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Editorial on the Research Topic

Uncertainty relations and their applications

Quantummechanics is regarded as a significant achievement in our exploration of the

microscopic world. It helps us understand the initial seeds of the whole Universe, explore

the formation of the matter world with elementary particles, and manipulate the quantum

materials composed of a huge number of atoms. Quantum mechanics plays a vital role in

revealing the intrinsic nature laws and forms the basis of modern science and technology.

Therefore, increasing focus on quantum physics is of great significance to any possible

breakthrough in quantum engineering and technology. As one of the most fundamental

and vital concepts of quantum theory, the uncertainty relation is at the heart of quantum

physics, yielding various versatile applications. In this regard, we organized the Research

Topic “uncertainty relations and their applications” in Frontiers in Physics. Currently,

nine contributed articles have been collected on this topic. The first part of contributions

has been made on the theoretical exploration on the various form of quantum uncertainty

relations. By introducing the uncertainty interval, a concept derived by combining lower

and upper bounds together, Xiao et al. use the entropic uncertainty relations to formulate

lower bounds of variance-based uncertainty relations, which successfully establishes the

connections between different forms of uncertainty relations. Concerning the Heisenberg

uncertainty, Fan et al. raise an interesting question: what will happen if the mean values

are replaced by weak values in the Heisenberg uncertainty relation? To answer this

question, they delve into the case of position and momentum measurements in a simple

harmonic oscillator, with pre-selected states as eigenstates and the post-selections as the

superposition states. Their results show that the original Heisenberg limit can be

improved in this case, replaced by a weak value canonical uncertainty relation

holding for simple harmonic oscillators in coherent states. Thus, the work of Fan

et al. provides an important supplement to the field of uncertainty relations with

weak measurement and go beyond the standard Heisenberg limit.
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Second part of contributions focus on the applications of the

uncertainty relations for the manipulatable quantum systems in lab.

In particular, Fang et al. investigate both linear-entropy-based

uncertainty relation and quantum entanglement in a two-

dimensional (2D) Ising model. By the derived effective

Hamiltonian and quantum renormalization group (QRG)

equations of the model, they have found by numerical analysis

that both the uncertainty relation and the quantum entanglement

can be used to detect quantum phase transition (QPT), while the

linear-entropy-based uncertainty relation can be a more powerful

indicator for the detection of the QPT. This result may pave a

promising pathway to observe QPTs of the solid-state system by

means of the uncertainty relation. Additionally, for a finite size

system, it would be difficult to find critical points and critical

exponents through the standard Finite-Size Scaling (FSS)

approach, Khalid et al. propose an alternative FSS method in

which the truncation of the system is made in the Hilbert space

instead of the physical space and apply this approach to calculate the

critical point for theQPTofQuantumRabiModel. They also provide

a protocol for the implementation of this method on a digital

quantum simulator using the Quantum Restricted Boltzmann

Machine algorithm. On the experimental side, based on their

generalized unitary uncertainty relation theory and proposed

uncertainty relations of non-Hermitian operators, Zhao and

Zhang design an experimental implementation which can test the

uncertainty relation for two non-Hermitian operators through the

Mach-Zehnder interferometer. Also, Liu et al. report an experimental

test on the coherence uncertainty relations based on the classical

shadow algorithm. They examine the tightness of various lower

bounds and draw a novel conclusion that tightness of quantum

coherence lower bounds depends on the reference bases and the

purity of the quantum state. This may deeply reveal the relationship

between uncertainty relation and characteristics of quantum system.

Associated with uncertainty relations, quantum resources are also

of great significance in quantum engineering and technology. The

third part of contributions concerns on the various quantum

resources related to uncertainty relations. Amongst these,

nonclassicality is one of the valuable quantum resources related to

the quantum aspect of photons. Fu et al. argue that the requirement

for nonclassicality measurement in the sense of Glauber-Sudarshan is

convex. Based on the non-convexity of nonclassicalitymeasure in Ref.

[1], they find that this measure is intrinsically connected with the

Wigner-Yanase skew information, a measure of quantum

uncertainties. Inspired by this, Fu et al. propose a faithful measure

of nonclassicality, which is convex. Entanglement is another essential

resource of quantum information processing. In order to characterize

quantum entanglement, the analysis of various bases in the state space

is in demand. Tao et al. systematically investigate the constructions of

unextendible entangled bases with a fixed Schmidt number k (UEBk)

in a bipartite system by using generalized weighing matrices and

propose three ways to construct different members of UEBks.

In conclusion, this editorial is created to present the latest progress

of the Research Topic: Uncertainty relations and their applications.

Our special thanks to all authors of the articles published on this

Research Topic for their valuable contributions and the Frontiers in

Physics team for the technical assistance with publishing.
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Studying Heisenberg-like Uncertainty
Relation with Weak Values in
One-dimensional Harmonic Oscillator
Xing-Yan Fan1, Wei-Min Shang1, Jie Zhou1, Hui-Xian Meng2 and Jing-Ling Chen1,2*

1Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin, China, 2School of Mathematics and
Physics, North China Electric Power University, Beijing, China

As one of the fundamental traits governing the operation of quantumworld, the uncertainty
relation, from the perspective of Heisenberg, rules the minimum deviation of two
incompatible observations for arbitrary quantum states. Notwithstanding, the original
measurements appeared in Heisenberg’s principle are strong such that they may
disturb the quantum system itself. Hence an intriguing question is raised: What will
happen if the mean values are replaced by weak values in Heisenberg’s uncertainty
relation? In this work, we investigate the question in the case of measuring position and
momentum in a simple harmonic oscillator via designating one of the eigenkets thereof to
the pre-selected state. Astonishingly, the original Heisenberg limit is broken for some post-
selected states, designed as a superposition of the pre-selected state and another
eigenkets of harmonic oscillator. Moreover, if two distinct coherent states reside in the
pre- and post-selected states respectively, the variance reaches the lower bound in
common uncertainty principle all the while, which is in accord with the circumstance in
Heisenberg’s primitive framework.

Keywords: Heisenberg-like uncertainty relation, weak values, selected states, one-dimensional harmonic oscillator,
coherent states

1 INTRODUCTION

The non-commutativity in quantummechanics leads to the essential contradistinction between itself
and classical mechanics. Among diverse quantum phenomena, the uncertainty relation is
representative, which was first uncovered by Heisenberg [1], then generalized via Robertson [2]
to any two observables A and B for arbitrary kets of the following form,

〈 ΔA( )2〉〈 ΔB( )2〉≥ 1
4
〈 A, B[ ]〉| |2, (1)

where 〈(ΔA)2〉 ≔ 〈A2〉 − (〈A〉)2, represents the variance of measuring a quantum system via A, so
does 〈(ΔB)2〉.

However, there exist some shortcomings for standard Heisenberg uncertainty principle (Eq. 1).
On the one hand, for instance, the derivation of the z components of angular momentum increases in
the case of a three-level problem [3], though the information we have gathered therein increases,
which is discordant with classical information theory. Thus the concept of entropy was imported into
the field of uncertainty relation [4, 5].

On the other hand, initial uncertainty relation only involves strong measurement, and it may
destroy the measured system inevitably in most cases, which leads to another way of exploring
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Heisenberg uncertainty principle relying on the heritage of weak
measurement. In 1988, Y. Aharonov et al. [6] proposed the
concept of “weak value” to overcome the blemish of
measurement collapse in quantum mechanics. The weak value
of an observable O is denoted as

〈O〉w ≔
〈ψf

∣∣∣∣O ψi

∣∣∣∣ 〉
〈ψf |ψi〉

, (2)

with |ψi〉 and |ψf〉 representing the states of pre- and post-
selections respectively.

In recent illuminating works, Song and Qiao [7] constructed a
new type of uncertainty relation in weak measurement with the
help of a non-Hermitian operator defined in [8]. Additionally,
Hall et al. [9] generalized the representation theorem given by
Shikano and Hosoya [10] and studied the uncertainty relation via
weak values. Afterwards, Šindelka, and Moiseyev [11] considered a
Heisenberg-like situation that measuring a quantum system “weakly”
via an observableAwithout imposing postselection, following a strong
measurement by another observable B subsequently. But there is
hardly any work involving researching Heisenberg-like uncertainty
principle via replacing mean value by weak value merely, which is the
simplest case in this field.

In this work, we study the Heisenberg-like uncertainty relation
in the case of measuring position and momentum in a one-
dimensional (1D) simple harmonic oscillator with the pre-selected
state appointed as one of its eigenstates.We found that if post-selected
states are specified as a superposition of the pre-selected state and
another eigenstates of harmonic oscillator, primitive Heisenberg
relation fails. Furthermore, providing the pre- and post-selected
states are designed as two distinct coherent states, the variance in
the sense of weak values will arrive at the lower bound in usual
Heisenberg principle all through, which is in agreement with
Heisenberg’s original argument.

This paper is organized as follows: In Section 2 we show our
main results about Heisenberg-like uncertainty principle through
replacing expectation values by weak values in rudimental
Heisenberg’s idea. Four major parts are included in this
section. In Section 2.1, we retrospect some basic knowledge
about 1D simple harmonic oscillator in occupation number
representation. And then in Section 2.2, we study two non-
orthonormal cases of selected states by considering |ψi〉 � |0〉 and
|ψi〉 � |n〉 (n ∈ Np, i.e., n is a positive integer), respectively. Next
in Section 2.3, we explore the orthogonal selected states as the
limitation of non-orthogonal circumstances. And in Section 2.4,
the pre- and post-selected states are designed as two coherent
states. Finally in Section 3, we make a summary and bring up
some open questions.

2 REPLACING MEAN VALUES BY WEAK
VALUES
2.1 Simple Harmonic Oscillator in
Occupation Number Representation
Set n ∈ N the quantum number referring to energy levels of given
1D simple harmonic oscillator with Hamiltonian H. Let

|n〉 (n ∈ N) the eigenkets thereof, then via Schrödinger
equation H|n〉 � En|n〉, we obtain En � (n + 1/2)Zω as the
formula of energy, with Z the Plank constant up to a factor 1/(2π),
and ω the vibration frequency of corresponding oscillator. Especially
when n � 0, E0 � (1/2)Zω implies the ground state energy.

Define the annihilation operator a and the creation operator
a†, which satisfy

a n| 〉 � �
n

√
n − 1| 〉,

a† n| 〉 � �����
n + 1

√
n + 1| 〉, (3)

where a|0〉 � 0.
Postulate that α ≡

�����
mω/Z

√
, X ≡ αx, and P ≡ [α/(mω)]p, with

m expressing the mass of aforementioned harmonic oscillator.
Note that X and P are Hermitian. After that, from the canonical
commutative relation (x, p) � iZ, we have (X, P) � i, together with

X � 1�
2

√ a + a†( ),
P � 1

i
�
2

√ a − a†( ). (4)

Next we will compute the Heisenberg-like uncertainty
principle with weak values by combining Eqs 1, 2 and some
properties of 1D harmonic oscillator.

2.2 Non-orthonormal Selected States
This subsection includes the situations of non-orthonormal pre-
and post-selections. When the pre-selected state is initialized as
|n〉, its post-selected partner is set as cos θ|n〉 + sin θ eiφ|m〉,
where θ ∈ (0, π/2) ∪ (π/2, π), φ ∈ [0, 2π) and n ≠ m.

Case 1.—n � 0, |ψi〉 � |0〉.
In this case, we set |ψf〉 � cos θ|0〉 + sin θ eiφ|m〉, where θ ∈ (0,

π/2) ∪ (π/2, π), φ ∈ [0, 2π) and m ∈ Np. Thereby,
〈ψf |ψi〉 � cos θ, and

〈X〉w � 〈ψf

∣∣∣∣X ψi

∣∣∣∣ 〉
〈ψf |ψi〉

� cos θ〈0| + sin θ e−iφ〈m|[ ] a + a†( ) 0| 〉�
2

√
cos θ

� tan θ e−iφ〈m|1〉�
2

√

� tan θ e−iφ δm, 1�
2

√ ,

where δm, n implies the Kronecker delta symbol.
Thereafter, we arrive at

〈X〉w( )2 � tan2 θ e−i2φ δ2m, 1

2
, (5)

and

〈X2〉w � 〈ψf

∣∣∣∣ a2 + aa† + a†a + a†( )2[ ] ψi

∣∣∣∣ 〉
2〈ψf |ψi〉

� 1 + �
2

√
tan θ e−iφ δm, 2

2
.

(6)

Combine Eq. 6with Eq. 5 together, then we attain the variance
of X in the form of weak value as follows
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〈ΔX〉2w ≡ 〈X2〉w − 〈X〉w( )2

� 1 + �
2

√
tan θ e−iφ δm, 2 − tan2 θ e−i2φ δ2m, 1

2
.

(7)

On the other hand,

〈P〉w � 〈ψf

∣∣∣∣P ψi

∣∣∣∣ 〉
〈ψf |ψi〉

� cos θ〈0| + sin θ e−iφ〈m|[ ] a − a†( ) 0| 〉
i

�
2

√
cos θ

� i tan θ e−iφ δm, 1�
2

√ ,

which indicates that

〈P〉w( )2 � −tan
2 θ e−i2φ δ2m, 1

2
, (8)

and

〈P2〉w � 〈ψf

∣∣∣∣ aa† + a†a − a2 − a†( )2[ ] ψi

∣∣∣∣ 〉
2〈ψf |ψi〉

� 1 − �
2

√
tan θ e−iφ δm, 2

2
.

(9)

Therefore,

〈ΔP〉2w ≡ 〈P2〉w − 〈P〉w( )2

� 1 − �
2

√
tan θ e−iφ δm, 2 + tan2 θ e−i2φ δ2m, 1

2
,

(10)

then we can calculate the uncertainty relation in terms of weak
values, namely.

〈ΔX〉2w〈ΔP〉2w � 1 − tan2 θ
�
2

√
e−iφ δm, 2 − tan θ e−i2φ δ2m, 1[ ]2

4

� 1 − tan2 θ 2 e−i2φ δ2m, 2 + tan2 θ e−i4φ δ4m, 1[ ]
4

,

(11)

which means that

〈ΔX〉2w〈ΔP〉2w
∣∣∣∣ ∣∣∣∣ � 1 − tan2 θ 2 e−i2φ δ2m, 2 + tan2 θ e−i4φ δ4m, 1[ ]

4

∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣
� 1
4

∣∣∣∣∣∣ 1 − tan2 θ 2 δ2m, 2 cos 2φ( ) + tan2 θδ4m, 1 cos 4φ( )[ ]{ }
+i tan2 θ 2 δ2m, 2 sin 2φ( ) + tan2 θ δ4m, 1 sin 4φ( )[ ]∣∣∣∣∣∣

� 1
4

�����������������������������������������
1 − tan2 θ 2 δ2m, 2 cos 2φ( ) + tan2 θδ4m, 1 cos 4φ( )[ ]{ }2
+tan4 θ 2 δ2m, 2 sin 2φ( ) + tan2 θ δ4m, 1 sin 4φ( )[ ]2

√√
� 1
4

��������������������������������������
1 + tan4 θ 4 δ4m, 2 + tan4 θ δ8m, 1( )

−2 tan2 θ 2 δ2m, 2 cos 2φ( ) + tan2 θδ4m, 1 cos 4φ( )[ ]
√√

≥
1
4

�������������������������������������������������
1 + tan4 θ 4 δ4m, 2 + tan4 θ δ8m, 1( ) − 2 tan2 θ 2 δ2m, 2 + tan2 θδ4m, 1( )√

� 1
4
1 − tan2 θ 2 δ2m, 2 + tan2 θδ4m, 1( )∣∣∣∣∣ ∣∣∣∣∣. (12)

Analysis—For A � X, B � P, the Heisenberg uncertainty
relation is given by

〈ΔX〉2〈ΔP〉2 � 〈ΔX〉2〈ΔP〉2
∣∣∣∣ ∣∣∣∣≥ 1

4
. (13)

In this work, the Heisenberg-like uncertainty relation with
weak values is modified as

〈ΔX〉2w〈ΔP〉2w
∣∣∣∣ ∣∣∣∣≥ 1

4
. (14)

We now compare Eq. 12 with Heisenberg-like uncertainty
relation (Eq. 14) in virtue of different m.

1) If m ≠ 1 and m ≠ 2, |〈ΔX〉2w〈ΔP〉2w| � 1/4, the relation (Eq.
14) holds, and it is in coincidence with the usual Heisenberg
uncertainty relation (Eq. 13).

2) If m � 1,

〈ΔX〉2w〈ΔP〉2w
∣∣∣∣ ∣∣∣∣ � 1

4

�����������������������
1 + tan8 θ − 2 cos 4φ( )tan4 θ

√
.

Then we have (1/4)|1 − tan4 θ|≤ |〈ΔX〉2w〈ΔP〉2w|≤
(1/4)(1 + tan4 θ), and the left equality sign holds once φ �
0, π/2 or π; While φ � π/4 or 3π/4, the right equality sign is
obtained. In the interval of θ ∈ (0, arctan( �

24
√ )) ∪

(π − arctan( �
24

√ ), π), it is possible for |〈ΔX〉2w〈ΔP〉2w| to
arrive at some values less than 1/4. While for other legal θ,
the uncertainty relation (Eq. 14) holds. See Figure 1 for more
details. It is worth mentioning that once |〈ΔX〉2w〈ΔP〉2w|
reaches the lower bound, and θ � π/4 or 3π/4, the variance
|〈ΔX〉2w〈ΔP〉2w| vanishes, and further study shows that
〈ΔX〉2w � 〈ΔP〉2w � 0, which implies the product of weak
values corresponding to two incompatible observables X and P
can be measured precisely. The result is reasonable, since strong
measurement is substituted by weak measurement, then the
disturbance for quantum system weaken, and two incompatible
observations may be assured simultaneously.

3) If m � 2,

〈ΔX〉2w〈ΔP〉2w
∣∣∣∣ ∣∣∣∣ � 1

4

������������������������
1 + 4 tan4 θ − 4 cos 2φ( )tan2 θ

√
.

After that, (1/4)|1 − 2 tan2 θ|≤ |〈ΔX〉2w〈ΔP〉2w|≤
(1/4)(1 + 2 tan2 θ), and the left equality sign holds once φ �
0 or π; While φ � π/2, the right equality sign is obtained. In
the case of θ ∈ (0, π/4) ∪ (3π/4, π), it is possible for
|〈ΔX〉2w〈ΔP〉2w| to arrive at some values less than 1/4. And
in other cases, the uncertainty relation (Eq. 14) holds. In like
manner, there exist two ideal θ � arctan(1/ �

2
√ ) or π −

arctan(1/ �
2

√ ) when φ � 0 or π/2, such that the product of
the weak values of X and P is affirmatory.

In one word, the Heisenberg uncertainty principle can be
broken in the sense of weak values when we fix the pre-selected
state as |ψi〉 � |0〉, then set the post-selections to the superposition
of |0〉 and |1〉 or |2〉. More general cases will be discussed similarly.

Case 2.—|ψi〉 � |n〉, n ∈ Np.
Let |ψi〉 � |n〉, and |ψf〉 � cos θ|n〉 + sin θ eiφ|m〉, where θ ∈

(0, π/2) ∪ (π/2, π), φ ∈ [0, 2π), n, m ∈ Np, and n ≠ m. Likewise,
〈ψf |ψi〉 � cos θ, then
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〈X〉w � 〈ψf

∣∣∣∣X ψi

∣∣∣∣ 〉
〈ψf |ψi〉

� cos θ〈n| + sin θ e−iφ〈m|[ ] a + a†( ) n| 〉�
2

√
cos θ

� tan θ e−iφ
�
n

√
〈m|n − 1〉 + �����

n + 1
√

〈m|n + 1〉( )�
2

√

� tan θ e−iφ
�
n

√
δm, n−1 +

�����
n + 1

√
δm, n+1( )�

2
√ .

In this case,

〈X〉w( )2 � tan2 θ e−i2φ
�
n

√
δm, n−1 +

�����
n + 1

√
δm, n+1( )2

2

� tan2 θ e−i2φ n δ2m, n−1 + n + 1( ) δ2m, n+1[ ]
2

.

(15)

Similarly, we can compute that

〈X2〉w � 〈ψf

∣∣∣∣ a2 + aa† + a†a + a†( )2[ ] ψi

∣∣∣∣ 〉
2〈ψf |ψi〉

� cos θ〈n| + sin θ e−iφ〈m|[ ] a2 + aa† + a†a + a†( )2[ ] n| 〉
2 cos θ

�
cos θ〈n| + sin θ e−iφ〈m|[ ]�������

n n − 1( )√
n − 2| 〉 + 2n + 1( ) n| 〉 + ������������

n + 1( ) n + 2( )√
n + 2| 〉[ ]

2 cos θ

� n + 1
2
+

tan θ e−iφ�������
n n − 1( )√

δm, n−2 +
������������
n + 1( ) n + 2( )√

δm, n+2[ ]
2

.

(16)

Then

〈ΔX〉2w ≡ 〈X2〉w − 〈X〉w( )2

� n + 1
2
+

tan θ e−iφ
�������
n n − 1( )√

δm, n−2 +
������������
n + 1( ) n + 2( )√

δm, n+2[ ]
−tan2 θ e−i2φ n δ2m, n−1 + n + 1( ) δ2m, n+1[ ]

2
.

(17)

Similarly, we have

〈P〉w � 〈ψf

∣∣∣∣P ψi

∣∣∣∣ 〉
〈ψf |ψi〉

� cos θ〈n| + sin θ e−iφ〈m|[ ] a − a†( ) n| 〉
i

�
2

√
cos θ

� i tan θ e−iφ
�����
n + 1

√
δm, n+1 − �

n
√

δm, n−1( )�
2

√ ,

which indicates that

〈P〉w( )2 � −tan
2 θ e−i2φ n + 1( ) δ2m, n+1 + n δ2m, n−1[ ]

2
, (18)

and

〈P2〉w � 〈ψf

∣∣∣∣ aa† + a†a − a2 − a†( )2[ ] ψi

∣∣∣∣ 〉
2〈ψf |ψi〉

� cos θ〈n| + sin θ e−iφ〈m|[ ] aa† + a†a − a2 − a†( )2[ ] n| 〉
2 cos θ

�
cos θ〈n| + sin θ e−iφ〈m|[ ]

2n + 1( ) n| 〉 − �������
n n − 1( )√

n − 2| 〉 − ������������
n + 1( ) n + 2( )√

n + 2| 〉[ ]
2 cos θ

� n + 1
2
− tan θ e−iφ

�������
n n − 1( )√

δm, n−2 +
������������
n + 1( ) n + 2( )√

δm, n+2[ ]
2

.

(19)

Hence,

FIGURE 1 | The variation diagram of |〈ΔX〉2w〈ΔP〉2w|with respect to the superposition parameter θ ∈ (0, π/2) ∪ (π/2, π) in the case of |ψ i〉 � |0〉 andm � 1. The blue
line represents the lower bound of |〈ΔX〉2w〈ΔP〉2w|, so does the grey line connecting the upper bound of |〈ΔX〉2w〈ΔP〉2w|, which is greater than 1/4 all the time.
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〈ΔP〉2w ≡ 〈P2〉w − 〈P〉w( )2

� n + 1
2
−
tan θ e−iφ

�������
n n − 1( )√

δm, n−2 +
������������
n + 1( ) n + 2( )√

δm, n+2[ ]
−tan2 θ e−i2φ n + 1( ) δ2m, n+1 + n δ2m, n−1[ ]

2
.

(20)

which means that

〈ΔX〉2w〈ΔP〉2w
� n + 1

2
( )2

−
tan θ e−iφ

�������
n n − 1( )√

δm, n−2 +
������������
n + 1( ) n + 2( )√

δm, n+2[ ]
−tan2 θ e−i2φ n + 1( ) δ2m, n+1 + n δ2m, n−1[ ]⎧⎨⎩ ⎫⎬⎭2

4

� n + 1
2

( )2

− tan2 θ e−i2φ

4
n n − 1( ) δ2m, n−2 + n + 1( ) n + 2( ) δ2m, n+2[ ]

−tan
4 θ e−i4φ

4
n + 1( )2 δ4m, n+1 + n2 δ4m, n−1[ ]

� 1
4

2n + 1( )2 − tan2 θ e−i2φ n n − 1( ) δ2m, n−2 + n + 1( ) n + 2( ) δ2m, n+2[ ]{
−tan4 θ e−i4φ n + 1( )2 δ4m, n+1 + n2 δ4m, n−1[ ]}. (21)

After that, we can calculate the absolute value of Eq. 21, namely

〈ΔX〉2w〈ΔP〉2w
∣∣∣∣ ∣∣∣∣
� 1
4

∣∣∣∣∣∣ 2n + 1( )2 − tan2 θ e−i2φ n n − 1( ) δ2m, n−2 + n + 1( ) n + 2( ) δ2m, n+2[ ]
−tan4 θ e−i4φ n + 1( )2 δ4m, n+1 + n2 δ4m, n−1[ ]∣∣∣∣∣∣
≥
1
4

∣∣∣∣∣∣ 2n + 1( )2 − tan2 θ n n − 1( ) δ2m, n−2 + n + 1( ) n + 2( ) δ2m, n+2[ ]
−tan4 θ n + 1( )2 δ4m, n+1 + n2 δ4m, n−1[ ]∣∣∣∣∣∣. (22)

Analysis—Analogously, we will analyze the value of m in the
following way:

1) If m ≠ n − 2, m ≠ n − 1, m ≠ n + 1 and m ≠ n + 2,
|〈ΔX〉2w〈ΔP〉2w| � (1/4)(2n + 1)2 > 1/4, because n > 0, thus it
coincides with the Heisenberg uncertainty relation.

2) If m � n−2,

1
4

2n + 1( )2 − n n − 1( )tan2 θ
∣∣∣∣ ∣∣∣∣≤ 〈ΔX〉2w〈ΔP〉2w

∣∣∣∣ ∣∣∣∣≤ 2n + 1( )2∣∣∣∣
+n n − 1( )tan2 θ|.

Once n � 1, then |〈ΔX〉2w〈ΔP〉2w| � 9/4> 1/4, nevertheless, m �
n−2 � −1 is illegal. Hence we focus on the situation of n > 1. By
|(2n + 1)2 − n(n − 1)tan2 θ|≥ 1, we have tan2 θ ≥ [(2n + 1)2 + 1]/
[n(n − 1)], or tan2 θ ≤ [(2n + 1)2 − 1]/[n(n − 1)], and the
uncertainty relation always holds. Otherwise, there exist
unviolated situations if [(2n + 1)2 − 1]/[n(n − 1)]≤ tan2 θ ≤
[(2n + 1)2 + 1]/ [n(n − 1)].

3) If m � n−1,

1
4

2n + 1( )2 − n2 tan4 θ
∣∣∣∣ ∣∣∣∣≤ 〈ΔX〉2w〈ΔP〉2w

∣∣∣∣ ∣∣∣∣≤ 2n + 1( )2 + n2 tan4 θ
∣∣∣∣ ∣∣∣∣,

which implies that when tan4 θ ≥ [(2n + 1)2 + 1]/n2 or
tan4 θ ≤ [(2n + 1)2 − 1]/n2, |〈ΔX〉2w〈ΔP〉2w|≥ 1/4 forever, while

for [(2n + 1)2 − 1]/n2 ≤ tan4 θ ≤ [(2n + 1)2 + 1]/n2, the
limitation 1/4 may be broken.

4) If m � n + 1,

1
4

2n + 1( )2 − n + 1( )2 tan4 θ
∣∣∣∣ ∣∣∣∣≤ 〈ΔX〉2w〈ΔP〉2w

∣∣∣∣ ∣∣∣∣≤ 2n + 1( )2∣∣∣∣
+ n + 1( )2 tan4 θ|.

Therefore when tan4 θ ≥ [(2n + 1)2 + 1]/(n + 1)2 or
tan4 θ ≤ [(2n + 1)2 − 1]/(n + 1)2, |〈ΔX〉2w〈ΔP〉2w|≥ 1/4 all the
while, but for [(2n + 1)2 − 1]/(n + 1)2 ≤ tan4 θ ≤
[(2n + 1)2 + 1]/(n + 1)2, counterexamples could be found.

5) If m � n + 2,

1
4

2n + 1( )2 − n + 1( ) n + 2( )tan2 θ
∣∣∣∣ ∣∣∣∣≤ 〈ΔX〉2w〈ΔP〉2w

∣∣∣∣ ∣∣∣∣≤ 2n + 1( )2∣∣∣∣
+ n + 1( ) n + 2( )tan2 θ|.
After that, via |(2n + 1)2 − (n + 1)(n + 2)tan2 θ|≥ 1, we
attain tan2 θ ≥ [(2n + 1)2 + 1]/[(n + 1)(n + 2)], or tan2 θ ≤
[(2n + 1)2 − 1]/[(n + 1)(n + 2)], and the uncertainty relation is
not violated all through. However, in the case of [(2n + 1)2 −
1]/[(n + 1)(n + 2)]≤ tan2 θ ≤ [(2n + 1)2 + 1]/[(n + 1)(n + 2)],
violations might appear.

2.3 Orthonormal Pre- and Post- Selected
States
Following the above deduction, when θ → π/2, 〈ψf |ψi〉 → 0,
or the pre- and post-selected states tend to be mutual
orthogonal phase differently. For instance, assume that n �
0 and m � 1, in so doing,

1
4
1 − tan4 θ
∣∣∣∣ ∣∣∣∣≤ 〈ΔX〉2w〈ΔP〉2w

∣∣∣∣ ∣∣∣∣≤ 1
4
1 + tan4 θ
∣∣∣∣ ∣∣∣∣, (23)

and we can see from Figure 1 that once 〈ψf |ψi〉 → 0, the
product of two deviations in the form of weak values is
tending towards infinity, which agrees with Heisenberg’s
statement.

2.4 Coherent States of the Simple Harmonic
Oscillator
The coherent state of the simple harmonic oscillator is
devised to simulate the classical oscillator [12], which can
be represented as

z| 〉 � eza
†−zpa 0| 〉 � e− z| |2 ∑

n�0

zn��
n!

√ n| 〉, z ∈ C, (24)

with the following traits:

a z| 〉 � z z| 〉, a z| 〉( )† � 〈z|a† � zp〈z|. (25)

After that, label the pre- and post-selected states as |zi〉 and
|zf〉 respectively, then the weak value of X reads
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〈X〉w � 〈zf |X zi| 〉
〈zf |zi〉 � 〈zf | a + a†( ) zi| 〉�

2
√

〈zf |zi〉 � zpf + zi�
2

√ , (26)

which implies that

〈X〉2w � zpf + zi�
2

√[ ]2

� zpf( )2 + z2i + 2zpf zi
2

. (27)

For that matter,

〈X2〉w � 〈zf |X2 zi| 〉
〈zf |zi〉 � 〈zf | a2 + aa† + a†a + a†( )2[ ] zi| 〉

2〈zf |zi〉
� 〈zf | a2 + 2a†a + 1 + a†( )2[ ] zi| 〉

2〈zf |zi〉
� z2i + 2zpf zi + zpf( )2 + 1

2
.

(28)

Thus,

〈ΔX〉2w ≡ 〈X2〉w − 〈X〉w( )2 � 1
2
. (29)

With the same argument, the weak value of P can be
expressed as

〈P〉w � 〈zf |P zi| 〉
〈zf |zi〉 � i〈zf | a† − a( ) zi| 〉�

2
√

〈zf |zi〉 � i zpf − zi( )�
2

√ , (30)

then

〈P〉2w � i zpf − zi( )�
2

√[ ]2

� 2zpf zi − zpf( )2 − z2i
2

. (31)

Thus,

〈P2〉w � 〈zf |P2 zi| 〉
〈zf |zi〉 � 〈zf | aa† + a†a − a2 − a†( )2[ ] zi| 〉

2〈zf |zi〉
� 〈zf | 2a†a + 1 − a2 − a†( )2[ ] zi| 〉

2〈zf |zi〉
� 2zpf zi − z2i − zpf( )2 + 1

2
.

(32)

which means that,

〈ΔP〉2w ≡ 〈P2〉w − 〈P〉w( )2 � 1
2
, (33)

namely

〈ΔX〉2w〈ΔP〉2w � 1
4
. (34)

Obviously, the uncertainty relation for the coherent state
of the simple harmonic oscillator in the sense of weak value
reaches the lower bound of Heisenberg uncertainty relation
(Eq. 13) all the while, which is in accord with the traditional
case using expectation value.

3 SUMMARY

We delve into the case of measuring position and momentum in a
simple harmonic oscillator with pre-selected states as eigenstates and

the post-selections as the superposition states. Remarkably, wefind out
that Heisenberg’s claim for two incompatible observables fails in the
situation of weak values for typical selections listed previously. But the
weak value canonical uncertainty relation holds for the simple
harmonic oscillator in coherent states.

Our work may offer a beneficial supplement in the field of
uncertainty relation with weak measurement, and beat the
standard Heisenberg limit. Of course, we do not consider
complete process of weak measurement, as none interaction
Hamiltonian of quantum system with environment appear,
hence the present work is not appropriate for experimental
test, which we are struggling for.

In fact, although Heisenberg’s principle is sufficiently elegant and
classical in current textbooks, it cannot undergo the test relating to
weak measurement [13]. Nevertheless, two generalizations, the one is
presented via M. Ozawa [14] and the other is dedicated by C.
Branciard [15], about Heisenberg’s work, were successfully verified
in the same experiment [13]. Then canwe discover amore general and
concise uncertainty formula to unify all current results?Andwhy is the
nature of quantum world uncertainty (see1 as one of the 125 open
questions in Science)? We may understand these questions more
thoroughly by dint of geometry. Some papers have appeared, e.g., [16,
17]. We anticipate more progress on the relation between the
uncertainty relations and the weak measurements in the near future.
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Uncertainty Relation and Quantum
Phase Transition in the
Two-Dimensional Ising Model
Yu-Yan Fang1, Tian-Yi Jiang1, Xin-Ye Xu1,2* and Jin-Ming Liu1*

1State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University,
Shanghai, China, 2Shanghai Research Center for Quantum Sciences, Shanghai, China

By using quantum renormalization group (QRG) approach, we first derive the effective
Hamiltonian and QRG equations of the two-dimensional (2D) Ising models with two
different time-dependent transverse magnetic fields analytically. Then we examine the
nonanalytic and scaling behaviors of the linear-entropy-based uncertainty relation and
quantum entanglement of the models near the critical point through numerical analysis.
Moreover, we investigate the relation between the quantum critical point and the external
magnetic field. Our results show that both the uncertainty relation and the quantum
entanglement are feasible to detect the quantum phase transition (QPT), and the
uncertainty relation may be a better indicator of QPT than quantum entanglement. Our
findings could shed new light on the observable of the QPTs of the solid-state system with
the uncertainty relation.

Keywords: uncertainty relation, quantum phase transition, quantum renormalization group, quantum entanglement,
Ising model

1 INTRODUCTION

Quantum entanglement is one of the most astonishing notions of quantummechanics [1, 2] and is at
the centre of the large amount of applications in quantum sciences and technologies, such as
quantum cryptography [3], quantum teleportation [4], superdense coding [5], and telecloning [6].
Negativity as the witness of the bipartite entanglement was introduced by Życzkowski et al [7] and
then proven by Vidal and Werner [8] to be a monotone under the local operation and classical
communication.

As we know, the relation between quantum entanglement and quantum phase transition (QPT)
[9] is of considerable interest [10]. QPT is induced by the change of external parameters or
interaction coupling constants. The divergence of the correlation length in the vicinity of the
quantum critical points (QCP) indicates that the different components of the quantum system are
strongly correlated. Quantum entanglement can be used as a way to measure quantum correlations
and to indicate the behavior of QPT such as discontinuity close to the QCP [11, 12]. In the past few
years the behavior of entanglement near QCP in different spin systems [13–15] was considered as a
subject of profound significance [16–19]. Recently, A lot of work was devoted to the study of
Heisenberg spin chains, particularly the one-dimensional (1D) spin chains, which can be given
quantitative results and be exactly solvable [20–25]. The QPT of Heisenberg spin chains is caused by
quantum fluctuations, which is essentially induced by quantum uncertainty relation of the
system. Up to now, quantum uncertainty relation has gone through considerable development.
Nevertheless, to our knowledge there are few studies on the relation between the uncertainty and
QPT [26–29].
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The quantum uncertainty relation is deemed one of the
most unique and fundamental features in quantum mechanics,
which states that it is impossible to simultaneously determine
the definite measurement outcomes of noncommutative
observables. Based on the distributions of measurement
results, the uncertainty relation can be depicted in different
ways [30–33]. Historically, the uncertainty principle was
originally formulated by Heisenberg [34] for the coordinate
and the momentum in an infinite dimensional Hilbert space.
Later, Robertson generalized Heisenberg uncertainty
inequality to arbitrary pairs of observables [30]. Instead of
the standard deviation, the uncertainty relation can also be
delicately given in terms of Shannon entropies associated with
the measurement bases [35]. By considering the quantum
entanglement with a memory system [36], an entropic
uncertainty relation in the presence of quantum memory
was proposed and attracted wide attentions [37, 38]. Taking
the entangled quantum memory into account, these
uncertainty relations have potential applications in quantum
key distributions and entanglement witnessing [37, 39, 40].
However, all the uncertainty relations proposed above involve
the measurement between only two observations and are
expressed in the form of inequality. Very recently, Wang
et al. [41] put forward a novel entropic uncertainty relation
for bipartite systems composed of a measured subsystem A and
a quantum memory B, in which projection measurements is
based on a complete set of mutually unbiased bases (MUBs).
By means of the complete set of MUBs, an uncertainty equality
based on conditional linear entropy was derived [42, 43]. The
uncertainty equality implies that the sum of uncertainties is
exactly equal to the fixed quantity related to the initial bipartite
state which was confirmed experimentally with optical systems
[41, 44]. This uncertainty relation can be applied to quantum
random number generation and quantum guessing games. On
the other hand, quantum renormalization group (QRG) is one
of the conceptual pillars of quantum field theory and
statistical mechanics, which revolves around the idea of
rescaling transformations and coarse-graining of a large-
scale system [45].

The QRG method is widely used to solve exactly the 1D Ising,
XXZ, XYZ and XY models [20, 46, 47]. At zero temperature, the
QRG method provides insights into how the block uncertainty
and entanglement change as the size of the system becomes large
in 1D spin chains. On the basis of the 1D case, some further
contributions on two-dimensional (2D) and higher-dimensional
systems have been recently made [48–53]. In this work, we
introduce two different types of the time-dependent magnetic
fields into the 2D Ising models, and obtain the effective
Hamiltonian of the models by employing the QRG method.
Moreover, we investigate the evolution of the uncertainty in
contrast to the quantum entanglement in terms of the
magnetic field to characterize the QPT.

This paper is structured as follows. In Section 2, we first derive
the QRG equations for the 2D models with the time-dependent
magnetic fields. And in Section 3, the evolutions of the
uncertainty and quantum entanglement are discussed in the
2D model. A conclusion is given in Section 4.

2 QRG FOR THE TRANSVERSE-FIELD
ISING MODELS

The QRG method can effectively process large-scale quantum
spin systems [45]. The key of the QRG method is the mode
thinning of the degrees of freedom followed by iterations which
reduces the number of parameters step by step until reaching a
fixed point. In this section, we derive the QRG equation for 2D
Ising models with time-dependent magnetic fields following the
method of 1D QRG.

The Hamiltonian of the 1D Ising model with N sites can be
expressed as

H1 t( ) � −J1 ∑N
i�1

σzi σ
z
i+1 − Bp t( )∑N

i

σxi , (1)

where J1 > 0 is the exchange coupling constant, σαi (α � x, y, z) are
the Pauli matrices at site i, Bp(t) (p = 1, 2) denote the time-
dependent magnetic field strengths. Here, we define

B1 t( ) � kt, (2)
B2 t( ) � �

2
√

sin ωt( ). (3)
Clearly, B1(t) denotes the magnetic field strength with the linear
coefficient k, while B2(t) is the sinusoidal magnetic field strength
with the frequency of ω.

Similarly, the Hamiltonian of a spin-1/2 2D Ising model with
the transverse magnetic field is given by:

H2 t( ) � −J2 ∑N
〈i,j〉

σzi σ
z
j − Bq t( )∑N

i

σx
i , (4)

where the coupling constant J2 > 0, the first sum contains all the
nearest-neighbor interactions, and Bq(t) (q = 3, 4) are the time-
dependent linear and sinusoidal magnetic field strengths
defined by

B3 t( ) � kt, (5)
B4 t( ) � 1.835 4

�
2

√
sin ωt( ), (6)

FIGURE 1 | The procedure of the 1D model partitioning.
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respectively. Here the coefficient 1.835 4
�
2

√
is chosen for easier

analysis of numerical results, as 1.8354 is the critical point of the
2D Ising model described in the following text.

The QRG procedure of the 1D Ising model is started by
decomposing the system into isolated blocks (Figure 1) and
accordingly the Hamiltonian H1(t) is divided into two parts.

H1 t( ) � Hk t( ) +Hkk t( ). (7)
Here Hk(t) and Hkk(t) are the block and interblock

Hamiltonian, respectively, which are given by

Hk t( ) � ∑N/2

I

hIk t( ),
hIk t( ) � −J1σz

I,1σ
z
I,2 − Bp t( )σxI,1,

Hkk t( ) � ∑N/2

I

hI,I+1kk t( ),
hI,I+1kk t( ) � −J1σzI,2σz

I+1,1 − Bp t( )σx
I,2,

(8)

where hIk(t) and hI,I+1kk (t) are respectively the Ith block
Hamiltonian and the interblock Hamiltonian between the
blocks I and I + 1.

Next we focus on the effect of magnetic field strength on
QPT and do not care about the specific details of the evolution
of the system. Therefore, we can make the magnetic field
strength change very slowly over time, where the process
coincides with the idea of quantum adiabatic
approximation. The strict derivation of the quantum
adiabatic theorem was first mentioned by [54]. Later,
quantum adiabatic approach was extended to the
degenerate case, and the quantum adiabatic condition for
the degenerate case was obtained [55, 56]. The theorem
states that when the time-varying rate of the Hamiltonian
approaches to zero, the probability of the system leaving the
instantaneous eigenstates of the Hamiltonian can be
considered to be zero. In the degenerate case, the
Hamiltonian hIk(t) of the system depending on parameter
t = [t1, t2, t3, . . ., tN] have degenerate eigenstates |n, α〉 ≡|n,
α(t)〉(α = 1, 2, . . ., dn), corresponding to the eigenvalues En(t)

with dn being degeneracy. The adiabatic approximation
condition can be written as

〈n, α d
dt

∣∣∣∣ ∣∣∣∣n′, α′〉
En − En′

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣≪ 1 n ≠ n′( ). (9)

A detailed analysis are further performed on the left hand
side (LHS) of Eq. 9 with different magnetic field parameters as
shown in Figure 2. From Figure 2A, we can see that for
different values of k, the LHS of the adiabatic approximation
condition versus time t in linear magnetic fields B3(t) have the
similar trend, i.e., it first increases to the maximum value and
then gradually decreases to 0. However, the maximum value of
LHS diminishes rapidly from 0.2052 to approximately 0
(much less than 1) as k decreases from 1 to 0.01.
Figure 2B shows that the maximum values of LHS appear
periodically over time for the sinusoidal magnetic fields B4(t).
Our primary concern is that when the value of ω decreases to
0.01, the value of LHS is approximate to 0. As discussed above,
we can set the values of magnetic field parameters k and ω as
0.01 to satisfy the adiabatic approximation condition. On the
basis of the approximation condition, the transitions between
energy levels of the systems can be ignored, so we can
complete the subsequent QRG process by solving the
stationary Schrodinger equation hIk(t)|ψj〉 � Ej|ψj〉 (j � 1, 2).

After solving the Schrodinger equation at a certain time t, we
obtain two degenerate ground states |ψ1〉 and |ψ2〉, which can be
used to construct the projection operator as follows

P � ⊗N/2
I�1PI, PI � ψ1

∣∣∣∣ 〉〈↑| + ψ2

∣∣∣∣ 〉〈↓∣∣∣, (10)
where |↑〉 and |↓〉 are the eigenstates of σz, and PI is the projection
operator of hIk(t). Using the above formulas, we can obtain the
following effective Hamiltonian Heff given by

Heff1 � P†HP � P† Hk +Hkk( )P
� J1′∑N/2

I

σz
Iσ

z
I+1 − Bq′ t( )∑N/2

I

σx
I .

(11)

where

FIGURE 2 | LHS of the adiabatic approximation condition versus time t for different magnetic fields: (A)B3(t) and (B)B4(t).
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J1′ � J21���������
J21 + B2

q t( )
√ ,

B′ t( ) � B2
q t( )���������

J21 + B2
q t( )

√ ,

(12)

which are called QRG equation. Notably, we define the
effective magnetic field h1 = Bq(t)/J1. Then QRG equation
can be written as

h1′ � h21, (13)
where h1 becomes h1′ after one QRG iteration. The stable and
unstable fixed points h1 = (0, 1, ∞) of the QRG equations are
obtained by solving h1 � h1′ � h1*, where h1 = 1 is an unstable
fixed point and the QCP of the 1D system.

Using the similar QRG method of 1D model [48, 49, 51, 52],
now we turn to investigate the related properties of the 2D square
lattice. As previously discussed, the values of k and ω are
theoretically set to be 0.01 in the rest of this paper. To study
the ground state phases of the Hamiltonian in Eq. 4, we partition
the square lattice into blocks of two sites in horizontal and vertical
directions as depicted in Figure 3A.

In Figure 3A, Jh and Jv represent the ferromagnetic exchange
coupling constants in the horizontal and vertical directions
respectively, and Jh = Jv = J2. Similar to the 1D case, we first
perform the horizontal transformation

Jh′ � J2h���������
J2h + B2

q t( )
√ ,

Bq′ t( ) � B2
q t( )���������

J2h + B2
q t( )

√ ,

Jv′ � Jv 1 + J2h
J2h + B2

q t( )
⎛⎝ ⎞⎠,

(14)

and then the vertical transformation as follows,

Jh″ � Jh′ 1 + J′2v
J′2v + B′2

q t( )
⎛⎝ ⎞⎠,

B′′
q t( ) � B′2

q t( )���������
J′2v + B′2

q t( )
√ ,

Jv″ � J′2v���������
J′2v + B′2

q t( )
√ .

(15)

To preserve the symmetry of the system, the geometric mean idea
[57] is applied to the entire transformation process J′′2 �

����
J′′hJ

′′
v

√
.

Then the effective Hamiltonian Heff2 of the 2D model can be
expressed as follows

Heff2 t( ) � −J2″ ∑N
〈i,j〉

σz
i σ

z
j − Bq″ t( )∑N

i

σxi . (16)

The effective magnetic field is set to h2 = B2(t)/J2. After the
horizontal and vertical transformations, the QRG equation for
the 2D model can be obtained as

h2′ �
h42 1 + h22( )3 4 + 4h22 + 2h42 + h62( )( )1/4

2 + h22( ) 8 + 8h22 + 3h42 + h62( )1/2 , (17)

where h2 becomes h2′ after one QRG iteration. By solving
h2 � h2′ � h2*, we can get three fixed points h2 = (0, 1.835 4,
∞), where h2 = 1.835 4 is QCP of the ferromagnetic paramagnetic
phase transition of the 2D system. Considering the symmetry of
the 2D system, we select a basic cluster as the research object
shown in Figure 3B, and the corresponding Hamiltonian Hc is
given by

Hc � −J2″ σz2σ
z
1 + σz

2σ
z
3 + σz2σ

z
4 + σz

2σ
z
5( )

−Bq″ t( ) σx1 + σx2 + σx
3 + σx

4 + σx5( ).
From the ground state |ψg〉 of Hc, we can construct the density
operator ρ = |ψg〉〈ψg|. Then by tracing the density matrix of the
subsystems 3, 4 and 5, the reduced density matrix between the
sites 1 and 2 is written as

ρ12 � Tr345ρ. (18)

FIGURE 3 | (A) The process of the 2Dmodel partitioning, with first horizontal transformation and then vertical transformation. (B) The basic cluster with the nearest
neighbor interaction in the 2D model.
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As a result, after the QRG iterative process, the relation between
the local and global properties of the 2D system is built. By means
of the reduced density matrix ρ12, we can analyze the quantum
property of the 2D Ising models by calculating uncertainty
relation, quantum entanglement, and so on.

3 UNCERTAINTY RELATION AND
QUANTUM ENTANGLEMENT OF THE 2D
ISING MODELS
In this section, we first use the quantum entanglement to gain a
preliminary understanding of the long-range properties and the
critical behavior in the 2D Ising model. We adopt the negativity
proposed by Vidal and Werner [8] to measure quantum
entanglement, which is described by

N ρ12( ) � ∑
i

λi ρT1
12( )∣∣∣∣ ∣∣∣∣ − 1, (19)

where ρ12 is the reduced density matrix of subsystems 1 and 2, ρT1
12

is the partial transpose matrix about particle 1, and λi denotes the
ith eigenvalue of ρT1

12 . The subsystem 1 and 2 are maximally
entangled for N(ρ12) � 1, and partially entangled for N(ρ12)< 1.

In Figure 4, we plot the properties of negativity and its first
derivative for the 2D transverse-field Ising model. As seen from
Figure 4A, as kt increases, N first increases gradually from zero to
the maximum Nmax = 0.243 7 for each QRG iteration, then

decreases to zero monotonically. When kt = 1.835 4, the effective
magnetic field h2 is equal to 1.8354, which is the QPT point of the
2D system. For higher QRG iterations, the space in which N can
exist gradually becomes smaller and the maximum occurring ofN
is closer to the QCP at kt = 1.835 4.

As shown in Figure 4B, the negativity maximums Nmax =
0.243 7 display periodicity versus ωt with the magnetic field B4(t).
As the size of the system increases,Nmax appears approximately at
ωt � π

4,
3π
4 ,

5π
4 . . ., and herein the corresponding effective magnetic

field strength satisfies h2 = 1.835 4, which is the QCP of 2D
models.

As we know, the divergence of the first derivative of N means
that the system has nonanalytic behavior. From Figure 4Cwe can
see that maxima and minima of N are almost symmetric. The
maxima exhibit at the critical point of kt = 1.835 4 and become
larger under the system size increasing.

We also note that the entanglement in the vicinity of the QCP
shows scaling behavior [58]. Figure 4D plots the logarithm of the
absolute value of minimum of dN/dh versus the system scale
ln( ~N), displaying a standard linear relation, where ~N represents
the size of the system. From the linear relation, a formula between
|dN/dg|min and ~N can be obtained as |dN/dg|min � ~N

0.796 0
,

which reflects the scaling behavior of entanglement.
In general the quantum entanglement of a system is closely

related to its uncertainty. To compare with quantum
entanglement, in the following we investigate the uncertainty
equality and inequality based on linear entropy [41]. Suppose that

FIGURE 4 | (A) The evolution of negativity of the 2D model versus kt with B3(t), and (B) that versus ωt with B4(t) in terms of QRG iterations. (C) The evolution of first
derivative of N in terms of QRG iterations with B3(t). The upper and lower insets show the maximum and minimum of dN/dg at the critical point respectively. (D) The
scaling behavior of ln(|dN/dg|min) with respect to the system size ln( ~N).
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there is a bipartite quantum state ρ12 consisting of subsystems 1
and 2 in a d1 × d2 (d1 < d2) dimensional Hilbert space. First,
subsystem 1 is performed a local projection measurement with
the eigenstates {|m〉}. Then, the bipartite state can be expressed as
ρm12 � (|m〉1〈m|⊗ I2)ρ12(|m〉1〈m|⊗ I2)/pm, where I2 represents
the identity operator of subsystem 2 and pm �
Tr[(|m〉1〈m|⊗ I2)ρ12] is the measurement probability. As a
result, the overall state of the system after the local
measurement on subsystem 1 is given by

ρM2 � ∑d1
m�1

pmρm � ∑d1
m�1

|m〉1〈m|⊗ 〈m ρ12
∣∣∣∣ ∣∣∣∣m〉1. (20)

To quantify the uncertainty of the composite system, we
introduce conditional linear entropy SL(M|2) as follows,

SL M | 2( ) � SL ρM|2( ) − SL ρ2( ) � Tr ρ22( ) − Tr ρ2M2( ), (21)
where ρ2 = Tr1(ρ12) is the reduced density matrix of subsystem 2
and SL(ρ) � 1 − Tr(ρ2) is the linear entropy. For the density
matrix ρ12, if a complete set of MUBs Mθ(θ � 1, 2, . . . , d1 + 1){ }
are performed, the uncertainty equality is

∑d1+1
i�1

SL Mθ | 2( ) � d1 Tr ρ22( ) − 1
d1

Tr ρ212( )( ). (22)

For a two-dimensional subsystem 1, the simplest complete set of
MUBs is

M1 � |↑〉, |↓〉{ },M2 � |↑〉 + |↓〉�
2

√ ,
|↑〉 − |↓〉�

2
√{ },

M3 � |↑〉 + i|↓〉�
2

√ ,
|↑〉 − i|↓〉�

2
√{ }, (23)

whereM1,M2,M3 are the eigenvectors of σx, σy, σz respectively. If
an incomplete set of d (d < d1 + 1) MUBs (for example, M2 and
M3) are performed on the d1 × d2 dimensional Hilbert space, the
uncertainty satisfies the uncertainty inequality

∑d
i�1

SL Mi | 2( )P d − 1( ) Tr ρ22( ) − 1
d
Tr ρ212( )[ ]. (24)

For the 2D Ising system, the uncertainty equality and
inequality are plotted in Figure 5 under different magnetic
fields. For each QRG iteration, the uncertainty first decreases
to the minimum of 0.5 and then increases to the maximum of
1.0 with the growth of kt in Figure 5A. The change tendency
of uncertainty is opposite to that of entanglement in
Figure 4A, which indicates that quantum entanglement
might suppress the uncertainty of the system. As the size
of the system becomes larger, the uncertainty minimum
occurs at kt = 1.835 4 near QCP, where the decay from
maximum to minimum is very rapid and accompanied by
intensive oscillations, which means that this uncertainty can
precisely describe the critical behavior of the system due to the

FIGURE 5 | The evolution of the uncertainty of the 2D Ising model. The uncertainty equality (A) and inequality (B) versus kt with the magnetic field B3(t), the
uncertainty equality (C) and inequality (D) versus ωt with the magnetic field B4(t).
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sensitivity of this uncertainty. The uncertainties shown in
Figure 5B and Figure 5A have the similar evolution trend,
implying that the uncertainty can characterize the QPT even
without choosing the complete set of MUBs.

From Figure 5C and Figure 5D, we can see that the
behaviors of uncertainty against ωt in each half cycle are almost
consistent with those against kt in Figure 5A and Figure 5B,
respectively. With the system size increasing, the uncertainty
minima appear nearly at ωt � π

4,
3π
4 ,

5π
4 . . ., and the corresponding

effectivemagnetic field h2 = 1.835 4 is theQCP of the 2Dmodel. Thus
the application of the periodic magnetic field B4(t) reveals the close
relation between QPT and the effective magnetic field, i.e., QPT
depends on the magnetic field strength rather than how themagnetic
field evolves.

Through the first derivative of the uncertainty dU/dg, we
can analyze its nonanalytic behavior at the QCP. For
simplicity, in Figure 6 we only plot the first derivative of
the uncertainty of the 2D Ising model under B3(t) versus kt,
where dU/dg denotes the first derivative of the right hand side
of Eq. 22 and Eq. 24. Surprisingly, the extreme values of the
first derivative of the uncertainty can reach up to about 105 for
each iteration, which are almost three order of magnitude
larger than those of negativity. This shows that the linear-
entropy-based uncertainty relation might be a better indicator
of QPT than quantum entanglement. Clearly, we can see from
Figure 6 that dU/dg oscillates at a high frequency between the
maximum and the minimum in a very narrow range near the
critical point kt = 1.835 4, which can illustrate the rapidly
oscillating behavior of the uncertainty in Figure 5A and
Figure 5B. Moreover, with the increase of QRG iterations,
the range where the maxima and minima of dU/dg can exist
becomes smaller and is approximate to the critical point.
Thus, the QPT occurs very fast near the QCP for the large
QRG iterations, which can also be exhibited from the rapid
variation tendency of the uncertainty with respect to the
magnetic field strength. These results indicate that the
QRG implementation of uncertainty really captures the
QPT behavior of the 2D Ising model.

4 CONCLUSIONS

To summarize, we have analytically derived the effective
Hamiltonian and QRG equations by employing the QRG
approach. Then the behaviors of the linear-entropy-based
uncertainty relation and the quantum entanglement for 2D
Ising models with linear and sinusoidal transverse fields are
investigated through numerical analysis. Under the linear
magnetic field B3(t), we found that the range where the
maxima of entanglement and the minima of the
uncertainty can exist becomes smaller and appears near the
critical point as the size of the system increases. The
entanglement shows an opposite evolution trend to that of
the uncertainty. The evolutions of the first derivatives of the
uncertainty and the entanglement in terms of QRG iterations
indicate a nonanalytic behavior at the QCP. Furthermore, the
absolute value of the minimum derivative of negativity against
the size of the system exhibits a nice linear relationship. The
uncertainty given by Eqs 22, 24 and its first derivative are
more sensitive to changes of the magnetic field, resulting in
oscillations at high frequency and the uncertainty derivative
maxima up to 105, compared with the negativity derivative
maxima (~ 102), in the vicinity of QCP. Therefore, the
uncertainty may be used as a better indicator to
characterize QPT than quantum entanglement. Under the
sinusoidal magnetic field B4(t), the maxima of the
entanglement and the minima of the uncertainty appear
periodically versus the magnetic field, but as the system
size increases, they can still gradually approach the QCP.
The strong dependence of QPT on the magnetic field strength
is clearly illustrated in the case of the sinusoidal
magnetic field.

Our findings might be helpful to use the linear-entropy-
based uncertainty relation as the indicator for the detection of
the QPT, and to reveal the nature of uncertainty relation and
quantum entanglement in the 2D Ising model with time-
dependent transverse magnetic fields. We expect our results
to be of interest for a wide range of applications in other

FIGURE 6 | First derivative of the uncertainty equality (A) and inequality (B) versus kt with the increasing number of QRG iterations.
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meaningful high-dimensional spin models with the QRG
method.
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Learning physical properties of a quantum system is essential for the developments of
quantum technologies. However, Heisenberg’s uncertainty principle constrains the potential
knowledge one can simultaneously have about a system in quantum theory. Aside from its
fundamental significance, the mathematical characterization of this restriction, known as
‘uncertainty relation’, plays important roles in a wide range of applications, stimulating the
formation of tighter uncertainty relations. In this work, we investigate the fundamental
limitations of variance-based uncertainty relations, and introduce several ‘near optimal’
bounds for incompatible observables. Our results consist of two morphologically distinct
phases: lower bounds that illustrate the uncertainties about measurement outcomes, and
the upper bound that indicates the potential knowledge we can gain. Combining them
together leads to an uncertainty interval, which captures the essence of uncertainties in
quantum theory. Finally, we have detailed how to formulate lower bounds for product-form
variance-based uncertainty relations by employing entropic uncertainty relations, and hence
built a link between different forms of uncertainty relations.

Keywords: numbers: 03.65.ta, 03.67.a, 42.50.lc, uncertainty relation, variance-based, uncertainty interval

1 INTRODUCTION

Uncertainty principle, originally introduced by Heisenberg [1], clearly sets quantum theory apart from our
classical world. Formally, it states that it is impossible to predict the outcomes of incompatiblemeasurements
simultaneously, such as the position and momentum of a particle. The corresponding mathematical
formulation for position andmomentum are given byKennard in Ref. [2] (see also Ref. [3]). Later, a general
form of uncertainty relation has been established by Robertson [4], and has been further improved by
Schrödinger in Ref. [5], which is expressed in terms of commutator and anticommutator of obserables:

V A( )V B( )≥ |1
2
〈 A, B[ ]〉|2 + |1

2
〈 �A, �B{ }〉|2, (1)

where the quantity V(A) � 〈 �A2〉 (resp. V(B)) stands for the variance of observable A (resp. B), the
operator �A is defined as A− 〈A〉, and the expectation value 〈 〉 is over the quantum state |Ψ〉.
Another way to demonstrate the joint uncertainty associated with incompatible observables is
through the summation, namely V(A) + V(B) [6–9], which highlights an advantage in the parameter
estimation of quantum system [10–13].

Riding the waves of information theory, entropies have been used to quantify the uncertainties
associated with quantum measurements [14]. For instance, the entropies of probability distributions of
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canonically conjugate variables obey Białynicki-Birula-Mycielski
uncertainty relation [15]. It is noteworthy that Heisenberg’s
uncertainty relation follows from Ref. [15] as a special case. The
entropic uncertainty relation for any pair of bounded observables is
established by Deutsch in Ref. [16]. An improved expression was
subsequently conjectured by Kraus [17] and then had been proved by
Maassen and Uffink [18]. With access to a memory system, the
conventional entropic uncertainty relations have been further
generalized to entanglement-assisted formalism [19]. Soon
afterwards, several improvements and extensions, including the
cases of multiple measurements, universal uncertainty regions and
quantum processes, have been proposed in Refs. [20–25]. Recently,
beyond inertial frames, the uncertainty trade-off occurred near the
event horizon of a Schwarzschild black hole [26] and the relativistic
protocol of an uncertainty game in the presence of localized fermionic
quantum fields inside cavities [27] have also been demonstrated.

Aside from their theoretical significance [28], these uncertainty
relations support a variety of applications and have been widely used
in current quantum technologies, such as analyzing the security of
quantum key distribution protocols [19], witnessing quantum
correlations [29–32], and even inferring causality from quantum
dynamics [33]. Thus, pushing the boundary of uncertainty relation
will not only deepen our understanding of quantum foundations,
but also has impact on practical applications.

In this work, we focus on the case of variance-based
uncertainty relations, with the forms of both product and
summation, and introduce the concept of uncertainty interval.
The formulation of such an interval can of course be subdivided
into two, namely finding the lower bound and upper bounds for
joint uncertainties. To do so, we establish the partial Cauchy-
Schwarz inequality, which generalizes the standard Cauchy-
Schwarz inequality, and use this toolkit to construct near-
optimal bounds for variance-based uncertainty relations.
Numerical results highlight the advantages of our framework.

2 PRODUCT-FORM VARIANCE-BASED
UNCERTAINTY RELATIONS

Throughout this paper, we consider quantum systems acting on
finite-dimensional Hilbert space. Let us start with a pair of
incompatible observables A and B, and denote their spectral
decompositions as A = ∑iai|ai〉〈ai| and B = ∑ibi|bi〉〈bi|
respectively. On the other hand, assume the alternative
observable �A and �B have the following spectral decompositions;
that are �A � ∑iai′|ai〉〈ai| and �B � ∑ibi′|bi〉〈bi|. Remark that, here
all the eigenvalues are real numbers, i.e. ai, ai′, bi, bi′ ∈ R. Now for
any given orthonormal basis {|ψi〉}, we can re-express �A|Ψ〉 and
�B|Ψ〉 as ∑iαi|ψi〉 and ∑iβi|ψi〉 respectively. It is worth mentioning
that in general both �A|Ψ〉 and �B|Ψ〉 are unnormalized, and hence
the vectors (αi) and (βi) do not forms probability distributions.
Then, by defining the absolute value of αi and βi as xi and yi
respectively, the variance of observablesA and B can be rewritten as

V A( ) � | �x|2, V B( ) � | �y|2, (2)
and thus we have

V A( )V B( ) � | �x|2 · | �y|2. (3)
It now follows from Cauchy-Schwarz inequality immediately that

V A( )V B( )≥ ∑
i

xiyi
⎛⎝ ⎞⎠2

. (4)

We note that such a choice of xi and yi leads directly to the main
results presented in a recent formulation of strong uncertainty
relation [34]. Clearly, this is not the only choice of xi and yi. By
setting xi as |ai′|













〈Ψ|ai〉〈ai|Ψ〉

√
and yi as |bi′|













〈Ψ|bi〉〈bi|Ψ〉

√
, we

re-obtain another part of results constructed in Ref. [34]. Here, for
simplicity, we further denote the Uhlmann’s fidelity between |Ψ〉
and |ai〉 (|bi〉) as Fa

i (Fb
i ), which are

Fa
i � 〈Ψ|ai〉〈ai|Ψ〉, Fb

i � 〈Ψ|bi〉〈bi|Ψ〉. (5)
A key observation in this work is that any improvement over

the well-known Cauchy-Schwarz inequality will give us a better
bound of variance-based uncertainty relation, with the same
amount of information required in Eq. (4). To this end, we
investigate the intrinsic connection between the arithmetic-
geometric mean (AM-GM) inequality and the Cauchy-
Schwarz inequality. We start by writing down the product of
| �α|2 and | �β|2,

| �α|2| �β|2 � ∑
ij

x2
i y

2
j � ∑

i<j
x2
i y

2
j + x2

jy
2
i( ) +∑

i

x2
i y

2
i

≥ ∑
i<j

2xixjyjyi( ) +∑
i

x2
i y

2
i

� ∑
i

xiyi
⎛⎝ ⎞⎠2

.

(6)

Above inequality is a result of n (n − 1)/2 rounds of AM-GM
inequalities for x2

i y
2
j + x2

jy
2
i ≥ 2xiyjxjyi with different indexes.

Therefore, the equality condition holds if and only if xiyj = xjyi for
all i ≠ j. By defining the quantity Ik as

∑
1≤i<j≤k

2xixjyjyi( ) + ∑
1≤i<j≤n
k<j

x2
i y

2
j + x2

jy
2
i( ) + ∑

1≤i≤n
x2
i y

2
i , (7)

we can write the left-hand-side of Eq. 4 as

I0 � | �x|2| �y|2 � V A( )V B( ), (8)
which is precisely the product-form joint uncertainty. On the
other hand, the previous known bound in Ref. [34], i.e. right-
hand-side quantity of Eq. 4, can be reformatted as

In � ∑
i

xiyi
⎛⎝ ⎞⎠2

. (9)

Now we introduce a chain of inequalities that outperform
Cauchy-Schwarz inequality. More precisely, we have.

Theorem 1. For any n-dimensional real vectors �x, �y with non-
negative components, and Ik defined in Eq. 7, we have
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I0 ≥ I2 ≥ . . . , ≥ In−1 ≥ In. (10)
Actually, for any index k it follow from the AM-GM inequality

that

Ik+1 � Ik +∑k
i�1

2xixk+1yiyk+1 − x2
i y

2
k+1 − x2

k+1y
2
i( )≤ Ik, (11)

as required. Algebraically, the inequality | �x|2| �y|2 ≥ Ik is obtained by
applying AM-GM inequality to the first k components of both �x and
�y, and hence can be viewed as a partial Cauchy-Schwarz inequality.
More importantly, such a partial Cauchy-Schwarz inequality, see Eq.
10, provides n− 2 tighter lower bounds forV(A)V(B) comparedwith
the main result of [34], namely I0 = V(A)V(B) ≥ In. In particular, we
can insert more terms in the above descending chain by selecting
arbitrary x2

i y
2
j + x2

jy
2
i (i < j). For example, the inequality I0 ≥ In−1

obtained from our Thm. One immediately leads to a tighter bound.
More precisely, Eq. 4 can be improved to

V A( )V B( )≥ 1
4

∑n−1
i�1

〈 �A, �Bn[ ]〉 + 〈 �A, �Bn{ }〉∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠2

+ 〈Ψ| �A|ψn〉
∣∣∣∣ ∣∣∣∣2 ∑n

i�1
〈Ψ|�B|ψn〉
∣∣∣∣ ∣∣∣∣2⎛⎝ ⎞⎠

+ 〈Ψ|�B|ψn〉
∣∣∣∣ ∣∣∣∣2 ∑n

i�1
〈Ψ| �A|ψn〉
∣∣∣∣ ∣∣∣∣2⎛⎝ ⎞⎠

− 〈Ψ| �A|ψn〉
∣∣∣∣ ∣∣∣∣2 〈Ψ|�B|ψn〉

∣∣∣∣ ∣∣∣∣2 ≔ L1,

(12)

which offers a stronger bound than that of

L1 ≥
1
4

∑n
i�1

〈 �A, �Bn[ ]〉 + 〈 �A, �Bn{ }〉∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠2

≥ 〈 �A�B〉
∣∣∣∣ ∣∣∣∣2. (13)

Note that the method of constructing bounds presented here
for variance-based uncertainty relations requires the same
amount of information, i.e. the fidelity between quantum state
and the eigenvector of observables, needed in previous works,
such as the one considered in Ref. [34], but provable tighter.

We now move on to further strengthening the bounds of
uncertainty relations by considering the action of symmetric
group Sn. For any two permutations π1, π2 ∈ Sn, we define

π1, π2( )Ik � ∑
1≤π1 i( )< π2 j( )≤ k

2xπ1 i( )xπ2 j( )yπ2 j( )yπ1 i( )( )
+ ∑

1≤π1 i( )< π2 j( )≤ n
k< π2 j( )

x2
π1 i( )y

2
π2 j( ) + x2

π2 j( )y2
π1 i( )( )

+ ∑
π1 i( )�π2 j( )

x2
π1 i( )y

2
π2 j( ).

(14)

It is straightforward to check that the quantity I0 is stable under
the action of Sn × Sn. Writing everything out explicitly, we have.

Theorem 2. For any permutations π1, π2 ∈ Sn, we have

I0 ≥ π1, π2( )I2 ≥ . . . , ≥ π1, π2( )In−1 ≥ π1, π2( )In. (15)

Optimizing over the symmetric group Sn, a stronger version
of the variance-based uncertainty relations is obtained.

Theorem 3. For any permutations π1, π2 ∈ Sn, we have

I0 ≥ max
π1 ,π2∈Sn

π1, π2( )I2 ≥ . . . , ≥ max
π1 ,π2∈Sn

π1, π2( )In. (16)

Mathematically, above inequalities are tighter than the result
in Thm. 1, since max

π1 ,π2∈Sn

(π1, π2)Ik ≥ Ik holds for any

permutations. Physically, the action of symmetric group works
well since the overlaps between quantum state and the
eigenvectors of observables are not uniformly distributed.

3 SUM-FORM VARIANCE-BASED
UNCERTAINTY RELATIONS

In this section we turn our attention to the sum-form variance-
based uncertainty relations. Before doing so, let us recall the
rearrangement inequality first. Let (xi) and (yi) be two n-tuple
of real positive numbers arranged in non-increasing order,
namely xi ≥ xi+1 and yi ≥ yi+1, with their direct sum,
random sum and reverse sum between xi and yi being
defined as

Di ≔ x1y1 + x2y2 +/ + xnyn,
Ra ≔ x1yπ 1( ) + x2yπ 2( ) +/ + xnyπ n( ), π ∈ Sn

Re ≔ x1yn + x2yn−1 +/ + xny1.
(17)

Then the following lemma characterizes the relationship
among these quantities; that is.

Lemma. (Rearrangement inequality) For any two non-increasing
n-tuples x and y of nonnegative numbers, we have

Di≥Ra≥Re. (18)
From the parallelogram law, the summation of variances can

be re-expressed as

V A( ) + V B( ) � 1
2
∑
i

xi + yi( )2 + 1
2
∑
i

xi − yi( )2. (19)

Combining with the rearrangement inequality we obtain the
following result.

Theorem 4. For any two permutations π1, π2 ∈ Sn, we have

V A( ) + V B( )≥ 1
2
∑
i

xi + yi( ) xπ1 i( ) + yπ1 i( )( )
+ 1
2
∑
i

xi − yi

∣∣∣∣ ∣∣∣∣ xπ2 i( ) − yπ2 i( )
∣∣∣∣ ∣∣∣∣. (20)

Remark that, by setting π1 = (1), our newly constructed
uncertainty relation outperforms similar results of sum-form
variance-based uncertainty relation considered in Ref. [34].
We denote by L2 the bound of Thm. Four corresponding to
the choice of π1 = (1), π2 = (1 2 . . . n), xi � |αi|, yi � |βi|, which
will be used in Sec. V.
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4 UNCERTAINTY INTERVALS

Quantum theory does not only impose restrictions on the lower
bounds of uncertainties, but also sets limitations on the upper bounds
of uncertainties [34], which are known as reverse uncertainty
relations in the literature. In this section, we investigate the
reverse uncertainty relations for both the product-form and sum-
form uncertainty relations, and introduce several tighter bounds.
Consequently, our lower bounds presented in previous sections
together with the results obtained in this section lead to intervals
for joint uncertainty, which are referred as uncertainty intervals.

For index 1 ≤ i ≤ n, we define

X � max
i

xi{ }, x � min
i

xi{ },
Y � max

i
yi{ }, y � min

i
yi{ }. (21)

Using the rearrangement inequality, we thus see that

xy +XY( )2
4xyXY

∑
i

xiyi
⎛⎝ ⎞⎠2

≥
xy +XY( )2
4xyXY

∑
i

xiyπ i( )⎛⎝ ⎞⎠2

≥V A( )V B( ).
(22)

By taking minimum over all permutations π ∈ Sn, we obtain a
tighter upper bound for V(A)V(B):

V A( )V B( )≤ min
π∈Sn

xy +XY( )2
4xyXY

∑
i

xiyπ i( )⎛⎝ ⎞⎠2

≔ U1, (23)

which proves that the joint uncertainty of incompatible
observables A and B (for the product-form) is restricted
within the interval [L1,U1], i.e. V(A)V(B) ∈ [L1,U1]. In
other words, [L1,U1] is an uncertainty interval for V(A)V(B).

On the other hand, using the fact V(A) � | �α|2 and
V(B) � | �β|2, one derive an upper bound on the sum of
variances of incompatible observables A and B as

FIGURE 1 | Lower bounds of V(A)V(B) for a family of spin-1 particles
|Ψ(θ)〉: the product-form uncertainty relation V(A)V(B), the bound L1 of Eq. 12,
the bound of Ref. [34], and the bound of Schrödinger uncertainty relation [5]
are depicted in red, blue, green, and orange respectively.

FIGURE 2 | Lower bounds of V(A) + V(B) for a family of spin-1 particles
|Ψ(θ)〉: the sum-form uncertainty relation V(A) + V(B), our bound L2 of Eq. 20,
and the bound of Ref. [34] are depicted in blue, green, and yellow respectively.

FIGURE 3 | Upper bounds of V(A)V(B) for a family of spin-1/2 particles
ρ(θ): the product-form uncertainty relation V(A)V(B), our bound U1 of Eq. 23,
and the bound of Ref. [34] are depicted in red, blue, and orange respectively.

FIGURE 4 | Upper bounds of V(A) + V(B) for a family of spin-1/2 particles
ρ(θ): the sum-form uncertainty relation V(A)V(B), our bound U2 of Eq. 25, and
the bound of Ref. [34] are depicted in red, blue, and orange respectively.
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V A( ) + V B( ) � ∑
i

x2
i + y2

i( )≤ ∑
i

xi + yi( )2. (24)

Recalling the definitions xi � |αi| and yi � |βi|, we have that

V A( ) + V B( )≤ ∑
i

〈ψn| �A|Ψ〉
∣∣∣∣ ∣∣∣∣ + 〈ψn|�B|Ψ〉

∣∣∣∣ ∣∣∣∣( )2. (25)

Denote the right-hand (RHS) of (25) by U2. Thus we have
obtained a uncertainty interval for V(A) + V(B): [L2,U2]. We
remark that U2 is not always better than the bound obtained by
[34], but it provides a complementary one. The comparison will
be discussed by examples in the next section.

5 NUMERICAL EXAMPLES AND
CONCLUSION

In this section we provide numerical examples to show how the
bounds obtained in this work outperform previous strong results
[34]. First of all, let us consider the spin-1 particle with the state
|Ψ(θ)〉 = cos θ|1〉 − sin θ|0〉, where the state |0〉 and |1〉 are
eigenstates of the angular momentum Lz. We investigate the
uncertainty associated with angular momentum operators for
spin-1 particle, namely A = Lx and B = Ly. To formulate
bounds for uncertainty relations, we choose xi � |αi| and yi �
|βi| (similar for xi � |ai′|



















〈Ψ(θ)|ai〉〈ai|Ψ(θ)〉

√
and yi � |bi′|



















〈Ψ(θ)|bi〉〈bi|Ψ(θ)〉

√
).

In Figure 1, our boundL1 has been compared with that of [34]
in the product-form for the family of spin-1 particles |Ψ(θ)〉. As
shown in our numerical results, the bound L1 (in blue) provides
the best estimation and is almost optimal. As a supplement, we
also compare our result with Schrödinger’s uncertainty relation
(in orange). In Figure 2, we plot lower bounds for the sum-form
variance-based uncertainty relation for the family of the spin-1
particles |Ψ(θ)〉, which highlights the advantage of our method.

Let us move on to considering the spin-12 particle with the
following density matrix

ρ θ( ) � 1
2

Id + cos
θ

2
σx +



3

√
2

sin
θ

2
σy + 1

2
sin

θ

2
σz( ), (26)

where the two incompatible observables are taken as A = σx and
B = σz. In Figure 3, it has been shown that our upper bound U1

provides the best estimation for the product of two variances
and typically outperforms the upper bound from Ref. [34].
Note that our bound is almost optimal, as it is almost identical
to the optimal value. However, our upper bound U2 for the sum
of variances V(A) + V(B) for states ρ(θ) is not always tighter
than that of Ref. [34]. Nevertheless, it still provides an
improvements for most of the time. See Figure 4 for an
illustration.

Apart from constructing stronger uncertainty relations, our
method introduced in Sec. II also helps to fill up the gap between
product-form variance-based uncertainty relations and entropic
uncertainty relations. Following Ref. [35], we have

V A( ) + V B( )≥H A( ) +H B( ) + c, (27)

where H (·) stands for the Shannon entropy and c is a state-
independent constant. Using Thm. 1, it is straightforward to
check that

V A( )V B( )≥ 1
4

∑n−1
i�1

xiyi
⎛⎝ ⎞⎠2

+ x2
nV B( ) + y2

nV A( ) − x2
ny

2
n. (28)

On the one hand, the term x2
nV(B) + y2

nV(A) appeared above
forms a so-calledweighted uncertainty relation [7]. Notice that we
can always assume x2

n � y2
n in the numerical calculation, since V

(rA)V(B) = r2V(A)V(B). Thus, Eq. 28 can be bounded as

V A( )V B( )≥ 1
4

∑n−1
i�1

xiyi
⎛⎝ ⎞⎠2

+ x2
n H A( ) +H B( ) + c( ) − x4

n. (29)

Therefore both the incompatibility between observables and
mixness of the quantum state will affect the variance-based
uncertainty relations. Moreover, any entropic uncertainty
relation can be employed to construct a lower bound for
product-form variance-based uncertainty relation.

To summarize, we have introduced several variance-based
uncertainty relations both in the sum and product forms. Our
results contain both the lower bounds and the upper bounds,
which leads to the concept of uncertainty intervals. Numerical
experiments illustrate the advantages of our bounds, and in
some cases our bounds are near optimal. Quite remarkable, our
method in deriving stronger variance-based uncertainty
relations also fills the gap between the product-form
variance-based uncertainty relations and the entropic
uncertainty relations. Beside the results present here, our
framework can also be used in formulating unitary
uncertainty relations. For more details, see our follow-up
work [36].
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Experimental Investigation of
Quantum Uncertainty Relations With
Classical Shadows
Lu Liu1, Ting Zhang1, Xiao Yuan2* and He Lu1*

1School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, China, 2Center on Frontiers of
Computing Studies, Peking University, Beijing, China

The quantum component in uncertainty relation can be naturally characterized by the
quantum coherence of a quantum state, which is of paramount importance in quantum
information science. Here, we experimentally investigate quantum uncertainty relations
construed with relative entropy of coherence, l1 norm of coherence, and coherence of
formation. Instead of quantum state tomographic technology, we employ the classical
shadow algorithm for the detection of lower bounds in quantum uncertainty relations. With
an all-optical setup, we prepare a family of quantum states whose purity can be fully
controlled. We experimentally explore the tightness of various lower bounds in different
reference bases on the prepared states. Our results indicate that the tightness of quantum
coherence lower bounds depends on the reference bases and the purity of the
quantum state.

Keywords: quantum uncertainty relation, quantum coherence measures, classical shadow, purity of quantum
states, photonic quantum information processing

1 INTRODUCTION

The uncertainty principle lies at the heart of quantum mechanics, which makes it different
from classical theories of the physical world. It behaves as a fundamental limitation describing
the precise outcomes of incompatible observables, and plays a significant role in quantum
information science from quantum key distribution [1–4] to quantum random number
generation [5, 6], and from quantum entanglement witness [7–9] to quantum steering [10,
11] and quantum metrology [12, 13] (also see Ref. [14] for the review of uncertainty relation
and applications).

The seminal concept of uncertainty relation was proposed by Heisenberg in 1927 [15], in
which he observed that the measurement of position x of an electron with error Δ(x) causes the
disturbance Δ(p) on its momentum p. In particular, their product has a lower bound set by
Planck constant, that is, Δ(x)Δ(p) ~ Z. Later, Robertson generalized the Heisenberg’s
uncertainty relation to two arbitrary observables by ΔAΔB≥ 1

2|〈[A, B]〉|, with ΔA (ΔB)
being the standard deviation of observable A (B), [A, B] = AB− BA being the commutator
of A and B, and 〈·〉 being the expected value in a given state ρ [16]. Indeed, such an uncertainty
relation has a state-dependent lower bound so that it fails to reveal the intrinsic
incompatibility when A and B are noncommuting.

To address the issue of state-independence of Robertson’s uncertainty relation, the entropic
uncertainty relation has been developed by Deutsch [17], Kraus [18], and Maassen and Uiffink [19]:
Consider a quantum state ρ and two observablesA and B; the eigenstates |ai〉 and |bi〉 of observable A
and B constitute measurement bases A � {|ai〉} and B � {|bi〉}. The probability of measuring A on
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state ρ with ith outcome is pi = Tr[ρ|ai〉〈ai|], and the
corresponding Shannon entropy of measurement outcomes is
H(A) = −∑ipi log2pi. Then, H(A) + H(B) is lower bounded by
H(A) + H(B) ≥− log2c with c = maxi,j|〈ai|bj〉|2 the maximal
overlap between |ai〉 and |bj〉. According to the definition of
Shannon entropy, H(A) quantifies the uncertainty or lack of
information associated to a random variable, but does not
indicate whether the uncertainty comes from classical or
quantum parts. For instance, the measurement of Pauli
observable Z on states | + 〉 � (|0〉 + |1〉)/ �

2
√

and I/2 = (|0〉〈0|
+ |1〉〈1|)/2 both lead to H(Z) = 1.

It is natural to consider quantum coherence, which is one of
the defining features of quantum mechanics, to quantify the
quantum component in uncertainty [20–22]. Along with this,
rigorous connections between quantum coherence and
entropic uncertainty have been established [23, 24] based
on the framework of coherence quantification [25], and the
quantum uncertainty relations (QURs) have been
theoretically constructed with various coherence measures
[26]. On the experimental side, the QURs using relative
entropy of coherence have been demonstrated to
investigate the trade-off relation [27] and connection
between entropic uncertainty and coherence uncertainty
[28]. Still, there are several unexplored matters along the
line of experimental investigations. First, although various
QURs have been theoretically constructed with relative
entropy of coherence, the experimental feasibility and
comparison have not been tested. Second, the experimental
realizations of QURs using other coherence measures beyond
relative entropy of coherence are still lacking. Finally, the
lower bounds in QURs are generally obtained with quantum
state tomography (QST) [27, 28], which becomes a challenge
when the dimension of quantum state increases.

In this study, we experimentally investigate QURs
constructed with three coherence measures, relative
entropy of coherence, l1 norm of coherence, and coherence
of formation, on a family of single-photon states. The lower
bound of the QURs is indicated with classical shadow (CS)
algorithm [29]. We show that the tightness of coherence
lower bounds depends on the reference bases and the
purity of quantum state.

This article is organized as follows: In Section 2, we introduce
the basic idea of QUR using quantum coherence measures. In
Section 3, we briefly introduce the CS algorithm to detect the
purity of a quantum state. In Sections 4 and 5, we present the
experimental demonstration and results. Finally, we draw the
conclusion in Section 6.

2 QUANTUM UNCERTAINTY RELATIONS

A functional C can be regarded as a coherence measure if it
satisfies four postulates: nonnegativity, monotonicity, strong
monotonicity, and convexity [25]. The different coherence
measure plays different roles in quantum information
processing. For instance, the relative entropy of coherence
plays a crucial role in coherence distillation [30], coherence

freezing [31, 32], and the secret key rate in quantum key
distribution [33]. The coherence of formation represents
the coherence cost, that is, the minimum rate of a
maximally coherent pure state consumed to prepare the
given state under incoherent and strictly incoherent
operations [30]. The l1-norm of coherence is closely
related to quantum multi-slit interference experiments [34]
and is used to explore the superiority of quantum algorithms
[35–37]. We refer to Ref. [38] for the review of resource
theory of quantum coherence. In the following, we give a brief
review of QURs constructed with coherence measures of
relative entropy of coherence, l1-norm of coherence, and
coherence of formation [26].

2.1 Quantum Uncertainty Relations Using
Relative Entropy of Coherence
The relative entropy of coherence of state ρ is defined as [25]:

CJ
RE ρ( ) � SJVN ρd( ) − SVN ρ( ), (1)

where J � {|j〉} denotes the measurement basis of observable J,
SVN(ρ) = −Tr [ρ log2ρ] is the von Neumann entropy, and ρd is the
diagonal part of ρ in measurement basis J. Note that
H(J) � SJVN(ρd). The QUR using relative entropy of coherence
[26] is

CA
RE ρ( ) + CB

RE ρ( )≥ h

������
2P − 1

√
2

�
c

√ − 1( ) + 1
2

( ) − SVN ρ( ), (2)

where h(x) = −x log2x − (1 − x) log2 (1 − x) is the binary entropy
and P � Tr[ρ2] is the purity of state ρ. Similarly, the entropic
uncertainty relations proposed by Sánches-Ruiz [39], Berta et al.
[3], and Korzekwa et al. [22] can be expressed in terms of relative
entropy of coherence by (see Supplementary Material for
detailed derivations)

CA
RE ρ( ) + CB

RE ρ( )≥ h 1 + �����
2c − 1

√
2

( ) − 2SVN ρ( ), (3)

CA
RE ρ( ) + CB

RE ρ( )≥ − log2c − SVN ρ( ), (4)
CA

RE ρ( ) + CB
RE ρ( )≥ − 1 − SVN ρ( )[ ]log2c. (5)

Consider a qubit state ρ in spectral decomposition ρ = λ|ψ〉〈ψ|
+ (1 − λ)|ψ⊥〉〈ψ⊥| with λ(1 − λ) being the eigenvalue associated
with eigenvector |ψ〉(|ψ⊥〉); we have SVN(ρ) = −λ log2λ − (1 − λ)
log2 (1 − λ) where the purityP is related to λ byP � 2λ2 − 2λ + 1.

2.2 Quantum Uncertainty Relations of the ll1
Norm of Coherence Norm of Coherence
The l1 norm of coherence in fixed measurement bases J is defined
in the form of

CJ
l1

ρ( ) � ∑
k≠l

|〈jk|ρ|jl〉|, (6)

where the QUR using l1 norm of coherence is [26]

CA
l1

ρ( ) + CB
l1

ρ( )≥ 2 ��������������
2P − 1( )c 1 − c( )√

. (7)
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2.3 Quantum Uncertainty Relations Using
Coherence of Formation
The coherence of formation in fixed measurement bases J is
defined in the form of

CJ
f ρ( ) � inf

pi,|φi〉{ } ∑i piC
J
RE |φi〉〈φi|( ), (8)

where the infimum is taken over all state decomposition of
ρ = ∑ipi|φi〉〈φi|. The QUR using coherence of formation is [26]

CA
f ρ( ) + CB

f ρ( )≥ h 1 +
����������������������
1 − 2 2P − 1( ) �

c
√

1 − �
c

√( )√
2

⎛⎜⎜⎝ ⎞⎟⎟⎠. (9)

3 CLASSICAL SHADOW

From Section 2, it is obvious that the purity P of ρ is the key
ingredient in the experimental testing of various QURs. The
purityP can be calculated by reconstructing the density matrix of
ρ with QST, which is very costly as the Hilbert space of ρ
increases. Another protocol employs two copies of ρ for the
detection of P, that is, P � Tr[Πρ ⊗ ρ], with Π being the local
swap operator of two copies of the state [40, 41].

Very recently, the CS algorithm has been theoretically
proposed for efficient quantum state detection [29], and has
been experimentally realized in the detection of purity of
unknown quantum states [42, 43]. In CS algorithm, a
randomly selected single-qubit Clifford unitary U is applied on
ρ, and then the rotated state UρU† is measured in the
Pauli-Z basis, that is, Z � {|z0〉 � |0〉, |z1〉 � |1〉}. With the
outcome of |zi〉, the estimator ρ̂ is constructed by
ρ̂ � 3U†|zi〉〈zi|U − I. It is equivalent to measure J = U†ZU (J �
{U|0〉, U|1〉}) on ρ, and the measurement basis J is randomly
selected from the Pauli observable basis set J ∈ {X,Y,Z}, with a
uniform probabilityK(J) � 1/3. The estimator ρ̂ can be rewritten
as ρ̂ � 3|k〉〈k| − I, where |k〉 ∈ {|x0〉, |x1〉, |y0〉, |y1〉, |z0〉, |z1〉}. In
particular, |x0〉 � | + 〉 � (|0〉 + |1〉)/ �

2
√

and |x1〉 � | −
〉 � (|0〉 − |1〉)/ �

2
√

are the eigenvectors of Pauli observable X
and |y0〉 � |L〉 � (|0〉 + i|1〉)/ �

2
√

and |y1〉 � |R〉 �
(|0〉 − i|1〉)/ �

2
√

are the eigenvectors of Pauli observable Y. It is
worth noting that the construction of estimator ρ̂ only requires
one sample. In our demonstrations, one sample is one two-
photon coincidence. For a set of estimators {ρ̂i} constructed
with Ns samples, the purity of state ρ can be estimated by two
randomly selected independent ρ̂i and ρ̂j, that
is, P̂ � ∑i≠jTr[Πρ̂i ⊗ ρ̂j]/Ns(Ns − 1).

4 EXPERIMENT REALIZATIONS

To test the aforementioned QURs of various coherence measures,
we consider the following single-qubit state:

ρ τ( ) � τ| + 〉〈 + | + 1 − τ( ) I
2
, (10)

with 0 ≤ τ ≤ 1. Note that τ = 1 corresponds to the pure state | + 〉
and τ = 0 corresponds to the maximally mixed state I/2. The
experimental setup to generate state in Eq. 10 is shown in
Figure 1A. Two photons are generated on a periodically poled
potassium titanyl phosphate (PPKTP) crystal pumped by an
ultraviolet CW laser diode. The generated two photons are
with orthogonal polarization denoted as |HV〉, where |H〉 and
|V〉 denote the horizontal and vertical polarization,
respectively. Two photons are separated on a polarizing
beam splitter (PBS), which transmits |H〉 and reflects |V〉.
The reflected photon is detected to herald the existence of
transmitted photon in state |H〉, which is then converted to
| + 〉 � (|H〉 + |V〉)/ �

2
√

by a half-wave plate (HWP) set at
22.5°. We sent the heralded photon into a 50:50 beam
splitter (BS1), which transmits (reflects) the single photon
with a probability of 50%. The photons in transmitted and
reflected mode are denoted as |t〉 and |r〉, respectively. Two
tunable attenuators are set at modes |t〉 and |r〉 to realize the
ratio of transmission probability in |t〉 and |r〉 of τ

1−τ. The
photon in |r〉 passes through an unbalanced Mach–Zehnder
interferometer (MZI) consisting of two PBS and two mirrors,
which acts as a completely dephasing channel in polarization
degree of freedom (DOF), that is, | + 〉〈 + |→ I/2. Finally, the
two beams are incoherently mixed on BS2 to erase the
information of path DOF, which leads to the state ρ(τ) in
both output ports. A step-by-step calculation detailing the
evolution of the single-photon state through this setup is
given in Eq. 11:

|H〉 ����������→HWP@22.5° | + 〉 � 1�
2

√ |H〉 + |V〉( )

����→BS1 | + 〉⊗ 1�
2

√ |t〉 + |r〉( )������������→two attenuators

at |t〉 and |r〉
| + 〉⊗

�
τ

√ |t〉 + ����
1 − τ

√ |r〉( )�������������→unbalancedMZI

at |r〉
τ| + 〉〈 + |⊗|t〉〈t| + 1 − τ( )I/2 ⊗|r〉〈r|������������������→BS2

incoherently combined
τ| + 〉〈 + | + 1 − τ( )I/2. (11)

In our experiment, we set the parameter τ = 0 to τ = 1, with an
increment of 0.1, and totally generated 11 states. For each
generated state, we detect the QURs with the setup shown in
Figure 1B. The lower bound in QURs related to purity PCS is
measured with CS algorithm. CJ

RE is detected with projective
measurement on basis J, along with the measured purity. CJ

l1(CJ
f) is calculated with reconstructed ρ(τ). All the measurement

bases are realized with a HWP, a quarter-wave plate (QWP), and
a PBS.

5 EXPERIMENTAL RESULTS

To investigate the accuracy of estimated purity PCS with CS
algorithms, we also calculate the purity PQST with reconstructed
density matrix of ρ(τ) from QST with NS = 2000. The results of
|PQST − PCS| are shown in Figure 2A. Themore the samples used
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in CS algorithm, the smaller |PQST − PCS| is. We observe
|PQST − PCS|< 0.1 when Ns ≥ 600. Especially, |PQST − PCS| �
0.0036 when Ns = 2000. In Figure 2B, we show the results of
PCS and PQST with NS = 2000 on 11 prepared ρ(τ), in which
the experimental results of PCS and PQST have good
agreements with the theoretical predictions. In the
following, all the results with CS algorithm are obtained
with 2000 samples. We also compare the accuracy of
estimated purity P from CS algorithm and QST with the
same Ns (see Supplementary Material for the results).

We first focus on the lower bounds in QURs using relative
entropy of coherence, that is, Eqs 2–5. We calculate the lower
bounds in Eqs 2–5 with the estimated PCS on ρ(τ = 1), ρ(τ =

0.894), ρ(τ = 0.688), and ρ(τ = 0.291), respectively. As shown in
Figure 3A, we observe that the lower bounds in Eqs 4, 5 have the
same value and outperform others when A and B are mutually
unbiased (c = 0.5).When c becomes larger, lower bounds in Eqs 2,
3 are stricter than those in 4 and Eq. 5. However, the situation is
quite different when the purity becomes smaller. As shown in
Figure 3B–D, the values of lower bounds in Eqs 3, 4 are negative
(we denote them as 0) when c is larger than certain values, which
means that the lower bounds are loosened asCA

RE(ρ) + CB
RE(ρ)> 0

for all ρ.
To investigate the tightness of various lower bounds, we

measure CA
RE(ρ) + CB

RE(ρ) in different reference bases. We
select observables A and B from set J(θ) = cos θZ + sin θX.
Specifically, we fix A = J (0°) and choose B = J (90°), J (66.42°),
and J (36.86°), which correspond to c = 0.5, 0.7, and 0.9. For each
observable J(θ), we perform the projective measurement on basis
J(θ), and calculate the Shannon entropy of measurement
outcomes H (J(θ)). Thus, we obtain
CJ(θ)
RE (ρ(τ)) � H(J(θ)) − SVN(ρ(τ)), where SVN(ρ(τ)) can be

calculated from PCS. The results of QURs using relative
entropy of coherence are shown in Figure 4. As shown in
Figure 4A, the lower bounds in Eqs 4, 5 have the same values
as CA

RE(ρ) + CB
RE(ρ) is lower bounded by 1 − SVN(ρ), when c = 0.5

according to the definitions in Eqs 4, 5. When c is larger, the lower
bound in Eq. 2 is stricter than others as reflected in Figure 4B and
Figure 4C.

Next, we investigate the QURs using l1-norm of coherence and
coherence of formation as described in Eqs 7–9. We choose
observables A = J (0°) = Z and B = J (90°) = X in the coherence
measure, which corresponds to c = 0.5. The CZ

l1
(ρ) and CX

l1
(ρ) are

calculated according to Eq. 7 with the reconstructed density
matrix of ρ(τ). Thus, CZ

f(ρ) and CX
f(ρ) can be calculated

with CZ
l1
(ρ) and CX

l1
(ρ) as Cf(ρ) � h(1+

������
1−Cl1(ρ)

√
2 ) [26]. The

results of QURs using l1 norm of coherence and coherence of
formation are shown in Figure 5A and Figure 5B, respectively, in
which the measured coherence is well bounded by the measured
lower bounds.

FIGURE 1 | Schematic illustration of the experimental setup. (A) The setup to generate the family of states ρ(τ) � τ| + 〉〈 + | + (1 − τ) I
2. (B) Experimental setup to

implement the measurements with CS algorithm and QST. (C) Symbols used in (A) and (B). Laser diode (LD); single-photon detector (SPD); attenuator (AT); long-wave
pass filter (LP); narrow-band filter (NBF).

FIGURE 2 | (A) Average estimated PCS of 11 prepared states with
different Ns. (B) The results of PCS (blue dots) and PQST (red dots). The black
line is the theoretical prediction of purity of ideal ρ(τ).
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6 CONCLUSION

In this study, we experimentally investigate quantum uncertainty
relations using various coherence measures. The lower bounds in
quantum uncertainty relations are detected with the classical
shadow algorithm, in which the measurement cost is quite small

and independent of the dimension of quantum states. For the
quantum uncertainty relation using relative entropy of coherence,
we show that the tightness of lower bounds is highly related to the
reference basis and purity of quantum state. Moreover, we test the
quantum uncertainty relation using l1 norm of coherence and
coherence of formation.

FIGURE 3 | Results of estimated lower bounds in Eqs 2–5 with different c on state (A) ρ(τ = 1), (B) ρ(τ = 0.894), (C) ρ(τ = 0.688), and (D) ρ(τ = 0.291), respectively.

FIGURE 4 | Results of QURs in Eqs 2–5 on 11 prepared states with (A) c = 0.5, (B) c = 0.7, and (C) c = 0.9. The dashed lines are the measured lower bounds and
the shadow area represents the statistical error by repeating CS measurement for 20 times.

FIGURE 5 | Results of (A) QUR with l1 norm of coherence and (B) QUR with coherence of formation with c = 0.5.

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8738105

Liu et al. Experimental Quantum Uncertainty Relations

33

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Our results confirm that the tightness of lower bound in quantum
uncertainty relations is related to the purity of quantum states and the
reference bases, which can benefit the choice of quantum uncertainty
relations when considering the experimental imperfections in
practice. For instance, the imperfections in state preparation and
measurement apparatus correspond to the purity and reference bases
in the lower bound, respectively. More importantly, our method can
be generalized to multipartite states while it keeps its efficiency. The
multipartite coherence could be efficiently estimated using the
stabilizer theory [44, 45] and the classical shadow algorithm to
detect that the purity of multipartite state is efficient as well [43].

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

XY and HL conceived the idea. TZ and HL designed the
experiment. LL and TZ performed the experiment and

analyzed the data. HL supervised the project. XY and
HL wrote the manuscript with contributions from all
authors.

FUNDING

This work is supported by the National Natural Science
Foundation of China (Grant No. 11974213, No. 92065112, and
No. 12175003), National Key R&D Program of China (Grant No.
2019YFA0308200), Shandong Provincial Natural Science
Foundation (Grant No. ZR2019MA001 and No. ZR2020JQ05),
Taishan Scholar of Shandong Province (Grant No.
tsqn202103013), and Shandong University Multidisciplinary
Research and Innovation Team of Young Scholars (Grant No.
2020QNQT).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphy.2022.873810/
full#supplementary-material

REFERENCES

1. Koashi M. Unconditional Security of Quantum Key Distribution and the
Uncertainty Principle. J Phys Conf Ser (2006) 36:98–102. doi:10.1088/1742-
6596/36/1/016

2. Koashi M. Simple Security Proof of Quantum Key Distribution Based on
Complementarity. New J Phys (2009) 11:045018. doi:10.1088/1367-2630/11/4/
045018

3. Berta M, Christandl M, Colbeck R, Renes JM, Renner R. The Uncertainty
Principle in the Presence of Quantum Memory. Nat Phys (2010) 6:659–62.
doi:10.1038/nphys1734

4. Tomamichel M, Renner R. Uncertainty Relation for Smooth Entropies. Phys
Rev Lett (2011) 106:110506. doi:10.1103/PhysRevLett.106.110506

5. Vallone G, Marangon DG, Tomasin M, Villoresi P. Quantum Randomness
Certified by the Uncertainty Principle. Phys Rev A (2014) 90:052327. doi:10.
1103/PhysRevA.90.052327

6. Cao Z, Zhou H, Yuan X, Ma X. Source-independent Quantum Random
Number Generation. Phys Rev X (2016) 6:011020. doi:10.1103/PhysRevX.6.
011020

7. Prevedel R, Hamel DR, Colbeck R, Fisher K, Resch KJ. Experimental
Investigation of the Uncertainty Principle in the Presence of Quantum
Memory and its Application to Witnessing Entanglement. Nat Phys (2011)
7:757–61. doi:10.1038/nphys2048

8. Li C-F, Xu J-S, Xu X-Y, Li K, Guo G-C. Experimental Investigation of the
Entanglement-Assisted Entropic Uncertainty Principle. Nat Phys (2011) 7:
752–6. doi:10.1038/nphys2047

9. Berta M, Coles PJ, Wehner S. Entanglement-assisted Guessing of
Complementary Measurement Outcomes. Phys Rev A (2014) 90:062127.
doi:10.1103/PhysRevA.90.062127

10. Walborn SP, Salles A, Gomes RM, Toscano F, Souto Ribeiro PH. Revealing
Hidden Einstein-Podolsky-Rosen Nonlocality. Phys Rev Lett (2011) 106:
130402. doi:10.1103/PhysRevLett.106.130402

11. Schneeloch J, Broadbent CJ, Walborn SP, Cavalcanti EG, Howell JC.
Einstein-podolsky-rosen Steering Inequalities from Entropic Uncertainty
Relations. Phys Rev A (2013) 87:062103. doi:10.1103/PhysRevA.87.062103

12. Giovannetti V, Lloyd S, Maccone L. Advances in Quantum Metrology. Nat
Photon (2011) 5:222–9. doi:10.1038/nphoton.2011.35

13. Hall MJW, Wiseman HM. Heisenberg-style Bounds for Arbitrary Estimates of
Shift Parameters Including Prior Information. New J Phys (2012) 14:033040.
doi:10.1088/1367-2630/14/3/033040

14. Coles PJ, Berta M, Tomamichel M, Wehner S. Entropic Uncertainty Relations
and Their Applications. Rev Mod Phys (2017) 89:015002. doi:10.1103/
RevModPhys.89.015002

15. Heisenberg W. Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik. Z Physik (1927) 43:172–98. doi:10.1007/BF01397280

16. Robertson HP. The Uncertainty Principle. Phys Rev (1929) 34:163–4. doi:10.
1103/PhysRev.34.163

17. Deutsch D. Uncertainty in Quantum Measurements. Phys Rev Lett (1983) 50:
631–3. doi:10.1103/PhysRevLett.50.631

18. Kraus K. Complementary Observables and Uncertainty Relations. Phys Rev D
(1987) 35:3070–5. doi:10.1103/PhysRevD.35.3070

19. Maassen H, Uffink JBM. Generalized Entropic Uncertainty Relations. Phys Rev
Lett (1988) 60:1103–6. doi:10.1103/PhysRevLett.60.1103

20. Coles PJ, Yu L, Gheorghiu V, Griffiths RB. Information-theoretic Treatment of
Tripartite Systems and Quantum Channels. Phys Rev A (2011) 83:062338.
doi:10.1103/PhysRevA.83.062338

21. Coles PJ. Unification of Different Views of Decoherence and Discord. Phys Rev
A (2012) 85:042103. doi:10.1103/PhysRevA.85.042103

22. Korzekwa K, Lostaglio M, Jennings D, Rudolph T. Quantum and Classical
Entropic Uncertainty Relations. Phys Rev A (2014) 89:042122. doi:10.1103/
PhysRevA.89.042122

23. Yuan X, Zhou H, Cao Z, Ma X. Intrinsic Randomness as a Measure of Quantum
Coherence. Phys Rev A (2015) 92:022124. doi:10.1103/PhysRevA.92.022124

24. Yuan X, Zhao Q, Girolami D, Ma X. Quantum Coherence and Intrinsic
Randomness. Adv Quan Tech (2019) 2:1900053. doi:10.1002/qute.201900053

25. Baumgratz T, Cramer M, Plenio MB. Quantifying Coherence. Phys Rev Lett
(2014) 113:140401. doi:10.1103/PhysRevLett.113.140401

26. Yuan X, Bai G, Peng T, Ma X. Quantum Uncertainty Relation Using
Coherence. Phys Rev A (2017) 96:032313. doi:10.1103/PhysRevA.96.032313

27. Lv W-M, Zhang C, Hu X-M, Cao H, Wang J, Huang Y-F, et al. Experimental
Test of the Trade-Off Relation for Quantum Coherence. Phys Rev A (2018) 98:
062337. doi:10.1103/PhysRevA.98.062337

28. Ding Z-Y, Yang H,Wang D, Yuan H, Yang J, Ye L. Experimental Investigation
of Entropic Uncertainty Relations and Coherence Uncertainty Relations. Phys
Rev A (2020) 101:032101. doi:10.1103/PhysRevA.101.032101

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8738106

Liu et al. Experimental Quantum Uncertainty Relations

34

https://www.frontiersin.org/articles/10.3389/fphy.2022.873810/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2022.873810/full#supplementary-material
https://doi.org/10.1088/1742-6596/36/1/016
https://doi.org/10.1088/1742-6596/36/1/016
https://doi.org/10.1088/1367-2630/11/4/045018
https://doi.org/10.1088/1367-2630/11/4/045018
https://doi.org/10.1038/nphys1734
https://doi.org/10.1103/PhysRevLett.106.110506
https://doi.org/10.1103/PhysRevA.90.052327
https://doi.org/10.1103/PhysRevA.90.052327
https://doi.org/10.1103/PhysRevX.6.011020
https://doi.org/10.1103/PhysRevX.6.011020
https://doi.org/10.1038/nphys2048
https://doi.org/10.1038/nphys2047
https://doi.org/10.1103/PhysRevA.90.062127
https://doi.org/10.1103/PhysRevLett.106.130402
https://doi.org/10.1103/PhysRevA.87.062103
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1088/1367-2630/14/3/033040
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1007/BF01397280
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRevLett.50.631
https://doi.org/10.1103/PhysRevD.35.3070
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1103/PhysRevA.83.062338
https://doi.org/10.1103/PhysRevA.85.042103
https://doi.org/10.1103/PhysRevA.89.042122
https://doi.org/10.1103/PhysRevA.89.042122
https://doi.org/10.1103/PhysRevA.92.022124
https://doi.org/10.1002/qute.201900053
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevA.96.032313
https://doi.org/10.1103/PhysRevA.98.062337
https://doi.org/10.1103/PhysRevA.101.032101
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


29. Huang H-Y, Kueng R, Preskill J. Predicting many Properties of a Quantum
System from Very Few Measurements. Nat Phys (2020) 16:1050–7. doi:10.
1038/s41567-020-0932-7

30. Winter A, Yang D. Operational Resource Theory of Coherence. Phys Rev Lett
(2016) 116:120404. doi:10.1103/PhysRevLett.116.120404

31. Bromley TR, Cianciaruso M, Adesso G. Frozen Quantum Coherence. Phys Rev
Lett (2015) 114:210401. doi:10.1103/PhysRevLett.114.210401

32. Yu X-D, Zhang D-J, Liu CL, Tong DM. Measure-independent Freezing of
QuantumCoherence. Phys Rev A (2016) 93:060303. doi:10.1103/PhysRevA.93.
060303

33. Ma J, Zhou Y, Yuan X, Ma X. Operational Interpretation of Coherence in
Quantum Key Distribution. Phys Rev A (2019) 99:062325. doi:10.1103/
PhysRevA.99.062325

34. Bera MN, Qureshi T, Siddiqui MA, Pati AK. Duality of Quantum Coherence
and Path Distinguishability. Phys Rev A (2015) 92:012118. doi:10.1103/
PhysRevA.92.012118

35. Hillery M. Coherence as a Resource in Decision Problems: The Deutsch-Jozsa
Algorithm and a Variation. Phys Rev A (2016) 93:012111. doi:10.1103/
PhysRevA.93.012111

36. Shi H-L, Liu S-Y, Wang X-H, Yang W-L, Yang Z-Y, Fan H. Coherence
Depletion in the Grover Quantum Search Algorithm. Phys Rev A (2017) 95:
032307. doi:10.1103/PhysRevA.95.032307

37. Liu Y-C, Shang J, Zhang X. Coherence Depletion in Quantum Algorithms.
Entropy (2019) 21:260. doi:10.3390/e21030260

38. Streltsov A, Adesso G, Plenio MB. Colloquium : Quantum Coherence as a
Resource. Rev Mod Phys (2017) 89:041003. doi:10.1103/RevModPhys.89.
041003

39. Sánches-Ruiz J. Optimal Entropic Uncertainty Relation in Two-
Dimensional hilbert Space. Phys Lett A (1998) 244:189–95. doi:10.1016/
S0375-9601(98)00292-8

40. Horodecki R, Horodecki P, Horodecki M, Horodecki K. QuantumEntanglement.
Rev Mod Phys (2009) 81:865–942. doi:10.1103/RevModPhys.81.865

41. Brydges T, Elben A, Jurcevic P, Vermersch B, Maier C, Lanyon BP, et al.
Probing Rényi Entanglement Entropy via Randomized Measurements. Science
(2019) 364:260–3. doi:10.1126/science.aau4963

42. Elben A, Kueng R, Huang H-Y, van Bijnen R, Kokail C, Dalmonte M, et al.
Mixed-state Entanglement from Local Randomized Measurements. Phys Rev
Lett (2020) 125:200501. doi:10.1103/PhysRevLett.125.200501

43. Zhang T, Sun J, Fang X-X, Zhang X-M, Yuan X, Lu H. Experimental Quantum
State Measurement with Classical Shadows. Phys Rev Lett (2021) 127:200501.
doi:10.1103/PhysRevLett.127.200501

44. Ding Q-M, Fang X-X, Yuan X, Zhang T, Lu H. Efficient Estimation of
Multipartite Quantum Coherence. Phys Rev Res (2021) 3:023228. doi:10.
1103/PhysRevResearch.3.023228

45. Ding Q-M, Fang X-X, Lu H. The Tightness of Multipartite Coherence from
Spectrum Estimation. Entropy (2021) 23:1519. doi:10.3390/e23111519

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Liu, Zhang, Yuan and Lu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8738107

Liu et al. Experimental Quantum Uncertainty Relations

35

https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.114.210401
https://doi.org/10.1103/PhysRevA.93.060303
https://doi.org/10.1103/PhysRevA.93.060303
https://doi.org/10.1103/PhysRevA.99.062325
https://doi.org/10.1103/PhysRevA.99.062325
https://doi.org/10.1103/PhysRevA.92.012118
https://doi.org/10.1103/PhysRevA.92.012118
https://doi.org/10.1103/PhysRevA.93.012111
https://doi.org/10.1103/PhysRevA.93.012111
https://doi.org/10.1103/PhysRevA.95.032307
https://doi.org/10.3390/e21030260
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1016/S0375-9601(98)00292-8
https://doi.org/10.1016/S0375-9601(98)00292-8
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1126/science.aau4963
https://doi.org/10.1103/PhysRevLett.125.200501
https://doi.org/10.1103/PhysRevLett.127.200501
https://doi.org/10.1103/PhysRevResearch.3.023228
https://doi.org/10.1103/PhysRevResearch.3.023228
https://doi.org/10.3390/e23111519
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Uncertainty Relations of
Non-Hermitian Operators: Theory and
Experimental Scheme
Xinzhi Zhao and Chengjie Zhang*

School of Physical Science and Technology, Ningbo University, Ningbo, China

The theoretical framework for the uncertainty relation of Hermitian operators is perfect
and has been applied in many fields. At the same time, non-Hermitian operators are
also widely used in some other fields. However, the uncertainty relation of non-
Hermitian operators remains to be explored. K.W. Bong and his co-workers
proposed the theory of unitary uncertainty relation and verified it in the experiment
[Phys. Rev. Lett. 120, 230402 (2018)]. In this work, we generalized this unitary
uncertainty relation theory and proposed uncertainty relations of non-Hermitian
operators. Due to the difficulties in the direct measurement of non-Hermitian
operators in the uncertainty relations, we simplified the uncertainty relation of two
non-Hermitian operators with pure states and proposed a realizable experimental
measurement scheme by using the Mach–Zehnder interferometer. When the two non-
Hermitian operators are unitary, our result can reduce to Bong et al.’s result.
Furthermore, for two non-Hermitian operators but not unitary, we obtained a
generalized and analogous result of theirs.

Keywords: uncertainty relations, non-Hermitian operators, Mach–Zehnder interferometer, Robertson–Schrödinger
uncertainty relations, Heisenberg uncertainty relations

1 INTRODUCTION

Uncertainty relations are the basis of quantum theory. It was first proposed by Heisenberg [1] and
was rewritten by Kennard [2] and Weyl [3] as the uncertainty relation between position and
momentum. Robertson generalized this to any two observables [4]. Schrödinger strengthened the
inequality and put forward the Schrödinger uncertainty relation [5] as

〈 ΔA( )2〉〈 ΔB( )2〉≥ 1
2
〈 A, B{ }〉 − 〈A〉〈B〉

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2 + 1
4
〈 A, B[ ]〉| |2, (1)

where 〈(ΔO)2〉 stands for the variance of observable O, {A, B} represents the anticommutator of
observables A and B, and [A, B] is their commutator. Uncertainty relations have been used in many
quantum information tasks, including quantum key distribution [6, 7], deeply quantum systems
[8–10], quantum random number generation [11, 12], entanglement witness [13],
Einstein–Podolsky–Rosen (EPR) steering [14, 15], quantum metrology [16], and so on.

In quantum theory, we know that those observable measurements of physics are represented by
Hermitian operators and can be faithfully represented on measuring instruments. In fact, there are
non-Hermitian operators that are not Hermitian conjugated, and these non-Hermitian operators can
be observed by weak measurements [17]. Certainly, the measurement of non-Hermitian operators is
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not limited to this; weak values of non-Hermitian operators can
also be derived from bound state scattering [18]. The problem of
eigenvalues of non-Hermitian operators can also be solved by
introducing generalized ladder operators [19]. In reality, non-
Hermitian operators can be used in many ways such as quantum
open systems [20], quantum optics [21], quantum cosmology
[22], and many other fields. Furthermore, pseudo-Hermitian
operators belong to non-Hermitian operators, which have
many applications [23, 24].

The uncertainty relation of unitary operators can reflect the basic
characteristics of the quantumworld to some extent. In Ref. [25], the
authors proposed the uncertainty relation of the unitary operator,
satisfying the certain commutative condition in finite dimensions.
However, it is not applicable in high dimensions, so Bagchi and Pati
put forward the uncertainty relation of general unitary operators,
which can be applied to high dimensions [26]. In order to get a more
general case, the uncertainty relation of general unitary operators has
been experimentally tested [27]. Furthermore, Bong and his co-
workers put forward an uncertainty relation: strong unitary and
overlap relation, and demonstrated their theory in the experiment
[28]. The subtlety of this theory lies in that it greatly simplifies the
measurement of the experiment and provides a very valuable
experimental idea for reference. In addition, the theory of the
strong unitary uncertainty relation has also been discussed in Ref.
[29] and has been experimentally realized in Ref. [30].

Unitary operators are a kind of non-Hermitian operators, and
the theory about the uncertainty relation of unitary operators has
been relatively mature. But what about the uncertainty relations of
more general non-Hermitian operators? For non-Hermitian
operators, their eigenvalues are complex and cannot be directly
observed in experiments. Therefore, we made corresponding
changes to the measurement method of non-Hermitian
operators. The general derivation of the uncertainty relation of
general non-Hermitian operators is given in Ref. [17], but this form
lacks experimental protocols to measure this uncertainty relation.

In this study, we proposed uncertainty relations of non-
Hermitian operators and designed an experimental scheme to
facilitate measurement for two non-Hermitian operators with
pure states. The article is organized as follows: First, we briefly
proved the uncertainty relation of non-Hermitian operators.
Second, we provided an example of the uncertainty relation of
two non-Hermitian operators in a pure state, explained how to
measure the uncertainty relation of two non-Hermitian operators
in an experiment, and proposed a measurement scheme by using
the Mach–Zehnder interferometer. Finally, we discussed and
summarized the content of the article.

2 UNCERTAINTY RELATIONS FOR
NON-HERMITIAN OPERATORS

To propose the uncertainty relation for non-Hermitian operators,
we first need to define the variance of a non-Hermitian operator.
In Refs. [17, 31], the variance of a non-Hermitian operator O
under a state ρ is defined as 〈(ΔO)2〉≔〈(O† − 〈O†〉) (O− 〈O〉)〉 =
〈O†O〉 − 〈O†〉〈O〉, where 〈O〉 = Tr (ρO). Based on this

definition, we can prove the following uncertainty relation for
non-Hermitian operators:

Proposition 1. Two non-Hermitian operators A and B are
considered in a d-dimensional Hilbert space; the uncertainty
relations for two non-Hermitian operators are

〈 ΔA( )2〉〈 ΔB( )2〉≥ |〈A†B〉 − 〈A†〉〈B〉|2, (2)
where 〈(ΔA)2〉≔〈A†A〉 − 〈A†〉〈A〉 and 〈(ΔB)2〉≔〈B†B〉
− 〈B†〉〈B〉.

Proof. Let us define a 2 × 2 matrix M as

M � 〈 ΔA( )2〉 〈A†B〉 − 〈A†〉〈B〉
〈B†A〉 − 〈B†〉〈A〉 〈 ΔB( )2〉( ). (3)

Now, let us prove thatM is a semi-definite positive matrix. An
arbitrary vector (a,b)T is considered, where a and b are two
arbitrary complex numbers; of both numbers, one has

a*, b*( )M a

b
( )

� a*, b*( )〈 A† − 〈A†〉
B† − 〈B†〉( ) A − 〈A〉, B − 〈B〉( )〉 a

b
( )

� 〈 a*, b*( ) A† − 〈A†〉
B† − 〈B†〉( ) A − 〈A〉, B − 〈B〉( ) a

b
( )〉

� 〈C†C〉
≥ 0,

(4)

where the operator C is defined as

C ≔ a A − 〈A〉( ) + b B − 〈B〉( ). (5)
Since for an arbitrary vector (a,b)T, the result 〈C†C〉 is always

non-negative, and M is semi-definite positive.
If a matrix is semi-definite positive, then its determinant is

non-negative. Thus, we have

det M( )≥ 0, (6)
with

det M( ) � 〈 ΔA( )2〉〈 ΔB( )2〉 − |〈A†B〉 − 〈A†〉〈B〉|2. (7)
Therefore, the uncertainty relations for two non-Hermitian

operators (2) have been proved. □

Remark. The uncertainty relation (2) has also been proved in Ref.
[17]. When A and B are Hermitian operators, the uncertainty
relation (2) reduces to the Schrödinger uncertainty relation (1)
since

|〈AB〉 − 〈A〉〈B〉|2 � 1
2
〈 A, B{ }〉 − 〈A〉〈B〉

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2 + 1
4
〈 A, B[ ]〉| |2

holds. Moreover, we generalized proposition 1 to the case of n
non-Hermitian operators.

Proposition 2. Consider n non-Hermitian operators {Ai}ni�1 in a
d-dimensional Hilbert space; the uncertainty relations for n non-
Hermitian operators are
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det M( )≥ 0, (8)
where the matrix M is defined as

Mij ≔ 〈A†
i Aj〉 − 〈A†

i 〉〈Aj〉. (9)

Proof. The proof is similar to proposition 1. Let us prove thatM is
a semi-definite positive matrix. An arbitrary vector
(a1, a2, . . . , an)T is considered with {ai}ni�1 as arbitrary complex
numbers, of which one has

ap1 , a
p
2 , . . . , a

p
n( )M a1

a2
/
an

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � ap1 , a
p
2 , . . . , a

p
n( )

〈
A†

1 − 〈A†
1〉

A†
2 − 〈A†

2〉
/

A†
n − 〈A†

n〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ A1 − 〈A1〉, A2 − 〈A2〉, . . . , An − 〈An〉( )〉
a1
a2
/
an

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 〈 ap1 , a

p
2 , . . . , a

p
n( ) A†

1 − 〈A†
1〉

A†
2 − 〈A†

2〉
/

A†
n − 〈A†

n〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ A1 − 〈A1〉, A2 − 〈A2〉, . . . , An(

−〈An〉)
a1
a2
/
an

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠〉 � 〈C†C〉≥ 0, (10)

where the operator C is defined as C ≔ ∑n
i�1ai(Ai − 〈Ai〉). Thus,

M is semi-definite positive, and det(M) ≥ 0 holds. The uncertainty
relation still holds for such cases. □

3 UNCERTAINTY RELATIONS FOR TWO
NON-HERMITIAN OPERATORS IN PURE
STATES
Now, we focused on the uncertainty relations for two non-
Hermitian operators (2) in pure states. Two non-Hermitian
operators A and B are considered in a d-dimensional Hilbert
space; if the state is a pure state |ϕ〉, then

〈 ΔA( )2〉 � 〈ϕ|A†A|ϕ〉 − 〈ϕ|A†|ϕ〉〈ϕ|A|ϕ〉
� 〈ϕ|A†PA|ϕ〉, (11)

where P is a project operator defined as P ≔ 1 − |ϕ〉〈ϕ|. Similarly,
we observed

〈 ΔB( )2〉 � 〈ϕ|B†B|ϕ〉 − 〈ϕ|B†|ϕ〉〈ϕ|B|ϕ〉
� 〈ϕ|B†PB|ϕ〉, (12)

and

|〈A†B〉 − 〈A†〉〈B〉|2 � |〈ϕ|A†B|ϕ〉 − 〈ϕ|A†|ϕ〉〈ϕ|B|ϕ〉|2
� |〈ϕ|A†PB|ϕ〉|2. (13)

Therefore, the uncertainty relations for two non-Hermitian
operators (2) with a pure state |ϕ〉 become

〈ϕ|A†PA|ϕ〉〈ϕ|B†PB|ϕ〉≥ |〈ϕ|A†PB|ϕ〉|2. (14)

Moreover, if the dimension of the Hilbert space d = 2 (a single
qubit system), the rank of P is 1. Thus, P can be rewritten as P = |
ϕ⊥〉〈ϕ⊥|, where |ϕ⊥〉 is the orthogonal state of |ϕ〉 in the single
qubit system. Thus, the uncertainty relation (14) becomes

〈ϕ|A†|ϕ⊥〉〈ϕ⊥|A|ϕ〉〈ϕ|B†|ϕ⊥〉〈ϕ⊥|B|ϕ〉� |〈ϕ|A†|ϕ⊥〉|2|〈ϕ|B†|ϕ⊥〉|2
≥ |〈ϕ|A†|ϕ⊥〉〈ϕ⊥|B|ϕ〉|2.

(15)

It is obvious that the “ = ” always holds in (15).
Based on the aforementioned proof, one can conclude that we

can always obtain equality in (2) when we only consider pure
states in a one-qubit system.

4 TEST UNCERTAINTY RELATION FOR
TWO NON-HERMITIAN OPERATORS

The uncertainty relation for two non-Hermitian operators in a
one-qubit system is discussed, and the uncertainty relation is
experimentally tested via weak measurements. Since the variance
of a non-Hermitian operator in a state is a concave function of the
state, we focused on the uncertainty relation in pure states.

4.1 Theory
Two non-Hermitian operators A and B are considered in a single-
qubit system. Suppose the polar decompositions of the non-
Hermitian operators A and B are

A � SAUA, (16)
B � SBUB, (17)

where SA and SB are two positive semi-definite operators and UA

and UB are unitary operators. Thus, the variances of A and B in a
pure state |ϕ〉 are

〈 ΔA( )2〉 � 〈ϕ|A†A|ϕ〉 − 〈ϕ|A†|ϕ〉〈ϕ|A|ϕ〉
� 〈ψ|S2A|ψ〉 − 〈ψ|SA|ϕ〉〈ϕ|SA|ψ〉, (18)

〈 ΔB( )2〉 � 〈ϕ|B†B|ϕ〉 − 〈ϕ|B†|ϕ〉〈ϕ|B|ϕ〉
� 〈χ|S2B|χ〉 − 〈χ|SB|ϕ〉〈ϕ|SB|χ〉, (19)

where |ψ〉≔UA|ϕ〉 and |χ〉≔UB|ϕ〉. Moreover, the right hand side
of (2) becomes

|〈A†B〉 − 〈A†〉〈B〉|2
� |〈ψ|SASB|χ〉 − 〈ψ|SA|ϕ〉〈ϕ|SB|χ〉|2. (20)

In the following, for the simplicity of experiments, we chose
the non-Hermitian operators A and B as

A � σzUA, (21)
B � σxUB. (22)

Thus,

〈 ΔA( )2〉 � 1 − 〈ψ|σz|ϕ〉〈ϕ|σz|ψ〉, (23)
〈 ΔB( )2〉 � 1 − 〈χ|σx|ϕ〉〈ϕ|σx|χ〉, (24)

|〈A†B〉 − 〈A†〉〈B〉|2 � |〈ψ|σzσx|χ〉
−〈ψ|σz|ϕ〉〈ϕ|σx|χ〉|2. (25)
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Now the left hand side of the uncertainty relation (2) becomes

〈 ΔA( )2〉〈 ΔB( )2〉
� 1 − 〈ψ|σz|ϕ〉〈ϕ|σz|ψ〉( ) 1 − 〈χ|σx|ϕ〉〈ϕ|σx|χ〉( )
� 1 − 〈ψ|σz|ϕ〉〈ϕ|σz|ψ〉 − 〈χ|σx|ϕ〉〈ϕ|σx|χ〉
+〈ψ|σz|ϕ〉〈ϕ|σz|ψ〉〈χ|σx|ϕ〉〈ϕ|σx|χ〉.

(26)

Meanwhile, the right hand side of the uncertainty relation (2)
becomes

|〈A†B〉 − 〈A†〉〈B〉|2
� |〈ψ|σzσx|χ〉 − 〈ψ|σz|ϕ〉〈ϕ|σx|χ〉|2
� 〈ψ|σzσx|χ〉 − 〈ψ|σz|ϕ〉〈ϕ|σx|χ〉( ) 〈χ|σxσz|ψ〉(
−〈ϕ|σz|ψ〉〈χ|σx|ϕ〉)

� 〈ψ|σzσx|χ〉〈χ|σxσz|ψ〉 − 〈ψ|σzσx|χ〉〈ϕ|σz|ψ〉〈χ|σx|ϕ〉
−〈χ|σxσz|ψ〉〈ψ|σz|ϕ〉〈ϕ|σx|χ〉
+〈ψ|σz|ϕ〉〈ϕ|σx|χ〉〈ϕ|σz|ψ〉〈χ|σx|ϕ〉.

(27)
Therefore, the uncertainty relation (2) reduces to

〈ψ|σz|ϕ〉〈ϕ|σz|ψ〉 + 〈χ|σx|ϕ〉〈ϕ|σx|χ〉
+〈ψ|σzσx|χ〉〈χ|σxσz|ψ〉 − 〈ψ|σzσx|χ〉〈ϕ|σz|ψ〉〈χ|σx|ϕ〉
−〈χ|σxσz|ψ〉〈ψ|σz|ϕ〉〈ϕ|σx|χ〉≤ 1.

(28)
Let us define |φ1〉≔|ϕ〉, |φ2〉≔A|ϕ〉 = σz|ψ〉, |φ3〉≔B|ϕ〉 =

σx|χ〉, and Tjk = 〈φj|φk〉; the uncertainty relation (2) becomes

|T12|2 + |T13|2 + |T23|2 − T23T12T31 − T32T21T13 ≤ 1. (29)
Since T32T21T13 � (T23T12T31)*, we have

T23T12T31 ≔ |T23T12T31|eiΦ, (30)
Re T23T12T31( ) � T23T12T31 + T32T21T13

2� |T23T12T31| cosΦ,
(31)

where Φ is the phase of T23T12T31, and Re (T23T12T31) is the real
part of T23T12T31. Thus, Eq. 29 is equivalent to

cosΦ≥
|T12|2 + |T13|2 + |T23|2 − 1

2|T23T12T31| . (32)

From cosΦ ≤ 1, one has a weaker uncertainty relation of (32),

|T12|2 + |T13|2 + |T23|2 − 2|T23T12T31|≤ 1. (33)

Remark. If A =UA and B =UB, then the uncertainty relations (32)
and (33) reduce to the case of unitary operators discussed in Ref.
[28]. This theory has a much broader scope and can deal with a
wide variety of situations.

4.2 Scheme
Nowwe discussed how to test the uncertainty relation (32) and its
weaker form (33) by using the Mach–Zehnder interferometer.
According to the theory and measurement ideas proposed by
Bong [28] and Nirala [32], the uncertainty relation of non-
Hermitian operators can also be expressed by calculating the
interference visibility.

In principle, we can test the uncertainty relation of non-
Hermitian operators for any n. Here, we chose a special case
of n = 2, which requires preparation of a strictly pure state |ψ〉 and
tomographic reconstruction of |ψ〉, A|ψ〉, and B|ψ〉.

Non-Hermitian operatorsA and B are considered for example.
As shown in Figure 1, the main component of our setup is the
Mach–Zehnder interferometer. For the single-photon source, we
have a choice to use a continuous-wave diode laser to pump an
optically nonlinear beta barium borate (BBO) crystal. Then,
photon pairs are generated by noncollinear type-I spontaneous
parametric down-conversion (SPDC). The idler photon (Trigger)
heralds the presence of a signal photon. The A and B operators
can be implemented by using combinations of optical
components in the laboratory such as half-wave plates
(HWPs) and quarter-wave plates (QWPs). We used phase
shifters on two branches to adjust the optical path difference
with a certain angle θ.

It is considered that |ψ〉 is the input state of the first beam
splitter, which is further changed as

|Ψ1〉 � 1�
2

√ ieiθ|a〉 + |b〉( )|ψ〉, (34)

where |a〉 and |b〉 are path states corresponding to reflection and
transmission, respectively. We placed the optical elements of the
operators A and B on the corresponding arms. Before passing
through the second beam splitter, the state changes into

|Ψ2〉 � 1�
2

√ ieiθA|ψ〉|a〉 + B|ψ〉|b〉( ). (35)

After passing through the second beam splitter, the ports are
denoted by |c〉 and |d〉. Here, when the two beams finally meet at
the beam splitter, there is a phase difference ϵ between the two
arms due to propagation. The formation of ϵ is independent of A
and B operations.

FIGURE 1 | This scheme can test the uncertainty relation for two non-
Hermitian operators (A and B) by using the Mach–Zehnder interferometer.
Pairs of single photons are generated using a BBO crystal. The signal single-
photon state is prepared in |ψ〉. After entering a displaced
Mach–Zehnder interferometer at a 5050 beam splitter, the photon traverses
the interferometer. B in the transmitted arm is represented in (yellow), and A in
the reflected arm is represented in (purple).
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|Ψ3〉 � 1
2

−eiθA|ψ〉 + eiϵB|ψ〉( )|c〉
+1
2

ieiθA|ψ〉 + ieiϵB|ψ〉( )|d〉. (36)

The detection device is at port |d〉, which means that what we
detected is the component of the total state. This can be carried
out by applying the projectorΠd = |d〉〈d| to the entire state, so the
component of the detection arm state is

|Ψd〉 � Πd|Ψ3〉 � 1
2

ieiθA|ψ〉 + ieiϵB|ψ〉( )|d〉. (37)

Finally, the strength of the detector port is determined by

Nd � |〈d|Ψ3〉|2
� 1
4

〈A†A〉 + 〈B†B〉 + ei ϵ−θ( )〈A†B〉 + e−i ϵ−θ( )〈B†A〉( )
� 1
4

〈A†A〉 + 〈B†B〉 + 2|〈A†B〉| cos ϵ − θ + φ0( )( ), (38)

where we suppose that 〈A†B〉 � |〈A†B〉|eiφ0 and thus 〈B†A〉 �
|〈A†B〉|e−iφ0 .

Hence, we can obtain the interference visibility γ. Based on Eq.
38, the maximal and minimal values of Nd can be obtained by
varying θ,

Nd( )max � 1
4

〈A†A〉 + 〈B†B〉 + 2|〈A†B〉|( ), (39)

Nd( )min � 1
4

〈A†A〉 + 〈B†B〉 − 2|〈A†B〉|( ). (40)

The interference visibility γ is defined as

γ A, B( ) ≔ Nd( )max − Nd( )min

Nd( )max + Nd( )min

� 2|〈A†B〉|
〈A†A〉 + 〈B†B〉.

(41)

Since A†A and B†B are Hermitian operators, these two
Hermitian operators can be directly measured by von
Neumann measurements. The values of 〈A†〉 and 〈B〉 are
similarly determined from the corresponding interference
visibilities γ(A, I), γ(I, B), where I denotes the identity
operator. Moreover, when A = σzUA, B = σxUB, the
interference visibility is given by γ(A, B) = |〈A†B〉|.
Generally speaking, the expected value that we need to
measure is a complex number, it is necessary to measure
its real part and imaginary part separately, but it is not usually

possible to measure both of them simultaneously. However,
our method is to directly measure the modulus of a complex
number, and the uncertainty relations (29) and (33) are
required to measure the modulus.

5 DISCUSSION AND CONCLUSION

As shown in Figure 1, we tested the uncertainty relation of non-
Hermitian operators very conveniently. However, this is only a
theoretical diagram of the experimental design. If the
experimental design scheme is to be applied in real
experiments, the Mach–Zehnder interferometer can be
displaced by a Sagnac interferometer, which can reduce the
influence of the external environment on the experiment.

In conclusion, the uncertainty relation of non-Hermitian
operators in any quantum state can be measured. This
broadens the practical scope of uncertainty relations, and non-
Hermitian operators also have experimentally observable
uncertainty relations. The theory would be less restrictive and
could be applied to other open systems. In addition, it can be used
to solve scattering problems and entanglement problems.
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The critical point and the critical exponents for a phase transition can be determined
using the Finite-Size Scaling (FSS) analysis. This method assumes that the phase
transition occurs only in the infinite size limit. However, there has been a lot of interest
recently in quantum phase transitions occurring in finite size systems such as a single
two-level system interacting with a single bosonic mode e.g., in the Quantum Rabi
Model (QRM). Since these phase transitions occur at a finite system size, the
traditional FSS method is rendered inapplicable for these cases. For cases like
this, we propose an alternative FSS method in which the truncation of the system
is done in the Hilbert space instead of the physical space. This approach has
previously been used to calculate the critical parameters for stability and
symmetry breaking of electronic structure configurations of atomic and molecular
systems. We calculate the critical point for the quantum phase transition of the QRM
using this approach. We also provide a protocol to implement this method on a digital
quantum simulator using the Quantum Restricted Boltzmann Machine algorithm. Our
work opens up a new direction in the study of quantum phase transitions on quantum
devices.

Keywords: finite-size scaling, quantum phase transition, quantum simulator, quantum restricted Boltzmann
machine, quantum rabi model

1 INTRODUCTION

A phase transition occurs whenever the thermodynamic functions of a system become non-
analytic e.g. as a liquid changes into a gas, the density of the system changes discontinuously. If
the phase transition occurs at a finite temperature T ≠ 0, the transition is called a classical phase
transition (CPT) as it is dominated by thermal fluctuations. On the other hand, if the transition
occurs by tuning some parameter in the system’s Hamiltonian as T → 0, it is called a quantum
phase transition (QPT) since it is dominated by quantum fluctuations. A CPT appears only when
the system is infinite i.e., in the thermodynamic limit [1]. On the other hand, a QPT doesn’t
necessarily require the thermodynamic limit. Recently there has been a lot of interest in QPTs
occurring in finite size light-matter interaction systems [2–7].

Quantum Rabi Model (QRM) describes the interaction of a two-level system with a bosonic field
mode (see Eq. 1 for the Hamiltonian.) This model has gained a lot of significance in the study of
ultrastrong light-matter coupling regimes where the so-called counterrotating terms can not be
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ignored [8]. Quantum Rabi Model has been shown to exhibit a
QPT [2]. Namely, when the energy separation of the two levels in
the system Ω becomes infinitely large compared to the frequency
of the bosonic mode ω0, the ground state of the Hamiltonian
undergoes a phase transition from a normal phase to a
superradiant phase as the light-matter coupling exceeds the
critical value. Moreover, the ground state of the Jaynes-
Cummings model (JCM) which can be obtained from the
QRM by performing the rotating-wave approximation has also
been shown to exhibit the normal-superradiant phase transition
[3]. Later on, a more general anisotropic QRM in which the
rotating and counter-rotating terms can have different coupling
strengths was also considered [4]. The QRM and JCM are limiting
cases of this model. It was shown that the ground state for this
more general case also undergoes the normal-superradiant phase
transition. The phase transition in QRM has also been
demonstrated experimentally using a 171Yb+ ion in a Paul trap
[7]. This experimental demonstration of a phase transition in a
single two-level system has incited a lot of interest since this opens
up an avenue for studying critical phenomena in controlled, small
quantum systems.

In CPTs and some QPTs (which require N → ∞), a finite-
size scaling (FSS) analysis can be done to extract the critical
point and the critical exponents of the transition [1, 9]. While
this procedure is inapplicable to the QPTs discussed above
since these phase transitions occur at a finite system size, the
phase transitions in these paradigmatic light-matter
interaction models occur only in the limit Ω/ω0 → ∞ and
FSS analysis can be done in Ω/ω0 [2–4] instead. In this paper,
however, we propose a different approach to study such phase
transitions. We apply the FSS in Hilbert space method [10–15]
to the QPT in Quantum Rabi Model. In this approach, the
truncation of the system is done not in the physical space but in
the Hilbert space. The set of basis states spanning the infinite
dimensional Hilbert space is truncated to a finite set and the
scaling ansatz is employed in terms of the size of this set. This
approach has previously been developed and applied to a
single particle in Yukawa potential [11, 13] and the
problem of finding electronic structure critical parameters
for atomic and molecular systems [10, 12, 14–16].

In recent years, digital and analog quantum simulators have
emerged as a promising platform for the simulation of
quantum phenomena. Quantum simulators have already
been used to study phase transitions using the method of
partition function zeros [17] and the Kibble-Zurek
mechanism [18, 19]. In this paper, we present a protocol to
implement the finite-size scaling method on a digital quantum
simulator. We use the Quantum Restricted Boltzmann
Machine (QRBM) algorithm to find the critical point of the
Quantum Rabi model.

This paper is organized as follows. In Section 2, we explain the
theory of Quantum Rabi Model, Finite-Size Scaling and the
Quantum Restricted Boltzmann Machine. In Section 3, we
present our results obtained using the exact diagonalization
method and QRBM. Finally in Section 4, we discuss our
results and future prospects of studying quantum phase
transitions on quantum devices.

2 THEORY

2.1 Quantum Rabi Model
The QRM describes a two-level system interacting with a bosonic
field mode. The Hamiltonian is [2],

HRabi � Ω
2
σz + ω0a

†a − λσx a + a†( ) (1)

where we’ve chosen Z = 1. Here, σz and σx are the Pauli Z and X
matrices respectively, Ω is the energy separation between the two
levels in the system, ω0 is the frequency of the bosonic mode and λ is
the system-environment coupling strength. The parity operatorΠ �
eiπ(a†a+|↑〉〈↑|) commutes with HRabi. So, HRabi has a Z2 symmetry.

This model has a critical point at g � 2λ/
����
ω0Ω

√ � gc � 1 in the
limit Ω/ω0 → ∞ [2]. Ω/ω0 → ∞ is analogous to the
thermodynamic limit for this case, and in experiments where
Ω/ω0 has to be finite, we’ll observe finite-size effects like in any
other phase transition [2]. For g < 1, the system is in the normal
phase and the ground state is |ϕ0np(g)〉 � S[rnp(g)]|0〉|↓〉 where
S[x] � exp[x2 (a†2 − a2)] and rnp(g) � −1

4 ln(1 − g2). The
rescaled ground state energy and photon number are eG(g) �
ω0
Ω 〈HRabi〉 � −ω0/2 and nG(g) � ω0

Ω 〈a†a〉 � 0 respectively. For
g > 1, the system is in a superradiant phase and the ground state is
two-fold degenerate, |ϕ0sp(g)〉 � D[± αg]S[rsp(g)]|0〉|↓±〉 here
rsp(g) � −1

4 ln(1 − g−4) and D[α] � exp[α(a† − a)]. |↓±〉 is the
negative eigenvalue eigenstate of 1

2g2σz ±
2λαg
g2Ωσx where

αg �
�����������
Ω

4g2ω0
(g4 − 1)

√
. The rescaled ground state energy and

photon number are eG(g) � ω0
Ω 〈HRabi〉 � −ω0(g2 + g−2)/4 and

nG(g) � ω0
Ω 〈a†a〉 � (g2 − g−2)/4 respectively.

As shown in Figures 1A,B, d2eG/dg
2 is discontinuous at g = gc

= 1, indicating a continuous phase transition and nG � ω0
Ω 〈a†a〉 is

an order parameter for this phase transition. In the normal phase,
nG is zero whereas in the superradiant phase, Z2 symmetry is
spontaneously broken and nG becomes non-zero.

We can also write effective low-energy Hamiltonians in both
the normal and the superradiant phases. For g < 1, HRabi can be
reduced to the following effective Hamiltonian [2],

Hnp � ω0a
†a − ω0g2

4
a + a†( )2 − Ω

2
. (2)

The system’s degrees of freedom have been removed by
projecting to |↓〉〈↓|, since this is a low energy description.
Similarly, for g > 1 the effective Hamiltonian can be written as [2],

Hsp � ω0a
†a − ω0

4g4
a + a†( )2 − Ω

2
g2 + g−2( ), (3)

where this time around the Hamiltonian has been projected along
|↓±〉〈↓±|. In Section 3, we’ll use Hnp and Hsp to find the critical
point of the model.

2.2 Finite-Size Scaling
The FSSmethod is widely used to determine the critical points and the
critical exponents in phase transitions [1]. To demonstrate the
method, consider that we have an infinite 2d system that
undergoes a classical phase transition at a critical temperature T =
Tc [9]. Suppose Q is a quantity that becomes singular at T = Tc with
some power law behavior
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Q∞ T( ) ~|T − Tc|−ω. (4)
We can also think of this system as an infinite collection of
infinite stripes, where the stripes are infinitely extended along
one direction and stacked along the perpendicular direction.
Now suppose there are only an N number of stripes. If N is
finite, Q should be regular at T = Tc since finite systems cannot
have non-analyticities at T ≠ 0. The singularity at T = Tc

should appear only when N → ∞. The finite size scaling
hypothesis assumes the existence of a scaling function FQ
such that

QN T( ) ≃ Q∞ T( )FQ N/ξ∞ T( )( ), (5)
where QN is the observable Q for a system with N stripes and Q∞

corresponds to the system in the thermodynamic limit. ξ∞ is the
correlation length for the infinite system. Eq. 5 is valid when N is
large. The correlation length also diverges as a power law near the
critical point,

ξ∞ T( ) ~|T − Tc|−]. (6)
Substituting Eqs 4, 6 in Eq. 5,

QN T( ) ≃ |T − Tc|−ωFQ N|T − Tc|]( ). (7)
Since QN(T) should be regular at T = Tc, the scaling function
should cancel the divergence due to |T − Tc|

−ω. Therefore, the
scaling function should be of the form FQ(x) ~ xω/] as x→ 0. We
should then have,

QN Tc( ) ~ Nω/]. (8)
If we define a function ΔQ(T; N, N′) such that

ΔQ T;N,N′( ) � log QN T( )/QN′ T( )( )
log N/N′( ) , (9)

then the value of this function at T = Tc, ΔQ(Tc; N, N′) ≃ ω/] is
independent of N and N′. Therefore, for three different values
N, N′ and N′′, the curves ΔQ(T; N, N′) and ΔQ(T; N′, N′′) will
intersect at the critical point T = Tc. This is how we can locate
the critical point using the finite size scaling hypothesis.

We can also find the critical exponents ω and ]. Noting from
Eq. 4 that

zQ∞ T( )
zT

~|T − Tc|− ω+1( ). (10)

Therefore, we should have ΔzQ/zT(Tc; N, N′) ≃ (ω + 1)/]. Define a
new function Γω(T; N, N′) such that

Γω T;N,N′( ) � ΔQ T;N,N′( )
ΔzQ/zT T;N,N′( ) − ΔQ T;N,N′( ). (11)

The value of this function at the critical point Γω(Tc; N, N′) ≃ ω is
independent of N and N′ and gives us the critical exponent ω.
Then ] can be determined using

] ≃
ω

ΔQ Tc;N,N′( ). (12)

As we’ve already stated in the Introduction, this method
cannot be used for the kinds of phase transitions we are
interested in which occur at a finite system size. However, for
such cases we can consider an extension of the approach
discussed above [10–16]. In this extended approach, instead
of truncating the system in the physical space, the system is
truncated in the Hilbert space [16]. The FSS ansatz looks
exactly the same except that N now represents the size of the
set of basis states which spans the truncated Hilbert space
[16]. Moreover, the temperature T will be replaced by the
parameter g which is being tuned across the critical point.
This approach has been shown by Kais and co-workers to
work in the case of a particle in Yukawa potential [11, 13]
and the calculation of electronic structure critical
parameters for atomic and molecular systems [10, 12,
14–16].

2.3 Quantum Restricted Boltzmann
Machine
Solving quantum many-body problems accurately has been a
taxing numerical problem since the size of the wavefunction

FIGURE 1 | Phase Transition in Quantum Rabi Model. (A) The rescaled ground state energy eG/ω0 � 〈HRabi〉/Ω and (d2eG/dg
2)/ω0 as functions of g. The

discontinuity in (d2eG/dg
2)/ω0 at g = gc = 1 indicates a countinuous phase transition. (B) The order parameter nG � ω0

Ω 〈a†a〉 as a function of g. nG becomes non-zero
when the Z2 symmetry is spontaneously broken at g > gc = 1.
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scales exponentially. The idea of taking advantage of the aspects
of Machine Learning (ML) related to dimensionality reduction
and feature extraction to capture the most relevant information
came from the work by Carleo and Troyer [20], which introduced
the idea of representing the many-body wavefunction in terms of
an Artificial Neural Network (ANN) to solve for the ground states
and time evolution for spin models, with a Restricted Boltzmann
Machine (RBM) as the chosen architecture for this ANN. More
recently, the critical behavior of the quantum Hall plateau
transition based on wavefunctions has been studied in a 2D
disordered electron system with the usage of a Convolutional
Neural Network (CNN) [21]. However, we focus on using an
RBM architecture in this work. An RBM consists of a visible layer
and a hidden layer with each neuron in the visible layer connected
to all neurons in the hidden layer but the neurons within a layer
are not connected to each other. The quantum state is ψ expanded
in the basis |x〉:

ψ
∣∣∣∣ 〉 � ∑ψ x( ) x| 〉 (13)

The Neural Network Quantum State (NQS) [20] describes
the wavefunction ψ(x) to be written as ψ(x; θ), where θ
represents the parameters of the RBM. ψ(x; θ) is now written
in terms of the probability distribution that is obtained from the
RBM as follows:

ψ x; θ( )∝ ∑
h{ }
e
1
2 ∑i

aiσzi +∑j
bjhj+∑

ij
wijσzi hj (14)

where, σzi is the Pauli z operator at i
th site, σzi and hj take values { +

1, − 1}, θ = {ai, bj,wij} are the trainable bias and weight parameters
of the RBM. Using stochastic optimization, the energy E(θ) is
minimized.

This work was extended to obtain the ground states of the
Bose-Hubbard model [22] and for the application of quantum
state tomography [23].

With the rapid developments in the domains of ML and
Quantum Computing (QC), the appetite for integrating ideas in
both of these areas has been growing considerably. The last
decade has seen a surge in the application of classical ML for
quantum matter, wherein these methods have been adopted to
benchmark, estimate and study the properties of quantum
matter [24–27], with recently showing provable classification
efficiency in classifying quantum states of matter [28]. RBM
based ansätzes have been shown to capture entanglement
transitions [29] and using an RBM with local sparse
connectivity achieves higher accuracy compared to its dense
counterpart when applied to disordered quantum Ising chains
[30]. The protocols and algorithms related to ML
implementable on a quantum system so-called Quantum
machine Learning [31] is expected to have the potential of
changing the course of fundamental scientific research [32]
along with industrial pursuit.

In lieu of today’s Noisy Intermediate Scale Quantum (NISQ)
devices, the ideas which utilize both classical and quantum
resources, such that the part of the problem which has an
exponential scaling is implemented on the quantum platform
while the rest are dealt with classically, are being carefully

investigated for various applications. Such algorithms are
known as classical-quantum hybrid algorithms. In the work by
Xia and Kais [33], a modified RBM with three layers was
introduced, the third layer to account for the sign of the
wavefunction, to solve for the ground state energies of
molecules (see Figure 2). Now, the parametrized wavefunction
ψ(x; θ) is written as a function of P(x) along with a sign
function s(x):

P x( ) � ∑ h{ } e
∑i

aiσzi +∑j
bjhj+∑ij

wijσzi hj∑x′ ∑ h{ } e
∑i

aiσz′i +∑j
bjhj+∑ij

wijσz′i hj
(15)

s x( ) � tanh c +∑
i

diσ i⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ (16)

The wavefunction ansatz in terms of the RBM can be
expressed as [33]:

ψ
∣∣∣∣ 〉 � ∑

x

�����
P x( )√

s x( ) x| 〉 (17)

A quantum circuit comprising of a single-qubit (Ry) and
multi-qubit y-rotation gates (C1 − C2 − Ry) is employed, to
sample the Gibbs distribution. The utilization of Ry gates caters to
the bias parameter of visible and hidden layers part of the
distribution, while C1 − C2 − Ry gates tend to the weights
part of the distribution. In the work by Sureshbabu et al. [34],
the implementation of such a circuit on IBM-Q devices was
shown, wherein a new ancillary qubit is introduced to store the
value corresponding to every C1 − C2 − Ry gate (Figure 3). The
term n denotes the number of visible qubits and m denotes the
number of hidden units. In this formalism, the number of
ancillary qubits required is n × m. Starting all the qubits from
a |0〉, the Ry and C1 − C2 − Ry rotations are performed, and a
measurement is performed on all the qubits. If all the ancillary
qubits are in |1〉, then the sampling is deemed successful and the
states corresponding to the first m + n qubits provide the
distribution P(x). The joint probability distribution defined
over the parameters of the circuit θ = {a, b, w} and a set of
y = {σz, h} is given by:

P y, θ( ) � e∑i
aiσzi +∑j

bjhj+∑ij
wijσzi hj∑ y{ } e∑i

aiσz′i +∑j
bjhj+∑ij

wijσz′i hj
(18)

The probability of successful sampling can be improved by
rewriting the distribution P(y, θ) as Q(y, θ) and setting
k � max(1, |wij|

2 )[33, 35]:

Q y, θ( ) � e
1
k ∑i

aiσzi +∑j
bjhj+∑ij

wijσzi hj( )
∑ y{ } e

1
k ∑i

aiσz′i +∑j
bjhj+∑ij

wijσz′i hj( ) (19)

Firstly, the QRBM is implemented classically, i.e., the
quantum circuit is simulated on a classical computer. This
execution caters to the ideal results that can be obtained
through the QRBM algorithm. Then, the quantum circuit is
implemented on the Digital Quantum Simulator, the qasm
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simulation backend. This simulator is part of the high-
performance simulators from IBM-Q. The circuit is realized
using IBM’s Quantum Information Software Toolkit titled
Qiskit [36]. Though no noise model was utilized, as a result
of finite sampling, statistical fluctuations in the values of

probabilities in observing the circuit in the measurement
basis, are present in the obtained results.

Having obtained the distribution Q(y, θ), the probabilities are
raised to the power of k, to get P(y, θ). Following this, the sign
function is computed classically, thereby calculating |ψ〉. Then,

FIGURE 2 | Restricted Boltzmann Machine architecture. The first layer is the visible layer with bias parameters denoted by ai. The second layer is the hidden layer
with bias parameters denoted by bj. The third layer is the sign layer with bias parameters denoted by c. The weights associated with the connections between the visible
neurons and the hidden neurons are designated by wij. The weights associated with the connections between the visible neurons and the neuron of the sign layer are
designated by di.

FIGURE 3 | The quantum circuit to sample the Gibbs distribution. n is the number of qubits belonging to the visible layer andm is the number of qubits belonging to
the hidden layer. There are m × n ancillary qubits.
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the expectation value for the Hamiltonian H [〈Ψ|H|Ψ〉] is
computed to get the energy, which is minimized using
gradient descent to obtain the ground state eigenenergy of H.

The resource requirements demanded by this algorithm are
quadratic. The number of qubits required are (m + n) to encode
the visible and hidden nodes, and (m × n) to account for the
ancillary qubits. Hence, the number of qubits scales as O(mn).
The number of Ry gates required are (m + n) and the number of
C1 − C2 − Ry gates required are (m × n). In addition, each C1 − C2
− Ry gate requires 6n X-gates to account for all the states spanned
by the control qubits. Therefore, the number of gates required
also scales as O(mn). Obtaining the ground states or minimum
eigenvalues of a given matrix using exact diagonalization has a
complexity of ≈ j3, with j being the dimension of the column space
for the given matrix [37].

3 RESULTS

3.1 Exact Diagonalization
In this section, we demonstrate the calculation of the critical point
of the Quantum Rabi model using the Finite-Size Scaling method.
As discussed before, the phase transition in QRM occurs only in
the limit Ω/ω0 → ∞. This limit is not straightforward to
implement in HRabi given in Eq. 1. Instead, we have
considered the effective low-energy Hamiltonians Hnp and Hsp

given in Eqs 2, 3 respectively. In Hnp and Hsp, Ω is involved only
in a constant term which can be removed from the Hamiltonians
and the limit Ω/ω0 → ∞ can then be easily imposed.

In Hnp andHsp, the degrees of freedom of the two-level system
have been traced out and the only degrees of freedom we have are
those of the bosonic mode. Let’s first consider the normal phase
Hamiltonian Hnp. The Hilbert space for this Hamiltonian is
spanned by the familiar harmonic oscillator number states
{|0〉, |1〉, |2〉, . . .}. We can truncate the full Hilbert space to an
N-dimensional Hilbert space spanned by {|0〉, |1〉, . . . , |N − 1〉}
to apply the finite-size scaling analysis. In this restricted Hilbert
space, the matrix form of H(N)

np can be found by using a|m〉 ���
m

√ |m − 1〉 and a†|m〉 � �����
m + 1

√ |m + 1〉. Once we have the
matrix form, we can then use the exact diagonalization
method to find the ground state of H(N)

np with energy E(N)
np .

Consider the scaling law for the ground state energy in the
vicinity of the critical point g = gc,

E g( ) ~|g − gc|α. (20)
Here E is the ground state energy. We slightly modify the
formula in Eq. 9 to take into account the difference in the
signs of the exponents in Eqs 4, 20. The new formula with Q =
E is,

ΔHnp g;N,N′( ) � log E N( )
np g( )/E N′( )

np g( )( )
log N′/N( ) , (21)

We plot the curves ΔHnp(g;N,N + 2) for N = 8, 10, . . ., 30 in
Figure 4A. We then plot the intersection points g(N)

np of the curves

ΔHnp(g;N − 4, N − 2) and ΔHnp(g;N − 2, N) as a function of N
as shown in Figure 4B. To find the limit of g(N)

np as N → ∞, we
used the Bulirsch-Stoer algorithm [44, 45]. The limit was
calculated to be g(N)

np → 0.999996. So g(np)
c � 0.999996.

In a similar way, we then consider Hsp. The curves
ΔHsp(g;N,N + 2) are plotted in Figure 4C for N = 8, 10, . . .,
30 and the intersection points g(N)

sp are plotted in Figure 4D as a
function of N. In this case, the extrapolation to N → ∞ gives the
critical value g(sp)

c � 0.999987. Both the calculated values of g(np)
c

and g(sp)
c are very close to the exact value gc = 1.

3.2 Quantum Restricted Boltzmann
Machine
Now we illustrate the implementation of the FSS method using
the QRBM algorithm. The results are shown in Figure 5.
Figure 5A,C show the results for Hnp and Hsp using the
classical implementation of the algorithm respectively.
Whereas, Figure 5B,D correspond to the results for Hnp and
Hsp when the algorithm is implemented using the qasm simulator
from IBM-Q respectively. The QRBM algorithm is run for N = 8,
10, 12, 14, 16.

For the case of N = 8, the number of qubits associated with the
visible nodes equals 3, the number of qubits associated with the
hidden nodes equals 3, and 9 ancillary qubits were used. The
quantum circuit consists of 6 Ry gates associated with the bias
parameters, 9 C1 − C2 − Ry gates associated with the weights.
Since, each C1 − C2 − Ry gate requires 6 X-gates, a total of 54 X-
gates were used. For the case of N = 10,..,16, the number of qubits
associated with the visible nodes equals 4, the number of qubits
associated with the hidden nodes equals 4, and 16 ancillary qubits
were used. The quantum circuit consists of 8 Ry gates associated
with the bias parameters, 16 C1 − C2 − Ry gates associated with
the weights. Since, each C1 − C2 − Ry gate requires 6 X-gates, a
total of 96 X-gates were used.

Starting from random initialization, all parameters are
updated via gradient descent. A learning rate of 0.01 was
chosen and the algorithm is run for around 30,000 iterations.
In order to assist with the convergence to the minimum
eigenenergies, warm starting is employed. The method of
warm starting is essentially initializing the parameters of the
current point with the parameters of a previously converged point
of calculation, which helps in avoiding the convergence to a local
minima.

The black curves plotted in the insets in Figure 5 represent
the deviation of the QRBM results (black dashed curves) from
the exact diagonalization results (blue solid curves). They were
calculated using the average of the quantity |Δ(ED)(g) −
Δ(QRBM)(g)/Δ(ED)(g)|× 100 over all the four curves. An
enlarged version of the error plots is shown in Figure 6 can
be found in the Supporting Information section. For each case
the overall error close to g = 1.000 is not more than ~ 5%which
implies convergence to the right result. Moreover, for the case
of Hsp, we notice that the error is very small for the classical
implementation i.e., ~ < 1% throughout the range of the graph.

The critical point usingHnp was found to be g(np)
c � 1.008 for

both the classical and qasm implementations. Similarly, the
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FIGURE 4 | Finite-Size Scaling for Quantum Rabi model.We usedN = 8, 10, . . ., 32. (A)Graphs of ΔHnp(g; 8, 10), ΔHnp(g; 10,12), . . . , ΔHnp(g; 30, 32) as a function
of g. (B) Intersection points g(N)np where ΔHnp(g(N)np ;N − 4,N − 2) � ΔHnp(g(N)np ;N − 2,N), as a function of 1/N. As N → ∞, g(N)np → 0.999996. So, g(np)c � 0.999996. (C)
Graphs of ΔHsp(g; 8,10), ΔHsp(g; 10,12), . . . , ΔHsp(g; 30, 32) as a function of g. (D) Intersection points g(N)sp where ΔHsp(g(N)sp ;N − 4,N − 2) � ΔHsp(g(N)sp ;N − 2,N), as a
function of 1/N. As N → ∞, g(N)sp → 0.999987. So, g(sp)c � 0.999987.

FIGURE 5 |QRBM Implementation of FSS for QRM. The light blue line represents results obtained from exact diagonalization and dashed black line represents QRBM
results. (A) Classical implementation of QRBM corresponding to normal phase, graphs of ΔHnp(g; 8, 10), ΔHnp(g; 10, 12), . . . , ΔHnp(g; 14, 16) as a function of g. (B) QRBM
implemented on qasm simulator corresponding to normal phase, graphs ofΔHnp(g; 8,10), ΔHnp(g;10,12), . . . , ΔHnp(g; 14,16) as a function of g. The g(np)c in both the cases
is calculated to be 1.008. (C)Classical implementation ofQRBMcorresponding to superradiant phase, graphs ofΔHsp(g; 8, 10), ΔHsp(g; 10, 12), . . . , ΔHsp(g; 14,16) as
a function of g. (D)QRBM implemented on qasm simulator corresponding to superradiant phase, graphs ofΔHsp(g; 8,10), ΔHsp(g; 10, 12), . . . , ΔHsp(g; 14, 16) as a function
of g. The g(sp)c in both the cases is calculated to be 0.996. The inset plots display the mean percentage error between the exact diagonalization results and QRBM results.
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critical point for the case ofHsp was found to be g(sp)
c � 0.996 for

both the classical and qasm implementations. Here we notice
that although, the convergence for the data obtained from both
the classical and qasm implementations turns out to be the same
for both Hnp and Hsp, such a perfect match appears to be
somewhat coincidental. Here, again the Bulirsch-Stoer
algorithm [44, 45] which sets the criteria used to deduce
these convergence results. The convergence plots are shown
in Figure 7 have been added to the Supporting Information
section.

4 DISCUSSION AND OUTLOOK

In this paper, we have used the Finite-Size Scaling in Hilbert
Space approach to calculate the critical point of the Quantum
Rabi Model. We used the low-energy effective Hamiltonians
for both the normal and superradiant phases respectively to
show that the critical point is gc ≈ 1. The original FSS
approach in which the truncation is done in the physical
space has been widely used to calculate critical points and
critical exponents since its inception. However, that approach
was not applicable to Quantum Phase Transitions which
occur at a finite system size. With the rise in interest in
QPTs occurring in these finite size systems, our approach
provides a natural extension of the original FSS method to
study such phase transitions. To our knowledge, this is the
first time this approach has been used to study a QPT in a
light-matter interaction system.

We have also provided a recipe for the implementation of this
method on a universal quantum computer using the Quantum
Restricted Boltzmann Machine algorithm. It was shown that
results obtained from the classical gate simulation match those
obtained from the IBM-Q’s qasm simulator. Such an
implementation scales quadratically while the exact
diagonalization scales cubically in the best case and
exponentially in the worst case. Looking forward, we are
interested in applying this approach to other QPTs such as the
QPT in anisotropic QRM. We would also like to use our method
to calculate the critical exponents in addition to the critical points
in these phase transitions. It would also be interesting to see if this
approach can be used to predict any new phase transition for
some other non-integrable model.

FIGURE 6 | Error plots from the insets of Figure 5. (A–D) are the insets
shown in Figures 5A–D respectively.

FIGURE 7 | Convergence diagrams for results in Figure 5. (A–D) correspond to convergence results for data in Figures 5A–D respectively. The same procedure
was used as the one shown in Figures 4B,D.
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Another very promising research direction is to implement the
FSS method for phase transitions in classically intractable many-
body models such as exotic electronic and magnetic systems.
These include general quantum materials, for example where
Coulomb potential leads to a gapped spectrum in energy,
including in direct band-gap semiconductors in the
thermodynamic limit. Conventionally speaking, it might be
necessary to resort to the original finite-size scaling in the
physical space approach for these systems since they exhibit
criticality only in the limit N → ∞. However, the ground state
of an appropriately truncated Hamiltonian could be deduced
using the QRBM algorithm as shown in the paper towards
efficient implementation on a digital quantum simulator. A
simile can also be drawn between a many-body bulk gap
separating a continuum of excited states from the ground state
manifold to the gapped Rabi model discussed in this paper. Such
an approach can be useful in emergent topological systems, such
as in Weyl semimetals, 1-D Kitaev spin chains, quantum spin
liquids, and others, on which there is a tremendous explosion of
interest [38–43]. Topological phase transitions are devoid of any
conventional order parameter and a quantum solution deriving
from the approach outlined in this paper can help us bypass
resource and scaling limitations of DMRG and exact

diagonalization approaches to calculate the critical point and
the critical exponents.
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APPENDIX A:

Bulirsch-Stoer Algorithm
For hN = 1/N where N = 0, 1, 2, . . ., the Bulirsch-Stoer algorithm
can be used to find the limit of a function T(hN) as N → ∞44,45.
For demonstration, consider that we only have T(hN) for N = 0, 1,
2, 3, then the following rows are computed successively,

using the following rules

T N( )
−1 � 0 (22)

T N( )
0 � T hN( ) (23)

T N( )
m≥1 � T N+1( )

m−1

+ T N+1( )
m−1 − T N( )

m−1( ) hN
hN+m

( )ω

1 − T N+1( )
m−1 − T N( )

m−1
T N+1( )
m−1 − T N+1( )

m−2
( ) − 1[ ]−1

(24)
where ω is a free parameter determined by minimizing
ε(i)m � |T(i+1)

m − T(i)
m |. The final answer is T(0)

3 .

0 T(0)
0 T(1)

0 T(2)
0 T(3)

0

1 T(0)
1 T(1)

1 T(2)
1

2 T(0)
2 T(1)

2

3 T(0)
3
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Unextendible Entangled Bases With a
Fixed Schmidt Number Based on
Generalized Weighing Matrices
Yuan-Hong Tao1,2, Xin-Lei Yong2, Ya-Ru Bai1, Dan-Ni Xu1 and Shu-Hui Wu1*

1Department of Big Data, School of Science, Zhejiang University of Science and Technology, Hangzhou, China, 2Department of
Mathematics, College of Sciences, Yanbian University, Yanji, China

We systematically study the constructions of unextendible entangled bases with a fixed
Schmidt number k (UEBk) in a bipartite system Cd ⊗ Cd′. Motivated by the methods of
[J. Phys. A 52 : 375,303, 2019], we construct (dd’ − v)-member UEBks in Cd ⊗ Cd′ by
using generalized weighing matrices and thus generalize the results of [arXiv: 1909.10043,
2020]. We also present the corresponding expressions of our constructions and
graphically illustrate UEB3s in C5 ⊗ C6 and C6 ⊗ C6.

Keywords: unextendible entangled bases with a fixed schmidt number k, quantum entanglement, Schmidt number,
generalized weighing matrix, entangled bases with a fixed Schmidt number

1 INTRODUCTION

Entanglement is an essential resource of quantum information processing, and it presents the nature
of quantummechanics [1, 2]. It is also related to some fundamental problems in quantummechanics
such as reality and non-locality [3, 4]. Quantum entanglement has significant applications in many
fields such as quantum teleportation [5], quantum dense coding [6], quantum tomography [7], and
the mean kings problem [8].

In order to characterize quantum entanglement, the analysis of various bases in the state space has
attracted extensive attention in recent years. The notion of unextendible product basis (UPB) in
multipartite quantum systems has been deeply studied. The member of a UPB is not perfectly
distinguishable by local positive-operator-valued measurements and classical communication, which
shows the non-locality without entanglement [9]. As the generalization of UPB, the notion of
unextendible maximally entangled basis (UMEB) has been proposed [10]. Since then, many results of
UMEBs in arbitrary bipartite spaces are established: no UMEB in C2 ⊗ C2, 6-member UMEB in
C3 ⊗ C3, 12-member UMEB in C4 ⊗ C4 [10], 30-member UMEB in C6 ⊗ C6 [11], d2-member
UMEB in Cd ⊗ Cd′(d′/2< d< d′), and qd2-member UMEB in Cd ⊗ Cd′(d′ � qd + r, 0< r< d)
[12–14] and different members of UMEBs in Cpd ⊗ Cqd′(p≤ q) [15–18].

In [19], Guo first proposed the unextendible entangled basis with a fixed Schmidt number k
(UEBk) in Cd ⊗ Cd′(2≤ k< d< d′); thereafter, the concepts and constructions of entangled basis
with Schmidt number k (EBk) and special entangled basis with Schmidt number k (SEBk) have been
presented successively [20]. Later, Guo also generalized the construction of UEBk from bipartite
systems to multipartite quantum systems [21].

Li et al [22] first constructed the SEBks in Cd ⊗ Cd′ via some generalized weighing matrices,
which is a breakthrough structure for dd’ is not the multiple of k. Furthermore, Wang [23] combines
the decomposition of the whole matrix space and generalized weighing matrices to consrtuct the
SUEBks, which provides a useful way to construct different members of UEBks in Cd ⊗ Cd′, but it
still has some imperfections and unmentioned issues, such as the bounds of the space dimension, the
order, and the concrete mathematical expression of the UEBks.
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In this paper, we mainly focus on the construction of UEBks in
bipartite systems. Motivatied by the method of [22, 23], using
generalized weighing matrices, we provide flexible and diverse
constructions of different members of UEBks. We first introduce
some related notions and terminologies; then, we propose three
different ways to construct (dd’ − v)-member UEBks in Cd ⊗ Cd′

and present the corresponding mathematical expressions. We
also give some examples of UEB3 in C5 ⊗ C6 and C6 ⊗ C6.

2 PRELIMINARIES

In order to better comprehend the notion of UEBk in Cd ⊗ Cd′,
we first introduce the concept of EBk and SEBk in Cd ⊗ Cd′. In
the sequel, we always assume that d ≤ d′.

The Schmidt number of a bipartite pure state |ϕ〉∈ Cd ⊗ Cd′,
denoted by Sr (|ϕ〉), is defined as the length of its Schmidt
decomposition: if its Schmidt decomposition is
|ϕ〉 � ∑k−1

n�0λn|en〉|en′〉, then its Schmidt number is k, that is, Sr
(|ϕ〉) = k. It is clear that Sr (|ϕ〉) = rank (ρ1) = rank (ρ2), where ρi
denotes the reduced state of the ith part of ρ = |ϕ〉〈ϕ|. If an
orthonormal basis is constructed by such |ϕi〉s, then it is called an
entangled basis with Schmidt number k (EBk) [20]. Particularly, if
it is an EBk and all the Schmidt coefficients of {|ϕi〉}s equal to 1�

k
√ ,

then it is called a special entangled basis with Schmidt number k
(SEBk). It is obvious that SEBk becomes a product basis (PB)
when k = 1 and a maximally entangled basis (MEB) when k = d.

A set of states {|ϕi〉∈ Cd ⊗ Cd′: i � 1, 2, . . . , m,m< dd′} is
called an m-number unextendible entangled bases with
Schmidt number k (UEBk) [19] if and only if

(i) Sr (|ϕi〉) = k and |ϕi〉, i = 1, 2, . . . ,m are all entangled states;
(ii) 〈ϕi|ϕj〉 = δij;
(iii) if 〈ϕi|ψ〉 = 0 for all i = 1, 2, . . . , m, then Sr (|ϕi〉) ≠ k.

Actually, there is a similar concept in matrix spaces [20]. Let {|
k〉} and {|ℓ′〉} be the standard computational bases ofCd andCd′,
respectively, and {|ϕi〉}dd′i�1 be an orthonormal basis of Cd ⊗ Cd′.
Let Md×d′ be the Hilbert space of all d × d′ complex matrices
equipped with the inner product defined by 〈A|B〉 = Tr (A†B) for
any A, B ∈Md×d′. If {Ai}dd′i�1 constitutes a Hilbert–Schmidt basis of
Md×d′, where 〈Ai|Aj〉 = dδij, then there is a one-to-one
correspondence between {|ϕi〉} and {Ai} as follows [20]:

|ϕi〉 � ∑
k,ℓ

a i( )
kl |k〉|ℓ′〉∈ C

d ⊗ C
d′ 5 Ai �

��
d

√
a i( )
kℓ[ ] ∈ Md×d′,

Sr |ϕi〉( ) � rank Ai( ), 〈ϕi|ϕj〉 � 1
d
Tr A†

i Aj( ), (1)

A set of d × d′ complex matrices {Ai: i = 1, 2, . . . , n, n ≤ dd′} is
called an unextendible rank-k Hilbert–Schmidt basis of Md×d′
[24] if and only if

(i) rank (Ai) = k for any i;
(ii) Tr(A†

i Aj) � δi,j;

(iii)if Tr(A†
i B) � 0, i = 1, 2, . . . , n, then rank(B) ≠ k.

It turns out that {Ai: rank (Ai) = k} is an unextendible
Hilbert–Schmidt basis of Md×d′ if and only if {ϕi} is a UEBk of
Cd ⊗ Cd′. Therefore, the UEBk problem is equivalent to the
unextendible rank-k Hilbert–Schmidt basis of the associated
matrix space.

We next introduce the definition and properties of a
generalized weighing matrix, which has been effectively
used to construct SEBks in Cd ⊗ Cd′ [22]. As a
continuation, we will use it to construct UEBks in Cd ⊗ Cd′

in this paper.

Definition 1: [22] A generalized weighing matrix is a square a × a
matrix A all of whose non-zero entries are nth roots of unity such
that AA† = kIa. It follows that 1/

�
k

√
A is a unitary matrix so that

AA† = kIa and every row and column of A has exactly k non-zero
entries. k is called the weight, and n is called the order of A.
Denoting the set of all such generalized weighing matrices by
W(n, k, a).

It is worth noting that the generalized weight matrix does not
always exist; for the existence and detailed discussion of the
generalized weight matrix, we can refer to Ref. [22].

Lemma 1: [22] Let a, b be two positive integers with a great
common divisor being g. For any integers d, d′ ≥ max{a, b}, if g|
dd’, then dd’ can be written as dd’ = sa + pb, where s, p ∈ N.

3 THREE KINDS OF (DD’ − V)-MEMBER
UEBKS

LetMd×d′ be the Hilbert space of all d × d′ complex matrices, V be
a subspace of Md×d′ such that each matrix in V is a d × d′ matrix
ignoring v elements, depending on the position occupied by the
ignored v elements: 1) all the ignored elements occupy N
columns, 2) all the ignored elements occupy N rows, and 3)
all the ignored elements occupy rows and columns; we construct
three kinds of (dd’ − v)-member UEBks.

3.1 All the Ignored Elements Occupy N
Columns
In this section, we first construct the (dd’ − v)-member UEBk in
Cd ⊗ Cd′, in which all the v ignored elements occupied N
columns in the matrix, and then present some examples of
UEB3s in C5 ⊗ C6.

Theorem 1: Let k be a positive integer, b, n ∈ N such thatW(n, k,
b) is non-empty, and gcd(k, b) = 1 (the greatest common divisor
of k and b). Let V be a subspace ofMd×d′ such that each matrix in
V is a d × d′ matrix ignoring v elements which occupied N rows
withN = 1, . . . , k − 1 and d −N ≥ b and dd’ − v = s · k + p · bwith 1
≤ v ≤ d′N. If min{d, d′}≥ max{k, b}, then there exists dd’ − v
member UEBk in Cd ⊗ Cd′.

Proof. First, for different values of p and s, we construct
different pure states as follows: when p ≥ 1 and s ≥ 1, set
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|ϕm.l〉 �
1�
k

√ ∑k−1
u�0ξ

mu
k |rlk+u〉, 0#l#s − 1,

1�
k

√ ∑b

u�1x
t( )

ij |rsk−1+ l−s( )b+u〉, s#l#s + p − 1,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2)

when s = 0, p ≥ 1, set

|ϕm.l〉 � 1�
k

√ ∑b
u�1

x t( )
ij |rsk−1+ l−s( )b+u〉, 0#l#p − 1, (3)

when p = 0, s ≥ 1, set

|ϕm.l〉 � 1�
k

√ ∑k−1
u�0

ξmu
k |rlk+u〉, 0#l#s − 1, (4)

where ξk � e
2π
��−1√

k , m � 0, 1, . . . , k − 1; x(t)i,j means the t (0 ≤ t ≤ b −
1) row of the generalized weights matrixW (n, k, b), and sk − 1 +
(l − s)b + u = c · (d −N + 1) + e = f · d′ + g; l · k + u = c · (d −N + 1) +
e = f · d′ + g with 0 ≤ e < d, 0 ≤ g < d′. Also,

|rlk+u〉 � |e⊕ d−N+1( ) ∑α
i�0

Ci ⊕ d−N+1( )C e⊕ d−N+1( ) ∑α
i�0

Ci, g⎛⎝ ⎞⎠〉|g′〉, 0≤ α≤ v,

(5)
with

C e⊕ d−N+1( ) ∑α
i�0

Ci, g⎛⎝ ⎞⎠ � 1, C e⊕ d−N+1( )∑α

i�0Ci, g( ) � Cα,
0, otherwise,

{
(6)

where C0 = 0, Cα = 1 denotes the ignored elements.
We next prove that all the above {|ϕm.l〉} constitute a dd’ − v (1

≤ v ≤ d′N)-member UEBk in Cd ⊗ Cd′:

(i) It is clear that Sr (|ϕl〉) = k for any l, m, t.
(ii) Orthogonality.

According to the construction given by the above expression,
the elements of each state lie in different rows and columns, so the
proof of the orthogonality is as follows:

〈ϕ
m̃,l
|ϕm,l〉 � 1

k
∑k−1
~u�0

∑k−1
u�0

ξml
k ξ−̃m

~l
k 〈r~lk+u|rlk+u〉 � 1

k
∑k−1
u�0

ξml− ~m~l
k δl~l � δm ~mδl~l ,

〈ϕ
t̃,l
|ϕt,l〉 � 1

k
∑p−1
~u�0

∑p−1
u�0

x
~t( )

ij x t( )
ij 〈rsk−1+ ~l−s( )b+u|rsk−1+ l−s( )b+u〉 � 1

k
∑p−1
u�0

δt~tδl~l � δt~tδl~l ,

〈ϕ
m̃,l
|ϕt,l〉 � 1

k
∑k−1
~u�0

∑p−1
u�0

ξ−̃m
~l

k x t( )
ij 〈r~lk+u|rsk−1+ l−s( )b+u〉 � 1

k
∑k−1
~u�0

∑p−1
u�0

δξ,xδl~l � δξ,xδl~l.

(iii) Unextendibility.

It is obvious that there are no UEBk in V⊥ since N < k.
In order to understand the above structure more intuitively,

we give the following examples to illustrate it.

Example 1: Constructing 26-member UEB3 in C5 ⊗ C6.
As d = 5, d′ = 6, k = 3, n = 2, b = v = 4, and 5 × 6–4 = 26 = 6 × 3 +

2 × 4, s = 6, p = 2, 0 ≤ l ≤ 7 and

W 2, 3, 4( ) �
0 1 1 1
1 0 −1 1
1 1 0 −1
1 −1 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (7)

According to the proof of Theorem 1, we have the following
pure states:

| ϕm,0〉 � 1�
3

√ (ξ03|r0〉 + ξm3 |r1〉 + ξ2m3 |r2〉);
..
.

| ϕm,5〉 � 1�
3

√ (ξ03|r15〉 + ξm3 |r16〉 + ξ2m3 |r17〉);
| ϕt,6〉 � 1�

3
√ (x(t)

t,0 |r18〉 + x(t)
t,1 |r19〉 + x(t)

t,2 |r20〉) + x(t)t,3 |r21〉;
| ϕt,7〉 � 1�

3
√ (x(t)

t,0 |r22〉 + x(t)
t,1 |r23〉 + x(t)

t,2 |r24〉) + x(t)t,3 |r25〉;
where m = 0, 1, 2, t = 0, 1, 2, 3.
As C0 = 0, C1 = C (4, 4) = 1, C2 = C (4, 2) = 1, C3 = C (4, 4) = 1,

C4 = C (4, 3) = 1,
α = 0, |ri〉 = |e ⊕ 5C (e, g)|g′〉;
α = 1, |ri〉 = |e ⊕ 5C1 ⊕ 5C (e ⊕ 5C1, g)|g′〉;
α = 2, |ri〉 = |e ⊕ 5(C1 + C2) ⊕ 5C (e ⊕ 5(C1 + C2), g)|g′〉;
α = 3, |ri〉 = |e ⊕ 5(C1 + C2 + C3) ⊕ 5C (e ⊕ 5(C1 + C2 + C3),

g)|g′〉;
α = 4, |ri〉 = |e ⊕ 5(C1 + C2 + C3 + C4) ⊕ 5C (e ⊕ 5(C1 + C2 + C3 +

C3), g)|g′〉;
Taking specific values into the above formula, the 26-member

UEB3 in C5 ⊗ C6 can be expressed as follows:

|ϕ0,1,2〉 � 1�
3

√ |00′〉 + α|11′〉 + α2 |22′〉( ),
|ϕ3,4,5〉 � 1�

3
√ |33′〉 + α|04′〉 + α2 |15′〉( ),

|ϕ6,7,8〉 � 1�
3

√ |20′〉 + α|31′〉 + α2 |02′〉( ),
|ϕ9,10,11〉 � 1�

3
√ |13′〉 + α|24′〉 + α2|35′〉( ),

|ϕ12,13,14〉 � 1�
3

√ |40′〉 + α|01′〉 + α2 |12′〉( ),
|ϕ15,16,17〉 � 1�

3
√ |23′〉 + α|34′〉 + α2 |05′〉( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ϕ18〉 � 1�
3

√ |21′〉 + |32′〉 + |03′〉( ),
|ϕ19〉 � 1�

3
√ |10′〉 − |32′〉 + |03〉( ),

|ϕ20〉 � 1�
3

√ |10′〉 + |21′〉 − |03′〉( ),
|ϕ21〉 � 1�

3
√ |10′〉 − |21′〉 + |32′〉( ),

|ϕ22〉 � 1�
3

√ |25′〉 + |30′〉 + |41′〉( ),
|ϕ23〉 � 1�

3
√ |14′〉 − |30′〉 + |41′〉( ),

|ϕ24〉 � 1�
3

√ |14′〉 + |25′〉 − |41′〉( ),
|ϕ25〉 � 1�

3
√ |14′〉 − |25′〉 + |30〉( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where α = 1, ω, ω2 and w � e
2π
��−1√

3 .
The following chart is indeed the space decomposition of the

space of the coefficient matrices, whose first column and first row
represent the bases of the previous space and latter space,
respectively. The stars represent the ignored elements, and the
same number or alphabet in Table 1 together constitutes a state
in UEB3.

Example 2: Constructing 29,28,25,24-member UEB3s in
C5 ⊗ C6.

Similar to the analysis in Example 1, we only present the chart
of corresponding matrix to represent the structure of UEB3s.

Considering the following matrices,

V1 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. V2 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (9)
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V3 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 ⋆ ⋆ ⋆ ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. V4 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (10a)

the specific UEB3s of V1, V2, V3, V4 are shown in Table 2-5
respectively.

3.2 All the Ignored Elements Occupy N
Rows
In this section, we first construct the (dd’ − v)-member UEBk in
Cd ⊗ Cd′, in which all the v ignored elements occupied N rows in
the matrix, and then present some examples of UEB3s also in
C5 ⊗ C6.

Theorem 2: Let k be a positive integer, b, n ∈ N such thatW(n, k,
b) is non-empty, and gcd(k, b) = 1. Let V be a subspace of Md×d′
such that each matrix in V is a d × d′ matrix ignoring v elements
which occupiedN rows withN = 1, . . . , k − 1, d′ −N ≥ b and dd’ −
v = s · k + p · bwith 1 ≤ v ≤ dN. If min{d, d′}≥max{k, b}, then there
exists dd’ − v (1 ≤ v ≤ dN)-member UEBk in Cd ⊗ Cd′.

Proof. First, for different values of p and s, we construct
different pure states as follows: if p ≥ 1 and s ≥ 1, let

|ϕm.l〉 �
1�
k

√ ∑k−1
u�0ξ

mu
k |rlk+u〉, 0#l#s − 1,

1�
k

√ ∑b

u�1x
t( )

ij |rsk−1+ l−s( )b+u〉, s#l#s + p − 1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(10b)

if s = 0, p ≥ 1, let

|ϕm.l〉 � 1�
k

√ ∑b
u�1

x t( )
ij |rsk−1+ l−s( )b+u〉, 0#l#p − 1, (11)

if p = 0, s ≥ 1, let

|ϕm.l〉 � 1�
k

√ ∑k−1
u�0

ξmu
k |rlk+u〉, 0#l#s − 1. (12)

where ξk � e
2π
��−1√

k ;m � 0, 1, . . . , k − 1; x(t)i,j means the t (0 ≤ t ≤ b −
1) row in the generalized weights matrixW (n, k, b), and sk − 1 +
(l − s)b + u = c · d + e; l · k + u = c · d + e with 0 ≤ e < d,

|rlk+u〉 � |e〉| c⊕ d′−N+1( )e⊕ d′−N+1( )C e, c⊕ d′−N+1( )e( ) + β( )′〉,
(13)

with

C e, c⊕ d′−N+1( )e( ) � 1, C(e, c⊕ d′−N+1( )e � Cα,
0, otherwise,

{
(14)

where C0 = 0, Cα = 1 denotes the ignored elements. It is worthy of
note that β in formula (13) is a regulating term, β = 0 in the
common cases, β = 1 if |e〉|c ⊕(d′−N+1)e〉 coincides with the
previous answer of formula (13).

Similiar to Theorem 1, we can prove that {|ϕm.l〉} constitute dd’
− v (1 ≤ v ≤ dN)-member UEBks in Cd ⊗ Cd′.

Example 3: Constructing 29,26,25,23-member UEB3 in C5 ⊗ C6.
Considering the following matrices,

V1 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V2 �

0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (15)

V3 �

0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V4 �

0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 ⋆ ⋆
0 0 0 0 ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (16a)

the specific UEB3s of V1, V2, V3, V4 are shown in Table 6-9
respectively.

3.3 All the Ignored Elements Occupy Both x
Rows and y Columns
In this section, we will construct (dd’ − v)-member UEBk in a
bipartite system Cd ⊗ Cd′ with all the v ignored elements
occupying both x rows and y columns in the matrix, and we
will also present some different examples of UEB3s in C5 ⊗ C6.

Theorem 3: Let k be a positive integer, b, n ∈ N such thatW(n, k,
b) is non-empty, and gcd(k, b) = 1 (the greatest common divisor
of k and b). Let V be a subspace ofMd×d′ such that each matrix in
V is a d × d′ matrix ignoring v elements which occupied x rows
and y columns with x + y < k, d − x ≥ b and d′ − y ≥ b; dd’ − v = s ·
k + p · b with 1 ≤ v ≤ d′x + dy. If min{d, d′}≥max{k, b}, then there
exists (dd’ − v), (1 ≤ v ≤ d′x + dy)-member UEBk in Cd ⊗ Cd′.

Proof. First, for different values of p and s, we construct
different pure states as follows: if p ≥ 1 and s ≥ 1, set

|ϕm.l〉 �
1�
k

√ ∑k−1
u�0ξ

mu
k |rlk+u〉, 0#l#s − 1,

1�
k

√ ∑b

u�1x
t( )

ij |rsk−1+ l−s( )b+u〉, s#l#s + p − 1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(16b)

if s = 0, p ≥ 1, set

|ϕm.l〉 � 1�
k

√ ∑b
u�1

x t( )
ij |rsk−1+ l−s( )b+u〉, 0#l#p − 1, (17)

if p = 0, s ≥ 1, set

|ϕm.l〉 � 1�
k

√ ∑k−1
u�0

ξmu
k |rlk+u〉, 0#l#s − 1. (18)

where ξk � e
2π
��−1√

k , m � 0, 1, . . . , k − 1; x(t)i,j means the t (0 ≤ t ≤ b −
1) row in the generalized weights matrixW (n, k, b), and sk − 1 +
(l − s)b + u = f · (d′ −N + 1) + g; l · k + u = c · (d −N + 1) + e = f · (d′
− N + 1) + g with 0 ≤ e < d, 0 ≤ g < d′. Denoting A � e⊕d∑α

i�0Ci,
B � g⊕d′∑α

i�0Ci, then

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8961644

Tao et al. Unextendible Entangled Bases

56

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


|rlk+u〉 � |A⊕d C A, B( )〉|B⊕d′ C A, B( )′〉, (19)
with

C A, B( ) � 1, C A, B( ) � Cα,
0, otherwise,

{ (20)

where C0 = 0, Cα = 1 denotes the ignored elements.
Similar to Theorem 1, we can prove that {|ϕm.l〉} constitute dd’

− v (1 ≤ v ≤ d′x + dy)-member UEBks in Cd ⊗ Cd′.

Example 4: Constructing 26,25,24,23-member UEB3 in C5 ⊗ C6.
Considering the following matrices,

V1 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 ⋆ ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V2 �

0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (21)

V3 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 ⋆ ⋆ ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V4 �

0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 ⋆ ⋆ ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (22a)

the specific UEB3s of V1, V2, V3, V4 are shown in Table 10-13,
respectively.

Comparing Tables 4, 8, 11, we can find that they are all 25-
member UEB3s in C5 ⊗ C6, but they are different since the
ignored elements occupy different positions. The above
structure has given the location of the elements in each
state, but the expressions are not always applicable when
d = d′. For the case of d = d′, Ref. [23] provided a good
method to construct the UEBk; now, we give some concrete
examples to illustrate it.

Example 5: Constructing 26,25,24,23-member UEB3 in C6 ⊗ C6.
Considering the following matrices,

TABLE 1 | 6×3+2×4=30,−,4=26-member UEB3.

|09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 5 3 a 2 6
|1〉 a 1 5 4 b 2
|2〉 3 A 1 6 4 b
|3〉 b 3 A 2 6 4
|4〉 5 B * * * *

TABLE 2 | 7×3+2×4=29-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 b 7 6 4 2
|1〉 3 1 b a 6 4
|2〉 5 3 1 b a 6
|3〉 7 5 3 2 b a
|4〉 a 7 5 4 2 *

TABLE 3 | 8×3+1×4=28-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 a 5 4 2 7
|1〉 7 1 a 6 4 2
|2〉 3 8 1 a 6 4
|3〉 5 3 8 2 a 6
|4〉 7 5 3 a * *

TABLE 4 | 7×3+1×4=25-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 5 3 a 2 6
|1〉 7 1 5 4 a 2
|2〉 3 7 1 6 4 a
|3〉 a 3 7 2 6 4
|4〉 5 * * * * *

TABLE 5 | 8×3+0,×,4=24-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 5 3 8 2 6
|1〉 7 1 5 4 8 2
|2〉 3 7 1 6 4 8
|3〉 5 3 7 2 6 4
|4〉 * * * * * *

TABLE 6 | 7×3+2×4=29-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 7 b
|1〉 b 1 3 4 6 a
|2〉 a b 1 3 5 6
|3〉 7 a b 2 3 5
|4〉 4 5 7 a 2 *

TABLE 7 | 6×3+2×4=26-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 a b
|1〉 a 1 3 4 6 *
|2〉 6 b 1 3 5 *
|3〉 5 a b 2 3 *
|4〉 4 5 a b 2 *
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TABLE 8 | 7×3+1×4=25-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 7 *
|1〉 a 1 3 4 6 *
|2〉 6 a 1 3 5 *
|3〉 5 7 a 2 3 *
|4〉 4 5 7 a 2 *

TABLE 9 | 5×3+2×4=23-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 a b *
|1〉 b 1 3 4 a *
|2〉 a b 1 3 5 *
|3〉 3 5 a 2 * *
|4〉 2 4 5 b * *

TABLE 10 | 2×3+5×4=26-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 e d b a 2
|1〉 2 1 e d c a
|2〉 b a 1 e d c
|3〉 c b a 2 e *
|4〉 d c b * * *

TABLE 11 | 7×3+1×4=25-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 a 6 5 4 2
|1〉 2 1 a 7 5 *
|2〉 4 3 1 a 7 *
|3〉 6 4 3 2 a *
|4〉 7 6 5 3 * *

TABLE 12 | 8×3+0,×,4=24-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 7 6 5 3 2
|1〉 2 1 8 6 5 4
|2〉 4 3 1 8 7 *
|3〉 5 4 3 2 8 *
|4〉 7 6 * * * *

TABLE 13 | 5×3+2×4=23-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 b a 4 3 2
|1〉 2 1 b a 5 *
|2〉 4 3 1 b a *
|3〉 5 4 3 2 b *
|4〉 a 5 * * * *

TABLE 14 | 9,×,3+2×4=35-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 8 a
|1〉 a 1 3 5 7 9
|2〉 9 b 1 3 5 7
|3〉 7 9 b 2 3 5
|4〉 6 8 a b 2 4
|5〉 4 6 8 a b *

TABLE 15 | 8×3+2×4=32-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 8 a
|1〉 b 1 3 5 7 8
|2〉 a b 1 3 5 7
|3〉 7 a b 2 3 5
|4〉 6 8 a b 2 4
|5〉 4 6 * * * *

TABLE 16 | 8×3+2×4=32-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 7 a
|1〉 a 1 3 4 6 8
|2〉 8 6 1 3 5 *
|3〉 6 8 b 2 3 *
|4〉 5 7 a b 2 *
|5〉 4 5 7 a b *

TABLE 17 | 8×3+2×4=23-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 8 a
|1〉 b 1 3 4 6 8
|2〉 8 b 1 3 5 6
|3〉 7 a b 2 3 *
|4〉 5 7 a b 2 *
|5〉 4 5 7 a * *

TABLE 18 | construction in [23].

|09〉 |19〉 |29〉 |39〉 |49〉 |59〉 |69〉

|0〉 1 2 3 4 5 a b
|1〉 b 1 2 3 4 5 a
|2〉 a b 1 2 3 4 5
|3〉 a b * * * * *
|4〉 * * * * * * *
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V1 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V2 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 ⋆ ⋆ ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (22b)

V3 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V4 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (23)

the specific UEB3s of V1, V2, V3, V4 are shown in Table 14-17,
respectively.

Remark 1: We systematically show three methods (or orders) to
construct the UEBks in different cases and present the corresponding
mathematical expressions, which is better than that in [23] since it
only provide one limited order. For example, we can construct 23-
member SUEB3 in C5 ⊗ C7 when a = 3, b = 4, which cannot be
constructed by the order in [23], see Table 18, 19.

Remark 2: Our results cover wider spaces than that of Ref. [23].
The smallest space we can discuss is C4 ⊗ C5 when a = 3, b = 4,
while the smallest space [23] can discuss is C5 ⊗ C7 when a = 3,

b = 4, k = 3. Futhermore, even in C5 ⊗ C6, we also present
different members of UEB3s.

4 CONCLUSION

We have proposed three ways to construct different members
of UEBks in Cd ⊗ Cd′ and have shown their concrete
expressions. As an example of each method, we have
presented different members of UEB3s in C5 ⊗ C6 and
C6 ⊗ C6. It is noteworthy that our result is based on the
existence of generalized weighing matrices, so it is also of
significance for us to find more generalized weighing matrices,
such as skew Hadamard matrices.

By using our constructions, one can get at most (dd’ − v)
members of UEBk in Cd ⊗ Cd′, which has not specifically
mentioned in the previous literature studies.
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On Non-Convexity of the
Nonclassicality Measure via Operator
Ordering Sensitivity
Shuangshuang Fu1, Shunlong Luo2,3 and Yue Zhang4,5*

1School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China, 2Academy of Mathematics
and Systems Science, Chinese Academy of Sciences, Beijing, China, 3School of Mathematical Sciences, University of Chinese
Academy of Sciences, Beijing, China, 4State Key Laboratory of Mesoscopic Physics, School of Physics, Frontiers Science Center
for Nano-optoelectronics, Peking University, Beijing, China, 5Beijing Academy of Quantum Information Sciences, Beijing, China

In quantum optics, nonclassicality in the sense of Glauber-Sudarshan is a valuable resource
related to the quantum aspect of photons. A desirable and intuitive requirement for a
consistent measure of nonclassicality is convexity: Classical mixing should not increase
nonclassicality. We show that the recently introduced nonclassicality measure [Phys. Rev.
Lett. 122, 080402 (2019)] is not convex. This nonclassicality measure is defined via operator
ordering sensitivity, which is an interesting and significant probe (witness) of nonclassicality
without convexity but can be intrinsically connected to the convex Wigner-Yanase skew
information [Proc. Nat. Acad. Sci. United States 49, 910 (1963)] via the square root operation
on quantum states. Motivated by the Wigner-Yanase skew information, we also propose a
faithful measure of nonclassicality, although it cannot be readily computed, it is convex.

Keywords: coherent states, nonclassicality, operator ordering sensitivity, convexity, Wigner-Yanase skew
information

1 INTRODUCTION

In the conventional scheme of Glauber-Sudarshan, nonclassicality of light refers to quantum optical
states that cannot be expressed as classical (probabilistic) mixtures of Glauber coherent states [1–7].
Its detection and quantification are of both theoretical and experimental importance in quantum
optics [8–17]. Recently, a remarkable and interesting nonclassicality measure is introduced in Ref.
[18]. This measure is well motivated and has operational significance stemmed from operator
ordering sensitivity [18], which is also known as squared quadrature coherence scale in measuring
quadrature coherence [19], and proved to be closely related to the entanglement [20]. Here we
demonstrate that this nonclassicality measure, as well as the operator ordering sensitivity, are not
convex. This means that classical (probabilistic) mixing of states can increase nonclassicality, as
quantified by this nonclassicality measure via the operator ordering sensitivity. Our result
complements the key contribution in Ref. [18].

By the way, we show that the operator ordering sensitivity, though not convex, can be connected
to a convex quantity via the very simple and straightforward operation of square root. The modified
quantity has both physical and information-theoretic significance, and is actually rooted in an
amazing quantity of Wigner and Yanase, introduced in 1963 [21]. Motivated by the Wigner-Yanase
skew information, we also propose a faithful measure of nonclassicality which is convex.

To be precise, let us first recall the basic idea and the key quantities in Ref. [18]. Consider a single-
mode bosonic field with annihilation operator a and creation operator a† satisfying the commutation
relation
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a, a†[ ] � 1.

Let D(α) � eαa
†−αpa be the Weyl displacement operators with

amplitudes α ∈ C, then |α〉 = D(α)|0〉 are the coherent states
[1–3]. For a bosonic field state ρ, consider the parameterized
phase space distributions [18]

Ws z( ) � 1
π2
∫

C

es|z|
2/2+αzp−αpztr ρD α( )( )d2α

on the phase space C, where s ∈ [−1, 1], d2α = dxdy with
α � x + iy, x, y ∈ R, and tr denotes operator trace. In
particular, for s = 1, 0, −1, the corresponding phase space
distributions are the Glauber-Sudarshan P functions, the
Wigner functions, and the Husimi functions, respectively.

Motivated by operator ordering due to noncommutativity and
in terms of the Hilbert-Schmidt norm, the quantity

So ρ( ) � − d

ds
ln π‖Ws||2( )|s�0

is introduced as a probe of nonclassicality of ρ in Ref. [18], and is
called operator ordering sensitivity. Here

‖Ws‖2 � ∫
C

|Ws z( )|2d2z.

It turns out that.

So ρ( ) � − 1
2tr ρ2( ) tr ρ, Q[ ]2( ) + tr ρ, P[ ]2( )( ), (1)

where [X, Y] = XY − YX denotes operator commutator, and

Q � a + a†

2

√ , P � a − a†

2

√
i

are the conjugate quadrature operators. Simple manipulation
shows that

So ρ( ) � 1
tr ρ2( ) tr ρ, a[ ] ρ, a[ ]†( ). (2)

Moreover, the following nonclassicality measure

N ρ( ) � inf
σ∈C

|||~ρ − ~σ||| (3)

is introduced as a key result [18]. Here C is the set of classical
states (i.e., mixtures of coherent states), ~ρ � ρ/







tr(ρ2)√

,
~σ � σ/







tr(σ2)√

, and the norm |||·||| is defined as∣∣∣∣∣∣∣∣∣∣∣∣X∣∣∣∣∣∣∣∣∣∣∣∣2 � 1
2
tr X†, Q[ ] Q,X[ ] + X†, P[ ] P,X[ ]( ).

In particular, ∣∣∣∣∣∣∣∣∣∣∣∣~ρ∣∣∣∣∣∣∣∣∣∣∣∣2 � So ρ( )
is precisely the operator ordering sensitivity.

The purpose of this work is to demonstrate that the
nonclassicality measure N (·) defined by Eq. 3 is not
convex. Consequently, this quantity cannot be a consistent
measure of nonclassicality if one imposes the fundamental
rationale that classical mixing of quantum states should not
increase nonclassicality, which resembles the idea that

classical mixing of quantum states should not increase
entanglement. By the way, we also demonstrate that the
operator ordering sensitivity So(·) defined by Eq. 2 is not
convex either.

The structure of the remainder of the paper is as follows. In
Section 2, we demonstrate that the nonclassicality measure N (·) is
not convex through counterexamples. In Section 3, we show that
although the operator ordering sensitivity So(·) is not convex, it can be
directly connected to a convex quantity related to the celebrated
Wigner-Yanase skew information. By the way, we also present a
simple proof of the fact that So(ρ)≤ 1 for any classical state. In Section
4, we bring up a convex measure of nonclassicality based on the
Wigner-Yanase skew information. Finally, a summary is presented in
Section 5.

2 NON-CONVEXITY OF THE
NONCLASSICALITY MEASURE N (ρ)
In this section, we show that N (ρ) defined by Eq. 3, the
nonclassicality measure introduced in Ref. [18], is not convex.
First recall that by the triangle inequality for norm and the fact
that the set ~C, the image of C under the map ρ → ~ρ � ρ/







tr(ρ2)√

, is
contained inside the unit ball, it is shown that [18]∣∣∣∣∣∣∣∣∣∣∣∣~ρ∣∣∣∣∣∣∣∣∣∣∣∣ − 1≤N ρ( )≤ ∣∣∣∣∣∣∣∣∣∣∣∣~ρ∣∣∣∣∣∣∣∣∣∣∣∣ (4)
with

∣∣∣∣∣∣∣∣∣∣∣∣~ρ∣∣∣∣∣∣∣∣∣∣∣∣ � 





So(ρ)

√
.

Now we give a family of counterexamples to show thatN (ρ) is
not convex with respect to ρ. Considering the mixture

ρ � 1
2
ρ1 +

1
2
ρ2

of the vacuum state ρ1 = |0〉〈0| (which is classical) and the
Fock state ρ2 = |n〉〈n| with n > 1, then by direct calculation, we
have

So ρ1( ) � 1, So ρ2( ) � 1 + 2n.

To evaluate So(ρ), noting that

So ρ( ) � 1 + 2
tr ρ2( ) tr aρ2a†( ) − tr ρa†ρa( )( ),

we have, by direct calculation, that

tr ρ2( ) � 1
2
, tr aρ2a†( ) � n

4
, tr ρa†ρa( ) � 0,

from which we obtain

So ρ( ) � 1 + n.

It follows from the inequality chain (4) that

N ρ1( )≤ 






So ρ1( )√

� 1,

N ρ2( )≤ 






So ρ2( )√

� 





1 + 2n

√
,

while

N ρ( )≥ 





So ρ( )√

− 1 � 





1 + n

√ − 1.
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Consequently,

1
2
N ρ1( ) + 1

2
N ρ2( )≤ 1 + 






1 + 2n
√
2

.

Since when n > 24, the following inequality holds





1 + n

√ − 1> 1 + 





1 + 2n

√
2

,

it follows that

N ρ( )≥ 





1 + n

√ − 1> 1 + 





1 + 2n

√
2

≥
1
2
N ρ1( ) + 1

2
N ρ2( ).

This implies thatN (·) is not convex. In this sense,N (·) cannot be a
consistent measure of nonclassicality because classical mixing should
not increase nonclassicality. Of course, N (·) still captures certain
features of nonclassicality and can be used as a probe of nonclassicality.

3 RELATING THE OPERATOR ORDERING
SENSITIVITY SO(ρ) TO THE
WIGNER-YANASE SKEW INFORMATION
As a side issue, in this section, we show that although the operator
ordering sensitivity So(ρ) is not convex either with respect to ρ, it
can be intrinsically related to the celebrated Wigner-Yanase skew
information, which is convex.

First, we illustrate non-convexity of So(ρ) through the
following counterexamples. Take

ρ1 �
1
2

|0〉〈0| + |1〉〈1|( ), ρ2 � |2〉〈2|, p1 � 1
4
, p2 � 3

4
,

where |n〉 are the Fock (number) states with

a|0〉 � 0, a|n〉 � 

n

√ |n − 1〉, n � 1, 2, . . . ,

and

a†|n〉 � 





n + 1

√ |n + 1〉, n � 0, 1,/ .

Now direct evaluation yields

ρ1, a[ ] � 1

2

√ |1〉〈2|, ρ2, a[ ] � 

3

√ |2〉〈3| − 

2

√ |1〉〈2|,
and

p1ρ1 + p2ρ2, a[ ] � −5


2

√
8

|1〉〈2| + 3


3

√
4

|2〉〈3|.

Substituting the above into Eq. 2, we obtain

So ρ1( ) � 1, So ρ2( ) � 5,

and

So p1ρ1 + p2ρ2( ) � 79
19

>p1So ρ1( ) + p2So ρ2( ) � 4.

This implies that So(ρ) is not convex.
In the above counterexamples showing non-convexity of So(ρ),

both the constituent states ρ1 and ρ2 are nonclassical in the sense that
they cannot be represented as probabilistic mixtures of coherent
states [1–3]. The following counterexamples illustrates that even the

mixture of a classical thermal state and a nonclassical state can
demonstrate non-convexity. Considering the thermal state

τ1 � 1 − λ( )∑∞
n�0

λn|n〉〈n|, λ ∈ 0, 1( ), (5)

which is classical and the Fock state τ2 = |1〉〈1|, and their mixture

τ � 1
2

τ1 + τ2( ),
then by direct calculation, we have

So τ1( ) � 1 − λ

1 + λ
, So τ2( ) � 3.

To evaluate So(τ), noting that from Eq. 2, we have

So τ( ) � 1 + 2
tr τ2( ) tr aτ2a†( ) − tr aτa†τ( )( ).

Now direct calculation leads to

tr τ2( ) � 1 + λ 1 − λ2( )
2 1 + λ( ) ,

tr aτ2a†( ) � 1 + 4λ + 4λ2 − 2λ3 − 2λ4

4 1 + λ( )2 ,

tr aτa†τ( ) � λ + 1 − λ( ) 1 + 2λ2( ) 1 + λ( )2
4 1 + λ( )2 ,

from which we obtain

So τ( ) � 1 + λ 2 + 3λ − 3λ2 + 2λ4( )
1 + λ − λ3( ) 1 + λ( ) , λ ∈ 0, 1( ).

Clearly

lim
λ→1

So τ( ) � 3> 1
2
lim
λ→1

So τ1( ) + 1
2
lim
λ→1

So τ2( ) � 3
2
.

By continuity, this implies that So(·) is not convex for λ close to 1.
More explicitly, for λ = 0.9, we have

So τ( ) ≈ 2.45> 1
2

So τ1( ) + So τ2( )( ) ≈ 1.53,

which explicitly shows that So(·) is not convex.
The non-convex quantity So(ρ) can bemodified to a convex one

if we formally replace ρ by the square root


ρ

√
in Eq. 1 and define

Ŝo ρ( ) � −1
2

tr


ρ

√
, Q[ ]2( ) + tr



ρ

√
, P[ ]2( )( ), (6)

which is precisely the sum of the Wigner-Yanase skew
information [21]

I ρ, Q( ) � −1
2
tr



ρ

√
, Q[ ]2( ), I ρ, P( ) � −1

2
tr



ρ

√
, P[ ]2( ).

Remarkably, Ŝo(ρ) defined by Eq. 6 can be more succinctly
expressed as

Ŝo ρ( ) � tr


ρ

√
, a[ ] 


ρ
√

, a[ ]†( ), (7)

which is essentially (up to a constant factor 1/2) an extension
of the Wigner-Yanase skew information, as can be readily
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seen if we recast the original Wigner-Yanase skew
information [21]

I ρ, K( ) � −1
2
tr



ρ

√
, K[ ]2( )

of the quantum state ρ with respect to (skew to) the observable
(Hermitian operator) K as

I ρ, K( ) � 1
2
tr



ρ

√
, K[ ] 


ρ
√

, K[ ]†( ),
and formally replace the Hermitian operator K by the non-Hermitian
annihilation operator a. An apparent interpretation of Ŝo(ρ) is the
quantumuncertainty of the conjugate pair (Q,P) in the state ρ [22–24].

Due to the convexity of theWigner-Yanase skew information [21],
Ŝo(ρ) is convex with respect to ρ, in sharp contrast to So(ρ). Moreover,
Ŝo(ρ) has many nice features as guaranteed by the fundamental
properties of the Wigner-Yanase skew information and its various
physical and information-theoretic interpretations [24].

It is amusing to note the analogy between the passing from classical
probability distributions to quantum mechanical amplitudes and that
from So(ρ) to Ŝo(ρ): Both involve the square root of states.

By the way, we present an alternative and simple proof of the
interesting fact that [18]

So ρ( )≤ 1
for any classical state ρ, which implies that So(·) is convex when the
component states are restricted to coherent states (noting that
So(|α〉〈α|) = 1 for any coherent state |α〉), though it is not
convex in the whole state space. To this end, let the Glauber-
Sudarhsan P representation of ρ be

ρ � ∫P α( )|α〉〈α|d2α,

then

tr aρ2a†( ) � ∫P α( )P β( )αpβe−|α−β|2d2αd2β � ∫P α( )P β( )βpαe−|α−β|2d2αd2β,

tr aρa†ρ( ) � ∫P α( )P β( )|α|2e−|α−β|2d2αd2β � ∫P α( )P β( )|β|2e−|α−β|2d2αd2β,

from which we obtain

So ρ( ) � 1 + 2

tr ρ2( ) tr aρ2a†( ) − tr aρa†ρ( )( )
� 1 − 2

tr ρ2( )∫P α( )P β( )|α − β|2e−|α−β|2d2αd2β.

In particular, if ρ is a classical state, then P(α) ≥ 0, and this implies
that So(ρ) ≤ 1 for any classical state ρ. In contrast, the fact that

Ŝo ρ( )≤ 1 (8)
for any classical state follows readily from the convexity of Ŝo(ρ)
and Ŝo(|α〉〈α|) � 1 for any coherent state |α〉.

4 A CONVEX MEASURE OF
NONCLASSICALITY

Motivated by theWigner-Yanase skew information, we propose a
measure of nonclassicality defined as

N̂ ρ( ) � inf
σ∈C

∣∣∣∣∣∣∣∣∣∣∣∣ 





∣∣∣∣ρ − σ
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2

� inf
σ∈C

tr






|ρ − σ|√

, a[ ] 






|ρ − σ|

√
, a[ ]†( ).

Here |A| � 




A†A

√
is the square root of A†A, and C is the set of

classical states.

It is clear that N̂ (ρ) is a faithful measure of nonclassicality,
N̂ (ρ)> 0 for all nonclassical states and N̂ (ρ) � 0 for all
classical states. Compared with the nonclassicality measure
N (ρ) which is not convex, we prove below that N̂ (ρ) is
convex.

Considering the convex combination of quantum states ρ1 and
ρ2 with probabilities p1 = p and p2 = 1 − p respectively, the mixed
state is denoted by

ρ � p1ρ1 + p2ρ2.

Supposing that

N̂ ρ1( ) � inf
σ∈C

∣∣∣∣∣∣∣∣∣∣∣∣ 





∣∣∣∣ρ1 − σ
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � ∣∣∣∣∣∣∣∣∣∣∣∣ 






∣∣∣∣ρ1 − σ1

∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2,
N̂ ρ2( ) � inf

σ∈C

∣∣∣∣∣∣∣∣∣∣∣∣ 





∣∣∣∣ρ2 − σ
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � ∣∣∣∣∣∣∣∣∣∣∣∣ 






∣∣∣∣ρ2 − σ2

∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2,
due to the fact that the convex combination of classical states is
also a classical state, we have σc � p1σ1 + p2σ2 ∈ C, therefore

N̂ ρ( ) � inf
σ∈C

∣∣∣∣∣∣∣∣∣∣∣∣ 




∣∣∣∣ρ − σ
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2

≤
∣∣∣∣∣∣∣∣∣∣∣∣ 













∣∣∣∣p1ρ1 + p2ρ2 − σc

∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � ∣∣∣∣∣∣∣∣∣∣∣∣ 





















∣∣∣∣p1 ρ1 − σ1( ) + p2 ρ2 − σ2( )∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2
≤
∣∣∣∣∣∣∣∣∣∣∣∣ 



















p1|ρ1 − σ| + p2

∣∣∣∣ρ2 − σ
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2

≤p1

∣∣∣∣∣∣∣∣∣∣∣∣ 






∣∣∣∣ρ1 − σ1
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 + p2

∣∣∣∣∣∣∣∣∣∣∣∣ 






∣∣∣∣ρ2 − σ2
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � p1N̂ ρ1( ) + p2N̂ ρ2( ).

Here the second inequality holds due to

|A + B|≤ |A| + |B|, (10)
which can be obtained from the fact that |A+ λB|2 ≥ 0 for all real λ.
While the third inequality follows from the convexity of the
celebratedWigner-Yanase skew information, the convexity of the
measure N̂ (ρ) is easily proved. We point out here that similar to
other measures involving optimization, this nonclassicality
measure N̂ (ρ) can not be readily computed. It would be
desirable if tight bounds of this quantity can be given.

Similarly from inequality (10) and the convexity of the
Wigner-Yanase skew information, we have

N̂ ρ( ) � inf
σ∈C

∣∣∣∣∣∣∣∣∣∣∣∣ 




∣∣∣∣ρ − σ
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 ≤ inf

τ1∈T

∣∣∣∣∣∣∣∣∣∣∣∣ 





∣∣∣∣ρ − τ1
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2

≤ inf
τ1∈T

∣∣∣∣∣∣∣∣∣∣∣∣ 







|ρ| + ∣∣∣∣τ1∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � 2 inf

τ1∈T

∣∣∣∣∣∣∣∣∣∣∣∣ 









1
2
|ρ| + 1

2

∣∣∣∣τ1∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2
≤
∣∣∣∣∣∣∣∣∣∣∣∣ 

∣∣∣∣ρ∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 + inf

τ1∈T

∣∣∣∣∣∣∣∣∣∣∣∣ 


∣∣∣∣τ1∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � ∣∣∣∣∣∣∣∣∣∣∣∣ 

∣∣∣∣ρ∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � Ŝo ρ( ),
where T is the set of thermal states as defined in Eq. 5, the first
inequality follows from the fact that thermal states are classical
states (that is, T ⊆ C), and the last inequality holds since
inf τ1‖|




|τ1|
√ ‖|2 � inf τ1∈T Ŝo(τ1) � inf λ∈(0,1)(1 −



λ

√ )/(2 + 2


λ

√ ) � 0,
as shown in Ref. [24]. Analogously, we notice that
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Ŝo ρ( ) � ∣∣∣∣∣∣∣∣∣∣∣∣ 

∣∣∣∣ρ∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2
≤
∣∣∣∣∣∣∣∣∣∣∣∣ 











|ρ − σ| + ∣∣∣∣σ∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � 2
∣∣∣∣∣∣∣∣∣∣∣∣ 













1
2
|ρ − σ| + 1

2

∣∣∣∣σ∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2
≤
∣∣∣∣∣∣∣∣∣∣∣∣ 




∣∣∣∣ρ − σ

∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣∣∣∣∣ 


|σ|√ ∣∣∣∣∣∣∣∣∣∣∣∣2
≤
∣∣∣∣∣∣∣∣∣∣∣∣ 





∣∣∣∣ρ − σ

∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 + 1,

where σ is a classical state, and the last inequality can be directly
obtained from inequality (8). So we have

Ŝo ρ( ) − 1≤ N̂ ρ( )≤ Ŝo ρ( ).
In other words, N̂ (ρ) may be well estimated by the convex
nonclassicality quantifier Ŝo(ρ) for highly nonclassical states.

5. CONCLUSION

We have demonstrated thatN (·), a recently introduced significant
nonclassicality measure based on the operator ordering sensitivity,
is not convex, and thus cannot be a consistent measure of the
conventional nonclassicality of light in the sense of Glauber-
Sudarshan. This non-convexity should be borne in mind
whenever one wants to employ N (·) to quantify nonclassicality
in quantum optics in the customary fashion. We have proposed a
faithful measure of nonclassicality N̂ (·) which is convex. One
obstacle of applying this measure is that it can not be readily
computed due to the optimization over the set of classical states.

By the way, we have also demonstrated that although the
important operator ordering sensitivity So(·) is not convex
either, it can be simply connected to the convex Wigner-
Yanase skew information via the square root operation on
quantum states, which is reminiscent of the passing from

probabilities to amplitudes via square roots, so fundamental
in going from classical to quantum.

Due to the remarkable properties and information-theoretic
significance of the Wigner-Yanase skew information, it is
desirable to employ this quantity to study nonclassicality of
light in particular, and nonclassicality of arbitrary quantum
states in general.
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Probing Genuine Multipartite
Einstein–Podolsky–Rosen Steering
and Entanglement Under an Open
Tripartite System
Wen-Yang Sun1,2,3*, Amin Ding1, Haitao Gao1, Le Wang1, Juan He2 and Liu Ye3

1School of Electrical and Electronic Engineering, Anhui Science and Technology University, Bengbu, China, 2Key Laboratory of
Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, Fuyang Normal University, Fuyang, China,
3School of Physics and Optoelectronics Engineering, Anhui University, Hefei, China

Einstein–Podolsky–Rosen steering is a peculiar quantum nonlocal correlation and has
unique physical characteristics and a wide application prospect. Even more importantly,
multipartite steerable states have more vital applications in the future quantum information
field. Thus, in this work, we explored the dynamics characteristics of both genuine
multipartite steering (GMS) and genuine multipartite entanglement (GME) and the
relations of both under an open tripartite system. Specifically, the tripartite
decoherence system may be modeled by the three parties of a tripartite state that
undergo the noisy channels. The conditions for genuine entangled and steerable states
can be acquired for the initial tripartite state. The results showed that decoherence noises
can degrade the genuine multipartite entanglement and genuine multipartite steering and
even induce its death. Explicitly, GME and GMS disappear with the increase in the
decoherence strength under the phase damping channel. However, GME and GMS
rapidly decay to death with the increase in the channel-noise factor and then come back to
life soon after in the bit flip channel. Additionally, the results indicate that GMS is born of
GME, but GME does not imply GMS, which means that the set of genuine multipartite
steerable states is a strict subset of the set of genuine multipartite entangled states. These
conclusions may be useful for discussing the relationship of quantum nonlocal correlations
(GME and GMS) in the decoherence systems.

Keywords: open system, genuine multipartite steering, genuine multipartite entanglement, noise channel,
uncertainty relation

INTRODUCTION

EPR steering and entanglement are two fundamental characteristics of quantum mechanics and that
are inextricably linked. For the moment, the researchers believe that EPR steering stems from
entanglement, but entanglement does not imply EPR steering [1, 2]. EPR entanglement characterizes
quantum nonlocal correlations among remote parties that are totally forbidden within the classical
regime. Moreover, multipartite entangled states have important applications in the field of quantum
information. Utilizing and characterizing such quantum resources stemming from multipartite
nonlocal correlations [3] are rather crucial for the applications of the information theory [4–10] and
from foundational perspectives. Amultipartite state is deemed to be genuinely multipartite entangled
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[11] if and only if the state may not be written as a convex linear
combination of states, each of which is disentangled with
reference to some partition.

One the other hand, the concept of EPR steering was first
introduced by Schrödinger [12, 13] in the context of the EPR
argument [14]. Conceptually, EPR steering describes a nontrivial
trait of quantum mechanics that an observer can immediately
“steer” a distant party by employing the local quantum measures.
EPR steering can be detected by utilizing EPR steering
inequalities [15–22]; the violation of EPR steering inequalities
can indicate that EPR steering occurs. At first, Reid [23] derived
an inequality for EPR steering based on Heisenberg uncertainty
relation in 1989. Then, EPR steering was formally defined in
2007 [24]. Numerous EPR steering inequalities have since been
given; however, most respect was given to detecting bipartite EPR
steering [25]. Additionally, multipartite steerable states have vital
applications in the future quantum information field.
Consequently, the detection and investigation of multipartite
EPR steering is more important and challenging. The concept
of multipartite EPR steering was first introduced by He and Reid
[26] and developed for Gaussian states by Kogias et al. [27].
Experiments were followed [28–32], which motivated research
studies of the monogamy relationship of EPR steering [33, 34].
Moreover, Wang et al. [35] have optimized the collective EPR
steering for the tripartite state within a particular optics-based
system in 2014.

In a realistic world, a quantum system ineluctably suffers from
the influence of the decoherence attributed to the mutual effect
between the system and its external noises. Typically, noisy
environments usually can be classified into two species,
namely, non-Markovian and Markovian environments
[36–40]. In detail, the Markovian noisy environment is
featured by leading to the degeneration of quantum nonlocal
correlations [40]. By contrast, as a normative non-Markovian
noisy environment [41, 42], a dynamic characteristic of quantum
nonlocal correlations can be discovered, which is the renewal of
quantum nonlocal correlations after a finite time period of the
entire disappearance [43]. As a consequence, in the course of
quantum information processing, considering the external noisy
environments is indispensable and significant under a realistic
regime. However, in the past years, there have been only a few
authors to examine the steerability of multipartite states in the
local noisy environments [44–46]. Hence, we will concentrate on
exploring the genuine multipartite steering (GMS) and genuine
multipartite entanglement (GME) under the noise channels. We
here mainly probed the dynamic characteristics of GME and
GMS and the relationship between them under the noise
channels.

The remainder of this article is organized as follows. In Section
II, we introduced the measuring method of GME and GMS
within the multi-body systems, respectively. Then, we
investigated the dynamic behaviors of GMS for the initial
tripartite state under two kinds of different noises in Section 3.
In Section 4, we probed the characteristic of GME and compared
it with GMS as the tripartite state under the two kinds of different
noises. Finally, we ended up our article with a brief conclusion.

2 MEASUREMENTS OF GME AND GMS

2.1 Measurement of GME
In the first place, a method to measure multi-body entanglement
is introduced, viz., GME. N-partite entanglement is defined by its
opposite, bi-separability. An N-partite state that cannot be
written as an ensemble of bi-separable states is an N-partite
entangled state. Employing the results of Ref. [47], for a multi-
body quantum state |ψ〉, if the state’s density matrix ρ is an
X-structured matrix form

ρ �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 c1
a2 c2

1 0
an cn
cpn bn

0 1
cp2 b2

cp1 b1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1)

where n � 2N−1, andN is the number of qubits in a quantum state.
For example, if the quantum state is a three-qubit state,N is equal
to three, and n � 4. In addition, we require |ci|≤

���
aibi

√
and∑i(ai + bi) � 1 to ensure that ρ is positive and normalized. In

the circumstances, one can give the expression of GME for the
X-structured matrix ρ [47].

GME � 2max{0, |ci| −∑n

j ≠ i

����
ajbj

√ }, i, j � 0, 1, 2, . . . , n , (2)

where Eq. 2 is a quantified expression for multi-body
entanglement, and the range is zero to one. If the value of the
GME is equal to zero, which means that the tripartite state does
not have genuine multipartite entanglement, then the tripartite
state is not a genuine tripartite entangled state. Furthermore, if
the value of the GME is greater than zero and less than or equal to
one, which means that the tripartite state does have genuine
multipartite entanglement, the tripartite state is a genuine
tripartite entangled state. Moreover, the value of the GME is
equal to one, which means that the tripartite state is the maximal
genuine entangled state.

2.2 Measurement of GMS
According to the method proposed by He and Reid [26], if
the tripartite system is a three-qubit system, with the usual
Pauli operators defined for each site, the uncertainty relation
for spin implies (Δσ(k)x )2 + (Δσ(k)y )2 ≥ 1, (Δσ(k)z )2 + (Δσ(k)y )2 ≥ 1
and for each site k � 1, 2, 3. The approach given by He and
Reid [26] will be used; the conditions for steering can be
given by

SΙ : � 〈[Δ(σ(1)
z − σ(2)

z )]2〉 + 〈[Δ(σ(1)
x + σ(2)y σ(3)

y )]2〉≥ 1,
SΙΙ : � 〈[Δ(σ(2)z − σ(3)

z )]2〉 + 〈[Δ(σ(2)
x + σ(1)

y σ(3)
y )]2〉≥ 1,

SΙΙΙ : � 〈[Δ(σ(3)
z − σ(1)z )]2〉 + 〈[Δ(σ(3)x + σ(2)

y σ(1)y )]2〉≥ 1. (3)

where 〈(Δσ i)2〉 denotes the variance of the quantum
observable σ i, and i � x, y, z. Then, let us introduce the set
of all bipartitions of N parties. Each bipartition is a division of
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the set {1, 2, . . . , N} into two non-overlapping and non-empty
subsets {As, Bs}. The set of all such bipartitions is denoted by
J � {J1, J2, . . . J2N−1−1}. For example, for a three-qubit state,
there are three bipartitions {As, Bs} that are {23, 1}s, {13, 2}s,
and {12, 3}s. As a matter of fact, inequalities SΙ , SΙΙ , and SΙΙΙ are
implied by bipartitions {23, 1}s, {13, 2}s, and {12, 3}s,
respectively. Consequently, the expression of GMS
inequality for the tripartite qubit-state can be written as

GMS(ρ): � {SΙ + SΙΙ + SΙΙΙ ≥ 1}. (4)
If the GMS inequality in Eq. 4 is violated, which is sufficient to

show GMS, and the value of GMS inequality is smaller, it means
that the steerability is stronger.

3 DYNAMIC PROPERTIES OF GMS FOR
THE INITIAL TRIPARTITE STATE WITHIN
THE TWO KINDS OF THE DIFFERENT
NOISES

In this section, we assume that there are three parties and they
share an initial three-qubit state in the form of [48, 49].

ρ � Q(|cGHZ〉〈cGHZ|) + 1 − Q

8
I8, 0≤Q≤ 1 , (5)

where |cGHZ〉 � α|000〉 + �����
1 − α2

√ |111〉, 0≤ α≤ 1, and I8 is
the 8 × 8 identity matrix. Based on Eqs 2, 4, we can obtain the
three-qubit states of GME 2αQ

�������(1 − α2)√ − 3/4(1 − Q) and
GMS inequality 39/16 − 3/2Q(1 + α

�����
1 − α2

√ )≥ 1, respectively.
In Figure 1, the red dashed line is below the black dashed line,
which means the tripartite state is a genuine tripartite
steerable state. On the contrary, if the red dashed line is
above the black dashed line, which means the tripartite
state is not a genuine tripartite steerable state. Thus, when
α is equal to

�
2

√
/2, one can obtain that the tripartite state is a

genuine steerable state in the case of 23/36<Q≤ 1, while it is a
genuine unsteerable state for 0≤Q≤ 23/36 in Figure 1.
Moreover, the tripartite state is entangled for 1≥Q> 3/7
and is separable for 3/7≥Q≥ 0. The maximally entangled state
(Q � 1, α � �

2
√

/2) is a maximally genuine tripartite steerable state.
Hence, we can draw a conclusion that for the whole set of the three-
qubit states, it holds that GMS0GME, suggesting a hierarchy
according to which all GMS’s states are genuinely entangled, while
GME does not imply GMS, which means that the set of genuine
tripartite steerable states is a strict subset of the set of genuine
tripartite entangled states.

Next, we considered that the tripartite states each
independently and locally interacts with a zero-temperature
reservoir. Herein, the two kinds of different noisy channels
were considered: the bit flip (BF) channel and phase damping
(PD) channel, respectively. In this context, the
system–environment interaction via the operator-sum
representation formalism is utilized. Following the approach of
the Kraus operators, the time-evolution of the initial three-qubit
states under the local noisy environment can be expressed by the
trace-preserving quantum operation ξ(ρ), which is ξ(ρ) �∑iKiρK

†
i with the Kraus operators satisfying the trace-

preserving condition ∑iKiK
†
i � I. The influence of the flip

noises is to damage the correlations contained in the phase
relations without the exchange of energy. The Kraus operators
for the BF noise channel can be given by

K0 �
��
d

√
I, K1 �

�����
1 − d

√
σx, (6)

where one can call that d is the channel-noise factor and 0≤ d≤ 1,
and I is the 2 × 2 unit density matrix. The set is interpreted as
corresponding to a probability d of remaining in the same state
and a probability 1 − d of having an error 0 ↔ 1. The factorK1 in
Eq. 6 ensures that at d � 1/2 has maximal ignorance about the
occurrence of an error and thereby has minimum information
about the state [50].Furthermore, the PD noise channel depicts
the losing correlations without the loss of energy. It leads to
decoherence without relaxation. The Kraus operators can be
given as

K2 � ( 1 0
0

�����
1 − d

√ ), K3 � ( 0 0
0

��
d

√ ), (7)

where d is the decoherence strength, and 0≤ d≤ 1. For
convenience, here, we collectively call that d is the channel-
noise factor in the BF and PD noise channels.

As a consequence, when three parties (all subsystem) of the
three-qubit states suffer from the two different noisy
environments, we then can obtain the non-zero elements of
two kinds of the different final states, ρBF and ρPD, respectively.

To be precise, as three parties of the three-qubit states undergo
the BF channel, the final state can be written as

ρBF � K0 ⊗ K0.ρ.(K0 ⊗ K0)† + K1 ⊗ K1.ρ.(K1 ⊗ K1)†
+ K0 ⊗ K1.ρ.(K0 ⊗ K1)† +K1 ⊗ K0.ρ.(K1 ⊗ K0)†, (8)

Hence, we can obtain the non-zero elements of the final states ρBF
as follows:

FIGURE 1 | (Color online) Quantum measures {GME (blue solid line) and
GMS inequality (red dashed line)} as a function of the state parameter Q, when
α is equal to

��
2

√
/2. Here, the value of the black dashed line is equal to 1.
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ρBF18 � ρBF81 � α
�����
1 − α2

√
[1 + 3(d − 1)d]Q,

ρBF27 � ρBF72 � ρBF36 � ρBF63 � ρBF45 � ρBF54 � α
�����
1 − α2

√
(1 − d)dQ,

ρBF11 � 1
8
{1 + (2d − 1)[2(5 − 2d)d − 7 + 8α2(1 + (d − 1)d)]Q},

ρBF22 � ρBF33 � ρBF55 � 1
8
− 1
8
(2d − 1){ − 1 + 2[3 + 4α2(d − 1) − 2d]d}Q,

ρBF44 � ρBF66 � ρBF77 � 1
8
{1 + (2d − 1)[1 + 2(1 + 4α2(d − 1) − 2d)d]Q},

ρBF88 � 1
8
+ {d3 − 1

8
+ α2[1 + d((3 − 2d)d − 3)]}Q.

(9)
Then, as three parties of the three-qubit states, Eq. 5 suffers from
the PD channel; the final state can be written as

ρPD � K2 ⊗ K2.ρ.(K2 ⊗ K2)† +K3 ⊗ K3.ρ.(K3 ⊗ K3)†
+ K3 ⊗ K2.ρ.(K3 ⊗ K2)† +K2 ⊗ K3.ρ.(K2 ⊗ K3)†, (10)

and the non-zero elements of final states ρPD are

ρPD11 � 1
8
+ (α2 − 1

8
)Q,

ρPD88 � 1
8
[1 + (7 − 8α2)Q],

ρPD18 � ρPD81 � α
�����
1 − α2

√
(1 − d)3/2Q,

ρPD27 � ρPD72 � ρPD36 � ρPD63 � ρPD45 � ρPD54 � 0,

ρPD22 � ρPD33 � ρPD44 � ρPD55 � ρPD66 � ρPD77 � 1 − Q

8
.

(11)
Herein, by using Eqs 3, 4, one can gain an analytical expression

of the GMS inequality for the initial state within the two kinds of
different noisy channels, respectively. In accordance with the
abovementioned analysis, one can draw the GMS inequality of
the states ρBF and ρPD as a function of the state parameters α in
terms of the different channel-noise factor d for Q � 1 in
Figure 2. From these figures, one can see that the overall
trend of the GMS inequality first decreases and then increases

with the increase in the state parameter α for a fixed d, whatever
the initial state is under the BF channel or PD channel. The value
of α is equal to

�
2

√
/2, which corresponds to the position of the

maximal genuine steerability for the tripartite state. As the
channel-noise factor grows, it does not change. It turns out
that the noisy environments cannot destroy the symmetry of
GMS for the inertial state. Moreover, we observed that GMS will
rapidly disappear with the increasing channel-noise factor d in
the BF channel. However, GMS will not fleetly disappear with the
increasing channel-noise factor d in the PD channel. It means
that the BF and PD noises can seriously influence and damage the
GMS. However, the impact of the PD noise on GMS is weaker
than that of the BF noise.

Then, in order to explore the influence of the state parameters
Q on the GMS inequality in terms of different channel-noise
factors d for α � �

2
√

/2, Figure 3 is drawn. As shown in Figure 3,
one can see that GMS inequality rapidly decreases to zero with the
increase in the state parameters Q, when there is no effect of the
decoherence noise, namely, d � 0. This demonstrates that the
steerability of the state is stronger. We also found that the GMS
occurs only when the state parameters Q increases to a fixed
value. However, the properties of the GMS are different in the BF
and PD noises, when the channel-noise factor is nonzero. In the
BF channel, when the channel-noise factor is equal to 0.2, 0.4, and
0.5, respectively, GMS disappears whatever the state parameter Q
is. Particularly, for the channel-noise factor d � 0.5, the tripartite
state has minimum information. In addition, GMS can appear
with the increase in the state parameter Q, while the channel-
noise factor is equal to 0.2, 0.4, and 0.5 in Figure 3 (2),
respectively.

Next, we considered the effects of the state parameters Q and
the channel-noise factor d on the GMS inequality, for which
Figures 4,5 were drawn. As shown in Figures 4, 5, it can be
concluded that the GMS inequality first increases and then
decreases with the increase in the channel-noise factor d
within the BF channel, whatever the value of the state
parameter Q is; however, the GMS inequality increases with
the increase in the channel-noise factor d in the PD channel.

FIGURE 2 | (Color online) GMS-inequality as a function of the state parameter α in terms of different channel-noise factors d for Q � 1, when the initial three-qubit
state is under the different noisy channels. (A) BF channel. (B) PD channel.
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FIGURE 3 | (Color online) GMS inequality as a function of the state parameter Q in terms of different channel-noise factors d for α � ��
2

√
/2 in the different noisy

channels. (1) BF channel. (2) PD channel.

FIGURE 4 | (Color online) GMS inequality as a function of the channel-noise factor d in terms of different state parameters Q for α � ��
2

√
/2 within the different noisy

channels. (i) BF channel. (ii) PD channel. Here, Q � 1 (red dashed lines), Q � 0.9 (blue dashed lines), Q � 0.8 (cyan dashed lines), and Q � 0.7 (green dashed lines).

FIGURE 5 | (Color online) Contour plot of GMS inequality versus the state parameter Q and the channel-noise factor d with α � ��
2

√
/2 under the different noisy

channels. (A) BF channel. (B) PD channel.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9411595

Sun et al. Genuine Multipartite Einstein–Podolsky–Rosen Steering and Entanglement

71

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


We discovered that the GMS can be detected if and only if the
channel-noise factor d is larger than (6 − ��

23
√ )/12 and less than

(6 + ��
23

√ )/12 under the BF channel in Figure 4(i) and
Figure 5A. Moreover, when the channel-noise factor d is
equal to 0.5, the values of the GMS inequality are invariable in
the BF channel. At the moment, the tripartite state has minimum
information and no quantum correlation.

Hence, we can conclude that the decoherence effect can
destroy the steerability of quantum states or even completely
disable the steerability. In order to more intuitively observe the
influence of the three parameters (the channel-noise factor d and
the state parameters Q and α) on GMS, we drew a three-
dimensional contour map of the GMS inequality in Figure 6.
We can draw the same conclusions as mentioned earlier, and we
will not go into them here.

4 DYNAMIC CHARACTERISTICS OF GME
AND ITS COMPARISON WITH THE GMS
UNDER THE TWO KINDS OF THE
DIFFERENT NOISES

It is generally acknowledged that quantum steering originates
from quantum entanglement; however, entanglement does not
imply steering, which means that the set of steerable states is a
strict subset of the set of entangled states. In this section, we
probed the dynamic characteristics of GME and then discussed
the relationship between GMS and the GME under the two kinds
of the noisy channels.

By employing Eq. 2, we can give the expressions of the
GME as

GME(BF) � 2max[0, ∣∣∣∣ρBF18∣∣∣∣ − 3
�����������
ρBF22 · ρBF77

√
,∣∣∣∣ρBF27∣∣∣∣ − ( �����������

ρBF11 · ρBF88
√ + 2

�����������
ρBF33 · ρBF66

√ )], (12)

and

GME(PD) � 2max[0, α �����
1 − α2

√ (1 − d)3/2Q − 3
8
(1 − Q)],

(13)
under the BF and PD channels, respectively.

To begin with, we considered the influence of the state
parameters Q and α on GME, when d is a constant value. As
shown in Figure 7, the GME first increases and then reduces with
the increasing state parameter α, as Q is a constant value.
Additionally, the tripartite state is a product state with no GME,
when the state parameter α is equal to zero or one. We also obtained
that GME increases with the increase in the state parameterQ. Thus,
we think that Q is a purity parameter for the tripartite state. The
bigger theQ, the bigger the GME is. The tripartite state is a maximal
entangled state, when α � �

2
√

/2, Q � 1, and there is no decoherence.
Next, for comparing GME with GMS and the relationship

between GMS and GME, we investigated the influence between
the state parameters α and the channel-noise factor d on the GME
and the GMS for Q � 0.9. In the BF channel, both GME and GMS
first rapidly decay to deathwith the increasing channel-noise factord
and then come back to life (see Figure 8A). However, bothGME and
GMS tardily decay to death with the increasing channel-noise factor
d within the PD channel. Meanwhile, as shown in Figure 8B, when
GMS and GME just disappear, the channel-noise factor d has a
critical value, and the critical values are d ≈ 0.744 and d ≈ 0.809,
respectively. In other words, as the channel-noise factor is
approximately smaller than 0.744, the tripartite state is both
genuine steerable and entangled. If the channel-noise factor is

FIGURE 6 | (Color online) 3D contour plot of GMS inequality versus the state parametersQ and α and the channel-noise factor d under the different noisy channels.
(A) BF channel. (B) PD channel.
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larger than 0.744 but less than 0.809, the tripartite state is unsteerable
and only genuinely entangled. The channel-noise factor is larger
than 0.809, and the tripartite state is both unsteerable and
disentangled. It is indicated that GMS originates from GME, but
GME does not imply to GMS, which means that the set of genuine
multipartite steerable states is a strict subset of the set of genuine
multipartite entangled states. This result is also true in the BF
channel (see Figure 8A). These conclusions may be useful for
analyzing the relationship of quantum nonlocal correlations
(GME and GMS) in the decoherence noise.

5 CONCLUSION

In this article, we mainly investigated the physical
characteristic of GME and GMS within the two kinds of the

different noisy channels. In contrast with our previous work
[49], we used different initial states, and this state (see Eq. 5) is
more general. In addition, here, we utilized different
measurement methods for the multipartite quantum
nonlocal correlation (GME) in this work. The anti-
decoherence ability of GME is stronger than that of GMN.
In the next place, a tripartite state is subjected to different
decoherence noisy environments, but one is under curved
spacetime (non-inertial frame) and one is without (this
work). Consequently, in this study, we first discussed that
the dynamic properties of GMS and GME for the initial
tripartite state and the conditions for entangled and
steerable states can be given. Then, the effect of BF and PD
noises on the GMS is discussed, respectively. The results
indicated that GMS is very flimsy under the influence of the
decoherence. Specifically, GMS will perish with the increase in

FIGURE 7 | (Color online) Contour plot of GME versus the state parameters Q and α for d � 0.1 in the different noisy channels. (A) BF channel. (B) PD channel.

FIGURE 8 | (Color online) Variety of quantum measures (GME (dashed line) and GMS (solid line)) as a function of channel-noise factor d in terms of different state
parameters α for Q � 0.9. (A) shows the BF channel, and (B) shows the PD channel. Here, α � ��

2
√

/2 (red lines), α � 0.3 (pink lines), α � 0.6 (blue lines), α � 0.9 (green
lines), and α � 1 (cyan lines).
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the channel-noise factor under the PD channel. However,
GMS rapidly decays to death with the increase in the
channel-noise factor and then come back to life soon in the
BF channel. At the end, we studied the dynamic characteristics
of GME and discussed the relationship between GME and
GMS under decoherence noises. The decoherence noises can
also degrade the GME and even induce its death. In addition,
we can draw a conclusion that GMS originates from GME, but
the GME does not imply GMS, which means that the set of
genuine multipartite steerable states is a strict subset of the set
of genuine multipartite entangled states. These conclusions
may be useful for analyzing the relationship of quantum
nonlocal correlations in the decoherence noises.
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