
Edited by  

Zhongping Tan, Jian Yin and Xuefei Huang

Published in  

Frontiers in Chemistry

Preparation and 
characterization 
of glycosylated 
biomolecules

https://www.frontiersin.org/research-topics/24765/preparation-and-characterization-of-glycosylated-biomolecules#articles
https://www.frontiersin.org/research-topics/24765/preparation-and-characterization-of-glycosylated-biomolecules#articles
https://www.frontiersin.org/research-topics/24765/preparation-and-characterization-of-glycosylated-biomolecules#articles
https://www.frontiersin.org/research-topics/24765/preparation-and-characterization-of-glycosylated-biomolecules#articles
https://www.frontiersin.org/journals/chemistry


January 2023

Frontiers in Chemistry 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-83251-283-8 
DOI 10.3389/978-2-83251-283-8

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


January 2023

Frontiers in Chemistry 2 frontiersin.org

Preparation and characterization 
of glycosylated biomolecules

Topic editors

Zhongping Tan — Chinese Academy of Medical Sciences and Peking Union Medical 

College, China

Jian Yin — Jiangnan University, China

Xuefei Huang — Michigan State University, United States

Citation

Tan, Z., Yin, J., Huang, X., eds. (2023). Preparation and characterization of 

glycosylated biomolecules. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-83251-283-8

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-83251-283-8


January 2023

Frontiers in Chemistry 3 frontiersin.org

05 Probing Multivalent Carbohydrate-Protein Interactions With 
On-Chip Synthesized Glycopeptides Using Different 
Functionalized Surfaces
Alexandra Tsouka, Kassandra Hoetzel, Marco Mende, 
Jasmin Heidepriem, Grigori Paris, Stephan Eickelmann, 
Peter H. Seeberger, Bernd Lepenies and Felix F. Loeffler

16 Site-Specific Glycosylation Patterns of the SARS-CoV-2 Spike 
Protein Derived From Recombinant Protein and Viral WA1 
and D614G Strains
Yuan Tian, Lisa M. Parsons, Ewa Jankowska and John F. Cipollo

29 Electrochemical Bromination of Glycals
Zhao-Xiang Luo, Miao Liu, Tian Li, De-Cai Xiong and Xin-Shan Ye

36 In Planta Production of the Receptor-Binding Domain From 
SARS-CoV-2 With Human Blood Group A Glycan Structures
Julia König-Beihammer, Ulrike Vavra, Yun-Ji Shin, Christiane Veit, 
Clemens Grünwald-Gruber, Yasmin Gillitschka, Jasmin Huber, 
Manuela Hofner, Klemens Vierlinger, Dieter Mitteregger, 
Andreas Weinhäusel and Richard Strasser

49 Genetics Behind the Glycosylation Patterns in the 
Biosynthesis of Dalbaheptides
Oleksandr Yushchuk, Kseniia Zhukrovska, Francesca Berini, 
Victor Fedorenko and Flavia Marinelli

58 Strategies for Glycoengineering Therapeutic Proteins
Kris Dammen-Brower, Paige Epler, Stanley Zhu, Zachary J. Bernstein, 
Paul R. Stabach, Demetrios T. Braddock, Jamie B. Spangler and 
Kevin J. Yarema

85 Novel Insights Into the Sulfated Glucuronic Acid-Based 
Anti-SARS-CoV-2 Mechanism of Exopolysaccharides From 
Halophilic Archaeon Haloarcula hispanica
Yueqiang Xu, Yan Li, Xin You, Caixia Pei, Zhuo Wang, Siming Jiao, 
Xin Zhao, Xuan Lin, Yang Lü, Cheng Jin, George Fu Gao, Jianjun Li, 
Qi Wang and Yuguang Du

94 Automated Peptide Synthesizers and Glycoprotein Synthesis
Jiekang Tian, Yaohao Li, Bo Ma, Zhongping Tan and Shiying Shang

104 Biochemical Characterization and Synthetic Application of 
WciN and Its Mutants From Streptococcus pneumoniae 
Serotype 6B
Wei Gong, Min Liang, Jielin Zhao, Hong Wang, Zonggang Chen, 
Fengshan Wang and Guofeng Gu

Table of
contents

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/


January 2023

Frontiers in Chemistry 4 frontiersin.org

113 Comprehensive Plasma N-Glycoproteome Profiling Based on 
EThcD-sceHCD-MS/MS
Yonghong Mao, Tao Su, Tianhai Lin, Hao Yang, Yang Zhao, 
Yong Zhang and Xinhua Dai

122 Heparanase in cancer progression: Structure, substrate 
recognition and therapeutic potential
Fengyan Yuan, Yiyuan Yang, Huiqin Zhou, Jing Quan, Chongyang Liu, 
Yi Wang, Yujing Zhang and Xing Yu

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/


Probing Multivalent
Carbohydrate-Protein Interactions
With On-Chip Synthesized
Glycopeptides Using Different
Functionalized Surfaces
Alexandra Tsouka1,2, Kassandra Hoetzel1, Marco Mende1, Jasmin Heidepriem1,2,
Grigori Paris1,3, Stephan Eickelmann1, Peter H. Seeberger1,2, Bernd Lepenies4 and
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Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany, 3Department of System Dynamics and Friction Physics,
Institute of Mechanics, Technical University of Berlin, Berlin, Germany, 4Institute for Immunology and Research Center for
Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany

Multivalent ligand–protein interactions are a commonly employed approach by nature in
many biological processes. Single glycan–protein interactions are often weak, but their
affinity and specificity can be drastically enhanced by engaging multiple binding sites.
Microarray technology allows for quick, parallel screening of such interactions. Yet, current
glycan microarray methodologies usually neglect defined multivalent presentation. Our
laser-based array technology allows for a flexible, cost-efficient, and rapid in situ chemical
synthesis of peptide scaffolds directly on functionalized glass slides. Using copper(I)-
catalyzed azide–alkyne cycloaddition, different monomer sugar azides were attached to
the scaffolds, resulting in spatially defined multivalent glycopeptides on the solid support.
Studying their interaction with several different lectins showed that not only the spatially
defined sugar presentation, but also the surface functionalization and wettability, as well as
accessibility and flexibility, play an essential role in such interactions. Therefore, different
commercially available functionalized glass slides were equipped with a polyethylene glycol
(PEG) linker to demonstrate its effect on glycan–lectin interactions. Moreover, different
monomer sugar azides with and without an additional PEG-spacer were attached to the
peptide scaffold to increase flexibility and thereby improve binding affinity. A variety of
fluorescently labeled lectins were probed, indicating that different lectin–glycan pairs
require different surface functionalization and spacers for enhanced binding. This
approach allows for rapid screening and evaluation of spacing-, density-, ligand and
surface-dependent parameters, to find optimal lectin binders.

Keywords: glycopeptides, glycan binding proteins, lectin—carbohydrate interaction, multivalency, surface
functionalization
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INTRODUCTION

Glycan-protein interactions exist in many biological processes,
such as protein folding, cell-cell interaction, cell-adhesion, and
signaling. Thus, their understanding is of fundamental
importance (Varki, 2009). Glycan arrays are considered
versatile tools for high-throughput screening of such
interactions. Immobilization of glycans on solid support by
high-precision robotics can be achieved in multiple ways,
(Geissner et al., 2014; Geissner et al., 2019; O’Neil et al., 2018;
Purohit et al., 2018; Mende et al., 2019) becoming nowadays a
dominant methodology for detection of novel interactions in
immunological and biomedical research (Varki, 2009; Gao et al.,
2019), as well as drug discovery (Geissner and Seeberger, 2016;
Rademacher et al., 2019; Tikhonov et al., 2020).

Glycans play a key role in diseases and virulence (e.g., diabetes,
inflammation, cancer, infections), rendering scientists to
investigate their structural and functional characteristics (Zhou
and Cobb, 2021). Their interaction with other cells, and their
recognition by glycan binding proteins (GBPs), so called lectins,
triggered the investigation of their binding ability, and molecular
mechanism (Raman et al., 2016; Valverde et al., 2020). Individual
interactions between glycans and their GBPs are relatively weak
(e.g., Kd values ≈ µM–mM range). The recognition process that
nature has evolved to enhance the binding strength and specificity
is called multivalency. This effect enables high binding affinities
via simultaneous recognition of one or several glycans by GBPs,
which have multiple and spatially well-defined glycan binding
sites (Fasting et al., 2012; Haag, 2015). For a strong multivalent
interaction, not only the type(s) of sugar(s), but also their spatial
orientation, their accessibility, and the carrier scaffold are
important, to achieve optimum distance with the binding
pockets of the multivalent receptor.

Despite the importance of multivalency, it is often neglected
on the solid support, since the density and the spacing between
sugar moieties is difficult to be determined. Therefore, various
studies in the last years focused on the optimum glycan
presentation, concentration, flexibility, orientation, and density
in the array format (Oyelaran et al., 2009; Müller et al., 2016; Kim
et al., 2018; Mende et al., 2019; Valles et al., 2019; Di Maio et al.,
2021). In addition, a plethora of multivalent glycan scaffolds have
been investigated with diverse size and shape to mimic the natural
recognition (Cecioni et al., 2015; Delbianco et al., 2016; Redman
and Krauss, 2021). Peptide scaffolds have been widely studied due
to their simple synthesis via solid phase peptide synthesis,
(Merrifield, 1963) offering well-defined monodisperse
structures. Introduction of sugars on the peptide moieties can
be employed using glycosylated amino acids or, in a concerted
fashion onto unnatural, azido modified amino acids for specific
conjugation (e.g., Click chemistry or Staudinger Ligation)
(Specker and Wittmann, 2006; Freichel et al., 2017; Hill et al.,
2018; Camaleño de la Calle et al., 2019).

Yet, the application of this approach in the microarray format
remains challenging. Fabrication of natural glycoproteins,
(Kilcoyne et al., 2012) neoglycopeptides, (Wang et al., 2002)
glycodendrimers, (Laigre et al., 2018) DNA-based
glycoconjugates, (Hawkes et al., 2019) glycoclusters, (Moni

et al., 2009) and glycopolymers (Godula et al., 2009; Zilio
et al., 2015) in the microarray format with multivalent
presentation require extensive synthetic work prior to the
printing onto glass slides. Unfortunately, printing of these
compounds on the microarray ties in with solubility and
density fluctuations of the material, printing and humidity
inconsistencies during coupling, and the microarray surface
functionalization (linker) effect, resulting in insufficient
coupling and/or poor morphology of the spotted material
(Ruprecht et al., 2019; Temme et al., 2019).

Herein, we report our progress in and deeper understanding of
our laser-based method for in-situ generation of multivalent
glycopeptides in the microarray format with controlled glycan
spacing and density (Mende et al., 2020). We expanded our
technology, making it compatible with different commercially
available microarray surfaces, to probe previously inaccessible
glycan interactions. Therefore, we first optimized the synthesis on
each microarray surface type and we equipped them with an
additional linker to investigate its effect on lectin binding. We
demonstrate the importance of surface accessibility and
wettability on glycan-GBP interactions, enabling us to study a
wide range of plant lectins in a high-throughput manner.

MATERIALS AND METHODS

Donor Slide Preparation
Microscope glass slides (Marienfeld Superior, Germany; size 76 ×
26 × 1 mm, ground edges, pure white glass) were covered on one
side with self-adhesive polyimide foil (Kapton, DuPont,
United States, CMC Klebetechnik GmbH, Germany; thickness
of polyimide layer approximately 25 μm, thickness of glue layer
approximately 45 μm). A thin layer of the transfer material was
placed on top of the polyimide foil by spin coating (80 rps,
Schaefer Technologie GmbH, Germany; KLM Spin-Coater SCC-
200). Two different spin coating solutions were prepared.
Pentafluorophenyl (OPfp)-activated 9-
fluorenylmethoxycarbonyl (Fmoc) protected L-glycine, (Fmoc-
Gly-OPfp) 1 (3.00 mg), was pre-dissolved in dimethylformamide
(DMF) (50 µL), while inert polymer matrix (27 mg) (SLEC PLT
7552, Sekisui Chemical GmbH, Germany) was dissolved in
dichloromethane (DCM) (450 µL), resulting in the final spin
coating solution (500 µL). The non-activated amino acid,
Fmoc-propargyl-glycine (Fmoc-Pra-OH) (3 mg) was pre-
dissolved in DMF (50 μL), followed by addition of N,N′-
diisopropylcarbodiimide (DIC) (1.4 µL) and pentafluorophenol
(PfpOH) (1.7 mg) consecutively, while the inert polymer matrix
(27 mg) was pre-dissolved in DCM (450 μL), forming the desired
Fmoc-Pra-OPfp 2 in situ (see Supplementary Material).

Acceptor Slide Preparation
Fmoc-NH-β-Ala-PEGMA-co-MMA glass slides (∼20 nm thick
coating, loading of functional groups according to vendor 1 nmol
cm−2, estimated functional group spacing of 7–10 nm) were
acquired from PEPperPRINT GmbH (Germany) and the 3D-
Amino glass slides (according to vendor 1–5 nmol cm−2) from
PolyAn GmbH (Germany). On PolyAn and PEPperPRINT slides,
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a hydrophilic PEG ((EG)3) -based spacer (≈17 Å length) was
attached (see Supplementary Material, Section 3.2), before the
synthesis of the desired tetrapeptides. In a variant process,
PolyAn slides without PEG-spacer were used directly, without
prior spacer functionalization.

Laser Transfer Parameters
For the array synthesis, a spot pitch of 250 μm was used. A laser
scanning system with 488 nm wavelength and 120 mW
maximum output power was used (Mende et al., 2020), with a
laser focus diameter of ∼20 µm. PEPperPRINT slides: A laser
power of 80 mW and a pulse duration of 6 ms per spot was
applied. PolyAn slides: A laser power of 60 mW with a pulse
duration of 6 ms was applied. The final spot diameter was about
150 μm.

General Laser-Based Synthesis Process
and Synthesis of Tetrapeptide Scaffolds
General laser-based synthesis process: The laser transfer and
peptide synthesis were conducted as reported previously
(Eickelmann et al., 2019; Mende et al., 2020; Paris et al.,
2020). The process begins with the preparation of different
donor slides (Donor Slide Preparation) that are easily prepared
by spin-coating a solution of polymer matrix and activated amino
acid building block onto polyimide foil (Kapton) bearing glass
slides. The polymer and amino acid mixture forms an about
200 nm thin layer on the polyimide. For the patterning process,
an amino acid containing donor slide is placed on top of an
acceptor slide (Acceptor Slide Preparation) and a focused laser
(Laser Transfer Parameters) transfers solid polymer material
spotwise from the donor to the acceptor (one pulse of 6 ms
transfers one spot). The laser is absorbed by the polyimide foil,
which heats up and expands. Eventually, the expanding
polyimide contacts the acceptor slide, causing the transfer of
nanometer thin and about 150 µm wide polymer material spots.
The transfer is repeated with different donor slides until the
desired amino acid pattern is completed. Afterwards, the acceptor
slide is placed into an oven at 95°C under nitrogen for several
minutes to initiate the coupling reaction. In the oven, the polymer
spots “melt” while retaining their shape, enabling the reaction of
the building blocks according to the transferred pattern. The
activated amino acid building blocks couple to the amino groups
on the acceptor slide. Next, the acceptor slide is washed, removing
unreacted amino acids and residual polymer. Each amino acid
coupling step is repeated three times to increase the coupling yield
and to minimize deletion sequences. Then, remaining free amino
groups on the acceptor surface are acetylated and the Fmoc
protecting groups are removed before the next synthesis cycle.
Peptide synthesis steps are repeated, until the final peptide length
is reached.

Synthesis of tetrapeptide scaffolds: Commercially available
slides from PEPperPRINT or PolyAn were used. Before the
synthesis of the tetrapeptides, a PEG-based spacer was
attached if not indicated otherwise, (see Supplementary
Material). PEPperPRINT slides require a spacer due to the
high protein resistance of the surface. The first layer of OPfp-

activated and Fmoc-protected amino acids was transferred via
laser transfer, using two different donor slides sequentially to
create the desired combinatorial pattern on the acceptor slide.
The coupling reaction was accomplished under heat in an oven
under nitrogen atmosphere at 95°C for 10 min. Subsequently, the
slides were washed with acetone twice, initially for 2 min in an
ultrasonic bath, and then for another 2 min in a petri dish on a
shaker (450 rpm). Then, slides were dried in a jet of air. The laser
transfer of the same amino acid pattern, the coupling, and the
acetone washing steps were repeated twice, to increase the
coupling efficiency. Each time, a new donor slide was used for
every transfer and coupling cycle. Free unreacted amino groups
on the slides were acetylated with a capping solution twice for
30 min (see Supplementary Material). The slides were washed
with DMF (3 × 5 min), methanol (MeOH) (1 × 2 min), DCM (1 ×
1 min), and dried in a jet of air. Deprotection of the terminal
Fmoc-groups was achieved for 20 min with Piperidine (see
Supplementary Material) on a shaker (450 rpm). The slides
were washed with DMF (3 × 5 min), MeOH (1 × 2 min),
DCM (1 × 1 min), consecutively, and dried in a jet of air. The
whole process was repeated, as needed, for each pattern to
synthesize the desired peptides. In the case of terminal amino
acids within the peptide chain, the Fmoc removal was
accomplished before the acetylation step, capping of the free
amino groups.

Sugar Azides
Each sugar azide 3–7 was obtained according to known literature
procedures (see Supplementary Material, Section 2.1). Two
sugar azides, 8 and 9, were obtained from Conju-Probe.

Copper (I)-Catalyzed Alkyne-Azide
Cycloaddition (CuAAC)
CuSO4 (530 μg, 3.36 μmol, 2.00 equiv) was dissolved in a mixture
of dimethyl sulfoxide (DMSO) and water (1:1, 200 μL). Sodium
ascorbate (998 μg, 5.04 μmol, 3.00 equiv) was added and the
mixture was thoroughly vortexed. The precipitate was
centrifuged for 1 min. The remaining solution was passed
through a polypropylene syringe filter (0.2 µm polypropylene
filter media with polypropylene housing, 25 mm diameter,
Whatman, Global Life Sciences Solutions Operations
United Kingdom). The sugar azide (1.68 μmol, 1.00 equiv) was
dissolved in this solution and then applied on the acceptor surface
(c � 8.4 μmol/ml). For the incubation, a 16-well format
incubation chamber was used. The prepared solution (200 μL)
was poured in one of the wells and then shaken overnight in the
dark. The next day, the slide was washed with water three times
for 5 min inside the well and one time for 30 min in a petri dish on
a shaker (450 rpm). Finally, the slide was dried in a jet of air.

Plant Lectin Assay
To avoid unspecific binding, the acceptor slides were incubated
with a blocking buffer for 40 min (Rockland, United States;
blocking buffer for fluorescent western blotting MB-070).
Fluorescently labeled plant lectins, concanavalin A (i.e., ConA;
CF®633 ConA, Biotium, Inc., United States) was diluted to
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100 μg/ml in lectin buffer (50 mM HEPES, 100 mM NaCl, 1 mM
CaCl2, 1 mM MnCl2, 10% blocking buffer, 0.05% Tween 20, pH
7.5), ricinus communis agglutinin I, (RCA-I), peanut agglutinin
(PNA), soybean agglutinin (SBA), dolichos biflorus agglutinin
(DBA), and wheat germ agglutinin (WGA) (Rhodamine labeled,
Lectin kit 1, Vector laboratories, United States) were diluted to
10 μg/ml in lectin buffer and incubated for 1 h at room
temperature. Subsequently, each stained well was washed with
PBS-T (3 × 5 min). Then, the acceptor slide was rinsed with Tris
buffer (1 mM Tris-HCl buffer, pH � 7.4) to remove all the
remaining salt residues, and dried in a jet of air. Fluorescence
scanning was used to detect the lectin binding on the
corresponding sugar moieties.

Fluorescence Scan
All fluorescence scans were carried out in a high-resolution
microarray GenePix 4000B scanner. CF®ConA labeled
glycopeptides were screened with an excitation wavelength of
635 nm and PMT gain of 600. Rhodamine RCA-I, PNA, SBA,
DBA, WGA labeled glycopeptides were scanned at an excitation
wavelength of 532 nm and PMT gain of 500.
Carboxytetramethylrhodamine (TAMRA) labeled tetrapeptides
were detected at an excitation wavelength of 532 nm and PMT
gain of 400. The laser power was always set to 33% and the pixel
resolution to 5 μm. For the analysis of the fluorescence images,
the analysis software GenePix Pro 6.0 (Molecular Devices,
Sunnyvale/California, United States) was used.

Analysis of Glycopeptides Regarding
Multivalency Effects
For each sugar azide, the reaction was performed in a separate
cavity of a 16-well format incubation chamber (PEPperPRINT
GmbH, Germany). Each well contained three sets of
quadruplicates of the same single sugar azide and tetrapeptide,
giving twelve glycopeptide replicas of each synthesized structure.
The median of the fluorescence intensity of the scanned area was
determined with the microarray analysis software GenePix Pro
6.0. For the analysis, the mean value of the twelve spot medians
was calculated. Spots (i.e., outlier/artifacts) with more than 40%
standard deviation from the mean were excluded from
calculations.

RESULTS AND DISCUSSION

We applied our laser transfer technology to generate peptide
scaffolds directly in the array format.(Loeffler et al., 2016;
Eickelmann et al., 2019; Mende et al., 2020) Therefore,
different donor slides were prepared, containing alkyne-
functionalized L-propargylglycine (Pra) or L–Glycine (Gly)
amino acid building blocks. These donor slides were placed
on top of a functionalized acceptor slide and a laser precisely
transferred the building blocks in desired patterns. Next, the
amino acid pattern was coupled in an oven to the acceptor slide,
the surface was washed, capped and Fmoc deprotected.
Repeating these in-situ solid phase synthesis steps, peptides

were generated in the array format on the acceptor. Finally,
copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC) was
used to attach different azido-functionalized glycan monomers
to the alkyne groups of the peptide scaffolds (Figure 1).

For our work, we aimed to employ different commercially
available amine functionalized acceptor slides from different
suppliers to determine the influence of the surface
functionalization on glycan binding events. Hydrophobicity
and sterical hindrance of the acceptor surface
functionalization may lead to lower accessibility of the
glycans. Therefore, we had to find new process conditions for
the synthesis of the peptides on the different functionalized
slides. Then, we studied the interactions of the fluorescently
labeled lectins on these substrates and analyzed with
fluorescence scanning. To compare high and low- affinity
glycan-GBP interactions, we chose to probe the plant lectins
concanavalin A (ConA; tetramer), ricinus communis agglutinin
I (RCA-I; tetramer with only two Gal-specific subunits)
(Wittmann and Pieters, 2013)), peanut agglutinin (PNA;
tetramer), soybean agglutinin (SBA; tetramer), dolichos
biflorus agglutinin (DBA; tetramer), and wheat germ
agglutinin (WGA; dimer) with their corresponding glycans
under the same conditions. Furthermore, we screened the
CLR-Fc fused C-type lectins mLangerin, mMincle, and
mMGL-1 (Maglinao et al., 2014; Artigas et al., 2017; Mayer
et al., 2017; Valverde et al., 2020). However, since we did not
observe any binding of these three lectins, details are only
discussed in the Supplementary Material (Section 8).

Synthesis of Glycopeptides
All sixteen possible variants of the peptide tetramers, containing
the two derivatives Fmoc-Gly-OPfp 1 and Fmoc-Pra-OPfp 2, were
synthesized in the microarray format (Figure 2). Amine
functionalized glass slides from PEPperPRINT (PPP) were used
with prior functionalization with a PEG-based spacer (Stadler et al.,
2008). 3D-amino glass slides from PolyAn were either used with or
without prior PEG-spacer functionalization. Before the synthesis,
we optimized the transfer and coupling conditions for each solid
support (see Supplementary Material, Section 4). Subsequently, a
pre-patterning of all acceptor slides was performed with two
glycines 1, to further increase the distance between the
tetrapeptides and the solid support and, thereby, the
accessibility of the glycopeptides. After Fmoc deprotection of
the N-terminus, the free amino groups were used for peptide
synthesis. Two donor slides were employed to synthesize the
sixteen tetrapeptide combinations, Fmoc-Gly-OPfp 1 (G) and
Fmoc-Pra-OPfp 2 (B) Figure 2A (conventional synthesis from
C-terminus to N-terminus, e.g., N-GBGB-C, 1VII). Coupling and
laser transfer of each amino acid layer was repeated three times to
achieve high coupling efficiency and prevent deletion sequences
while growing the chains. Coupling of the amino acids was
conducted in an oven under nitrogen gas atmosphere at 95°C,
resulting in three sets of quadruplicates on one array (n � 12 spots;
binding intensity is calculated as the mean of the 12 spot replica)
(Figure 2B). Quality control of the three synthesized arrays was
carried out via clicking a TAMRA azide dye to the scaffolds and
analyzing the fluorescence intensity. On the PEPperPRINT slides, a
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FIGURE 1 | General synthetic approach for glycopeptide generation. Synthesis consists of the 1) laser transfer process, 2) coupling of the amino acids on defined
spots, 3) capping to mask unreacted amine groups with subsequent deprotection of the Fmoc protecting group for the next coupling step, and 4) attachment of the
sugar azides on the peptide scaffolds by CuAAC. Finally, 5) binding of lectins is screened for multivalent interactions.

FIGURE 2 |Overview of tetramer peptide scaffolds and sugar azides. (A) The two amino acids used for the synthesis of the desired scaffolds. (B) Representation of
the 16 synthesized microarrays per glass slide, each array containing three copies of the sixteen different tetramers in quadruplicate spots (n � 3 × 4 � 12 spots of each
structure per microarray). (C) Collection of sugar azides for the generation of the glycopeptides.
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FIGURE 3 | Fluorescence staining intensities of respective sugar azides 3, 4, 5, 7 and 9 with their corresponding lectins: (A) α-Man azide 3 with ConA (CF
®
633

labeled, 100 μg/ml concentration), (B) β-GalNAc-PEG3 azide 7with SBA (rhodamine labeled, 10 μg/ml concentration) (C) β-Gal azide 4with RCA-I (rhodamine labeled,
10 μg/ml concentration), (D) β-Gal-PEG3 azide 5 with RCA-I (rhodamine labeled, 10 μg/ml concentration), (E) β-GlcNAc-PEG3azide 9 with WGA (rhodamine labeled)
with 10 μg/ml concentration, and (F) 0.2 μg/ml concentration on PEPperPRINT slides with PEG-spacer (PPP-spacer; red), and on PolyAn functionalized slides with
(dark blue) and without PEG-spacer (light blue).
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rather constant fluorescence intensity was observed, indicating a
quenching effect for higher valencies, as reported previously
(Mende et al., 2020). Comparing the results of the two PolyAn
slides with and without PEG-spacer, also some quenching could be
observed (see SupplementaryMaterial formore details, Section 5).

CuAAC of the Sugars for Glycopeptide
Synthesis
The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC)
has been widely used in the last years for the synthesis of
glycoconjugates on solid support (Freichel et al., 2017; Hill
et al., 2018; Camaleño de la Calle et al., 2019; Mende et al.,
2020). Herein, we used this approach to attach the following
collection of sugar azide monomers to our synthesized peptide
scaffolds: α-mannose (α-Man) azide 3, β-galactose (β-Gal) azide
4, β-galactose PEG3-spacer (β-Gal-PEG3) azide 5, N-acetyl-
β-galactosamine azide (β-GalNAc) 6, N-acetyl-β-galactosamine
PEG3-spacer (β-GalNAc-PEG3) azide 7,N-acetyl-β-glucosamine
(β-GlcNAc) 8, and N-acetyl-β-glucosamine PEG3-spacer
(β-GlcNAc-PEG3) azide 9. The sugar azides 3–6 and 8 were
synthesized based on known experimental procedures from their
corresponding unmodified building blocks, while compounds 7
and 9 were commercially acquired (Figure 2C, see
Supplementary Material). Each CuAAC reaction with
individual sugars was performed in a separate well, reacting all
peptide scaffold spots (n � 12) of one array with on sugar.

Glycan-GBP Assays and Fluorescence
Evaluation
After the generation of the glycopeptides on the differently
functionalized acceptor slides, we probed the synthesized
structures with their corresponding fluorescently labeled
lectins (Figure 3). Tetrapeptides, carrying the α-Man azide 3
were incubated with ConA (100 μg/ml, Figure 3A). Structures
with β-Gal azide 4, and β-Gal-PEG3 azide 5, were probed with
fluorescently labeled RCA-I, (Figure 3C, D) and PNA (10 μg/ml,
Supplementary Material, Section 7.2). Tetrapeptides with
attached β-GalNAc azide 6 and β-GalNAc-PEG3 azide 7 were
incubated with DBA and SBA (10 μg/ml) (see Supplementary
Material, Sections 7.3 and 7.4), while scaffolds with β-GlcNAc 8
(see Supplementary Material, Section 7.6) and β-GlcNAc-PEG3
azide 9 were probed with WGA (Figure 3E, F) (10 μg/ml). Since
we observed an intensity plateau with WGA already for divalent
structures, which was different from all other lectins, a 50-fold
decreased WGA concentration (0.2 μg/ml) was screened
additionally. We analyzed the spacing, density, and ligand
dependent binding, and we could confirm that protein binding
is surface dependent. In the case of the multivalent glycan-GBP
interactions, similar intensity trends were observed for all used
lectins on the microarrays (except for WGA, Figure 3E, F), with
an increase in binding with an increasing number of sugars on the
peptide backbone. Structures with only one attached sugar
moiety, e.g., BGGG, GGBG, GBGG, GGGB, showed structure
dependent binding, with higher intensity for the N-terminal
propargylglycine on all used slides. This could be explained by

the higher distance between the sugar and the surface, making it
more accessible. The tetra-glycine scaffold (GGGG) was
considered as the background control.

In terms of slide functionalization, for all detected interactions,
the fluorescence intensities were higher on the PEPperPRINT
slides (apart from WGA and DBA). Between the two differently
functionalized PolyAn slides, some structure and lectin
dependent binding differences were observed.

Binding Studies on PEPperPRINT Slides
On PEPperPRINT slides, which were always equipped with the
PEG-spacer, the binding of ConA to α-Man azide 3 increased
exponentially with linear increase in the number of sugar moieties
Our divalent scaffolds show an up to 10-fold increase in
fluorescence signals in comparison to the monovalent ones,
while the trivalent show an up to 20-fold, and the tetravalent
is in the range of the trivalent system without significant change
on the binding ability (Figure 3A). This trend agrees with our
previous data (Mende et al., 2020). However, with the here
introduced optimized synthetic conditions (see Supplementary
Material, Section 4), the observed intensities are one order of
magnitude higher with the same assay protocol. On the same
acceptor slides, we screened multiple sugar monomers with and
without PEG-spacer at the anomeric center. Binding of PNA,
DBA, and SBA to β-Gal azide 4, β-Gal-PEG3 azide 5, and
β-GalNAc azide 6, respectively, was not observed. Notably,
multivalent binding was only detected for SBA to the
β-GalNAc-PEG3 azide 7 (Figure 3B). The enhanced flexibility
between the anomeric position and the azide moiety given from
the spacer allows the SBA to bind to the more flexible β-GalNAc-
PEG3 azide 7, but not to the β-GalNAc azide 6. The fluorescence
intensities of SBA on PEPperPRINT slides follow the same
binding trend as ConA, but the binding to the tetravalent vs.
the monovalent structures only increases about 6-fold. Despite
the fact that ConA and SBA differ in their sugar specificity, both
have similar orientation of binding sites and ligand recognition
mechanism (Sinha et al., 2005). In contrast, RCA-I binds to both,
β-Gal azide 4 and β-Gal-PEG3 azide 5 (Figure 3C, D).
Interestingly, for the more flexible β-Gal-PEG3 azide 5, the
binding intensities of RCA-I are already at least 4-fold higher
for the monovalent structures in comparison to the β-Gal azide 4.
Again, the PEG-spacer increases the flexibility of the sugar moiety
and increases the distance to the triazole ring, making it more
accessible for the lectin. Thus, the multivalent effect is muchmore
pronounced for the β-Gal azide 4 than the β-Gal-PEG3 azide 5,
while the tetravalent structures from both reach a similar
maximum (i.e., saturation) intensity at our tested lectin
concentration.

Similarly, WGA binds stronger to β-GlcNAc-PEG3-azide 9
structures (Figure 3E, F) than to β-GlcNAc azide 8 (see
Supplementary Material, Section 7.6). All other lectins we
studied are tetramers, WGA is the only dimer and its binding
was markedly different to all other lectin binding experiments.
The intensity is already high for the monovalent structures and
seems to reach a plateau/saturation for divalent structures. To
assess the potential impact of a lower lectin concentration, we also
tested a 50-fold decreased WGA concentration (Figure 3F).

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 7669327

Tsouka et al. Probing Glycopeptides on Different Functionalizations

11

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


While, as expected, with lower concentration the total intensity
was lower, a very similar trend as in the higher concentration
could still be observed. Yet, a somewhat decreased intensity for
trivalent structures was apparent, which seems to be a density or
spacing effect. Notably, for WGA, the monovalent structure
GGGB has a stronger binding (sugar is close to the surface),
while generally for all other lectins, the monovalent structure
BGGG (sugar is furthest away from the surface) gives the highest
intensity.

Our studies show a spacing dependent binding for the divalent
systems. Higher intensities for ConA (to α-Man azide 3), and
RCA-I (to β-Gal-PEG3 azide 5) are attained for non-adjacent
divalent structures (GBGB, BGGB, BGBG). A similar effect is
observed for trivalent binders: the intermediate glycine (BGBB,
BBGB) increases the binding for ConA, SBA, and RCA-I (β-Gal
azide 4) in comparison to structures with terminal glycines
(BBBG, GBBB). For RCA-I, the more flexible β-Gal-PEG3
azide 5 shows a generally higher binding, but especially on the
trivalent system with the C-terminal glycine (BBBG). In the case
ofWGA, the divalent scaffolds with two neighboring Pra moieties
(BBGG, GGBB, GBBG) give less binding, while stronger binding
is obtained on non-neighboring Pra scaffolds (GBGB, BGBG,
BGGB).

Binding Studies on PolyAn Slides
Next, we investigated the impact of a different commercial
substrate on the binding of the lectins. Thus, we
functionalized the more hydrophilic PolyAn slides with the
same PEG-spacer (see Supplementary Material, Section 3.2.).
We measured the hydrophobicity of all used slides
(PEPperPRINT and PolyAn) with and without PEG-spacer,
showing that the hydrophilic character of the PoyAn slides
does not change after the attachment of the PEG-spacer
(Supplementary Material, Section 6). Comparing the PolyAn
to the PEPperPRINT slides, generally similar interactions were
detected, while some distinct differences for multivalency, sugar
density, and spacing could be observed. The binding ability of
ConA on PolyAn slides bearing the PEG-spacer decreased by a
factor of 2 compared to the intensities observed on PEPperPRINT
slides (Figure 3A). This trend was observed for almost all other
lectin interactions. In the case of SBA (Figure 3B), the PolyAn
slide surface seems to prevent a multivalent effect (i.e., only linear
intensity increase), at least for this lectin concentration. For RCA-
I (Figure 3C, D), the PolyAn slide without PEG-spacer showed a
similar trend as the PEPperPRINT slide for the β-Gal azide 4. For
β-Gal-PEG3 azide 5, again, both PolyAn slides showed a similar
trend to the PEPperPRINT slide, but with a much weaker
multivalent effect and a generally 2- to 3-fold lower intensity.
In case of WGA with β-GlcNAc-PEG3 azide 9 (Figure 3E, F), the
PolyAn surface without PEG showed a generally higher intensity
in the assay with high concentration. For the low concentration
WGA assay, PolyAn showed a lower intensity, but still the same
trend. Similar binding behavior was also observed for β-GlcNAc
azide 8 with WGA (see Supplementary Material, Section 7.6).

Interestingly, only on the PolyAn surfaces, DBA showed a
weak binding to β-GalNAc azide 6 and β-GalNAc-PEG3-azide 7
(see Supplementary Material, Section 7.3). However, in this case,

we also observed a high background signal for the GGGG control,
which is a hydrophobic structure. In the future, it should be
further investigated, whether a more hydrophobic alkyl linker
(instead of PEG) on the surface can increase this binding, since
DBA is known to have a hydrophobic adenine-binding site in
addition to the carbohydrate recognition domain (Hamelryck
et al., 1999).

As reported before with the PEPperPRINT slides, no binding
could be identified for SBA and PNA with β-Gal azide 4, β-Gal-
PEG3 azide 5, and β-GalNAc azide 6 on PolyAn slides (see
Supplementary Material, Sections 7.2, 7.4).

Structure dependent binding was also observed between the
different lectins on PolyAn slides. Structures with same
theoretical spacing (GBGB and BGBG) do not show the same
binding intensities. The strongest binding for WGA on PolyAn
slides was detected for the divalent structure BGGB, especially for
the lower lectin concentration. Thus, and because the binding
sites of WGA are very close to each other (see Conclusion), it
indicates cross-linking and chelating binding mode (i.e., two
binding sites of WGA bind to one structure). Remarkably
reduced binding of WGA was detected on the tri- and
tetravalent structures on all substrates compared to the
divalent structures, which might be caused by sterical hindrance.

CONCLUSION

We describe a flexible and cost-efficient method for the synthesis
of defined multivalent glycopeptide arrays. On each microarray,
16 different tetrapeptides were generated in situ by our laser-
based technology and seven different azido sugar monomers were
attached by CuAAC (resulting in a total of 112 different
structures on three different surfaces). To study the impact of
different commercial surfaces functionalized with different
linkers, we first optimized the solid-phase synthesis conditions
(amino acid concentration, lasing parameters, coupling time) for
different commercial microarray substrates. These optimizations
improved the signal-to-noise ratios for our model lectin ConA by
one order of magnitude, and helped to expand the applications
for our synthesis platform to include weakly binding lectins
(e.g., DBA).

Lectin binding depends on spacing, density, surface
functionalization, and concentration. PEG-functionalized
PEPperPRINT slides provided generally higher signal
intensities than PolyAn slides, with the exception of DBA.
Lower binding intensities on PolyAn slides equipped with the
PEG-spacer indicate that lectin binding decreases under very
hydrophilic conditions for the majority of lectins. For a better
understanding, we experimentally determined the (water) contact
angle of the different surfaces. PEPperPRINT slides are more
hydrophobic, while PolyAn slides maintained their hydrophilic
character even after the attachment of a PEG-spacer.

Most lectins showed a multivalent binding effect that mainly
depends on the valency with exception of the WGA binding
assay. A saturation of binding intensity for divalent structures was
detected on all microarrays due to the chelating binding mode,
leading to cross-linking. Yet, no binding was observed for PNA
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and DBA on PEPperPRINT slides with simple sugar moieties,
while weak interaction was obtained on PolyAn slides with DBA.
Spacing of the synthetic scaffolds may not fit the binding sites of
most lectins, the selection of sugars was not optimal, and the
triazole ring might cause sterical problems. Future investigations
will require screening of different mono- and disaccharides, such
as lactose and the T-antigen with PNA. In case of DBA, an α-N-
acetyl galactosamine residue should offer a much higher binding
ability than the β-N-acetyl galactosamine residue. Additionally,
longer peptide scaffolds should be synthesized, as well as longer
linkers (e.g., PEG5) should be introduced between the anomeric
position and the peptide backbone, to increase the size and the
flexibility of the synthesized structures.

We were unable to detect any binding between the C-type
lectins mLangerin, mMGL-1, and mMincle with their
corresponding sugar monomers (see Supplementary
Material, Section 8). Interestingly, Di Maio et al. very
recently reported a microarray assay with multivalent display
of mono- and dimannose, where other C-type lectins (DC-
SIGNR ECD, trivalent Langerin ECD, monomeric Dectin-2
ECD) were screened. These lectins selectively and strongly
bind to Man-α1,2Man, but almost no binding for α-Man
monomer was reported (Di Maio et al., 2021). Future
screening of disaccharides such as Man-α1,2Man with high
valency and staining with directly fluorescently labeled lectins
may provide more information on these lectins.

Notably, on PolyAn slides with and without spacer, most lectins
showed a more linear (less multivalent) increase in binding with
increasing numbers of sugar PEG3 azides. For the less flexible sugar
azides without PEG3, typical multivalent trends could be observed.

The molecular spacing of the sugars on the tetrapeptides had a
similar impact on ConA, SBA, and RCA-I. Scaffolds with the
same theoretical spacing, such as GBGB and BGBG, showed
different binding strengths with the latter typically showing a
stronger binding strength. Similarly, divalent structures with
larger spacing (BGGB) showed stronger binding than the
more adjacent scaffolds (e.g., GBBG).

To our knowledge, this work is the first, showing the
synthesis of glycopeptides with defined valencies and spacing
in situ on different commercially available microarrays to
investigate the effect of substrate functionalization. Our
technology relies on readily available compounds
(Eickelmann et al., 2019) and can be fully automated (Paris
et al., 2019). This enables us to screen a diverse collection of
glycopeptides with their corresponding lectins. We believe that
by using other propargyl amino acids in our process in the
future, we should be able to find ideal multivalent glycopeptide
binders for different lectins. However, the microarray substrate

functionalization plays an important role for glycan-GBP
interaction studies and has to be thoroughly considered.
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Site-Specific Glycosylation Patterns of
the SARS-CoV-2 Spike Protein
Derived From Recombinant Protein
and Viral WA1 and D614G Strains
Yuan Tian, Lisa M. Parsons, Ewa Jankowska and John F. Cipollo*

Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic
Products, Silver Spring, MD, United States

The SARS-CoV-2 spike protein is heavily glycosylated, having 22 predicted N-glycosylation
sites per monomer. It is also O-glycosylated, although the number of O-glycosites is less
defined. Recent studies show that spike protein glycans play critical roles in viral entry and
infection. The spike monomer has two subdomains, S1 and S2, and a receptor-binding
domain (RBD) within the S1 domain. In this study, we have characterized the site-specific
glycosylation patterns of the HEK293 recombinant spike RBD and S1 domains as well as
the intact spike derived from the whole virus produced in Vero cells. The Vero cell-derived
spike from the WA1 strain and a D614G variant was analyzed. All spike proteins, S1, and
RBDs were analyzed using hydrophilic interaction chromatography (HILIC) and LC-MS/MS
on an Orbitrap Eclipse Tribrid mass spectrometer. N-glycans identified in HEK293-derived
S1were structurally diverse. Those found in the HEK293-derived RBDwere highly similar to
those in HEK293S1whereN-glycosites were shared. Comparison of thewhole cell-derived
WA1 and D614G spike proteins revealed that N-glycosites local to the mutation site
appeared to be more readily detected, hinting that these sites are more exposed to
glycosylation machinery. Moreover, recombinant HEK293-derived S1 was occupied
almost completely with complex glycan, while both WA1 and D614G derived from the
Vero E6 cell whole virus were predominantly high-mannose glycans. This stands in stark
contrast to glycosylation patterns seen in bothCHO- andHEK cell-derived recombinant S1,
S2, and the whole spike previously reported. Concerning O-glycosylation, our analyses
revealed that HEK293 recombinant proteins possessed a range of O-glycosites with
compositions consistent with Core type 1 and 2 glycans. The O-glycosites shared
between the S1 and RBD constructs, sites T323 and T523, were occupied by a similar
range of Core 1 and 2 type O-glycans. Overall, this study reveals that the sample nature and
cell substrate used for production of these proteins can have a dramatic impact on the
glycosylation profile. SARS-CoV-2 spike glycans are associated with host ACE2 receptor
interaction efficiency. Therefore, understanding such differences will serve to better
understand these host–pathogen interactions and inform the choice of cell substrates
to suite downstream investigations.

Keywords: SARS-CoV-2, N-glycosylation, O-glycosylation, glycan shield, cell substrate, spike protein,
microheterogeneity, D614G variant
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INTRODUCTION

SARS-CoV-2 is an enveloped, positive single-stranded RNA beta
coronavirus expressing four main structural proteins, which
include nucleocapsid, spike, membrane, and envelope proteins
(Lu et al., 2020; Singh and Yi, 2021). The trimeric spike protein is
the major surface protein of the SARS-CoV-2 virus and serves as
an entry protein for host cell infection (Shang et al., 2020). To
facilitate the fusion of the viral membrane with the infected cells,
the spike proteins are cleaved into S1 and S2 subunits by cellular
proteases, such as furin (Hoffmann et al., 2020a; Hoffmann et al.,
2020b; Xia, 2021). The S1 subunit contains the N-terminal and
the receptor-binding domain (RBD) (Xia, 2021), and
recombinant RBD binds to the human angiotensin converting
enzyme 2 (ACE2) present as a surface receptor on host cells. The
S2 domain serves the function of membrane fusion, which
contains a fusion peptide (FP), an internal fusion peptide
(IFP), two heptad repeat domains (HR1 and HR2), a
transmembrane domain, and a C-terminal domain (Coutard
et al., 2020; Xia, 2021).

Enveloped viruses have evolved to take advantage of many
host cell processes including glycosylation (Watanabe et al.,
2019). Viral protein glycosylation functions in a number of
ways in the viral lifestyle including viral particle stability,
mediating viral infection, host immune response, and immune
evasion (Walls et al., 2016; Watanabe et al., 2019). Viral
glycosylation of key envelope glycoproteins can be dynamic
over time as the virus propagates through the host population,
allowing immune avoidance to evolve over time (Li et al., 2021).
Recent cryo-EM studies reported that the recombinant SARS-
CoV-2 spike protein is extensively glycosylated (Grant et al.,
2020; Wrapp et al., 2020). Using recombinant proteins, earlier
studies reported glycosylation of the 22 predicted N-linked
glycosites in the spike protein at high occupancy and lower
glycosylation occupancy on O-linked glycosites (Watanabe
et al., 2020a; Watanabe et al., 2020b; Shajahan et al., 2020;
Zhao et al., 2020; Zhou et al., 2021). A recent study reported
that glycosylation is essential for SARS-CoV-2 viral entry and
infection (Yang et al., 2020). Since glycans are produced through
a stochastic process that is dependent upon glycosylation, enzyme
expression, location, concentration, and the particular
glycoprotein’s sequence and structural characteristics, it can be
altered under selective pressure. During viral evolution, with
passage through the human population, glycosites are added
and deleted often, leading to an increased number of sites and
glycan complexity. The overall glycosylation characteristics such
as composition, subclass, heterogeneity, and density over the
surface of the protein can have dramatic effects on viral survival,
transmission, and immune evasion (Vigerust and Shepherd,
2007; Watanabe et al., 2019; Li et al., 2021). Spike
glycoproteins are often the major target for vaccine design and
antivirus drug development. Understanding the glycosylation
microheterogeneity of the spike protein can facilitate the process.

Here, we characterize site-specific glycosylation on
recombinant RBD and the S1 domain of the spike protein
produced in HEK293 cells to understand the glycosylation
microheterogeneity produced using this cell substrate. The

question remains open: whether the glycosylation of these
recombinant proteins differs from that of the native spike
produced in the whole virus. Thus, we compare the
glycosylation of recombinant RBD and S1 to two intact viruses,
the WA1 strain and a D614G variant, both produced in Vero E6
cells. The SARS-CoV-2/USA-WA1/2020 (USA-WA1) viral strain
was isolated from the specimen of the first confirmed case in the
United States (Harcourt et al., 2020; Wang et al., 2021a). Whole
genome sequencing confirmed that this strain contained D614 as
the original form of the SARS-CoV-2 virus. SARS-CoV-2/
Massachusetts/VPT1/2020 (MA/VPT1), containing the D614G
mutation, was isolated in Vero E6 cells from a nasopharyngeal
specimen collected in April 2020 (Wang et al., 2021a). The D614G
mutation, which appeared in early 2020 (Korber et al., 2020), has
become dominant worldwide. The D614Gmutation is also carried
by the more recent and concerning SARS-CoV-2 variants,
including B.1.1.7, B.1.351, P.1, and B.1.617 (https://www.cdc.
gov/coronavirus/2019-ncov/variants/). Compared to strains
containing the original D614, viruses with the D614G mutation
have significantly higher infection titers as well as faster
transmission but are less sensitive to spike-based SARS-CoV-2
vaccine sera produced inmice, non-human primates, and humans
(Hou et al., 2020; Korber et al., 2020; Yurkovetskiy et al., 2020). In
addition, structural analysis demonstrates that the G614 spike is in
a more open conformation with extended RBDs (Yurkovetskiy
et al., 2020). Given this conformational shift, it is of interest to
examine glycosylation for possible changes in the D614G spike
compared to its close progenitor, the WA1 strain, while keeping
the viral propagation cell platform the same. Therefore, in
addition to analysis of recombinant spike constructs, we report
the glycosylation patterns of spikes in WA1 and D614G strains
produced by the whole virus in Vero E6 cells. Our results may aid
in interpretation of experimental data concerning spike
interactions with the host and surrogates as well as the
development of therapeutics and vaccines against the SARS-
CoV-2 virus.

MATERIALS AND METHODS

Recombinant Proteins and Intact Viruses
Recombinant protein SARS-CoV-2 Spike S1 and RBD proteins
expressed in HEK293 cells were purchased from Sanyou Bio
(China). The whole virus of the WA1 strain was from the first
patient of SARS-CoV-2 virus infection in the United States
(Harcourt et al., 2020). The virus was isolated from
nasopharyngeal and oropharyngeal specimens from this
patient, and the viral sequence was confirmed (Wang et al.,
2021a). This strain, SARS-CoV-2/USA-WA1/2020 (USA-
WA1), is the original form of the SARS-CoV-2 virus without
mutation at the 614 amino acid (Li et al., 2021). The D614G
variant carrying the spike protein amino acid change at 614D to
G, SARS-CoV-2/Massachusetts/VPT1/2020 (MA/VPT1), was
isolated from Vero E6 cells from a nasopharyngeal specimen
collected in April 2020 (Wang et al., 2021a). Both viruses were
grown in Vero E6 cells, and the supernatant of the passage 4 stock
of each virus was collected by centrifugation. After the viruses
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were frozen to −80°C at least overnight, the viruses were
inactivated by gamma irradiation.

Chemicals, reagents, and TSKgel amide 80 particles were
purchased from Tosoh Bioscience LLC (Montgomeryville, PA).
Sep-Pak C18 cartridges were purchased from Waters (Milford,
MA, United States). Sequencing grade-modified trypsin,
chymotrypsin, and Glu-C were purchased from Promega
Corp. (Madison, WI). PNGase F was purchased from New
England BioLabs, Inc (Ipswich, MA). Iodoacetimide,
dithiothreitol (DTT), trifluoroacetic acid (TFA) (≥99%), and
other chemicals were purchased from Sigma-Aldrich (St.
Louis, MO, United States). Solvents were of high-pressure
liquid chromatography (HPLC) grade or higher and purchased
from Thermo Fisher Scientific (Waltham, MA). All other
reagents were of ACS grade or higher.

Protein Digestion
Recombinant proteins (200 µg) were dissolved in 50 mM
ammonium bicarbonate at a concentration of 2 µg/µL. DTT
was added to reduce the disulfide bonds at a final
concentration of 5 mM for 30 min at 60°C. The samples were
cooled to room temperature (RT), and iodoacetamide (IAA) was
added to alkylate the reduced cysteine residues at a concentration
of 15 mM for 30 min in the dark at RT. DTT was added to 25 mM
to neutralize the remaining IAA. Trypsin or chymotrypsin was
added (enzyme/protein, 1:50, w/w), and the samples were
incubated at 37°C overnight.

For intact viruses, approximately 500 µg of the proteins was
reducedwith 5 mMDTT in 6Murea and 50mMNH4HCO3 for 1 h
at 37°C and subsequently alkylated with 15 mM iodoacetamide for
30min at RT in the dark. To neutralize the remaining IAA, DTT
was added to 25mM. Samples were diluted 6-fold with 50mM
NH4HCO3 and 1 mM CaCl2 and digested with sequencing grade-
modified trypsin or chymotrypsin at 1:50 (enzyme/protein, w/w)
overnight at 37°C. Glu-C was added to the tryptic digest at 1:50
(enzyme/protein, w/w) and incubated overnight at 37°C.

Glycopeptide Enrichment by the HILIC
Resin
Intact glycopeptides were enriched by solid-phase extraction
using the TSKgel amide 80 hydrophilic interaction
chromatography (HILIC) resin according to our previous
report (An and Cipollo, 2011). Briefly, 200 mg (400 µL of the
wet resin) of the amide 80 resin was placed into a Supelco fritted
1 ml column and washed with 1 ml of 0.1% trifluoroacetic acid
(TFA)–water solution. The column was conditioned with 1 ml of
0.1% TFA–80% ACN. The peptides were suspended in 0.1%
TFA–80% ACN and slowly loaded to the column. The
hydrophobic species were washed away with 3 ml of 0.1%
TFA–80% ACN. For recombinant proteins, the glycopeptides
were eluted with 1 ml of 0.1% TFA–50% ACN and 1 ml of 0.1%
TFA–25% ACN. The eluents were combined and vacuum-dried.
For whole viruses, the glycopeptides were eluted sequentially with
1 ml of 0.1% TFA–65% ACN, 0.1% TFA–60% ACN, 0.1%
TFA–50% ACN, and 0.1% TFA–25% ACN. Each eluent was
vacuum-dried and analyzed by mass spectrometry separately.

Reversed-Phase HPLC Fractionation
The PNGase F-treated WA1 and D614G peptides were dried by
speed vacuum and resuspended in 20 μl of 10 mM TEAB. The
fractionation of the peptide samples is carried out using an
Agilent Poroshell 120 Column (2.7 μm, 2.1 × 150 mm) and an
Agilent UHPLC 1290 system. The separation was performed by
running a gradient of Solvent B (10 mM TEABC, pH 8.0, 90%
ACN) and Solvent A (10 mM TEAB, pH 8.0) at a flow rate of
200 μl/min in a 150 min run. The elute fractions are collected into
a 96-well plate using a 1260 series auto-sample fraction collector.
The 96 elute fractions were further combined into 12 fractions
according to the collection time (combined per column into one
fraction, 12 column 12 fractions). Each fraction was dried by
rotary evacuation.

Site Occupancy Analysis
Digested peptides were deglycosylated with PNGase F in 50 mM
NH4HCO3. PNGase F cleaves between the innermost N-linked
core GlcNAc and the Asn residue to which it is covalently linked.
PNGase F deamidates the N-linked Asn producing an Asp
residue, with a resulting increase of 0.984 Da in molecular
weight (Gonzalez et al., 1992). PNGase F-treated peptides were
desalted by C18 cartridge solid-phase extraction. The percent
occupancy for each site is calculated by comparing the extracted
chromatographic area under the curve of peptides with Asn to
those with Asp using Byonic software (Version 3.10; Protein
Metrics Inc.).

Mass Spectrometry Analysis
The peptides were reconstituted in 0.1% formic acid–water
solution and analyzed on an Orbitrap Eclipse Tribrid mass
spectrometer equipped with a nanospray ion source and
connected to a Dionex binary solvent system (Thermo Fisher
Scientific). Peptides were separated using an Acclaim™
PepMap™ 100 C18 Column (75 μm × 15 cm). A trapping
column (PepMap 100 C18 3 μM 75 μM × 2 cm) was used in
line with the LC prior to separation with the analytical column.
The solvent system consisted of solvent A (100% water/0.1%
formic acid) and solvent B (100% ACN/0.1% formic acid). The
LC conditions were as follows: 5–35% of solvent B for 165 min,
90% of solvent B for 5 min, and 1% of solvent B for 5 min. The
flow rate was set to 300 nl/min. The spray voltage was set to
2.7 kV, and the ion-transfer tube temperature was set to 275°C.
The full MS scan range was 400–2000 m/z. Precursor masses were
detected in the Orbitrap at resolution (R) � 120,000 (at m/z 200).
Stepped HCD (higher-energy collisional dissociation) spectra
(HCD energy at 15, 25, and 35%) were recorded for the top
15 most abundant precursors with the standard mode of the AGC
target. Dynamic exclusion was set at 30 s. If at least one typical
glycan fragment ion abundance (m/z 204.0867 and 366.1396 Da)
was observed within the top 15 most abundant fragments and
within a 15 ppm mass accuracy, an EThcD [electron-transfer
dissociation (ETD) followed by supplemental HCD collision
energy at 25%] spectrum of the same precursor would be
recorded in the Orbitrap at R � 15,000. The ETD reaction
time was set to use calibrated charge-dependent ETD
parameters. The glycopeptides of the intact virus were

Frontiers in Chemistry | www.frontiersin.org November 2021 | Volume 9 | Article 7674483

Tian et al. Cell Substrate–Dependent Spike Glycosylation Patterns

18

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


analyzed by stepped HCD fragmentation and HCD-triggered
EThcD fragmentation to analyze N-linked glycans and O-linked
glycans, respectively. Deamidated peptides were analyzed only by
stepped HCD fragmentation.

Data Analysis Using Byonic and Manual
Verification
The LC-MS/MS spectra were searched against the FASTA
sequence of the spike protein of the SARS-CoV-2 original
virus or the D614G variant using Byos™ (Version 3.10;
Protein Metrics Inc.). The searching parameters were specified
as follows: fully specific digestion specificity, 2 missing cleavage
sited allowed, carbamidomethyl at cysteine as a fixed
modification, and oxidation at methionine as a common
modification. The precursor ion mass tolerance was set at
6 ppm, and that for fragment ions was at 20 ppm. A 1% false
discovery rate (FDR) was applied. The results were filtered with
PEP 2D < 0.01, score ≥100, and Delta Mod. Score ≥10. The
glycopeptide fragmentation data were evaluated manually for
each glycopeptide; the peptide was confirmed when the b and y
fragment ions were observed along with oxonium ions
corresponding to the glycan identified. A minimum of 3 b/y
ions were required. The relative amounts of each glycan at
each site were determined by comparing the extracted
chromatographic area under the curve. All charge states for a
single glycopeptide were summed.

Glycans were categorized to subtypes according to the
composition detected: Hex (4–10)HexNAc(2) was classified as
high mannose, NeuAc (0–1)dHex (0–1)Hex (3–7)HexNAc(3)
was classified as Hybrid, and NeuAc (0–5)dHex (0–3) Hex
(3–8)HexNAc(4–7) was classified as complex-type glycans.
Any glycan containing at least one fucose or sialic acid was
counted as fucosylated or sialylated, respectively.

Model Construction
Monomeric structural models of N-linked glycan presentation on
SARS-CoV-2 were created using electron microscopy structures
(PDB ID: 6ZGG), which were visualized with CCP4MG. Glycan
cartoon structures are inferred from knowledge of common
glycans as identification was done solely by mass. A trimeric
structural model of SARS-CoV-2 was created from the electron
microscopy structure (PDB ID: 7A96) and visualized with
CCP4MG. The antigenic epitopes were predicted using
NetCTL-1.2 (Larsen et al., 2007).

RESULTS AND DISCUSSION

Mapping Glycosylation on Recombinant
RBD Proteins
Recombinant RBD proteins expressed in HEK293 cells were
trypsin-digested. Seventy-five percent of the digest was used
for glycopeptide enrichment using HILIC separation, and 25%
was deglycosylated in preparation for glycosylation site
occupancy analysis. The HILIC-enriched intact glycopeptides
were analyzed by LC-MS/MS using HCD-triggered EThcD

fragmentation. The deglycosylated peptides were analyzed by
LC-MS/MS with HCD fragmentation. The LC-MS/MS raw
files were analyzed using Byonic software. The Byonic results
were filtered with a 1% false discovery rate and other parameters
to achieve high confidence identifications (see the Method
section). All the spectra were manually verified.

The RBD has two potential N-linked glycosylation sites at
amino acid positions 331 and 343 relative to the WA1 spike
protein. Our data show that both sites are heavily glycosylated
with greater than 99% occupancy (Figure 1 and Supplementary
Table S1). We observed a high degree of fucosylation at the two
N-glycosites, and Man5GlcNAc2 (Man5) is highly abundant at
both sites (Figure 1 and Supplementary Table S1). Glycans
identified at N331 included high mannose; short complex,
paucimannose; and highly abbreviated forms (Figure 1;
Supplementary Table S1 and Supplementary Figure S1). The
reason is not fully understood but may be related to prompt
fragmentation or degradative processes incurred during RBD
production and/or purification. Prompt decay is unlikely as no
other glycosites demonstrated this pattern.

We also identified two O-glycosylation sites at residues T323
and T523 with a diverse range of glycan compositions.
Interestingly, most glycans at the two O-glycosites contain
sialic acid (Figure 1 and Supplementary Table S2).
Glycosylation of T323, but not T523, has been previously
reported. Therefore, we carefully examined the spectra and
observed strong evidence of glycosylation at T523
(Supplementary Figure S2). Previous studies reported
O-glycosylation at T325 (Shajahan et al., 2020; Zhao et al.,
2020), although the occupancy was estimated to be low (Zhao
et al., 2020). However, our data did not show direct evidence of
fragment ions which can confirm that T325 is glycosylated.

Site-Specific Microheterogeneity of Spike
Glycosylation in Recombinant S1 Proteins
The recombinant S1 protein expressed by HEK293 cells was
treated according to the same protocol as the RBD protein (see
above), except that two enzymes were used for digestion to
facilitate glycoproteomic coverage of the protein. These two
enzymes were trypsin and chymotrypsin, used in separate
digestion. Byonic search parameters and filters were also the
same as for the RBD protein.

The gene encoding the S1 domain has 13 possible sites of
N-glycosylation. Twelve of the 13 predicted N-glycosites were
found to be extensively glycosylated (Supplementary Figure S3
and Supplementary Table S3). The one missing glycosite, N17,
was detected glycosylated, but it did not meet our criteria due to
low confidence scores. Although the scores are low, many hybrid
and complex-type glycans were detected at N17 with at least two
technical replicates. The site occupancy for 10 glycosites is greater
than 90%. Sites N149 and N657 had a site occupancy rate of 25
and 58%, respectively (Supplementary Figure S3 and
Supplementary Table S3).

We observed a diverse range of glycan compositions across the
N-linked glycosylation sites. Glycosites N331, N343, N603, and
N616 had less glycan variety, while those at N122, N165, N234,
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N282, and N657 were more diverse (Supplementary Figure S3
and Supplementary Table S3). In addition to the site-specific
glycan compositions, overall trends in glycosylation across sites

were examined. The results revealed that the three most common
types of N-glycans were Man5GlcNAc2 (Man5),
HexNAc4Hex3Fuc1, and HexNAc5Hex3Fuc1 (Supplementary

FIGURE 1 | Glycosylation profile on the recombinant RBD protein. Two N-glycosites and two O-glycosites were identified. Glycan cartoon structures are inferred
from knowledge of common glycans as identification was done solely by mass. The bar graphs represent the glycan abundance and unoccupied percent based on total
ion abundances at each site.

FIGURE 2 | Fucosylated and sialylated N-linked glycosylation of the recombinant S1 protein. Twelve of 13 potential N-glycosylation sites were found occupied, and
these N-linked glycans are highly fucosylated.
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Figure S3). Man5 has also been reported by others as a
predominant high-mannose glycan composition across all
N-glycosites on the SARS-CoV-2 spike protein when produced
in HEK293 cells but interestingly not in CHO cells (Zhao et al.,
2020; Wang et al., 2021b). The relative abundance of complex-
type glycans and the level of fucosylation and sialylation for each
site were examined. As shown in Figure 2, the N-linked glycans
on the S1 protein were both highly fucosylated (∼80%) and
sialylated (∼30%) with overlap where both substitutions were
observed on some glycans.

We also identified 14 O-linked glycosites on the recombinant
S1 protein, including the two sites, T323 and T523, which were
identified in the recombinant RBD protein. O-glycosylation has
been reported to function in immunological shielding, protein
stability, and regulation of conformational changes (Casalino
et al., 2020a). About half of the 14 sites have not been
reported before, and most glycosites display a variety of glycan
modifications (Figure 3 and Supplementary Table S4). Three
O-glycosites, S673, T678, and S686, are located in the furin
cleavage region. Thus, such glycans may modulate the SARS-
CoV-2 entry (Andersen et al., 2020). Of the three hypothesized
O-glycosites, T678 was identified in this study.

The experimentally observed glycosylation sites are illustrated
on the monomeric SARS-CoV-2 spike glycoprotein (PDB code
6ZGG) (Figure 4). To convey the main processing features at
each site, the abundances of each glycan were summed by glycan
subtype and displayed as a pie chart next to each site. We
observed a combination of high-mannose, hybrid, and
complex-type N-glycans for most of the sites. Overall, all
glycosites were dominated by complex-type glycans when
tabulated by subtype. N74 displayed more hybrid-type glycans

(30%). N343, in the RBD region, displayed a higher relative
amount of mannose-type glycans (28%). This observation
aligned with our observations in the recombinant RBD protein
(see Figures 1, 4).

To illustrate the possible impact of the glycosylation
microheterogeneity on the virus antigenicity, we mapped the
N-glycosites with antigenic sites and the receptor-binding motifs
to the SARS-CoV-2 trimer using a 3D model previously
determined by electron microscopy (PDB code 7A96)
(Figure 5). The data show extensive microheterogeneity across
the glycosites. The number of identified glycoforms at each site
ranged from 12 to 83. The antigenic epitopes were predicted using
NetCTL-1.2 (Larsen et al., 2007) (Supplementary Table S5). We
found that many occupied glycosites are close to, or even overlap
with, the antigenic epitopes. Those that overlapped with antigenic
sites included N165, N343, N616, and N657, which display
substantial glycan diversity (Figure 5). The 3D model has one
open RBD bound to the ACE2 protein. The shielding of receptor-
binding sites by glycans is a common feature of viral
glycoproteins and has been observed for the SARS-CoV spike,
the HIV-1 envelope, and influenza hemagglutinin (Bonomelli
et al., 2011; Stewart-Jones et al., 2016; An et al., 2019; Zhao et al.,
2020).

There are two states of RBD: the “down” conformation and the
“up” conformation, corresponding to the receptor-inaccessible
state and receptor-accessible state, respectively (Gui et al., 2017;
Walls et al., 2019; Wrapp et al., 2020). The modeling reveals that
N343, N234, and N165 are near to the receptor-binding motif
[limited to amino acids 438–506 (Zhou et al., 2021)]. Previous
structure analysis revealed that in the RBD “down” state, the RBD
region is shielded by the glycans at N343, N165, and N234

FIGURE 3 |O-linked glycosylation of the recombinant S1 protein. Glycan cartoon structures are inferred from knowledge of common glycans as identification was
solely based on mass.
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(Casalino et al., 2020b). Besides shielding, the glycans at N165
and N234 have also been reported to stabilize the RBD in the “up”
conformation (Casalino et al., 2020b). Sztain et al. revealed that
the receptor-binding motif is consistently shielded by the glycans
at N165 and N234, but RBD opening decreases shielding by the
glycans at N343 (Sztain et al., 2021). The N343 glycan may play
the role of the “glycan gate” by facilitating conformational shift of
the RBD from the “down” to the “up” conformation by
interacting with the residues of the ACE2-binding motif
(Sztain et al., 2021).

Site-Specific Glycosylation of the Spike
From the WA1 Strain and the D614G Variant
To determine the differences and similarities in glycosylation
between the recombinant S1, produced in HEK293 cells, and that
of the spike produced in the virus, we examined the spike derived

from the intact virus from two strains, the WA1 strain and
D614G, propagated in Vero E6 cells. The WA1 strain was
from the first patient in the United States who was diagnosed
with SARS-CoV-2 viral infection. This case was declared by the
state of Washington and CDC on January 20, 2020 (Harcourt
et al., 2020). This viral identity was confirmed by whole genome
sequencing (GenBank accession no. MN985325), and it did not
have mutation at the 614 amino acid. The D614G variant
contains the spike protein amino acid change at 614 from D
to G, which is more infectious and transmissible and has become
the most prevalent form in the global pandemic sinceMarch 2021
(Hou et al., 2020; Korber et al., 2020). Both viruses were grown in
Vero E6 cells, and the supernatant of the passage 4 stock of each
virus was collected, inactivated by gamma irradiation, and
analyzed by our glycoproteomics approach.

Of the 13 predicted N-linked glycosites in the S1 domain,
10 N-glycosites were identified in theWA1 strain (Figure 6A and

FIGURE 4 | Structure-based mapping of glycans on the recombinant SARS-CoV-2 spike protein. The modeling of experimentally observed glycosylation site
compositions is illustrated on the monomeric SARS-CoV-2 spike glycoprotein (PDB code 6ZGG). The S1 subunit is colored light blue and peach. The S2 subunit is gray.
N- and O-linked glycosylation sites are indicated by green balls and purple balls, respectively. Most abundant glycans at each site are shown. Pie charts show the
percentage of glycan subtypes at each site. The boxed area shows the predominant glycans and the N-linked glycosylation subtype distribution for the glycans
identified in the recombinant RBD sample. *N74 and T678 are not in the structure.
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Supplementary Table S6). The two N-glycosites, N603 and
N616, were identified with several high-mannose-type glycans
(Man7GlcNAc2, Man8GlcNAc2, and Man9GlcNAc2 at N603
and Man8GlcNAc2 at N616) in a single replicate of the WA1
sample, which did not meet our criteria where two replicates were
required to achieve confident identification. Therefore,
glycosylation at these sites was considered tentative and not
considered further. In contrast, 12 of 13 N-linked glycosites
were identified in the S1 domain of the D614G variant
(Figure 6A and Supplementary Table S7). Site occupancy
identified by the PNGase F deglycosylation methodology
revealed that 10 S1 N-glycosites from the WA1 strain (N61,
N122, N165, N234, N282, N331, N343, N603, N616, and N567)
and 9 N-glycosites from the D614G variant (N61, N149, N165,
N234, N331, N343, N603, N616, and N657) were almost 100%
glycosylated (Supplementary Tables S8, S9). Three N-glycosites,
N74, N122, and N282, were only identified in D614G with a
single replicate in the site occupancy study; therefore, we were not
able to determine site occupancy at these three sites.
(Supplementary Table S9). We do note, however, that these
peptides are at least partially occupied by high-mannose glycans
based on our glycopeptide analysis (Figure 6A and
Supplementary Table S7). Likewise, some N-glycosites were
identified with highly diverse glycan compositions upon
glycoproteomics analysis of intact glycopeptides. However,
occupancy analysis at sites such as N149 in the WA1 strain
and N122 in D614G strains did not meet our criteria. Conversely,
no glycopeptides were identified at N603 and N616 of the WA1
strain, but these two sites were identified as occupied based on
detection of Asp in place of Asn subsequent to PNGase F
digestion, which supports that the two sites were glycosylated.
Estimated occupancies were between 96.4 and 100%, making it
unlikely that spontaneous deamination of unoccupied sites was
solely responsible for the Asp presence at the site. The most likely

reason for the discrepancy is due to the random sampling issue of
mass spectrometry or incomplete enrichment for these very
complex samples. The samples of intact viruses contained less
than 5% of spike protein abundance according to the protein
quantitation by Byonic software. High-abundance glycopeptides
of host cells were also enriched using the HILIC column, which
resulted in the high complexity of the glycopeptide pool in this
experiment.

When comparing the mutant form, D614G, with the original
form, WA1, we observed a similar glycosylation pattern for most
N-linked glycosites in both S1 and S2 domains (Figures 6A,B).
The most abundant glycoform at each N-glycosite was
comparable between WA1 and D614G (Figure 7).
Man7GlcNAc2 and Man8GlcNAc2 were the most abundant
glycoforms for the majority of the sites, except for N343.
There are several sites showing different glycan contents
between the two strains, such as N331, N343, and N1074. The
D614G variant presents more complex-type glycans at N331 but
less complex-type glycans at N343 compared to the WA1 strain.
As mentioned earlier, the N343 glycans significantly affect the
RBD “up” conformation (Sztain et al., 2021). The glycan changes
at N343 in D614G compared to WA1 could, at least partially,
account for D614G phenotype changes if similar shifts in
glycosylation occur in nature.

In addition, four glycosites, N603, N616, N1158, and N1194,
were not identified in the WA1 strain, while all four were
identified in the D614G variant (Figures 6A,B, Supplementary
Tables S6 and S7). This may not mean that these sites are not
glycosylated in WA1. Their absence may have resulted from
sample complexity, random sampling, and limitations of our
enrichment strategy as discussed above. This hypothesis is
supported by the site occupancy analysis where WA1 spike
N603, N616, and N1194 sites were clearly occupied
(Supplementary Table S8).

FIGURE 5 | 3D structural modeling of spike glycosylation microheterogeneity. The N-glycosites are mapped on the SARS-CoV-2 trimer structure (PDB code
7A96). Blue indicates the receptor-binding motif in the RBD region. Yellow indicates the predicted MHC antigenic sites. The glycosites are colored according to the
mannosylation percentage. The number of glycoforms at each site from less to more heterogeneous glycoforms detected is colored by light to dark, and the number is
also listed.
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Interestingly, in the recombinant S1 protein, most N-linked
glycosites are dominated by complex-type N-glycans, while most
glycosites in both theWA1 strain and the D614G variant produced
in the virus were dominated by high-mannose-type glycans
(Figure 6A). No O-linked glycosites were identified in the virus-
derived spike fromWA1 and D614G. The reason for the observed
dramatic differences in the glycosylation pattern detected between
recombinant spike S1 and the virus-derived spike is not clear. There
are several possibilities: first, protein structural differences may
influence access to glycosylationmachinery. Second, the expression
of glycosylation enzymes may differ between cell substrates. Third,
the secretory location of glycosylation enzymes may differ between
cell substrates under conditions of expression and/or virus
propagation. WA1 and D614G strains were grown in Vero E6
cells which are derived from the African green monkey kidney,
while the recombinant S1 protein was expressed by HEK293 cells
which are derived from human embryonic kidney cells.

It is clear that S1 and the whole spike differ structurally as the
former is without the S2 subunit. Several publications reported

differences in glycosite occupancy and glycan composition
between the intact spike protein and individually expressed S1
and S2 proteins (Watanabe et al., 2020a; Watanabe et al., 2020b;
Shajahan et al., 2020; Zhao et al., 2020). The spike expressed in
FreeStyle293F cells was found to be partially expressed as the S0
form, without S1/S2 or S2′ cleavage. The S0 form was found to
primarily contain high-mannose glycans (Watanabe et al., 2021).
We searched our data for evidence of S1/S2 cleavage. We did
detect cleavage of the S1/S2 furin cleavage site in the
chymotrypsin digest. However, the intensity of these peptides
was low, suggesting that significant amounts of the uncleaved S0
forms were present. We must also note that no peptides
representing the uncleaved site were detected. It has been
reported that Vero E6 cells do not produce high-abundance
furin and cleavage of the S glycoprotein in SARS-CoV-2-
infected Vero E6 cell lysates was reported to be inefficient
(Klimstra et al., 2020). One study, using human serum to
detect SARS-CoV-2 proteins produced in infected Vero E6 cell
lysates, showed mainly an uncleaved S protein (Haveri et al.,

FIGURE 6 | Comparison of the glycosylation pattern on the spike protein from recombinant S1, the WA1 strain, and the D614G variant. The most abundant
glycoforms detected in Vero E6 cell-derived WA1 and D614G strain spike N-glycosites were comparable but different from that detected in recombinant S1 produced in
HEK293. (A) N-linked glycan subtypes in the S1 domain. (B) N-linked glycan subtypes in the S2 domain.
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2020). Additionally, in our case, there was also no evidence for
TMPRSS2 or cathepsin cleavage. Our observations, however, may
have been due to low abundance of the spike in our samples; thus,
peptides specifically containing these cleavage sites may not have
been detected.

In general, Vero cells are not known to limit glycan processing
primarily to high-mannose glycans. Vero cells have been used as a
cell substrate for propagation of influenza and recombinant
proteins without report of bias toward high-mannose glycans
(Gornik et al., 2012; Rödig et al., 2013). The nascent capacity of
Vero cell expression and the secretory location of glycosylation
enzymes should not be an issue. Therefore, our observations are
not likely to be due to inherent limitations of Vero cells in terms
of glycosylation processes. However, our data show that high-
mannose-type glycans represent a large portion of total glycans
displayed on the Vero E6 host’s glycoproteins (Supplementary
Figure S4). A range of complex glycans were also identified, albeit
with far less abundance. Therefore, the high percent of high-
mannose-type glycans on WA1 and D614G grown in Vero E6
cells was not limited to the SARS-CoV-2 spike.

The proper location of glycosylation enzymes is a complex
process involving Rab GTPases, coiled-coil tethers termed
golgins, and the multi-subunit tethering complex known as the
conserved oligomeric Golgi (COG) complex (Fisher and Ungar,
2016). These factors contribute toward anterograde and
retrograde transport of glycosylation active enzymes and other
necessary proteins involved in glycoprotein production.
Regulation of these processes is essential for appropriate
localization and sequential activities of glycosylation active
enzymes (Starr et al., 2010). In our studies of the Vero cell-
propagated SARS-CoV-2 spike, we noted a low amount of
glycosylation processing beyond ER mannosidase I (Moremen
et al., 2012) and other mannosidases which are normally present
in the cis/medial cisternae of the Golgi (Moremen et al., 2012).

This was evidenced by the dominant presence of primarily Man5-
8GlcNAc2. There were only low abundances of Man3-5GlcNAc3,
also suggesting little processing by cis/medial Golgi located
N-acetyglucosaminidase I (Gnt1) (Sztain et al., 2021; Moremen
et al., 2012). Therefore, one possibility is that under conditions of
viral propagation, the Golgi COG system-mediated anterograde/
retrograde system is shifted or viral packaging and routing differs
from normal secretion, resulting in an altered distribution of
glycosylation active enzymes or proper sequential exposure of
these enzymes to nascent glycoproteins. Notably, virus-like
particles and the SARS-CoV-2 virus have been localized to the
endoplasmic reticulum–Golgi intermediate compartment
(ERGIC), a site of secretory sorting between the ER and Golgi,
and it has been hypothesized that SARS-CoV-2 exits the cell via
lysosomal exocytosis, suggesting little exposure to Golgi enzymes
(Mendonça et al., 2021; Plescia et al., 2021). We note that among
25 cell lines tested, Vero E6 produced among the highest viral
titers including all those expressing the human ACE2 receptor.
Therefore, the high-mannose glycan distribution does not appear
to significantly negatively affect viral propagation in the Vero E6
cell line compared to alternative cell substrates typically used in
the SARS-CoV-2 viral study (Wang et al., 2021a).

Watanabe et al. (2021), who also noted unprocessed
glycans on the spike, albeit produced in HEK cells
expressing the ChAdOx1 vaccine vector, hypothesized that
these high-mannose-bearing spike proteins represented those
in transit through the secretory system and suggested that
furin protease is located in the later trans-Golgi stacks. In our
case, this is unlikely as the majority of the virus isolated
formed mature viral particles. Significantly, both HEK293
and Vero cells produce predominantly high-mannose
glycosylation patterns on the SARS-CoV-2 spike under
certain circumstances. The exact reason for this remains an
open question.

FIGURE 7 | N-glycosylation map of Vero E6-derived viruses. The most abundant glycoform detected in Vero E6 cell-derived WA1 and the D614G strain spike
N-glycosite was comparable but different from that detected in recombinant S1 produced in HEK293.
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Overall, we have found similar glycosylation site-specific
N-glycan distributions in S1 and RBD to those previously
reported that were produced in HEK293 cell lines. We also
report here previously unreported O-glycosylation site
occupancy including T523 and confirm the presence of 14
total O-glycosylation site occupancies including T678, which
appears in the furin cleavage domain. Significantly, we also
report that the native spike produced in SARS-CoV-2/USA-
WA1/2020 (USA-WA1) is substituted with primarily high-
mannose glycans that do not appear to effect viral propagation
in Vero E6 compared to alternative cell substrates (Wang et al.,
2021a).

CONCLUSION

In this study, we characterized the site-specific glycosylation of
the spike protein from recombinant RBD and S1 domains and
from two intact viruses, the WA1 strain and the D614G variant.
Glycosylation was found to be of high occupancy in all samples
examined and highly heterogeneous across the majority of
glycosites in the HEK293-derived S1 and RBD. Glycan
modification at most N-glycosites is very similar between
WA1 and D614G and primarily high-mannose, with
significant differences at N343. Our results also revealed
different patterns of glycan modification among the
recombinant S1 protein, recombinant RBD, and the WA1 and
D614G strains, which implies that these spike proteins may
perform differently in vitro and in vivo. Therefore, the origin
of spike glycosylation should be put in consideration for vaccine
design and drug development.

AUTHOR SUMMARY

The SARS-CoV-2 virus spike protein binds to host cells, fuses
with the host cell membrane, and enters the cell. It is heavily
glycosylated, and recent studies revealed that glycan modification
is essential to modulate spike conformation and host cell
invasion. In this study, we analyzed the glycan modification of
recombinant spike protein subunit RBD and the S1 domain, both
of which function to bind host receptor ACE 2. We also analyzed
the glycan modification of whole viruses, the WA1 strain, and the
D614G variant. TheWA1 strain was isolated from the first case of
COVID-19 in the United States. The D614G variant, carrying the
protein amino acid change at 614 from aspartate(D) to
glycine(G), is now prevalent in the circulating SARS-CoV-2
virus and is carried by all recently identified and highly
concerning SARS-CoV-2 variants. We found different patterns
of glycan modification among the recombinant S1 protein,
recombinant RBD, and WA1 and D614G strains. Glycan
modification at most N-glycosites is very similar between
WA1 and D614G, with significant differences at N343. This
recombinant S1 and RBD glycosylation patterns differ
dramatically from the whole virus produced in Vero cells and

implies that these spike proteins may perform differently in vitro
and in vivo, which could have implications for viral studies,
vaccine design, and drug development.
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Electrochemical Bromination of
Glycals
Zhao-Xiang Luo1†, Miao Liu1†, Tian Li1, De-Cai Xiong1,2* and Xin-Shan Ye1*

1State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China,
2State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China

Herein, the convenient one-step electrochemical bromination of glycals using Bu4NBr as
the brominating source under metal-catalyst-free and oxidant-free reaction conditions
was described. A series of 2-bromoglycals bearing different electron-withdrawing or
electron-donating protective groups were successfully synthesized in moderate to
excellent yields. The coupling of tri-O-benzyl-2-bromogalactal with phenylacetylene,
potassium phenyltrifluoroborate, or a 6-OH acceptor was achieved to afford 2C-
branched carbohydrates and disaccharides via Sonogashira coupling, Suzuki
coupling, and Ferrier rearrangement reactions with high efficiency. The radical
trapping and cyclic voltammetry experiments indicated that bromine radicals may be
involved in the reaction process.

Keywords: electrochemistry, bromination, glycals, 2-bromoglycals, cross-coupling, ferrier rearrangement

INTRODUCTION

Carbohydrates mainly exist in the form of glycoconjugates, polysaccharides, oligosaccharides,
and monosaccharides and play a pivotal role in a broad range of important biological
processes including cell proliferation, host–pathogen interactions, cell adhesion, hormone
function, and the immune response (Kiessling and Kraft, 2013; Wang et al., 2020). Chemical
synthesis can afford both naturally occurring important carbohydrates and biologically
active carbohydrate mimetics in sufficient quantities, providing a powerful tool to
understand the biological functions of carbohydrates (Muthana et al., 2009; Panza et al.,
2018; Li and Ye, 2020).

Organic electrosynthesis is of current interest as one of the most promising methods for the
efficient, sustainable, and green synthesis of medicinally significant compounds (Francke and Little,
2014; Horn et al., 2016; Liang and Zeng, 2020; Meyer et al., 2020; Yuan et al., 2021). In recent years,
the electrochemical synthesis of oligosaccharides has been successfully demonstrated through the
activation of different types of glycosyl donors, such as thio-, seleno-, and telluro-glycosides (Nokami
et al., 2015; Manmode et al., 2018; Zhang et al., 2020). In addition, our group has been involved in the
electrochemical transformation of glycals to obtain significant synthetic carbohydrate compounds
(Liu et al., 2020; Liu et al., 2021). Along with the use of MnBr2 as the redox mediator, the
electrochemical trifluoromethylation of glycals has been realized (Liu et al., 2021). In the exploration
of this reaction, we found that 2-bromoglycals could also be isolated when the equivalent of Bu4NBr
was added. Inspired by this surprising result, we turned our focus to the electrochemical bromination
of glycals (Scheme 1).

Over the past few decades, 2-bromoglycals have been widely employed as important synthons
in combination with metal-catalyzed cross-coupling reactions to access 2C-branched
carbohydrates and their analogs (Leibeling et al., 2010a; Leibeling et al., 2010b; Leibeling and
Werz, 2012; Dharuman and Vankar, 2014; Martin et al., 2015). Due to the importance of
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2-bromoglycals, the development of a novel, practical, and
environmentally friendly method for the synthesis of 2-
bromoglycals is still of high interest. The most common way
to obtain 2-bromoglycals consists of two steps using Br2,
which is toxic and unstable, as the brominating source

(Leibeling et al., 2010a). An alternative approach involves
the one-step synthesis of 2-bromoglycals from glycals using
N-bromosuccinimide and silver nitrate (Dharuman and
Vankar, 2014). We herein report a one-step electrochemical
bromination of glycals using commercially available,

SCHEME 1 | Electrochemical transformation of glycals.

TABLE 1 | Optimization of reaction conditionsa.

Entry Electrode “Br” reagent Additive Solvent T (°C) Yield (%)b

1 Pt (+)/Pt (−) KBr (1.5 equiv) — CH3CN Rt 0 (0)
2 Pt (+)/Pt (−) NaBr (1.5 equiv) — CH3CN Rt 0 (0)
3 Pt (+)/Pt (−) Bu4NBr (1.5 equiv) — CH3CN Rt 10 (0)
4 Pt (+)/Pt (−) Bu4NBr (1.5 equiv) — CH3CN 50°C 18 (14)
5 Pt (+)/Pt (−) Bu4NBr (1.5 equiv) — CH3CN 75°C 35 (10)
6 Pt (+)/Pt (−) Bu4NBr (2.0 equiv) — CH3CN 75°C 40 (13)
7 Pt (+)/Pt (−) Bu4NBr (2.0 equiv) K2CO3 (1.2 equiv) CH3CN 75°C 43 (4)
8 Pt (+)/Pt (−) Bu4NBr (2.0 equiv) Na2CO3 (1.2 equiv) CH3CN 75°C 54 (6)
9 Pt (+)/Pt (−) Bu4NBr (2.0 equiv) NaSO2CF3 (1.2 equiv) CH3CN 75°C 67 (0)
10 Pt (+)/Pt (−) Bu4NBr (2.0 equiv) NaSO2CF3 (2.0 equiv) CH3CN 75°C 82 (0)
11 Pt (+)/Pt (−) Bu4NBr (2.0 equiv) NaSO2CF3 (2.0 equiv) CH3CN/H2O (3/1) 75°C 15 (0)
12 Pt (+)/Pt (−) Bu4NBr (2.0 equiv) NaSO2CF3 (2.0 equiv) 1,2-Dimethoxyethane 75°C 46 (7)
13 Pt (+)/Pt (−) Bu4NBr (2.0 equiv) NaSO2CF3 (2.0 equiv) ClCH2CH2Cl 75°C Trace (0)
14 C (+)/Pt (−) Bu4NBr (2.0 equiv) NaSO2CF3 (2.0 equiv) CH3CN 75°C 71 (0)
15 Pt (+)/C (−) Bu4NBr (2.0 equiv) NaSO2CF3 (2.0 equiv) CH3CN 75°C 32 (3)
16 C (+)/C (−) Bu4NBr (2.0 equiv) NaSO2CF3 (2.0 equiv) CH3CN 75°C 33 (7)
17c Pt (+)/Pt (−) Bu4NBr (2.0 equiv) NaSO2CF3 (2.0 equiv) CH3CN 75°C 58 (0)
18d Pt (+)/Pt (−) Bu4NBr (2.0 equiv) NaSO2CF3 (2.0 equiv) CH3CN 75°C 54 (0)
19e Pt (+)/Pt (−) Bu4NBr (2.0 equiv) NaSO2CF3 (2.0 equiv) CH3CN 75°C Trace (0)
20f Pt (+)/Pt (−) Bu4NBr (2.0 equiv) NaSO2CF3 (2.0 equiv) CH3CN 75°C NR (97)

aReaction conditions: 1a (0.05 mmol), “Br” reagent, Additive, Solvent (4.0 ml), Electrode, constant current � 2.0 mA, T, 4 h, in an undivided cell, under an argon atmosphere.
bYield of the isolated product, the yield of recovered starting material was represented in the parentheses.
cI � 1.0 mA
dI � 3.0 mA
eUnder an air atmosphere.
fNo electricity.
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stable, and safe Bu4NBr as the bromine source in an undivided
cell under metal-catalyst-free and oxidant-free reaction
conditions.

RESULTS AND DISCUSSION

Initially, we began our investigation with 6-O-benzyl-3,4-
dideoxy-glycal 1a as the model substrate for electrochemical
bromination using Pt as the anode and cathode in an undivided
cell. Unfortunately, no desired 2-bromo-3,4-dideoxy-glycal 3a
was detected using KBr (Ye and Shreeve, 2004; Zhao and Lu,
2018) or NaBr (Alberto et al., 2014) as the “Br” reagent
(Table 1, entries 1 and 2). To our delight, the product 3a
could be obtained in 10% isolated yield when 1a was treated

with 1.5 equiv of Bu4NBr (Yoshimitsu et al., 2009; Kamon et al.,
2012) in dry CH3CN at room temperature under a constant
electric current of 2 mA (Table 1, entry 3). The yield was
increased slightly when the reaction temperature was increased
to 50°C (Table 1, entry 4). Further raising the temperature to
75°C was beneficial to this transformation, leading to the
formation of 3a in 35% yield (Table 1, entry 5), and the
yield could be increased to 40% when the amount of
Bu4NBr was increased to 2.0 equiv (Table 1, entry 6). It was
found that the addition of base, such as K2CO3 or Na2CO3,
could further improve the reaction yield (Table 1, entries 7 and
8). Surprisingly, when the bromination reaction was conducted
with NaSO2CF3 as the additive, the desired product 3a was
isolated in 67% yield (Table 1, entry 9). Altering the amount of
NaSO2CF3 to 2.0 equiv led to an increased yield of 82%

TABLE 2 | Substrate scope of glycalsa,b,c,d,e.

aReaction conditions: glycals (0.05 mmol), NaSO2CF3 (0.10 mmol, 2.0 equiv), Bu4NBr (0.10 mmol, 2.0 equiv), dry CH3CN (4.0 ml) in an undivided cell with Pt as the anode and cathode,
constant current � 2.0 mA, 75°C, under argon atmosphere, 4 h.
bYield of the isolated product.
cglycals (0.10 mmol), NaSO2CF3 (0.20 mmol, 2.0 equiv), Bu4NBr (0.30 mmol, 3.0 equiv), dry CH3CN (5.0 ml) in an undivided cell with Pt as the anode and cathode, constant current �
2.0 mA, 75°C, under argon atmosphere, 6 h.
dglycals (0.60 mmol), NaSO2CF3 (1.20 mmol, 2.0 equiv), Bu4NBr (1.20 mmol, 2.0 equiv), dry CH3CN (50.0 ml) in an undivided cell with Pt as the anode and cathode, constant current �
2.0 mA, 75°C, under argon atmosphere, 30 h.
eglycals (0.05 mmol), NaSO2CF3 (0.10 mmol, 2.0 equiv), Bu4NBr (0.15 mmol, 3.0 equiv), dry CH3CN (4.0 ml) in an undivided cell with Pt as the anode and cathode, constant current �
2.0 mA, 75°C, under argon atmosphere, 6 h.
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(Table 1, entry 10). Comparatively, when other solvents such as
CH3CN/H2O (3:1), 1,2-dimethoxyethane, or ClCH2CH2Cl,
were used instead of dry CH3CN, lower yields were achieved
(Table 1, entries 11–13). Extensive screening experiments
revealed that either changing electrode materials or
modifying the reaction current were not effective for
improving the yield of 3a (Table 1, entries 14–18).
Moreover, the yield of 3a was decreased drastically when the
electrochemical bromination reaction was performed in an air
atmosphere (Table 1, entry 19). Finally, the control experiment
confirmed that the role of electricity was essential, as the
reaction could not proceed in the absence of an electric
current (Table 1, entry 20).

With the optimal reaction conditions in hand, we then
evaluated the substrate scope of the electrochemical
bromination of various types of glycals with Bu4NBr
(Table 2). First, 3,4-dideoxy-glycals with electron-
withdrawing groups were examined. Substrates with an
acetyl or benzoyl group provided the respective brominated
products 3b and 3c in good yields. In addition, benzyl (Bn),
p-methoxybenzyl (PMB), tert-butyldimethylsilyl (TBS), and
methyl (Me) substituted glucals could also be converted into
the corresponding products 3d–g. Similarly, galactals bearing
Bn, PMB, or TBS groups were found to be amenable to the
electrochemical reaction, providing the desired products 3h–j
in 56–73% yields. And the scalability of this electrochemical

SCHEME 2 | Reaction of 2-bromogalactal (3h) with different substrates (4a–c).

SCHEME 3 | In the radical trapping experiments, experiment (A) was performed with glycal (0.05 mmol) and TEMPO (0.15 mmol, 3.0 equiv) under standard
reaction condition: NaSO2CF3 (0.10 mmol, 2.0 equiv), Bu4NBr (0.10 mmol, 2.0 equiv), dry CH3CN (4.0 ml) in an undivided cell with Pt as the anode and cathode,
constant current � 2.0 mA, 75 oC, under argon atmosphere, 4 h. Besides, experiment (B) was performed with 1,1-diphenylethylene (0.15 mmol) under standard
reaction condition as well.
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bromination was further showed by an efficient conversion of
compound 1h on a 250 mg scale in 57% isolated yield.
Peracetylated and perbenzoylated galactals could also
undergo the electrochemical transformation to afford 2-
bromo-galactals 3k–l, albeit in slightly low yields. Notably,
bromination of peracetylated L-rhamnal proceeded
smoothly to deliver compound 3m in 89% yield. Under the
same conditions, the L-rhamnal, L-arabinal, and D-xylal
equipped with Bn or PMB groups were also able to
furnish the corresponding brominated products 3n–s in
moderate to excellent yields. Furthermore, benzylated
lactal 1t underwent this reaction to afford the desired
product 3t in 72% yield.

To demonstrate the potential applicability of 2-
bromoglycals, the reaction of 2-bromogalactal 3h with

different substrates was carried out (Scheme 2). First, we
explored the utility of 2-bromogalactal 3h in the synthesis
of 2C-substituted carbohydrates, which exist in many
natural products (Yin and Linker, 2012; Dubbu et al., 2018;
Darbem et al., 2020). Compound 3h reacted with
phenylacetylene 4a in the presence of Pd(PPh3)2Cl2, CuI
and Et3N to afford the coupled product 5a in 80% yield
(Koester and Werz, 2012). The reaction of 3h with
potassium phenyltrifluoroborate 4b also proceeded smoothly
to provide the corresponding product 5b in 79% yield
(Molander and Fumagalli, 2006). Moreover, disaccharide 5c
was successfully synthesized in the promotion of BF3·Et2O in
72% yield with excellent α-selectivity via the Ferrier
rearrangement reaction (Dharuman et al., 2013; Wang et al.,
2019).

To gain insight into the mechanism of this electrochemical
bromination, radical trapping experiments were performed. As
expected, the reaction was completely shut down when 3.0
equiv of the radical scavenger 2,2,6,6-tetramethylpiperidine-1-
oxyl (TEMPO) was added under the standard reaction
conditions, indicating that radical chemistry was likely
involved in the reaction (Scheme 3A) (Makai et al., 2020;
Wang et al., 2019). Furthermore, another experiment using
1,1-diphenylethylene (6) was also conducted under the
standard reaction conditions, and (2-bromoethene-1,1-diyl)
dibenzene (7) was successfully detected in the GC–MS,
confirming the participation of the bromine radical in the
reaction system (Scheme 3B) (Chen et al., 2020; Kale et al.,
2021). We observed that the reaction mixture gradually turned
brown during the reaction process, indicating that Br2 might be
generated. The 2-bromoglycal 3hwas resubmitted to the standard
reaction conditions for 20 h with the recovery of 3h in a 78%
yield. In addition, cyclic voltammetry experiments were carried
out to investigate the redox behavior of the reaction. The cyclic
voltammetry measurements of Bu4NBr indicated two obvious
oxidative peaks at 1.07 and 1.37 V (vs. Ag/AgCl) (Figure 1, red
curve), which likely corresponded to Br3

–/Br– and Br3
–/Br2 redox

couples, respectively (Damljanovic et al., 2011; Bennett et al.,
2016; Kang et al., 2016). The first oxidative peak was associated
with the oxidation of Br– to the bromine radical. The bromine

FIGURE 1 | Cyclic voltammetry measurements of Bu4NBr and 1d.
Conditions: glassy carbon disk electrode (diameter is 3.0 mm, PTFE shroud)
as the working electrode, platinum wire as the counter electrode, Ag/AgCl
electrode (3.5 M KCl solution) as the reference electrode, Bu4NOTf
(0.10 M in MeCN), under an argon atmosphere, cyclic voltammogram at
0.05 V s−1 with Bu4NBr (5 mM) or Bu4NBr (5 mM) and 1d (5 mM).

SCHEME 4 | Plausible reaction mechanism for the electrochemical bromination of glycals.
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radical then integrated into Br2, which could combine with Br– to
form Br3

–. The second oxidative peak was attributed to the
oxidation of Br3

– to Br2. An increase in the oxidative peak
current was observed when Bu4NBr and 1d were combined,
which was attributed to a catalytic current, resulting from the
chemical reaction of the electrochemically-generated Br2 and
glucal 1d (Figure 1, blue curve).

Mechanism
Based on the above results and previous reports (Yuan et al., 2019;
Gou et al., 2021; Wu et al., 2021), a plausible reaction mechanism
for the electrochemical bromination of glycals was depicted in
Scheme 4. A bromine anion was oxidized to the bromine radical
on the anode and subsequently molecular Br2. This was then
attacked by glycal to yield the intermediate I. Finally, the
brominated product was obtained by the deprotonation of II,
which would be stabilized by acetonitrile. NaSO2CF3 might be
used as the electrolyte to increase the conductivity of the reaction
solution and a proton scavenger to generate strong acid for
cathode reduction; besides, it may be an anion to stabilize the
glycosyl cation. At the same time, H+ was reduced to produce
hydrogen on the cathode.

CONCLUSION

In summary, we performed the one-step electrochemical
bromination of various glycals with electron-withdrawing and
electron-donating protective groups using commercially
available, nontoxic Bu4NBr as the brominating source under
metal-catalyst-free and oxidant-free reaction conditions. The
synthetic applicability of 2-bromoglycals has been demonstrated
by providing the corresponding 2C-substituted carbohydrates and
disaccharides via palladium-catalyzed cross-coupling reactions and
the Ferrier rearrangement reaction. The readily available substrates
and ease of handling make this methodology a practical tool to

access diversified brominating synthons for the preparation of
biologically relevant carbohydrates.
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Glycosylation of viral envelope proteins is important for infectivity and immune evasion. The
SARS-CoV-2 spike protein is heavily glycosylated and host-derived glycan modifications
contribute to the formation of specific immunogenic epitopes, enhance the virus-cell
interaction or affect virus transmission. On recombinant viral antigens used as subunit
vaccines or for serological assays, distinct glycan structures may enhance the
immunogenicity and are recognized by naturally occurring antibodies in human sera.
Here, we performed an in vivo glycoengineering approach to produce recombinant
variants of the SARS-CoV-2 receptor-binding domain (RBD) with blood group antigens
in Nicotiana benthamiana plants. SARS-CoV-2 RBD and human glycosyltransferases for
the blood group ABH antigen formation were transiently co-expressed in N. benthamiana
leaves. Recombinant RBD was purified and the formation of complex N-glycans carrying
blood group A antigens was shown by immunoblotting and MS analysis. Binding to the
cellular ACE2 receptor and the conformation-dependent CR3022 antibody showed that
the RBD glycosylation variants carrying blood group antigens were functional. Analysis of
sera from RBD-positive and RBD-negative individuals revealed further that non-infected
RBD-negative blood group O individuals have antibodies that strongly bind to RBD
modified with blood group A antigen structures. The binding of IgGs derived from sera
of non-infected RBD-negative blood group O individuals to blood group A antigens on
SARS-CoV-2 RBD suggests that these antibodies could provide some degree of
protection from virus infection.
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INTRODUCTION

Processing of glycans on viral proteins depends on the protein
conformation and the glycosylation machinery of the expressing
cell. Viral spike proteins are heavily glycosylated, and
glycosylation is crucial for virus infection and the host
immune response (Watanabe et al., 2020a; Li Q et al., 2020).
During viral infection, enveloped viruses engage with host cell
receptors to initiate uptake by the cells. SARS-CoV-2 cell entry is
dependent on the heavily glycosylated spike protein. The spike
protein is a type I transmembrane protein with a large N-terminal
ectodomain that protrudes from the viral surface (Walls et al.,
2020). The spike protein binds to the cell surface receptor
angiotensin-converting enzyme 2 (ACE2) which mediates
membrane fusion and virus entry (Hoffmann et al., 2020;
Walls et al., 2020). The SARS-CoV-2 monomeric spike protein
possesses 22 N-glycosylation sites (Asn-X-Ser/Thr, with X any
amino acid except proline) and displays a mixture of
oligomannosidic, hybrid-type and complex N-glycans on
recombinantly produced protein (Watanabe et al., 2020a;
Shajahan et al., 2021). Furthermore, recent studies have shown
site-specific differences in N-glycan composition between
recombinant spike and infectious virions obtained from
different human cells (Turoňová et al., 2020; Brun et al., 2021)
highlighting the importance of glycoprotein presentation/site
accessibility, quaternary protein architecture, and the host
glycosylation machinery.

The ABH(O) blood group antigens are specific carbohydrate
structures attached to glycoproteins and glycolipids present on
the surface of human erythrocytes, epithelial and endothelial cells
of different tissues (Yamamoto, 2004; Cooling, 2015).
Responsible for blood group A biosynthesis is an
N-acetylgalactosaminyltransferase (ABO A enzyme) that
transfers an N-acetylgalactosamine (GalNAc) in α1,3-linkage
to a precursor structure called the H antigen (Fucα1,2-Galβ-R)

resulting in the trisaccharide GalNAcα1-3-(Fucα1,2)-Galβ-R
(Figure 1). By contrast, the ABO B enzyme transfers a
galactose residue in α1,3-linkage to the H antigen resulting
in the trisaccharide Galα1-3-(Fucα1,2)-Galβ-R. The ABO A
and ABO B glycosyltransferases are encoded by distinct alleles
of the ABO gene locus which are codominant to each other.
The O allele is a null allele at the ABO locus and lacks the
corresponding A or B glycosyltransferase activities, in which
case the H antigen remains unmodified. Individuals who have
the genotype AA or AO synthesize exclusively the A antigen,
BB and BO individuals have blood group B and individuals
with genotype OO have the blood group O. Blood group O
individuals have high titers of circulating antibodies against A
and B antigens (Stussi et al., 2005). Blood group A individuals
have anti-B antibodies and blood group B individuals have
anti-A antibodies. Blood group AB individuals express both
antigens and lack anti-A or anti-B antibodies (Cooling, 2015).
While the biological role of these carbohydrates is still poorly
understood, the blood group antigens are of clinical relevance
and anti-blood group antibodies are critical for blood
transfusions and transplantation medicine.

Blood group frequencies vary among human populations and
the specific exposure to pathogens may explain some of the
observed variations in infectivity (Goel et al., 2021). Earlier
epidemiological observations indicated that ABO blood groups
may contribute to susceptibility to SARS-CoV-1 infection (Cheng
et al., 2005). In a more recent genome-wide association study of
nearly 2000 SARS-CoV-2 infected individuals, a gene cluster
carrying the ABO locus was enriched in patients with
COVID-19 (Ellinghaus et al., 2020). Furthermore, a study with
2,173 patients from different Chinese hospitals reported that
ABO blood groups display different association risks for the
infection with SARS-CoV-2 resulting in COVID-19 (Zhao
J. et al., 2020). Blood group A was associated with an
increased risk whereas blood group O was associated with a
decreased risk. A meta-analysis reported that the proportion of
blood group A in patients infected with SARS-CoV-2 was
significantly increased compared to a control group (Li J et al.,
2020). From these and further epidemiological studies using
different populations the association between distinct ABO
blood groups and COVID-19-linked hospitalization is well
established (Leaf et al., 2020; Wu et al., 2020; Miotto et al.,
2021). Overall, these studies suggest a role for blood group A
glycans and anti-A antibodies in SARS-CoV-2 infection, which
could potentially be harnessed for applications aiming to prevent
the transmission from individuals to individuals. Still, the
underlying mechanisms of increased risks for blood group A
individuals are unclear and different hypotheses have been
discussed and tested (Arend, 2021; Deleers et al., 2021; Goel
et al., 2021; Wu et al., 2021). Potential mechanisms include a
protective role of natural antibodies against blood group antigens
(Arend, 2021; Deleers et al., 2021) or the presence of a lectin
domain in RBD that mediates binding to blood group A
structures on the cell surface of respiratory epithelial cells that
could promote infection of the cells (Wu et al. 2021). There is an
association of variations in angiotensin-converting enzyme-1
(ACE1) activity and ABO blood groups (Goel et al., 2021) and

FIGURE 1 | Cartoon illustration of ABH(O) blood group antigens and
biosynthetic pathways. (A) ABH blood group carbohydrate structures. (B)
Biosynthetic steps to produce blood group A type 1 and 2 antigens common
to N- and O-glycans. FUT1/FUT2: α1,2-fucosyltransferases; ABO A:
α1,3-GalNAc-transferase (A enzyme). For the biosynthesis of blood group B
structures the ABO A enzyme is replaced by the α1,3-galactosyltransferase
(ABO B enzyme).
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the half-life of coagulation factors like factor VIII and von
Willebrand factor is altered by N-glycans carrying certain
ABO blood group structures (Gallinaro et al., 2008). As a
consequence, increased levels of von Willebrand factor in
blood group A individuals could contribute to thrombosis and
adverse outcomes upon SARS-CoV-2 infection. Based on these
observations it is possible that more than one mechanism could
protect blood group O individuals from infection and severe
disease progression.

Here, we performed glycoengineering in N. benthamiana to
produce betacoronavirus antigens furnished with blood group
carbohydrate structures. We transiently expressed the receptor-
binding domain (RBD) of the SARS-CoV-2 spike protein (RBD-
215) (Shin et al., 2021) and the RBD from the SARS-CoV-1 spike
in N. benthamiana and characterized the binding to antibodies
and the cellular ACE2 receptor. The binding of IgGs derived from
sera of blood group O and B donors to blood group A antigens on
SARS-CoV-2 RBD suggests that these antibodies could provide

some degree of protection from transmission of virus carrying
blood group A carbohydrates.

RESULTS

Recombinant RBD With Blood Group
AN-Glycans can Be Produced in N.
benthamiana
Recombinant RBD-215 (amino acids 319–533 of the SARS-CoV-
2 spike protein, Figure 2A) expressed in glycoengineered ΔXT/
FT plants carries mainly GlcNAc2Man3GlcNAc2 (GnGn)
N-glycans on both N-glycosylation sites (Shin et al., 2021). To
see if these complex N-glycans can be modified with blood group
carbohydrates, we transiently co-expressed glycosyltransferases
for the formation of blood group antigens (Figure 2B). To
achieve modification of recombinant RBD-215 with blood

FIGURE 2 | Schematic overview of the glycoengineering strategy and the used expression constructs. (A) Illustration of the plant-expressed RBD (amino acid
region 319–533 of the SARS-CoV-2 spike protein). (B) Glycoengineering steps to produce different ABH blood group antigens in plants. GALT1: A. thaliana Lewis-type
β1,3-galactosyltransferase 1; B4GALT: human β1,4-galactosyltransferase; FUT1/FUT2: human α1,2-fucosyltransferases. ABO A: human α1,3-GalNAc-transferase;
ABO B: human α1,3-galactosyltransferase. (C) Schematic presentation of the expression cassettes for the different glycosyltransferases. LB: left border; Pnos:
nopaline synthase gene promoter; Kan: neomycin phosphotransferase II gene; Tnos: nopaline synthase gene terminator; UBQ10: A. thaliana ubiquitin-10 promoter; ST:
N-terminal trans-Golgi targeting region from rat α2,6-sialyltransferase (amino acids 1–52); HA: hemagglutinin tag; GFP: green fluorescent protein; g7T: agrobacterium
gene 7 terminator; RB: right border.
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group A structures we co-expressed either human β1,4-
galactosyltransferase (B4GALT) (Strasser et al., 2009) or A.
thaliana β1,3-galactosyltransferase (GALT1) (Strasser et al.,
2007), with one human α1,2-fucosyltransferase (FUT1 or
FUT2), and the human ABO A enzyme transiently in ΔXT/
FT N. benthamiana. To avoid interference from other
N-glycan processing steps, the catalytic domain of B4GALT
(type 2 chain formation) was targeted to the trans-Golgi using
the N-terminal targeting sequence from rat α2,6-
sialyltransferase (ST) (Boevink et al., 1998; Strasser et al.,
2009). The catalytic domains of FUT1 and FUT2 were also
fused to the ST-region to enable transfer of the fucose to the
galactose in the same Golgi compartment. In addition, GFP
was attached to the C-terminal end of the glycosyltransferase
to enable monitoring of the subcellular localization
(Figure 2C). A. thaliana GALT1 resides in the trans-Golgi
(Strasser et al., 2007) and therefore the native sequence was
expressed to achieve efficient β1,3-galactosylation (type 1
chain formation, Figure 1). The human ABO A enzyme was
expressed as a chimeric protein with the catalytic domain fused
to ST and GFP (ST-ABO A) and as a native enzyme without
any foreign targeting signal or tag. ST-FUT1, ST-FUT2 and
ST-ABO A expressed well in plants and displayed Golgi
localization (Supplementary Figure S1).

RBD-215 co-expressed with the different glycosyltransferases
was purified from crude protein extracts and subjected to SDS-
PAGE and immunoblotting with blood group A-specific
antibodies (Figure 3A; Supplementary Figure S1). Co-
expression of ST-B4GALT, ABO A and either ST-FUT1 or
ST-FUT2 (ST-FUT2 was less efficient than ST-FUT1) resulted

in reactivity with the blood-group A-specific antibody suggesting
the successful formation of type 2 chains. Detection of RBD-215
with the anti-His antibody resulted in a shift in mobility that was
consistent with the N-glycan elongation mediated by the co-
expressed blood group A-specific glycosyltransferases.
Expression of ST-ABO A led to the formation of RBD-215
that reacted with the blood-group A-specific antibody to a
similar extent indicating that ST-ABO A and native ABO A
are both functional and targeted to a late Golgi compartment
when transiently expressed in plants (Supplementary Figure
S1, S2).

UDP-GalNAc, the nucleotide sugar for the ABO A
glycosyltransferase, is not very abundant in plants (Daskalova
et al., 2010). However, we have previously shown that O-glycan
engineering in plants can be optimized by co-expression of a
Yersinia enterocolitica UDP-GlcNAc 4-epimerase (YeGNE)
capable of converting UDP-GlcNAc to UDP-GalNAc and a
Caenorhabditis elegans UDP-GlcNAc/UDP-GalNAc
transporter (CeT) for increased transport of the donor
substrate into the Golgi lumen (Castilho et al., 2012).
Therefore, we examined whether these proteins improve the
biosynthesis of blood group A type 2 structures.
Immunoblotting revealed that co-expression results in a
stronger signal with the blood group A-specific antibody
(Figure 3B). This was further confirmed using a different
blood group A-specific antibody (Supplementary Figure S2).
Our initial glycoengineering approach suggested that blood group
A type 1 structures are not efficiently produced on RBD-215
(Figure 3A). However, when we expressed GALT1, ST-FUT2 and
ST-ABO A together with YeGNE and CeT we could modify

FIGURE 3 | Plant-based production of RBD-215 with type 2 blood group A antigens. (A) RBD-215 was transiently expressed in the glycoengineered N.
benthamiana line ΔXT/FT together with the indicated glycosyltransferases. 3 days-after infiltration, RBD-215 was purified from crude protein extracts using magnetic
beads and subjected to SDS-PAGE, and immunoblotting with anti-blood group A (3-3A) or anti-His-tag antibodies. (B) Co-expression of Y. enterocolitica UDP-GlcNAc
4-epimerase (YeGNE) and C. elegans UDP-GlcNAc/UDP-GalNAc transporter (CeT) improves the formation of blood group A antigens. (C) RBD-215 variants were
IMAC-purified from the apoplastic fluid of infiltrated line ΔXT/FT and subjected to SDS-PAGE under reducing and non-reducing conditions. (D) SDS-PAGE and
immunoblotting of IMAC-purified RBD-215 variants with anti-blood group A (3-3A) or anti-His-tag antibodies. (E) PNGase F digestion of IMAC-purified RBD-215A.
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N-glycans on RBD-215 with blood group A type 1 chains
(Supplementary Figure S3).

Next, we purified RBD-215 variants with different blood group
structures from the apoplastic fluid by immobilized metal affinity
chromatography (IMAC) and analyzed the purified proteins by
SDS-PAGE under reducing and non-reducing conditions
(Figure 3C). Since the blood group A type 2 structures were
more efficiently generated than type 1 structures, we focused only
on the characterization of the former. Under reducing conditions,
the RBD-215 proteins migrated at the expected positions. Under
non-reducing conditions, a faster migration was observed for all
variants which is likely caused by the presence of four disulfide
bonds leading to a more compact shape. Compared to RBD-215,
reduced mobility was detected for all glycoengineered variants
and the blood-group A-specific antibody reacted only with the
purified RBD-215 protein that was co-expressed with the ABO A
glycosyltransferase (RBD-215A, Figure 3D), but not with the
RBD-215 co-expressed with glycosyltransferases for H (RBD-
215H), and B (RBD-215B) antigen formation. Upon PNGase F
digestion of RBD-215A, the reactivity with the blood-group

A-specific antibody was completely lost showing the presence
of the modification on N-glycans (Figure 3E).

All four RBD-215 variants purified from the apoplastic fluid
were proteolytically digested and the glycopeptides were analyzed
by LC-ESI-MS. While RBD-215 carried mainly GnGn structures
on both N-glycosylation sites, RBD-215H carried substantial
amounts of mono- (major N-glycan at N331) and bi-
antennary N-glycans (major N-glycan at N343) corresponding
to H-type structures (Figures 4A,B; Supplementary Figure S4).
RBD-215A that was obtained by additional co-expression of ST-
ABO A displayed further elongation of the two N-glycan
branches with an additional HexNAc residue. In line with the
immunoblot data this indicates the successful formation of blood
group A carbohydrate structures with terminal GalNAc. On the
other hand, modification of H-type structures with galactose by
co-expression of Golgi-targeted ST-ABO B (Supplementary
Figure S1) was less efficient and only detected on the
N-glycans at site N343 (Figure 4B). This could be either due
to differences in catalytic activity of the ST-ABO B enzyme (Letts
et al., 2006) or due to the removal of terminal galactose residues

FIGURE 4 | MS spectra of the RBD-215 glycopeptides carrying the N-glycosylation site N331 or N343. IMAC-purified RBD-215 variants were proteolytically
digested and analyzed byMS. (A)Glycopeptides carrying N331 and (B)N343.Major N-glycan peaks are illustrated with a cartoon presentation (see Figure 2 for details).
H: hexose; N: N-acetylhexosamine (HexNAc); F: fucose.

Frontiers in Chemistry | www.frontiersin.org February 2022 | Volume 9 | Article 8165445

König-Beihammer et al. Blood Group A Glycan Structures

40

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


by galactosidases present in the apoplast (Kriechbaum et al.,
2020). Taken together, this shows that blood group A structures
can be efficiently produced on complex N-glycans of
recombinant RBD-215 in N. benthamiana using a transient
glycoengineering approach.

RBD With Blood Group A Antigens Is
Functional
The presence of distinct complex N-glycan modifications on
RBD-215 may cause structural changes that affect the protein
conformation. To assess this possibility ELISA was performed
using a conformation-dependent RBD antibody. With the
blood group A-specific antibody, binding was only detected

with RBD-215A demonstrating the high specificity of the
antibody (Figures 5A,B). The conformation-dependent
RBD antibody CR3022 (Yuan et al., 2020) displayed
comparable reactivity with all four variants suggesting that
the N-glycan modifications do not have a major impact on the
overall conformation of the viral antigen (Figure 5C).

Binding of anti-blood group A antibodies to SARS-CoV-2
virus derived from blood group A positive cells could impair the
interaction with the cellular receptor and subsequently the cell
entry. We carried out an ACE2-binding ELISA to see if the
presence of the blood group A-specific antibody interferes with
binding of recombinant RBD-215 to immobilised ACE2-Fc. All
four RBD-215 glycoforms showed binding to ACE2-Fc
suggesting that N-glycan processing and formation of blood

FIGURE 5 | The anti-A antibody specifically reacts with RBD-215
carrying blood group A antigen structures. IMAC-purified RBD-215 variants
were coated and ELISA was carried out with different concentrations of (A)
antibodies against the His-tag, (B) the 3-3A antibody against anti-blood
group A antigen structures and (C) CR3022, a conformation dependent anti-
RBD antibody. Values represent the mean ± SD (n � 3).

FIGURE 6 | RBD-215 glycoforms display binding to ACE2-Fc. (A)
ACE2-Fc binding ELISA. Binding curves of different concentrations of IMAC-
purified RBD-215 glycoforms to plates coated with ACE2-Fc. Values
represent the mean ± SD (n � 3). (B) ACE2-Fc competition ELISA. RBD-
215 or RBD-215A were premixed with 3-3A anti-blood group A antibody
(+IgG) or ACE2-Fc (+ACE2) and added to ELISA plates coated with ACE2-Fc.
Detection was done with anti-His antibodies. Values represent the mean ± SD
(n � 7). A student’s t-test was used to compare the difference in ACE2-Fc
binding between RBD-215A and RBD-215A + IgG. “n.s.” not significant (p �
0.0870).
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group carbohydrates does not interfere with the receptor binding
(Figure 6A). Next, we carried out a competition ELISA to
examine whether anti-blood group A-specific antibodies block
interaction of RBD-215A and ACE2-Fc. As a control for the
competition ELISA, we added a soluble ACE2-Fc that competes
with the immobilized ACE2-Fc for binding (Gattinger et al.,
2021). In the presence of soluble ACE2-Fc, reduced binding of
RBD-215 and RBD-215A to ACE2-Fc was detected (Figure 6B).
By contrast, the anti-blood group A antibody had only a minor
effect on the RBD-215A ACE2-Fc interaction. This finding is
consistent with previous studies reporting that the RBD
N-glycans do not clash with the receptor-binding motif (RBM)
on the SARS-CoV-2 spike (Pinto et al., 2020).

To examine whether the same finding is observed for the RBD
from SARS-CoV-1, we generated a recombinant protein carrying
amino acids 315–520 of the SARS-CoV-1 spike protein (RBD1-
205). In contrast to RBD-215, RBD1-205 from SARS-CoV-1
carries three N-glycosylation sites (Figure 7A). Purified RBD1-
205 displayed several bands on immunoblots with the anti-His
antibody. Deglycosylation of RBD1-205 with PNGase F or
deglycosylation of an RBD1-205 variant carrying
oligomannosidic N-glycans with Endo H revealed that the
different bands are derived from incomplete occupancy of the
three N-glycosylation sites (Figure 7B). The RBD1-205 variant
was transiently expressed in N. benthamiana with or without the
machinery (ST-GALT1, ST-FUT1, ST-ABOA, YeGNE, and CeT)
for blood group A type 2 antigen formation. Like RBD-215, also
RBD1-205 from SARS-CoV-1 could be modified with complex
N-glycans that are recognized by the blood-group A-specific
antibody on immunoblots (RBD1-205A, Figures 7C,D;
Supplementary Figure S5) and RBD1-205 as well as RBD1-
205A interacted with ACE2-Fc (Figure 7E). In contrast to RBD-
215A, the blood-group A-specific antibody blocked the
significantly engagement of RBD1-205A with ACE2-Fc
(Figure 7F). This could be related to the presence of an
additional N-glycan or the overall reduced affinity of the
SARS-CoV-1 RBD for the ACE2 receptor.

Blood Group A Antigen Structures Are
Specifically Recognized by Natural
Antibodies Present in Sera of BloodGroupO
and B Individuals
To examine whether natural antibodies present in sera from
RBD-positive (SARS-CoV-2 exposed or vaccinated) and RBD-
negative individuals differentially react with RBD-215 variants
produced in plants using our glycoengineering approach, we
carried out a multiplex bead-based assay with coupled
recombinant viral antigens (Klausberger et al., 2021; Schwestka
et al., 2021). In the RBD-positive cohorts, a comparison of the
signal intensity did not reveal significant differences among the

FIGURE 7 | RBD1-205 N-glycans can be engineered to carry blood
group A antigens. (A) Illustration of the plant-expressed RBD1-205 (amino
acid region 315–520 of the SARS-CoV-1 spike protein). (B) Immunoblot
analysis of IMAC-purified RBD1-205. Deglycosylation was done by
digestion with Endo H or PNGase F. To produce RBD1-205 with Endo
H-sensitive oligomannosidic N-glycans, RBD1-205 was expressed in the
presence of the α-mannosidase inhibitor kifunensine (kif). 0, 1, 2, and 3
indicate the number of N-glycans present on RBD1-205. (C) Immunoblot
analysis with anti-His and anti-blood group A (3-3A) antibodies (D) PNGase F
digestion of RBD1-205. (E) ACE2-Fc binding ELISA. Binding of different
concentrations of IMAC-purified RBD1-205 and RBD1-205A glycoforms to
plates coated with ACE2-Fc. Values represent the mean ± SD (n � 3). (F)
ACE2-Fc competition ELISA. RBD1-205 or RBD1-205A were premixed with
the 3-3A anti-blood group A antibody (+IgG) or ACE2-Fc (+ACE2), and added

(Continued )

FIGURE 7 | to ELISA plates coated with ACE2-Fc. Detection was done with
anti-His antibodies. Values represent the mean ± SD (n � 3). A student’s t-test
was used to compare the difference in ACE2-Fc binding between RBD1-205A
and RBD1-205A + IgG. “****” p < 0.0001.
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FIGURE 8 | Sera from blood group O and B individuals react strongly with RBD-215A carrying blood group A antigens in a multiplex bead-based assay. (A)
Reactivity of confirmed RBD positive sera (according to the WHO standard) to different RBD-215 glycoforms. RBD produced in HEK293 cells (RBD-HEK) was included
for comparison. The line depicts the median in each group. A student’s t-test was used to compare the reactivity to RBD-215H (carrying the H antigen) and RBD-215A
(carrying the A type 2 antigen). “n.s.” not significant; “**” p < 0.01; “****” p < 0.0001. Blood group O (n � 28), blood group A (n � 32), blood group AB (n � 9), blood
group B (n � 10). (B) MFI values were normalized to the MFI values for RBD-215. The line depicts the median. A student’s t-test was used to compare the normalized
values of RBD-215H and RBD-215A. (C) Reactivity of confirmed RBD negative sera (according to the WHO standard) to different RBD-215 glycoforms and RBD-HEK.
Blood group O (n � 15), blood group A (n � 14), blood group AB (n � 6), blood group B (n � 9).
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RBD-215 variants (Figure 8A). However, when the IgG binding
intensity to the RBD-215 variants with blood group antigen
structures was normalized to the signal from the unmodified
RBD-215, a significant difference was revealed between RBD-
215H and RBD-215A in the blood group O and B cohorts
(Figure 8B; Supplementary Table S1). In line with this
finding, sera from blood group O and B individuals showed
significantly enhanced reactivity in the RBD-negative cohorts. In
some RBD-negative sera with blood group O, the IgG binding
signal was in the same range as observed for RBD-positive sera
(Figure 8C) suggesting that those sera could provide enhanced
protection for transmission of SARS-CoV-2 or similar
coronaviruses from blood group A donors.

DISCUSSION

Glycosylation of viral proteins is not only important for protein
quality control and folding (Margolin et al., 2020; Shin et al.,
2021), but also for shielding of epitopes (Watanabe et al., 2020b)
and interaction with cellular receptors (Hoffmann et al., 2021).
Specific interference with receptor binding will lead to novel
strategies to prevent infection of cells and tissues. In an earlier
study it was shown that human anti-A antibodies inhibited the
adhesion of SARS-CoV-1 spike to ACE2-expressing cells
(Guillon et al., 2008). The recombinant SARS-CoV-1 spike
protein was produced in engineered mammalian cells capable
of blood group A biosynthesis and ACE2-expressing Vero cells
used in the cell-based assay did not express the blood group A
antigen. It is therefore plausible that anti-A antibodies can bind to
blood group A antigens present on the heavily glycosylated SARS-
CoV-1 spike protein. Our data for recombinant RBD1-205 with
blood group A structures are in line with these data. The binding
of anti-glycan antibodies could block the spike ACE2 interaction
and protect against viral transmission from blood group A
individuals to blood group O or B individuals. In analogy to
SARS-CoV-1, the increased susceptibility of distinct blood groups
to SARS-CoV-2 infection could be related to the presence of
naturally circulating anti-A antibodies, which interfere with or
even inhibit the virus–cell adhesion process and the subsequent
transmission of the virus (Breiman et al., 2020; Goel et al., 2021).
Such anti-glycan antibodies are considered part of the innate
immune system to combat different bacterial and viral pathogens
that carry specific glycan antigens (Cooling, 2015; Galili, 2020).
The potential role in anti-viral activity of anti-blood group
antibodies is already known for some time, for example, for
anti-A antibody-mediated neutralization of HIV (Arendrup et al.,
1991). Our data show that the presence of the blood group A
antigen on the RBD N-glycans from SARS-CoV-2 does not
significantly interfere with ACE2 receptor binding. Overall,
this is not surprising because the N-glycosylation sites do not
overlap with the amino acids involved in ACE2 binding (Piccoli
et al., 2020; Yan et al., 2020). The absence of a major effect in the
competition assay does not rule out the possibility that other N-
or O-glycans with blood group A antigens on the SARS-CoV-2
spike protein have an impact on ACE2 binding. Alternatively, the
binding of the anti-carbohydrate antibodies to viral glycans may

cause cross linking or affect the protein conformation and
dynamics as has been suggested for the SARS-CoV-2
neutralizing antibody S309 (Pinto et al., 2020). S309 is a non-
RBM binding antibody that is targeted to an epitope containing
the N-glycan attached at N343. On RBD-215 this N-glycosylation
site was also highly modified with blood group A antigen
structures and anti-A antibodies binding to the N-glycan at
N343 may be implicated in virus neutralization by a similar
mechanism as described for S309. Importantly, sotrovimab, a
derivative of S309 has recently received an emergency use
authorization (EUA) from the FDA for preventing severe
COVID-19 disease and sotrovimab/S309 shows neutralization
against evolving variants like Omicron which highlights the
potential of these group of antibodies (Cameroni et al., 2021;
Corti et al., 2021).

The SARS-CoV-2 spike protein monomer harbours
22 N-glycosylation sites that are all to a large extent
glycosylated (Watanabe et al., 2020a; Zhao P. et al., 2020;
Shajahan et al., 2021). In addition, more than
30 O-glycosylation sites have been predicted and some of
them experimentally confirmed on recombinantly expressed
spike protein variants including RBD (Zhao P. et al., 2020;
Bagdonaite et al., 2021; Brun et al., 2021; Shajahan et al.,
2021). Hence, there are numerous potential N- and
O-glycosylation sites for the formation of blood group A
antigens. So far, the studies focusing on the spike protein
glycosylation in human cells did not provide evidence for the
presence of H-, A- or B-type structures. However, this is not
surprising as the used expression systems for recombinant viral
proteins (HEK293, CHO, and insect cells) and host cells used for
virus infection assays (e.g., Vero cells) lack the corresponding
glycosyltransferase activities (Guillon et al., 2008; Lindberg et al.,
2013; El Jellas et al., 2018). Therefore, it is essential to use cell lines
or tissue organoids capable of producing a diverse range of
glycans to study the contribution of individual modifications
to virus infection or immunogenicity. In addition to the native
glycosylation capacity of the used cells, virus infection may lead to
a transcriptional reprogramming of the host cell resulting in the
induction of glycosyltransferase expression that can modulate the
cell-surface and viral glycans as has been recently shown for HIV
infection (Colomb et al., 2020). All these possibilities must be
considered when studying the impact of glycans on viral infection
and transmission.

The current SARS-CoV-2 pandemic very drastically shows
that we are not well equipped to cope with such an outbreak and
numerous efforts are necessary to fight pathogens and increase
the preparedness for future emerging or re-emerging viral threats.
Recombinant anti-blood group antibodies (e.g., against blood
group A antigen structures) could be used as protective drugs that
are immediately available to fight newly emerging viruses,
especially those that are heavily glycosylated, and carry a
glycan shield for immune evasion (Watanabe et al., 2020b).
Such recombinant anti-A antibodies could be administered in
large quantity via nasal delivery as IgA or IgM formats (Ku et al.,
2021) to blood group O or B individuals with low natural
antibody levels. This may contribute to prevent initial virus
uptake and thus reduce the spread of newly emerging
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respiratory viruses in populations until more specific drugs are
developed.

MATERIALS AND METHODS

Cloning of Expression Vectors
The generation of the pEAQ-HT expression vector for RBD-215
(SARS-CoV-2 RBD) was described previously (Shin et al., 2021).
For RBD1-205 (SARS-CoV-1 RBD) expression, a synthetic DNA
fragment (GeneArt, Thermo Fisher Scientific) coding for the
barley α-amylase signal peptide fused to the N-terminal end of
the spike domain (amino acids 315–520), and a 6x-histidine tag at
the C-terminal end was cloned into the AgeI/XhoI sites of pEAQ-
HT (Sainsbury et al., 2009). Expression constructs for GALT1
(p43-GALT1) (Schwestka et al., 2021), ST-B4GALT (ST-GalT)
(Strasser et al., 2009), C. elegans UDP-GlcNAc/UDP-GalNAc
transporter (CeT: pH7WG2:GT), and Y. enterocolitica UDP-
GlcNAc 4-epimerase (YeGNE: pH7WG2:GE) (Castilho et al.,
2012) were available from previous studies. The ST-FUT1
expression vector was generated by cloning of a synthetic
DNA fragment coding for a ST-FUT1 chimeric protein
(amino acids 1–52 from rat α2,6-sialyltransferase fused to
amino acids 37–365 from human FUT1) into p20F (Strasser
et al., 2007) to generate p20-ST-FUT1. For ST-FUT2, the FUT2
coding sequence (amino acids 33–343 from human FUT2) was
inserted into the BamHI site of p20-ST to generate p20-ST-FUT2.
The expression vector (pPT2M-ABO-A) for the full-length
untagged ABO A transferase was generated by insertion of a
synthetic codon-optimized fragment of the human ABO A
coding region into the XbaI/BamHI sites of pPT2M (Strasser
et al., 2005). For the ST-ABO A expression vector, the coding
region for amino acids 47–354 of human ABO A was cloned into
the BamHI site of p20-ST and for ST-ABO B the coding region
for amino acids 47–354 of human ABO B was cloned in the same
manner into p20-ST.

Protein Expression and Purification
Syringe-mediated agroinfiltration of leaves from 5-week-old N.
benthamiana ΔXT/FT (Strasser et al., 2008) was used for transient
expression of RBD-215 variants. For the generation of blood group
antigens, the enzymes were co-expressed bymixing of agrobacteria
prior to agroinfiltration. For RBD-215 purification from crude
extracts, leaves were harvested 3 days after infiltration, frozen in
liquid nitrogen and homogenized using metallic beads and a mixer
mill (Retsch). The homogenized material was resuspended in 3
volumes of 20mM Na2HPO4, 100 mM NaCl (pH 7.4). Upon
centrifugation to remove insoluble material, NaCl and imidazole
was added to adjust the buffer to 20 mMNa2HPO4, 500 mMNaCl,
and 10mM imidazole (pH 7.4). His-tagged RBD-215 was purified
using 100 µl His Mag Sepharose® Ni (Cytiva) according to the
manufacturer’s instructions. Bound proteins were eluted with 50 µl
20 mMNa2HPO4, 500 mMNaCl, and 500 mM imidazole (pH 7.4),
mixed with sample loading buffer and used for SDS-PAGE and
immunoblotting. For large scale purification of His-tagged proteins
via immobilized metal affinity chromatography (IMAC),
apoplastic fluid was collected from infiltrated leaves by low-

speed centrifugation as described previously (Schwestka et al.,
2021). After filtration through a 0.45 μm membrane filter
(Merck Millipore), collected apoplastic fluid containing His-
tagged RBD-215 in 500 mM NaCl, 20 mM Na2HPO4 and
10mM imidazole (pH 7.4) was purified using a 1 ml HisTrap
FF column (Cytiva) and the ÄKTA pure chromatography system
(Cytiva). After washing with 15 column volumes and buffer
containing 40mM imidazole, bound proteins were eluted with
20 column volumes and buffer containing 250 mM imidazole.
Fractions containing the protein of interest were pooled and
dialyzed overnight against phosphate-buffered saline (PBS, pH
7.4) using SnakeSkin dialysis tubing (Thermo Fisher Scientific)
with a 10 kDa molecular mass cutoff. Protein samples were then
further concentrated using 10 kDa Amicon Ultra centrifugal filters
(Merck Millipore). Purification of RBD-His (RBD-HEK) and
human soluble ACE2-Fc from HEK293 cells has been described
recently (Klausberger et al., 2021).

Immunoblot Analysis
Purified proteins were subjected to SDS-PAGE under reducing or
non-reducing conditions. Samples to be analyzed under non-
reducing conditions were not boiled prior to loading. Separated
proteins were either stained with Coomassie Brilliant Blue
(Sigma-Aldrich) or transferred to a nitrocellulose membrane
(Cytiva) and detected using anti-His (Thermo Fisher
Scientific), anti-blood group A (3-3A—IgG antibody, Novus
Biologicals), anti-blood group A (Z2A—IgM antibody, Santa
Cruz Biotechnology), and JIM84 (Strasser et al., 2007)
antibodies. For deglycosylation, proteins were denatured and
incubated with or without Endo H or PNGase F (both from
NEB) according to the manufacturer’s instructions.

Liquid Chromatography-Electrospray
Ionization-Mass Spectrometry
(LC-ESI-MS).
Purified RBD-215 proteins were S-alkylated with iodoacetamide
and digested in solution with endoproteinases LysC (Roche) and
GluC (Promega). Digested samples were analyzed using a maXis
4G QTOF mass spectrometer (Bruker) as described (Klausberger
et al., 2021).

RBD and ACE2-Fc Binding ELISA
ELISA was carried out as described in detail recently (Schwestka
et al., 2021). Briefly, 96-well plates (Nunc MaxiSorp™, Thermo
Fisher Scientific) were coated overnight at 4°C with the indicated
concentrations of purified RBD or ACE2-Fc proteins in PBS. For
RBD-215 or RBD1-205 detection, plates were incubated for 2 h
with the mouse-anti-His antibody (Thermo Fisher Scientific),
anti-RBD antibody CR3022 (Klausberger et al., 2021; Shin et al.,
2021) or anti-blood group A antibody (3-3A, Novus Biologicals).
Plates incubated with anti-His or anti-blood group A antibody
were washed again and incubated for 1 h with anti-mouse-HRP
antibody (Sigma-Aldrich). CR3022 binding was analyzed using
anti-human IgG (H + L)-HRP antibody (Promega). For
detection, 150 µl/well of a 3,3′,5,5′-tetramethylbenzidin (TMB,
Sigma-Aldrich) solution was added (1:60 of 0.4% TMB, 1:300 of
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0.6% H2O2 in 50 mM phosphate-citrate buffer pH 5.0) and the
reaction was stopped with 2 M H2SO4 (50 µl/well). The
absorbance was measured at 450 nm using a TECAN Spark
plate reader. Background resulting from unspecific binding of
detection antibodies was subtracted from the obtained values.
Three technical replicates were performed. Data were analyzed
using GraphPad Prism Version 9.1.1.

ACE2 Competition ELISA
For the ACE2 competition ELISA assay, 150 ng/well of ACE2-Fc
in 50 µl PBS was coated onto F69 MaxiSORP Nunc-Immuno
plates (Thermo Fisher Scientific) overnight at 4°C. After washing
with PBS supplemented with 0.1% (v/v) Tween-20 (PBST), the
plates were blocked with 1% (w/v) BSA in PBST for 1 h at room
temperature. For the pre-incubation, 35 µl of 0.25 μg/ml RBD
variants were mixed with 35 µl 1% (w/v) BSA in PBST, 35 µl
12.5 μg/ml anti-blood group A antibody (3-3A, Novus
Biologicals) or 35 µl 14 μg/ml ACE2-Fc and incubated for
30 min at room temperature. Subsequently, 50 µl of pre-
incubated sample mix was transferred onto the ACE2-Fc
coated MaxiSORP plates and incubated for 2 h at room
temperature. His-tagged RBD samples were detected with
biotinylated mouse-anti-His antibody (Invitrogen), followed by
incubation with a streptavidin-HRP conjugate (Roche). The
chromogenic signal was developed using TMB as a substrate
solution and analyzed as described for the binding ELISA.

Luminex Assays
The RBD-215 variants and RBD-HEK were separately coupled
to MagPlex carboxylated polystyrene microspheres (Luminex
Corporation) and coupled glycoforms were then assayed in
parallel with sera from different individuals collected at the
AIT (AIT cohort). Coupling as well as Luminex assays were
performed according to the manufacturer’s instructions with
minor modifications as described in detail recently
(Klausberger et al., 2021). AIT cohort comprises samples
collected for routine SARS-CoV-2 serodiagnosis from 111
SARS-CoV-2 infected, uninfected and/or vaccinated
individuals. Seronegativity or seropositivity has been
determined via an eight-plex Luminex-based serotest and
was based on cut-off values and end-point titers defined
according to Frey et al., (1998) on the basis of 160 pre-
COVID-19 sera.
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Glycopeptide antibiotics are valuable natural metabolites endowed with different
pharmacological properties, among them are dalbaheptides used to treat different
infections caused by multidrug-resistant Gram-positive pathogens. Dalbaheptides are
produced by soil-dwelling high G-C Gram-positive actinobacteria. Their biosynthetic
pathways are encoded within large biosynthetic gene clusters. A non-ribosomally
synthesized heptapeptide aglycone is the common scaffold for all dalbaheptides.
Different enzymatic tailoring steps, including glycosylation, are further involved in
decorating it. Glycosylation of dalbaheptides is a crucial step, conferring them specific
biological activities. It is achieved by a plethora of glycosyltransferases, encoded within the
corresponding biosynthetic gene clusters, able to install different sugar residues. These
sugars might originate from the primary metabolism, or, alternatively, their biosynthesis
might be encoded within the biosynthetic gene clusters. Already installed
monosaccharides might be further enzymatically modified or work as substrates for
additional glycosylation. In the current minireview, we cover recent updates concerning
the genetics and enzymology behind the glycosylation of dalbaheptides, building a detailed
and consecutive picture of this process and of its biological evolution. A thorough
understanding of how glycosyltransferases function in dalbaheptide biosynthesis might
open new ways to use them in chemo-enzymatic synthesis and/or in combinatorial
biosynthesis for building novel glycosylated antibiotics.

Keywords: glycopeptide antibiotics, dalbaheptides, ramoplanin, teicoplanin, A40926, glycosyltransferase,
biosynthetic gene cluster

INTRODUCTION

Among different bacterial phyla, the mycelia-forming members of actinobacteria-broadly
known as actinomycetes-remain the best antibiotic providers (Bérdy, 2005; Hutchings
et al., 2019). The biosynthesis of antibiotics involves many enzymes, which are encoded by
co-localized genes-biosynthetic gene clusters (BGCs) (Medema et al., 2015). BGCs undergo
modular evolution, often exchanging operons and single genes coding for biosynthetic and
modification enzymes (Medema et al., 2014). Genes for glycosyltransferases (GTs) are one such
example, being found in different BGCs, with corresponding proteins having relaxed substrate
specificity and consequently being able to modify different natural scaffolds (Salas and Méndez,
2007).
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The astonishing variability of glycosylation patterns in one
group of antibiotics led to their eponymous description as
glycopeptide antibiotics (GPAs, Nicolaou et al., 1999). Natural
GPAs amalgamate five types of related compounds, differing in
chemical structures, where, paradoxically, only types I-IV-also
known as dalbaheptides (Parenti and Cavalleri, 1989)-are
glycosylated (Nicolaou et al., 1999). All dalbaheptides possess
a non-ribosomal heptapeptide aglycone differing in amino acid
(aa) composition, cross-linking, and decoration (Nicolaou et al.,
1999); they inhibit the growth of Gram-positive bacteria by
blocking cell wall maturation (Binda et al., 2014; Yushchuk
et al., 2020a). Glycosylation and acylation (a step depending
on glycosylation) of dalbaheptides contribute to their
antimicrobial activities, favoring dimerization and membrane
localization at the site of action (Gerhard et al., 1993; Mackay
et al., 1994; Beauregard et al., 1995; Snyder et al., 1998). On the
other hand, excessive glycosylation does not always bring
pharmacological benefits: it seemed to induce platelet
aggregation in patients treated with ristocetin (Howard and
Firkin, 1971; Coller and Gralnick, 1977), which was
consequently withdrawn from the clinical use (Gangarosa
et al., 1958).

Dalbaheptides are clinically used as drugs of last resort against
multidrug-resistant Gram-positive pathogens (Marcone et al.,
2018). First-generation GPAs-vancomycin and teicoplanin
(produced by different Amycolatopsis spp. and Actinoplanes
teichomyceticus ATCC 31121, respectively)-have a long and
reliable history of clinical application (Jovetic et al., 2010;
Binda et al., 2014; Marcone et al., 2018). In turn, natural
GPAs served as precursors for three second-generation
semisynthetic and clinically used GPAs (Binda et al., 2014;
Butler et al., 2014): dalbavancin derived from A40926
(produced by Nonomuraea gerenzanensis ATCC 39727)
(Crotty et al., 2016), telavancin from chloroeremomycin (from
Kibdelosporangium aridumA82846) (Klinker and Borgert, 2015),
and oritavancin from vancomycin (Crotty et al., 2016).

Although the chemical variety of glycosyl groups decorating
dalbaheptide aglycones is quite remarkable (Nicolaou et al.,
1999), many aspects of the genetics behind their biosynthesis
and incorporation remain obscure. In this minireview, we focus
on those dalbaheptides whose BGC sequences are nowadays
available, and for which some experimental evidence about
their glycosylation steps is reported in the literature. The
model BGCs are cep, bal, tei, vcm, and dbv, responsible for the
production of chloroeremomycin (in K. aridum A82846) (van
Wageningen et al., 1998), balhimycin (in Amycolatopsis
balhimycina DSM 5908) (Shawky et al., 2007), teicoplanin (Li
et al., 2004), vancomycin (in Amycolatopsis orientalis
HCCB10007) (Xu et al., 2014), and A40926 (Sosio et al.,
2003), respectively. BGC from Amycolatopsis sp. MJM2582
(Truman et al., 2014) represents the ristocetin biosynthetic
pathway and was found also in other Amycolatopsis spp.
(Spohn et al., 2014; Liu et al., 2021). Glycosylation-related
genes from more recently described BGCs for UK-68,597 (auk
from Actinoplanes sp. ATCC 53533) (Yim et al., 2014a),
pekiskomycin (pek from Streptomyces sp. WAC1420) (Thaker
et al., 2013), keratinimicin (ker from Amycolatopsis keratiniphila

NRRL B-24117) (Xu et al., 2019), and A50926 (from
Nonomuraea coxensis DSM 45129) (Yushchuk et al., 2021) are
also reviewed. Overall, multiple recent findings on dalbaheptide
glycosylation updated the overall picture and merit a proper
review, outlining what is known and why it is still worthy of
further investigations.

Delineating Steps in Dalbaheptide
Glycosylation
The biosynthesis of dalbaheptides is generally divided into
three distinct stages (Yim et al., 2014b, 2016; Yushchuk et al.,
2020b), that is, 1) generation of non-proteinogenic aa pool,
further utilized in 2) non-ribosomal biosynthesis of the
oligopeptide aglycones (coupled with the oxidative cross-
linking); fully cross-linked aglycones are further 3) modified
in a variety of tailoring steps. All dalbaheptide BGCs encode
GTs, tailoring enzymes significantly contributing to the
structural variety of these antibiotics (Nicolaou et al., 1999).
Non-glycosylated dalbaheptide A47934 (from Streptomyces
toyocaensis NRRL 15009) is the only exception here;
consistently, the corresponding BGC lacks GT genes
(Pootoolal et al., 2002).

More in detail, different steps might be defined in the
glycosylation process of dalbaheptides, layer by layer “wrapping”
the aglycone. The first step includes the biosynthesis of non-
conventional sugar donors for aglycone decoration. Indeed, while
some dalbaheptides are decoratedwith sugars deriving fromprimary
metabolism (e.g., α-D-mannose and N-acetylglucosamine (GlcNAc)
in teicoplanin or A40926), aglycones of vancomycin, balhimycin,
and chloroeremomycin are decorated with the non-conventional
monosaccharides L-vancosamine, L-4-oxovancosamine, and
L-epivancosamine, respectively. In a similar manner to the
biosynthesis of non-proteinogenic aa, enzymes required for the
biosynthesis of such non-conventional monosaccharides are
encoded within dalbaheptide BGCs. The second step (often the
last one) consists of O-glycosylation of the aromatic aa forming the
aglycone. In the third one, the installed sugars might be further
modified in minor or major ways (e.g., α-D-mannose O-acetylation
and GlcNAc deacetylation in A40926 biosynthesis).

Biosynthesis of Non-Conventional
Monosaccharides was Required for the
Glycosylation of Dalbaheptides
Conventional sugars in GPAs-from primary metabolism-are
D-mannose, D-glucose, D-arabinose, GlcNAc, and L-rhamnose.
Non-conventional sugar residues include L-vancosamine, L-

epivancosamine, L-4-oxovancosamine, L-ristosamine, and L-

actinosamine. In addition to the aforementioned examples,
L-vancosamine is present in Substitute with UK-68,597, while
L-ristosamine is characteristic for ristocetin, and
L-actinosamine for keratinimicin (Xu et al., 2019).

Biosynthesis of L-epivancosamine was initially studied in
chloroeremomycin producer (van Wageningen et al., 1998). In vitro
experiments (Chen et al., 2000; Kirkpatrick et al., 2000) demonstrated
how five enzymes encoded within cep-namely, EvaA-E-transformed
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dTDP-4-oxo-6-deoxy-D-glucose into L-epivancosamine (Figure 1).
Biosynthetic routes for aminosugars decorating other dalbaheptides
were deduced from this model pathway. Initially activated substrate
dTDP-4-oxo-6-deoxy-D-glucose is commonly derived from D-glucose-
1-phosphate by the action of non-BGC-encoded enzymes (Figure 1).
One notable exception is the UK-68,597 biosynthesis, since auk
contains a gene for glucose 1-phosphate thymidylylransferase-auk7
(Yim et al., 2014a)-required for the D-glucose-1-phosphate activation.

The presence of Auk7 likely positively contributes to the pool of L-

vancosamine precursors in UK-68,597 biosynthesis.
vcm for vancomycin contains the orthologs of evaA-E genes,

namely, vcaA-E (Xu et al., 2014) (Figure 1). The two sets of
proteins are quite similar, sharing at least 75% of aa sequence
identity (aa s.i.) in each pair (Xu et al., 2014). Nevertheless, minor
differences in EvaE and VcaE seem to impact the function,
making the first to convert dTDP-L-4-

FIGURE 1 | Enzymes involved in the biosynthesis of non-conventional aminosugars, decorating aglycones of some dalbaheptides. Biosynthetic pathway of L-
epivancosamine serves as a model, since EvaA-B-C-D-E, coded within cep, are the only enzymes that were studied experimentally. Functions of all other enzymes were
assigned by in silico comparison (is); (abs) indicates that the corresponding gene is absent from BGCs; (?) indicates that the assigned function is speculative, having no
experimentally investigated prototype. Asterisk at DvaE indicates that this protein is mutated. Refer to the main text for more details.
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oxovancosamine into dTDP-L-epivancosamine, while the second
yields dTDP-L-vancosamine (Figure 1). Instead, auk contains the
orthologs of only evaA, evaB, evaC, and evaD (auk13, auk12,
auk9, and auk8, respectively) (Yim et al., 2014a), lacking the
ortholog of evaE: probably a functional homolog (or analog) of
evaE resides outside the auk borders, finally contributing to
L-vancosamine production. More understandable is the case of
bal (Shawky et al., 2007), where evaA-E orthologs are named
dvaA-E. Here, evaE ortholog dvaE is truncated, coding only the
99 aa C-terminal part of C4-ketoreductase (Donadio et al., 2005).
Such truncated protein is non-functional, and consequently, the
aminosugar biosynthesis terminates at the stage of dTDP-L-4-
oxovancosamine (Figure 1). Biosynthetic pathways for L-

ristosamine and L-actinosamine, coded within ris and ker, are
more diverged. They both missed the EvaC ortholog (Spohn et al.,
2014; Truman et al., 2014; Xu et al., 2019; Liu et al., 2021),
resulting in the lack of a methyl group at the C3 position
(Figure 1). Thus, biosynthesis of L-ristosamine might be
attributed to the orthologs of EvaA, EvaB, EvaD, and EvaE-
Orf30, Orf32, Orf33, and Orf31, respectively (Truman et al.,
2014). The same protein set is encoded within ker-KraA-D (Xu
et al., 2019). The major difference between L-actinosamine and L-

ristosamine is O-methylation of the C4-position. It is still
unknown how this methylation is achieved; however, the
annotation of ker reveals the presence of a gene coding for an
O-methyltransferase-kerM (Xu et al., 2019). Since the aglycone of
keratinimicin lacks any O-methylations, it seems plausible that
KerM catalyzes the ultimate step of L-actinosamine biosynthesis
(Figure 1).

In all cases described above the orthologs of evaA-E-B-D are
most likely co-expressed, forming one operon, while the
orthologs of evaC belong to a separate transcriptional unit
(Shawky et al., 2007; Liu et al., 2021). auk is an exception,
with auk8-9 (evaD-C) and auk12-13 (evaA-B) probably
belonging to different operons (Yim et al., 2014a).

GTs Involved in Dalbaheptide Glycosylation
All GTs decorating aglycones of dalbaheptides belong to two
families, according to the Carbohydrate-Active enZYmes
Database (CAZy, http://www.cazy.org, Drula et al., 2022). GTs
responsible for the installation of non-conventional aminosugars
and conventional D-glucose, D-arabinose, GlcNAc, and L-

rhamnose, belong to the GT1 family. These GTs require sugar
substrates to be either dTDP- or UDP-activated, and share a
unique two-domain structure (the so-called GT-B fold, Lairson
et al., 2008), having C- and N-terminal Rossmann-like domains
connected by a flexible linker region (Zhang et al., 2020).
Recognition sites for the donor NDP-activated sugars are
located at C-terminal domains (Chang et al., 2011), while
N-terminal domains contain the acceptor binding site for
dalbaheptide aglycone (Chang et al., 2011; Zhang et al., 2020).
GTs of the second-GT39-family are responsible for the
installation of D-mannose and require D-mannosyl-1-
phosphoundecaprenol as a donor substrate. Large hydrophobic
GT39-GTs are predicted as membrane-associated, having a GT-C
fold with multiple transmembrane helices and intracellular active
sites (Lairson et al., 2008).

In the aforementioned dalbaheptides, GT1-GTs attach sugar
residues preferentially at AA-4 (4-hydroxyphenylglycine, Hpg)
and AA-6 (β-hydroxytyrosine, Bht) of the aglycone or add
additional monosaccharides to already existing mono/di/
trisaccharides at AA-4. Fully cross-linked aglycones serve as
acceptor substrates for GT1-GTs under physiological
conditions, albeit some GT1-GTs were able to recognize
partially cross-linked aglycones under certain experimental
conditions, for instance, in mutasynthesis approaches (Weist
et al., 2004; Butz et al., 2008). GT39-GTs attach mannose at
AA-7 (3,5-dihydroxyphenylglycine, Dpg). The presence of
multiple GTs within one pathway might result in the
production of mixtures of related congeners, differing in
glycosylation patterns. Dalbaheptides glycosylated at other AA
positions were also described (Nicolaou et al., 1999), indicating
that glycosylation might also occur at 1) AA-2 (Bht) and AA-1
(Hpg) in type II aglycone, and 2) AA-1 (Hpg) and AA-3 (Bht) in
type III aglycone. Unfortunately, we currently lack any genomic
information on the producers of these molecules, which would
merit further investigations.

Type I dalbaheptides chloroeremomycin, balhimycin, and
vancomycin served as the first models for experimental
investigation of GT functions. Corresponding BGCs encode
slightly different sets of GT1-GTs: GtfA, GtfB, and GtfC in
cem; BgtfA, BgtfB, and BgtfC in bal; and GtfD and GtfE in vcm.
Orthologous GTs GtfA and BgtfA install L-epivancosamine
and L-4-oxovancosamine at AA-6 of chloroeremomycin and
balhimycin, respectively. vcm does not encode GtfA ortholog,
explaining why vancomycin is not glycosylated at AA-6.
Peculiarly, this particular difference between vancomycin
and chloroeremomycin seems to augment the antimicrobial
activity of the latter, implying that L-epivancosamine at AA-6
facilitates cell wall binding (Nagarajan, 1993; Allen et al.,
2002). GtfB, BgtfB, and GtfE are orthologs, glucosylating
AA-4 in the biosynthesis of all three antibiotics (Figure 2A,
Pelzer et al., 1999; Losey et al., 2001; Mulichak et al., 2001).
Then, GtfC and GtfD attach L-epivancosamine or L-

vancosamine to D-glucose at AA-4 in the biosynthesis of
chloroeremomycin and vancomycin, respectively
(Figure 2A, Losey et al., 2001, 2002; Mulichak et al., 2004).
GtfC, GtfD, and BgtfC are orthologous proteins, but
balhimycin lacks a disaccharide at AA-4, which could be
found only in balhimycin V (a congener produced in
residual amounts) (Pelzer et al., 1999; Stegmann et al.,
2010). This might be due to the low affinity of BgtfC for
the donor substrate-L-4-oxovancosamine, produced as a
consequence of DvaE mutation. More recently described
type I dalbaheptide pekiskomycin is only glucosylated at
AA-4, coherently with the only 1 GT encoded in pek:
Pek28, which is a GtfB ortholog (Figure 2A) (Thaker et al.,
2013).

So far, little is known about GTs decorating aglycones of type
II dalbaheptides. ker (single type II BGC sequenced) carries three
genes for GT1-GTs and one gene for GT39-GT (Xu et al., 2019).
Among ker-encoded GT1-GTs, gtfAker, gtfBker, and gtfCker (ker
was added to distinguish them from cep genes) are orthologs of
gtfA, gtfB, and gtfC, respectively (Xu et al., 2019). Thus, GtfBker
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FIGURE 2 |Glycosylation patterns of type I (A), type II (B), type III (C), and type IV (D) dalbaheptides and enzymes involved therein. Refer to the main text for more
details. Dalbaheptide aglycones are depicted schematically with cross-links shown in red, and chlorination and sulfation sites are not shown. Aglycone amino acid
abbreviations mean following: Leu-leucine; Asn-asparagine; Ala-alanine; Glu-glutamine; Phe-phenylalanine; Tyr-tyrosine; Bht-ß-hydroxytyrosine; Dpg-3,5-
dihydroxyphenylglycine; Hpg-4-hydroxyphenylglycine; Hpp-4-hydroxyphenypyruvate; Tyr-. GlcN stated for N-glucosamine, GlcNAcyl for N-acylglucosamine. All
enzymes, whose functions were assigned by in silico comparison aremarkedwith (is); (?) indicates that function was assigned in silicowithout experimentally investigated
prototype or exact function remains unknown. For fast access to protein sequences mentioned in this figure, use following links: cep: GtfA-PCZA361.19, GtfB-
PCZA361.20, GtfC-PCZA361.21; bal: BgtfA-CAA76551.1, BgtfB-CAA76552.1, BgtfC-CAA76553.1; vcm: GtfE-AGM04075.1, GtfD-AGM04074.1; pek: Pek28-
AGF91763.1, Pek16-AGF91751.1; ker: GtfAker-AYA22326.1, GtfBker-AYA22325.1, GtfCker-AYA22323.1, GtfDker-AYA22321.1; ris: Orf16-AHF20591.1, Orf17-
AHF20592.1, Orf18-AHF20593.1, Orf20-AHF20595.1; Orf22-AHF20597.1, Orf34-AHF20609.1; auk: Auk10-AGS77314.1, Auk11-AGS77315.1; tei: Tei1-CAG15008.
1, Tei2*-CAG15014.1, Tei3*-CAG15015.1, Tei10*-CAG15022.1, Tei11*-CAG15023.1; dbv: Dbv8-CAD91203.1, Dbv9-CAD91204.1, Dbv20-CAD91215.1, Dbv21-
CAD91216.1, Dbv23-CAD91218.1, Dbv29-CAD91224.1.
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most likely installs D-glucose at AA-4, and L-rhamnose is then
appended to D-glucose by GtfCker; this leaves GtfAker responsible
for the attachment of L-actinosamine at AA-6 (Figure 2B). Single
ker-encoded GT39-GT GtfDker most probably attaches D-

mannose at AA-7 (Figure 2B).
More information is available on the GTs involved in the

biosynthesis of type III dalbaheptides. Ristocetin BGC encodes
6 GTs, four of GT1 family and two belonging to the GT39 family
(Truman et al., 2014). Phylogenetic reconstruction allowed to
assign functions to 4 GTs, assuming that Orf16 attaches L-

ristosamine at AA-6, Orf17-D-glucose at AA-4, then appended
with D-mannose by Orf34; finally, a second mannosyltransferase-
Orf22-was expected to act at AA-7 (Figure 2C, Truman et al.,
2014), as later confirmed by its heterologous expression in
Streptomyces coelicolor carrying sta (Yim et al., 2016).
Functions of Orf18 and Orf20 were not assigned, since these
proteins were distantly related to known GTs (Truman et al.,
2014). Another type III dalbaheptide-UK-68,597-is decorated
with 2-L-vancosaminyl-D-glucose disaccharide at AA-4 (Yim
et al., 2014a), while auk carries three genes for GT1-GTs. In
vitro assay showed that Auk10 (GtfB ortholog) is responsible for
glucosylation; in silico analysis then suggested L-vancosamine to
be installed by Auk11 (GtfC ortholog, Figure 2C) (Yim et al.,
2014a). Although the third GT, Auk14, is a GtfA ortholog, UK-
68,597 lacks sugar residues at AA-6. In vitro assay suggested that
Auk14 might be inactive or possess a very low affinity to
substrates available in UK-68,597 biosynthesis, as observed
with BgtfA (Yim et al., 2014a).

Glycosylation events that take place in type IV dalbaheptide
biosynthesis are well defined (Figure 2D). tei and dbv BGCs
encode three and two GTs, respectively. Accordingly, both
antibiotics carry a GlcNAc moiety at AA-4 and D-mannose at
AA-7, while teicoplanin aglycone is also decorated with another
GlcNAc at AA-6. GtfB ortholog-Tei10*-installs the GlcNAc
moiety at AA-4, as demonstrated from multiple in vivo and
in vitro experiments (Li et al., 2004; Howard-Jones et al., 2007;
Truman et al., 2009; Yushchuk et al., 2016, 2020b). Consistently,
Dbv9-a Tei10* ortholog-is supposed to play the same role in
A40926 glycosylation. Tei1 was shown to attach GlcNAc to
teicoplanin aglycone at AA-6 (Li et al., 2004), whereas dbv
lacks any Tei1 ortholog, explaining why A40926 has no sugars
at AA-6. Finally, Tei3* was shown to be responsible for the
decoration of teicoplanin aglycone with D-mannose at AA-7
(Yushchuk et al., 2016), implying that Dbv20 (Tei3* ortholog)
has the same function in A40926 biosynthesis (Figure 2D).
Interestingly, ramoplanin BGC (ramo), recently shown to be
genetically related to tei (Waglechner et al., 2019), encodes a
homolog of Tei3*-Ramo29 (45% aa s.i., Chen et al., 2013).
Ramoplanin is a clinically relevant peptide antibiotic produced
by Actinoplanes ramoplaninifer ATCC 33076 (Marcone et al.,
2017). Unlike dalbaheptides, it carries a 4-D-mannosyl-D-
mannose disaccharide, instead of a single D-mannose residue.
Ramo29 was shown to install the first D-mannose residue (Chen
et al., 2013), but the GT responsible for the secondmannosylation
remains unknown. This merits further investigation, since such
GT looks like a promising tool to further modify mannosylated
dalbaheptides.

Concluding this section, it is interesting to report that genes
for GTs tend to form one operon in type I-III BGCs (Shawky
et al., 2007; Liu et al., 2021), being more scattered in type IV BGCs
(Alduina et al., 2007; Yushchuk et al., 2019). It is also notable that
genes for mannosyltransferases are present in different types of
BGCs coming from distant actinobacterial lineages. This might
indicate D-mannose residues at AA-7 to be an ancestral feature for
all dalbaheptides.

Further Modification Occurring on Attached
Sugar Residues
Some further modifications of attached sugars occur during
the biosynthesis of dalbaheptides, although they are quite
rare. The first example comes from pekiskomycin, having D-

glucose methylated. pek encodes two methyltransferases. One
of them-Pek30-was experimentally shown to methylate the N-
terminus of A47934 aglycone (Yim et al., 2016), leaving the
other-Pek16-possibly responsible for D-glucose methylation
(Figure 2A). Another notable modification is the acylation of
AA-4 GlcNAc in type IV dalbaheptides, such as teicoplanin
and A40926. To achieve this modification, GlcNAc at AA-4 is
first deacetylated with orthologous deacetylases Tei2*/Dbv21
(Ho et al., 2006; Truman et al., 2006), and N-glucosamine is
then acylated with orthologous acyltransferases Tei11*/Dbv8
(Figure 2D) (Li et al., 2004; Kruger et al., 2005; Howard-Jones
et al., 2007; Yushchuk et al., 2016). Peculiarly, orthologs of
Tei2*/Dbv21 are present in many (if not in all) BGCs for non-
acylated type I-III dalbaheptides. The one from cep-CepI-was
studied in vitro and shown to be inactive due to a single aa
substitution (Truman et al., 2008). The omnipresence of tei2*
orthologs in type I-III BGCs induces to speculate that the N-
acylglucosamine moiety at AA-4 is an ancestral feature, lost or
modified in many evolutionary lineages of dalbaheptides.

Modifications of A40926 sugars do not end with acylation.
N-acylglucosamine moiety is further oxidized to
N-acylaminoglucuronic acid group by Dbv29 (Figure 2D)
(Li et al., 2007). The biological role of such modification is
unclear, although it seems to reduce the A40926 antimicrobial
activity (Malabarba et al., 1995). Peculiarly, noc BGC in N.
coxensis DSM 45129 lacks an ortholog for dbv29, coding the
biosynthesis of non-oxidized A40926 analog-dalbaheptide
A50926 (Yushchuk et al., 2021). Finally, the D-mannose
residue at AA-7 of A40926 is O-acetylated with Dbv23
(Figure 2D) (Sosio et al., 2010). This modification is
unstable and fades away in the alkaline extraction of
A40926 (Alt et al., 2019); once again, its biological role is
unclear, although it might be important for the regulation of
antibiotic export and self-resistance (Alduina et al., 2020).

CONCLUSION AND OUTLOOK

Further research of dalbaheptide glycosylation is important
for several reasons. Understanding of GTs donor- (activated
sugar) and acceptor- (aglycone) substrate specificities will
allow further chemical derivatization of these scaffolds
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using in vitro chemo-enzymatic synthesis (Nakayama et al.,
2014) or in vivo combinatorial biosynthesis (Yim et al., 2016).
While the first approach has been widely investigated in the
past for generating novel hybrid GPAs by combining natural
and synthetic aglycones and sugars (as reviewed in Marcone
et al., 2018), in vivo combinatorial biosynthesis is promising,
but still rather limited in its applications. Alternatively, the
two-domain architecture of GT1-GTs might be exploited to
create “chimaeras” with an expanded functional repertoire
(Truman et al., 2009). Finally, a better comprehension of
glycosylation mechanisms will contribute to tracing out a
more complete picture of dalbaheptide evolution. Unlike
other aspects of glycopeptide biosynthesis (Donadio et al.,
2005; Waglechner et al., 2019; Andreo-Vidal et al., 2021),
phylogenomics of GTs and sugar modification enzymes has
not been studied yet. We believe that such reconstruction
might open new scenarios on the evolution of antibiotic
biosynthetic pathways.
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Almost all therapeutic proteins are glycosylated, with the carbohydrate component playing
a long-established, substantial role in the safety and pharmacokinetic properties of this
dominant category of drugs. In the past few years and moving forward, glycosylation is
increasingly being implicated in the pharmacodynamics and therapeutic efficacy of
therapeutic proteins. This article provides illustrative examples of drugs that have
already been improved through glycoengineering including cytokines exemplified by
erythropoietin (EPO), enzymes (ectonucleotide pyrophosphatase 1, ENPP1), and IgG
antibodies (e.g., afucosylated Gazyva

®
, Poteligeo

®
, Fasenra™, and Uplizna

®
). In the

future, the deliberate modification of therapeutic protein glycosylation will become
more prevalent as glycoengineering strategies, including sophisticated computer-aided
tools for “building in” glycans sites, acceptance of a broad range of production systems
with various glycosylation capabilities, and supplementation methods for introducing non-
natural metabolites into glycosylation pathways further develop and become more
accessible.

Keywords: glycoengineering, pharmacodynamics, pharmacokinetics, therapeutic, glycosylation, N-glycans,
biomanufacturing

1 INTRODUCTION

This report describes the impact of glycosylation on the pharmacokinetics, pharmacodynamics,
therapeutic activity, and production (biomanufacturing) of therapeutic proteins using several
examples that illustrate strategies and methods to glycoengineer this important class of drugs for
increased effectiveness. In Section 2, we describe how glycosylation affects the pharmacokinetics
(PK) of protein-based drugs; defined simply, PK is the study of the effects of the body on a drug
including absorption, distribution, metabolism, and excretion. Next, in Section 3 and Section 4, we
describe how glycosylationmodulates a drug’s pharmacodynamic (PD) properties, which are defined
as the effects of the drug on the body and the body’s biochemical and physiological responses to a
drug. More specifically, Section 3 covers several classes of therapeutic proteins whose PD activities
depend on glycosylation, including enzymes, hormones, and blood-acting factors. Section 4 covers
therapeutic antibodies, which constitute the largest class of protein-based drugs and have unique
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glycosylation features compared to most proteins. Finally, in
Section 5 we provide an overview of methods for controlling
and modulating this glycosylation during the design and
biomanufacturing of therapeutic proteins. Throughout each
section we provide illustrative examples of therapeutic proteins
but emphasize that our examples are not complete or exhaustive.

Before covering these topics in detail, here in the Introduction
(Section 1), we briefly describe key concepts related to the
glycosylation of therapeutic proteins (Figure 1). With few
exceptions (e.g., regulatory peptides and small hormones such
as insulin), all therapeutic proteins have at least one, and often
several, N-glycans. Overall, approximately 50% of human
proteins are glycosylated, which governs their folding,
intracellular and extracellular trafficking, stability, circulatory
half-life, and immunogenicity (Olden et al., 1982; Breitfeld
et al., 1984; Dwek 1996; Willey 1999; Dwek & Butters 2002).

Mammalian glycosylation is remarkably complex, consisting of
N-linked glycans, O-linked glycans, C-linked glycans,
phosphoglycosylation, and glypiation. In this article, we will
almost exclusively discuss N-linked glycosylation, because
clinical translational glycoengineering efforts have
overwhelmingly focused on this type of glycosylation to date.

From a biochemical perspective, virtually all cell surface or
secreted proteins (i.e., candidates for drug development) are
N-glycosylated, which occurs co-translationally when the lipid-
linked oligosaccharide (LLO) GlcNAc2Man9Glc3 14-mer
structure is added to a consensus sequon (Figure 1A, Step 1).
This structure is critical for chaperone-mediated protein folding
in the endoplasmic reticulum (ER) (Helenius & Aebi 2001),
where the three glucose residues are sequentially trimmed
during the folding process (Figure 1A, Step 2). Successfully
folded proteins with a GlcNAc2Man9, or a slightly trimmed

FIGURE 1 | Overview of mammalian N-glycosylation. (A) Step 1. The LLO 14-mer structure shown (GlcNAc2Man9Glc3) is co-translationally transferred from
dolichol phosphate to an asparagine residue of a nascent unfolded protein by oligosaccharyltransferase (OST) in the ER (Breitling & Aebi 2013). Step 2. Chaperone-
mediated protein folding occurs concomitant with glucose trimming, generating a (in Step 3) a GlcNAc2Man9 or GlcNAc2Man8 structure that functions as an export signal
for the transfer of successfully folded proteins to the Golgi (Helenius & Aebi 2001). (B) In the Golgi, further trimming of mannose residues occurs to produce a series
of GlcNAc2Mann structures referred to as “high mannose”-type N-glycans, where n is typically between 3 and 6. (C) Also in the Golgi, one, two, or three GlcNAc residues
are added to a GlcNAc2Mann structures, which can be further elaborated (e.g., with galactose and sialic acid, as shown) producing “hybrid” type N-glycans when a single
GlcNAc is added to a GlcNAc2Mann structure. Hybrid N-glycans typically are low in abundance and have few known roles in therapeutic proteins. A larger proportion of
N-glycans have GlcNAc residues added to both terminal mannose residues of the GlcNAc2Man3 structure, most frequently resulting in small biantennary structures
(Werz et al., 2007) such as those shown in Panel (D), where the glycoprofile of IgG Fc domain N-glycans from one study (del Val et al., 2016) are shown rank ordered by
their relative abundance. (E) A relatively small proportion (generally 5% or less) of N-glycans are further elaborated, resulting in epitopes such as (i) sialyl Lewis x (sLex), the
H, A, and B blood type antigens [(ii), (iii), and (iv), respectively]; (v) tri- and (vi) tetra-antennary structures that can be unsialylated to fully sialylated (vii); and finally certain
N-glycans have extended “LacNAc” repeats (four are shown) that can serve as preferred ligands for certain receptors, such as the hemagglutinin protein of the influenza
virus (Ji et al., 2017), whereas glycans from EPO can have single LacNAc repeats (Cowper et al., 2018).
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GlcNAc2Man8 structure (Figure 1A, Step 3), are exported to the
Golgi where mannosidases trim additional mannose residues,
ultimately resulting in GlcNAc2Man5 to GlcNAcMan3 structures
(Figure 1B). In some cases, these “high mannose” glycans appear
on mature proteins without further processing and affect the
proteins’ distribution and by extension, their bioactivities. In
other cases, the resulting GlcNAc2Mann glycans are precursor
structures for further elaboration in the Golgi, forming hybrid
(Figure 1C) and complex type N-glycans. In most cases, the
ultimate complex type N-glycans are relatively small in size; for
perspective, ~90% of mammalian glycans are comprised of 12 or
fewer monosaccharides (Werz et al., 2007), which covers the size
range for Fc-domain glycans of IgG antibodies (Figure 1D). Less
frequently, complex type N-glycans can be considerably larger
(Figure 1E), as found on therapeutic proteins such as
erythropoietin (EPO).

2 PHARMACOKINETICS

Historically, the effects of glycosylation on therapeutic proteins
were first evident through changes to their pharmacokinetic (PK)
properties (Liu 2015; Liu 2018; Boune et al., 2020). Accordingly,
we begin by describing the impact of glycosylation on the PK of
protein drugs. Definitions of PK include “the movement of drugs
through the body” or “the study of what the body does to a drug,”
and includes a drug’s absorption, distribution, metabolism, and
excretion; this set of metrics is typically abbreviated “ADME”
(Tibbitts et al., 2016).

2.1 Serum Clearance
One of the earliest contexts where glycosylation was recognized to
be important for therapeutic proteins was through serum
clearance. This endpoint was evident from studies with
erythropoietin (EPO), a drug that pioneered the importance of
glycoengineering for improving biologics. Specifically,
glycoengineering improved the PK properties of EPO by
modulating two ways that glycans contribute to serum
clearance, and ultimately, drug elimination. These mechanisms
are kidney filtration, which can be slowed by increasing the size of
a protein by adding N-glycan sites (Section 2.1.1) and avoiding
receptor-mediated clearance by the asialoglycoprotein receptor
[(ASPGR) Section 2.1.2] or the mannose receptor [(MR)
Section 2.1.3].

2.1.1 N-Glycans Add Steric Bulk and Increase
Hydrodynamic Radius to Avoid Kidney Filtration
The efficiency of kidney filtration rapidly increases as protein’s
size falls below ~40 kDa; for example, the glomerular sieving
coefficient of the anionic form of horseradish peroxidase (40 kDa)
is 0.007, compared to 0.33 for superoxide dismutase (~32 kDa)
and 0.75 for myoglobin (16.9 kDa) (Maack et al., 1979; Tsao et al.,
1991). Erythropoietin has a molecular weight of ~18.4 kDa based
on its amino acid sequence, suggesting that it should experience
kidney filtration similar to myoglobin. Although wild-type EPO is
cleared from the serum relatively rapidly [its half-life ranges
between 5 and 11 h (Elliott et al., 2008)], EPO produced with

truncated N-glycans had substantially (~7-fold) faster clearance
(Wasley et al., 1991). The glycosylation of EPO has now been
thoroughly characterized, with the protein’s three N-glycans
contributing ~12 kDa of the glycoprotein’s total mass of
~30.4 kDa; each N-glycan is typically a tri- or tetra-antennary
structure that is highly sialylated and often has LacNAc repeats
(Figure 1E). These large glycans are particularly effective at
avoiding glomerular filtration, because unlike amino acid
chains that fold into compact proteins, they are fully extended
in the aqueous physiological milieu; furthermore, they are motile,
allowing them to “sweep out” space.

These two factors enable glycans to increase the
hydrodynamic radius of a protein more effectively than a
commensurate increase in peptide mass; for example,
RNAse is a ~15 kDa protein whose hydrodynamic radius is
doubled through attachment of a small, biantennary N-glycan
of ~2 kDa (Dwek 1996). Similarly, the size of glycosylated EPO
is dramatically larger than non-glycosylated EPO (Figure 2A).
Although the larger size of naturally-glycosylated EPO
improves its serum longevity by ~7-fold compared to
aglycosylated protein (Wasley et al., 1991), its molecular
weight of ~30.4 kDa suggested that further improvements
were possible because proteins greater than ~40 kDa have
even lower glomerular sieving coefficients; for example, the
coefficient for superoxide dismutase [32 kDa] of 0.33 is
reduced to 0.007 for horseradish peroxidase [40 kDa].
Accordingly, the addition of two N-glycans to EPO to form
hyper-glycoengineered darbepoetin alfa (Aranesp®)
(Figure 2A) increased the drug’s molecular weight to
~37–38 kDa, slowing serum clearance from ~8 to ~25 h
(Macdougal 2002; Egrie et al., 2003; Elliott et al., 2008).

A limitation to glycoengineering strategies designed to
avoid glomerular sieving and concomitant kidney filtration
is that they depend on the target protein being appropriately
sized. On one hand, if a protein or peptide is too small (e.g.,
insulin and/or interleukins), it may not be possible to add a
sufficient number of N-glycans to enlarge the protein above the
~40 kD size threshold without loss of biological activity. In
particular, EPO illustrates how both the natural and
glycoengineered glycans are oriented towards one side of
the protein (Figure 2A). In retrospect, this orientation was
critical to avoid steric interference with its binding to its
partner proteins; similarly fortuitous submolecular siting of
built-in glycans may not be possible for all therapeutic
proteins. In other cases, [e.g., ENPP-1 (Section 2.2.1) and
therapeutic antibodies (Section 4)], the proteins are already
above the threshold for kidney filtration, and any further
increase in steric bulk is unlikely to provide additional
improvement in serum longevity. In other words, EPO was
ideally situated for glycoengineering due to its size, which was
marginally below the threshold where glomerular sieving
becomes ineffective. Nevertheless, the “size matters”
principle is likely to benefit at least some additional
therapeutic proteins. For example, efforts are underway to
produce glycoengineered insulin (Guan et al., 2018) and
glucagon (Higashiyama et al., 2018; Ichikawa et al., 2018);
addition of glycans will substantially increase the
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hydrodynamic radius of these small proteins, potentially
slowing kidney filtration.

2.1.2 Sialylation Masks Asialoglycoprotein
Receptor-Mediated Clearance
As just discussed, adding steric bulk to a therapeutic protein via
glycosylation can be an effective albeit limited strategy to improve
PK properties. A more general glycan-related clearance
mechanism involves receptor-mediated cellular uptake by
lectin receptors. The dominant example of this mechanism
involves hepatic clearance of serum proteins via the
asialoglycoprotein receptor [ASGPR (Ashwell & Harford
1982)]. The ASPGR functions by multivalent recognition of
the terminal galactose residues of non-sialylated N-glycans,
rapidly depleting the host proteins from circulation (Schwartz
1984; Weigel 1994) (Figure 2B). The effectiveness of this
mechanism for removing “aged” proteins from the serum as
they lose their terminal sialic acids over time, thereby exposing
their otherwise penultimate galactose moieties, is illustrated by
deliberately desialylated EPO, which has a serum half-life of
~10 min. By contrast, normally sialylated EPO has a serum

half-life ranging from 5 to 11 h (Elliott et al., 2008). The
increased serum longevity of darbepoetin alfa is not only
attributed to increased size (Figure 2A) but also to
hypersialylation, having as many as 22 copies of sialic acid
(Elliot et al., 2000), which helps it avoid ASGPR clearance
(Figure 2B). This pioneering example illustrates the general
importance of high sialic site acid occupancy for prolonged in
vivo circulation of therapeutic proteins. As an aside, sialic acid can
improve the safety of therapeutic proteins by a similar masking
mechanism where this sugar obscures underlying antigenic
epitopes, reducing the generation of neutralizing antibodies
(Bork et al., 2009; Li & d’Aniou 2009).

2.1.3 Mannose Receptor-Mediated Glycoprotein
Clearance
Glycoproteins also can be recognized by mannose-binding
receptors (MRs) on various cell types, including hepatocytes,
fibroblasts, and endothelial cells, as well as by immune cells such
as macrophages and dendritic cells (Schlesinger et al., 1978;
Sheikh et al., 2000). These receptors have multiple functions.
One function is to rapidly clear proteins with high mannose-type

FIGURE 2 | N-glycans influence the clearance of therapeutic proteins based (A) on size and (B) receptor-mediated clearance. (A) Unglycosylated EPO (top) is
compared with naturally glycosylated EPO, which has three N-glycans at Asn24, N38, and N83 (middle) and with darbepoetin alfa, which has five glycans including those
newly-added at Asn30 and N88 (bottom). The glycan structures depicted are representative of the experimentally-determined N-glycan profile of EPO (Cowper et al.,
2018), in particular the structure shown in Figure 1E(vii). Protein models were generated using SWSS-MODEL software (Waterhouse et al., 2018) and modified to
present N-glycan structures via CHARMM (Jo et al., 2008) and PyMOL (PyMOL Molecular Graphics System, Version 2.0, Schrödinger, LLC). The darbepoetin alfa
sequencewas obtained from the KEGGDrug database. (B) Lectin receptor-mediated clearance removes proteins from circulation through ASPGR binding of galactose-
terminated glycans (top left); addition of sialic acid masks the galactose blocking binding and clearance (top right). Mannose-terminated glycans bind to mannose
receptors on macrophages, dendritic cells, dermal fibroblasts, and keratinocytes, resulting in clearance or, in some cases, therapeutic activity [for example to treat
Gaucher disease (Section 2.3.3)].
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glycans (Figure 1B), as well as GlcNAc and fucose-containing
glycans (Feinberg et al., 2021), such as the glycoprotein hormone
lutropin. In general, these receptors help maintain serum
glycoprotein homeostasis (Roseman & Baenziger 2000; Lee
et al., 2002). A second function of MRs is to facilitate the
phagocytosis of pathogens such as Candida albicans,
Pneumocystis carnini, and Leishmania donovan whose surfaces
are covered with mannose-terminated glycans. These glycans
allow the removal of these pathogens from the host by
macrophages as well as by non-immune cells that also express
mannose receptors such as keratinocytes (Szolnoky et al., 2001;
Gazi & Martinez-Pomares 2009). A third and also
immunomodulatory function of MRs is to enhance soluble,
but not cell-associated antigens, for cross-presentation
(Burgdorf et al., 2006).

Another aspect of human immune response to pathogens is
the generation of inflammatory glycoproteins such as hydrolases,
tissue plasminogen activator, and myeloperoxidase, which can be
damaging to host tissues if retained after the infection has been
resolved; high-mannose glycans on these glycoproteins provide
these conditionally protective factors with quick clearance via
cells withMRs, helping to avoid post-infection damage to the host
(Lee et al., 2002; Gazi & Martinez-Pomares 2009). From a drug
development standpoint, the ability of certain cells to internalize
mannose-terminated glycans has been exploited to direct
therapeutic proteins to cell types such as macrophages, as
described for Gaucher’s disease in Section 2.3.3.

2.1.4 IgG Antibodies: An Exception to Rapid Clearance
Therapeutic antibodies, which to date are almost all IgGs, are
outliers compared to other therapeutic proteins because they are
not subject to the two “universal” clearance mechanisms just
discussed (size-based kidney filtration and glycan-based receptor
clearance). First, IgG antibodies are large (~150 kD), well above
the size range susceptible for kidney filtration. Second, the
N-glycans of commercial IgG antibodies are uniquely oriented
inwards, being “buried” between the two Fc region protein
domains, making them largely inaccessible to ASGPR
clearance despite their low sialylation status (Figure 1D). In
addition to glycan-based clearance mechanisms, the Fc domain of
IgG antibodies binds to the neonatal Fc receptor, which directs
intracellular trafficking to avoid proteosomal degradation upon
uptake into the cell by re-releasing the antibody into circulation.
These factors provide therapeutic antibodies with in vivo half-
lives ranging from several days to many weeks (Ryman &
Meibohm 2017; Liu 2018; Ovacik & LIn 2018) instead of the
several hours typical of most other protein-based drugs. For
example, the half-life of the commercial anti-HER2 antibody
drug trastuzumab is 28 days (Boekhout et al., 2011), even though
only ~1.1% of its Fc N-glycans are sialylated (Nakano et al., 2009).

2.2 Absorption and Distribution
Unlike the well-known role for glycosylation in the elimination of
therapeutic proteins and in already-approved glycoengineered
drugs such as darbepoetin alfa that exploit glycans for improved
circulatory half-life, the role of glycoengineering in modulating
the absorption and distribution of these drugs throughout the

body is in relative infancy. Nevertheless, two case studies
(ENPP1-Fc, Section 2.2.1 and hyaluronidase, Section 2.2.2)
demonstrate the intriguing potential for exploiting
glycoengineering to improve the absorption and
biodistribution of therapeutic proteins. In this discussion, we
focus on subcutaneous delivery. Subcutaneously injected
therapeutics have been popular for their potential convenience
for physicians, patients at greater risk for systemic reactions, and
those in which constant venous access is difficult to maintain
(particularly infants) (Turner & Balu-Iyer 2018). Furthermore,
subcutaneous delivery often allows patient self-administration,
reducing the cost, stress, and inconvenience of repeated
administration at a healthcare center. These benefits have
made subcutaneous administration appealing to a growing
number of therapeutic proteins, including cytokines, human
insulin, and immunoglobulins (Turner & Balu-Iyer 2018).

2.2.1 Absorption of Glycoengineered ENPP-1
Despite the many benefits of subcutaneous administration, this
method is limited in the volume that can be infused, and perhaps
more importantly, the bioavailability of the therapeutic following
injection. In one study, a glycoengineering strategy dramatically
improved the bioavailability of subcutaneously delivered ENPP1-
Fc. As a brief introduction, ENPP1 is ectonucleotide
pyrophosphatase/phosphodiesterase 1, a blood enzyme whose
deficiency results in generalized arterial calcification of infancy
(GACI), a potentially lethal disease (Ferreira et al., 2021). Wild-
type ENPP1 has a short serum half-life of ~5 h when used for
enzyme replacement therapy (ERT), necessitating thrice a day
dosing in a mouse model of GACI for therapeutic effectiveness.
Braddock’s research team first took a protein engineering
approach by fusing an IgG Fc domain to ENPP1 (Martins
et al., 2016). The resulting ENPP1-Fc construct had a
substantially improved serum half-life of ~37 h (Figure 3A)
but nonetheless relatively modest bioavailability when
delivered subcutaneously (Albright et al., 2016). By taking a
glycoengineering approach and adding a fifth N-glycan site to
ENPP1-Fc through an I256T mutation (Figure 3B; the
methodology for adding N-glycans to therapeutic proteins is
outlined in Section 5.1.3), the serum half-life almost doubled
(from 37 to 67 h; Figure 3F), while a surrogate measure of
bioavailability, the cumulative “area under curve” (AUC) value
for enzyme activity in the serum, increased dramatically by 794%
from 3,400 to 27,000 units (Stabach et al., 2021).

As a caveat, the biochemical mechanism for the PK
improvements for ENPP1-Fc remain incompletely defined; for
example, unlike the “size matters” improvement when N-glycans
were added to EPO (Figure 2), ENPP1-Fc is already a large-sized
protein, making it unlikely that avoidance of kidney filtration was
involved in its improved serum longevity. A straightforward
explanation, such as increased enzyme activity for the I256T
glycoform, was ruled out by measurements that show that the
enzyme’s catalytic activity was affected negligibly (Stabach et al.,
2021). Instead, it is plausible (but not experimentally verified)
that reduced access of serum proteases to exposed protein
surfaces protected by the newly-added glycan reduced
degradation (Section 2.3.2), concomitantly increasing serum
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longevity. The increase in apparent bioavailability evidenced by
the I256T glycoform’s dramatic AUC increase is also
unexplained; a specific structure-activity response appears to
be involved insofar as only one of over 50 glycovariants of
ENPP1-Fc created in the study gained such a dramatically
improved ability to effectively extravasate from the
subcutaneous compartment into circulation (Stabach et al.,
2021). At present, it is unknown if the mechanisms involved
will apply to therapeutic proteins in general or whether they are
unique to ENPP1-Fc.

2.2.2 Hyaluronidase-Assisted Subcutaneous Delivery
of Therapeutic Proteins
Unlike the addition of an N-glycan to ENPP1-Fc that
serendipitously improved its PK properties, hyaluronidase
provides a broader approach to facilitate the absorption and

bioavailability of subcutaneously-delivered therapeutics.
Hyaluronan contributes to inefficient bioavailability of
subcutaneously-injected drugs by endowing the hypodermis
with viscoelastic properties that prevent bulk fluid flow of
liquids or the diffusion of drug molecules, in particular high
molecular weight therapeutic proteins (Frost 2007).
Recombinant human hyaluronidase (rHuPH20)
enzymatically degrades hypodermal hyaluronan, helping to
overcome this impediment for subcutaneous drug delivery
(Frost 2007; Wasserman 2017; Liu et al., 2021). One
example of hyaluronidase’s efficacy is for subcutaneous
delivery of IgG to treat primary immunodeficiency diseases
(PIDDs) where regular and prolonged bioavailability of
antibodies is essential (Wasserman 2017). In a second
example, hyaluronidase can degrade hyaluronan capsules
associated with tumors, increasing the accessibility and

FIGURE 3 | ENPP1 protein and glycoengineering. Improvements made to the pharmacokinetics of ENPP1 as reported by Stabach and coauthors (Stabach et al.,
2021) are summarized in this figure. (A) First, in previous work (Albright et al., 2016), the enzyme was fused to the immunoglobulin Fc domain to increase protein recycling
and serum recirculation through interactions with the neonatal Fc receptor (Albright et al., 2016); this “parent” construct had a serum half-life of 37 h and an AUC of 3,400
as depicted graphically in Panel (F). (B) Addition of an N-glycan site was achieved through the I256T mutation to ENPP1 resulting in addition of the glycan to
Asn254; this newly added N-glycan approximately doubled serum half-life and octupled the AUC value. (C)Mutation of Met, Ser, and Thr (MST) that increase affinity for
the neonatal Fc receptor (Vaccaro et al., 2005) were introduced into ENPP1-Fc Fc’s domain, further improving both serum half-life and AUC. Finally, two approaches to
increase sialylation including (D) production of ENPP1-Fc in α2,6-sialyltransferase overexpressing CHO cells and (E) supplementation of the culture medium with the
sialic acid metabolic precursor 1,3,4-O-Bu3ManNAc sequentially further increased serum half-life (to a final value of 204 h) and the AUC value (to 45,000).
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effectiveness of anti-cancer drugs (Shuster et al., 2002;
Whatcott et al., 2011; McAtee et al., 2014; Kohi et al., 2016;
Maneval et al., 2020).

2.3 Metabolism: Enzymatic Modification
and Intracellular Trafficking
The term “metabolism” (i.e., the “M” in ADME) is broadly
defined in this article to include any host-mediated enzymatic
modification of a therapeutic protein, including catabolic
(Section 2.3.1) and biosynthetic (Section 2.3.2) activities,
as well as aspects of intracellular trafficking (Section 2.3.3).

2.3.1 Serum Sialylation and Desialylation
As mentioned above, a major determinant of serum longevity
is the sialylation status of many types of therapeutic proteins
through shielding from ASGP receptor-mediated clearance.
Accordingly, efforts are made to fully sialylate therapeutic
proteins as practical; for example, EPO produced in CHO
cells has sialic acid occupancy of 70–85% up to as high as 99%
[i.e., ~22 sialic acids per molecule of darbepoetin alfa (Elliot
et al., 2000; Egrie & Browne 2002)]. Once in circulation,
sialidase present in the serum stochastically remove sialic
acids over time. As proteins become less and less sialylated,
the loss of this terminal sugar functions as a molecular clock
leading to the clearance of older and damaged proteins by the
ASGPR. More recently, the idea has emerged that biosynthetic
sialylation can also occur in the serum; in particular, sialic acid
is added to the Fc glycans of circulating IgG antibodies. In
rodents, the sialylation of IgG N-glycans is linked to secreted
ST6Gal1 produced by liver epithelial cells and CMP-sialic acid
leached into the serum by degranulating platelets (Jones et al.,
2016). This naturally-occurring precedent for post-production
modification of immunomodulatory proteins (Johnson et al.,
2013), along with the commercial availability of reasonably-
priced sialyltransferases, has opened the door for cell-free
glycoengineering of protein therapeutics (Section 5.1.2).

2.3.2 Glycan Shielding of Protease Activity
Recently, the SARS-CoV-2 virus has provided a dramatic
example of how glycans can shield a protease cleavage site.
For this virus (Casalino et al., 2020; Gong et al., 2021), and
others such as influenza (Tong et al., 2003), heavy
glycosylation is advantageous for evading host immunity
by shielding underlying immunogenic foreign epitopes of
the viruses. Conversely, the furin protease cleavage site
that mediates cell infectivity of SARS-CoV-2 is sterically
shielded by nearby glycans, providing evolutionary
pressure for reduced glycosylation (Zhang et al., 2021).
Based on this precedent, the addition of glycans to
therapeutic proteins has been considered for protection
from proteases that cleave proteins during degradation,
although a potential downside is loss of the protein’s
biological function. Indeed, an original impetus for adding
N-glycans to ENPP1-Fc (Figure 3) was to protect the enzyme
from proteases (Stabach et al., 2021). Guan and others added
an O-linked tri-mannose structure to insulin, enhancing its

proteolytic stability and decreasing unwanted aggregation
while maintaining biological activity (Guan et al., 2018). In
addition to protection from protease degradation, N-glycans
play multiple auxiliary roles in protein stability by protecting
proteins from oxidation, aggregation, pH-induced damage,
and thermal degradation (Qun & Qiu 2019).

2.3.3 Intracellular Trafficking
Another way that glycosylation can affect protein
degradation, although indirectly, is through intracellular
trafficking. A naturally-occurring example is the impact of
hybrid and complex N-glycans on the cell surface vs.
lysosomal/endosomal targeting of endogenously-produced
sodium potassium chloride cotransporter NKCC1 encoded
by SLC12A2 (Singh et al., 2015). A second example is that
increased sialylation weakens the galectin lattice and directs
the epidermal growth factor receptor (EGFR) for degradation
instead of surface recycling (Lajoie et al., 2007; Mathew et al.,
2016). The ability to modulate subcellular trafficking through
N-glycan composition led to the use of glycoengineering to
create successful enzyme replacement therapy for Gaucher
disease (GD). For context, initial efforts in the 1970s to use
unmodified human β-glucocerebrosidase to treat GD were
unsuccessful because macrophages (the target cells in this
disease) did not bind and internalize this enzyme when it was
isolated from natural sources (Tekoah et al., 2013); it was
later discovered that the enzyme’s inefficient uptake could be
ameliorated through a glycoengineering approach.

Specifically, upon discovery that glycans with exposed
terminal mannose residues facilitated macrophage uptake
of β-glucocerebrosidase (Friedman et al., 1999; Sato &
Beutler 1993), glycoengineered versions of this enzyme
were created to treat GD. The first version made was
imiglucerase (Cerezyme®) produced in CHO cells and
modified enzymatically after production to expose
mannose, resulting in ~40–60% of exposed Man3
structures (Figure 1B). A second version, velaglucerase
alfa (Vpriv®) is produced in human fibroblast carcinoma
cells and achieves ~100% exposed Man5-Man9 residues
through treatment of the production cells with
kifunensine, a mannosidase I inhibitor; this drug has ~2-
fold greater internalization into macrophages compared to
imiglucerase, showing the importance of glycosylation in
therapeutic efficacy (Brumshtein et al., 2010). Taliglucerase
alfa (Elelyso®) is a third version of therapeutic β-
glucocerebrosidase; it is produced in a carrot cell-based
production system and achieves ~100% exposed Man3
residues without in vitro processing or mannosidase
inhibitors. Taliglucerase alfa has increased uptake into
macrophages compared to imiglucerase (Shaaltiel et al.,
2007), presumably because of its completely unshielded
terminal Man3 groups. This example of multiple
competing products to treat GD, using alternative methods
to control glycosylation towards the common goal of exposed
terminal mannose residues, illustrates the benefits of flexible
biomanufacturing platforms that tailor glycosylation for
individual diseases, as outlined in Section 5, below.
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3 IMPACT OF GLYCOSYLATION ON
PHARMACODYNAMICS AND BIOLOGICAL
ACTIVITY
Here, in Section 3, we describe how biochemical interactions
mediated through glycosylation affects a drug’s
pharmacodynamic (PD) properties, which are defined as the
body’s biological response to a drug [i.e., what the drug does
to the body; the word comes from the Greek “pharmakon”
meaning drug and “dynamikos” meaning power (Marino
et al., 2021)]. Pharmacodynamic properties are broad,
including receptor, cofactor, and ligand interactions as well as
virtually all other biological activities of a protein (Marino et al.,
2021). Therapeutic proteins fall into several categories; in this
report, we cover therapeutic enzymes in Section 3.1, hormones in
Section 3.2, and blood proteins in Section 3.3 (therapeutic
antibodies are covered in Section 4), providing examples
illustrating how glycans impact the PD properties of these
drugs and how glycoengineering can improve therapeutic
efficacy.

3.1 Enzymes
3.1.1 Hyaluronidase
The biological activity of hyaluronidase, the enzyme that
facilitates subcutaneous drug delivery through transient
solubilization of hyaluronan in the hypodermis (Section
2.2.2), depends on glycosylation. Recombinant human
hyaluronidase (rHuPH20) is heavily glycosylated with size
N-glycan sites (Asn47, Asn131, Asn200, Asn219, Asn333, and
Asn358) that are all modified with high mannose type N-glycans
(Frost 2007; Liu et al., 2021) (Figure 1B). As discussed above
(Section 2.3.3), high mannose structures target proteins for
clearance via MRs; hyaluronidase’s glycosylation status also
affects its biological activity, and by extension its PD
properties (Liu et al., 2021). Specifically, PNGase removal of
its N-glycans decreased enzymatic activity of rHuPH20 by ~80%
in an in vitro assay; in a corresponding in vivo test, aglycosylated
rHuPH20 dramatically reduced trypan blue dispersion (a
surrogate measure of drug diffusion) in a mouse model when
compared with naturally-glycosylated enzyme (Liu et al., 2021).
This study illustrated how N-glycosylation was necessary for
rHuPH20 to solubilize host hyaluronan (i.e., a PD effect) for
facilitating subcutaneous delivery of a second drug (i.e., a PK
effect). As the complex interplay between such PK properties and
PD endpoints becomes more widely appreciated, the growing
toolkit to glycoengineer therapeutic proteins (Section 5) to
optimize both endpoints is becoming increasingly important.

3.1.2 Esterases
Esterases are a diverse family of enzymes that have several
pharmaceutical roles. In some cases, reminiscent of the role of
hyaluronidase in improving subcutaneous drug delivery, esterases
augment the effectiveness of a second drug. For example,
esterases activate pro-drugs such as the Alzheimer’s drug
tacrine (Bencharit et al., 2003), doxazolidine carbamates
(Burkhart et al., 2006), the breast cancer drug tamoxifen
(Fleming et al., 2005), the influenza drug oseltamivir (Shi

et al., 2006), and hexosamine analogs used in metabolic
glycoengineering (Mathew et al., 2017; Sarkar et al., 1995;
Wang et al., 2009) (Section 5.1.5). Esterases also detoxify
narcotics such as cocaine and heroin (Pindel et al., 1997) as
well as chemical warfare agents such as soman and tabun
(Fleming et al., 2003). Finally, these enzymes are being
investigated for the direct treatment of diseases such as
Alzheimer’s (Greig et al., 2002; Nordberg et al., 2013; Saez-
Valero et al., 2000), Similar to hyaluronidases, glycosylation
modulates both the enzymes’ PK and PD properties (Kolarich
et al., 2008; Schneider et al., 2013; Weikert et al., 1994; Xu et al.,
2015). In particular, sialylation is important for prolonging serum
circulation (Chitlaru et al., 1998; Fukami & Yokoi 2012) and
glycosylation affects the catalytic activity of several esterases
including human acetylcholinesterase (Velan et al., 1993),
human carboxylesterase 1 (Arena de Souza et al., 2015; Kroetz
et al., 1993), and human carboxylesterase 2 (Alves et al., 2016). In
one example of how glycoengineering can improve esterases, a
metabolic glycoengineering approach (Section 5.1.5) using 1,3,4-
O-Bu3ManNAc to sialylation (Section 5.1.5) increased
sialylation of glycans situated at the interface of trimeric units
of carbosylesterase one; in silico modeling indicated that these
glycans increased the stability of the multimeric, active form of
this enzyme (Mathew et al., 2017).

3.2 Hormones: Hypoglycosylated
Follitropins
In many cases, gain-of-glycosylation (e.g., increased sialylation or
newly-added N-glycans) improve PK or PD properties of
therapeutic proteins. In some cases, however, reduced
glycosylation can be beneficial, as is illustrated by the follicle
stimulating hormone (FSH). This hormone is produced in the
anterior pituitary and travels through the circulation to gonodal
cells where it interacts with FSH receptors (FSHRs) to promote
follicle development in women and spermatogenesis in men
(Daya 2004; Davis et al., 2014; Ulloa-Aguirre et al., 2018).
Therapeutically, recombinant FSH or follitropins can
substitute for naturally-occurring FSH deficiencies to treat
infertility (Dias & Ulloa-Aguirre 2021).

Endogenous FSH consists of an alpha and beta subunit; both
have two putative sites of N-glycosylation. The alpha subunit is
consistently fully glycosylated with the beta subunit occupied
with zero, one, or twoN-glycans (Davis et al., 2014; Ulloa-Aguirre
et al., 2018; Dias & Ulloa-Aguirre 2021). The alpha subunit of
FSH plays a pivotal role in receptor interactions by engaging the
receptor-ligand interface (Ulloa-Aguirre et al., 2018; Dias &
Ulloa-Aguirre 2021). The importance of the glycosylation of
the alpha subunit is illustrated by the deletion of one glycosite
(at Asn78), which increases FSHR binding, while the removal of
its other N-glycan (Asn52) decreases efficacy (Ulloa-Aguirre
et al., 2018; Dias & Ulloa-Aguirre 2021). Similarly, removal of
the glycosylation sites on the beta subunit of FSH yielded
significantly greater bioactivity (Dias & Ulloa-Aguirre 2021).
Overall, hypoglycosylated FSH 9- to 26- fold more active than
its fully glycosylated variant but also experienced reduced in vivo
half-life, presumably due to loss of α2,3-siaylation (Ulloa-Aguirre
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et al., 2018). These experiments completely removed N-glycans at
each site and did not explore microheterogeneity leaving open the
intriguing possibility that fucosylation, sialylation, increased
glycan branching, or another property could be tuned to
optimize the glycosylation profile for FSH to meet the dual
but competing PK and PD requirements. Overall, FSH
demonstrates how glycosylation can have complex effects on a
therapeutic protein by augmenting one endpoint while
undermining the other, reinforcing the need for versatile
glycoengineering strategies to meet such competing demands.

3.3 Blood-Modulatory Proteins
Overall, therapeutic proteins are dominated by blood-acting or
blood-modulatory proteins (e.g., EPO and ENPP1-Fc, discussed
above and antibodies that largely function in the blood are the
largest class of therapeutic proteins; Section 4). Another category
of blood-regulatory proteins whose activity critically depends on
glycosylation are clotting factors that need to be administered
therapeutically for people with deficiencies in these proteins, such
as hemophilia patients. Deglycosylation diminishes the
conformational stability, activity, and macromolecular
interactions of coagulation factor VIII [FVIII (Kosloski et al.,
2009)] and decreases the effectiveness of factor XIII-B [FXIII-B
(Hurjak et al., 2020)]. Based on the importance of glycosylation in
blood clotting, efforts to produce coagulation factors in low-cost
hosts (e.g., in plant cells, Section 5.3.4) to increase availability for
patients are cognizant of the importance of maintaining
appropriate glycosylation; this topic is discussed extensively in
a review article by Top and coauthors (Top et al., 2019).

4 THERAPEUTIC ANTIBODIES

Monoclonal antibodies are the largest class of biotherapeutics on
the clinical market; in April 2021 the FDA approved its 100th
monoclonal antibody product, GlaxoSmithKline’s PD1 blocker
dostarlimab (Mullard 2021). The specificity, signaling versatility,
and half-life of antibodies, all of which are modulated by
glycosylation (Alter et al., 2018; Buettner et al., 2018; Irvine &
Alter 2020), make them potent and highly sought therapeutics
against a variety of diseases. Brian Cobb’s review article on
antibody glycosylation (Cobb 2020) partitions the history of
IgG glycosylation into two overlapping eras. The first era
began in the 1970s when research uncovered how
glycosylation contributed to the pro-inflammatory activities of
IgG antibodies. Based on almost half a century of foundational
knowledge, pro-inflammatory mAbs are now in clinical practice,
mainly designed to destroy cancer cells; these efforts are described
in more detail in Section 4.1. The second era of IgG glycosylation
can be traced roughly to Jeffrey Ravetch’s group’s discovery that
terminal α2,6-sialylation (Figure 4A) of IgG’s Fc glycans
endowed these antibodies with anti-inflammatory properties
(Kaneko et al., 2006). Efforts are underway to exploit these
antibodies for intravenous immunoglobin (IVIg) and other
therapies, as covered in Section 4.2. In the body, antibodies
typically have either pro- or anti-inflammatory activities but their
exquisite ability to bind to select targets—and by doing so

inactivate the activity of the marker—has led to the creation of
numerous blocking and neutralizing antibodies; as described in
Section 4.3; to date this class of therapeutics has found great
utility in cancer treatment by ablating the activity of oncoproteins
and intense efforts are devoted developing broadly neutralizing
antibodies for HIV-1. Finally, in Section 4.4 we outline
glycoengineering approaches to increase the potency of
antibody-drug conjugates.

4.1 Pro-Inflammatory Antibodies
As depicted in Figures 1D, 4A and described in detail elsewhere
(Pereira et al., 2018; Wang et al., 2018; Zafir et al., 2013), glycan
patterns on the conserved fragment crystallizable (Fc) region of
IgG antibodies have significant effects on an antibody’s pro-
inflammatory activities [e.g., antibody-dependent cellular
cytotoxicity (ADCC), antibody-dependent cellular phagocytosis
(ADCP), and complement-dependent cytotoxicity (CDC),
discussed here in Section 4.1] as well as their anti-
inflammatory activity (Section 4.2). Briefly stated, increasing
elaboration of an Fc N-glycan with galactose, core fucose, and
sialic acid increases anti-inflammatory activity, and antibodies
designed to induce ADCC, CDC, and ADCP benefit from the
absence of these monosaccharides (Buettner et al., 2018).

4.1.1 Mechanism(s)
The majority of pro-inflammatory antibodies now in clinical use
are designed to bind to tumor selective antigens and elicit
downstream effector responses (Ząbczyńska et al., 2020) that
kill the target cancer cells. Specific mechanisms of action include
ADCC, ADCP, and CDC where ADCC is a type of immune
reaction where the target cell becomes coated with the therapeutic
antibodies and then is lysed by immune effector cells that include
natural killer (NK) cells, macrophages, neutrophils, and
eosinophils. ADCP utilizes a similar process but the effector
cells, typically macrophages, phagocytose antibody-opsonized
target cells instead of lysing them. CDC is mediated by IgG
and IgM antibodies, which trigger the classical complement
pathway to lyse the target cells upon binding of the C1q
protein to the Fc region of Fcγ receptors. Naturally-occurring
unbalanced glycosylation profiles can lead to and/or exacerbate
pro-inflammatory ADCC and CDC in disorders, such as the
destruction of thyroid tissue in Hashimoto’s thyroiditis
(Ząbczyńska et al., 2020).

In general, with the effects of ADCC being the most
thoroughly studied, sialic acid and core fucose inhibit these
pro-inflammatory responses that often are desired in anti-
cancer antibodies. Mechanistically, the glycan composition
allosterically alters Fcγ receptor interactions, as reviewed in
detail elsewhere (Zafir et al., 2013; Pereira et al., 2018; Wang
et al., 2018). The IgG glycomes of human-derived antibodies are
highly fucosylated, with afucosylated IgG ranging from only
~1.3–19.3% in one study (Pucić et al., 2011); CHO cell-
produced IgG has a similarly high fucose occupancy of 90% or
more (Figure 1D). As discussed below (Section 4.1.2), the highly
fucosylated glycoprofile of CHO cell produced antibodies has led
to glycoengineering efforts to produce afucosylated mAbs to treat
cancer via ADCC. By contrast, anti-cancer IgG antibodies

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 8631189

Dammen-Brower et al. Strategies for Glycoengineering Therapeutic Proteins

66

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


produced in industry-standard CHO cells have an attractive pro-
inflammatory profile insofar as 98% or more of the Fc domain
N-glycans are asialylated; nevertheless, emerging evidence
suggests that even residual levels of 2% or less sialic acid can
have a profound anti-inflammatory effects (Section 4.1.3).

4.1.2 Afucosylated Clinical Antibodies
Evidence that natural variations in Fc glycosylation impact IgG
antibody activity spurred efforts to produce afucosylated
therapeutic antibodies; for example, these antibodies have
superior anti-HIV-1 activity (Ackerman et al., 2013). As of
2018, there were three FDA-approved afucosylated antibodies:
Obinutuzumab (Gazyva®; targets CD20), Mogamulizumab
(Poteligeo®; targets CC chemokine receptor 4, and
benralizumab (Fasenra™; targets IL-5Rα), with more than 20
in clinical trials (Pereira et al., 2018). Since then, inebilizumab
[Uplizna®; targets CD19 to treat neuromyelitis optica spectrum
disorder (NMOSD) (Cree et al., 2019)] has been approved and
ublituximab, which targets CD20 to treat multiple sclerosis and
chronic lymphocytic leukemia is in the final stages of approval
(Fox et al., 2021).

Of these afucosylated antibodies, obinutuzumab and
mogamulizumab are both anti-cancer drugs where lack of
fucosylation increases ADCC, ADCP, or CDC potency against
tumor cells. For example, the afucosylated CD20-targeting drug
obinutuzmab activates neutrophils and mediates phagocytosis
more efficiently than rituximab, which is a normally fucosylated

CD20-targeting mAb (Golay et al., 2013). By contrast,
benralizumab blocks IL-5R signaling leading to ADCC-
mediated depletion of IL-5Rα-expressing eosinophils (Kolbeck
et al., 2010); in essence it is an anti-inflammatory mAb by leading
to the death of excess immune cells to treat severe eosinophil
asthma.

4.1.3 Asialylated Clinical Antibodies
From a practical perspective, the glycan profile of IgG therapeutic
antibodies produced in industry-standard CHO cells,
superficially at least, has an attractive pro-inflammatory profile
insofar as 98% or more of the drug copies are asialylated
(Figure 1D). As a result, unlike multiple efforts to reduce
fucosylation that already have been adopted for commercial
biomanufacturing and received regulatory approval, efforts to
reduce sialylation have lagged. Nevertheless, the importance of
reducing even the residual levels of sialic acid in therapeutic
antibodies was illustrated by a study of pertuzumab (Perjeta®,
Genentech), a mAb that binds to HER2, blocking its dimerization
and subsequent oncogenic signaling.

Although the mechanism of action of pertuzumab was
originally described as a conventional blocking/neutralizing
antibody (i.e., by blocking HER2 signaling in breast cancer), it
also has pro-inflammatory activity via ADCC and CDC. To
explore whether these activities could be augmented by
desialylation, Luo and coworker enzymatically removed sialic
acid from pertuzumab using neuraminidase, and observed an

FIGURE 4 | Carbohydrate epitopes relevant to therapeutic antibodies. (A) Sialic acid is found in human proteins in both α2,3-linkages (left) and α2,6-linkages
(center); α2.6-linked sialic acid is critical for providing IgG antibodies with anti-inflammatory characteristics (Kaneko et al., 2006) whereas α2,3-linked sialic acid are
effective at preventing ASPGR clearance (Ellies et al., 2002). The presence of the N-glycolylneuraminic acid (Neu5Gc, right) form of sialic acid on proteins produced in
non-human mammalian cells can be pro-inflammatory (Tangvoranuntakul et al., 2003; Samraj et al., 2015), which may or may not be desired in a therapeutic
protein. (B) The structure of the “α-Gal” trisaccharide epitope (left) is a major safety concern (Section 5.2.1); in human cells, the terminal alpha-linked galactose is not
added to a glycan until the penultimate masking α1,2-linked fucose (right) is installed, preventing the synthesis of the “naked” immunogenic α-Gal epitope. Incidentally,
the tetrasaccharide shown comprises the B-type blood antigen, whose present is a quality control parameter in IVIg therapy (Section 5.1.2).
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approximately five-fold increase in CDC and almost two-fold
increase in ADCC (Luo et al., 2017). These increases were
unexpectedly large, considering that the parent material was
only ~2.5% sialylated; the most plausible explanation for this
result was that these residual levels of sialylation potently inhibit
CDC and ADCC and neuraminidase treatment relieves this
inhibition.

In theory, as pertuzumab illustrates, the complete removal of
sialic acid (and fucose (Luo et al., 2017)) offers a way to improve
the efficacy of anti-cancer mAbs by facilitating CDC and ADCC.
However, as a counterargument to this strategy, pertuzumab has
a substantial number of deleterious side effects, including
diarrhea or constipation, hair loss, loss of neutrophils and red
blood cells, hypersensitive allergic reactions, decreased appetite,
insomnia, distorted taste perception, inflammation of the mouth
and lips, rashes, and muscle pain. Therefore, in practice,
increasing the pro-inflammatory potency of this drug could
exacerbate these side effects, reducing patient tolerance and
overall clinical efficacy. The “take-home” lesson is that in
principle it could be beneficial to glycoengineer anti-cancer
antibodies to increase their pro-inflammatory activities; in
practice, however, these efforts must be balanced by the
danger of exacerbating off-target side effects. The ability to
precisely tune the pro-vs. anti-inflammatory properties of IgG
antibodies has been demonstrated using chemoezymatic
synthesis; for example, homogeneous glycoforms of cetuximab
with Fab N-glycans with two, sialylated antennae and Fc
N-glycans with no fucosylation or sialyation have been
created. The end result was an antibody with equal binding
affinity to EGFR and increased affinity to FcγRIIIa, generating
stronger ADCC (Giddens et al., 2018).

4.2 Anti-Inflammatory Antibodies
4.2.1 Mechanisms
As outlined above (Section 4.1), the role of fucose and sialic acid
in the pro-inflammatory properties of therapeutic antibodies
(Pereira et al., 2018)) are now well established. The flip-side to
the necessary absence of both fucose and sialic acid for ADCC,
ACDP, and CDC is that the presence of these sugars is
beneficial–indeed, often required—for anti-inflammatory
antibodies. For example, even residual levels of sialylation
endow pertuzumab with potent anti-ADCC and anti-CDC
properties (Section 4.1.3 above). To quickly summarize the
role of these two sugars [along with galactose, which has a
more modest effect (Buettner et al., 2018)], they function as a
tunable on/off switch where their presence turns on the anti-
inflammatory properties of antibodies.

4.2.2 Immunoglobin G Therapy
Immunoglobulins from human donors are highly sialylated
(from 20 to 60% site occupancy) compared to IgG antibodies
produced in CHO cells (generally <2% and often <1%);
accordingly, they have potent anti-inflammatory properties
that can be attributed to their sialylation status (Li D. et al.,
2021). As a result, polyclonal immunoglobulin provides a non-
steroidal anti-inflammatory treatment safe for vulnerable
patients, including children and pregnant women. More

generally individuals with a broad range of autoimmune
diseases including secondary hypogammaglobulinemia,
recurrent infections, idiopathic thrombocytopenia purpura,
Kawasaki disease, polyneuropathies, and graft versus host
disease following organ transplantation (Barahona Alfonso &
João 2016). Therapeutic immunoglobulin is typically
administered intravenously as intravenous IgG (i.e., IVIg)
therapy at up to 2 g/kg every few weeks to months (or, in
rarer cases, subcutanoeus administration anti-inflammatory
antibodies is achieved through co-delivery with hyaluronidase
(Wasserman 2017)). With the continued growth of IgG therapy
(Li D. et al., 2021), donor supply is projected to be insufficient,
posing the quandary that CHO cell-produced recombinant IgG is
poorly-sialylated (<2% overall and completely lacking in FcyR-
modulating α2,6-sialic acids) and therefore lacking anti-
inflammatory properties.

4.2.3 Anti-Inflammatory Monoclonal Antibodies
Intravenous immunoglobulin (IVIg) therapy, by using pooled
samples from multiple donors contains immunosuppressive
antibodies against numerous epitopes and is broadly anti-
inflammatory. An alternative approach is the development of
anti-inflammatory monoclonal antibodies against single epitopes
for the treatment of non-cancerous indications. These efforts
began over 30 years ago with the development of the anti-TNFα
infliximab to treat rheumatoid arthritis (Semerano & Boissier
2009). Within the next two decades, several anti-inflammatory
monoclonal antibodies have been approved to treat not only
rheumatoid arthritis but also Crohn’s disease, ulcerative colitis,
spondyloarthropathies, juvenile arthritis, psoriasis, and psoriatic
arthritis (Kotsovilis & Andreakos 2014). Indeed, four of the first
five and the first seven of the first 10 FDA-approved mAbs were
for anti-inflammatory indications (Lu et al., 2020). Although no
longer as prolific as pro-inflammatory anti-cancer antibody
drugs, anti-inflammatory monoclonal antibodies still comprise
a substantial market share [e.g., including Orencia®, Humira®,
Kineret®, Cimzia®, Enbrel®, Simponi®, and Remicade® (Kotsovilis
& Andreakos 2014)]. The success of these drugs is exemplified by
Humira®, which, in 2018, had a market value of US$ 19.9 billion
(Lu et al., 2020). Up to now, the lucky happenstance that
industry-standard CHO cell production systems provide
monoclonal antibodies with anti-inflammatory properties due
to high fucosylation and residual 1–2% sialylation levels has
allowed clinical anti-inflammatory antibodies to be successful.
In the future, we predict that deliberate efforts to increase the
anti-inflammatory nature of these drugs, e.g., through increased
sialylation (Section 5.1), will make these drugs even more
effective.

4.3 Blocking/Neutralizing Antibodies
4.3.1 Mechanism(s)
In the body, the natural function of many antibodies is to have
either pro- or anti-inflammatory activity (e.g., as discussed above
in Section 4.1 and Section 4.2, respectively); many other
antibodies, however, have blocking and neutralizing action
(e.g., HIV-neutralizing antibodies). Naturally-occurring
neutralizing antibodies typically function by binding to a virus
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or microbe, which can, at a minimum, negate the pathogen’s
infectivity, and ideally target it for immune destruction. These
antibodies provide precedent to exploit this class of molecules to,
in theory, bind to any receptor and block its activity. These
neutralizing antibodies, also commonly referred to as blocking
antibodies, are currently the largest class of clinical FDA-
approved protein therapeutics; indeed, multiple blocking
antibodies exist for PD1/PDL1 (7 FDA approved drugs),
CD20 (6), TNF (4), HER2 (4), CGRP/CGRPR (4), IL-7/IL-6R
(4), IL23 p19 (3), EGFR (3) and CD19 (3) (Mullard 2021).

4.3.2 Early Cancer Treatment Monoclonal Antibodies
Were Blocking Antibodies
Immune checkpoint inhibitors are one of today’s most exciting
cancer immunotherapies, evidenced by the largest category (7 of
100) FDA-approvedmonoclonal antibodies being in this category
(Mullard 2021). Several of the first immunotherapies, particularly
for anticancer mAbs, also were blocking antibodies, including
rituximab (1997, CD20); trastuzumab (1998, HER2);
alemtuzumab (2001, CD52); and cetuximab (2004, EGFR) (Lu
et al., 2020). Of these, cetuximab is a notable example from almost
20 years ago that alerted the pharmaceutical industry and
regulatory agencies to the importance of glycosylation when
the α-Gal epitope posed a major safety concern, as discussed
below (Section 5.2.1). Interestingly, despite its early
development, cetuximab remains one of the few commercial
IgG mAbs that have a non-canonical Fab region N-glycan
(Ayoub et al., 2013; Janin-Bussat et al., 2013). In the future as
the role of Fab glycans in auto-antibody responses and auto-
immune diseases become better defined (van de Bovenkamp
et al., 2016; Van de Bovenkamp et al., 2018), we predict that
commercial mAb development will revisit this category of mAbs.

4.3.3 HIV Neutralizing Antibodies
Human immunodeficiency virus 1 (HIV-1) remains an elusive
and difficult-to-treat pathogen that causes acquired
immunodeficiency syndrome (AIDS). The viral envelope’s
negligible immunogenicity is attributed to its host-derived
glycan shield similar to SARS-CoV-2 and influenza (Section
2.3.2). Antibodies against the virus primarily target the
envelope spike glycoprotein (Env), the only viral protein on
the virus’ surface, which is expressed in three form: gp120,
gp140, and gp160 (Go et al., 2017; Heß et al., 2019; Seabright
et al., 2019; Offersen et al., 2020; Wang et al., 2020). The Env
protein is displayed sparsely on HIV-1, limiting the ability of
antibodies to crosslink and elicit an immunogenic response to
this virus. Nevertheless, certain individuals develop broadly
neutralizing antibodies (bNAbs) against Env (Go et al., 2017;
Seabright et al., 2019; Wang et al., 2020) that, although not
providing a complete cure, do suppress most deleterious
effects of HIV infection.

The capability of certain AIDS patients to produce bnAbs
against HIV-1 spurred interest in mimicking these antibodies to
produce effective vaccines. Engaging, or perhaps more precisely
thwarting, glycosylation is critical for enhancing the
immunogenicity of emerging HIV-1 vaccines. A longstanding
difficulty in developing an effective bNAb vaccine is the notorious

ability of HIV-1 to shift its glycosylation patterns (Wei et al.,
2003), generating entirely new profiles in response to the adaptive
immune response (Go et al., 2017; Offersen et al., 2020; Wang
et al., 2020); a well-known example involves the N334 position on
the Env protein (Seabright et al., 2019). As a counterpoint, bNAbs
to Env function by recognizing glycosylation patterns that are
conserved across clades of viral proteins, including atypical
oligomannose structures (Seabright et al., 2019; Wang et al.,
2020). Recent studies have focused on determining highly
conserved glycoprofiles across viral strains, metabolic activities,
and cell types (Wang et al., 2020) to facilitate bNAb-inducing
HIV-1 vaccine development.

The previous two paragraphs laid out challenges facing natural
immunity to HIV-1 infection, many of which result from viral
glycosylation. To turn the tables on the virus, intriguing
glycoengineering strategies have been directed towards treating
AIDS. In one pioneering effort, Song and coworkers describe how
the addition of an N-glycan to the HIV neutralizing antibody
ibalizumab (Trogarzo®) improves its efficacy (Song et al., 2013).
The added N-glycan helps fill “empty space” between the
antibody and viral epitope, thereby increasing the binding
interface and affinity. In this groundbreaking study, the glycan
was limited a the Glc2Man5 structure (Figure 1B); in the future,
follow-on glycoengineering efforts can further facilitate
ibalizumab-Env binding interactions, resulting in even more
potent neutralizing antibodies. (Strategies for attaining
improved glycoforms towards these objectives are provided in
Section 5 of this report.)

4.4 Antibody-Drug Conjugates
Antibodies are attractive drug delivery vehicles because their
binding specificity allows them to deliver payloads with
minimal off-target toxicity. As such, a variety of methods have
evolved to directly link a drug of interest to an antibody, thus
forming antibody-drug conjugates (ADCs). Conventional
chemical conjugation of drug payloads typically utilize the
amines of lysine or thiols of cysteine residues present in the
amino acid sequence of the antibody (Qasba 2015; Tang et al.,
2019). This approach results in heterogeneous ADCs with greater
susceptibility to aggregation, decreased antibody stability, or
cytotoxicity that together pose barriers to effective clinical use
and increase regulatory scrutiny.

These pitfalls have spurred researchers to create active,
homogenous ADC populations with one such class of these
drugs known as glycosite-specific ADCs (gsADCs) (Tang
et al., 2019). These glycoengineering strategies take advantage
of the conserved, biantennary N-glycosylation site present at the
asparagine 297 residue of the CH2 regions of the Fc domain. One
strategy uses metabolic glycoengineering to install thiol-modified
fucose in Fc domain glycans (Figure 6A), which can be used as a
chemical handle for drug conjugation (Figure 5A, (Okeley et al.,
2013)). Another chemical method for site-specific chemical
conjugation to Fc glycans involves mild periodate oxidation
(Jourdian et al., 1971; Peters & Aronson Jr 1976), which
selectively introduces aldehyde groups into sialic acids
(Figure 5B); a downside of this approach is the low sialylation
of Fc glycans, often 2% or lower. A strategy using non-natural
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FIGURE 5 | Glycosylation-based antibody-drug conjugate (ADC) ligation strategies based on chemically-modified fucose (A) or sialic acid (B, C, and D). (A) Thiols
can be installed into non-natural fucose using metabolic glycoengineering and used as “chemical handles” to ligate drug molecules to the Fc domain glycans of
antibodies using thiol-reactive maleimides (Okeley et al., 2013). (B) Aldehydes can be selectively introduced into sialic acids by oxidizing the C8-OH groups; the aldehyde
then can be conjugated to drugs using the hydrazino-iso-Pictet-Spengler (HIPS) reaction (Drake et al., 2014). (C)Metabolic glycoengineering can be used to install
azido-sialic acids into glycans (Saxon & Bertozzi 2000), which can then be used to conjugate drugs to the antibody using dibenzocyclooctyne (DIBO) conjugation
reactions (Li et al., 2014). (D) Alkyne groups can also be introduced into sialic acids through metabolic glycoengineering, which can then be conjugated using
conventional copper catalyzed click chemistry (Du et al., 2009; Hong et al., 2010).

FIGURE 6 | Overview of metabolic glycoengineering (MGE). Non-natural monosaccharide analogs capable of installing “chemical handles” into the N-glycans of
therapeutic proteins include: (A) C6-modified fucose (B) C9-modified sialic acids, and (C) C2-modified ManNAc analogs, which are converted to N-acyl (C5) modified
sialic acids before installation into N-glycans. (D) “High-flux” esterase-protected ManNAc analogs are now widely employed in MGE experiments to increase cell uptake
and reduce the concentrations required for media supplementation from 30 to 75 mM (Yarema et al., 1998) to 100 μM or less (Jones et al., 2004; Kim et al., 2004;
Almaraz et al., 2012).
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ManNAc analogs to increase flux through the sialic acid pathway
(Figure 6) and simultaneously install bioorthogonal chemical
functional groups such as azides (Figure 5C) and alkynes
(Figure 5D) provides additional options to create gdADCs.

5 CONSIDERATIONS FOR THE DESIGN
AND PRODUCTION OF
GLYCOENGINEERED THERAPEUTIC
PROTEINS

So far, this report outlined various ways that glycosylation
controls the pharmacokinetics, pharmacodynamics, and overall
clinical efficacy of therapeutic proteins. Knowing this, biomedical
researchers and the pharmaceutical industry are increasingly
aware of the importance of controlling the glycosylation of
therapeutic proteins using glycoengineering strategies
summarized in Section 5.1. Ultimately, the production of
glycoengineered proteins depends on glycocompatible
production systems, which today are focused on CHO cell
biomanufacturing (Section 5.2. Finally, arguments that the
current industry-standard CHO cell platform is stifling
innovation, especially with respect to glycosylation, are leading
to the development of alternative cell-based production platforms
(Section 5.3)

5.1 Glycoengineering–Methods and
Approaches
5.1.1 Glycoengineering of Proteins Isolated From
Natural Sources to Increase Their Effectiveness
The clinical use of therapeutic proteins pre-dated today’s
recombinant protein production technologies with early
generations of these drugs obtained from natural sources;
insulin is a well-known example initially derived from bovine
and porcine pancreases. Additional examples from the current
report include hyaluronidase obtained from mammalian sperm,
β-glucocerebrosidase isolated from human placenta (Deegan &
Cox 2012), blood coagulation and clotting factors obtained from
human plasma, and FSH prepared from human urine from
postmenopausal women. In some cases, exemplified by β-
glucocerebrosidase, glycoengineering was a critical enabling
technology to turn this enzyme into a useful drug by installing
high mannose N-glycans (Figure 1B) that enabled macrophage
uptake to treat GD. In other cases, illustrated by FSH, the complex
role of glycosylation is still being unraveled. For example, certain
glycoforms can be beneficial for PD properties while detrimental
for PK properties and vice versa; once a fuller understanding is in
hand, glycoengineering strategies can be applied to improve this
type of therapeutic protein. There is even evidence that the few
non-glycosylated therapeutic proteins can benefit from
glycoengineering, for example, insulin with three newly-added
N-glycans has improved resistance to proteases, potentially
opening the door to oral dosing (Guan et al., 2018).

Chemoenzymatic synthesis, which combines chemical
synthesis with the use of enzymes such as glycosyltransferases,

glycosidases, lipases, and glycosynthases, is a powerful method for
the synthesis of complex glycans and glycoproteins (Muthana
et al., 2009; Wang et al., 2019; Ma et al., 2020b; Zeng et al., 2022).
In addition to building new glycans, chemoenzymatic methods
can be used to remodel glycans on antibodies and other
glycoproteins, thus improving glycoform homogeneity (Wang
et al., 2019). Additionally, this method removes the need for
protection and deprotection of peptides that occurs in purely
chemical synthesis (Zeng et al., 2022). Because this approach
combines both the selectivity of enzymatic reactions and the
flexibility of chemical glycan synthesis, it provides a facile method
for the synthesis of complex polysaccharides, heparin sulfates,
glycoproteins and glycolipids that are difficult to synthesize
homogeneously via other methods (Muthana et al., 2009). For
example, chemoenzymatic glycan remodeling of IgG antibodies
can be employed to produce glycosite-specific antibody-drug
conjugates (Zeng et al., 2022).

5.1.2 Cell-Free Methods to Modulate Glycosylation:
IVIg Therapy as a “Case Study”
Immunoglobulin used in IVIg therapy illustrates how isolation of
therapeutic proteins from natural sources (e.g., human blood
donors) is a cumbersome and inefficient process. Depending on
the manufacturer, 1,000 to 100,000 donor samples are pooled to
purify and concentrate IgG to 50–100 mg/ml with preparations
typically still containing residual levels of IgE, IgM, and IgA
antibodies at ≤ 700 μg/ml. The pooled samples are screened for
viral contamination (Hep B, Hep C, and HIV) and monitored for
conformance to an acceptable titer of ABO blood type-
recognizing antibodies to reduce risk of hemolytic reactions in
the recipients (Barahona Alfonso & João 2016). At the end of this
cumbersome process, sialylated IgG antibodies can be as low as
15% of the total, resulting in less-than-optimal anti-inflammatory
potential.

The enticing prospect of increasing the potency of
immunoglobulin therapy by enhancing the α2,6-sialylation
(Figure 4A) of donor IgG has been apparent for ~15 years
(Kaneko et al., 2006). Li and coauthors summarize several
attempts to increase sialylation (Li D. et al., 2021), one of the
first efforts involved the use of Sambucus nigra agglutinin (SNA)
affinity chromatography to prepare IVIg to treat rheumatoid
arthritis (Sudo et al., 2014). Taking a different approach,
chemoenzymatic strategies to improve IgG sialylation incubate
pooled IgG samples with α2,6-sialyltransferase in the presence of
CMP-sialic acid (the enzyme’s co-substrate). In some cases, the IgG
is pretreated with neuraminidase to remove non-inflammatory α2,3-
sialic acids and, in other cases, the sialylation reaction is done in the
presence of β1,4-galactosyltransferase and UDP-galactose to install
the penultimate galactose required for terminal sialylation (Anthony
et al., 2008; Washburn et al., 2015; Bartsch et al., 2018). Another
enticing approach, pioneered by Lai-Xi Wang’s group, is to use
transglycosidases to remove existing Fc domain N-glycans and
enzymatically replace them with homogenously sialylated glycans
(Li et al., 2017; Giddens et al., 2018; Wang et al., 2019).

These post-production glycoengineering strategies have
successfully improved the efficacy and potency of
immunoglobulin therapy; for example, a 0.1 g/kg dose of SNA-
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enriched IVIg is as effective as 1.0 g/kg of unfractionated drug
(Kaneko et al., 2006). A major pitfall, however, is that these
methods can only be performed on the milligram to Gram scales
(or optimistically, on a kilogram scale) based on the expense of
the lectins, glycosyltransferases, and nucleotide sugar donors
involved (Li D. et al., 2021). Considering that worldwide
consumption of IVIg is over 100 tons per year, post-
production chemoenzymatic glycoengineering strategies
remain niche technologies not yet applicable to large scale
preparation of this drug. This case study illustrates the need
for versatile cell-based production systems for manufacturing of
glycoengineered protein therapeutics where cells produce
expensive reagents such as glycosyltransferases and nucleotide
sugar donors essentially “for free” (i.e., they are produced by
cellular metabolism).

5.1.3 Cell-Based Production of Recombinant
Glycoproteins
With a few notable exceptions (e.g., IgG antibodies for IVIg
therapy that are isolated and purified from natural sources),
today’s therapeutic proteins are produced in cell-based
systems. Production in living cells became an option with the
maturation of DNA cloning technologies in the late 1970s and
early 1980s that enabled recombinant techniques for protein
expression. Benefits for cell-based production of recombinant
proteins are numerous including theoretically limitless supplies
of the therapeutic, the ability to humanize products by altering
the amino acid sequence to avoid immunogenicity and increase
productivity, easier purification, and the avoidance of potential
pathogens and immunogens from non-human sources. Equally
important andmost germane to this article, cell-based production
systems can be customized to provide beneficial glycosylation
patterns as discussed in detail in Section 5.2 for CHO cells and in
Section 5.3 for emerging alternative production systems.

5.1.4 “Building in” N-Glycan Sites
Natural N-glycosylation machinery recognizes a consensus
sequon (Asn–X–Ser/Thr, where X is any amino acid except
proline), and initiates glycosylation with the addition of the
LLO 14-mer (Figure 1A, Step 1) to the nitrogen atom of the
asparagine side chain. In theory, the installation of new N-linked
glycans into a protein of interest can be achieved by introducing
amino acid substitutions that yield this sequon. In practice, this
sequon is a necessary, but not sufficient, condition for successful
N-glycosylation because, for example, the built-in glycan must
not interfere with protein folding. Even if a target protein is
successfully glycosylated, the required amino acid substitution(s)
or neoglycan may lead to structural alterations that deleteriously
affect PK, PD, or therapeutic efficacy. In the past, efforts to add
N-glycan sites to therapeutic proteins used a trial-and-error
process. For example, two decades ago when darbepoetin alfa
was designed, several dozen variants of recombinant human EPO
containing one or more new sites for N-glycan attachment were
evaluated (Elliot et al., 2000; Egrie & Browne 2002). More recent
approaches for glycosylation site installation combine structural
information with rational and computational design approaches
to more efficiently design functional and efficacious constructs.

To design new glycosylation sites, a script with a sliding
window evaluation of every amino acid triplet can be
employed to identify all possible sites for insertion of an
N-glycan by modifying existing amino acid sequences to the
Asn–X–Ser/Thr consensus sequence. This method quickly
identifies single and double amino acid substitutions that yield
potential sites for N-linked glycosylation. Ideally, the sequence
change should be minimal (i.e., a single amino acid mutation is
ideal), to offer the highest probability that the protein remains
functional. Once potential sites for N-glycans have been
identified, further in silico evaluation can help guide specific
glycovariants to be made experimentally. Online tools such as
the NetNGlyc Server, an N-linked glycosylation prediction site
(Gupta & Brunak 2002), can be used to estimate the likelihood
that each of the possible engineered glycosylation sites will be
successfully glycosylated. Sites with low likelihood of
glycosylation (<0.55) can be disregarded before proceeding; in
our experience, most sites with prediction frequencies of >0.70 or
more are successfully glycosylated (Saeui et al., 2020).

Using structure design tools, such as the PyMOL mutagenesis
wizard or the Rosetta software package, each neoglycosylation site
within a glycoengineered protein can be modeled to ensure that
desired features of the protein structure are maintained. First, the
glycosylation site should be solvent-exposed and not be buried
within the interior of the protein. Second, the glycosylation site
should be positioned to avoid steric interference of attached
glycans with important domains of the protein. For example,
if the therapeutic protein is an enzyme, the glycan should not
interfere with substrate access to its active site; this was a design
feature for ENPP1-Fc (Figure 3), where built-in glycans did not
comprise substrate binding or catalysis (Stabach et al., 2021). If
the protein is a cytokine, hormone, growth factor, or antibody, the
glycan should not interfere with the therapeutic protein’s binding
to partner proteins. In certain cases, glycan-based steric factors
can be advantageous to the protein’s function. For example, the
increased size resulting from installed glycans in darbepoetin alfa
leads to decreased kidney filtration and extended
pharmacokinetic half-life (Section 2.1.1). As another design
feature, also considered for glycoengineered ENPP1-Fc, novel
N-glycans can be situated to block protease access to vulnerable
surfaces of the enzyme (Stabach et al., 2021). Finally, the addition
of new glycans can improve binding affinity through their
introduced ionic, van der Waals, or entropic forces as
exemplified by improved affinity of an HIV-neutralizing IgG
antibody to gp120 upon addition of a non-canonical glycan (Song
et al., 2013). Regardless of the glycoengineering objective,
candidate proteins must be individually evaluated to ensure
that their functional activity is as desired.

The use of in silico tools in combination with structural
information can be used to rationally design N-linked
glycosylation cites with the goal of maintaining, or even
enhancing, the activity of the target protein. In cases where a
solved structure is unavailable, in silico structure prediction tools
can be leveraged to generate theoretical protein structures and
guide design of theoretical N-linked glycosylation sites. Various
computational tools have emerged to generate protein structures
using homology-based and/or de novo modeling in place of
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directly resolving the protein structure (Kuhlman & Bradley
2019; Jumper et al., 2021; Kryshtafovych et al., 2021).
Furthermore, recent advances in modeling glycans themselves
can be incorporated into the design process, to provide additional
information about how the structure and activity of a protein may
be impacted by the glycans themselves (Labonte et al., 2016; Li M.
et al., 2021). In summary, the ability to predict both protein and
glycan structure using computational tools empowers many
glycoengineering approaches where structural information is
lacking.

5.1.5 Metabolic Glycoengineering: Further Control of
Glycan Chemistry
Metabolic glycoengineering (MGE, Figure 6) is a method
pioneered approximately 40 years ago when Brossmer and
others developed chemically-modified sialic acid analogs,
including bulky moieties such as fluorophores, that could be
enzymatically installed into glycans (Gross & Brossmer 1988;
Gross et al., 1989; Gross & Brossmer 1995). Subsequent advances
in the 1990s and 2000s include the Reutter group’s demonstration
of MGE in living cells and animals (Kayser et al., 1992b; Keppler
et al., 2001; Wratil et al., 2016); the Bertozzi group’s development
of analogs with chemical functionalities not normally found on
cells, thereby allowing bioorthogonal chemoselective ligation
reactions (Mahal et al., 1997; Saxon & Bertozzi 2000; Prescher
et al., 2003); the extension of MGE to biosynthetic pathways
beyond sialic acid including fucose (Sawa et al., 2006; Okeley
et al., 2013), GlcNAc (Vocadlo et al., 2003; Du et al., 2009), and
GalNAc (Kayser et al., 1992a; Boyce et al., 2011); as well as efforts
to incorporate high-reactivity chemoselective reaction partners
including ring-strained cyclooctynes (Baskin et al., 2007; Ning
et al., 2010) and tri- or tetrazines (Kamber et al., 2019; Agatemor
et al., 2020).

Today, MGE technologies have matured to the point where
they comprise an attractive toolkit for cancer treatment
(Agatemor et al., 2019; Wang & Mooney 2020), and
increasingly, for other conditions such as enhancement of
neuronal differentiation for spinal cord and brain regeneration
(Sampathkumar et al., 2006; Du et al., 2021; Du et al., 2022)
Specific to therapeutic proteins, MGE can be used in various
ways. For example, MGE can be used to endow antibodies with
“chemical handles” into antibodies by replacing core fucose with
thiol-modified residues and terminal sialic acids with their azido-
modified counterparts (Section 4.4; Figure 5). In theory,
introduction of non-natural sialic acids into IgG Fc domain
glycans can achieve an antibody-to-drug ratio of four if both
glycans are fully sialylated, biantennary structures; in practice,
however, the low site occupancy of sialic acid on Fc domain
glycans hinders the use production of high valency ADCs.

A variation of MGE can help overcome suboptimal levels of
sialic acid by improving the sialylation of IgG Fc domain glycans
and therapeutic proteins in general. Briefly, “high-flux” MGE
analogs began with peracetylation where the ester-linked acetyl
groups rendered the sugars more lipophilic, facilitating diffusion
into cells (Lemieux et al., 1999; Sarkar et al., 1995; Yarema et al.,
2001). Upon entry into a cell, non-specific esterases remove the
acetate groups, allowing the “core” monosaccharide to enter its

targeted biosynthetic pathway (Mathew et al., 2012; Wang et al.,
2009). Our team discovered that tri-butanoylated hexosamines,
exemplified by 1,3,4-O-Bu3ManNAc (Figure 6D), provide even
higher flux into biosynthetic pathways, increasing sialylation with
high efficiency (Aich et al., 2008; Almaraz et al., 2012). This
analog increases the sialylation of therapeutic proteins including
IgG antibodies (Yin et al., 2017), EPO (Mertz et al., 2020) and
ENPP-1 (Stabach et al., 2021). In the case of ENPP1-Fc,
production with 1,3,4-O-Bu3ManNAc increased serum half-life
from 170 to 204 h and the AUC from 37,000 to 45,000
(Figures 3E,F).

5.2 Current Therapeutic Protein
Biomanufacturing Overwhelmingly Uses
CHO Cells
Chinese hamster ovary (CHO) cells have become the workhorse
biomanufacturing platform for therapeutic proteins over the past
2 decades. Because of the importance of these cells, we describe
their safety qualifications (Section 5.2.1), limitations (Section
5.2.2), and efforts towards overcoming these pitfalls by using
genetically modified CHO cell variants with altered glycosylation
capacities (Section 5.2.3).

5.2.1 Safety Issues–Exemplified by the α-Gal
Trisaccharide Immunogenic Epitope
Chinese hamster ovary cells have become the “go-to” cell line for
biomanufacturing therapeutic proteins for several reasons,
including efficiency, cost-effectiveness, and—historically—for
safety reasons. Historically, CHO cells have been used for
recombinant protein production since the 1980s based on
several advantages, including their ability to produce relatively
large amounts of glycoproteins, their lack of human pathogens,
and their ability to approximately replicate human glycosylation
patterns (Ma et al., 2020a). Over the past decade or so, production
has coalesced around CHO cells for safety/regulatory reasons
after pioneering anticancer antibodies severely harmed patients
in early clinical testing. In particular, in 2004 cetuximab
(Erbitux®)—a blocking antibody that inhibits the epidermal
growth factor receptor (EGFR) and is used to treat metastatic
colorectal cancer and head and neck cancer -- triggered
anaphylaxis in cancer patients, resulting in several deaths
(Friedman 2008). The affected patients had pre-existing IgE
antibodies against galactose-α-1,3-galactose (i.e., “α-Gal”
Figure 4B) generated by lone star tick bites; subsequent
anaphylaxis was elicited by the presence of α-Gal on Erbitux®
produced in murine SP2/0 cells (Steinke et al., 2015). This
incident raised awareness that CHO cells, which do not make
α-Gal are safe host cells for biomanufacturing of therapeutic
proteins helping these cells gain widespread regulatory
acceptance.

5.2.2 Limitations/Drawbacks of CHO Cells
Chinese hamster ovary cells have glycosylation patterns that are
generally regarded as safe (i.e., they lack the hyper-immunogenic
α-Gal epitope) but they do have drawbacks. For example, they
lack α2,6-sialyltransferase activity, making them inappropriate
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production hosts for potently anti-inflammatory antibodies.
Another pitfall is that CHO cells produce the Neu5Gc form of
sialic acid (Figure 4B) (Hokke et al., 1990); although only weakly
immunogenic, its presence in therapeutic proteins has raised
caution (Ghaderi et al., 2010; Ghaderi et al., 2012). Despite these
shortcomings, CHO cells currently produce ~90% of therapeutic
antibodies including virtually all newly-approved drugs. One
reason why CHO cells are dominant is because of their
acceptance by regulatory agencies, which can be regarded as a
positive feature but also has its drawbacks. For example, quoting
from Burnett and Burnett (Burnett & Burnett 2020):

“As promising as technology may be, drug companies are
unwilling to risk the huge sums of money required to get a new
product approved by the large drug approval administrations
(e.g., the FDA or EMA) if there is already a proven alternative
expression system with regulatory approval. This economic
constraint has a stagnating effect on the pharmaceutical
industry, limiting the scale of progress and development of
new drug production technologies.”

Despite the stifling influence of regulatory agencies that have
helped embed CHO cells as the go-to cell line for
biomanufacturing, efforts continue to develop alternative
production platforms. These efforts are not primarily driven
by glycoengineering concerns but they often represent
substantial departures from standard glycosylation patterns
inherently produced by CHO cells. As such they face
regulatory hurdles but also provide opportunities to tune
glycosylation to improve the efficacy of therapeutic proteins.

5.2.3 Genetically Modified CHO Cells
Before describing major departures from CHO cells (e.g., the use
of bacteria, plant cells, yeast, and insect cells for
biomanufacturing, Section 5.3), we cover “baby steps” being
taken to rectify glycosylation deficits in CHO cells, or more
positively, to endow them with enhanced glycosylation
capabilities. Mammalian cells have 250 or more glycogenes,
the majority are glycosyltransferases present in the Golgi, the
last stage of glycan production (Tariq et al., 2018). The potential
for genetic control of glycosylation in CHO cells was
demonstrated almost 30 years ago by a library of lectin-
selected, mutant sublines developed by Pamela Stanley’s
research group (Stanley et al., 1996; Stanley & Patnaik 2005).

Today, advances in nucleic acid gene-editing techniques
including zinc finger nucleases (ZFNs), transcription activator-
like effector nucleases (TALENs), and clustered regularly
interspaced short palindromic repeats with Cas9 protein
(CRISPR/Cas9) facilitate precise, stable, and systematic
engineering of the glycosylation capabilities of mammalian
cells (Narimatsu et al., 2021; Wang et al., 2019). One example
is the over-expression of α2,6-sialyltransferase (ST6) in non-
human cell lines such as CHO cells (Yin et al., 2015), which
have been used to produce EPO and IgG antibodies (Mertz et al.,
2020; Yin et al., 2015) as well as ENPP1-Fc with improved
sialylation and PK properties [Figure 3D, (Stabach et al.,
2021)]. ST6 over-expression increases overall sialylation and
results in a humanized α2,6-sialylation profile in CHO cells. In
addition to over-expression of glycogenes to improve CHO cells

as production hosts for therapeutic proteins, it can be
advantageous to knock out other glycogenes. Indeed, the first
glycogene KO’d for biomanufacturing involved a tour-de-force
effort in CHO cells where two rounds of targeted homologous
recombination ablated the two allelic copies of the α6-
fucosyltransferase (Fut8) gene (Narimatsu et al., 2021). These
efforts have reached fruition with several afucosylated therapeutic
antibodies now in clinical use (Section 4.1.2).

5.3 Additional Cell-Based Options for
Biomanufacturing Therapeutic Proteins
The limitations of CHO cells for biomanufacturing (Section
5.2.1) have kept alive efforts to develop additional cell lines as
production platforms. Here in Section 5.3 we describe cell
systems used to produce at least one, and often several, FDA-
approved therapeutic proteins; each is discussed briefly providing
a perspective on the system’s current use and future prospects
with an emphasis each system’s glycoengineering capabilities.

5.3.1 Human Cells
By definition, production of therapeutic proteins in human cells
provides the drugs with humanized glycosylation, including
features such as α2,6-sialylation lacking in CHO cells and,
unlike mouse cells, a lack of α-Gal that enhances safety.
Downsides of production include the high cost and potential
safety concerns of animal products used in production (e.g., fetal
bovine serum is generally required for the culture of human cells,
opening the door to xenopathogen contamination) to low
productivity (typically one to ~100 s mg/L) (Dumont et al.,
2016). Nonetheless there are five FDA approved therapeutic
proteins produced in human cells: Idursulfase (Hunter
syndrome, approved 2006), Velaglucerase alfa (Type 1
Gaucher disease, approved 2010), rFVIIFc (Hemophilia A,
approved in 2014), rFIXFc (Hemophilia B, approved 2014),
and Dulaglutide (Type 2 diabetes, approved 2014). The lag in
the approval of new products over the past several years, however,
suggests that production of therapeutic proteins in human cells
remains an infrequently used, niche strategy.

5.3.2 Murine Cells
Expression of FDA-approved therapeutic proteins in murine
cells began in the 1990s (Lifely et al., 1995) and continues
today despite safety issues including the anaphylaxis-inducing
α-Gal epitope (Figure 4B) and high levels of the mildly
immunogenic Neu5Gc form of sialic acid (Figure 4A)
(Lalonde & Durocher 2017). Although immunogenicity
concerns remain for these drugs, safety risks are minimized
by pre-screening patients for IgE anti-α-Gal antibodies linked
to anaphylaxis, allowing murine-produced mAbs to remain on
the market. Mouse myeloma NS0 and Sp2/0 lines are used in
biomanufacturing, produceing cetuximab (Erbitux®
mentioned earlier) and several mAbs approved up to ~2015,
including palivizumab (Synagis®), dinutuximab (Unituxin®),
necitumumab (Portrazza®), and elotuzumab (Empliciti®).
Similar to human cells, the negligible approval of new
products in the past few years suggests that murine cells are
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unlikely to figure prominently in future biomanufacturing
efforts.

5.3.3 Bacteria
During the early development of recombinant DNA technologies
in the 1970s, efforts were focused on producing products in
bacteria; for example, Escherichia coli, was an attractive low-cost,
high-yield (e.g., ~8 g per liter (Menacho-Melgar et al., 2020))
production host. Despite some issues, such as the challenge of
purifying recombinant mammalian proteins from bacterial cell
components (e.g., the cell wall) and the possibility of endotoxin
contaminants (Singh et al., 2016), there were several successfully-
produced therapeutic proteins in E. coli in the 1980s. These
including Humulin® (a recombinant form of insulin),
Protropin® and Humatrope® (to treat hGH deficiency),
Roferon A® (to treat hairy cell leukemia), and IntronA® (to
treat genital warts and hepatitis) (Sanchez-Garcia et al., 2016).
In retrospect, the inability of E. coli to N-glycosylate proteins, and
therefore to take advantage of the concomitant protein folding
chaperone system in mammalian cells (Helenius & Aebi 2001),

posed a significant challenge during early attempts to express
large, difficult-to-fold mammalian proteins in E. coli that more
often than not resulted in inclusion body formation.

Unlike human and murine cells, which suffer from
fundamental limitations for biomanufacturing (e.g., low
product yield safety concerns, and high cost), a major
detriment of bacterial production systems is their lack of
mammalian-type glycosylation. In theory, this pitfall can be
overcome, at least in part, by building N-glycosylation
capabilities into E. coli used for recombinant protein
production (Wayman et al., 2019). For example, the protein
glycosylation pathway of Campylobacter jejuni, a pathogenic
bacterium (Szymanski et al., 2002), has been transferred into
laboratory strains of E. coli (Pandhal & Wright 2010; Wacker
et al., 2002). The resulting glycans, however, are distinctly
different than human N-glycans (Figure 7A) (Abu-Qarn et al.,
2008). For example, they are mainly comprised of GalNAc, a
mammalian monosaccharide that does not normally appear in
mammalian N-glycans. Similarly, the presence of glucose is
unusual for mammalian N-glycans, where this monosaccharide

FIGURE 7 |Glycoforms of concern in bacterial, plant, fungal, and insect production systems. (A) Efforts to produce glycosylated recombination proteins in bacteria
(Section 5.3.3) have resulted in the non-human glycan structure shown. (B) Mammalian N-glycans have α1,6-linked core fucose (right), which along with sialic acid,
endow IgG antibodies with anti-inflammatory properties; plant cells (Section 5.3.4) produce N-glycan with α1,6-core fucose (center), and insect cells (Section 5.3.6)
produce doubly-fucosylated N-glycans (right). (C) Xylose, a monosaccharide not present in mammalian N-glycans, is added to plant-produced N-glycans
(Section 5.3.4). (D) Mannan synthesis in fungi (Section 5.3.5). (E) GalNAc incorporation in insects as compared to human galactose addition (Section 5.3.6).
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appears in the LLO 14mer precursor structure (Figure 1A) but
not in mature N-glycans found on glycoconjugates. Finally, di-N-
diacetylbacillosamine is a prokaryotic monosaccharide not found
in eukaryotes. Despite technologies to install N-glycosylation
pathways in bacteria being in their nascent stages, proof-of-
principle experiments (Figure 7A) coupled with continuing
robust efforts to improve prokaryote glycosylation (Ding et al.,
2019; Wayman et al., 2019; Pratama et al., 2021; Yates et al., 2021)
provide hope that in the future, additional therapeutic proteins
will be manufactured in bacterial hosts.

5.3.4 Plant Cells
Therapeutic protein production in plants has several advantages,
including that the infrastructure for large scale production of
crops is in place and in theory requires only water, sunlight, and
cheap fertilizers (Burnett & Burnett 2020; Karki et al., 2021). In
practice, current plant-based manufacturing uses cell-based
methodology rather than field-grown crops but retains
advantages over mammalian cell culture. These advantages
include a lack of animal products needed for plant cell culture
that reduces the risk of viral contamination; the ability to grow
cells in inexpensive polyethylene bags rather than stainless steel
bioreactors; and room temperature manufacturing without the
need for strict temperature control. Counteracting these
advantages are the low productivity of plants (e.g., ~100 mg/kg
of plant mass) and the complexity of purifying human proteins
from plant matter where cell wall components pose a challenge
(Singh et al., 2016; Schillberg et al., 2019).

The use of plant cells for therapeutic protein production is in
its infancy, with only one FDA-approved drug. This drug,
Elelyso® (i.e., taliglucerase alfa, mentioned above in Section
2.3.3 as a treatment for GD), was approved in 2012 (Fox
2012). Elelyso® illustrates glycosylation differences between
plant N-glycans and their mammalian counterparts; for
example, the plant ProCellEx® platform directly produces
N-glycans with exposed terminal mannose residues (e.g.,
Glc2Man3 to Glc2Man5 structures, Figure 1B) needed for
macrophage targeting and uptake (Tekoah et al., 2013). The
direct production of MR-targeting glycans in plant cells offers
simplicity and cost savings compared to the use of chemical
modulators of glycosylation (required for velaglucerase alfa
production) or enzymatic modification (imiglucerase) as
described in Section 2.3.3.

On a cautionary note, plant cells produce core structures with
α1,3-linked fucose not found in humans (human α1,6- vs. plant
α1,3-core fucosylation is shown in Figure 7B) and β1,2-linked
xylose (Figure 7C) not found in mammalian proteins (Castilho &
Steinkellner 2012; Montero-Morales & Steinkellner 2018).
Initially, concerns were raised that these non-human
glycoforms could be immunogenic in a mildly harmful way
reminiscent of Neu5Gc, or possibly with the severe effects of
α-Gal. Fortunately, only a small fraction of patients had pre-
existing antibodies that recognized these glycans on Elelyso®, and
those that did experienced no adverse effects (Rup et al., 2017). By
contrast, glycan-based immunogenicity of plant-produced blood
coagulation factors VIII and XIII remains a substantial
impediment to the commercialization of these hemophilia

drugs (Top et al., 2019). In some cases, instead of being
harmful, the potential immunogenicity of plant glycans has
been proposed to enhance cancer vaccines and cancer
immunotherapeutics through lectin-based stimulation of
antigen-presenting cells (Rosales-Mendoza et al., 2015).
Overall, similar to bacterial systems where improved cell hosts
are actively being pursued to improve glycosylation,
glycoengineering efforts remain underway in plants (Sukenik
et al., 2018; Fischer et al., 2021), opening the door for
increased use of plants for therapeutic protein production.

5.3.5 Fungi
Several yeast strains, including the widely used production hosts
Saccharomyces cerevisiae and Pichia pastoris, are generally
recognized as safe (GRAS) by regulatory agencies. Advantages
to fungal production include high yield (up to 12 g/L); cost and
safety advantages by avoiding the use of animal products such as
FBS during production; and sidestepping the danger of
endotoxins from E. coli production. A glycosylation-related
drawback is the production of hypermannosylated (mannan)
N-glycans in yeast that can contain dozens to hundreds of
mannose residues [Figure 7D (Orlean 2012)]. These extremely
large mannose structures clearly are incompatible with
therapeutic glycans. Fortunately, a straightforward solution
was found by knocking out two early genes (Och1 and Mnn9,
Figure 7D) in mannan biosynthesis [Hamilton & Zha 2015; De
Wachter et al., 2021); this approach was commercialized by
GlycoFi to humanize yeast glycosylation (Beck et al., 2010)].
The success of such approaches is evident from fungal production
systems being second only to CHO cells in the breadth of
commercial products; Kulagina and coauthors summarize the
use of fungal cells to produce four hormones (Novolin®,
Glucagen®, Valtropin®, and Semglee®); six vaccines
(Recombinvax®, Tritanrix-hepB®, Gardasil®, Mosquirix®,
Hexacima®, and Heplisalv-B®); four blood-related proteins
(Revasc®, Kalbitor®, Novothirteen®, and Jetrea®); one cytokine
(Leukine®) and one enzyme (Fasturtec®) (Kulagine et al., 2021).
In addition, glycoengineering strategies are being applied to
provide humanized glycan profiles of antibody drugs such as
trastuzumab (Herceptin®), where fungal Fc domain glycans
optimize ADCC (Liu et al., 2018).

5.3.6 Insect Cells
Insect cells, which have been under investigation for recombinant
protein production since the 1970s and 1980s (Hollister et al.,
1988), represent another low-cost (by using serum-free,
chemically defined media), high-yield (~5 g/L) production
system. Manufacturing advantages include no requirement to
control CO2 levels, relaxed temperature control allowing
production at lower temperatures, and reduced biosafety and
contamination concerns (Yee et al., 2018). Insect cell lines used
include S2 from Drosophila melanogaster, Sf9 from Spodoptera
frugiperda, and High Five® from Trichoplusia ni (Yee et al., 2018).
Additionally, insect cells can perform both N- and O-
glycosylation, they efficiently secrete proteins and can cleave
signaling peptides, giving them an advantage over prokaryotic
pathways and making them plausible production hosts for large
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glycoproteins like antibodies (Palmberger et al., 2011; Toth et al.,
2014).

There are, however, several glycosylation concerns related to
the production of therapeutic proteins in insect cells. For
example, insect cells produce simpler N-glycans than
mammalian cells, which can affect bioactivity and increase
immunogenicity (Geisler et al., 2015; Loos & Steinkellner
2012). Another concern is that although there is some
evidence of sialylation in insect cells (Joshi et al., 2001; Kim
et al., 2002; Marchal et al., 2001; von Bergen Granell et al., 2011),
in general, they do not add this therapeutically important sugar to
their glycans. Another concern is that insect cells have double
core fucosylation (Figure 7B), which, if installed in the Fc domain
of IgG antibodies likely would impact downstream Fcγ receptor-
mediated effector responses. Finally, the presence of GalNAc in
the place of galactose on the elaborated antennae of N-glycans
produced in insect cells (Figure 7E) is another potential concern.
Overall, we note that although there has been decades-long
interest in producing IgG antibodies in non-mammalian
expression hosts including yeast, plants, and insect cells
(Palmberger et al., 2011; Loos & Steinkellner 2012), these
efforts have not resulted in commercially successful products.
We posit that these difficulties stem in part from glycosylation
hurdles, and as such, new glycoengineering approaches will be
critical for future production of therapeutic antibodies in a wider
range of host cells.

Despite these glycosylation concerns, which have thwarted
production of IgG antibodies, several other commercial products
have been successfully produced in insect cells. One product is
Cervarix®, a virus-like particle (VLP) cervical cancer vaccine
produced in High Five cells® (Senger et al., 2009). A second is
Provenge®, the first immunotherapy for hormone-refractory
prostate cancer, which is produced in Sf21 cells (Contreras-
Gómez et al., 2014). A third is Glybera®, a now discontinued
adeno-associated virus-based gene therapy for lipoprotein lipase
deficiency (LPLD) produced in Sf9 cells (Kurusawa et al., 2020).
Finally, Flublok® is a hemagglutinin protein used as an influenza
vaccine, which is also made in Sf9 cells (Cox & Hollister 2009).
Based on the title of Yee and coauthor’s review article “The
coming age of insect cells for manufacturing and development of
protein therapeutics” (Yee et al., 2018), there is reason for cautious
optimism for continued expansion of insect cells as a production
platform based on long-standing glycoengineering efforts (Ailor
et al., 2000; Hollister et al., 1988; Lawrence et al., 2001; Toth et al.,
2014). For example, Mabashi-Asazuma and coworkers have
developed a new baculovirus vector that eliminates core α1,3-
fucosylation in insect cells (Figure 7B) (Mabashi-Asazuma et al.,
2014), decreasing the immunogenicity of glycoproteins produced
in these cells.

6 CONCLUDINGCOMMENTS AND FUTURE
DIRECTIONS

As the most abundant and varied post-translational modification
in mammals in general and humans in particular, glycosylation

offers great potential to improve today’s predominant drugs,
which are protein therapeutics. As described in this report,
which focuses on N-glycans, there are numerous opportunities
to glycoengineer current and upcoming proteins to improve their
folding, trafficking, ligand interactions, solubility, stability, and to
improve the safety, activity, pharmacokinetics, and
pharmacodynamics of this increasingly important class of
therapeutics. There already are a handful of deliberately
glycoengineered products on the market, with prominent
examples being afucosylated pro-inflammatory antibodies and
β-glucoceraminidase endowed with high mannose-type glycans
for macrophage targeting to treat GD. To date, glycoengineered
drugs have exploited a single strategy, typically selection of a host
cell line capable of biosynthetically producing the desired type of
glycosylation. In the future, as already demonstrated pre-
clinically by the glycoengineered ENPP1-Fc (Figure 3),
multiple glycoengineering strategies (installing new N-glycan
sites, production in ST6-overexpressing cells, and media
supplementation with a sialic acid precursor) can be
productively combined for multifaceted improvement.

Also in the future, additional forms of glycosylation including
O-, C-, or S- will provide additional avenues to improve
therapeutic proteins. Moreover, the glycoengineering “toolkit”
described in Section 5 provides methodology to improve
additional biological therapeutics including antimicrobial
peptides (AMPs); glycosylated nanoparticles, liposomes, and
exosomes for drug delivery and bioimaging; and
glycodendrimers (Jain et al., 2012; Grimsey et al., 2020;
Torres-Pérez et al., 2020). The safety of these
biopharmaceuticals, including toxicity and immunogenicity,
are impacted by glycosylation and, similar to antibodies, their
glycoprofiles are critical quality control attributes during
biomanufacturing (Mastrangeli et al., 2019).

In conclusion, key examples provided for various
glycosylation scenarios demonstrate the potential of
individualized, targeted glycan modification to improve
various therapeutic proteins. As therapeutic proteins advance,
the specific adjustment of glycosylation profiles will hold greater
importance as biomanufacturers increasingly move from tuning
glycosylation to avoid immunogenicity or toxicity to proactively
improving drug efficacy.
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The pandemic caused by SARS-CoV-2 is the most widely spread disease in the 21st
century. Due to the continuous emergence of variants across the world, it is necessary to
expand our understanding of host–virus interactions and explore new agents against
SARS-CoV-2. In this study, it was found exopolysaccharides (EPSs) from halophilic
archaeon Haloarcula hispanica ATCC33960 can bind to the spike protein of SARS-
CoV-2 with the binding constant KD of 2.23 nM, block the binding of spike protein to Vero
E6 and bronchial epithelial BEAS-2B cells, and inhibit pseudovirus infection. However,
EPSs from the gene deletion mutant △HAH_1206 almost completely lost the antiviral
activity against SARS-CoV-2. A significant reduction of glucuronic acid (GlcA) and the
sulfation level in EPSs of △HAH_1206 was clearly observed. Our results indicated that
sulfated GlcA in EPSs is possible for a main structural unit in their inhibition of binding of
SARS-CoV-2 to host cells, which would provide a novel antiviral mechanism and a guide
for designing new agents against SARS-CoV-2.

Keywords: sulfated glucuronic acid, SARS-CoV-2, exopolysaccharide, archaea, Haloarcula hispanica

INTRODUCTION

SARS-CoV-2 represents one of the most fast-spreading viruses in the 21st century (Tan et al., 2020;
Wang C et al., 2020), and the pandemic has swept across the world. More than 300 million people
were infected, and five million were killed by the virus. Several variants of the virus have been
designated as variants of concerns (VOCs), including B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma),
B.1.617.2 (delta), and B.1.1.529 (omicron). Extensive studies have focused on vaccines neutralizing
antibodies and antiviral chemical compounds. However, these efforts were challenged by the more
virulent and easily transmitted SARS-CoV-2 variants. Epecially for the variant of omicron, both
vaccines and neutralizing antibodies displayed reduced neutralizing titers (Cao et al., 2021; Lu et al.,
2021). In addition to the urgent demand of preventive and therapeutic strategies, it is also necessary
to deeply understand the interaction between virus and host cells in nature.
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The receptor-binding domain (RBD) of spike protein of
SARS-CoV-2 can bind to angiotensin-converting enzyme 2
(ACE2) on the surface of host cells specifically, then the
activated proteases such as furin, transmembrane serine
protease 2 (TMPRSS2), or cathepsin L cleave the spike
protein, and finally the HR1 and HR2 regions in the S2
subunit interact with the cell membrane to mediate fusion,
resulting in the release of the viral genome into the cytoplasm
(Shang et al., 2020; Saied et al., 2021). The 3D structures of SARS-
CoV-2 virus, S protein, and human ACE2 (hACE2) have been
determined (Walls et al., 2020; Wang Q et al., 2020). The spike
protein of SARS-CoV-2 is heavily glycosylated with
22 N-glycosylation sites and 17 O-glycosylation sites (Shajahan
et al., 2020; Tian et al., 2021), whereas hACE2 employs seven
N-glycosylation sites and one O-glycosylation site (Shajahan
et al., 2021). In addition to ACE2, there might be multiple
receptors or co-receptors in host cells for SARS-CoV-2
infection, including heparan sulfate (HS) on the host cell
surface, and immune mannose receptors of DC-SIGN,
L-SIGN, MGL, Siglec-9, and Siglec-10 in cells can also bind
with the spike protein (Chiodo et al., 2020; Clausen et al.,
2020; Gao et al., 2020). Therefore, an attractive approach to
fight against SARS-CoV-2 is to block or interfere with virus
attachment and binding to host cells.

Glycans are one of the most important molecules in cells,
which play critical roles in virus assembly, attachment,
recognition, entry, and immune escape (Watanabe et al.,
2019). Viruses can employ glycans as receptors to infect
hosts, such as human influenza A viruses recognizing α2, 6-
linked sialic acid, and avian influenza A viruses, showing
preference for α2, 3-linked sialic acid (Kumlin et al., 2008; Shi
et al., 2014; Li et al., 2017). Furthermore, HCoV-OC43, HCoV-
HKU1, BCoV, and PHEV can use 9-O-acetyl-sialic acid as a
receptor (Tortorici et al., 2019). The fact that 9-O-acetyl-sialic
acid can prevent MERS-CoV from binding to host cells means
“glycan inhibitors” might be ideal candidate drugs to fight
against virus infection (Li et al., 2017). Several teams have
reported that glycans can be used as anti-SARS-CoV-2 agents,
such as marine sulfated polysaccharides (Jin et al., 2020; Kwon
et al., 2020; Song et al., 2020; Dwivedi et al., 2021; Zhang et al.,
2022) and HS (Clausen et al., 2020; Kim et al., 2020; Hao et al.,
2021). HS can bind to S protein of SARS-CoV-2 and block
binding of the spike protein to hACE2 and can impede the
infection by pseudovirus and authentic SARS-CoV-2. HS
possesses broad-spectrum activities against a multitude of
distinct viruses, including flaviviruses, herpes, influenza, HIV,
and Coronaviridae. Recent studies had shown that HS can
inhibit the invasion of SARS-CoV-2 depending on its chain
length and sulfation pattern (Kim et al., 2020; Mycroft-West
et al., 2020; Hao et al., 2021; Liu et al., 2021). For instance,
N-desulfated HP, 2-O-desulfated HP, and 6-O-desulfated HP
were unable to compete with immobilized HP for binding to
SARS-CoV-2 (Kim et al., 2020), while an octasaccharide
composed of IdoA2S-GlcNS6S can inhibit spike–heparin
interaction with an IC50 of 38 nM, and Tris HS
hexasaccharide [GlcA (2S)-GlcNS (6S)] also can bind to the
trimeric spike protein of SARS-CoV-2 (Liu et al., 2021).

Therefore, it is important to elucidate the critical structures
responsible for antiviral activity in glycans.

Archaea are one of the most primitive organisms on the Earth
and usually live in extreme environments such as saline lakes,
Antarctic ecosystems, geothermal springs, and deep sea.
Exopolysaccharides (EPSs) from extremophiles can be applied
in food, pharmaceutical, and cosmetics industries (Nicolaus et al.,
2010). Haloarcula hispanica ATCC33960 is an extremely
halophilic archaeon isolated from a solar saltern in Spain,
which can produce sulfated EPSs (Lü et al., 2017). In this
study, our results showed that EPSs from H. hispanica
ATCC33960 can bind to the spike protein of SARS-CoV-2
inhibit the binding of spike protein to Vero-E6 and bronchial
epithelial BEAS-2B cells, and impede the infection of SARS-CoV-
2 pseudovirus. As far as we know this is the first discovery that
EPSs from archaea can inhibit SARS-CoV-2 infection in vitro.
Further analysis showed that the GlcA content and the sulfation
level of EPSs play essential roles in anti-SARS-CoV-2 activity.

MATERIALS AND METHODS

Strain Culture and Exopolysaccharides
Preparation
Haloarcula hispanica ATGG33960 was cultured in AS-168
medium to late stationary phase (5 g/L Bacto casamino acids,
5 g/L Bacto yeast extract, 1 g/L sodium glutamate, 3 g/L trisodium
citrate, 20 g/L MgSO4.7H2O, 2 g/L KCl, 200 g/L NaCl, 50 mg/L
FeSO4.7H2O, 0.36 mg/L MnCl2.4H2O, and pH 7.0). EPSs were
first precipitated from the supernatant by 4-fold volume of
ethanol and then dialyzed against water. The dialyzed solution
was treated with Benzonase nuclease and protease K subsequently
at 37°C for 12 h. After concentrated with the 100 kDa
ultrafiltration membrane, the EPSs solution was lyophilized.
Crude EPSs were further sequentially purified by a DEAE-
Sepharose Fast Flow and Sephacryl S-400/HR column as
described. The concentration of EPSs was measured by the
phenol–sulfuric acid method and determined at A490 (Lü
et al., 2017).

Homogeneity and Molecular Weight
For molecular weight (MW) measurement of EPSs, the samples
were analyzed by high-performance gel permeation
chromatography (HPGPC) with a TSK GEL GMPWXL
column, and the polysaccharides were eluted with a mobile
phase containing ddH2O at a flow rate of 0.5 mL/min and
detected by using an evaporative light-scattering detector (ELSD).

Sulfate Content Comparison
To evaluate the sulfate content of the polysaccharides, 10 μg of
EPSs was run in 7.5% (w/v) SDS-PAGE, then the gel was stained
with 0.5% (w/v) methylene blue in 3% (v/v) acetic acid, and SO4

2−

in EPSs can be stained with methylene blue (Lü et al., 2017).

Monosaccharide Composition Analysis
For monosaccharide analysis, EPSs (5 mg) were hydrolyzed in
2 M trifluoroacetic acid at 120°C for 2 h, and then the solution was
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evaporated to dryness by using a rotary evaporator after adding 2-
fold volume of methanol. Hydrolyzed EPSs were dissolved in
1 mL ddH2O, and then the samples were analyzed in HPAEC-
PAD with a CarboPac PA-10 column. For analysis of neutral
sugars, the elution condition is 18 mM NaOH at a flow rate of
1.0 mL/min, while the acidic sugars were analyzed by 100 mM
NaOH and 100 mM CH3COONa at a flow rate of 1.0 mL/min.
Mannose (Man), galactose (Gal), glucose (Glc), D-glucuronic
acid (GlcA), and D-galacturonic acid (GalA) were used as
standards.

Binding Assay of S Protein and
Exopolysaccharides
The recombinant spike RBD protein of SARS-CoV-2 expressed in
HEK-293 cells was purchased from BioRobust (Shenzhen,
China). The binding of glycans to RBD of spike protein was
first evaluated by Monolith NT.115 (Nanotemper): 50 μg of RBD
was labeled with aMonolith RED-NHS protein Labeling Kit, then
a series of EPSs solutions of H. hispanica were prepared by a 2-
fold serial-dilution method, and the binding affinity between
RBD protein and EPSs was evaluated in Monolith NT.115 after
co-incubated for 10 min. When the binding capability of glycan
was observed from Monolith NT.115, the binding kinetics
between glycan and the RBD protein was further determined
by biolayer interferometry (BLI)-based assay with Octet R8
(Sartorius): The Ni-NTA sensor was coated with 5 μg/mL RBD
for 10 min, then the EPSs solution was diluted by 2-fold with
buffer [10 mM PBS +0.02% Tween 20 (w/w)], and the diluted
EPSs solution was incubated with the sensors coated with the
RBD protein for 2 min. After dissociated for another 2 min, the
binding constant KD between EPSs and RBD was measured.

Cell Culture and Cell Viability Assay
The human bronchial epithelial BEAS-2B cells were cultured in
RPMI 1640 with L-glutamine (Corning, 10-040-CV) supplemented
with 10% FBS, 200 mg/mL streptomycin and 200 IU/mL penicillin
at 37°C, 5% CO2. The African green monkey kidney Vero E6 cells
were maintained in DMEM (Gibco, 11965092) supplemented with
10% fetal bovine sera (FBS), 200mg/mL streptomycin, and 200 IU/
mL penicillin at 37°C, 5% CO2. For cell viability assay, the cells were
seeded in a 96-well plate with 1 × 104 cells/well and cultured for 24 h,
then the supernatants were discarded, and 150 μl of serial-diluted
EPSs in culture medium was added to the cells and incubated for
another 24 h. Subsequently, 15 μl of MTT [3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, 5 mg/mL]
was added to each well and incubated for 4 h, then the
supernatants were discarded and 100 μl of DMSO (dimethyl
sulfoxide) was added to dissolve the purple precipitate. Finally,
the 96-well plate was scanned with Infinite M200 Pro (TECAN)
at 405 nm. Data were expressed as the means ± standard errors
of the means (SEM). p values were analyzed by unpaired t test
with GraphPad 5.

Cell-Binding Assay Against S Protein
The cells of BEAS-2B and Vero E6 were seeded into 24-well glass
bottom plates (Cellvis) with 1 × 105 cells/well and cultured for 48 h.

The cells were washed with PBS three times, and then fixed with 4%
(w/v) of paraformaldehyde (PFA). Then, the cells were incubated
with 200 μl solution containing EPSs (2 μg/well) and RBD of spike
protein (1 μg/well) for 2 h at 37°C. The RBD protein binding to the
cells can be detected by SARS-CoV-2 spike-neutralizing antibody,
mouse mAb (SinoBiological, 40592-MM57), and Alexa Fluor 488TM

goat anti-mouse IgG (H + L) (Invitrogen, A-11001). The nuclear
DNA of cells was stained using 4’,6-diamidino-2-phenylindole
(DAPI, 1 μg/mL). Images were captured with a Leica TCS SP8
STED confocal microscope, and data were analyzed using LAS X
software (Leica).

Preparation of Pseudotyped Virus and
Neutralization Assay
The construction of VSV-ΔG-GFP-based SARS-CoV-2
pseudotyped virus was mentioned in previous work with slight
modifications (Zhang Z et al., 2021; Zhao et al., 2021). The codon-
optimized wild-type SARS-CoV-2 (Wuhan-1 reference strain)
was constructed into the pCAGGS vector. The construct (30 μg)
was transfected into HEK 293T cells. VSV-ΔG-G-GFP
pseudovirus was added 24 h after the transfection and
removed after 1-h incubation. Media were replaced with fresh
complete DMEM medium supplemented with anti-VSV-G
antibody (I1HybridomaATCC® CRL2700™). Supernatants
were collected after another 30-h incubation, passed through a
0.45-μm filter (Millipore, SLHP033RB), aliquoted, and stored
at −80°C.

Neutralization was measured by the reduction in GFP
expression as described previously (Zhang S et al., 2021).
One day before neutralization assay, Vero E6 cells were
seeded into 48-well plates with 1 × 105 cells/well and
incubated at 37°C. Pseudovirus was incubated with 3-fold
serially diluted EPSs for 1 h in advance, together with the
virus control and cell control. Then, pseudovirus was
transferred to pre-plated Vero E6 cells washed by fresh
DMEM without FBS, followed by incubation at 37°C for 24 h.
After lysed by trypsin, the GFP positive cells were measured
with an FACSCanto II flow cytometer (BD Biosciences,
United States).

RESULTS

Binding of Exopolysaccharides With the
Receptor-Binding Domain of Spike Protein
It has been found that several sulfated polysaccharides could
bind with RBD of spike protein including HS, fucoidan,
carrageenan, and sulfated polysaccharide from sea
cucumber, leading to their interference with binding of
RBD to ACE2 at different extents (Clausen et al., 2020; Kim
et al., 2020; Song et al., 2020; Hao et al., 2021). Therefore,
sulfated polysaccharides were potential candidates against
SARS-CoV-2. EPSs from H. hispanica were sulfated too, so
their binding with RBD was investigated.

Binding of EPSs from H. hispanica to SARS-CoV-2 RBD
protein was first analyzed by Microscale thermophoresis
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(MST). Noticeably, EPSs can bind with RBD protein well
(Supplementary Figure S1). The binding kinetics between
EPSs and RBD of spike protein were further determined by
biolayer interferometry (BLI)-based assay with Octet R8
(Sartorius). The result showed that EPSs from H. hispanica
can bind to RBD with high affinity with the calculated KD as
2.23 × 10−9 M (Figure 1). EPSs fromH. hispanica displayed good
affinity to the RBD protein of SARS-CoV-2.

Cell Viability Assay
In order to assess the toxicity of EPSs fromwild-type ofH. hispanica
and △HAH_1206, the cell viabilities were checked after EPSs were
incubated with BEAS-2B or Vero E6 cells. The results showed the
viabilities of BEAS-2B and Vero E6 cells were affected when the
concentrations of EPSs from WT exceeded 12.5 μg/mL
(Supplementary Figure S2A). But for EPSs from △HAH_1206,
the viabilities of BEAS-2B and Vero E6 cells seemed not affected by
serially diluted EPSs, only Vero E6 cells were slightly affected at EPSs
concentration of l00 μg/mL, which meant that EPSs from
△HAH_1206 nearly lost toxicity. Therefore, the EPSs
concentration was set below 12.5 μg/mL in following experiments.

Interference of Exopolysaccharides With
Binding of the Receptor-Binding Domain to
Cells
Interference of EPSs with the binding of RBD to cells was further
investigated via immunofluorescence. It was observed that RBD
can bind to BEAS-2B and Vero E6 cells. However, the signals
from Alexa Fluor 488 were blurry when EPSs were incubated
with RBD in advance. These results clearly demonstrated that
EPSs could block the interaction between RBD and cells
expressing hACE2 (Figure 2).

Anti-Infection of Pseudovirus by
Exopolysaccharides
To investigate the anti-SARS-CoV-2 activity of EPSs, the
inhibition effects of EPSs were determined using pseudovirus

FIGURE 1 |Binding affinity assay between SARS-CoV-2 RBD and EPSs
from H. hispanica. Serially diluted EPSs solutions were incubated with RBD
(50 μg), which was coated on a Ni-NTA sensor for 2 min, and the affinity
kinetics were analyzed after being dissociated for another 2 min. The
binding kinetics between EPSs and RBD were determined by using the
biolayer interferometry (BLI) method.

FIGURE 2 | Immunofluorescence assay of EPSs from H. hispanica-blocking RBD to bind with BEAS-2B and Vero E6. (A) Binding of RBD to BEAS-2B cells
inhibited by EPSs from H. hispanica. (B) Binding of RBD to Vero E6 cells inhibited by EPSs from H. hispanica.Mock: cells detected in the absence of RBD and EPSs; +
Spike RBD: cells detected in the presence of RBD (1 μg/well); and + Spike RBD + EPSs: cells detected in the presence of RBD (1 μg/well) and EPSs (2 μg/well). All
wells were detected by immunofluorescence using SARS-CoV-2 (2019-nCoV) spike-neutralizing antibody and Alexa Fluor 488 goat anti-mouse IgG (H + L) by
using a confocal microscope. The fluorescence signals were captured with an FITC channel, and the nuclear DNAs of cell were stained with DAPI.
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in Vero cells. The results showed EPSs from H. hispanica can
efficiently inhibit infection of pseudovirus to Vero E6 cells. The
inhibition rate of EPSs toward pseudovirus reached 65% at
11.1 μg/mL (Figure 3).

Evaluation of the Anti-SARS-CoV-2 Activity
of Exopolysaccharides From △HAH_1206
EPSs from H. hispanica are the first identified anti-SARS-CoV-2
polysaccharides from archaea, and their antiviral mechanisms are
worth investigating. A serial of mutants related to glycosylation in
H. hispanica were constructed and tested (Lu et al., 2020).
Compared to the wild-type of H. hispanica, the △HAH_1206
mutant was significantly affected (data not shown). Interestingly,
it was found that EPSs from △HAH_1206 could not bind with
RBD (Supplementary Figure S3) and did not inhibit the binding
of RBD to BEAS-2B and Vero E6 cells either (Figure 4). The
results indicated that EPSs from△HAH_1206 almost completely
lost anti-SARS-CoV-2 activity.

Structural Comparison of
Exopolysaccharides From Wild-Type H.
hispanica and △HAH_1206
To investigate the reasons underlining the difference in antiviral
activities of EPSs from wild-type H. hispanica and △HAH_1206,
their molecular weights (MW), monosaccharide compositions,
and sulfation levels were analyzed. The results from HPGPC
showed that the MW of EPSs from WT and △HAH_1206 were
2.126 × 107 Da and 2.007 × 107 Da, respectively, and their MW
were nearly identical (Supplementary Figure S4). The sugar
compositions were analyzed by HPAEC-PAD. The molar ratio
of monosaccharides in EPSs from wild-type H. hispanica was
GlcA:Man:Glc:Gal = 4.3:3.9:1.6:1, and that for △HAH_1206 was
GlcA:Man:Glc:Gal = 0.8:3:1.6:1. These two kinds of EPSs have the
same molar ratio of glucose and galactose, and their molar ratios
of mannose were slightly different. However, the contents of

FIGURE 3 | Inhibition of pseudovirus by EPSs from H. hispanica.
Pseudoviruses of SARS-CoV-2 were incubated with 3-fold serially diluted
EPSs for 1 h and then transferred into pre-plated Vero E6 cells, followed by
incubation for 24 h. Finally, the cells expressing GFP were measured by
using a flow cytometer after lysed by trypsin.

FIGURE 4 | Immunofluorescence assay of EPSs from△HAH_1206 toward binding of RBD to BEAS-2B and Vero E6. (A) Influence of EPSs from△HAH_1206 on
binding of RBD to BEAS-2B cells. (B) Influence of EPSs from △HAH_1206 on binding of RBD to Vero E6. Mock: cells detected in the absence of RBD and EPSs; +
Spike RBD: cells detected in the presence of RBD (1 μg/well); and + Spike RBD + EPSs from △HAH_1206: cells detected in the presence of RBD (1 μg/well) and
EPSs (2 μg/well). All wells were detected by immunofluorescence using SARS-CoV-2 (2019-nCoV) spike-neutralizing antibody and Alexa Fluor 488 goat anti-
mouse IgG (H + L) by using a confocal microscope. The fluorescence signals were captured with an FITC channel, and the nuclear DNAs of cell were stained with DAPI.
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glucuronic acid in EPSs between two strains were quite different.
GlcA in EPSs of△HAH_1206 was only one-fifth of the wild-type
(Figure 5). A significant reduction of GlcA in △HAH_1206 was
clearly observed, suggesting that GlcA might play critical roles in
resistance against SARS-CoV-2. Because some sulfated
polysaccharides displayed anti-SARS-CoV-2 activity (Kwon
et al., 2020; Song et al., 2020), and EPSs from H. hispanica
were also sulfated, the sulfation levels of EPSs from wild-type
H. hispanica and△HAH_1206 were also compared. An apparent
reduction of the sulfation level was found in EPSs from
△HAH_1206 (Figure 6). Combined results of changes in
monosaccharide composition and the sulfation level of EPSs
from △HAH_1206 meant GlcA of EPS from wild-type H.
hispanica was heavily sulfated, which was essential for the
anti-SARS-CoV-2 activity, and the decline of the sulfation
level in △HAH_1206 might result from reduction of GlcA.

DISCUSSION

Glycosylation is essential for assembly, recognition, and entry of
SARS-CoV-2. The glycosylation sites of N165 and N234 in S protein
are important for maintaining the “open” state, and these sites are
also necessary for the binding of S protein with hACE2 (Casalino
et al., 2020). In addition, theN90, N322, andN546 glycosylation sites
in hACE2 can promote the binding of S protein with hACE2 (Zhao
et al., 2020). These observations promoted scientists in the field of
glycoscience to wonder whether there is a glycan recognition
mechanism between SARS-CoV-2 and host cells. Accordingly,
they are striving to find an answer and searching for glycan
inhibitors against SARS-CoV-2 infection. Recent study showed
the spike protein of SARS-CoV-2 cannot recognize sialic acid,
but can specifically bind with HS in a sulfation-dependent
manner (Hao et al., 2021). Furthermore, the spike protein can

FIGURE 5 | Comparative analysis of monosaccharides in EPSs from H. hispanica and△HAH_1206with HPAEC-PAD. (A) Analysis of neutral monosaccharides of
EPSs. The chromatomap in pink is the standard mixture of galactose (Gal), glucose (Glc), and mannose (Man) at 2 mM, whereas the one in blue refers to the hydrolyzed
product of EPSs from H. hispanica and the black one is the hydrolyzed product of EPSs from △HAH_1206. (B) Analysis of acidic monosaccharides of EPSs. The
chromatomap in pink is the standard mixture of D-galacturonic acid (GalA) and D-glucuronic acid (GlcA) at 2 mM, whereas the blue one represents the hydrolyzed
product of EPSs from H. hispanica, and the black one is the hydrolyzed product of EPSs from △HAH_1206.
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bind with hACE2 and HS through different domains, andHS on the
surface of host cells can promote the entry of SARS-CoV-2 into host,
which can be inhibited by exogenous heparin (Clausen et al., 2020).
Moreover, researchers found other sulfated polysaccharides were
also potential candidates against SARS-CoV-2, such as fucoidan,
carrageenan, and sulfated polysaccharide from sea cucumber. In
addition, β-chitosan, xylitol, capsular polysaccharides from S.
pneumoniae, and LPS from P. aeruginosa can also bind with S
protein (Alitongbieke et al., 2020; Chiodo et al., 2020; Song et al.,
2020; Bansal et al., 2021). These examples clearly demonstrated that
glycans with different structural characteristics could prevent SARS-
CoV-2 infection, possibly using different mechanisms.

Archaea are one of the most mysterious parts of global
ecosystem, which have developed various adaptations under
extreme conditions, and the interaction between archaea and
virus is less understood. Therefore, our understanding of antiviral
activities of archaea far lags behind our knowledge of those in

bacteria, mammals, and plants. Currently, more than 100 archaea
have been discovered, and over 90 viruses were described as
halophilic archaeal viruses (Atanasova et al., 2015; Snyder et al.,
2015). Members of the family Pleolipoviridae (termed
pleolipoviruses) belong to pseudo-spherical and pleomorphic
archaeal viruses, which have a narrow host range as extremely
halophilic archaea in the class Halobacteria (Bamford et al.,
2017). EPSs are biomacromolecules with high molecular weights
secreted by microbes. Most of EPSs are heteropolysaccharides
containing three to four types of monosaccharides arranged in
groups of 10 to form the repeating units (Poli et al., 2010). EPSs
around cells can provide effective protection against severe
environment and pathogen. Moreover, EPSs have displayed
multi-function as anti-microbe, immunomodulator, anti-
inflammation, antioxidant, anticancer, hypocholestrolemia,
antidiabetes, and antivirus (Angelin and Kavitha, 2020; Abdalla
et al., 2021). In this study, EPSs of H. hispanica can bind to
SARS-CoV-2 RBD of spike protein with a high affinity of KD as
2.23 nM and can inhibit the binding of RBD to BEAS-2B and Vero
E6 cells. Importantly, the infection of SARS-CoV-2 pseudovirus to
Vero E6 cells was effectively blocked by EPSs fromH. hispanica. This
is the first report that glycans from archaea can inhibit the infection
of SARS-CoV-2.

Another important finding is the anti-SARS-CoV-2 activity of
EPSs from H. hispanica is possibly related to sulfated GlcA. This
means sulfation on GlcA may play critical roles in EPSs of H.
hispanica against SARS-CoV-2. As we know, GlcA is the basic
monosaccharide of glycosaminoglycans (GAGs), which are
ubiquitously present on almost all mammalian cells and
considered to be the first interface between a host cell and
various bacterial, parasitic, and viral pathogens. GAGs and their
derivatives, some of which lack significant anticoagulant activity, are
under-exploited antiviral candidate drugs as they possess broad-
spectrum activity against a multitude of distinct viruses (Mycroft-
West et al., 2020). The repeating disaccharide units of GAGs,
comprising a hexosamine and uronic acid or a galactose residue,
are often sulfated. The anti-SARS-CoV-2 activities of GAGs have
been confirmed in previous reports, along with other sulfated
polysaccharides. Therefore, many people presumed that this kind
of antiviral activity was possibly related to sulfation (Clausen et al.,
2020; Kwon et al., 2020; Song et al., 2020; Hao et al., 2021). However,
the exact structural unit of sulfated GAG, which contributes to their
anti-SARS-CoV-2 activities, is still unknown. It is likely that the role
of sulfated uronic acid in GAGs in anti-SARS-CoV-2 is similar to
that of sulfated GlcA in EPSs of H. hispanica. The current study
identified sulfated GlcA in EPSs is important for their anti-SARS-
CoV-2 activity, which prompted us to propose that sulfated GlcA in
HS is an important structural unit for their anti-SARS-CoV-2
activity. For EPSs biosynthesis in H. hispanica, a polysaccharide
biosynthesis gene cluster has been annotated (Liu et al., 2011), which
contained seven genes from HAH_1661 to HAH_1667. The
biosynthesis pathway of EPSs in H. hispanica has not been fully
elucidated, and the details of the process are still less understood.
Because mannose is the major composition of EPSs, two genes,
HAH_1662 and HAH_1667, which were considered coding for
mannosyltransferase were deleted in H. hipanica respectively, the
mutants of△HAH_1662 and△HAH_1667 almost lost acidic EPSs.

FIGURE 6 | Detection of sulfate in EPSs using the methyl blue method.
EPSs (10 μg) from wild-type H. hispanica and △HAH_1206 were analyzed in
7.5% (w/v) SDS-PAGE, and sulfates in EPSs were stained with methyl blue.
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To confirm the structure and modification of EPSs, we need to
characterize the function of each gene in the polysaccharide
biosynthesis gene cluster of H. hispanica in future.

This study identified that sulfated GlcA in EPSs is important for
the anti-SARS-CoV-2 activity, which has deepened our
understanding of the key structural unit of glycans containing
sulfated GlcA toward the anti-SARS-CoV-2 activity. Nowadays,
the study about antiviral mechanisms of archaea focused on the
nucleic acid level, including the CRISPR-Cas system and DNA
phosphorothioation. The unusual metabolic pathways of archaeal
cells can produce unique biomacromolecules and metabolites with
novel characteristics. EPSs from extremophiles are quite different in
composition and characteristics from those in other microbes. EPSs
from most mesophilic microbes are toxic, whereas extremophilic
microorganisms produce non-pathogenic EPSs, which can be
applied in food, pharmaceutical, and cosmetic industries
(Nicolaus et al., 2010). Although EPSs from H. hispanica
displayed slight toxicity to cells, they are still good candidates to
be developed into antiviral reagents, which would provide a new
strategy against SARS-CoV-2.

CONCLUSION

In this study, we found that EPSs from halophilic archaeon
Haloarcula hispanica displayed activities against SARS-CoV-2;
it is the first discovery that EPSs from archaea can effectively
inhibit SARS-CoV-2 in vitro. Compared to EPSs from deletion
mutants of△HAH_1206, which lost anti-SARS-CoV-2 activity, it
is likely that sulfated GlcA in EPSs from wild-type H. hispanica
contribute to anti-SARS-CoV-2 activities. Our findings will
provide a novel antiviral mechanism and a guide for designing
new agents against SARS-CoV-2.
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The development and application of commercially available automated peptide
synthesizers has played an essential role in almost all areas of peptide and protein
research. Recent advances in peptide synthesis method and solid-phase chemistry
provide new opportunities for optimizing synthetic efficiency of peptide synthesizers.
The efforts in this direction have led to the successful preparation of peptides up to
more than 150 amino acid residues in length. Such success is particularly useful for
addressing the challenges associated with the chemical synthesis of glycoproteins. The
purpose of this review is to provide a brief overview of the evolution of peptide synthesizer
and glycoprotein synthesis. The discussions in this article include the principles underlying
the representative synthesizers, the strengths and weaknesses of different synthesizers in
light of their principles, and how to further improve the applicability of peptide synthesizers
in glycoprotein synthesis.

Keywords: peptide synthesis, glycoprotein synthesis, automated synthesizer, solid phase peptide synthesis, batch
synthesis, continuous flow, high throughput synthesis

INTRODUCTION

The synthesis of glycoproteins with well-defined protein and carbohydrate structures is essential for
the study of their structures, properties and functions (Davis, 2002). To meet with this requirement,
many different methods have been investigated for their use in the synthesis of homogeneous
glycoforms, i.e., glycoprotein isoforms with the same protein amino acid sequence but different
glycosylation patterns. Based on the way of how to incorporate glycans into glycoproteins, these
methods can be roughly classified into two categories, biochemical methods and chemical methods
(Rich and Withers, 2009). No matter which type of methods is selected, the synthesis is more or less
associated with glycopeptide and peptide synthesis (Figure 1).

The biochemical methods include two main subtypes, glycoprotein remodeling and enzymatic
glycosylation of proteins. Glycoprotein remodeling involves first enzymatic trimming of the
heterogenous glycans on a recombinant glycoprotein to produce a homogeneous glycoform or
chemical synthesis of a homogeneous glycoform, and subsequent modification of the glycoform
containing a core glycan or single N-acetylglucosamine (GlcNAc) residue by the glycosyltransferase-
or endoglycosidase-catalyzed stepwise glycan synthesis or one-step transglycosylation (Li andWang,
2018), while enzymatic glycosylation of proteins uses glycosyltransferases to directly build glycans on
recombinant or chemically synthesized proteins (Figure 1). In the chemical methods of glycoprotein
synthesis, the desired products are generated by covalently joining the peptide and glycopeptide
fragments together using native chemical ligation (NCL) (Dawson et al., 1994) (Figure 2).

Compared with chemical methods, biochemical methods are more convenient to use and more
practical in the preparation of large glycoproteins and large-scale preparation of glycoproteins.
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However, due to the substrate specificity of the enzymatic
reactions, the number of glycosylation patterns that can be
generated by biochemical methods are limited (Ma et al.,
2020). Although tedious and labor-intensive to perform,
chemical methods are more flexible and precise, and in theory,
can be used to prepare glycoforms with any structures. This
advantage is very helpful to gain a more comprehensive and in-
depth understanding of the role of protein glycosylation (Chaffey
et al., 2018).

Chemical methods typically use NCL reactions to join
glycopeptides to peptides to produce homogeneous
glycoproteins (Figure 2). NCL reactions are relatively simple
to set up and perform, and can be completed quickly, usually in a
day. The difficulties associated with the chemical synthesis of
glycoproteins are mainly due to two reasons: the high synthetic
complexity and the low synthetic efficiency. Most of the
complexity comes from the preparation and purification of
glycopeptides and the cause of the low efficiency can be
attributed largely to the use of relatively short peptides as the
synthetic fragments. The use of short peptides increases the
number of required synthetic steps and thus leads to decrease
in synthetic efficiency. Based on these facts, it is reasonable to
expect that small glycopeptide and long peptide fragments would
reduce the difficulties in glycoprotein synthesis (Figure 2). Small
glycopeptides only contain a small number of amino acids and
can be prepared by manual synthesis. Manual synthesis is more
likely to make better use of precious synthetic glycans, thereby
reducing the time required for repetitive glycan and glycopeptide
synthesis. The use of larger peptide fragments, on the other hand,
would reduce the number of ligation and purification steps,
thereby improving the efficiency of the assembly of

glycoproteins. With the continuous improvement of
automated peptide synthesizers, the problems associated with
the synthesis of large peptides are expected to be slowly
addressed. In this review, we provide a brief overview of the
development history of peptide synthesizers, with a focus on the
progress achieved at each stage of development.

EARLY PEPTIDE SYNTHESIZERS

Before the 1960s, peptide synthesis was an almost impossible task.
In 1954, Vincent Du Vigneaud used the strategy of tetraethyl
pyrophosphate-mediated solution-phase coupling reaction and
sodium/liquid ammonia deprotection to synthesize oxytocin (Du
Vigneaud et al., 1954). It took himmany years and much effort to
complete the synthesis of this octapeptide hormone. In 1963,
Bruce Merrifield turned peptide synthesis from nearly impossible
to possible. After more than 4 years of exploration, he developed a
new technology called Solid-Phase Peptide Synthesis (SPPS)
(Merrifield, 1963). This revolutionary technology allows all
steps, including coupling, washing and deprotection, to be
carried out in the same reaction vessel without isolation and
purification of reaction intermediates, thus greatly simplifying the
peptide synthesis process.

In the process of developing SPPS, Merrifield and his
coworkers conducted many optimization studies and
established most of the basic principles that still apply today:
1) optimal resins are critical for efficient synthesis of peptides; 2)
attaching the C-terminal amino acid to the solid support and
extending the peptide chain in the C to N direction to reduce
racemization; 3) using orthogonal protecting groups for the α-

FIGURE 1 | Biochemical and chemical methods for the preparation of homogeneous glycoproteins.
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amines of amino acids to enable the selective formation of amide
bonds; 4) increasing the coupling efficiency to be higher than
99%; 5) using strong acids to simultaneously cleave peptides from
resins and remove side-chain protecting groups (Figure 3A)
(Merrifield, 1965).

In accordance with these principles, Merrifield and coworkers
optimized the Boc chemistry for SPPS and established the
following conditions as their optimal conditions: SPPS was
carried out on a resin obtained by the copolymerization of
styrene and divinylbenzene (98% and 2% respectively). Boc
was used as the α-amine protecting group, DCC as the
coupling reagent, DMF as the solvent, and the solution of HBr
or HF in TFA as the cleavage cocktail. Under the aforementioned
optimized conditions, SPPS became more routine and easier to
perform. In 1964, Merrifield reported the total synthesis of
Bradykinin (sequence: RPPGFSPFR), a nonapeptide plasma
kinin, using optimized Boc chemistry (Merrifield, 1964). The
manual synthesis was carried out on a Boc-L-Arg (NO2)-
polystyrene-divinylbenzene resin and was completed in 8 days.
The yield of the crude peptide was 93% and after purification, the
overall yield of the chromatographically pure peptide was 68%.

This result clearly demonstrated that the efficiency of solid-phase
synthesis of peptides is much higher than that of solution-phase
synthesis.

Automated Peptide Synthesizers Using Boc
Chemistry
Although the manual SPPS gave satisfactory results in the
synthesis of short peptides, this technology became less
practical when applied to the synthesis of large peptides due
to the considerable amount of time demanded by the synthesis
task. To overcome this issue, in 1965, Merrifield and his
collaborators designed and constructed the first automated
solid-phase peptide synthesizer based on the use of Boc
chemistry (Merrifield and Stewart, 1965). The application of
automation to the SPPS process greatly reduced the need for
manpower for performing peptide synthesis and human error,
and thus significantly improved and simplified the synthesis of
long peptides. As shown in Figure 3B, in the automated
synthesizer, the resin beads were kept in the same reaction
vessel during the entire synthesis process. Metering pumps

FIGURE 2 |Chemical methods for the synthesis of homogeneous glycoproteins. R, alkyl or aryl groups; R1, R2, R3, protecting groups of amino or thiol groups; PGs,
protecting groups of peptide side chains. NCL is the abbreviation of “native chemical ligation”, which is a reaction that is commonly used in assembly of proteins and
glycoproteins. It normally involves the chemoselective ligation between a C-terminal thioester and an N-terminal thiol amino acid-containing fragment.
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were used to transfer an appropriate amount of solvent or
reagents into the reaction vessel according to the pre-
calculated volume and concentration.

Using their newly invented instrument, Merrifield and
coworkers did a comparative synthesis of bradykinin. It was
found that the synthesis can be completed in 32 h, which is
only 20% of the time required in themanual synthesis (Merrifield,
1964). In the following years, they had continuously improved the
performance of their synthesizer and was eventually able to
produce ribonuclease A, a 124 amino acid-long peptide, in
one-shot synthesis (Gutte and Merrifield, 1971).

In the 1980s, the commercialization of the automated peptide
synthesizer ABI 430 developed by Applied Biosystems further
promoted the synthesis of large peptides. However, as more and
more studies were conducted, researchers gradually realized that
it is not always possible to synthesize large peptides like
ribonuclease A and the length of peptides that could be
reliably prepared using automated peptide synthesizers is
generally limited to be less than 50 amino acids. This is likely
to be related to the batch-wise design of the system, which has the
disadvantages of relatively low efficiency of reagent mixing, slow
mass transfer and long coupling time (Breen et al., 2021).

Automated Peptide Synthesizers Using
Fmoc Chemistry
During the rapid development of peptide synthesizers based on
the Boc chemistry, in 1970, Carpino and Han introduced the
Fmoc group for the protection of the α-amines of amino acids
(Carpino and Han, 1970). Fmoc can be efficiently removed under
mild basic conditions like 20% piperidine in DMF.When Fmoc is

chosen for the protection of the amine function of the amino acid,
the TFA-labile groups like Boc, Trt, and Pbf can be used to protect
the side chains, thus avoiding the need for the highly corrosive
and toxic acid HF in the final cleavage step of SPPS. In addition,
the fluorescence property of the dibenzofulvene adducts formed
after treatment of the Fmoc resin with piperidine enables the
estimation of the efficiency of each peptide coupling step.

In the early 1970s, a method for thoroughly mixing resin beads
with solvent and reagents, the continuous flow SPPS method, was
developed by Bayer et al. (1970). Unlike the batch-wise SPPS
method adopted by the peptide synthesizers like ABI 430, which
maintains the reaction suspension by gas bubbling or mechanical
stirring, the continuous flow method uses a pump to provides a
rapid and continuous flow through the reaction vessel, thus
increasing the efficiency of mixing and mass transfer, and
decreasing the coupling time (Lukas et al., 1981).

Using Fmoc chemistry and continuous flow technology,
PerSeptive Biosystems developed the Pioneer Peptide Synthesis
System, an automated synthesizer capable of performing the
peptide synthesis in a simple and straightforward manner.
This instrument uses glass column with filters at the top and
bottom as the reaction vessel. Pumps and valves are used to
control and regulate the flow of solvent and reagent solutions. A
distinguishing feature of this peptide synthesizer is that it has a
UV detector. The coupling efficiency of each step of SPPS can be
assessed based on the intensity of the UV signal, which in turn
can direct the optimization process to look for solutions to
improve the quality of peptide products.

Slightly different from the methods used for Boc SPPS,
pseudoproline dipeptides, Dmb/Hmb-protected dipeptides and
isoacyl dipeptides are often required for peptide synthesis using

FIGURE 3 | Schematic representation of Boc-SPPS (A) and the first automated solid-phase peptide synthesizer (B).
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Fmoc chemistry (Behrendt et al., 2016). This is mainly due to the
different aggregation behaviors of the growing peptide chains on
resin in the presence or absence of TFA. During Boc SPPS, the
TFA-protonated N-terminal amino group can generate
electrostatic repulsion between peptides and consequently
expose the reactive groups for the following coupling
reactions. During Fmoc SPPS, the lack of electrostatic
repulsion can increase the risk of aggregation and reduce the
synthesis efficiency. The use of dipeptides can alleviate this issue
by inhibiting aggregation of peptides. However, because most
peptides do not contain enough sites that are suitable for the
incorporation of dipeptides, the length of peptides that can be
successfully synthesized by the Pioneer Peptide Synthesizer is also
limited to less than 50 amino acids (most commonly 30–40
residues in length).

High-Throughput Automated Peptide
Synthesizers
Many studies such as mimotope screening require the
simultaneous preparation of a large number, but not large
quantities of peptides. When tens to hundreds of peptides are
needed, it becomes impractical to use 1-channel (ABI 430) or 2-
channel (Pioneer) peptide synthesizers for their synthesis. To
meet with the high demand in the peptide research community
and pharmaceutical companies, new technologies like parallel
and combinatorial synthesis of peptide libraries were developed.
Among these technologies, the “tea-bag” and the split-and-pool
methods have received much attention.

The “tea-bag” method for parallel synthesis of a large number
of peptides was developed by Houghten and co-workers (Pinilla
et al., 1996). In this method, the sealed polypropylene mesh
packets are filled with resin beads and are labeled. Depending on
the sequences of the peptides, the packets are placed in different
reaction vessels for coupling with the desired amino acids. In this
way, each packet can be made to contain only one peptide, whose
identity can be determined by the label.

The solid-phase split-and-pool combinatorial peptide
synthesis method was reported by Furka et al. (1991). In this
method, the resin beads are split into several portions, each
reacting with a different amino acid. After the coupling
reaction, all the beads are pooled together and resplit into a
new set of subgroups to react with different amino acids. As this
cycle repeats, the number of the generated peptides increases
exponentially. Using the split-and-pool method, it is possible to
synthesize millions of peptides in a relatively short period of time,
however, the identity of each peptide is unknown.

The complexity of the “tea-bag” and the split-and-pool
methods makes it almost impossible to develop automated
peptide synthesizers to realize these concepts. Most of the
high-throughput peptide synthesizers were designed based on
simple parallel synthesis methods. For example, the Advanced
ChemTech APEX 396 Automated Multipeptide Synthesizer is
capable of the parallel synthesis of 96 peptides. The delivery of
reagents and solvents to 96 reaction vessels is accomplished using
pipetting robotic arms. The waste generated in the reaction and
washing steps is removed from the bottom of the reaction vessels

by pressure from the top. Upon completion of the synthesis, the
resin needs to be transferred from the reaction vessel of the
automated synthesizer to another container for cleavage.
Although this type of synthesizers can be well applied in the
synthesis of large number of short peptides, they are generally not
suitable for the preparation of large peptides.

APPLICATION OF AUTOMATED PEPTIDE
SYNTHESIZERS IN GLYCOPROTEIN
SYNTHESIS
Fmoc chemistry was more widely used in the synthesis of
glycoproteins. The most important reason behind this
preference is the fact that glycans are not stable under strongly
acidic conditions. If Boc chemistry is used, the repetitive TFA
acidolysis employed for the Boc-group deprotection and HF
employed for final cleavage can cause deleterious side
reactions to complex glycans on glycopeptides. In addition, the
reaction conditions in Fmoc SPPS are much milder than those in
Boc SPPS and the liquid waste generated in Fmoc SPPS is
environmentally more friendly. Therefore, Fmoc chemistry is
generally used for the synthesis of glycoproteins.

In the process of previous glycoprotein chemical synthesis,
large peptide fragments were generally directly prepared using
automated peptide synthesizers. The synthesis of glycopeptides
was more complicated. Depending on the types of glycans and
how glycans were made, the methods for glycopeptide synthesis
can be divided into two categories. The most commonmethod for
preparing O-linked glycopeptides was to directly use Fmoc-
protected glycosylated amino acids as building blocks for
automated SPPS (Figure 2). This “cassette approach” was also
applied to N-linked glycoamino acids that are isolated from
natural sources like chicken eggs (Seko et al., 1997; Sun et al.,
2014; Liu et al., 2017). The preparation of most N-linked glycans
requires time- and labor-intensive chemical synthesis. The
glycopeptides bearing the chemically synthesized glycans were
mostly synthesized by convergent approaches like the Lansbury
aspartylation reaction, which involves the direct coupling of a
glycosylamine with the side-chain carboxyl group of the Asp
residue in the peptide (Figure 2). After the synthesis of the large
peptide fragments and glycopeptide fragments, they were joined
together by NCL to afford the desired glycoprotein products (Li
et al., 2017).

O-Linked Glycoprotein Synthesis
In the past 20 years, a few O-linked glycoproteins have been
prepared by chemical synthesis (Marcaurelle et al., 2001; Asahina
et al., 2019; Wang et al., 2021; Zhao et al., 2022) and a
representative one is lymphotactin (Lptn), a 93-amino acid
chemokine that contains eight O-glycosylation sites at its
C-terminus. In 2001, Bertozzi and coworkers reported its
synthesis for the first time (Marcaurelle et al., 2001).

According to the retrosynthesis strategy based on NCL,
Lptn can be generated by combining two fragments: one
fragment is a 47-amino acid long peptide Lptn (1-47), and
the other fragment is a 46-amino acid long glycopeptide Lptn
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(48-93), which contains eight O-linked GalNAc residues.
They first attempted to prepare Lptn (1-47) with a
C-terminal thioester using Fmoc SPPS (Figure 4A).
However, their experimental results showed that the
desired product could not be detected. To solve this
problem, they turned to the Boc SPPS, which enabled them
to obtain the peptide thioester directly.

The glycopeptide fragment Lptn (48-93) was prepared using
the cassette approach mentioned above. Fmoc-Gly Wang resin
and Fmoc chemistry were used in the synthesis. In order to
achieve a reasonable coupling efficiency of the sterically hindered
glycosylated amino acid building blocks at the glycosylation sites
Thr 76, Thr 79, Thr 81, Ser 84, Thr 85, Thr 87, Thr 90, and Thr 92,
manual synthesis was carried out for the first 20 amino acids.

FIGURE 4 | Chemical syntheses of Lptn bearing O-glycans (A), FSHβ bearing N-glycans (B) and EPO bearing both O- and N-glycans (C).
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HBTU and HOBt were used as coupling agents, and the Kaiser
test was used to verify the completion of each coupling step. After
the synthesis of the first half of the glycopeptide, the resin beads
were transferred to the reaction vessel of an ABI 431A automated
peptide synthesizer to complete the second half. The coupling
agents used on the peptide synthesizer was DCC and HOBt. The
glycopeptide fragment was cleaved from the resin using Reagent
K and the acetyl groups on GalNAc residues were removed with
the aqueous solution of hydrazine hydrate (10%). RP-HPLC
purification afforded the glycopeptide product Lptn (48-93) in
24% yield.

The NCL of the large peptide Lptn (1-47) with the
glycopeptide Lptn (48-93) was carried out by mixing these two
fragments at a ratio of approximately 1:1 in the ligation buffer.
They were slowly ligated together to form Lptn (1-93) as the
major product, which was isolated and purified by RP-HPLC in
38% yield. The successful folding of Lptn (1-93) was realized by
dissolving this large glycopeptide in a cysteine/cystine redox
buffer. After another RP-HPLC purification, the desired
glycoprotein product was obtained in 49% yield (Figure 4A).

N-Linked Glycoprotein Synthesis
Many N-linked glycoproteins have also been synthesized in the
past decade (Piontek et al., 2009a; Piontek et al., 2009b; Izumi
et al., 2012; Sakamoto et al., 2012; Okamoto et al., 2014; Reif et al.,
2014; Wang et al., 2020; Li et al., 2021). The synthetic strategies
for the preparation of most of them are very similar to that used
for generating O-glycosylated Lptn, with the only difference being
that the building blocks become the N-glycoamino acids isolated
from chicken egg yolk powder or soybean powder (Izumi et al.,
2012; Sakamoto et al., 2012). The number of N-glycopeptides that
were prepared by the direct use of the Lansbury aspartylation
reaction is relatively smaller than that by the “cassette approach”.
In 2012, Danishefsky and coworkers reported the synthesis of the
β-subunit of follicle-stimulating hormone (FSHβ) in which the
Lansbury aspartylation reaction was employed for the
preparation of the N-glycopeptide fragments (Nagorny et al.,
2012). FSHβ consists of 111 amino acids and two N-linked
glycans at residues Asn7 and Asn24. According to their
retrosynthetic analysis, FSHβ could be obtained from four
fragments, two glycopeptide fragments FSHβ (1-19) and FSHβ
(20-27), and two peptide fragments FSHβ (28-65) and FSH β (66-
111) (Figure 4B).

The first step in the synthesis of glycopeptide FSHβ (1-19)
was the SPPS of Fmoc-FSHβ (1-18). The Fmoc-Arg (Pbf)-TGT
resin and the Pioneer Peptide Synthesizer were employed for the
synthesis of this peptide. After Fmoc SPPS and resin cleavage by
acetic acid, the Phe phenylthioester was attached to the
C-terminus of the protected-peptide under the condition
optimized by Sakakibara et al. Convergent coupling of the
synthetic N-glycan with the peptide thioester via the
Lansbury aspartylation reaction gave the desired glycopeptide
product in 17% yield. The glycopeptide FSHβ (20-27) bearing
the same N-linked dodecasaccharide was prepared in a similar
way and obtained in 27% yield. The two peptide fragments
FSHβ (28-65) and FSHβ (66-111) were synthesized using the
Fmoc-Gly-TGT resin and Fmoc-Glu (OtBu)-TGT, respectively.

The overall yield for FSHβ (28-65) was 48% and for FSHβ (66-
111) 31%.

Under NCL conditions, the two peptide fragments FSHβ (28-
65) and FSHβ (66-111) were first ligated together to form the
large peptide FSHβ (28-111) in 38% yield. Using a similar ligation
approach, the glycopeptide fragment FSHβ (20-27) was added to
the N-terminus of FSHβ (28-111) in 26% yield, and the
glycopeptide FSHβ (1-19) to the N-terminus of FSHβ (20-111)
in 27% yield. The resulting large glycopeptide FSHβ (1-111) was
not folded to generate the final glycoprotein product.

Synthesis of Glycoproteins Containing Both
O- and N-Linked Glycans
Many natural glycoproteins contain both O- and N-glycans.
However, due to its difficulty, there are only a few reports on
the synthesis of these glycoproteins in previous studies (Wang
et al., 2013; Fernandez-Tejada et al., 2014; Ye et al., 2021). In 2013,
Danishefsky and coworkers completed the synthesis of a
glycoprotein with such complexity, human erythropoietin
(EPO) (Wang et al., 2013). EPO has 166 amino acids and four
glycosylation sites, three N-glycosylation sites at Asn24, Asn38,
and Asn83, and one O-glycosylation site at Ser126. Four
glycopeptide fragments EPO (1-28), EPO (29-59), EPO (60-
97), and EPO (125-166), and one peptide fragment EPO (98-
124) were used for the synthesis of this glycoprotein (Figure 4C).
The peptide fragments were prepared via Fmoc SPPS using a
Pioneer Peptide Synthesizer. The N-glycopeptides were generated
by coupling the synthetic dodecasaccharide anomeric amine with
different peptide thioesters by the Lansbury aspartylation
reaction. The O-glycopeptide was obtained by ligating the
glycosylated EPO (125-127) with EPO (128-166).

After the synthesis of all five fragments, four of them were
joined together in the C to N direction using NCL to generate the
glycosylated EPO (29-166). The four non-native Cys residues in
this glycopeptide, which were introduced to facilitate NCL
reactions, were quantitatively desulfurized to Ala by the metal-
free desulfurization (MFD) reaction. The Acm groups on the
native Cys residues were then removed exposing the N-terminal
reactive site, which underwent another NCL reaction to generate
the large glycopeptide EPO (1-166). The folding was carried out
in a cysteine/cystine redox buffer and the correctly folded
glycoprotein product was purified by RP-HPLC.

PEPTIDE SYNTHESIZERS WITH HEATING

Most of the peptide synthesizers used in the reported synthesis of
glycoproteins were developed more than 20 years ago. Although
the synthesis could be achieved using these instruments, the
synthetic efficiency is not high enough and the synthetic yields
for peptides longer than 30 amino acids were generally lower than
50%. Such low yields led to overall low efficiency in glycoprotein
synthesis. In order to improve the synthesis of glycoproteins, as
we suggested above, it is necessary to not only significantly
optimize the methods for the synthesis of glycans and
glycopeptides (i.e., development of more efficient manual
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synthetic methods), but also the methods for the synthesis of large
peptides.

In recent years, many different methods have been explored to
further improve the performance of automated peptide
synthesizers in the preparation of large peptides. One simple
and reliable approach is to heat the reactions in SPPS. The effect
of an elevated temperature during SPPS has been controversial
since it was originally proposed. On one hand, peptides are
complex and may undergo side reactions at high temperature.
On the other hand, as the length of the peptide chain increases,
the intra- and intermolecular aggregation can significantly
reduces the reaction efficiency, and increasing temperature
may be a solution to this issue.

The microwave-assisted peptide synthesis has attracted much
attention in the past decade. At the beginning of the development
of this technology, it has been speculated that there are so-called
non-thermal microwave effects on the synthesis because of the
observed acceleration in rate and alteration in product
distribution as compared with conventional heating (De La
Hoz et al., 2005). However, more and more experiments
indicate that there is no essential difference between different
heating methods. The observed changes may be the results of
thermal/kinetic effects (Bacsa et al., 2008).

Currently, the two major manufacturers of fully automated
microwave-assisted peptide synthesizers are CEM and Biotage.
Possibly due to the limitations of current microwave technology,
the more efficient continuous flow method was not used in their
synthesizers. Instead, they used nitrogen bubbling (CEM Liberty,
Figure 5A) and vortexing (Biotage SyroWave) to mix resin beads
with solvent and reagents during SPPS. Another crucial limitation
of microwave-assisted peptide synthesizers is their inability to
monitor the progress of the synthesis visually.

Compared with the batch mode synthesis used in the
microwave-assisted peptide synthesizers, the flow mode
synthesis is more efficient in heat transfer, more economical

and more flexible (Plutschack et al., 2017). Recently, Pentelute
et al. demonstrated the advantages of flow peptide synthesis.
Using their automated fast-flow synthesizer (AFPS, Figure 5B),
they were able to successfully prepare a series of long peptides
such as sortase A (59–206), which is 164 amino acids long
(Hartrampf et al., 2020). Although the requirement of the use
of large excess of amino acid building blocks (>40 eq) in the
synthesis limits the application of such a peptide synthesizer in
the synthesis of glycopeptides, its advantage in the preparation of
large peptides is expected to have a positive impact on
glycoprotein chemical synthesis.

CONCLUSION AND PERSPECTIVES

Although several decades of efforts and development have led to
great achievements in glycoprotein synthesis, many challenges
still exist in this research area. Currently, the chemical synthesis
of glycoproteins is a complex, expensive and time-consuming
process. In order to address this issue, optimization of the
automated peptide synthesis is required. A possible solution is
to apply the newly developed automated fast-flow peptide
synthesizers to perform the synthesis of large peptide
fragments. It is expected that if such synthesis is reliably
realized, it should greatly promote the advancement of
glycoprotein synthesis in the future.
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Biochemical Characterization and
Synthetic Application of WciN and Its
Mutants From Streptococcus
pneumoniae Serotype 6B
Wei Gong1,2, Min Liang1,3, Jielin Zhao1,3, Hong Wang1,3, Zonggang Chen1,3,
Fengshan Wang1,2,3 and Guofeng Gu1,3*

1National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology,
Shandong University, Qingdao, China, 2School of Pharmaceutical Science, Shandong University, Jinan, China, 3NMPA Key
Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, China

The biochemical properties of α-1,3-galactosyltransferase WciN from Streptococcus
pneumoniae serotype 6B were systemically characterized with the chemically
synthesized Glcα-PP-(CH2)11-OPh as an acceptor substrate. The in vitro site-directed
mutation of D38 and A150 residues of WciN was further investigated, and the enzymatic
activities of those WciN mutants revealed that A150 residue was the pivotal residue
responsible for nucleotide donor recognition and the single-site mutation could completely
cause pneumococcus serotype switch. Using WciNA150P and WciNA150D mutants as
useful tool enzymes, the disaccharides Galα1,3Glcα-PP-(CH2)11-OPh and Glcα1,3Glcα-
PP-(CH2)11-OPh were successfully prepared in multi-milligram scale in high yields.

Keywords: Streptococcus pneumoniae serotype 6B, capsular polysaccharides, galactosyltransferase, site
mutation, enzymatic synthesis

INTRODUCTION

Pneumonia caused by the Gram-positive pathogen Streptococcus pneumoniae is a highly fatal
infectious disease worldwide. The extracellular capsular polysaccharides (CPSs) abundantly
coating the pneumococcal cell surfaces are recognized as one of the predominant causative
virulence factors owing to their enhancing resistance to the complement-mediated
opsonophagocytosis (Alonsodevelasco et al., 1995; Neeleman et al., 1999). Furthermore,
these CPSs are identified as effective antigenic epitopes for the development of
pneumococcal vaccines because of their inducing serotype-specific immunoprotection
(Alonsodevelasco et al., 1995). Based on the confirmed serological profiles and unique CPS
structures, more than 100 individual pneumococcal serotypes have been characterized and
identified thus far (Henrichsen, 1995; Ganaie et al., 2020; Pimenta et al., 2021). Such a large
diversity of CPS among pneumococcal serotypes has made it a huge challenge in CPS-related
pneumococcal vaccine development.

Each capsular polysaccharide is programmatically synthesized by a series of enzymes encoded by
the cps locus genes (Muñoz et al., 1997). It has been disclosed that the generation of antigenic
diversity of CPS mainly contributed to elevated recombination and substitution rates of the cps locus
(Mostowy et al., 2017). Although recombination within the cps locus has been assumed as the
underlying cause for serotype evolution (Joshi et al., 2020), several studies revealed that serotype
switching in pneumococcus was also implicated with the site-mutation of glycosyltransferase genes
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located in the cps locus (van Selm et al., 2003; Mavroidi et al.,
2004; Mavroidi et al., 2007; Sheppard et al., 2010; Oliver et al.,
2013). Serogroup six of S. pneumoniae has been characterized to
contain eight serotypes including 6A-H (Park et al., 2015; van
Tonder et al., 2015). Among them, the identified chemical
structures of CPS 6A-D were shown in Figure 1A. The
serotypes 6A and 6B have identical structures of capsular
polysaccharides repeat unit (RU) only with a difference in the
rhamnosidic linkage, which is α-1,3 linkage in 6A and α-1,4
linkage in 6B (Rebers and Heidelberger, 1961). Further studies
revealed that the substitution of the catalytic triad residues,
Ala192-Ser195-Arg254, in rhamnosyltransferase (WciP) could
completely cause a serotype switch between 6A and 6B (Mavroidi
et al., 2004; Sheppard et al., 2010). The CPS RUs of serotypes 6C
and 6D have the glucose residue in place of the galactose residue
in serotypes 6A and 6B through entire gene replacement of
glycosyltransferase WciN, which has been respectively
recognized as galactosyltransferase in 6A and 6B and as
glucosyltransferase in 6C and 6D (Park et al., 2007a; Park
et al., 2007b; Jin et al., 2009; Bratcher et al., 2010).
Nevertheless, it has been disclosed that mutagenesis of A150
and/or D38 residues of WciN in serotype 6A or 6B resulted in a

novel hybrid serotype 6F or 6G, which was identified as a different
mixture ratio of 6A/6C for 6F, or 6B/6D for 6G, respectively
(Oliver et al., 2013).

As mentioned above, WciN from pneumococcus type 6B
strain is presumed as α-1,3-galactosyltransferase responsible for
the RU assembly in the biosynthesis of type 6B CPS. Its
galactosylation activity has been preliminarily investigated
and identified in vitro using a chemosynthetic Und-PP-Glc
surrogate, that is, Glcα-PP-(CH2)10CH3, as an acceptor
substrate (Han et al., 2012). However, its detailed
biochemical properties have not been reported yet. Moreover,
the in vivo allelic exchange study has disclosed that the
mutagenesis of aspartic acid residue at position 38 and
alanine residue at position 150 of WciN could trigger
pneumococcus serotype switch. Thus, the more in vitro
evidence to confirm such serotype evolution are further
worthy of exploring. In this study, we presented in detail the
biochemical properties of WciN derived from pneumococcus
type 6B using the synthesized glycolipid Glcα-PP-(CH2)11-OPh
1 (Wang et al., 2019; Wang et al., 2021; Liang et al., 2022)
(Figure 1B) as acceptor substrate, and carried out the single or
dual amino acid substitution of D38 and/or A150 residue of

FIGURE 1 | The chemical structures of (A) CPS repeat units of pneumococcal serotypes 6A–D and (B) the glycolipid Glcα-PP-(CH2)11-OPh 1.
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WciN to verify the different glycosylation functions of the
resultant glycosyltransferase mutants.

MATERIALS AND METHODS

Materials
Sugar nucleotide donors UDP-Gal and UDP-Glc were prepared as
previously described (Li et al., 2020). Enzymatic acceptor substrate
Glcα-PP-(CH2)11-OPh 1 was synthesized followed the protocol
reported previously (Liang et al., 2022). Ni2+ Sepharose high
performance was the product of GE healthcare. Menthol HPLC
grade was purchased from Thermo Fisher Scientific. Other
chemicals and solvents used were of analytical grade.

Overexpression and Purification of WciN
The complete wciN gene of pneumococcus type 6B without
terminator codon (GenBank: KT907353.1, 5253–6194) was
synthesized and inserted into Nde I and Xho I of expression
plasmid pET-28b by Sangon Biotech. The resulting recombinant
plasmid pET-28b-wciN was then transformed into E. coli BL21
(DE3) competent cell for overexpression. The proper
transformants were first grown at 37°C and 200 rpm in Luria-
Bertani (LB) medium containing kanamycin (100 μg ml−1). When
the cell density reached an OD value of 0.6–0.8 at 600 nm,
isopropyl 1-thio-β-D-galactopyranoside (IPTG) (0.3 mM) was
added to the cell culture for recombinant protein induction.
After subsequent cultivation at 16°C for another 20 h, cells were
harvested and disrupted by ultrasonic treatment. The resulting
lysate was centrifuged and the supernatant was subjected to a nickel
affinity chromatography for enzyme purification with three
different buffers: equilibration buffer (50 mM Tris, 500 mM
NaCl, 10mM imidazole, and pH 7.5), washing buffer (50 mM
Tris, 500 mM NaCl, 50mM imidazole, and pH 7.5), and elution
buffer (50 mM Tris, 500 mM NaCl, 200 mM imidazole, and pH
7.5). The purity and homogeneity of WciN protein were analyzed
by 12.5% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE). Its concentration was measured by
using a Thermo Scientific™NanoDrop One spectrometer that was
calibrated with the extinction coefficient predicted by ExPASy
(http://web.expasy.org/protparam/). Finally, the purified enzyme
was stored at -80°C containing 20% glycerol (v/v).

Biochemical Characterization of WciN
The catalytic activity of the purified WciN was determined in a
solution system as follows: 50 μg ml−1 of WciN, 5 mM MgCl2,
1 mM UDP-Gal, and 1 mM Glcα-PP-(CH2)11-OPh 1 in 50 mM
buffer. Reaction mixtures were performed for 10 min and then
terminated by boiling at 100°C for 30 s. After centrifuging for
10 min under 12,000 rpm, the supernatant was analyzed with
HPLC (DionexCarboPacTM PA-100 column, 4 × 250 mm, 0–1 M
ammonium acetate buffer eluent). The byproduct UDP was
monitored to assess the reaction process owing to its strong
UV absorption at 260 nm and its convenience to be quantitated
by HPLC (Wang et al., 2021; Liang et al., 2022).

The pH effect on enzyme activity was determined at pH values
ranging from 6.0 to 10.5 with three different buffer systems at

37°C. The employed buffers included Bis-Tris-HCl (50 mM, pH
6.0, 6.5, and 7.0), Tris-HCl (50 mM, pH 7.0, 7.5, 8.0, 8.5, and 9.0),
and Gly-NaOH (50 mM, pH 9.0, 9.5, 10.0, and 10.5). The optimal
temperature for enzyme reaction was assessed at different
temperatures (10, 16, 20, 25, 30, 37, 42, and 50°C) in 50 mM
Gly-NaOH buffer (pH 9.0). To investigate the influence of
metallic ions, enzyme activities were assayed in Gly-NaOH
buffer (pH 9.0) with the presence of 5 mM following metal
salts including ethylenediamine tetraacetic acid (EDTA),
MgCl2, MnCl2, CaCl2, NiSO4, CoSO4, FeSO4, CuSO4, and
ZnSO4. To obtain the optimized Mg2+ concentration, the
enzymatic reactions were carried out under varying
concentrations of Mg2+ (0.3125–80 mM). Heat-treated WciN
was served as a negative control. The Relative activity
concluded from the pH and temperature test was defined as
the relative value to the maximum enzyme activity, and the effect
of metal ions on enzyme activity was determined using the
activity measured without adding ions as the reference value.

For acceptor substrate specificity study, Glcα-PP-(CH2)11-
OPh, Glcα-PP-(CH2)7-CH3, Glcα-P-(CH2)11-ONap, Glcβ-
(CH2)7-CH3, and Glcβ-(CH2)11-CH3 were examined with
UDP-Gal as nucleotide donor, respectively. For donor
substrate specificity study, UDP-Gal, UDP-Glc, UDP-GalNAc,
UDP-GlcNAc, and UDP-GlcA were examined with Glcα-PP-
(CH2)11-OPh as acceptor substrate, respectively. The reaction was
performed in the optimized conditions for WciN.

Site-Directed Mutagenesis of Key Amino
Acids of WciN
Three single site mutated enzymes, namely WciND38N,
WciNA150T, and WciNA150S, were obtained using pET-28b-
wciN plasmid as a template. Another two dual sites mutated
enzymes, WciND38N/A150S and WciND38N/A150T were created
using pET-28b-wciND38N as a template. All of the site
mutations were carried out by the Fast Mutagenesis System
(TransGen Biotech). Primers designed for corresponding
amino acid substitution were listed in Supplementary Table
S1. The mutant enzymes were overexpressed and purified
following the similar protocols described earlier. Thereafter,
UDP-Gal and UDP-Glc were applied to assay the donor
recognition of the mutant enzymes, respectively. The reaction
progress was monitored by thin-layer chromatography (TLC) or
matrix-assisted laser desorption/ionization time of flight mass
spectrometry (MALDI-TOF-MS). The developing solvent of TLC
was a mixture of EtOAc/CH3OH/H2O/AcOH (v/v/v/v, 10/3/2/
0.5), and the components on TLC were visualized by incubation
at 180°C with a chromogenic solvent containing 93% ethyl
alcohol, 3.5% sulfuric acid, 1% acetic acid, and 2.5% anisaldehyde.

To further investigate the effect of amino acid substitution at the
position 150 of WciN on donor recognition, saturated mutation at
A150 was systematically performed, and the corresponding
oligonucleotide primers were shown in Supplementary Table S1.
The catalytic activities of purified mutant enzymes were measured as
described earlier. The molecular modeling of enzymes was conducted
by PHYRE2 (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id =
index).
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Enzyme Kinetics of WciN Mutants
The enzymatic reactions were carried out under the aforementioned
optimized conditions, that is, in Gly-NaOH buffer (50 mM, pH 9.0)
containing varying concentrations UDP-Gal/UDP-Glc and Glcα-
PP-(CH2)11-OPh 1 with 5mM MgCl2 at 37°C. Then, enzyme
reactions using saturated UDP-sugar (4.0 mM) and varying
concentrations of Glcα-PP-(CH2)11-OPh 1 (0.0625–4.0 mM) or
Glcα-PP-(CH2)11-OPh 1 (1.0 mM) and varying concentrations of
UDP-sugar (0.125–4.0 mM) were performed for 10 min. The
Michaelis constant (Km) and maximal velocity (Vmax) values were
graphed using the initial reaction velocities calculated from
experimental data by GraphPad Prism 6.04 program.

Milligram-Scale Enzymatic Synthesis of
Disaccharides
Galα1,3-Glcα-PP-(CH2)11-OPh 2 and
Glcα1,3-Glcα-PP-(CH2)11-OPh 3
A 10ml reaction system containing 2.4 mM UDP-Gal, 2 mM Glcα-
PP-(CH2)11-OPh 1, 5 mM MgCl2, and 100 μgml−1 purified
WciNA150P in 50mM Gly-NaOH buffer (pH 9.0) was incubated
at 37°C for 1 h with gently shaking. After acceptor substrate 1 was
completely converted into disaccharide product as monitored by
TLC andMADI-TOF-MS analysis, the reactionwas then terminated
by boiling for 30 s. The reaction mixture was centrifuged at
12,000 rpm to remove the formed precipitate, and the resulting
supernatant was freeze-dried, resuspended in methanol, and then
filtered for further purification. The filtrate was purified by the
reversed phase HPLC using a C18 column (10 × 250mm) and
gradient eluent (10–100% methanol in water containing 10mM
NH4HCO3). The fractions containing the desired product were
pooled and concentrated to afford Galα1,3-Glcα-PP-(CH2)11-OPh
2 (12.7 mg, 85%) as a white solid. 1H NMR (600MHz, CD3OD): δ
7.22 (t, 2H, J=7.8Hz, Ph), 6.89–6.84 (m, 3H, Ph), 5.65 (dd, 1H, J=7.8,
3.6 Hz, H-1Glc), 5.34 (d, 1H, J = 2.4Hz, H-1Gal), 4.24 (t, 1H, J = 6.0 Hz,
H-5Gal), 4.00–3.56 (m, 7H, H-3,5Glc, H-4Gal, -OCH2CH2-,
-CH2CH2OPh), 3.82 (dd, 1H, J = 12.0, 2.4 Hz, H-6aGlc), 3.80–3.75
(m, 2H, H-2,3Gal), 3.74 (dd, 1H, J = 11.4, 7.2 Hz, H-6aGal), 3.66 (dd,
1H, J = 11.4, 3.6 Hz, H-6bGal), 3.64 (dd, 1H, J = 12.0, 3.6 Hz, H-6bGlc),
3.52 (t, 1H, J = 9.6 Hz, H-4Glc), 3.47 (br d, 1H, J = 9.6 Hz, H-2Glc),
1.77–1.71 (m, 2H, -CH2CH2-), 1.67–1.61 (m, 2H, -CH2CH2-),
1.49–1.42 (m, 2H, -CH2CH2-), 1.41–1.27 (m, 15H, -CH2CH2-);
13C NMR (150MHz, CD3OD): δ 159.16 (Ph), 128.93 (2C, Ph),
119.99 (Ph), 114.04 (2C, Ph), 99.52 (C-1Gal), 96.00 (d, JC,P = 6.0
Hz, C-1Glc), 79.94 (C-3Glc), 73.19 (C-5Glc), 70.15 (d, JC,P = 7.5 Hz, C-
2Glc), 70.99 (C-5Gal), 70.46 (C-4Glc), 70.12 (C-3Gal), 69.79 (C-4Gal),
69.47 (C-2Gal), 67.14 (-CH2CH2OPh), 65.94 (d, JC,P = 6.0 Hz,
-OCH2CH2-), 61.35 (C-6Gal), 61.11 (C-6Glc), 30.34 (d, J = 7.5 Hz,
-OCH2CH2CH2-), 29.34, 29.32, 29.28, 29.14, 29.12, 29.02, 25.76, 25.46
(8 C, -OCH2CH2(CH2)8CH2OPh);

31P NMR (243MHz, CD3OD): δ
-10.47 (d, J= 20.8 Hz) and -12.72 (d, J= 20.8Hz); ESI-(-)-TOFHRMS
m/z: calculated for C29H49O18P2 747.2400 [M-H]−; found 747.2391.

A 10ml reaction mixture of 50mM Gly-NaOH buffer (pH 9.0)
containing 2.4 mM UDP-Glc, 2 mM Glcα-PP-(CH2)11-OPh 1,
5 mM MgCl2 and 200 μgml−1 WciNA150D was incubated at 37°C
for 4 h. The reaction was then worked up following the same protocol
as described earlier, yielding Glcα1,3-Glcα-PP-(CH2)11-OPh 3 (12.4

mg, 83%) as a white solid. 1HNMR (600MHz, CD3OD): δ 7.22 (t, 2H,
J = 7.8 Hz, Ph), 6.89–6.85 (m, 3H, Ph), 5.65 (dd, 1H, J = 7.8, 3.6 Hz, H-
1Glc), 5.23 (d, 1H, J = 3.6 Hz, H-1Glc′), 4.01–3.90 (m, 6H, H-5Glc, H-
5Glc′, -OCH2CH2-, -CH2CH2OPh), 3.88–3.80 (m, 3H, H-3Glc, H-6aGlc,
H-6aGlc′), 3.67 (t, 1H, J = 9.6 Hz, H-3Glc′), 3.65–3.58 (m, 2H, H-6bGlc,
H-6bGlc′), 3.51 (t, 1H, J = 9.6 Hz, H-4Glc), 3.47 (br d, 1H, J = 9.6 Hz, H-
2Glc), 3.40 (dd, 1H, J = 9.6, 3.6 Hz, H-2Glc′), 3.23 (t, 1H, J = 9.6 Hz, H-
4Glc′), 1.77–1.71 (m, 2H, -CH2CH2-), 1.67–1.60 (m, 2H, -CH2CH2-),
1.49–1.42 (m, 2H, -CH2CH2-), 1.41–1.28 (m, 15H, -CH2CH2-);

13C
NMR (150MHz, CD3OD): δ 159.15 (Ph), 128.93 (2C, Ph), 119.99
(Ph), 114.04 (2C, Ph), 99.96 (C-1Glc′), 95.95 (d, JC,P = 6.0 Hz, C-1Glc),
81.75 (C-3Glc), 73.78 (C-3Glc′), 73.06 (C-5Glc), 72.86 (C-2Glc′), 72.31 (C-
5Glc′), 71.13 (d, JC,P = 7.5 Hz, C-2Glc), 70.62 (C-4Glc′), 70.27 (C-4Glc),
67.41 (-CH2CH2OPh), 65.86 (d, JC,P = 6.0 Hz, -OCH2CH2-), 61.49 (C-
6Glc′), 61.14 (C-6Glc), 30.36 (d, J = 7.5 Hz, -OCH2CH2CH2-), 29.35,
29.32, 29.28, 29.15, 29.13, 29.02, 25.76, 25.48 (8 C,
-OCH2CH2(CH2)8CH2OPh);

31P NMR (243MHz, CD3OD): δ
-10.40 (d, J = 20.8Hz) and -12.68 (d, J = 20.8Hz); ESI-(-)-TOF
HRMS m/z: calculated for C29H49O18P2 747.2400 [M-H]−; found
747.2394.

RESULTS AND DISCUSSION

Overexpression and Purification of WciN
The recombinant plasmid pET-28b-wciN was designed to encode
the full length of WciN with two His6 tags at its both N- and
C-terminus for later convenient protein purification. The His6-
WciN-His6 fusion protein was overexpressed and purified readily
to homogeneity via Nickel-chelation affinity chromatography.

FIGURE 2 | SDS-PAGE of recombinant WciN. Lane M, protein
molecular weight standards; lane 1, whole E. coli BL21(DE3) cells with empty
plasmid pET-28b; lane 2, crude extract of expression strain of WciN; lane 3,
purified fusion protein His6-WciN-His6.
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The SDS-PAGE depicted in Figure 2 showed a distinct band at
~40 kDa that was coincident with the theoretically calculated
molecular weight (40.01 kDa) of recombinant WciN. In addition,
its expression level was determined as 15.2 mg per liter using a
NanoDrop One spectrophotometer.

Biochemical Properties of the Recombinant
WciN
We have recently reported the optimized synthesis of the
glycolipid Glcα-PP-(CH2)11-OPh 1 (Liang et al., 2022) and
utilized it as an acceptor substrate to characterize several
bacterial glycosyltransferases related to CPS RU
biosynthesis (Wang et al., 2019; Wang et al., 2021; Liang
et al., 2022). Therefore, using it as an enzymatic substrate,
the detailed biochemical properties of WciN were then
investigated. The enzymatic activities were analyzed by
means of spectrophotometric analysis of the by-product
UDP, and the results were shown in Figure 3. The better
activity (>60%) of WciN was observed under weak alkali
conditions (pH 8.0–10.0), and the optimal pH value for its
activity was 9.0 (Figure 3A). WciN enzyme was highly active
(>80%) from 30 to 42°C, and the best glycosylation activity was
determined at 37°C (Figure 3B). Furthermore, the existence of
EDTA could completely inhibit enzyme activity (Figure 3C),
indicating WciN might belong to GT-A glycosyltransferase
family (Lairson et al., 2008; Han et al., 2012). Among eight
tested divalent cation ions, Cu2+ and Zn2+ obviously reduced

enzyme activity, and Ca2+ and Ni2+ slightly affected its
activity, whilst Mg2+, Mn2+, Co2+, and Fe2+ exhibited
remarkable promoting ability on enzyme activity (Figure 3C). It
has been disclosed that a 5~8 fold improvement of WciN activity
was achieved in the presence of Mn2+ or Mg2+. In addition, the
influence of Mg2+ concentrations on WciN activity was also
examined. As shown in Figure 3D, the activity of WciN
improved sharply under a broad range of 5–40mM of Mg2+

concentrations but without any significant difference.
Collectively, the optimal reaction conditions for WciN enzyme
were established to be 5 mMMg2+ in 50mM Gly-NaOH buffer
with pH 9.0 at 37°C.

Acceptor Substrate Specificity of WciN
The specificity of WciN toward five acceptor substrates was
investigated with the earlier optimized reaction conditions
using UDP-Gal as the nucleotide donor (Table 1). The
enzymatic reactions were monitored by TLC and HRMS
(Supplementary Figure S1). Among five sugar acceptors,
only Glcα-PP-(CH2)11-OPh and Glcα-PP-(CH2)7-CH3,
which had diphosphate moiety in structure, could be well
recognized by WciN, whereas Glcα-P-(CH2)11-ONap with
monophosphate moiety and the other two acceptors, Glcβ-
(CH2)11-CH3 and Glcβ-(CH2)7-CH3, without any phosphate
moiety exhibited none detectable activity. These results
indicated that the diphosphate moiety in the acceptor
substrate played an important role in the acceptor
recognition of WciN.

FIGURE 3 | The influences of pH (A), temperature (B), ions (C), and Mg2+ concentration (D) on the relative activity of WciN to catalyze galactosylation of Glcα-PP-
(CH2)11-OPh 1 with UDP-Gal.
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Nucleotide Donor Recognition of WciN
Enzyme and Its Mutants
In a previous study, Nahm and co-workers have disclosed
that the amino acid replacement at the position 150 and/or
38 of WciN could alter donor substrate specificities, resulting
in the emergence of two new hybrid serotypes 6F and 6G
(Oliver et al., 2013). To further confirm this conclusion, five
mutant enzymes including WciND38N, WciNA150T,
WciNA150S, WciND38N/A150T, and WciND38N/A150S were
accordingly designed, overexpressed, and purified to
homogeneity. Using UDP-Gal and UDP-Glc as sugar
nucleotide donors, the activities of these mutant enzymes
were detected with TLC (Supplementary Figures S2A,B)
and then analyzed by HPLC (Figure 4). Compared to wild-
type WciN, all mutated enzymes could well recognize UDP-
Gal donor (Supplementary Figure S2A) but exhibit reduced
galactosylation activities in different degrees (40–80%
relative activities) (Figure 4). Interestingly, except
WciND38N mutant, all other four WciN mutants could
also accept UDP-Glc donor and showed weak to the good
catalytic ability for glucosylation (Supplementary Figure
S2B). Moreover, the glucosylation abilities of WciNA150S and
WciND38N/A150S mutants were significantly higher than
those exerted by WciNA150T and WciND38N/A150T mutants
(Figure 4). These aforementioned results disclosed that the
A150 residue of WciN was the pivotal residue responsible for
nucleotide donor recognition and its mutation could alter
nucleotide donor recognition, whereas mutation of the D38

residue could only decrease the enzymatic activity but not
affect its donor specificity. All these findings almost
coincided with the results reported previously (Oliver
et al., 2013).

Thereafter, saturated mutation on A150 residue of WciN
was executed using the designed primers listed in
Supplementary Table S1. Except WciNA150T and
WciNA150S, other seventeen mutants were obtained and
their enzymatic activities were accordingly examined using
the same protocol described earlier. As shown in
Supplementary Figures S2C,D, WciNA150C and WciNA150P

mutants exhibited the catalytic activity to only recognize
UDP-Gal as donor substrate with increased activity for
WciNA150P (121% relative activity) and a decreased activity
for WciNA150C (19% relative activity), whereas WciNA150D

showed the capability to only accept UDP-Glc as donor
substrate even with a lower glucosylation activity (~5%
relative activity, Figure 4). Nevertheless, the rest mutated
enzymes did not exert any detectable enzymatic activities
toward UDP-Gal or UDP-Glc. All these results suggested that
rational residue replacement at position 150 of WciN could
affect the recognizable capability against donor substrate or
change its donor specificity. In addition, WciN and its active
mutants could not recognize other UDP-sugars, such as UDP-
GlcNAc, UDP-GalNAc, and UDP-GlcA, indicating their
relative donor specificity. Incidentally, the acceptor
specificity of these mutants coincided well with that of
wild type WciN enzyme.

In order to explore how the residue replacement at Ala150
of WciN affected its enzyme activity, molecular modeling of
WciN and its mutants WciNA150T and WciNA150P were
conducted using LgtC, a retaining galactosyltransferase from
Neisseria meningitides, as the modeling template (Persson
et al., 2001). The Gln189 residue of LgtC was located at the
catalytic center and interacted with nucleotide donor through
van der Waals, whilst interacted with acceptor substrate with
the assistant of Ala154 residue through several hydrogen
bonds (Persson et al., 2001). Alignment of the amino acid

FIGURE 4 | Relative activities of WciN mutant enzymes toward UDP-Gal
and UDP-Glc donors.

TABLE 1 | Investigation of acceptor recognition of WciN.

No. Acceptor Structure Activity

1 Glcα-PP-
(CH2)11-OPh

+

2 Glcα-PP-
(CH2)7-CH3

+

3 Glcα-P-
(CH2)11-
ONap

−

4 Glcβ-
(CH2)7-CH3

−

5 Glcβ-
(CH2)11-CH3

−

+, detectable activity by TLC and HRMS; −, no detectable activity.
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sequence of WciN with that of LgtC indicated that Ala150 and
Leu185 residues of WciN corresponded to Ala154 and Gln189
residues of LgtC, respectively (Supplementary Figure S3).
Therefore, it indicated that the residues Ala150 of WciN
indirectly influenced substrate recognition by affecting its
Leu185 residue.

Enzyme Kinetics of WciN Enzyme and Its
Mutants
The enzyme kinetics of WciN and its mutants were examined at
optimal reaction conditions established earlier. The influence of
acceptor substrate concentration on the enzyme activity of WciN
was explored first. As depicted in Figure 5, the reaction velocity
catalyzed byWciN was dramatically reduced as the concentration
of Glcα-PP-(CH2)11-OPh 1 was greater than 0.25 mM, indicating
the activity of WciN could be easily inhibited even by a slightly
higher concentration of acceptor substrate. This finding was
radically different from those reported glycosyltransferases that
could well accept Glcα-PP-(CH2)11-OPh 1 as substrate acceptor
(Wang et al., 2019; Liang et al., 2022). Bioinformatics analysis of
the amino acid sequence of WciN revealed that there was no
transmembrane domain inWciN, lacking a domain that interacts
with the membrane. Thus, the great difference in recognizing
acceptor substrates by WciN might be remarkably affected by the
variation of substrate micelles formed in aqueous solution due to
the amphipathic character of Glcα-PP-(CH2)11-OPh 1.
Therefore, the enzyme kinetics of WciN and its mutants,
WciNA150P and WciNA150D, toward nucleotide donor (UDP-
Gal or UDP-Glc) were then briefly measured using
0.125–4.0 mM UDP-Gal/UDP-Glc and Glcα-PP-(CH2)11-OPh
1 at suitable concentration (1.0 mM). The Km and Vmax values
were calculated from Michaelis–Menten plots and listed in
Table 2.

Preparation of Disaccharide Products 2
and 3
As outlined in Scheme 1, using Glcα-PP-(CH2)11-OPh 1 as
substrate acceptor, the disaccharide products Galα1,3-Glcα-PP-
(CH2)11-OPh 2 and Glcα1,3-Glcα-PP-(CH2)11-OPh 3 were

FIGURE 5 | Influence of acceptor concentration on enzyme reaction
velocity.

TABLE 2 | Enzyme kinetics using UDP-Gal and UDP-Glc as donor.

Enzyme UDP-Gal UDP-Glc

Km (mM) Vmax (μM/min) Km (mM) Vmax (μM/min)

WciN 5.5 ± 0.33 133.5 ± 5.28 — —

WciNA150P 7.06 ± 0.78 151.8 ± 11.79 — —

WciNA150D — — 3.52 ± 1.18 0.39 ± 0.08

—, no data.

SCHEME 1 | Enzymatic synthesis of Galα1,3-Glcα-PP-(CH2)11-OPh 2 and Glcα1,3-Glcα-PP-(CH2)11-OPh 3.
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efficiently prepared under the earlier optimized reaction
conditions by WciNA150P and WciNA150D mutants,
respectively. Each enzymatic reaction proceeded smoothly and
was monitored timely by TLC analysis, and terminated within
1–4 h after the full consumption of 1. The disaccharides 2 and 3
were then obtained in milligram quantities and high yields of
83–85% after semi-preparative HPLC purification. Furthermore,
the correct stereo-/regio-selectivity of each disaccharide product
functioned by the WciN mutant was well verified with the
assistance of the 1D and 2D NMR spectra. The small 3J1,2
coupling constants (2.4 Hz for 2; 3.6 Hz for 3) of doublet
peaks of the H-1Gal/Glc′ signals in their 1H NMR spectra
indicated the new formation of α-glyosidic bonds, whilst the
observed correlation signals of C-1Gal/H-3Glc and H-1Glc′/C-3Glc

in their gHMBC spectra confirmed the regioselective formation of
the 1,3-glycosidic linkages.

CONCLUSION

In this study, the detailed biological characterization of WciN
from pneumococcus type 6B strain was investigated in vitro.
The single or dual site-directed mutagenesis with D38 and A150
residues of WciN followed by comparison of glycosylation
activities of the resultant mutant enzymes revealed that A150
residue played the pivotal role in altering donor recognition
(Oliver et al., 2013). Accordingly, saturated mutation at position
150 of WciN was implemented, and only WciNA150T,
WciNA150S, WciNA150C, WciNA150P, and WciNA150D mutants
exhibited the catalytic activity in different degree. Among them,
WciNA150T and WciNA150S mutants were recognized as bi-
specific glycosyltransferases that could catalyze both
galactosylation and glucosylation. Furthermore, WciNA150P

mutant showed remarkably increased capability (121%
relative activity) for recognition on UDP-Gal with
comparison to that of wild WciN enzyme, whereas
WciNA150D mutant completely abolished the recognition
capability toward UDP-Gal, but could accept UDP-Glc as
sole donor substrate even with very low activity (~5% relative

activity). All these findings indicated that the single site-
mutation of galactosyltransferase WciN at A150 residue
could cause the different recognition toward nucleotide
donor and thus trigger complete pneumococcus serotype
switch. Finally, using WciNA150P and WciNA150D mutants as
useful tool enzymes, disaccharide products Galα1,3Glcα-PP-
(CH2)11-OPh 2 and Glcα1,3Glcα-PP-(CH2)11-OPh 3 were
successfully achieved in multi-milligram scale.
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Glycoproteins are involved in a variety of biological processes. More than one-third of the
plasma protein biomarkers of tumors approved by the FDA are glycoproteins, and could
improve the diagnostic specificity and/or sensitivity. Therefore, it is of great significance to
perform the systematic characterization of plasma N-glycoproteome. In previous studies,
we developed an integrated method based on the combinatorial peptide ligand library
(CPLL) and stepped collision energy/higher energy collisional dissociation (sceHCD) for
comprehensive plasma N-glycoproteome profiling. Recently, we presented a new
fragmentation method, EThcD-sceHCD, which outperformed sceHCD in the accuracy
of identification. Herein, we integrated the combinatorial peptide ligand library (CPLL) into
EThcD-sceHCD and compared the performance of different mass spectrometry
dissociation methods (EThcD-sceHCD, EThcD, and sceHCD) in the intact
N-glycopeptide analysis of prostate cancer plasma. The results illustrated that EThcD-
sceHCD was better than EThcD and sceHCD in the number of identified intact
N-glycopeptides (two-folds). A combination of sceHCD and EThcD-sceHCD methods
can cover almost all glycoproteins (96.4%) and intact N-glycopeptides (93.6%), indicating
good complementarity between the two. Our study has great potential for medium- and
low-abundance plasma glycoprotein biomarker discovery.

Keywords: mass spectrometry, plasma, N-glycoproteomics, combinatorial peptide ligand library, EThcD-sceHCD

1 INTRODUCTION

Human plasma is a critical area of clinical and fundamental research, as it contains a large number of
disease candidate biomarkers (Jacobs et al., 2005). Protein biomarkers in the plasma change in
concentration or state associated with a biological status or disease, offering great potential for
patient diagnosis, risk stratification, and disease prevention (Moremen et al., 2012; Silsirivanit, 2019).
More than one-third of plasma tumor protein biomarkers approved by the FDA are glycoproteins
(Silsirivanit, 2019). Glycosylation has been recognized as one of the most multifunctional protein
modifications (Moremen et al., 2012). It plays a vital role in the progression of various cancers
(Ohtsubo and Marth, 2006). However, the dynamic range of plasma proteins can exceed 109, and
many potential biomarkers are low-abundance proteins (Jacobs et al., 2005). Moreover,
glycoproteomic analysis is difficult due to the microheterogeneity and macroheterogeneity of
glycosylation, and other special properties (Pujic and Perreault, 2021). Hence, comprehensive
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identification of human plasma glycoproteome (including intact
glycopeptides, glycoproteins, glycosites, and glycans) is an
important way to discover new biomarkers.

In the past few years, some researchers have made
contributions to study plasma proteome and glycoproteome.
In 2005, the Human Plasma Proteome Project identified a
total of 7518 proteins and isoforms in plasma (Muthusamy
et al., 2005). As a result of improvements in proteomic
technologies, 10,546 plasma proteins were included in this
database in 2014 (Nanjappa et al., 2014). However, the
database of human plasma glycoproteome is still immature.
This may be due to difficulties in sample processing, mass
spectrometry analysis, and data processing. Still, experts in the
field are doing their best to overcome these difficulties. For
example, many enrichment materials or methods were
developed to remove non-glycoproteins or non-glycopeptides
in plasma (Palmisano et al., 2010; Sun et al., 2017; Yang et al.,
2017; Zhang et al., 2017; Wu et al., 2018; Chen et al., 2019; Sun
et al., 2019; Zhang et al., 2019; Zhang et al., 2020a). Moreover, in
order to deplete high-abundance proteins, immunodepletion
technologies and ProteoMiner protein enrichment methods
were used to remove the abundant plasma proteins (Luque-
Garcia and Neubert, 2007; Sennels et al., 2007).

In recent years, various fragmentation techniques (EThcD,
sceHCD, EThcd-sceHCD, etc.) have appeared as valuable
approaches for plasma glycoproteomics. EThcD means ETD
followed by supplemental HCD, which fragments parent ions
via ETD first and then the products ions are fragmented via HCD
(Zhang et al., 2018), while sceHCD means stepped collision
energy HCD (beam-type collisional activation) on Orbitrap
systems (Riley et al., 2020). Many intact glycopeptide search
engines, such as MSFragger-Glyco, Byonic, pGlyco, Glyco-
Decipher, and StrucGP, have improved the accuracy of intact
glycopeptide identification (Bern et al., 2012; Liu et al., 2017; Lu
et al., 2020; Polasky et al., 2020; Shen et al., 2021; Fang et al.,
2022). Kawahara et al. evaluated several search strategies and
provided valuable information for serum or plasma
glycoproteomic studies (Kawahara et al., 2021).

In previous studies, we developed Glyco-CPLL for human
plasma N-glycoproteome profiling based on sceHCD and
established a large database (Zhang et al., 2020b). CPLL means
combinatorial peptide ligand library (a diverse library of
hexapeptides that act as binders for proteins), which is a
plasma sample preparation tool used for the compression of
the dynamic range of the protein concentration and maintaining
representatives of all proteins. When plasma samples were
applied to the CPLL beads, the high-abundance proteins
saturated their high-affinity ligands, and excess proteins were
washed away. In contrast, the medium- and low-abundance
proteins were concentrated on their specific affinity ligands
(Sennels et al., 2007). Recently, we integrated EThcD and
sceHCD into a glycoproteomic workflow (Zhang et al., 2021a;
Zhang et al., 2021b). The results clearly showed that EThcD-
sceHCD can improve the intact glycopeptide analysis
performance of HIV-1 gp120, IgG subclasses, and complex
clinical samples (Zhang et al., 2021a; Zhang et al., 2021b; Zeng
et al., 2022).

Herein, we aim to improve the accuracy and depth of human
plasma intact glycopeptide identification based on the new
analysis method. More precisely, we integrated Glyco-CPLL
into EThcD-sceHCD, compared the performance of different
dissociation methods (EThcD-sceHCD, EThcD, and sceHCD),
and determined its superiority for plasma N-glycoproteomic
studies.

2 EXPERIMENTAL SECTION

2.1 Materials
Chemical reagents, such as dithiothreitol (DTT), iodoacetamide
(IAA), formic acid (FA), trifluoroacetic acid (TFA), Tris base, and
urea, were purchased from Sigma (St. Louis, MO, United States).
Acetonitrile (ACN), ethanol (EtOH), methanol (MeOH), and
acetic acid (HAc) were purchased from Merck (Darmstadt,
Germany). Sequencing grade trypsin and Lys-C were obtained
from Promega (Madison, WI, United States). ProteoMiner
column was purchased from Bio-Rad Laboratories (Hercules,
CA). Zwitterionic HILIC (Zic-HILIC) was purchased from Fresh
Bioscience (Shanghai, China). The C8 extraction disks were
purchased from 3M Empore (St. Paul, MN, United States). All
other materials were purchased from Sigma-Aldrich or Thermo
Fisher Scientific.

2.2 Biospecimen Collection
Diagnosis and confirmation of PCa patients were performed in
the Department of Urology, West China Hospital of Sichuan
University, Chengdu, China. Blood was collected into EDTA
anticoagulant tubes. After centrifuging at 300 g for 10 min at 4°C,
plasma was collected and stored at −80°C. Written informed
consents were collected. The experiment was performed in
accordance with the guidelines of the Chinese Medical Ethics
Committee. The experiment was approved by the Ethics
Committee at West China Hospital.

2.3 Sample Pretreatment
Plasma samples from PCa patients were pooled before analysis.
The plasma proteins were prepared using the CPLL method as
described before. Specifically, 200 μl pooled plasma was loaded
into the ProteoMiner column and incubated at room temperature
for 2 h. After centrifuging at 1,000 g for 30 s at 4°C, the column
was washed with 200 μl of PBS and ddH2O, and the CPLL bound
proteins were eluted with 20 μl of elution buffer (8 M urea, 2%
CHAPS).

2.4 Reduction, Alkylation, and Digestion
The eluent was proteolyzed following the filter-aided sample
preparation (FASP) protocol. Briefly, after diluting 20 times
with UA solution (8M urea in 0.1 M Tris-HCl, pH 8.5), the
eluent was added to a 30-kDa filter. After carrying out
reduction reaction by adding 20mM DTT for 4 h at 37°C,
alkylation reaction was carried out by adding 50mM IAA and
incubating the mixture in the dark for 1 h. Proteins were digested
by adding trypsin/Lys-C (1:50) to each filter tube. The peptides
were collected by washing three times with 100 μl of water.
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2.5 Intact Glycopeptide Enrichment
Intact N-glycopeptides were enriched using Zic-HILIC materials.
Specifically, 200 μg of tryptic peptides and 10 mg of Zic-HILIC
materials were mixed in 70% ACN/0.2% TFA solution. Then, the
mixture was transferred to a pipette tip packed with a C8
membrane. Hydrophobic peptides were washed with 70%
ACN/0.2% TFA, and intact N-glycopeptides were eluted with
70 μl of 0.1% TFA and collected in a 1.5-ml tube. The eluent was
dried using a SpeedVac for further analysis.

2.6 LC-MS/MS Analysis
The dried intact N-glycopeptides were resuspended in 20 μL of 0.1%
FA individually. Then 5 μL of samples was taken for analysis on an
Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher,
United States). All intact N-glycopeptides were separated on a
column (ReproSil-Pur C18-AQ, 1.9 μm, 75 μm inner diameter,
length 20 cm; Dr Maisch) over a 78-min gradient at a flow rate of
300 nL/min. Three different fragmentation modes (EThcD, sceHCD,
and EThcD-sceHCD) were used for intact N-glycopeptide analysis.

For EThcD-MS/MS and sceHCD-MS/MS, the parameters
were as follows: MS1 was analyzed in the range of
800–2000 m/z at an Orbitrap resolution of 60,000. The RF
lens, AGC target, MIT, exclusion duration, and cycle time
were 40%, custom, 50 ms, 15 s, and 3 s, respectively. The
precursor ion in MS2 experiment was performed at 2 m/z and
acquired at an Orbitrap resolution of 30,000. The AGC target and
MIT were custom and 150 ms, respectively. EThcD collision
energy was 35%, while the sceHCD mode was turned on with
an energy difference of ±10% (20-30-40%).

For EThcD-sceHCD-MS/MS, the analysis was performed
using an alternative fragmentation between the EThcD and
sceHCD modes in a duty cycle. In the EThcD duty cycle, MS1
was analyzed in the range 800–2000m/z at an Orbitrap resolution
of 60,000. The RF lens, AGC target, MIT, and exclusion duration
were 40%, 2.0 e5, 50 ms, and 15 s, respectively. MS2 was analyzed
at 2 m/z at an Orbitrap resolution of 30,000. The AGC target,
MIT, and EThcD type were standard, 150 ms, and 35%,
respectively. In the sceHCD duty cycle, MS1 was analyzed in
the range 800–2000 m/z at an Orbitrap resolution of 60,000. The
RF lens, AGC target, MIT, exclusion duration, and cycle time
were 40%, standard, auto, 15 s, and 1 s, respectively. The
precursor ion in the MS2 experiment was selected at 1.6 m/z
and acquired at an Orbitrap resolution of 30,000. The AGC target,
MIT, and HCD collision energy were 200%, auto, and 30%,
respectively. Moreover, the sceHCD mode was turned on with
an energy difference of ±10% (20-30-40%). Although the data-
dependent mode cycle time of each method was set as 3 s, there
were differences in scanning speed between different modes
(ETD has a slower scan speed). Therefore, the number of
precursors selected for MS/MS for each method may be different.

2.7 Data Analysis
The data files were searched against the Human UniProt database
(version 2015_03, 20,410 entries) using Byonic software (version
3.10.10, Protein Metrics, Inc.). Mass tolerance for precursors and
fragment ions were set as ± 6 ppm and ± 20 ppm, respectively.
Two missed cleavage sites were allowed. Carbamidomethyl (C)

was set as fixed modification. Variable modifications contained
oxidation (M) and acetyl (protein N-term). Additionally, the “182
human N-glycans” was set as the N-glycan modification. Protein
groups were filtered to 1% FDR. Quality control methods for
intact N-glycopeptide identification included a Byonic score of
over 200, a logProb value of over 2, and at least five amino acids.
ANOVAwas used for statistical comparison among three groups,
and Student’s t-test was used for statistical comparison between
two groups (SPSS Statistics 19.0). The homogeneity test was
performed. The error bar denotes SD. p-value < 0.01 was
considered significant. The raw data can be obtained via
ProteomeXchange with identifier PXD030622.

3 RESULTS AND DISCUSSION

Recently, we proved that EThcD-sceHCD has better performance
in the intact glycopeptide analysis of HIV-1 gp120 and IgG
subclasses (Zhang et al., 2021a; Zhang et al., 2021b). However,
whether this method can be applied to complex plasma samples is
unknown. To evaluate the efficiency of the method on human
plasma samples and systematically characterize plasma
N-glycoproteome in PCa patients, the following experiment was
designed (Figure 1). In detail, low-abundance proteins (LAPs)
were extracted from pooled PCa patients’ plasma using the
ProteoMiner protein enrichment system which contains the
combinatorial peptide ligand library (CPLL) (Bandow, 2010;
Moggridge et al., 2019; Zhang et al., 2020b; Palstrøm et al.,
2020). After digestion by trypsin and Lys-C, Zic-HILIC
materials were used to enriched intact N-glycopeptides (Di
Palma et al., 2011). Then, the same number of samples were
analyzed using three fragmentation methods (EThcD, sceHCD,
and EThcD-sceHCD) (Figure 1). All raw data files were searched
using Byonic software. The search results were analyzed statistically
and compared systematically (Supplementary Table S1).

Using the same quality control standards as described earlier,
the identified N-glycoPSMs, N-glycans, intact N-glycopeptides,
and N-glycoproteins from pooled PCa patients’ plasma were
analyzed and compared. EThcD-sceHCD outperformed
EThcD and sceHCD in every number of identification (p <
0.001, ANOVA) (Figure 2). In particular, EThcD-sceHCD
identified nearly twice (232) as many intact N-glycopeptides as
EThcD (129) and sceHCD (126) (Figure 2). It has been reported
that sceHCD can provide more information on fragment ions
than other modes (Riley et al., 2020; Klein and Zaia, 2020).
However, it cannot provide the accurate glycosite location and
glycan composition information when one sequence contains
more than one glycosite (Zhang et al., 2021b). EThcD can
produce a greater proportion of fragment ions via both ETD
and HCD, and thereby provide more key information for the
unambiguous identification of both glycosites and glycans (Yu
et al., 2017; Saba et al., 2012; Ma et al., 2016). Nevertheless, ETD
has limited dissociation efficiency. Hence, we proposed EThcD-
sceHCD, which alternatively fragment samples between EThcD
and sceHCD modes in a duty cycle (Zhang et al., 2021b). That is,
EThcD-sceHCD has better spectra quality and higher
dissociation efficiency. For example, the three methods can
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provide abundant information about N-glycosite (N143)
localization and the N-glycan composition (HexNAc(4)Hex
(5)NeuAc (1)) of one N-glycopeptide from prothrombin
(Figure 3). Both EThcD and EThcD-sceHCD can provide
complex and informative fragment ions (glycan fragments,
b/y/c/z ions, and Y ions) (Figures 3A, C). However, sceHCD
provided less information (glycan fragments, b/y ions, and Y
ions) (Figure 3B). In other words, EThcD and EThcD-sceHCD
can provide more accurate N-glycosylation modification
information than sceHCD, although they have lower intensity

than sceHCD because ETD has limited scanning speed
(Figure 3). In addition, we analyzed the largest Byonic score
distribution of intact N-glycopeptide spectra from different
fragmentation modes (Supplementary Table S2). Byonic score
is the “raw” indicator of PSM correctness, reflecting the absolute
quality of the PSM (Bern et al., 2012). As expected, the largest
Byonic scores of the 69.8% (252/361) intact N-glycopeptides were
obtained by EThcD-sceHCD, and the other 17.5% (63/361) and
12.7% (46/361) intact N-glycopeptides were obtained from
EThcD and sceHCD, respectively (Supplementary Table S2).

FIGURE 1 | Schematic representation of the workflow for human plasma LAP intact N-glycopeptide analysis using different dissociation methods (EThcD,
sceHCD, and EThcD-sceHCD).

FIGURE 2 |Comparison of the number of N-glycoPSMs, N-glycans, intact N-glycopeptides, and N-glycoproteins from pooled PCa patients’ plasma using different
dissociation methods. (ANOVA was used for the statistical comparison among three groups, and Student’s t-test was used for the statistical comparison between two
groups. The homogeneity test was performed. The error bar denotes SD.)
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The results showed that EThcD-sceHCD can fragment peptide
backbone more extensively than EThcD and sceHCD. The reason
may be that different peptide backbones obtained better
fragmentation ions under different fragmentation modes.

Bertozzi et al. compared multiple mass spectrometry
dissociation methods and concluded that sceHCD significantly
outperformed EThcD for N-glycopeptide identification from
HEK293 whole cell lysates (Riley et al., 2020). Our results

FIGURE 3 | Comparison of the EThcD (A), secHCD (B), and EThcD-sceHCD (C) spectra of prothrombin intact N-glycopeptides (N143) from human plasma.
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FIGURE 4 | Global analysis of identified plasma N-glycoproteins. (A) Heat map of identified plasma N-glycoproteins using different fragmentation modes. Colored
lines indicate the number of repetitions identified. (B) Gene ontology (GO) biological process (BP), cellular component (CC), and molecular function (MF) enrichment
analysis.
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support this conclusion (Zeng et al., 2022). However, sceHCD
outperformed the EThcD-sceHCD method for N-glycopeptide
identifications from the urine of IgAN patients, HepG2 cells, and
thyroid cancer tissues. And the interesting thing is that EThcD-
sceHCD outperformed the sceHCD method for N-glycopeptide
identification from plasma treated with/without CPLL. All of
these revealed that EThcD-sceHCD can outperform EThcD and
sceHCD in the number of identified intact N-glycopeptides and
accuracy of plasma intact N-glycopeptide identification.

Meanwhile, we analyzed the identified plasma
N-glycoproteins (Figure 4). EThcD-sceHCD identified most
N-glycoproteins (48/56), and 77.1% N-glycoproteins can be
identified at least twice. This result is obviously better than
that obtained using EThcD (26/56) and sceHCD (29/56).
Integrating sceHCD and EThcD-sceHCD, 96.4% (54/56)
N-glycoproteins can be identified (Figure 4A). Moreover,
using the Wukong platform, gene ontology (GO) enrichment
analysis was performed to determine the biological process (BP),
cellular component (CC), and molecular function (MF) of these
plasma glycoproteins in PCa patients. As shown in Figure 4B,
they were involved in many biological processes, such as
complement activation and immune response, mainly localized
in the extracellular space. The major molecular functions were
catalytic activities and binding (Figure 4B). These results
suggested that the function of N-glycoproteins in PCa patients’
circulatory system may be dysfunctional (Zhang et al., 2020b).

Based on the comprehensive PCa patients’ plasma
N-glycoproteomic information obtained in this work, we further
compared these intact N-glycopeptides. EThcD-sceHCD can
identify an additional 94 intact N-glycopeptides, while EThcD and
sceHCD can identify only 23 and 19 intact N-glycopeptides,
respectively (Figure 5A). Hence, using different fragmentation

modes to analyze the same sample would produce complementary
results. Based on these results, a PCa patient plasma N-glycoprotein
database was established (Supplementary Table S1). For example, we
found that prothrombin in PCa patients’ plasma is a completely
sialylated glycoprotein, which plays a key role in blood homeostasis,
wound healing, and inflammation. All of its reported N-glycosites
(N121, N143, and N416) were identified in this work. The three
N-glycosites were occupied by different amounts and types of
N-glycans (Figure 5B). These results implied that our methods can
decipher the site-specific glycosylation of human plasma glycoproteins.
It is worth noting that we did not include healthy controls in this study
because we were evaluating the usability and superiority of the EThcD-
sceHCD technique in this work.Wewill apply this technique to a large
cohort of clinical samples in our future research.

4 CONCLUSION

Herein, we once again proved the reliability and superiority of
EThcD-sceHCD. By integrating CPLL into EThcD-sceHCD, we
systematically compared the performance of different fragment
methods in human plasma intact N-glycopeptide analysis.
EThcD-sceHCD performed better in the accuracy and depth
of intact N-glycopeptide identification. This finding would
drive clinical plasma N-glycoproteomic methodological
development and promote related application research.
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Heparanase in cancer
progression: Structure, substrate
recognition and therapeutic
potential

Fengyan Yuan, Yiyuan Yang, Huiqin Zhou, Jing Quan,
Chongyang Liu, Yi Wang, Yujing Zhang* and Xing Yu*

Key Laboratory ofModel Animals and StemCell Biology of Hunan Province, School ofMedicine, Hunan
Normal University, Changsha, China

Heparanase, amember of the carbohydrate-active enzyme (CAZy) GH79 family,

is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of

heparan sulphate proteoglycans, thusmodulating and facilitating remodeling of

the extracellular matrix. Heparanase activity is strongly associated with major

human pathological complications, including but not limited to tumour

progress, angiogenesis and inflammation, which make heparanase a valuable

therapeutic target. Long-due crystallographic structures of human and

bacterial heparanases have been recently determined. Though the overall

architecture of human heparanase is generally comparable to that of

bacterial glucuronidases, remarkable differences exist in their substrate

recognition mode. Better understanding of regulatory mechanisms of

heparanase in substrate recognition would provide novel insight into the

anti-heparanase inhibitor development as well as potential clinical applications.

KEYWORDS

glycosaminoglycan (GAG), heparanase, structure, substrate recognition, cancer

Introduction

As a key component of the extracellular matrix (ECM), heparan sulfate proteoglycans

(HSPGs) comprise of a transmembrane or secreted protein core to which one or more

heparan sulfate (HS) chains are covalently attached (Iozzo, 2005; Iozzo and Schaefer,

2015). HSPGs are one of the most highly negatively charged biopolymers occurred

naturally, collaborating with other ECM components to orchestrate the ECM remodeling

and structural integrity (Belting, 2003; Lindahl and Kjellen, 2013). Significantly, HS chains

of HSPGs act as a storage depot, providing binding sites for a wide variety of bioactive

molecules, such as growth factors, chemokines, lipoproteins and enzymes, which enables

HSPGs to play essential roles in regulation of numerous physiological and pathological

activities (Varki et al., 2009; Iozzo and Schaefer, 2015).

Heparanase (HPSE; HPSE-1), a member of the glycoside hydrolase (GH) 79 family,

has been defined as the only known endo-β-D-glucuronidase that catalyzes HS hydrolysis

to date (Parish et al., 2001). Since the cloning and expression of HPSE in 1999, emerging
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evidence highlighted the involvement of HPSE in cancer

progression, inflammation and angiogenesis (Fairbanks et al.,

1999; Hulett et al., 1999; Kussie et al., 1999; Toyoshima and

Nakajima, 1999; Vlodavsky et al., 1999). Of interest is that HPSE

expression is elevated virtually in all major types of cancers, and

this up-regulation is positively correlated with metastatic

potential of tumor and poor prognosis, which makes HPSE a

valuable therapeutic target. It has to be noted that another HPSE

isoform, HPSE-2 that lacks enzymatic activity, was reported in

2000 (McKenzie et al., 2000). HPSE-2 appears not only to be able

to inhibit HPSE activity but also regulate a multitude of signaling

pathways that mediate cell differentiation, apoptosis and tumor

vascularity, leading to tumor suppression.

Interpretation of the substrate specificity of HPSE has been

complicated, partly if not all, by the nature of HS structural

heterogeneity, which is derived from the extent of the sulfation,

deacetylation and epimerisation in HS biosynthesis (Ringvall et al.,

2000; Li et al., 2003; Pallerla et al., 2008). The structural features of

HPSE also critically contribute to the plasticity in its substrate

specificity, which is central to the proper biological function of

HPSE. There are three members with available crystallographic

structures to date in the GH79 family: Acidobacterium

capsulatum β-glucuronidase (AcaGH79) (Michikawa et al., 2012),

Burkholderia pseudomallei HPSE (BpHPSE) (Bohlmann et al.,

2015) and human HPSE (hHPSE) (Wu et al., 2015) as well as its

pro-form HPSE (hproHPSE) (Wu et al., 2017). The structure of the

exo-acting AcaGH79 was characterized first, followed by the recent

structural determination of endo-acting bpHPSE and hHPSE.

Though hHPSE represents an overall similar folding to that of

two bacterial GH79 members, structural variations within the

substrate binding canyon fine-tune the distinct substrate

specificities. Compelling evidence suggest that HPSE is a

multifaceted protein participating in multiple biological processes,

some excellent reviews are available pertaining to the engagement of

HPSE in cancer progression, inflammation and angiogenesis (Fux

et al., 2009b; Vlodavsky et al., 2012; Peterson and Liu, 2013; Pisano

et al., 2014; Rivara et al., 2016; Masola et al., 2018; Mohan et al.,

2019). In this minireview, we firstly provide an insight into the

structure-based rationale of HPSE substrate recognition. Next, we

briefly review the pro-tumorigenic effects of HPSE, which may

highlight its therapeutic potential against cancer.

Heparan sulfate proteoglycan

HSPGs consist of variable HS chains that covalently attach to

core proteins depending on the context of source and growing

conditions (Karamanos et al., 2018). HSPGs not only are present as

crucial components of the ECM and basement membrane (Sertie

et al., 2000; Arikawa-Hirasawa et al., 2001; Campos-Xavier et al.,

2009), also are found in secreted vesicles regulating various

biological activities after secretion (Zernichow et al., 2006),

including membrane-bound syndecans, glypicans, betaglycan,

neuropinlin and CD44v3, ECM components perlecan, agrin and

collagen XVIII, and secreted serglycin. After the attachment of

xylose to specific serine residues in core proteins of HSPGs, HS

biosynthesis is commenced by synthesizing a linkage

tetrasaccharide, glucuronic acid (GlcA)-galactose-galactose-xylose.

Structurally, HS is a glycosaminoglycan (GAG) chain with

potential modifications of sulfation, epimerization and

deacetylation, comprising of a linear repeating disaccharide unit

constituted by acetylated hexosamines (N-acetyl-glucosamine,

GlcNAc or N-sulfo-glucosamine, GlcNS) and uronic acids (GlcA

or its C5 epimer L-iduronic acid, IdoA) (Kjellen and Lindahl, 1991).

Further O-sulfation can take place at O2 of the uronic acid (2-O

sulfation) and O3 and O6 of the hexosamine (3-O and 6-O

sulfation). Numerous combinations of the low sulfation and high

sulfation domains along HS chains as well as the specific sulfation

patternwithin each domain complicate the recognition ofHSPGs by

HPSE. Early studies suggest that the minimum recognition

backbone of HSPGs by HPSE is a trisaccharide, and the cleavage

occurs at the internal β(1,4)-linked glycosidic bond between GlcA

and GlcNS (Figure 1A) (Matsuno et al., 2002; Peterson and Liu,

2013). Further investigation revealed that HPSE cleavage of HSPG is

dependent on sulfation types rather than a defined saccharide

sequence, and the cleavage by HPSE is regulated by specific

sulfation contexts around the cleavage site (Peterson and Liu, 2010).

The number of attached HS chains, together with the sulfation

distribution along the HS chains, leads to high structural

heterogeneity of HSPGs. In addition, modifications of HS

occurred during its biosynthesis appear to be non-template,

context-specific and in response to stimuli, therefore resulting in

remarkable variations in HS chains (Armistead et al., 2011; Sarrazin

et al., 2011; Shi et al., 2011). Of relevance is that the structural

heterogeneity of HS facilitates its capability of accommodating a

variety of binding partners, which is essential to the diverse

biological roles of HSPGs upon HPSE breakdown, leading to

activation of downstream signal cascades and promotion of cell

proliferation, tumor cell dissemination, inflammation and

angiogenesis (Bernfield et al., 1999; Elkin et al., 2001; Iozzo and

San Antonio, 2001; Sasaki et al., 2004; Barash et al., 2010b; Goodall

et al., 2014). Previous studies have demonstrated that hHPSE is able

to act in either a consecutive or a gapped cleavage mode depending

on the saccharide sequences released from its initial cleavage

(Peterson and Liu, 2013), which allows the efficient release of

distinct bioactive molecules from regions with different sulfation

patterns along HS chains.

HPSE

Overview

The gene coding for HPSE consisting of 14 exons and

13 introns is located on chromosome 4q21.3 and expressed as

two mRNAs (5 and 1.7 kb) by alternative splicing containing the
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same open reading frame (Dong et al., 2000). HPSE is initially

synthesized as a preproenzyme of 68 kDa containing a signal

sequence spanning Met1–Ala35, which is then processed into a

proHPSE form after cleaving the signal sequence by signal

peptidase. Lysosomal activation by cathepsin L excises a linker

domain of Ser110–Gln157, giving rise to the mature HPSE as a

non-covalent heterodimer containing an N-terminal 8 kDa

(Gln36-Glu109) and a C-terminal 50 kDa (Lys158-Ile543)

subunits.

β-glucuronidases are categorized into three GH families, GH1,

GH2, and GH79, on the basis of their amino acid sequences

(Henrissat and Davies, 1997; Cantarel et al., 2009). There are

four characterized β-glucuronidase members in the GH79 family,

including heparanase (EC 3.2.1.166), baicalin-β-D-glucuronidase
(EC 3.2.1.167), 4-O-methyl-β-glucuronidase, and β-glucuronidase
(Sasaki et al., 2000; Parish et al., 2001; Eudes et al., 2008; Konishi

et al., 2008). Though both GH2 andGH79 belong to the GH-A clan,

the GH79 family is composed of enzymes of both endo-acting HPSE

and exo-acting β-glucuronidase, which contrasts that the

GH2 family only consists of exo-acting β-glucuronidase. Folding
prediction as well as multiple sequence alignment has predicted

HPSE being a member of GH-A clan, proposing An (β/α)8-TIM
barrel as the key folding feature of HPSE (Nardella et al., 2004). This

was confirmed after the recent determination of the long-anticipated

hHPSE and hproHPSE structures.

HPSE structure and substrate recognition

The structure of apo hHPSE consists of a heterodimer

formed by the 8-kDa subunit (residues Gln36–Glu109) and

the 50-kDa subunit (Lys159–Ile543) (Wu et al., 2015), with

the domain architecture comprising a catalytic (β/α)8-TIM

barrel domain flanked by a β-sandwich domain (Figure 1B).

Both the 8-kDa subunit and the 50-kDa subunit contribute to the

formation of the catalytic (β/α)8-TIM barrel and the β-sandwich
domain. Though the β-sandwich domain was reported to

facilitate secretion and activation, cellular trafficking,

enzymatic and nonenzymatic activities of HPSE, its function

demands to be further characterized (Simizu et al., 2007; Lai et al.,

2008; Fux et al., 2009a). In addition, there are six putative

N-glycosylation sites identified in the 50-kDa subunit of

hHPSE. After the deglycosylation treatment of Endo-H during

the protein preparation, N-linked GlcNAc residues were visible

in the apo hHPSE structure at Asn162, Asn200, Asn217,

Asn238 and Asn459, respectively (Wu et al., 2015).

Intriguingly, glycosylation regulates HPSE secretion and

endoplasmic reticulum-to-Golgi transport, but it is not

required for enzymatic activity of HPSE (Simizu et al., 2004).

A binding groove of approximately 10 Å in the catalytic (β/
α)8-TIM barrel domain was recognized in the hHPSE structure.

This binding groove contains residues Glu343 and Glu225, which

are conserved in the GH79 family and have been previously

identified as the catalytic nucleophile and acid-base pair of HPSE,

suggesting that the HS-binding site is contained within this

groove (Hulett et al., 2000). As shown in Figure 2A, the HPSE

binding canyon is lined by side chains of basic residues, which

correlates well with the negatively charged nature of HS

substrates. Of interest is that the orientation of two subunits

in the solved hHPSE structure implicates that the excised

Ser110–Gln157 linker of the proHPSE could locate very close

in space to the HS binding groove, which would physically clash

the HS substrate. This is consistent with the reported hproHPSE

structure in 2017, showing the restricted access to the active site

cleft for oligosaccharide HS substrates due to the presence of the

6-kDa linker loop (Figure 2B) (Wu et al., 2017).

FIGURE 1
Cleavage of the glycosidic bond by HPSE. (A) The internal β(1,4)-linked glycosidic bond between GlcA and GlcNS is highlighted by an arrow in
red; (B) The overall fold of hHPSE is illustrated in ribbon representation with α-helix in red, β-strand in yellow and loop in green.
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Structures of hHPSE in complex with HS analogues provides

a structural rationale, clearly demonstrating that hHPSE

recognizes a trisaccharide spanning the −2, −1 and

+1 subsites, with the identical binding of GlcA at

the −1 subsite in all bound HS analogues (Figure 2A). This

conserved binding of GlcA is also observed in the GH79 bacterial

members, suggesting a key GH79 structural motif that has been

fine tuned to recognize GlcA (Michikawa et al., 2012; Wu et al.,

2015). Significantly, N-sulfate at the −2 subsite and 6O-sulfate at

the +1 subsite appear to be themain determinants for recognition

of HS analogues due to their direct engagement in the hydrogen-

bonding interactions with HPSE. 6O-sulfate at the −2 subsite and

N-sulfate at the +1 subsite also contribute to the anchorage of HS

substrates through electrostatic interactions to basic residues

lining the active site cleft. Overall, structural information

gained from the complexes of hHPSE with its HS substrate

analogs is consistent with the findings of previous studies that

HS sulfation patterns are essential for hHPSE enzymatic activity.

Furthermore, sulfation contexts of HS substrates appear to act as

a molecular signal that guides the precise cleavage of designated

glycan sites. In addition, sulfate groups on the −2 and +1moieties

are implicated to aid hHPSE to unwind the substrate HS helix for

a better access of the catalytic residues to facilitate the cleavage of

the glycosidic bond.

Structure-based rationale for the exo- and
endo-acting modes of GH79 β-
glucuronidases

When compared in the sequence alignment, a loop of

40 amino acids (Gly78–Thr117), which forms part of the exo-

acting substrate-binding pocket identified in the

AcaGH79 structure, corresponds to its counterpart that is

substantially reduced in size of endo-acting BpHPSE

(24 amino acids, Gly67–Pro90). Structurally, this shorter loop

of BpHPSE allows the transition of the binding pocket into an

open-end binding groove capable of accommodating elongated

HS chains, which hereby provides a well-explained structure-

based rationale of the discrepancy in acting modes of the

substrate cleavage between the exo-AcaGH79 and endo-

BpHPSE enzymes (Figure 2B).

The overall folding of hHPSE is comparable to that of two

characterized bacterial GH79 members (Michikawa et al., 2012;

Bohlmann et al., 2015), with Cα r.m.s. differences of 2.35 Å and

2.59 Å for AcaGH79 and BpHPSE, respectively. In particular, the

6 kDa linker peptide of hproHPSE that is proteolytically cleaved

to enable the activation of hHPSE also corresponds to the

AcaGH79 loop. Intriguingly, structural observations revealed

that the physical presence of the hproHPSE linker peptide

create a binding pocket on the protein surface containing

those two highly conserved glutamate, resembling some

structural characteristics of the exo-acting active site of

AcGH79 (Wu et al., 2017). Detailed data indicate that this

hproHPSE pocket is not involved in the HS interactions and

GlcA occupation of the proHPSE pocket does not inhibit HPSE

maturation, suggesting extra subsite interactions may be required

for anchoring single GlcA molecules to proHPSE. Further

investigations are thus required to determine whether this

proHPSE pocket possesses any substrate specificity.

Whereas both hHPSE and BpHPSE demonstrate the endo-

acting mode of substrate cleavage, differences exist between their

substrates recognition. BpHPSE has preference for cleaving HS-

containing GlcNAc residues (low sulfation), contrasting that

GlcNS is preferably recognized by hHPSE. Moreover,

sequence alignment of several eukaryotic HPSEs with BpHPSE

FIGURE 2
HPSE substrate binding site and structural superimposition. (A) hHPSE (electrostatic surface) in complex with a bound tetrasaccharide (our
unpublishedwork) in stick presentation (carbon in yellow, nitrogen in blue and oxygen in red) spanning through binding subsites +1,−1, −2, −3 (Davies
et al., 1997); (B) BpHPSE is illustrated in surface representation with two conserved catalytic glutamate highlighted in red; the loop that forms part of
the substrate-binding pocket in AcaGH79 is colored inmagenta; the 6-kDa linker of hproHPSE is illustrated in ribbon representationwith α-helix
in red, β-strand in yellow and loop in green; the bound GlcA are colored with carbon in yellow and oxygen in red.
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and AcaGH79 revealed a remarkable conservation of key

residues for accommodating GlcA at the −1 subsite of hHPSE,

demonstrated by absolute conservation of residue Asn224,

Glu225, Glu343, Gly350 and Tyr391 and evolutionary

conservation of residue 62 (Asp of hHPSE vs Glu of BpHPSE

and AcaGH79), 97 (Thr of hHPSE vs. Asn of BpHPSE and

AcaGH79), 349 (Gly of hHPSE and BpHPSE vs Gln of

AcaGH79), whilst residues at the −2 and +1 subsites show

much poorer conservation in the BpHPSE and AcaGH79,

thus providing a structure-based rationale for distinct

substrate specificity amongst those GH79 enzymes (Wu et al.,

2015).

Transport and function of HPSE in nucleus
and extracellular

It is generally known that mature HPSE is the only known

endo-β-D-glucuronidase in mammals, which can cleave the HS

chain of HSPG to release growth factors, chemokines,

lipoproteins and enzymes, play a role in promoting tumors

outside the cell. Many studies have shown that the function of

HPSE is regulated by histones. Histones mainly exist in the

nucleus and extracellular regions and secreted proteins.

Histones (H1, H2A, H2B, H3, and H4) contain a large

number of basic R-based amino acids, which are positively

FIGURE 3
Roles of HPSE in cancer progression. (A) HPSE modulates cancer progression by mediating oncogenic signaling and proliferative signaling; (B)
HPSE promotes cancer by resisting cell death, initiating angiogenesis, contributing to anti-immunity failure, circumventing growth inhibition and
reprogramming energy metabolism.

Frontiers in Chemistry frontiersin.org05

Yuan et al. 10.3389/fchem.2022.926353

126

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.926353


charged in aqueous solutions. While HSPG as one of the most

negatively charged biopolymers, HSPG and histones bind to the

GAG chain of HSPG through charge interaction to play a

regulatory role. For example, extracellular histone H4 induces

HS degradation by activating HPSE in chlorine (Cl2)-induced

acute respiratory distress syndrome (ARDS). Knockdown of

HPSE by RNAi demonstrated that histone h4-induced HS

degradation requires HPSE and is dependent on the

enzymatic activity of HPSE (Zhang et al., 2022). In cells

expressing high levels of HPSE, reduction of nuclear

syndecan-1 results in increased histone acetyltransferase

(HAT) activity, which stimulates protein transcription and

transcriptional upregulation of multiple genes that drive

aggressive tumor phenotypes (Purushothaman et al., 2011). In

lymphangiosarcoma (SS), histone deacetylase inhibitors

(HDACi) upregulate HPSE by inducing the expression of the

positive regulator EGR1 and inhibit the negative regulation of

p53 by acetylation. By co-treatment with MEK inhibitor

(trametinib) or HPSE inhibitor (SST0001/rooneparstat),

blocking HDACi-induced erk-egr1-HPSE pathway enhanced

antiproliferative and proapoptotic effects (Lanzi et al., 2021).

With the deepening of research, it was found that HPSE can

inhibit tumor after entering the nucleus. Human HPSE

sequences contain two potential nuclear localization signals

(residues 271-277; PRRKTAK and residues 427-430; KRRK),

which mediate nuclear localization of enzymes. Secondly, HPSE

nuclear translocation can be promoted by its heparin binding

domain, using HS as its carrier (Nadav et al., 2002). Yang et al.

(2015) using atomic force microscopy and co-precipitation

methods, found a direct molecular interaction between HPSE

and DNA driven by charge, indicating that HPSE has dual

functions in malignant melanoma, with primary extracellular

activity and tumor-suppressive nuclear effect. In type 1 diabetes,

heparin and HS can be transported to the nucleus and directly or

indirectly affect gene transcription. Based on Chip-on-chip

studies, heparin interacts with promoters and transcription

regions of hundreds of genes and micro-RNAs in activated

Jurkat T cells and upregulates transcription at the molecular

level. Nuclear HPSE appears to regulate methylation of histone

3 lysine 4 (H3K4) by influencing demethylase recruitment of

transcription-active genes (Parish et al., 2013).

HPSE in cancer and its therapeutic
potential

As aforementioned, quite a few excellent reviews are

available pertaining to activities of HPSE in different

physiological and pathological contexts, we thus briefly

summarize the pleiotropic actions of HPSE herein and will

not go into detailed discussion (Figure 3). Function of HPSE is

strongly associated with major human pathological

complications, evidenced by that various literatures have

linked overexpression of HPSE to enhanced tumor growth,

metastasis and poor prognosis. Further, silencing of HPSE or

treatment of tumor with compounds that block HPSE activity

is shown to remarkably attenuate tumor progression.

Therefore, targeting HPSE is considered as a promising

therapeutic strategy for cancer treatment. Several classes of

inhibitors have been developed, ranging from nucleic acid-

based inhibitor, vaccines, MicroRNAs, anti-HPSE

monoclonal antibodies, poly-sulfated saccharides to small-

molecule inhibitors (Rivara et al., 2016). Though MicroRNAs

and anti-HPSE antibodies are demonstrated to have high

specificity, none of those so-called biological drugs, such as

vaccines, antibodies, and antisense RNAs, have ever passed

the clinical trials. Further, small molecule drugs also failed to

enter clinical studies.

To the best of our knowledge, only few polysaccharide-

based candidates synthesized by either semi-synthetic or total

synthesis methods are currently clinical tested by

competitively targeting the substrate binding site of HPSE.

Irrespective of distinct mechanisms of action, those

polysaccharide-based inhibitors, such as PI-88, M-402,

PG545, and SST0001, appear to be the most promising

anti-tumor agents due to their specificity and reasonable

druggability. Significantly, the development of HPSE

inhibitors still exist several drawbacks, among of which are

structural uncertainty, per-sulfation, in vivo instability, poor

bioavailability and apparent side effects (Rosenthal et al.,

2002; Levidiotis et al., 2004; Hossain et al., 2010). As a

result, novel strategies are emerging to develop HPSE

inhibitors with higher specificity and greater selectivity

(Sletten et al., 2017). Intriguingly, recent findings disclose

that HPSE-2, a close homolog of HPSE but lacks enzymatic

activity, can regulate antitumor mechanisms. However, this

theme is not the main focus of this minireview, therefore it will

not be further discussed.

Conclusions and future perspective

Intensive studies have demonstrated that increased levels of

HPSE expression are strongly associated with a multiplicity of

hematological and solid malignancies. To this end, HPSE has

become a promising target for fighting cancer. The therapeutic

potential of HS mimetics, due to their ability to bind and

modulate the function of HPSE, has therefore been

exploited. Although several HS mimetics have advanced into

clinical trials, unforeseen adverse effects are documented due to

the heterogeneous nature and nonspecific or pleiotropic effects

of those HS mimetics (Kudchadkar et al., 2008; Zhou et al.,

2011).

Further, HPSE is a multifaceted protein having both

enzymatic and non-enzymatic activities. To the best of our

knowledge, all HPSE inhibitors under development are
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predominately targeting on the enzymatic inhibition of HPSE.

Therefore, one main question raised in the development of anti-

HPSE inhibitors is whether the enzymatic activity of HPSE is

the critical determinant of its pro-tumor and pro-metastasis

effects, given the fact that the T5 splice variant of HPSE lacking

its enzymatic activity exerts roles in promotion of tumor

progress (Barash et al., 2010a; Barash et al., 2019). Intensive

studies are thus required to further explore non-enzymatic

activities of HPSE attributed to its physiological and

pathological function.

Recent determination of crystallographic structures of

human and bacterial HPSE could offer an improved

understanding of mechanisms of action of HPSE at the

atomic level, which will greatly aid the design of HPSE

inhibitors. Given the anti-tumor action of HS mimetics

appears to be context-dependent and in response to external

stimuli, it is advisable to develop HS mimetics as inhibitors in a

system where appropriate malignancies and patient population

are rationally selected for clinical trials. In addition, HS mimetics

are characterized by good safety and tolerability profiles, which

make them highly suitable for inclusion in combined therapies

with other drugs to enhance anti-tumor efficacy of conventional

treatments.
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