 (±0.32) 14.18 (±0.38)

GAT-woTP (Small) 6.53 (±0.95) 14.36 (±1.03)

GAT-woTP (Large) 5.26 (±0.92) 14.02 (±0.88)

GAT (Our method, Small) 4.27 (±0.14) 12.96 (±0.15)

GAT (Our method, Large) 4.01 (±0.11) 12.81 (±0.13)

Nl represents the number of labeled examples in the training dataset. The results in the

upper panel are referred to the reports in prior work, the results in the bottom panel are

derived from our implementations. †Stands for the generation-based methods.
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For the MNIST dataset, the structures of the target classifier
and perturbation generator are identical to the structures
employed in Section 4.2. Table 2 lists the test error rates of
the comparing semi-supervised learning methods for different
values of Nl on MNIST. The experimental results show that our
method achieves the lowest error rates among all the methods
for different numbers of labeled examples. Moreover, our method
significantly outperforms the state-of-the-art AT methods when
the number of labeled examples is small. For the experiments on
SVHN and CIFAR-10, two type of convolution neural networks
(CNNs), named “Small” (Salimans et al., 2016) and “Large”
(Laine and Aila, 2018), are employed as the target classifiers.
More details about the settings and structures of the two CNNs
can be referred to (Miyato et al., 2018). The structure of the
perturbation generator in this experiment is the same as the
one applied in the experiment for the MNIST dataset. The
performance of various comparing methods for SVHN and
CIFAR-10 is reported in Table 3. From the table, we can find
that GAT obtains the best generalization capability for the SVHN
dataset and achieves comparable performance to the state-of-the-
art generation-based method such as TNAR-VAE for the CIFAR-
10 dataset. In addition, GAT reaches lower error rates compared
to GAT-woTP for all the three benchmarks, which verifies the
favorable performance of the trajectory preserving strategy for
stabilizing the training for our proposal.

5. CONCLUSION

In this article, a novel GAT framework has been proposed
to improve the generalization performance of neural networks
for both the supervised and semi-supervised learning tasks.
In the proposed framework, the target classifier is regularized
by letting the perturbation generator watch and move against

the target classifier in a minimax game. We exploit the cross
entropy to evaluate the output deviation for the regularization
term such that the prediction of the target classifier can be
reinforced. Furthermore, an effective alternating update method
is developed to stably train the target classifier and perturbation
generator. Numerous experiments are conducted on synthetic
and real datasets and their results demonstrate the effectiveness
of our proposal.
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With the rapid development of apparel e-commerce, the variety of apparel is increasing,

and it becomes more and more important to classify the apparel according to its

collar design. Traditional image processing methods have been difficult to cope with

the increasingly complex image backgrounds. To solve this problem, an EMRes-50

classification algorithm is proposed to solve the problem of garment collar image

classification, which is designed based on the ECA-ResNet50 model combined with

the MC-Loss loss function method. Applying the improved algorithm to the Coller-6

dataset, and the classification accuracy obtained was 73.6%. To further verify the

effectiveness of the algorithm, it was applied to the DeepFashion-6 dataset, and the

classification accuracy obtained was 86.09%. The experimental results show that the

improved model has higher accuracy than the existing CNN model, and the model has

better feature extraction ability, which is helpful to solve the problem of the difficulty of

fine-grained collar classification and promote the further development of clothing product

image classification.

Keywords: convolutional neural network, collar classification, clothing classification, attention mechanism,

loss function

INTRODUCTION

In recent years, due to the emergence of convolutional neural networks, deep learning has been
applied more and more widely, including image recognition and natural language processing (Wu
et al., 2018; Yuan et al., 2019; Qin et al., 2020; Wu Y. et al., 2020). Wu E. Q. et al. (2019) proposed
a Fuzzy Gaussian Support Vector Machine (FGSVM) as a top-level classification tool for deep
learningmodels in order tomore accurately classify the pilot’s attention state images and analyze the
abnormal conditions of the pilot’s flight state. Eliminate some Gaussian noise output by the Deep
HCAENetwork (DHCAEN), which effectively improves the accuracy of image classification.Wu E.
Q. et al. (2020) proposed a gamma deep belief network to extract multi-layer depth representation
of high-dimensional cognitive data in order to solve the problem of inaccurate identification of
pilot fatigue state, and realized automatic reasoning of network structure, with satisfactory results
of model accuracy.

In addition, with the advent of the global Internet era, people only need an Internet electronic
device to access the Internet and buy products on e-commerce platforms. Therefore, e-commerce
is developing rapidly, and recommendation technologies and applications of e-commerce have
also attracted the attention of many researchers. For the QoS, Wu D. et al. (2019) propose a
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posterior-neighborhood-regularized LF (PLF) model for
achieving highly accurate Quality-of-Service (QoS) prediction
for web services. Wu D. et al. (2020) proposed a data-
characteristic-aware latent factor (DCALF) model to implement
highly accurate QoS predictions. For the recommender systems,
Wu et al. (2021b) proposed an L1-and-L2-norm-oriented
LF (L3F) model, it has good potential for addressing High-
Dimensional and Sparse (HiDS) data from real applications. Wu
et al. (2021a) proposed a deep latent factor model (DLFM), it can
better describe users’ preferences for projects.

Today’s popular shopping sites support keyword searches
for the style of clothing you want to buy, including keyword
searches for clothing collar types. However, product information
on websites is often described through a combination of direct
image descriptions and key text markups. Text tagging requires
a lot of manpower to mark accurately. If images can be directly
described, a lot of time and labor costs can be reduced. In the
traditional classification and recognition methods of clothing
attributes, the amount of feature extraction is huge, and the
artificial visual features cannot meet the requirements of real
classification, and the efficiency is not high. Therefore, the
convolutional neural network in deep learning can be used to
efficiently recognize clothing images.

Currently, most researchers focus on apparel category
classification or multi-attribute image classification based on
apparel. Inoue et al. (2017), in order to solve the multi-label
classification problem of fashion images and learn from noisy
data unsupervised, provided a new dataset of weakly labeled
fashion images of full-body poses Fashion550K with labels
containing significant noise and proposed a multi-task label
cleaning network to predict the color of clothing and the class of
clothing worn by the person in each image. Themethod generates
accurate labels from noisy labels and learns more accurate multi-
label classifiers from the generated labels, which effectively solves
the multi-label classification problem for fashion images. Liu
et al. (2016) collected 800,000 garment images to build a dataset
DeepFashion and proposed a deep model of FashionNet based
on VGG16, which not only utilizes the attributes and category
information of garments but also uses the key point location
(landmarks) to assist in extracting features, which can better cope
with the deformation of garments It is an effective way to classify
clothing styles and attributes. Nawaz et al. (2018) considered
the growing market share of online shopping malls and wide
popularity of online sales, collected 1,933 images of five different
garments from different online stores and retailers’ websites to
define the traditional garments of Bangladesh and labeled them
accordingly, classified the traditional garments using Google
Inception based CNN model and used three different optimizers
(SGD, Adam, and RmsProp) to test the constructed models.
Among these optimizers, RmsProp performs the best.

Most researchers focus on clothing category classification
or clothing multi-attribute image classification. There are
very few studies on collar image classification and related
datasets are not publicly available. Such image classification is
more challenging than ordinary image classification because
the differences between classes tend to focus on only a
small area.

In this paper, we take advantage of the Efficient Channel
Attention (ECA)-ResNet50 network model based on the
attention mechanism to continuously focus on the most
discriminative regions to achieve image classification and
combine Mutual-Channel loss (MC-Loss) to make the original
collar image focus onmore discriminative regions to improve the
model classification effect. The main contributions of this paper
are as follows:

(1) A clothing collar classification image dataset named Collar-
6 was established, which contains 6 categories of the round
collar, lapel, stand-up collar, hood, V-neck, and fur lapel, with
a total of 18,847 images. The dataset has different degrees of
noise interference.

(2) A fine-grained image classification algorithm for a small
collar dataset, called ECA MCloss ResNet-50 (EMRes-50), is
proposed. experiments are first conducted using the Collar-
6 dataset and compared with other popular convolutional
neural networks. The experiments do not require any labeled
frames and rely only on labels for collar image classification.
Second, to verify the effectiveness of the EMRes-50
algorithm, DeepFashion, a public dataset of comparable size
to the Collar-6 dataset, is collected for validation. Finally,
ablation experiments are performed on EMRes-50. Several
experiments have proved that EMRes-50 can effectively solve
the problem of collar image classification.

RELATED WORK

ECANet
The visual attention mechanism is unique to visual signal
processing in the human brain. After browsing the global
image, human vision obtains the visual focus that needs to be
focused on, and subsequently devotes more attention resources
to this focus region to obtain more detailed information and
suppress other useless information, and the Attention Model
(AM) (Zhao et al., 2017) of computer vision is generated and
has become an important concept in neural networks, which
has now been widely used in various types of deep learning
tasks such as natural language processing, image recognition and
speech recognition (Hu et al., 2018; Woo et al., 2018; Li et al.,
2019). The channel attention module assigns different weights
to the feature maps, which can be filtered out to help in the
classification and attribute prediction of the target. Wang Q.
et al. (2020) found by comparing the Squeeze-and-Excitation
(SE) module with its three variants Squeeze-and-Excitation
Variants 1 (SE-Var1), Squeeze-and-Excitation Variants 2 (SE-
Var2), and Squeeze-and-Excitation Variants 3 (SE-Var3) without
dimensionality reduction operation that although the design of
two fully connected layers in SENet captures the interaction
of nonlinear cross-channel information while controlling the
complexity of the model, its dimensionality reduction operation
is inefficient for capturing the dependencies between all channels.
This needs to correspond directly with their weights and avoiding
dimensionality reduction is more important than considering
the correlation between non-linear channels. Therefore, an
efficient channel attention-ECA module for deep convolutional
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FIGURE 1 | ECA module (Wang Q. et al., 2020).

neural networks is proposed, which avoids dimensionality
reduction and captures cross-channel information interactions
more effectively, allowing the network to selectively enhance
informative features, enabling subsequent processing tomake full
use of these features, and suppressing useless features to ensure
computational performance and model complexity. The ECA
module is shown in Figure 1.

The ECAmodule is mainly improved from the SEmodule (Hu
et al., 2018). Using ω_{k} to denote the learned channel attention.
For the weight y_{i}, ECANet only considers the information
exchange between y_{i} and k neighboring channels, while to
further improve the performance, it also allows all channels to
share the weight information, as follows:

ωi = σ

(

∑k

j=1
ωjy

j
i

)

, y
j
i ∈ �k

i (1)

Where, �k
i represents the set of k adjacent channels of yi. σ is the

activation function. ECANet realizes the information exchange
between channels through the one-dimensional convolution with
the size of the convolution kernel k:

ω = σ (C1Dk(y)) (2)

Where C1D stands for one-dimensional convolution, and
the kernel size k represents the coverage of local cross-
channel interactions, that is, how many neighbors are involved
in the attention prediction of a channel. This method of
capturing cross-channel information interactions involves only
k parameters, which guarantees performance results and model
efficiency. The whole ECA module completes the processing of
the attention mechanism in three main steps: First, the global
average pooling generates a feature map of 1 × 1 × C size;
Second, the adaptive convolution kernel size k is computed;
Third, k is applied in a one-dimensional convolution to obtain
the weights of each channel.

The ECA module can be flexibly integrated into existing
CNN architectures. ECA-ResNet is an improvement for ResNet
networks. Figure 2 shows the comparison between the original
residual block and the residual block with the introduction of the
ECA module. The ECA module is placed after the weight layer
in the residual block, and the channel attention is paid to the

FIGURE 2 | A is the residual block, B is the residual block introduced into the

ECA module.

residual features on the branch before the Addition operation to
further increase the feature extraction capability of the network.

Mutual-Channel Loss
Compared with general image classification tasks, the difference
and difficulty of fine-grained image classification tasks are that
the granularity of the image category is more refined, and the
network model is required to find the distinguishable areas
between each sub-category to accurately classify the image
category. Chang et al. (2020) proposed Mutual-Channel loss
(MC-Loss) to group feature channels, each group uses a fixed
number of channels to represent a certain class. The Mutual-
Channel loss function can be used in combination with any
convolutional neural network model. The MC-Loss function
takes the output feature channel of the last convolutional layer
as input and aggregates it with the cross-entropy loss function
through hyperparameters. The loss function of the final model
can be expressed as

L = LCE + µLMC (3)
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FIGURE 3 | Components of the interpass loss function.

Where, LCE is the traditional cross-entropy loss function, which
makes the network extract the global discriminative region of the
image. LMC is the multi-channel loss function, which makes the
network extract the local discriminative region of the image.

The overall structure ofMC-Loss is shown in Figure 3, and the
two branches are, respectively, represented as Ldis and Ldiv. Ldis is
a discriminality component, and Ldiv is a diversity component.
The feature map extracted from the basic network is F ∈

RN×W× H .
The LMC is calculated as follows:

LMC (F) = Ldis (F) − λ × Ldiv(F) (4)

In this framework, the discriminative component Ldis is defined
as follows:

Ldis (F) = LCE(y,
[eg(F0), eg(F1), . . . , eg(Fc−1)]

T

∑c−1
i=0 e

g(Fi)
)

︸ ︷︷ ︸

Softmax

(5)

g(Fi) =
1

WH

∑WH

k=1
︸ ︷︷ ︸

GAP

max
j = 1, 2, . . . , ξ
︸ ︷︷ ︸

CCMP

[

Mi · Fi,j,k
]

︸ ︷︷ ︸

CWA

(6)

The discriminative component is used to force feature channels
to align with class information, and each feature channel
corresponding to a particular class should be sufficiently
discriminative, which includes four important components.
Channel-Wise Attention (CWA), which denotes channel
attention, is the process of taking the channel corresponding
to each class and discarding it randomly; Cross-Channel Max
Pooling (CCMP), which pools all discriminable features of
each class into a one-dimensional feature map. Global Average
Pooling (GAP), global average pooling, calculates the average

TABLE 1 | EMRes-50 network structure.

EMRes-50 network structure

7 × 7 conv 64

3 × 3 conv 64

C:1 × 1 Conv 64

C:3 × 3 Conv 64













× 3

C:1 × 1 Conv 256

ECA module 256

C:1 × 1 Conv 128

C:3 × 3 Conv 128













× 4

C:1 × 1 Conv 256

ECA module 256

C:1 × 1 Conv 256

C:3 × 3 Conv 256













× 6

C:1 × 1 Conv 1,024

ECA module 1,024

C:1 × 1 Conv 512

C:3 × 3 Conv 512













× 3

C:1 × 1 Conv 2,048

ECA module 2,048

C:1 × 1 Conv 2,200

Average pool, 6d, fc, softmax.

response of each feature channel to obtain a C-dimensional
vector where each element corresponds to a separate class.
Finally, Softmax, for classification.

Diversity component Ldiv is defined as follows:

Ldiv (F) =
1

c

∑c−1

i=0
h(Fi) (7)

h(Fi) =
∑WH

k=1

max
j = 1, 2, . . . , ξ
︸ ︷︷ ︸

CCMP





eFi,j,k

∑WH
k
′
=1

e
F
i,j,k

′





︸ ︷︷ ︸

Softmax

(8)

Polynomial components are used in order to make the variability
between each component of the feature map F greater and to
obtain as many diverse features as possible. It consists of four
main components: Softmax, which acts as a spatial dimension
normalization; CCMP, which is a cross-channel maximum
pooling; Sum, which sums all elements on each feature map; and
Average, which averages the values of all channels.

EMRES-50
In the clothing images shown on major shopping sites, the
collar region accounts for a small proportion of the whole
image, and the arbitrary angle of the shot usually makes the
collar region appear distorted, missing, and other features.
The use of classical convolutional neural networks to process
this kind of image data cannot effectively allow deep learning
models to focus more on a piece of certain local information.
The attention mechanism network can be used to emphasize
or select the important information of the target processing
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object and suppress some irrelevant detailed information. ResNet
(He et al., 2016) effectively solves the degradation problem
triggered by increasing depth in deep neural networks due to
easy optimization and residual blocks using jump connections,
making it easy for the network to learn constant mappings and
keep performance without degradation. Therefore, the ResNet
network has become a mainstream model in the image field.
ECA-ResNet50 is an improvement on ResNet by applying the
attention mechanism ECA module to the residual block, which
effectively channels the attention learning mechanism makes
the network’s image feature extraction capability improved. The
traditional cross-entropy loss function is the most commonly
used loss function in classification, which is used to measure
the difference between the distribution learned by the model
and the true distribution. Although the cross-entropy function
uses an inter-class competition mechanism, which only cares
about the accuracy of the prediction probability for the
correct label and is good at learning information between
classes, it ignores the differences of other non-correct labels,
resulting in the learned features being more scattered and
only focusing on the global information, which cannot classify
and recognize the smaller collar regions in the collar image
well. The main idea of fine-grained classification is to identify
distinguishable features among subclasses. MC-Loss drills down
on the channels to effectively navigate the model, focusing on
different distinguishing regions and highlighting diverse features.
At the same time, Mutual-Channel Loss does not require any
fine-grained qualifying boxes or component annotations and can
be combined with cross-entropy loss on commonly used network
structures to enhance the network classification ability during the
network training phase.

Based on the combination of ECA-ResNet50 and MC-Loss,
this paper proposes a fine-grained image classification model—
EMRes-50 based on a small collar dataset. EMRes-50 model, due
to the addition of MC-Loss, enables the model to continuously
focus and distinguish distinguishable regions and discriminable
regions from the channel aspect, which can effectively avoid
the problem that the features learned by the traditional cross-
entropy function are not strongly distinguishable when dealing
with fine-grained image classification. So, it can effectively deal

with the fine granularity classification of collar images in complex
backgrounds. The architecture of the main feature extraction
modules of EMRes-50 is shown in Table 1. After each residual
block in the original ResNet, the ECA module is added to
aggregate multi-scale contextual information from the channels.

The overall network architecture of the training phase of
EMRes-50 is shown in Figure 4. The interoperability channel
loss takes the output feature channels as input and uses
hyperparametric support with the cross-entropy loss function
assembled together to guide the update of the weights during
the training phase, making the model output more diverse
features for each class and a more pronounced feature gap
between classes.

The weight update process is shown in Table 2. The weight
update of EMRes-50 is divided into two steps. Through these two
steps, the weight update of the entire network is completed:

The first step: In addition to the fully connected layer, other
weight layers are combined with the cross-entropy loss and MC-
Loss to obtain the weight Wi, and update Wi through the loop
network layer N.

Step 2: The last fully connected layer uses the traditional cross-
entropy loss to update the weight Wn, and updates Wn through
the loop network layer N.

EXPERIMENT

Dataset
This paper constructs a clothing collar type dataset named
Collar-6, the images are from Taobao (https://www.taobao.
com/), Tmall (https://www.tmall.com/), clothing brand official
websites, and other major e-commerce platforms, through the
manual collection, crawler way to collect the images collected by
the figure. The images are used for experimental purposes only,
not for commercial use.

The Collar-6 dataset contains 6 categories: round collar, lapel
collar, stand collar, hooded collar, V collar, and fur lapel, with
men’s, women’s, and children’s clothing, with a total of 18,847
images. The collar part in most of the images only occupies a
small part of the image, and the rest of the area belongs to the
noise which is not related to classification. Therefore, this dataset

FIGURE 4 | Schematic diagram of EMRes-50 training phase architecture.
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TABLE 2 | EMRes-50 weight update process.

Algorithm: EMRes-50 weighting update process

Input: Let the network have N layers, Wn is the weight parameter of the last FC

layer, Wi is the weight parameter of a layer of the network,i ∈ 1 . . . . . . n,

1: While(i <= n)

2: if i = 1 . . . . . . n− 1

3: Wi = Wi − λ
ϑ (LCE+µLMC )

ϑWi
//Except for FC, other weight layers are

combined by cross-entropy loss and MC-Loss

4: if i = n

5: Wn = Wn − λ
ϑLCE
ϑWn

//The last FC layer uses the traditional

cross-entropy loss to update the weights

6: Updata by Wi

7: Updata by Wn

8: End

TABLE 3 | Collar-6 experimental data distribution.

Collar type Number of

training set

images

Number of

test set

images

Total

Round collar 2,480 620 3,100

Lapel collar 2,608 652 3,260

Stand collar 2,464 616 3,080

Hooded collar 2,560 640 3,200

V collar 2,468 617 3,085

Fur lapels 3,122 625 3,122

is difficult to classify images with rich diversity, which helps to
learn the features of collars. Table 3 shows the distribution of the
number of images per category in the training and test sets and
the total number of that category, each containing about 3,000
RGB of three-channel images. Figure 5 shows some images of the
six categories of collar types.

In order to verify the effectiveness of the classification
algorithm proposed in this paper, DeepFashion (Liu et al., 2016),
a large publicly available apparel image dataset, is used to verify
the effectiveness of the classification algorithm. DeepFashion
(http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html) is a
large-scale apparel dataset open to the Chinese University of
Hong Kong, with 800,000 images, which contain images from
different angles, different scenes, buyer shows, buyer shows, etc.
Due to a large number of images in the dataset, and the amount
of data in some categories is not large, in order to ensure that
the size of the collected images is equivalent to the size of the
Collar-6 dataset, the DeepFashion dataset is extracted by the
following folder keywords: Dress, Jacket, Jeans, Shorts, Tank, Tee
6 categories, a total of 18,727 images for experimentation. The
distribution of experimental data of DeepFashion-6 is shown in
Table 4.

Experimental Setup
All model experiments in this paper are trained on Intel i7-7700
processor, 1T SSD, 64 RAM, and NVIDIA GTX2080Ti GPU,

using the pytorch framework. Stochastic gradient descent (SGD)
is used as the optimization method. The number of iterations
is 300. The initial learning rate is set to 1e-2, and the learning
rate is adjusted to 1e-3 when the iteration reaches 150. the batch
size is set to 32. the size of all images for the experiments is
uniformly 224 × 224. the comparison networks are compared
with EMRes-50 using the cross-entropy loss function in the
comparison experiments.

Analysis of Experimental Results
Collar Image Classification Experiments Based on

the Collar-6 Dataset
In order to solve the problems of unsatisfactory classification
of collar images and imprecise collar feature extraction by
traditional convolutional neural networks, the EMRes-50method
is proposed, which adds MC-Loss to the existing channel
attention module of the ECA-ResNet network to further
ensure that the network focuses as much as possible on the
discriminative part and the discriminative part, thus helping the
network to perform fine-grained feature learning.

A comparison of the classification accuracy of EMRes-50
with a variant of ResNet or a ResNet-based improved model on
Collar-6 is shown in Table 5.

As can be seen from Table 5, the classification accuracy
of EMRes-50 on the Collar-6 dataset obtained the highest in
comparison with a variant of ResNet or a model based on
ResNet improvements.ResNeXt50 (Xie et al., 2017), SCNet50
(Liu et al., 2020), and Res2Net50 (Gao et al., 2019) are
all variants of the ResNet network.ResNeXt50 utilizes group
convolution, constructing a parallel stack of blocks with the same
topology, and is a simple, highly modular network structure for
image classification, but its composition is limited by stacking
blocks with the same specifications, and is able to extract The
classification accuracy is 73.05%, which is 0.55% lower than that
of EMRes-50. Res2Net is designed with finer-grained layer blocks
in order to extract more multi-scale features, increasing the range
of perceptual fields in each layer, and has a strong multi-scale
representation capability, which is suitable for extracting collar
images of different scales. However, it ignores the relationship
between the global and local position of the collar part in
the whole image, so the classification accuracy of Res2Net50
is 73.44%. EMRes-50 introduces MC-Loss based on ECA-
ResNet50, which, together with cross-entropy, can make the
network focus on both global discriminative regions and local
discriminative regions, and the classification accuracy is 0.16%
higher than that of Res2Net50 is 0.16% higher than Res2Net50.
SCNet50 can effectively improve the range of sensory field
through self-correction operation and help the network generate
more discriminative feature expressions, but it only takes into
account the inter-channel information and local information
without considering the global location information, and the
effect of classification for collar images is rather poor, with
an accuracy of only 66.07%.CBAM (Woo et al., 2018) and SE
(Hu et al., 2018) are two classical attention mechanism models,
but introducing the attention mechanism only on ResNet50,
although it can focus on the collar part, it cannot distinguish the
low-level distinguishable features such as different collar edges
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FIGURE 5 | Some images from the Collar-6 dataset.

TABLE 4 | Distribution of experimental data of DeepFashion-6.

Type Number of training set images Number of test set images Total

Dress 2,555 639 3,194

Jacket 2,505 627 3,132

Jeans 2,412 603 3,015

Shorts 2,541 636 3,177

Tank 2,528 632 3,160

Tee 2,439 610 3,049

well, and the classification effect is not satisfactory, only 63.68 and
63.44% accuracy respectively, which are 9.92 and 10.16%.

A comparison of the classification accuracy of EMRes-50 and
the lightweight convolutional neural network model on Collar-6
is shown in Table 6.

As can be seen from Table 6, on the Collar-6 dataset,
EMRes-50 obtains better classification accuracy on collar images
in comparison with the lightweight model. GhostNet (Han
et al., 2020) only considers from the perspective of generating
feature maps, reducing the total number of parameters it needs
and computational complexity, without enhancing the network
extraction effect in terms of feature extraction capability, so the

TABLE 5 | Comparison with variants of ResNet or improved models based on

ResNet.

Models Accuracy %

ResNeXt50 73.05

CBAEMRes-50 63.68

SE-ResNet50 63.44

SCNet50 66.07

Res2Net50 73.44

EMRes-50 73.60

classification effect on collar images is The accuracy is only
60.98%, which is 12.62% lower than the accuracy of EMRes-
50.The design of the Fire module in SqueezeNet (Iandola et al.,
2016) performs model compression by reducing the parameters,
and the mixture of 3 × 3 and 1 × 1 convolution increases
the feature extraction capability of the whole model. However,
the SqueezeNet network is not deep, and there are limitations
in feature extraction for different types of collars, and the
accuracy is 9.84% lower than EMRes-50, which yields 63.76%
accuracy. MobileNetV3 (Howard et al., 2019), which uses a
large number of 5 × 5 size convolutional kernels, is not good
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TABLE 6 | Comparison with lightweight model.

Models Accuracy %

MobileNetV3_large 68.48

MobileNetV3_small 63.23

GhostNet 60.98

SqueezeNet1_0 63.76

EMRes-50 73.60

TABLE 7 | Comparison with other models.

Models Accuracy %

AlexNet 67.53

Xception 70.53

VGG16 63.68

VGG19 65.62

EMRes-50 73.60

for fine-grained collar images because there are no multi-
scale convolutional kernels used alternatively classification,
MobileNetV3_large and MobileNetV3_small have 68.48 and
63.23% classification accuracy respectively, which are 5.12% and
10.37% less accurate than EMRes-50, respectively.

A comparison of the classification accuracy of EMRes-50 with
other classical convolutional neural network models on Collar-6
is shown in Table 7.

As can be seen from Table 7, EMRes-50 obtains better collar
image classification accuracy in comparison with other classical
convolutional neural network models on the Collar-6 dataset.
AlexNet (Krizhevsky et al., 2012) and VGGNet (Simonyan
and Zisserman, 2014) filters are both linear topologies, which
means that these networks can only have relatively inflexible
perceptual fields and obtain lower classification accuracies for
both low, with 63.68% and 65.62% accuracy obtained by VGG16
and VGG19, respectively, and 67.53% accuracy obtained by
AlexNet, both of which are lower than the accuracy obtained
by EMRes-50.Conventional convolution is a direct extraction of
spatial and channel information through a convolutional kernel.
Xception (Chollet, 2017), on the other hand, is a convolutional
neural network architecture based entirely on depth-separable
convolutional layers. As an improved version of InceptionV3, it
retains the network’s multiscale feature extraction capability, and
its model performance on collar image classification is better than
AlexNet and VGGNet, obtaining an accuracy of 70.53%, but still
3.07% lower than the accuracy obtained by EMRes-50.

Validation Experiments
To verify the effectiveness of the EMRes-50 method class, the
validity of the classification algorithm was verified using the
publicly available large apparel image dataset DeepFashion. The
experimental results are shown in Table 8.

TABLE 8 | Comparison of model accuracy in the DeepFashion-6 dataset.

Models Accuracy %

AlexNet 83.50

ResNet50_CBAM 82.78

GhostNet 82.84

InceptionV3 73.36

MobileNet_large 83.77

MobileNet_small 83.40

Res2Net 85.13

SCNet 79.57

SqueezeNet1_0 82.03

Xception 85.01

EMRes-50 86.09

It can be seen from Table 8 that the performance of EMRes-
50 on DeepFashion-6 has a certain improvement compared
with other convolutional neural networks because after the
introduction of MC-Loss in the basic network, the network can
capture the discriminative and identifiable performance. There
aremore distinguishing features, which improve the classification
performance of the network to a certain extent. EMRes-50 is
0.08% higher than Xception, which has better accuracy and is
higher than other convolutional neural networks. The results
show that although EMRes-50 is designed primarily for the
collar-6 Collar dataset, it can effectively categorize garment
areas without collars while accurately identifying Collar areas. It
shows that EMRes-50 can continuously find the distinguishable
features of classified objects with different region proportions
in an image through algorithm iteration, so as to improve the
classification effect. At the same time, the DeepFashion-6 dataset
is the same as the Collar-6 dataset. When the classified objects
have different angles, different scenes, and other noises, the
classification performance of EMRes-50 can still be compared to
these two datasets. The improvement indicates that EMRes-50
has a better ability to distinguish the distinguished features. Such
results fully verify that EMRes-50 not only has good classification
performance on collar images but also shows good classification
effects in the field of clothing image classification.

Ablation Experiments

Structural Ablation
The ablation experiments were conducted on two datasets,
Collar-6 and DeepFashion-6, with Resnet50 as the base network,
and the effects of introducing the attention mechanism ECA
block and MC-Loss loss analysis on the experimental effects,
respectively. Ablation experiments of EMRes-50 on the Collar-
6 dataset are shown in Table 9. As can be seen from the
table, EMRes-50 improves 14.24% compared to ResNet50, 6.76%
compared to ResNet50 by introducing only MC-Loss, and 16.1%
compared to ResNet50 by introducing only ECA block. Since
the collar part is not solely present in the collar image, the
non-collar part also occupies most of the space in the image,
which can interfere with the training of the convolutional neural
network. The accuracy of ResNet50 is 1.86% lower than that of
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TABLE 9 | Models for ablation experiments on the Collar-6 dataset.

Models Accuracy %

ResNet50 59.36

ResNet50+MC-Loss 66.84

ResNet50+ECA 57.50

EMRes-50 73.60

TABLE 10 | Ablation experiments of the model on the DeepFashion-6 dataset.

Models Accuracy %

ResNet50 81.47

ResNet50+MC-Loss 84.53

ResNet50+ECA 80.94

EMRes-50 86.09

ResNet50 when only the ECA module is introduced, indicating
that the attention module makes the model focus too much
on the overall part of the collar and cannot effectively guide
the network to focus on the distinguishable areas of the collar,
ignoring the differences between different collar types, while
the introduction of the MCLoss loss function can consider
more distinguishable areas of the collar and guide the network
to perform the correct weight optimization for fine-grained
classification. The introduction of the MCLoss loss function can
guide the network to optimize the correct weights and greatly
promote the network to learn the distinguishable local features
for fine-grained classification, effectively avoiding the negative
impact of the ECA attention module.

EMRes-50 introduces both the ECA module and MCLoss,
which makes the network not only focus on the collar region, but
also highlight the local regions of different types of collars, and
the negative effect brought by the ECA module to the network is
transformed into a facilitating effect. Thus, the combined effect
of both the ECA module and MC-loss further enhances the
feature extraction capability of the network, resulting in a large
improvement of the network performance.

The ablation experiments of EMRes-50 on the DeepFashion-
6 dataset are shown in Table 10. As can be seen from the table,
EMRes-50, compared to ResNet50 only introduced MC-Loss
improved by 1.56%, and compared to ResNet50 only introduced
ECA block improved by 5.15%. The non-category related part
of the category image of clothing occupies a larger space of
the image, which is not as disturbing to the training of the
convolutional neural network as the collar image classification,
but EMRes-50 can still bring an improvement in accuracy in the
field of clothing image classification, verifying that EMRes-50 can
effectively improve the network performance.

Hyperparametric Ablation
Verify the effect of one-dimensional convolutional size k on
EMRes-50 and the validity of k size selection. After channel-
level global averaging pooling without dimensionality reduction,
the ECA module captures local cross-channel interaction
information by considering each channel and its k neighbors,
where the convolutional kernel size of k represents the coverage

TABLE 11 | Different effects of different k on the ECA module on the Collar-6

dataset.

k Accuracy %

5 70.82

7 67.37

3 73.60

of local cross-channel interactions, i.e., how many neighbors
near that channel are involved in the attention prediction of this
channel. In EMRes-50, k is set to 3, 5, and 7. The results are shown
in Table 11. k = 3 gives the best results for EMRes-50, and the
accuracy rate decreases with larger k, indicating that for the collar
region, which accounts for a smaller percentage of the collar
image, the smaller the value of 1D convolution, the easier it is to
capture the features of the region and improve the accuracy rate.
On the contrary, the larger the value of 1D convolution is, the
more noise is introduced, which affects the recognition of collar
regions by the network and makes the accuracy rate decrease.

CONCLUSION

In the context of the development of apparel e-commerce,
efficient and accurate collar classification is beneficial to
merchants for apparel information description, convenient for
a wide range of consumers to shop using keyword queries, and
promotes the development of the apparel sales industry. In the
absence of related research, this paper constructs a collar dataset
named Collar-6 and the images contain a lot of noise. Based
on ECA-ResNet50 and the introduction of MC-Loss, this paper
proposes a fine-grained image classification model based on a
small collar dataset, called EMRes-50. Comparative experiments
and ablation experiments are conducted on the Collar-6 dataset,
and the results show that EMRes-50 can effectively improve
the classification performance of the underlying network ECA-
ResNet50, and outperformsmost classical and novel classification
models in recent years, indicating that EMRes-50 can effectively
solve the fine-grained collar image classification problem, and the
extracted features are more differentiable and enhance the model
classification effect. On the other hand, to verify the effectiveness
of EMRes-50, comparison experiments are conducted on the
public dataset DeepFashion, and EMRes-50 is still able to
improve the classification effect of garment image classification,
indicating that EMRes-50 can be applied not only to the field
of collar image classification but also extended to the field of
garment image classification.

AUTHOR’S NOTE

The types of clothing are increasing day by day, and it
is becoming more and more important to classify clothing
according to its collar design. Nowadays, popular shopping
websites all support keyword search for the clothing styles you
want to buy, including clothing collar keyword search. However,
the product information of the website is often described in
the form of a combination of direct image description and
key text annotations. If it can be directly described through
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images, a lot of time and labor costs can be reduced. In
addition, the collar part occupies a small proportion in the
entire image. Such image classification is more challenging than
ordinary image classification. At present, there are few researches
on collar classification and related data sets. Therefore, this
paper constructs a six-category small collected data set, and
builds a model named EMRes-50 for this data set, and proves
the improvement of the model through experiments. It can
effectively solve the problem of collar image classification.
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With the deployment of 5G Internet of Things (IoT) in the power system, the efficiency

of smart grid is improved by increasing two-way interactions in different layers in smart

grid. However, it introduces more attack interfaces that the traditional information security

system in smart grid cannot response in time. The neuroscience-inspired models have

shown their effectiveness in solving security and optimization problems in smart grid.

How to improve the security mechanism in smart grid while taking into account the

optimization of data transmission efficiency using neuroscience-inspired algorithms is

the problem to be solved in this study. Therefore, an information security system

based on artificial neural network (ANN) and improved multiple protection model is

proposed. Based on the ANN algorithm, the link state sample space is used to train

the model to obtain the optimal transmission path in 5G power communication network.

Integrating the intelligent link state module, the zero-trust security protection platform

using case-based learning algorithm is designed and taken as the first protection,

the network security logical isolation facility is taken as the second protection, and

the forward and backward isolation facilities are set as the third protection to achieve

the strengthened security of 5G IoT in smart grid. The experimental results show the

efficiency and effectiveness of the proposed algorithms. In addition, the experimental

results also show that the proposed system can resist malicious terminal access, terminal

hijacking, data tampering and eavesdropping, protocol fuzzy, and denial-of-service

attacks, so as to reduce the security risks of 5G IoT in smart grid. Since the proposed

system can be easily integrated into the existing smart grid structure in China, the

proposed system can provide a reference for the design and implementation of 5G IoT

in smart grid.

Keywords: information security, artificial neural network, case-based learning, smart grid, zero trust

INTRODUCTION

The development of smart grid depends on the intelligent infrastructure to enable a
control-feedback loop. With the expansion to distribution side and user load side in the smart
grid, the deep integration of 5G technology into the smart grid becomes an inevitable trend (Ma
et al., 2021). The 5G technology including 5G network slicing technology can be advantageous in
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supporting the services of the smart grid such as grid monitoring,
precise load control, intelligent distribution automation, and
advanced metering infrastructure (AMI) (Matinkhah and Shafik,
2019; Forcan et al., 2020; Liu R. et al., 2021). A 5G communication
has the characteristics of high bandwidth, low delay, high
reliability, and low power consumption (Zhang et al., 2019). The
5G communication technology has great application potential
in scenarios such as enhanced mobile bandwidth, large-scale
terminal access, and ultra-low delay communication (Zhang,
2021). Using the advantages of 5G communication technology
can not only facilitate the collection and analysis of power
consumption data, but also improve the accuracy of power load
control. In the power Internet of Things (IoT), building 5G
cognitive radio network model and applying it to traditional
collection and inspection services can improve the perception
and transmission performance of a large number of user nodes
(She et al., 2021). The advantages of 5G technology in future
smart grid may include that it provides the data acquisition
and visualization ability for multiple layers of smart grid
(Ahmadzadeh et al., 2021).

At present, the power optical fiber private network
communication is mainly used in the power system in China,
which has high security and reliability. Due to the limited
cost, fiber core resources and mobile operations, it is unable
to cover a large number of power business terminals, so that
5G and other wireless communication methods need to be
used as a supplement to the optical fiber private network (Wu

FIGURE 1 | Adaptive information security system model.

et al., 2020; Li et al., 2021). However, the 5G networks do not
provides end-to-end security for applications in smart grid
where new types of threats may be introduced including security
misconfiguration at mobile edge computing host (MECH)
and IoT device security problems (Borgaonkar and Jaatun,
2019). The critical applications in smart grid requires additional
measures against unauthorized access to the network while
wireless technology such as 5G is applied (Ghanem et al., 2021).
In addition, denial-of-service (DoS) or false data injection
attacks may be launched against different parts of AMI using
5G in smart grid, leading to financial losses or even physical
damages (Saghezchi et al., 2017). Therefore, the security of
power terminal side is very important for the normal operation
of power system communication network. Whether the service
terminal of power system in China can be safely connected has
become an important research direction of researchers in the
field of power safety. Meanwhile, to facilitate the deployment
of 5G applications, the security measures need to be easily
integrated into the existing power industry security protection
strategies (Li et al., 2020).

The current research on 5G IoT in smart grid mainly
focuses on meeting different business needs, improving business
processing efficiency and network scalability. In terms of security
protection, it is mainly based on the existing security protection
strategies and equipment that can no longer meet the security
requirements in the IoT and 5G era. Therefore, to strengthen
its security protection mechanism while improving the efficiency
of 5G IoT, this study proposes an improved information system
based on ANN and improved multiple protection mechanism,
which can be easily integrated into the existing smart grid
security architecture. The proposed method evaluates, learns,
and predicts the link states in the process of 5G power
communication (Hu et al., 2019), and adopts the multiple
security protection method in combination with the idea of
double isolation power security access area (Cao et al., 2019a)
and the encryption, authentication method (Zhao, 2020) to
improve the transmission efficiency of power 5G communication
while meeting the security requirements in the process of power
5G communications.

RELATED WORK

Scholars in related fields have studied the power communication
access scheme and achieved some research results. Li et al.
(2018) designed an intelligent power distribution terminal access
architecture based on the integration of multiple technologies
such as wireless sensor network (WSN), wireless local area
network (WLAN) and wired private network, and adopted data
hierarchical encryption, access network security classification
and isolation to ensure network security. The architecture can
effectively meet a variety of business needs of power distribution
terminals. Chen et al. designed a joint deployment architecture
based on multi-access edge computing (MEC), and designed a
task scheduling mechanism by deployingMEC network elements
on the access side and the core network side (Chen et al.,
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2018). The deployment architecture can effectively allocate MEC
processing nodes and effectively improve scalability. Saghezchi
et al. proposed a security architecture incorporating intrusion
detection system (IDS) into AMI to protect the integrity of the
information exchanged (Saghezchi et al., 2017).

The neuroscience-inspired methods [including artificial
neural network (ANN)] have shown the effectiveness in solving
security and optimization problems in smart grid. To mitigate
the false data injection attacks in smart grid, the graph
neural network (GNN) based detector incorporating physical
connections and exploiting spatial correlations (Boyaci et al.,
2022) or the detector combining predictions of Kalman filter
and recurrent neural network (RNN) (Wang et al., 2022) can
be effective methods. The RNN can also be applied to classify
multiclass attacks for power systems with high accuracy (Hong
et al., 2020). In addition, neuroscience-inspired methods can
be applied to optimization problems in smart grid such as
link quality estimation in smart grid WSN (Sun et al., 2017),
load monitoring (Zhou et al., 2022), short-term load forecasting
(Deng et al., 2021), and power user behavior feature classification
(Deng et al., 2022).

As the organizational boundaries have become blurred,
the zero-trust architecture has been attracting information
security researches and is expected to be further explored
and implemented in future digital systems (Wylde, 2021). The
power grid security architecture can be established based on
zero-trust architecture to provide dynamic security policies
according to the trust of the access entities (Liu T. et al.,
2021). The specific implementation of zero-trust architecture is
considered as the improvement on continuous risk management.
The intelligent decision support system using case-based
reasoning (CBR) and rule-based machine learning may be

FIGURE 2 | Overall process of the system.

used to significantly reduce the risks in software development
(Asif and Ahmed, 2020).

Inspired by the adaptive ability and effectiveness of
neuroscience-inspired methods and zero-trust models in
the above researches, we attempt to design algorithms using
ANN and case-based learning to improve the security and
communication efficiency in 5G IoT environment of smart grid.

SYSTEM MODEL

According to the power security regulations and current

implementation of smart grid information infrastructure in

China, an information security system model is proposed as

shown in Figure 1.
As shown in Figure 1, the adaptive information security

system is implemented in the secure access area in the power
information network, which consists of a zero-trust protection
module based on case-based learning and an intelligent link
module based on ANN. The details of those two main
components will be described in Sections Related Work and
System Model. The power intranet area I represents the network
area where power production and control related software
and hardware are implemented such as supervisory control
and data acquisition (SCADA) and energy management system
(EMS). Servers and equipment running these applications
are represented by intranet application hosts I. The power
intranet area II represents the network area where power
management related data is processed such as office automation
(OA) and enterprise resource planning (ERP). Servers and
equipment running these applications are represented by intranet
application hosts II. The power intelligent terminal and other
equipment that implement in-field monitoring or control
functions via public network such as 5G/4G, narrow band
internet of things (NB-IoT), and long range radio (LoRA) can be
represented by 5G extranet host.

Since the security level and requirements of power intranet
area I and II are different, customized security policies and
measures should be made. The overall secure communication
process is shown in Figure 2.

It can be seen from Figure 2 that the initialization of the
proposed system is completed by offline training while acquiring
status of connections and hosts for a period. First, 5G extranet
host initiates a connection request to proposed system that
verifies the identity of 5G extranet host. If the identification
process succeeds, the appropriate authority is configured to
extranet host. Then, 5G extranet host sends a request for data
transmission path with its status and requested time slot. The
proposed system produces a suggested path for extranet host
and the data transmission is processed. The states of links
between the proposed system and 5G extranet host are updated
periodically so that an up-to-date suggested path can be produced
by the proposed system. The security risks in intranet and
extranet are continuously monitored by the proposed system and
the credibility of each active user in the network is evaluated
accordingly. The authority for each active user may be adjusted
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according to its real-time credibility so that the multiple security
protection is strengthened.

The following sections will describe the intelligent link state
module and improved multiple protection model in details.

INTELLIGENT LINK MODULE BASED ON
ANN

In the intelligent link module, an ANN algorithm is applied to
design an adaptive routing algorithm to obtain the link states
in 5G communication network. The 5G and 4G communication
modes are both supported in the communication network.
Through the forward conduction and the backward conduction,
the deep neural network operation is completed (Liu et al., 2020).

Suppose there is a 5G power communication network with
N nodes, {D1,D2, · · · ,DN} represents the node set. The loads
of the network nodes are collected during the collection time
period 1t of the cognitive plane, while the packet loss rates
of the transmission paths from the source node to the target
node are calculated. According to the transmission performance
requirements of power services, the packet loss rates of the
transmission paths are divided into four categories from low
to high as {0: Ultra low; 1: Low; 2: Average; 3: High}. We

can use l =

(

⇀
x i,j, tsi,j, yi,j

)

as a data sample where
⇀
x i,j =

{Di,Di+1, . . . ,Dj},tsi,j represents the collection time span, yi,j
represents the categorized packet loss rate from node i to node
j, and yi,j ∈ {0, 1, 2, 3}. Hence, the sample space including the data
label yi,j is represented as follows:

Y =

{(

⇀
x i,j,1, tsi,j,1, yi,j,1

)

,
(

⇀
x i,j,2, tsi,j,2, yi,j,2

)

,

· · · ,
(

⇀
x i,j,n, tsi,j,n, yi,j,n

)

, · · ·
}

(1)

The forward conduction that outputs link state prediction value
is completed based on the non-linear function formed by each
layer node in the deep neural network. The forward conduction
expression is as follows:

Y(l,k)(x) = F

(

n
∑

i=1

(wl
i,k × xi + bli)

)

(2)

where k = 1, 2, · · · , n, wl
i,k

represents the weight from neuron k
of layer (l+1) to neuron i of layer l, F andw denote the non-linear
function and the weight matrix, respectively, and bli represents
the bias of neuron i of layer l.

The loss function is used to express the error between the
sample space and the output value of neural network. The loss
function is shown as follows:

J
(

w, b; x, y
)

=
1

2n

n
∑

i=1

∥

∥Y
(

w, b, xi
)

− yi
∥

∥

2

(3)

where b represents the square loss, xi represents the absolute
value loss, and w represents the mean square error loss.

FIGURE 3 | Improved multiple protection model.

FIGURE 4 | Architecture of zero trust protection module.

The gradient descent method is selected to reduce the error
between the calculated sample value and the predicted value.
Using the gradient descent method and step-by-step iterative
solution, the predicted value of link state, the minimum value
of sample space loss function and model parameters can
be obtained after completing the backward conduction. The
backward function is shown as follows where i = l− 1.

δi,l =

(

wl+1
)T

× δi,l+1 × Y ′
(i,l) (4)
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The updating formulas of w and b are shown as follows:

wl = wl − α

n
∑

i=1

δi,l ×
(

Yi,l−1

)T
(5)

bl = bl − α

n
∑

i=1

δi,l (6)

where α represents the iteration step. We can set the threshold
value as ε. When the updated value of w and b are less than
the threshold value, the calculation will be terminated. Input the
test set samples into the model, and count the error between the
model output results and the sample values. Repeating the above
process until the error is lower than the predefined threshold, the
accuracy test is completed.

The ANN algorithm can be applied to 5G power
communication with complex changes, and output the results
most consistent with the current environment according to the
real-time change of link state in the network (Ge et al., 2020).
The link state sample space is input into the model. After the
model passes the hidden layer operation, select the softmax
function to apply to the output layer, output the probability value
of each path (Zhu et al., 2020).

The application plane includes network applications such
as routing and network virtualization. The cognitive plane is
composed of switches and other devices, and the control plane
refers to the controller in the logic set. After receiving the
service request sent by the control plane, the application plane
forwards it to the cognitive plane. When the output path
of the cognitive plane is still the original path, the decision
information is set according to the initial routing information
table. When the output path of the cognitive plane changes, the
new transmission path is sent back to the control plane, and
the routing information table is updated by the control plane in
real time.

After a fixed interval, the control plane needs to reset the
network route. It updates the routing table information in real
time (Xu et al., 2018) and transmits the updated routing table to
the control layer that controls the cognitive plane to retrain the
model, and updates themodel in real time after training. Through
the above steps, an adaptive routing algorithm is designed using
neural network model. Through the forward conduction and
the backward conduction, the deep neural network operation
is completed to obtain the optimal transmission path in 5G
communication network.

IMPROVED MULTIPLE PROTECTION
MODEL BASE ON CASE-BASED
LEARNING

As shown in Figure 3, the improved multiple protection model
is composed of the zero-trust protection module, network
security logical isolation facility, forward and backward network
isolation facility. At present, the power terminals mainly focus
on the realization of business functions, and their security
functions generally are not fully considered. They need to be

FIGURE 5 | Test environment.

improved in terms of access authorization, audit, and network
attack protection (Cheng et al., 2020). Therefore, the zero-trust
protection module in the secure access area not only serves as a
boundary isolation facility, but also carries out continuous trust
and risk assessment for 5G external network hosts. The zero-trust
protection module integrates the lightweight encryption and
authentication center that uses the identity-based cryptosystem
(IBC) or combined public key (CPK) system to generate and
distribute the keys to the 5G external network hosts. The network
security logical isolation facility in the security access area mainly
implements the gate isolation function and the power protocol
data security filtering function (Han et al., 2019). The forward
and backward network isolation facilities in the secure access
area use the existing devices or use the enhanced forward and
backward isolation devices (Cao et al., 2019b).

The zero-trust architecture can provide active defense ability
and end-to-end security enforcement in a 5G smart application
environment where a four-dimensional framework may be
designed including subject, object, environment, and behavior
(Chen et al., 2021). In power industry of China, the credit
management and risk assessment are also paid attentions,
considering the risks in the power market transactions (Cai
et al., 2020). Thus, a CBR algorithm is proposed in the zero-
trust protection module to implement the continuous credit and
risk management.

The operational process of improved multiple protection
model includes the following steps:

Step 1. The 5G extranet host establishes a network connection
with the zero-trust protection module that verifies its identity
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FIGURE 6 | Accuracy test of deep learning method.

information. If it is a legal terminal, an encrypted transmission
channel is established and access rights are configured. The
5G extranet host requests the optimal path from the 5G
communication link optimization service that then returns
the result after calculating the predicted value of the optimal
path. The zero-trust protection module evaluates the trust and
risk value of the extranet host by monitoring the status and
the behavior of the extranet host in real time, and adjusts the
access authority of the extranet host according to the CBR
algorithm that will be described later in this section.
Step 2. After receiving the cipher text sent by 5G power
communication network, the zero-trust protection module
decrypts the cipher text and transmits the plaintext to the
network security isolation facility.
Step 3. After receiving plaintext data, the network security
isolation facility implements network protocol stripping
(Wang, 2018), and performs security filtering on the obtained
data based on pattern matching and feature filtering methods.
The plaintext is then signed after security filtering. If the
extranet host needs to access the service application of Intranet
area II, go to Step 4. If the extranet host needs to access the
service application of Intranet area I, go to Step 5.
Step 4. Send the signed data to the access gateway of
Intranet area II, encapsulate the network protocol and send
the message to the intranet application host II, and the
communication of Intranet area II host ends.
Step 5. Convert the signed data into private protocol message
of backward isolation facility and output it to backward
isolation facility.
Step 6. After receiving the private protocol message, the
backward isolation facility performs signature verification,
data content filtering and validity check, and sends the data
to the access gateway of Intranet area I.

FIGURE 7 | Convergence performance of the algorithm.

FIGURE 8 | Average packet loss rate.

Step 7. The access gateway of Intranet area I encapsulates
the data with network protocol and sends it to the intranet
application host I, and the communication of Intranet area I
host ends.
Step 8. The communication process between the intranet host
and the extranet host is opposite to the above process.

The architecture of zero-trust protection module is shown in
Figure 4.

As shown in Figure 4, the zero-trust security platform is
comprised of a case module, a dynamic access control module
and a zero-trust engine. The operational process of the platform
will be described following the design and implementation of
CBR method. The CBR method is a recycling process including
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five phases: modeling, search, reuse, review, and retain (Chourib
et al., 2020). Each case (casei) in the case base of case module is
modeled in Formula (7).

casei = {caseIDi, statei, eventi, crediti, groupi}

statei = {ID_Ei, ID_Ui, typei, bizi, ipi}

eventi ∈ {timei, freqi, tgti, voli, cf gi,warni, usrei} (7)

crediti ∈ {credi,1, credi,2, . . . , credi,n}

eff ei ∈ {ei,1,2, ei,2,3, . . . ei,n−1,n}

groupi ∈ {CaseID1, . . . ,CaseIDi−1,CaseIDi+1, . . .CaseIDn}

where statei represents the status of 5G extranet host in casei
where ID_Ei is the unique identity name of the 5G extranet host
if IBC system is adopted or the equipment certificate otherwise.
Here, ID_Ui is the user identity certificate in the host, typei
is the type of the host, bizi is the power business running in
the host, and ipi is the IP address of the corresponding host.
Also, eventi represents the events encountered that may be the
abnormal behaviors in terms of data transmission time (timei),
data transmission frequency (freqi), data transmission target
(tgti), data transmission volume (voli), configuration change
(cf gi), and user defined event (usrei). Now, crediti is the credits
record of the last n credits of ID_Ei and ID_Ui. records the
effectiveness evaluated for each change in crediti. Lastly, groupi
represents the set of case IDs related to casei.

The knowledge base is comprised of power business templates
and rule sets as defined in Formula (8).

Templatei = {bizIDi, bizTexti, timei, freqi, tgti, voli}

Ruledefault = {bizID, event,meadefault} (8)

Rulei = {eventi,meai}

where Templatei represents a template for a specific power
business. Here, bizIDi and bizTexti denote the identity number
and description of a power business, respectively. Also,
timei, freqi, tgti, voli are the data transmission time, frequency,
target, and volume, respectively, defined by business personnel
based on the regular operations of business applications. Now,
Ruledefault defines the default measures when an event occurs
in a business application environment. Also, Rulei represents a
rule defined in the rule sets that decides which measures in meai
can be adopted when an event in eventi occurs. Therefore, the
recycling five phases in CBR may include the following steps:

Step 1. Modeling. The case to be solved can be modeled as
{stai, evti}. evti can be collected by zero-trust engine from
security facilities such as IDS, firewall, and UTM. Then, the
stai can be collected by zero-trust engine from security agents
installed in related extranet host and the identity and authority
management center.
Step 2. Search. First, stai and evti are searched in the case base.
If stai ∈ casei AND evti ∈ casei, go to Step 3.1. If stai /∈ casei
AND evti ∈ casei, go to Step 3.2. Otherwise, go to Step 3.3.
Step 3. Reuse. The information and knowledge
from similar case are used to form the solution for
encountered case.

Step 3.1. If the ei,n−1,n in eff ei is positive, reuse the last credit
change measure (credi,n − credi,n−1} in crediti of casei. Go
to Step 4. Otherwise, go to Step 3.3.
Step 3.2. If typei, biz in stai equals to typei, biz in statei of
casei, go to Step 3.1. Otherwise, go to Step 3.3.
Step 3.3. Execute Ruledefault .

Step 4. Review. The zero-trust engine collects the information
from security devices to evaluate the effectiveness of the
reused solution.
Step 5. Retain. Update casei or add a new case to the case base.

In summary, the improved multiple protection model
implements the triple security protection from the
following aspects:

(1) The zero-trust protection module in the secure access
area implements the first boundary security isolation.
The zero-trust security protection platform monitors the
data access, configuration update, and other behaviors
of 5G extranet hosts in real time, dynamically evaluates
the security risks of 5G extranet hosts and controls the
dynamic access rights. The advantage of using zero-trust
protection module that integrates lightweight encryption
and authentication module is that it reduces the computing
capability requirements of 5G external network host, and
can continuously monitor and control the security of 5G
terminals, which can effectively reduce the access risk of
extranet host. The zero-trust protection module avoids the
security risk caused by the traditional one-time authorization
and permanent effectiveness so as to improve the traditional
security model.

(2) As the second protection of the model, the network security

logical isolation facility implements data security filtering

and network logic isolation, and ensures the encryption

and authentication of data interaction between the zero-

trust security protection platform and the network security

isolation facility.
(3) As the third protection of the model, the forward

and backward isolation facilities are used to block the
TCP connection, control the information flow access
process, and implement the content filtering in the
communication process.

EXPERIMENTS AND RESULTS ANALYSIS

To verify the improvement of communication efficiency and the
network security of the proposed system based on ANN and
multiple protection model, a test and verification environment
combining virtual and reality based on OPNET and security
equipment is built as shown in Figure 5. The environment is
implemented in an experimental 5G power IoT scenario of State
Grid Corporation of China (SGCC).

First, through experiment 1, the effectiveness and efficiency
of the link state algorithm are verified. The dataset is acquired
in experimental 5G power IoT scenario for 2 days from Friday
to Saturday and then it is marked manually. The ratio of
training set to test set of deep learning network is 7:3, and the
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number of nodes in input layer and output layer are set to 19
and 4, respectively. The full connection mode is adopted, and
the softmax function is set as the activation function of the
model. The number of iterations and learning rate are 1,000 and
0.1, respectively. The statistical results of deep learning output
accuracy under different training times are shown in Figure 6.

It can be seen from Figure 6 that the output accuracy of
the proposed method is higher than 92% after multiple tests,
indicating that the parameters of the deep learning method set
by the proposed method can meet the requirements of output
accuracy. The convergence of the algorithm when the proposed
method is randomly selected for single training is shown in
Figure 7.

It can be seen from Figure 7 that when the data space samples
are set, the proposed method has fast convergence speed, and the
training accuracy can reach about 95% when the algorithm tends
to be stable.

A 5G extranet host is set as the data sending node and
the zero-trust platform is set as the data receiving node. The
communication quality of each link is randomly set. The
hierarchical iteration algorithm as provided in Hu et al. (2019)
and powerline intelligent metering evolution (PRIME) algorithm
as provided in Aruzuaga et al. (2010) are selected as the
comparison method. The average packet loss rate of 5G power
communication network is calculated where noise interference is
randomly added to a link node at 60s. The results are shown in
Figure 8.

It can be seen from Figure 8 that the average packet loss rate
of the proposed algorithm is lower than the other two algorithms
and is ∼0.6% lower than the hierarchical iteration algorithm.
When noise interference is added, the proposed and hierarchical
iteration algorithm both can adjust adaptively and reduce the
packet loss rate.

Second, through experiment 2, the performance of 5G power
communication security system is tested and verified. The test
results are shown in Table 1.

As shown in Table 1, the authentication, encryption, and
decryption delay between 5G extranet host and zero-trust
platform is <6ms each time, accounting for a small proportion
in the overall communication delay. In the proposed system, the
time delay mainly lies in the time delay of isolation facilities in
the power system. Due to its data security filtering functions
and technical architecture, the time delay of network security
logical isolation device is greater than that of the forward and
backward isolation devices. The overall bandwidth limitation
in the proposed system mainly lies in the backward isolation
device (Boyaci et al., 2022). The bandwidth between 5G extranet
host and zero-trust platform can meet the large bandwidth
requirements of video monitoring and other applications.

Finally, according to the security risks identified in 5G power
communication scenario, the IXIA PerfectStorm ONE testbed
is used to verify the security of the proposed system through
experiment 3. The test results are shown in Table 2.

According to Table 2, the proposed system can resist
malicious terminal access, terminal hijacking, data tampering
and eavesdropping, protocol fuzzy and DoS attacks, so as to
reduce the security risk of 5G power communication.

TABLE 1 | Security performance test results of proposed system.

Test items Test results

Latency from 5G extranet host to intranet host I <100 ms

Latency from 5G extranet host to intranet host II <90 ms

Authentication delay between 5G extranet host and

zero-trust platform

<5 ms/time

Data encryption and decryption delay between 5G

extranet host and zero-trust platform

<1 ms/time

Communication bandwidth between 5G extranet

host and zero-trust platform (downlink)

>200 Mbps

Communication bandwidth between 5G extranet

host and zero-trust platform (uplink)

>70 Mbps

TABLE 2 | Security test of the proposed system.

Test items Test results

Malicious 5G terminal

attempts to access

Access denied

Legitimate 5G terminal

hijacked

Authority of terminal is

degraded and the terminal

is then disconnected

5G network data tampering Failed

5G network data

eavesdropping

Failed

Protocol fuzzy test The system operates

normally

DOS attack/200 Mbps The system operates

normally

In summary, experiment 1 verified the efficiency and
performance of the intelligent link state algorithm, experiment 2
verified the secure communication performance of the proposed
system, and experiment 3 verified the security of the proposed
system. From these three experiments, it can be seen that
the intelligent link state algorithm and improved multiple
protection model proposed in this system demonstrated satisfied
transmission efficiency and security performance, which may
meet the demands of power 5G applications.

CONCLUSIONS

In this study, a 5G power security system is proposed where
an intelligent link state algorithm and an improved multiple
protection model are designed. The intelligent link state
algorithm is based on the deep learning method so as to suggest
the optimal data transmission path between the 5G extranet host
and the zero-trust security platform. The multiple protection
model is improved via adopting the zero-trust architecture
and CBR methodology. The details and operational process
of the proposed system including link state algorithm and
CBR algorithm are described. Three experiments are established
to validate the efficiency and effectiveness of the proposed
system. The future research directions may reside in the further
improvement of the efficiency of the multiple protection model
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in the era of big data and IoT where millions of terminals will
be connected.
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As information technology is moving toward the era of big data, the

traditional Von-Neumann architecture shows limitations in performance. The

field of computing has already struggled with the latency and bandwidth

required to access memory (“the memory wall”) and energy dissipation (“the

power wall”). These challenging issues, such as “the memory bottleneck,”

call for significant research investments to develop a new architecture

for the next generation of computing systems. Brain-inspired computing

is a new computing architecture providing a method of high energy

e�ciency and high real-time performance for artificial intelligence computing.

Brain-inspired neural network system is based on neuron and synapse.

The memristive device has been proposed as an artificial synapse for

creating neuromorphic computer applications. In this study, post-silicon

nano-electronic device and its application in brain-inspired chips are surveyed.

First, we introduce the development of neural networks and review the

current typical brain-inspired chips, including brain-inspired chips dominated

by analog circuit and brain-inspired chips of the full-digital circuit, leading

to the design of brain-inspired chips based on post-silicon nano-electronic

device. Then, through the analysis of N kinds of post-silicon nano-electronic

devices, the research progress of constructing brain-inspired chips using

post-silicon nano-electronic device is expounded. Lastly, the future of

building brain-inspired chips based on post-silicon nano-electronic device has

been prospected.
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Introduction

With the rapid development of big data, the Internet of Things, 5G communication

technology, and deep learning algorithms, the amount of data has increased

exponentially. The huge amount of data poses a lot of challenges to the storage,

processing, and transfer of data. Despite the continuous improvement of computer

performance, due to the sharp increase in the amount of computation, there is still
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a difference of nearly 5 orders of magnitude in the Von-

Neumann architecture based on the separation of traditional

storage and computation compared with the human brain

(Schuller et al., 2015). The traditional Von-Neumann system

adopts the separate structure of data storage and data processing.

For the data communication process between the computing

unit and storage unit, the data processing will produce a lot of

loss and latency, which forms a “Von-Neumann bottleneck.”

This problem is increasingly highlighted by the fact that CPU

speed and memory capacity are growing much faster than

the data traffic on both parties (Sun K. X. et al., 2021).

This performance mismatch between the storage unit and the

computing unit leads to a large delay in the reading of data

and in the storage process of the data, that is, the “storage

wall” problem. In the case of massive data, it is increasingly

overwhelmed. Therefore, it is necessary to explore a new

memory architecture based on the human brain structure

that achieves low-power consumption, low latency, and space-

time information processing capabilities to complete the direct

communication of information. Figure 1 shows the traditional

Von-Neumann architecture and the new brain-inspired chip

architecture (Burr et al., 2015; Silver et al., 2016).

Brain-inspired chips, as the name suggests, are chips that

simulate the way the brain works, which is based on the human

brain neuron structure and the way of human brain perception

and cognition. The chip is designed with the human brain

neuron structure to improve the computing power and achieve

complete anthropomorphism. Brain-inspired chips adopt a new

architecture that simulates the synaptic transmission structure

of the human brain. Many processors are similar to neurons

and the communication system is similar to nerve fibers. The

computing of each neuron is carried out locally. On the whole,

the neurons work in a distributed manner, that is, the overall

tasks are divided and each neuron is only responsible for one

part of the computing.

Brain-inspired chips are based on the combination of

microelectronics technology and new neuromorphic devices.

Compared with traditional chips, it has greater advantages

in power consumption and learning ability. Traditionally,

computer chips are designed according to the Von-Neumann

architecture. Storage and computing are separated in space.

Every time the computer operates, it needs to reciprocate in

the two areas of CPU and memory, which leads to frequent

data exchanging in inefficient processing of massive amounts of

information. In addition, when the chip is working, most of the

electrical energy will be converted into heat energy, resulting in

increased power consumption.

Brain-inspired chips will achieve two breakthroughs

compared with traditional computing chips: one is to

break through the limitations of the traditional “executor”

computing paradigm and it is expected to form a new

paradigm of “self-service cognition”; the other is to break

through the limitations of traditional computer architecture to

realize parallel data transmission and distributed processing,

which will process massive data in real-time with extremely

low-power consumption.

The exploration of brain-inspired chips needs to solve

the following three main problems: (1) how to deal with the

production capacity of flash memory from all over the world far

lower than the growth of big data; (2) how to detect useful data in

the face of vast big data; (3) how to rely on artificial intelligence

to process big data in two directions— digital accelerators and

analog neural networks.

This study first introduces the theory of neural networks

and the development of brain-inspired chips. Second, the study

focuses on the research progress and application of post-

silicon nano-electronic devices. Among them, the application

of brain-inspired chips is emphasized. Finally, the research

and application prospects of post-silicon nano-electronic device

brain-inspired chips have been prospected.

Neural network theory

The basic unit structure of the biological neural network

is neuron and synapse. As the connection structure between

neurons, the synapse is also the medium of data transmission,

as shown in Figure 2A. The three basic functions of neurons

are to receive data, integrate data, and transmit data. The

typical structure of biological neurons consists of the cell

body, dendrite, and axon. In a neuronal system, neurons

that send signals are called pre-synaptic neurons. Neurons

that receive signals are called post-synaptic neurons. The

synaptic structure connects pre-synaptic neurons with

post-synaptic neurons which transmit data. The weight of

synapses reflects the connection strength between units.

One of the cores of the biological neural network is the

change of synapses for information transmission efficiency,

that is, the plasticity of synaptic connections (Thomas,

2013).

Figure 2B shows the processing of input signals by neurons

in a neural network. Neurons not only accept input signals

but also need to perform data analysis on the input signals.

After being stimulated by other neurons, biological neurons do

not simply accumulate all the stimuli and output them to the

next neuron. Instead, there is a threshold, and only when the

neuron receives a stimulus greater than the threshold will it

output a distinct stimulus. Neurons in artificial neural networks

also have this function. The artificial neuron accumulates all

the input signals processed by the artificial synapse. Artificial

neurons only output signals when the cumulative signal exceeds

a set threshold.

The neural network mainly includes three layers: the input

layer, the output layer, and the hidden layer, in which the hidden

layers can be expanded. According to the neuron model, neural

networks can be divided into two categories: Artificial Neural
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FIGURE 1

(A) traditional Von-Neumann architecture (B) Brain-inspired architecture (Burr et al., 2015; Silver et al., 2016).

Networks (ANN) (Hopfield, 1982) and SpikingNeural Networks

(SNN) (Maass, 1997).

ANN is an information processing system similar to the

human brain nervous system which is established inspired by

the structure of the biological neural network. The working

principle of the ANN is shown in Figure 3A. When the input

signal is received, its intensity is first determined, which is

commonly referred to as the weighting process. Then, the

combined effect of all input signals needs to be determined,

that is, the net input, completing the summation process.

Finally, the input is transformed through non-linear function

calculation to obtain the corresponding output signal. Among

them, the functions of non-linear transformationmainly include

the sigmoid function, tanh function, and relu function. The

unit structure of ANN is similar to that of the biological neural

network, which can complete the learning and cognitive training

functions of a biological neural network to a certain extent,

usually with the Backpropagation (BP) algorithm (Rumelhart

et al., 1986). ANN can learn without supervision, that is, it has

the ability of self-learning. The advanced function of realizing

the associative storage of the human brain can be accomplished

by using its feedback network.

SNN is a neural network computing system based on

the spiking neuron model. It is a computing model that

is closer to the biological neural network. The working

principle of SNN is shown in Figure 3B. The pulse signal

is discrete, replacing the continuity of the analog signal

in ANN. It is similar to ANN. Because the network also

takes the parameters of time information into account, SNN

is closer to the biological neuron model. At the same

time, the neuron model is also more complicated due to

the structure of the pulse signal. From the perspective

of the neuron structure in SNN, the input signal will

cause the state of the neuron to change, that is, the

membrane potential. Only when the membrane potential

reaches the threshold potential will the output pulse signal

be generated. Among them, Spike timing-dependent plasticity

(STDP) algorithm is one of themain learning algorithms of SNN

(Fukushima, 1980; Froemke and Dan, 2002).

Brain-inspired chips

At present, brain-inspired chips are mainly divided into

brain-inspired chips dominated by analog circuits, brain-

inspired chips based on digital circuits, and brain-inspired chips

based on post-silicon nano-electronic device. The traditional

CMOS technology has been developed to a relatively high

degree, and many successful results have been achieved so

far. The brain-inspired chip based on a post-silicon nano-

electronic device is in the initial stage of exploration and

development. At present, the research on brain-inspired chips

based on post-silicon nano-electronic device is widely concerned

to complete the parallel one-time mapping between input and

output. Figure 4 shows the international research status of brain-

inspired chips.
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FIGURE 2

(A) Diagram of two neurons’ connection structure and synapses

(B) Schematic diagram of the processing of input signals by

neurons in a neural network.

Brain-inspired chips dominated by the
analog circuit

As early as the end of the twentieth century and the

beginning of the twenty-first century, a series of research works

on silicon cochlea and silicon neurons laid the foundation for

the design of brain-inspired chips dominated by analog circuits.

Among them, the most representative is the Neurogrid chip

designed by Stanford University in the United States, which

has been established to realize the real-time simulation of the

biological brain (Benjamin et al., 2014). It uses the SNN neuron

model to realize the kinetic calculation of ion channels and fit

complex ion channel models. Its system structure is shown in

Figure 4A. Each neuron with a size of 256∗256 is combined

into a neural nucleus, and then 16 neural nuclei are formed

into a hierarchical network through a tree topology. Finally,

the simulation of a million-level neural network meta-networks

is completed.

The BrianScales chip of Heisenberg University in Germany

also uses the SNN neuronmodel to realize the kinetic calculation

of ion channels. Its system structure is shown in Figure 4B. A

single wafer simulates nearly 200,000 neurons and 49 million

synapses. With the cooperation of routing communication

circuits, the speed of the entire system is 10,000 times the

speed of a biological neural network. However, the power

consumption is as high as 1 kW (Davison et al., 2020).

FIGURE 3

(A) Working principle of ANN (B) Working principle of SNN

(Zhang, 2020).

The second generation of BrainScaleS adds online learning

capabilities and provides an important reference for completing

the real-time learning process.

Brain-inspired chips with full-digital
circuit

Because the analog circuit is greatly interfered with by

factors such as manufacturing process and environment, the

chip does not have advantages in reliability, configurability,

scalability, etc. and it is difficult to reproduce the results strictly

through simulation, which is not conducive to the research of

upper-level algorithms. Therefore, brain-inspired chips based on

analog circuits are mainly studied in academia. For the industry,

more stable and reliable full-digital circuit brain-inspired chips

are preferred (Rast et al., 2010; Benjamin et al., 2014; Merolla

et al., 2014; Davies et al., 2018; Davison et al., 2020).

In 2006, the University of Manchester started to develop the

SpiNNaker chip, as shown in Figure 4C. The current version is

to build an electronic model of the biological brain through 1

million microprocessors from ARM, which can reach 1% of the

human brain, achieving the world’s first low-power, large-scale

digital model of the human brain (Rast et al., 2010), providing

a high-performance platform for real-time simulation of large-

scale neural networks. The TrueNorth chip released by IBM in
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FIGURE 4

(A) The architecture of Neurogrid (B) The architecture of BranScaleS (C) The architecture of SpiNNaker (D) The architecture of TrueNorth (E) The

architecture of Loihi (F) The architecture of Darwin (G) The architecture of Tianjic.

TABLE 1 Prevalent brain-inspired chips.

Name Type Learning Simulation time Capacity Connection

Neurogrid Analog-dominated No Real-time 256*256 CMOS USB via FX2

BrainScales Analog-dominated No Slower than real-time 180K neurons Ethernet

SpiNNaker Full-digital No Real-time 1% of brain capacity Ethernet

TrueNorth Full-digital No Faster than real-time 4,096 core per chip AXI bus to SoC

Loihi Full-digital Yes Faster than real-time 4,096 core per chip Ethernet, USB

Darwin Full-digital No 70 MHz Clock 2,048 neurons per chip UART to USB

Tianjic Full-digital Ni Real-time 40 k neurons per chip Not specified

2014 adopts a full-digital circuit, simulating the connection of 1

million neurons and 256million synapses to complete the neural

network function, as shown in Figure 4D, with a very low-power

consumption of 73 mW (Merolla et al., 2014). The function

of the chip is to perform inference on pre-trained networks,

which can be applied to object detection in images. The Loihi

chip released by Intel in 2017 contains 128,000 neurons and

128 million synaptic structures, which realizes the complexity

of neural network topology and enables on-chip learning with

different learning modes (Davies et al., 2018) as shown in

Figure 4E. Loihi 2 was released in 2021, which is an upgraded

version of Loihi using a new process. It integrates 1 million

neurons, but compared with the first generation, the area is

reduced by half, and the processing speed is 10 times that of the

first generation.

In 2019, Zhejiang University released a new brain-inspired

chip, Darwin II, as shown in Figure 4F (Shen et al., 2015).

This chip uses a 55 nm process, and the number of neurons

in the entire chip reaches 150,000. Through the cascade of

chip systems, a brain-inspired computing system with tens of

millions of neurons can be constructed. Tsinghua University

released a new artificial intelligence chip Tianjic III (Tianjic)

in 2019, as shown in Figure 4G (Pei et al., 2019). The chip

adopts multi-core architecture, reconfigurable building blocks,

simplified data flow, and hybrid coding. It can not only adapt

to machine learning algorithms based on computer science but

also easily realize brain-inspired circuits andmultiple encodings.

Table 1 introduces prevalent brain-inspired chips.

Brain-inspired chips based on
post-silicon nano-electronic device

With the continuous development of Moore’s Law, the

feature size of transistors is getting closer and closer to
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their theoretical physical limit. It is difficult to improve

the development of the current CMOS process integration

technology further. When a brain-inspired chip is integrated

on a large scale, the larger the area of the circuit is,

the higher the power consumption generated. At the same

time, transistors have defects in simulating the dynamic

characteristics of neurons and synapses, and their ability

to simulate brain-inspired computing needs to be further

improved. Therefore, researchers turned their attention to post-

silicon nano-electronic devices to realize the design of brain-

inspired chips.

The key of brain-inspired chips -
post-silicon nano-electronic device

It is urgent to find a memory, whose working behavior

characteristics are similar to those of the brain. Brain-inspired

chips consist of a large amount of memory. For a long time,

researchers have been looking for and constructing suitable

post-silicon nano-electronic devices with memory functions.

For example, memristive devices can change the working

state of the device through different working mechanisms,

which is similar to the role of ion channels contained in

the membranes of neurons and synapses in the brain. Some

memristive devices can keep working like this all the time.

Even if the power is turned off, they will not be lost, just like

human memory.

Semiconductor memory can be divided into two categories

according to the characteristics of stored information: volatile

memory (VM) and non-volatile memory (NVM). Generally

speaking, volatile memory means that when the system is

powered off—all data stored in the device will be automatically

lost. It mainly includes two types: Dynamic Random-Access

Memory (DRAM) and Static Random-Access Memory (SRAM).

Non-volatile memory means that when the system is

powered off, the data stored in the device will always be retained

and will not be lost. It mainly includes new memory and flash

memory (Nor Flash memory and Nand Flash memory). Figure 5

shows the main distribution of semiconductor memories on the

market today.

In terms of data reading and writing speed, the speed

of volatile memory is usually very fast. However, in general,

the writing latency of non-volatile memory is high. When the

number of writes reaches a certain number, the storage of data

will fail because the memory will reach its storage limit. Of

course, for an ideal memory, it should have both non-volatile

characteristics of data and access speed comparable to SRAM,

and no read and write restrictions within a certain range.

Post-silicon nano-electronic device designs and

mainstream silicon CMOS processes have different new

materials and storage mechanisms. These materials mainly

include chalcogenides compounds, transition metal oxides,

carbon materials, ferroelectrics, and ferromagnetic metals.

Different from the traditional electronic process switching

mechanism, they are realized using phase transition, molecular

restructuring, quantum mechanical phenomena, and ion

reaction. Most non-volatile memories are based on two-

terminal switching devices, which are commonly used

in high-density memory architectures such as crossbars.

In recent years, new storage technologies represented by

phase-change random-access memory (PCRAM), resistance

random-access memory (RRAM), magnetic random-

access memory (MRAM), and ferroelectric random-access

memory (FeRAM) have emerged in the field of vision

of researchers.

Compared to CMOS technology, which is widely used in

chips, post-silicon nano-electronic device-based brain-inspired

chips have greater potential in terms of computational density,

power efficiency, computational accuracy, and learning ability.

In addition, the size of the post-silicon nano-electronic device

can be reduced to <2 nm with ultra-high-density integration

(Pi et al., 2019). Therefore, post-silicon nano-electronic device

technology will be applied to the large-scale manufacturing of

brain-inspired chips in the future.

The performance requirements of post-silicon nano-

electronic device-based brain-inspired chips largely depend on

their specific applications. Figure 6A shows the performance

requirements for various application scenarios including

storage, inference, learning, and typical non-volatile memory.

The number of simulated states (Figure 6B) determines the

accuracy of weight matching between synapses, and the

formation of larger neural networks requires at least 8 resistance

states that can be accurately distinguished (Jacob et al., 2017).

By optimizing device material selection and circuit design, the

current post-silicon nano-electronic device chips can achieve up

to 256 resistance states. The dynamic range of switching state

transitions is defined as the on/off ratio (Figure 6C) (Wang et al.,

2016), which determines the ability to assign the weights in the

algorithm to the device conductivity, which in most cases differs

from the conductivity of the device in relation to the threshold

switch with two resistors. Compared to the high switching

ratio, the switching ratio of the multi-resistor post-silicon nano-

electronic device is <10. The linearity (Figure 6D) refers to the

linearity of the relationship between the conductivity of the

device and the number of exciting electric pulses. During the

formation of the post-silicon nano-electronic device, the device

weights show increasing and decreasing asymmetry (Figure 6E).

In the training process, the conductivity update of post-silicon

nano-electronic device is usually in the partial scope of the

conductivity window, instead of the full range (Figure 6F).

After tuning the post-silicon nano-electronic device to different

conductance levels, the conductance of the device may change

over time, and the two levels may overlap after a period of time
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(Figure 6G). Failed devices refer to post-silicon nano-electronic

device that cannot be tuned to the target conductance Level.

(Figure 6H). Based on this, it can be seen that post-silicon

nano-electronic device can store weights. According to different

application requirements, a suitable new type of post-silicon

nano-electronic device can be selected as a memristive device

for neural network design (Wang et al., 2022). The memristive

device can simulate the function of biological synapses because

the sandwich structure of the device unit is similar to nerve

synapses (Sun B. et al., 2021c).

Phase-change memory (PCRAM)

PCRAM is a post-silicon nano-electronic device based on

GST materials such as Ge2Sb2Te5. According to different

device characteristics, the composition of GST material can

be further adjusted, as shown in Figure 7C. The resistance

change characteristic of PCRAM is shown in Figure 7D. For

example, Ge-rich GST (N-type doping) can be used in high-

temperature automotive applications for better data retention

(Cheng et al., 2012). The switching resistance ratio of phase-

change memory is much larger than that of STT-MRAM (in the

range of 100 to 1,000 times). Therefore, in principle, Multilevel

Cell (MLC) operation is feasible (4 bit/cell has been proposed;

Nirschl et al., 2007). A major challenge in PCRAM cell design is

the need for a relatively large write current when melting the

phase-change material. At present, the structure design trend

of phase-change memory is from mushroom type to confined

type. The limited type reduces the write current by limiting

heat dissipation. Extremely scaled phase-change memory cells

using carbon tube electrodes have shown that write currents can

reach 1 µA at the 2 nm node (Liang et al., 2011). The resistance

drift caused by amorphous relaxation limits the data retention

ability of PCRAM, especially for MLC. Therefore, complex

circuit compensation schemes are needed. PCRAM has good

process compatibility with silicon CMOS technology, regarded

as the most mature process technology in the post-silicon nano-

electronic device industry (Yu and Chen, 2016).

Spin-transfer-torque magnetic
random-access memory (STT-RAM)

Spin-transfer-torque magnetic random-access memory

(STT-RAM) is a kind of memory that stores data by changing

the resistance through the magnetoresistance effect of magnetic

materials. The basic unit of STT-RAM is a sandwich structure

composed of an insulating barrier layer sandwiched between

two magneto-resistive materials, which is called a magnetic

tunnel junction (MTJ). At the bottom is the fixed layer with

fixed polarity, and at the top is the free layer with changeable

polarity. The magnetic moment of the free layer is written

under the action of the current of the upper and lower wires

at the same time. When the magnetic moments of the fixed

magnetic layer and the free magnetic layer are parallel in the

same direction, the resistance of the magnetic tunnel junction

is small. At this time, the device shows a low-resistance state.

When the magnetic moments of the fixed magnetic layer and

the free magnetic layer are parallel in the opposite direction,

electrons are not easy to pass through the magnetic tunnel

junction, and the MTJ structure shows a high resistance state,

as shown in Figure 7E. The resistance-voltage characteristic of

STT-RAM is shown in Figure 7F. STT-RAM stores data “0” and

“1” through two different resistive states.

Resistive random-access memory (RRAM)

RRAM is a kind of post-silicon nano-electronic device that

can realize the reversible conversion between high-resistance

and low-resistance states under the action of an external electric

field based on the resistance of non-conductive material, thus

completing the storage of binary data, as shown in Figure 7A.

The current96voltage characteristic of RRAM is shown in

Figure 7B. According to the different conductive media, it can

be divided into two categories: OxRAM (Oxide-RAM), which

conducts with oxygen holes, and CBRAM (Conductive Bridge

RAM), which conducts with metal ions. The write operation

of RRAM includes unipolar and bipolar modes, depending

on the oxide as well as the electrode material system. The

unipolar mode generally requires larger write currents and has

poorer endurance; therefore, the bipolar mode is preferred. A

key challenge in the design of the RRAM cell structure is the

variability of switching parameters. The significant variation in

resistance distribution (perhaps one or two orders of magnitude)

presents a challenge to the design of sensitive readout circuits,

requiring write-verify techniques to program to the target

state, which may at the same time cause delays in MLC

operation. RRAM typically has superior process compatibility

with mainstream silicon CMOS technologies.

Ferroelectric random-access memory
(FeRAM)

Ferroelectric memory is a post-silicon nano-electronic

device with a special process, which is formed by using synthetic

lead zirconium titanium (PZT) materials to form memory

crystals, as shown in Figure 7G. The polarization-voltage

hysteretic characteristic of FeRAM is shown in Figure 7H.When

an electric field is applied to a ferrotransistor, the central atom

follows the electric field and stops at the low-energy state I.

Conversely, when a reverse electric field is applied to the same

ferrotransistor, the central atom moves in the crystal along
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FIGURE 5

The categories of semiconductor memory.

TABLE 2 The performance comparison of post-silicon

nano-electronic device (Lai and Lowrey, 2001; Song et al., 2008; Sheu

et al., 2009; Kim et al., 2011; Tamura et al., 2011; Bez and Cappelletti,

2012; Bez et al., 2013; Zangeneh and Joshi, 2014; Roy et al., 2020;

Saxena, 2020).

Devices MRAM FeRAM PCRAM RRAM

Non-volatile Yes Yes Yes Yes

Cell size (F2) 8 15–34 4 4

Read latency 30 ns 45 ns 50 ns 8.5 ns

Write/Erase latency 30 ns/30 ns 10 ns/10 ns 10 ns/20 ns 5 ns/5 ns

Endurance >1012 1014 >1012 108

Write power High Low High Low

High voltage required (V) 3 2–3 1.5–3 1.5–3

CMOS compatibility Medium Medium Good Good

Multi-level No No Yes Yes

3D Xpoint Yes Yes Yes Yes

Cost Medium High Low Low

the direction of the electric field and stops in another low-

energy state II. A large number of central atoms move and

the couples in the crystal unit cell form ferroelectric domains,

and the ferroelectric domains form polarized charges under the

action of an electric field. The polarization charge formed by

the reversal of the ferroelectric domain under the electric field

is higher, and the polarization charge formed by the ferroelectric

domain without reversal under the electric field is lower. FeRAM

combines the advantages of RAM and ROM. Compared with

traditional non-volatile memory, FeRAM has the characteristics

of high speed, low-power consumption, and long life.

Comparison of major post-silicon
nano-electronic device

The above four major emerging trends are summarized

as key strengths and challenges of post-silicon nano-electronic

device. PCRAM, RRAM, and MRAM are called resistive

memory, while FeRAM is a new memory equivalent to charge

memory. Table 2 shows the performance comparison of post-

silicon nano-electronic device (Lai and Lowrey, 2001; Song et al.,

2008; Sheu et al., 2009; Kim et al., 2011; Tamura et al., 2011; Bez

and Cappelletti, 2012; Bez et al., 2013; Zangeneh and Joshi, 2014;

Roy et al., 2020; Saxena, 2020). From the table, we can conclude

that phase-change memory shows great advantages in terms of

high read and write speed, high-density integration, low-energy

consumption, low cost, and compatibility with CMOS processes.

It can replace the current co-storage structure of DRAM and

Flash memory, and its potential in high-speed and high-density

storage cannot be underestimated.

Research on construction of
brain-inspired chips based on
post-silicon nano-electronic device

Synapse

Combined with the design and application of brain-inspired

chips, different types of non-volatile memory devices have been

proposed. In the application of neural networks, according to the

relationship between the adjustment of weight and the reading
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FIGURE 6

Application-dependent device metric requirements (Zhang W. Q. et al., 2020). (A) Ranking of qualitative device requirements for three potential

applications and NVM. (B96-H), schematic diagram of computing device requirements: (B) simulation state, (C) on/o� ratio, (D) linearity, (E)

symmetry, (F) durability, (G) retention rate and (H) yield.

FIGURE 7

Post-silicon nano-electronic device. (A) Conductive filament resistive memory (B) corresponding polar current-voltage characteristics (C)

Phase-change memory (D) phase-change memory characteristics (E) Spin-transfer torque magnetic random-access memory (F)

resistance-voltage characteristics of Spin-transfer torque magnetic random-access memory (G) ferroelectric random-access memory

(H) polarization-voltage hysteresis characteristics (Ielmini and Wong, 2018).
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FIGURE 8

Two-terminal devices: (A) RRAM, (B) PCM, and (C) MRAM. Three-terminal devices: (D) flash memory and (E) FeFET. Post-silicon nano-electronic

device-based cell structure: (F) 1R synapse, (G) 1T1R synapse, (H) 2T1R synapse, (I) 2T2R synapse, (J) 2T2R+3T1C synapse, (K) 1T+1TriR

synapse and (L) 2T+1TriR synapse. (M) neuro-synapse core, (N) neuro-synapse core in brain-inspired chips (O, P) neural network

working process (Zhang W. Q. et al., 2020).

of weight, these devices can be divided into two categories: two-

terminal devices and three-terminal devices. The two-terminal

devices mainly include PCRAM, RRAM, and MRAM. Three-

terminal devices mainly include flash memory and ferroelectric

memory as shown in Figure 8.

PCRAM

Work on a PCM-based device was first proposed in 2012

(Kuzum et al., 2012). By applying a series of incremental

excitation pulses to the device, the resistance of the device can

change under about 100 resistance states, and under appropriate

pulses, the learning rule of spiking-time-dependent plasticity

(STDP) can be realized under waveform. Subsequently, different

research groups proposed various excitation pulse programming

schemes to reduce the complexity and power consumption of

PCM-based neuromorphic circuits (Suri et al., 2011; Jackson

et al., 2013; Li et al., 2013; Stefano et al., 2016). However,

a major challenge of PCM devices is the asymmetry of the

resistance switching process, which is mainly because the

process of melting the material at a high temperature to form an

amorphous state is more difficult to control than the process of
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FIGURE 9

(A) Experimental LTP characteristics of Ge2Sb2Te5 (GST) PCM devices. (B) 2-PCM synapse principle (Bichler et al., 2012).

FIGURE 10

Basic structure diagram of IBM phase-change neuron (Tuma et al., 2016).
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recrystallization of its amorphous state. Phase-change memory

can achieve multilevel resistance states by the programming

pulse. Only two resistance states can be achieved during reset

using the same pulse. To this end, Bichler et al. proposed a 2-

PCM synapse design to deal with this problem in their work

(Bichler et al., 2012), in which one PCM was used as a synaptic

potentiation (Long-term potentiation, LTP), and the other was

used as a synaptic depression (Long-term depression, LTD). In

this design, both PCM devices are partially crystallized. During

LTP and LTD, the conductance of the device is increasing.

The current through the LTP device plays a positive role and

the current through the LTD device plays a negative role. The

current through the LTD is subtracted at the output, ultimately

resulting in synaptic inhibition, as shown in Figure 9.

RRAM

In the early RRAM device design, the artificial synapse

device based on HfOx material adopted the one-way reset

learning mode (Yu et al., 2013). To make this process smoother,

multiple conductive filaments can be formed under the electric

field through the design of multilayer oxides implemented in

the device. In the RRAM device with an interface mechanism,

the resistance changes during the set and reset process are

relatively gentle (Park et al., 2012, 2013; Gao et al., 2015b; Wang

et al., 2015). In addition, multi-resistance states can also be

achieved by regulating the capture and release of interfacial

oxygen vacancies (Yang et al., 2017). The resistive switching

device exhibited multistate resistance behavior, which enables 2-

bit storage capacity in a single device providing a method for

logic in-memory and neuromorphic computing (Sun B. et al.,

2021b). A memristive device and a hybrid system composed

of CMOS neurons and RRAM synapses were experimentally

demonstrated to realize essential synaptic functions such as

STDP (Jo et al., 2010).

Depending on the application, different excitation pulse

programming schemes are applied for online or offline training

with RRAM, so the requirements for device characteristics may

vary. For example, in the offline training process, the resistance

state can be iteratively programmed into the specified target

layer by the write-verifymethod. Since the programming process

is one-time, accuracy is more critical than speed in the writing

process. Alibart et al. simulated this programming process by

firing a series of pulses (Alibart et al., 2011), where pulses

with smaller amplitudes approach the state in smaller steps but

take longer than pulses with larger amplitudes. Therefore, the

use of a pulse train of variable amplitude can approach the

desired state in small steps within a reasonable time frame. In

the absence of a change in switching state, the pulse amplitude

becomes progressively smaller, resulting in smaller steps as the

device gets closer to the desired state. However, due to the

fluctuation of the device itself, the process of determining the

initial pulse value often starts with a small non-disturbing pulse

and gradually increases, and the conductance of the device is

confirmed by applying the read pulse after the write pulse until

the required accuracy is achieved. When using this method,

because the initial state is very close to the desired state,

the maximum amplitude of the voltage pulse written in the

new sequence is smaller than that of the previous sequence,

which can ensure that the device is closer to the desired state.

For a single Pt/TiO2−x/Pt device, this method can adjust the

conductance to any expected value in the dynamic range of

the device with an error of only 1% (Alibart et al., 2011). For

the Ag/a-Si/Pt single device, the tuning accuracy for the low-

resistance state is also close to 1%. A similar iterative algorithm

has also been demonstrated in HfOx devices (Gao et al., 2015a).

For online training, since the synaptic weights need to be

dynamically trained, the programming speed becomes a more

important factor, therefore, smooth conductance adjustment

without write verification becomes the preferred solution (Yu,

2018). Some examples of state-of-the-art based on RRAM are

given in the literature, all of which show bidirectional graded

conductance tuning under the same programming voltage pulse

(Mulaosmanovic et al., 2017; Yu, 2018). Although these devices

can all reach tens or hundreds of resistive states, there are

still non-linearities and asymmetries in the tuning. They used

W/MgO/SiO2/Mo memristive device as the synapse of speech

recognition and completed the hardware implementation of

SNN using the improved supervised tempotron algorithm on

the TIDIGITS dataset (Al-Shedivat et al., 2015; Wu et al., 2022).

FeFET

FeFET synapse devices use a three-terminal structure, which

is characterized by decoupling the write and read paths for

the resistive state of the device. In FeFET, the programming

voltage applied to the gate determines the resistance change of

the device. The current is given by the drain-source current

read. As mentioned earlier, as a three-terminal device, FeFET

is designed for weighted summation as pseudo cross arrays.

In terms of physical structure, FeFET is to apply short voltage

pulses through the gate through the multi-domain effect in

ferroelectric materials, so as to gradually adjust the capacitance

of the gate, and finally complete the adjustment of threshold

voltage and channel conductance (Oh et al., 2017). Recently,

(Jerry et al., 2017) simulated FeFET synaptic devices using

a gate-last manufacturing process flow of n-channel FeFETs,

whose gates were formed by stacking 10 nm Hf0.5Zr0.5O2

(HZO) materials by atomic deposition and annealed at 600◦C

to generate multiple ferroelectric domains in HZO nanocrystals.

Compared to RRAM devices, FeFETs have advantages in on-off

ratio and available program pulse range with less variation in the

weight update curve.
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Neuron

Neuromorphic computing systems need to simulate

not only synapses, but also neuronal dynamics, including

membrane potential maintenance, transient dynamics, and

neurotransmission processes (Burr et al., 2016). In human

neurons, the maintenance of membrane potential depends on

the ion pump and ion channel in the middle of the membrane

lipid bilayer. The excitation or inhibition of post-synaptic

potentials of neuronal dendrites can change their state. In

neurons composed of phase-change memory, the membrane

potential is represented by an amorphous state of high

resistance, and the firing frequency of phase-change neurons is

controlled by the amplitude width and time interval of a series

of voltage pulses. Connecting the plasticity of synapses, such

neurons can complete complex calculations such as detecting

time correlation in parallel data streams.

When a post-silicon nano-electronic device is used to build

a neuron, the goal of the device is not the continuity of

its conductance state, but rather a cumulative behavior that

fires after receiving a certain number of pulses. Since each

conductance state of a post-silicon nano-electronic device affects

its behavior between accumulation and emission pulses, changes

in these conductance states will be the focus of research.

The use of PCM devices to construct neurons was first

reported in the work of Ovshinksy and Wright (Wright et al.,

2011). In their work, Tuma et al. changed the membrane

potential of neural components through phase encoding, and

then experimentally proved that neurons based on PCM devices

can integrate post-synaptic input signals (Tuma et al., 2016).

A system in which both neuron and synaptic devices were

implemented using PCM devices was reported by Pantazi et al.

(2016). Studies by Averbeck et al. have shown that stochastic

behaviors in neuronal dynamics, such as ionic conductance

noise and thermal noise-induced chaotic motion of charge

carriers, morphological variation between neurons, and other

background noise can also affect neuronal signaling. Encoding

and transmission play a key role (Averbeck et al., 2006).

Therefore, simulating these random behaviors in artificial

neurons can achieve many interesting functions (Maass, 2014).

The random behavior in the device is due to the inhomogeneity

of the thickness of the amorphous region and the internal atomic

configuration during melt quenching of different batches of

materials, and these random behaviors can lead to multiple

integrations of the signal generated by a phase transition

in the PCM neuron. The interval is generated between the

transmitted signals to facilitate some statistical calculations

based on these transmitted signals. At the same time, however,

the melt quenching process of PCM device materials, especially

the elemental migration therein, limits the device’s durability.

Likewise, in RRAM devices, large changes in conductance can

also result in reduced device durability. Therefore, extending the

lifetime of the device requires ensuring that neurons accumulate

and fire the number of spiking signals or fabricating the device

with high-durability materials.

Figure 10 (Tuma et al., 2016) shows the basic structure

diagram of the IBM phase-change neuron. The synapses

consist of phase-change units that are responsible for weighting

incoming excitation signals. Multiple excitation signals are input

into the synaptic array, and after the signals pass through

the synapse, they are input into the phase-change unit that

functions as a neuronal membrane (neuronal membrane, which

can also be understood as a neuron). When the threshold is

reached, the IF event is triggered, and the excitation signal

is emitted. The excitation signal is firstly conducted to the

outside for further data processing, and at the same time, it

is back-propagated for comparison with the previous input

excitation signal. For positive delays, synaptic conductance is

increased, and for negative delays, synaptic conductance is

decreased. These functions of synapses can be achieved with SET

and RESET operations. Through the above analysis, it can be

found that this system has met the main requirements of the

bionic neural network.

Al-Shedivat et al. have proposed to use TiOx-based RRAM

to construct random artificial neurons (Al-Shedivat et al., 2015).

In an RRAM, integrating the input signal of neurons increases

the voltage across the capacitive device, that is, increases the

membrane potential of neurons, causing the device as a whole

to switch to the low-resistance state and the generated increased

current is converted into digital by an external circuit signal or

analog pulse. Meanwhile, random switching of resistive states

in RRAM results in random firing of neurons (Nessler et al.,

2013). Jang et al. also implemented a similar principle on a

Cu/Ti/Al2O3-based conductive bridge random-access memory

(conductive-bridging RAM; CBRAM) (Jang et al., 2017).

Resistive memory has also been used in the simulation

of axonal behavior. The neuron resistor (Neuristor) was first

proposed as an analog device for the Hodgkin-Huxley axon

(Hodgkin and Huxley, 1952; Crane, 1962), but it could not be

mass-produced in the early stages of the concept. Pickett et al.

fabricated a neuron resistor composed of two nanoscale Mott

memristors based on the Joule heat-driven insulation-conductor

phase transition principle (Pickett et al., 2013). This neuron

utilizes the dynamic resistance switching behavior of the Mott

memristor and the functional similarity between Na+ and K+

channels in the Hodgkin-Huxley model to make the resistor

have all-or-nothing pulse signal gain, periodicity, etc. important

neuron features.

Many research works provide more references for the

practical application of memristor. A.Chandrasekar et al.

studied impulsive synchronization of stochastic memristor-

based recurrent neural networks with time delay and concluded

that the memristive connection weights have a certain

relationship with the stability of the system (Chandrasekar

and Rakkiyappan, 2016). Researchers have also done a lot of

research on the complete definition of the brain elicitation
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system and learning mode. The definition of completeness

for brain-inspired systems was put forward by Zhang et al.

(Zhang Y. et al., 2020), which is composed of Turing-complete

software abstract model and a versatile abstract brain-inspired

architecture, providing convenience for ensuring the portability

of programming language, the completeness of hardware and

the feasibility of compilation. By introducing a brain-inspired

meta-learning paradigm and a differentiable spike model

combining neuronal dynamics and synaptic plasticity, Wu et al.

proposed a brain-inspired global-local cooperative learning

model. It achieves higher performance than a single learning

method (Wu et al., 2020). Associative memory is an important

mechanism to describe the process of biological learning

and forgetting. It is of great significance to construct neural

morphological computing systems and simulate brain-inspired

functions. The design and implementation of associative

memory circuits have become a research hotspot in the

field of artificial neural networks. Pavlov’s conditioned reflex

experiment is one of the classical cases of associative memory.

The implementation of its hardware circuit still has some

problems, such as complex circuit design, imperfect function,

and unclear process description. Based on this, researchers

combined the classical conditional reflection theory and nano-

science and technology to study its circuit. Sun et al. put

forward a memristive neural network circuit that can realize

Pavlov associative memory with time delay achieving learning,

forgetting, fast learning, slow forgetting, and time-delay learning

(Sun et al., 2020). A memristor-based learning circuit that can

realize Pavlov associative memory with dual-mode switching,

auditory mode, and visual mode, was designed and verified by

Sun et al. (2021a). Sun et al. proposed a memristor-based neural

network circuit of emotion congruent memory, which considers

various memory and emotion functions, achieving the functions

of learning, forgetting, changing speed, and emotion generation

(Sun et al., 2021b). Gao et al. experimentally demonstrated the

in situ learning ability of the sound localization function in a

1K analog memristor array with the proposed multi-threshold-

update scheme (Gao et al., 2022), representing a significant

advance toward memristor-based auditory localization system

with low-energy consumption and high performance.

In 2016, Sengupta et al. proposed a deep spiking neural

system based on magnetic tunnel junction (MTJ), which lead

to a fully trained deep neural network (DNN) transformed into

an SNN on forwarding inference (Sengupta et al., 2016). The

input signal of DNN is encoded as a Poisson spike sequence

of SNN according to the rate and is regulated by the synaptic

weights, resulting in a post-synaptic current flowing through

heavy metals under the MTJ device, which causes the switching

of the device state in the MTJ device, the probability of

which is the distribution is approximated by the DNN sigmoid

function, again with a 50% probability of zero input by adding

a constant bias current. Stochastic micromagnetic simulations

of large-scale deep learning neural network architectures show

that SNN forward inference can achieve a test accuracy of up

to 97.6% on the MNIST handwritten digit database. Sharad

et al. also suggested using lateral spin valves and domain wall

magnets (DWMs) as neural components to achieve multiply-

accumulate functions (Roy et al., 2013). Initially conceived,

this work connects two input magnets with opposite polarities,

a stationary magnet, and an output magnet through a metal

channel. The transmission of spin torque makes the output

magnet switch to a flexible axis parallel to the polarity of the

input magnet, which is detected by MTJ.

In a later envision, the device instead uses two magnets with

fixed and opposite polarities, which are connected through a

DWM device with an integrated MTJ. One magnet is grounded

and the other is used to receive the difference between the

excitatory and inhibitory currents plus the bias current to center

the response of DWM. Such current differences determine

the direction of the current flowing through the DWM and

the resulting magnetic polarity, which is then induced by the

MTJ. Sharad et al. also proposed circuit integration schemes

of unipolar and bipolar neurons, as well as device-circuit joint

simulation of some common image processing applications.

Moon et al. realized pattern recognition neuromorphic systems

by combiningMo/PCMO synaptic devices with NbO2 insulator-

metal transition neuronal devices, in which the Mo/PCMO

devices exhibited excellent performance due to their high

activation energy during oxidation reliability (Moon et al., 2015).

Conclusion

The development of artificial intelligence is highly

dependent on massive amounts of data. Meeting the data

processing requirements of high-performance machine learning

is the most important factor for brain-inspired chips.

This study summarizes the development of brain-inspired

and post-silicon nano-electronic device and its applications

in brain-inspired chips. The current representative post-

silicon nano-electronic device artificial synaptic devices include

PCM, RRAM, and FeRAM. In addition, the post-silicon

nano-electronic device can also be used to construct neural

components. As CMOS technology is approaching its physical

limits, post-silicon nano-electronic device-based brain-inspired

chips offer a promising path forward.

The brain-inspired system has a broad application prospect

in the field of artificial intelligence and cognitive computing

because of its low-power consumption and fast parallel

computing speed (Sun B. et al., 2021a). The research on brain-

inspired chips has made phased progress, but there is still no

intelligent system that can approach the human level. In the

next period, the research on brain-inspired chips will focus on

enhancing the universality of neural computing circuit modules,

as well as reducing the difficulty of design andmanufacturing. In

addition, there is an urgent need to solve the power consumption
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problem of brain-inspired computing chips, such as exploring

ultra-low-power materials and computing structures, to lay a

foundation for further improving the performance of brain-

inspired chips.

Future device research should focus on implementing

simulated post-silicon nano-electronic device with improved

performance and exploring more bio-trustworthy properties.

1. Post-silicon nano-electronic device represented by phase-

change memory is continuously optimized. In the future,

they will continue to improve device performance, develop

large-scale integration technology, and realize heterogeneous

integration and three-dimensional high-density integration of

various neuromorphic devices.

2. Small-scale brain-inspired chip circuits continue to

improve in terms of synaptic structure and neuron function.

In the future, the collaborative design will be opened to

develop large-scale scalable, and versatile post-silicon nano-

electronic device-based brain-inspired chips to realize massive

data processing.

3. SNN still lacks effective learning algorithms, lacks

dedicated hardware platforms, and has few commercial

products, which only have theoretical advantages. The research

space is relatively large, and the realization of learning

algorithms and hardware has broad research prospects.

Brain-inspired chips have propelled the development of

brain-inspired supercomputers, giving them extreme computing

speeds and massive data processing capabilities. In the future,

they can also “cognition” and “thinking,” which will change the

traditional working mode of computers.
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Cross-site scripting (XSS) attacks are currently one of the most threatening

network attack methods. Effectively detecting and intercepting XSS attacks

is an important research topic in the network security field. This manuscript

proposes a convolutional neural network based on a modified ResNet block

and NiN model (MRBN-CNN) to address this problem. The main innovations

of this model are to preprocess the URL according to the syntax and semantic

characteristics of XSS attack script encoding, improve the ResNet residual

module, extract features from three different angles, and replace the full

connection layer in combination with the 1∗1 convolution characteristics.

Compared with the traditional machine learning and deep learning detection

models, it is found that this model has better performance and convergence

time. In addition, the proposed method has a detection rate compared to a

baseline of approximately 75% of up to 99.23% accuracy, 99.94 precision, and

a 98.53% recall value.

KEYWORDS

XSS, URL, ResNet, word vector, code injection

Introduction

The worldwide web has become the most common, least expensive and fastest
communication medium in the world today (Cao et al., 2021; Kotzur, 2022). Tens
of millions of people are using it for their daily activities due to its convenient
access and variety of available services. Social networking sites, online shopping sites,
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and cloud storage services are becoming increasingly popular.
In this case, a typical feature that attracts internet customers
is a user-friendly, attractive and dynamic web page (Lu et al.,
2022; Luo et al., 2022). Server and client-side scripts play an
important role in providing a better experience for web users.
In contrast, malicious users or attackers use these scripts to
construct direct or indirect attack vectors to attack network
users (Yu et al., 2021; Deng et al., 2022). Their main purpose
is to steal account credentials such as usernames and passwords,
personal details, session cookies, gain access to remote systems
and spread malware (Zhang et al., 2020, 2021).

Cross-site scripting (XSS) has become one of the main attack
vectors for various websites (Lee et al., 2022). As shown in
Figure 1, in the statistical survey recently conducted by OWASP,
XSS attacks are still the most harmful attacks. Among the top ten
security threats, XSS attacks rank from seventh in 2017 to third
in 2021, just behind broken access control and cryptographic
failures. XSS attacks are a very common security problem that
exists in nearly two-thirds of applications, and their threat level
is always at the forefront. An XSS attack consists of malicious
code execution by attackers exploiting the XSS vulnerability
left during web application development. The attacker injects
malicious script content into the web application so that when a
normal user accesses the web application, the malicious script is
embedded in the response of the traffic data and then returned
to the browser to be executed. The hazards of XSS vulnerabilities
include the following (Schuckert et al., 2022): obtaining normal
users’ website cookie information, intercepting browser session
information, and arbitrarily using the identities of other users
to manifest a series of malicious behaviors. Such behaviors may
lead to website hanging and controlling normal users’ computers
as well as phishing scams to obtain users’ private information,
such as bank card passwords, maliciously controlling other
users’ computers to carry out various distributed attacks and
spreading worm scripts on the network, thereby endangering
the network environment (Zhao et al., 2021).

Improving XSS vulnerability detection has become a
research hotspot in the network and information security field
(Kalouptsoglou et al., 2022). The current XSS detection methods
still have the following problems. In feature engineering, it
takes too much time to manually extract features, and a lack
of professional knowledge limits the feature extraction quality.
In addition, the deep logical features of complex semantics
are not easy to extract (Zheng and Yin, 2022). There are
many encryption and obfuscation methods, and the obfuscated
data greatly increase detection difficulty. In complex XSS data,
there are semantic features with strong relevance, which are
difficult to mine and extract by traditional techniques. With
the continuous development of network technology, there will
be a large number of unknown attacks that are not easy to
detect. Therefore, we must pay attention to the technology of
detecting XSS attacks for in-depth research. To avoid the harm
caused by XSS attacks on web applications, we should use XSS

attack detection technology to regularly scan web applications.
Once XSS attacks are found, we must immediately repair the
corresponding XSS vulnerabilities.

Related work

According to the HackAgon report (Hackagon, 2016),
12.75% of network attacks are XSS attacks, and almost 70%
of network vulnerabilities are classified as being related to
XSS vulnerabilities. Therefore, many researchers have proposed
analysing web page codes to discover XSS attacks in networks.
The methods used consist of static detection, dynamic detection,
machine learning and deep learning.

Static detection

Static detection can directly find possible vulnerabilities by
analysing the program source code when the program is not
running (Liu et al., 2019). Shar and Tan (2012) proposed an
automated method for statically removing XSS attacks from
program code based on static analysis and pattern matching
techniques. This method used static analysis and pattern
matching techniques to track user input while identifying
potentially vulnerable statements, discovered the location of XSS
vulnerabilities and removed them. Its limitation is that it is only
for the server side and cannot detect document object model
(DOM)-type XSS attacks. Ahmed and Ali (2016) proposed a
genetic algorithm to generate a set of test data to detect XSS
attacks. They stored the data with three types of XSS attacks
in the database and found the optimal method in these data
through a genetic algorithm to mark all XSS attacks and verified
whether these attacks were successful. This test method is used
for web applications developed by PHP and MySQL. The final
test results showed that the generated test data can well identify
various types of XSS attacks.

Dynamic detection

Dynamic detection requires inputting test data to test the
program and analysing the results and the response content
of the page returned by the server. If there are specific data
in the response content, then there is a vulnerability (Hou
et al., 2018). Fazzini et al. (2015) proposed CSP-based web
application automation technology. This technology has four
parts: dynamic detection, web page analysis, CSP analysis and
source code conversion. It collected the web application and
test data accepted by CSP, marked the encoded value in the
server-side code as trusted data, and ran the web program
when performing dynamic detection analysis. Experiments
showed that it can effectively detect XSS attack vulnerabilities.
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FIGURE 1

OWASP high-risk vulnerability statistics.

Parameshwaran et al. (2015) designed a DOM XSS test platform
based on taint analysis. The platform includes a detection engine
and a vulnerability generator. First, it accepts the browser’s
request and obtains the website URL, finds the script that exists
in the response and modifies it, and uses taint analysis to
automatically verify the vulnerability. Then, when the platform
receives a URL, it inspects the source code of the application,
analyses the data stream to find potential threats, and sends it to
the vulnerability generator to determine its location. Finally, a
link is created to verify the original website. This method has a
good effect on detecting DOM XSS attacks.

Cross-site scripting detection based on
machine learning

The traditional XSS detection method usually extracts some
features based on experience and then detects whether it is
an XSS attack based on the rule-based matching method.
However, this method cannot identify increasingly complex
XSS attack sentences. With the rapid development of machine
learning, an increasing number of researchers have attempted to
solve problems in network security through machine learning
algorithms, especially XSS attack detection, and have made
corresponding progress (Wu et al., 2020, 2021a,b,c,d, 2022;
Yan et al., 2021). Zhou et al. (2019) proposed a cross-
site script detection model based on the combination of a
multilayer perceptron and a hidden Markov model. This model
preprocesses the data through a natural language processing
method and then uses a multilayer perceptron to adjust
the initial observation matrix of the hidden Markov model
(HMM). The improved HMM improves the detection efficiency
compared with the unmodified hidden Markov model. Wang
et al. (2019) proposed an XSS attack detection method based
on a Bayesian network. First, the nodes in the network are
obtained, and 17 XSS attack characteristics are extracted. Then,
malicious IP and malicious domain name information are
used to improve the model. This method has achieved good
detection results for nonpersistent XSS attacks. Zhao et al.

(2018) established an improved SVM classifier to identify XSS
attacks and extracted typical five-dimensional features for model
optimization. This method improved the detection efficiency of
deformed XSS attacks.

Cross-site scripting detection based on
deep learning

In recent years, researchers have applied deep learning to
XSS attack detection. Luo et al. (2018, 2020) designed a URL
feature representation method by analysing the existing URL
attack detection technology and proposed a multisource fusion
method based on a deep learning model, which can improve
the detection accuracy and system stability of the entire XSS
detection system. Abaimov and Bianchi (2019) presented a
CODDLE model against web-based code injection attacks such
as XSS. Its main novelty consists of improving the convolutional
deep neural network’s effectiveness via a tailored preprocessing
stage that encodes XSS-related symbols into value pairs. The
results showed that this model can improve the detection
rate from a baseline of approximately 92% recall value, 99%
precision, and 95% accuracy.

Timely detection and interception of possible attacks is an
effective method for preventing XSS. Traditional vulnerability
detection methods, such as static detection and dynamic
detection, are unsatisfactory in the face of diverse attack loads
and require considerable manual participation. The integrity of
attack vectors will also have an important impact on the results.
The machine learning detection method requires artificially
defined features. Hence, it requires relatively high amounts
of prior knowledge, and the detection effect depends heavily
on the accuracy of the predefined features. The continuous
maturation of deep learning in various fields provides new
research directions for the XSS attack problem but also faces
many challenges. The first is the automatic feature definition and
extraction of deep learning, which ignores the characteristics
of the security field and cannot completely retain the valid
information in the URL. Second, deep learning models are
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Module structure. Panel (A) is the residual block and panel (B) is the modified residual block (MRB).

usually time consuming, and stacking models increase the
convergence time while improving the detection accuracy (Fan
et al., 2022). On the premise of considering the characteristics of
the security field, how to build a deep learning security detection
model and realize the rapid detection of malicious code in
URLs is a problem that needs to be considered in the current
network security field.

Our approach

This manuscript analyses the hidden XSS attack in the URL
from a new perspective. It treats the URL as a text language,
performs word segmentation on the URL script, and then

understands the intent of the entire URL from the perspective of
syntax and semantics to find the attack loaded in the URL. We
modify the residual block in ResNet (MRB) and combine the 1∗1
convolutional layer of NiN to replace the fully connected layer
to build a modified convolution neural network-based ResNet
block and NiN (MRBN-CNN).

Overall model

The overall structure of the MRBN-CNN is similar to that
of the traditional CNN and is shown in Figure 2. The inputs
of the entire model are normal website script data and XSS
malicious attack sample data, and the feature vector is obtained
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after data preprocessing. In the deep learning model, five MRB
modules are combined in parallel. By stacking multiple different
convolutions, the adaptability of the whole deep learning
network to different features and the comprehensiveness of
feature extraction increase, but the depth of the whole neural
network does not increase. In the MRB stacking part, the
convolution operations in each MRB network structure use
different convolution kernels for feature extraction, and the
parameters of the pooling layer are different. Each MRB
structure in the feature extraction layer outputs multiple feature
maps, which are used to represent the effective features extracted
by the MRB from the feature vector. These feature maps are
concatenated and fed into a convolutional layer combination,
which consists of three convolutional layers, the last two of
which use a 1∗1 convolution kernel. As the output layer,

softmax normalizes the final decision result and estimates
the probability.

Core ideas

The model needs to learn the characteristics of normal
URL scripts and XSS attack scripts from the feature vector.
On the one hand, it needs to retain as much information of
the entire URL as possible, and on the other hand, it needs to
analyse the position and semantic relationship between words.
XSS attack scripts and normal URL scripts reflect whether the
grammatical and semantic relationship between various words
will produce malicious operations and the different positions of
various words or symbols in attack scripts and normal scripts.
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The entire MRB module is designed based on these two factors.
The f1 (x) pooling branch and the f2 (x) convolution branch in
the MRB module are used to analyse the grammatical semantic
relationship and positional relationship between words in the
URL. The location information and semantic information
hidden in the feature vector are extracted, and f3 (x) is used
to retain the frequency information and location information,
which will compensate for the loss of URL part information in
the pooling branch and convolution branch feature extraction.

ResNet is a well-known deep learning model (He et al.,
2016), and its core residual module is shown in Figure 3A.
The output of its module is x+ f (x), where f (x) is composed
of two convolutional layers. The entire module extracts the
feature information in the input x through the convolution layer
while retaining the information in the original feature vector
x to avoid the loss of important features in the convolution
operation during feature extraction. In this manuscript, the
residual module is improved (Figure 3B). The input of the
module is processed in three parts: f1 (x), f2 (x) and f3 (x). f1 (x)

and f2 (x) are used to learn the feature part of the input data, and
their purpose is to ensure that the entire training process more
easily fits the objective function. The difference from the ResNet
residual module is that there is an additional pooling branch
for feature extraction, while f3 (x) is a high-speed channel that

maintains the input and is directly connected to the output and
retains the integrity of the original input information to a certain
extent. The original input feature vector x is effectively extracted
from different angles, and three coefficients α, β, and χ are
added when the last three branches are merged so that the entire
network can learn the best combination of the three branches
(Figure 4). The modified residual block (MRB) structure can be
expressed as follows:

f1(x) = pool(x) (1)

f2(x) = Relu(Conv(x)) (2)

f3(x) = x (3)

F(x) = pool(αf1(x)+ βf2(x)+ χf3(x)) (4)

In the classic CNN classification model, the local features
obtained by the convolution operation are often connected
through a fully connected layer before the output results to
consider the global features of the data. However, because the
fully connected layer has many parameters, it will make the
model calculation more complicated. The convolution layer
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TABLE 1 HTML code table.

Character Name Entity
encoding

Decimal
encoding

Hexadecimal
encoding

‘’ Quotation
marks

&quot: &#34; &#x22;

& Logical
AND

&amp; &#38; &#x26;

> Greater than
sign

&gt; &#62; &#x3E;

< Less than
sign

&ıt; &#60; &#x3C;

TABLE 2 URL code table.

Character Description URL encoding

% Special characters %25

# Bookmark %23

& The separator between the specified
parameters in the URL

%26

space Code or use the symbol ‘+’ %20

? Separate the actual URL from the
parameters

%3F

= The value of the specified parameter
in the URL

%3D

/ Separate directories and
subdirectories

%2F

+ Space %2B

generally needs to set the height and width, and it will identify
the features in the convolution window. If the height and
width of the convolutional layer are exactly 1 (Lin et al., 2013),
then the calculation mode will be as shown in Figure 5. The
convolution kernel has three input channels and two output
channels;

(
N0,0

)
,
(
N0,1

)
,
(
N0,2

)
corresponds to the parameters

of the first channel of the output, and
(
N1,0

)
,
(
N1,1

)
,
(
N1,2

)
correspond to the parameters of the second channel of the
output. The output is multiplied by the purple part of the input
and the purple part of the convolution kernel one by one, as
shown in Formula 5.

(
M0,i,j

)
,
(
M1,i,j

)
,
(
M2,i,j

)
and other input

vectors on different channels are features in the MLP network,
and

(
N0,0

)
,
(
N0,1

)
,
(
N0,2

)
are weight parameters in the MLP

network. The features and weights are multiplied one by one,
which is almost the same as the operation of the fully connected
layer. Therefore, the work required for the fully connected
layer can be performed by 1∗1 convolution. The experiments

use a 1∗1 convolutional layer instead of fully connected layers.
The convolutional neural network has the characteristics of
parameter sharing, so the use of a 1∗1 convolutional layer can
reduce the parameters in the model under the condition of
ensuring the effect of the model, thereby reducing the model
complexity.

M0,i,j N0,0 +M1,i,j N0,1 +M2,i,j N0,2 (5)

Dataset preprocessing

Data preprocessing cannot only greatly affect the final
detection ability of a model but also determine the difficulty
of training a model. To improve the modeling quality, the
collected positive sample data and negative sample data need
to be preprocessed. Due to the particularity of XSS attacks, the
collected dataset is in the form of text. Hence, natural language
processing is used to process the data. The process is roughly
divided into three steps: data coding and normalization, word
segmentation and vectorization. All data preprocessing steps are
shown in Figure 6.

The purpose of data encoding and normalization is to
exclude noncritical information and minimize the impact
of nonimportant information on the algorithm model
construction. To ensure the safety and reliability of the
data, noncritical information regarding the protocol, domain
name, port, etc., in the URL request is excluded. Instead, only
the virtual directory, file name and parameters are retained as
valid information to train the model. XSS attacks are encoded
to evade detection, including URL encoding, HTML encoding
and JavaScript encoding. The HTML encoding includes
HTML entity encoding and HTML system encoding. HTML
entity encoding can distinguish itself from semantic markup.
This entity code begins with an “&” symbol and ends with
a semicolon. For example, to encode “<”, the HTML entity
encodes it as “&ıt”. HTML system encoding, starting with
the “&#” symbol and ending with a semicolon. Normally,
only HTML decimal and HTML hexadecimal are recognized.
For example, to encode “<”, HTML decimal encodes it as
“&#60” and HTML hex encodes it as “&#x3c”. Common
HTML encodings are shown in Table 1. The URL encoding
method is very simple, and attackers can easily complete XSS
attacks by using URL encoding. For example, angle brackets
“<”, URL-encoded as “%3C”. Table 2 shows the common

TABLE 3 JavaScript code table.

Different forms Function code

JavaScript octal <script>eval("\163\163\57\51\164\50\57\170\141\154\145\162");</script>

JavaScript hexadecimal coding <script>eval("\x73\x73\x2f\x29\x74\x28\x2f\x78\x61\x6c\x65\x72");</script>

Jsunicode coding <script>eval("\u0073\u0073\u002f\u0029\u0074\u0028\u002f\u0078\u0061\u006c\u0065\u0072");</script>
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URL-encoded characters in XSS attacks. There are many forms
of JavaScript coding, including JavaScript hexadecimal coding,
JavaScript octal coding and Jsunicode coding. For example,
“<” is encoded by JavaScript hex as “\x3c”, JavaScript octal as
“\074”, and Jsunicode as “\u003c”. JavaScript coding will not
be parsed in HTML tags in browsers, because Jsunicode can
be used for coding, but only function names can be coded.
The onerror event in Javascript coding is special. Onerror
event can capture JavaScript errors in web pages, so the
content in onerror event can be parsed by JavaScript. Several
JavaScript codes are shown in Table 3. According to these three
codes, the XSS attack adopts malicious deformation to avoid
detection, and direct feature extraction will lose the attack code
characteristics, which is not conducive to detection accuracy.
Thus, the corresponding decoding must be performed first.
After decoding, to reduce the number of word segmentations, it
is necessary to normalize numbers and hyperlinks; for example,
“0” is used to replace numbers, and “http://u” is used to replace
hyperlinks.

According to the characteristics of the XSS attack script,
we design the word segmentation principles that meet the
syntax and semantics requirements: single and double quotation
marks, http/https hyperlinks, end tag, start tag, attribute
name, and function body. These six word segmentation
principles are matched with their corresponding regular
expressions. The word segmentation rules are shown in
Table 4.

Vectorization uses the CBOW model in word2vec to convert
text into digital vectors that can be recognized by computers.
The converted word vectors cannot only represent words as
distributed word vectors but also capture the similarity between
words. To verify the effect of the trained word vector, t-SNE is
used to visualize the word vector (Figure 7).

Experiments and results

Dataset

The data of normal samples (negative samples) come
from the DMOZ database, and 75,428 pieces of standard
data are obtained after data preprocessing. The malicious
samples (positive samples) come from the XSSed database
and the tested payload (Payload) in the penetration test.
Additionally, 75,428 pieces of standard data are obtained
to ensure a balanced selection of samples (Zheng et al.,
2021; Cai et al., 2022). In the experiment, the training set
and the test set are randomly selected from the samples
at a ratio of 7:3. Our experiment was performed using a
notebook computer with a 3.20 GHz AMD Ryzen 7 5800H,
32 GB of RAM, NVIDIA GTX3070 of GPU, Ubuntu16.04
operating system. The Keras framework based on Tensorflow-
Gpu is used.

TABLE 4 Word segmentation rules.

Word segmentation rules Regular expression

Function body (?x)[\w\.]+?\

Attribute name \w+=

Start tag <\w+>

End tag </\w+>

http/https hyperlinks http://s+,https://s+

Single and double quotation marks ‘[ˆ’]+’,”[ˆ\”]+”

Metrics

We use four indicators of recall, precision, accuracy, and F1
as the evaluation criteria for the model performance results. The
formulas for the indicators are as follows:

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

Accuracy =
TP + TN

TP + FN + TN + FP
(8)

F1 =
2∗(Precision∗Recall)
Precision+ Recall

(9)

In these formulas, FN is the abbreviation for false negatives,
which means that malicious samples are identified as normal
samples, FP is the abbreviation for false positives, which means
that normal samples are identified as malicious samples, TN is
the abbreviation for true negatives, which means that normal
samples are identified as normal samples, TP is the abbreviation
for true positives, which means that malicious samples are
identified as malicious samples.

Model training

The effect of vector dimensions on model
performance

Model training needs to choose a suitable vector dimension
to make full use of the sample information. If the vector
dimension is too short, a large amount of effective information
will be lost, and the detection accuracy will be reduced. In
contrast, if the vector dimension is too long, the training time
will greatly increase, the accuracy cannot be improved, and the
real-time detection performance will be affected. To obtain a
suitable vector dimension, this manuscript compares the effects
of different vector dimensions on the accuracy and training
time, and the results are shown in Figure 8. The experimental
results show that the accuracy does not change significantly
when the dimension exceeds 100, but the training time increases
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FIGURE 7

Cross-site scripting (XSS) attack word vector.

almost linearly. Considering the accuracy rate and training time,
100 is selected as the vector dimension.

The effect of convolution kernel size on model
performance

To study the influence of the convolution kernel on
the MRBN model, this work uses different combinations
of convolution kernels to test the MRBN model under
the same conditions. The MRBN models all use different
convolution kernel combinations. The specific information of
the convolution kernel combinations of the seven groups of
experiments is shown in Table 5, and the relevant experimental
results are shown in Figure 9. When the convolution kernel
combination of the MRBN structure is Group-A, the three
evaluation indicators of accuracy, recall and precision are
all approximately 0.99. However, the convolution kernel only

extracts the feature vectors of a single word and does not
convolve the feature vectors of adjacent words. In other
words, the convolution operation cannot be used to extract
the semantic and grammatical features between adjacent words.
When the convolution kernel combination is modified to
Group-B, the values of accuracy and precision increase to
a certain extent, while recall decreases to a certain extent.
However, from the perspective of the three indicators, it is
still within the acceptable range, which indicates that after
the feature extraction of adjacent words, the hidden semantic
and grammatical relationships between adjacent words can be
learned, and as a result, the values of accuracy and precision will
increase. When the convolution kernel combination is modified
to Group-C, the recall value increases slightly, but the accuracy
and precision decrease significantly, which indicates that there
are more false positives, and more normal URLs are identified
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Training time and accuracy under different vector dimensions.

as malicious URLs by the model. When the convolution kernel
combination is modified to Group-D, it can be seen that the
values of the three evaluation indicators of accuracy, recall
and precision significantly improve based on the convolution
kernel combination to Group-C, and both accuracy and recall
reach the maximum values of their respective records. This
indicates that when the convolution kernel combination is
Group-D, the semantic and grammatical information between
the words of the URL can be extracted more accurately. In
contrast, when the convolution kernel combination is modified
to Group-E, recall decreases significantly, and accuracy and
precision also decrease to a certain extent. This indicates that
the omission rate of the whole model increases significantly,
and more malicious URLs are recognized as normal URLs
by the model. As we continue to modify the size of the
convolution kernel, from Group-F to Group-G, it can be seen
that the gap between the three evaluation indicators of accuracy,
recall and precision becomes increasingly obvious. Based on
the accuracy, recall and precision of the seven groups of
experiments, we adjusted the convolution kernel combination
in the MRBN neural network model according to Group-
D.

Model testing
To verify the effectiveness and advantages of the MRBN

model, we design comparative experiments involving machine
learning and deep learning.

Machine learning comparison experiments

Three classic machine learning algorithms, namely,
AdaBoost (Freund and Schapire, 1997), ADTree (Freund and

Mason, 1999), and SVM (Cortes and Vapnik, 1995), were
selected for comparative experiments. AdaBoost trains multiple
weak classifiers and then aggregates the weak classifiers into

TABLE 5 Details of convolution kernel groupings.

Experimental grouping Combination of convolution kernels

Group-A 3*3, 2*2, 5*5, 4*2, 2*1

Group-B 2*1, 3*5, 5*5, 3*1, 3*4

Group-C 2*1, 3*1, 3*4, 3*5, 5*1

Group-D 2*1, 5*5, 7*7, 4*4, 3*1

Group-E 2*1, 3*2, 5*5, 4*4, 3*5

Group-F 2*1, 5*5, 3*5, 4*4, 3*1

Group-G 2*1, 5*5, 3*5, 4*4, 3*2

Group-A Group-B Group-C Group-D Group-E Group-F Group-G
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FIGURE 9

The influence of the convolution kernel on the MRBN.
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TABLE 6 The result of comparing machine learning.

Models Precision (%) Accuracy (%) Recall (%) F1 (%)

SVM 95.71 91.35 86.59 90.92

ADTree 96.47 92.37 87.96 92.02

AdaBoost 98.48 93.41 88.18 93.05

MRBN-CNN 99.94 99.23 98.53 99.23

The best results are highlighted in bold.

TABLE 7 The result of comparing deep learning.

Models Precision (%) Accuracy (%) Recall (%) F1 (%)

GRU 98.89 92.68 86.32 92.18

CNN 98.56 94.53 90.38 94.29

LSTM 99.15 96.43 93.67 96.33

BiLSTM 98.47 96.18 93.81 96.09

BiLSTM-CNN 99.99 97.34 94.69 97.27

MRBN-CNN 99.94 99.23 98.53 99.23

The best results are highlighted in bold.

a strong classifier (Hastie et al., 2009). ADTree is a decision
tree learning algorithm based on boosting, and its classification
performance is better than other decision trees. Support vector
machine (SVM) is a linear classifier that performs binary
classification on data according to supervised learning. The
experimental results are shown in Table 6. The three machine
learning models have good results and reasonable accuracy
values, but the recall value is not very good, and the false
negative rate in the detection results is high. This indicates that
the three models have not truly learned the characteristics that
can identify malicious URLs and normal URLs. The accuracy

of the MRBN-CNN model reaches 99.23%, the precision
is 99.94%, the recall is 98.53%, and the F1 value is 99.23%.
Compared with the three machine learning algorithms, the
proposed model greatly improves the detection effect. This is
because it can learn relevant features in URLs very accurately
from three perspectives.

Deep learning comparison experiments

The GRU, CNN, LSTM, BiLSTM, and BiLSTM-CNN are
selected for comparison experiments with our model. The
experimental results are shown in Table 7 and Figure 10. It
can be seen that the accuracy and precision of the GRU model
are good, but the recall is poor, indicating that the system
shows a high false negative rate in the experiment. This means
that the system does not accurately learn the characteristics of
XSS attacks in URLs, resulting in identifying many URLs with
attack payloads as normal URL requests. The CNN, LSTM,
and BiLSTM models have better performance and achieve
better accuracy. These systems have been able to learn the
characteristics of XSS attacks in URLs to a certain extent. The
precision of the BiLSTM-CNN model is as high as 99.99%,
and its accuracy also reaches 97.34%, but the recall is slightly
worse, indicating that this model can better learn the relevant
features in the URL. The MRBN-CNN model performs better,
and the values of the three indicators are very close. It is a stable
system. It learns the characteristics of XSS attacks in URLs very
accurately. It cannot only detect malicious URLs but also ensure
fewer false positive and false negatives. Experiments show that
the improved method proposed in this work can accurately learn
the potential XSS attack features in URLs and can fit a very
suitable high-dimensional function to correctly classify URLs.
Compared with other works, it shows a certain superiority.
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The result of comparing deep learning.
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Because the deep learning model is usually time consuming,
the stacking model will increase the convergence time while
improving the detection accuracy (Zhou et al., 2022). Hence,
we compare the convergence time of the above deep learning
models, and the results are shown in Figure 10. It can be
seen that the CNN convergence time is relatively short, while
the convergence time of the other models gradually increases,
and the BiLSTM-CNN model has the longest convergence
time. In contrast, MRBN-CNN replaces the fully connected
layer by a 1∗1 convolution, the model parameters are greatly
reduced, the training difficulty is reduced, and its convergence
time is the least.

Conclusion

This manuscript proposes an MRBN-CNN model. Its
significance is as follows. First, by applying natural language
processing technology to URLs for attack detection, learning
the semantics and syntax in URLs and performing feature
representation can filter out irrelevant information. Second, in
the deep learning model design, combined with the traditional
ResNet module modification for the XSS attack scenario, the
MRB module was designed and proposed. It can obtain the
semantic and grammatical information of the feature vector
without losing the relevant position, frequency and other basic
information and can realize the accurate identification of the
attack with a low false-positive rate. Third, by replacing the fully
connected layer with a 1∗1 convolution, the model parameters
can be reduced, the training difficulty can be reduced, and the
phenomenon that too many parameters cause overfitting can be
avoided. This manuscript only uses the MRBN-CNN model to
detect XSS vulnerability attacks. In the future, we will study the
applicability of this model to various web vulnerability detection
and vulnerability mining, such as buffer overflow, SQL injection,
and cross-site request forgery.
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Computer-assisted surgery (CAS) has occupied an important position in

modern surgery, further stimulating the progress of methodology and

technology. In recent years, a large number of computer vision-based

methods have been widely used in surgical workflow recognition tasks. For

training the models, a lot of annotated data are necessary. However, the

annotation of surgical data requires expert knowledge and thus becomes

difficult and time-consuming. In this paper, we focus on the problem of

data deficiency and propose a knowledge transfer learning method based

on artificial neural network to compensate a small amount of labeled

training data. To solve this problem, we propose an unsupervised method

for pre-training a Convolutional-De-Convolutional (CDC) neural network for

sequencing surgical workflow frames, which performs neural convolution in

space (for semantic abstraction) and neural de-convolution in time (for frame

level resolution) simultaneously. Specifically, through neural convolution

transfer learning, we only fine-tuned the CDC neural network to classify the

surgical phase. We performed some experiments for validating the model, and

it showed that the proposed model can effectively extract the surgical feature

and determine the surgical phase. The accuracy (Acc), recall, precision (Pres)

of our model reached 91.4, 78.9, and 82.5%, respectively.

KEYWORDS

neural networks, convolutional-de-convolutional, transfer learning, surgical
workflow, deep learning

Introduction

Computer-assisted surgery (CAS) emerged in the twentieth century, which means
that computer technology is used to guide and assist surgeons. The application
(Garg et al., 2005) provides decision-making support and planning tools in the
preoperative. Intraoperative computer assistance includes robotic surgical system
(Dergachyova, 2018), image guidance and navigation (Peters, 2006), augmented reality
and visualization (Kersten-Oertel et al., 2013). Postoperative assistance provides tools to
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analyze executed procedures and results, as well as to improve
and optimize (Schumann et al., 2015). Despite all the advance
and valuable assistance, the seamless integration of computer-
aided equipment with operating room (OR) and surgical
procedures has not yet been achieved. Existing ORs contain
a set of unrelated independent systems and devices, most of
which appear in isolation, disabling proper communication
and interaction (Hübler et al., 2014). Current computer-aided
equipment facilitates a number of individual surgical tasks, but
their lack of synchronization with the surgical process hampers
the work and resource management of the surgical team. It
leads to higher stress levels (Agarwal et al., 2006), frequent
misunderstandings among surgical staffs, resulting in risks and
delays, as well as inefficient surgical groups that incur excessive
costs for hospitals (Macario, 2010).

Context-aware Computer-assisted surgery (CA-CAS) has
powerful artificial intelligence that understands or perceives
the needs of clinicians. It should always be aware of the
events that occur, the actions performed, and the current state
by tracking the surgical procedure and constantly observing
the surgical site. Examples of applications are: optimization
of the surgical procedure (Franke et al., 2013; Guédon
et al., 2016), prediction of the remaining time of surgery
(Bhatia et al., 2007), intraoperative assistance (Nessi et al.,
2015; Fard et al., 2016), automatic generation of surgical
reports (Agarwal et al., 2006). A large number of studies
have focused on IntelliSense intraoperative aids to reduce
the pressure on surgeons and facilitate the surgical process
(Meng et al., 2021; Liu et al., 2022). Automatic recognition of
surgical procedures is an important part of this. Recognizing
surgical procedures is a prerequisite for CAS applications.
The study on this subject began about 10 years ago. Despite
the great progress made, it remains a relatively new area
that inspires scientists and clinicians to inspire. Due to the
lack of automatic recognition, most applications use manual
label of surgical activities, which is a very tedious and time-
consuming process.

Today, artificial intelligence and deep learning technologies
have developed rapidly (Li et al., 2017; Liu et al., 2020; Zhong
et al., 2021; Fan et al., 2022) and have been successfully applied in
many different fields, including image labeling, natural language
modeling, text generation, image labeling, natural language
modeling, text generation, classification (Zheng et al., 2021),
medical care (Zhang et al., 2020, 2021), web service QoS
prediction (Wu et al., 2022), and risk assessment (Deng et al.,
2022). In most cases, their performance is superior to that
of traditional machine learning methods. Comprehensive and
accurate training data have been playing an important role in
machine learning. The quantity and quality of data have become
an important factor. The size of the massive data sets that
serve as a basis for the training of deep learning model, such
as the famous ImageNet (Deng et al., 2009), Microsoft COCO
(Deng et al., 2009), the recently released Google’s OpenImages

(Krasin et al., 2017; Kuznetsova et al., 2020), and YouTube-
8M (Abu-El-Haija et al., 2016; YouTube-8M Dataset, 2018),
is self-evident. They contain millions of samples representing
thousands of categories. Unfortunately, sometimes learning
tasks have to be carried out in an area of interest expressed by
a small group of data, such as the field of surgery. A variety
of constraints hinder proper data collection: Ethical approvals,
the consent of patients and medical personnel, the limited
number of cases, the installation of expensive data acquisition
equipment, and time-consuming manual annotations that
require medical experience. In these cases, the methods of
transfer learning may play a role. To a large extent, transfer
learning involves the use of methods from resources in other
areas of interest, where data may be distributed differently
and located in different feature spaces, thus improving the
learning of the target task. Depth models make it easy to transfer
knowledge of one network to another. Transfer learning is a
knowledge transfer technology that is currently widely used with
convolution neural networks (CNN) for tasks related to visual
content, which benefits from a large number of free datasets. It
is also widely used in speech and language processing (Huang
et al., 2013), document classification (Dai et al., 2007), sentiment
analysis (Glorot et al., 2011), and other sequence analysis tasks.

Therefore, in this paper, we proposed an unsupervised
method for training Convolutional-De-Convolutional
(CDC) networks to sort surgical workflow frames, which
are simultaneously rolled out in space (for semantic
abstraction) and temporal convolution (for frame-level
resolution). It has unique property in modeling the
spatio-temporal interactions between high-level semantics
in space and fine-grained action dynamics in time.
Specifically, the CDC has to extract features related to
understanding the surgical workflow. The knowledge learned
from the task is encoded into the weight matrix of the
internal parameters of the representation layer. Then the
Convolutional-De-Convolution network is fine-tuned to
classify the surgical phase.

The contributions of this paper are summarized as follows:

• We proposed a model that can solve the problem of
annotating data deficiency in medical field by using the
transfer learning method.
• We used a CDC network to recognize the surgical

workflow because of its property of spatio-temporal
interactions in training.
• We try to achieve intelligent detection of surgical video

phase at a low cost. Finally, based on M2CAI 2016
challenge dataset, we performed experiments for validating
the model. It shows a good performance compared
with other methods.

This paper is organized as follows: Section II presents related
work. We summarize methodology and the proposed models
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FIGURE 1

Architecture of the network. *The network is pre-trained and its parameters are fixed.

FIGURE 2

Our task for pretraining a CDC whether is the order of the given
L frames correct? (Answer: The Left is correct).

in section III. In section IV, we present the experiment and
result of our method. In section V, we discuss conclusions and
suggestions for future research.

Related work

The OR’s understanding of surgical activities is a new
field of research. Surgical workflow identification is closely

related to multi-target tracking. Wang et al. (2022) proposed
a General Recurrent Tracking Unit (RTU++), which can be
flexibly plugged into other trackers, to score track proposals by
capturing long-term information. And the experiments showed
the generalization ability of RTU++ trained by simulated
data in various scenarios. Under the specific limitations and
difficulties implied by the surgical environment, only a few
jobs deal directly with the application. Since the problem of
surgical process identification is a multidisciplinary problem, we
have decided to propose different related fields. Surgical phase
recognition is similar to time action recognition. We start with a
brief introduction to literatures on temporal action recognition.
Then, we will focus on the internal approval of the operation.

Temporal action recognition

Gaidon et al. (2011, 2013) introduced temporally action
recognition in untrimmed videos, focusing on limited actions
such as “drinking and smoking” (Calder and Siegel, 2009) and
“opening the door to sit down” (Laptev and Perez, 2007).
Later, researchers worked on building large datasets, including
complex action categories such as THUMOS (Mexaction2,
2013), as well as datasets focused on fine-grained actions
(Sigurdsson et al., 2016a,b) or high-level semantics activities
(Heilbron et al., 2015). Recently, deep learning methods have
shown better performance in localizing action instances. Franke
et al. (2013) presented a temporal action proposal system
based on Long-Short Term Memory (LSTM); Yeung et al.
(2018) provided the MultiTHUMOS dataset of each frame
multi-label annotations, and a LSTM network is defined to
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TABLE 1 List of phases in the dataset.

ID Phase

P0 Trocar placement

P1 Preparation

P2 Calot triangle dissection

P3 Clipping and cutting

P4 Gallbladder dissection

P5 Galbladder packaging

P6 Cleaning and coagulation

P7 Gallbladder retraction

model multiple input and output connections; Shou et al.
(2016) introduced a 3D CNN framework (S-CNN) based
on end-to-end segmentation, which is superior to other
RNN-based methods by capturing spatio-temporal information
simultaneously. However, S-CNN lacks the ability to accurately
predict time resolution and localize the exact time boundary
of an action instance. In Shou et al. (2017), they proposed
a CDC network for precise temporal action localization of
untrimmed video, which provides a new CDC filter that can
simultaneously perform spatial down-sampling (for spatio-
temporal semantic abstraction) and temporal up-sampling (for
precise time positioning). In this paper, we will use the CDC
network structure to recognize the surgical phase by transfer
learning. Details are described in the next section. Yang et al.
(2018) proposed a Frame Segmentation Network (FSN), which
placed a temporal CNN on top of the 2D spatial CNNs, and can
make dense predictions at frame-level for a video clip using both
spatial and temporal context information.

Surgical phase recognition

Mackenzie et al. (2001) were among the first to propose the
creation of a process model. In Mackenzie et al. (2001), it is
based on structured multi-level decomposition that describes
the surgical action performed during surgery. In the same year,
Jannin et al. (2001) also proposed a neural process model based
on Uniform Mark-up Language decomposition. Subsequently,
the concept of surgical workflow was introduced. Neumuth
et al. (2006) proposed the concept of the general methodology
described in the acquisition process from surgical intervention,
clinical and technical analysis, and automatic processing of
workflow schemes can drive a workflow management system as
the future of OR process control. Klank et al. (2008) used the
evolutionary reinforcement learning to classify the laparoscopic
cholecystectomy into 6 stages for the first time, with an Acc rate
of about 50%. Klank et al. (2008) presented a method that based
on Hidden Markov Model (HMM) and dynamic time warping
algorithm (DTW) to perform a dimensionality reduction on
image features by using additional information about tool usage

for recognition of surgical workflow of laparoscopic video, the
Acc of phase detection is 76.8%. Dergachyova et al. (2016)
proposed a machine learning method. Specifically, they firstly
described the input image by extracting the color, shape, and
texture features of the image, and then they used several
AdaBoost cascades for intermediate classification. Finally, a
definite phase label is given by using the hidden semi-Markov
Model. Based on visual features, the Acc of the model is
close to 68%, and the Acc of fusion surgical instruments is
close to 90%.The recent study in Dergachyova et al. (2016)
is a method based on deep learning. The time smoothing
convolution neural network and the classical HMM were
used for phase recognition. The proposed network challenge
is based on the residual network-200 pre-trained ImageNet,
where the last layer is replaced by a new fully connected
output layer, corresponding to 8 possible surgical phases. It
was then fine-tuned on the M2CAI dataset using online data
augmentation. The logarithmic probability output vector of
the network was processed by temporal smoothing, and then
passed to the HMM to correct possible classification errors
for previously recognized frames. Twinanda et al. (2016) also
proposed a method of deep learning based on pre-trained
AlexNet, called PhaseNet, and they replaced the output layer
and fine-tuned it using the M2CAI training dataset. At the
second last layer of the PhaseNet, one-vs.-all linear SVM is
obtained by using the image features extracted by CNN as input.
Based on the Support Vector Machine classifier, the hierarchical
HMM was introduced to reinforce the temporal constraint. The
method was still based on two large datasets of laparoscopic
cholecystectomy (Cholec 80 and EndoVis), which achieves
better performance. The average Acc of offline analysis was
highest, at 92.2% (Cholec80) and 86% (EndoVis), respectively.
Shi et al. (2021) proposed a label-efficient Surgical workflow
recognition method with a two-stage semi-supervised learning,
named as SurgSSL which progressively leverages the inherent
knowledge held in the unlabeled data to a larger extent. The
SurgSSL method surpasses the state-of-the-art semi-supervised
methods by a large margin.

Materials and methods

In this paper, we proposed a model for recognizing surgical
workflow, as shown in Figure 1. Specifically, the top is an
unsupervised time sorting task based on the CDC network, and
the bottom is based on the top of the transfer supervised surgical
phase classification task. The weights of the layers marked with
a star can be passed. The first row shows the shape of the output
data of each layer. First, the surgical video clip is fed into 3D
ConvNets, and the temporal length is reduced from L to L/8.
CDC6 has kernel size (4, 4, 4), Stride (2, 1, 1), padding (1, 0, 0), so
the height and width are reduced to 1, while the temporal length
increases from L/8 to L/4. CDC7 and CDC8 kernel size (4 1 1),
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FIGURE 3

Phase distribution (training data at 1 fps).

Step (2, 1, 1), padding (1, 0, 0), so CDC7 and CDC8 further
perform up-sampling in time by a factor of 2, so the temporal
length is back to L in the unsupervised temporal sorting task,
sigmoid layer is added on top of CDC8 to determine whether
is correct for the order of the given L frames. In the transfer
supervised classification task, a frame-wise softmax layer is
added on top of CDC8 to obtain confidence scores for every
frame. Each channel stands for one class, obtaining confidence
scores for every frame.

Unsupervised spatio-temporal context
learning

In this section, we describe how to train the CDC network
using unmarked video. We do this by addressing a task
that requires the CDC to sort L given frames in the correct
temporal order. For this, a large dataset from multiple surgical
intervention is used. We assume that solving such a task requires
CDC to learn to extract visual cues that describe the temporal
flow of the surgical workflow.

The CDC (Shou et al., 2017) network is based on 3D
convolution C3D network, which simultaneously carries out
spatial convolution (for semantic abstraction) and temporal
convolution (for frame-level resolution). It has a unique
property in the spatio-temporal interactions between joint
modeling and summarizing. The CDC network uses from
conv1a to conv5b as the first part of the C3D network. For
the remaining layers in the C3D, CDC keeps pool5 to perform
max pooling in height and width by a factor of 2 but keeps
the temporal length. The CDC sets the height and width of the
network input as 112× 112. Given an input video segment with
a temporal length L, the output data shape of the pool5 is (512,
L/8, 4, 4). To maintain the original temporal resolution (frame
level), the CDC makes up-sampling in time (back to L from

FIGURE 4

Sampling data at all phases and transitional moment.

FIGURE 5

Examples of negative and positive transitional delays and
transitional moment.

L/8) and down-sampling in space (from 4 × 4 to 1 × 1). More
information is described in Shou et al. (2017).

Our CDC training tasks are shown in Figure 2: Given the
same surgical video input for a video clip of temporal length
L, what is the most relative order of L frames? That is, is the
order of the given L frames correct? We uniformly sample L
random frames from the video of the surgical intervention at
the moment of transfer and enter them into our CDC. The
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TABLE 2 ATD, TRR metrics for phase recognition.

Methods ATD TRR

Ours [−15 s; 30 s] 6.0

Twinanda [−23 s; 54 s] 3.8

Dergachyova [−45 s; 70 s] 2.7

transfer moment is shown in Figure 1. The CDC must calculate
the relative order of L frames in the original video. That is,
determines whether the given L frame is in the correct order?
That is, in the last layer of the network, we have two categories
of L frames, the correct order is positive, otherwise it is negative.
We assume that solving this task requires the CDC to extract
visual cues related to the surgical process in order to understand
the temporal flow of surgical intervention. At the same time, the
learning of temporal information is carried out in this process.

The total loss is defined as:

L = −
∑

i labeli∗log
(
probi

)
+
(
1−probi

)
∗log

(
1−probi

)
(1)

where labeli is the ground truth for i-th segment, probi is
predictions for i-th segment.

When an unsupervised dataset is generated, data generation
is primarily performed randomly at the time of conversion.
Each phase is randomly sampled according to the ratio column,
and the main sampling point is the transfer point. The specific
sampling is related to the experimental dataset.

Knowledge transfer for recognition of
surgical phase

The phase sequence indicating a surgical process
encodes some form of abstract knowledge about a
given procedure. The knowledge can be extracted and
utilized to improve various operations on surgical process
data, including analysis, recognition and prediction.
It is particularly assumed that the knowledge gained
from one procedure can improve the prediction of the
surgical phase of another procedure. The knowledge
involved may include dependencies between phases in a
sequence, relationships between elements in an activity,
and connections between individual elements of different
activities. In view of the difficulty of formalizing the
concealment of knowledge, the CDC network can extract
features from time and space at the same time, so the
CDC network is chosen as a method to extract and
transfer knowledge.

Deep neural networks have an interesting property
that enables networks to store extracted information in a
distributed hierarchical manner. It means that the basic
information that is more common for many areas stored
separately from the features that describe the characteristics

of a particular domain. It also means that this information
can be shared with other learning goal (e.g., other training
task or area). In the deep model, the knowledge learned
from the data is encoded into the weight matrix of the
internal parameters of the representation layer. In order
to establish the value of internal parameters, the domain
containing a large number of training samples is first
trained. Then, depending on the quantity and quality of
data in the actual target domain, there are three transfer
options. First, if the new data is close enough to the data
used for training, and the task has not changed, we can
use the same training model directly for the new data.
The second option is to use the weights (in whole or in
part) of the training model as the initialization of the
new model. This applies where a reasonable amount of
new data is available for training use. The third option,
called fine-tuning, is typically used when the new domain
contains only a small number of examples. It includes
importing the trained weight matrix into the new model,
but “freezes” some layers that usually contain more basic
features during training. The weight setting of pre-training
on other data is usually more optimized than random
initialization. The network can benefit from what has
been learned, thus, we should focus its “attention” on the
specific characteristics of the new data. This section is
based on the CDC time sorting network for knowledge
transfer learning. Modify the final output layer of the CDC
network to be L and classify each surgical step. In the
transfer supervision classification task, the Softmax output
is the vector of the K-value. Note that for the i-th class:

pi
n [t] = eo(i)

n [t]∑k
j = 1 eo(i)

n [t]
(2)

The total loss L is defined as:

L = 1
N

N∑
n = 1

L∑
t = 1

(
−log

(
P(zn)

n [t]
))

(3)

Where zn is the ground truth class label for the n-th segment.

Experiment and result

Dataset and data sampling

The experiment in this paper is based on the
M2CAI16-workflow dataset, which is available from
http://camma.u-strasbg.fr/m2cai2016/. It contains videos
of 41 cholecystectomy processes from the University
Hospital of Strasbourg/IRCAD (Strasbourg, France)
and Klinikum Rechts der Isar Hospital (Munich,
Germany). The datasets are divided into two parts:
the training subset (containing 27 videos) and the
testing subset (14 videos). The videos are recorded
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TABLE 3 Time delay standard scores metrics for phase recognition.

Methods Scores d = 30 s d = 60 s

Acc Rec Pres Acc Rec Pres Acc Rec Pres

Ours 89.2 76.5 78.3 90.6 77.8 80.9 91.4 78.9 82.5

Twinanda 75.2 64.6 69.0 80.5 70.6 77.8 82.9 74.9 79.5

Dergachyova 68.6 60.9 64.1 72.1 65.3 66.2 76.6 71.4 78.1

Bold values indicate the optimal result in the algorithm comparison.

at 25 fps. All the frames are fully annotated with 8
defined phases: (1) trocarplacement, (2) preparation,
(3) calot triangle dissection, (4) clipping and cutting,
(5) gallbladder dissection, (6) galbladder packaging, (7)
cleaning and coagulation, and (8) gallbladder retraction.
The list of phases in the dataset is shown in Table 1.
The distribution of the phases in dataset is shown in
Figure 3.

In the case of a frame rate of 1, a total of 1.3 million
frames are available. Depending on the distribution of the
surgical phase, we randomly collected 250,000 surgical
video clips from different surgical phases, 500,000 surgical
video clips for the transition period, and 750,000 surgical
video clips for unsupervised temporal learning. The
sampling data for each stage and transition time is shown
in Figure 4.

Comparison algorithms

We compared our method with several state-of-the-
art method. Dergachyova et al. (2016) and Twinanda
et al. (2016) are two of the methods submitted to
the M2CAI 2016 challenge. CNN-biLSTM-CRF (Yu
et al., 2019) is a semi-supervised method with 12
labeled vides and 15 unlabeled videos. The cnn-
lstm-net and spatial-net are temporal and spatial
models depicted in Chen et al. (2018). In the CAE
method (Qi et al., 2020), a convolutional auto-encoder
network is trained first, and then surgical process
segmentation is performed.

Metrics and result

As described in other literatures (Chen et al., 2018;
Qi et al., 2020; Shi et al., 2021), the metrics includes
standard accuracy (Acc), recall rate (Rec), precision (Pres),
average conversion delay (ATD), and real transition ratio
(TRR). Some applications do not require a frame-by-phase
identification. They may tolerate a certain time delay, but
have no fundamental impact on the assistance provided.
We introduced the concept of a transition window that

TABLE 4 Comparison results with no time delay.

Methods Rec Pres

Dergachyova 60.9 64.1

Twinanda 64.6 69.0

CNN-biLSTM-CRF 69.9 74.5

Cnn-lstm-net 72.2 60.8

Spatial-net 72.9 73.4

CAE 68.3 72.7

Ours 76.5 78.3

Bold values indicate the optimal result in the algorithm comparison.

a time interval centered on a real transitional moment,
at both ends, authorizing an acceptable delay d. If the
time moment being checked is in the transition window
and occurs because of a delay, it is considered true.
In this experiment, we set up different delay time d
to calculate the Acc, Rec, and Pres of the model. We
called it a time delay standard score. ATD measures the
latency generated during all conversions of all available
interventions in order to make an average estimate of
the delay (see Figure 5). The negative and positive delays
are measured separately and used to define the range of
values for the average transition delay. A negative delay
indicates that the transition between phases is detected
in a delayed manner with regards to the ground truth.
Conversely, positive delay means that the system decides
to switch phases prematurely before the actual transition,
details in Dergachyova (2018). The TRR Metric calculates
the actual TRR detected between numbers. It is an indicator
of system stability and reflects the robustness of the system,
as systems with high TRR may have a lower tolerance for
intrinsic changes in input data. This ratio also provides a
simple and intuitive idea of how many incorrect transfer
moments are detected with the number and actual number of
transitional moments that they actually detect (see Equation 4).

TRR =
s
′

s
(4)

where the s is the real transfer moment, the s’ is transfer moment
detected by the model.
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Based on the data collected randomly, we first carry
out unsupervised temporal task learning, pre-training, and
then use the transfer learning method to carry out phase
supervision classification. The corresponding results are shown
in Tables 2, 3.

As can be seen from the results in Table 2, our
approach has the shortest transition delay [−15s; 30s].
As can be seen from the results in Table 3, the standard
Acc, Rec, and Pres of our model reach 89.2, 76.5, and
78.3%, respectively. Based on these results, this is why
our model improves Acc less than other usage time
delay standard scores. Our approach is more suitable
for applications that require rapid system response.
However, it makes too many incorrect conversions
between phases (6 times more than it should be). On the
other hand, the Dergachyova method provides greater
delays recognition, but less incorrect phase change
peaks (TRR = 2.7). Compared with our method, its
recognition is more consistent. The Twinanda method
also has a lower TRR. This shows that our model
is more suitable for online use, while the Twinanda
method and the Dergachyova method are suitable for
offline use. The results in Table 3 show how to use
the delay transition window to improve performance
scores. This helps to make a clearer estimate of how
close these methods are actually to clinical applications
in specific applications. From the above analysis, it is
also important that we do not use a single indicator to
distinguish and objectively compare these surgical phases
of the identification model. In Table 4, the experimental
results of Rec and Pres with no time delay are compared.
The results show that our method outperform the
comparison methods.

Conclusion

The automatic recognition of the current surgical
phase can provide the correct computer assistance at the
right time, which is the basis of realizing the context-
aware OR system. However, the lack of clinical data
in this area is a well-known problem. This creates
obstacles to the recognition and analysis of surgical
workflow tasks that require significant amounts of data.
In this paper, an unsupervised CDC network method
is proposed, which simultaneously carries out spatial
convolution (for semantic abstraction) and temporal
convolution (for visual resolution) of surgical workflow
frame sequences. Then through the transfer learning, the
CDC network is fine-tuned to classify the operative stage.
Based on M2CAI 2016 challenge dataset, experiments
and comparisons have been made, and good results have
been obtained. The transparency is a very important

attribute of the medical system. In this paper, we use
a deep learning method has been criticized for the
nature of its learning process that is poorly understood.
This can cause distrust among doctors. In the future
work, we want to visualize the learning processes of
deep networks in order to understand exactly what
they have learned.
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