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Editorial on the Research Topic

Development, metabolism, senescence and mechanotransduction of

bone

Bone is an integral part of the musculoskeletal system, providing physical scaffolding

as well as an attachment surface for tendons and ligaments to link muscles and bones.

Importantly, it is the site of hematopoiesis, which is responsible for the rejuvenation of

blood and immune cell populations essential for healthy physiology (Salhotra et al., 2020).

The extraordinary ability of bone to repair and restore itself throughout life is tightly

regulated by the coordinated processes of bone formation/mineralization and bone

resorption, which are mediated by two of the most important bone cells, osteoblasts

and osteoclasts, respectively. The anabolic and catabolic pathways of these cells, such as

BMP-Smad, Wnt/β-catenin, Notch, and Hedgehog, determine and influence their ability

to repair bone. Thus, any change in these pathways can disrupt bone homeostasis and lead

to bone disorders such as osteoporosis (Suzuki et al., 2020). As a result, it is critical to

investigate the expression of molecules in diseased conditions of bone in order to

understand their role, which may open up new avenues for therapeutic development.

Shin et al. Used knockout mice to demonstrate the importance of TLE4 in bone

homeostasis. Tle4 deficiency may impair not only hematopoiesis but also skeleton

calcification via osteoblast function and differentiation by downregulating alkaline

phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin

expression.

The bone is an endocrine and mechanosensing organ in addition to its regular

functions. Mechanical stimuli induce the bone to express and release “osteokines,”

such as osteocalcin, sclerostin, Dickkopf-related protein 1 (Dkk1), and fibroblast

growth factor, which have an effect on other tissues (Gerosa and Lombardi, 2021). Its
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ability to sense sensory cues and forces, particularly

mechanical stimulation, influences its development and

facilitates adaptation to changing environments (Liang

et al., 2021). Osteocytes are the most abundant endocrine

bone cells that regulate bone remodeling through calcium and

phosphate metabolism as well as mechanical stimulation.

When exposed to mechanical stress, their ability to

recognize mechanical stimuli directly and indirectly allows

them to promote bone adaptation and formation via the

mechanotransduction process in individual cells, between

neighboring cells, and their microenvironments via cell

junctions (Qin et al., 2020). One of such gap junctions,

connexin 43 (Cx43), has been shown to play an important

role in bone formation in response to mechanical loading.

Researchers discovered impaired anabolic responses in

transgenic mouse models that expressed dominant-negative

Cx43 in osteocytes, as well as increased endosteal osteoclast

activity (Zhao et al., 2022).

Hua et al. discovered that Cx43 regulates the transition of

osteoblast to osteocyte. Its deletion can postpone the transition

while increasing osteoclastogenesis via the receptor activator of

nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG).

Aside from genetic changes, there is growing evidence that

epigenetic changes such as DNA methylation, post-

translational modifications, and non-coding RNA expression

in cells can influence gene expression and bone metabolism

(Yang et al., 2020). Huang et al. Have comprehensively

reviewed one such modification, m6A methylation in bone

marrow mesenchymal stem cells (BMSC), osteoblasts, and

osteoclasts. Their work summarizes the effects of m6A

modification on cell proliferation, differentiation, and

apoptosis in these cells and osteoporosis and suggests that

m6A modification could be a new target for osteoporosis

treatment.

While many available therapeutics are promising in terms

of bone regeneration, their long-term application is frequently

limited due to adverse side effects. According to Gong et al.,

recombinant human globular adiponectin (ADPN) could be

used to repair bone fractures. The study’s findings indicated

that ADPN administration could promote bone formation by

increasing osteogenic differentiation and proliferation of

BMSCs via the AdipoR1 receptor. Importantly, it may

reduce the number of osteoclasts via the OPG/RANKL

pathway and promote bone fracture healing. Traditional

Chinese medicines and their derivatives have played

important roles in a variety of diseases due to their lower

side effects (Huang et al.). Yan et al. discovered that by

activating the BMP2/Smad/Runx/Osterix signaling

pathway,β -ecdysterone, a steroidal phytohormone with the

same chemical structure as estrogen, can improve bone

regeneration in a bone injury mouse model. However, key

component groups and the mechanisms of action of the

constituents present in such medicines remain a mystery.

Liu et al. Described a novel bioinformatics model that was

used to identify the components and mechanisms of

Gushukang Granules (GSK), Xianling Gubao Capsules

(XLGB), and Er-xian Decoction (EXD). The model

identified key components as quercetin, isoliquiritigenin,

rutaecarpine, isofraxidin, and secoisolariciresinol, with a

possible mechanism targeting osteoclast differentiation,

calcium signaling pathways, MAPK signaling pathways, and

the PI3K-Akt signaling pathway.

The articles in this Research Topic present and discuss

broader aspects of bone physiology, ranging from elucidating

the roles of various molecules and forces on bone cell

development and differentiation, to investigating various

molecules as potential therapeutics, to elucidating the effect of

bone on other tissues, to identifying and proposing novel

molecules as targets for bone disorders. These articles provide

the basis for future experimental works and even for clinical

applications.
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Osteoblast and Runx2-Dependent
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Healthy bone homeostasis hinges upon a delicate balance and regulation of multiple
processes that contribute to bone development and metabolism. While examining
hematopoietic regulation by Tle4, we have uncovered a previously unappreciated role of
Tle4 on bone calcification using a novel Tle4 null mouse model. Given the significance of
osteoblasts in both hematopoiesis and bone development, this study investigated how
loss of Tle4 affects osteoblast function. We used dynamic bone formation parameters
and microCT to characterize the adverse effects of Tle4 loss on bone development. We
further demonstrated loss of Tle4 impacts expression of several key osteoblastogenic
genes, including Runx2, Oc, and Ap, pointing toward a potential novel mechanism for
Tle4-dependent regulation of mammalian bone development in collaboration with the
RUNX family members.

Keywords: Tle4, osteoblast, Runx2, bone mineralization, Tle4-Runx axis, bone calcification

INTRODUCTION

Normal bone development is a dynamic process that depends on the balance between bone
formation and bone resorption. These two processes are largely mediated by osteoblasts and
osteoclasts, respectively. An imbalance of these two forces results in various bone pathologies,
including osteopetrosis and osteoporosis (Cohen, 2006; Kaul et al., 2015). Osteoblasts are derived
from mesenchymal cells that are triggered by Wnt signaling toward osteoblastic differentiation
(Hill et al., 2005; Houschyar et al., 2019). Various factors, including Wnt, BMP signaling,
and Runx2, have been found to play roles, not only in normal osteoblast function, but also
maturation and viability (Cohen, 2006; Kozhemyakina et al., 2015). Runx2 and Osterix regulate the
differentiation of mesenchymal stem cells (MSCs) to osteoblastic lineages (Asada and Katayama,
2014). The loss of Runx2, a known interaction partner of Tle co-repressors, results in the
absence of bone formation thought to be secondary to aberrant osteoblast differentiation in
mice (Choi et al., 2001). Additionally, previous studies have shown that Runx2 expression
induces osteoblastic differentiation of mouse stromal cells (Baniwal et al., 2012). Runx2 augments
mesenchymal lineage proliferation while also assisting the commitment to osteoblasts by regulating
a series of signaling pathways that include Wnt, FGF and PTH, as well as Dlx5 (Komori,
2019). Moreover, Runx2 enhances the expression of bone matrix protein genes including
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Col1a1, Spp1, Ibsp, Bglap2 and Fin1 (Komori, 2019). Smad
and p38 MAPK signaling pathways regulate Runx2 promoting
osteoblast and chondrocyte differentiation (Wu et al., 2016).
Other key regulators of osteoblast differentiation include
osteoproteregin, osterix, and alkaline phosphatase, and
osteopontin. These factors are expressed at different stages
of osteoblast differentiation and regulate osteoblast precursor
fate decisions, bone metabolism, and osteoclast induction
(Cohen, 2006).

The Groucho/TLE family of proteins are intimately involved
in the regulation of various signaling pathways critical to
cell fate and development, including receptor tyrosine
kinase/Ras/MAPK, Notch, and Wnt signaling (Zhang and
Dressler, 2013; Chodaparambil et al., 2014). The Groucho/TLE
family have been extensively studied as corepressors of various
binding partners, including the RUNX/AML family through
the C-terminal VWRPY Groucho recruitment motif (Levanon
et al., 1998; Chen and Courey, 2000). In leukemia, we have
shown t(8;21) leukemic cell viability and growth are sensitive
to TLE4 levels and that loss of the TLE homolog in zebrafish,
Gro3, cooperates with AML1-ETO to create a myeloid leukemia
phenotype (AML) (Dayyani et al., 2008). Having identified
the tumor suppressor role of TLE4 in myeloid leukemias,
we generated a novel Tle4 knockout mouse model to better
understand its role in mammalian development (Sweetser et al.,
2005; Dayyani et al., 2008; Wheat et al., 2014). In addition to
various hematopoietic abnormalities, we unexpectedly found a
severe bone development defect in these mice leading to severe
runting and decreased bone mineralization (Wheat et al., 2014).
Similar dual functions have been described for other regulators
of bone development that also can function as tumor suppressor
genes including FoxO members and ARF which drives bone
remodeling and osteosarcoma development in mice through
both p53 independent and dependent mechanisms (Rauch et al.,
2010; Le et al., 2018; Ma et al., 2018; Schmitt-Ney, 2020).

Hematopoiesis and normal bone development are intimately
connected (Bianco, 2011; Despars and St-Pierre, 2011). In
concert with other resident bone tissue cells, osteoblasts
create and protect a hospitable hematopoietic stem cell (HSC)
microenvironment (Cohen, 2006; Yin and Li, 2006). Co-cultures
of MSCs with various leukemic cell lines increase osteoblastic
markers such as Runx2, Osx, Opn (Le et al., 2018). Initial
studies of hematopoiesis in the bone marrow found many
HSCs in close proximity to the inner bone endosteal area,
which has triggered much inquiry into the specific relevance of
osteoblasts in HSC maintenance and niche (Yin and Li, 2006;
Garcia-Garcia et al., 2015). Osteoblasts communicate with HSCs
through direct receptor-ligand interactions (e.g., Ang1/Tie2 and
TPO/MPL), to support HSC adhesion and residence in the
niche, including interactions between N-cadherin/β-catenin, and
osteopontin/β1integrin (Yin and Li, 2006; Le et al., 2018). In
addition, osteoblasts secrete factors including G-CSF, hepatocyte
growth factor and osteopontin that regulate the pool size of
the CD34+ progenitor population (Le et al., 2018). Osteoblasts
regulate HSC migration in and outside of the bone marrow
through CXCL12/CXCR4 and VCAM-1/VLA-4 (Le et al., 2018).
The constitutive activation of β-catenin in osteoblasts and

resultant expression of the Notch ligand Jagged-1 activates
Notch signaling in HSC leading to the development of AML.
This underscores the importance of normal regulation of
mediators of osteoblast differentiation on normal hematopoiesis
(Kode et al., 2014). Dicer1 or Ptpn11 deficient osteoprogenitor
cells in mice display myelodysplastic syndrome and secondary
acute myeloid leukemias, as well as juvenile myelomonocytic
leukemia-like myeloproliferative neoplasms, respectively (Le
et al., 2018). This is further demonstrated by studies that
found HSC populations increased in parallel with expansion
of osteoblasts due to parathyroid hormone treatment in
mice (Calvi et al., 2003), while PTH activation enhances the
migration of long-term repopulating HSCs (Even et al., 2021).
Moreover, a previous study targeted ablation of osteoblasts in
mice found that the loss of osteoblasts significantly reduced
HSC and hematopoietic progenitor populations (Visnjic et al.,
2004). Furthermore, animals deficient in Sca marker present
bone abnormalities (Aguila and Rowe, 2005). Thus, osteoblast
function intimately connects bone formation and hematopoiesis.
Specifically Car/LepR+ CXCL12 expressing cells create a niche
for HSCs cells while simultaneously give rise to osteoblasts
(Galan-Diez and Kousteni, 2018). The similarity of Tle4 null mice
to Runx2 null mice suggested the loss of Tle4 might either impair
the function or the expression of Runx2. To better characterize
the nature of the defect in bone development and maintenance
in Tle4 null mice we have used Tle4 null and conditional Tle4
knockout mice and performed assays of osteoblast function and
development in bone stromal cultures and mesenchymal bone
marrow cell lines.

MATERIALS AND METHODS

Generation of Tle4 Null and Conditional
Tle4 Knockout Mice
For these experiments we used Tle4 null (T4KO) and Tle4
conditional knockout mice generated in our laboratory as
previously described (Wheat et al., 2014). Briefly, conditional
mice were constructed by targeting LoxP sites to flank exon 2 of
Tle4 via homologous recombination using the 129S6/SvEvTac ES
cell line (T4F). To generate T4KO, resultant mice were crossed
with β-actin:Cre mice (gift of Dr. Susan Dymecki) to delete exon
2 in all tissues. Heterozygote mice were backcrossed to C57BL/6
background for over six generations and interbred to generate
Tle4 null mice. For conditional knockout of Tle4, homozygous
T4F mice containing Mx1-Cre (T4F cre) were used. Excision of
Tle4 exon 2 was induced with three intraperitoneal injections of
15 mg/kg polyinosinic-polycytidylic acid (pIpC; Sigma) separated
by 48 h. pIpC treatment induces interferon-γ signaling with
activation of Cre expression and subsequent Cre recombinase
excision of exon 2 of Tle4. This is predicted to cause a frameshift
resulting in a premature stop codon and non-functional
truncated Tle4 protein (Wheat et al., 2014). Demonstration of
T4F knockout efficiency by pIpC was performed by PCR using
primers mT4WTvFlpR 5′- GGAGACTTGGAAAACGCTGA-3′,
mT4PcreF 5′- CAAAGGGCCCCAGAATCTT-3′and mT4PcreR
5′- CGACCGACTTGTAGCCATTT-3′. Mice were housed in
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FIGURE 1 | T4KO mice exhibit deficiencies in bone formation. MicroCT measurements of (A) BV/TV and (B) AP distance in L2 and L3 vertebrae of T4KO and T4WT
littermates demonstrate decreased bone density and spinal canal diameters (n = 2 biologic duplicates per arm; ∗p < 0.05, ∗∗p < 0.01, Student t-test). Femurs
collected from 9-day old T4KO and T4WT littermates were analyzed for (C) medullary bone density and (D) cortical thickness. Both measurements show decreased
trend in T4KO vs. T4WT mice (n = 3–4 mice per arm, technical duplicates). (E) MicroCT image reconstructions of trabecular bone in L3 vertebrae of 3-to-4 weeks
old T4WT and T4KO mice, illustrating decreased bone density and trabecular bone formation in Tle4 null mice (n = 2 biologic duplicates per arm).

a specific pathogen-free environment with a 12-h light/dark
cycle, 30–70% relative humidity and approximately 70◦F ambient
temperature, in groups not surpassing four adult animals.
Mice had ad libitum access to tap water and standard rodent
chow (Prolab R© RMH 3500, Scotts Distributing, Hudson, NH,
United States). For analysis mice were euthanized by inhalation
of 100% CO2. This study was carried out in strict accordance
with recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health and
approved by the Massachusetts General Hospital Institutional
Animal Care and Use Committee.

Cell Culture, shRNA Construction, and
Lentiviral Infection
ST2D cells (Generous gift of Dr. Baruch Frenkel) were generated
by stably transforming mouse mesenchymal ST2 cells derived
from bone marrow with a doxycycline-inducible Runx2
expression vector (Baniwal et al., 2012). ST2D cells were
cultured in RPMI-1640 (Lonza, Walkersville, MD, United States)
supplemented with 10% FBS (Sigma-Aldrich, St. Louis, MO,
United States) and 1% penicillin/streptomycin (Invitrogen,
United States). Cells were maintained at 37◦C and 5% CO2.
When indicated, cells were also cultured with 350 ng/mL
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FIGURE 2 | MAR assay and trichrome staining results indicate contrasting effects of Tle4 loss on bone formation and calcification. T4F cre mice of 8-to-9 days old
have decreased (A) MAR and (B) BFR rates, measurements of average bone calcification per osteoblast and total bone formation, respectively, while having similar
(C) ratio of mineralizing to bone surface ratios. (D) T4F cre mice also had less N.Ob/B.Pm values, an estimate of the number of osteoblasts per area of bone surface.
(E) Trichrome staining reveals T4F cre mice have significantly reduced osteoid compared to T4F controls (n = 3 mice per arm; *p < 0.05, Student t-test).
(F) Representative image demonstrating decreased bone formation in T4F cre mice vs. T4F mice via MAR double-stain of calcein and demeclocycline.

doxycycline (Sigma-Aldrich, United States) or DMSO (Sigma-
Aldrich, United States). Non-targeting control (scr) and
Tle4-specific shRNA constructs were developed using the
lentiviral vector FUGW and delivered to cells via lentiviral
delivery as previously described (Dayyani et al., 2008). The
Tle4 shRNA (shTle4) used has the following target sequence:
AGTGATGACAACTTGGTGG and a control scrambled
shRNA (scr) CAGTCGCCATTAGTTCCAC. Infected cells were
identified by GFP fluorescence detected using FACS LSRII or
GFP-selected via cell sorting with FACS Aria (BD, United States).

Generation of Stromal Cultures
Stromal cultures were generated from bones of 1-week old T4WT
or T4KO littermates as previously described (Mukherjee et al.,
2008; Wheat et al., 2014). After harvesting femur and humeri,
whole bones were crushed and plated on tissue culture plates with
MEMα (Invitrogen, United States) supplemented with 20% FBS
and 1% Penicillin/Streptomycin (Invitrogen, United States). After
3 days, non-adherent cells were removed and media was changed
to osteogenic media containing 100 µM β-glycerophosphate,
2.84 µM ascorbic acid, and 10 nM dexamethasone. After 1 week

in osteogenic media, stromal cultures were either lysed with
Trizol (Invitrogen, United States) for RNA or stained for alkaline
phosphatase activity (Sigma).

In osteoblast function experiments, ST2D cells were treated
with Tle4-specific (T4KD) or scramble control shRNA (SCR) via
lentiviral expression. One week after spinoculation, GFP + ST2D
cells were selected using FACS Aria (BD, United States) and
cultured in 6-well plates. Upon reaching confluence, ST2D cells
were cultured in osteogenic media, with or without 350 ng/mL
doxycycline. After 2 days, ST2D cultures were lysed with Trizol
(Invitrogen, United States) for RNA. In a separate experiment
RNA was harvested from ST2D cells cultured after stimulation
with 350 ng/mL doxycycline at 24, 48, and 72 h.

Expression Analysis via qRT-PCR
RNA was harvested from whole bone lysate, stromal cultures,
or ST2D cell culture using Trizol (Invitrogen, United States).
Expression levels of select differentially expressed genes
and others of interest were performed via qRT-PCR as
previously described (Wheat et al., 2014). Briefly, the RNA was
reversed transcribed using the M-MLV Reverse transcriptase kit
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(Invitrogen, United States), followed by the quantitative analysis
using either SYBR Green system (Bio-Rad, United States)
or predesigned TaqMan Gene Expression Assay (Applied
Biosystems, United States). Primer sequences for SYBR Green
assays are listed in Supplementary Table 1. Tle4 expression
was assayed using the TaqMan Gene Expression Assay (Tle4:
Mm01196934). The expression levels of genes of interest were
normalized to the expression levels of the 18S housekeeping gene.

Mineral Apposition Rate Assay
For mineral apposition assay, 2-month old T4F and T4F cre
littermates were irradiated with two doses of 450cGy and
subsequently transplanted with 1 × 104 Lineage- c-Kit + Sca-
1 + (LKS) cells from 2-month old wild-type C57BL/6 mice
via tail vein injection. These transplanted wild-type LKS cells
were isolated using a FACS Aria (BD, United States). Eight
weeks after transplant, Tle4 excision was induced by three
pIpC (Sigma) intraperitoneal injections at a dose of 15 mg/kg
every 48 h. Four weeks after Tle4 excision, recipient mice were
pulsed with 20 mg/kg calcein (Sigma- Aldrich, United States)
via intraperitoneal injection. After 1 week, recipients were given
30 mg/kg demeclocycline (Sigma- Aldrich, United States) via
intraperitoneal injection. Femurs were harvested 3 days after
demeclocycline injection and fixed in 70% ethanol. Femurs
were processed for resin embedding for mineral apposition rate
analysis and for immunohistochemistry staining of Runx2 (PA5-
86506, ThermoFisher Scientific, Waltham, MA, United States),
Oc (MBS2003553, MyBiosource, San Diego, CA, United States)
and β-catenin (ab6302, Abcam, Cambridge, United Kingdom)
(Bouxsein et al., 2010).

MicroCT Bone Analysis
Microcomputed tomographic analysis (microCT) was performed
on a subset of lumbar vertebrae. The femora were scanned
at a resolution of 6 µm using a Scanco-35 microCT (Scanco
United States, Inc., Southeastern, PA, United States). Each
scan included a phantom containing air, saline and a bone
reference material (1.18 g/cm3) for conversion of Houndsfield
units to mineral density in g/cm3. Reconstruction of the
individual projections to computed tomography volume data
was performed using instrument software. Specimen-specific
thresholds were determined by first selecting a volume of
interest, generating the attenuation histogram, and determining
the threshold that segments mineralized tissue from background.
Properties determined included medullary bone mineral density
(BMD), cortical bone thickness, AP distance, vertebral pedicle
length, and trabecular bone volume fraction (trabecular bone
volume to total volume ratio, BV/TV) (Bouxsein et al., 2010).

Statistics
Analyses used student’s unpaired t-test with Graphpad Prism for
comparing two genotypes (Graph-pad Software, La Jolla, CA,
United States). Data are presented as floating bars showing the
minimum to maximum values or scatter plots, and values of
p < 0.05 are considered statistically significant.

A

B

FIGURE 3 | Loss of Tle4 affects expression of osteoblast function and
differentiation regulators. (A) qRT-PCR using RNA from 1-week old T4WT and
T4KO flushed whole bone lysate shows T4KO has decreased expression of
Ap, Runx2, and Oc (n = 6 biologic replicates, technical triplicates; *p < 0.05,
**p < 0.01, Student t-test). (B) Stromal cultures from T4WT and T4KO were
lysed for qRT-PCR analysis, which shows significantly reduced levels of
Runx2, Ap, Oc, and Spp1 expression in T4KO compared to T4WT (n = 3
biologic replicates per arm, technical triplicates; *p < 0.05, **p < 0.01,
***p < 0.001, and Student t-test).

RESULTS

Loss of Tle4 Leads to Defective Bone
Development
To assess bone formation in Tle4 null mice, we performed
microCT analysis of lumbar vertebrae of 3-day old T4KO and
wild-type (T4WT) littermates. T4KO mice exhibit decreased
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A

B

FIGURE 4 | Tle4 knockdown in ST2D mouse mesenchymal cells
demonstrates similarities in aberrant expression of osteoblast regulator genes
seen in osteoblast cultures derived from T4KO mice. (A) qRT-PCR using RNA
harvested from Tle4 knockdown (shTle4) and control (CTL) ST2D cells using
scrambled shRNA confirm effective Tle4 knockdown and Runx2 induction
after 48 hr of doxycycline induction which remains decreased compared to
the scramble controls. (B) qRT-PCR experiments show expression of Ap and
Oc are significantly reduced in Tle4 knockdown ST2D cells compared to
control. Doxycycline-induced expression of Runx2 significantly increases
expression of these genes compared to DMSO control, remaining however, in
lower levels compared to scramble (n = 3 biologic replicates per arm,
technical triplicates; *p < 0.05, **p < 0.01, ***p < 0.001, and Student t-test).

trabecular bone volume fraction (BV/TV) and AP distance
measurements compared to T4WT counterparts, suggesting loss
of Tle4 is associated with decreased bone density and vertebral
pedicle length (Figures 1A,B). Additionally, femurs of 8 to
9-day-old T4KO and T4WT littermates were harvested for

microCT analysis of medullary and cortical bone (Figures 1C,D).
This analysis showed T4KO mice have reduced medullary
bone density (M.BV/TV) and cortical bone thickness (Ct.Th).
Moreover, microCT image reconstructions of trabecular bone in
L3 vertebrae of 3 to 4-week old T4KO and T4WT littermates
further illustrate decreased bone calcification and increased
trabecular space in T4KO vertebrae compared to those of
T4WT (Figure 1E). This is consistent with previous findings
that loss of Tle4 is associated with deficits in vertebral and
long bone formation.

Dynamic Bone Formation and Osteoblast
Deficiencies in Conditional Tle4
Knockout Mouse
To further characterize the effects of Tle4 loss on bone
development, we pursued a dynamic double-label mineral
apposition rate (Calvi et al., 2003) assay using mice that have
loxP target sites flanking exon 2 of Tle4 with or without
Cre recombinase driven by the Mx1 promoter (T4F cre and
T4F, respectively). In order to isolate the effects of Tle4 loss
to bone marrow mesenchymal cells we replaced the bone
marrow hematopoietic cells with wild type cells by bone
marrow transplantation prior to knockout of Tle4 by pIpC in
these Mx1-Cre expressing mice. The high degree of knockout
efficiency of exon 2 of Tle4 in these conditional T4F-cre
mice was demonstrated in harvested bone marrow of similarly
pIpC treated T4F-cre compared to T4F mice lacking Mx1-cre
(Supplementary Figure 1). The MAR assay revealed T4F cre
mice have multiple lower dynamic parameters of bone formation
(Figures 2A–F). While ratios of mineralizing to bone surface
areas (MS/BS) were similar, MAR and bone formation rates
(BFR) were lower in T4F cre mice compared to their control
T4F counterparts (Figures 2A–C). Additionally, T4F cre mice
had lower numbers of osteoblasts per given bone perimeter area
(Figure 2D). Combined with lower osteoid to bone surface area
ratios (Figure 2E), these results point toward an association
between decreased bone formation and conditional loss of
Tle4 in adult mice.

Bone Defects Due to Tle4 Loss May Be
Mediated Through Dysregulation of
Canonical Regulators of Bone
Development
Given the defective bone and bone marrow phenotype seen
in T4KO mice, we hypothesized that loss of Tle4 may affect
osteoblast function and development. To assess this, we first
harvested RNA from flushed whole bone lysates of 1-week-old
T4KO and T4WT littermates. Expression analysis, using qPCR,
revealed T4KO bone had significantly lower levels of Ap, Runx2,
and Oc expression (Figure 3A). Ap is often used as a proxy for
osteoblast function while Runx2 and Oc have previously been
connected to osteoblast maturation and bone anabolic regulation
(Jang et al., 2012). To minimize bone cell heterogeneity, crushed
1-week-old T4KO and T4WT femurs were cultured in osteogenic
media to generate osteoblast stromal cultures. T4KO stromal
cultures demonstrated significant decreases in osteoblast genes,
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A B

FIGURE 5 | Tle4 knockdown in ST2D cells cause aberrant levels of Bmp2 and Bmp4 expression in response to Runx2 expression. (A) Twenty-four hours after
Runx2 induction, upregulation of Bmp2 in control (CTL) cells. Knockdown of Tle4 represses Bmp2 expression and blocks upregulation with Runx2 induction.
(B) Induction of Runx2 also leads to an upregulation of Bmp4 in control cells. This upregulation is not seen in the presence of Tle4 knockdown (n = 3 biologic
replicates per arm, technical triplicates; *p < 0.05, **p < 0.01, ***p < 0.001, and Student t-test).

including Runx2, Ap, Oc, and Spp1 (Figure 3B). Moreover,
alkaline phosphatase staining qualitatively showed a trend toward
decreased alkaline phosphatase activity in T4KO stromal cells
(Supplementary Figure 2).

Our T4KO results revealed that absence of Tle4 was
associated with significant reductions of Runx2, suggesting
T4KO-associated bone abnormalities might be due to decreased
Runx2 expression. To further elucidate the time course of Tle4-
mediated effects on bone development factors through the Runx
axis and considering the recent data on the Runx1 involvement in
bone development (Tang et al., 2020), we assessed the expression
levels of Runx1 in the 1-week-old T4KO and T4WT littermates,
and found that the absence of Tle4 does not affect the expression
levels of Runx1 (Figure 3A) suggesting the calcification defects in
Tle4 KO mice are more likely explained by Runx2 inhibition.

To better understand the mechanisms underlying Tle4 effect
on bone development and the interplay with Runx2, we turn to
an in vitro system using mouse mesenchymal ST2 cells stably
transformed with a doxycycline-inducible Runx2 vector (ST2D)
(Dayyani et al., 2008; Baniwal et al., 2012). In these ST2D cells the
addition of doxycycline leads to an induction ofRunx2 expression
(Figure 4A). In this system we evaluated the effects of knocking
down Tle4 expression via lentiviral delivery of Tle4-specific
shRNA. Expression analysis using qPCR demonstrated over 80%
reduction in Tle4 message via shRNA in both doxycycline and
DMSO cultures and showed that ectopic expression of Runx2
in the absence of Tle4 shRNA did not significantly affect Tle4
expression levels (Figure 4A). In this system we demonstrated
Tle4 knockdown reduced endogenous Runx2 expression levels
by approximately 50% in ST2D cells cultured in control DMSO
media. This result correlated nicely with that found in vivo. The
addition of doxycycline significantly increased Runx2 expression
levels. Tle4 knockdown via shRNA was not able to prevent
this increase driven from a lentiviral promoter, though the
increase was blunted, likely reflecting repression of Runx2 from
the endogenous promoter. Induction of Runx2 by doxycycline
resulted in a significant increase in the expression of Oc,
Ap, and Osx after 48 h, and this increase was significantly

decreased in Tle4 knockdown arms (Figure 4B). To further
understand the relationship between Tle4 and Runx2, we queried
expression levels of Bmp2 and Bmp4, given their previously
described roles as regulators of Runx2 and normal skeletal
development (Bandyopadhyay et al., 2006; Krishnan et al., 2006).
We demonstrated that loss of Tle4 caused a significant reduction
of Bmp2 expression at baseline and prevented upregulation in
response to Runx2 induction. Interestingly, levels of Bmp4 were
increased with Tle4 knockdown, but the upregulation seen with
Runx2 expression was blocked (Figure 5).

Extended time-course experiments demonstrate that Tle4
knockdown creates an initial surge of Runx2 expression by 24 h
of knockdown compared to control, followed by decreasedRunx2
levels at 48 and 72 h; consistent with the above observations
(Figure 6). However, we found decreased expression levels of
Runx2-mediated regulators of bone, including Alp and Osx at
24 h. This suggests the loss of Tle4 blunted the ability of Runx2 to
upregulate Osx and Alp expression at early time points. By 72 h
after Tle4 knockdown, the differential expression of these genes
is lost, suggesting a time-delay of Alp and Osx induction due to
Tle4 knockdown. These experiments support a role of Tle4 in
regulating Runx2 and, subsequently, its target genes canonically
associated with osteoblast differentiation and function.

Immunohistochemistry using femurs from mice used in MAR
assay revealed decreased amounts of Runx2 and Osteocalcin in
T4F cre mice compared to control (Figure 7). In T4F mice, Runx2
positivity can be seen in numerous osteoid-lining cells, suggestive
of Runx2-positive periosteal osteoblasts. The frequency and
localization of these Runx2-positive cells dramatically drops
in T4F cre mice. Similarly, osteocalcin positivity in cortical
bone seen in T4F mice is not evident in the conditional Tle4
knockout mice. In addition to Runx2, β-catenin-mediated Wnt
signaling has also been previously described as an important
mediator of bone development and osteoblast differentiation
(Hill et al., 2005; Cohen, 2006; Rodda and McMahon, 2006;
Kook et al., 2015). Given previous reports implicating Tle4 as
a negative regulator of Wnt signaling, we queried β-catenin
levels via immunohistochemistry in bones of the T4F and T4F
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A B

C D

FIGURE 6 | Time-course gene expression study demonstrates altered expression of Runx2 and its bone-related targets due to Tle4 knockdown (shTLE4) compared
with control cells (CTL) in ST2D cells at 0, 24, 48, and 72 h. (A) ST2D cells that contain a doxycycline inducible Runx2 gene demonstrated maximal Runx2 induction
after 24 h. (B) This is associated with an upregulation of alkaline phosphatase that was slightly delayed with Tle4 knockdown. (C) Tle4 knockdown also slows the
induction of the osteoblast-specific transcription factor Osterix (Osx). (D) The knockdown of Tle4 achieved with a Tle4 specific shRNA was demonstrated at the
different time points in this experiment. (0—knockdown to 37%, 24 h to 22%, 48 h to 69%, 72 h to 53%) (n = 3 biologic replicates per arm, technical triplicates;
*p < 0.05, **p < 0.01, ***p < 0.001, and Student t-test).

FIGURE 7 | T4F cre mice have significantly reduced levels of key regulators of bone development and osteoblast function. Immunohistochemistry assay using
femurs harvested from T4F cre mice of 8-to-9 days old in MAR assay reveals decrease in Runx2 and Oc levels and increased β-catenin signals in the epiphyseal and
cortical areas compared to T4F control counterparts (n = 3 mice per arm, representative images).

cre mice used in the above MAR assay as an exploratory
objective. T4F cre femurs showed increased β-catenin signals
in the epiphyseal and cortical areas. While T4F cre and T4KO
mice display bone calcification and osteoblast function defects,

loss of Tle4 in bone leads to increased β-catenin levels, which is
consistent with previous reports implicating Tle4 as a repressor
of Wnt signaling. However, using the above-described ST2D
system, we were not able to find a Tle4 knockdown-dependent
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change in expression of canonical Wnt target gene expression
(data not shown).

DISCUSSION

The Groucho/TLE family of proteins has been extensively studied
in Drosophila where it has been termed a master regulatory
gene in development via its interaction with a number of
important signaling pathways including Notch and Wnt and
also can be recruited by transcription factors members of Hex,
Runx, Nkx, Lef1/Tcf, Pax, Six and c-myc (Jennings and Ish-
Horowicz, 2008; Agarwal et al., 2015). Our understanding of
the roles of this protein family in vertebrate development is
limited. The novel Tle4 null mouse provides valuable insight
into the previously unappreciated roles of Tle4 in mammalian
vertebrates regarding bone maturation, medullary hematopoiesis
and HSPC maintenance. One of the striking abnormalities in
the T4KO mice is a decreased calcification of the skeleton
(Wheat et al., 2014). This impaired ossification is apparent
in both membranous and endochondral bones by birth. The
above phenotypes are more intense and progressive in an age-
dependent manner in T4KO mice than in Grg5 null mice lacking
a truncated member of the Groucho/TLE family (Wheat et al.,
2014). Our earlier characterization of Tle4 KO mice suggested
Tle4 also affects osteoclast function as demonstrated by an
increase in osteoclasts by tartrate-resistance acid phosphatase
(TRAP) staining (Wheat et al., 2014). In the current study
microCT and MAR assay measurements indicate loss of Tle4
impaired bone formation, calcification, and osteoid production.
The lethality of Tle4 null mice and the effects in hematopoietic
cells and observed degradation of the bone marrow niche made
it technically challenging to isolate the effect on osteoblasts in
germline knockout mice. Conditional Tle4 mice transplanted
with normal bone marrow hematopoietic cells served as a proxy
for osteoblast-specific effects of Tle4 loss. Mx1-cre system has
been demonstrated as one of the most commonly “deleter strain”
in experimental hematology (Velasco-Hernandez et al., 2016).
Previous work by Park et al. (2012) have demonstrated the
contributory role of Mx1-expressing bone mesenchymal cells
toward the generation of new osteoblasts responsible for new
bone formation, supporting the use of the Mx1-Cre model in
our experiments to examine the role of Tle4 loss in osteoblast
function (Park et al., 2012). The concordance of observations seen
in these models and studies strongly suggest that Tle4 may affect
osteoblasts and other periosteal cells that are responsible for bone
production and maintenance.

In the context of our previous work identifying hematopoietic
defects in Tle4 null mice, we have attempted to determine
whether the bone abnormalities due to Tle4 loss can be
attributable to dysfunctional osteoblasts. We had shown Tle4
loss significantly impairs LSK differentiation into granulocyte,
monocyte, macrophage progenitors and LSK self-renewal and
adversely affects the integrity of bone marrow niche and
stroma (Wheat et al., 2014). Osteoblasts are known to
play a critical role in maintaining the bone marrow niche
(Calvi et al., 2003; Asada et al., 2013; Fulzele et al., 2013;

Even et al., 2021). In this current work qRT-PCR analysis using
T4KO mouse samples from flushed whole bones and cultured
stromal cells revealed significantly decreased expression of
various transcription factors and regulators responsible for
osteoblast function and differentiation, including Ap and Oc—
both frequently used proxies for describing osteoblast function.
Interestingly, osteocalcin is one of the main components of
ground substance that, together with Type 1 collagen, constitute
the bone matrix (Hill et al., 2005; Asada et al., 2013; Fulzele et al.,
2013). Osx demonstrates a multifunctional role on osteoblast
differentiation, growth and homeostasis, since its deletion in
several time points postnatally in growing and adult bones causes
defects in maturation, morphology and function of osteocytes
(Zhou et al., 2010; Liu et al., 2020). Decreased Oc expression
may lend insight into a physiologic basis for the Tle4 knockout-
induced bone phenotype.

Wnt signaling has been described as a central mediator of bone
formation (Hill et al., 2005; Cohen, 2006; Rodda and McMahon,
2006; Kook et al., 2015). Surprisingly, we observed defective
bone formation and calcification in T4KO mice, in which Wnt
signaling is expected to be activated especially given higher levels
of β-catenin signal as determined by immunohistochemistry
(Kronenberg, 2003; Chodaparambil et al., 2014). However,
previous studies have shown that there is an intimate relationship
between the timing of Wnt signaling and normal osteoblast
differentiation; and thus, constitutive or increased Wnt signaling
at an inappropriate stage of osteoblast development may be
detrimental to normal bone growth (Rodda and McMahon, 2006;
Janeway and Walkley, 2010). Alternatively, the detrimental effects
of Tle4 loss on Runx2 activity might outweigh the effects of
Wnt activation on osteoblast differentiation and calcification.
Our results do not preclude the possibility that loss of Tle4 is
responsible for the bone defects through other mechanisms and
the potential effects of paracrine hormonal or Tle4 levels in other
non-Mx1-expressing compartments.

The ST2D system provided insight into potential molecular
mechanisms that may explain our findings, including not
only Wnt signaling but also dysregulation of Bmp signaling
and consequently Runx2 expression. Previous studies have
demonstrated loss of function of Bmp2 and Bmp4 impair bone
condensation and skeletal development (Bandyopadhyay et al.,
2006; Krishnan et al., 2006; Wu et al., 2016). There is an interplay
between BMP and RUNX2 in regulating osteoblast differentiation
(Lowery and Rosen, 2018). BMP signaling is required for
transcriptional activity of Runx2 and Runx2 enhances the
sensitivity of cells to BMPs (Phimphilai et al., 2006).

Our experiments indicate there is a decrease in Runx2
expression in T4KO bone, T4KO stromal cells, and in ST2D cells
with Tle4 knockdown in a time dependent manner. Previous
studies have shown that TLE proteins are capable of interacting
with Runx2, a critical regulator of bone development and
maturation (McLarren et al., 2000; Choi et al., 2001; Kaul et al.,
2015). The RUNX protein family is known to form co-repressor
complexes with TLE proteins (Javed et al., 2000). Thus, the
TLE proteins might affect both Runx2 expression as well as
the activity of the Runx2 protein. The TLE effect on Runx2
expression could reflect interference of Runx2 transcriptional
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autoregulation (Drissi et al., 2000). In our studies, even if the
experiments do not distinguish whether the blunting in the
expression of these osteoblast genes with Tle4 knockdown is
due to decreased Runx2 expression or decreased function of the
Runx2 protein in the absence of Tle4, the differential expression
levels of Runx2-mediated regulators of bone development are
most likely a downstream effect consequent of the decreased
endogenous Runx2 expression after Tle4 knockdown. Runx2
null mice demonstrate bone phenotypes similar, but more
severe than our T4KO mouse: expiring at birth and completely
missing skeletal and bone development, owing to defective
osteoblast maturation (Komori et al., 1997; Otto et al., 1997;
Okura et al., 2014). Previous studies have shown the importance
of Runx2 in normal bone development, as Runx2 null mice
lack bone ossification and osteoblast differentiation (Cohen,
2006). The similarity of Tle4 null mice to Runx2 null mice
suggested the loss of Tle4 might either impair the function
or the expression of Runx2. The less severe effect observed
with Tle4 knockout could reflect complementary effects from
the expression of other Tle family members along with Runx2
residual expression which thus induce the osteoblastic genes
expression later during bone development in the Tle4 loss
background, in contrast to the early in time severe effects of
Tle4 loss in bone development. Additional studies are required
to further characterize the interaction and potential regulatory
role of Tle4 on Runx2 expression levels and function as it may
relate to the defective bone development in the absence of Tle4.
While direct functional interactions between RUNX and TLE
have been described (Westendorf, 2006) and a possibility of
the requirement of such a direct active interaction in the early
osteoblastic development is suggested in our time dependent
experiments, additional experiments may reveal further insight
into whether TLE exerts a direct regulatory effect on RUNX
transcription, stability or targets.
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Bone regeneration is a delicate physiological process. Non-union and delayed fracture
healing remains a great challenge in clinical practice nowadays. Bone and fat hold a
close relationship to remain balanced through hormones and cytokines. Adiponectin is
a well-known protein to maintain the hemostasis, which may be an interesting target
for fracture healing. Herein, we provided a facile and efficient method to obtain high-
purity and high-yield recombinant human adiponectin (ADPN). The biocompatibility and
the pharmaceutical behaviors were evaluated in Sprague–Dawley rats. The paracrine
effects of adiponectin on bone fracture healing were investigated with a rat tibia fracture
model via intrabone injection. Significantly accelerated bone healing was observed
in the medulla injection group, indicating the paracrine effects of adiponectin could
be potentially utilized for clinical treatments. The underlying mechanism was primarily
assessed, and the expression of osteogenic markers, including bone morphogenic
protein 2, alkaline phosphatase, and osteocalcin, along with adiponectin receptor 1
(AdipoR1), was markedly increased at the fracture site. The increased bone healing
of ADPN treatment may result from both enhanced osteogenic proliferation as well
as differentiation. Cell experiments confirmed that the expression of osteogenesis
markers increased significantly in ADPN treatment groups, while it decreased when the
expression of AdipoR1 was knocked down by siRNA. Our study provided a feasible and
efficacious way for bone fracture treatment with local administration of ADPN, which
could be rapidly translated into the clinics.

Keywords: adiponectin, bone formation, paracrine effect, AdipoR1, medulla injection

INTRODUCTION

Bone regeneration is a delicate and complex physiological process (Clarke, 2008). Bone defects
resulted from traumatic injury, tumor resection, and degenerative diseases are challenging
problems in clinics (Burge et al., 2007). The gold standard in clinical practice is an autologous bone
graft (Einhorn and Gerstenfeld, 2015). Unfortunately, the limited sources, the injury of the donor
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site and perioperative complications significantly restrict the
employment of this approach (Baqain et al., 2009). Bone
morphogenic protein 2 (BMP-2) is considered the most
efficacious cytokine for bone repair and has been extensively
studied for the treatment of various bone fractures and
bone defects (Glassman et al., 2008; Long, 2011). However,
supraphysiological dosage is necessary in clinical practice,
causing undesirable side effects, including hollow bone
formation, life-threatening tissue edema, and cancer (Cahill
et al., 2009; Barbour et al., 2011; Skovrlj et al., 2015). In addition,
the high cost for BMP-2 becomes a heavy financial burden for
the health system. Therefore, developing alternative strategies
are imperative for bone regeneration.

The close relationship between bone and fat formation
was well acknowledged in the literature (Gimble et al.,
2006). The bone marrow mesenchymal stem cells may take
different pathways during their lifetime, to differentiate
and transdifferentiate in response to changes in the
microenvironment to bone or fat (Chen et al., 2016). The
inverse relationship between bone and fat implied that agents
inducing adipogenesis inhibited osteoblast differentiation and
vice versa (Naot et al., 2017). These results coincided with classic
pathological and epidemiological phenomena of increased
marrow adiposity with aging and bone loss.

Human adiponectin is a 30-kDa adipose-derived secreted
protein containing 244 amino acid residues, with an N-terminal
signal sequence, a hypervariable region, a collagenous domain,
and a globular domain (Scherer et al., 1995). Since it was first
discovered in 1995, efforts have been devoted to unraveling the
biological activities of adiponectin. Metabolic regulation and
maintenance of whole-body energy homeostasis are recognized
as the main physiological role of adiponectin (Wang and
Scherer, 2016; China et al., 2018). Anti-inflammatory and
antiapoptotic effects were demonstrated as major physiological
activities of adiponectin as well (Ohashi et al., 2010). Adiponectin
binds to two seven-transmembrane domain receptors, AdipoR1
and AdipoR2. Interestingly, unlike the well-known G-protein-
coupled receptors, the N-terminus is located inside the cell,
whereas the C-terminus faces outward for both AdipoR1 and
AdipoR2. AdipoR1 was found abundant in skeletal muscle and
the liver via ubiquitous expression, while AdipoR2 was isolated
mostly from the liver (Kang et al., 2009). T-cadherin, highly
expressed in endothelial and smooth muscle cells, was identified
as a third adiponectin receptor (Matsuda et al., 2015).

In light of the inverse relationship between serum adiponectin
levels and fat mass, the inverse relationship between bone
marrow fat and bone mass inspired researchers to focus on
the effects of adiponectin on bone regeneration. In vitro,
adiponectin was reported to increase the mRNA expression
of alkaline phosphatase (ALP) in preosteoblasts and promote
the mineralization of the bone matrix (Williams et al., 2009;
Naot et al., 2017). Furthermore, in a mouse model, the elevated
adiponectin in the bloodstream significantly increased the
volume of cancellous bone (China et al., 2017). Interestingly,
an inverse correlation was demonstrated in clinical studies
between serum adiponectin concentrations and bone mineral
density (BMD) (Napoli et al., 2010). AdipoR1 and AdipoR2 were

found to be expressed in primary human osteoblasts and in
bone marrow macrophages, which could be the possible reasons
for adiponectin playing a significant role in bone regeneration
(Berner et al., 2004; Wu et al., 2019). Contradictory results in the
literature were demonstrated as well; therefore, more evidence
is needed to further clarify the physiological role of adiponectin
in bone biology.

Although the endocrine effects of the secreted protein
adiponectin from adipose tissue into the circulation account
for the energy homeostasis, its local paracrine effects may play
a pivotal role in bone regeneration (Martinez-Huenchullan
et al., 2020). Here, we recombined human globular adiponectin
(ADPN) and further characterized the pharmacokinetic
behaviors and toxicity through medulla injection. A rat
tibia fracture model was exploited to evaluate the capability
of ADPN for bone repair. In addition, we attempted to
unravel the underlying mechanism of adiponectin promoting
bone regeneration.

MATERIALS AND METHODS

Materials
Glutamine synthetase (GS), methionine sulfoximine (MSX),
Chinese hamster ovary K1 (CHO-K1) cells, Dulbecco’s
modified Eagle’s medium (DMEM), fetal bovine serum (FBS),
penicillin/streptomycin (P/S), insulin, and pentobarbital sodium
were supplied by Sigma-Aldrich (St. Louis, MO, United States).
Biotin-conjugated monoclonal antibodies for ELISA were
purchased, including osteoprotegerin (OPG) ab255723, ADPN
ab108784 (Abcam, Cambridge, United Kingdom). Antibodies for
Western blot were GAPDH ab8245, AdipoR1 ab70362, BMP-2
ab14933 (Abcam, Cambridge, United Kingdom), and ALP
sc-271431 and Osteocalcin (OCN) sc-376726 (Santa Cruz, CA,
United States). Antibodies used for immunofluorescent staining
were BMP-2 ab6285 (Abcam, Cambridge, United Kingdom);
ALP sc-271431, OCN sc-390877 (Santa Cruz, CA, United States);
and AdipoR1 BM4566 (Boster Bio, CA, United States).

Methods
Evaluation of Pharmacokinetics and Toxicity
All animal experiments were performed in accordance with
the guidelines of the Ethics Committee of the Chinese People’s
Liberation Army General Hospital, Beijing, China. Sprague–
Dawley male rats (n = 15, 8 weeks old) were randomly divided
into three groups, which were treated with 0, 1, and 2 mg/kg of
recombinant ADPN in PBS via medulla injection (G1, G2, and
G3, respectively). Blood samples were collected in 1% heparin
tubes via fundus vein plexus at predetermined time points. The
supernatant was obtained by centrifugation at 3,000 rpm for
10 min, and ADPN concentration in serum was assessed with
the ELISA kit (m1061301-3, Mlbio, Shanghai, China), following
the protocol of the manufacturer. An automated enzymatic
procedure (Cobas E601, Roche, Basel, Switzerland) was employed
for blood biochemistry evaluation. Sysmex XE22100 automatic
blood analyzer was used for blood routine examination. Organs
including hearts, livers, spleens, lungs, kidneys, brains, and
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pancreases were harvested at the end time point. After weighing,
all the organs were fixed in 4% paraformaldehyde, embedded in
paraffin, and sectioned at the thickness of 5 µm. H&E staining
(G1120, Solarbio, Beijing, China) was carried out for all the
sections to evaluate the toxicity.

Tibia Fracture Model
Sprague–Dawley male rats (8 weeks old) were anesthetized with
3 ml/kg of 3% pentobarbital sodium via intraperitoneal injection.
A scalpel blade (#15) was used to open the knee joint. A 20-
gaged syringe was inserted into the medulla of the tibia for
drug injection. A Kirshner needle (1 mm) was inserted into
the distal tibia at a penetration depth of about 22 ± 2 mm.
The excess proximal needle was cut off with a bone cutter.
Three-point forceps were fixed to the left leg. The forceps were
closed until a crack was heard, and the resistance of the forceps
suddenly dropped. After surgery, all animals were allowed to
recover on a warm sheet and then transferred to the vivarium
for postoperative care. In preparation for the operative treatment,
all animals received analgesia with subcutaneous injections of
buprenorphine at a concentration of 0.1 mg/kg for 3 days. To
prevent potential infection, all animals received 80,000 U of
penicillin via intramuscular injection for 3 days.

Microcomputerized Tomography Scanning
Animals were imaged, at weeks 2, 4, and 6, using a high-
resolution microcomputerized tomography (µCT) (Quantum
GX µCT System, PerkinElmer, Waltham, MA, United States)
with 90 kV, 80 µA, and 4.5-µm resolution. Visualization and
reconstruction of the data were obtained using the Quantum
GX µCT Workstation imaging software (PerkinElmer, Waltham,
MA, United States). The volume of interest was defined manually
as follows: The cortex area was defined as the region enclosed by
the callus and cortical boundaries in tomograms. The trabecular
area was an irregular and anatomic region of interest drawn
manually, a few voxels away from endocortical surface to
medullary space. The cortical pad area (CT. Ar) and cortical
pad thickness (CT. Th), BMD, bone volume density (BV/TV, %)
and mean thickness of the trabecular (Tb. Th), trabecular
number (Tb. N, mm−1), trabecular separation (Tb. Sp), structure
model index (SMI), and bone density of connection (Conn. D,
mm−1) were derived using the Analyze software (AnalyzeDirect,
KS, United States).

Mechanical Evaluation
Six weeks post surgery, rats were euthanized, and tibias were
harvested and undergone three-point flexural mechanical testing
on the biomechanics machine (MTS 858, MTS, United States).
An axial force of 5 N was preloaded to the bone, and
constant linear propulsion (5 mm min−1) was applied to a
lever arm attached to one of the pivoted axes to provide a
uniform movement.

Histological Evaluation
The harvested tibias were fixed in 4% paraformaldehyde for 48 h,
followed by decalcification in 10% EDTA solution under gentle
shaking for 4 weeks. The EDTA solution was changed every
2 days. Decalcified samples were embedded in paraffin and cut

into 5-µm-thick sections. The tissue sections were deparaffinized
and stained with H&E.

Masson trichrome staining (G1340, Solarbio, Beijing, China)
was also performed to detect new bone formation. The blue
color, indicative of new or mature bone, was observed using an
Olympus U-RFL-T microscope. Additional sections underwent
immunohistochemical analysis. The deparaffinized sections were
processed with citric acid for antigen retrieval and thereafter
incubated with the primary antibody BMP-2 (1:400 dilution),
AdipoR1 (1:400 dilution), ALP (1:200 dilution), and OCN (1:200
dilution) and were detected by the HRP/DAB kit (Beyotime,
Beijing, China). The sections were further counterstained with
Mayer’s hematoxylin (Beyotime, Beijing, China).

Protein Quantification
The expression of ALP, BMP-2, OCN, and AdipoR1 were
examined with Western blot, and the normalized values of
the blots were quantified with imageJ. OPG in the serum was
quantified with ELISA.

Callus tissue (approximately 5 mm) around each bone fracture
position was collected, weighed, and transferred into 1.5-ml
Eppendorf tubes. RIPA buffer (6 µl/mg) and 0.174 mg/ml of
PMSF (benzyl sulfonyl fluoride, pyrolysis liquid with PMSF,
100:1 v/v) were added into each tube. Proteins were extracted, and
Bio-Rad Dc protein assay (Bio-Rad, Hercules, CA) was carried
out to determine the protein concentration for further Western
blot experiments.

Knockdown of AdipoR1 by siRNA
BMSCs (P3) were inoculated in 12-well plates at a cell density
of 1 × 104 cells/well. AdipoR1 siRNA (0.8 µg) was diluted
with 50 µl of DMEM, and 2 µl of Lipofectamine 2000
(SolarBio China, Beijing, YZ-11668) was diluted with 50 µl of
DMEM, and incubated for 5 min at room temperature. The
transfection reagent and AdipoR1 siRNA diluent were mixed,
and the complex was added to the well plate and incubated for
24 h. The transfection was performed on the first and fourth
day, respectively.

Immunofluorescent Images of Bone Marrow
Mesenchymal Stem Cells
BMSCs (P3) were inoculated in 12-well plates at a cell density
of 1 × 104 cells/well. ADPN (10 µg/ml) and the control group
without drugs were added accordingly. The medium was replaced
every other day for 7 days. The wells were rinsed with PBS
three times. Four percent neutral paraformaldehyde was added.
Fifteen minutes later, 0.1% Triton X-100 was applied to lysate the
cells for 15 min. Five percent goat serum was used for blocking.
Drops of primary antibodies were added (the same antibodies
as in animal experiments) with dilution concentrations of 1:100
and incubated overnight in a wet box in a refrigerator at 4◦C.
Secondary antibody (antibody dilution: 1:200, ZSGB-Bio, China
Beijing, Alexa Fluor R© 488, ZF-0512, Alexa Fluor R© 594 ZF-0513)
was added, and the nuclei were stained with DAPI.

Statistical Analysis
Data were presented as mean ± standard deviation. Multiple
comparisons were assessed using the one-way or two-way
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analysis of variance (ANOVA). The analysis of variances followed
by the Tukey’s hoc test was employed in this work, and p < 0.05
was considered statistically significant.

RESULTS

Amplification and Identification of
Human Globular Adiponectin
Natural human adiponectin fragment (∼748 bp) was successfully
amplified from cDNA sequence after optimizing codons. The
size of adiponectin-Fc-GS fragment was around ∼1,434 bp.
Two-way sequencing results confirmed that the sequence of
inserted gene was identical to human globular adiponectin
gene. After screening and purification, the recombinant human
ADPN protein migrated at around 60 kDa by SDS-PAGE
electrophoresis. ELISA was carried out to quantify the collected
protein, and the yield was 20 µg/ml. The obtained ADPN was
stored in glass vials after lyophilization. Details are described in
Supplementary Figure 1.

Pharmacokinetics of Adiponectin Based
on Medulla Injection
The pharmacokinetic profiles of ADPN after medulla injection
were plotted (Figure 1), and the calculated pharmacokinetic
parameters are listed in Table 1. For G3 and G2, Tmax, the
time to reach the maximum concentration (Cmax), was 8 and
4.8 h, and Cmax was 4.9 ± 0.8 and 1.7 ± 0.3 µg/ml, respectively.
The area under the curve (AUC) showed that ADPN exposure
was significantly higher in G3 than that in G2 (p < 0.01). No
significant difference was observed with the half-life of ADPN in
the plasma between the two groups. The pharmacokinetic results
indicated that most of ADPN could remain in the bone marrow
via medulla injection.

Toxicity of Adiponectin Based on
Medulla Injection
All rats showed distinct difficulty in motion with their left
legs right after surgery. Such symptom was alleviated a few
hours later, yet four rats in each group still exhibited mild
confined activity. All rats could move freely 24 h post surgery,
with no abnormalities in the hair, canthus secretion, anus,

FIGURE 1 | The serum concentrations of adiponectin (ADPN) based on
medulla injections, n = 5.

TABLE 1 | Pharmacokinetic parameters for adiponectin (ADPN) in SD rats.

Parameters Unit Medulla injection

1 mg/kg 2 mg/kg

Ke h−1 0.02 ± 0.01 0.02 ± 0.01

T1/2 H 50.98 ± 22.51 54.24 ± 24.79

Tmax H 4.80 ± 1.79* 8.00 ± 0.00

Cmax µg·L−1 1,693.64 ± 302.30* 4,869.57 ± 825.30

AUC0− t h·µg·L−1 3,158.48 ± 1,812.61** 79,483.18 ± 63,165.40

AUC0−8 h·µg·L−1 48,520.51 ± 89,123.65** 88,637.29 ± 68,594.26

Vd L·kg−1 1,103.49 ± 596.23 532.71 ± 161.80

MRT h 45.72 ± 5.56* 50.39 ± 5.20

*p < 0.05, **p < 0.01, G2 vs. G3.

genital, feces, behaviors, eating, drinking, etc., Organs, including
hearts, livers, spleens, lungs, kidneys, pancreases, and brains,
were harvested and weighed. Compared with controls, rats
receiving ADPN presented significantly heavier spleens and
pancreases (Figure 2A). H&E staining for all harvested organs
was carried out to further examine the histomorphological
variations (Figure 2B). No obvious changes were observed in
all the organs among the three groups, indicating no direct
toxicity of ADPN.

Hematology and serum biochemistry tests were carried out
to further evaluate the biocompatibility of ADPN in vivo. RBC
(red blood cell), HGB (hemoglobin), MCHC (mean corpuscular
hemoglobin concentration), and HCT (hematocrit) in the ADPN
treatment groups (G2 and G3) were significantly increased at
day 42 compared with that in the control group postinjection. In
contrast, eosinophilic granulocytes, lymphocytes, and leukocytes
showed no remarkable alteration (Figure 2C). Hepatorenal
function, blood glucose, triglyceride, high-density lipoprotein,
and uric acid levels demonstrated no obvious changes for the
investigated period (Supplementary Figure 2).

Rat bone marrow mesenchymal stem cells (BMSCs) were
isolated and treated with different concentrations of ADPN (0,
1, 5, 10, 30 µg/ml) in vitro. CCK-8 assay was employed to
plot the cell viability profiles with time progression. Enhanced
proliferation was observed among all the treatment groups up
to 48 h. Non-toxicity was present in all the groups for 72 h
(Supplementary Figure 3).

Osteogenic Ability of Adiponectin in Rat
Tibia Fracture Model
In vivo high-resolution µCT was employed to evaluate the
status of bone healing. ADPN treatment significantly improved
callus formation after fracture. The three-dimensional µCT
reconstruction analyses were carried out 6 weeks after surgery.
The images delineated the recovery progress of tibial continuity
gradually with time. With no treatment in the control group,
the tibia healed 6 weeks postsurgery. The administration of
ADPN via medulla injection remarkably shortened the recovery
time. Especially, the higher dosage of ADPN (2 mg/kg) in G3
accelerated the healing within 3 weeks. For G2, 1 mg/kg of ADPN
was administrated, and comparable healing was observed at week
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FIGURE 2 | Toxicological experiments of ADPN based on local medulla injection. (A) The weight of various organs. (B) H&E staining images of various organs, scale
bar = 100 µm. (C) The changes of red blood cell (RBC), hemoglobin (HGB), mean corpuscular hemoglobin concentration (MCHC), hematocrit (HCT), eosinophilic
granulocyte, lymphocyte, and leukocyte levels after ADPN administration among the G1, G2, and G3 groups, n = 5.

4. Interestingly, as observation continued in G3 for 6 weeks,
heterotrophic hyperplasia was observed in the µCT scans of some
rats, even to the extent of the non-fractured fibula (Figure 3A).

Trabecular bone morphometric indices, including the bone
volume fraction (BV/TV, %), trabecular number (Tb. N., mm−1),
trabecular thickness (Tb. Th., µm−1), trabecular separation (Tb.
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FIGURE 3 | Local medulla injection of ADPN accelerated fracture healing and significantly influenced bone microarchitecture. (A) The three-dimensional µCT
reconstruction of rat tibia from week 1 to 6. (B) Bone morphometric indices extracted from microcomputerized tomography (µCT) at week 6, n = 6.

Sp., µm−1), degree of anisotropy (DA), and connectivity density
(Conn. Dn., mm−3) were extracted from the µCT images to
evaluate the trabecular bone microarchitecture. The Tb. Th rose
to 0.24 and 0.32 mm−1 for G2 and G3, respectively, considerably
higher compared with that of the control group (0.13 mm−1).
However, significant decrease in Conn. Dn. was observed for G3

to 2.42 from 7.47 mm−3 in the control group. Comparable values
were derived for other extracted indices (Figure 3B).

Cortical bone morphometric indices, including cortical bone
area (Ct. Ar., mm2) and average cortical thickness (Ct. Th.,
mm), were derived to assess the cortical bone microarchitecture.
The Ct. Th. was markedly increased to 1.28 mm for G3, while
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comparable values of 0.45 and 0.52 were obtained for G1 and G2.
Hyperplasia was obvious in G3, even extended to the fibula, which
may contribute to the elevated Ct. Th. value.

The quality of new bone was further evaluated by histological
evaluation with hematoxylin and eosin (H&E), and Masson
trichrome staining (MS) (Figure 4). Immature and non-calcified
calluses occupied an obvious larger area in the ADPN-treated

groups, compared with the control group with time progression.
The thickness of internal and external callus, and the quantitative
values were plotted. Twelve directions evenly distributed from
the center of the ring to the edge on each section were selected
to measure the thickness. At week 6, the space between calluses
increased in the control group, and abnormal hyperplasia was
found in the 2 mg/kg ADPN group. Bone cortex became

FIGURE 4 | Histology evaluation of bone regeneration. The hematoxylin and eosin (H&E) and Masson trichrome staining (MS) images of rat tibia transverse sections
at weeks 2, 4, and 6 (n = 5), scale bar = 500 µm and scale bar = 200 µm in the magnified images. The ADPN treatment groups showed thicker cortical bone and
bone calluses. The callus thickness and the blue-stained area, indicative of new bone formation, were quantified and plotted.
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FIGURE 5 | The biomechanical properties of rat tibia at week 6, n = 6.

thicker, and relatively large gaps existed between multilayer
immature bone calluses.

The blue-stained area in Masson’s trichrome staining was
measured to evaluate the changes in bone regeneration. At week
2, hematoma and granulation tissue were mainly found in the
treatment group, with little bone formation. The quality of bone
tissue in the ADPN treatment group was better than that in the
control group; however, no significant difference was observed
between groups. At week 4, the hematoma was almost absorbed,
and the callus became smaller with the regeneration of bone
tissue. The quality of bone tissue in the treatment group was
significantly better than that in the control group. At week 6,
abnormal bone formation was found in the ADPN 2 mg/kg
group. The MS section showed less blue staining, probably due
to the formation of heterotopic hyperplasia. The quality of the
new generated bone with ADPN 1 mg/kg treatment on week 6
was satisfactory with the blue stain area > 90%.

The biomechanical properties of the regenerated bone,
including elastic load, elastic radial degree, max load, and
max radial degree, were evaluated (Figure 5). Significant
improvements were observed in structural biomechanics of the
healed tibia in the ADPN-treated groups, as well as in the
elastic radial degree, maximal radial degree, and maximum load,
especially in the ADPN 2 mg/kg group.

Potential Mechanism of Adiponectin
Promoting Fracture Healing
Osteoprotegerin (OPG) in the serum was considerably elevated
after administration of ADPN. OPG is a well-known decoy
receptor for RANKL, and OPG can inhibit RANK–RANKL
interactions, resulting in suppressing osteoclastogenesis and bone
resorption. The expression of OPG peaked at week 4 in both
treatment groups. OPG level was significantly higher in the
ADPN-treated groups than that in the control group (Figure 6A).

Western blot analysis showed that the maximum level of the
early osteogenic marker ALP appeared at week 2 post surgery
in both treatment groups, and its expression decreased with
time progression. The BMP-2 and late osteogenic marker OCN
were peaked at week 4 for the ADPN 1 mg/kg group. The
ADPN 1 mg/kg treatment group exhibited significantly higher
expressions of all three osteogenic markers, ALP, BMP-2, and
OCN, than that of the ADPN 2 mg/kg at the three investigated
time points (Figure 6B). The ADPN receptor AdipoR1 was
also quantified with high expression in both the treatment
groups at week 2 and markedly lower values at weeks 4 and
6 for the G3 than that of G2. Immunofluorescent staining
images demonstrated that AdipoR1, ALP, BMP-2, and OCN
were highly expressed during fracture healing following ADPN
treatment (Figure 6C).

Rat BMSCs were treated with 10 µg/ml of ADPN and the
AdipoR1 siRNA + 10 µg/ml of ADPN to evaluate the effects
on osteogenesis. The addition of ADPN significantly elevated the
expression of AdipoR1 as shown with the intensified red color
in the image (Figure 7). After transfecting the AdipoR1 siRNA,
the expression of AdipoR1 was remarkably knocked down. The
osteogenic markers ALP, BMP-2, and OCN were significantly
increased with the treatment of ADPN, while when knocking
down of AdipoR1 with siRNA, the expression of those osteogenic
markers declined concomitantly.

DISCUSSION

Bone regeneration and bone fracture healing remain great
challenges in daily clinical practice. Alternative therapies
are being developed, including the FDA-approved BMP-
2 and BMP-7 treatments (Jo et al., 2015), to overcome
the adverse effects of autologous bone transplantation.
Unfortunately, supraphysiological dosage, short half-life
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FIGURE 6 | Mechanisms for local medulla injection of ADPN promoting bone healing. (A) Serum Osteoprotegerin (OPG) levels at weeks 2, 4, and 6. (B) WB analysis
of alkaline phosphatase (ALP), bone morphogenic protein 2 (BMP-2), osteocalcin (OCN), and adiponectin receptor 1 (AdipoR1) expressions with corresponding
quantification, (C) Immunofluorescent staining of ALP, OCN, BMP-2, and AdipoR1 in G2 (ADPN 1 mg/kg) and G3 (ADPN 2 mg/kg), and the corresponding
quantification, n = 5. The white arrow indicates the periosteum, and the blue arrow indicates the lacuna, scale bar = 100 µm.
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FIGURE 7 | The immunofluorescent staining of ALP, OCN, BMP-2, and AdipoR1 on BMSCs with ADPN 10 µg/ml and AdipoR1 siRNA + ADPN 10 µg/ml, and the
corresponding quantification, scale bar = 100 µm.

time, and extremely high cost significantly limit the applicability
of these protein therapies.

Adiponectin, a protein hormone produced primarily in
adipose tissue, is secreted into the bloodstream and is very
abundant in plasma (5–10 mg/L), accounting for approximately
0.01% of all plasma proteins, compared with many other
hormones (Nien et al., 2007). In the last 20 years, the
physiological functions of adiponectin in whole-body energy
homeostasis have been well documented, particularly the
connections with obesity, diabetes mellitus, and atherosclerosis
(Li et al., 2009; Yamauchi and Kadowaki, 2013). An interesting
finding was the inverse relationship between adiponectin levels
and fat mass, which distinguished adiponectin from other
adipokines, such as leptin (Yadav et al., 2013). Fat and bone
tissues can crosstalk with each other through hormones and
cytokines to maintain their balance. In 2004, adiponectin and its
receptors, AdipoR1 and AdipoR2, were reported to be present
in human osteoblasts (Berner et al., 2004). In addition, the
supplementation of culture medium with adiponectin enhanced
cell proliferation of mice (Kanazawa et al., 2007). Thereafter,
more attention has been garnered on the activity of adiponectin
in bone. Numerous studies in vitro, in vivo, and in clinical
settings were carried out to clarify the role of adiponectin in
bone physiology (Williams et al., 2009). Adiponectin enhances
osteoblast proliferation and differentiation concurrently with
the inhibition of osteoclastogenesis in vitro (Yang et al., 2019);
however, an inverse relationship between serum adiponectin
concentrations and BMD was dominantly demonstrated in

clinical studies (Richards et al., 2007). The most inconsistent
results reported in the literature were obtained from different
animal models. The variations are most likely due to the different
forms of intercellular signaling, including paracrine effects of
adiponectin produced in bone marrow adipocytes, endocrine
effects of adiponectin released from white adipose tissue into
the bloodstream, and second-order effects from the balance of
whole-body energy (Naot et al., 2017).

We particularly focused on the relationship between
adiponectin and bone fracture repair in this study, to extend
our understanding on the paracrine effects of ADPN through
medulla injection. First of all, a facile and efficient approach was
designed to obtain purified recombinant human adiponectin.
The endogenous glutamine synthetase gene in CHO-K1 cells
was selected to be knocked out with the CRISPR technique to
speed up the screening process. High purity protein (20 µg/ml)
was yielded with our more optimal preparation method. The
lyophilized protein powder in glass vials was easy for storage
and further usage. The pharmacokinetic behaviors of the
derived adiponectin were further evaluated. The Cmax reached
a maximum after 8 h via medulla injection of ADPN. Longer
retention in the bone marrow of ADPN was achieved with
intrabone marrow injection, which could provide extended
bioavailability. Local administration of ADPN remarkably
promoting the growth of callus and bone healing was confirmed
in the rat tibia fracture model. With longer duration of local
action, ADPN induced hyperplasia, which extended to the
non-fractured fibula, indicating, to some extent, the osteogenic
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ability of local ADPN. This hyperplasia may result from the high
dosage of local ADPN and the leakage of the local injection of
ADPN to the fibula. This phenomenon warns that the proper
dosage and duration of locally administrated ADPN are crucial
factors for bone fracture treatment in practice. Biosafety and
non-toxicity are of importance for every therapy. Hematology
and serum biochemistry tests confirmed the biocompatibility of
ADPN for medulla injection.

Local administration of ADPN promoting bone formation
in our study mainly results from enhancing osteogenic
differentiation. In BMSCs, the ADPN promoted osteogenic
differentiation through its receptor AdipoR1 to increase the
expression of osteogenic markers ALP, BMP-2, and OCN. In
addition, the ADPN also presented the ability of enhancing
proliferation up to 30 µg/ml in vitro. The addition of ADPN
can increase the expression of AdipoR1 in BMSCs considerably,
while knocking down of AdipoR1 with ADPN loses their
osteogenic ability. Our observations coincide with the results
reported in the literature that adiponectin could decrease the
number of osteoclasts and improve bone healing via the
OPG/RANKL pathway (Luo et al., 2006). A potential mechanism
for bone regeneration promoted by recombinant human
adiponectin was preliminary investigated; however, systemic
signal transduction process should be thoroughly examined
to unravel the underlying mechanism for the bioactivity of
adiponectin in bone regeneration. Heterotopic ossification is the
process by which bone tissue forms outside of the skeleton.
Heterotopic hyperplasia was observed in the higher-dosage
ADPN group in our study, which could have a certain extent
of influence on the µCT data, however, it did not alter
the conclusion of the ability to enhance osteogenesis and
bone regeneration of ADPN. In our future experiment, this
phenomenon of hyperplasia is planned to be further investigated.

CONCLUSION

In conclusion, we provided a facile method to obtain high-
purity and high-yield ADPN for bone fracture treatment, which
presented great biocompatibility as well as efficacy for improved
bone healing via medulla injection. ADPN plays a potential
significant role in stimulating the expression of ALP, BMP-2, and
OCN at the fracture site through increasing the expression of
its own receptor AdipoRl. A dosage of 1 mg/kg of ADPN was
optimal to accelerate bone fracture healing in our experimental

setting. Our findings demonstrated that local fracture treatment
with ADPN could be a useful therapeutic option to shorten
healing time and potentially be rapidly translated into the clinics.
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Bone serves as the support for body and provide attachment points for the muscles. The
musculoskeletal system is the basis for the human body to complete exercise. Studies
believe that bone is not only the basis for constructing structures, but also participates in
the regulation of organs outside bone. The realization of this function is closely related to
the protein secreted by bone. Whether bone can realize their positions in the human body
is also related to their secretion. Bone-derived proteins provide a medium for the targeted
regulation of bones on organs, making the role of bone in human body more profound and
concrete. Mechanical stimulation effects the extra-skeletal organs by causing quantitative
changes in bone-derived factors.When bone receivesmechanical stimulation, the nichle of
bone responds, and the secretion of various factors changes. However, whether the
proteins secreted by bone can interfere with disease requires more research. In this review
article, we will first introduce the important reasons and significance of the in-depth study
on bone-derived secretory proteins, and summarize the locations, structures and
functions of these proteins. These functions will not only focus on the bone
metabolism process, but also be reflected in the cross-organ regulation. We
specifically explain the role of typical bone-derived secretory factors such as
osteocalcin (OCN), osteopontin (OPN), sclerostin (SOST) and fibroblast growth factor
23 (FGF23) in different organs and metabolic processes, then establishing the relationship
between them and diseases. Finally, we will discuss whether exercise or mechanical
stimulation can have a definite effect on bone-derived secretory factors. Understanding
their important role in cross-organ regulation is of great significance for the treatment of
diseases, especially for the elderly people with more than one basic disease.

Keywords: bone, secreted protein, cross-organ regulation, endocrine regulation, exercise prescription, mechanical
stimulation

INTRODUCTION

The bones form the outline of the body, provide attachment points for muscle and serve as a support
for the body physically. But bone is not generally considered an endocrine gland. The definition of
endocrine gland is that it must be highly vascularized to form a system and directly secrete hormones
into the blood so as to affect distant targets. According to this definition, the osteocyte lacunar

Edited by:
Airong Qian,

Northwestern Polytechnical
University, China

Reviewed by:
Yun Shen,

Shanghai Jiao Tong University, China
Tadahiro Iimura,

Hokkaido University, Japan

*Correspondence:
Jun Zou

junzou@sus.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Morphogenesis and Patterning,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 16 September 2021
Accepted: 03 November 2021
Published: 24 November 2021

Citation:
Du Y, Zhang L, Wang Z, Zhao X and
Zou J (2021) Endocrine Regulation of
Extra-skeletal Organs by Bone-derived

Secreted Protein and the effect of
Mechanical Stimulation.

Front. Cell Dev. Biol. 9:778015.
doi: 10.3389/fcell.2021.778015

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7780151

REVIEW
published: 24 November 2021
doi: 10.3389/fcell.2021.778015

31

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.778015&domain=pdf&date_stamp=2021-11-24
https://www.frontiersin.org/articles/10.3389/fcell.2021.778015/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.778015/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.778015/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.778015/full
http://creativecommons.org/licenses/by/4.0/
mailto:junzou@sus.edu.cn
https://doi.org/10.3389/fcell.2021.778015
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.778015


contains bone fluid of bone cells release factors which can be
found in circulation. It has the role of supporting and remodeling,
also keep closely with the balance and maintenance of multiple
trace elements in the human body. In adult bones, osteoblasts
may account for approximately 5% of bone cells. Compared with
1% of osteoclasts, 90–95% are bone cells. Osteoblasts can release
factors such as osteocalcin. In addition, bone cells can produce
circulating factors such as FGF23 and SOST. With the gradual
deepening of research, study showed that bone has the function of
secreting protein factors, and believe that bone is an important
endocrine organ (Brunetti et al., 2017; DeLuccia et al., 2019;
Gomarasca et al., 2020). In recent years, it was found that bones
are the largest secretory organs in the whole body, and secretory
factors affect organs outside the bones through bone-derived
factors including FGF23, prostaglandin E2 (PGE2), transforming
growth factor-β (TGF-β), OCN and SOST. The structure and
function of bone-derived secreted protein can be divided into two
parts according to their positions. Intraosseous one can regulate
the balance between bone formation and resorption. In addition
to changes happened in its own bone microstructure and bone
mass, the changes of its secretion factors will inevitably affect the
external organs. Once they turn into extraosseous one, the
function will be affecting extra-skeletal organs. These organs
involve in the nervous system, glucose and lipid metabolism,
blood cardiovascular system, muscles, thyroid and so on. The
effect is of great difference.

The motor system includes bones, bone connections and
skeletal muscles. Under the innervation of the nerve, the
muscle contracts and pull the bone to which it is attached.
Bone will respond when it receiving mechanical stimulation
(or exercise) by changing its bone secretion. What we can
determine till now is that mechanical stimulation (or exercise)
will have an effect on bone-derived secreted proteins, and this
impact will continuous exist for a short term. Mechanically
sensitive cells can perceive mechanical stimuli through
receptors on the envelope, such as primary ciliary complexes,
integrins, and Ca2+ channels. For bone cells, the lacuno-
canalicular network (LCN) can be used to quickly transmit
signals. When the mechanical stimulus changes, the system
responds quickly, generating fluid shear force on the
surrounding cells. This change can affect the up-regulation of
SOST and RANKL. The complex tensile and compressive stresses
generated by mechanical stimulation can reduce the expression of
SOST in bone cells and promote the process of bone formation
and mineralization. For osteoclasts, the application of mechanical
load stimulation can inhibit osteoclast differentiation, and the
formation of osteoclasts is promoted after the stimulation is
removed. Mechanical stimulation signals can induce
osteoprotegerin (OPG) and inhibit RANKL to reduce osteoclast
differentiation. Mechanical stimulation can change the bone niche,
thereby changing the secretion of bone-derived proteins.

The protein factors secreted by bones not only participate in
the metabolic process of the bone itself, but also communicate
and regulate information with various organs to jointly achieve
and maintain balances in the human body. From this point of
view, bone-derived secretory factors should not only be protein
factors involved in bone metabolism. These factors are important

mediators for bones to regulate extra-skeletal organs. These
proteins will specifically act on different target organs,
depending on the distribution of their receptors. Not all bone-
derived secreted proteins have the same properties.

This article analyzes the structures and source characteristics of
common bone-derived secreted proteins to understand their basics of
biology. Summarize their regulatory effects in extra-skeletal organs
and their manifestations in diseases. For brain and neural network,
OPN and OCN can have different effects on Alzheimer’s Disease
(AD) patients. A variety of bone-derived secretory proteins can play a
role in glucose and lipid metabolism, the target organs include liver,
kidney, pancreas and so on. In the cardiovascular system, SOST,OPN
and FGF23 can affect the state of blood vessels and change the impact
of blood on the vessel wall. In the musculoskeletal system, these
proteins can regulate inflammatory factors, cardiomyocytes and
chondrocytes through specific pathways. Because bone-derived
proteins can act on thyroid, they mainly interfere with thyroid
bone diseases and hormone regulations. Mechanical stimulation
has a regulatory effect on bone-derived proteins, but whether this
effect can be used to treat diseases through specific intervention
remains to be studied.

THE LOCATION, STRUCTURE AND
FUNCTION OF BONE-DERIVED SECRETED
PROTEIN
Bone is now considered to be an endocrine organ. Bone cells have
the ability to secrete and release protein factors. But there are still
some differences among the factors, for example, the secretory
cells. Some proteins are secreted by specific cells, while others can
be derived from multiple cells. Therefore, the differences also
exist in their structures and functions. Typical proteins secreted
by specific cells include SOST secreted by osteocytes, FGF23
secreted by osteocytes and osteoblasts, OCN secreted by
osteoblasts. At the same time, the proteins secreted and
expressed by a variety of cells include OPN, PGE2 and TGF-β.

Proteins Secreted by Specific Cells
Sclerostin
SOST is a glycoprotein secreted bymature bone cells. It is an inhibitor
ofWnt signaling and bonemorphogenetic protein (BMP), which can
negatively regulate bone formation. For development and
maintenance of bone, it plays an important role (Wang et al.,
2018). The molecular weight of SOST is about 22kD. It is a
secreted glycoprotein with cystine knot structure, including a
signal sequence for secretion and two putative glycosylation sites.
The cystine knot is a finger-like structure formed by two pairs of
(Vázquez-Sánchez et al., 2021) twisted anti-parallel β chains. After
SOST is secreted, it will anchor on the low-density lipoprotein
receptor-related protein-4 (LRP4) receptor of the osteoblast
membrane, so that SOST can be retained in the bone cavity.
When SOST binds to the receptor LRP5/6 of osteoblasts, it will
inhibit the downstream cascade ofWnt/β-catenin signaling in the cell
through competitive binding (Xiong and O’Brien, 2012). SOST can
do effect on inhibiting bone formation and negatively regulating
Wnt/β-catenin signaling pathway.
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Fibroblast Growth Factor 23
FGF23 is a hormone-like protein secreted by osteoblasts and
osteocytes. It is a bone-derived factor that regulates the
mineralization of extracellular matrix and a systemic hormone
that participates in mineral metabolism. The length of FGF23 is
more than 8.5 kb. The FGF23 gene is located on chromosome 12 for
human and chromosome 6 for mouse, contains 3 exons (Goetz and
Mohammadi, 2013). Hormone-like FGF23 has a poor affinity with
heparan sulfate. It can be secreted from cells and diffuse into blood,
circulating to target cells in distant organs (Asada et al., 2009). The co-
receptor α-Klotho is on the surface of target cells for FGF23. The
interaction between FGF23 and α-Klotho depends on the carboxyl
end of FGF23 (Urakawa et al., 2006). The expression of FGF23 is
regulated by many factors, such as 1,25 Dihydroxyvitamin D. It can
promote the expression of FGF23 by activating VDR. At the same
time, FGF23 can also inhibit the production of 1,25 dihydroxyvitamin
D (Yu et al., 2005).

Osteocalcin
OCN is a non-collagenous acid glycoprotein which is synthesized
and secreted by osteoblasts in bones (Gallop et al., 1980). It is a
kind of calcium-binding protein that depends on vitamin K and is
the main component of bone matrix. The relative molecular mass
of osteocalcin is about 6kD. It has three γ-carboxyglutamate
fragments at three positions of the peptide chain, 17, 21, and 24,
which has a high affinity for calcium ions. The gene structure of

OCN for both human and rat contains 4 exons and 3 introns
(Hauschka et al., 1975). OCN is composed of an unstructured
N-terminal, C-terminal hydrophobic core and 3 alpha helices
(Zoch et al., 2016). Through γ-glutamyl carboxylase (GGCX) as
catalysis, OCN will occur carboxylation reactions under acidic
conditions. The difference in the completion of reactions will lead
to different products. Undercarboxylated osteocalcin (ucOCN) is
the active form of OCN. The protein structure of ucOCN after the
removal of the propeptide contains 0–2 γ-carboxyglutamate
residues. Carboxylated osteocalcin (cOCN) is inactive and
mainly stored in bone to form the skeleton structure.

Proteins Secreted by a Variety of Cells
Osteopontin
OPN is a non-collagen protein secreted by bone cells, osteoblasts,
osteoclasts and other cells. It belongs to small integrin-binding lIgand,
n-linked glycoproteins (SIBLING) and is an important component
for regulating the mineralization of extracellular matrix (De Fusco
et al., 2017). The length of OPN is about 8 kb. The OPN coding gene
is located on chromosome 4 for human and chromosome 5 for
mouse (Bouleftour et al., 2019). It contains 7 exons and 6 introns. The
C-terminal of OPN binds two heparin molecules and the CD44
variant, the N-terminal contains the binding region of the integrin
receptor (Han et al., 2019). OPN is related to osteoblast mRNA of
bone morphogenetic protein signaling pathways (BMPS)
downstream, which can stimulate the proliferation and

FIGURE 1 | The effect of bone-derived factors on brain at all stages. OCN affects the development of fetal hippocampus through fetal blood, and the GPR158
receptors that acted on adults affects the synthesis of neurotransmitters. For elderly, OPN affects inflammatory plaques and promotes the remyelination and formation of
AD patients. Improve the function of the blood-brain barrier in patients with acute brain injury.
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calcification of osteoblasts. It is also a pro-inflammatory cytokine that
can regulate migration and communication of immune cells, also
response to brain injury. It plays an important role in many kinds of
neuroinflammatory diseases (Sun et al., 2013).

Prostaglandin E2
PGE2 is one of the diverse prostaglandins (Narumiya et al., 1999),
which composed of 378 amino acids. The relative molecular mass of
PGE2 is about 43. It is one of the metabolites of arachidonic acid
(Wang and Dubois, 2010). The synthesis and catabolism of PGE2
require the participation of multiple enzymes. PGE2 is a hormone-
like chemical messenger, which is rapidly oxidized in the body. With
an extremely short half-life, it only plays a role in the vicinity of
synthetic cells after being released (Tai et al., 2002). By binding to its
receptors, it activates and transduces the corresponding signaling
pathways in the cells to achieve biological functions. After PGE2
binds to the E-type prostaglandin receptor, which is a G protein-
coupled receptor. It will stimulate a variety of downstream signaling
pathways (Hatae et al., 2002). Among which the most classic
signaling pathway is Wnt/β-catenin. PGE2 can promote
regeneration by improving the stability of β-catenin to increase
the activity of the pathway (Zhu et al., 2017). This is different
from the negative regulation effect of SOST.

Transforming Growth Factor-β
TGF-β is a polypeptide signaling molecule, the superfamily of which
includes more than 40 structurally related factors. TGF-β has a wide
range of regulatory effects on cell functions, including regulating
growth and maintaining the balance of the internal environment

(Ismaeel et al., 2019). It can stimulate fibroblasts to synthesize
collagen and fibronectin, promoting their deposition in the
extracellular matrix. It has a strong chemotactic effect on
inflammatory cells and fibroblasts, which can enhance local
inflammation. In addition, it also has the function of enhancing
the synthesis of denervated skeletal muscle myogenic stem cells and
increasing the secretion of extracellular matrix. This process will
promote the fibrosis of denervated skeletal muscle. According to
research investigations, there are currently known that TGF-β has at
least 6 isomers. Mammalian TGF-β mainly includes TGF-β1, TGF-
β2, and TGF-β3 subtypes. The three genes of human are respectively
located on chromosomes 19q3, 1q41 and 14q24 (Baugé et al., 2014).
The nucleotide sequence of each subtype is highly homologous. All
exist in the form of homodimers, containing 7 exons. These three
TGF-β subtypes are expressed in chondrocytes.

CROSS-ORGAN REGULATION OF
BONE-DERIVED SECRETED PROTEIN

Brain and Neural Network
Osteocalcin Affects Cognitive Ability by Binding to
Receptors in the Brain
The function of OCN is diversified. It can be divided into two
parts: internal and external bones. OCN can indicate the
efficiency of bone turnover and take part in the formation of
skeletal structure (Vlot et al., 2018). Carboxylated osteocalcin
(cOCN) can locate and adsorb hydroxyapatite, which is the basis
for maintaining normal bone mineralization. OCN is only

FIGURE 2 | The effect of bone-derived factors on modules of musculoskeletal system. FGF23 affects muscle metabolism. It is associated with cardiomyocytes
through FGFR4 and acts on α-Klotho to change aortic smoothmuscle. OPN affects skeletal muscles, and the increase in a certain range after injury will help recovery, but
long-term increase of OPN will lead to muscle fibrosis and affect muscle function. SOST affects arthritis through the Wnt/β-catenin signaling pathway, which can inhibit
the activity of enzyme inhibitor RNA, promote subchondral bone sclerosis, and inhibit cartilage degradation.
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synthesized and secreted by mature osteoblasts and osteocytes,
then expressed under the control of Runx2/Cfa1 transcription
factor. Therefore, its content in serum can indicate bone turnover
efficiency and osteoblast activity. As one of the biochemical
indicators that specifically reflect bone formation, it can be
used for the diagnosis of bone-related diseases. It can also
used to check bone condition and observe the effect of
intervention treatment. It also has the characteristics of
hormones. The active ucOCN can regulate extraosseous organs.

Patients with AD are more likely to get osteoporosis than
normal people (Rousseaud et al., 2016). OCN is present in the
blood of the fetus during the pre-embryonic period when the
fetus undergoes skeletal development. The OCN content of
pregnant mice has an effect on the normal development of the
fetus’ brain, and the benign effect can help the hippocampus
development. Knockout of the mother mouse OCN will lead to
apoptosis of some fetal nerve cells, and even affect the learning
and memory-like behaviors of adult offspring. OCN can cross the
blood-brain barrier and bind to G protein-coupled receptor 158
(GPR158) on neurons in the brainstem, midbrain, and
hippocampus. GPR158 has been clearly confirmed to be an
OCN receptor in brain (Kosmidis et al., 2018), which binds in
the CA3 area (Lee et al., 2007), promotes inositol triphosphate
(IP3) and brain-derived neurotrophic factor (BDNF)

accumulation. G protein-coupled receptor Class C Group 6
Member A (GPRC6A) does not express OCN signals in brain,
but OCN can affect cognitive performance through the
expression of other receptors (Obri et al., 2018). Therefore,
OCN uses a variety of receptors to achieve its functions and
play an important role of regulatory in the central nervous
system. Although OCN works in conjunction with neurons in
the dorsal brainstem and the median sulcus, GPR158 is not
expressed in this area. Therefore, it is speculated that OCN
may also have a third receptor. This speculation supports the
previous view that multiple receptors work (Figure 1).

In the process of aging, improving bone health can do good
effect on cognitive function. Exercise can have a positive impact
on mind, such as preventing AD and so on. Whether the change
of OCN can correct AD caused by aging needs further research to
know. As a new part of endocrine organs, more and more
researches have focused on the influence of OCN on brain,
including the regulation pathways of the nervous system, the
effect on memory formation and so on.

The influence of OCN on the nervous system can throughout
body’s life. From the fetal period through the maternal blood
affecting fetal brain development, to affect the neurotransmitter
synthesis in adulthood, and then participating in the process of
cognitive dysfunction and even cause AD. As a research hotspot

FIGURE 3 | Mechanical stimulation as an influencing factor of bone-derived factors. OCN rises within 1 hour after mechanical stimulation, and through the
participation of actin binding protein cofilin, it promotes ASR, memory and muscle function. Mechanical stimulation also promotes the content of OPN, the Akt1 signaling
pathway can promote bone remodeling caused by mechanical stress and hypertension-related vascular remodeling. The relationship between SOST content and
mechanical stimulation is that SOST rises sharply after short-term mechanical stimulation and then drops below the baseline level. Long-term stimulation slows
down the increase of SOST, which has an inhibitory effect. SOST promotes bone resorption and improves the bone density and microstructure of CKD rats through the
Wnt signaling pathway. FGF23 rises briefly after receiving mechanical stimulation, and then drops to the baseline level slowly. Through Klotho-FGF23 signaling pathway,
the activation of bone cells is enhanced and parameters of uremia will be improved.
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of endocrine organs, the researches of bones are focusing on the
effects of OCN on the brain. These include the regulation of brain
development, pathways of nervous system, memory formation,
and intervention in neurological diseases. However, OCN,
especially ucOCN, as an important intervention method for
the diagnosis and treatment of neurological diseases needs to
be further improved.

Osteopontin Promotes Macrophage Migration and
Pro-inflammatory Cytokine Production
OPN can inhibit the pathology of various brain diseases through
neuroprotection and promotion of repair (Rentsendorj et al.,
2018). Not only plays an important role in the extracellular
matrix of the central nervous system (CNS), but is also a key
factor for matrix remodeling and cell repairing after CNS injury.
In addition, OPN plays a key role in traumatic brain injury,
stroke, ischemia and neurodegenerative diseases, such as AD and
other diseases. The expression of OPN in the brain is low under
normal circumstances. It is mainly expressed in the olfactory
bulb, cerebellum and brainstem neurons, and the expression in
the pons and medulla is higher than that in the midbrain. But it is
significantly up-regulated in the case of injury or inflammation
(Zhou et al., 2020), such as acute brain injury. Activating the P42/
44 MAPK and PI3/Akt pathway can lead to the synthesis of a new
protein in the cell, and the PI3/Akt pathway plays a key role in cell
apoptosis, blood-brain barrier destruction, neurogenesis and
angiogenesis. After acute brain injury, endogenous OPN can
improve the damage of the blood-brain barrier through
different mechanisms.

Sun found through the rat model of intravascular perforation
that OPN is associated with brain injury. The increase of
endogenous OPN and autophagy-related proteins suggests that
OPN may regulate the autophagy-apoptosis interaction by
activating the function of autophagy to reduce early brain
damage and inhibit neuronal apoptosis (Condomitti et al.,
2018). In the case of cerebral hemorrhage, the expression of
OPN will rise. This causes microglia and macrophages to be
activated accordingly. By inducing the migration and
proliferation of neuroblasts and promoting nerve regeneration,
it accelerates the recovery of brain function (Yan et al., 2009). In
the case of cerebral hemorrhage, the expression of OPN will
increase and it will cause the activation of microglia and
macrophages to induce neuroblasts to migrate and proliferate,
which will accelerate the recovery of brain function (Yan et al.,
2009).

AD is the most common neurodegenerative disease today. Its
mainly pathological features are the accumulation of β-amyloid
peptide (Aβ) and neurofibrillary tangles, which ultimately
manifests as severe cognitive dysfunction. Studies have found
that inflammation is closely related to Aβ precipitation. OPN is a
molecule involved in the recruitment and activation of
macrophages, and may contribute to the repair promotion
process in the brain. Previous studies have suggested that
without OPN, the migration of macrophages and the
production of pro-inflammatory cytokines will be impaired.
OPN can promote the formation and regeneration of myelin
(Carecchio and Comi, 2011), it may play a role in the remodeling

process related to abnormal neuron re-entry into the cell cycle in
the brain of AD patients. OPN in brain tissues of AD rats are
mostly concentrated on inflammatory plaques, and their
expression increases. The staining intensity of OPN in the
hippocampus is positively correlated with age and Aβ
precipitation. It is suggested that the increase in OPN
expression may be a manifestation of accelerated
neurodegeneration and pathological changes (Wung et al.,
2007; Liao et al., 2019). The occurrence of AD will cause a
large number of neurons in the brain tissue to loss. Through
cell culture in vitro, OPN was found to promote the formation
and regeneration of myelin sheath (Le Guenno et al., 1990). It is
speculated that OPN may play a role in the remodeling process
associated with abnormal neuronal re-entry into the cell cycle in
the brain of AD patients. However, current research shows that
OPN’s effect on neurodegenerative diseases seems to be a double-
edged sword, and there may be two different effects. On the one
hand, OPN can act as a neuroprotective agent by up-regulating
the formation of myelin sheath and remyelin sheath. On the other
hand, OPN may play a role in accelerating the disease by
triggering neuronal toxicity and apoptosis (Sun et al., 2013)
(Figure 1).

Glucose and Lipid Metabolism
Osteocalcin Maintains the Body’s Glucose
Homeostasis and Reduces Fat Accumulation
The lackness of OCNmay lead to decreases in the number of islet
β cells, insulin content and an increase in blood glucose. As an
OCN receptor, GPRC6A can mediate its corresponding functions
in the endocrine system, including regulating and maintaining
glucose homeostasis. For example, the loss of GPRC6A receptor
will cause glucose intolerance (Lee et al., 2007). Increasing OCN
can promote the proliferation of islet β-cells and insulin secretion,
also enhance insulin sensitivity. Decreasing or even lack of OCN
will cause pancreatic islets to shrink, decrease t islet β-cells and
insulin.

Regarding the interaction between osteoblasts and insulin,
studies have proposed the mechanism of “skeleton-pancreas
feedback loop”. When insulin content rises, it can directly
stimulate osteoblasts and promote their differentiation,
increasing OCN content. If the insulin content decreases, it
will reduce the number of osteoblasts, resulting in decreased
OCN activity, affecting the process of bone formation and bone
turnover. Insulin acting on the corresponding receptors in
osteoblasts can also inhibit OPG expression and increase
osteoclast activity. Create an acidic environment in the matrix
for the conversion of OCN to active ucOCN. The liver is the
central organ of energy metabolism, and the concentration of
commonly used indicators of liver damage is negatively
correlated with the level of OCN. OCN can be used as an
independent indicator to judge the degree of ballooning of
non-alcoholic steatohepatitis.

OCN can also reduce non-alcoholic steatohepatitis by
decreasing the expression of pro-inflammatory factors and
pro-fibrotic genes. It can improve liver cell steatosis,
degeneration and fibrosis caused by ballooning (Chamouni
et al., 2015). Due to abnormal bile secretion, patients with
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primary biliary cirrhosis will reduce OCN secreted by osteoblasts
(Gupte et al., 2014). OCN can play a key role in the formation and
activation of GPRC6A receptors in adipocytes. When ucOCN
binds to the GPRC6A receptor in adipose tissue, it participates in
energy metabolism. It changes liver fat and triglyceride levels, too.
By increasing energy consumption and promoting metabolism,
ultimately make weight loss achieved (Condomitti et al., 2018).
OCN secreted by bones acts on adipose tissue, promotes the
secretion of Leptin (LEP) and adiponectin (APN) from adipose
tissue.

OCN regulates glucose and lipid metabolism through LEP, so
that bones are believed to affect fat metabolism by controlling
appetite. The interaction between OCN and APN is closely
related to insulin sensitivity, obesity and serum triglyceride
levels. First of all, OCN can send a feeding saturation signal to
the hypothalamus of the feeding center through the interaction of
LEP and serotonin to suppress appetite, reducing fat intake and
affecting glucose and lipid metabolism. Secondly, OCN reduces
body fat content by inducing the expression of APN in
adipocytes. Esp−/− mice will not develop into obesity or
diabetes. Overexpression of APN can enhance insulin
sensitivity. Therefore, increasing the expression of APN can
improve insulin sensitivity, promote fat metabolism, reduce
the levels of free fatty acids and triglycerides in the body, and
ultimately reduce body weight. Changes in the content of
adipokines will in turn affect the OCN content. On the one
hand, LEP binds to receptors in the hypothalamus and brainstem
through the blood-brain barrier, and sends a signal to prevent the
synthesis of serotonin. By inhibiting the release of serotonin from
the midnuclear suture, it reduces sympathetic nerve activity. This
leads to increased bone resorption and inhibition of bone
formation, which in turn affects the content of active OCN.
On the other hand, APN can bind to Adiponectin receptor
protein 1 (AdipoR1) and activate intracellular signaling
pathways. The increase of APN content enhences the
expression of APN on the surface of osteoclast precursor cells,
which affects the differentiation and maturation of osteoclast, in
turn affects OCN content.

Sclerostin Provides Reference for the Diagnosis of
Liver and Kidney Disease
Wnt signaling may have a potential role in chronic kidney disease
(CKD). Chronic kidney disease-mineral bone disorder (CKD-
MBD) is an abnormal mineral metabolism caused by chronic
kidney disease. This disease is characterized by renal dystrophy,
calcification of blood vessels and soft tissues. As the glomerular
filtration rate (GFR) decreases, the concentration of SOST
increases. In patients with end-stage renal disease (ESRD), the
circulating level of SOST can reach 2–4 times that of the normal
population. Kidney transplantation is the choice for patients with
CKD in the end-stage disease. Studies have found that elevated
serum SOST levels are an independent risk factor for death in
kidney transplant patients (Zeng et al., 2018). The serum SOST
level of CKD patients is higher than that of the general
population, and it gradually increases as the level of renal
function deteriorates. Decreased renal function and the
occurrence of osteoporosis in the elderly may be related to the

increase in SOST. SOST was detected in the proximal tubular
cells, indicating that SOST is actively reabsorbed from urine.
Increased renal excretion of SOST in CKD patients may be due to
increased SOST production and decreased tubular reabsorption.
However, whether the inhibition of SOST can prevent the bone
loss or vascular calcification of CKD remains to be further
studied. The detection of serum SOST can be used as a
biomarker of bone metabolism disorders in patients with end-
stage renal disease (Maré et al., 2019). There is a negative
correlation between serum SOST and PTH in patients with
end-stage renal disease, and PTH can be used as a regulation
of serum SOST. SOST level can provide a reference for the
severity of nephritis and other diseases, elevated serum SOST
is a risk factor for kidney disease (Wakolbinger et al., 2020).

Osteoporosis is a common complication in patients with
chronic hepatitis. About 75% of patients with chronic liver
disease will suffer from osteoporosis. The disease affects the
patient’s quality of life and increases the patient’s risk of
fracture. Cirrhosis is the end-stage manifestation of chronic
liver disease, and the SOST level of patients is higher than that
of healthy people. SOST is negatively correlated with serum
albumin, which is a marker of liver dysfunction. Moderate or
severe liver dysfunction will affect the level of serum SOST.
Alcoholism is an important inducing factor of osteoporosis,
35.9% of patients with alcoholic liver disease have changes in
bone metabolism and structure. Patients with alcoholic liver
disease have lower SOST levels, which may be caused by
alcohol promoting bone cell apoptosis. The main site of
increased SOST in patients with primary biliary cirrhosis
(PBC) is the bile duct (Ehnert et al., 2019), and the level of
SOST in serum is related to the decrease of BMD. Regulating
SOST levels through blood circulation will affect bone
metabolism, which will help improve osteoporosis in patients
with liver cirrhosis. The serum SOST level of patients with early
PBC showed a downward trend with time. In the later stage of
liver disease, bile acids gradually accumulate, and bilirubin
reduces the mitochondrial activity of bone cells. SOST in the
serum of the bile nodules will affect the proliferation ability of
bone cells. The bile and serum of patients with macula will reduce
the survival and mineralization ability of bone cells, and the
increase of SOST will affect bone cells in the process of bile
formation (Guañabens et al., 2016).

Prostaglandin E2 Promotes DNA Synthesis in Liver
Cells and Affects Fat Production
PGE2 is involved in the regulation of fat metabolism (Yan et al.,
2009) and has the function of promoting regeneration of liver
tissues (Stock et al., 2001). Prostaglandin E synthases (PGESs)
and corresponding receptors are highly expressed in white fat,
they are closely related to the occurrence of liver diseases. PGESs
includes the following three types, microsomal prostaglandin E
synthase (mPGES)-1, mPGES-2 and cytosolicprostaglandin E
synthase (cPGES) (Miyoshi et al., 2017). These PGESs directly
participate in the synthesis of PGE2 and affect liver diseases such
as NAFLD, NASH, DILI and liver cancer. PGE2 has influence on
fat with the participation of the receptor EP4. EP4 is a G protein-
coupled receptor with 7-pass transmembrane structure, which
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mainly distributed in white fat (Hara et al., 2010). Activation of
the EP4 receptor will inhibit the differentiation of adipocytes
(Madden and Morrison, 2004), and lipid breakdown can be
promoted by the lack of this receptor (Inazumi et al., 2011).

PGE2 has the effect of promoting DNA synthesis in liver cells,
the effect is related to the concentration of PGE2. The increase of
PGE2 is synchronized with the increase of cAMP in hepatocytes.
PGE2 can change the stability of β-catenin through the
phosphorylation process mediated by cAMP/PKA signaling
pathway. By regulating the activity of the Wnt signaling
pathway, liver regeneration is promoted. Inhibition of PGE2
synthesis will block Wnt-induced liver regeneration. The
binding pathway of PGE2 and EP4 receptor can protect liver
function, the use of EP4 selective agonist will reduce the degree of
liver ischemic damage.

Osteopontin Affects Kidney Stones and Changes the
Cycle of Cancer Cells
In the kidneys of healthy adults, OPN is mainly expressed in the
thick ascending branches of the ring of Henle. In recent years,
OPN has been reported in the study of kidney stones, kidney
cancer and other related kidney diseases (Xie et al., 2001). The
expression is regulated by many factors, such as parathyroid
hormone, calcium, phosphorus, tumor necrosis factor α (TNF-α),
transforming growth factor β1 (TGF-β1), epithelial growth factor
and so on.

In kidney stone disease, OPNnot only plays a key role in regulating
the nucleation, growth and aggregation of calcium oxalate (CaOx), but
also affects the adhesion of CaOx to renal epithelial cells, participating
in the reservation of kidney stone. The main component of kidney
stones is CaOx crystals. OPN, as the main crystal regulator, is
considered to be one of the most important macromolecules
affecting mineralization and kidney stone formation (Tsuji et al.,
2014). However, whether OPN plays a role in inhibiting or
promoting the formation of stones is still a controversial issue. As
the urine form of OPN, urinary calcin can induce the formation of
calcium oxalate dihydrate (COD) by inhibiting the accumulation of
calciumoxalatemonohydrate (COM). This can reduce the growth and
aggregation of CaOx, prevent the combination of crystals and renal
epithelial cells, and ultimately protect the kidneys from the deposition
of calcium oxalate crystals.

Kidney cancer is one of the most common cancers in the
world. OPN plays a key role in the growth and invasion of renal
cancer. On the one hand, it may inhibit the apoptosis of cancer
cells, promote the growth of tumor cells. On the other hand, it
may provide favorable conditions for tumor cell tissues to
occurrence and metastasis by inducing urokinase-type
plasminogen activator (UPA) (Ghorbani et al., 2015).

Fibroblast Growth Factor 23 Is Related to G-3-P and
can Promote Renal Phosphate Excretion
As a bone-derived hormone-like protein, FGF23 also plays an
important role in regulating metabolism of multiple organs.
Among them, the most widely studied is the regulation of
FGF23 on the kidneys. FGF23 reaches kidney after it is
secreted, and stimulates the excretion of phosphate in the
urine by inducing the endocytosis of sodium-phosphate

cotransporters NPT2a and NPT2c on the root tip of the
proximal tubule cells of the kidney (Kaleta, 2019).

Elevated FGF23 levels are an early progressive and common
complication of chronic kidney disease (CKD). Elevated FGF23
in CKD patients can promote renal phosphate excretion and help
delay the onset of hyperphosphatemia. But it can cause a large
number of compensatory harms, including calcitriol deficiency,
changes in calcium homeostasis, and secondary
hyperparathyroidism (Gutierrez et al., 2005; Musgrove and
Wolf, 2020). In addition, the high level of FGF23 in CKD
patients can cause pathological left ventricular remodeling,
atrial fibrillation and heart failure, the risk of infection and
death will increase. In mice and CKD patients, FGF23 elevated
inhibits the activation, adhesion and transepithelial migration of
neutrophils. Thereby reducing the recruitment of neutrophils and
host defense during inflammation (Rossaint et al., 2016). In acute
kidney injury (AKI), the level of FGF23 will also increase
immediately, which shows that certain factors are produced in
the kidney to promote the production of FGF23.

Existing studies use proteomics and metabolomics to analysis
proteins and metabolites related to arterial FGF23 levels which
screened out from renal venous blood of patients undergoing
cardiac catheterization. It was identified that renal vein glycerol-
3-phosphate (G-3-P) has a significant correlation with FGF23
(Simic et al., 2020). Renal vein G-3-P has a significant correlation
with FGF23 (Simic et al., 2020). G-3-P can affect related
physiological phenotypes caused by changes of FGF23.
Circulating G-3-P is locally converted to lysophosphatidic acid
(LPA) in bone and bone marrow through G-3-P acyltransferase
isoform 2 (GPAT2). LPA binds to LPA receptor 1 (LPAR1) on
cells which secret FGF23 to stimulate the production of FGF23
(Simic et al., 2020). G-3-P is an intermediate metabolite in the
process of glycolysis, lipogenesis and oxidative phosphorylation
(Possik et al., 2017). But its function is not limited to this. It can
regulate insulin secretion, the synthesis and storage of fat, and
FGF23 production.

In CKD patients, iron deficiency and increased blood
erythropoietin (EPO) levels can stimulate the expression of
FGF23. In CKD patients and kidney transplant recipients, iron
deficiency is an important determinant of total FGF23 levels,
which has a significant impact on the progression and mortality
of CKD (Eisenga et al., 2017; Eisenga et al., 2019).

Blood and Cardiovascular System
Sclerostin Affects Atherosclerosis by Inhibiting
Angiotensin II
Atherosclerosis is a clinical manifestation of vascular aging, mainly
due to abnormal proliferation of vascular smooth muscle (VSMC).
SOST exists in the atherosclerotic tissue, the main function of it is to
inhibit theWnt pathway by binding to the transmembraneWnt core
receptors LRP-4,-5, and-6. SOST is expressed in the thoracic and
abdominal aorta of an arterial-calcification mouse model, which is
induced by the inhibition of angiotensin II (Ang II). This expression
plays an important role in the pathogenesis of aneurysms and
atherosclerosis (Krishna et al., 2017).

The up-regulation of SOST can down-regulate the expression
of OPN and OPG in the mouse aorta. OPN can promote
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inflammation and participate in the activation of arterial
calcification in Ang II mice, increasing the activity of Matrix
metalloproteinase-9 (MMP-9). The concentration of OPG is
positively correlated with hemangioma, and it can promote
the inflammatory response of vascular smooth muscle cells
through cathelicidin S, Matrix metalloproteinase-2 (MMP-2)
and MMP-9. SOST can inhibit the formation of aneurysms
and atherosclerosis induced by Ang II, and regulating SOST
can be used as a potential way to inhibit these diseases.

In patients with type 2 diabetes, the circulating SOST of those
with atherosclerosis will increase. In male patients with
atherosclerosis, the levels of serum sclerostin are positively
correlated with aging, but this difference has not found in
women (Morales-Santana et al., 2013). The high level of SOST
is related to death caused by cardiovascular disease.
Hyperglycemia, insulin resistance and other cardiovascular risk
factors can cause vascular endothelial damage, which promotes
vascular calcification. The increase of serum SOST in
hemodialysis patients (Brandenburg et al., 2013) may be due
to the increase of SOST produced by bone, it may also be caused
by the decrease in renal clearance or the physiological adaptation
of blood vessels as a result of increased calcification.

Osteopontin Is Involved in Vascular Calcification and
Endothelial Hyperplasia
OPN mediates the process of cell adhesion, proliferation and
migration, which is related to the pathophysiology of tumors. As
one of the extracellular matrix (ECM), overexpression of OPN
will promote cardiac fibrosis and participate in the remodeling
process of the heart and blood vessels (Sawaki et al., 2018). In
addition, it will also affect the formation of vascular calcification.
The serum OPN level of patients with vascular calcification will
be significantly increased, which is one of the signs of vascular
calcification (Wolak, 2014). OPN affects the formation of
atherosclerotic plaques in arteries, and elevated blood glucose
levels will promote the expression of OPN in endothelial cells.
Vascular remodeling refers to the thickening of the vessel wall
and the increase of resistance in the vessel. OPN is associated with
vascular remodeling and ventricular hypertrophy in hypertensive
patients. After lowering blood pressure, the OPN level of patients
decreases (Hou et al., 2014). Lack of OPN will inhibit the process
of tissue remodeling, especially in the fibrosis process after
myocardial infarction (Okamoto, 2007). In view of this fibrotic
process, OPN is considered to be possible for treatment because it
has the effect of promoting angiogenesis, wound healing and
tissue regeneration (Abdelaziz Mohamed et al., 2019).

Fibroblast Growth Factor 23 Affects Nephropathy
Secondary Cardiovascular Disease
FGF23 plays an important role in the regulation of vitamin D and
blood phosphorus levels. Klotho, the receptor cofactor of FGF23,
is very important in this metabolic regulation (Hu et al., 2010).
Klotho deficiency is a biomarker of kidney disease, and it is also
an important pathogenic factor for cardiovascular disease in
chronic kidney disease such as myocardial fibrosis and
vascular calcification (Sopjani et al., 2015). Increasing klotho
levels can tireduce serum creatinine and urea nitrogen levels

by indirectly regulating the homeostasis of phosphorus and
calcium in the body. At the early stage of patients with
chronic kidney disease, the decrease of Klotho level will cause
a compensatory increase in FGF23. By inhibiting the reabsorption
of phosphorus in the proximal renal tubules, it promotes urinary
phosphorus excretion to maintain the balance of blood
phosphorus metabolism. The compensatory increase of FGF23
can inhibit the level of 1,25-(OH)2D3 and induce parathyroid
glands to continuously secrete PTH. This change will stimulate
the bones to release phosphorus into the blood, causing blood
phosphorus to increase, and aggravating disorders of calcium and
phosphorus metabolism. If phosphate continues to stimulate
bone tissue to secrete FGF23, kidney klotho secretion will
decrease, and the compensatoryly increased FGF23 will also
lose its effective regulation of bone minerals. Lead to the
imbalance of bone mineral metabolism and accelerate the
process of vascular calcification in chronic renal failure (Lu
and Hu, 2017).

Skeletal Muscle Movement System
Osteopontin Plays a Regulatory Role in Skeletal
Muscle
OPN plays an important role in regulating the proliferation,
differentiation and regeneration of skeletal muscle cells. Studies
have shown that OPN is a key inflammatory cytokine of tissue
remodeling[63]. Many types of inflammatory cells express OPN,
including T cells, neutrophils and macrophages. The expression
of OPN in normal muscles is relatively low, but when the muscles
are injured, it will be approximately 120 times that of the baseline
level within 12–24 h (Hoffman et al., 2013). OPNmay support the
rapid return of muscle function to normal in the early stage of
injury (Uaesoontrachoon et al., 2013). Limited acute OPN
overexpression is beneficial to damaged muscles, but chronic
overexpression of OPN may lead to fibrosis and functional
impairment of damaged muscles (Pagel et al., 2014). The
expression of OPN is significantly increased in Duchenne
muscular dystrophy (DMD) patients and muscular dystrophy
(MDX) mice, suggesting that OPN is involved in muscle
regeneration and ammoniation. It is currently known that
OPN plays an important role in DMD and skeletal muscle
injury, but its related functions and regulatory effects are still
unclear (Figure 2).

The Role of Fibroblast Growth Factor 23 in Muscle
Metabolism
Left ventricular hypertrophy (LVH) is a common pattern of
cardiovascular damage among CKD patients, and 75% of them
were founded LVH when they reached the end-stage of renal
disease (Faul et al., 2011). The complex pathogenesis of LVH
involves ventricular pressure and volume overload, and the bone-
derived FGF23 plays an important role in it (Gutiérrez et al.,
2009). FGF23 induces the hypertrophic growth of
cardiomyocytes and the left ventricle of rodents through a
mechanism directly dependent on FGFR, but does not depend
on α-klotho receptors. In terms of molecular mechanism, FGF23
specifically activates FGFR4 on cardiomyocytes to activate
phospholipase Cγ/calcineurin/nuclear factor of activated T
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signaling (PLCγ/calcineurin/NFAT signaling). Soluble Klotho is a
circulating form of FGF23 receptor, which can prevent the effect
of FGF23 on cardiomyocytes by increasing the expression of
PDE3A and PDE3B (Lindner et al., 2020). Klotho is expressed in
human arterial and aortic smooth muscle cells. In CKD patients,
chronic circulating stress factors including uremic serum, high
calcium, TNF-α and other components can inhibit the expression
of Klotho in vascular smooth muscle. Therefore, when α-Klotho
is missing, it will cause smoothmuscle cell calcification and loss of
response to FGF23 through Runx2 and muscle cell-serum
response factor pathways (Huang et al., 2020). FGF23 and
Klotho play an important role in the pathogenesis of vascular
calcification in CKD patients (Figure 2).

Sclerostin Regulates Arthritis Process
SOST gene can be expressed by chondrocytes, and changing the
activity of SOST will have an impact on articular cartilage. In
osteoarthritis, the SOST of chondrocytes increases locally, but
decreases in the subchondral bone. SOST can inhibit Wnt/
β-catenin signaling, and can also reduce the RNA levels of key
matrix components and enzyme inhibitors. SOST can regulate
the process of osteoarthritis of bone and cartilage. Promoting the
sclerosis of subchondral bone, at the same time inhibiting
cartilage degradation.

As the age increases, the number of cartilage cells in animals
decreases, and the same as the expression of SOST (Thompson
et al., 2016). There was no significant change in the expression
of SOST in the bone tissue of patients with knee osteoarthritis.
Normally aging articular cartilage will not be affected by
changes in SOST levels (Roudier et al., 2013). It is
speculated that SOST may have nothing to do with cartilage
destruction in knee osteoarthritis, or there are other
compensation molecules in the cartilage, so the effect of
SOST inhibition is masked (Figure 2).

Thyroid and Related Hormones
Osteocalcin Affect Thyroid Bone Disease
The occurrence of thyroid bone disease is related to abnormal
thyroid level (Cheng et al., 2021). Thyroid hormone has a non-
genomic effect in osteoblasts of primary mouse (Asai et al., 2009).
This effect can inhibit tyrosine kinase through thyroid hormone
to stimulate OCN expression. Excessive or insufficient thyroid
hormone can cause bone mineral loss, leading to the occurrence
of osteoporosis. When the thyroid function of patients with
hyperthyroidism returns to normal, the OCN level will
significantly lower than that in the hyperthyroid stage (Ma
et al., 2011).

Patients with abnormal levels of thyroid hormone have a
chance of getting thyroid bone diseases. Among these diseases,
osteoporosis is the most common. In the study of the relationship
between OCN and thyroid, the treatment of osteoporosis may
become the focus of research.

Regulation Between Fibroblast Growth Factor 23 and
Parathyroid Hormone
PTH stimulates FGF23 serum levels indirectly by increasing the
synthesis of 1,25-dihydroxyvitamin D. Loss of parathyroid glands

in Gcm2 knockout mice led to a decrease in 1,25-
dihydroxyvitamin D levels and FGF23 concentrations, and
FGF23 levels will return to normal after 1,25-
dihydroxyvitamin D injection (Liu et al., 2006). The
parathyroid gland is one of the target organs of FGF23, mice
that overexpressing FGF23 will get hyperparathyroidism (Bai
et al., 2004). Recombination of FGF23 will increase the level of
Klotho in the parathyroid glands. FGF23 activates the MAPK
pathway of the parathyroid glands through the phosphorylation
of ERK1/2 and increases the level of early growth response 1
(Erg1) mRNA. FGF23 can also inhibit secretion and gene
expression of PTH(Ben-Dov et al., 2007).

THE EFFECT OF MECHANICAL
STIMULATION ON BONE-DERIVED
SECRETED PROTEIN
The circulating level of OCN will increase with exercise. The level
of OCN increases in high-intensity intermittent exercise (Hiam
et al., 2021). Changing regulation of glucose to mobilize bones,
finally complete exercises. This change has nothing to do with
gender. For adolescents, people who regularly participates in
physical exercise show higher levels of OCN(Chahla et al.,
2015). The increase of OCN level during exercise can promote
acute stress response (ASR) (Berger et al., 2019), improve
memory and enhance muscle function. For bone spine
animals, ASR is related to the survivability in hostile
environments such as the wild (Figure 3).

The homeostasis of bone is very important to the body’s
calcium and phosphorus balance. OPN is an important
phosphorylated glycoprotein, the fluctuations of which play a
key role in bone formation and bone resorption. To maintain
bone homeostasis, moderate exercise and physical activity are
vital factors. Knockout OPN gene can inhibit mechanical stress
bone remodeling in mice. In obese people and adipose tissue of
mouse, OPN is widely up-regulated. After exercise to lose weight,
the level of OPN in serum appears to decrease. The reason may be
the body vibration caused by exercise or physiological factors,
rather than the loss of fat (Garfield et al., 2016) (Figure 3).

As one of the important bone-derived factors, the fluctuations of
FGF23 are critical to the normal operation of the kidney, small
intestine, cardiovascular and other organs. Over-distance walking will
cause the serum FGF23 level to increase temporarily, but it will
decrease by the end of the exercise, and return to baseline level soon
after the game (Kerschan-Schindl et al., 2021). This transient high
expression of FGF23 may be related to the short-term bone
metabolism uncoupling signal, which is triggered by the endocrine
system after excessive exercise. Osteocytes are the mechanical sensors
of bone, the increase of FGF23 levelmay be related to the activation of
bone cells induced by exercise. In addition, exercise also helps in the
treatment of kidney-related diseases. Resistance training for patients
with stage II chronic kidney disease can improve uremia parameters
and the klothof-FGF23 signaling pathway, thereby alleviating the
progression of the disease (Corrêa et al., 2021) (Figure 3).

SOST is mainly secreted by bone cells, which are the main cells
responsible for mechanical signal transduction. Therefore, SOST is
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regulated bymechanical stress, and exercise has a regulating effect on
SOST. Under the stimulation of short-term exercise, the blood will
release the synthesized SOST, which may be related to the
physiological regulation of the kidneys. By reducing excretion, it
increases the reabsorption of SOST by the renal tubules (Pickering
et al., 2017). After endurance training, the concentration of serum
SOST will increase, and the changes in SOST caused by exercise can
be used as the basis for exercise metabolism monitoring (Jürimäe
et al., 2021). The increase in serum SOST after exercise may be due to
the release of SOST anchored in bone cells from bone cells into the
blood, rather than the increase in SOST gene expression in a short
period of time, and the increase in blood flow to bone caused by
exercise (Kouvelioti et al., 2018). Exercise training slowed down the
increase in serum SOST, the bone formation rate did not change but
bone resorption was improved after intervention. Exercise can
improve the density and microstructure of bone in CKD rats by
inhibiting SOST, but it will not change the serum mineral content
(Liao et al., 2019). After completing general short-term acute exercise,
serum SOST increases acutely, and then decreases to normal levels or
even lower. Long-term exercise makes the bones adapt to mechanical
stress, the response of bone cells to exercise and serum SOST are both
reduced. Long-term reduction of mechanical stress increases serum
SOST, which is consistent with the regulation of bone metabolism by
Wnt signaling pathway (Figure 3).

CONCLUSION

The existing research shows that the actuating scope of bone-
derived secretory factors is not limited to bones. In fact, it
displays more hormonal properties and can regulate organ
activitivies through special receptors. It plays a role in
multiple systems and is closely related to the body’s
metabolic process. According to different secreting cells,
bone-derived factors can be divided into two categories,
secreted by specific cells or multiple cells. Different bone-

derived factors have differences in structures and locations,
and these differences will affect their effects. Multiple bone-
derived factors may simultaneously regulate the same organ or
system. Organs and systems will also give feedbacks to the
factors after receiving the signals, which further reflect the
characteristics of their hormones. The effect of mechanical
stimulation on bone will affect the secretion of bone-derived
factors, and this effect will be reflected in the regulation of
organs. Although it is not yet known that whether we could
change the amount of bone-derived protein secretion by
exerting mechanical stimulation to intervene in the treatment
for dieases. However, the cross-organ regulation of bone-
derived protein can provide theoretical bases for them.
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Osteoporosis is a prevalent bone disease of the aging population, which is characterized
by a decrease in bone mass because of the imbalance of bone metabolism. Although the
prevention and treatment of osteoporosis have been explored by different researchers, the
mechanisms underlying osteoporosis are not clear exactly. N6 methyladenosine (m6A) is a
methylated adenosine nucleotide, which functions through its interaction with the proteins
called “writers,” “readers” and “erasers.” The epigenetic regulation of m6A has been
demonstrated to affect mRNA processing, nuclear export, translation, and splicing. At the
cellular level, m6A modification has been known to affect cell proliferation, differentiation,
and apoptosis of bone-related cells, such as bone marrow mesenchymal stem cells
(BMSC), osteoblasts, and osteoclasts by regulating the expression of ALP, Runx2, Osterix,
VEGF, and other related genes. Furthermore, PTH/Pth1r, PI3K-Akt, Wnt/β-Catenin, and
other signaling pathways, which play important roles in the regulation of bone
homeostasis, are also regulated by m6A. Thus, m6A modification may provide a new
approach for osteoporosis treatment. The key roles of m6Amodification in the regulation of
bone health and osteoporosis are reviewed here in this article.

Keywords: m6A methylation, bone remodeling, osteoporosis, bone marrow mesenchymal stem cells, signaling
pathways

1 INTRODUCTION

Epigenetic modifications regulate gene expression and translation and affect cell development and
differentiation (Kohli and Zhang, 2013). Epigenetic abnormalities can occur in different ways,
including DNA, RNA, and histone modification (Litt et al., 2001; Akhavan-Niaki and Samadani,
2013; Xu et al., 2016; Roignant and Soller, 2017). RNA transmits DNA genetic information to
proteins and participates in biological processes via RNA post-transcriptional modification. Previous
studies have identified more than 150 types of RNA modifications (Helm and Motorin, 2017).
Among them, N6-methyladenosine (m6A) modification is the most common gene modification in
mammalian cells, occurring in the adenosine base at the nitrogen-6 position of mRNAs (Desrosiers
et al., 1974; Wei et al., 1975). The core sequence of m6A is RRm6ACH ([G/A/U] [G > A]m6 AC [U >
A > C]), which is located in the 3′ untranslated region (3′UTR) adjacent to the stop codon of mRNA
(Dominissini et al., 2012; Meyer et al., 2012). Unlike other gene modifications, the modification of
m6A is dynamically reversible and regulates the maturation, translation, and degradation of
precursor mRNAs (Haussmann et al., 2016; Guo et al., 2017; Yu et al., 2018). m6A RNA
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methylation participates in the development of diseases, as an
increase in m6A promotes the expression of oncoproteins.
Studies have revealed that the high prevalence of m6A can
enhance the proliferation, invasion, and survival of cancer
cells, including cancer cells of gastric, lung, breast, and liver
(Zhang et al., 2016; Du et al., 2017; Cai et al., 2018; Chen et al.,
2019; Lin et al., 2019).

Recent studies have shown that m6A methylation is involved
in the development of bone-related diseases such as osteoporosis
(Wu et al., 2018), osteoarthritis (Liu et al., 2019), and
osteosarcoma (Miao et al., 2019; Wang et al., 2019).
Osteoporosis is a bone metabolic disease with a reduction in
bone mass and degradation of bone structure, which increases the
risk of bone fracture (Felsenberg and Boonen, 2005). With the
growth of the aging population worldwide, the prevalence of
osteoporosis is increasing rapidly, and the number of patients is
estimated to be more than 200 million at present (Tian et al.,
2017; Shapiro et al., 2019). The patient’s bones gradually become
fragile and can easily fracture, which seriously affects people’s life
span and quality of life (Muftic et al., 2013; Shapiro et al., 2019).
m6A RNA methylation plays a crucial role in regulating bone
formation and resorption by influencing cytokines, hormones,
and signaling pathways. This study reviews the influence of m6A
on osteoporosis, particularly its relationship with bone
homeostasis through multiple mechanisms.

2 BASIC INTRODUCTION OF M6A
METHYLATION

m6A is one of the most prevalent internal modifications in
eukaryotic messenger RNA. m6A regulates gene expression
through affecting the translocation, exporting, translation, and
decay of RNA (Huang et al., 2020). Thus, dynamic m6A
modification is important for many physiological processes.
The abundance and function of m6A are effected by the
interaction of methyltransferases (“writers”), binding proteins
(“readers”), and demethylases (“erasers”) (Panneerdoss et al.,
2018; Shi et al., 2019).

2.1 Writers
Writers transfer a methyl group to the N-6 position of adenosine.
N-methyladenosine (mA) is mainly catalyzed by the m6A
methyltransferase complex, which encompasses Wilms tumor
1-associated protein (WTAP), methyltransferase-like 3
(METTL3), and methyltransferase-like14 (METTL14) (Ping
et al., 2014). METTL3 plays a major catalytic role in
regulating alternative splicing of mRNAs (Ke et al., 2017; Xu
et al., 2017; Feng et al., 2018), while METTL14 assists in RNA
substrate binding (Wang et al., 2016). WTAP is required for the
METTL3-MELLT14 complex to be located in nuclear speckles
and catalyzes the activation of m6A methyltransferase in vivo
(Ping et al., 2014).

Recently, an increasing number of other components of the
methyltransferase complex has been found, such as KIAA1429
(VIRMA, vir-like m6A methyltransferase associated) (Schwartz
et al., 2014), methyltransferase-like protein 16 (METTL16)

(Warda et al., 2017), RNA binding motif protein 15 (RBM15),
RBM15B (Patil et al., 2016), and zinc finger CCCH-type
containing 13 (ZC3H13) (Wen et al., 2018). These proteins
interact with the methyltransferase complex to regulate the
stability of the complex and affect m6A methylation of
mRNAs (Knuckles et al., 2018). However, comprehension of
m6A methyltransferase is still exploratory, so it remains
further research on these writers.

2.2 Readers
Readers modulate the stability and translation of m6A-modified
RNAs (Wang et al., 2014; Wang et al., 2015). The most common
type of m6A “reader” proteins is the YTH family, including
YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2, which
contain the unique YTH domain and directly bind to m6A to
regulate downstream targets (Luo and Tong, 2014; Xu et al., 2014;
Kasowitz et al., 2018). Among them, YTHDF3 mainly attenuated
methylated mRNAs and then decreased translation through
cooperation with YTHDF1 and YTHDF2. Thus, these three
YTHDF proteins interact and coordinate to regulate
methylated mRNAs (Shi et al., 2017). The second type of
“reader” proteins are the heterogeneous nuclear
ribonucleoprotein (HNRNP) family proteins (HNRNPA2B1,
HNRNPC, HNRNP G), which regulate the maturation of
RNA substrates in the nucleus (Alarcón et al., 2015; Liu et al.,
2015). With more studies focusing on m6A methylation, other
RNA-binding proteins (Readers) have been found, such as
insulin-like growth factor 2 mRNA-binding proteins (IGF2BP)
(Huang et al., 2018), leucine-rich pentatricopeptide repeat-
containing (LRPPRC), and fragile X mental retardation 1
(FMR1) (Zhang et al., 2018). The potential number of readers
is large and m6A modifications depend on readers to fulfill
biological functions, which contains a broad research space.

2.3 Erasers
Demethylase (“erasers”) can remove the methyl group of m6A
off RNAs, indicating that the methylation of m6A is a dynamic
process and is reversible. There are two common
demethylases: fat mass and obesity-associated protein
(FTO) and alkB homolog 5 (ALKBH5) (Jia et al., 2011;
Zheng et al., 2013). FTO was first reported related to body
mass and obesity in humans (Dina et al., 2007; Zhao et al.,
2014). In 2011, Jia et al. (2011) found that FTO is partially
located on nuclear speckles and that m6A in nuclear RNA is
the physiological substrate of FTO. FTO removes m6A
methylation in RNAs to affect physiological activities such
as glycolysis (Qing et al., 2021) and adipogenesis (Wang et al.,
2020a). FTO depletion induces a notable increase in the total
m6A levels of polyadenylated RNAs. ALKBH5 also localizes to
the nucleus and significantly impacts mRNA export and RNA
metabolism through demethylation activity. Alkbh5-deficient
male mice showed increased m6A mRNA expression, which
impairs fertility through aberrant spermatogenesis and
apoptosis (Zheng et al., 2013). At present, few proteins
exhibit demethylation activity. The functions and
mechanisms of additional m6A demethylases still need
further mining.
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3 REGULATION OFM6AMETHYLATION ON
BONE CELLS

Human bones undergo remodeling through bone formation
and resorption, and the coordination between osteogenesis and
osteoclastogenesis maintains bone health (Felsenberg and
Boonen, 2005). Any disruption to this balance leads to
bone-related diseases, including osteoporosis, which is
mainly characterized by bone mass loss, reduction of bone
strength, and increased risk of fractures (Bliuc et al., 2015;
Onsensus Development, 2001). Several studies have shown
that m6A methylation plays an essential role in regulating
bone cells, including bone marrow mesenchymal stem cells
(BMSCs) and osteoblasts (Wu et al., 2018; Yu et al., 2019a; Mi
et al., 2020; Yan et al., 2020). Thus, m6A methylation may open
a new approach for the prevention and treatment of
osteoporosis.

3.1 Regulation of m6A Methylation on Bone
Marrow Mesenchymal Stem Cells
BMSCs are multiple differentiation potential cells that can
differentiate into osteoblasts, chondrocytes, and bone marrow
adipocytes. BMSCs play an essential role in human skeletal
health by balancing osteogenic and lipogenic differentiation
(Kawai et al., 2009; Chen et al., 2016). The preferential
differentiation of mesenchymal stem cells into adipocytes
leads to an increase in bone marrow fat and a decrease in
osteoblasts and osteocytes, resulting in bone mass loss and even
the development of osteoporosis (Rosen et al., 2009; Scheller
and Rosen, 2014).

As METTL3 plays a crucial role in catalyzing m6A
methylation, previous studies have primarily focused on
regulating METTL3-mediated m6A methylation on
osteogenesis. Recently, Wu et al. (2018) demonstrated that
conditional knockout of METTL3 in BMSCs increased bone
loss, leading to impairment of bone formation and
development of the pathological characteristics of osteoporosis
in mice, indicating that downregulation of METTL3-mediated
m6A methyltransferase in BMSCs induced osteoporosis. The
findings further revealed that the dysregulation of m6A
methyltransferase increased adipocyte differentiation and
decreased osteoblast differentiation, resulting in a reduction in
osteogenesis. Mechanistically, METTL3-mediated m6A
methyltransferase targeted Pth1r (parathyroid hormone
receptor-1) and reduced protein translation, impaired the
function of PTH (parathyroid hormone)-Pth1r signaling, and
dysregulated BMSC-derived osteoblasts (Wu et al., 2018). Tian
et al. (2019) also discovered that downregulation of METTL3
decreased the early and later osteoblast differentiation in BMSCs,
as both ALP activity and mineralized nodules were reduced,
indicating that downregulation of METTL3-mediated m6A
methyltransferase affects osteoblast differentiation in BMSCs.
Research revealed that as the downstream target of m6A
methyltransferase after the knockdown expression of METTL3,
the expression of osteogenic-related genes such as Runx2 and
Osterix was reduced (Tian et al., 2019). Furthermore, the

reduction of Akt phosphorylation and downregulation of the
PI3K-Akt signaling pathway also regulate METTL3-mediated
m6A on bone formation (Marie, 2012; Tian et al., 2019).
Consistently, the knockdown of METTL3 in BMSCs increased
adipocyte differentiation. Yao et al. (2019) demonstrated that
silencing METTL3 in porcine BMSCs decreased Janus kinase1
(JAK1) mRNA m6A modification levels and promoted
adipogenesis through the JAK1/STAT5/C–EBPβ signaling
pathway. These results demonstrated that the downregulation
of METTL3 in BMSCs suppressed osteoblast differentiation and
promoted adipocyte differentiation, leading to decreased bone
formation and even the development of osteoporosis.

On the contrary, overexpression of METTL3 increased
osteogenic differentiation and remedied BMSC dysfunction
in ovariectomized mice by directly promoting the m6A
methylation of Runx2 to maintain the stability of mRNA
Runx2, leading to a high expression level of Runx2. In
addition, m6A methylation of precursor miR-320 indirectly
amplified the effect of METTL3 overexpression on
osteogenesis through the downregulation of mature miR-320
in BMSCs. Furthermore, downregulation of mature miR-320
levels protected against METTL3 silence-induced bone loss in
vivo (Yan et al., 2020).

In addition, m6A methylation affects bone formation through
blood vessels. Previous studies have found that vascular
endothelial growth factor (VEGF), including three homologous
spliced variants, 120, 164, and 188, promote angiogenesis and
osteogenesis (Breier et al., 1992; Wallner et al., 2015; Hu and
Olsen, 2016; Tong et al., 2019). Tian et al. (2019) illustrated that
knockdown of METTL3 reduced the expression of VEGFA
(VEGFA-164 and VEGFA -188). Previous studies have shown
that VEGFA-164 and VEGFA -188 promote the proliferation and
differentiation of osteoblasts from BMSCs (Carmeliet et al.,
1999), suggesting that METTL3 also regulates bone formation
through m6A methylation of VEGF in BMSCs, followed by the
mutual promotion of angiogenesis and osteogenesis in bone
(Ramasamy et al., 2014).

Further research showed that METTL3 promoted the
activation of m6A methylation of MYD88-RNA in menstrual
blood-derived mesenchymal stem cells (MenSCs), which
upregulates the osteogenesis inhibitor NF-κB and thus
suppresses bone formation. Knockdown of METTL3
inhibited the degradation of IκBα and the S536 site
phosphorylation of p65, thereby restraining NF-κB nuclear
translocation and suppressing downstream transcription.
More interestingly, ALKBH5 reversed these results by
demethylase of MYD88-RNA (Yu et al., 2019a). A recent
study showed that ALKBH5 affects osteogenesis by targeting
BMP2 (Wang et al., 2020b) and TRAF4 (Cen et al., 2020). FTO
also inhibits osteogenic differentiation of BMSCs through m6A
demethylation (Zhang et al., 2020).

These studies indicate that METTL3-mediated m6A
methylation could regulate bone formation at multiple levels
and might provide new strategies for the treatment of
osteoporosis. However, more studies are required to better
understand the role of m6A methylation in regulating BMSCs
and bone formation.
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3.2 Regulating m6A Methylation on
Osteoblasts
Studies have also shown that m6A methylation regulates
osteoblast differentiation. Mi et al. (2020) discovered that
downregulation of METTL3 promoted the osteogenic process
in vitro and in vivo by inhibiting the maturation of miR-7212-5p.
Further studies showed that miR-7212-5p inhibited osteoblast
differentiation of MC3T3-E1 cells by targeting FGFR3. These
findings suggest that METTL3 inhibits osteogenic-related genes
in MC3T3-E1 cells. It seemed that METTL3 had a dual role in
osteogenic differentiation, especially in different cell lines. FTO,
an important RNA demethylase, also plays an important role in
modulating osteoblast differentiation. Shen et al. (2018) found
that FTO was upregulated during aging or osteoporosis in
humans and mice, which upregulated BMSC differentiation
into adipocytes and downregulated osteoblasts. Interestingly,
conditional knockout of FTO in osteoblasts inhibited the
progression of osteopenia in ovariectomy (OVX) mice but not
in sham-operated mice. Mechanistically, GDF11 (growth
differentiation factor 11)-FTO-PPARγ (peroxisome
proliferator-activated receptor-gamma) signaling inhibits the
differentiation of osteoblasts and promotes osteoporosis in
humans and mice. Similarly, Zhang et al. (2019) found that
conditional knockout of FTO in osteoblasts showed no
difference in bone volume in 12-week-old mice compared to
wild-type mice. However, 30-week-old mice with FTO knockout
in osteoblasts had lower bone volume than wild-type mice. This
phenomenon may be explained by the different animal models
used. Additionally, Wang et al. (2019) studied the m6A
methylome of the transcriptome in osteosarcoma cells by

chemotherapy, indicating that m6A methylation modification
may potentially affect the totipotency of osteosarcoma cells
(OSCs) through the Wnt and Notch signaling pathways. Miao
et al. (2019) also found thatMETTL3-mediated m6Amethylation
in OSCs promoted m6A levels of lymphoid enhancer factor-1
(LEF1) and upregulates the Wnt/β-catenin signaling pathway,
which plays a critical role in osteoblast differentiation and
osteogenesis (Wang et al., 2017; Zheng et al., 2020). These
findings illustrated that m6A methylation affected osteoblast
differentiation in humans and mice.

3.3 Regulating m6A Methylation on
Osteoclasts
The bone resorption mediated by osteoclasts is important in bone
metabolism. A recent study revealed that m6A methylation plays
a prominent role in osteoclast differentiation and bone resorption
(Salzman, 2016). The RNA methylase METTL3 affected m6A
levels through the 1956 bp in circ_0008542 (noncoding RNA
with a closed circular structure) and promoted the initiation of
osteoclast-induced bone absorption. Circ_0008542 upregulated
the competitive binding of miRNA-185-5p and promoted the
expression of the target gene RANK. Instead, RNA demethylase
ALKBH5 downregulated the combination of circ_0008542 with
miRNA-185-5p to rescue excessive bone resorption (Wang et al.,
2021). In addition, several studies have shown that m6A has a
regulatory effect on intracellular inflammatory factors such as
interleukin-1β (IL-1β), IL-6, interferon-gamma (IFN-γ), and
tumor necrosis factor-α (TNF-α), leading to bone loss through
the bone immune system (Neurath and Finotto, 2011; Briot and

FIGURE 1 | The molecular mechanism and physiological regulation roles of m6A modification in bone. M6A is mainly catalyzed by the METTL3–METTL14–WTAP
methyltransferase complex, and the demethylases ALKBH5 and FTO remove the methyl group of m6A off RNAs. Readers of the YTH domain family are effectors that
recognize the m6A methylation code and convert it into signals. M6A modification regulates the expression of Runx2, Osterix, VEGF, RANK, and other related genes
affecting bone metabolism. Furthermore, PTH/Pth1r, PI3K-Akt, NF-κB, and other signaling pathways were also mediated by m6A, which is important in the
regulation of bone homeostasis.
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Roux, 2015; van Bodegraven and Bravenboer, 2019). Estrogen
deficiency also increases inflammatory cytokines (Tsangari et al.,
2004), followed by the activation of osteoclasts, increased bone
resorption, and osteoporosis (Chen et al., 2017). Liu et al. (2019)
also found that during the process of IL-1 β-induced chondrocyte
inflammation, the expression level of METTL3 mRNA increased
in a dose-dependent manner. At the same time, knockdown of
METTL3 reduced the mRNA expression level of inflammatory
factors in chondrocytes, including IL-6, IL-8, IL-12, and TNF-α,
suggesting that m6AmRNAmethylation promotes inflammatory
injury in chondrocytes. Another study found that the knockdown
of “reader” protein YTHDF2 increased the expression of
MAP4K4 and MAP2K4, then activated MAPK and NF-κB
signaling pathways, upregulated osteoclasts differentiation, and
enhanced LPS-induced stimulation in RAW 264.7 cells (Yu et al.,
2019b). These results suggest that m6A mRNAmethylation plays
a critical role in regulating osteoclasts through inflammatory
responses.

4 CONCLUSION AND PROSPECTS

In summary, m6A methylation regulated osteogenic
differentiation and bone metabolism. But the function of m6A
methylation maybe like a “double-edged sword,” by which it can
either promote or inhibit bone formation in different ways
(Figure 1; Table 1). Undoubtedly, m6A regulation has
provided novel insight into the molecular mechanism of bone
metabolism.

However, the study of m6A modification on bone metabolism
is still in its infancy. First, existing research on m6A in bone
mainly focused on Writers; the mechanism of m6A Erasers and
Readers in bone metabolism require further study. The

methylation of m6A is a dynamic and reversible process, and
how theWriters and Erasers coordinate and how the Readers play
their role after recognizing RNA methylation needs further
exploration. Second, osteoclast-mediated bone resorption is
also an important part of bone metabolism, but there are few
related studies. Moreover, although METTL3 targets Runx2,
VEGF and different signaling pathways to promote osteogenic
differentiation, it remains controversial whether METTL3 is a
potential therapeutic target for osteoporosis, as METTL3 also
activates osteoclasts and then increases bone resorption. Due to
the complexity of regulating m6A methylation in bone
metabolism, further studies are needed to explore its
underlying mechanism.
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TABLE 1 | Multiple functions exerted by m6A RNA methylation in bone.

m6A component m6A levels Related targets Biological function Sample resources Refs

Mettl3 knockout Low Pth1r ↓ Inhibit osteogenesis BMSCs Wu et al. (2018)
Mettl3 knockdown Low JAK1 ↑ Inhibit osteogenesis BMSCs Yao et al. (2019)
Mettl3 knockdown Low Vegfa-164 ↓ Inhibit osteogenesis BMSCs Tian et al. (2019)

Vegfa-188 ↓
Mettl3 knockdown Low MYD88 ↓ Promote osteogenesis MenSCs Yu et al. (2019)
Mettl3 knockdown Low miR-320 ↑ Inhibit osteogenesis BMSCs Yan et al. (2019)

RUNX2 ↓
Mettl3 knockdown Low miR-7212-5p ↓ Promote osteogenesis MC3T3 Mi et al. (2020)
Mettl3 knockdown or ALKBH5 overexpression Low circ_0008542 ↓ Inhibit bone resorption Osteoclast Wang et al. (2021)

RANK↓
YTHDF2 knockdown — MAP2K4 ↑ — Raw264.7 Yu et al. (2019)

MAP4K4 ↑
ALKBH5 knockdown high TRAF4 ↓ Inhibit osteogenesis MSC Cen et al. (2020)
ALKBH5 knockdown high BMP2 ↓ Inhibit osteogenesis OLF Wang et al. (2020)

P-AKT ↓
FTO knockdown high PPARγ ↓ Promote osteogenesis BMSCs Shen et al. (2018)
FTO knockdown high MYC ↑ Promote osteogenesis BMSCs Zhang et al. (2020)
FTO knockout high Hspa1a ↓ Inhibit osteogenesis Osteoblast Zhang et al. (2019)
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Treatment of bone defects remains a challenge in the clinic. Artificial bone grafts are the
most promising alternative to autologous bone grafting. However, one of the limiting
factors of artificial bone grafts is the limited means of regulating stem cell differentiation
during bone regeneration. As a weight-bearing organ, bone is in a continuous mechanical
environment. External mechanical force, a type of biophysical stimulation, plays an
essential role in bone regeneration. It is generally accepted that osteocytes are
mechanosensitive cells in bone. However, recent studies have shown that
mesenchymal stem cells (MSCs) can also respond to mechanical signals. This article
reviews the mechanotransduction mechanisms of MSCs, the regulation of mechanical
stimulation on microenvironments surrounding MSCs by modulating the immune
response, angiogenesis and osteogenesis, and the application of mechanical
stimulation of MSCs in bone regeneration. The review provides a deep and extensive
understanding of mechanical stimulation mechanisms, and prospects feasible designs of
biomaterials for bone regeneration and the potential clinical applications of mechanical
stimulation.

Keywords: mechanical stimulations, mesenchymal stem cells, bone regeneration, mechanotransduction,
immunomicroenvironment, angiogenesis

1 INTRODUCTION

Bone has extraordinary healing potential. However, approximately 5–10% of fractures cause fracture
nonunion, partly because of large segmental bone defects (Holmes, 2017). Autologous
transplantation of bone, though considered as a typical strategy for bone defect treatment, has
shortages of limited autografts and donor-site morbidity, while the allogeneic bone graft is
constrained by immune rejection (Hunziker, 2002). Therefore, tissue-engineered bone is a
promising alternative to autologous bone grafting in the future. Although stem cell therapy is
widely used in the bone regeneration field, the accurate regulation of stem cells remains a significant
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challenge. Traditional methods induce stem cells to the
ontogenetic lineage by delivering biochemical signaling
molecules such as growth factors. However, the difficulties in
maintaining physiological concentration gradients and
controlling the release of growth factors temporally and
spatially have not yet been resolved. Therefore, regulating the
differentiation of stem cells through physical means (such as
mechanical stimulation) deserves further study.

Organs of the locomotor system undertake continuous
mechanical loading, including compression on the bone, the
stretch on muscles, and the fluid shear stress on blood vessels.
Mechanical stimulation with different amplitudes, modalities,
and durations plays an essential role in cell growth and
differentiation, providing the possibility to regulate the lineage
commitment of stem cells (Horner et al., 2019; McDermott et al.,
2019; Ruehle et al., 2020). Mechanobiology is an emerging field
specializing in the cellular response to mechanical cues, including
the reception of mechanical signals and transduction of
extracellular mechanical signals into intracellular biological
signals (Fu et al., 2020). Cells can respond to pericellular
mechanical stimulation from external mechanical stimulation
and the properties of extracellular matrix (ECM). The process
that cells convert exogenous mechanical signals into biochemical
signals is called mechanical transduction (Dewey et al., 1981).
Superficial mechanoreceptors of cells sense the mechanical cues,
which are subsequently transmitted to the nucleus via the actin
skeleton or chemical pathways. The nucleus responds to these
signals by upregulating or downregulating the expression of genes
related to mechanical stimulation (Kirby and Lammerding,
2018).

Mesenchymal stem cells (MSCs) are pluripotent cells that
originate from intermediate mesoderm. MSCs have the potential
to differentiate into lineages, including osteoblasts, adipocytes,
chondrocytes, and myocytes. In the skeleton system, MSCs reside
in bone marrow and periosteum. As one of the main functional
cells in bone regeneration, MSCs enhance the bone healing
process through cell-cell contact and secretion of growth
factors such as BMP and VEGF (Charoenpanich et al., 2014;
Schreivogel et al., 2019). Endochondral ossification is the bone
regeneration mechanism involved in most fractures (Einhorn and
Gerstenfeld, 2015). The bone defect first triggers an inflammatory
process, which leads to the recruitment of mesenchymal stem
cells (MSCs) to the bone defect by inflammatory factors. These
MSCs then differentiate into cartilage that gradually ossifies with
the growth of blood vessels into the cartilage model. Thus, MSCs
play a crucial role in bone regeneration. MSCs regulate the
immuno-microenvironment by interacting with macrophages
and regulating blood vessel formation by secreting angiogenic
growth factors. This process involves interacting cells, including
MSCs, macrophages, and vascular endothelial cells, as well as
extracellular matrix molecules and cytokines, all of which
constitute the MSC niche that is of great significance in
regulating bone regeneration (Moore and Lemischka, 2006;
Kuhn and Tuan, 2010; Vafaei et al., 2017).

Previous studies have indicated that MSC differentiation was
determined by the MSC niches (Chen et al., 2020). Moreover,
recent studies have shown that MSC differentiation was also

affected by mechanical stimulation (Ravichandran et al., 2017). A
thorough understanding of the effect of mechanical stimulation
on MSC niches in bone regeneration is of great value for
establishing an in vitro model of bone regeneration and
rehabilitation training of patients after fracture surgery.
Therefore, this article reviews the intracellular mechanisms by
which MSCs sense and respond to mechanical stimulation, the
effect of mechanical stimulation on regulating MSC surrounding
microenvironments by modulating the immune, angiogenic, and
osteogenic microenvironments, and the applications of
mechanical stimulation in bone regeneration.

2 MECHANISM OF MESENCHYMAL STEM
CELL SENSING AND RESPONDING TO
MECHANICAL STIMULATION
Mechanical stimulation plays an essential role in various
physiological processes of bone. Wolff’s Law demonstrates that
mechanical stimulation remolds the morphology of bone by the
force line direction (Lanyon and Baggott, 1976; Woo et al., 1981).
Bone mass increases in high stress regions and decreases in low
stress regions. Wolff’s Law indicates that bone can sense and
respond to the external mechanical loading and adapt to it by
regulating bone metabolism. The lack of loading leads to disuse
osteoporosis in the clinic, which explains why bedridden patients
suffer from bone loss (Qi et al., 2012). Several types of bone cells
can sense mechanical stimulation, including bone marrow MSCs
and osteocytes. These cells function in different physiological
processes and respond to external mechanical stimuli.

2.1 Mechanism of Mesenchymal Stem Cells
Sensing Mechanical Stimulation
2.1.1 Physiological Basis
It is widely accepted that osteocytes are mechanosensitive cells
that respond to mechanical stimulation (Yan et al., 2020).
However, recent studies proves that external mechanical
stimulation regulates bone marrow mesenchymal stem cells
(BMSCs) toward osteogenic lineage which is independent of
osteocytes regulation (Schreivogel et al., 2019).

The lacunar-canalicular system (LCS) is filled with
interstitial fluid (Timmins and Wall, 1977). Intramedullary
pressurization alteration and deformation of bone matrix
generate interstitial fluid flow (Kwon et al., 2010; Price
et al., 2011; Ciani et al., 2014). Therefore, mechanical
loading leads to variation in intramedullary pressurization,
which results in shear stress generation. Shear stress applies to
osteocytes in LCS and MSCs in the bone marrow. Fluid shear
stress is the general form of the force applied to MSCs in the
bone marrow under physiological conditions (Gurkan and
Akkus, 2008). The form of the force applied to MSCs in the
periosteum is mainly caused by micro-deformation of bone
generated by external mechanical stimuli such as stretching
and compression. MSCs respond to the stimulation indirectly
by sensing the micro-deformation of the extracellular matrix.
Therefore, when investigating the mechanism of the
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mechanical loading effect on MSC differentiation, the function
of both the direct and indirect force ought to be considered.

2.1.2 Mechanosensors
The cellular response to external mechanical stimuli involves
two processes: mechanosensing and mechanotransduction
(Argentati et al., 2019). Mechanosensing is the process by
which cells sense physical signals from the extracellular
environment by mechanoreceptors. Cells then transduce the
physical signals into biochemical signals. This process results
in differentiation of the cells to specific lineages and is known
as mechanotransduction (Delaine-Smith and Reilly, 2011).
Several typical mechanoreceptors present on the membrane
are introduced here, including integrins, mechanosensitive ion
channels and primary cilia (Figure 1).

2.1.2.1 Integrin
Integrins, widely recognized mechanical sensors, are
transmembrane proteins that can take up physical signals
from the ECM (Kechagia et al., 2019). Integrins mediate the
adhesion and transmit the mechanical signal between cells and
the ECM. One end of the integrin connects to the ligands
(proteins of the extracellular matrix), and the other end
connects to the intracellular actin fiber via adaptor proteins.
Actin stress fiber senses mechanical signals originating from

the ECM by the degree of its contraction. The link containing
ECM, integrins, adaptor proteins and actin transmitting
mechanical cues is known as clutches. External mechanical
signals exert mechanical force on actin that tunes the integrins’
alignment and reorders the actin cytoskeleton (Kechagia et al.,
2019). The interactions between the ECM and the cytoskeleton
alter the cells lineage and lead to remodeling of the ECM
(Loebel et al., 2019).

Cells perceive external stimulation from the ECM and
transmit mechanical signals to the nucleus to regulate gene
expression. The adapter proteins that connect integrins and
actin fibers include focal adhesion (FA) molecules, which are
mainly composed of vinculin, paxillin, talin and focal adhesion
kinase (FAK). The Rho and MAPK signaling pathways activated
by FA lead to nuclear localization of the transcription factors Yes-
associated protein/transcriptional coactivator with PDZ-binding
motif (YAP/TAZ) and ERK, respectively (Nardone et al., 2017).
In addition to the means of transmitting mechanical signals by
chemical signals, the nuclear envelope and Linker of
Nucleoskeleton and Cytoskeleton (LINC) complex also play
essential roles in mechanotransduction (Bouzid et al., 2019).

2.1.2.2 Mechanosensitive Ion Channels
Studies have shown that mechanical stimulation partly impacted
the concentration of intracellular calcium ions. Intracellular

FIGURE 1 | Mechanism of MSCs sensing and responding to mechanical stimulation. MSCs sense external mechanical stimulation via integrins and
mechanosensitive ion channels and transmit the mechanical signals via actin stress fibers and molecular pathways. Integrins activate RhoA, MAPK pathways, and actin
fibers by FAs (including vinculin and talin) in response to mechanical stimulation. MAPK promotes osteogenesis through nuclear localization of ERK. The RhoA pathway
and actin fibers promote osteogenesis through nuclear localization of YAP/TAZ. The mechanosensitive ion channels TRPV4 and Piezo1 generate an intracellular
Ca2+ influx after sensing mechanical stimulation, and Piezo1 promote osteogenic differentiation through nuclear localization of YAP/TAZ. MSCs, mesenchymal stem
cells; RhoA, Ras homolog gene family, member A; MAPK, Mitogen-activated protein kinases; FA, focal adhesion; ERK, extracellular signal-regulated kinase; YAP/TAZ,
Yes-associated protein/transcriptional coactivator with PDZ-binding motif; TRPV4, transient receptor potential vanilloid 4.
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calcium ions of pre-osteoblasts rapidly increase under stimulation
by fluid shear stress, possibly as a result of the activation of
mechanically sensitive calcium channels on cells (Chen et al.,
2000). Osteoblasts contain several calcium channels, including
transient receptor potential vanilloid 4 (TRPV4), multimeric
L-type and T-type voltage-gated calcium channels (VSCC),
and the recently discovered mechanically sensitive ion channel
Piezo1. Both TRPV4 and Piezo1 are mechanically sensitive ion
channels.

Ten years ago, Bertrand reported that the Piezo1 channel was a
mechanically activating cation channel (Coste et al., 2010). Later,
it was found that Piezo1 sensed and transduced mechanical
stimuli in various cells, including endothelial cells, neural stem
cells and chondrocytes (Lee et al., 2014; Li et al., 2014; Pathak
et al., 2014). Piezo1 also plays an important role in the response of
skeleton cells to mechanical stimulation, and governs bone
homeostasis by reacting to mechanical signals. Sugimoto et al.
(2017) proved that hydrostatic pressure (HP) promoted bone
formation and osteogenic differentiation of MSCs through the
mechanically sensitive ion channel Piezo1, which was related to
the expression of bone morphogenetic protein 2 (BMP-2). Li X.
et al. (2019) discovered that bone cells could also sense and
respond to changes in fluid shear stress via Piezo1. After fluid
shear stress is applied to bone cells, the mechanically sensitive ion
channel Piezo1 partially activates YAP1 and TAZ to increase the
expression of Wnt1 and regulate bone formation. In addition to
investigating the mechanism of Piezo1 activation by various types
of mechanical stimuli, Wang et al. recently investigated the
function of Piezo1 in regulating the bone remodeling process.
In this study, conditional knockout of the Piezo1 gene was found
to reduce the cortical thickness and the trabecular bone volume in
mice. Further studies have explained the role of Piezo1 in
osteoblasts during bone remodeling. The results indicated that
Piezo1 regulated osteoclast differentiation by regulating the
expression of YAP type II and type IV collagen (Wang et al.,
2020). The results showed that Piezo1 played an important role in
maintaining bone homeostasis by regulating the crosstalk
between osteoblasts and osteoclasts under mechanical
stimulation conditions.

TRPV4, another mechanically sensitive calcium ion channel in
MSCs, primarily localizes in the high strain regions (especially the
primary cilia). TRPV4’s principal function is to promote early
bone formation under the stimulation of oscillatory fluid shear
stress (Hu et al., 2017; Corrigan et al., 2018). Some studies have
compared the roles of the two mechanically sensitive ion
channels, TRPV4 and Piezo1, in sensing mechanical
stimulation. Yoneda et al. found that when osteoblasts were
stimulated by short term shear stress (5 s), the ion channel
TRPV4 rather than Piezo1 mediated the sensing process to the
mechanical stimulus (Yoneda et al., 2019). Another study of
TRPV4 and Piezo1 channels in chondrocytes showed that TRPV4
channels mediated strain at the physiologic level, and Piezo2
mediated strain at the injurious level (Du G. et al., 2020). These
results indicated that the magnitude and duration of shear stress
required to activate the Piezo1 and TRPV4 channels of the
osteoblast lineage are likely different. A recent study also
showed that the activation of TRPV4 was regulated by the

activation of Piezo1 in vascular endothelial cells (Swain and
Liddle, 2021). However, a comprehensive comparison of the
relationships between the mechanically sensitive ion channels
TRPV4 and Piezo1 in osteoblast lineage has not yet been
conducted.

2.1.2.3 Primary Cilium
In addition to the above two mechanoreceptors, primary cilium
plays an essential role in sensing and responding to fluid shear
stress in MSCs. Primary cilium was first identified and observed
in osteocytes more than 40 years ago (Federman and Nichols,
1974). A laboratory in Sweden stimulated humanMSCs (hMSCs)
with oscillatory fluid flow (OFF) in vitro to simulate the fluid
shear stress in the physiological environment. The results showed
that OFF promoted the proliferation of hMSCs, increased the
expression of osteogenic genes, and demonstrated that primary
cilia mediated the response of hMSCs to fluid shear stress
stimulation (Hoey et al., 2012). This laboratory then found
that the mechanically reactive G protein-coupled receptor
(GPCR) GRP161, located on the primary cilium, activated
adenylate cyclase 6 (AC6) to respond to stimulation generated
by fluid shear stress. AC6 then activates the cAMP signal, which
increases the expression of PTCH1 and GLI1 in the hedgehog
pathway via upregulating the expression of osteogenic genes
(Johnson et al., 2021). Some ion channels, including TRPV4,
are also widely localized in primary cilia, mediating fluid shear
stress-induced calcium signaling and osteogenic process of MSCs
(Hu et al., 2017; Corrigan et al., 2018).

2.2 Molecular Mechanism of Mesenchymal
Stem Cells Responding to Different
Mechanical Stimulations
2.2.1 Stretching
Previous studies have shown that mechanical stretching could
promote the osteogenic differentiation of mesenchymal stem cells
of multiple origins through several molecular pathways, such as
BMSCs and adipose-derived stem cells (Wang et al., 2017; Fang
et al., 2019). Tensile strain stimulation promotes MSC
osteogenesis differentiation and inhibits differentiation toward
adipogenesis mainly through the Smad signaling pathway (Li R.
et al., 2015; Grier et al., 2017). The Hedgehog (Hh) signaling
pathway plays an essential role in cyclic mechanical stretch
(CMS). Wang et al. found that DNA methyltransferase 3b
(Dnmt3b) inhibited the expression of Hedgehog signaling by
binding to the Shh gene promoter to downregulate the sensitivity
of MSCs to stretch stimulation (Wang et al., 2017). Jiali Tan et al.
found that the osteogenic effect of mechanical stretch on MSCs
was correlated with donor age. The osteogenic effect of MSCs
responding to the mechanical stretch in young rats was higher
than that in adult rats. Additionally, stretch also resulted in more
production of ROS inhibited osteogenesis, in MSCs of adult rats
than in young rats (Tan et al., 2015). However, Chen et al.
suggested that appropriate levels of mechanical stretching not
only promoted osteogenesis of BMSCs but also reduced ROS
levels in BMSCs and induced antioxidant responses by activating
the AMPK-SIRT1 pathway (Chen et al., 2018).
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Stretch stimulation can also regulate the lineage differentiation
of MSCs by modulating the expression of miRNA that regulating
pathway molecules. Liu et al. identified differentially expressed
miRNAs after stretch stimulation and found that miR-503-5p was
downregulated. Therefore, it was concluded that miR-503-5p was
a mechanosensitive miRNA, and miR-503-5p downregulation
could promote stretch stimulation-induced osteogenic
differentiation of BMSCs (Liu et al., 2017). Li J.’s (2015) work
found that miR-154-5p negatively regulated theWnt/PCP (Rhoa-
Rock) pathway to induce osteogenesis of ADSCs (Li J. et al.,
2015).

2.2.2 Compression
Dynamic compression can promote the differentiation and
mineralization of MSCs toward osteogenesis both in vitro and
in vivo, which partially replaces the role of osteogenic induction
medium (Duty et al., 2007; Baas et al., 2010; Sittichokechaiwut
et al., 2010; Ravichandran et al., 2017). It has been shown that
dynamic compression did not directly regulate the expression of
transcription factors such as RUNX2, but rather promoted MSC
osteogenic differentiation in an autocrine manner by increasing
BMP expression (Schreivogel et al., 2019).

Previous studies have also indicated that compression could
promote both osteogenesis and chondrogenesis of MSCs (Cao
et al., 2019). However, the mechanism underlying the effect of
compression stimulus on MSCs and the means of controlling the
differentiation of MSCs has not yet been fully explored. Possible
factors include the magnitude of compression, the induction
mode, and pathway activation. A previous study by Efstathios
suggested that the differentiation of MSCs was related to the
magnitude of compression. The study found that hMSCs
differentiated toward osteogenesis under 10% dynamic
compression but toward chondrogenesis under 15%
(Michalopoulos et al., 2012). Moreover, Christopher et al.
found that osteogenic differentiation decreased with an
increase in the compression magnitude in osteogenic
induction medium (Horner et al., 2018). However, another
study suggested that the compression-induced MSC
differentiation toward chondrogenic or osteogenic lineages
depended on the activation of the ERK1/2 pathway (Pelaez
et al., 2012). Dynamic compression induces chondrogenic
differentiation of MSCs under normal conditions and
osteogenesis differentiation when the ERK1/2 pathway is
inhibited.

2.2.3 Fluid Shear Stress
MSCS residing in the periosteum and bone marrow are exposed
to fluid shear stress generated by mechanical stimulation-
induced deformation. Therefore, the osteogenic
differentiation of MSCs induced by mechanical stimulation is
also related to the fluid shear stress caused by cyclical
hydrostatic pressure (CHP) in vivo. The ability of shear stress
to promote osteogenesis of MSCs has been widely recognized,
and shear stress can promote MSC osteogenesis in the
absence of a chemical induction medium (Yourek et al.,
2010; Yue et al., 2019). MSCs mediate fluid shear stress
through primary cilia and mechanosensitive ion channels

such as TRPV4 and Piezo1 (Hu et al., 2017; Johnson et al.,
2018; Li X. et al., 2019). Although fluid shear stress is recognized
as one of the biophysical means to promote osteogenesis, the
application of shear force in bone tissue engineering requires
further exploration. As Zhang et al. (2012) found in their study,
MSCs from different patients showed inconsistent responses to
shear stress stimulation, which may be due to the high
heterogeneity of the samples. Therefore, future exploration
should target at more specific populations, such as the
response of osteoporotic populations MSCs to shear force.

2.2.4 Vibration
Although vibration is not a sort of mechanical stimulation in
physiological condition, a great number of studies have been
conducted on the vibration in osteogenesis (Chen et al., 2015;
Pongkitwitoon et al., 2016). As is convenient to be applied on
tissue, vibration has been used in osteoporosis treatment (Jepsen
et al., 2019). Vibration stimulates skeleton with the motion of
the body. Vibrations of the appropriate magnitude and
frequency can trigger anabolic responses in the bones
(Minematsu et al., 2019). Low magnitude vibration (LMV) is
widely accepted by doctors and patients in clinic as a measure of
exercise therapy based on the vibration (Wysocki et al., 2011).
Thus, it is necessary to explore the mechanism of vibration in
bone regeneration.

Vibration regulates and coordinates MSC bone resorption
and formation via multiple signaling pathways. Previous
studies have shown that vibration regulated the Wnt
signaling pathway to promote MSC osteogenesis (Gao et al.,
2017). Chen et al. (2016) demonstrated that vibration
increased the adhesion and osteogenesis of MSCs on HA-
coated surfaces by activating the Wnt/β-catenin signaling
pathway. They supposed that the vibration may provide a
means to promote the osseointegration of bone implants.
Vibration enhances β-catenin function through inhibiting
the β-catenin destruction complex element GSK3β (glycogen
synthase kinase 3β), which promotes the Linker of
Cytoskeleton and Nucleoskeleton (LINC) function (Uzer
et al., 2018). Another study found that the expression of
miR-335-5p was upregulated via vibration. miR-335-5p
induces osteogenic differentiation by suppressing the
expression of Dickkopf-related protein 1, a Wnt signaling
inhibitor (Zhao et al., 2019). In addition to the Wnt
pathway, vibration can also regulate the bone formation
process by up-regulating the expression of estrogen receptor
α (Li H. et al., 2019). Estrogen receptor α is known to be a
mediator in bone remodeling and is significant in estrogen-
deprived osteoporotic (Jessop et al., 2004). ERK1/2 pathway
and p38 MAPK signaling have also been shown to play an
essential role in vibration-induced osteogenesis of MSCs (Zhou
et al., 2011; Lu et al., 2018). Recent research illustrated the
effect of vibration on the YAP, a transcription factor that was
significant to MSC osteogenesis. Thompson et al. (2020)
discovered that the application of vibration increased the
YAP nuclear shuttling and restored the basal nuclear levels
of YAP, which led to MSC osteogenesis. In addition to
differentiation, MSC migration is also regulated by
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vibration. Wei et al. (2016) discovered that the SDF-1/CXCR4
pathway enhanced the MSC migration in response to the
vibration which promoted fracture healing.

2.2.5 Low Intensity Pulsed Ultrasound
Besides stretching, compression, fluid shear stress and vibration,
LIPUS is also found to be a type of force to promote bone
formation (Uddin and Qin, 2013). Gao et al. (2016) discussed
the distinct pathways of MSCs from different sources in LIPUS-
stimulated proliferation. LIPUS increased all MSC types
proliferation. ERK1/2 was activated in dental pulp stem cells
(DPSCs) and JNK MAPK signaling was activated in BMSCs
after LIPUS application. However, in PDLSCs, JNK MAPK
signaling was stimulated immediately after the application of
LIPUS and p-p38 MAPK was increased subsequently. In spite of
proliferation, LIPUS also promotes the MSCs migration in bone
healing possibly through activating the SDF-1/CXCR4 signaling
(Wei et al., 2014). In addition to the proliferation and migration,
several studies illustrated that LIPUS led to a better
osteointegration (Hui et al., 2011). The possibly osteogenic
differentiation mechanism is activating of Rho-associated

kinase-Cot/Tpl2-MEK-ERK signaling pathway (Kusuyama
et al., 2014). However, the effectiveness of LIPUS in
osteogenesis is open to debate. A recent study suggested that
according to multiple randomized controlled trials in clinic,
LIPUS possibly has no effect on radiographic bone healing
(Schandelmaier et al., 2017).

3 MECHANICAL STIMULATION
REGULATES MESENCHYMAL STEM CELL
SURROUNDING MICROENVIRONMENTS
IN BONE REGENERATION

Mscniches provide a microenvironment to support MSC self-
renewal and multi-lineage differentiation. Bone regeneration
involves the inflammatory responses of immune cells, blood
vessel formation of endothelial cells and osteogenic process of
MSCs. Thus, intercellular communication within the niche is
crucial for bone regeneration and investigating the crosstalk
between MSCs and other cells, including macrophages,

FIGURE 2 |Dynamic interactions of MSCs with their microenvironment under mechanical stimulation. MSCs perceive the mechanical stimulation applied to the
bone, which downregulates the inflammatory response by decreasing macrophage secretion of pro-inflammatory TNF-α and promoting the polarization of M1
macrophages (pro-inflammatory type) to M2 macrophages (anti-inflammatory type). Simultaneously, MSCs promote VEC angiogenesis by secreting angiogenic
factors (VEGF, PGF). Osteogenic factors (BMP, IGF-1) secreted by mechanical activated-VECs, as well as LIF and exosomes secreted by mechanical
activated-osteocytes, together promote the osteogenic differentiation of MSCs. TNF-α, tumor necrosis factor alpha; VECs, vascular endothelial cells; VEGF,
vascular endothelial growth factor; PlGF, placental growth factor; BMP, bone morphogenetic protein; IGF-1, insulin-like growth factor 1; LIF, leukemia inhibitory
factor.
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vascular endothelial cells and osteocytes. As the crucial
components of bone regeneration, blood vessel formation and
inflammation are regulated by mechanical stimulation
(Charoenpanich et al., 2014). Thus, it is important to ascertain
the role of mechanical stimulation in the crosstalk of the
osteogenic process (Figure 2).

3.1 Mechanical Stimulation Regulates the
Immunoenvironment by Regulating the
Crosstalk Between Mesenchymal Stem
Cells and Macrophages
Some immune-inflammatory diseases, such as arthritis, suggest a
correlation between mechanical force and the inflammatory
response. Arthritis is characterized by inflammation that
localized to the joints (such as the knee joint) when exposed
to prolonged mechanical force. Therefore, mechanical force may
be a factor that determines the transition of inflammation from
systemic autoimmunity to local inflammation. According to
Cambré’s research, MSCs in the mechanosensitive region of
joints could sense mechanical stimulation and convert
mechanical signals into chemical signals to trigger local
inflammation and bone destruction, which ultimately led to
the occurrence of arthritis (Cambre et al., 2018). Therefore,
mechanical stimulation plays an essential role in inflammatory
response (Hao et al., 2015).

Bone regeneration involves multiple stages and cell
interactions. The formation of fracture hematoma and the
subsequent acute inflammatory phase are key steps to
determine the success of bone regeneration. The acute
inflammatory phase begins with the activation of neutrophils
that secrete inflammatory factors and chemokines to recruit
monocytes and macrophages (Xing et al., 2010). In addition to
cleaning up the necrotic tissue, macrophages secrete
inflammatory cytokines and chemokines (such as TNF-α, IL-
1β, IL-6, and CCL2) to recruit MSCs. Subsequently, MSC-rich
granulation tissue replaces the hematoma. Immediately after,
MSCs are stimulated by various factors in the environment to
trigger osteogenic differentiation by either endochondral
ossification or intramembranous ossification. Therefore, it is
evident that an appropriate acute inflammatory phase duration
is important for bone regeneration. The interactions between
MSCs and macrophages dynamically regulate this phase.
Macrophages have two phenotypes. The first is classically
activated M1 macrophages, which function in initiating and
sustaining inflammation, and the second is alternatively
activated M2 macrophages, which function in resolving
inflammation. The transformation of macrophages from M1 to
M2 is known as macrophage polarization (Pugin et al., 1998). The
main method of anti-inflammation in bone regeneration at this
stage is the early polarization of pro-inflammatory M1
macrophages to anti-inflammatory M2 macrophages, which
serves to promote the resolution of inflammation and the
osteogenesis process.

Following the occurrence of a fracture, MSCs are mobilized
into the peripheral blood by transforming growth factor-beta
(TGF-β) (Wan et al., 2012). MSCs are exposed to fluid shear

stresses, one of which is wall shear stress (WSS). WSS can
stimulate MSCs to produce antioxidant and anti-inflammatory
mediators. Additionally, the application of WSS to MSCs
facilitates the recruitment of chemokines, including
prostaglandin E2 (PEG2) and cyclooxygenase-2 (COX2), to
inhibit the synthesis of tumor necrosis factor α (TNF-α)
generated by immune cells and the inflammatory response
(Diaz et al., 2017). The mechanism by which WSS stimulates
MSCs to produce inflammatory mediators may be related to the
FAK-COX2 signaling pathway. Lee et al.’s (2017) study showed
thatWSS could promote Ca2+ release and activate the Akt,MAPK
and FAK signaling pathways of MSCs. When inhibited the above
factors respectively, only FAK disrupted the induction of COX2
and decreased the production of MSC inflammatory mediators.
Thus, the FAK-COX2 signaling pathway is significant for MSCs
to respond to mechanical stimulation for immunomodulatory
functions. In addition to shear stress, dynamic compression
regulates the crosstalk between MSCs and macrophages.
Zhang et al. (2021) developed an extracellular matrix-based
hydroxyapatite scaffold fabricated by freeze-drying the ECM of
compression-stimulated MSCs. This biofabricated scaffold could
accelerate the polarization of macrophages from the pro-
inflammatory M1 phenotype to the anti-inflammatory M2
phenotype to promote bone regeneration. These findings
suggested that compression could promote the secretion of
anti-inflammatory mediators in MSCs. However, recent studies
have found that MSCs maintained their physiological levels
through TNF-α endocytosis. Cyclic stretching promoted the
proliferation and osteogenic differentiation of MSCs by TNFα
endocytosis, which downregulated TNFα secretion in MSCs,
rather than directly downregulating TNFα gene expression (Yu
et al., 2021). Additionally, mechanical stimulation of adipose
tissue modulates the anti-inflammatory properties of human
adipose-derived stem cells (hADSCs) in adipose tissue. Carelli
et al. compared the anti-inflammatory properties of hADSCs in
mechanically stimulated adipose tissue and the control group. It
was found that the anti-inflammatory effect of mechanical
stimulated-hADSCs was superior to that of the control group
hADSCs (Carelli et al., 2018). However, other studies have found
that mechanical stimulation could promote inflammation and
osteogenesis simultaneously, likely as a result of the MSC
autocrine regulation of inflammatory factor secretion
(Sumanasinghe et al., 2009; He et al., 2020).

Most studies have discussed the response of MSCs to
mechanical stimulation during osteogenesis. A recent
research found that macrophages were also capable of
responding to mechanical stimulation (Dong et al., 2021).
Mechanical stretch polarizes macrophages into the M2
phenotype that secrets inflammation-related cytokines,
including IL10 and TGF-β, to regulate the local
inflammatory microenvironment. Mechanical stimulation
activates the YAP/BMP2 axis in macrophages to increase
the expression of BMP2, which promotes the osteogenesis
of MSCs. As an important component of the mechanical
transduction pathway, YAP induces the polarization of M2
macrophages via Wnt5a and TGFβ1 (Feng et al., 2018).
Schoenenberger et al. (2020) found that macrophages, as
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mechanosensitive cells, played an essential role in tendon
repair. Mechanical stimulation was found to promote the
transformation of macrophages to the M2 phenotype and
subsequent tissue healing. These results suggested that
future consideration might be given to exploring the role of
mechanical stimulation in MSC and macrophage co-culture
models.

3.2 Mechanical Stimulation Regulates the
Angiogenic Microenvironment by
Regulating the Crosstalk Between
Mesenchymal Stem Cells and Vascular
Endothelial Cells
Bone regeneration contains endochondral ossification and
intramembranous ossification. Endochondral ossification is
the process that stable cartilaginous soft callus first formed,
followed by the formation of bone hard callus through vascular
ingrowth and ossification centers (Gerstenfeld et al., 2003).
The intramembranous osteogenesis process is accomplished
by the differentiation of MSCs into osteoblasts at vascular-rich
sites and the mineralization of osteoblasts to osteocytes. Thus,
vascular formation, which is closely related to the osteogenesis
process, is an important part of bone regeneration. During
bone regeneration, MSCs and vascular endothelial cells
(VECs) communicate with each other through paracrine
mediators to promote osteogenesis (Li C.-J. et al., 2015).
Mechanical stimulation is one of the biophysical factors
that promote osteogenesis, and plays a crucial role in the
crosstalk between MSCs and VECs.

Vascular endothelial growth factor (VEGF), a widely
known signaling molecule regulating osteogenesis and
vascularization, has been identified for its role in
mechanical stimulation-induced osteogenesis.
Charoenpanich et al. evaluated the effect of stretching on
human MSC gene expression by microarray analysis. The
results showed that stretching promoted the release of VEGF
from human MSCs (Charoenpanich et al., 2014). Moreover,
Jiang’s team found that stretching-stimulated VEGF secretion
of MSCs not only promoted tube formation but also
promoted VECs to release growth factors associated with
bone formation, such as BMP-2 and IGF-1, which in turn
regulated the osteogenesis process of MSCs (Jiang et al.,
2018). In addition to stretching, dynamic compression can
promote increased VEGF secretion in MSCs. Dynamic
compression promotes VEGF secretion by upregulating
YAP signaling activity in MSCs (Bandaru et al., 2020). In
addition to VEGF, the expression level of placental growth
factor (PlGF) in MSCs is related to the magnitude and
duration of mechanical stimulation. PlGF has a variety of
functions, including promoting osteogenesis and
angiogenesis, and plays an essential role in the regulation
of osteogenic-angiogenic interactions by mechanical
stimulation (McCoy et al., 2013). It has also been found
that mechanical stimulation can stimulate H vessel
formation and VEGF secretion by downregulating
exosomal miR-214-3p from MSCs (Wang et al., 2021).

In addition to the above in vitro studies, several in vivo
experiments have investigated the effects of mechanical
stimulation on bone regeneration and vascularization.
Some studies have explored the effect of the initial
application time of mechanical stimulation on vessel and
bone formation. Boerckel et al., 2011 found that the
application of mechanical loading in the early stage of
bone defects could inhibit the growth of blood vessels into
the defect area and lead to the failure of bone regeneration. In
contrast, the application of mechanical loading delayed for
4 weeks could promote the reconstruction of blood vessel
networks and bone regeneration (Boerckel et al., 2011). This
result suggested that the effect of mechanical stimulation on
vascularization and bone formation depended on the initial
application time. McDermott et al. (2019) speculated that the
difference was due to the different origin of the vessel forming
at different times. Other studies have explored the effect of the
loading application mode on revascularization. Claes et al.,
2018 compared the effects of compression, stretching and
shear stress on the vessel density in bone regeneration. As a
result, the vessel density in the compression group was
significantly higher than that in the other two groups,
which suggested that compression was more beneficial to
the bone regeneration process.

3.3 Mechanical Stimulation Regulates the
Osteogenic Microenvironment by
Regulating the Crosstalk Between
Mesenchymal Stem Cells and Osteocytes
Osteocytes are mechanosensitive cells that reside in the lacunar-
canalicular system (LCS) of cortical bone (Timmins and Wall,
1977). Recent studies have found several critical mechanical
sensors of osteocytes, such as cilia, integrin, ion channels and
G-protein-coupled receptors (Uda et al., 2017). Osteocytes
regulate bone remodeling, mainly by sensing fluid shear stress
caused by mechanical loading and regulating osteoblast-
osteoclast communication (Dallas et al., 2013). As mentioned
above, osteocytes play an important role in responding to
mechanical stimulation. Osteocytes function as regulators
influencing bone loss and formation by modulating osteoblast-
osteoclast coupling. Osteocytes are of vital importance in the
reconstruction of bone defects (Robling and Bonewald, 2020).
Osteocytes regulate bone regeneration in both direct and indirect
ways: secreting stimulators and inhibitors that affect osteoblast
activity, and modulating osteoclast activity to regulate osteoblast
behavior indirectly (Robling and Bonewald, 2020). However, due
to limited research methods, the role of the osteocyte response to
mechanical stimulation in bone regeneration has not been fully
explored.

Osteocytes respond to external mechanical stimulation by
secreting soluble factors that regulate MSC gene expression.
Specific communications exist between osteoblasts and MSCs
under mechanical stimulation conditions. (Hoey et al., 2011)
found that conditional medium for mechanical stimulation of
osteocytes upregulated osteogenic gene expression in MSCs,
while no upregulation was seen in osteoblasts treated with the
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same. This suggested that mechanical stimulation played a vital
role in the crosstalk between osteocytes andMSCs. Several studies
have explored the paracrine mechanism by which osteocytes
regulated MSC osteogenesis in response to mechanical

stimulation. Du J. et al. (2020) suggested that mechanical
regulating osteoblast-osteoclast coupling by promoting
osteocyte secretion of leukemia inhibitory factor (LIF).
Extracellular vesicles (EVs), as specific components of cell-cell

TABLE 1 | Applications of mechanical stimulation on MSCs in bone regeneration.

Source
of MSC

Force type Mechanical
parameter

Intermittent and
continuous
loading

Immediate
or delayed
loading

Dimensionality Discoveries References

Mus
musculus

Shear stress 1, 2, 5 Pa; 0.5,
1, 2 Hz

Intermittent: 1, 2,
4 h/day

1–3 days 2D 2 Pa and 2 Hz has a superior
osteogenic effect

Stavenschi et al.
(2017)

Rattus
norregicus

Shear stress 1.03, 0.1, 0.01,
0.001 Pa

1) Continuous 40 h 2D Intermittent loading for
0.01 Pa has a superior
osteogenic effect

Dash et al.
(2020)2) Intermittent:

application 1 h +
Intermittent 7 h

Homo
sapiens

Shear stress 0.01 Pa Continuous 24 h 3D (borosilicate glass
capillary tubes)

Loading regime of 0.01Pa has
a superior osteogenic effect

Xue and
Cartmell, (2020)

Homo
sapiens

Shear stress 0.005, 0.011,
0.015 Pa; 3, 6,
9 ml/min

Continuous 24 h 3D (porous cylindrical
β-TCP scaffold)

15 mPa has a superior
osteogenic effect

Li et al. (2009)

Homo
sapiens

Shear stress 0.34 Pa (0.3 ml/
min), 0.42 Pa
(4 ml/min)

1) Continuous:
0.42 Pa (4 ml/min)

4 h 3D [porous poly lactic
co-glycol acid
(PLGA)]

Intermittent FSS has a
superior osteogenic effect

Liu et al. (2012)

2) Intermittent:
0.42 Pa (4 ml/min)
1 h + 0.34 Pa
(0.3 ml/min) 11 h

Mus
musculus

Tensile 10% Elongation;
0.5 Hz

Intermittent:
12 h/day

48–72 h 2D CMS has a superior
osteogenic effect

Wang et al.
(2017)

Homo
sapiens

Tensile 10% Elongation;
0.1%/s

Intermittent:
2 h/day

— 3D (PCL nanofibrous
scaffolds)

10% Elongation enhances
long-term ECM deposition
and differentiation

Nathan et al.
(2011)

Bos taurus Tensile 1) Continuous: 10%
elongation;
2.5%/min

1) Continuous: 2 h 48 h 3D (PCL nanofibrous
scaffolds)

Elongation stiffened and
condensed MSC nuclei

Heo et al. (2016)

2) Intermittent: 3%
elongation; 1 Hz

2) Intermittent:
6 h/day

Homo
sapiens

Tensile 10% Elongation;
0.5 Hz

Continuous — 2D 10% Elongation has a superior
osteogenic effect

Fang et al.
(2019)

Tensile inhibited
adipogenesis, but promoted
osteogenesis

Homo
sapiens

Compression 0.22% strain; 1 Hz Intermittent:
4 h/day

24 h 3D (PCL-TCP
scaffold)

0.22% compressive strain has
a superior osteogenic effect

Ravichandran
et al. (2017)

Homo
sapiens

Compression 1) 10%
Elongation; 1 Hz

Intermittent:
4 h/day

- 3D (collagen–alginate
scaffolds)

10% compressive strain has a
superior osteogenic effect

Michalopoulos
et al. (2012)

2) 15% strain; 1 Hz 15% cyclic compressive strain
has a superior chondrogenic
effect

Oryctolagus
cuniculus

Compression 10% strain; 1 Hz Intermittent:
2 h/day

- 3D (collagen scaffold) 0.22% compressive strain has
a superior chondrogenic effect

Cao et al. (2019)

Homo
sapiens

Compression 0.06–0.94 mPa;
1 Hz

Intermittent:
15 min/day

48 h 3D (hydroxyapatite
scaffolds)

0.06–0.94 mPa compressive
strain has a superior
chondrogenic effect. And can
modulating the inflammatory
microenvironment

Zhang et al.
(2021)
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and cell-matrix communication, also play an important role in
osteocyte and MSC interactions under mechanical stimulation.
Eichholz et al. (2020) comprehensively characterized the proteins
secreted by osteoblasts after fluid shear stress through proteomics
and found that proteins associated with EVs were significantly
overexpressed. Moreover, culturing MSCs with the collected EVs
resulted in MSC osteogenic differentiation, suggesting that
mechanical stimulation promotes osteocytes to modulate MSC
behavior via EVs. Peiying Lv’s team found that exosomes
produced by osteocytes following mechanical stimulation also
promoted the osteogenic differentiation of human periodontal
ligament stem cells (PDLSC) (Lv et al., 2020).

4 APPLICATIONS OF MECHANICAL
STIMULATION TO MESENCHYMAL STEM
CELLS IN BONE REGENERATION
Different forms of mechanical force have been described
previously to promote osteogenic differentiation of MSCs.
However, these studies did not discuss the optimal mode of
application of mechanical stimulation in detail. Therefore, several
mechanical application modes will be discussed in this part,
including the magnitude, frequency, intermittent or
continuous, immediate or delayed application, and the
dimensionalities of mechanical stimulation (Table 1).

4.1 Magnitude and Frequency of
Mechanical Stimulation
The osteogenic differentiation of MSCs has been found to be
correlated with the magnitude and frequency of mechanical
stimulation. Stavenschi et al. explored the osteogenic effect of
oscillatory fluid flow on MSCs of 1 Pa, 2 and 5 Pa. The results
showed that the expression of osteogenic genes was significantly
upregulated at the magnitude of 2 Pa and the frequency of 2 Hz
(Stavenschi et al., 2017). The most effective shear stress for
promoting MSC proliferation and osteogenesis has also been
explored. Sanat’s research showed that MSCs exhibited a high
cell proliferation rate when stimulated by intermittent flow at
1.09 mPa, while 10mPa upregulated osteogenic gene expression
(Dash et al., 2020). Xue and Cartmell, (2020) suggested the
osteogenic effect of shear stress on MSCs in three-dimensional
culture was different from that in the plate. Lower fluid shear stress
(1–10mPa) stimulated MSCs in the scaffold used to simulate a
three-dimensional environment to promote the osteogenic
differentiation, whereas 100–4,000 mPa was required when the
MSCs were cultured in a plate (Xue and Cartmell, 2020).

4.2 Intermittent and Continuous Mechanical
Stimulation
Recent studies have shown that, compared to long-term
continuous mechanical stimulation, a period of rest time
during mechanical stimulation enhanced bone formation and
improved the mechanical properties of bone (Robling et al., 2002;
Saxon et al., 2005). Compared to continuous shear stress,

intermittent application has been proven to maintain the
mechanosensitivity of MSCs and osteocytes (Siller-Jackson
et al., 2008; Liu et al., 2012). In addition to FSS, intermittent
stretching can promote osteogenic differentiation of MSCs
(Wang et al., 2017). Continuous cyclic mechanical tension
(CCMT) has been found to downregulate Runx2 expression in
MSCs and inhibit osteogenic differentiation (Shi et al., 2011).
Another study compared the effects of intermittent compressive
force (ICF) and continuous compressive force (CCF) on the
behavior of PDLSCs. The results suggested that ICF
upregulated TGFβ-1 and promoted the osteogenic
differentiation of PDLSCs, whereas the osteogenic gene
expression of the CCF group was unchanged
(Manokawinchoke et al., 2019). Therefore, the intermittent
mechanical stimulation mode is superior to continuous
mechanical stimulation in terms of promoting bone regeneration.

At present, intermittent mechanical stimulation promotes
osteogenesis in bone that needs the loading interval to recover
its mechano-sensitivity to mechanical signals. Nardone et al.
(2017) found that mechano-sensing switches (such as pFAK)
were released from FAs into the cytoplasm during intermittent
and activated YAP. This revocation of activation suggested that
intermittent mechanical loading could activate integrin signaling
downstream, which possibly explained the decreased mechano-
sensitivity of bone tissue caused by continuous mechanical
stimulation. Additionally, the mechanical environment is
capable of modulating nuclear properties, and mechanical
sensitivity may also be related to the nuclear biophysical
properties (Heo et al., 2016). The nuclei in dynamic loading
induced MSCs to stiffen and become resistant to deformation,
which sensitizes MSCs to mechanical stimulated calcium
signaling and differentiated marker expression (Heo et al.,
2016). Thus, the nucleus plays an essential role in modulating
cellular mechano-sensation during differentiation. There is
limited research on the mechanisms by which MSCs respond
to intermittent and continuous stimulation. However, studies on
the mechanism of osteoblasts could provide hints for future
research. It was suggested that mechano-sensitivity is primarily
associated with actin stress fibers. Gardinier et al. suggested that
osteoblasts responded to FSS through actin stress fiber formation
(ASFF), and ASFF led to increased cell stiffness and decreased
mechano-sensitivity (Gardinier et al., 2014). LIM kinase 2
(LIMK2) is a gene related to the reorganization of the
cytoskeleton. Several studies found that inhibiting the LIMK2
increased the sensitivity of ERK1/2 to fluid shear stress and
promoted the gene expression of c-fos to enhance the
mechanical sensitivity of osteoblasts (Zhang et al., 2009; Xiang
et al., 2012). These results suggested that the mechanism by which
MSCs respond to intermittent mechanical stimulation may also
be related to the actin stress fiber and cytoskeleton.

4.3 Immediate and Delayed Mechanical
Stimulation
Delayed mechanical stimulation has a positive effect on
osteogenesis by promoting angiogenesis. The formation of
blood vessels is closely related to endochondral ossification, in
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whichMSCs first aggregate and differentiate into hyaline cartilage
to form the cartilage model. Following growth of blood vessels,
the cartilage is gradually replaced by bone tissue. Joe’s laboratory
investigated the effects of immediate and delayed mechanical
loading on vascular ingrowth in bone regeneration (Boerckel
et al., 2011; Ruehle et al., 2020). The results showed that load
initiation was a key determinant of vascular network formation.
Immediate loading significantly inhibited the growth of blood
vessels into the bone defect area, which led to fracture nonunion.
In contrast, delayed loading allowed the growth of vessels into the
defect and induced vascular remodeling. The study by Anna
showed that the bone accumulation rate was significantly elevated
by 4-week delayed mechanical loading application, which
coincided with chondrocyte hypertrophy and endochondral
transition (McDermott et al., 2019). They concluded that a 4-
week delay in mechanical loading better mimicked the process of
endochondral ossification.

4.4 Dimensionalities of Mechanical
Stimulation
The mechanical stimulation applied to cells in two-dimensional
(2D) environments is unidirectional. However, mechanical
stimulation is multidirectional in physiological environments.
The behavior of mechanical loading-induced cells is altered by
the dimensionalities of their environments. Thus, the response of
cells to external mechanical forces in three-dimensional (3D)
environments that mimic the physiological environments in vivo
needs to be explored. Li and his team found that long-term
compression loading induced maturation of α5-integrin-based
adhesions to form 3D-matrix adhesions (3DMAs) in the 3D
environment (Li et al., 2020). In contrast to the FA formed in the
2D environment, the composition and morphology of 3DMAs
are found only in native tissues and cell-derived matrices,
suggesting that dimensionality influences the behavior of cells
under mechanical stimulation. However, the exact mechanism by
which external mechanical forces regulate cell fate in different
dimensionalities remains unclear.

Exploring the effects of mechanical stimulation on cells in a
3D environment involves not only mechanical stimulation of
cells but also the properties of materials. In 2D conditions,
mechanical stimulation is applied to the cells directly.
However, in a 3D environment, the force is first applied to
the substrate which then transmits the mechanical signals to
the cell through the deformation generated by the stimulation
(Steinmetz et al., 2015). Thus, the process by which the
mechanical signals are transmitted to cells contains two
steps: the deformation of scaffolds produced by mechanical
stimulation and the cell sensing and responding to the
deformation. The ECM is not a linearly elastic material and
has complex mechanical properties, including viscoelasticity,
mechanical plasticity and nonlinear elasticity (Chaudhuri
et al., 2020). The ECM responds to external mechanical
stimulation by remodeling the stress fiber network, such as
by changing the structure of the fiber network and forming
bonds between the fibers (Loebel et al., 2019). The effect of
mechanical stimulation on cells is related to the interactions

between ECM properties and cells, which suggests that the
mechanical properties of scaffold materials are of vital
importance for cell differentiation in the 3D environment.

Materials that mimic the mechanical properties of ECM have
been explored. Davidson and his team developed a multifiber
hydrogel network with force-responsive characteristics
(Davidson et al., 2020). In this network, the fibers form
covalent bonds under mechanical loading, and the interactions
of the fiber increase material stiffness and plastic deformation.
Davidson’s design mimics the physiological process of ECM
remodeling under mechanical stimulation, providing a model
for exploring the effects of mechanical stimulation on cells in 3D
environments (Davidson et al., 2020). Mechanical stimulation in
a 3D environment fabricates the layered scaffolds with gradient
mechanical properties. Horner et al. (2019) designed a 3D
electrospinning scaffold with a tissue gradient that generates
spatially controlled strain gradients in a scaffold depth-
dependent manner under dynamic loading. MSCs in the
greater compressive strain areas upregulate osteogenic gene
expression, while chondrogenic markers are upregulated in the
high local compressive strain areas. The formation of the
mechanical gradient was maintained only under the
application of dynamic loading. This study shows that
regulating the local mechanical microenvironment provides a
strategy to recapitulate the gradient structure of osteochondral
tissues (Table 1).

Explorations of optimal mechanical parameters are significant
for further application of mechanical stimulation in bone tissue
engineering as presented above. Shear stress from 1.09 mPa to
5 Pa was applied to MSCs in previous studies, and 10–15 mPa
were proved to have a superior osteogenic effect. Stretching or
compression resulted 10% strain was discovered promoting
osteogenesis. In comparison with continuous mechanical
stimulation, the intermittent application is more efficient in
inducing osteogenic differentiation via maintaining the
mechanosensitivity of MSCs to mechanical signals. Therefore,
mechanical stimulations are recommended to be performed with
appropriate intervals. Application of delayed mechanical
stimulation was reported to be an ideal option for facilitating
angiogenesis in bone remodeling, which indicates that future
researches should take the mechanical stimulation application
time into consideration. Besides, in contrast to the 2D
environment, MSCs showed a more bionic behavior in
response to external mechanical stimulation in 3D
environment that mimics physiological environments. Thus,
3D environment is recommended for the mechanical
stimulation application.

5 OUTLOOK

Mechanical stimulation plays an important role in bone
regeneration due to its influences on bone physiological
functions. The main functional cells in bone regeneration,
BMSCs, sense specific mechanical signals through
mechanosensors on the cytomembrane, which results in the
activation of downstream molecular pathways and altered
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expression of osteogenic genes. Mechanical stimulated-MSCs
regulate immune, angiogenic and osteogenic
microenvironments of bone regeneration by interacting with
macrophages, endothelial cells and osteocytes. Modes of
mechanical stimulation including the magnitude, frequency,
duration and intermittence, affect the osteogenic
differentiation of MSCs. Therefore, investigations of
mechanical stimulation on bone regeneration for application
in regenerative medicine are of great importance.

The mechanism of mechanical stimulation for osteogenesis has
been studied in two main aspects, the principle of mechanosensors
on the cell membrane surface to sense mechanical stimulation and
the intracellular pathways transmitting mechanical signals, which
ultimately lead to changes in gene expression. The mechanism of
the mechanoreceptor, including integrated proteins and primary
cilia, has been widely reported (Hoey et al., 2012; Kechagia et al.,
2019). However, as a recently discovered mechanosensitive
calcium ion channel, the principle of the Piezo1 response to
mechanical stimulation has not been fully elucidated in MSCs.
Therefore, the mechanism of PIEZO1 responding to mechanical
stimulation inMSCs needs to be confirmed by more researchers to
provide convincing evidence for future applications in bone
regeneration. Additionally, in spite of advancements in
exploring mechanotransduction in 2D environment, our
knowledge of the MSC behaviors in 3D environments under
mechanical stimulation remains limited. 3D culture is one of
the necessary factors for the construction of the tissue
engineered-bone which mimics physiological environments and
provides more suitable matrix for MSCs. The mechanism of MSCs
responding to mechanical stimuli in 3D environments is possibly
the priority for future researches.

The effect of mechanical stimulation on the cross-talk between
MSCs and osteogenesis-related cells is an emerging field of vital
significance for bone regeneration. 1) Osteocytes are
mechanosensitive cells that resided in the mineral matrix,
which play an important role in modulating bone metabolism
(Timmins and Wall, 1977). And the interactions between MSCs
and osteocytes under external mechanical stimulation deserve
further investigation, especially the means by which paracrine
regulation of the loading induced-osteocytes regulates the
behavior of MSCs. Investigating the interactions between
osteocytes and MSCs under mechanical stimulation
contributes to a better understanding of MSC response to
mechanical stimulation and the comprehensive effect of
mechanical stimulation on bone. 2) Excesses of inflammatory
response often result in the failure of bone repair in bone tissue
engineering. A few studies have illustrated that mechanical
stimulation could facilitate the resolution of inflammation
through regulating the interactions between MSCs and
macrophages. However, the anti-inflammatory mechanism and
the optimal application paraments remain unclear. Thus, further
studies on the role of mechanical stimulation in the immune
microenvironment during bone regeneration may provide a new
insight into the design of bone regeneration biomaterials. 3)
Interactions between endothelial cells and MSCs under
mechanical stimulation also attract great attention. Studies
proved that delayed mechanical stimulation promotes

angiogenesis in bone regeneration. However, most of the
studies only adopted a single delayed time point and the
temporal effect of different delayed-loading time points is not
clear. Therefore, studies on the effect of mechanical stimulation
loading time in interactions between MSCs and endothelial cells
can provide a comprehensive understanding of angiogenesis,
which further guides the weight-bearing point of the fracture
patients.

Mechanical stimulation has been used as a therapy in
orthopedic which is known as mechanotherapy (Huang et al.,
2013). For instance, distraction osteogenesis is used to correct
limb and craniofacial defects, and LIPUS is used to hasten the
fracture healing process and increase bone mass. However,
current approaches are applying mechanical stimulation
directly to the tissue, rather than through the substrate.
However, efficiencies of these mechanotherapies in bone
repairing are open to debate, as a recent systematic review
concluded that LIPUS did not improve outcomes important to
patients (Schandelmaier et al., 2017). The potential application
may combine mechanical stimulation and bone tissue
engineering. As the key element of bone tissue engineering,
3D culture involves the interactions between the cells and the
materials. Scientists are keeping searching for materials that are
more compatible with physiological deformation, retraction and
osteogenic activity in mechanical environments. And the
interactions between cells and biomaterials also require
continuous refinement, further work may focus on the
combined effect of the substance stiffness and the external
mechanical stimulation application on MSCs. Several active
biomaterials offer novel approaches to apply mechanical
stimulation, such as magnetically triggered systems. Due to the
variable mechanical parameters and the precise controlling of the
mechanical application timepoint, magnetically triggered
strategies will possibly receive increasing attention.

6 CONCLUSION

External mechanical force plays an essential role in bone
regeneration. And MSCs can sense and respond to mechanical
signals during this process. Thus, in this review we discussedMSCs
mechanotransduction mechanisms, the influences of mechanical
stimulation on modulating interactions between MSCs and
surrounding cells in bone regeneration including the immune,
angiogenic and osteogenic microenvironments, and the
applications of mechanical stimulation of MSCs in bone
regeneration. The description of MSCs mechanotransduction on
purpose of providing a comprehensive view and several promising
mechanosensors required to be fully investigated in MSC
mechanotransduction field. The regulation of mechanical
stimulation on microenvironments surrounding MSC discussed
in the manuscript is of great significance for the bone regenerative
medicine, which offers an insight for the design of tissue
engineered bone in consideration of immune response,
angiogenesis and osteogenesis. Moreover, the depiction of
different mechanical stimulation application modes bring
insightful guidance to the design of bone regenerative
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biomaterials and clinical applications of the mechanical
stimulation.
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Heterotopic Ossification: Clinical
Features, Basic Researches, and
Mechanical Stimulations
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China, 2National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China, 3Key Laboratory of Organ
Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China

Heterotopic ossification (HO) is defined as the occurrence of extraskeletal bone in soft
tissue. Although this pathological osteogenesis process involves the participation of
osteoblasts and osteoclasts during the formation of bone structures, it differs from
normal physiological osteogenesis in many features. In this article, the primary
characteristics of heterotopic ossification are reviewed from both clinical and basic
research perspectives, with a special highlight on the influence of mechanics on
heterotopic ossification, which serves an important role in the prophylaxis and
treatment of HO.

Keywords: heterotopic ossification, mechanical loading, bone, stem cell fate, bone formation

INTRODUCTION

Heterotopic ossification (HO) is a complicated pathologic process causing the formation of extra-
skeletal bone in soft tissues, such as muscle, peri-articulations, ligaments, and tendons. It is
commonly recognized as a complication after trauma, surgery, blast, spinal cord injury, and
other stress damages (Shimono et al., 2011; Regard et al., 2013; Ranganathan et al., 2015; Wang
et al., 2016). Heterotopic ossification was first labeled as “paraosteoarthropathy” by French
physicians Dejerne and Ceillier, being a consequence of traumatic paraplegia of patients during
World War I, and was further observed among soldiers returning from Iraq and Afghanistan
(Naraghi et al., 1996; Forsberg et al., 2009; Potter et al., 2010; Forsberg et al., 2014). In severe cases,
complete bony ankylosis as a result of HO is quite common, and more than 20% of patients appear
overt dysfunction in soft-tissue, joint, or suffer from chronic pain; The HOmorbidity of patients with
traumatic brain injury almost reach 50% (Vanden Bossche and Vanderstraeten, 2005; Balboni et al.,
2006; Zhang et al., 2014; Xu et al., 2018).

Inquiry about the underlying mechanism, such as cellular and mechanical processes, and earlier
diagnoses as well as more effective treatments, is the hotspot of current research. Scientists analyze
the proteomic biomarkers to identify early diagnostic indexes based on high-throughput mass
spectrometry and antibody arrays; Doctors seek to develop efficacious prophylactic management and
specific treatments via physical therapy, pharmaceutical intervention, operation, and radiation
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(Yuan et al., 2009; Coons and Godleski, 2013; Cheng et al., 2017;
Gomez-Puerto et al., 2019; Botman et al., 2020). Moreover,
patients with a high incidence of traumatic heterotopic
ossification, such as fractures and hip joint arthroplasty, need
to undergo prolonged postoperative immobilization or early
rehabilitation exercises. Post-traumatic motion and mechanical
loading are closely related to the occurrence of heterotopic
ossification. The role of passive motion rehabilitative therapy
after trauma, fracture, or invasive surgery for heterotopic
ossification is still controversial. In this review, we elaborate
on the clinical features and the fundamental biological
mechanisms of HO, and for the first time summarize the
separate influences of mechanical stimulations on HO based
on up-to-date researches.

CLINICAL FEATURES OF HETEROTOPIC
OSSIFICATION

Epidemiology
HO is often divided into three categories: traumatic, neurogenic,
and genetic. The prevalence of traumatic-induced HO following
burn injury has been reported to range from 0.2 to 4%, and up to
90% following the total hip joint arthroplasty or acetabular
fractures (Cipriano et al., 2009; Maender et al., 2010; Rath
et al., 2013; Medina et al., 2014; Medina et al., 2015). The
predilection age of trauma-induced HO is 20–40 years old.
Approximately half of HO occurs at this age. However, the
other half of the HO could present dispersedly from infancy
to late adulthood (Ackerman, 1958; Elmas and Shrestha, 2017; Xu
et al., 2017; Meyers et al., 2019; Kaliya-Perumal et al., 2020). The
morbidity of heterotopic ossification following central neurologic
injury has been calculated to range from 10 to 53% (Teasell et al.,
2010). Most studies regard traumatic brain-injured patients and
spinal cord injured patients as the same category. And the
prevalence of genetic HO, including fibrodysplasia ossificans
progressiva (FOP), progressive osseous heteroplasia (POH),
and Albright’s hereditary osteodystrophy (AHO) (Shore and
Kaplan, 2010), is extremely rare, affecting 1 in 2,000,000
people (Baujat et al., 2017). However, genetic HO is
consensually regarded as the most severe HO disease in
humans (Qi et al., 2017; Kaliya-Perumal et al., 2020). Male
sex, the amount, and the type of motion could also raise the
risk of HO. Men are slightly more vulnerable to HO with a sex
ratio of 3:2 (Meyers et al., 2019), perhaps due to the various
muscle mass, differential level of physical activity, repetitive
mechanical stress working as “microtrauma”, and distinct
hormonal signaling pathways affecting osteogenesis
(Ranganathan et al., 2015; Ko et al., 2016; Malca et al., 2018;
Dowdell et al., 2020; Rüdiger et al., 2020).

Clinical Presentation
The typical clinical features of HO include the limited range of
motion around the involved joint, complete bony ankylosis in
severe cases, and deformity in the cervical spine, elbow, shoulder,
fingers, jaw exostosis, or temporomandibular joint ankylosis
(TMJA) (Zhao et al., 2020). HO could occur almost anywhere

in the body, as long as it is associated with the periosteum.
Typically, HO initiates away from the periosteum, and then fuse
to the periosteum as a secondary feature (Meyers et al., 2019). But
it is rare to observe HO in some anatomic tissues, such as the
viscera or the diaphragm. This might be due to the lack of
pluripotent stem cells in these sites or because these sites are
not mechanically stimulated as often as the peri-articular areas
prone to heterotopic ossification. Moreover, HO can only be
detected as an asymptomatic finding on a radiograph. It is quite
challenging to identify the potential biomarkers for early disease
detection and monitoring, let alone the symptom present with
complications that usually confound diagnosis (Crowgey et al.,
2018). There are several ways to classify HO diseases. Four levels
of classification for HO around the hip were set by Brooker to
indicate the severity (Brooker et al., 1973). The Hastings and
Graham classification system classifies HO at the elbow into three
grades based on clinical and radiographic data (Hastings and
Graham, 1994).

The presentations of genetic HO are more serious than
traumatic-induced HO. Almost all FOP patients reported to
date were caused by Acvr1 mutation, and showing abnormality
early. Acvr1 gene locates on chromosome 2 (2q23-24) and
encodes a bone morphogenetic protein (BMP) type 1 receptor,
which is generally considered to be the major regulator in HO
pathophysiology (Wang et al., 2016; Haupt et al., 2019; Meyers
et al., 2019; Pearson et al., 2019; Stanley et al., 2019; Botman et al.,
2020; Kaliya-Perumal et al., 2020). Acvr1 mutation results in
abnormally enhanced sensitivity of this receptor to BMPs,
allowing for overexcitation of the BMP/SMAD pathway and
heterotopic ossification. The typical feature of FOP is multiple
skeletal deformities, involving fingers, toes, and cervical spine,
and eventually resulting in pain, movement, and function
limitation. POH is a genetic HO caused by inactivating
mutations in the GNAS1 gene, which result in decreased
expression or function of the alpha subunit of the stimulatory
G protein (Gsα) of adenylyl cyclase (Zhang et al., 2018). POH is
characterized by intramembranous and cutaneous ossification,
and could occur on the ear or fingers as an atypical phenotype
(Kaplan et al., 1994; Zhang et al., 2018).

However, HO may be alleviated by physical intervention for
traumatic-induced patients such as immobilization or Long-term
bedridden. Doctors routinely use immobilization for extremity
trauma patients (Kunz et al., 2014). But the mechanism that how
immobilization protects the injury site reduces pain and improves
healing remains unknown (Huber et al., 2020). Conversely,
heterotopic ossification may become more severe in patients
with insufficient immobilization and bed rest after fracture
injury or joint surgery.

Clinical Risk Factors
Physical Factors
There is a positive correlation between the formation of
heterotopic ossification and force application. People who are
over-exercised are more likely to develop heterotopic ossification
(Jones et al., 2019). The explanation may be that more active
people also have a higher probability of injury, excessive
stretching of soft tissues leads to abnormal activation and
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differentiation of stem cells in local tissues, or that greater muscle
mass leads tomechanical signal stimulation (Coons and Godleski,
2013; Dowdell et al., 2020; Rüdiger et al., 2020). Manifestations of
heterotopic ossification due to mechanical stimulation can also
occur in the temporomandibular joint (TMJ). Disturbance of
occlusal forces will lead to TMJ disorder, while chronic abnormal
forces and malposition of the joint will lead to heterotopic
ossification of the TMJ (Jensen et al., 2010). Mechanics-based
two- and three-dimensional finite element analysis and clinical
findings indicate that the occurrence of heterotopic ossification
after cervical total intervertebral disc replacement is characterized
by a strong correlation with regional stress. Compressive force
induces HO on the uncovered vertebral endplates, while shear
force causes HO in the anterior upper and lower parts of
vertebrae (Ganbat et al., 2014; Ganbat et al., 2016).

It is also quite common to apply some physical interventions,
such as immobilization, physical therapy, intermittent activity, or
massage for convalescent patients. However, the effect of those
physical interventions on HO remains controversial. The
transitory periods of forcible passive movements on
immobilized arthrosis could produce HO in the soft tissues
around the arthrosis within two to 5 weeks (O’Connor, 1998;
Michelsson and Rauschning, 1983). The bone volume of HO was
positively correlated with the duration of chronic bed rest and the
frequency of forcible movement. Interestingly, HO was not
induced when the limbs were merely immobilized without
forcible movement, or merely passively movement without
immobilization (Ellerin et al., 1999). Some researchers found
that immobilization totally inhibited the formation of HO (Huber
et al., 2020). Some researchers reported that surgery combined
with postoperative physical therapy and rehabilitation program
was effective to treat patients with heterotopic ossification of the
elbow (Salazar et al., 2014). The reasons for this variation may be
due to differences in the specific method, time of implementation,
and duration of immobilization or rehabilitation exercises,
besides the differences in the patients themselves collected in
those clinical studies. It takes approximately 5–6 weeks for CT-
visible heterotopic ossification to develop at the injury site, and
early rehabilitation activities performed at inappropriate time
points or approaches that apply additional forces to the injury site
will likely result in a higher incidence of HO.

Spinal Cord and Brain Injuries
Neurogenic HO usually occurs following central nerve injuries,
such as spinal cord injuries and cerebral lesions, and the
prevalence has been reported to range from 10 to 53% (Teasell
et al., 2010; Ranganathan et al., 2015). However, the mechanism
that how the nervous system regulates HO formation remains
incompletely understood. It has been demonstrated that
peripheral neurotransmitters influence osteoblast formation,
and the cortical bone density can be modulated by
mechanistic-neural pathways (Huang et al., 2019; Zhu et al.,
2019). Central neural signaling could precisely modulate bone
metabolism and homeostasis. Leptin, as well as neuropeptide Y
and cannabinoids, play an important role in the neural regulation
of bone (Idris et al., 2005; Yue et al., 2016). However, it is unclear
whether neural regulation of osteogenesis and osteolysis occurs in

the same way as heterotopic ossification. The current researches
are primarily devoted to the findings that osteogenic precursor
cells in heterotopic ossification originate from the endoneurium
and are strongly associated with local neuroinflammation leading
to the blood-nerve barrier (BNB) penetration (Lazard et al., 2015;
Olmsted-Davis et al., 2017; Davis et al., 2018). In general, thoracic
and cervical spine injury can lead to more severe heterotopic
ossification, which usually develops caudally at the level of injury,
most commonly in the hip joint (Brady et al., 2018). Unlike spinal
cord injuries, brain injuries often cause generalized heterotopic
ossification, including hip, knee, and elbow or shoulder joints
(Garland, 1988).

Empyrosis
In the case of burn patients, in addition to the typical clinical
phenomenon of thermal injury, the occurrence of heterotopic
ossification is also frequently observed. Heterotopic ossification is
highly probable when the burned area is more than 20% of the
body surface area (Mujtaba et al., 2019). In addition to the burn-
induced cascade reaction that promotes heterotopic ossification
formation, the scar tissue that forms around the periarticular will
also limit the range of motion of the joint, which in turn may
simultaneously influence heterotopic ossification from a
biomechanical approach. Theoretically, the inflammatory
cascades due to burns promote heterotopic ossification; the
limited fixation due to burning scars may inhibit heterotopic
ossification, or the mechanical force from small movements pulls
on a large area of tissue due to scars, thus promoting heterotopic
ossification. Furthermore, limited joint motion due to scar tissue
may also confuse the clinical diagnosis of heterotopic ossification,
which could also lead to restricted joint motion. Distinguishing
between the two commonly relies on radiographic studies (Suito
et al., 2018; Chen et al., 2019).

Surgery
Surgery that irritates the joint and its surrounding soft tissues
may lead to the occurrence of heterotopic ossification. Following
hip arthroplasty, the rate of heterotopic ossification occurrence
could approach approximately 40% (Ranganathan et al., 2015).
Surgery on the other joints, such as the knee, elbow, and
temporomandibular joint, may also result in heterotopic
ossification of the soft tissues surrounding them (Meyers et al.,
2019). Surgery, especially invasive surgery, can lead to local tissue
damage and pathologies such as ischemia and inflammation,
which are high-risk factors predisposing to the development of
heterotopic ossification. Generally, minimally invasive surgery
(MIS), including MIS anterolateral (MIS-AL) and minimally
invasive direct anterior approach (AMIS), could reduce the
risk of HO compared with the standard modified anterolateral
(STD-Watson-Jones) approach (Hürlimann et al., 2017).

Fracture
Fractures are an important risk factor for heterotopic ossification.
Fractures usually result from trauma, and surgery to treat
fractures is in turn invasive trauma to local tissues. HO
following orthopedic injury occurs most frequently after
acetabular fractures and elbow fractures. Interestingly, injury

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 10 | Article 7709313

Xu et al. Mechanics and Heterotopic Ossification

72

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


severity score, sex, and fracture type do not affect this risk, but
long-term mechanical ventilation is the specific risk of HO
(Firoozabadi et al., 2014). This is perhaps because of the
impact of mechanical ventilation itself on the patient, such as
anoxia; or because mechanically ventilated patients are typically
bedridden for long periods, which may influence the traditional
regulation of bone metabolism and the formation of heterotopic
ossification from the mechanism of mechanical signal
stimulation.

Management and Treatment
Physical Therapy
The effect of physical therapy on heterotopic ossification is
controversial, but physical factors, including postoperative
rehabilitation exercises, joint immobilization, and prolonged
bed rest, indeed influence heterotopic ossification. It has been
shown that complete joint fixation can eliminate heterotopic
ossification at the Achilles tendon in the mouse model (Huber
et al., 2020). Others, however, believe that early postoperative
exercise facilitates recovery and prevents the development of
heterotopic ossification (Aronen et al., 2006; Ranganathan
et al., 2015; Meyers et al., 2019). Physical therapy and
continuous passive motion machines have been used for the
postoperative management of total knee arthroplasty, for which a
commonly encountered surgical complication is heterotopic
ossification. Physical therapy has been found to be moderately
beneficial at 3 months after total knee arthroplasty (Lowe et al.,
2007; Manrique et al., 2015). A randomized controlled trial also
found that physical therapy was superior for total hip
replacement management (Mikkelsen et al., 2014). However,
burn surgeons often find an increased incidence of HO in
patients who are subjected to overly passive range of motion
exercises at the elbow to prevent skin contracture (Meyers et al.,
2019). The key to the discrepancy may lie in the duration and
timing of the immobilization. In the early post-traumatic phase,
immobilization facilitates the normal recovery of local tissues,
while repetitive passive movements may lead to an aggravation of
local micro-injuries, which in turn may lead to organization and
ossification of soft tissues. However, in the late stage of trauma,
the local micro-injury and inflammatory environment have been
almost recovered, at this time the appropriate passive movement
is conducive to the local tissue blood supply and physiological
metabolic activities, and is beneficial to the normal recovery of
soft tissues. On the contrary, long-term bed rest or
immobilization may lead to the deterioration of local
microcirculation status, and the abnormal local
microenvironment may induce the aberrant differentiation of
soft tissue stem cells into bone tissue, resulting in the occurrence
of heterotopic ossification.

Pharmaceutical Prophylaxis
The development of traumatic heterotopic ossification, as
previously mentioned, is in part secondary to surgery. It is
necessary to take some appropriate clinical interventions to
reduce the risk of postoperative heterotopic ossification.
Currently, the preventive medications that are more routinely
used for HO in clinical practice are NSAIDs and Bisphosphonates

(Ranganathan et al., 2015; Meyers et al., 2019). Essentially, the
origin of heterotopic ossification is the abnormal osteogenic
differentiation of stem cells in soft tissues. NSAIDs could
prevent heterotopic ossification by inhibiting the osteogenic
differentiation of progenitor cells (Chang et al., 2007; Chang
et al., 2009). However, the negative impact of NSAIDs on fracture
healing while preventing heterotopic ossification has to be taken
into account. Indomethacin increases the potential risk of long-
bone nonunion after orthopedic injuries (Marquez-Lara et al.,
2016; Duchman et al., 2019). Balancing the risk of heterotopic
ossification with malunion fractures is the key to appropriate
NSAID delivery.

Bisphosphonates are generally considered to be antiresorptive
agents that induce osteoclast apoptosis and inhibit calcification.
Yet some studies have indicated that it may have some preventive
effect on heterotopic ossification, although this conclusion is still
controversial (Vasileiadis et al., 2010; Zaman, 2012). Aside from
the first generation, subsequent bisphosphonates generally only
affect osteoclasts and thus are less likely to be able to inhibit the
production of heterotopic ossification. However,
bisphosphonates have indeed been found to be specifically
effective in patients with burns and spinal cord injuries
(Teasell et al., 2010; Ranganathan et al., 2015). This may be
due to the anti-angiogenic effect of bisphosphonates, which
reduces the occurrence of HO by depleting angiogenesis, or
because the binding of bisphosphonates to calcium affects the
mineralization of the bone matrix.

Some recent studies have also found that non-coding RNAs
may have a therapeutic effect on heterotopic ossification,
although the effect has yet to be demonstrated in large-scale
clinical trials. MicroRNAs targeting DKK1 and vascular
endothelial growth factor (VEGF), such as miR-17-5p, can
alleviate the heterotopic ossification present in Ankylosing
spondylitis (Qin et al., 2019). Similarly, microRNAs that can
regulate osteogenic genes, such as miR-203, which targets
RUNX2, can also inhibit heterotopic ossification (Tu et al.,
2016). Further studies of these non-coding RNAs could
contribute to the development of medicines that work
precisely at the post-transcriptional level for the treatment of
heterotopic ossification.

Radiation
Radiation therapy can be effective in preventing heterotopic
ossification after hip arthroplasty. The incidence of
heterotopic ossification without radiation after hip
arthroplasty is up to 90%, while the rate decreases to about
25% after radiation therapy (Popovic et al., 2014). Appropriate
prophylactic doses generally range from 400 to 800 cGy and
are given 24 h before or 72 h after surgery, and 700 cGy (25%)
administered postoperatively was more effective in preventing
HO than 400 cGy (42%) (Popovic et al., 2014; Liu et al., 2017).
Higher doses do not demonstrate increased prophylactic
benefit, and may bring additional side effects, including
progressive soft tissue contracture, delayed wound healing,
non-union fracture, joint stiffness, potential oncogenesis, or
inhibition of growth of hip implants (Hamid et al., 2010;
Milakovic et al., 2015). However, the efficacy of radiation
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prevention in joints other than the hip has not been adequately
studied.

Surgery
For heterotopic ossification antecedent to Booker IV
Classification, complete surgical resection is achievable as
the aberrant bone is free-standing with the hard bone tissue
at the joint. Surgical removal is the ultimate treatment for
patients who have limited effectiveness with other treatments
and are unable to be completely cured (Łęgosz et al., 2019).
However, it should be considered that surgical resection itself
is an invasive stimulus, which may lead to the recurrence of
heterotopic ossification after surgery, especially in susceptible
subjects. Otherwise, despite the successful removal of the
heterotopic ossified tissue, there is still a risk of recurrence
after the surgery.

BIOLOGICAL MECHANISMS OF HO

The type of ossification that occurs in heterotopic ossification
differs depending on the origin of the HO. Among the
hereditary HO, Progressive Osseous Heteroplasia (POH)
and Albright hereditary osteodystrophy (AHO) are
considered to be intramembranous ossification, while
fibrodysplasia ossificans progressiva (FOP) is considered to
be endochondral ossification (Kaplan and Shore, 2000). This is
due to their different pathogenesis. In trauma-induced HO, it
is generally accepted that this process occurs through
endochondral osteogenesis (Wong et al., 2020). Although
the precise mechanism has not been fully investigated,
pathological staining such as SOFG on traumatic HO shows
that cartilage formation occurs first and then ossification is
formed based on it (Yu et al., 2021). However, it is worth
exploring whether there is direct differentiation of MSC into
osteogenic progenitor cells resulting in intramembranous
ossification in traumatic HO. The single-cell sequencing
results from the traumatic HO injury site showed that some
of the MSCs differentiated into osteoblasts rather than
chondrogenic cells (Huber et al., 2020). Moreover, this
injury is usually accompanied by nerve and vascular
damage. This osteogenesis of neuro- and vascular-derived
cells may also affect the frequency of intramembranous vs.
endochondral ossification (Wong et al., 2020).

Cell Precursors of HO
One of the most significant differences between pathological
heterotopic ossification and physiological osteogenesis is the
distinct cellular source. The cellular origin of physiological
osteogenesis is the differentiation of preosteoblast, but the
precursor cellular origin of pathological heterotopic
ossification has not been fully investigated. Table 1
summarizes the cell types that contribute to heterotopic
ossification based on currently published studies. In general,
the cellular origin of pathological osteogenesis is not limited to
the osteoblast lineage, but potentially results from the pluripotent
differentiation of a diverse range of stem cells.

To be more specific, Ctsk was previously found to be able to
label osteoclasts and periosteum stem cells. Recently, a subgroup
of tendon-derived progenitor cells (TDPCs) was also found to be
labeled by Ctsk (Feng et al., 2020). TDPCs, as stem cells in tendon
tissue, are capable of multidirectional differentiation and would
differentiate towards osteogenesis under certain conditions
resulting in heterotopic ossification. In addition, mesenchymal
stem cells in tendon areas could also be activated to osteogenic
differentiation, which can be labeled by Nfatc1-Cre, Prx1-Cre,
and Dermo1-Cre. It is possible that some other cells with
proliferative capacity may also shift to osteogenic
differentiation in some conditions. For example, perivascular
cells (Gli1-Cre), PS+ and SP7+ cells from peripheral nerves,
and muscle satellite cells (Tie2-Cre/VE-Cadherin-Cre) all
contribute to HO. In conclusion, the cellular origin of HO is
relatively complicated, and a variety of cells have the potential to
shift to osteogenic differentiation in response to some specific
stimulus, which in turn promotes HO formation.

Inflammation and HO
Inflammation serves as an important microenvironmental
alteration in the development of heterotopic ossification.
Trauma leads to a state of local and systemic inflammation,
resulting in elevated inflammatory cytokines, such as TNFα, IL-
1β, IL-6, and MCP-1, which could cause abnormal activation of
mesenchymal stem cells in the soft tissues (Sung Hsieh et al.,
2017). Inflammation-associated cells, such as macrophages and
mast cells, also accumulate at the site of trauma-induced
heterotopic ossification and promote heterotopic ossification
(Convente et al., 2018). Lymphoid tissues also contribute to
the cellular niche in Heterotopic Ossification (Loder et al.,
2016). The main role of inflammation is to turn MSCs, such

TABLE 1 | Cells types contributing to heterotopic ossification.

Study Cell types Findings

Feng et al. (2020) Tendon-derived progenitor cells (Ctsk-Cre) Ctsk could label progenitor cells of HO in tendon
Kan et al. (2018) Interstitial/perivascular cells (Gli1-Cre) Gli1-Cre lineage cells contribute to endochondral HO
Agarwal et al. (2017) Tendon/periosteum/fascia (Scx-Cre) Scx-cre lineage cells contribute to trauma-induced and BMP-induced HO
Olmsted-Davis et al. (2017) Endoneurium (Wnt1-CreERT) PS+ and SP7+ cells from peripheral nerves contribute to HO
Dey et al. (2016) Endothelial/bone marrow/muscle interstitial cells (Mx1-Cre) Mx1-Cre lineage cells contribute to intramuscular HO
Agarwal et al. (2015) Mesenchymal progenitor cells (Nfatc1-Cre) ca-ACVR1fx/WT/Nfatc1-Cre+ mice develop heterotopic ossification
Regard et al. (2013) Mesenchymal progenitor cells (Prx1-Cre; Dermo1-Cre; Ap2-Cre) Loss of Gnas mice resulted in PHO
Kan et al. (2013) Pericyte/adipocyte/connective tissue interstitium (Glast-CreERT) Glast-creERT labeled progenitors contribute to HO at all stages
Medici et al. (2010) Endothelium/muscle satellite cells (Tie2-Cre/VE-Cadherin-Cre) Endothelium/muscle satellite-derived cells contribute to HO
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as normal fibroblast lineage, into the osteogenic lineage, initiating
the onset of heterotopic ossification.

Hypoxia and HO
The hypoxic state of local tissues after trauma may also initiate
heterotopic ossification. Regional tissue hypoxia causes the
activation of Hypoxia-inducible factors (HIFs), consisting of 1
of 3 α subunits bound to HIFβ (Meyers et al., 2019). HIFs could
increase the production of pro-angiogenic cytokines such as
VEGF, facilitating localized pathological bone tissue formation
(Dilling et al., 2010; Hwang et al., 2019). The inhibition of HIFs
could attenuate HO formation in experimental models (Agarwal
et al., 2016).

Signaling Pathways and HO
Most of the fundamental research on heterotopic ossification is
presently based on traumatic and genetic mouse models. In
general, hyperactivation of bone morphogenetic protein (BMP)
and consequent cascading activation of activin type-1 receptor
(ACVR1) is thought to lead to abnormal endochondral
osteogenesis, resulting in heterotopic ossification. The
dysregulation of Hedgehog (Hh) signaling also contributes to
many HO. However, recent studies have suggested that this
pathological osteogenic process may share similar biological
mechanisms with physiological osteogeneses, such as RUNX2,
a classical osteogenic transcription factor (Kim et al., 2020). CK2/
HAUSP pathway is a critical regulator of RUNX2 stability
because Casein kinase 2 (CK2) phosphorylates RUNX2 and
recruits the deubiquitinase herpesvirus-associated ubiquitin-
specific protease (HAUSP) to stabilize RUNX2 away from
ubiquitin-dependent proteasomal degradation. Meanwhile,
regional osteoclast activities are also enhanced during the
formation of heterotopic ossification, as the formation of the
bone marrow cavities depends on a dynamic balance between
osteogenesis and bone resorption. Furthermore, osteogenic-
osteoclastic crosstalk, such as the transforming growth factor-
beta (TGF-β) released after augmented osteoclastic activity that
recruits mesenchymal stromal/progenitor cells (MSPCs) in the
HO microenvironment for bone remodeling activities, also plays
an important role in heterotopic ossification (Wang et al., 2018).
PDGF-BB concentration was also increased during HO
progression. Therefore, the bone formation process of
heterotopic ossification is different but correlated to that of
normal physiological osteogenesis.

Some proteins that affect bone morphology and bone
development also influence the formation of heterotopic
ossification. Bone morphogenetic proteins (BMPs) are required
for multiple developmental processes, including bone and
cartilage formation (Kaliya-Perumal et al., 2020). BMPs bind
to ACVR1, which locates on the cell membrane surface
phosphorylating SMAD1/5/9(8). Phosphorylated SMAD1/5/
9(8) combine with SMAD4 and import into the nucleus,
regulating transcription that drives endochondral ossification
(Nosho et al., 2020). When BMP receptors bonded with
Activin A, SMAD2/3 is activated to regulate inflammation
(Rautela et al., 2019). The occurrence of FOP is also associated
with the R206H mutant substitution of Acvr1, enhancing the

response to various BMP ligands (Alessi Wolken et al., 2018).
Retinoic acid receptors (RARs) are morphogens that impact both
osteogenesis and chondrogenesis. There is a hypothesis that RAR
agonism could impede HO formation by preventing the
differentiation of prechondrogenic cells, and was partly tested
in a subcutaneous rBMP2-induced HO model in mice (Cash
et al., 1997; Shimono et al., 2010; Riedl et al., 2020). The
Hedgehog (Hh) pathway also plays an important role in HO.
Hh protein inhibits the GPCR-like protein Smoothened (SMO)
by binding to the Patched (PTCH1) receptor, leading to SMO
aggregation in cilia and phosphorylation of the cytoplasmic tail.
SMO mediates downstream signaling and induces GLI protein
detachment from SUFU. GLI1 and GLI2 proteins translocate to
the nucleus to activate the transcription of Hh target genes
(Regard et al., 2013; Feng et al., 2020). From this viewpoint, it
can be inferred that biomolecules such as microRNAs, LncRNAs,
and exosomes could also regulate heterotopic ossification by
influencing some specific key proteins that regulate bone
morphology and development, but this remains to further study.

MECHANICS AND HO

Mechanical Signals of HO
Heterotopic ossification can be modulated by mechanical signals.
It is generally acknowledged that mechanical stress stimulation
serves an important function in the physiological osteogenesis
process. Osteocytes can sense local mechanical cues and thus
induce bone formation, disuse-induced bone loss, and skeletal
fragility (Qin et al., 2020). The primary mechanosensors in

FIGURE 1 | Hypothesis of Mechanical Stimulation of HO: Mechanical
stress initiates osteogenic differentiation of mesenchymal stem cells (MSCs) in
soft tissue. Stem cell fate of MSCs shifts from favoring lipogenic cells to
osteogenic cells under mechanical loading. According to the published
literature about HO, after the mechanical loading, the activations of the YAP/
TAZ and mTORC1 pathway enable MSCs to differentiate into osteoblasts,
and the decrease in PPARγ expression reduces the differentiation of MSC into
adipocytes.
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osteocytes include osteocyte cytoskeleton, dendritic processes,
integrin-based focal adhesions, connexin-based intercellular
junctions, primary cilium, ion channels, and extracellular
matrix (Uda et al., 2017). It is now generally accepted that the
traditional regulation of bone metabolism is deeply affected by
mechanical stimulation signals. Current studies suggest that
heterotopic ossification, a pathological osteogenic process, is
modulated by mechanical signals as well. Mechanical stress
initiates osteogenic differentiation of mesenchymal stem cells
(MSCs) in soft tissue. Stem cell fate of MSCs shifts from favoring
lipogenic cells to osteogenic cells under mechanical loading
(Figure 1).

In the genetic-induced heterotopic ossification murine model,
Acvr1 mutant cells change the local microenvironment, resulting
in the skewing of the threshold for mechanical stimuli and
becoming more sensitive to the fate of chondral/osteogenic
lineages (Haupt et al., 2019). Stanley’s study revealed that
mechanistic signalings of Acvr1 mutant cells in the soft matrix
resemble that of non-mutant cells in the hard matrix, and are
dependent on RhoA and YAP1 signaling (Stanley et al., 2019).
Huber’s study found that mechanical stress can be transmitted to
mechanosignaling receptors on heterotopic ossified
mesenchymal progenitor cells through the extracellular matrix
and cell adhesion, such as through focal adhesion kinase signaling
and nuclear translocation of the transcription coenzyme TAZ,
which regulates the progression of heterotopic ossification
(Huber et al., 2020). However, the specific mechanism of
Acvr1 in the mechanical signaling process is not clear, and no
literature suggests a direct action in the mechanical signaling
cascades. Because mutations in Acvr1 result in increased
sensitivity to BMP, it is reasonable to believe that the Acvr1
response to mechanical stimulation is BMP-dependent.

Early studies have found that BMP-2, 4, 6, and 7 are
differentially expressed depending on the mechanical
stimulation (Rui et al., 2011). However, how BMPs can sense
mechanical signals has been unclear for a long time, and only
recently some studies have made advances. BMP-2 signaling
senses mechanical signs because of the cross-talk with YAP/
TAZ at the transcriptional level. In C2C12 cells, it was shown that
Smad1/5/8 can be phosphorylated and translocated into the
nucleus in the presence of BMP-2 signaling alone. However,
activation of osteogenic genes requires cytoskeletal tension-
induced nuclear accumulation of YAP/TAZ. BMP-2 signaling
responds to mechanical cues by sensing nucleocytoplasmic
shuttling of YAP/TAZ (Wei et al., 2020).

YAP and TAZ (also known as WWTR1) are two
protooncogene proteins that are widely known as
mechanosensors and mechanotransducers in various cell types
(Dupont et al., 2011). The link between YAP/TAZ and
mechanical signals is extensively explored in physiological
osteogenesis as well as in osteogenic lineage. YAP/TAZ
translocates from the cytoplasm to the nucleus depending on
ECM stiffness in MSCs (Panciera et al., 2017), and mechanical
niches trigger YAP/TAZ translocation contributing to
osteoblastogenesis (Xiong et al., 2018). MST1/2 complexes
with the scaffolding protein MOB kinase activator 1 (MOB1)
to phosphorylate many proteins involved in chromatin

condensation, apoptosis, and proliferation regulation,
including cytoplasmic large tumor suppressor kinases 1 and 2
(LATS1 and LATS2). Activated LATS1/2, in turn, binds to YAP/
TAZ and phosphorylates its serine, resulting in its retention in the
cytoplasm and non-entry into the nucleus for function (Kovar
et al., 2020). This part of YAP/TAZ pathway can interact with
multiple signaling pathways at different levels, such as Hippo. In
the process of heterotopic ossification, mesenchymal stem cells in
soft tissues could be activated for osteogenic differentiation and
become osteoblast rather than fibroblast after mechanical
stimulation by YAP/TAZ conduction. Moreover, once MSC
pluripotent differentiation leads to the initiation of the
osteogenic procedure, mechanical stimulation further promotes
the proliferation and differentiation of osteoblasts, resulting in
enhanced heterotopic ossification (Yu et al., 2018).
Simultaneously, osteoclast, as well as bone resorption activity,
can also be affected by mechanical stresses, and even osteoclast-
osteoblast crosstalk based on PIEZO1 could occur in response to
mechanical forces (Wang et al., 2020). However, it is still unclear
whether these osteoclast and osteoblast characteristics of normal
bone tissue are completely identical in heterotopic ossification.

LRP5/6 is a key receptor in the Wnt signaling pathway. Wnt
signaling plays a central role in the mechanotransduction of bone.
But the mechanisms by which wnt signaling senses
mechanotransduction signals specifically may be multi-
pathway and multi-level. YAP/TAZ is still an important part
of the Wnt pathway to sense mechanical signals. At the cell
membrane, YAP/TAZ binds to Axin on LRP6, allowing the
recruitment of β-transducin repeatase containing E3 ubiquitin-
protein ligase (BTRC) to the β-catenin disruption complex
(Azzolin et al., 2014). In the cytoplasm, YAP/TAZ binds to
the cytoplasmic Wnt signaling transducer disheveled segment
polarity protein 1 (DVL1) and inhibits its phosphorylation,
thereby abrogating its translocation to the nucleus (Barry
et al., 2013). Serine phosphorylated YAP and TAZ can also
bind directly to β-catenin (Zhou et al., 2017). In addition, it
can also function as a transcriptional co-activator. How the Wnt
pathway specifically senses mechanical signals in bone
metabolism has not been completely understood, but there is
no doubt that the wnt pathway plays an important role in the
biomechanics of bone.

In addition, mTORC1 signaling pathway serves as a
mechanosensor modulating HO. Rodgers found that mTORC1
could activate quiescent stem cells into an “alert state” thus
responding quickly to injury and stress conditions (Rodgers
et al., 2014). The activation of mTORC1 promotes
chondrogenesis and osteogenesis. Several studies have
demonstrated that mechanical loading could activate the
mTORC1 signaling pathway via inducing the phosphorylation
of p70 S6 kinase (Lin and Liu, 2019). Chen found mechanical
loading modulated HO of the tendon through the mTORC1
signaling pathway, furthermore, low elongation mechanical
loading attenuated HO, while high elongation mechanical
loading accelerated HO in vivo (Chen et al., 2017). Stimulated
by mechanistic signaling, mTORC1 activates Sirtuin 1 (Sirt1) in
the nucleus. Sirt1 is a histone deacetylase that acts as a novel bone
regulator and represses the expression of sclerostin gene SOST,
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which is usually regarded as a strong negative regulator of
osteoblast differentiation and bone formation (Liu et al., 2019).
SOST inhibits β-catenin and osteogenic gene expression after
binding to LRP5/6. Therefore, rapamycin, a selective mTORC1
signaling pathway inhibitor, is a potential therapeutic agent for
heterotopic ossification.

Mechanics and Stem Cell Fate
Mechanical interventions may affect HO formation by altering
stem cell fate. Stem cells are able to sense their mechanical
environments through various mechanosensors, including the
cytoskeleton, focal adhesions, and primary cilia (Chen and
Jacobs, 2013). The cytoskeletal tension could be generated by
the interacts between myosin and actin, which is important for
mechanically induced osteogenesis of stem cells. Focal adhesion is
formed by the adapter proteins linking the cytoskeleton to
integrins. Forces are transmitted based on these intact focal
adhesions (Nardone et al., 2017). The primary cilium is a
single, non-motile, antenna-like transmembrane structure,
acting as a microdomain to promote biochemical signaling
(Pala et al., 2017). Joint immobilization could reduce
mechanotransduction signaling (Kunz et al., 2014). In the
immobilized murine model, the fate of mesenchymal
progenitor cells was altered. Mobile MPCs expressed more
genes related to osteogenesis and chondrogenesis, such as

Sox9, Runx2, Spp1, and differentiated more into osteogenic
cells; immobile MPCs expressed more genes related to
lipogenesis, e.g. Fabp4, Pltp, Lrp1, and differentiated more into
lipogenic cells (Huber et al., 2020). In the osteogenic-lipogenic
fate shifting of MSCs caused by mechanical stimulation,
sclerostin signaling potentially serves as a significant regulator.
Unloading makes the expression of the sclerostin increase, which
downregulates two key osteogenic procedures: Wnt/β-catenin
signaling and YAP/TAZ transcriptional activity. The crosstalks
between Wnt/β-catenin and PPARγ influence the physiological
balance between osteogenesis and adipogenesis (Benayahu et al.,
2019). As the MSCs are mechanically stimulated and favor
osteogenic differentiation, heterotopic ossification becomes
severe. Conversely, when they favor lipogenic differentiation,
the amount of heterotopic ossified bone decreases. Therefore,
joint immobility after injury promotes adipogenesis rather than
osteogenesis, leading to reduced HO formation. And the use of
pharmacologic inhibitors altering mechanical signaling may
prove to be an effective therapy that spontaneously induces
adipogenesis at sites prone to osteogenesis. The accumulation
of fatty tissue in the joint near the site of injury is much less severe
than HO, leading to a more favorable outcome (McTighe and
Chernev, 2014).

Mechanical loading has also been demonstrated to cause stem
cell fate shift at the cellular level (Figure 2). Mechanical loading
appears to favor osteogenesis whereas unloading conditions seem
to promote adipogenesis. Passive stimuli including stiffness and
viscoelasticity, as well as active stimuli including tensile/
compressive stress and fluid shear stress, can affect cells
through the extracellular matrix (Benayahu et al., 2019).
Mechanical signals are conducted from the extracellular matrix
through the cytoskeleton to regulate intracellular actions. Some
important signaling pathways interact with mechanistic signals.
For example, Wnt ligand binding to low-density lipoprotein
receptor-related protein 5/6 (LRP5/6) coreceptors results in
the translocation of β-catenin to the nucleus and the enhanced
transcription of genes that govern osteogenesis, and its
interaction with the Hippo pathway that governs the activity
of YAP/TAZ, which is regarded as an important mechanistic
signaling transcription factor (Benayahu et al., 2019; García de
Herreros and Duñach, 2019). Even cells that already have
terminally differentiated into the myogenic lineage may be
reconverted to the osteoblast lineage under certain conditions:
C2C12, a myoblast cell line, can be converted to osteoblasts under
the combined effect of BMP and mechanical stimulation (Wei
et al., 2020). Although these studies demonstrate that cells of
other lineages are capable of osteogenic differentiation, it is not
clear whether the same phenotype occurs in vivo, resulting in
heterotopic ossification.

Beyond biological experiments, a significant influence of local
loading on the formation of heterotopic ossification has been
found through the mechanobiological algorithm system. By
designing a computational model of physiology that takes into
account both mechanical and biological factors, Rosenberg found
that modifications to the mechanical environment significantly
alter the shape and production of heterotopic bone. Adjustment
of load orientation, skin material characteristics, and location of

FIGURE 2 | Signaling pathway of HO due to mechanical stimulation:
Mechanical stimulation through mTORC1 leads to an increase in Sirt1
translocation into the nucleus, followed by a decrease in SOST secretion.
SOST can bind to LRP5/6 to inhibit β-catenin. Mechanical loading can
also activate Runx2/3 gene expression through YAP/TAZ. Thus mechanical
stimulation promotes osteogenic gene expression through mTORC1 and
YAP/TAZ. Meanwhile, mechanical stimulation can inhibit PPARγ gene
expression through the TGF-β pathway, thereby suppressing lipogenic
differentiation. These combined effects lead to a stem cell fate shift.
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maximum trauma resulted in four characteristic HO types.
Simulation of negative pressure dressings and tourniquet
application also served to highlight the behavioral
characteristics of HO (Rosenberg and Bull, 2018). Still, the
mechanobiological algorithm system needs further
development to make it more compatible with the real world.

These basic studies suggest that mechanical signals contribute
to the formation and development of heterotopic ossification, not
only initiate heterotopic ossification through the activation of
pluripotent differentiation of MSCs, but also influence the
osteogenic program during HO by affecting osteocytes,
osteoblasts, and osteoclasts. However, there are only a few
studies related to mechanical stimulation and heterotopic
ossification. Representative basic studies have only applied
fixed models for attenuated mechanical stimulation, but
elaborate force-added models also need to be investigated.
Relevant clinical studies are even more lacking. Further studies
in this direction would have guiding values for the development
of new drug targets for the treatment of HO, as well as for the
development of more effective clinical methods of physical
therapy and prophylaxis for HO.

In summary, the effects of mechanics on heterotopic
ossification could be considered from early, middle, and late
stages, respectively. In the early stage of HO, mechanical
stimulation may activate pluripotent differentiation of MSCs
in soft tissues, e.g., mTORC1 could activate quiescent stem
cells into an “alert state”, and promote chondrogenesis and
osteogenesis, leading to HO initiation. Mechanical stimulation
can alter stem cell fate, causing chromatin regions around
osteogenic genes to open. This results in more expression of
osteogenic-related proteins and promotes stem cell
differentiation toward osteogenesis. Clinically, early post-
trauma immobilization can attenuate or even prevent
heterotopic ossification. In the middle stage of HO, which
means heterotopic ossification has been triggered and
pathologic ossification is in the process of formation. Since
physiological osteogenesis and pathological osteogenesis have
some commonalities, they both require stem cells to
differentiate into osteoblasts, and the eventual ossifications are
dependent on the function of osteoblasts performing osteogenic
functions. Many fundamental signaling pathway, such as CK2/
HAUSP/RUNX2 are necessary for both physiologic bone
formation and HO. It can be assumed that the effects of
mechanics on HO may be similar to that on the osteogenesis
process. From the clinical perspective, patients at this stage may
still need as much bed rest as possible to avoid stress on the
trauma site and to prevent pathological osteogenesis. Conversely,
for the late stage, prolonged immobilization may instead lead to

local tissue inflammation and hypoxia, both of which are risk
factors for heterotopic ossification, and may lead to tissue
ischemia and necrosis along with malfunctioning. Therefore,
for patients potentially suffering from heterotopic ossification
in the initial stages of injury, early and adequate immobilization is
essential to avoid stress on the injured area. For those patients
who have been adequately immobilized after trauma, appropriate
rehabilitation exercises are recommended in the late stages to
prevent heterotopic ossification as well as promote functional
recovery.

SUMMARY

HO is a diverse pathologic process. We still do not fully
understand the cellular origin, pathogenesis, and underlying
mechanisms of HO, and have not yet developed a specific
treatment for HO beyond surgical resection. HO as a
pathological osteogenic activity involving pluripotent
differentiation of stem cells has many remaining aspects to be
explored, although it has similarities to physiological osteogenic
activity in some ways. This paper reviews the features of
heterotopic ossification according to the established literature,
with particular emphasis on the effect of mechanical stimuli on
HO. However, the specific biological mechanism of this effect
needs to be further investigated.
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Osteoporosis (OP) is a systemic disease susceptible to fracture due to the decline of bone
mineral density and bone mass, the destruction of bone tissue microstructure, and
increased bone fragility. At present, the treatments of OP mainly include
bisphosphonates, hormone therapy, and RANKL antibody therapy. However, these
treatments have observable side effects and cannot fundamentally improve bone
metabolism. Currently, the prescription of herbal medicine and their derived proprietary
Chinese medicines are playing increasingly important roles in the treatment of OP due to
their significant curative effects and few side effects. Among these prescriptions,
Gushukang Granules (GSK), Xianling Gubao Capsules (XLGB), and Er-xian Decoction
(EXD) are widely employed at the clinic on therapy of OP, which also is in line with the
compatibility principle of “different treatments for the same disease” in herbal medicine.
However, at present, the functional interpretation of “different treatments for the same
disease” in herbal medicine still lacks systematic quantitative research, especially on the
detection of key component groups and mechanisms. To solve this problem, we designed
a new bioinformatics model based on random walk, optimized programming, and
information gain to analyze the components and targets to figure out the Functional
Response Motifs (FRMs) of different prescriptions for the therapy of OP. The distribution of
high relevance score, the number of reported evidence, and coverage of enriched
pathways were performed to verify the precision and reliability of FRMs. At the same
time, the information gain and target influence of each component was calculated, and the
key component groups in all FRMs of each prescription were screened to speculate the
potential actionmode of different prescriptions on the same disease. Results show that the
relevance score and the number of reported evidence of high reliable genes in FRMs were
higher than those of the pathogenic genes of OP. Furthermore, the gene enrichment
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pathways in FRMs could cover 79.6, 81, and 79.5% of the gene enrichment pathways in
the component-target (C-T) network. Functional pathway enrichment analysis showed
that GSK, XLGB, and EXD all treat OP through osteoclast differentiation (hsa04380),
calcium signaling pathway (hsa04020), MAPK signaling pathway (hsa04010), and PI3K-
Akt signaling pathway (hsa04151). Combined with experiments, the key component
groups and the mechanism of “different treatments for the same disease” in the three
prescriptions and proprietary Chinese medicines were verified. This study provides
methodological references for the optimization and mechanism speculation of Chinese
medicine prescriptions and proprietary Chinese medicines.

Keywords: osteoporosis, Gushukang Granules, Xianling Gubao Capsules, Er-xian Decoction, herbal medicine,
functional response motif

INTRODUCTION

Osteoporosis (OP) is the most common bone disease
characterized by decreased bone mass and degradation of bone
microstructure. The main clinical manifestations are decreased
bone density, chronic pain, decreased mobility, and so on (Miller,
2016). The common pathogenic factors include aging, decreased
estrogen, nutritional disorders, poor living habits, and long-term
use of steroids, anti-cancer drugs, diuretics, and so on. The main
manifestations of OP are the decline of bone mineral density and
bone quality. Its symptoms are most prone to systemic metabolic
diseases such as fracture, low back pain, shortening of body
length, bone pain, and even weakening of respiratory function
(Zhao and Wang, 2003). It has a significant influence on the
quality of life of patients and brings a heavy economic burden to
families and society. OP is universal and can affect men and
women of all races, especially older women who have passed
menopause (Lane et al., 2000).

The current treatment drugs for OP mainly include estrogen
(Stefanick, 2005), bisphosphonates (Delmas, 2005), calcitonin
(Silverman, 2003), and parathyroid hormone (Neer et al.,
2001; Srivastava and Deal, 2002). After treatment, the
symptoms of osteoporosis patients will be alleviated, but these
treatments cannot radically enhance bone metabolism and
maintain the balance between osteoclasts and osteogenesis. In
addition, the side effects of drugs also bring multiple risks to
patients, including some side effects, even toxicity to the kidney,
blood, and liver; gastrointestinal side effects; and
immunosuppression (Tella and Gallagher, 2014). After taking
estrogen receptor modulator drugs, it can also cause endometrial
hyperplasia and uterine bleeding (Papapoulos andMakras, 2008).

Herbal medicine has been diffusely used at the clinic on OP
therapy due to its fewer side effects and irritation (Zhang et al.,
2016). It is known that Gushukang Granules (GSK), Xianling
Gubao Capsules (XLGB), Er-xian Decoction (EXD), Liuwei
Dihuang Pills, and Guishen Pill are effective in treating OP. In
the treatments of OP, different prescriptions have the same and
different targets and pathways, which fully figure out the action
mode of “multi-components-multi-targets-multi-pathways” on
the clinical therapy of complex diseases. How to systematically
quantify the hidden mode of action in herbal prescriptions is the

foundation and crux to interpret the principle of “different
treatments for the same disease” in herbal medicine.

Among these prescriptions, GSK, XLGB, and EXD are widely
used in the clinic. GSK contains seven herbs: Epimedium
brevicornum Maxim., Radix Rehmanniae Preparata, Auricularia
auricular (L.) Underw., Astragalus mongholicus Bunge, Cucumis
sativus L., Davallia mariesiiMoore ex Bak., and Salvia miltiorrhiza
Bge. XLGB consists of six herbs: Epimedium brevicornumMaxim.,
Rehmannia glutinosa (Gaetn.) Libosch. ex Fisch. et Mey., Salvia
miltiorrhiza Bge., Dipsacales, Anemarrhena asphodeloides Bunge,
and Psoralea corylifolia Linn. EXD has six kinds of herbs:Curculigo
orchioides Gaertn., Epimedium brevicornum Maxim., Angelica
sinensis (Oliv.) Diels, Morinda officinalis How., Phellodendron
chinense Schneid., and Anemarrhena asphodeloides Bunge.
Clinical studies have shown that GSK can increase sex
hormones (estrogen and androgen), inhibit bone absorption,
effectively improve bone mineral density (BMD), reduce bone
loss, increase osteocalcin (OC) and blood alkaline phosphatase
(ALP) levels, and enhance osteoblast activity, which can effectively
prevent and treat OP (Li et al., 2001; Wang et al., 2007; Wang et al.,
2018a). Pharmacological research has shown that XLGB can
improve bone metabolism, promote osteogenic effects, inhibit
osteoclasts, increase bone density, and facilitate bone formation
(Zhu and Hou, 2020). Clinical studies have also shown that XLGB
has a therapeutic effect on BMD in patients with OP, which can
effectively increase BMD, improve bone metabolism, and control
bone loss (Wu et al., 2017). Pharmacological studies have shown
that EXD not only increases the proliferation of osteoblasts and
alkaline phosphatase (ALP) activity but also reduces the tartrate
resistant acid phosphatase (TRAP) activity of osteoclasts (Li et al.,
2017). Additionally, EXD affects the calcium signaling pathway
andmediates apoptosis by activating the expression of downstream
CAMK and activates downstream JNK, AKT, and ERK through
upstream TNF-α, affecting the apoptosis process of bone-related
cells (Yang et al., 2021). However, the pharmacodynamic material
foundation and related molecular mechanism of different
prescriptions in the therapy of OP under the concept of
“different treatments for same disease” are still indistinct.
Therefore, it is necessary to scientifically decipher the material
basis and molecular mechanism of the efficacy of different
prescriptions on the same disease.
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Herbal informatics is an interdisciplinary subject that
integrates Chinese medicine, computer science, biology,
mathematics, multi-directional pharmacology, and other
disciplines. It researches complex herbal medicine systems by
systematically observing the response and effect of drugs on
pathogenetic gene networks (Wang et al., 2021). Herbal
informatics and network pharmacology have been diffusely
used in the “same disease and different treatments” of herbal
medicine. For example, Wang Kexin et al. clarified the molecular
mechanism of DSD, GFD, and HGWD in treating rheumatoid
arthritis based on herbal informatics (Wang et al., 2020a). Gao
Yao et al. used the method of herbal informatics to analyze the
mechanism of Xiaoyao Powder and Kaixin powder in the
treatment of depression (Gao et al., 2018). Zhao Can et al.
discussed the possible mechanism of Fuling Xingren Gancao
Decoction and Ju-Zhijiang Decoction in treating coronary
atherosclerotic heart disease based on the herbal informatics
method (Zhao et al., 2019). With the continuous in-depth
intersection of life sciences, chemistry, computer and
information sciences, and other disciplines with drug research
and the optimization and upgrading of network visualization
tools and network construction analysis technologies, the
research ideas and technical methods of herbal informatics
will be better used. The study of the mechanism of the
“different treatments for the same disease” of Chinese
medicine provides more reference for the study of
modernization of Chinese medicine (Li and Zhang, 2013).

In this study, a computational model based on herbal
informatics was designed to discover the Significant Different
Functional Modes (SDFMs) of different prescriptions in the
therapy of OP. In order to further decode the key components
group of different prescriptions on OP, a genetic algorithm-based
optimization model was designed to figure out the FRMs from
SDFMs. The distribution of high relevance score, the number of
reported evidence, and the coverage of the enrichment pathway of
target genes in FRMs were used to evaluate the accuracy and
reliability of the FRMs detectionmodel. Then, the effective proteins
in the FRMs of each prescription were employed to screen the key
components group of each prescription. The importance scores of
the components in the key components group of each prescription
were obtained based on information gain and target influence, and
the effects of these key components were verified by cell
experiments. Finally, the potential action mode of different
prescriptions in treating the same disease was speculated based
on the key components group of each prescription.

In conclusion, according to the herbal informatics strategy
proposed in this study, the main mechanisms and relevant
pharmacological effects of different treatments of OP can be
detected through FRMs, which provide a new network-based
method for herbalmedicine in the clinic therapy of complex diseases.

MATERIALS AND METHODS

Flowchart
The schematic diagram of the whole process is shown in Figure 1,
and the detailed procedure is described as follows: 1) chemical

compounds of GSK, XLGB, and EXD were extracted from the
published databases, and a widely used ADME screening model
was used to screen potential active components in these
compounds. Then, the online webserver is used to predict the
targets of these active components. 2) The discovery model of the
functional response motif was designed to optimize the C-T
network and obtain Significant SDFMs. SDFMs were
optimized by a genetic-based optimization model to obtain
FRMs. 3) The reliability and accuracy of the FRMs detection
model were validated by the distribution of the relevance score,
the number of reported evidence, and coverage of functional
pathways. 4) The information gain and target influence were
combined to score the components in the key components group
of each prescription. 5) The effectiveness of high-scored and
randomly selected components in the key components group
were performed in the in vitro experiments to confirm the
precision of our proposed key components group selection
model. 6) Finally, the potential action mode of different
prescriptions treating the same disease mechanism was
inferred by function analysis of the key components group in
each prescription.

Component Collection
The original components in the three prescriptions were extracted by
searching the Traditional Chinese Medicine Integrated Database
(TCMID 2.0), TCM Database@Taiwan, and Traditional Chinese
Medicine Systems Pharmacology Database and Analysis Platform
(TCMSP) with the herbs in GSK, XLGB, and EXD as keywords.
Open Babel (version 2.4.1) was used to convert the structures of all
chemical components into canonical SMILES. The Similarity
Ensemble Approach (SEA), Hit Identification and Target
Prediction (HitPick), and SwissTargetPrediction were used to
predict the drug targets of GSK, XLGB, and EXD.

SwissADME Screening
Lipinski’s Rule of Five is the five elementary principles for selecting
drug-like molecules, put forward by the pharmaceutical chemist
Christopher Lipinski in 1997. Compounds that conform to the
Lipinski Rule of Five will have better pharmacokinetic features and
higher bioavailability duringmetabolism in vivo, so they tendmore
to become oral drugs. In drug research and development, the
Lipinski Rule of Five is used in the preliminary screening of the
compound library to exclude those molecules that are unfit for
drugs, narrow the range of selecting, and economize the cost of
drug research and development. The detailed description of
Lipinski’s Rule of Five is that the molecular weight of the
compound is less than 500 Da. The number of hydrogen bond
donors (including hydroxyl groups and amino groups) in the
structure of the compound does not exceed 5. The number of
hydrogen bond receptors in the compound does not exceed 10. The
logarithmic value (logP) of the lipid-water partition coefficient of
the compound is between −2 and 5. The quantity of rotatable
bonds in the compound does not exceed 10 (Lipinski et al., 2001).
The bioavailability score indicates the probability that a compound
has at least 10% oral bioavailability or a measurable Caco-2
permeability in rats. Gastrointestinal absorption (GI absorption)
indicates that the drug has good oral bioavailability (Daina et al.,
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FIGURE 1 | The flowchart of our network pharmacology approach, including component collection and target prediction (A). Using the function motif discovery
model to find Significant Different Functional Modes (SDFMs) in the three prescriptions and then using the genetic-based optimization model to figure out the Functional
Response Motifs (FRMs) (B). Validation of FRMs, screening key component groups, and experiment validation and potential mechanism analysis (C).
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2017). Our research screened the active components of GSK,
XLGB, and EXD according to Lipinski’s Rule of Five,
bioavailability, and gastrointestinal absorption. Among them,
the bioavailability is defined between 0.3 and 0.55.

Network Construction
Cytoscape (version 3.7.2) was employed to build a C-T network,
and its plug-in NetworkAnalyzer was used to analyze network
topology parameters.

Functional Enrichment Analysis
Function enrichment is conducted based on KEGG (Kyoto
Encyclopedia of Genes and Genomes). The hypergeometric
distribution model is employed to calculate the significance of the
biological pathway containing the target gene. The
Benjamini–Hochberg method was used to correct the p-value. All
statistical analysis was performed using the R language (version 4.0.5).

Explore the Significant Different Functional
Modes
In order to find SDFMs in the three prescriptions for treating OP,
we designed the below function motif discovery model.

The function motif discovery model is based on the
combination of random walk and information compression. It
uses the double-layer Huffman coding method to associate
community discovery with information coding, records the
paths generated by a random walk in the graph, and finds the
community division with the shortest length. The average coding
length of each step described in the randomwalk can bemeasured
by the following prescription:

L(M) � qgH(Q) +∑m
i�1
piNH(pi),

where M indicates the way of community division and M
indicates that nodes are divided into M communities.

qg � ∑m
i�1qig means the proportion of all codes representing

the community’s name in the code, and qg is equal to the
probability of jumping out of community i.

H(Q) � − ∑m
i�1

qig∑m

j�1 qjg
log( qig∑m

j�1 qjg
) stands for the average

length of bytes required to encode a community name.
piN � ∑α∈ipα + qig shows the code proportion of all nodes

(including jump nodes) belonging to community i in the code.
H(Pi) denotes the average byte length required by all nodes in

the coding community i. The average coding length L(M) of each
step is the weighted sum of two parts. One part is the average byte
length required by the coding community name, and the other
part is the average byte length required by the coding node in each
community. The prescription can be expressed as

H(Pi) � − qig
qig +∑β∈ipβ

log⎛⎜⎝ qig
qig +∑β∈ipβ

⎞⎟⎠

−∑
α∈i

pα
qig +∑β∈ipβ

log⎛⎜⎝ pα
qig +∑β∈ipβ

⎞⎟⎠,

Detection of Functional Response Motifs
In order to further screen the SDFM, we designed a novel genetic-
based optimization model, which is described in detail as follows:

max V � ∑n
i�1
vixi,

W � ∑n
i�1
wixi ≤C,

xi � 0/1, i � 1, 2, 3 . . . , n,

The genetic algorithm (GA) is a random walk method that
simulates the evolution of the genetic mechanism of the
evolutionary laws of nature. It takes all individuals in a
population as the object and efficiently searches a coded
parameter space through genetic operations of selection,
crossover, and mutation. As a new global optimization search
algorithm, the genetic algorithm has the obvious characteristics of
simplicity and generality, strong robustness, high efficiency, and
practicality. It can be applied in all kinds of fields, has achieved
good results, and has become one of the critical, intelligent
algorithms by degrees. The calculation process is as follows:

1) Random generation of the initial population: the chromosome
coding method is represented by a binary column code of
length n. When xi � 0, the binary code is 0. Otherwise, the
binary code is 1. A binary column is a chromosome.

2) Individual evaluation: under the premise of not exceeding C,
vi and ∑n

i�1vixi were used to evaluate individual fitness.
3) Individual selection: the roulette model is used to convert

individual fitness into the area of the roulette wheel in
proportion and rotate the roulette wheel. Finally, the
individual corresponding to the landing position is selected.

4) Two points cross: two points are randomly set in the
individual code, and some genes are exchanged in the
middle of the two intersection points.

5) Basic mutation, a number is randomly generated for each
chromosome, indicating whether the chromosome needs to be
mutated. If a mutation is needed, a random variable is
generated, indicating which bit of the chromosome to modify.

6) A new population is formed, and the iteration continues until
the termination condition is met: W � C.

Pathway Network Integrating
Cytoscape (version 3.7.2) was used to combine osteoclast differentiation,
calcium signaling pathway, MAPK signaling pathway, and PI3K-
Akt signaling pathway into an integrated pathway.

Key Component Groups Screening
In order to screen the key component groups in different
prescriptions, we designed a novel component importance
calculation method that combined the information gain and
target influence. We sort all the components in descending order
of the corresponding target number and calculate the information
gain Z of each component. The degree of information gain
represents the contribution of increased coverage to the whole
targets after adding the component. Higher information gain score
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indicates the influence and the importance of the component in the
C-T network of each prescription. There are n components, the
corresponding target set of the components is denoted by TCi, the
target set of all FRMs is denoted byTall, and the target number of all
FRMs is denoted by TA. The information gain Z of components is
calculated according to the following prescription. Then, we
standardize the target number T of the component and the
information gain Z and calculate the Q score. That is,

ΔZn � {(TCn − ∪n−1
i�1 TCi) ∩ Tall

TA
, i � 1, 2, 3 . . . , n},

Tnor � Tx − Tmin

Tmax − Tmin
(1< x < n ),

ΔZnor � ΔZx − ΔZmin

ΔZmax − ΔZmin
(1< x < n),

Q � �����������
Tnor × ΔZnor

√
.

Experiment Validation
Cell Culture and Drug Treatment
Mouse preosteoblastic MC3T3-E1 cells were purchased from the
American Type Culture Collection (ATCC) and stored inMinimal
Essential Medium, Alpha (α-MEM), supplemented with 10% fetal
bovine serum (FBS), 100 units/mL of penicillin G, and 100 μg/ml of
streptomycin at 37°C under 5%CO2. Cells were seeded into 96-well
plates (1×103 cells per/well) for 24 h and then treated with 5 μM
quercetin, isoliquiritigenin, rutaecarpine, isofraxidin, and
secoisolariciresinol for 24 and 48 h. Quercetin, isoliquiritigenin,
rutaecarpine, isofraxidin, and secoisolariciresinol (≥98% purity by
HPLC) were dissolved in DMSO.

Cell Viability Assay
Cell Count Kit-8 (CCK-8) assay was utilized to measure cell
viability. After cell culture, add 10 μl CCK8 to the culture medium
and incubate at 37°C for 2 h. The absorbance was measured at
450 nm with a microplate reader (TECAN, infiniteM200).

RESULTS

Collection of Chemical Components and
Determination of High-Concentration
Components
We collected the herbal components and concentrations of GSK,
XLGB, and EXD from the reported literature. The detailed
information is shown in Table 1 and Supplementary Table
S1. The results show that the chemical composition and
concentration of the herbal medicine provide experimental
auxiliary evidence for searching for active components and
provide a valuable reference for further analysis.

Screening of Active Components for GSK,
XLGB, and EXD
Seven herbs of GSK with 672 components, six herbs of XLGB
with 540 components, and six herbs of EXD with 752

components were extracted from the Traditional Chinese
Medicine Integrated Database (TCMID 2.0), TCM@TAIWAN,
and Traditional Chinese Medicine Systems Pharmacology
Database and Analysis Platform (TCMSP). Generally speaking,
each Chinese medicine compound contains multiple herbal
medicines, and each herbal medicine contains a series of
chemical components. The pharmacological properties of these
components are closely related to their therapeutic effects.
Ingredients with better pharmacological properties may have
positive therapeutic effects. Therefore, before analyzing the
pharmacological effects, we first screen for pharmacological
properties. SwissADME was used to screen the components in
accordance with Lipinski’s Rule of Five, gastrointestinal
absorption, and bioavailability. After SwissADME screening,
271, 242, and 344 active components were obtained in GSK,
XLGB, and EXD, respectively (Table 2, Supplementary Table
S2). Our further analysis revealed 88 common components in the
three prescriptions, 65, 37, and 232 specific components in GSK,
XLGB, and EXD, respectively. In addition, we found that each of
the herbs from GSK, XLGB, and EXD had its own chemical
composition. There were many common components among the
three prescriptions, while there were few common components in
the prescriptions. Each prescription depended on its unique
components (Figure 2). These results indicated that three
prescriptions may play a role in treating OP by influencing
both the common and specific components.

Target Prediction and C-T Network
Construction
Cytoscape was used to construct a C-T network to analyze the
relationships between the active components and targets of the
three prescriptions (Supplementary Figure S1). The results
showed 271, 240, and 339 active components; 1,264, 1,157,
and 1,445 targets; and 9,701, 7,001, and 10,333 interactions in
the GSK network, XLGB network, and EXD network,
respectively. Then, we use the Cytoscape plug-in tool
NetworkAnalyzer to further analyze the topological parameters
of the three prescription C-T networks. After analyzing the
network topology in the C-T network of GSK, the average
degree of the components was 35.80. Among them,
phenylalanine had the highest node degree, acting on 207 drug
targets (degree: 207), and tyrosine acted on 128 targets in
descending order (degree: 128). Quercetin acted on 120 targets
(degree: 120). Studies have shown that high phenylalanine levels
can affect bones, cause bone-related diseases, and affect bone
mineral density (BMD) in a lower way (Mendes et al., 2012).
Phosphorylation of tyrosine residues is key to the regulation of
osteoclast production and bone resorption activity (Shalev and
Elson, 2019). Phenylalanine can be converted to tyrosine, and the
metabolic state of phenylalanine is related to normal body growth
and maintenance of normal physiological functions (Westbroek
et al., 2001). In addition, phenylalanine interacts with the
calcium-sensing receptor (CaSR), affecting the body’s calcium
metabolism and bone balance (Conigrave et al., 2008). Animal
experiments have proved that OP can be prevented by
intervening phenylalanine metabolism in rats (Liu et al., 2012).
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Quercetin can restrain the expression of ERK1/2, MAPK
mRNA, and protein, thereby inhibiting the conduction of the
ERK1/2-MAPK signaling pathway, promoting the expression of
specific genes in bone and osteoblast generation, increasing
bone mineral density, and preventing OP (Casado-Díaz et al.,
2016). In the C-T network of GSK, the average degree of the
target was 7.67. Among them, the highest degree of the node was
Microtubule Associated Protein Tau (MAPT), which targeted 172
compounds (degree: 172), followed by Tyrosyl-DNA
phosphodiesterase 1 (TDP1), which targeted 135 compounds
(degree: 135). Muscleblind Like Splicing Regulator 1 (MBNL1)
targeted 83 compounds (degree: 83).

In the C-T network of XLGB, the average degree of the
components was 30.48. Among them, phenylalanine had the
highest node degree, acting on 202 drug targets (degree: 202),
and tyrosine acted on 124 targets in descending order (degree:
124). Quercetin acted on 106 targets (degree: 106). The average
degree of the target was 6.05. Among them, the highest degree of
the node was Microtubule Associated Protein Tau (MAPT),
which targeted 105 compounds (degree: 105), followed by
Tyrosyl-DNA phosphodiesterase 1 (TDP1), which targeted 74

compounds (degree: 74). Carbonic anhydrase 7 (CA7) targeted 63
compounds (degree: 63).

In the C-T network of EXD, the average degree of the
components was 30.58. Among them, asperglaucide had the
highest node degree, acting on 267 drug targets (degree: 267),
and phenylalanine acted on 197 targets in descending order
(degree: 197). n-cis-Feruloyltyramine acted on 177 targets
(degree: 177). The average degree of the target was 7.16. Among
them, the highest degree of the node was cytochrome P450 family 1
subfamily B member 1 (CYP1B1), which targeted 94 compounds
(degree: 94), followed by carbonic anhydrase 3 (CA3), which
targeted 90 compounds (degree: 90). Carbonic anhydrase 7
(CA7) targeted 86 compounds (degree: 86). Through the
comparative analysis of the number of targeted genes, it can be
seen that GSK had a stronger control rate on the C-T network.

The results showed that, in the three prescriptions, there were
a relationship between one component corresponding to multiple
targets and a phenomenon of different components acting on the
same target, consistent with the function of “multi-components-
multi-targets-multi-pathways” in herbal medicine, reflecting the
complicacy of the underlying mechanism of herbal medicine.

Screening Significant Different Functional
Modes and Functional Response Motifs
Due to the large and complex C-T network of the three
prescriptions, it is difficult to quickly extract the most
important active ingredient information. Therefore, we
designed a novel function motif discovery model to screen
the C-T network to filter the modes that can represent the
complete C-T network. The results showed that we predicted
22, 23, and 30 SDFM in GSK, XLGB, and EXD, respectively

TABLE 1 | The experiments confirmed high concentration components of GSK, XLGB, and EXD.

Herb Method Component Concentration
(mg/g)

Prescription References

Epimedium
brevicornum Maxim.

HPLC Icariin 2.025 GSK SZ Sun, HE Yan-Li, YW Wen, & YT Chen. (2019). Simultaneous
determination of six components in Gushukang Granula and
Gushukang Capsules by HPLC-ms/ms. Chinese Journal of
Pharmaceutical Analysis

Radix Rehmanniae Preparata Acteoside 0.043
Astragalus mongholicus Bunge Calycosin-7-

glucoside
0.06

Salvia miltiorrhiza Bge. Tanshinone ⅡA 0.0858
Davallia mariesii Moore ex Bak Naringin 0.1049
Epimedium brevicornum Maxim HPLC Icariin 2.119 GSK YE Guangming, Y. Jiang, Y. Chen, GU Liping, & X. Xue. (2010).

Simultaneous determination of contents of icariin and naringin in
Gushukang Granules by HPLC method. Pharmaceutical Care
and Research

Davallia mariesii Moore ex Bak. Naringin 0.163

Epimedium
brevicornum Maxim.

HPLC Icariin 1.164 XLGB Chen, Z., Xiaoxia, L., Chen, G., & Chen, J. (2017). One-step
assay for five components in Xianling Gubao Capsule by HPLC
method. Journal of Pharmaceutical Practice

Epimedin C 7.068
Dipsacales Asperosaponin Ⅵ 8.458
Psoralea corylifolia Linn. Psoralen 0.776

Angelicin 0.838
Dipsacales HPLC Asperosaponin Ⅵ 8.458 XLGB Gong, QD, Chen, ZL, and Chen, G. Q. (2016). Determination of

asperosaponin Ⅵ, psoralen, and angelicin in Xianling Gubao
Capsule by HPLC. Chinese Traditional and Herbal Drugs

Psoralea corylifolia Linn. Psoralen 0.776
Angelicin 0.838

Epimedium
brevicornum Maxim.

HPLC Epimedin B 0.89 EXD Gao, F., Liu, Y., H Li, Fan, F., & Pharmacy, D. O. (2019).
Determination of epimedium flavonoids in Er-xian Decoction by
high-performance liquid chromatography. World Chinese
Medicine

Epimedin C 0.701
Icariin 0.487
Icariside II 1.027

TABLE 2 | The number of active components before and after SwissADME
screening in GSK, XLGB, and EXD.

Formula Chemical composition
quantity before SwissADME

screening

Chemical composition
quantity after SwissADME

screening

GSK 672 271
XLGB 540 242
EXD 752 344
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(p < 0.05). In order to figure out the FRMs and remove the noise
in the SDFM in each prescription. We designed another
genetic-based optimization model to optimize the SDFM
and finally obtained 11, 13, and 15 FRMs in GSK, XLGB,
and EXD, respectively (Figures 3–5).

Validating FRMs
In order to verify whether the entire C-T network can be replaced
by the predicted FRMs, we propose two criteria to evaluate the
accuracy and dependability of FRMs. The first criterion is
whether the relevance score and the number of reported
evidence of FRMs-related high reliable genes, defined in the
following section, are higher than those of the pathogenic
genes of OP. High relevance score and the high number of
reported evidence indicate that the genes in FRMs can cover
the high reliable pathogenic genes to the maximum extent. The
second criterion is whether the gene enrichment pathways in
FRMs can cover the gene enrichment pathways in the C-T
network as much as possible. The high pathway coverage
indicates that FRMs can cover most of the gene enrichment

pathways in the C-T network and have the most likely function of
the prescription. Details of the results are as follows:

Validating FRMs Based Relevance Score and the
Number of Reported Evidence
We extracted the pathogenic genes of OP with relevance score
and the number of reported evidence from GeneCards database
and DisGeNet database.

Herein, we set a criterion for screening two high reliable
pathogenic gene sets by calculating the average relevance score
and the number of reported evidence of pathogenic genes,
respectively. The first high reliable pathogenic gene set was
defined as the genes with higher relevance score than the
average of all pathogenic genes. The second high reliable
pathogenic gene set was defined as the genes with higher
number of reported evidence than the average of all
pathogenic genes. According to this criterion, the average
relevance score and the number of reported evidence of
pathogenic genes of OP collected from the database are 5.13
and 2.7, respectively. Thus, in the first high reliable pathogenic

FIGURE 2 |Distributionmap of active components in GSK, XLGB, and EXD (A). Common components of GSK, XLGB, and EXD (B–D). Distributionmap of herbs in
GSK (B). XLGB (C). and EXD (D).

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8318948

Liu et al. Different Prescriptions for OP

90

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


gene set, the relevance score of each gene was higher than 5.13.
While in the second high reliable pathogenic gene set, the number
of reported evidence of each gene was higher than 2.7. The

average relevance scores of FRMs in GSK, XLGB, and EXD
were 14.22, 12.98, and 14.43, respectively, while the average
numbers of reported evidence were 10.5, 7.75, and 8.17,

FIGURE 3 | The predicated FRMs of the C-T network in GSK. The orange nodes represent the components in GSK, and the blue nodes represent the related targets.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8318949

Liu et al. Different Prescriptions for OP

91

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 4 | The predicated FRMs of the C-T network in XLGB. The orange nodes represent the components in XLGB, and the blue nodes represent the related
targets.
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respectively, which were significantly higher than the two high
reliable pathogenic gene sets, respectively (Figure 6). The high
relevance score and the number of reported evidence can

represent a higher degree of association between genes and
disease, and the average score and the number of reported
evidence of predicted FRMs in three prescriptions were

FIGURE 5 | The predicated FRMs of the C-T network in EXD. The orange nodes represent the components in EXD, and the blue nodes represent the related targets.
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significantly higher than those of the two high reliable pathogenic
genes sets. Results showed that the FRMs prediction model could
accurately screen genes with higher disease correlation.

Validating FRMs Based on Gene Enrichment
Pathways Analysis
Another criterion for evaluating the accuracy and reliability of
FRMs is to evaluate their functional consistency. According to
this method, we used the KEGG enrichment analysis to
determine whether the gene enrichment pathways in FRMs
could cover the gene enrichment pathways in the C-T network
as much as possible. The high pathways coverage indicates that
FRMs can represent the complete C-T network at the functional
level. Our analysis showed that GSK, XLGB, and EXD FRMs gene
enrichment pathways accounted for 79.6, 81, and 79.5% of GSK,
XLGB, and EXD complete C-T network gene enrichment
pathways, respectively (Figure 7). The results showed that the
predicted FRMs can represent the complete C-T network at the
functional level, and it also indicated that the predicted FRMs can
preserve the functional pathway of herbal medicine prescriptions
to the maximum extent. Additionally, to examine whether the
FRMs in each prescription have the similar therapeutic function
as the original prescription, we defined the prescription-related
reference pathways by selecting the intersection of target gene and
pathogenic gene enriched pathways. After that, we compared the
enrichment pathways of genes in FRMs for each prescription to
corresponding reference pathways. The results showed that the
proportion of GSK, XLGB, and EXD was 86.47, 89.63, and 79.8%,
respectively (Figure 8). It showed that screened FRMs can retain

the functional information of the original prescriptions and the
intervention function of the original prescriptions to the
maximum extent.

Potential Mechanism Analysis
In order to reveal the potential action mode underlying the
treatment of OP by different prescriptions, we performed a
pathway enrichment analysis of FRMs genes. Other disease,
virus-related, and drug-resistant pathways were removed, and
pathways with a count number greater than 12 were retained for
further analysis. We found that 40 pathways were enriched in
GSK, 66 pathways in XLGB, and 48 pathways in EXD. After
combination, the three prescriptions were found to be enriched in
16 identical pathways (Figure 9), for example, steroid hormone
biosynthesis (hsa00140), osteoclast differentiation (hsa04380),
calcium signaling pathway (hsa04020), MAPK signaling
pathway (hsa04010), and PI3K-Akt signaling pathway
(hsa04151). Through PubMed literature retrieval, we found
that, among these common pathways, osteoclast
differentiation, calcium signaling pathway, MAPK signaling
pathway, and PI3K-Akt signaling pathway were most reported.
Previous studies have shown that the suppression of RANKL-
induced calcium signaling inhibits OP in oophorectomy (OVX)
mouse models (Chen et al., 2020). MAPK pathway is a major
signaling pathway regulating OP. By restraining the production
of RANKL-induced ROS and increasing the expression of
antioxidant enzymes, intracellular ROS levels are inhibited and
the activation of the MAPK pathway is weakened, resulting in the
attenuation of downstream proteins, which contributes to the

FIGURE 6 | Validation of FRMs. Relevance score (A) and the number of reported evidence (B) of FRMs and two high reliable pathogenic gene sets of OP were
compared.
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reduction of OP (Yao et al., 2018; Chen et al., 2019). Meanwhile,
the PI3K/AKT signaling pathway has been proven to be essential
for all stages of bone maturation, differentiation, and bone
growth. Inhabiting the PI3K/AKT signaling pathway not only
injures the differentiation of chondrocytes but also inhibits the
growth of longitudinal bones (Ye et al., 2019).

Next, osteoclast differentiation, calcium signaling pathway,
MAPK signaling pathway, and PI3K-Akt signaling pathway were
combined into a gene network (Figure 10). Our analysis found
that, in this gene network, GSK, XLGB, and EXD had different
and co-functional effects in treating OP. There were 10 genes
common to GSK, XLGB, and EXD (ITGB3, IGF1R, CHRM1,
GRB2, IL2, BCL2L1, ERBB4, PIK3R1, RPS6KA4, and TACR2).
For example, GSK, XLGB, and EXD all have target gene ERBB4,
which played a role in OP through PI3K-Akt signaling pathway,
MAPK signaling pathway, and calcium signaling pathway, and
common gene IL2, which only affected OP through the PI3K-Akt
signaling pathway. In the gene network, 27, 37, and 44 genes were
unique to GSK, XLGB, and EXD. For example, among the 27

specific genes of GSK, LCK affected OP through osteoclast
differentiation; VEGFA played a role in OP through the PI3K-
Akt signaling pathway, MAPK signaling pathway, and calcium
signaling pathway. Among the 37 unique genes of XLGB, HRH2
simply affected OP through the calcium signaling pathway; JUN
impacted OP through the MAPK signaling pathway and
osteoclast differentiation pathway. Among the 44 distinct
genes of EXD, CACNB1 merely affected OP through the
MAPK signaling pathway; CHRM2 influenced OP through the
PI3K-Akt signaling pathway and calcium signaling pathway
(Figure 10). ITGB3 belongs to the integrin family and is a
membrane receptor composed of a subunit and ß subunit,
which is involved in cell cycle, cytoskeletal tissue, osteoblast
differentiation, and proliferation (Rapisarda et al., 2017; Lopes
et al., 2019). ITGB3 can also interact with IL1RN to activate ß-
catenin signaling and regulate osteoblast differentiation (Zou
et al., 2021). In addition, IGF1R signaling plays an important
role in osteoblast-mediated bone formation and promotes
osteoblasts differentiation and maturation. During the

FIGURE 7 | Validation of FRMs. The intersection proportion of FRMs gene enrichment pathways and C-T network gene enrichment pathways in GSK(A), XLGB(B),
and EXD(C).

FIGURE 8 | Validation of FRMs. The proportion of the enrichment pathways of genes in FRMs for GSK (A), XLGB (B), and EXD (C) to corresponding reference
pathways. The formula-related reference pathways were defined as selecting the intersection of the target gene and pathogenic gene enriched pathways.
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differentiation of bone marrow stromal cells, IGF1R signaling
pathway is controlled by PI3K/Akt and inhibits osteoblast
apoptosis (Fang et al., 2019).

Among the specific genes of GSK, cyclin D1 (CCND1) is a
member of the protein kinases family associated with cell cycle
regulation (Guo et al., 2013). In addition, CCND1 is often
overexpressed in human diseases through translocation,
amplification, or post-transcriptional regulation (Xu and Lin,
2018). Studies have found that controlling the expression of
CCND1 can regulate the proliferation, differentiation,
mineralization, and apoptosis of osteoblasts, therefore treating
OP (Wang and Cai, 2020). In addition, it was shown that
chemokine receptor-4 (CXCR4) overexpression in
mesenchymal stem cells can promote BMD increase, improve
MSC migration to bones, enhance MSC effects, and prevent bone
loss in OVX mice after oophorectomy (Cho et al., 2009).

Among the specific genes of XLGB, CD38 has been shown to
play a role in bone remodeling. It is expressed in osteoclasts, and
when activated, it increases IL-6 release and inhibits bone
resorption (Sun et al., 1999). Meanwhile, osteoblasts and
osteoclasts express P2X7R, which regulates differentiation,
function, and longevity of both cell types (Agrawal and
Gartland, 2015). In the mouse model of postmenopausal
osteoporosis, P2X7 has been shown to hinder bone loss. After
the deletion of P2X7R in ovariectomized mice, significant bone
loss, osteoblast reduction, and osteoclast increase were observed.

Under normal physiological conditions, the loss of P2X7R leads
to osteopenic-like bone phenotype (Wang et al., 2018b).

Among the specific genes of EXD, BCL2 is a gene that
inhibits apoptosis. Studies have shown that upregulation of
BCL2 may inhibit bone loss, while upregulation of BCL2 in
osteoblasts can restrain osteoblast differentiation and cause
osteocyte apoptosis (Moriishi et al., 2011). Colony
stimulating factor 1 receptor (CSF-1R or c-FMS) is a tyrosine
kinase receptor, a receptor for CSF-1, which is delivered by
osteoblasts and promotes the proliferation of osteoclast
progenitor cells through the combination of CSF-1R and
receptor activator of nuclear factor-kappaB ligand (RANKL),
leading to the formation of mature osteoclasts (Wittrant et al.,
2009). Previous studies have shown that the CSF-1/CSF-1R
signaling pathway affects the expression of RANK in
osteoclasts and RANKL binds to RANK to induce the
cascade of MAPKs, PI3K, and NF-κB signaling and finally
generates NFATc1, which is the major regulator of osteoclast
differentiation. The inhibition of CSF-1R on osteoclasts hinders
the proliferation, differentiation, and survival of osteoclasts and
downregulates the formation of osteoclast markers (TRAP)
(Zinnia and Khademul Islam, 2021).

The above results indicate that the FRMs of different
prescriptions have different and co-functional effects in
treating OP. They provide a possible mechanism reference for
us to reveal multiple treatments for the same disease.

FIGURE 9 | The specific and the common enrichment pathway of FRMs in GSK, XLGB, and EXD.
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Screen Key Component Groups
Osteoclast differentiation, calcium signaling pathway, PI3K-Akt
signaling pathway, and MAPK signaling pathway were combined
into an integrated pathway. A novel component importance
calculation method that combined the information gain and
target influence was designed and employed to screen the key
component groups in different prescriptions. The components
with a Q score of more than 0.01 were defined as potential
important components in each prescription. Based on this
method, we obtained 24, 23, and 22 potential important
components in GSK, XLGB, and EXD, respectively. To prove
the effectiveness of each potential important component screened
by the model, we selected the highest Q score component in each
of the three prescriptions and randomly selected one, one, and
two components from GSK, XLGB, and EXD, respectively.
Finally, we selected quercetin, isoliquiritigenin, rutaecarpine,
isofraxidin, and secoisolariciresinol for further validation. The
effectiveness of these components was further verified in vitro to
prove the model’s reliability (Table 3).

Experimental Validation In Vitro
MC3T3-E1 is an osteoblast strain constructed from C57BL/6
mouse cranial parietal cells, which has biological characteristics of
osteoblasts, such as ALP active type Ⅰ collagen synthesis and
matrix calcification, and is often used as a cellular model for bone
metabolism studies. In order to assess the reliability of our model,
the CCK8 method was used to validate the effects of the key

components (quercetin, isoliquiritigenin, rutaecarpine,
isofraxidin, and secoisolariciresinol) on the MC3T3-E1 cells at
different time points (Day 0, Day 1, Day 2). The results showed
that the cell viabilities of MC3T3-E1 cells were 115.93, 119.74,
111.27, 115.11, and 117.02% after exposure to 5 μM quercetin,
isoliquiritigenin, rutaecarpine, isofraxidin, and
secoisolariciresinol on Day 1, respectively (Figure 11). On Day
2, the cell viabilities of five components were 147.88, 149.88,
132.34, 131.87, and 133.02%, respectively (Figure 11). Compared
with the control group (DMSO), the cell viability of the MC3T3-
E1 cells markedly increased after treatment with five components
at Day 1 and Day 2. Our results suggested that quercetin,
isoliquiritigenin, rutaecarpine, isofraxidin, and
secoisolariciresinol could increase the viabilities of MC3T3-
E1 cells.

DISCUSSION

OP causes fractures and other complications, which increase the
physical pain of patients and bring great pressure and burden to
the society and family. For the treatments of OP, drugs that
promote bone mineralization, inhibit bone resorption, and
promote bone formation are widely used (Das and Crockett,
2013). However, these drugs are expensive and have side effects.
Thus, it is desirable to choose an alternative medicine to address
this issue. Herbal medicine prescriptions have significant

FIGURE 10 | Gene network in the osteoclast differentiation, calcium signaling pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway. Blue nodes
represent targets in GSK. Green nodes represent targets in XLGB. Orange nodes represent targets in EXD. Nodes with three colors indicate that the gene is shared by
three prescriptions. Nodes in light yellow, light green, light blue, and light red circles represent genes of osteoclast differentiation, calcium signaling pathway, MAPK
signaling pathway, and PI3K-Akt signaling pathway, respectively.
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TABLE 3 | The potential important components and score in GSK, XLGB, and EXD.

Formula Name Component Q

GSK Phenylalanine GSK-430 1
GSK Quercetin GSK-136 0.529699172
GSK Secoisolariciresinol GSK-264 0.468361473
GSK Apigenin 7,4′-dimethyl ether GSK-51 0.349024322
GSK Arginine GSK-323 0.264370699
GSK Tyrosine GSK-435 0.211996592
GSK Pinoresinol GSK-263 0.21119811
GSK Xanthogalenol GSK-317 0.157596558
GSK Gamma-aminobutyric acid GSK-350 0.157417777
GSK Isoolivil GSK-26 0.148203935
GSK Iriflophenone GSK-310 0.147059487
GSK Methionine GSK-487 0.1389871
GSK Artonin U GSK-88 0.135082763
GSK Lariciresinol GSK-376 0.127357247
GSK Histidine GSK-439 0.120541692
GSK 1,2-Bis(4-hydroxy-3-methoxyphenyl)propane-1,3-diol GSK-138 0.117705025
GSK (2S,3S,4R,5S,6R)-2-(Hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethoxy]oxane-3,4,5-triol GSK-47 0.11770502
GSK 3,4-Dihydroxybenzaldehyde GSK-462 0.115043307
GSK Vladinol F GSK-133 0.114306628
GSK 1-Hexanol GSK-24 0.113316944
GSK Apigenin GSK-2 0.112568974
GSK Methyleugenol GSK-10 0.107187098
GSK Methyl rosmarinate GSK-568 0.105064369
GSK Tanshinone IIA GSK-606 0.100684748
XLGB Phenylalanine XLGB-174 1
XLGB Tyrosine XLGB-187 0.265722595
XLGB Quercetin XLGB-35 0.419289486
XLGB Nicotinamide XLGB-516 0.237387556
XLGB Methionine XLGB-337 0.161318712
XLGB Lysine XLGB-186 0.122755389
XLGB Japonine XLGB-498 0.143756394
XLGB Isoliquiritigenin XLGB-66 0.105348726
XLGB Huazhongilexin XLGB-147 0.172357865
XLGB Histidine XLGB-176 0.145081365
XLGB Glycine XLGB-165 0.181153762
XLGB Ethyl beta-D-galactopyranoside XLGB-164 0.179295726
XLGB Chrysoeriol XLGB-82 0.139191528
XLGB Artonin U XLGB-120 0.207032871
XLGB Arginine XLGB-189 0.314224575
XLGB Apigenin 7,4′-dimethyl ether XLGB-83 0.251858762
XLGB Apigenin XLGB-34 0.164693641
XLGB 3-Hexenyl-beta-glucopyranoside XLGB-114 0.103747239
XLGB 3,4-Dihydroxybenzaldehyde XLGB-231 0.158023093
XLGB 2-Decenal XLGB-37 0.12526283
XLGB 2,6,4′-Trihydroxy-4-methoxybenzophenone XLGB-510 0.267516823
XLGB 1,2-Bis(4-hydroxy-3-methoxyphenyl)propane-1,3-diol XLGB-8 0.376297348
XLGB 1-(3,4-Dihydroxyphenyl)-2-hydroxyethanone XLGB-350 0.118592977
EXD Isoolivil EXD-117 1
EXD Vanillyl alcohol EXD-616 0.125075771
EXD Tyrosine EXD-421 0.193500377
EXD Rutaecarpine EXD-631 0.114443255
EXD Quercetin EXD-226 0.350841822
EXD Phenylalanine EXD-400 0.204988715
EXD Nicotinamide EXD-751 0.107475835
EXD N-cis-Feruloyltyramine EXD-674 0.113378648
EXD Methyl nonyl ketone EXD-454 0.157576077
EXD Methionine EXD-316 0.262915243
EXD Isoliquiritigenin EXD-125 0.570518314
EXD Isofraxidin EXD-495 0.145679135
EXD Dibutyl phthalate EXD-443 0.159583501
EXD Coniferyl ferulate EXD-367 0.224742828
EXD Asperglaucide EXD-679 0.110398041
EXD Arginine EXD-424 0.17722632
EXD Apigenin 7,4′-dimethyl ether EXD-141 0.522823729

(Continued on following page)
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advantages in the treatment of OP because of their remarkable
efficacy and few side effects. However, due to the characteristic of
“multi-components-multi-targets-multi-pathways,” their
mechanism of action is not yet clear. Therefore, it is required
to exploit new methods to study the pharmacological material
basis and molecular mechanism of herbal medicine prescriptions
and make a scientific interpretation.

Herbal informatics is an interdisciplinary subject that
integrates Chinese medicine, computer science, biology,
mathematics, multi-directional pharmacology, and other
disciplines. It researches complex herbal medicine systems by
systematically observing the intervention and influence of drugs
on disease networks (Guo et al., 2021). Herbal informatics has
been widely used in herbal medicine. For example, Wang Kexin
et al. systematically interpreted the compatibility of Huanglian
Jiedu Decoction in treating diseases (Wang et al., 2020b). Gao
Yao et al. used the method of herbal informatics to analyze the
mechanism of LCW in treating Systemic Lupus Erythematosus
(Gao et al., 2020). Yang Lang et al. designed a new network
pharmacology method to decode the mechanism of EXD in
treating OP (Yang et al., 2021). These studies demonstrate the
reliability of herbal informatics.

In this study, after ADME screening, 517 active components
were obtained. Among the three prescriptions, there were 88

common components; there were 65, 37, and 232 specific
components in GSK, XLGB, and EXD, respectively. This
suggests that the three prescriptions impact OP treatment
through common and specific components.

To quickly extract vital information from the complex C-T
networks, we designed a novel function motif discovery model
and a genetic-based optimization model and obtained 11, 13, and
15 FRMs (p < 0.05). The FRMs were used to detect the latent
action mode of GSK, XLGB, and EXD in the clinical therapeutics
of OP.

The function motif discovery model based on a random walk
adopts the idea of double-layer coding, which can greatly simplify
the coding length. Nodes are divided into N categories with
different numbers, and the same coding is used in each category
so that the coding length can be saved. The genetic-based
optimization model has good global search ability and can
quickly search for all solutions in the solution space without
falling into the trap of fast descent of local optimal solutions.
Moreover, it can conveniently carry out distributed calculations,
accelerate the solving speed, and have strong convergence using
its inherent parallelism. At the same time, searching from the
group has the potential to be parallel. It can compare multiple
individuals at the same time and use the evaluation function to
evaluate individuals. The process is simple. In the iterative

TABLE 3 | (Continued) The potential important components and score in GSK, XLGB, and EXD.

Formula Name Component Q

EXD 2-Phenylethanol EXD-456 0.145887101
EXD 2-Carbomethoxy-9,10-anthraquinone EXD-526 0.126521782
EXD 2,6,4′-Trihydroxy-4-methoxybenzophenone EXD-745 0.108038542
EXD 1-Hydroxy-3-methoxyanthracene-9,10-dione EXD-517 0.12688071
EXD 1,3-Dimethoxybenzene EXD-9 0.100024253

FIGURE 11 | Effects of quercetin (A), isoliquiritigenin (B), rutaecarpine (C), isofraxidin (D), and secoisolariciresinol (E) on cell viabilities on MC3T3-E1 cells. *p <
0.05, **p < 0.01, ***p < 0.001 compared with DMSO group.
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process, the probability mechanism is used to iterate, and the
selection of individuals is random to avoid accidental results. The
genetic algorithm (GA) can retain good individuals and maintain
the group’s diversity. The information gain inspects the feature’s
contribution to the whole system and considers both the
occurrence and nonoccurrence of the feature. Meanwhile, it
considers comprehensively and uses the statistical attributes of
all samples to reduce the sensitivity to noise.

The accuracy and reliability of FRMs were evaluated using the
relevance score, the number of reported evidence, and the
coverage of functional pathways of FRMs. Results showed that
the predicted FRMs overlapped with the C-T network in
pathogenic genes and functional pathways at high coverage.

Next, we conducted pathway enrichment analysis for each
FRMs and found that 16 enriched pathways were shared by three
prescriptions. Through a literature search, we found that
osteoclast differentiation, calcium signaling pathway, MAPK
signaling pathway, and PI3K-Akt signaling pathway were most
reported. Recent research has shown that RANKL-induced ROS
signaling regulates the MAPK and NF-κB activity, and the loss of
NF-κB signaling in mouse models causes bone defect formation,
leading to osteoporosis (Iotsova et al., 1997). RANKL can
stimulate the three main members of the MAPK signaling
pathway, JNK, ERK, and P38, therefore impacting the
differentiation of osteoclasts (Boyle et al., 2003). In the OVX
mouse model, the reduction of ROS level and the inhibition of the
MAPK signaling pathway can inhibit osteoclast differentiation
and reduce bone loss (Xiao et al., 2020). PI3K/AKT signaling
pathway exists in mammalian cells; is involved in cell
proliferation, metastasis, and apoptosis; and regulates the
functions of osteoblasts and osteoclasts by affecting their
formation, proliferation, differentiation, and apoptosis (Agas
et al., 2013) (Qu et al., 2014). Activating the PI3K/AKT
signaling pathway affects the upregulation of the expression of
osteogenic differentiation marker genes, thereby promoting the
proliferation and differentiation of osteoblasts (Lu et al., 2017).
Inhibition of the PI3K/AKT signaling pathway can reduce the
bone resorption ability of osteoclasts (Zhang et al., 2020), thus
inhibiting the occurrence of osteoporosis.

Furthermore, we found that some enriched genes were shared by
four pathways, but others were specific to one pathway, and these
genes all played different roles in the influence of OP, indicating that
the FRMs of different prescriptions have different and co-functional
effects in the treatment of OP. It provides a possible mechanism
reference for us to reveal multiple treatments for the same disease.

Then, we devised a novel component importance calculation
method that combined the information gain and target influence
to screen the key component groups in different prescriptions.
The components with a Q score more than 0.01 were defined as
potential important components in each prescription. Using this
new method, we obtained 24, 23, and 22 potential important
components in GSK, XLGB, and EXD; selected the highest
important component; and randomly selected components as
the key component groups of the three prescriptions, including
quercetin, isoliquiritigenin, rutaecarpine, isofraxidin, and
secoisolariciresinol. The effectiveness of these components was
verified by in vitro experiments to prove the model’s reliability.

In vitro cell experiments also showed that these components
can increase the viability of MC3T3-E1 cells, speculating that
these components have a certain role in treating OP. Additionally,
to better evaluate the dependability of our proposed network
pharmacological model, we will conduct in vivo studies in future
studies.

However, there are still some limitations in this study. First,
more ingredients from key component groups should be selected
for validating the reliability of our method andmodel. Second, the
action mode of GSK, XLGB, and EXD in the clinic therapy of OP
is not verified in this study. Meanwhile, the issue of drug dose
should be considered in future studies.

In conclusion, we propose a new network pharmacology
strategy that reveals the hidden mechanisms of different
prescriptions for OP through new bioinformatics models and
experimental validation, providing a new web-based approach for
herbal medicine treatment of complex diseases.
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β-Ecdysterone Enhanced Bone
Regeneration Through the BMP-2/
SMAD/RUNX2/Osterix Signaling
Pathway
Cai-Ping Yan1,2†, Xing-Kuan Wang1,2†, Ke Jiang1,2*, Chong Yin3, Chao Xiang1,2,
Yong Wang1,2, Chaoyu Pu1,2, Lu Chen1 and Yu-Ling Li1,2*

1Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China, 2Laboratory of Biological
Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China, 3Laboratory for
Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and
Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, Research Center for Special Medicine and Health Systems
Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China

Bone defects are a global public health problem. However, the available methods for
inducing bone regeneration are limited. The application of traditional Chinese herbs for
bone regeneration has gained popularity in recent years. β-ecdysterone is a plant sterol
similar to estrogen, that promotes protein synthesis in cells; however, its function in bone
regeneration remains unclear. In this study, we investigated the function of β-ecdysterone
on osteoblast differentiation and bone regeneration in vitro and in vivo. MC3T3-E1 cells
were used to test the function of β-ecdysterone on osteoblast differentiation and bone
regeneration in vitro. The results of the Cell Counting Kit-8 assay suggested that the
proliferation of MC3T3-E1 cells was promoted by β-ecdysterone. Furthermore, β-
ecdysterone influenced the expression of osteogenesis-related genes, and the bone
regeneration capacity of MC3T3-E1 cells was detected by polymerase chain reaction,
the alkaline phosphatase (ALP) test, and the alizarin red test. β-ecdysterone could
upregulate the expression of osteoblastic-related genes, and promoted ALP activity
and the formation of calcium nodules. We also determined that β-ecdysterone
increased the mRNA and protein levels of components of the BMP-2/Smad/Runx2/
Osterix pathway. DNA sequencing further confirmed these target effects. β-ecdysterone
promoted bone formation by enhancing gene expression of the BMP-2/Smad/Runx2/
Osterix signaling pathway and by enrichment biological processes. For in vivo
experiments, a femoral condyle defect model was constructed by drilling a bone
defect measuring 3mm in diameter and 4 mm in depth in the femoral condyle of 8-
week-old Sprague Dawley male rats. This model was used to further assess the bone
regenerative functions of β-ecdysterone. The results of micro-computed tomography
showed that β-ecdysterone could accelerate bone regeneration, exhibiting higher bone
volume, bone surface, and bone mineral density at each observation time point.
Immunohistochemistry confirmed that the β-ecdysterone also increased the expression
of collagen, osteocalcin, and bone morphogenetic protein-2 in the experiment group at 4
and 8 weeks. In conclusion, β-ecdysterone is a new bone regeneration regulator that can
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stimulate MC3T3-E1 cell proliferation and induce bone regeneration through the BMP-2/
Smad/Runx2/Osterix pathway. This newly discovered function of β-ecdysterone has
revealed a new direction of osteogenic differentiation and has provided novel
therapeutic strategies for treating bone defects.

Keywords: β-ecdysterone, bone regeneration, bone morphogenetic protein-2 (BMP2), RUNX 2, Smad

INTRODUCTION

Bone defect refers to the destruction of the structural integrity of
the phalanx, and complete or partial destruction of its continuity.
Studies have shown that a variety of signal transduction
mechanisms regulate bone growth metabolism and
regeneration after bone injury. When these critical signal
transduction mechanisms that promote bone growth are not
fully activated or destroyed, bone formation is reduced and
bone marrow fat accumulation increases, resulting in impaired
bone regeneration (Hak et al., 2014; Yu et al., 2018). Bone
regeneration is a highly complex but organized process that
requires damaged bones to return to their pre-injury cellular
structure and biomechanical functions (Schindeler et al., 2008).
Both, intramembranous and endochondral ossification are
essential forms of bone regeneration (Phillips 2005; Takigawa
2013; Ko and Sumner 2021). In the process of intramembranous
ossification, bone marrow mesenchymal stem cells (BMSCs)
differentiate directly into osteoblasts and deposit mineralized
extracellular matrix to achieve bone regeneration (Percival and
Richtsmeier 2013). BMSCs are cells with multi-differentiation
potential, and have the ability to differentiate into bone,
cartilage, fat, nerves, or myoblasts in vivo and in vitro

(Sumer, Liu et al., 2018, Yang et al., 2019; Zhao et al.,
2020). BMSCs can also secrete a variety of cytokines (such
as BMP-2, IGF-1, IL-6, and M-CSF) to promote bone
regeneration (Meirelles et al., 2009). On exposure to
certain specific chemical mediators, cytokines, and
mechanical stimulation, intracellular BMP-Smad, Wnt/β-
catenin, Notch, Hedgehog, or other signaling pathways of
BMSCs are activated to promote osteoblast differentiation
(Abdallah et al., 2005). However, when the specific
environment is destroyed due to various diseases, BMSCs
show abnormal osteogenic differentiation, an imbalance of
metabolic regulation, which reduces the bone remodeling rate,
bone matrix, and bone mineral deficiency; eventually, this can
cause bone regeneration deficiency, osteoporosis, and
osteomalacia (Liu et al., 2018). It is therefore essential that
strategies are identified to effectively regulate the function of
BMSCs for promoting osteogenic differentiation and bone
regeneration.

In recent years, researchers have tried various approaches to
boost stem cell function. Basic and clinical studies are
increasingly investigating the promotion of osteogenic
differentiation of BMSCs and the mechanisms involved,
including traditional cytokines and related physical and

GRAPHICAL ABSTRACT | Schematic illustrations of the fabrication of the bone defect model and action of β-Ecd in promoting bone regeneration and repair of
bone defects. We established a rat model of a femoral bone defect in vivo to evaluate the effect of β-Ecd on bone regeneration. Rats injected intraperitoneally with
72 mg/kg β-Ecd showed a higher degree of ossification of regenerated bone tissue at the site of the bone defect at weeks 4 and 8. β-ecdysterone binding to the BMP2
receptor activates SMAD1 to bind to SMAD1/5/8, promotes RUNX2 and OSTERIX replication in the nucleus, and mediates bone regeneration. This study provides
a new approach to the treatment of bone injury and degenerative diseases represented by bone defects and osteoporosis.
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chemical stimulation factors. Osteoblast growth peptide
promotes osteogenic differentiation of BMSCs through the
RhoA/ROCK pathway in a dose-dependent manner (Chen
et al., 2011). Boron can promote the synthesis of osteogenic
genes in the proliferation and differentiation of human BMSCs
(Ying et al., 2011). The BMP-2 related peptides P24 (Lin et al.,
2010) and simvastatin (Feng et al., 2020) also promote osteogenic
differentiation and proliferation of BMSCs. BMPs are acidic
proteins located in the bone matrix, and belong to the TGF-β
superfamily. BMPs serve essential roles in skeletal development,
bone formation, and MSC differentiation (Cai et al., 2021).
Research has shown that fenofibrates induce PPARα and
BMP2 expression to stimulate osteoblast differentiation;
however, disruption in BMP signaling causes skeletal and
vascular abnormalities (Miyazono, Kamiya and Morikawa
2010). In this context, a study showed BMP-2 and BMP-4
knockouts to be embryonically lethal in mice (Scarfì 2016).
Thus, BMP2 serves an important role in inducing the
osteogenic differentiation of MSCs (Toth et al., 2021).

In their study, Jian et al. (2013) applied 50, 100, and 200 μmol/
L β-ecdysterone to human periodontal membrane stem cells
(PDLSs) in vitro and confirmed that 200 μmol/L β-ecdysterone
could effectively induce BMP-2 expression and osteogenic
differentiation of periodontal membrane stem cells through
the extracellular signal-regulated kinase pathway (Jian et al.,
2013). However, it is unclear whether these positive effects of
β-ecdysterone can also affect BMSCs and the specific molecular
mechanisms involved and whether they can be applied to bone
regeneration in animals or clinics.

β-ecdysterone is a polyhydroxylated steroid hormone, which is
most abundant in insects and Anatidae plants. It is known as a
phytoestrogen, because its chemical structure is similar to that of
estrogen (Zou et al., 2015). β ecdysterone can not only stimulate
protein synthesis (Tóth et al., 2008), promote carbohydrate and
lipid metabolism (Catalán et al., 1985), control blood glucose level
(Yoshida et al., 1971), inhibit cell apoptosis (Tang et al., 2018a),
and improve intervertebral disc degeneration (Wen et al., 2019),
but it also has good biocompatibility (Dai et al., 2017). Chinese
herbal medicines such as Achyranthe bidentata have been used
for centuries to treat osteoporosis and joint degeneration in
China, and no side effects have been reported for hundreds of
years. Studies have shown that β-ecdysterone can stimulate
arthropod midgut stem cells (Smagghe et al., 2005) and induce
osteogenic differentiation of mouse mesenchymal stem cells
(Gao, Cai and Shi 2008). β-ecdysterone can regulate the
proliferation and osteogenic differentiation of BMSCs by
targeting estrogen receptors in vivo and plays an essential role
in the process of bone regeneration (Abiramasundari et al.,
(2018). However, the specific signal transduction mechanism
involved, the regulation mode of gene differential expression,
and the optimal drug dose have not been discussed in depth.
Therefore, a better understanding of the interactions and
mechanisms between β-ecdysterone and BMSCs is expected to
positively impact bone regeneration and formation.

This study aimed to explore whether β-ecdysterone can
promote osteogenic differentiation and functionalization of
BMSCs, enhancing their ability to promote in situ bone

regeneration. Furthermore, it elucidated the potential signal
transduction mechanism, differential regulation of gene
expression, and appropriate dose of β-ecdysterone in
promoting bone regeneration. During the in-vitro experiments,
we treated MC3T3-E1 cells with β-ecdysterone to assess their
biocompatibility and the osteogenesis-promoting effect. Cell
Counting Kit-8 (CCK-8) was used to verify the excellent
biocompatibility of β-ecdysterone. Immunohistochemical
staining and quantitative polymerase chain reaction (q-PCR)
were used to verify the excellent expression of alkaline
phosphatase (ALP), collagen I, and other osteogenic proteins
in MC3T3-E1 cells treated with β-ecdysterone. The alizarin red
staining experiment further verified that the system could
effectively form mineralized nodules from the extracellular
matrix. Subsequently, MC3T3-E1 cells treated with different
doses of β-ecdysterone were analyzed by gene sequencing and
differential expression analysis of osteogenic-related genes. β-
ecdysterone could effectively improve the replication and
transcription of intracellular BMP-Smad signaling pathway
genes in a dose-dependent manner. Finally, we added noggin,
a BMP2 signaling pathway blocker, to explore any possible
relationship between the BMP-2 signaling pathway,
metabolism of BMSCs, and osteogenic differentiation after β-
ecdysterone treatment; this was performed to evaluate the
potential mechanism of enhanced bone regeneration. q-PCR
and western blotting showed that β-ecdysterone significantly
increased the expression of mRNA and proteins in the BMP2
signaling pathway, and this effect was inhibited by noggin, a
BMP2 signaling pathway blocker. Furthermore, we established a
rat model of femoral bone defect in vivo to evaluate the effect of β-
ecdysterone on bone regeneration mediated by BMSCs. The
animal experiments showed that at week 4 and 8 after surgery,
rats injected intraperitoneally with 72 mg/kg of β-ecdysterone
had a higher degree of gross bone tissue growth, bone mineral
density, and degree of ossification in regenerated bone tissue at
the site of the bone defect (as observed on immunohistochemical
staining) than in the other groups. Overall, our data suggested
that β-ecdysterone can mediate bone regeneration via the BMP2/
Smad/Runx/Osterix signaling pathway. This study provides a
new approach to the treatment of bone injury and degenerative
diseases represented by bone defects and osteoporosis.

MATERIALS AND METHODS

Materials
MC3T3-E1 cells (subclone 14) were purchased from Procell
(Wuhan, China), induction medium (Cyagen, Guangzhou,
China), α-modified Eagle medium (α-MEM, containing 4.5 g/L
D-glucose, 25 mM HEPES), fetal bovine serum, 0.25% trypsin-
EDTA, penicillin/streptomycin, and phosphate buffer saline
(PBS) were purchased from Hyclone (Logan, UT,
United States). Triton X-100, bovine serum albumin, and
alizarin red S were purchased from Sangon Biotech (Shanghai,
China). The RNeasy Mini Kit was purchased from Qiagen
(Duesseldorf, Germany). The PrimeScript RT Master Mix and
the TB Green Premix Ex Taq were purchased from Takara
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(Tokyo, Japan). The CCK-8, 4% paraformaldehyde, 10%
cetylpyridinium chloride monohydrate, and β-ecdysterone
were purchased from Solarbio (Beijing, China). The alkaline
phosphatase assay kit and the goat anti-rabbit IgGDAB kit
were purchased from Beyotime (Shanghai, China). Noggin,
DAPI, SuperScript II reverse transcriptase, the RevertAid First
Strand cDNA Synthesis Kit were purchased from Invitrogen
(Thermo Fisher, United States), and 10% sodium dodecyl
sulfate-polyacrylamide gel, cell lysis buffer, polyvinylidene
fluoride membrane, and goat anti-rabbit antibody were
purchased from Boster (Wuhan, China). All primary
antibodies (type I collagen, osteopontin, BMP-2, Smad1/5,
P-SMad1/5, Runx2, and Osterix) were purchased from Abcam.
The animal anesthetic used was isoflurane (Jiangsu, Beikang,
China), lidocaine (xylocaine 2%, Hebei Tiancheng, China).

Cell Culture
MC3T3-E1 cells were cultured in α-MEMmedium supplemented
with 10% fetal bovine serum, 100 U/mL penicillin, and 100 g/ml
streptomycin at 37°C in 5% CO2. The medium was replaced every
2–3 days. When cell fusion reached 80% (80% of the dish was
covered by cells), 0.25% trypsin-EDTA was used for digestion,
isolation, and passage culture. In our experiment, MC3T3-E1 of
the third generation was used.

Cell Proliferation
The CCK-8 assay was used to detect the biocompatibility of β-
ecdysterone in MC3T3-E1 cells. MC3T3-E1 cells were incubated
with 5 × 103/well in 96-well plates, and 200 μl of α-MEM was
added to each well. After incubation for 24 h, β-ecdysterone
(Solarbio, Beijing, China) was added to 96-well plates at a
final concentration of 0, 50, 100, 150, 200, and 250 μM. The
cells were then incubated for 1–7 days. At each observation time
point, cells were washed with PBS thrice; 10 μl CCK-8 solution
and 100 μl fresh α-MEM medium were added to each well and
then incubated at 37°C for 1 h. The absorbance was measured at
460 nm using a microplate reader (Thermo Fisher United States).

Alkaline Phosphatase Activity
ALP activity was measured using an ALP Assay Kit (Beyotime,
Shanghai, China). MC3T3-E1 cells were cultured in 6-well plates
at 2 × 104 cells/well. When the degree of cell fusion exceeded 60%
(60% of the dish was covered by cells), β-ecdysterone was added

to the medium at final concentrations of 0, 100, 150, and 200 μM
with inductionmedium. After 3 or 7 days of culture, the cells were
washed with PBS and fixed with 4% paraformaldehyde for
15 min. Triton X-100 was used to rupture the cell membranes
and cell proteins were extracted by centrifugation at 12,000/min.
According to the manufacturer’s instructions for the ALP kit,
extracts from the control, standard, and experimental groups
were transferred to 96-well plates, at volumes of 4, 8, 16, 24, 32,
and 40 μl, respectively. The protein concentration was
normalized before transfer. Detection buffer and chromogenic
substrate were added to achieve a total volume 100 μl, and the
reaction system was incubated in darkness at 37°C for 10 min. A
stop buffer was added to each well to stop the reaction and the
absorbance at 405 nm was measured using a microplate reader.

Alizarin Red S Staining
To test the mineralization ability of MC3T3-E1 cells induced by
β-ecdysterone, calcium nodules were detected by alizarin red S
staining. MC3T3-E1 cells were incubated at a density of 1 × 104

cells/cm2 in a dish (φ = 30 mm) and incubated in a medium
containing 150 μM of β-ecdysterone or induction medium. The
medium and β-ecdysterone were replaced every 3 days. On day
21, the cells were washed with PBS and fixed with 4%
paraformaldehyde for 30 min; they were then stained with a
1% alizarin red S solution for 20 min. Decolorization was
performed with 10% cetylpyridinium chloride monohydrate
for 20 min, and absorbance was measured at 595 nm for
quantitative analysis.

Immunocytochemical Staining and
Immunofluorescence Staining
To investigate the effect of osteogenic-related protein
expression in MC3T3-E1 cells treated with β-ecdysterone,
MC3T3-E1 cells were incubated with 1.5 × 104 cells/well in
6-well plates and cultured in standard medium, medium
containing 150 μM/L β-ecdysterone, and induction medium.
After 14 days of culture, the cells were washed thrice with PBS
and fixed in 4% paraformaldehyde solution at room
temperature for 15 min. The cells were washed again with
PBS and treated with 0.1% Triton X-100 for 15 min. The cells
were then incubated in a 5% bovine serum albumin solution at
37°C for 1 h. After washing the cells thrice with PBS, either
osteopontin antibody (1:200) or secondary antibody and
hematoxylin were added; the cells were then incubated at
4°C overnight, followed by incubation with goat anti-rabbit
IgG at room temperature for 30 min. The DAB horseradish
peroxidase chromogenic kit was used to detect osteopontin
expression in cells. The nuclei were then stained with
hematoxylin for 3 min and osteopontin staining was
observed under an inverted microscope (Leica Microsystems
CMS, Wetzlar, Germany).

Immunofluorescence staining was used to detect type I
collagen expression in cells treated with different
concentrations of β-ecdysterone. MC3T3-E1 cells were
incubated with 1 × 104 cells/well in 6-well plates and cultured
in a medium containing 0, 100, 150, and 200 μM/L of β-

TABLE 1 | RT-qPCR primer sequences.

Gene Primer sequences

Bmp-2 Forward: 5′-CACGAGAATGGACATGCCC-3′
Reverse: 5′-GCTTCAGGCCAAACATGCTG-3′

Runx2 Forward: 5′-GCTGTTGTGATGCGTATTCCC-3′
Reverse: 5′-TGAACCTGGCCACTTGGTTT-3′

Osterix Forward: 5′-GATGGCGTCCTCTCTGCTTG-3′
Reverse: 5′-AATGGGCTTCTTCCTCAGCC-3′

Collagen I Forward: 5′-AAGGCTCCCCTGGAAGAGAT-3′
Reverse: 5′-CAGGATCGGAACCTTCGCTT-3′

GAPDH Forward: 5′-TCCATGACAACTTTGGTATCG-3′
Reverse: 5′-TGTAGCCAAATTCGTTGTCA-3′
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ecdysterone; alternatively, they were cultured in induction
medium. In addition, noggin (0.5 mg/ml) was added in the
control group. After 10 days of induction culture, the cells
were fixed at room temperature with 4% paraformaldehyde for
30 min, washed thrice with PBS, and treated with Triton X-100

for 15 min to rupture the cell membranes. The cells were washed
again with PBS and blocked at room temperature with 10%
normal goat serum for 1 h. The primary antibody of type I
collagen was added followed by incubation overnight at 4°C;
this was followed by an appropriate dose of fluorescent secondary

TABLE 2 | Effects of β-ecdysterone on the proliferation of MC3T3-E1 cells (OD value, X ± SD).

Culture (day) β-ecdysterone concentration (μM/L)

0 50 100 150 200 250

1 1.00 ± 0.13 1.30 ± 0.03** 1.29 ± 0.07** 1.30 ± 0.06** 1.23 ± 0.11* 1.20 ± 0.01*
2 1.08 ± 0.09 1.64 ± 0.05*** 1.69 ± 0.03*** 1.88 ± 0.08*** 1.54 ± 0.04*** 1.54 ± 0.02***
3 1.19 ± 0.06 2.04 ± 0.05*** 2.26 ± 0.06*** 2.45 ± 0.08*** 2.20 ± 0.01*** 2.08 ± 0.05***
4 1.00 ± 0.03 1.69 ± 0.24* 2.18 ± 0.34*** 2.30 ± 0.12*** 2.16 ± 0.17*** 2.01 ± 0.27***
5 1.06 ± 0.08 2.75 ± 0.09*** 2.78 ± 0.21*** 2.89 ± 0.07*** 2.65 ± 0.11*** 2.50 ± 0.12***
6 1.98 ± 0.03 2.89 ± 0.14*** 2.96 ± 0.07*** 2.94 ± 0.07*** 2.77 ± 0.15*** 2.82 ± 0.06***
7 1.72 ± 0.03 1.91 ± 0.05** 2.20 ± 0.26** 2.37 ± 0.09* 2.06 ± 0.09* 1.77 ± 0.14**

Values are expressed as means X ± SD (n = 5). The control group (0 μM) was compared with each experimental group. *p < 0.05, **p < 0.01, ***p < 0.001, NS, no significance.

FIGURE 1 | Osteogenic effect of β-Ecd on MC3TE-E1 cells in vitro. (A) The effects of β-Ecd on the proliferation of MC3TE-E1cells. MC3TE-E1 cells were cultured
with medium containing 0 μM β-Ecd (control group) and 50–250 μM β-Ecd (experimental group) and evaluated by the CCK-8 assay. The cell proliferation rate at
1–7 days is shown (n = 5). β-Ecd could increase the cell proliferation rate to different degrees, among which 150 μM β-Ecd was the most significant. (B) Alkaline
phosphatase activity assay. After culturing MC3TE-E1 for 3 and 7 days with medium containing 0 μM β-Ecd (control group) and 100–200 μM β-Ecd (experiment
group) or induction medium, intracellular ALP activity was measured. The results showed that the activity of ALP in cells treated with β-Ecd was higher than that of the
control group and the most significant increase occurred at 150 μM β-Ecd, there was no significant difference 200 μM β-Ecd group compared with the IM group. The “*”
stands for the control group (0 μM) was compared with each experimental group, *p < 0.05, **p < 0.01, ***p < 0.001. The “#” stands for the IM group was compared with
each experimental group, #p < 0.05, ##p < 0.01, ###p < 0.001. (C) Immunocytochemical staining to detect the expression of osteopontin in MC3TE-E1, after treating
MC3TE-E1 with 0 μM β-Ecd (control group) and 150 μM β-Ecd (experimental group) or induction mediun for 14 days, the immunochemistry of osteopontin in cells. The
staining results showed that the expression level of the experimental group was significantly higher than that of the control group, there was no significant difference
compared with the IM group. The yellow-brown particles in the cytoplasm are osteopontin. (D) Alizarin Red S staining to detect the formation of calcified nodules by
MC3TE-E1 and its extracellular matrix. After 21 days of treatment with 0 μM β-Ecd (control group) and 150 μM β-Ecd (experimental group) or induction medium, the
results of Alizarin Red S staining showed that the formation of calcium nodules in the experimental group was significantly higher than in the control group, there was no
significant difference compared with the IM group. In red is the calcium nodule. ImageJ software was used to measure the relative expression values in the figure, and
three independent experiments were carried out, and the data were expressed as X ± SD; *p < 0.05, **p < 0.01, ***p < 0.001.
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antibody at room temperature for 30 min. The cells were
rewashed thrice with PBS and stained with DAPI nuclear stain
(0.1 mg/ml; Sigma-Aldrich, St. Louis, MO, United States) for
15 min. A confocal laser scanning microscope (Olympus, Tokyo,
Japan) was used to observe the distribution of type I collagen and
the fluorescence intensity of type I collagen in the cytoplasm was
quantified by ImageJ software (Wayne Rasband, NIH,
United States). The determination was repeated thrice in
each group.

RNA Sequence Analysis and Gene
Enrichment Analysis
To observe and compare gene expression in MC3T3-E1 cells treated
with β-ecdysterone, we performed RNA sequencing of the samples.
Third generation MC3T3-E1 cells were incubated in a petri dish
measuring 10 cm in diameter in a standard medium containing 0,
100, 150, and 200 μM of β-ecdysterone for 5 and 10 days. When the
number of cells reached 3 × 106–5 × 106 cells/well, the RNA was
extracted by TRIzol (Qiagen) lysis (n = 3). After the qualified samples
were detected, the TruSeq RNA sample preparation kit was used to
construct a sequencing gene bank (Illumina). First, magnetic beads
with oligo (dT) enriched eukaryotic mRNA were used, and the
mRNA was randomly interrupted by fragmentation buffer. Second,
using mRNA as a template, cDNA was synthesized by reverse
transcription of RNA using SuperScript II reverse transcriptase
(Invitrogen) and cDNA was purified using AMPure XP beads.
Third, the purified double-stranded cDNA was repaired,
a-tailed, and sequenced. Finally, AMPure XP Beads were
used for fragment size selection, and cDNA libraries were
obtained by PCR enrichment. After the library was
constructed, sequencing was performed using the Illumina
platform and bioinformatics analysis was performed at
Qingdao Bioscience and Technology Co., Ltd.

Real-Time-qPCR
Real-time PCR (RT-qPCR) was performed to further verify the
results of gene sequencing and the impact of the β-ecdysterone on
bone regeneration. MC3T3-E1 cells were incubated in 6-well

plates at a density of 5 × 105 cells/well. When the cell density
exceeded 60% (60% of the dish was covered by cells), induction
medium with 150 μM of β-ecdysterone was added in the
experimental group, and noggin (0.5 mg/ml) was added in the
control group. On days 7 and 10, total RNA was extracted from
MC3T3-E1 cells using TRIzol reagent and cDNAwas synthesized
using the RevertAid First Strand cDNA Synthesis Kit. The cDNA
concentration was normalized before transfer. The RT q-PCRwas
performed using FastStart Universal SYBR Green Master (Rox)
(Roche, Germany). The BMP2, Runx2, Osterix, Col I, and
GAPDH primer sequences are shown in Table 1. Relative
gene expression was calculated using the 2−ΔΔCT method and
all experiments were repeated thrice.

Protein Electrophoresis Analysis
MC3T3-E1 cells were incubated in 6-well plates at a density of 5 ×
105 cells/well. Cells cultured in a medium containing different
concentrations (0–200 μM) of β-ecdysterone and noggin (0.5 mg/
ml) were included in the experimental and control groups,
respectively. After 7 days of induction culture, proteins were
extracted with cell lysis buffer; the protein concentration was
normalized before transfer. Proteins denatured in equal amounts
from different samples were separated by electrophoresis on 10%
sodium dodecyl sulfate-polyacrylamide gel (Beyotime) and then
transferred to a polyvinylidene fluoride membrane. After the
protein transfer membrane was enclosed in blocking buffer (Tris-
buffered saline containing 0.1% Tween 20 and 5% fat-free milk) for
1 h, it was incubated with primary antibody at 4°C overnight. The
goat anti-rabbit antibody (Boster) was then incubated at 37°C for 2 h.
The ChemiDoc XRS + chemiluminescence detection system (BIO-
RAD) was used for observation and the strip strength was analyzed
using ImageJ software. The primary antibodies used were BMP-2 (1:
1,000, Abcam), Smad1/5 (1:1,000, Abcam), P-SMad1/5 (1:1,000,
Abcam), Runx2 (1:1,000, Abcam), and Osterix (1:1,000, Abcam). All
experiments were repeated thrice.

Rat Model of Bone Defects
The animal experiments were approved by the Research Ethics
Committee of the Affiliated Hospital of the North Sichuan
Medical College (2021–26). Fifteen male Sprague Dawley rats
(6–8 weeks old, weighing approximately 200 g) were selected for
the animal experiments. The rat model of bone defects (Yan et al.,
2019; Li and Helms 2021) was constructed after anesthetizing with
inhalational isoflurane (for animals); an anesthesia ventilator was
used for maintenance. The anesthesia protocol was as follows: the rat
was placed in a closed glass container and anesthetized with 2.5%
isoflurane in 30% oxygen (Schubert et al., 2012). During anesthesia
induction, the inhalational concentration of isoflurane was raised to
1.5%–3.0%within 7–10min. Once the four limbs of the rat were limp
and no pain reflex was elicited, continuous anesthesia was initiated,
oxygen inhalation was maintained via a mask, and the concentration
of isoflurane was maintained at 1%–2.5%. Incisions were performed
after subcutaneous infiltration of lidocaine for local anesthesia. After
the operation, the rats were allowed to breathe air freely until they
were fully awake.

The specific method of surgery was as follows: after skin
preparation, the medial condyle of the femur was exposed and

TABLE 3 | ALP activity detection (n = 6).

Time (days) β-ecdysterone (μM) ‾X ± SD (OD value) DEA/mg

3 0 0.132 ± 0.01 48.73
100 0.287 ± 0.03**/## 129.51
150 0.503 ± 0.03***/# 241.37
200 0.429 ± 0.03***/NS 202.79
IM 0.442 ± 0.02 211.26

7 0 0.146 ± 0.01 56.5
100 0.314 ± 0.01***/### 143.49
150 0.860 ± 0.08***/# 426.23
200 0.759 ± 0.08***/NS 373.93
IM 0.766 ± 0.03 378.12

Values are expressed as means X ± SD (n = 6). The “*” stands for the control group
(0 μM), which was compared with each experimental group. p < 0.05, **p < 0.01, ***p <
0.001. The “#” stands for the IM group, which was compared with each experimental
group. #p < 0.05, ##p < 0.01, ###p < 0.001. ALP, alkaline phosphatase activity; DEA,
diethanolamine enzyme activity unit.
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a bone defect measuring 3 mm in diameter and 4 mm in depth
was created using a K wire of 3.0 mm in diameter with a slow-
speed electric drill; the site was irrigated using ice-cold saline
solution to avoid thermal necrosis. The operative region was
then sutured layer by layer. The sham operation group (n = 5)
only received anesthesia and skin surgery, with no damage to
the femur condyle. Rats with bone defects (n = 10) were
categorized into 2 groups to receive intraperitoneal
injections of 0 mg/kg of PBS (n = 5) and 72 mg/kg of β-
ecdysterone (n = 5), respectively, every 3 days. At 4 and
8 weeks after surgery, the mice were over-anesthetized to
death. The femur was harvested and fixed with a 4%
paraformaldehyde solution for inspection.

In Vivo Toxicology Studies
The animals were segregated into three groups. The group of
animals administered 72 mg/kg of intraperitoneal β-ecdysterone
for 4 weeks comprised the experimental group; the group
administered PBS served as the control group. The untreated
mice served as the sham group. After 4 weeks of treatment, the
animals were sacrificed by over-anesthesia. The liver and kidney
tissues of rats were sectioned and stained with hematoxylin and
eosin to observe toxicities in vivo.

Micro-Computed Tomography Analysis
All samples collected from rat models with femoral condylar
defects were fixed in 4% paraformaldehyde at room

temperature for 24 h. Micro-computed tomography (CT)
(u-ct80, SCANCO, Switzerland) was used to test the
samples (Clark and Badea 2021). Three-dimensional
reconstruction was performed using the processed images
(Scanco® software) and the bone volume, trabecular
thickness, and bone mineral density of each group were
detected and analyzed.

Immunohistochemical Analysis
All femoral condyle samples were decalcified and embedded in
paraffin after micro-CT analysis. A 5-μm-thick tissue section
was analyzed at the bone defect site for histomorphological
analysis and the detection of new site-specific proteins of bone
tissue (including BMP2 and Runx2). The sections were then
stained with hematoxylin and eosin for histochemistry. Images
of the histological specimen were obtained using a microscope
(Eclipse E800; Nikon, Japan).

Statistical Analysis
Statistical analysis was performed using SPSS 23.0 (IBM Corp.,
Armonk, NY, United States) and Graphpad Prism 9
(GraphPad Software, United States). The independent
sample t-test was used to evaluate statistical differences
between the two groups and one-way analysis of variance
(ANOVA) was used for multiple data groups. Data have
been presented as means ± standard deviation. p < 0.05 was
considered statistically significant.

FIGURE 2 | Intracellular RNA was extracted at 5 and 10 days of culture, and transcriptome RNA sequencing analysis was performed. (A) Cluster analysis of
differentially expressed genes |log2 ratio| > 1 and FDR < 0.05 in the 0–200 μM β-Ecd group compared to 5 and 10 days. (B) Differential gene enrichment of the KEGG
signaling pathway. (C) Analysis of cell biological processes of differential gene enrichment biological processes. (D) Venn analysis of differentially expressed genes. (E)
KEGG signaling pathway of mRNAs associated with osteogenic differentiation. (F) Analysis of the cell biology enrichment process of 859 genes upregulated in the
Venn analysis.
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RESULTS

β-Ecdysterone Promoted the Proliferation
of MC3T3-E1 Cells In Vitro
To understand the biocompatibility of β-ecdysterone onMC3T3-
E1 cells, we treated MC3T3-E1 cells with different concentrations
of β-ecdysterone (0, 50, 100, 150, 200, and 250 μM); the CCK-8
assay was used to detect its effect on cell proliferation. The results
showed that β-ecdysterone did not significantly inhibit the
proliferation of MC3T3-E1 cells at different concentrations,
but showed different proliferative abilities (Table 2;
Figure 1A). Cell proliferation activity gradually increased with
an increase in drug concentrations from 0 to 150 μM; however,
this activity did not continue to increase when drug
concentrations increased from 150 to 250 μM. Therefore, we
treated cells with β-ecdysterone concentrations of 100, 150,
and 200 μM in subsequent experiments.

β-Ecdysterone Enhance Osteogenic
Differentiation of MC3T3-E1 Cells In Vitro
ALP is an osteoblast marker secreted at the beginning of
osteogenic differentiation. To explore the role of β-
ecdysterone in promoting osteogenic differentiation of
MC3T3-E1 cells, we examined ALP activity in MC3T3-E1
cells. The results showed that intracellular ALP activity
increased after treatment with different concentrations of β-
ecdysterone (0, 100, 150, and 200 μM) for 3 and 7 days and the
effect was dose- and time-dependent. In addition, 150 μM β-
ecdysterone induced the most significant increase in ALP
activity, which was significantly higher on day 7 than on
day 3 (Table 3; Figure 1B).

Osteopontin (OPN) is an osteogenic marker secreted by
osteoblasts in the middle and late stages of osteogenic
differentiation. Immunocytochemical staining was
performed on MC3T3-E1 cells treated with β-ecdysterone (0
and 150 μM) to investigate whether it also promoted MC3T3-
E1 cells in the middle and late stages of osteogenic
differentiation. The results showed that the brownish-yellow
granules in the cytoplasm of the experimental group were
significantly higher than those of the control group. There was
no significant difference between the 150 μM β-ecdysterone
and IM groups (Figure 1C). However, the nucleus was
observed in the cells of the antibody controls (OPN group)
in our study; no OPN expression was observed in the
cytoplasm (Supplementary Figure S1).

During osteogenesis, osteoblasts undergo proliferation
and gradually differentiate into osteocytes. Calcium salts
are deposited in bone cells before they form bone tissue.
The cells then fuse, mineralize, and form mineralized
nodules. In our study, alizarin red staining was used to
compare cells cultured for 21 days to investigate the effect
of β-ecdysterone on mineralized nodule formation in
MC3T3-E1 cells at the end stage of differentiation. The
results showed that MC3T3-E1 cells cultured in osteoblast
induction medium under β-ecdysterone intervention had
more mineralized nodules than those cultured in osteoblast

induction medium alone (Figure 1D). These results suggest
that β-ecdysterone can enhance osteogenic differentiation of
MC3T3-E1 cells and improve their ability to form bone tissue
in vitro.

Gene Sequencing Analysis of MC3T3-E1
Cells Treated With β-Ecdysterone
To understand the specific effects of β-ecdysterone on nucleic
acid transcription and expression in MC3T3-E1 cells, we used
mRNA-seq to study the gene expression of MC3T3-E1 cells
treated with β-ecdysterone at days 5 and 10. As shown in
Figure 2A, among all detected mRNAs, 29,583 genes were
found to be involved in gene expression analysis compared to
the known mouse genome. In the experimental group, 1403
and 748 genes were up- and down-regulated, respectively; log2
> 1 and Q < 0.05 were established as indicators of significant
difference. Further analysis of biological processes enriched by
these differentially expressed genes using Kyoto Encyclopedia
of Genes and Genomes clustering analysis and Gene Ontology
functional enrichment analysis showed that genes of the BMP
signaling pathway were among the top 20 upregulated genes;
the differences were significant (Figures 2B,C). We analyzed
the intersection of gene expression in MC3T3-E1 cells treated
with β-ecdysterone for 5 and 10 days using Venn diagrams. A
total of 1310 genes were up- or downregulated, including 859
upregulated genes (Figure 2D). We analyzed these 859
upregulated genes (Figure 2F) and found that osteogenesis-
related genes (BMP and Wnt) were almost all upregulated;
related signal transduction genes, including those associated
with DNA integration and cell membrane receptors, were
significantly upregulated. Kyoto Encyclopedia of Genes and
Genomes analysis of signaling pathways of osteogenic target
genes revealed that genes of the BMP, Wnt, and extracellular
matrix-receptor interaction signaling pathways were enriched
(Figure 2E).

β-Ecdysterone Induced the Expression of
BMP-2, Runx2, and Osterix mRNA in
MC3T3-E1 Cells In Vitro
BMP-2 has been shown to induce osteoblast differentiation
rapidly and effectively in vitro. Furthermore, BMP-2 plays a
vital role in bone formation and remodeling. Using mRNA
sequencing analysis, our study found that β-ecdysterone
enhanced the enrichment of genes from the osteogenic
signaling pathway, including the BMP signaling pathway. To
investigate the effect of genes of the BMP-2 signaling pathway on
β-ecdysterone-mediated (0/150 μM) osteogenic differentiation of
MC3T3-E1 cells, we performed RT-qPCR to measure the
expression of osteogenic-related genes. The RT-qPCR results
showed that β-ecdysterone significantly increased the
expression of BMP-2, Runx2, Col I, and Osterix (Figure 3A).
To further verify the involvement of BMP-2 in β-ecdysterone
induced osteogenic differentiation, we used the BMP-2 receptor
antagonist noggin to block BMP-2 signaling in MC3T3-E1
cells. Noggin treatment of MC3T3-E1 cells reduced the
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expression of BMP-2, Runx2, Osterix, and Collagen I mRNA.
These data suggested that the BMP-2 signaling pathway plays
a significant role in osteogenic differentiation of MC3T3-E1
cells mediated by β-ecdysterone (Figure 3A).

β-Ecdysterone Regulated Osteogenic
Differentiation of MC3T3-E1 Cells Through
the BMP-2/Smad/Runx2/Osterix Signaling
Pathway
Western blotting was used to detect the expression of the BMP-2,
Smad1/5, phosphorylated (p)-Smad1/5, RUNX2, and osterix
proteins induced by β-ecdysterone. We confirmed the role of
the BMP-2/SMAD/RUNX2/Osterix pathway in β-ecdysterone-
mediated osteogenic differentiation of MC3T3-E1 cells. Our data
showed that β-ecdysterone significantly increased intracellular
BMP-2, Smad1/5, p-Smad1/5, Runx2, and osterix proteins; the

ratio of protein to phos-protein also increased significantly, with
the most significant increase observed at 150 μM (Figure 4).
Furthermore, there was no effect on the levels of the GAPDH
protein. The protein expression of BMP-2, Smad1/5,
phosphorylated (p)-Smad1/5, Runx2, and Osterix were
significantly decreased in MC3T3-E1 cells treated with noggin.
Therefore, these data suggested that the BMP-2/Smad/Runx2/
Osterix signaling pathway is involved in the regulation of
osteogenic differentiation of MC3T3-E1 cells by β-ecdysterone.

Immunofluorescence was used to detect the expression of
collagen I in the cytoplasmic region and the effect induced by
exposure to noggin. The results showed that collagen I
immunofluorescence aggregation differed significantly
between the experimental and control groups (p < 0.05).
Collagen I expression was most significant in the
experimental group when the concentration of β-
ecdysterone was 150 μM. In contrast, collagen I expression

FIGURE 3 | β-Ecd promotes the expression of osteogenic proteins and genes. (A) The relative expression levels of osteogenic differentiation-related genes in
MC3TE-E1 treated with induction medium, β-Ecd and noggin were determined by RT-qPCR. The results showed that β-Ecd could significantly increase the expression
of osterix mRNA, Collagen I mRNA, BMP-2 mRNA, and Runx2 mRNA in cells; however, this effect could be inhibited by exposure to noggin. There was no significant
difference compared with the IM group and 150 μM β-Ecd group. The experiments were repeated three times and the results were normalized by the expression
level of GAPDH. *p < 0.05, **p < 0.01. (B,C) Immunofluorescence (IF) staining to detect type I collagen expression in MC3T3-E1. After treating MC3TE-E1 with 0 μM β-
Ecd (control group) and 100–200 μM β-Ecd (experimental group) or iduction medium for 10 days, the IF results showed that the expression of type I collagen in the
experimental group increased significantly compared to the control group, but this effect could be explained by inhibition of noggin, type I collagen is shown in green and
nuclei are shown in blue. There was no significant difference compared with the IM group and 150 μM β-Ecd group. ImageJ software was used to measure the relative
expression values in the figure, and three independent experiments were carried out, *p < 0.05, **p < 0.05.
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in cells treated with noggin was generally decreased (p < 0.05),
as shown in Figures 3B,C. These data suggest that noggin may
inhibit the positive regulation of collagen I expression in
MC3T3-E1 cells.

Therapeutic Effect of β-Ecdysterone on
Femoral Bone Defects in Rats
The bone defect model was established in this study by drilling
the femoral condyle in rats. According to the results of the in vitro
experiment, the rats were divided into three groups: the control
group (0 mg/kg of β-ecdysterone was injected intraperitoneally),
experimental group (72 mg/kg of β-ecdysterone was injected
intraperitoneally), and the sham operation group. Rats were
injected intraperitoneally with the corresponding drugs every

3 days after surgery and were sacrificed at the eighth week for
micro-CT scanning, reconstruction, and immunohistochemical
staining.

Table 4 and Figure 5 show the results of weight and
histopathology analysis of different tissues in the control,
sham, and experimental groups. Tissue sections of the liver
and kidney of rats treated with 72 mg/kg of β-ecdysterone for
4 weeks showed no signs of abnormality and toxicity,
respectively. This further confirmed that β-ecdysterone did
not exert any undesirable toxic effects on the animals at
low doses.

As shown in Figure 6, micro-CT was used to evaluate
changes in the femoral condylar defect in rats. On micro-
CT reconstruction analysis, the images clearly showed
characteristics of changes in the bone regeneration process.

FIGURE 4 | Western blotting detection of BMP-2, Smad1/5, p-Smad1/5, Runx2 and Osterix protein expression levels in MC3TE-E1 cultured with β-Ecd and
noggin. (A,B), BMP-2, Runx2, Osterix protein expression levels, (C,D), Smad1/5, phosphorylated (p)-Smad1/5 protein expression levels. (E) the ratio of the protein to
phos-protein, β-Ecd could increased the ratio of the protein to phos-protein, but, the noggin inhibit this. ImageJ software was used to calculate the densitometric analysis
of the protein bands (N = 3; *p < 0.05, **p < 0.001).
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Compared to the control/PBS group, more new bone tissue had
regenerated in the experimental group (Figure 6). On
quantitative analysis, the volume and density of new bone
tissue increased in the experimental group at 4 and 8 weeks
(p < 0.05); however, there was no significant difference
between the sham and experimental groups (p > 0.05) at
8 weeks. In addition to micro-CT, HE staining was used to
detect histological changes in newly formed bone tissue.
Unlike in the control group, the calcium phosphorus
crystals in the bone tissue of the experimental group were
arranged in a regular shape and the collagenous fibers were
arranged in a circular shape. The direction of arrangement of
the collagenous fibers was consistent with that of the bone
cavities; this is a typical histomorphological characteristic of
newly formed bone. Immunohistochemistry was used to detect
the protein expression levels of BMP2, Smad4, Runx2, and
Osterix. Compared to the control group, the expression of
target protein in the experimental group was significantly
increased. In addition, there was no significant difference in
expression between the sham and control groups at 4 and
8 weeks (Figure 7).

DISCUSSION

Fractures, traumatic bone defects, and osteoporosis are
increasingly prominent and common diseases worldwide,

and adequate bone regeneration is the key their successful
treatment. To our knowledge, bone regeneration is a common
process of intramembranous ossification and endochondral
ossification, initiated by periosteal bone progenitor cells,
which first form avascular cartilage tissue and is then
replaced by bone tissue (Slade and Chou 1998). BMSCs play
an essential role in bone repair (Wang et al., 2013). Among the
cytokines involved in bone formation, the transcription factor
BMP2 is the most studied, but its induction mechanism in
bone progenitor cells is poorly understood. This study showed
that β-ecdysterone promotes bone formation and improves
cell proliferation and differentiation by activating the BMP2/
Smad/Runx2/Osterix signaling pathway, suggesting that β-
ecdysterone can effectively improve bone volume and
quality. Mechanistically, BMP2 binds to the BMPR-II
receptor on the cell membrane and activates the BMPR-II
receptor and BMPR-I receptor, regulates the binding of the
downstream transcription factor Smad1/5/8 to the
transcription factor Smad4, which is transferred to the
nucleus and activates the downstream nuclear transcription
factor Runx2. Runx2 further enhances Osterix fragment
transcription and translation in the nucleic acid chain,
promoting osteogenic proteins, extracellular matrix
deposition, and calcium mineralization, leading to fracture
regeneration. In general, our study suggests that β-ecdysterone
is a positive regulator of bone regeneration, promoting BMSC
proliferation and osteogenic differentiation.

TABLE 4 | The weight of rats in different groups (0 and 4 weeks after surgery; n = 5).

Time (days) PBS group Sham group β-ecdysterone group Statistics (F, p)

0 weeks 204.7 ± 2.48 204.4 ± 2.96 203.9 ± 2.76 F = 0.13, p = 0.89
4 weeks 306.9 ± 4.86 308.5 ± 3.59 311.0 ± 4.87 F = 1.66, p = 0.23
Statistics (t, p) t = 33.6, p < 0.01 t = 35.9, p < 0.01 t = 39.8, p < 0.01

Values are expressed by means X ± SD (n = 5). **p < 0.01, ***p < 0.001, NS, no significance.

FIGURE 5 | Effect of β-ecdysterone on tissue architecture of rats 4 weeks after surgery was compared with that before surgery. (A) Depicts the hematoxylin and
eosin stained section of liver from control rat, sham rat and rat treated with 92 mg/kg β-ecdysterone showing no signs of hepatotoxicity (shown in arrow). (B) Depicts the
hematoxylin and eosin stained section of kidney from control rat, sham rat and rat treated with 92 mg/kg β-ecdysterone showing no signs of nephrotoxicity (shown in
circle). (C) 4 weeks after surgery, the weight of rats in different groups increased respectly, and β-ecdysterone showing no signs of weight loss. *p < 0.05 and NS,
no significant.
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β-ecdysterone has been shown to effectively protect mouse
osteoblasts from glucocorticoid-induced apoptosis and
autophagy (Tang et al., 2018a). It also blocks IL-1β-induced
chondrocyte apoptosis and the inflammatory response by
inhibiting NF-lB signaling (Zhang et al., 2014). In their
in vitro study, Jian et al. (2013) (Xu et al., 2009) demonstrated
that β-ecdysterone can induce BMP-2 dependent osteogenic
differentiation and proliferation of human periodontal
ligament stem cells through the extracellular signal-regulated
kinase pathway. However, the results only evaluated the
toxicity of β-ecdysterone and did not determine whether it
promoted osteogenic differentiation of BMSCs. Data regarding
the connection between estrogen receptors and BMP signaling
are lacking. Studies have shown that cytokine sensitivity
screening considers the BMP4 signaling pathway to be crucial

for treating ER + breast cancer (Shee et al., 2019). In addition,
dehydrodiconiferyl alcohol has been found to promote BMP-2-
induced osteoblastogenesis through its agonistic effects on
estrogen receptors (Lee et al., 2018). In their study, Pang et al.
found that quercetin stimulates BMSC differentiation through an
estrogen receptor-mediated pathway (Pang et al., 2018). We
therefore suspect the presence of an interaction between BMP
signaling and estrogen receptors; β-ecdysterone may have
promoted osteogenic differentiation of BMSCs in our study by
activating estrogen receptors in vivo.

Considering the importance of BMSCs in bone repair and
reconstruction, we investigated the effects of β-ecdysterone on
BMSCs in vitro and in vivo. In vitro, we used the MC3T3-E1 cell
line, which includes osteogenic precursor cells cloned from the
skull of C57BL/6 mice, to replace BMSC cells. Repeated

FIGURE 6 | The results of the Micro-CT test show that β-Ecd accelerates bone healing in rats. (A) Critical size bone defect model of the distal femur and β-Ecd
injection; (B)Micro-CT analysis of new bone formation, CT-vox software to identify new bone and analyze the distribution of new bone at 8 weeks. It can be seen that the
new bone formation in the sham operation group and the β-Ecd group was significantly increased compared to the PBS group at 4 and 8 weeks, but there were no
significant differences between the sham operation group and the β-Ecd group; (C) Statistics of new bone microstructural parameters in the 4 week and eighth
week, including bone mineral density (BMD), bone tissue volume (BV), trabecular bone thickness (Tb.Th). Each group contained three replicates, and the data were
analyzed by one-way ANOVA for multiple comparisons. *p < 0.05, ns, nosignificant.
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subculture of this cell line has been reported to maintain the
phenotype of high ALP activity of osteoblasts; it also promotes
differentiation into osteoblasts and osteocytes in vitro, forming
calcified bone tissue and mineral deposits of hydroxyapatite
(Kunimatsu et al., 2018). This cell line has proven to be a
viable model for exploring osteoblast proliferation, maturation,
and differentiation (Gal et al., 2000) and is commonly used to
study the effects of drugs on osteoblasts.

In vitro cell proliferation experiments showed that β-ecdysterone
promoted MC3T3-E1 cell proliferation at 25–200mM. In contrast,
MC3T3-E1 cell proliferation and metabolism were inhibited after
7 days of culture or when the concentration was greater than
400mM. Microscopically, cells reached fusion after 7 days of
culture; this may explain why the effect of β-ecdysterone on the
proliferation of MC3T3-E1 cells was limited to the early stage of cell
culture. Our results also indicate that higher levels of β-ecdysterone
exert a specific toxic effect on MC3T3-E1 cells. In vivo experiments

were performed using 0 and 150 μM of β-ecdysterone (72mg/kg),
which was injected intraperitoneally in femoral condylar defect
model rats. The results showed that the bone defect regenerated
to different degrees after 8 weeks and the effect was most significant
at 72 mg/kg. This result demonstrates that β-ecdysterone can
promote osteoblast proliferation in vivo and has obvious
biosafety. In previous in-vivo and in-vitro studies, the effect of β-
ecdysterone on cell proliferationwas complex (Tang et al., 2018b). In
our study, β-ecdysterone at an appropriate concentration showed the
ability to promote bone progenitor cell proliferation, which is
essential for bone tissue regeneration; this is because the body
needs enough bone cells to rebuild after fracture, and the number
of cells that can be transplanted by autologous or allograft is limited.

Bone formation is a complex process. In addition to cell
proliferation, deposition and mineralization of the extracellular
matrix are also important (Jia et al., 2003). Therefore, ideal
methods for bone regeneration must promote bone progenitor

FIGURE 7 | Histomorphological analysis of newly formed bone tissue in bone defect area and immunohistochemical evaluation of osteogenesis-related proteins in
newly formed bone. (A)HE staining of bone tissue sections around the bone defect at 4 and 8 weeks; Green arrow: fibrous tissue; Yellow arrow: new capillary formation;
Black arrow: bone tissue. (B,C) immunohistochemical detection of the expression of the BMP2/Runx2 protein in the new tissue in the area of the bone defect, the
enlarged images in the black box are bone trabeculae or osteocytes; (D) The area of new bone tissue and the expression of the BMP2 protein in the three groups
were statistically analyzed using ImageJ software. At 4 weeks, the expression of the BMP2/Runx2 protein was significantly increased in the bone defect area; At
8 weeks, the expression of the BMP2/Runx2 protein was significantly increased in the bone defect area, but there was no significant difference between the β-Ecd group
and the sham-operated group. Each group contained three replicates, and the data were analyzed by one-way ANOVA for multiple comparisons. Purple arrow: BMP2/
Runx2 protein positive site. *p < 0.05, ns, not significant.
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cell proliferation and stimulate osteogenic differentiation. In this
study, MC3T3-E1 cells were cultured with different
concentrations of β-ecdysterone to further verify the effect of
β-ecdysterone on osteoprogenitor cell differentiation. The final
data showed that β-ecdysterone significantly increased ALP
activity in MC3T3-E1 cells, and the increase was more
pronounced at a concentration of 200 mM Runx2 is an early
phenotypic marker of mature osteoblasts similar to ALP, while
COL-1 and OPN are late phenotypic markers of osteoblast
differentiation (Zhang et al., 2010; Zhou et al., 2014). We
demonstrated that β-ecdysterone induced significantly higher
expression of the COL-1, OPN, and Runx2 gene or protein in
MC3T3-E1 cells than in nonstimulated controls. These results
suggest that β-ecdysterone stimulates early and late
differentiation of bone progenitor cells.

For the in-vivo experiments, we selected a rat partial femoral
condyle defect model. In the partial defect model, a defect is usually
drilled into the side of the bone to create an area of injury. Drilling
through the cortical bone may extend to the underlying cancellous
bone ormarrow cavity. In thismodel, only one bone is usually injured;
notably, certain cortical bone defects are simple to operate and can
simulate the steps of stable fracture healing (McGovern et al., 2018).
They offer many advantages over other closed and open fractures,
including reduced morbidity in animals and better
histomorphometric analysis. Micro-CT values and
immunohistochemical staining results of the rat bone defect model
showed greater new bone formation (based on mineralization
measurement) in the group treated with β-ecdysterone than in the
control/PBS group. In conjunction, these results suggest that β-
ecdysterone stimulates osteogenic differentiation of bone
progenitors at different stages in vitro and in vivo.

BMPs play a vital role in the osteogenic differentiation of
different cell lines (Urist and Strates 2009; Long 2011). Through
gene sequencing and differential expression analysis of osteogenic
related genes in different treatment groups of MC3T3-E1 cells, we
found that the genes detected in different groups of cells had
significant differences in signal pathway enrichment and cell
function. The BMP signaling pathway genes were ranked
among the top 20 and the differences were statistically
significant. BMP-2 has been reported to be a crucial regulatory
factor in the BMP pathway, which can enhance the osteogenic
differentiation of human BMSCs (Peng et al., 2003). Therefore,
our analysis of the results of gene sequencing suggested that β-
ecdysterone-enhanced osteogenic differentiation of bone
progenitor cells was closely related to the BMP2 signaling
pathway. Similarly, we found that β-ecdysterone upregulates
BMP-2 expression at mRNA and protein levels, and the BMP-
2 signaling pathway inhibitor noggin can counteract this effect
in vitro. Although noggin has been observed to be nonspecific for
BMP-2 (Secondini et al., 2011), genetic tests showed that β-
ecdysterone did not significantly increase BMP signaling in
MC3T3-E1 cells. These results suggest that the BMP-2
signaling pathway plays an essential role in β-ecdysterone-
induced osteogenic differentiation of bone progenitor cells.

Regarding the induction mechanism of BMP-2, many studies
have shown that it is related to the MAPK signaling pathway
(Park et al., 2019). Previous studies have reported that the ERK

pathway is involved in the differentiation of periodontal ligament
cells and osteoblasts (Tóth et al., 2008), but our results suggest
that the increased expression of BMP-2 and other osteogenic
proteins and genes is directly related to the BMP2/Smad/Runx2/
Osterix pathway. The noggin inhibitor can abrogate this effect.
According to our data and previous studies (Qiao et al., 2005;
Wang et al., 2012; Fischerauer et al., 2013), we speculate that the
mechanism of action involves BMP-2 active the BMP type 2
receptor, but it interacts and activates the BMP type 1 receptor
which then the BMP type 1 receptor activates downstream
signaling pathways, by phosphorylation of Smad1, Smad5, or
Smad8. Smad1/5/8 activates and binds to Smad4 and enters the
cell nucleus to regulate the transcription function of specific
genes. The Smad protein, as a coregulatory, interacts with
Runx2 to participate in osteoblast phenotypic gene expression
and differentiation (Phimphilai et al., 2006). In addition, Runx2
can interact with osteoblast specifics acting element 2 in the
osteocalcin promoter region to stimulate osteocalcin expression.
There are osteoblast specifics acting element 2-like elements in
the promoter regions of osteoblast-related genes such as type I
collagen, osteocalcin, and osteopontin, and Runx2 can bind to
these osteoblast specifics acting element 2-like elements to
activate gene expression (Liu and Lee 2013); however, this
mechanism requires further study.

In summary, β-ecdysterone can be used as a safe and effective
agent for bone regeneration to resolve insufficient bone
regeneration and severe osteoporosis caused by decreased
osteogenic capacity. Thus, β-ecdysterone has excellent research
value and application prospects. Furthermore, it remains to be
explored whether β-ecdysterone can be incorporated into bone
regeneration biomaterials to promote bone tissue regeneration
for the treatment of critical bone defects in the future.

CONCLUSION

This study is the first to demonstrate that β-ecdysterone has good
biosafety in mammals in vitro and in vivo and can promote
proliferation and induce osteogenic differentiation of bone
progenitors through the BMP2/Smad/Runx2/Osterix signaling
pathway. This indicates its considerable potential as a therapeutic
agent for bone regeneration and repair.
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Connexin 43 Hemichannels Regulate
Osteoblast to Osteocyte
Differentiation
Rui Hua, Sumin Gu and Jean X. Jiang*

Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States

Connexin 43 (Cx43) is the predominant connexin subtype expressed in osteocytes.
Osteocytes, accounting for 90%–95% of total bone cells, function as orchestrators
coordinating balanced activity between bone-resorbing osteoclasts and bone-forming
osteoblasts. In this study, two newly developed osteocytic cell lines, OCY454 and IDG-
SW3, were used to determine the role of Cx43 gap junctions and hemichannels (HCs) in
the regulation of osteoblast to osteocyte differentiation. We found that the Cx43 level was
substantially increased during the differentiation of IDG-SW3 cells and is also much higher
than that of OCY454 cells. We knocked down Cx43 expression using the lentiviral
CRISPR/Cas9 approach and inhibition of Cx43 HCs using Cx43 (E2) antibody in IDG-
SW3 cells. Cx43 knockdown (KD) or Cx43 HC inhibition decreased gene expression for
osteoblast and osteocyte markers, including alkaline phosphatase, type I collagen, dentin
matrix protein 1, sclerostin, and fibroblast growth factor 23, whereas increasing the
osteoclastogenesis indicator and the receptor activator of nuclear factor kappa-B
ligand (RANKL)/osteoprotegerin (OPG) ratio at early and late differentiation stages.
Moreover, mineralization was remarkably attenuated in differentiated Cx43-deficient
IDG-SW3 cells compared to ROSA26 control. The conditioned medium collected from
fully differentiated IDG-SW3 cells with Cx43 KD promoted osteoclastogenesis of
RAW264.7 osteoclast precursors. Our results demonstrated that Cx43 HCs play
critical roles in osteoblast to osteocyte differentiation process and regulate osteoclast
differentiation via secreted factors.

Keywords: IDG-SW3 cells, Cx43, CRISPR/Cas9, osteoblast differentiation, mineralization, osteoclastogenesis

INTRODUCTION

Osteocytes are the most abundant cell type in bone tissue, comprising 90–95% of bone cells. They are
buried within the mineral bone matrix and form an extensive network through long dendritic
processes, which allows osteocytes to communicate with neighboring osteocytes, bone-forming
osteoblasts, and bone-resorbing osteoclasts (Creecy et al., 2020; Robling and Bonewald, 2020).
Emerging studies suggest that osteocytes function as master orchestrators of bone remodeling (Dallas
et al., 2013; Schaffler et al., 2014). Osteocytes are shown to sense mechanical loading to coordinate
adaptive responses of the skeleton (Qin et al., 2020) and actively secrete factors that regulates
phosphate homeostasis and mineral metabolism (Chande and Bergwitz, 2018).

Osteocytes are derived from osteoblasts through osteogenesis. During this transition process,
osteoblasts lay down osteoid (non-mineralized bone matrix), accompanied by a morphology change
from polygonal to highly dendritic with reduced cell volume, and eventually transform into
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osteocytes embedded in the mineralized bone matrix (Franz-
Odendaal et al., 2006; Dallas and Bonewald, 2010). Since
osteocytes reside within the mineralized lacuno-canalicular
network, their isolation has been difficult, generating low
yields and high heterogeneity. In addition, osteocytes, as
terminally differentiated cells, tend to lose phenotype when
isolated from their natural mineralized environment (Dallas
et al., 2013; Wang et al., 2019). Despite the abundance and
importance, osteocytes have been a challenge to study due to
lack of appropriate in vitro cell models. It is not until the past
2 decades or so that significant osteocyte cell models have been
developed. MLO-Y4 is the first established osteocyte-like cell line,
which has been one of the most widely used for studying
osteocyte functions (Kato et al., 1997). This cell line was
derived from the long bones of transgenic mice expressing the
immortalizing SV40 T antigen driven by the osteocalcin
promoter. However, several limitations of MLO-Y4 cells
include the absence of mineralized matrix, constitutive
expression of the large T antigen, and very low levels of the
mature osteocyte markers fibroblast growth factor 23 (FGF23)
and sclerostin (SOST) (Yang et al., 2009; Woo et al., 2011).

There are two pre-osteocyte cell models, IDG-SW3 (Woo
et al., 2011) and OCY454 (Spatz et al., 2015). These two cell
lines were generated by crossing the dentin matrix protein 1
(DMP1)–GFP transgenic mice (Kalajzic et al., 2004) with the
“immortomouse”, which carries a temperature-sensitive SV40 T
antigen (Jat et al., 1991). When cultured at 33°C, both IDG-SW3
and OCY454 cells proliferate rapidly. However, at 37°C, they no
longer express the SV40 T antigen and differentiate from the late
osteoblast to the late osteocyte, closely recapitulating the
phenotype of primary cells. These two cell lines provide
valuable tools for studying the transition from osteoblast to
mature osteocyte. The expression of FGF23 mRNA is elevated
in response to 1,25-dihydroxyvitamin D3 treatment, while the
SOST expression with parathyroid hormone (PTH) treatment is
downregulated in IDG-SW3 cells (Woo et al., 2011). OCY454
cells express SOST at earlier time points than IDG-SW3 cells after
the induction of differentiation, and the expression is upregulated
in response to microgravity in vitro (Spatz et al., 2015).

Connexin 43 (Cx43) is the most abundant connexin present in
osteocytes, acting as a key modulator for skeletal homeostasis (Batra
et al., 2012; Stains and Civitelli, 2016; Hua et al., 2021). Cx43 forms
gap junctions, which mediate direct cell–cell communication. Cx43
hemichannels (HCs) are unpaired gap junction channels, mediating
communication between cells and their extracellular environment.
Connexin-formed gap junctions and HCs allow the passage of small
molecules (MW < 1 kDa) such as ions, essential metabolites, and
secondary messengers, including Ca2+, NAD+, prostaglandin E2
(PGE2), cAMP, ADP, and ATP (Goodenough et al., 1996).
Deficiency of Cx43 causes heart deficits and death of animals
soon after birth (Reaume et al., 1995; Ya et al., 1998),
accompanied by osteoblast dysfunction and delayed
intramembranous and endochondral ossification in fetuses or
newborn pups (Lecanda et al., 2000; Chaible et al., 2011). Using
osteoblast- and osteocyte-specific Cx43 knockout mouse models, it
has been reported that Cx43 contributes to bone cell proliferation,
survival, and differentiation (Plotkin et al., 2008; Watkins et al., 2011;

Bivi et al., 2012). Our previous work showed that impairment of
Cx43HCs in osteocytes negatively affect bone formation, remodeling,
and osteocyte viability (Xu et al., 2015).

In this study, we aim to investigate the role of Cx43 in
regulating osteoblast to osteocyte differentiation, and its
impact on osteoclastogenesis. Taking advantage of the newly
developed in vitro osteocytic cell models, we established a
Cx43 knockdown (KD) stable cell line using lentiviral-
mediated CRISPR/Cas9 genome editing technology and
specifically inhibited Cx43 HCs using Cx43 (E2) antibody. We
evaluated osteoblastic and osteocytic marker genes expression
and mineralization at different differentiation stages as well as the
regulation on osteoclastogenesis. This study will help gain new
insights into the basic regulatory mechanisms of osteocyte
differentiation and implications for the pathogenesis and
treatment of osteoporosis.

MATERIALS AND METHODS

Cell Culture
IDG-SW3 cells, a gift fromDr. Lynda Bonewald (IndianaUniversity),
were cultured on collagen-coated (rat tail collagen type I, Corning,
354236, 0.15mg/ml) plates (Woo et al., 2011). Cells were expanded in
immortalizing conditions in an α-MEM medium (Thermo Fisher
Scientific,Waltham,MA,United States) supplementedwith 10% fetal
bovine serum (FBS), 50 U/mL of IFN-γ (Sigma-Aldrich, IF005, St.
Louis, MO, United States), and 1% penicillin/streptomycin at 33°C
and 5%CO2. For osteogenesis induction, cells were cultured in the α-
MEMmedium supplemented with 10% FBS, 50 μg/ml ascorbic acid,
and 4mM β-glycerophosphate at 37°C and 5% CO2. For Cx43 (E2)
antibody treatment, IDG-SW3 cells were supplied with 2 μg/ml Cx43
(E2) antibody upon differentiation, the medium was changed every
2 days.

OCY454 cells were kindly provided by Dr. Paola Divieti
Pajevic (Boston University). Cells were expanded in the α-
MEM medium supplemented with 10% FBS and 1%
penicillin/streptomycin at 33°C and 5% CO2 on collagen-
coated plates, as described previously (Spatz et al., 2015).
Upon confluence, cells were plated on non-collagen–coated
plates to induce osteogenesis in a 5% CO2 incubator at 37°C.

Plasmid Design and Construction
The 20-nucleotide single guide RNA (sgRNA) sequences were
designed using the CRISPR design and optimization tool
(CRISPR-DO) (Ma et al., 2016). SgRNA oligos were annealed
and cloned into the BsmBI enzyme site of the lentiviral expression
vector lentiCRISPRv2 (Addgene, plasmid #52961, Watertown,
MA, United States) (Sanjana et al., 2014; Shalem et al., 2014). The
sgRNA sequences used in this study are as follows: Cx43 KD-1:
5′-AAGCCTACTCCACGGCCGG-3′; Cx43 KD-2: 5′- AAAGTG
GCGCAGACCGACG-3′; and ROSA26: 5′- CACCGCGCCCAT
CTTCTAGAAAGAC-3′.

Lentivirus Packaging and Infection
The HEK293T cells (ATCC, CRL-11268, Manassas, VA,
United States) were grown at 37°C and 5% CO2 in Dulbecco’s
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modified Eagle’s medium (Thermo Fisher Scientific), and
lentiviruses were produced by transfecting the HEK293T cells
with lentiCRISPRv2:Cx43-sgRNA or ROSA26-sgRNA, together
with helper plasmids pCMV-VSV-G (Addgene, plasmid #8454)
and psPAX2 (Addgene, plasmid #12260). The transfections were
carried out using Lipofectamine 2000 (Thermo Fisher Scientific,
11668019), according to manufacturer’s instructions. The virus-
containing medium was harvested 48 and 72 h after transfection
and subsequently pre-cleaned with a 0.45 μm filter (Millipore,
Burlington, MA, United States), as previously described (Jiang
et al., 2015;Wang et al., 2016). The viral supernatant was added to
IDG-SW3 cells with polybrene. The media was changed 24 h after
the infection. An antibiotic kill curve experiment was performed
to determine the optimal concentration of puromycin needed to
eliminate untransduced cells. At 48 h postinfection, cells were
selected with 5 μg/ml puromycin (Sigma-Aldrich, P8833) for
5 days.

Preparation of Cell Membrane Extracts and
Western Blotting
Cultured cells were collected in lysis buffer (5 mM Tris, 5 mM
EDTA/EGTA, and proteinase inhibitors) and then ruptured by
pipetting using a 20-gauge needle. Cell lysates were first
centrifuged at 1,000 rpm for 5 min. The supernatant was
transferred into ultracentrifuge tubes (Beckman Coulter,
357448, Brea, CA, United States) and centrifuged at 45,000 g
for 45 min. The pellet was resuspended in lysis buffer, and the
membrane protein was dissolved by addition of SDS to a 1% final
concentration. Protein concentrations of SDS-dissolved lysates
were determined by using a Micro BCA Protein Kit (Thermo
Scientific, 23235), and the lysates were used for Western blotting
analysis. Each protein sample was boiled in SDS loading buffer,
subjected to electrophoresis on a 10% SDS-polyacrylamide gel,
and electroblotted on a nitrocellulose membrane. Membranes
were incubated with affinity-purified polyclonal Cx43 antibody
(1:300) (Cherian et al., 2003), polyclonal GFP antibody (Abcam,
ab290, 1:2000 dilution, Cambridge, United Kingdom),
monoclonal β-actin antibody (Thermo Fisher Scientific,
MA515739, 1:5000 dilution), or monoclonal GAPDH antibody
(Thermo Fisher Scientific, AM4300, 1:5000 dilution). Primary
antibodies were detected with goat anti-rabbit IgG–conjugated
IRDye® 800CW and goat anti-mouse IgG–conjugated IRDye®
680RD (1:15000 dilution) using a LiCor Odyssey Infrared Imager
(LI-COR, Lincoln, NE, United States), as previously described
(Ma et al., 2019). The band intensity was quantified by
densitometry using ImageJ software (NIH, Bethesda, MA,
United States).

Immunofluorescence Staining
The cells were cultured on collagen-coated coverslips for
immunofluorescence staining. Cells were rinsed three times
with cold DPBS with Ca2+ and Mg2+ and fixed with 2%
paraformaldehyde for 10 min. The cells were then incubated
with blocking solution (2% donkey serum, 2% fish skin
gelatin, 1% BSA, and 0.2% Triton X-100 in PBS) for 1 h,
followed by incubation with affinity-purified polyclonal Cx43

antibody (1:100) at 4°C overnight (Cherian et al., 2003). The
primary antibody was detected using 1:500 dilution of Alexa
Fluor 488- or Alexa Fluor 594–conjugated donkey anti-rabbit
antibody (Jackson Immuno Research Labs, 711-545-152 or 711-
585-152, West Grove, PA, United States) for 1 h. Cells on
coverslips were mounted using the Vectashield mounting
medium (Vector Laboratories, H-1000, Burlingame, CA,
United States) and sealed. Fluorescence imaging was
performed using a confocal laser scanning microscope (Zeiss,
LSM780, Jena, Germany) or a fluorescent microscope (Keyence,
BZ-X710, Osaka, Japan).

Scrape Loading/Dye Transfer Assay
Gap junction intercellular coupling was determined at 25°C using
scrape loading/dye transfer technique in undifferentiated
confluent ROSA26 or Cx43 KD IDG-SW3 cells (Hua et al.,
2021). In brief, cells were washed twice with DPBS containing
Ca2+ and Mg2+, and scrape-loading was performed by scraping
cells with a sharp razor scraper containing the gap
junction–permeable fluorescent dye (1% lucifer yellow,
457 Da) and gap junction–non-permeable fluorescent dye (1%
rhodamine–dextran, 10 kDa). After 5 min, cells were washed four
times with DPBS and then fixed with 2% paraformaldehyde for
10 min. Fluorescence images were captured using an inverted
fluorescent microscope (Olympus IX70, Tokyo, Japan).
Experiments were repeated three times, and data were
quantified by averaging fluorescence areas of three fields using
NIH ImageJ software. Quantification of changes in dye coupled
under different groups was performed by measuring the
fluorescence area in square millimeters of the lucifer yellow
fluorescence minus rhodamine-–dextran fluorescence.

Fluid Flow Shear Stress (FFSS)
FFSS experiment was conducted to apply mechanical stimulation
on undifferentiated ROSA26 or Cx43 KD IDG-SW3 cells. As
described previously (Cheng et al., 2001; Riquelme et al., 2015),
fluid flow was generated by using a parallel plate flow chamber
system (Bioptechs, Butler, PA, United States). The chambers were
separated by a gasket of defined thickness with gravity-driven
fluid flow using a peristaltic pump (Cole-Parmer Instrument,
Chicago, IL, United States). The wall shear stress experienced by
cells in these chambers was related directly to the flow rate of the
circulating medium through the channel and inversely to the
square of the channel height. By adjusting the channel height and
flow rate, stress levels of 16 dyn/cm2 were established. Cells were
cultured on collagen-coated microscope glass slides, which can be
mounted on the flow chamber with the surface area of 5 cm2 for
shear stress exposure. Each test was conducted for 10 min. The
circulating medium was recording media (HCO3−-free α-MEM
medium buffered with 10 mM HEPES, pH 7.4), and controls are
consisted of ROSA26 or Cx43 KD IDG-SW3 cells in recording
media but not subjected to FFSS.

Dye Uptake Assay
On completion of the flow regimen, the cell-covered slides were
removed for the dye uptake assay. Cells were incubated with a
mixture of 0.1 mM ethidium bromide (EtBr, MW 394 Da) and
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1 mg/ml FITC-dextran (MW 10 kDa) for 5 min. EtBr was used as
a tracer to detect hemichannel activity, and FITC-dextran, which
is too large to pass through hemichannels but is taken up by dying
cells, was used as a negative control. Cells were then rinsed five
times with PBS, followed by fixing with 2% paraformaldehyde for
10 min. At least six microphotographs of fluorescence fields were
captured under a 20X fluorescent microscope (Keyence, BZ-
X710, Osaka, Japan). For each image, the average intensity of
EtBr fluorescence was measured and quantified from at least 30
random cells using ImageJ software (NIH, Bethesda, MD,
United States). Experiments were repeated three times, and the
collected data were illustrated as pixel mean in arbitrary units.

RNA Isolation and Real-Time PCR
Total RNA was isolated from differentiated IDG-SW3 cells using
the TRIzol reagent (Molecular Research Center, TR118,
Cincinnati, OH, United States), according to the
manufacturer’s instructions. After RNA quantification by using
Nanodrop 2000, cDNA was synthesized from 1 μg of total RNA
using the high-capacity RNA-to-cDNA kit (Applied Biosystems,
43-889-50, Bedford, MA, United States). Real-time PCR was
performed using an ABI 7900 PCR device (Thermo Fisher
Scientific) and SYBR Green (Bio-Rad Laboratories, 1725124,
Hercules, CA, United States) with a two-step protocol (94°C
for 15 s and 60°C for 60 s). The 2−ΔΔCT method was used for
qPCR data analysis. GAPDH was used as a housekeeping gene
control. The primers sequences used in this study are listed in
Table 1. Experiments were run in triplicates.

Alkaline Phosphatase, Alizarin Red, and von
Kossa Staining
For alkaline phosphatase staining, after osteogenic induction for
9 days, cells were fixed with 4% paraformaldehyde for 10min and
incubated in freshly prepared naphthol AS-MX phosphate (Sigma-
Aldrich, 855) and Fast Blue BB (Sigma-Aldrich, F0500) solution. For
Alizarin red staining of calcium, after osteogenic induction for 18 or
28 days, cells were fixed with 10% buffered formalin for 15min and
then stained with 2% Alizarin red solution, pH 4.2 (Sigma-Aldrich,
A5533). For von Kossa staining of phosphate, after osteogenic
induction for 28 days, cells were fixed with 10% buffered formalin
for 15min. Cells were then incubated with 5% silver nitrate solution
under ultraviolet (UV) light for 20min. Images were captured using a
Keyence microscope (BZ-X710, Osaka, Japan). The stained area was
calculated as a percent of total well area over a representative
threshold level.

Conditioned Medium Treatment and
Tartrate-Resistant Acid Phosphatase
(TRAP) Staining
RAW264.7 osteoclast precursors were grown in the RPMI-1640
medium (Thermo Fisher Scientific) supplemented with 10% FBS
and 1% penicillin/streptomycin. The conditioned medium
collected from differentiated IDG-SW3 cells was aliquoted and
stored at −80°C before use. RAW264.7 cells were seeded in 48-
well plates for osteoclastogenesis induction. RAW264.7 cells were
supplied with the conditioned medium and RAW264.7 growth
media mixed in the ratio of 1:1, with 10 ng/ml or 50 ng/ml
recombinant RANKL (R&D Systems, 462-TEC-010,
Minneapolis, MN, United States). After 7 days of
differentiation, osteoclasts were visualized using a leukocyte
acid phosphatase staining kit (Sigma, 387A-1 KT). Images
were captured using a Keyence microscope (BZ-X710, Osaka,
Japan).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism8
statistics software (GraphPad, San Diego, United States). All
data are presented as mean ± SEM. t-test, one-way ANOVA,
and two-way ANOVA with Tukey’s test was used for statistical
analysis. Asterisks indicate the degree of significant differences
compared with the controls (*, p < 0.05; **, p < 0.01; ***, p < 0.001;
****, p < 0.0001).

RESULTS

Cx43 Expression is Increased During
Osteogenic Differentiation
OCY454 and IDG-SW3 cell lines are two cell models of
differentiated osteocytes, which are derived from long bones of
double transgenic mice expressing DMP1-GFP and thermolabile
large T antigen that enables conditional immortalization of cells
(Woo et al., 2011; Spatz et al., 2015). At 33°C, OCY454 and IDG-
SW3 cells showed continuous proliferation and were GFP-
negative (Figure 1A, Day 0). After osteogenic induction, they
exhibited late osteoblast to osteocyte phenotype, with expression
of a DMP1-GFP reporter as a marker for osteocytic
differentiation (Figure 1A, Day 6–Day 15). The percentage of
GFP-positive cells increased along with the differentiation
process in both cell lines. Cx43 expression in OCY454 and
IDG-SW3 cells were examined by immunofluorescence

TABLE 1 | Primers sequences for RT-PCR.

Gene Forward primer (59–39) Reverse primer (59–39)

ALP GGAGATGGACCAGGCCATTG CCGTCCACCACCTTGTAGCC
COL1A1 GCCAATGGTGCTCCTGGTATTG TTTGGCACCAGTGTCTCCTTTG
DMP1 CCCAGTTGCCAGATACCACAATAC GCTGTCCGTGTGGTCACTATTT
SOST CATCCCAGGGCTTGGAGAGTA TGTCAGGAAGCGGGTGTAGT
FGF23 CTACAGCCAGGACCAGCTATCA GTTGCCGTGGAGATCCATACAAAG
OPG GAATGCCGAGAGTGTAGAGAGGATAA CGCTGCTTTCACAGAGGTCAAT
RANKL CCGTGCAGAAGGAACTGCAA TATGGGAACCCGATGGGATG
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FIGURE 1 | Cx43 expression is increased during osteogenic differentiation in DMP1-GFP–expressing IDG-SW3 and OCY454 cells (A) Representative images of
DMP1-GFP expression in OCY454 (left panels) and IDG-SW3 cells (right panels) under fluorescent and phase-contrast microscopy during the time course from
immortalizing (Day 0) to osteogenic differentiation (Day 15). Scale bar, 50 μm. (B) Immunofluorescence staining of Cx43 in OCY454 (left panels) and IDG-SW3 cells (right
panels) under immortalizing (Day 0) and osteogenic differentiation (Day 15) conditions. Nuclei were stained with DAPI (blue). Scale bar, 10 μm. (C) Membrane
extracts were prepared from OCY454 and IDG-SW3 cells and subjected to immunoblotting using Cx43 (CT) or β-actin antibodies. (D) Densitometry measurement ratio
of phosphorylated Cx43 (p-Cx43) to total Cx43 (T-Cx43). (E) Soluble protein extract was isolated from OCY454 and IDG-SW3 cells and subjected to immunoblotting
using GFP or GAPDH antibodies. (F) Densitometry measurement ratios of GFP to GAPDH. Data shown are mean ± SEM. **, p < 0.01, ***, p < 0.001, ****, p < 0.0001.
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staining (Figure 1B). Under proliferating conditions, the
subcellular localization of Cx43 was mainly in the cytoplasmic
region, which is consistent with a previous report in osteoblasts
(Yang et al., 2021). The differentiated IDG-SW3 cells displayed a
clustered punctate spot-like distribution of Cx43 toward the cell
surface (Figure 1B, right panels). However, the difference of Cx43
distribution patterns between proliferating and differentiated
OCY454 cells was not evident (Figure 1B, left panels). To
further quantitatively evaluate the Cx43 expression level,
Western blot was performed using crude membrane extracts
isolated from both cell lines at different time point of
differentiation. As shown in Figure 1C, there was a minimal
level of Cx43 in proliferating OCY454 cells revealed by the
affinity-purified Cx43 antibody. In addition, Cx43 expression
in differentiated OCY454 cells is very low. In contrast, the
amount of Cx43 protein increased dramatically in IDG-SW3
cells along with the differentiation process. The posttranslational
phosphorylation of Cx43 was increased associated with
differentiation of IDG-SW3 cells (Figure 1C), showing the
band with decreased electrophoretic mobility due to the
addition of phosphate (Musil and Goodenough, 1991; Cheng
et al., 2001). The quantification of the phosphorylated Cx43
(p-Cx43)/total Cx43 (T-Cx43) ratio showed a marked
elevation during differentiation (Figure 1D). We next probed
GFP expression in soluble protein prepared at different time
point of differentiation. In Figure 1E, GFP was increased in
differentiated OCY454 cells compared to proliferation condition.
However, GFP increase was more profound in IDG-SW3 cells
during differentiation. The changes can also be reflected in the
densitometry analysis for the GFP level (Figure 1F). Taken
together, during the osteogenic differentiation process, Cx43
protein was significantly increased and differentiated IDG-
SW3 cells expressed more Cx43 than OCY454 cells.

Generation of Cx43 Knockdown IDG-SW3
Cells Using CRISPR/Cas9 Genome Editing
Technology
We next focused on the IDG-SW3 cells to study the role of Cx43 in
regulating osteoblast to osteocyte differentiation process. Using
lentiviral-mediated CRISPR/Cas9 genome editing technology, we
generated Cx43 KD cells after lentivirus infection of two pairs of
sgRNA followed by puromycin selection. ROSA26, as a preferred site
for the integration of transgenes and reporter constructs, is
ubiquitously expressed in all cell types and developmental stages
(Irion et al., 2007; Chu et al., 2016). In our study, sgRNA targeting
ROSA26 was designed for lentivirus infection and puromycin
selection in IDG-SW3 cells, which could serve as a reference
control (Bäck et al., 2019; Riggan et al., 2020). The expression of
Cx43 was determined byWestern blot. There was a remarkably band
intensity reduction after CRISPR/Cas9-mediated ablation of Cx43,
and the Cx43 level is comparable between ROSA26 and non-
targeting control groups (Figure 2A, upper panel). Quantification
of the Cx43/actin ratio showed a 90% decrease in Cx43 KD groups
compared to ROSA26 or control (Figure 2A, lower panel). The
immunofluorescence staining further validated the successful
generation of Cx43 KD strains in proliferating IDG-SW3 cells

(Figure 2B). During the osteoblast to osteocyte transition, IDG-
SW3 cells undergo several differentiation stages: early osteoblast (day
4), osteoid osteocyte (day 9), mineralizing osteocyte (day 18), and
mature osteocyte (day 28) (Woo et al., 2011). We cultured IDG-SW3
cells from ROSA26 and Cx43 KD groups for differentiation to
examine whether the CRISPR/Cas9-mediated Cx43 deficiency
could be maintained throughout the differentiation process.
Membrane extracts collected at different differentiation stages were
subjected toWestern blot analysis. As shown inFigure 2C, compared
to the ROSA26 group, Cx43 KD groups had minimal Cx43
expression at each time point. These results demonstrated the
generation of stable Cx43 KD IDG-SW3 cell lines by using
lentiviral-mediated CRISPR/Cas9 genome editing technology.

Cx43 Knockdown in IDG-SW3 Cells Inhibits
Gap Junction Intercellular Communication
and the Opening of Cx43 Hemichannels
The scrape loading/dye transfer assay is a commonly used approach
to study intercellular coupling via functional gap junction channels
(el-Fouly et al., 1987). Gap junction intercellular communication
(GJIC) was evaluated in undifferentiated ROSA26 and Cx43 KD
IDG-SW3 cells. Cells were grown to reach confluence before
performing the scrape loading/dye transfer assay. As illustrated in
Figure 3A and quantified in Figure 3B, the ROSA26 group was
muchmore efficient in transferring LY in comparison with Cx43 KD
groups. Carbenoxolone (CBX) acts as a potent and effective blocker of
GJIC (Connors, 2012). After CBX inhibition, the ROSA26 group
showed decreased intercellular coupling compared to that of theCx43
KD level (Figure 3A,B). There was no difference between Cx43 KD
IDG-SW3 cells with or without CBX blocking, indicating the
CRISPR/Cas9-mediated Cx43 deficiency inhibited GJIC. The
activity of Cx43HCs was further evaluated using the EtBr dye
uptake assay. Cells were grown at a low-cell density to ensure that
the majority of the cells were not physically in contact. Our previous
study has demonstrated that Cx43HCs open when subjected to
mechanical stimulation in the form of FFSS (Cherian et al., 2005).
Under FFSS, the ROSA26 group showed a 2-fold increase in arbitrary
units (AU) of fluorescence intensity, reflective of the hemichannel dye
uptake level, compared to that of the basal level (Figure 3C,D). In
contrast, Cx43KDgroupswere not responding to FFSS-inducedHCs
opening, indicating an impaired Cx43HCs activity in
undifferentiated IDG-SW3 cells with Cx43 KD.

Cx43 Knockdown in IDG-SW3 Cells
Decreases Alkaline Phosphatase and Type I
Collagen Expression at Early Differentiation
Stage
IDG-SW3 cells express osteoblastic markers including alkaline
phosphatase (ALP) and type I collagen (COL1A1) at the early
stage of differentiation. To evaluate the osteoblastic activity of
ROSA26 and Cx43 KD IDG-SW3 cells, ALP staining was
performed after 9 days of differentiation. Cx43 KD groups had
significantly reduced the level of positive ALP staining
(Figure 4A,B). Using real-time PCR, we also observed lower
abundance of ALP and COL1A1 mRNA with Cx43 deficiency
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(Figure 4C), further suggesting that Cx43 KD in IDG-SW3 cells
decreases osteoblastic marker expression.

Cx43 Knockdown in IDG-SW3 Cells
Decreases Mineralization and Osteocytic
Genes Expression at Late Differentiation
Stage
We then tested whether Cx43 plays a major role in mineralization
and calcium deposition during osteogenic differentiation. ROSA26

and Cx43 KD IDG-SW3 cells were cultured in a mineralizing
medium containing ascorbic acid and β-glycerophosphate for 18
and 28 days. Alizarin red staining for calcium deposition showed
that the staining area was substantially lower in Cx43 KD groups
than that in ROSA26 cells at both 18 days (Figure 5A,B) and
28 days (Figures 5C,D) after differentiation. In addition, von Kossa
staining for focal nodularmineralizationwas performed at 28 days.
The number of mineralized nodules was reduced by 80% in IDG-
SW3 cells with Cx43 KD (Figure 5E,F). The mRNA expression of
DMP1, SOST, FGF23, osteoprotegerin (OPG), and receptor

FIGURE 2 | Ablation of Cx43 expression using CRISPR/Cas9 gene editing technology in IDG-SW3 cell line. (A) Immortalizing (Day 0) IDG-SW3 cells were subjected
to specified ROSA26 or Cx43-sgRNA lentivirus transduction and puromycin selection. Membrane extracts were immunoblotted by Cx43 or β-actin antibodies (upper
panel). The lower panel shows the densitometric measurement ratios of Cx43 to β-actin. (B) Representative images of Cx43 immunofluorescence staining in control,
ROSA26, or Cx43 KD IDG-SW3 cells. Scale bar, 20 μm. (C)Membrane extracts were isolated fromROSA26 or Cx43 KD groups during the time course from Day 4
to Day 28 after differentiation. Cx43 expression was analyzed by using Western blot probed with Cx43 and β-actin antibodies. Data shown are mean ± SEM. ***, p <
0.001.
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activator of nuclear factor kappa-B ligand (RANKL) was
determined. After 28 days of osteogenic differentiation, DMP1,
SOST, FGF23, and OPG showed significant decrease in both Cx43
KD groups compared to that in the ROSA26 group (Figure 5G). In
contrast, the level of RANKL mRNA was elevated up to almost 2-
fold in Cx43 KD IDG-SW3 cells. Correspondingly, the ratio of
RANKL/OPG, which is indicative of the propensity to generate
osteoclasts during bone remodeling (Boyce and Xing, 2008), was
significantly elevated in IDG-SW3 cells with Cx43 KD
(Figure 5G). The aforementioned results indicated delayed
osteogenic differentiation caused by Cx43 deficiency, along with
a decrease in DMP1, SOST, and FGF23, and an increase in the
RANKL/OPG ratio.

Blocking Cx43 Hemichannels in IDG-SW3
Cells Reduces Osteoblastic and Osteocytic
Genes Expression During Differentiation
We then assessed whether Cx43 HCs could play a role in
regulating the osteoblastic genes expression. To specifically
target the Cx43 HCs, we utilized the Cx43 (E2) antibody,
which was previously generated by our lab (Siller-Jackson
et al., 2008). This blocking antibody targets the second
extracellular loop (E2) of Cx43. IDG-SW3 cells were treated
with or without Cx43 (E2) antibody for 9 days during
differentiation. The ALP-stained area was significantly
decreased in Cx43 (E2)-treated cells (Figure 6A,B).

FIGURE 3 | Cx43 deficiency in IDG-SW3 cell line inhibits gap junction intercellular communication and the opening of Cx43 hemichannels. (A) Dye transfer was
determined in ROSA26 or Cx43 KD IDG-SW3 cells in absence or presence of 100 μM CBX. The scrape loading assay was performed with LY and RD for 5 min. Scale
bar, 200 μm. (B) Area of dye transfer was determined and quantified by fluorescencemicrocopy and NIH ImageJ software. (C)ROSA26 or Cx43 KD IDG-SW3 cells were
subjected to FFSS for 10 min or non-FFSS basal conditions, followed by incubation with 100 μMEtBr for 5 min. Scale bar, 50 μm. (D) Level of EtBr dye uptake was
determined and quantified by fluorescence microcopy and NIH ImageJ software. Data shown are mean ± SEM. ****, p < 0.0001.
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Consistently, ALP and COL1A1 mRNA levels were much lower
in the Cx43 (E2) group than those in the control group
(Figure 6C).

To study the role of Cx43 HCs in the regulation of
mineralization and osteocytic marker genes expression, we
incubated IDG-SW3 cells with Cx43 (E2) antibody for 28 days
during differentiation. There was no significant difference of
calcium deposition evaluated by Alizarin red–stained area after
Cx43 (E2) treatment (Figure 7A,B). The mRNA expression of
DMP1, SOST, FGF23, OPG, and RANKL was also determined.
The Cx43 (E2) antibody–treated IDG-SW3 cells showed
significant downregulation of DMP1, SOST, FGF23, and OPG.
With the Cx43 (E2) inhibition of Cx43 HC activity, the RANKL
mRNA exhibited a trend of elevation, resulting in a significantly
increased RANKL/OPG ratio compared to the control group.

Conditioned Medium From Cx43
Knockdown IDG-SW3 Cells Promotes
Osteoclastogenesis of RAW264.7 Cells
Osteocytes express essential bone modulating factors which could
act directly to regulate osteoclast formation and bone resorption
(Kitaura et al., 2020). Given the impaired osteogenesis function
under Cx43 deficiency condition, we next investigated whether

the secreted factors from ROSA26 and Cx43 KD osteocytes could
influence osteoclastogenesis. The conditioned medium (CM) was
collected from IDG-SW3 cells with or without Cx43 deficiency
after 28 days of differentiation. RAW264.7 osteoclast precursors
were cultured using CM supplemented with 10 ng/ml or 50 ng/ml
RANKL for 1 week. As shown in Figure 8A,B, there was a 1.7-
fold elevation in TRAP-positive cell percentage in RAW264.7
cells treated with Cx43 KD CM and 10 ng/ml RANKL. The
treatment with Cx43 KD CM and 50 ng/ml RANKL showed
more large osteoclasts with multi-nuclei (Figure 8C, red arrows),
and quantification further demonstrated a significant increase of
mature osteoclasts numbers compared to the ROSA26 control
(Figure 8D). These results indicate that Cx43 channels in IDG-
SW3 cells may secrete factors that inhibit osteoclast
differentiation.

DISCUSSION

In this study, we found that during IDG-SW3 cell differentiation
process, Cx43 expression increased dramatically, and their Cx43
expression level is much higher than OCY454 cells. We effectively
deleted Cx43 in IDG-SW3 cell model using lentiviral-based
CRISPR/Cas9 genome editing technique. IDG-SW3 cells with

FIGURE 4 | Cx43 knockdown decreased alkaline phosphatase and type I collagen expression in IDG-SW3 cells. (A) Representative images of ALP staining in
ROSA26 or Cx43 KD IDG-SW3 cells at day 9 of the induction of differentiation. Lower panels show an enlarged view of the center regions of upper panels. Scale bar,
500 μm. (B)Quantification of ALP-stained area by NIH ImageJ software. (C) Total RNAwas prepared fromROSA26 or Cx43 KD IDG-SW3 cells. ThemRNA levels of ALP
and COL1A1 were determined by real-time PCR normalized to GAPDH. Data shown are mean ± SEM. *, p < 0.05, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001.
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FIGURE 5 |Cx43 knockdown decreasedmatrix mineralization and osteocytic markers expression in IDG-SW3 cells. Representative images of Alizarin red staining
in ROSA26 or Cx43 KD IDG-SW3 cells at day 18 (A) or 28 (C) of the induction of differentiation. Lower panels show an enlarged view of the center regions of upper
panels. Scale bar, 500 μm. (B,D) Quantification of Alizarin red–stained area by NIH ImageJ software. (E) Representative images of von Kossa staining in ROSA26 or
Cx43 KD IDG-SW3 cells after 28 days of differentiation. Lower panels show an enlarged view of the center regions of upper panels. Scale bar, 500 μm. (F)
Quantification of von Kossa-stained area by NIH ImageJ software. (G) Total RNA was prepared from ROSA26 or Cx43 KD IDG-SW3 cells after 28 days of differentiation.
The mRNA levels of DMP1, SOST, FGF23, OPG, and RANKL were determined by real-time PCR normalized to GAPDH. Data shown are mean ± SEM. *, p < 0.05, **, p <
0.01, ***, p < 0.001, ****, p < 0.0001.
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Cx43 deficiency exhibited decreased osteoblast markers, ALP and
COL1A1, expression at the osteoid–osteocyte stage compared to
control. With the progression from mineralization to maturation
of osteocytes, Cx43 deficiency resulted in a reduction in matrix-
forming protein—DMP1, mature osteocyte markers—SOST and
FGF23, and a significant increase in the RANKL/OPG level.
Moreover, blocking Cx43 HCs using a specific Cx43 antibody
resulted in downregulation of ALP, COL1A1, DMP1, SOST, and
FGF23, with an increase of RANKL/OPG. Interestingly,
RAW264.7 osteoclast precursors were more prone to
osteoclastogenesis after treatment with CM from Cx43 KD
IDG-SW3 cells. Our findings suggest that Cx43 HCs plays an
essential role in osteoblast to osteocyte differentiation and
mineralization process as well as in regulating osteoclast
differentiation via secreted factors.

The CRISPR/Cas9 system is a fast and efficient tool to conduct
genomic modification (Wang et al., 2018). In combination with
the lentivirus infection, the sgRNA and Cas9 sequences can be
integrated into the genome of target cells. Our results showed that
the lentiviral-mediated CRISPR/Cas9 expression was steadily
maintained, which can continuously exert excision functions

throughout the IDG-SW3 cell differentiation process. Cx43
consists of two exons: exon1 encodes most of the 5’-
untranslated region (5’-UTR) and exon2 contains complete
coding sequence and 3′-UTR (Pfeifer et al., 2004). To silence
the Cx43 gene, two sgRNA oligonucleotides targeting the exon2
were designed and validated to avoid the effects of potential off-
target activities. Both pairs of sgRNAs led to remarkable
reduction of GJIC and HC opening induced by FFSS in IDG-
SW3 cells. The ROSA26 locus is often referred to as a “safe
harbor” locus and has been extensively used as a transgene
insertion site (Irion et al., 2007; Chu et al., 2016). The sgRNA-
targeted ROSA26 gene was constructed and served as a good
experimental control. In addition, the validated lentiviral
CRISPR/Cas9 vectors could be potentially expanded to
application in other cell types.

Cx43 forms gap junctions and HCs, which play essential roles
in bone development in vivo. The conventional Cx43 knockout
mouse model is embryonically lethal, with delayed ossification
and craniofacial abnormalities (Lecanda et al., 2000; Chaible et al.,
2011). Cx43 conditional deletion models in osteoblasts and/or
osteocytes have been developed. The COL1A1 promoter–driven

FIGURE 6 | Inhibition of Cx43 hemichannels decreased alkaline phosphatase and type I collagen expression in IDG-SW3 cells. (A) Representative images of ALP
staining in control or Cx43 (E2) antibody–treated IDG-SW3 cells at day 9 of the induction of differentiation. Lower panels show enlarged view of the center regions of
upper panels. (B) Quantification of ALP-stained area by NIH ImageJ software. (C) Total RNA was prepared from control or Cx43 (E2) antibody–treated IDG-SW3 cells.
The mRNA levels of ALP and COL1A1 were determined by real-time PCR normalized to GAPDH. Data shown are mean ± SEM. **, p < 0.01, ***, p < 0.001.
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Cx43 deletion results in low bone mineral density (BMD) and
compromised bone strength (Chung et al., 2006; Grimston et al.,
2008). The human osteocalcin promoter- or DMP1
promoter–driven Cx43 deletion leads to increased osteocytic
apoptosis, endocortical bone resorption, and periosteal bone
formation (Zhang et al., 2011; Bivi et al., 2012). Studies with
osteoblastic cell lines have demonstrated the importance of Cx43
channels in osteoblast proliferation (Gramsch et al., 2001) and in
mediating the antiapoptotic effects of bisphosphonates and
parathyroid hormone (Plotkin et al., 2002; Bivi et al., 2011).
Moreover, Cx43 potentiates osteoblast responsiveness to FGF2
(Lima et al., 2009). Previous reports also reveal the roles of gap
junctions in osteoblast differentiation (Jiang et al., 2007). Cx43
expression and gap junction function are shown to increase along
with osteoblast differentiation process (Donahue et al., 2000).
Overexpression of Cx43 promotes osteoblasts proliferation and
differentiation (Lecanda et al., 1998; Gramsch et al., 2001). In
contrast, using inhibitors of gap junctions or transfection with
antisense Cx43 cDNA/dominant negative Cx43 construct
attenuates osteoblast differentiation, which is associated with a

reduction in ALP activity, COL1A1 expression, and decreased
bone nodule formation (Li et al., 1999; Schiller et al., 2001;
Upham et al., 2003). Our study generated CRISPR/Cas9-
mediated Cx43 deficiency in a newly developed osteocytic cell
model and specifically targeted Cx43 HCs to investigate the
regulation from pre-osteocyte to mature osteocyte
differentiation. Our results highlighted the unrecognized role
of Cx43 HCs in this differentiation process.

To dissect the differential functions of gap junctions vs. HCs
formed by Cx43 in vivo, we have generated two transgenic mouse
models driven by DMP1 promoter with Cx43-dominant negative
mutants (Xu et al., 2015). R76W mutant has an impaired gap
junction, while both the gap junction and HCs were impaired in
Δ130-136 mice. Cx43 HCs play a dominant role in regulating
osteocyte survival, endocortical bone resorption, and periosteal
apposition. We also showed that functional HCs protect
osteocytes against catabolic effects during estrogen deficiency
(Ma et al., 2019). In this study, to delineate the role of Cx43 HCs
in the regulation of osteoblast to osteocyte differentiation, we
adopted the Cx43 (E2) antibody developed in our lab (Siller-

FIGURE 7 | Inhibition of Cx43 hemichannels decreased osteocytic markers expression in IDG-SW3 cells. (A) Representative images of Alizarin red staining in
control or Cx43 (E2) antibody–treated IDG-SW3 cells at day 28 of the induction of differentiation. Lower panels show enlarged view of the center regions of upper panels.
Scale bar, 500 μm. (B) Quantification of Alizarin red–stained area by NIH ImageJ software. (C–D) Total RNA was prepared from control or Cx43 (E2) antibody–treated
IDG-SW3 cells after 28 days of differentiation. The mRNA levels of DMP1, SOST, FGF23, OPG, and RANKL were determined by real-time PCR normalized to
GAPDH. Data shown are mean ± SEM. *, p < 0.05, **, p < 0.01.
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Jackson et al., 2008; Riquelme et al., 2013). This polyclonal
antibody specifically binds to the E2 domain of Cx43, detects
cell surface–expressed Cx43, and impedes the opening of Cx43
HCs, without affecting the docking and function of the gap
junction channels. The Cx43 (E2) antibody has been widely
used by various groups to determine the function of Cx43 HCs
(Bao et al., 2011; Orellana et al., 2012; Tarzemany et al., 2017).
Our results demonstrated that blocking Cx43 HCs decreased
osteoblastic markers at an early differentiation stage;
downregulated DMP1, SOST, and FGF23; and increased
RANKL/OPG at the late differentiation stage, which were also
observed under Cx43 deficiency condition. These findings
indicate that Cx43 HCs play important roles in regulating the
differentiation markers expression, possibly through mediating
the release of anabolic factors that are elicited during
differentiation process. After Cx43 (E2) antibody treatment,
the calcium deposition only showed a trend of reduction. One
of the possible reasons could be that the matrix accumulated
around differentiated cells may impede the accessibility of the
antibody to the cell.

RANKL secreted by osteocytes is the key factor for
osteoclast formation and bone resorption (Kitaura et al.,
2020). OPG acts as a decoy receptor, which protects bone
from excessive resorption by binding to RANKL and
preventing it from interacting with RANK. Thus, the
relative concentration of RANKL and OPG is a major

determinant of bone mass and strength (Boyce and Xing,
2008). Blocking Cx43 gap junctions and HCs resulted in an
elevated RANKL/OPG ratio in differentiated mature
osteocytes, suggesting a potentially catabolic environment.
Indeed, the CM from Cx43 KD IDG-SW3 cells induced more
TRAP-positive osteoclasts and multi-nuclei mature
osteoclasts after RAW264.7 cell differentiation. Previous
reports have shown that the RANKL/OPG ratio increased
in MLO-Y4 cells lacking Cx43 (Bivi et al., 2012; Davis et al.,
2017). Osteoclast precursors cocultured with Cx43-silenced
MLO-Y4 cells or treated with CM from Cx43-silenced MLO-
Y4 cells enhance osteoclast differentiation (Davis et al., 2017).
Consistently, one recent study reveals that Cx43 exerts
protective effects against excess osteoclastogenesis via
passing cyclic adenosine monophosphate (cAMP) between
osteoblasts (Kawatsura et al., 2022). In addition, increased
osteocyte apoptosis has been found in Cx43-silenced MLO-Y4
cells compared to control, which may lead to more
osteoclastogenesis (Bivi et al., 2012; Davis et al., 2017). The
aforementioned findings highlight the indispensable role of
Cx43 in regulating both arms of bone remodeling.

Osteocytes are highly mechanosensitive cells. Our previous
in vitro studies have shown that FFSS opens Cx43 HCs, leading to
the release of anabolic factor, PGE2 in osteocytes (Cherian et al.,
2005; Siller-Jackson et al., 2008). Our recent in vivo study reveals
that osteocytic Cx43 HCs play a key role in endosteal anabolic

FIGURE 8 | Conditioned medium collected from differentiated IDG-SW3 cells with Cx43 knockdown promoted osteoclastogenesis of RAW264.7 cells.
Representative images (A,C) of TRAP staining in differentiated RAW264.7 cells cultured in CM fromROSA26 or Cx43 KD IDG-SW3 cells with 10 ng/ml (A,B) or 50 ng/ml
RANKL (C,D) for 7 days. Scale bar, 50 μm. The percentage of TRAP-stained cells (B) and numbers of mature osteoclasts (D) were quantified by NIH ImageJ software.
Data shown are mean ± SEM. *, p < 0.05, **, p < 0.01, ***, p < 0.001.
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responses to mechanical stimulation (Zhao et al., 2022).
Interestingly, Cx43 deletion in osteoblasts/osteocytes driven by
the Bglap2 promoter, or in osteocytes driven by the 8 kb DMP1
promoter, shows an enhanced periosteal response to mechanical
loading (Zhang et al., 2011; Grimston et al., 2012; Bivi et al.,
2013). Mechanically stimulated osteocytes release factors that
increase ALP activity and calcium deposition in osteoblasts while
decreasing large-sized TRAP-positive osteoclasts (Xu et al., 2019).
The outcome and cell model developed in this study will help our
understanding of the underlying mechanism of important
biological function of osteocytes and unveil therapeutic
implications for future investigations.
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