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Editorial on the Research Topic

Broadening our conceptual understanding of endogenous opioids in

systems neuroscience

Endogenous opioid peptides and their receptors are critical mediators of various

physiological and psychological processes, including motivation, affect, pain processing,

cognition, stress-responsivity, and autonomic function. These opioid systems are embedded

in neuronal circuits that subserve specific aspects of such processes and play a pivotal role

in finely tuning behavioral outcomes. This is of relevance as dysfunction in endogenous

opioid systems has been implicated in a plethora of neuropsychiatric disorders characterized

by alterations in several of symptom clusters. To date, opioid receptor systems remain a

promising therapeutic target for a variety of neuropsychiatric disorders and are an area of

on-going development.

As a field, we have achieved significant advancements in our understanding of the

cellular and molecular underpinnings of endogenous opioids in regulating cellular activity

and behavior. However, there remain critical knowledge gaps in our understanding of

how endogenous opioid systems are embedded in neuronal circuits and how these

systems regulate emergent properties of brain function. Recent advances in technology

have permitted a thorough dissection of endogenous opioid systems with cell type,

pathway, and subcellular resolution. Accordingly, progress has provided us with a better

understanding of endogenous opioid system engagement in regulating neuronal systems

that subserve the aforementioned physiological and psychological processes. Despite those

critical breakthroughs, further efforts are necessary to unravel the precise granularity

with which endogenous opioid systems dysregulation alters pathways necessary for the

development and maintenance of pathophysiological states in mental health disorders.

With the present collection of articles in this Research Topic, we provide recent

advancements in our understanding of endogenous opioids from receptor signaling to

neuronal circuits and highlight future avenues and opportunities for research aiming at

elucidating novel targets and approaches to treat neurological and psychiatric disorders.

Gamble et al. highlight recent advancements in uncoupling cellular mechanisms

mediating beneficial pharmacological effects such as treatment of pain and receptor signaling

that leads to various unwanted effects such as analgesic tolerance, physical dependence

and activation of reward circuitry. They discuss the relatively unappreciated interaction
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of mu opioid receptors (MOR) with receptor tyrosine kinases

(RTKs), including RTKs transactivation of MOR, and the potential

therapeutic implication for targeting RTK to enhance the safety and

analgesic profile of MOR agonists. There is a strong case to be made

that RTK inhibitors may be a co-treatment therapy that will allow

opioid mediated analgesic properties with attenuated negative

outcomes associated with chronic opioid pharmacotherapies.

Adhikary and Williams provide a synthesis of the recent

advancement on cellular tolerance induced by chronic opioid

receptor activation. In addition, they present insights into how

tolerance can be manifested at the neuronal systems level. One

highlight in their article is that tolerance is not mediated by a

single regulatory mechanism but rather by various adaptations in

cellular processes and circuits. In their review they discuss pre- and

post-synaptic mechanisms underlying cellular tolerance to chronic

morphine in multiple brain regions, and how the pharmacological

properties of opioids, including their potency and efficacy, produce

distinct adaptations that lead to tolerance.

The ventrolateral periaqueductal gray area (PAG) is well

recognized for its importance in descending modulation of pain

(pre-clinical; Lubejko et al.), or conditioned pain modulation

(clinical). McPherson and Ingram review the importance of

the opioid systems in descending pain modulation and how

opioids contribute to the cellular and circuit diversity within

the PAG implicated in pain transmission and opioid analgesia.

The granularity on the description of circuit afferent, cell type

specificity, and cellular signaling provides a cohesive summary of

our current knowledge on this specific area of research. One of the

important messages for future direction in this area is the potential

for optimizing novel target drug development by taking advance

of our knowledge of cellular heterogeneity in the PAG and other

regions implicated in descending pain modulation.

The manuscript by Lubejko et al. further addresses the

importance of opioid systems in analgesia and pain treatment. In

this article, they emphasize the potential of neurostimulation as a

novel treatment strategy that mitigates side effect profiles associated

with small molecule MOR ligands. Various neurostimulation

techniques have been proposed to treat pain including deep brain

stimulation (DBS), spinal cord stimulators, vagal nerve stimulation

and transcranial direct current stimulation (tDCS). This paper

highlights evidence supporting the effectiveness of various

neurostimulation techniques and how they may engage opioid

systems to produce their beneficial effect in pain management.

The authors also provide a comprehensive overview of the various

brain regions and circuits where pain transmission is processed

and modulated by opioids, as well as a future outlook of the

next generation of safe, effective, and technologically-innovative

clinical treatments.

Limoges et al. provide us with a detailed description of the

architecture and function of the dynorphin kappa-opioid receptor

system, specifically in amygdala circuits. This review presents

evidence from current literature demonstrating that the dynorphin

kappa-opioid receptor system plays a pivotal role in controlling

many aspects of behavior, including aversive learning, pain-related,

and alcohol and drug-seeking behaviors. Embedded in this article

are comprehensive illustrations of the various neural circuit inputs

onto dynorphin kappa opioid receptor expressing cells within the

basolateral and central amygdala as well as targets of these neurons,

providing a framework for how the kappa opioid system may

contribute to neuropsychiatric disorders.

Adding to this article, Reeves et al. provide a comprehensive

overview of the role of opioid systems in regulating synaptic

transmission and intrinsic excitability across the nervous system.

In their review they summarize the current literature to present

a detailed description of how endogenous opioids finely tune

information flow in discrete circuits, providing a cellular basis

wherein opioid-mediated transmission may shape circuits at the

systems level.

There is a pressing need to understand how opioids produce

reinforcement and drug seeking behaviors, especially in the context

of pain treatment, as chronic pain has been identified as a risk

factor for developing an opioid use disorder. Higginbotham et

al. provide a review on how pain or prolonged opioid exposure

modifies reward circuitry and changes in opioid receptor function.

There is strong evidence that persistent pain negatively impacts

reward sensitivity and mood. Together, pain modulation of reward

sensitivity and mood contributes to susceptibility in initial opioid

misuse and the development of opioid use disorder. They provide a

strong message that the ability to curb the opioid crisis will require

more understanding of how pain and opioid-induced adaptations

alter functional neurocircuitry. Indeed, much of this research is still

in its infancy. Complementing this review is another by Rysztak

and Jutkiewicz that comprehensively describe the mechanisms by

which enkephalin peptides and enkephalin-expressing neuronal

circuits mediate reward function, focusing on the modulation

of mesolimbic dopamine circuitry. The authors further discuss

alterations in those enkephalinergic systems in models of opioid

use disorder.

Lastly, Maletz et al. share a compelling study in which they

identify non-overlapping neuronal populations, expressing or

lacking MOR, activated by morphine and hypoxia/hypercapnia in

the Nucleus Tractus Solitarius. This original data report provides

a deeper understanding of the circuits and neuronal populations

involved in opioid-induced respiratory depression and may lead to

further advancement for prevention and recovery of such events.

Overall, this compilation of papers recognized various future

directions that need to be further explored. While there has

been significant advancement in our understanding of cellular

and synaptic level mechanisms that mediate opioid-regulated

behaviors, there is much to be gained by furthering our

understanding of how opioids regulate the activity of defined

synapses and excitability to shape the activity of large-scale

networks and emergent properties of the brain. Emerging research

has shown that opioid receptor signaling is diverse and much

more complex than what was previously appreciated (e.g. ligand-

directed signaling or functional selectivity). However, how nuanced

signaling by endogenous opioid systems regulate information

flow in neuronal circuits is in large part unresolved. Further,

future research is needed to develop a model that integrates

opioid systems with other signaling modalities (e.g., RTKs, etc).

This provides a basis for diversity of gene expression across

cell types of the brain to influence not only where opioids

may act, but also their function effect on circuits. Additionally,

while the rapid rise in technology development has facilitated
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swift progress in the neuroscience field, further tools are needed

to precisely dissect the functional anatomy and activity of the

opioid systems. Those will be critical to delineate the effects

of endogenous opioids on circuits with high spatiotemporal

resolution helping us to better understand and solve essential

questions. For instance, revealing activity dynamics of not only

neurons expressing opioid peptides, but subsequent opioid peptide

release and receptor-mediated signaling in models of affective

pain or analgesia tolerance will help elucidating potential steps

where endogenous opioid system dysfunction occurs. Together,

this will provide critical insight necessary to develop novel opioid

therapeutics for safer treatment for both the sensory and emotional

experiences associated with pain. Another exciting trajectory

of the field will be to understand the role of opioids in the

context of other treatment modalities such as neuromodulation

(e.g., DBS, tDCS) or rapid-acting antidepressants, which may

in part exert their function via endogenous opioids or can

synergize with opioid-based treatments. In conclusion, here we

present a collection of articles focused on opioid systems in the

context of systems neuroscience, which highlights developments

and provide insights to the future of opioid research in

this setting.
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Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal
level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter
release and postsynaptically hyperpolarizing neurons. However, opioid receptor-
mediated regulation of neuronal function and synaptic transmission is not uniform in
expression pattern and mechanism across the brain. The localization of receptors
within specific cell types and neurocircuits determine the effects that endogenous and
exogenous opioids have on brain function. In this review we will explore the similarities
and differences in opioid receptor-mediated regulation of neurotransmission across
different brain regions. We discuss how future studies can consider potential cell-type,
regional, and neural pathway-specific effects of opioid receptors in order to better
understand how opioid receptors modulate brain function.

Keywords: opioid, synaptic plasticity, receptor signal transduction, neurotransmission, glutamate, GABA

INTRODUCTION

Opioid drugs, which include both prescription painkillers, such as morphine and oxycodone, and
illicit substances, such as heroin, are widely used and frequently misused (Kosten and George, 2002;
Von Korff, 2013). An increase in prescription of opioid analgesics has precipitated an opioid crisis
characterized by widespread opioid misuse, related complications, and opioid overdose (Kosten
and George, 2002; Von Korff, 2013; Dahlhamer et al., 2016). This crisis presents a severe health
exigency and makes salient a crucial scientific initiative to better understand the effects of opioid
drugs and the mechanisms and opioid receptor systems on which these drugs act.

Classically, opioid receptors can be categorized into one of three subtypes: mu (MOR), delta
(DOR), and kappa (KOR) (Le Merrer et al., 2009). Endogenous signaling peptides activate opioid
receptors: endorphins (MOR), enkephalins (primarily DOR, MOR), and dynorphins (KOR).
Opioid peptides or synthetic opioid peptide derivatives are often utilized as selective opioid
receptor agonists and antagonists in research. The pharmacology of these diverse ligands is
reviewed elsewhere (Rasakham and Liu-Chen, 2011; Gendron et al., 2016; De Neve et al., 2021).
Some commonly studied opioid receptor agonists include DAMGO (MOR), DPDPE (DOR),
U69,593 or U50,488 (KOR), and the endogenous opioid peptides, met-enkephalin (MetEnk), leu-
enkephalin (LeuEnk) (DOR, MOR), and dynorphin (KOR). Commonly used opioid receptor
antagonists include CTAP/CTOP (MOR), naltrindole (DOR), and nor-binaltorphimine (KOR)
or less selective antagonists such as naloxone. Many opioid drugs, including morphine, fentanyl,
and heroin primarily activate MORs (Pasternak, 2012). Opioid receptors are Class A G protein
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coupled receptors (GPCRs) that couple to inhibitory Gi/o
proteins (Figure 1; Stein et al., 2003; Allouche et al., 2014).
These receptors transduce extracellular messages using G protein
(Gαi and Gβγ), mitogen-activated protein kinase (MAPK),
and arrestin signaling pathways (Rosenbaum et al., 2009;
Al-Hasani and Bruchas, 2011). Opioid receptors generally
decrease neurotransmission through inhibiting voltage-gated
calcium channels and activating inwardly rectifying potassium
channels (Yamada et al., 1998; Al-Hasani and Bruchas, 2011).
Opioid receptors can be located postsynaptically in neuronal
soma and presynaptically in axon terminals (Olive et al., 1997).
Postsynaptic opioid receptors inhibit neurotransmission by
directly hyperpolarizing neurons, while presynaptic opioid
receptors can indirectly reduce or enhance neural activity
by reducing excitatory or inhibitory neurotransmission,
respectively. The opioid receptors and their endogenous ligands
are differentially expressed throughout the brain (Le Merrer et al.,
2009; Erbs et al., 2015). Because of their widespread expression,
opioid receptors are involved in a diverse array of physiological
and behavioral functions, including nociception, drug reward
and consumptive behavior, social memory, fear learning, stress
and emotion, immune activation, and various physiological
processes, such as respiration and gastrointestinal tract motility
(Shippenberg et al., 1998; Drews and Zimmer, 2010; Van’t Veer
and Carlezon, 2013; Leroy et al., 2017; Eisenstein, 2019; Patel
et al., 2019; Toubia and Khalife, 2019; van Steenbergen et al.,
2019; Robble et al., 2020; Galaj and Xi, 2021).

The expanding understanding of opioid receptor
functionality, distribution, and modulation of neurotransmission
has demonstrated an important role for opioids in modulating
neuroplasticity. Neuroplasticity refers to the ability of the brain
to change structure and function across life and in response to
experience (Voss et al., 2017). The phenomenon is multi-level
and can occur across networks, isolated circuits, and amongst
cell populations (Citri and Malenka, 2008; Voss et al., 2017). This
manifests as changes in functional and structural connectivity,
the formation, migration, and elimination of neurons and
glia, alterations of neuronal processes, and through synaptic
plasticity (Kays et al., 2012; Kelly and Castellanos, 2014).
Synaptic plasticity may be persistent with activity-dependent
strengthening (long-term potentiation, LTP) and weakening
(long-term depression, LTD) of connections between neurons,
although there are abundant forms of short-term plasticity as
well (Citri and Malenka, 2008; Atwood et al., 2014a; Motanis
et al., 2018). Activity-dependent neuroplasticity is mediated
by endogenous neurotransmitter systems (Viveros et al., 2007;
Bliss and Cooke, 2011; Pitchers et al., 2014). Exposure to
exogenous substances (e.g., neurotransmitter receptor agonists,
antagonists) can also induce “chemical” plasticity (Atwood
et al., 2014a). Neuroplasticity underlies many crucial processes,
including learning, cognition, and neurodevelopment, and is
implicated in the development of neuropathology, including
mood disorders, addiction, and neurodegenerative diseases.
Therefore, it is important to elucidate the role of opioid receptors
in neuroplasticity (Johansson, 2004; O’Brien, 2009; Kays et al.,
2012; Schaefers and Teuchert-Noodt, 2016; Voss et al., 2017).
Due to their ability to modulate different neurotransmitter

FIGURE 1 | Summary of potential mechanisms of opioid receptor-mediated
modulation of neurotransmission. Opioid receptor activation enhances
potassium channel (KV) and inhibits calcium channel (CaV) function, reducing
neurotransmitter release or producing changes in postsynaptic excitability.
Opioid receptors may modulate adenylyl cyclase (AC) function to reduce
cAMP levels, thereby impacting protein kinase A (PKA) and type 1
hyperpolarization-activated cyclic nucleotide-gated (HCN1) channel activity.
Beta-arrestin2 (Barr2), phospholipase A2 (PLA2), as well as kinases such as
p38, ERK, protein kinase C (PKC), and cSrc have been implicated in
mediating opioid receptor effects on neurotransmission. Opioid
receptor-mediated G protein signaling could also directly affect
neurotransmitter release machinery. Figure created with BioRender.com.

systems, as well as directly influencing cellular function, opioid
receptors are positioned to modulate both activity-dependent
plasticity and opioid drug-induced chemical plasticity (Lüscher
and Malenka, 2011; Beltrán-Campos et al., 2015; Hearing et al.,
2018; Hearing, 2019; Puryear et al., 2020).

The goal of this review is to demonstrate how opioid receptors
modulate neurotransmission. While opioid receptors modulate
a variety of neurotransmitter systems, we have limited the
scope of this review to excitatory (glutamatergic) and inhibitory
(often GABAergic) transmission and postsynaptic modulation
of neuronal excitability. We have focused on brain regions
where much work on opioid receptor-mediated regulation of
neurotransmission has been performed. A summary of the
literature reviewed below is provided in Table 1 and illustrated in
Figure 1 as a reference for the reader. Figure 1 also illustrates how
opioid receptors differentially impact neurotransmission pre-
and postsynaptically. In this review, we focus on the role of opioid
receptors themselves, rather than the impact of opioid drugs
on general synapse and brain function. The studies reviewed
herein utilized electrophysiology techniques in combination
with pharmacological manipulation of opioid receptors. Studies
investigating subpopulations within brain regions (i.e., input
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regions, cell types, projection targets) have utilized many
techniques, including targeted expression of optogenetic tools,
tracing strategies, and reporter animal models. We will discuss
potential generalizable principles regarding opioid receptor-
mediated neuroplasticity, point out broad knowledge gaps, and
suggest areas of future research to advance the field, especially as
it relates to cell type- and synapse-specific explorations of opioid
receptor function.

AMYGDALA

The amygdaloid complex is involved with emotional processing
and consists of 13 nuclei, categorized as basolateral (basal,
lateral, and accessory basal nuclei; BLA), cortical-like (cortical
and lateral olfactory tract nuclei, periamygdaloid complex),
centromedial [medial (CeM) and central nuclei (CeA)], bed
nucleus of stria terminalis (BNST), or other (intercalated nuclei,
anterior amygdala area, amygdalohippocampal area) (Sah et al.,
2003). The amygdaloid complex has extensive connectivity across
the brain, including local connectivity between amygdala nuclei
(Pitkänen et al., 1997). MORs in the amygdala are involved
with analgesia, fear and anxiety responses, and social behavior
(Good and Westbrook, 1995; Wilson and Junor, 2008; Zhang
et al., 2013; Lebow and Chen, 2016). Amygdala DORs play a
role in modulating ethanol’s effects; however, a functional role
of amygdala DORs may not occur until after exposure to drugs
of abuse, such as ethanol and morphine (Kang-Park et al., 2007;
Bie et al., 2009a,b). Amygdala KORs are involved with anxiety
and fear conditioning (Knoll et al., 2011). KOR activation in
the amygdala increases anxiety-like behaviors and enhances the
rewarding effects of nicotine, possibly due to nicotine’s anxiolytic
effect (Smith et al., 2012).

Basolateral Amygdala
The basolateral amygdala (BLA) is the primary input region
of the amygdaloid complex and receives inputs from across
the brain, including hippocampus, nucleus accumbens (NAc),
prefrontal cortex (PFC), thalamus, and other amygdala nuclei
(Huang et al., 2021). In the lateral nucleus, MORs hyperpolarize
about 50% of neurons (Sugita and North, 1993). However, a
later study found MORs do not directly hyperpolarize BLA
neurons, but the activity of BLA neurons is modulated by
presynaptic MORs (Blaesse et al., 2015). In the lateral nucleus,
MORs and DORs presynaptically inhibit GABAergic input
(Sugita and North, 1993). A later study found that MOR
enhances voltage-gated potassium channel (Kv) 1.2 currents and
enhances action potential (AP) spike adaptation via G protein
PLA2 signaling in lateral amygdala (Faber and Sah, 2004).
MetEnk inhibits GABAergic input to the BLA from intercalated
cells, presumably through MORs (Gregoriou et al., 2019). It
is unknown whether MORs regulate GABA transmission from
other GABAergic inputs. MOR activation reduces GABAergic
input to ∼75% of CeA-projecting BLA neurons via activation
of Kv1.1/1.2 channels. Very few CeA-projecting BLA neurons
have glutamate input that is inhibited by MOR activation
(Finnegan et al., 2006). On the other hand, MOR activation

produces a long-lasting depression of dorsal midline thalamic
glutamatergic input to BLA neurons. MOR inhibition of midline
thalamic input to BLA neurons is sufficient to reduce feedforward
excitation of the CeM (Goedecke et al., 2019). These studies
suggest MORs may primarily modulate BLA projections to the
centromedial amygdaloid nuclei; however, additional studies
are needed investigating MOR modulation of BLA projections
to other regions.

Kappa activation in BLA enhances presynaptic GABA
transmission in a tetrodotoxin (TTX)-sensitive manner with no
effect on postsynaptic responses in adolescent, but not adult
rats (Przybysz et al., 2017). KORs have no effect on glutamate
transmission in BLA in rats. Further exploration of the effects of
KOR activation on GABA transmission in adolescent rats showed
that KOR activation has a variable effect on GABA transmission
with subsets of cells showing potentiation, no responses, or
depression (Varlinskaya et al., 2020). Further research is needed
to determine if these subsets represent sub-populations with
distinct afferents/efferents. In mice, KOR activation reduces
synaptic transmission from the lateral amygdala to the BLA and
blocks LTP induction in the BLA (Huge et al., 2009). Overall,
these studies demonstrate KORs modulate neurotransmission in
the BLA and these effects demonstrate species, age, input, and
output specificity.

Bed Nucleus of the Stria Terminalis
MORs presynaptically inhibit GABAergic transmission to
Ventral Tegmental Area (VTA)-projecting neurons in the
ventrolateral BNST (Dumont and Williams, 2004). It is
unknown whether MORs inhibit GABA transmission to non-
VTA-projecting BNST neurons. MOR’s effect on glutamate
transmission in the BNST is also unknown. KORs presynaptically
inhibit GABAergic input from CeA to BNST via extracellular
signal-related kinases (ERK), but not p38 (Li et al., 2012). KOR
activation induces presynaptic LTD via p38 (not PKA or MAPK)
and calcium signaling in BNST at BLA, but not PFC inputs.
Despite KOR-mediated inhibition of GABA transmission, the
net effect of KOR activation is to reduce AP firing of BNST
neurons. This may be caused by KOR-induced inhibition of
glutamate transmission in the BNST. KOR inhibits glutamate
onto both dynorphin-positive and dynorphin-negative neurons
but has a larger effect on dynorphin-positive neurons (Crowley
et al., 2016). Overall, presynaptic MORs and KORs modulate
neurotransmission in the BNST; however, while KORs inhibit
both GABA and glutamate transmission, MORs have only been
shown to inhibit GABA transmission.

Centromedial Amygdala
MORs inhibit about 60% of CeA neurons, particularly those
with bipolar morphology (Chieng et al., 2006). CeA neurons
can be characterized as Type A or B based on the absence
or presence of spike accommodation in response to prolonged
depolarization current. MORs hyperpolarize a subset of Type A
neurons through activation of potassium currents, whereas KORs
only hyperpolarize Type B neurons (Zhu and Pan, 2004). Separate
subpopulations of MOR-inhibited neurons were also inhibited
by KORs or DORs. When the investigators looked at projection
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TABLE 1 | Summary of effects of mu (MOR), delta (DOR), and kappa (KOR) opioid receptor activation on neuronal excitability (postsynaptic effects), presynaptic GABA
release, and presynaptic glutamate release.

Postsynaptic effects Presynaptic GABA Presynaptic Glutamate

MOR DOR KOR MOR DOR KOR MOR DOR KOR

Amygdala

BLA – + ± ± –

BNST + + ±

CeA ± ± ± + ± + + ± ±

MICR + ± ± –

Brainstem/Midbrain

DVM ± +

LC + + +

MVN – + –

NTS + – – ± + +

PAG ± ± + ± ± + – –

Pons + – – + + + + – –

Raphe ± ± + – – + +

RVM ± ± ± ± ± ±

SN + + + + +

VTA/RMTg ± ± ± + ± + + +

Cortex

ACC ± ± – + ± +

AIC ± ± ±

mPFC + ± ± ±

OFC ±

S1 ± ± ±

Hippocampus

CA1 ± ± ± ± ± – –

CA2 +

CA3 ± ± + – – ± +

DG + + + + + + ± – ±

Hypothalamus

AN ± ± ± + ± + + – +

LH +

PO + +

PVN + + +

SON ± ± ± ± ± + ±

VMH + – – + – +

Habenula

LHb ± ± + ± +

Pallidum

GP + – ± + ± + –

EPN + +

VP + + + + +

Striatum

DS – – ± ± ± ± +

NAc ± ± ± + ± ±

Thalamus

Thalamus + – ±

+, Identified effects of opioid receptor activation.
–, Identified null effect of opioid receptor activation.
±, Identified effects in a subpopulation of neurons or inconsistent results between studies.
Blanks indicate untested areas. Note that future studies may reveal heterogenous responses to opioid receptor activation where past studies have either observed
widespread effects or null effects.
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targets they found that MORs hyperpolarize parabrachial nucleus
(PBN)-projecting neurons (Chieng et al., 2006). It is possible
MOR-sensitive Type A neurons may specifically project to the
CeA, although additional studies are needed to confirm this.

MORs appear to play a role in tonically inhibiting GABA
release from synaptic terminals in the CeA. In vivo opioid
exposure can also induce postsynaptic MOR-mediated inhibition
of GABA current amplitudes (Kang-Park et al., 2009; Bajo
et al., 2011). Specifically, periaqueductal gray (PAG)-projecting
CeA neurons receive MOR-sensitive GABAergic input (Finnegan
et al., 2005). Additional studies are needed to identify MOR-
sensitive GABAergic inputs in the CeA. Like MORs, KOR
activation inhibits GABA release in CeA in rats (Przybysz et al.,
2017) and KORs may also tonically inhibit GABA release (Gilpin
et al., 2014; Bloodgood et al., 2021; Khom et al., 2021). Similarly,
DORs also inhibit GABA release in the CeA, but there is evidence
for species differences. In one study in mice, DOR activation
was shown to reduce GABA release; whereas, in another study
in rats, DORs did not have an effect on GABA transmission
under normal conditions, but gained the ability to do so in
ethanol-treated rats (Kang-Park et al., 2007; Bie et al., 2009a).
Similar to the CeA, MORs inhibit GABA transmission in the
CeM; MetEnk, presumably through MORs, inhibits GABergic
input from the nearby intercalated cell region of the amygdala
(Gregoriou et al., 2019). MORs on the intercalated cells prevent
feedforward inhibition from the BLA to the CeM (Blaesse et al.,
2015). Future studies are needed to determine whether KORs or
DORs inhibit GABA transmission in the CeM.

In contrast to opioid receptor-mediated effects on GABA
transmission, MOR, but not DOR or KOR, activation reduces
glutamate input in the CeA but not CeM (Zhu and Pan,
2005; Blaesse et al., 2015). Specifically, a small subpopulation
of PAG-projecting neurons in the CeA receive MOR-sensitive
glutamate input (Finnegan et al., 2005). A later study determined
that MORs inhibit glutamate input to CeA neurons from the
parabrachial nucleus and BLA (Kissiwaa et al., 2020), but another
study found MORs do not inhibit BLA inputs to CeM neurons
(Blaesse et al., 2015). Another study found MOR activation
produces a transient depression of dorsal midline thalamic
glutamatergic input to CeA neurons (Goedecke et al., 2019).
Similar to some studies of CeA GABA transmission, DOR-
mediated inhibition of glutamate release may be inducible (Bie
et al., 2009a,b). A subset of BLA inputs are dually regulated
by KORs and DORs, suggesting that there may be some CeA
synapses that are sensitive to KORs and DORs that may not
be distinguished when glutamate transmission is probed more
broadly, as done previously (Zhu and Pan, 2005; Kissiwaa et al.,
2020). In CeA neurons, direct parabrachial glutamatergic input
to corticotropin-releasing factor (CRF) neurons is insensitive to
KORs; however, KOR activation presynaptically inhibits local
GABA neurons that receive parabrachial glutamatergic input,
resulting in disinhibition of the CRF neurons (Hein et al., 2021).

Medial Intercalated Cell Region
GABAergic neurons of the medial island of intercalated cells send
inhibitory projections to the BLA and CeM. MORs hyperpolarize
these neurons in both rats and mice (Blaesse et al., 2015;

Winters et al., 2017). In rats, both MOR and DOR, but not
KOR, activation can reduce glutamate release from BLA inputs
to intercalated neurons. Endogenous opioid peptide release in
the intercalated cell region produces presynaptic inhibition of
glutamate release via DORs and postsynaptic hyperpolarization
via MORs (Winters et al., 2017). On the other hand, one study
found that MORs do not inhibit glutamate input from BLA to
the medial intercalated cell region in mice, suggesting possible
species differences (Blaesse et al., 2015). MORs also inhibit
GABA transmission to intercalated neurons in rats. Direct MOR
activation via exogenous agonist application greatly decreases
local GABA transmission, although endogenous opioid peptide
release has only a minor effect on this inhibitory transmission
(Winters et al., 2017).

BRAINSTEM AND MIDBRAIN

The brainstem connects the cerebrum to the spinal cord
and cerebellum. It regulates respiration, consciousness, blood
pressure, heart rate, and sleep (Angeles Fernández-Gil et al.,
2010). The midbrain plays key roles in sensory and motor control
and has received much attention for its role in reward processing
and decision making (Ruchalski and Hathout, 2012). Brainstem
and midbrain express the three opioid receptors (Mansour et al.,
1987; Le Merrer et al., 2009) and play major roles in drug reward,
pain, and respiration (Le Merrer et al., 2009; Dahan et al., 2018;
Bagley and Ingram, 2020).

Dorsal Motor Nucleus of the Vagus
MOR activation presynaptically inhibits glutamate input, but
not GABAergic input, consistent with MOR expression in
terminals of glutamate, but not GABA neurons of the Dorsal
Motor Nucleus of the Vagus (DVM) (Browning et al., 2002).
Under normal conditions, opioid agonists fail to influence
GABAergic input to these neurons; however, when cAMP
signaling is engaged, MOR is trafficked to the synapse and inhibits
GABA transmission. This is inhibited by disrupting cAMP
and PKA signaling, suggesting that the cAMP-PKA pathway
regulates trafficking of MORs into the cell surface of GABAergic
nerve terminals (Browning et al., 2004). Conversely, another
study found that MOR activation reduces both AP-dependent
glutamate and GABA transmission in rat and mouse DVM GABA
neurons. MOR activation reduces GABAergic input to DVM
neurons from the nucleus of the solitary tract (NTS), potentially
due to MORs on the NTS neurons (Glatzer et al., 2007). These
data suggest that opioid actions may depend on the state of
activation of vagal circuits.

Locus Coeruleus
The Locus Coeruleus (LC) has a long history of studies of
the impact of opioid receptor-mediated regulation of cellular
function due to its high expression of MORs that inhibit
LC neuron excitability (Bird and Kuhar, 1977). Recording
opioid effects on ion channel function in these neurons is a
common methodology for exploring opioid receptor signaling
and testing hypotheses regarding receptor desensitization and
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opioid tolerance (for review, see Allouche et al., 2014). However,
a detailed discussion of the many studies of opioid receptor
desensitization and tolerance in the LC are beyond the scope
of this review. In addition to MOR-mediated regulation of
LC neuron excitability, KORs also function in the LC to
inhibit glutamate input to LC neurons without affecting
postsynaptic currents/membrane potential (McFadzean et al.,
1987; Pinnock, 1992b). Local KORs within the LC are targeted
by dynorphinergic neurons from other brain regions (Al-Hasani
et al., 2013). LC neurons that project to the spinal cord are
excited by DOR agonists via inhibition of presynaptic DORs
on GABAergic inputs, but without an effect on glutamate input
(Pan et al., 2002).

Nucleus of the Solitary Tract
MOR, but not KOR or DOR, agonists hyperpolarize neurons
in the medial, dorsomedial and dorsolateral regions of the
NTS through increasing potassium conductance (Rhim et al.,
1993; Glatzer et al., 2007; Poole et al., 2007). In addition
to increasing potassium conductance in these neurons, MORs
are able to inhibit N- and P/Q-type voltage-gated calcium
channels (VGCCs) in NTS neurons (Rhim et al., 1996;
Endoh, 2006). While KORs were not found to hyperpolarize
neurons, KORs and MORs were found to inhibit N- and
P/Q-type, but not L-type VGCCs via Gβγ, but not PKA
signaling (Rhim et al., 1993; Endoh, 2006). These data
suggest that opioid receptors use different pathways to induce
inhibition in the NTS.

MORs also inhibit synaptic transmission in the NTS.
Presynaptic MORs reduce inhibitory input to NTS GABA
neurons from solitary tract stimulation (Glatzer et al., 2007).
Within the medial NTS, MOR activation blocks tonic GABA
currents and reduces GABA release (Herman et al., 2012).
Another study found that MOR-mediated local inhibition
of GABA transmission was AP-dependent, suggesting
MORs on cell bodies may modulate local GABA neurons
(Glatzer and Smith, 2005).

Solitary tract glutamatergic input to NTS neurons is inhibited
strongly by MOR and weakly by DOR and KOR agonists
(Rhim et al., 1993; Glatzer and Smith, 2005; Poole et al.,
2007; Boxwell et al., 2013). MOR inhibition is presynaptically
localized (Glatzer and Smith, 2005). MORs equally inhibit
solitary tract glutamate input to both GABAergic and non-
GABAergic NTS neurons (Boxwell et al., 2013). Interestingly,
MOR activation is less efficacious when GABA and glycine
receptors are blocked (Boxwell et al., 2013). One study
specifically recorded from NTS pro-opiomelanocortin (POMC)
neurons and found that glutamate input was presynaptically
regulated by MORs (Appleyard et al., 2005). On the other
hand, in recordings from NTS neurons that project specifically
to the PBN, DORs, but not MORs, inhibited solitary tract
glutamatergic inputs (Zhu et al., 2009). One study specifically
looked at tyrosine hydroxylase (TH)-positive and TH-negative
neurons of the NTS (Cui et al., 2012). Like other studies
they found that MORs presynaptically inhibited solitary tract
input to both of these classes of neurons, but the effect
was larger in TH-positive neurons. These data suggest that

presynaptically expressed opioid receptors may differentially
affect neurotransmitter release.

Periaqueductal Gray
The PAG is a hot spot for opioid signaling in the brain.
MORs hyperpolarize and activate G protein-couple inwardly
rectifying potassium channels (GIRKs) in a subpopulation of
neurons within the PAG, mostly in lateral and dorsal regions of
ventrolateral PAG (vlPAG) (Chieng and Christie, 1994; Vaughan
and Christie, 1997; Chiou and Huang, 1999; Vaughan et al.,
2003; Chen et al., 2016). Some report that KORs have no effect
on GIRK in rat PAG, while the same group report that they
do in mice (Chieng and Christie, 1994; Vaughan et al., 2003),
suggesting that the animal model used for studying the opioid
receptor effects is important. MOR inhibits about half of lateral
rostral ventromedial medulla (RVM)-projecting PAG neurons
and less than a quarter of RVM-projecting vlPAG neurons
through activating an outward current (Osborne et al., 1996).
An investigation of the specific responses within different types
of PAG neurons shows that MOR activation hyperpolarizes
ventral PAG GABA neurons and reduces AP firing (Chen et al.,
2016). In serotonergic (5-HT) neurons however, MOR activation
hyperpolarizes the neurons but enhances AP firing. In addition
to their effects on GIRKs, MORs, but not DORs or KORs, inhibit
calcium channels in PAG neurons (Kim et al., 1997; Connor et al.,
1999). Some CeA inputs to ventrolateral PAG are sensitive to
MOR and DOR activation, responding with both excitation (20%
of responses) and inhibition (25% of responses). The identities
and types of responses are not clear from this study (da Costa
Gomez and Behbehani, 1995). This could be due to changes
in neuronal excitability described above or changes in synaptic
function described below.

MORs, but not KORs or DORs, presynaptically inhibit
glutamate transmission to some degree in all regions of the PAG
(Vaughan and Christie, 1997; Chiou and Huang, 1999). Looking
at identified cellular targets, MOR decreases glutamate input
to both GABA and 5-HT neurons (Chen et al., 2016). MORs
presynaptically regulate GABA in all regions of the PAG to both
GABAergic and 5-HT neurons, through presynaptic activation
of potassium channels and PLA2 (Vaughan and Christie, 1997;
Vaughan et al., 1997; Chen et al., 2016). MORs also inhibit
GABA input to ventral PAG TH-expressing neurons that project
to the BNST and co-release dopamine and glutamate (Li et al.,
2016). Interestingly, this involves a short-term reduction in
GABA release accompanied by a more persistent inhibition of
GABA transmission via a postsynaptic mechanism. Regarding
other opioid receptors that modulate GABA transmission, there
may be species differences. In rats, only MORs inhibit GABA
release; whereas, in mice, KORs, but not DORs, also inhibit
GABA release (Vaughan et al., 2003; Li and Kash, 2019). MORs
inhibit GABA input to a greater extent than glutamate input
in the PAG. The greater inhibition of GABA input overcomes
MOR’s effects on glutamate input, as well as hyperpolarization,
to increase AP firing of ventral PAG neurons (Chiou and
Huang, 1999). The ability of DORs to inhibit GABA release
in the PAG is plastic. DOR agonists have no effect on PAG
GABAergic transmission in naïve mice but may be induced
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to do so with chronic morphine treatment (Vaughan et al.,
2003; Hack et al., 2005). DOR activation may also inhibit
GABA reuptake via GABA transporter type 1 in the PAG (Pu
et al., 2012). Overall, presynaptic opioid receptors modulate
neurotransmission in the PAG; however, while MORs and KORs
inhibit GABA, only MORs inhibit glutamate transmission. DORs
have only been shown to inhibit GABA transmission, likely using
a different mechanism.

Raphe Nuclei
There are two types of cells in the nucleus raphe magnus (NRM)
that have differential responses to opioids. Primary 5-HT neurons
are hyperpolarized via KOR-mediated GIRK activation (Pan
et al., 1997; Li and Wang, 2001). Secondary GABAergic neurons
are hyperpolarized by MORs also via GIRK activation (Pan et al.,
1997; Li and Wang, 2001). MORs disinhibit primary cells through
inhibiting GABA input to these KOR-sensitive cells (Pan et al.,
1997). KORs also presynaptically inhibit glutamate input to both
primary and secondary NRM cells (Bie and Pan, 2003).

MOR activation hyperpolarizes around 80% of non-5-HT
DRN neurons and around 30% of 5-HT neurons, likely through
enhancing potassium conductance. MOR activation reduces
spontaneous GABA release and NMDA-induced activation
of GABA release from local neurons, as well as neurons
in the PAG onto 5-HT DRN neurons. As in the PAG,
MORs also inhibit GABAergic input to DRN TH-expressing
dopaminergic/glutamatergic neurons that project to BNST (Li
et al., 2016). DOR and KOR activation have no effect on GABA
transmission in these cells. One study found that MOR activation
has no effect on glutamate input to 5-HT cells; whereas, a later
study found that MORs are able to inhibit glutamate release
and suggested this was due to experimental conditions (Pinnock,
1992a; Jolas and Aghajanian, 1997). In the positive study, they
found that MORs were able to inhibit local glutamate release as
well as glutamate input from the PAG (Jolas and Aghajanian,
1997). KORs are also able to inhibit glutamate input to DRN
5-HT neurons (Pinnock, 1992a). Therefore, MOR and KOR are
capable of inhibiting both GABA and glutamate release, however
up to the present time there is no evidence that DORs have a role
in the Raphe nuclei.

Rostral Ventromedial Medulla
In RVM there are three different cell types that show differential
responses to noxious stimuli: ON cells increase firing, OFF
cells decrease firing, and NEUTRAL cells show no responses
(Sikandar and Dickenson, 2011). MORs and DORs inhibit ON
cell responses, increase activity of OFF cells, and have no effect on
NEUTRAL cells (Cheng et al., 1986; Harasawa et al., 2000). MOR
activation in RVM directly inhibits ON cells. In OFF cells, there
are no effects of direct MOR agonist application, suggesting that
opioid-mediated excitation of OFF cells is indirect (Heinricher
et al., 1992, 1994).

In measures of direct cellular responses, there are two major
cell types in RVM that respond to opioids: primary cells and
secondary cells. Primary cells have a wider action potential, more
negative resting membrane potential, and are not inhibited by
MOR agonists. Secondary cells are generally presumed to be

inhibitory interneurons that serve only to regulate the activity
of the output neurons, have a shorter action potential, are
often firing spontaneously, and are mostly hyperpolarized by
MOR agonists (Pan et al., 2000; Cleary et al., 2008). Also,
primary cells are responsive to KOR activation, producing
outward currents (Pan et al., 1990, 2000). Subpopulations of
secondary cells are responsive to MOR activation, also producing
outward currents. Almost all spinally projecting RVM neurons
respond to opioids in some fashion. Subpopulations of these
neurons show outward current responses to either only MOR,
only KOR, or both receptor activations (Marinelli et al., 2002).
Interestingly, MOR responsive secondary cells are similar to
ON cells in vivo, and KOR responsive primary cells are similar
to OFF cells (Pan et al., 1990). Non-5-HT spinally projecting
neurons are almost exclusively MOR responders; whereas, 5-HT
neurons have equal proportions of MOR, KOR, and MOR/KOR
responders (Marinelli et al., 2002; Zhang et al., 2006; Zhang
and Hammond, 2010). About two thirds of TH-expressing and
TH-negative bulbospinal neurons are hyperpolarized by MOR
via GIRK activation (Hayar and Guyenet, 1998). DORs produce
outward currents in subpopulations of RVM neurons (Marinelli
et al., 2005). They specifically act in a subpopulation of MOR-
regulated non-5-HT spinal cord-projecting neurons, as well as
subpopulations of 5-HT spinal cord-projecting neurons that have
differential sensitivities to MOR and KOR activation.

MOR activation reduces GABA, but not glutamate input
to primary cells (Pan et al., 1990, 2000). MOR activation
reduces GABA input likely via inhibition of presynaptic calcium
channels, but not glutamate input to RVM neurons; however, it is
not clear whether these are primary or secondary neurons due to
the recording conditions (Vaughan et al., 2001). Glutamatergic
input to secondary cells is presynaptically inhibited by KORs
(Ackley et al., 2001). MORs inhibit GABA and glutamate
input to bulbospinal TH-expressing and TH-negative neurons
through presynaptic mechanisms (Hayar and Guyenet, 1998).
In spinal cord-projecting rat RVM neurons MORs inhibit
evoked glutamate inputs in ∼50% of cells, miniature excitatory
postsynaptic currents (mEPSCs) in 55% of cells, evoked
inhibitory inputs in about 70% of cells, and miniature inhibitory
postsynaptic currents (mIPSCs) in 100% of cells (Finnegan et al.,
2004). MORs agonists frequently activate output neurons in the
brain via disinhibition. Thus, direct inhibition of “secondary
cells” disinhibits “primary cells” or output neurons, allowing
them to become active (Cleary et al., 2008).

Substantia Nigra
MORs, DORs, and KORs, have all been reported to modulate
substantia nigra GABA release (Starr, 1985). KOR activation
presynaptically inhibits glutamate transmission in Substantia
Nigra (SN) pars reticulata (Maneuf et al., 1995). KORs can
inhibit type-2 dopamine receptor (D2R)-mediated IPSCs in
dopamine neurons of the SN pars compacta (Ford et al.,
2007). The mechanism is unclear, given that KORs can both
hyperpolarize and prevent IPSCs in the same neuron and
this is not due to modulation of cAMP, kinases, calcium, or
potassium channels. Overall, opioid receptors may play a role
in regulating neurotransmitter release, however, more research
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is needed to clarify the specific actions of each of the different
opioid receptors.

Ventral Tegmental Area and
Rostromedial Tegmental Nucleus
MORs hyperpolarize local GABA neurons within VTA, but not
dopamine neurons, leading to greater excitation of dopamine
neurons (Johnson and North, 1992). MORs can hyperpolarize
secondary VTA cells, that are largely GABAergic as well as
tertiary VTA cells that are NAc-projection neurons (Cameron
et al., 1997). MOR-induced hyperpolarization of local GABAergic
neurons rapidly desensitizes (Lowe and Bailey, 2015). In the
Rostromedial Tegmental Nucleus (RMTg), also known as the
tail of the VTA, neuron firing rate is reduced by MOR
activation and RMTg neurons are hyperpolarized by MOR
agonists, but not DOR or KOR (Lecca et al., 2011; Matsui
and Williams, 2011). Contrary to other studies that find that
MORs do not hyperpolarize dopamine neurons, there may
be some dopamine neurons that express MORs. MORs can
hyperpolarize some VTA dopamine neurons via increasing
potassium conductance or exciting them via P/Q type calcium
channel (Cav2.1) inhibition (Margolis et al., 2014, 2017). DPDPE-
sensitive and deltorphin II-sensitive DORs are differentially
expressed in different types of VTA neurons and produce a
heterogeneous response: hyperpolarizing neurons via increasing
potassium conductance or exciting neurons via Cav2.1, similar
to MOR (Margolis et al., 2017). Interactions between the two
different functional forms of DOR and MOR is not consistent
between neurons, although receptor antagonist experiments
reveal that functional interactions between the two different
receptors do occur. KORs hyperpolarize VTA dopamine neurons
via increasing potassium conductance (Margolis et al., 2003;
Ford et al., 2007). Interestingly, only a subset of these neurons
are disinhibited by MOR activation. KORs hyperpolarize VTA
neurons that project to medial PFC (mPFC), but not to NAc
(Margolis et al., 2006). Consistent with this, infusion of KOR
agonist into VTA decreases dopamine levels in the mPFC, but
not the NAc. Amygdala-projecting dopamine neurons within the
VTA are also hyperpolarized by KOR activation (Margolis et al.,
2008b). VTA dopaminergic neurons that project to NAc are more
inhibited by KOR activation that produces outward currents
(Ford et al., 2006). In contrast, VTA neurons that project to BLA
(which are mostly dopaminergic) are more inhibited by MOR
activation, also producing outward currents (Ford et al., 2006).

MORs reduce GABA transmission in VTA via inhibition of
GABA release (Bergevin et al., 2002; Xiao and Ye, 2008; Matsui
et al., 2014; Bull et al., 2017). MOR activation silences GABAergic
VTA neuron firing and reduces evoked and spontaneous TTX-
sensitive GABA release (Xiao and Ye, 2008). Knockout of MORs
from NAc medium spiny neurons (MSN) reduces the ability of
MORs to inhibit GABA input to local VTA GABA interneurons
in VTA (Charbogne et al., 2017). Mechanisms for MOR-mediated
GABA release inhibition implicate presynaptic potassium
channels, beta-arrestin2, and proto-oncogene tyrosine-protein
kinase Src (Bergevin et al., 2002; Bull et al., 2017). Contrary
to postsynaptic MOR effects, presynaptic MORs on GABA

terminals are resistant to desensitization, except when PKC is
activated (Lowe and Bailey, 2015). MetEnk, presumably though
MOR activation, reduces GABAergic input equally onto NAc-
and BLA-projecting dopamine neurons (Ford et al., 2006). MOR
regulates VTA GABAergic transmission at local interneuron
synapses as well as at GABAergic inputs from the NAc, PAG,
RMTg, and ventral pallidum (Matsui and Williams, 2011; Xia
et al., 2011; Matsui et al., 2014; St Laurent et al., 2020). Comparing
inputs to VTA dopamine neurons, one study found that MOR
activation produces the greatest inhibition RMTg inputs, with
very low inhibition of local interneuron input and moderate
inhibition of NAc inputs (Matsui et al., 2014). A different
study however concluded that MOR-modulated NAc inputs to
VTA targeted VTA GABA neurons and not VTA dopamine
neurons (Xia et al., 2011). MORs inhibit GABAergic input from
the ventral pallidum onto both dopamine and non-dopamine
neurons (Hjelmstad et al., 2013). Various forms of GABAergic
plasticity occur at many of these synapses. Inhibitory LTD at
RMTg-VTA dopamine neuron synapses occurs independently of
MOR activation, however LTP at PAG-VTA neuron synapses is
blocked by MOR activation (St Laurent et al., 2020). A variety of
in vivo drug exposures and painful conditions shift the ability of
MORs to regulate VTA GABA transmission (Shoji et al., 1999;
Margolis et al., 2008a; Xiao and Ye, 2008; Guan and Ye, 2010;
Madhavan et al., 2010; Graziane et al., 2013; Polter et al., 2014;
Hipolito et al., 2015).

MORs and KORs non-occlusively reduce GABA input to
VTA dopamine neurons (Shoji et al., 1999). GABAergic inputs
from RMTg to VTA dopamine neurons are insensitive to KOR
activation (Matsui and Williams, 2011). KOR activation has
little effect on fast, GABAA-mediated IPSCs recorded in NAc-
projecting cells, but inhibits fast, GABAA-mediated IPSCs in
BLA-projecting cells (Ford et al., 2006). On the other hand, KOR
activation inhibits GABAB-mediated slow IPSCs: KORs inhibit
GABAergic input to both BLA- and NAc-projecting cells, but this
effect is stronger in NAc-projecting cells.

There is a minor role for DORs in regulating VTA GABA
transmission under normal conditions, but as in other brain
regions, DOR-mediated inhibition of GABA transmission is
inducible by in vivo drug exposure (Margolis et al., 2008a;
Mitchell et al., 2012; Bull et al., 2017). Following stress
exposure, DORs gain the ability to produce postsynaptic
insertion of GABAA receptors in a subset of neurons, via
phosphoinositide 3-kinase (PI3K) and Akt signaling (Margolis
et al., 2011). DORs do not regulate RMTg GABA synaptic inputs
(Matsui and Williams, 2011).

Presynaptic MOR activation in VTA reduces glutamate
transmission onto dopamine and non-dopamine neurons (Bonci
and Malenka, 1999; Manzoni and Williams, 1999). In principal
VTA neurons, which are primarily dopaminergic, KOR activation
produces a small inhibition of glutamate input, whereas MORs
produce a larger inhibition; these are non-occlusive indicating
inhibition of separate populations of inputs (Margolis et al.,
2005). In secondary neurons, KORs and MORs produce similar
inhibition of glutamate input and the responses to each receptor
activation are positively correlated. In tertiary neurons, of which
a small percentage are dopaminergic, KOR and MORs similarly
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inhibit glutamate input, but the magnitudes of inhibition are not
correlated when dually tested in each cell. These effects are largely
presynaptic, although neurons with postsynaptic KOR effects are
more sensitive to MOR inhibition of glutamate input and vice
versa (Margolis et al., 2005). MORs also inhibit glutamate input
to RMTg neurons (Lecca et al., 2011). The LTPGABA described
above can be acutely blocked by glutamatergic presynaptic
MOR activation, removing the glutamate necessary for plasticity
induction (Nugent et al., 2007). The role of MOR-mediated
regulation of glutamate as part of the local VTA microcircuit is
important to not overlook. For example, in order for morphine
to activate VTA dopamine neurons, there must be a VTA
glutamatergic tone for MOR-mediated inhibition of RMTg inputs
to have an effect (Jalabert et al., 2011).

Altogether, these studies indicate that opioid receptor
activation has a broad effect on the VTA, targeting GABA,
glutamate and dopamine transmission. Therefore, VTA opioid
receptors have a key clinical relevance on the control of dopamine
modulation. Although there has been much investigation of
opioid receptor function in VTA, there is certainly more discover
regarding the cell type- and synapse-specific function of the
different opioid receptors in the VTA.

CORTEX

The cortex is involved with many higher functions, including
planning, processing sensory information, memory, decision
making, and emotional processing (Lamotte et al., 2021; Nadeau,
2021; Kolk and Rakic, 2022). All three opioid receptors are found
in the cortex; the presence, modulation of neural activity, and
behavioral role of cortical opioid receptors varies across different
cortical areas, and these are involved with analgesia, morphine-
induced locomotor sensitization, reducing anxiety, and with the
rewarding and locomotor stimulation effects of opioids (Saitoh
et al., 2018; Wang et al., 2020; Jiang et al., 2021).

Many early studies of opioid receptor responses in cortex
failed to identify which specific cortical regions were being
explored or looked across regions non-specifically. In rat
cortical brain slices MOR, DOR, and KOR agonists inhibit
evoked glutamate and GABA release (Bradford et al., 1986).
In addition, extracellular recordings show that MOR, DOR,
and KOR agonists reduce glutamate-evoked neuronal firing
(Janiri et al., 1988). However, in contrast, potassium-evoked
glutamate release in rat cerebral cortex brain slices is inhibited
by MOR and KOR agonists, but not DOR agonists (Nicol et al.,
1996). Cultured mouse neocortical neurons express postsynaptic
MORs that co-localize with AMPARs (Liao et al., 2005).
Activation of these MORs inhibits glutamate transmission and
induces dendritic spine retraction. Similarly, morphine inhibits
glutamate release from cortical synaptosomes via inhibition of
voltage-gated calcium channels (Yang et al., 2004). GABAergic
cortical interneurons are inhibited by MORs via membrane
hyperpolarization through increased potassium conductance
(Ferezou et al., 2007). Unlike cortical GABAergic interneurons,
MOR mRNA was not found in pyramidal neurons and
MOR activation had no postsynaptic effects in these neurons.

There was nearly a complete overlap in interneurons that
responded to DAMGO and to nicotinic acetylcholine receptor
(nAChR) agonist, DMPP. nAChR activation induced AP firing
in interneurons and IPSCs in pyramidal neurons that were both
inhibited by MOR activation. nAChR-induced GABAergic input
to pyramidal cells was multiphasic, with an initial increase in
IPSCs and a subsequent decrease below baseline levels. The
decrease was blocked by a MOR antagonist, suggesting that
nAChR activation induces enkephalin release as a form of
feedback control.

Anterior Cingulate Cortex
The Anterior Cingulate Cortex (ACC) is involved with emotion
and reward processing, learning, and memory (Rolls, 2019). Met-
Enk inhibits spontaneous, acetylcholine-evoked, and glutamate-
evoked neuronal activity in the ACC (Palmer et al., 1978). In
a subset of rat layer 5 ACC pyramidal neurons, DOR, but not
MOR, activation produces direct hyperpolarization, presumably
through a postsynaptic increase in potassium conductance
(Tanaka and North, 1994). In comparison, MOR, but not DOR,
activation hyperpolarizes a subset of non-pyramidal neurons.
Met-Enk inhibits glutamate and GABA transmission in ACC
neurons. This effect is mimicked by DOR, but not MOR agonist,
suggesting the effect is mediated by DORs. However, a later
study found MORs specifically inhibit midline thalamus inputs
to layers 2/3 and layer 5 anterior cingulate cortex pyramidal
neurons and parvalbumin (PV)-expressing interneurons. DORs
inhibit interneurons that receive MOR-positive medial thalamic
input to regulate feedforward inhibition to pyramidal neurons.
Ultimately, DORs function to disinhibit thalamocortical circuits
(Birdsong et al., 2019).

Insular Cortex
The insular cortex is involved with interoception, emotion,
cognition, and motivation (Namkung et al., 2017). Anterior
agranular insular cortex GABAergic neurons express KORs that
function to disinhibit L5 pyramidal cell inputs to the SN (Pina
et al., 2020). Dynorphin decreases GABA release, but increases
glutamate release, leading to disinhibition. In L5 of rat insular
cortex, paired recordings between nearby GABA neurons and
other GABA neurons or pyramidal cells revealed the role of
MOR in regulating these synapses (Yokota et al., 2016). MOR
activation reduces fast-spiking interneurons (FSI) input to other
FSIs, but not to pyramidal neurons. MOR activation also reduced
GABAergic input to FSIs from non-FSI neurons. In contrast,
DOR activation reduced FSI input to both other FSIs and
pyramidal neurons but had no effect on inhibitory transmission
from non-FSI GABA neurons. All inhibition is presynaptically
localized. KOR activation has no impact on FSI inputs to other
insular cortex neurons.

Medial Prefrontal Cortex
The Medial Prefrontal Cortex (mPFC) is involved with many
cognitive functions and is comprised primarily of excitatory
pyramidal neurons and a smaller population of inhibitory
interneurons (Xu et al., 2019). MORs inhibit both non-
pyramidal and pyramidal mPFC neurons, but through different
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mechanisms. In non-pyramidal neurons, MORs inhibit sodium
conductance through a G protein, PKA, and PKC pathway
(Witkowski and Szulczyk, 2006). In pyramidal neurons, MORs
inhibit N-type VGCCs through a cAMP-PKA pathway (Rola
et al., 2008). DORs can both inhibit and disinhibit pyramidal
neuron activation. Presynaptic DORs inhibit prelimbic mPFC
principal neurons through inhibiting glutamate release onto
these neurons (Yamada et al., 2021). On the other hand, DORs
increase GABA transmission from somatostatin-expressing
interneurons to PV-expressing interneurons, which disinhibits
pyramidal neurons, which MORs do not do (Jiang et al., 2021).
KORs also inhibit neurotransmission in mPFC. KOR activation
reduces glutamate release onto mPFC pyramidal neurons (Tejeda
et al., 2013). Specifically, BLA glutamatergic inputs to mPFC are
inhibited by KOR activation in in vivo extracellular recordings in
anesthetized rodents (Tejeda et al., 2015).

Orbitofrontal Cortex
MORs presynaptically inhibit GABA release onto pyramidal
neurons of the rat ventrolateral Orbitofrontal Cortex (OFC)
(Qu et al., 2015), consistent with identified expression of
MOR in these GABA cells (Huo et al., 2005). MOR-LTD of
presynaptic FSI PV-expressing neurons inhibit GABAergic input
to pyramidal neurons of medial, but not lateral OFC. Stimulating
cAMP production shifts MOR activation to produce short-term
depression rather than LTD. Endogenous opioid LTD can be
induced via moderate frequency stimulation in the presence
of peptidase inhibitors, but not low frequency stimulation
(Lau et al., 2020).

Sensorimotor Cortices
MetEnk and LeuEnk inhibit a subset of sensorimotor cortical
neurons, some of which are hyperpolarized by MOR agonists
(Stanzione et al., 1989). In the somatosensory cortex, MORs
and DORs inhibit spontaneous neuronal firing and glutamate-
induced firing activity. In a subset of cells, dynorphin inhibits
firing and in some recordings where dynorphin had little effect
alone, it attenuated the effects of MOR and DOR activation
(Janiri et al., 1988).

Overall, these studies indicate opioid receptor effects on
neurotransmission and neural activity within cortical areas show
great diversity across region, cell type, and neural pathways. As
discussed, in some cortical regions, opioid receptor effects have
been shown to occur via different mechanisms than in other
regions. Additional studies are needed to evaluate circuit-specific
opioid receptor regulation of neurotransmission throughout the
cortex in order to more fully understand the impact of opioids on
higher brain function.

HIPPOCAMPUS

The hippocampus is a brain region crucial to facilitating
memory, learning, and spatial processing (Bird and Burgess,
2008). All three opioid receptors are heterogeneously distributed
throughout the entire hippocampus and are regulated by the

endogenous opioids dynorphin and enkephalin (Simmons and
Chavkin, 1996).

CA1
In measures of population spike (PS) amplitudes in CA1,
both MOR and DOR enhance amplitudes in CA1 (Lee, 1978;
Dunwiddie et al., 1980; French and Zieglgansberger, 1982;
Valentino and Dingledine, 1982; Dingledine et al., 1983; Bostock
et al., 1984; Vidal et al., 1984; Dunwiddie and Su, 1988; Neumaier
et al., 1988; Moudy et al., 1989; Wimpey et al., 1989; Pieretti et al.,
1994). Morphine increases hippocampal activity in CA1 in slice
and in freely moving animals (Linseman and Corrigall, 1982).
MORs, but not DORs or KORs, increase the duration of CA1 field
potentials (Pieretti et al., 1994). The timing of MOR activation
can also determine whether it can enhance CA1 function. MOR
activation prevents the inhibitory effects of temporo-ammonic
pathway stimulation on Schaffer collateral inputs to CA1 when
the timing of stimulation of the two pathways was further apart
than one theta cycle, but had no effect when timing was less than
one theta cycle (McQuiston, 2011).

The effects of MOR and DOR activation are likely not due to
effects on pyramidal cells themselves, although KORs might have
some effects on pyramidal cell potassium currents (Madamba
et al., 1999). Rather, opioid receptor-induced enhancement of
population spike amplitudes is due to disinhibitory mechanisms
(Zieglgansberger et al., 1979; Corrigall and Linseman, 1980;
Dunwiddie et al., 1980; Neumaier et al., 1988; Lupica and
Dunwiddie, 1991; Miller and Lupica, 1994; McQuiston, 2007,
2008; Tian et al., 2015). Specifically, opioids hyperpolarize
GABAergic interneurons within CA1 and reduce GABA input
to pyramidal neurons (Madison and Nicoll, 1988; Lupica and
Dunwiddie, 1991; Lupica et al., 1992; Lupica, 1995; Capogna
et al., 1996; Lafourcade and Alger, 2008; Krook-Magnuson et al.,
2011; Banghart et al., 2018; Fan et al., 2019). Although DORs
can inhibit GABA transmission, they do not appear to be the
primary mediators of these effects (Watson and Lanthorn, 1993;
Lupica, 1995). MORs can reduce feedforward and feedback
inhibition, whereas DORs do not. However, both MORs and
DORs are able to inhibit spontaneous GABA transmission,
but not monosynaptic inhibitory postsynaptic potentials (IPSPs)
(Lupica et al., 1992). However, some of the complexity may
be attributable to how MORs and DORs individually regulate
GABA transmission in local circuits. In CA1, MORs inhibit
interneuron input to the soma, whereas DORs inhibit input
to dendrites of pyramidal neurons (Svoboda et al., 1999). In
support of this, one study showed that MORs inhibit FSI
GABA, but not regular spiking GABA basket cell input to
CA1 pyramidal neurons (Glickfeld et al., 2008; Shao et al.,
2020). However, a very recent study showed that both MORs
and DORs independently activate GIRK in PV neurons as
well as inhibit GABA release on to pyramidal neurons (He
et al., 2021). MORs hyperpolarize FSI basket cell neurons,
but not regular spiking basket cell neurons. FSIs typically
synapse on to somas, whereas regular spiking neurons synapse
on to dendrites (Straub et al., 2016). MORs also inhibit
neuropeptide Y (NPY)-expressing neurogliaform interneurons
through membrane hyperpolarization (Krook-Magnuson et al.,
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2011). In addition, MOR specifically reduces tonic firing of the
Ivy class of neurogliaform cells in CA1, reducing GABAergic
input to pyramidal neurons (Krook-Magnuson et al., 2011).

The ability of MORs and DORs to disinhibit CA1 pyramidal
cell function can be pathway and layer specific and may explain
some of the confusing results regarding DOR activation and the
broader effect of MOR activation. MORs, but not DORs, mediate
feedforward inhibition from Schaffer collateral input (Rezai et al.,
2013). However, DORs are expressed in interneurons within CA1
that receive input from the temporo-ammonic pathway, but not
the Schaffer collateral pathway. Both MOR and DOR mediate
feedforward inhibition from the temporo-ammonic pathway.
While MOR enhances excitatory transmission in all layers, it is
most effective at enhancing propagation through CA1 output
layers (McQuiston, 2007, 2008). Stimulating CA2 pyramidal
neuron input to CA1, MOR activation prevented feedforward
inhibition of CA1 pyramidal neurons in deep layer and excitatory
radiatum giant cells layers, but not pyramidal neurons in
superficial layers through its inhibition of FSI interneurons
(Nasrallah et al., 2019). MORs can also enhance excitation
of pyramidal cells through enhancing excitatory responses to
acetylcholine receptor activation (Kearns et al., 2001). Along
with this, MOR activation can inhibit cholinergic receptor-
induced cholecystokinin-expressing basket cell-mediated theta
oscillations in CA1 (Nagode et al., 2014).

Opioid receptors can also have an inhibitory effect on CA1
function. LTD in CA1 is blocked by naloxone and enhanced
by MOR, but not DOR or KOR activation (Francesconi et al.,
1997; Wagner et al., 2001). Prior fentanyl exposure enhances LTD
expression in CA1 as well (Tian et al., 2015).

CA2
KOR and DOR activation in CA2 increases the PS following
stratum radiatum stimulation (Vidal et al., 1984). Presynaptic
DORs produce GABAergic LTD at FSI PV-expressing basket
cell inputs to pyramidal neurons of CA2, but only short-term
depression in CA1 (Piskorowski and Chevaleyre, 2013). The
DOR effects enable long-lasting potentiation of CA2 transmission
following high frequency stimulation of Schaffer collateral inputs
that prevents the strong feedforward inhibition of CA3-CA2
transmission through DOR-mediated inhibitory LTD (iLTD)
(Nasrallah et al., 2015). DOR-mediated iLTD acts as a gate for
feedforward inhibition in CA2 to allow for greater activation
of CA2 pyramidal neurons in response to both distal and
proximal glutamatergic synaptic drive (Nasrallah et al., 2017).
DOR antagonists block input timing-dependent plasticity in
CA2, likely preventing the iLTD of PV-expressing inputs to
pyramidal neurons (Leroy et al., 2017).

CA3
Mossy fiber stimulation induces a potentiation of glutamate
transmission in stimulated pathway of guinea pig CA3, but
inhibition of nearby mossy fiber synapses (Weisskopf et al.,
1993). Dynorphin presynaptically inhibits these other mossy fiber
pathways; inhibiting KOR signaling allows for LTP induction in
this other pathway. Dynorphin is more effective at inhibiting
synapses that had undergone LTP induction than those that did

not. KOR effects on CA3 LTP are mediated by a non-voltage-
gated channel, calcium-dependent process (Castillo et al., 1996).
KORs inhibit NMDAR-mediated currents in CA3 of guinea
pig hippocampus, but DORs and MORs do not (Caudle et al.,
1994). KOR modulation of mossy fiber signaling within CA3
does not occur in Sprague-Dawley rats, but does occur in other
rodents. MORs equally inhibit mossy fiber transmission in rats
and guinea pig (Salin et al., 1995). Species differences could be
due to differential KOR expression. KOR activation enhances the
voltage-dependent potassium current known as the M-current
[I(M)] in rat CA3 pyramidal neurons, whereas DOR activation
reduces I(M) (Moore et al., 1994). DOR antagonists inhibit IPSCs
in CA3, but do not block LTP (Krug et al., 2001; Leroy et al.,
2019).

MOR activation has no effect on excitatory postsynaptic
potentials, but instead reduces IPSPs (Capogna et al., 1993).
Activation of DORs and KORs does not inhibit IPSPs. MOR-
mediated presynaptic inhibition of GABA transmission produces
disinhibition that is G protein mediated and blocked by
PKC activation but does not involve potassium or calcium
conductance changes (Capogna et al., 1993, 1996). Later studies
show that opioid analgesics that activate MORs can inhibit
glutamate transmission in CA3, contrary to earlier studies (Lu
et al., 2020, 2021).

Dentate Gyrus
Morphine increases hippocampal activity in dentate gyrus in
slice and in freely moving animals (Linseman and Corrigall,
1982). Within the dentate gyrus, MOR activation enhances
LTP induction and naloxone prevents LTP induction of the
lateral, but not medial perforant pathway (Bramham et al., 1991;
Xie and Lewis, 1991; Sagratella et al., 1996; Ito et al., 2001).
Interestingly, electrophysiological studies of MOR knockout mice
demonstrated an inability to form LTP in the DG but not in CA1,
indicating that MOR activation was crucial to LTP in the DG, but
not in CA1 (Matthies et al., 2000). LTP of synaptic transmission
is blocked by a DOR antagonist, without affecting potentiation
of the population spike (Bramham et al., 1991; Krug et al.,
2001). Perforant pathway stimulation-induced opioid peptide
release with a resultant MOR- and DOR-mediated disinhibition
is crucial to facilitating LTP in the dentate gyrus (Bramham
and Sarvey, 1996; Ito et al., 2001). In contrast to their lack of
effect in CA1, KOR activation in dentate gyrus prevents LTP
induction, in contrast to MOR-induced enhancement of LTP
(Sagratella et al., 1996).

MORs and DORs hyperpolarize granule cells in the dentate
gyrus (Piguet and North, 1993). A study showed that activation
of KORs in dentate gyrus produces hyperexcitable granule
cells through a postsynaptic G protein-Kv4.2 A-type potassium
current mechanism, but without a change in resting membrane
potential or input resistance (McDermott and Schrader, 2011).

As in CA1–CA3 areas of hippocampus, opioid receptors in
the dentate gyrus also produce disinhibition via their actions on
GABAergic neurons; although, it appears that this disinhibition
has less of an effect on LTP induction at dentate gyrus synapses.
Consistent with this, MOR, DOR, and KOR activation enhance
excitatory transmission in dentate gyrus granule cells, likely
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due to disinhibition. MOR activation is the most efficacious
(Neumaier et al., 1988). MORs and DORs inhibit GABA
transmission in the dentate gyrus (Piguet and North, 1993).
In granule cells, MORs inhibit GABAA and GABAB-mediated
IPSCs (Shao et al., 2020). Dentate gyrus population spikes are
potentiated by morphine through disinhibition, but morphine
does not affect LTP induction itself (Akaishi et al., 2000).

While some studies show that KORs can enhance excitatory
transmission in dentate gyrus, other studies demonstrate that
KOR has more of an inhibitory effect due to effects on
glutamate transmission (Neumaier et al., 1988). In guinea pig
dentate gyrus, KOR activation reduces PS amplitude, while DOR
and MOR had no effect. KOR activation inhibits glutamate
transmission from perforant path inputs, without affecting
GABA transmission (Wagner et al., 1992). A combination
of brain slice electrophysiology, pharmacological probing, and
anatomical lesioning revealed that KOR activation in dentate
gyrus presynaptically inhibits glutamate release (Simmons et al.,
1994). Activation of KORs inhibits LTP formation between the
perforant path and granule cells of the guinea pig dentate gyrus
(Terman et al., 1994). KORs inhibit hilar mossy fiber collateral-
based LTP of guinea pig dentate gyrus granule cells, the latter of
which likely occurs in a GABAA-dependent mechanism (Terman
et al., 2000). A recent study showed MORs can inhibit glutamate
transmission in dentate gyrus, specifically, NMDAR-mediated,
but not AMPAR-mediated, EPSCs (Shao et al., 2020).

HYPOTHALAMUS

The hypothalamus coordinates the neuroendocrine system
(Swaab et al., 1993) and regulates metabolism, reproduction,
and parental behavior (Travaglio and Ebling, 2019; Evans et al.,
2021; Orikasa, 2021). Hypothalamic neurons release several
neurotransmitters and peptides, including GABA, glutamate,
dopamine, growth hormone-releasing hormone, gonadotropin-
releasing hormone, oxytocin, and vasopressin (Kim et al., 2020).
All three opioid receptors are expressed in the hypothalamus
(Tavakoli-Nezhad and Arbogast, 2010; Chu Sin Chung and
Kieffer, 2013).

Arcuate Nucleus
In the Arcuate Nucleus (AN), MORs most likely inhibit only
oxytocin cells, not vasopressin cells (Wakerley et al., 1983).
MOR activation hyperpolarizes a subset of neurons by inducing
outward current with inward rectification with no effect of TTX.
Some of these MOR-sensitive cells are POMC neurons (Loose
et al., 1991; Pennock and Hentges, 2011). MOR activation induces
outward potassium currents in POMC neurons within the AN
(Ibrahim et al., 2003). MORs act as autoreceptors, having direct
effects and reducing AP firing within the recorded neuron, but
can have similar effects in non-POMC neurons (Kelly et al., 1990,
1992; Lagrange et al., 1994). MORs also inhibit gonadotropin-
releasing hormone-expressing neurons (Lagrange et al., 1995).
DORs specifically hyperpolarize non-POMC AN neurons, while
KORs do not appear to hyperpolarize AN neurons (Loose
and Kelly, 1990; Pennock and Hentges, 2011). Interestingly,

POMC neurons are directly inhibited by dynorphin A through
activation of potassium conductance (Zhang and van den Pol,
2013; Pennock and Hentges, 2014). Previously it was considered
that was due to KOR activation (Zhang and van den Pol, 2013).
However, follow up studies found that this was likely due to
actions of dynorphin A on MORs (Pennock and Hentges, 2014).
Later studies determined KORs do hyperpolarize a subset of
AN neurons, specifically NPY neurons (Zhang and van den
Pol, 2013). In the AN, KOR activation reduces AP firing of
neurons that express dynorphin, indicating that these receptors
serve as autoreceptors (Ruka et al., 2013, 2016). Looking at
synaptic transmission, in AN, MORs and KORs, but not DORs,
presynaptically reduce glutamate input (Emmerson and Miller,
1999). Presynaptic MORs and KORs inhibit glutamate and
GABA input to POMC neurons (Pennock and Hentges, 2011;
Zhang and van den Pol, 2013). In comparison, a DOR agonist
was unable to inhibit evoked GABA release but had a modest
inhibitory effect on basal GABA transmission; although, it was
not clear what the cause of this discrepancy was (Pennock
and Hentges, 2011). MOR-mediated inhibition of GABA input
is more sensitive than that of postsynaptic hyperpolarization,
suggesting there may be opioid peptide concentration-dependent
local circuit dynamics at play (Pennock and Hentges, 2011).

Preoptic Hypothalamus
The preoptic hypothalamus plays a role in thermoregulation,
where the neurons can be characterized by their
thermosensitivity (impulses s–1◦C–1) by the thermal coefficient
(TC). Preoptic area neurons are hyperpolarized by MOR
activation (Wagner et al., 2000). MOR activation-induced
hyperpolarization reduces tonic firing activity of all types of
neurons and reduces the temperature sensitivity of warm-
sensitive neurons (neurons with a TC ≥ 0.8 impulses s–1◦C–1)
(Yakimova, 2006). In the ventrolateral preoptic area, morphine
reduces the firing rate and hyperpolarizes sleep-promoting
neurons (as assessed by sensitivity to norephinephrine treatment)
but has no effect on non-sleep-promoting interneurons (Wang
et al., 2013). The investigators found that this was due to dually
activated MORs and KORs.

Paraventricular Nucleus
In the Paraventricular Nucleus (PVN), LTD of glutamate
input to vasopressin neurons is induced by paired stimulation
that combines metabotropic glutamate receptor (mGluR) 1/5
activation with postsynaptic activity to cause somatodendritic
dynorphin release that acts at presynaptic KORs (Iremonger
et al., 2011). Presynaptic KOR activation mediates synaptic
depression via inhibition of glutamate release downstream of
calcium channel opening that the investigators predict is due
to actions on release machinery (Iremonger and Bains, 2009).
PVN parvocellular neurons can undergo LTD of GABAergic
input via mGluR5-driven L-type calcium channel-dependent
somatodendritic enkephalin release to act on presynaptic MORs.
This iLTD requires ongoing MOR activation, as it is reversible
by naloxone (Wamsteeker Cusulin et al., 2013). The released
enkephalin can spread to other nearby GABA and glutamate
synapses to produce pathway-independent LTD as well.
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Supraoptic Nucleus
KORs inhibit both oxytocin and vasopressin neurons of the
Supraoptic Nucleus (SON), whereas MORs and DORs primarily
inhibit oxytocin neurons (Inenaga et al., 1990). KORs inhibit
neuron function by limiting calcium entry to reduce AP
firing (Inenaga et al., 1994). In magnocellular neurons of the
SON, MORS, but not KORs or DORs, inhibit postsynaptic
N- and P/Q-type voltage-gated calcium channels (Soldo and
Moises, 1998). In oxytocin neurons of the SON, naloxone
treatment increases post spike excitability in vivo, suggesting
an endogenous MOR tonic activation. The authors discovered
that morphine treatment likely engages potassium conductances
that are relieved during naloxone-precipitated opioid withdrawal,
resulting in hyperexcitable oxytocin neurons, with no effects in
nearby vasopressin neurons (Brown et al., 2005). MOR effects on
magnocellular neurons are weak, due to inhibition of glutamate
input (presynaptic), with no effects on GABA or postsynaptic
effects (Liu et al., 1999). Glutamatergic and GABAergic input
to magnocellular neurons is decreased presynaptically by MOR
activation, with no apparent postsynaptic effects. MOR-mediated
inhibition appears to be independent of inhibition of calcium
channels or activation of potassium channels. KORs are also able
to inhibit GABAergic input to a subpopulation of magnocellular
neurons (Honda et al., 2004). Vasopressin magnocellular SON
neurons were recorded in organotypic slice cultures to measure
rhythmic firing patterns. KOR-mediated inhibition of glutamate
release is part of the mechanism that governs the rhythmic firing
of these neurons (Israel et al., 2010). This is supported by in vivo
measures that show that KOR activation influences rhythmic
firing of vasopressin, but not oxytocin, neurons of the SON
(Brown et al., 1998). Dynorphin is co-released with vasopressin
from the dendrites of these neurons (Brown and Bourque, 2004).

The hypothalamus is a region of great cell-type heterogeneity
across hypothalamic nuclei. Both presynaptic and postsynaptic
MORs and KORs have been shown to regulate hypothalamus
neurons; although, the effect and mechanism varies across nuclei
and cell-type. The role of DORs in the hypothalamus is less
clear, as studies have found conflicting results. This may be due
to a limited effect of DORs in subpopulations of hypothalamic
neurons, but additional studies are needed to understand how
DORs regulate neurotransmission in the hypothalamus. Most
research of opioid receptor regulation of neurotransmission in
the hypothalamus has focused on only a handful of hypothalamic
nuclei, leaving much to be discovered. Interestingly, MORs and
KORs have been shown to act as autoreceptors in multiple
hypothalamic nuclei. Future studies will reveal if these opioid
receptors also act as autoreceptors in other hypothalamic nuclei.

LATERAL HABENULA

The lateral habenula (LHb) regulates reward, aversion, motor
and cognitive function, sleep and circadian rhythms, pain,
navigation, and maternal behaviors (Hu et al., 2020). It is not
clear if DOR is expressed in this area, however, MORs and
KORs are expressed, suggesting a role in reward, analgesic and
stress responses (Gardon et al., 2014; Simmons et al., 2020).

In the LHb, MOR activation has subpopulation effects: some
neurons show hyperpolarization, some neurons show reduced
glutamate synaptic input, and some neurons show reduced
GABA input (Margolis and Fields, 2016). KOR activation in
LHb presynaptically inhibits glutamate transmission, but has
both inhibitory and enhancing effects on GABA transmission
(Simmons et al., 2020). The net impact of KOR on regulating
glutamate and GABA transmission produces KOR-mediated
hyperexcitability of neurons that express hyperpolarization-
activated cation currents (Ih) and decreases the excitability of
Ih-negative neurons. Additional studies are needed to identify
which specific LHb inputs are regulated by MORs and KORs.

PALLIDUM

The pallidum is composed of the globus pallidus, entopeduncular
nucleus, and ventral pallidum. Together, the pallidum has
important roles in hedonic actions, motivation, and cognition
(Smith et al., 2009; Saga et al., 2017). All three opioid receptor
are highly expressed in the pallidum (Le Merrer et al., 2009).

Globus Pallidus
Presynaptic MORs inhibit GABA input from dorsal striatum and
from local GABAergic neurons (Stanford and Cooper, 1999).
In contrast, DORs inhibit evoked local GABA transmission, but
do not inhibit striatal inputs. DOR activation has no effect on
AP-dependent spontaneous IPSCs, but inhibits mIPSCs. MORs,
but not DORs or KORs, postsynaptically inhibit N-type VGCCs
in dissociated Globus Pallidus (GP) neurons (Stefani et al.,
2001). Similar to MOR, KOR activation in GP hyperpolarizes
about 25% of cells and presynaptically inhibits GABAergic input
from striatum and local GABAergic collaterals (Ogura and
Kita, 2000). KORs have no effect on glutamate transmission,
and it is unknown if DORs or KORs regulate glutamate
transmission in GP.

Entopeduncular Nucleus
A subpopulation of Entopeduncular Nucleus (EPN) neurons
were hyperpolarized by dynorphin-mediated KOR activation
via increasing potassium conductance. Electrical stimulation
of the (GP) evokes GABA release from striatal and pallidal
inputs to the EPN. Dynorphin equally inhibited IPSCs from
both sources (short- and medium-latency IPSCs) presynaptically.
Dynorphin released from striatal inputs could be an autofeedback
mechanism, heterosynaptic (targeting pallidal input), or directly
inhibit EPN neurons (Ogura and Kita, 2002).

Ventral Pallidum
MORs hyperpolarize a subpopulation of Ventral Pallidum (VP)
neurons, presumably through activation of potassium currents
(Napier and Mitrovic, 1999). Looking at specific regional targets
of VP neurons, MORs hyperpolarize GABAergic VP neurons
that project to the VTA (Hjelmstad et al., 2013). In vivo
electrophysiological recordings reveal that MOR activation
reduces inhibitory GABAergic input, and excitatory substance
P input from the NAc within the VP and enhances glutamate
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input from amygdala (Napier and Mitrovic, 1999). MOR
activation produces LTD of GABA release in VP (Kupchik et al.,
2014). In in vivo electrophysiological recordings, stimulation
of VTA inputs to VP reduces firing of VP neurons. KOR
and MOR activation block this, either due to direct inhibition
of dopamine inputs or inhibition of non-dopaminergic VTA
input (Napier and Mitrovic, 1999; Mitrovic and Napier, 2002).
MORs also antagonize NAc-induced inhibitory transmission
in VP (Chrobak and Napier, 1993). KORs postsynaptically
inhibit GABAergic transmission from both direct pathway MSN
(dMSN) and indirect pathway MSN (iMSN) inputs to VP
GABA neurons. KORs generally increase GABAergic input to VP
vGluT2-expressing neurons, but they could not determine if this
was pre- or postsynaptically mediated and did not test specific
GABAergic synaptic inputs (Inbar et al., 2020).

In summary, subpopulations of pallidal neurons are
hyperpolarized by postsynaptic MORs and KORs. Presynaptic
opioid receptors also modulate neural activity of pallidal neurons
by inhibiting GABA release from striatal terminals and local
GABAergic collaterals; although, the effect varies across opioid
receptor and neurocircuit. Excitatory neurotransmission in VP
is regulated by MORs and KORs, but excitatory transmission
in other pallidal areas has not been shown to be modulated
by opioid receptors. Most studies investigated circuit and
subpopulation effects of opioid receptors in pallidum have
focused on VP, therefore future studies are needed to identify
specific subpopulation effects in GP and EPN.

STRIATUM

The striatum is divided into dorsal and ventral regions. The
dorsal striatum (DS) is heavily involved in motor control,
learning, reward, and decision making (Balleine et al., 2007). The
dorsal striatum is further divided into the dorsolateral (DLS)
and dorsomedial striatum (DMS). The DMS is involved with
goal-directed behaviors, while the DLS is involved with habitual
behaviors (Lovinger, 2010; Corbit and Janak, 2016). The ventral
striatum, also known as the nucleus accumbens (NAc) plays a
critical role in establishing reward-associated memories to the
effects of drugs and natural cues (Hyman et al., 2006). All 3
opioid receptors are highly expressed in the striatum and regulate
synaptic plasticity (Le Merrer et al., 2009; Atwood et al., 2014b).

Dorsal Striatum
Aside from an early study of opioid effects on neuronal function
in dorsal striatum, there is very little indication that opioid
receptors alter membrane properties of the principal dorsal
striatal MSNs. One early study found that MORs slightly
hyperpolarize a subset of MSNs (Jiang and North, 1992). They
also found that DORs hyperpolarize a subset of non-MSN,
tonically active neurons, ablating AP firing. Later studies suggest
that these are likely tonically active interneurons that release
acetylcholine and glutamate and their firing is inhibited by
both MORs and DORs (Ponterio et al., 2013; Laurent et al.,
2014). MORs reduce the firing of these cholinergic interneurons

through postsynaptic G protein signaling (Ponterio et al., 2013,
2018). MOR modulation of these neurons may be circadian
(Jabourian et al., 2005).

It was initially thought that opioid receptors do not inhibit
GABA release in dorsal striatum(Jiang and North, 1992).
However, later work found opioid receptors regulate GABA
transmission in a subregion and synapse-specific manner that
could be missed using more non-specific measures. MORs
only inhibit GABAergic transmission within striosome
subcompartments. MOR-mediated inhibition of GABA
transmission within striosomes is mediated by presynaptic
cAMP-PKA signaling, likely modulating presynaptic potassium
channel function, and MOR inhibition is enhanced by PKC
inhibition (Miura et al., 2007; Inoue et al., 2012). MORs inhibit
spontaneous and TTX-insensitive GABAergic inputs in both
cell types (dMSN and iMSN) (Ma et al., 2012). An elegant
dissection of specific GABAergic synapses within striosomes
that MORs and DORs regulate found that MORs inhibit dMSN
and iMSN input to dMSNs, although inhibition of dMSN-
dMSN transmission is stronger than iMSN-dMSN transmission
(Banghart et al., 2015). DORs selectively inhibit iMSN input to
dMSNs. Neither MOR nor DOR inhibit somatostatin-expressing
interneuron input to dMSNs. DOR-mediated disinhibition of
dMSNs is slightly more efficacious than MOR. MOR and DOR
have little effect on GABA transmission in matrix of dorsal
striatum. DOR activation produces iLTD at FSI-MSN synapses
(Patton et al., 2016).

It has been known for some time that MORs and
DORs inhibit glutamate release in dorsal striatum (Jiang and
North, 1992). Despite MORs being enriched in striosome
subcompartments of striatum, MORs equally inhibit glutamate
transmission in both striosomes and matrix (Miura et al.,
2007). One study that explored differences in MOR effects
in dMSNs and iMSNs found that MORs reduce spontaneous
glutamate release onto iMSNs in DLS, but not dMSNs (Ma
et al., 2012). However, these data do not align with data
from other laboratories that found more widespread MOR-
mediated inhibition of glutamate release (Atwood et al., 2014b).
They also reported that MORs have minimal effect on TTX-
insensitive glutamate transmission in either type of MSNs in
the DLS (Ma et al., 2012). MOR and DOR activation in
the DLS and DMS produce antagonist-irreversible LTD in
young rats and mice as well as adult mice (Atwood et al.,
2014b; Fritz et al., 2018; Munoz et al., 2018, 2020). In
the DLS, MOR and DOR LTD are not mutually occlusive,
indicating that they inhibit different inputs. In the presence
of peptidase inhibitors, electrical stimulation of glutamate
release produces opioid receptor antagonist-sensitive LTD that
is mGluR5 dependent. Antagonists for both MOR and DOR
each partially prevent this LTD, while naloxone fully prevents
this LTD. KORs may also play a role in this LTD (see
below). Others have found that antidromic stimulation within
the globus pallidus induces opioid peptide release (presumably
enkephalins) within dorsal striatum that is sufficient to inhibit
glutamate input from cortex. This was mediated by MORs,
but not DORs. Paired recordings showed MSN firing could
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produce corticostriatal inhibition in a nearby MSN with a
subpopulation showing reciprocal inhibition of cortical input
(Blomeley and Bracci, 2011).

More recent work has attempted to dissect which specific
glutamate synapses in the dorsal striatum are sensitive to MOR
and DOR activation. In the DLS, the only cortical input that is
sensitive to MOR activation are those that arise from anterior
insular cortex in a mechanism that involve the activation of
presynaptic HCN1 channels (Munoz et al., 2018, 2021). MORs
also produce LTD in the DMS, but in this subregion the LTD
is mediated by inputs from BLA, mPFC, and ACC (Munoz
et al., 2020). In contrast, another recent study concluded that
MORs do not inhibit ACC or mPFC inputs to DMS MSNs
(Birdsong et al., 2019). The two studies were both done in mice,
so it is not clear why the results are not aligned. DOR inhibits
prelimbic mPFC input to DMS MSNs and motor cortex inputs
to DLS MSNs (Atwood et al., 2014b; Birdsong et al., 2019).
There has not been an exhaustive study of DORs effects on
other cortical inputs to date. Interestingly, MORs also produce
LTD of glutamate release from tonically active “cholinergic”
interneurons in the DLS (Munoz et al., 2018). MORs also inhibit
glutamatergic inputs from thalamus, albeit with a transient
suppression rather than LTD in both DLS and DMS (Atwood
et al., 2014b; Munoz et al., 2018; Birdsong et al., 2019; Reeves
et al., 2021). It does not appear that DORs inhibit glutamate
input from thalamus (Atwood et al., 2014b; Birdsong et al.,
2019).

The early study of opioid effects on neurotransmission
in dorsal striatum concluded that KORs have no effect on
glutamate release (Jiang and North, 1992). However, a more
recent study found that KORs can inhibit glutamate release in
brain slices from young rats, specifically in dorsolateral striatum
(DLS) (Atwood et al., 2014b). Activation of KORs produces an
irreversible, long-lasting synaptic depression, which is similar to
plasticity produced by DORs, but not MORs, in dorsal striatum.
A KOR antagonist could also fully block endogenous opioid
LTD in DLS, similar to the effects of naloxone, whereas MOR
and DOR antagonists individually only partially blocked LTD
(Atwood et al., 2014b). Given that KORs also inhibit dopamine
release in dorsal striatum, it will be important to disambiguate in
the future if this is due to direct activation of KORs on glutamate
terminals or due to its actions on dopamine terminals which
could account for the KOR antagonist on endogenous opioid
LTD (Schoffelmeer et al., 1997; Szabo et al., 1999; Mamaligas
et al., 2016; Hawes et al., 2017). For example, activation of Pdyn-
containing dMSNs in DMS induces release of dynorphin that
acts on presynaptic KORs on dopamine terminals to prevent
theta burst stimulation-induced glutamatergic LTP in MSNs
(Hawes et al., 2017). Similar mechanisms could account for
the effects of KOR on inhibiting glutamate transmission under
certain conditions.

Ventral Striatum (Nucleus Accumbens)
The NAc can be subdivided into shell and core regions. Many
studies specifically state whether measures were made in shell
or core, and some provide even greater specificity. However,
plenty of other studies make no distinction. Therefore, in this

section where there is no specific subregion mentioned we
are only able to generalize the role of opioid receptors on
the specific measures discussed. There is very little evidence
that opioid receptors have postsynaptic effects that influence
AP firing in NAc, but much evidence that they do modulate
synaptic transmission (Yuan et al., 1992; Martin et al.,
1997).

As in dorsal striatum, there are some discrepant data regarding
the role of MOR in regulating GABA transmission in NAc. One
report demonstrates that MORs inhibit GABAergic transmission
in both NAc shell and core, however, MORs have a larger effect
on GABA transmission in the shell (Brundege and Williams,
2002). Another study shows that MORs inhibit GABA release
in NAc shell equally in control and in forskolin-enhanced
GABA release conditions (Chieng and Williams, 1998). A third
study shows that MORs inhibit spontaneous GABA release
similarly in D1 and D2 MSNs of the NAc core and NAc
shell. Measures of TTX-insensitive GABA release show that
GABA input is only inhibited in D1 MSNs in the core and
D2 MSNs of the shell (Ma et al., 2012). However, a different
study of the NAc shell showed that MOR activation has no
effect on GABAergic input (Hoffman and Lupica, 2001). In
contrast, about 50% of MSNs received input that was presumably
regulated by DOR as a mixed DOR/MOR agonist was effective
at blocking GABA transmission, but a MOR agonist was
ineffective in these neurons. KOR activation strongly inhibits
GABAergic output from D1 MSNs, but more weakly inhibits
GABA output from D2 MSNs (Tejeda et al., 2017). KORs also
inhibit GABA release, but with a different mechanism. KOR-
mediated inhibition of GABA release is at the level of calcium
entry through N-type VGCCs (Hjelmstad and Fields, 2003).
Potassium channel blockade had no effect on KOR actions. Due
to KOR expression on VTA dopamine neuron inputs, KORs
could theoretically inhibit CIN-driven GABA co-release from
VTA dopamine inputs (Britt and McGehee, 2008; Nelson et al.,
2014).

MORs presynaptically inhibit glutamate release in NAc core
and shell (Martin et al., 1997; Hoffman and Lupica, 2001;
Brundege and Williams, 2002; Hoffman et al., 2003; James et al.,
2013). Postsynaptic MOR activation was reported to enhance
NMDAR, but reduce AMPAR currents (Martin et al., 1997).
Regarding spontaneous glutamate release, MORs equally inhibit
glutamate input to D1 MSNs in NAc core and NAc shell, but
have a much larger effect on D2 MSNs of the NAc shell. MORs
inhibit TTX-insensitive glutamate inputs to D1 and D2 MSNs in
NAc core and NAc shell, although the effect is most robust in D1
MSNs of the shell (Ma et al., 2012). MOR’s effects on glutamate
transmission in NAc may not always be neuronal in origin. MOR
activation on astrocytes in NAc core induces glutamate release,
producing slow inward currents via extrasynaptic NMDARs in
nearby neurons (Corkrum et al., 2019). DOR has a minor effect
on inhibiting glutamate transmission in NAc shell, perhaps only
in a subset of glutamate inputs (Brundege and Williams, 2002).
KORs presynaptically inhibit glutamate release on to MSNs of
NAc shell without having any postsynaptic effects (Hjelmstad
and Fields, 2001). KOR inhibition of glutamate transmission
persist in the presence of N- and P/Q-type calcium and potassium
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channel blockers (Hjelmstad and Fields, 2003). Strong PFC
input to NAc can produce heterosynaptic inhibition of weaker
ventral hippocampal inputs, a process that is in part mediated
by KORs (Brooks and O’Donnell, 2017). KOR inhibits glutamate
input from BLA, but not ventral hippocampus, to D1 MSNs
of the NAc shell and core, but not D2 MSNs (Tejeda et al.,
2017). This effect was stronger in NAc shell than core, but was
independent of D1 MSN projection target. The net effect of
KOR activation at the GABA and glutamate synapses allows
for KORs to decrease D1 MSN firing and disinhibit D2 MSN
firing in response to BLA input. In contrast, KOR has no effect
on ventral hippocampal drive of D1 MSNs, but still allows for
disinhibition of D2 MSNs. The authors conclude that KOR
acts as a pathway-specific filtering mechanism for BLA versus
ventral hippocampal control of NAc function. KOR inhibition
of glutamate transmission in NAc MSNs is lost in animals
with 5 days of repeated cocaine exposure with at least up to
2 weeks of withdrawal (Mu et al., 2011). KORs also regulate
glutamatergic input to PV-expressing FSIs in NAc, however, this
is specific to thalamic, but not cortical inputs (Coleman et al.,
2021). In addition, activation of KORs produces a postsynaptic
LTD plasticity, wherein AMPARs are internalized via a PKA-
calcineurin signaling pathway.

Altogether, these studies indicate that opioid receptor
activation has little effect on membrane properties of both
dorsal and ventral striatal neurons, with the exception of
cholinergic interneurons. A growing body of evidence indicates
that each type of opioid receptor is capable of inhibiting
glutamate transmission and MORs and DORs regulate
GABA transmission, although not universally at all striatal
synapses. The biological relevance of synapse- and opioid
receptor subtype-specific regulation of striatal excitatory
and inhibitory transmission is currently unclear. Refined
approaches for manipulating the expression of these receptors
at specific synapses will help decipher the interplay between
receptors in controlling striatal-mediated behaviors and
circuit function.

THALAMUS

The thalamus acts as a relay hub for cortical sensory and motor
functions, controlling perception, action and mentation (Schmitt
and Halassa, 2017). MORs are highly expressed, but DORs
and KORs are sparsely expressed, throughout the thalamus (Le
Merrer et al., 2009; Chu Sin Chung and Kieffer, 2013; Chen et al.,
2015; Bengoetxea et al., 2020).

In the thalamic reticular nucleus there are two predominant
types of neurons that are both GABAergic, but display different
firing properties (bursting and non-bursting). MOR activation,
but not DOR or KOR, hyperpolarizes subpopulations of
each class of neurons, revealing further subpopulations of
neurons in this nucleus. The mechanism of hyperpolarization
is due to increased potassium conductance (Brunton and
Charpak, 1997). MOR activation hyperpolarizes dorsal
midline thalamus neurons that project to the BLA and CeA
(Goedecke et al., 2019). In the centrolateral thalamus, MOR

activation, but not DOR or KOR, hyperpolarized neurons
via increased GIRK function, independent of synaptic input.
The investigators explored MOR hyperpolarization of other
thalamic neurons (principal relay, midline, and intralaminar
nuclei) and found widespread MOR-mediated inhibition of
thalamic neurons, suggesting that the thalamus is a highly
sensitive region to MOR-mediated neuronal hyperpolarization
(Brunton and Charpak, 1998).

In contrast to MORs, KOR effects in the thalamus appear to
be restricted to specific thalamic nuclei. KOR activation produces
direct hyperpolarization of anterior paraventricular thalamic
neurons through GIRKs that peak around the ages of puberty and
then decrease at later ages. MOR activation hyperpolarizes these
neurons; although, the effect of the MOR agonist desensitizes and
produces heterologous desensitization of KOR responses (KOR
responses do not desensitize independent of MOR activation)
(Chen et al., 2015). Additional studies are needed to investigate
potential KOR effects in other thalamic nuclei.

OTHER REGIONS

In the above sections, we opted to review brain regions that
have received the most attention. However, in our survey of the
literature there are, in the context of opioid receptor-mediated
regulation of neurotransmission, some other less studied brain
regions or subregions that deserve further investigation and we
briefly review them here.

Lateral Hypothalamus
In the Lateral Hypothalamus (LH), local GABA neurons within
the perifornical region inhibit the activity of orexin neurons. KOR
activation specifically reduces this GABAergic input, as revealed
by optical probing of these local GABA neurons (Ferrari et al.,
2018). No studies to date have investigated MOR or DOR effects
on neurons in the LH.

Medial Vestibular Nucleus
Also known as the nucleus of Schwalbe is located in the
brainstem (Highstein and Holstein, 2006). DORs, but not MORs
or KORs inhibit Medial Vestibular Nucleus (MVN) neurons.
DOR inhibition is via activation of an outward potassium current
(Sulaiman and Dutia, 1998).

Pons
Located in the brainstem, parabrachial nucleus neurons are
hyperpolarized by MORs, but not DORs or KORs, likely
through enhancing potassium currents (Christie and North,
1988; Cramer et al., 2021). Pontine Kölliker-Fuse nucleus neurons
are hyperpolarized by MOR activation via GIRK activation
(Levitt et al., 2015; Levitt and Williams, 2018). MORs and KORs
inhibit GABA release in PBN, but only MORs regulate glutamate
release (Cramer et al., 2021).

Ventromedial Hypothalamus
Very few studies have investigated the role of opioid receptors in
modulating neural function in the Ventromedial Hypothalamus
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FIGURE 2 | Summary of opioid receptor-mediated modulation of neurotransmission. Opioid receptor activation-mediated modulation of neurotransmission can have
differential effects on neurocircuit function depending on the localization of the receptors. (A) Opioid receptors found on glutamatergic terminals will reduce
glutamate release upon activation, thus inhibiting a postsynaptic neuron. Opioid receptors on postsynaptic neurons will generally reduce neuronal excitability.
(B) Opioid receptors found on inhibitory neuron (e.g., GABAergic) terminals or postsynaptically will reduce inhibitory transmission, disinhibiting a postsynaptic neuron.
Alternatively, opioid receptors on glutamate neurons that impinge on inhibitory neurons will reduce excitatory drive of these neurons, thus reducing inhibitory
transmission and producing disinhibition through a polysynaptic mechanism. (C) Opioid receptors localized to different synaptic terminals can produce differential
outcomes upon activation. As an example from our own work, MORs are localized to cortical and thalamic glutamatergic inputs to dorsal striatum (DS). (D) Upon
activation by the MOR agonist, DAMGO, MORs reduce the amplitude of glutamate-mediated excitatory postsynaptic currents (EPSCs). Activation MORs on
glutamate inputs from cortex produces a long-lasting reduction in EPSC amplitudes. However, activation of MORs on thalamic inputs only produces a transient
reduction, despite also being a glutamatergic input to the same neurons that express the long-lasting reduction in glutamate transmission from cortical inputs.
Adapted from data from Munoz et al. (2018). Figure created with BioRender.com.

(VMH) or LH. In the VMH, MORs hyperpolarize neurons to
reduce cellular excitability, including those that express the leptin
receptor, via enhancing GIRK currents (Emmerson and Miller,
1999). DORs and KORs do not appear to hyperpolarize neurons
in the VMH. Presynaptic MORs strongly inhibit glutamate input
to VMH neurons, whereas DORs have no effect, and KORs have
only a small effect on glutamate release (Emmerson and Miller,
1999; Devidze et al., 2008). It is unknown which glutamatergic
inputs to the VMH are modulated by MORs and KORs.

GENERAL PRINCIPLES, KNOWLEDGE
GAPS, AND FUTURE DIRECTIONS

Across brain regions opioid receptors play major roles in
regulating glutamate and GABA release through presynaptic
mechanisms and neuronal excitability through postsynaptic
mechanisms. There is heterogeneity in the precise mechanisms
whereby opioid receptors regulate neurotransmitter release, even
within any given brain region (Figure 1). At some synapses
this appears to involve inhibition of calcium channels, while
at others it involves activating potassium channels. There is
also evidence that diverse kinase signaling pathways may be
involved at distinct synapses. These divergent mechanisms do
not appear to be due to the specific identity of the opioid
receptors, but rather due to the specific synaptic terminals on
which the receptors are expressed. On the other hand, all three
opioid receptor types appear to generally modulate neuronal

excitability through their actions on potassium channels, such
as GIRKs. However, local circuit effects must be considered
when deciphering pre- versus postsynaptic localization of opioid
receptor actions, as postsynaptic hyperpolarization can reduce
local circuit neurotransmitter release (Figures 2A,B).

In order to better understand how opioid receptors modulate
neurocircuit function, there is a need to identify the specific cell
types that express these receptors and the subcellular localization
of the receptors. Conditional knockout and fluorescent reporter
transgenic mice are useful for identifying the cell types that
express the various opioid receptors and how the expression
of receptors within those cell types affects neurotransmission
(Gaveriaux-Ruff et al., 2011; Weibel et al., 2013; Ehrich et al.,
2015; Erbs et al., 2015; Chen et al., 2020). Another important
consideration is identifying specific circuits that are modulated by
opioid receptors. In many brain regions, opioid receptor effects
on neurotransmission differ according to localization within the
region, projection targets, or input regions. Optogenetic methods
are increasingly accessible and are useful for identifying the
specific synapses at which opioid receptors reside and how they
specifically modulate neurotransmission.

It is not common for assessments of long-term opioid
receptor-mediated synaptic plasticity to be performed. For
many investigators, it is sufficient to determine whether a
synapse is regulated by opioid receptors. However, there are
missed opportunities to observe the diversity in ways in which
opioid receptors modulate neurotransmission. At some synapses,
activation of opioid receptors produces long-lasting effects
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on neurotransmission that persist even once opioid receptor
antagonists are applied, which argues against persistent receptor
activation. At other synapses, opioid receptor activation only
produces transient responses, only lasting while the receptors are
engaged (Figures 2C,D). Opioid receptors display desensitization
at some synapses, while other synapses appear to be resistant
to receptor desensitization. Whether a particular type of
receptor in a given synapse or cell type produces long-lasting
or short-term effects upon activation or desensitizes or not
is a fascinating area of study that will yield rich insights
into how opioids affect cognition, behavioral output, and
physiological functions. Comparisons between mechanisms of
synapse- and cell type-specific opioid receptor modulation of
neurotransmission could also reveal novel opportunities for
targeted combinatorial therapeutics. There is clearly much
left to discover regarding how opioid receptors can utilize

such a diverse array of mechanisms to precisely modulate
neurotransmission.
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Opioids are powerful analgesics that elicit acute antinociceptive effects through their
action the mu opioid receptor (MOR). However opioids are ineffective for chronic
pain management, in part because continuous activation of MORs induces adaptive
changes at the receptor level and downstream signaling molecules. These adaptations
include a decrease in receptor-effector coupling and changes to second messenger
systems that can counteract the persistent activation of MORs by opioid agonists.
Homeostatic regulation of MORs and downstream signaling cascades are viewed as
precursors to developing tolerance. However, despite numerous studies identifying
crucial mechanisms that contribute to opioid tolerance, no single regulatory mechanism
that governs tolerance in at the cellular and systems level has been identified. Opioid
tolerance is a multifaceted process that involves both individual neurons that contain
MORs and neuronal circuits that undergo adaptations following continuous MOR
activation. The most proximal event is the agonist/receptor interaction leading to
acute cellular actions. This review discusses our understanding of mechanisms that
mediate cellular tolerance after chronic opioid treatment that, in part, is mediated by
agonist/receptor interaction acutely.

Keywords: opioid, tolerance, electrophysiology, kinases, withdrawal

INTRODUCTION

Mu opioid receptor (MOR) ligands are the first choice for the treatment of acute, post-surgical
or trauma. There are however side effects that limit their utility including respiratory depression,
constipation sedation, dizziness, and nausea; chronic: abuse potential, dependence (Paul et al.,
2021). Treatment with opioids have limited value for long-term treatment of most chronic pain.
The development of analgesic tolerance is one component limiting the value of chronic treatment
with opioids. A second component results from the development of opioid use disorder. Given the
widespread distribution of MORs in the central nervous system (CNS), it is not surprising that
multiple systems level actions are associated with both the acute and chronic actions of opioids.
MOR expressing areas directly involved in the pain pathway include primary afferent, dorsal horn,
and thalamic neurons (reviewed, Corder et al., 2018). There are also multiple pain associated
regions that express MORs, such as the parabrachial area, periaqueductal gray, and rostral
ventromedial medulla (reviewed, Corder et al., 2018). Additionally, actions of MORs in limbic
areas such as the ventral tegmental area, nucleus accumbens, medial striatum, and rostromedial
tegmental nucleus underlie the initial processes in the development of tolerance and consequently
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opioid abuse disorder (reviewed, Williams et al., 2013). The
effects of opioids therefore result from actions in multiple areas
at both the pre- and postsynaptic levels. Further complicating
this, the downstream receptor-dependent signaling cascades
vary across brain regions. Receptor actions are defined in part
by expression levels, the complement of downstream effectors
and the efficiency of receptor/effector coupling. Postsynaptic
actions include inhibition mediated by an increase in potassium
conductance and an inhibition of voltage dependent calcium
channels and adenylyl cyclase (reviewed, Williams et al.,
2001). In addition, receptors located on presynaptic terminals
act to inhibit transmitter release. Opioid receptor dependent
inhibition of GABA and glutamate results in the modulation
of postsynaptic neurons through disinhibition and inhibition,
respectively. Recent interest in agonist bias of G protein verses
arrestin activation across different neurons has added another
important layer in the understanding of the downstream actions
of opioids (Gillis et al., 2020; Stahl and Bohn, 2021). A substantial
component of opioid tolerance results from the downstream
adaptations that result from continued MOR signaling during
chronic treatment. These processes counteract continued MOR
signaling also underlie the withdrawal that results following
termination of opioid treatment. This review will discuss two
levels of tolerance, namely receptor dependent and systems
dependent tolerance.

Although the acute actions of opioids are established in
multiple CNS areas, there are few areas where the mechanisms
that underlie tolerance and the adaptive mechanisms that result
from chronic treatment have been examined. It is also important
to distinguish acute desensitization from long-term tolerance.
Opioid signaling is disrupted in both processes, but there are
distinct differences. Acute desensitization is most often induced
with high concentrations of agonist that results in a reduction of
signaling. Acute desensitization develops in minutes and recovers
in 10’s of minutes upon agonist removal (reviewed, Williams
et al., 2013; Birdsong and Williams, 2020). It is established that
phosphorylation of the C-terminus of MOR is a necessary step
in the induction of acute desensitization. Recent work indicates
that acute desensitization is largely blocked by inhibition of
GRK2/3 adding to work indicating a key role for protein kinase
C (PKC) (Bailey et al., 2006) and c-Jun N-terminal Kinase (JNK)
(Melief et al., 2010).

Tolerance to opioids, on the other hand, requires treatment
with agonist for hours or days and is not associated with
measurable change in MOR mRNA or protein expression
(Ammon-Treiber and Hollt, 2005; Dang and Christie, 2012). The
recovery from tolerance is very slow (days–months). Further the
time course of this recovery is dependent on what measure is
used to determine tolerance implying that tolerance is cell type
and/or pathway selective (reviewed, Williams et al., 2013). Similar
to acute desensitization, components of long-term tolerance are
also dependent on phosphorylation of the C-terminus, in that
cellular tolerance is blocked with the expression of receptors
where phosphorylation sites in the C-terminus are mutated to
alanine (Arttamangkul et al., 2018; Kliewer et al., 2019). There are
however downstream adaptive mechanisms at the cellular level
that result from the continued activation of receptors that persist

in the absence of C-terminus phosphorylation (Kuhar et al., 2015;
Leff et al., 2020; Adhikary et al., 2022a). The goal of this review is
to summarize what is known about the development of tolerance
in single neurons induced by chronic treatment with opioids.
This cell-centric view of opioid actions is the basis of circuit
and systems level outcomes following chronic opioid treatment
and a full-appreciation of cellular changes across relevant brain
regions will be critical in the search for ligands that can provide
efficacious analgesia over extended periods without untoward
actions on other circuits.

AREAS WHERE NEURONS HAVE BEEN
EXAMINED FOLLOWING CHRONIC
MORPHINE TREATMENT

Morphine, a partial MOR agonist, remains a gold-standard
for acute pain management despite a number of averse
potential outcomes. Postsynaptic tolerance measured in brain
slices from animals exposed to chronic morphine treatment
has been examined using several protocols. The classical
method to describe receptor tolerance requires concentration
response curve in preparations from opioid naïve and treated
animals. Early work in brain slices of rat locus coeruleus (LC)
determined the concentration response to [D-Ala2, N-MePhe4,
Gly-ol]-enkephalin (DAMGO) and normorphine by measuring
the activation of potassium conductance (Christie et al.,
1987). In slices from morphine treated animals there was
a twofold rightward shift in the DAMGO, a full agonist,
concentration response curve and the maximum current induced
by normorphine, a partial agonist, was decreased to ∼50% of
that measured in slices from untreated animals (Christie et al.,
1987). Additionally, the decreases in response to both DAMGO
and normorphine was long lasting (6 h). The interpretation
of this result was that a reduction in receptor reserve caused
the decrease in potassium conductance induced by a saturating
concentration of ligand in preparations from morphine treated
animals compared to naïve animals. Thus, measuring potassium
conductance using partial agonists provide a sensitive assay to
determine the decrease in receptor reserve. More recent results
found two components to cellular tolerance induced by chronic
morphine treatment. One transient form of cellular tolerance
declined as the circulating concentration of morphine (1 µM)
washed out of the brain slice over 60–90 min and was sensitive
to inhibition of PKC (Bailey et al., 2009; Levitt and Williams,
2012). The transient decrease in signaling was considered to be
a form of desensitization that recovered with the removal of
morphine. Long-term tolerance as previously reported persisted
for at least 6 h following preparation of the brain slice (Christie
et al., 1987; Levitt and Williams, 2012). The results carried out
in the LC from mice were similar but not identical in that the
degree of tolerance induced by morphine in the mouse LC is
qualitatively less than that measured in rat (Quillinan et al.,
2011). There is also a difference in signs of acute withdrawal
between mice and rat indicating a marked species difference in
the adaptive processes following chronic treatment with opioids
(Uddin et al., 2021).
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Recent results carried out in rat brain slices in the Kölliker-
Fuse (KF) – a region involved with respiratory control – indicate
that the degree of tolerance induced after chronic (6–7 days,
80 mg/kg/day) morphine treatment was very small (Levitt and
Williams, 2018). Conversely, in dissociated PAG and primary
afferent neurons from mouse, the action of DAMGO to inhibit
voltage dependent calcium current was reduced in preparations
from morphine treated animals (Connor et al., 2015). This
result differs from those obtained in brain slices of the LC
where the maximum current induced by DAMGO, a potent
and efficacious agonist, was the same in preparations from
control and morphine treated animals (Christie et al., 1987;
Connor et al., 2015). The difference between these results can
be explained by the differences in receptor reserve (as defined
by the number of receptors and/or the receptor/effector coupling
efficiency) in the LC versus dissociated PAG neurons. The
activation of potassium conductance in acutely isolated LC
neurons, where the dendritic arbor was eliminated, was reduced
relative to that in brain slice preparations (Ingram et al., 1997).
Further, morphine was unable to activate the potassium current
and blocked the current induced by [Met]5enkephalin (ME)
or DAMGO. The interpretation was that morphine occupied
MORs, but the receptor/effector coupling was reduced to the
point that potassium channels were not activated. Distinct
differences between cell types have also been characterized in
experiments using AtT20 cells (Miess et al., 2018). With the
combination of whole cell or perforated patch recordings to
examine acute morphine dependent desensitization, there was
no desensitization with whole cell recordings that was present
with perforated patch recordings. The interpretation was that
whole cell recording resulted in a washout of a soluble cellular
component that was necessary for acute desensitization (Miess
et al., 2018). Thus, the measurement of opioid induced tolerance
is highly dependent on both the cell under study and the method
used to obtain the results even when examining the same cell type.
Despite these complexities, the data generated to date suggests
that the degree of cellular tolerance measured using the activation
of potassium conductance or the inhibition of voltage gated
calcium channels in single neurons is species, cell type, and brain
region dependent.

POSTSYNAPTIC ADAPTIVE
MECHANISMS

Beyond the decrease in downstream effector activation, chronic
morphine treatment also affects MOR-regulating processes. For
example, acute desensitization of the MOR is more pronounced
after chronic morphine and methadone treatment (Dang and
Williams, 2004, 2005; Quillinan et al., 2011; Arttamangkul et al.,
2018). Additionally, the recovery from acute desensitization of
MORs is prolonged following chronic treatment with morphine
and the kinase regulation of G protein coupled receptors
(GPCRs) is altered (Quillinan et al., 2011; Arttamangkul et al.,
2018; Leff et al., 2020).

Opioid induced acute desensitization in the LC has been
shown to be primarily homologous, in that desensitization of

the MOR does not affect signaling of another GPCR on the
same cell (Harris and Williams, 1991; Bailey et al., 2003, 2009;
Dang et al., 2011). A decrease in sensitivity following chronic
opioid treatment is also restricted to MORs and not to other
GPCRs that couple to the same effectors (Christie et al., 1987;
Connor et al., 1999; Bailey et al., 2009), suggesting specific
actions on MOR and not on downstream effectors such as
G-protein activated inwardly rectifying potassium channels that
carry the described potassium conductance. However, multiple
Gi/o coupled GPCR in the LC share signaling components,
and there is evidence for heterologous desensitization to the α2
adrenergic receptor after MOR activation in mouse LC based
on a more sensitive assay (Dang et al., 2012). In that study the
current induced by a low concentration of noradrenaline was
compared before and following acute desensitization induced
by ME and a component of heterologous desensitization was
detected. Furthermore, heterologous desensitization of the α2
adrenergic receptor was also shown in rats less than 20 days old
in the LC (Llorente et al., 2012). Finally recent work found that
chronic morphine treatment disrupted the ability of the GPCR
kinase G protein coupled receptor kinase (GRK2/3) blocker,
compound 101, to inhibit the recovery from MOR desensitization
as well as the acute desensitization of the somatostatin receptor
(Leff et al., 2020).

The mechanism underlying increased desensitization
and slowed recovery from desensitization after chronic
morphine treatment is phosphorylation dependent. In animals
expressing total phosphorylation deficient (TPD) MORs,
acute desensitization of MORs is blocked and the recovery
from desensitization is faster compared to WT animals
chronically treated with morphine (80 mg/kg/day, Arttamangkul
et al., 2018). The kinase that is mainly responsible for acute
desensitization of MOR is the GPCR kinase, GRK2/3, and
blockade of GRK2/3 can nearly abolish desensitization (Doll
et al., 2012; Lowe et al., 2015; Miess et al., 2018). However,
inhibition of GRK2/3 after chronic morphine treatment was
no longer sufficient to block desensitization or recovery from
desensitization (Leff et al., 2020). Additionally, inhibitors of
kinases including GRK2/3, PKC, and JNK were required to block
desensitization, suggesting that chronic morphine treatment
led to adaptations that induced functional adaptations of other
kinases (Leff et al., 2020).

PRESYNAPTIC ADAPTIVE MECHANISMS

Tolerance to opioids measured at the presynaptic level has
been examined for decades beginning with early studies with
the guinea pig ileum and mouse vas deferens. Following
chronic morphine treatment there was a rightward shift in the
concentration response curve that resulted from a reduction in
MOR receptor reserve (Chavkin and Goldstein, 1984). This study
was the prelude to others that indicated that a reduction in
receptor reserve may be a common mechanism that underlies
cellular tolerance. Although it is possible that there is a reduction
in receptor number, a more likely explanation is that there is a
decrease in the receptor/effector coupling.
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Acute regulation of MORs upon agonist binding in the
presynaptic terminal region of neurons is generally thought to
utilize different mechanism than postsynaptic receptors. One key
difference is that no acute desensitization was detected following
application of a saturating concentration of agonist (Blanchet and
Lüscher, 2002; Fyfe et al., 2010; Pennock et al., 2012; Jullié et al.,
2020). The mechanisms underlying this lack of desensitization are
not fully known, but recent work using single particle tracking
has demonstrated that presynaptic MORs are phosphorylated
and internalized, but are rapidly replaced at sites of transmitter
release by lateral diffusion of extrasynaptic axonal receptors
(Jullié et al., 2020). The extrasynaptic MORs were not subject to
phosphorylation or internalization such that they are poised to
replenish receptors at the sites of transmitter release.

One hallmark of downstream adaptive mechanism following
long-term opioid exposure is the compensatory upregulation of
adenylyl cyclase (Sharma et al., 1975; Terwilliger et al., 1991;
Avidor-Reiss et al., 1995). The functional consequence of the
increase in adenylyl cyclase activity is an over recovery of cAMP-
dependent processes that remained in the continued presence of
opioids (Sharma et al., 1975). Upon removal of morphine there
was a marked overshoot in the production of cAMP and was
implicated in a cellular form of acute opioid withdrawal. The role
of adenylyl cyclase following chronic morphine treatment has
been examined at multiple synapses (Bonci and Williams, 1996,
1997; Chieng and Williams, 1998; Ingram et al., 1997; Vaughan
et al., 1997; Shoji et al., 1999). The increase in cAMP production
has two downstream consequences. First is increased activation
of PKA that augments transmitter release (Bonci and Williams,
1996, 1997; Chieng and Williams, 1998; Ingram et al., 1998)
and through the addition of opioid sensitive adenylyl cyclase
increased the inhibition mediated by opioids upon withdrawal
(Ingram et al., 1998). Second, cAMP is metabolized in the
extracellular space to adenosine (Brundege et al., 1997). The
increase in extracellular adenosine then acts on adenosine A1
receptors to decrease transmitter release (Matsui et al., 2014).
This modulation of adenosine by opioids is synapse specific
(Brundege and Williams, 2002a) and could be dependent on
the location of adenosine release in a given synapse (Adhikary
et al., 2022b). Additionally, chronic morphine treatment can also
increase the sensitivity of adenosine to A1 receptors (Brundege
and Williams, 2002b). The increase in transmitter release in
the continued presence of opioids is viewed as an adaptive
mechanism that counters opioid induced inhibition of release
and represents a form of cellular tolerance. Upon withdrawal of
opioids the rise in extracellular adenosine to depress transmitter
release is thought to represent a mechanism that reduces the signs
of acute opioid withdrawal.

ADAPTIVE MECHANISMS FOLLOWING
CHRONIC TREATMENT WITH AGONISTS
OF VARYING POTENCY AND EFFICACY

It is established that different agonists induce distinct patterns
of analgesic tolerance in vivo. By reducing the number of
functional receptors with an irreversible antagonist of MORs

(β-chlornaltrexamine, β-CNA), the analgesic efficacy in the
whole animal was determined measuring the antinociceptive
effect a number of opioids after partial irreversible antagonism.
High-efficacy agonists require fewer receptors to produce
antinociception and are therefore less affected by partial
irreversible block with β-CNA, than the antinociceptive response
for low-efficacy agonists (Kumar et al., 2008; Madia et al., 2009;
Sirohi et al., 2009). These studies have found that fentanyl has the
greatest relative efficacy, followed by etorphine, methadone and
morphine, hydromorphone, oxycodone, and lastly hydrocodone.
Relative efficacy also correlated with analgesic tolerance with low-
efficacy agonists like morphine and oxycodone inducing greater
tolerance more rapidly than high-efficacy agonists like etorphine
and fentanyl (Walker and Young, 2001; Grecksch et al., 2006;
Pawar et al., 2007; Kumar et al., 2008). Additionally, high dose
etorphine, but not morphine or oxycodone, induced a substantial
upregulation of dynamin-2, leading to downregulation of MORs
(Pawar et al., 2007).

The mechanism underlying agonist specific in vivo tolerance
is largely unknown, however, work in brain slice experiments
from LC neurons have found that opioid agonists with different
potencies and efficacies exert unique their effects on the MOR
activation and regulation (Virk and Williams, 2008; Quillinan
et al., 2011; Adhikary et al., 2022a). In rats treated with
morphine, the acute decline of peak current by ME and morphine
was facilitated and recovery from desensitization was reduced
compared to untreated animals (Dang and Williams, 2004,
2005). The enhancement of desensitization suggests that after
chronic treatment a subsequent desensitizing stimulus causes
a greater uncoupling of MORs from its effectors compared to
untreated animals. Rats chronically treated with methadone also
had increased desensitization, and the concentration-response
curve of ME was right-shifted twofold, but the recovery from
desensitization was the same as in untreated animals (Quillinan
et al., 2011). In experiments with rats chronically treated with
oxycodone there was no rightward shift in the concentration-
response curve to ME or oxycodone. There was also no change
in the extent of desensitization or the rate of recovery from
desensitization (Adhikary et al., 2022a). There was a rightward
shift in the concentration response to ME in rats treated with
fentanyl and in increase in the extent of desensitization (Adhikary
et al., 2022a). These data support a critical role of agonist efficacy
in mediating cellular tolerance after chronic treatment.

It is important to note that, the induction of tolerance
to morphine on single cells in the LC required sustained
treatment. Animals treated for 1 day with morphine did not
exhibit any form or tolerance nor was the recovery from acute
desensitization affected (Quillinan et al., 2011). In addition,
the decrease in the rate and extent of recovery from acute
desensitization in slices taken from morphine treated animals
was not dependent on the dose of morphine applied using the
osmotic mini pump (Quillinan et al., 2011). The conclusion is
that continued signaling, even at a low level, was required to
induce tolerance to morphine. Although the same result was not
induced by chronic treatment with methadone, unlike treatment
with morphine, it is possible that tolerance to methadone requires
more than one week.
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Cellular tolerance as measured by upregulation of second
messengers also is agonist specific. Chronic morphine treatment
resulted in a functional upregulation of PKC and JNK, resulting
in these kinases contributing to desensitization of MOR and
Somatostatin receptors (Leff et al., 2020). Curiously, even without
inducing changes to MOR desensitization and tolerance, chronic
oxycodone treatment (30 mg/kg/day) resulted in changes in
the kinase dependence of somatostatin receptor desensitization
(Adhikary et al., 2022a). Thus the continued signaling of MOR
by oxycodone induced an adaptation downstream that altered
the desensitization of somatostatin receptors. One possible
explanation is that persistent MOR signaling with agonists that
do induce desensitization or internalization had cellular effects
unrelated to receptor dependent tolerance. This observation was
based on experiments where animals were treated with fentanyl,
a highly efficacious internalizing agonist. In those experiments,
tolerance was measured by measuring a rightward shift in
the concentration response curve to ME and demonstrated
that chronic treatment with fentanyl (1.5 mg/kg/day) induced
tolerance at the receptor level but did not cause an alteration
in the kinase regulation of the somatostatin (SST) receptor
(Adhikary et al., 2022a).

The role of phosphorylation of the C terminus induced by
fentanyl after chronic treatment was examined with experiments
using the expression of MORs where all phosphorylation sites
on the C terminus were mutated to alanine (TPD-MORs).
Treatment of animals with fentanyl expressing the TPD-MORs
resulted in an altered kinase regulation of the somatostatin
receptor, unlike experiments with wild-type MORs (Adhikary
et al., 2022a). The experiment supported the role of continued
signaling as a key mechanism that underlies the regulation of
kinase dependent desensitization of GPCRs. Equally possible
is that receptor dependent desensitization and internalization
prevents the induction of altered kinase regulation of GPCRs by a
downstream mechanism unrelated to acute signaling. The precise
mechanisms that underly the induction of receptor dependent
tolerance and adaptations that affect downstream processes at
the cellular level are not known. It is however clear that the two
processes are agonist dependent in the LC.

CONCLUSION

Ultimately, how different agonists mediate regulation of
MORs after chronic treatment, and therefore, the combination
of receptor and cellular dependent tolerance are not fully

understood. It is also not known if agonist efficacy or some
other regulatory property of an agonist plays a role in mediating
tolerance at the level of the receptor. For example, tolerance is
induced by chronic treatment with morphine in spite of the fact
that it is relatively inefficient at inducing desensitization and
internalization. The idea that cellular tolerance is dependent on
internalization was suggested by experiments where, morphine-
bound MORs on the plasma membrane were phosphorylated
and presumed desensitized (Zhang et al., 1998; Koch et al.,
2001, 2005). Therefore, one theory of tolerance postulates that
the lack of internalization, and consequently reduced recovery
from desensitization, contributes to tolerance. A second theory
states that the lack of internalization induced by morphine
leads to continuous and persistent signaling, resulting in
counter regulatory adaptations (Whistler and von Zastrow, 1998;
Whistler et al., 1999). It is possible that both persistent signaling
and decoupling of MORs from effectors contribute to cellular
tolerance but it is clear that tolerance measured at the cellular
level is only one component of the tolerance that is measured
in living animals. The future understanding of tolerance will
require work that connects cellular tolerance at the cellular and
synaptic level in single neurons with whole animal work. What
is known in the LC is a start but a complete understanding
can only be accomplished through cellular and synaptic work
in multiple areas of the CNS. Synapse specific effects of acute
opioid actions are underway (Birdsong et al., 2019), but there is
much to be done.
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Impaired chemoreflex responses are a central feature of opioid-induced respiratory

depression, however, the mechanism through which mu opioid receptor agonists lead

to diminished chemoreflexes is not fully understood. One brainstem structure involved

in opioid-induced impairment of chemoreflexes is the nucleus of the solitary tract

(NTS), which contains a population of neurons that express mu opioid receptors.

Here, we tested whether caudal NTS neurons activated during the chemoreflex

challenge express mu opioid receptors and overlap with neurons activated by

opioids. Using genetic labeling of mu opioid receptor-expressing neurons and cFos

immunohistochemistry as a proxy for neuronal activation, we examined the distribution

of activated NTS neurons following hypercapnia, hypoxia, and morphine administration.

The main finding was that hypoxia and hypercapnia primarily activated NTS neurons

that did not express mu opioid receptors. Furthermore, concurrent administration of

morphine with hypercapnia induced cFos expression in non-overlapping populations

of neurons. Together these results suggest an indirect effect of opioids within the

NTS, which could be mediated through mu opioid receptors on afferents and/or

inhibitory interneurons.

Keywords: opioid, nucleus of the solitary tract, respiratory depression, hypercapnia, hypoxia

INTRODUCTION

The primary cause of death from illicit opioid use is respiratory depression caused by the
activation of mu opioid receptors (MORs) in various brainstem respiratory nuclei (Dahan
et al., 2001; Bateman et al., 2021). Opioid-induced respiratory depression presents with
slow and irregular breathing due to inhibition in rhythmogenic and pattern-modulating
respiratory nuclei (Palkovic et al., 2020; Bateman et al., 2021; Ramirez et al., 2021). This
decrease in ventilation leads to decreased blood concentrations of O2 and increased levels
of CO2 (Macintyre, 2001; Pattinson, 2008). Additionally, opioids also affect the hypoxic
and hypercapnic chemoreflexes due to the activation of MORs, which further exaggerates
opioid effects on breathing (Weil et al., 1975; Dahan et al., 2001; May et al., 2013).
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Several opioid-sensitive respiratory nuclei have been
implicated in the hypoxic and hypercapnic ventilatory
chemoreflex responses, including the nucleus of the solitary tract
(NTS) (Coates et al., 1993; Nattie and Li, 2002, 2008; Zhang et al.,
2011; Zhuang et al., 2017). The NTS contains CO2-sensitive
neurons (Dean et al., 1989; Nichols et al., 2009a) and is also
the site where chemoreceptor afferents from oxygen-sensitive
carotid bodies first synapse before this information is relayed
from second-order neurons to upstream respiratory regions
(Andresen and Kunze, 1994; Kline et al., 2010; King et al., 2012;
Zoccal et al., 2014). Hypercapnia and hypoxia elicit expression of
the immediate early gene, cFos, as an indicator of recent neural
activity in the NTS (Jansen et al., 1996; Teppema et al., 1997;
Ohtake et al., 2000; Tankersley et al., 2002; King et al., 2012).

The NTS abundantly expresses MORs (Mansour et al.,
1994; Zhuang et al., 2017). Microinjection of the MOR agonist
DAMGO in the caudomedial portion of the NTS inhibits both
the hypercapnic and hypoxic ventilatory response in rats, which
is blocked by the selective MOR antagonist CTAP (Zhang et al.,
2011; Zhuang et al., 2017). Whether this inhibition is caused
by somatodendritic MORs or presynaptic MORs on afferent
terminals is unknown. In addition, systemic administration of
morphine has been shown to induce cFos expression in the
NTS, indicating possible activation of NTS neurons by opioids
(Hammond et al., 1992; Grabus et al., 2004; Salas et al., 2013).

Despite significant advances in our understanding of opioid-
induced respiratory depression, the mechanisms through which
MOR agonism leads to impaired chemoreflexes are not well-
understood. Here, we sought to assess whether NTS neurons
activated during chemoreflex ventilatory responses express
MORs and whether morphine would reduce hypercapnia-
mediated activation. We examined the overlap between
chemoreflex-sensitive neurons and opioid-sensitive neurons in
the NTS by measuring cFos expression as a proxy for neuronal
activation following exposure to moderate hypercapnia, hypoxia,
or morphine in mice with fluorescently tagged MOR-expressing
neurons. Our results imply that while a small portion of MOR-
expressing neurons is activated by hypercapnia and hypoxia,
the majority of chemoreflex-activated NTS neurons are not
directly opioid-sensitive.

METHODS

Animals
All experiments were approved by the Institutional Animal
Care and Use Committee at the University of Florida and were
in agreement with the National Institutes of Health “Guide
for the Care and Use of Laboratory Animals.” Homozygous
Oprm1Cre/Cre mice (Liu et al., 2021) (Jackson Labs Stock
#035574) were crossed with homozygous Ai9-tdTomato Cre
reporter mice (Jackson Labs Stock #007909) to generate
Oprm1Cre/tdT mice. Oprm1Cre/tdT mice (male and female, 2–6
months old) and wild-type C57BL/6J mice (male and female,
2–7 months old) were used for all experiments. Experimental
groups were counterbalanced for age and sex. No apparent age or
sex-dependent differences were observed, so data were pooled.
All mice were bred and maintained at the University of Florida

animal facility. The mice were group-housed in standard-sized
plastic cages and kept on a 12-h light/dark cycle, with water and
food available ad libitum.

Drugs
Morphine sulfate was obtained from the National Institute
on Drug Abuse Supply Program (RTI International, Research
Triangle Park, NC).

Chemoreflex and Morphine Challenges
Chemoreflex challenges were performed in two phases in
separate cohorts of mice. The first phase utilized Buxco whole-
body plethysmography chambers (Buxco Electronics Ltd., NT,
United States). In this phase, Oprm1Cre/tdT mice were acclimated
to the chambers ventilated (0.5 L/min) with standard compressed
room air for 1 h per day for 3 consecutive days prior to
experimentation. On experiment day, mice were placed in the
chambers and given a 15-min acclimation period with standard
compressed air. Following this acclimation period, mice were
exposed to either standard compressed air, a hypoxic challenge
(10% O2, 90% N2), or a hypercapnic challenge (7% CO2, 21%
O2, 72% N2), for 60min. Animals were then removed from
the chambers and placed in their home cage for 60min prior
to perfusion.

The second phase of chemoreflex challenges was conducted
using vivoFlow whole-body plethysmography chambers
(SCIREQ Inc, Montreal, QC, Canada). The mice were handled
and exposed to the whole-body plethysmography system
ventilated (0.5 L/min) with standard air for 1 h a day for
3 consecutive days immediately prior to experimentation.
Oprm1Cre/tdT and C57BL/6J wild-type mice were grouped
into one of four conditions: saline injection (10 µl/g, i.p.) with
standard air, saline injection with hypercapnic air (7% CO2,
21% O2, 72% N2), morphine injection (30 mg/kg, i.p.) with
standard air, or morphine injection with hypercapnic air. On
experimentation day, the mice were acclimated to the chambers
for 15min, injected with saline or morphine and exposed to
standard air or hypercapnic air for 60min. The mice were then
returned to their home cages for 30min prior to perfusion.

Plethysmography
During the second phase of challenges, recordings of respiratory
frequency and estimated tidal volume were collected using
vivoFlow whole-body plethysmography and IOX2 software
(SCIREQ Inc, Montreal, QC, Canada) 10–30min post-saline or
morphine (30 mg/kg) injection in mice breathing standard air
or hypercapnic air. To calibrate volume changes, 10ml of air
was injected into the chambers using a 10ml syringe prior to
each recording session, in accordance with the manufacturer’s
instructions. Tidal volume was calculated from the integral
of the inspiratory time. It is important to note that body
temperature was not recorded, so tidal volume measurements
are estimates. Since tidal volume is used in the calculation of
minute ventilation, these measurements are also estimates. The
chambers were ventilated with a constant airflow of 0.5 L/min of
standard air or hypercapnic air (7% CO2), as described above.
All plethysmography experiments were conducted at room
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temperature without thermoregulatory compensation. Potential
breaths were rejected if the ratio of inspiratory to expiratory
volume was below 70%.

Immunohistochemistry
Following experimental exposures, the mice were deeply
anesthetized using isoflurane and transcardially perfused with
PBS followed by 10% formalin. Brains were removed and
post-fixed overnight. Brains were then cryoprotected in 10%
sucrose/PBS solution, followed by 20% sucrose/PBS solution.
Free-floating coronal sections (40µm) containing caudal NTS
[-7.56 to−7.76mm caudal to bregma (Franklin and Paxinos,
2008)] were prepared with a cryostat and stored in PBS at 4◦C
until staining.

The free-floating sections were washed and permeabilized
with PBS-T (0.3% TritonX-100), blocked in 3%NGS in PBS-T for
1 h and incubated in primary antibody (rabbit anti-cFos [Abcam,
ab190289] 1:2000 in blocking buffer) overnight. The sections
were then washed in PBS-T and incubated in secondary antibody
(goat anti-rabbit AlexaFluor 488 [Invitrogen, A11008] 1:500)
for 2 h. The sections were washed and rinsed once in ddH2O
before mounting with Flouromount-G DAPI (ThermoFisher)
mounting medium. The sections were imaged using a confocal
laser scanning microscope (Nikon A1R) with a 10X objective (N.
A. 0.3).

Image Processing and Cell Counting
Image processing was performed in FIJI (Schindelin et al.,
2012) and the interactive machine learning software Ilastik (Berg
et al., 2019). For each image, maximum intensity projections
were generated using FIJI and imported into Ilastik. In Ilastik,
a segmentation algorithm was manually trained on the set
of images. Under this framework, all images analyzed with a
particular algorithm receive identical treatment.

Ilastik was used to calculate features related to pixel intensity,
edges, and texture for each pixel at seven different radii (0.3, 0.7,
1.0, 1.6, 3.5, 5.0, 10.0). The features calculated included: Gaussian
Smoothing (intensity), Laplacian of Gaussian, Gaussian Gradient
Magnitude, and Difference of Gaussians (edge detection),
and Structure Tensor Eigenvalues and Hessian of Gaussian
Eigenvalues (texture). The segmentation algorithm was trained
on the complete set of max-intensity projections for a given
region, using experimenter annotations to label a subset of pixels
in each image as “cell” or “background.” A parallel random forest
(VIGRA) algorithm predicts the probability that the remaining
pixels are “cell” or “background” based on these annotations and
the 42 calculated features.

After training, the algorithm exports a probability map
for each image, representing the likelihood that each pixel
constitutes part of a cell. The max-intensity projections and
corresponding probability maps were then loaded into an Ilastik
Object Classification Workflow, where probability thresholding
and size filters were used to identify cells. Random images and
the corresponding binary images were reviewed by a blinded
experimenter observer to verify the accuracy of the algorithm.

The number of cFos+, tdTomato+ or co-labeled cells was
determined in the caudal NTS (-7.56 to−7.76mm caudal to

bregma) for each section (2–6 sections/mouse) and averaged
to determine the mean # of cFos+, tdTomato+ or co-labeled
cells/section for each mouse. N values reported in Results
represent the number of mice per group.

Statistics
All statistical analyses were performed in GraphPad Prism 8.
Error bars represent the standard error of the mean (SEM).
Data with n > 7 were tested for normality with D’Agostino and
Pearson normality test. For normally distributed data and data
with n ≤ 7, comparisons between two groups were made using
unpaired Student’s two-tailed t-test. Comparisons between three
or more groups were made using two-way ANOVA followed by
Holm-Sidak post hoc test.

RESULTS

The Hypercapnic Ventilatory Response Is
Suppressed by Morphine
Opioids attenuate the hypercapnic ventilatory response (HCVR)
mediated by the NTS (Zhang et al., 2011; Zhuang et al., 2017),
but whether this inhibition is caused by somatodendritic MORs
or presynaptic MORs on afferent terminals is unknown. To begin
to answer this question, wild-type mice were exposed to standard
air or hypercapnia (7% CO2) following an injection of saline or
morphine (30 mg/kg). The ventilatory effects of morphine and
hypercapnia were verified using whole-body plethysmography
(Figure 1). In the mice exposed to standard air (n = 11),
morphine significantly reduced breathing frequency (saline: 264
± 8 bpm vs. morphine: 152 ± 11 bpm, p < 0.0001 by two-
way ANOVA and Holm-Sidak post hoc test, Figure 1A), but
not tidal volume or minute ventilation (tidal volume = saline:
6.7 ± 0.5 ml/kg vs. morphine: 8.3 ± 0.5 ml/kg, p = 0.212
by two-way ANOVA and Holm-Sidak post hoc test, Figure 1B;
minute ventilation = saline: 1.8 ± 0.1 ml/min/g vs. morphine:
1.2 ± 0.1 ml/min/g, p = 0.124 by two-way ANOVA and Holm-
Sidak post hoc test, Figure 1C). Hypercapnia-induced increases
in minute ventilation, breathing frequency, and tidal volume
were all significantly depressed by morphine (minute ventilation
in saline 4.7± 0.4ml/min/g vs. morphine 2.5± 0.3ml/min/g, p<

0.0001 by two-way ANOVA andHolm-Sidak post-test; frequency
in saline 358 ± 9 bpm vs. morphine 251 ± 3 bpm, p < 0.0001
by two-way ANOVA and Holm-Sidak post-test; tidal volume in
saline 13.0± 1.1 ml/kg vs. morphine 10.1± 1.0 ml/kg, p= 0.0407
by two-way ANOVA and Holm-Sidak post-test; n = 10 mice),
consistent with established effects of morphine on the HCVR in
mice and humans (Weil et al., 1975; Dahan et al., 2001).

NTS cFos Expression Induced by
Hypercapnia
We next examined the expression of cFos, as a proxy for neuronal
activation, in the NTS of WT mice exposed to standard air or
hypercapnia. The NTS of saline-treated, standard air-exposed
mice (n = 6 mice, 5-6 sections/mouse) contained a low number
of cFos-expressing cells, scattered throughout the region (9 ± 3
cFos+ cells/section; Figures 2A,E). The number of cFos+ cells
was significantly increased in saline-treated mice that underwent

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 July 2022 | Volume 15 | Article 93218944

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Maletz et al. MORs in NTS Chemosensitive Neurons

FIGURE 1 | Morphine suppresses breathing during control and hypercapnic conditions in wild-type mice. Respiration was measured during control conditions

(standard room air) or hypercapnia challenge (7% CO2) using whole-body plethysmography following an injection of saline (black symbols) or morphine (30 mg/kg;

gray symbols). (A) Representative plethysmography traces during each of the four conditions. Scale bar applies to all traces. Inspiration is downward. (B–D) Saline

control n = 11, morphine control n = 11, saline hypercapnia n = 10, morphine hypercapnia n = 10. Data are graphed as mean ± SEM. *p < 0.05, ***p < 0.0001, ns

p > 0.05 by two-way ANOVA and Holm-Sidak multiple comparison’s test.

a hypercapnic challenge (n = 7 mice, 2-6 sections/mouse: 17 ±

2 cFos+ cells/section, p = 0.037, unpaired t-test; Figures 2B,E),
consistent with existing literature (Jansen et al., 1996; Teppema
et al., 1997; Tankersley et al., 2002).

NTS cFos Expression Induced by Acute
Morphine
In mice exposed to standard air, morphine significantly increased
the number of cFos-expressing cells in the NTS relative to saline
treatment (n = 6 mice, 2-6 sections/mouse, 101 ± 6 cFos+
cells/section, p < 0.0001 by unpaired t-test, Figures 2C,F). These
data indicate that the NTS contains a large proportion of neurons
that express cFos in response to morphine administration. These
neurons may or may not play a role in the HCVR. We next
measured cFos expression in morphine-injected mice that were
exposed to hypercapnia (n = 9 mice, 4–6 sections/mouse).
Hypercapnia further increased the number of cFos+ cells in
morphine-treated mice compared to morphine treatment in
standard air (125± 7 cFos+ cells/section, p= 0.026 by unpaired
t-test, Figures 2D,F). The results imply that hypercapnia recruits
an additional population of NTS neurons that do not overlap
with those activated under the influence of morphine alone.

Hypercapnia Induces cFos Expression in
MOR-Negative Cells
To determine whether cells activated by hypercapnia express
MORs, we crossed Oprm1Cre/Cre mice with Ai9 tdTomato Cre-
reporter mice to generate Ai9tdT/+::oprm1Cre/+ mice (hereby
referred to as Oprm1Cre/tdT mice) which express tdTomato
in MOR-expressing cells. We exposed Oprm1Cre/tdT mice
to standard air or hypercapnia (7%) and identified cFos+,
tdTomato+, and co-labeled cells in the NTS (Figure 3).
There was no significant difference in the average number of
tdTomato+ neurons in the NTS of hypercapnia-exposed (n =

8 mice, 5-6 sections/mouse) and standard air-exposed (n = 7
mice, 2-6 sections/mouse) mice (hypercapnia: 218 ± 39 cFos+
cells/section vs. standard air: 179 ± 20 cFos+ cells/section, p =

0.40 by unpaired t-test). In both groups, tdTomato expression
in the NTS occurred in both neuronal cell bodies and neurites
(Figures 3A,C), indicating MOR expression in afferents in the
NTS, as well as NTS neurons themselves. Consistent with
results from wild-type mice, there were significantly more
cFos+ cells in the NTS of hypercapnia-exposed mice relative to
standard room air-exposed mice (hypercapnia: 18 ± 3 cFos+
cells/section vs. control: 8 ± 3 cFos+ cells/section, p = 0.030
by unpaired t-test, Figure 3D). There was also a significantly
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FIGURE 2 | Hypercapnia and morphine activate non-overlapping populations of NTS neurons. Wild-type mice were exposed to standard room air (Control) or

hypercapnia (7% CO2) following an injection of saline or morphine (30 mg/kg). (A–D) Example images of cFos immunolabeling (green) in NTS sections from mice

exposed to each of the four treatment groups. Scale bar = 100µm. AP, area postrema; cc, central canal; 10N, dorsal motor nucleus of vagus. (E,F) Summary data of

the average number of cFos+ NTS cells per section (n = 6–9 mice/group, 2–6 sections/mouse). Hypercapnia increased the number of cFos+ cells in saline (E) and

morphine (F) treated mice. Each data point represents the average # of cFos+ cells per section for an individual mouse. Bar and error are group mean ± SEM. *p <

0.05 by unpaired t-test.

higher number of cFos+/tdTomato+ co-labeled cells in the
hypercapnia group relative to the control group (hypercapnia:
1.3 ± 0.4 co-labeled cells/section vs. control: 0.4 ± 0.1 co-
labeled cells/section, p=0.044 by unpaired t-test, Figure 3E),
indicating that some MOR-expressing NTS neurons participate

in the HCVR. However, the number of cFos+/tdTomato+ co-
labeled cells was very low in both groups. Only 7.6% of cFos+
cells were MOR+, and fewer than 1% of MOR+ cells were
cFos+. Taken together, these data suggest that very few of
the cells activated by hypercapnia are MOR+, implying that
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opioid inhibition of the hypercapnic ventilatory response at the
level of the NTS is likely mediated by presynaptic, rather than
somatodendritic inhibition.

Hypoxia Induces cFos Expression in
MOR-Negative Cells
Opioid-induced hypoventilation produces oxygen desaturation,
in addition to the accumulation of CO2. Activation of MORs
in the NTS can also significantly impair the hypoxic ventilatory
response (Zhang et al., 2011; Zhuang et al., 2017). To determine
whether cells activated by hypoxia express MORs, we exposed
Oprm1Cre/tdT mice to standard air or hypoxia (10%) and
identified cFos+, tdTomato+, and co-labeled cells in the
NTS (Figure 4, n = 6 mice/group, 4-6 sections per mouse).
Consistent with prior studies (Teppema et al., 1997; Ohtake
et al., 2000; King et al., 2012), there was a significantly higher
number of cFos+ cells in the NTS of hypoxia-exposed mice
relative to standard air-exposed mice (hypoxia: 35 ± 4 cFos+
cells/section vs. control: 11 ± 7 cFos+ cells/section, p =

0.017 by unpaired t-test, Figure 4D). However, there was no
significant difference in the number of cFos+/tdTomato+ co-
labeled cells between the hypoxia and control groups (hypoxia:
0.6 ± 0.2 cFos+ cells/section vs. control: 0.2 ± 0.2 cFos+
cells/section, p = 0.244 by unpaired t-test, Figure 4E). The
number of co-labeled cells was very low in both standard
air and hypoxia-exposed mice. Fewer than 5% of cFos+
cells were MOR+, and fewer than 1% of MOR+ cells were
cFos+. Taken together, these data suggest that very few of the
cells activated by hypoxia are MOR+, implying that opioid
inhibition of the hypoxic ventilatory response at the level of
the NTS is also likely mediated by presynaptic, rather than
postsynaptic inhibition.

Morphine Induces cFos Expression in
MOR-Negative and MOR-Positive Cells
Since activation of MORs by morphine could directly lead
to cFos expression independent of neuronal activation (Shoda
et al., 2001), we next tested if NTS cells activated by morphine
treatment expressed MORs (n = 2 mice, 3-4 sections/mouse).
Only 6.2% of tdTomato+ cells was cFos+, while 15.1% of
the cFos+ cells was tdTomato+ indicating they expressed
MORs (Figure 5, 299 ± 92 tdTomato+ cells/section; 101
± 37 cFos+ cells/section; 15 ± 5 co-labeled cFos+/MOR+
cells/section). This finding that morphine administration induces
cFos expression in both MOR-positive and MOR-negative cells,
suggests at least two potential pathways by which morphine
can induce cFos expression in NTS cells. While some cells may
express cFos due to direct signaling pathways from co-expressed
postsynaptic receptors, the vast majority of cFos expression
induced in the NTS by morphine is indirect, and likely due to
neuronal activation.

Since Oprm1Cre/tdT mice lose a functional copy of MOR (Liu
et al., 2021), it was important to determine if morphine is still
effective in these mice. In Oprm1Cre/tdT mice, morphine (30
mg/kg) did cause respiratory depression compared to saline-
treated controls (n = 4/group). Morphine reduced minute

ventilation (saline-treated: 2.1 ± 0.1 ml/min/g vs. morphine-
treated: 1.0 ± 0.1 ml/min/g, p = 0.003 by unpaired t-test) due
to a significant reduction in breathing frequency (saline-treated:
280 ± 9 bpm vs. morphine-treated: 172 ±7 bpm, p < 0.0001
by unpaired t-test) and tidal volume (saline-treated: 7.6 ± 0.5
ml/g vs. morphine-treated: 5.7± 0.5 ml/g, p= 0.029 by unpaired
t-test). Importantly, baseline respiration in Oprm1Cre/tdT mice
was similar to wild-type mice (minute ventilation p = 0.121,
frequency p = 0.271, tidal volume p = 0.327, unpaired t-tests).
Morphine-induced respiratory depression in Oprm1Cre/tdT mice
also manifests similarly to wild-type mice (minute ventilation p
= 0.162, frequency p= 0.306, unpaired t-tests).

DISCUSSION

While our knowledge about the mechanisms and cellular
basis of opioid-induced respiratory depression has significantly
increased in recent years (Bateman et al., 2021; Ramirez et al.,
2021), the mechanisms through which opioids lead to impaired
chemoreflexes are not well-understood. The goal of this study
was to determine the amount of overlap between chemoreflex-
sensitive neurons and opioid-sensitive neurons in the NTS by
measuring cFos expression as a proxy for neuronal activation
in mice with fluorescently tagged MOR-expressing neurons. We
hypothesized that hypercapnia would activate MOR-expressing
neurons, and that morphine would reduce this hypercapnia-
mediated activation. On the contrary, our results indicate that
although MORs are expressed in neurons and neurites in the
NTS, most neurons that are activated by hypercapnia do not
express MORs. Similarly, most NTS neurons that are activated
by hypoxia also do not express MORs. Thus, opioid effects
on hypercapnic and hypoxic ventilatory responses in the NTS
(Zhang et al., 2011; Zhuang et al., 2017) are indirectly mediated.

Morphine Activation of NTS Neurons
Opioid receptors are inhibitory G protein-coupled receptors
that inhibit neuronal activity through hyperpolarization and
inhibition of neurotransmitter release. Despite this, morphine
significantly increased cFos expression in the NTS, consistent
with previous studies (Hammond et al., 1992; Grabus et al.,
2004; Salas et al., 2013). There are multiple mechanisms by
which this could occur. First, opioids can excite neurons by
disinhibition (i.e., inhibition of tonic GABA release) (Johnson
and North, 1992; Lau et al., 2020). The NTS contains numerous
GABAergic interneurons and receives GABAergic afferent
projections from other areas (Fong et al., 2005; Bailey et al., 2008).
The mu opioid agonist endomorphin-1 inhibits spontaneous
GABAergic neurotransmission in the NTS and hyperpolarizes
a portion of GABAergic NTS interneurons (Glatzer et al.,
2007). In addition, endomorphin-1 inhibits solitary tract
stimulation-evoked glutamate release onto GABAergic neurons
in the NTS (Glatzer et al., 2007), which could also decrease
GABAergic interneuron activity. Thus, disinhibition is a likely
mechanism by which morphine increased cFos expression in
the NTS and could lead to impairments in hypoxic ventilatory
responses (Tabata et al., 2001; Chung et al., 2006). Second,
MOR-coupled intracellular signaling cascades can lead to the
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FIGURE 3 | Hypercapnia activates MOR-negative neurons. Identification of cFos immunolabeling and tdTomato expression, as an indicator of MOR expression, in the

NTS of Oprm1Cre/tdT mice that were exposed to standard air (Control) or hypercapnic air (7% CO2). (A–C) Example images of cFos immunostaining (green) and

MOR+ tdTomato expression (red) from a mouse exposed to hypercapnia. Very few cells co-expressed cFos and tdTomato (indicated by yellow vertical arrows). White

diagonal arrows are pointing at example cells that are cFos+, but do not express MORs. (A1–C1) are zoomed in views of the boxed region in (A–C). Scale bar =

100µm. (D,E) Summary data of the average number of cFos+ NTS cells per section (D), or the average number of co-labeled cFos+/MOR+ NTS cells per section

(E) (n = 7–8 mice/group, 2–6 sections/mouse). Each data point represents the average # of cFos+ cells per section for an individual mouse. Bar and error are group

mean ± SEM. *p < 0.05 by unpaired t-test.

induction of cFos expression in the absence of neuronal
activation (Shoda et al., 2001). This signaling mechanism would
only induce cFos expression in neurons that express MORs.
Since only a small percentage of cFos expressing cells co-
expressed MORs, this is likely a minor mechanism by which
morphine-induced cFos expression in the NTS. Finally, since
morphine reduces ventilation, which can lead to hypoxemia

and accumulation of CO2, morphine could have activated

neurons through chemoreflex pathways. There were more
cFos expressing neurons in the NTS from mice that received
morphine and a hypercapnic challenge. Morphine exacerbation
of hypercapnia may recruit additional non-opioid-sensitive CO2-
sensitive NTS neurons. Since morphine also induces hypoxemia,
the recruitment of additional hypoxia-sensitive neurons is
also possible. Interestingly, withdrawal from chronic morphine

treatment also induces cFos expression in the NTS (Stornetta
et al., 1993; Laorden et al., 2002; Mannelli et al., 2004;
Benavides et al., 2005). Presumably, the neurons activated by
acute morphine and morphine withdrawal should be distinct
populations, but this remains to be determined.

Presynaptic MORs in the NTS
Our findings that neurons activated by hypercapnia and hypoxia
do not express MORs suggest that the effects of opioid agonist
in the NTS (Zhang et al., 2011; Zhuang et al., 2017) are
indirect and possibly mediated by presynaptic MORs on axon
terminals. The NTS contained a significant amount of MOR-
expressing neurons and neurites compared to the surrounding
area, consistent with previous reports (Mansour et al., 1994;
Aicher et al., 2000; Zhuang et al., 2017), and a substantial amount
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FIGURE 4 | Hypoxia activates MOR-negative neurons. Identification of cFos immunolabeling and tdTomato expression, as an indicator of MOR expression, in the NTS

of Oprm1Cre/tdT mice that were exposed to standard air (Control) or hypoxic air (10% O2). (A–C) Example images of cFos immunostaining (green) and MOR+

tdTomato expression (red) from a mouse exposed to hypoxia. Very few cells co-expressed cFos and tdTomato (indicated by yellow vertical arrows). White diagonal

arrows are pointing at example cells that are cFos+, but do not express MORs. (A1–C1) are zoomed in views of the boxed region in (A–C). Scale bar = 100µm. (D,E)

Summary data of the average number of cFos+ NTS cells per section (D), or the average number of co-labeled cFos+/MOR+ NTS cells per section (E) (n = 6

mice/group, 4–6 sections/mouse). Each data point represents the average # of cFos+ cells per section for an individual mouse. Bar and error are group mean ±

SEM. *p < 0.05; ns, p > 0.05 by unpaired t-test.

of MOR expression in the NTS is in afferents (Aicher et al., 2000).
The NTS is the first relay for several cardiorespiratory afferents,
including lung and airway vagal afferents and carotid body
chemoreceptor afferents (Kubin et al., 2006). Ultrastructural
microscopy identified MORs on vagal afferent terminals in
the medial NTS, which primarily synapsed onto non-MOR-
expressing NTS neurons, suggesting that MORs modulate NTS

neurons either presynaptically or postsynaptically, but not both

(Aicher et al., 2000). The mu opioid agonist endomorphin-
1 inhibits solitary tract stimulation-evoked glutamate release
onto GABAergic neurons in the NTS, supporting the functional
expression of MORs on solitary tract axon terminals (Glatzer
et al., 2007). Presynaptic MORs also inhibit GABAergic and
glutamatergic neurotransmission in the NTS (Rhim et al., 1993;
Glatzer et al., 2007). MOR agonist injection into the NTS
also inhibited bronchopulmonary C-fiber-induced reflexes in

the NTS (Zhuang et al., 2017). The relative contribution of
these afferent-specific presynaptic MORs in the hypercapnic and
hypoxic ventilatory response remains to be determined.

Other Brain Areas Involved in Opioid
Suppression of Chemoreflexes
Opioid suppression of hypercapnic and hypoxic ventilatory
responses could be due to activation of MORs in other
chemosensitive areas outside the NTS as well. Injection of opioid
into the caudal medullary raphe suppresses the hypoxic and
hypercapnic ventilatory responses in anesthetized rats (Zhang
et al., 2007, 2009). In addition, locus coeruleus neurons are
involved in the hypercapnic ventilatory response (Biancardi
et al., 2008; Oliveira et al., 2017; Magalhães et al., 2018) and
are inhibited by MORs (North and Williams, 1985; Levitt and
Williams, 2012). One area that is unlikely to mediate opioid
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FIGURE 5 | Morphine induces cFos expression in MOR-positive and MOR-negative NTS neurons. Identification of cFos immunolabeling and tdTomato expression, as

an indicator of MOR expression, in the NTS of Oprm1Cre/tdT mice that were injected with morphine (30 mg/kg). (A–C) Example images of cFos immunostaining (green)

and MOR+ tdTomato expression (red). Scale bar = 100µm. Cells that co-expressed cFos and tdTomato are indicated by yellow vertical arrows.

impairment of chemoreflexes is the carotid bodies. Although
MORs are expressed in the carotid bodies, transection of the
carotid sinus nerve enhanced (rather than reduced) morphine-
induced suppression of the hypoxic and hypercapnic ventilatory
response (Baby et al., 2018).

NTS Endogenous Opioids in Physiological
Responses
Ventilation is enhanced in mice lacking mu opioid receptors
(Dahan et al., 2001), suggesting endogenous opioids influence the
control of breathing. TheNTS is a potential source of endogenous
opioids. The endogenous opioid endomorphins are abundantly
expressed in the caudal NTS (Pierce and Wessendorf, 2000;
Greenwell et al., 2007), and endomorphin-2 containing axon
terminals oppose dendritic MORs in the NTS (Silverman et al.,
2005). Selective stimulation of proopiomelanocortin (POMC)
neurons in the NTS suppresses breathing, which is blocked by
the opioid antagonist naloxone (Cerritelli et al., 2016), suggesting
the release of opioid peptide from these neurons could modulate
breathing. Furthermore, vagal afferents into the NTS contain
endomorphin-2 (Silverman et al., 2005), and stimulation of the
NTS or the vagus nerve is analgesic (Lewis et al., 1987; Kirchner
et al., 2006) implicating the NTS as an endogenous integrator
of both pain and breathing (Boscan et al., 2002). Presumably,
endogenous opioids in the NTS could also modulate hypoxic
and hypercapnic responses, and perhaps adaptations that occur
in these responses during chronic hypoxia (Chung et al., 2006;
Powell, 2007; Nichols et al., 2009b).

CONCLUSIONS

Here, we identified that NTS neurons activated by hypercapnia
and hypoxia do not express MORs, ruling out the direct effects
of opioids on these neurons. More likely presynaptic MORs
on axon terminals and/or MORs on inhibitory interneurons

predominantly mediate opioid suppression of chemoreflexes in
the NTS. The specific afferents and synaptic target suppressed
by MORs remain to be elucidated. Furthermore, the role
of endogenous opioids and adaptations that could occur in
these afferent-specific synapses during chronic opioid or altered
chemoreception states are unexplored future directions.
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Enkephalin, an endogenous opioid peptide, is highly expressed in the reward

pathway and may modulate neurotransmission to regulate reward-related

behaviors, such as drug-taking and drug-seeking behaviors. Drugs of abuse

also directly increase enkephalin in this pathway, yet it is unknown whether or

not changes in the enkephalinergic system after drug administration mediate

any specific behaviors. The use of animal models of substance use disorders

(SUDs) concurrently with pharmacological, genetic, and molecular tools has

allowed researchers to directly investigate the role of enkephalin in promoting

these behaviors. In this review, we explore neurochemical mechanisms by

which enkephalin levels and enkephalin-mediated signaling are altered by

drug administration and interrogate the contribution of enkephalin systems

to SUDs. Studies manipulating the receptors that enkephalin targets (e.g.,

mu and delta opioid receptors mainly) implicate the endogenous opioid

peptide in drug-induced neuroadaptations and reward-related behaviors;

however, further studies will need to confirm the role of enkephalin directly.

Overall, these findings suggest that the enkephalinergic system is involved in

multiple aspects of SUDs, such as the primary reinforcing properties of drugs,

conditioned reinforcing effects, and sensitization. The idea of dopaminergic-

opioidergic interactions in these behaviors remains relatively novel and

warrants further research. Continuing work to elucidate the role of enkephalin

in mediating neurotransmission in reward circuitry driving behaviors related to

SUDs remains crucial.

KEYWORDS

opioid, enkephalin, substance use disorder, reward, circuitry

Introduction

Substance use disorders (SUDs; also known as drug addiction) are characterized
by an inability to control drug use, continuing drug use despite adverse consequences,
and relapse even after long periods of abstinence. Multiple risk factors contribute to
vulnerability for developing of a SUD, such as genetic and environmental factors (for
review, see: Volkow and Li, 2005). Due to its chronic relapsing nature, long-term
treatment and abstinence is difficult. Research into the neurobiological substrates of
SUDs may reveal mechanistic insight into the development of and relapse to SUDs and
provide potential targets for therapeutics.
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Current theories of the mechanisms underlying SUDs
emphasize the role of the mesolimbic dopamine system.
“Classic” drugs of abuse, such as psychostimulants, opioids,
and nicotine, that maintain self-administration behavior in both
animal models and humans, induce a characteristic elevation in
dopamine in the nucleus accumbens (NAc) after administration
(for review, see: Di Chiara et al., 2004). This can occur via
stimulation (or disinhibition) of dopamine neurons in the
ventral tegmental area (VTA) projecting to the NAc and/or by
inhibiting the reuptake of dopamine in the NAc and is thought
to be the critical mechanism underlying the primary reinforcing
effects of drugs of abuse. Drug-paired cues, one important factor
contributing to relapse, can also lead to increased dopamine in
the NAc, which further supports other frameworks explaining
the role of dopamine in various aspects and stages of SUDs,
such as the opponent process and incentive salience theories
(for reviews, see: Berridge, 2007; Trigo et al., 2010). In addition
to dopamine, numerous neurotransmitter and receptor systems
have been implicated in the adaptations caused by drugs of
abuse and in the transition from recreational use to SUDs.
The endogenous opioid system, comprised of multiple opioid
receptor types and endogenous ligands, is highly expressed
in reward circuitry and has been proposed to be a crucial
modulator of SUDs (for review, see: Trigo et al., 2010).

Positron emission tomography (PET) imaging in human
subjects have suggested a potential role of endogenous
opioids in the effects of drugs of abuse. For example, oral
administration of amphetamine in male subjects reduced
binding of [11C]carfentanil, a radiolabeled molecule that binds
to mu opioid receptors, in the basal ganglia, frontal cortex,
and thalamus after amphetamine administration, suggesting
that endogenous opioid peptides were released and displaced
carfentanil (Colasanti et al., 2012; Mick et al., 2014). Further
evidence in human subjects also supports a potential role
for endogenous opioid systems in SUDs (Chan et al., 2020).
Administration of non-selective opioid receptor antagonists,
such as naltrexone or naloxone, may be effective in treating
psychostimulant use disorder (Comer et al., 2013) and may
reduce cigarette consumption and the satisfaction during
ad libitum smoking (Covey et al., 1999), although these results
are not consistent across all studies (Sutherland et al., 1995).
Generally, these reports suggest that the endogenous opioid
system plays a role in modulating the effects of drugs of
abuse and SUDs, warranting further investigation into the
role of opioids.

Most opioid receptor types (mu, delta, kappa, and ORL1)
and endogenous opioid peptides (β-endorphin, enkephalins,
dynorphins, and others) have been implicated, to some extent,
in the neuroadaptations that occur following administration of
different drugs of abuse as well as in reward-related behaviors.
For many years, each opioid peptide was thought to be primarily
selective for one opioid receptor type; however, more recent
studies indicate that opioid peptides bind to and activate all

three of the canonical opioid receptors, albeit with different
affinities and efficacies (Gomes et al., 2020). Previous reports
have reviewed the potential role of β-endorphin (Roth-Deri
et al., 2008; Le Merrer et al., 2009) or dynorphin (Banks, 2020;
Karkhanis and Al-Hasani, 2020; Koob, 2020; Best et al., 2022;
Ragu Varman et al., 2022) in SUDs. Therefore, this review will
focus specifically on the role of the endogenous enkephalinergic
system (e.g., enkephalin peptides and receptors they bind
to) in modulating the reward pathway and reward-related
behaviors because (1) there is widespread synthesis and release
of enkephalins in the reward pathway and (2) the receptor
targets of enkephalin are also widely distributed throughout
the reward circuitry, namely the mesolimbic and nigrostriatal
pathways (for reviews, see Akil et al., 1984; Shippenberg et al.,
2008; Le Merrer et al., 2009; Trigo et al., 2010).

It is important to note that studies rarely evaluate the
exclusivity of enkephalins and enkephalin-induced opioid
receptor activation in the neurobiological mechanisms of SUDs.
It is also possible that enkephalins always act in conjunction
with other opioid peptides and simultaneously at multiple
opioid receptor types to produce their effects. Interestingly,
there is still much unknown about endogenous enkephalins.
In many instances, the sites of enkephalin synthesis and
release are not fully appreciated but are thought to be
released in response to drugs of abuse and likely play a
role in regulating certain behaviors (described below). On
the other hand, β-endorphin is synthesized primarily in
the arcuate nucleus and nucleus of the solitary tract with
fibers projecting to many brain regions, including parts of
the reward pathway such as the VTA and NAc, as well
as released from the pituitary gland into circulation (Lee
and Wardlaw, 2007; Roth-Deri et al., 2008). Therefore, both
of these endogenous opioid peptides are likely involved in
SUDs and potentially have overlapping, or possibly redundant,
roles. For the purposes of this review, we consider the
enkephalinergic system to be comprised of enkephalins,
enkephalin-hydrolyzing enzymes, and the receptors activated
by enkephalins as described below. Hopefully, by combining
knowledge from different studies, we will eventually understand
the function of endogenous opioidergic systems in reward,
motivation, and SUDs.

Basic biology

There are three primary opioid peptide gene families:
proopiomelanocortin (POMC), proenkephalin (or
preproenkephalin; PENK), or prodynorphin (PDYN). These
genes are translated into prepropeptides (POMC, proenkephalin
A, and PDYN, respectively) before being cleaved into the final
functional peptides, β-endorphin, enkephalin, and dynorphin.
The primary peptides share a common amino acid N-terminal
sequence Tyr-Gly-Gly-Phe-X (Met/Leu for enkephalin).
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A fourth family of opioid peptide, nociceptin, is derived from
prepronociceptin.

Proenkephalin A is cleaved into six copies of met-
enkephalin and one copy of leu-enkephalin (Akil et al.,
1984; Mclaughlin, 2006). Leu-enkephalin can also be derived
from PDYN (Akil et al., 1984). Therefore, met-enkephalin
may be a more specific marker of proenkephalin activity.
Enkephalins are inactivated by two membrane-bound (or
soluble) metallopeptidases: neutral endopeptidase (NEP) and
aminopeptidase N (APN) (Roques et al., 1980; Ramírez-Sánchez
et al., 2019). These peptidases are found near synapses (Ramírez-
Sánchez et al., 2019) and are located in brain regions also
containing enkephalins, such as the caudate putamen, globus
pallidus, substantia nigra, and spinal cord (Waksman et al.,
1986). While commonly referred to as enkephalinases, these
peptides can also contribute to the formation and degradation
of other peptides and/or peptide fragments. While this has
brought about the renaming of some of these enzymes, such
as enkephalinase to neprilysin (Bayes-Genis et al., 2016), we
will refer to enzymes that cleave enkephalin as enkephalinases;
however, we recognize that this nomenclature does not include
the breadth of activity of these enzymes.

Opioid peptides bind to opioid receptors, which are
G-protein coupled receptors (GPCRs). These receptors are
coupled to the Gi/o proteins, leading to inhibition of cAMP,
inhibition of Ca2+ channels, activation of inwardly rectifying
K+ channels and MAP kinase pathway, which ultimately
inhibits neuronal activation and neurotransmitter release
(Law et al., 2000). Each receptor is encoded by separate
genes, MOR: Oprm1, DOR: Oprd1, KOR: Oprk1, and ORL1:
Oprl1. Canonically, it is believed that β-endorphin, met-/leu-
enkephalin, and dynorphin preferentially bind to the mu opioid
receptor (MOR), delta opioid receptor (DOR) and kappa opioid
receptor (KOR), respectively. Nociceptin/orphanin FQ binds
to the nociceptin opioid peptide receptor [NOPR; or opioid
receptor-like 1 (ORL1)]. Enkephalins bind with high affinity to
DOR and MOR [with slightly greater affinity (10-fold) for DOR
than MOR; measured under non-physiological conditions]
(Raynor et al., 1994), but more recently, all opioid peptides
have been shown to bind to each of the opioid receptors to
some extent (Gomes et al., 2020). For example, β-endorphin,
met-enkephalin, and dynorphin have been shown to be full
agonists at MOR and partial agonists at DOR. Shorter forms
of β-endorphin, generally thought to have limited activity at
opioid receptors, are agonists at MOR (Gomes et al., 2020).
Therefore, focusing on enkephalin-DOR or enkephalin-MOR
interactions in studies investigating SUDs may be overlooking
important interactions of other endogenous opioid peptides
and receptor types. Overall, while the studies described here
implicate enkephalin in multiple aspects of SUDs, there are
likely distinct and overlapping roles of other endogenous opioid
peptides as well.

Anatomy & distribution in reward
circuitry

Some primary regions of enkephalin release occur within
the reward pathway, specifically in the NAc, VTA, and pallidum
[comprised of the ventral pallidum (VP) and globus pallidus
(GP)]. Interestingly, it is unclear where enkephalin in the
NAc comes from, with some studies suggesting that it comes
from projection neurons (e.g., dorsal raphe nucleus to NAc
shell; Castro et al., 2021) and/or from local release within the
NAc (Al-Hasani et al., 2018). On the other hand, the source
of enkephalin release in the VP is likely from dopamine D2
receptor-expressing medium spiny neurons (MSNs) in the NAc
projecting to the VP (Kalivas et al., 1993; Heinsbroek et al.,
2017), but it is unknown whether or not these projections
are the only source of enkephalin in the VP. These D2-
expressing MSNs projecting from the NAc to the VP presumably
release enkephalin as well as GABA, and are considered part
of the “indirect” pathway (Zahm et al., 1985), while D1
MSNs (expressing dynorphin) are part of the “direct” pathway,
regulating motor function, movement, and reward (Yager et al.,
2015). Enkephalin-containing cell bodies seem to be present in
the VTA (Johnson et al., 1980; Khachaturian et al., 1983), and
are presumably the source of enkephalin release in this brain
region, yet this has not been directly tested. Without having a
better understanding of sites of enkephalin synthesis and the
projection of enkephalin-containing neurons, our knowledge of
enkephalinergic circuitry in mediating aspects of SUDs will be
limited. Further work needs to be done to better identify the
source of enkephalin peptide synthesis and release within the
reward circuitry.

Significantly more is known about the expression of both
MOR and DOR in reward circuitry. Both opioid receptor
types are highly expressed in the same regions with PENK
mRNA (Mansour et al., 1993, 1994), including the NAc, caudate
putamen, and amygdala. MOR and DOR expression in the
mesolimbic circuitry of the rodent brain have been confirmed
by autoradiography as well as with expression of fluorescently
labeled opioid receptors (GFP-labeled DOR and mCherry-
labeled MOR; Erbs et al., 2015). Furthermore, their exact
localization on neurons informs us how these receptors regulate
neurotransmitter release and/or neuronal activation.

MORs are thought to be located pre- and postsynaptically
on neurons in mesolimbic areas (for review, see: Shippenberg
et al., 2008) and more specifically on dendrites or dendritic
spines in the NAc, amygdala, and VTA near terminals expressing
and, presumably, releasing enkephalin (Svingos et al., 1996;
Herman et al., 2022). On D2-expressing MSNs, MORs are
expressed both postsynaptically in the NAc (Castro and
Berridge, 2014) and in the VP, capable of regulating GABA
release in the VP (Heinsbroek et al., 2017). Presumably,
activation of MORs on D2 MSN terminals in the VP should
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also regulate enkephalin release; however, this has not been
directly tested. MORs have also been identified postsynaptically
on pallidal cell bodies (Olive et al., 1997). MORs located in the
VTA are present on GABAergic interneurons, such that MOR
activation (either via exogenous or endogenous ligands) leads to
disinhibition of VTA dopamine neurons projecting to the NAc
(Johnson and North, 1992).

DORs are thought to be located primarily on axons and axon
terminals, on both enkephalin and non-enkephalin releasing
neurons (Svingos et al., 1998). In axons and axon terminals,
DORs may not always be expressed only on the cell surface,
but also located intracellularly and trafficked to the surface
under certain conditions (Wang et al., 2008). Within the NAc,
DORs have been found on terminals of glutamate neurons
projecting from the prefrontal cortex (PFC) (Svingos et al.,
1999; Castro and Berridge, 2014; Mongi-Bragato et al., 2018),
on cholinergic interneurons (in addition to MORs; Castro and
Berridge, 2014; Laurent et al., 2014) and (to a lesser extent) on
dopamine terminals (Svingos et al., 1999). Similarly, in the VTA,
DORs are expressed presynaptically on GABAergic terminals
and can modulate GABA release (Margolis et al., 2008). In
contrast, other studies have shown that DORs are expressed
postsynaptically on D2 MSNs in the NAc (Castro and Berridge,
2014) and on cell bodies in the VP (Olive et al., 1997).

The presence of enkephalin in the primary cell type of
the NAc and prevalence of DORs and MORs throughout the
reward pathway further implicates its central role in modulating
reward-related neurotransmission. However, the widespread
distribution of enkephalin and overlapping MOR and DOR
expression in many brain regions and cell types begins to
highlight the complexity (and possible redundancy) of the
endogenous opioid system in mediating SUDs.

Methods used to evaluate enkephalin

There are different methods and techniques to evaluate
enkephalinergic involvement in reward-related pathways and
behaviors. Methods for measuring enkephalin release are
limited (for review, see: Conway et al., 2022); therefore, studies
often measure enkephalin concentrations in various brain
regions as indirect measures of releasable peptide or a releasable
pools. Peptide expression and release are likely related, such
that if there is increased peptide synthesized, packaged in
vesicles, and available for release (intracellular expression), then
more peptide is actually released (either tonically or during
stimulated release).

Enkephalin peptide concentration can be measured using
highly sensitive radioimmunoassay (RIA). Antibodies used in
these assays that bind to enkephalin peptide have limitations in
selectivity. RIAs with tissue samples also cannot discriminate
between intracellular expression and extracellular release of
enkephalin. Other, more direct, approaches include collecting

dialysate samples via microdialysis and then performing RIAs
to quantify enkephalin levels in dialysate (first described
in Maidment et al., 1989). Enkephalin from microdialysis
samples can also be quantified via liquid chromatography
couple with mass spectrometry (LCMS) and, while technically
challenging, can distinguish between met- and leu-enkephalin
(Mabrouk et al., 2011; DiFeliceantonio et al., 2012). Methods
to selectively activate enkephalin expressing neurons (e.g.,
optogenetics or designer receptors exclusively activated by
designer drugs; DREADDS) can be used to induce the
release of enkephalin; however, these methods are not specific
to either met- or leu-enkephalin and can also presumably
induce the release of other opioid peptides (Al-Hasani et al.,
2018) and/or cotransmitters, such as GABA. Therefore, while
technical advancements in methodology have allowed for
greater specificity in investigating enkephalin, there are still
shortcomings that need to be addressed.

In the absence of direct measurements, enkephalin
expression and/or levels of enkephalin can be manipulated in
order to evaluate the role of enkephalin in SUDs. This has been
accomplished through pharmacologically inhibiting enkephalin
breakdown or by constitutive global knockout (KO) of the
PENK gene (and recently conditional knockouts) (for review,
see Charbogne et al., 2014). Studies using these tools have
provided great insight into the role of the enkephalinergic
system in SUDs; however, similar opioid (or non-opioid)
peptides and compensatory mechanisms could distort the role
of enkephalin specifically. For example, β-endorphin, which
has similar affinity at MOR and DOR, may compensate for the
lack of enkephalin in KO animals (Maldonado et al., 2018) or
leu-enkephalin generated from PDYN in PENK KO animals.

Drugs that inhibit enkephalinase, such as thiorphan (Roques
et al., 1980) or RB101 (Jutkiewicz, 2007; Jutkiewicz and Roques,
2012), can be used as tools to probe the enkephalinergic system
in reward related behaviors by preventing the breakdown of
extracellular enkephalin, increasing its activity at MORs and
DORs. One limitation of this approach is that there is no way to
discriminate between activity due to met- or leu-enkephalin. In
addition, these enzymes may also cleave other peptides, such as
cholecystokinin (Durieux et al., 1985) and substance P (Matsas
et al., 1983); however, studies often perform further experiments
to confirm the effects produced by enkephalinase inhibitors
occur via the activation of opioid receptors. Importantly,
β-endorphin has been shown to be a substrate of NEP and
APN, but is also degraded by other enzymes (Roques et al.,
2012). Many of the opioid receptor-specific behavioral effects of
enkephalinase inhibitors (described below) seem to be mediated
via enkephalins or at least by peptides binding to either MORs
or DORs (Noble et al., 2008) because they are blocked by
non-selective or selective opioid receptor antagonists. While
these tools have been valuable for probing enkephalin peptide
in reward related behaviors, there is relatively little is known
about enkephalinase activity/mechanisms nor how the enzymes
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FIGURE 1

Brain regions and pathways implicated in enkephalin-mediated reward-related behaviors. Dopamine neurons in the VTA that project to the NAc
are modified by MORs on GABAergic interneurons. Activation of MORs and DORs, likely by enkephalins, within the NAc modulate dopamine,
GABA, glutamate, and acetylcholine release. D2 MSNs express enkephalin and project to the VP and are believed to be a crucial circuit for
reinstatement behaviors. Figure created using Biorender.com. NAc, nucleus accumbens; GP, globus pallidus; VP, ventral pallidum; VTA, ventral
tegmental area; MOR, mu opioid receptor; DOR, delta opioid receptor; MSNs, medium spiny neurons.

regulate synaptic enkephalin peptide levels. Recent studies have
begun to investigate endogenous inhibitors of enkephalinase
(Wisner et al., 2006; Tóth et al., 2012) and further investigation
into the metabolism of enkephalin in vivo (Xu et al., 2010;
Wilson et al., 2020) will be crucial for understanding the role
of enkephalin in SUDs.

Indirect measurements of enkephalin also provide valuable
insight into the enkephalinergic system, albeit with some
deficiencies. Quantifying levels of PENK mRNA expression
identifies brain regions where enkephalin is likely synthesized,
but may not accurately reflect enkephalin peptide expression
(intra or extracellular) nor enkephalin release. Similarly, using
pharmacological methods to activate or inhibit DOR and/or
MOR implicate opioid receptor signaling and requires highly
selective ligands. While it is presumed that enkephalin is the
endogenous ligand acting on those receptor systems, it is often
not directly tested. Since all endogenous opioid peptides bind,
to some degree, to all opioid receptors, peptides other than met-
or leu-enkephalin may be responsible for the effects measured.
Overall, while a wealth of literature has supported the notion
that enkephalin modulates reward-related neurobiology and
behavior, there is much still to be elucidated.

This review primarily focuses on studies investigating
PENK or enkephalin peptides, as they are more closely
related to the functional role of enkephalins in reward-related
behaviors. Pharmacological studies investigating the effects
of DOR and/or MOR activation are not the focus of this
review and are thoroughly covered elsewhere (for reviews, see

Shippenberg et al., 2008; Le Merrer et al., 2009; Trigo et al.,
2010), but some studies are included in this review to extrapolate
or corroborate the involvement of enkephalin in modulating
reward-related neurotransmission and behaviors.

Effects of enkephalin on
neurotransmission in reward
pathways

As described above, studies have attempted to investigate
the role of enkephalin in neurotransmission using PENK
KO models, increasing levels of enkephalin by preventing
breakdown, and activation of enkephalins’ targets with
exogenous ligands. By using these approaches enkephalins
have been identified as neuromodulators, influencing release
and extracellular levels of dopamine, GABA, glutamate,
acetylcholine, and other neurotransmitters involved or
implicated in reward-related circuits (for review, see
Torregrossa and Kalivas, 2008).

Enkephalinergic modulation of
dopamine neurotransmission

The most prevalent mechanisms underlying SUDs center
around the role of dopamine in driving drug-taking and -
seeking behaviors, and there is strong evidence of interactions
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between enkephalinergic and dopaminergic systems. Perhaps
the most obvious interaction between the two systems is that
MOR activation by exogenously administered agonists, such
as morphine, stimulate dopamine release in the NAc. Further,
KOR activation reduces dopamine release (Escobar et al., 2020),
and DOR activation may increase dopamine release to some
extent (Saigusa et al., 2017) or have no effect on dopamine
(Longoni et al., 1998).

To further elucidate the role of enkephalin on the
dopaminergic system, studies have measured dopamine
neurotransmission in PENK KO mice. Basal levels of dopamine
in the NAc did not differ between PENK KO and wild-type
animals (Berrendero et al., 2005), but evoked-dopamine
levels appear to be altered by enkephalin and opioid receptor
activation. For example, a dose of nicotine that stimulates
dopamine release in wildtype mice had a blunted dopamine
response in the NAc in PENK KO mice (Berrendero et al.,
2005). To our knowledge, no other effects of drugs of abuse
on dopamine levels in the NAc of PENK KO animals have
been reported. It is possible that enkephalin promotes nicotine-
stimulated dopamine release, likely via opioid receptor-induced
inhibition of GABA release in the NAc and/or VTA.

Consistent with the study described above, opioid receptor
activation also enhances psychostimulant-induced increases
extracellular levels of dopamine in the NAc (see Figure 1).
For example, increasing endogenous enkephalins by blocking
hydrolysis with an enkephalinase inhibitor, thiorphan, given
into the substantia nigra potentiated amphetamine-stimulated
dopamine release in the striatum (Schad et al., 2002).
Conversely, preventing activation of opioid receptors on
inhibitory GABAergic neurons locally in the substantia nigra,
VTA, or GP attenuated amphetamine-induced increases in
dopamine in their projection targets, the striatum, NAc, and
locally in the GP, respectively (Schad et al., 1995, 2002; Mabrouk
et al., 2011). In the absence of other drugs, naloxone given locally
into the GP decreased dopamine in the same brain region,
suggesting that there is a tonic enkephalinergic tone in the GP
which activates MORs (presumably) on GABAergic terminals
to inhibit GABA release and ultimately disinhibit dopamine
(Mabrouk et al., 2011).

Enkephalin binds to and activates MOR and DOR;
therefore, exogenous administration of MOR and DOR agonists
have been used to probe the potential involvement (albeit
indirectly) of endogenous enkephalins in regulating dopamine
neurotransmission. MOR agonists increase dopamine in the
dorsal and ventral striatum (via disinhibition) by activating
MORs in the VTA/substantia nigra. MORs do not seem
to be located presynaptically on dopamine terminals in the
NAc (Svingos et al., 1996; Britt and McGehee, 2008; Saigusa
et al., 2017; but see Svingos et al., 1999), but may be present
presynaptically in the VP to gate dopamine release arising from
the VTA (Mitrovic and Napier, 2002; Root et al., 2015; Clark and
Bracci, 2018).

While the effects of MOR activation on dopaminergic
neurotransmission are fairly well-explored, the effects of
DOR activation on dopamine levels are unclear. For example,
the peptide DPDPE given intracerebroventricularly dose-
dependently increased dopamine in the NAc of anesthetized
rats, which was blocked by the DOR antagonist ICI 174,864
(Spanagel et al., 1990). Also, the small molecule DOR agonist
SNC80 failed to promote dopamine efflux in rat striatal
preparations directly (Bosse et al., 2008) and failed to increase
dopamine levels in the NAc or caudate putamen in rats
measured by microdialysis (Longoni et al., 1998). However,
SNC80 did enhance amphetamine-mediated dopamine efflux
in the striatum (Bosse et al., 2008) as well as amphetamine-
mediated locomotor activity (Jutkiewicz et al., 2008) potentially
through indirect actions with glutamatergic neurons. The
effects of DOR activation on modulating dopaminergic
neurotransmission is unclear (for review, see: Saigusa
et al., 2017), but overall, enkephalin and opioid receptor
activation seem to have some neuromodulatory effects on
dopaminergic activity in the reward pathway, most likely
through indirect mechanisms.

Together, these findings indicate that endogenous
enkephalins in the VTA, substantia nigra, and potentially
other brain regions may contribute to drug-induced increases
in dopamine in the NAc. These studies indicate that opioid
receptor activation enhances dopamine, likely via disinhibition.
Extrapolating from these indirect studies of opioid receptor
activation, it is plausible to think that endogenous activation of
these same opioid receptors would be able to enhance dopamine
reward circuitry and potentiate SUDs.

Enkephalinergic modulation of GABA
neurotransmission

As described above, opioid-induced inhibition of
GABAergic neurons in the VTA and substantia nigra (Galaj
et al., 2020; Oliver, 2021) disinhibits dopamine neurons
projecting to the NAc (Johnson and North, 1992). Thus,
opioids have been shown to regulate GABA release within
the reward pathway. GABA and enkephalin are thought to
be cotransmitters, released from D2 MSNs projecting from
the NAc to the ventral pallidum (Maneuf et al., 1994) where
enkephalin likely binds to presynaptic opioid receptors (or
autoreceptors) to inhibit further GABA and enkephalin release
(Maneuf et al., 1994; Stanford and Cooper, 1999). Indeed, in VP
slices prepared from drug naïve rats, the administration of an
enkephalinase inhibitor reduced extracellular levels of GABA
in the VP (Kupchik et al., 2014). Whereas naloxone given
locally into the pallidum, increased GABA and also decreased
dopamine in the same brain region (Mabrouk et al., 2011). At
least some studies have suggested that MORs are located on
GABAergic terminals in the VP and VTA, such that exogenous
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activation of MORs inhibits GABA release in the VP (Kalivas
et al., 2001) and in the VTA (Matsui and Williams, 2011; Matsui
et al., 2014).

Additionally, activation of DORs likely influences
GABAergic transmission in reward circuitry, but this has
not been investigated thoroughly. Within the NAc, activation
of DORs present on GABAergic terminals reduce inhibitory
neurotransmission (Jiang and North, 1992; Chieng and
Williams, 1998). In the VTA, postsynaptic DOR activation
has been shown to augment GABAA receptor mediated
inhibitory postsynaptic currents (Margolis et al., 2011).
Overall, these studies suggest that enkephalins primarily act on
GABAergic terminals or interneurons to inhibit GABA release
in multiple brain regions.

Enkephalinergic modulation of
glutamate neurotransmission

Glutamate, the primary excitatory neurotransmitter in the
brain, has been shown to drive reward-related behaviors, such as
sensitization and reinstatement (Scofield et al., 2016). The VTA
receives glutamatergic projections from multiple brain regions
(Geisler et al., 2007; Watabe-Uchida et al., 2012); however, it is
unclear whether opioids influence glutamate neurotransmission
in the VTA. There is evidence in other brain regions that opioids
can modulate glutamate neurotransmission. For example,
glutamatergic neurons project from the amygdala to the VP and
release can be inhibited via MOR agonists (Mitrovic and Napier,
1998). VP glutamatergic neurons are preferentially innervated
by D1 MSNs arising from the NAc (Heinsbroek et al., 2020),
therefore there is likely opioid modulation of glutamatergic
activity within the VP via dynorphin release, but this has not
been directly tested.

Glutamate release in the NAc stems from projection
neurons originating in the prefrontal cortex and enhances
dopamine release in the NAc (Tzschentke and Schmidt, 2003).
Glutamatergic axon terminals in the NAc express opioid
receptors, specifically DOR (Winters et al., 2017; see Figure 1).
Therefore, activation of DOR, by enkephalins, on the terminals
of PFC-projecting glutamatergic neurons would be likely to
decrease glutamate release in the NAc. However, DORs are
not expressed exclusively on glutamatergic terminals in the
NAc, highlighting the complexity of the endogenous opioid
system in this brain region and how it might influence
glutamatergic neurotransmission. For example, the DOR
agonist, SNC80, has been shown to indirectly increase glutamate
efflux in the striatum (Bosse et al., 2014). The proposed
mechanism is that SNC80 activates DOR on GABAergic
terminals, thereby inhibiting GABA release, which leads to
local glutamate release and, subsequently, potentiation of
amphetamine-induced dopamine release. An NMDA receptor
antagonist, MK801, blocked the effects of SNC80 on enhancing

dopamine (Bosse et al., 2014), suggesting that DOR activation
can modulate the excitatory/inhibitory balance within the
striatum to disinhibit dopamine release. Consistently, local
administration of naltrindole, a DOR antagonist, into the
caudate putamen blocked amphetamine-induced increases in
glutamate, which was reversed by the DOR agonist, DPDPE
(Rawls and McGinty, 2000).

Interestingly, there is some evidence that opioid receptors
are also located on glia in the NAc, potentially suggesting
a regulatory role of enkephalin on non-neuronal glutamate
neurotransmission (Corkrum et al., 2019). Together, these
studies suggest endogenous enkephalin acts as a direct or
indirect neuromodulator of glutamate neurotransmission and
may modulate changes in glutamate neurotransmission induced
by drugs of abuse. However, the role of enkephalin has not been
evaluated directly.

Enkephalinergic modulation of
cholinergic neurotransmission

Cholinergic interneurons also have an important function
in regulating neurotransmission in reward centers. In the NAc,
cholinergic interneurons are the only source of acetylcholine
and act locally to regulate efferents, particularly glutamate
and dopamine (Warner-Schmidt et al., 2012). Specifically,
MOR and DOR expression on cholinergic interneurons
indicates that endogenous opioid peptides ligands may act
as neuromodulators of acetylcholine release (Laurent et al.,
2014; see Figure 1). Indeed, DOR and MOR activation by
leu-enkephalin or DAMGO decreased acetylcholine release
in the striatum (Mulder et al., 1984; Jabourian et al., 2005;
Arttamangkul et al., 2021). While cholinergic neurons are also
present in both the GP/VP (Chiba et al., 1995) and VTA
(Rada et al., 2000; Mathon et al., 2003), it is unclear if or how
endogenous opioid peptides modulate cholinergic release or
signaling in these brain regions. Therefore, enkephalin may have
an additional role of regulating cholinergic inhibition in brain
regions within the reward pathway.

Overall, enkephalins acting at MORs or DORs modulates
the transmission of multiple neurotransmitter systems
enhancing the reward-related circuitry through inhibition
of GABA or disinhibition of glutamate and/or dopamine. It is
important to note that many of the described studies extrapolate
from indirect measures of the involvement of enkephalins,
because enkephalins are rarely measured directly.

Drugs alter enkephalin levels:
Peptide levels and mRNA

There is also evidence that drugs of abuse may increase
enkephalin release by unknown mechanisms, stimulating

Frontiers in Systems Neuroscience 07 frontiersin.org

59

https://doi.org/10.3389/fnsys.2022.932546
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-932546 August 3, 2022 Time: 9:17 # 8

Rysztak and Jutkiewicz 10.3389/fnsys.2022.932546

MORs and DORs, further potentiating extracellular levels of
glutamate and dopamine (by mechanisms described above)
and thus driving reward-related behaviors. Acute and chronic
administration of drugs of abuse have been shown to alter
levels of enkephalin in reward brain regions, albeit with some
inconsistent results across studies.

Indirect and direct dopamine receptor
agonists

It has been shown that amphetamine administration
increases enkephalins in multiple brain regions. Amphetamine
increased met-enkephalin release in NAc and PFC (Assis et al.,
2006, 2009), and in the GP (Mabrouk et al., 2011). Similarly,
cocaine administration caused displacement of radioactive
DAMGO at MORs in the NAc, suggesting that cocaine may
stimulate endogenous opioid release, potentially enkephalins,
β-endorphin, or other opioid peptides (Roth-Deri et al., 2003;
Soderman and Unterwald, 2009). However, cocaine did not alter
met-enkephalin in striatum or substantia nigra as measured by
RIA (Sivam, 1989).

Psychostimulant administration may also alter the
expression of endogenous opioid peptide mRNA, which
may influence enkephalin levels and release, but there are mixed
results of psychostimulant-induced changes in expression of
PENK mRNA throughout reward circuitry. These may be
due to differences in psychostimulant dose, time of mRNA
measurement, and acute versus chronic administration. For
example, psychomotor stimulants either increased, did not
change, or decreased PENK mRNA in the striatum (Hurd and
Herkenham, 1992; Wang and McGinty, 1996; Adams et al.,
2000), decreased or did not alter PENK mRNA in the NAc
(Adams et al., 2000; Turchan et al., 2002), and did not alter
PENK mRNA expression in the amygdala (Turchan et al.,
2002). Similar inconsistent results have been reported as a
result of cocaine administration. Experimenter-administered
repeated cocaine did not alter PENK mRNA in the amygdala,
dorsal striatum, NAc shell or core (Mathieu-Kia and Besson,
1998; Turchan et al., 2002), but “binge” and contingent
cocaine administration increased PENK mRNA in NAc,
caudate putamen, PFC, and substantia nigra (Hurd and
Herkenham, 1992; Spangler et al., 1997; Crespo et al., 2001;
Mantsch et al., 2004; Sun et al., 2020) but not in the dorsal
or ventral striatum (Hurd and Herkenham, 1992; Arroyo
et al., 2000). Perhaps, these results suggest that repeated
administration of psychomotor stimulants is more likely than
acute drug treatment to induce changes in PENK mRNA,
suggesting the involvement of long-lasting neuroadaptations
as a consequence of chronic drug exposure. While few
studies have investigated the effects of psychostimulants
on enkephalin peptide levels or release, these limited data
suggest psychostimulants may increase enkephalins in certain

mesolimbic brain regions, perhaps with some differences
between amphetamine and cocaine.

Opioids

Although enkephalins are an endogenous ligand for MORs,
few studies have investigated the effects of exogenous MOR
activation on enkephalin levels. Acute morphine (Olive et al.,
1995) and heroin (Olive and Maidment, 1998) increased
extracellular opioid peptides in the VP/GP thought to be
enkephalin, but morphine did not alter enkephalin levels in the
NAc (Olive et al., 1995). Repeated morphine was shown to either
not alter (Uhl et al., 1988) or increase met-enkephalin (Nylander
et al., 1995) in the striatum, NAc, and PAG (Nieto et al., 2002).
Similarly, in rats with a history of heroin self-administration,
MOR agonists also elevated levels of met- and leu-enkephalin
in the caudal striatum and septum (Cappendijk et al., 1999).
Morphine conditioning also induced an increase in enkephalin
in the NAc (Nieto et al., 2002). Together, these findings suggest
that exogenously administered opioids increase enkephalin in
the reward pathway and may be involved in the formation of
opioid-context associations.

There are few studies assessing the administration of
exogenous opioids on PENK mRNA levels. Acute morphine
did not alter PENK mRNA in NAc nor striatum (Turchan
et al., 1997) and repeated morphine reduced PENK mRNA in
NAc (Turchan et al., 1997) and striatum (Uhl et al., 1988).
Morphine self-administration reduced PENK in NAc core and
shell of LEW rats (Sánchez-Cardoso et al., 2007). These effects
on PENK mRNA expression following chronic opioid agonist
administration only evaluate enkephalin levels indirectly and
are distinctly different from those found following repeated
psychostimulant administration.

Together, these findings suggest that, while acute and
chronic administration of MOR agonists may increase
enkephalin release and peptide levels, chronic opioid
administration mainly leads to a reduction in PENK mRNA
expression, potentially compensating for the replacement
of endogenous opioid peptides by exogenous opioid
receptor ligands.

Ethanol

The effects of ethanol on enkephalin levels and PENK
mRNA are highly varied across studies. Acute ethanol has been
shown to increase met-enkephalin in the NAc shell and striatum,
decrease enkephalin in striatum, hypothalamus, and midbrain
and not alter enkephalin in VTA, amygdala, hypothalamus,
midbrain, brainstem, and hippocampus (Schulz et al., 1980;
Seizinger et al., 1983; Marinelli et al., 2005; Lam et al., 2008;
Jarjour et al., 2009; Méndez et al., 2010). It has been hypothesized
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that acute ethanol may influence enkephalin biosynthesis and
release in mesolimbic areas as well (Méndez et al., 2010).
Similarly, chronic ethanol increased met-enkephalin in the
PAG, decreased met-enkephalin in striatum, hippocampus,
brainstem, and midbrain (Schulz et al., 1980; Lindholm et al.,
2000) and hypothalamus or was ineffective in altering levels in
midbrain and hippocampus (Seizinger et al., 1983).

Ethanol exposure also produces varied changes in PENK
mRNA levels in various brain regions. Acute ethanol treatment
and voluntary consumption increased PENK mRNA in
the paraventricular nucleus of thalamus, caudate putamen,
amygdala, PFC, and NAc core and shell (de Gortari et al.,
2000; Cowen and Lawrence, 2001; Oliva et al., 2008) and
decreased PENK mRNA levels in VTA and NAc (Méndez
and Morales-Mulia, 2006) in rats. Ethanol-induced changes
in PENK mRNA may reflect phenotypic differences in
ethanol preference, as acute ethanol increased PENK
mRNA in NAc of alcohol-preferring but not alcohol-non-
preferring rats (Li et al., 1998). Despite varying results of
ethanol administration on enkephalin peptide and PENK
mRNA levels, these studies suggest ethanol has some
influence on enkephalin expression that may be brain region
dependent, and further work is warranted to continue to
parse apart specific effects of ethanol on the enkephalinergic
system.

Nicotine

Few studies have investigated the effects of nicotine
administration on endogenous enkephalin peptide levels.
Acute and repeated administration of nicotine increase met-
enkephalin levels in the striatum of mice as measured by
immunoreactivity (Pierzchala et al., 1987; Dhatt et al., 1995;
Wewers et al., 1999), and these effects were blocked by a
nicotinic acetylcholine receptor antagonist (Dhatt et al., 1995).
In human PET studies, nicotine smoking decreased [11C]
carfentanil binding in certain brain regions, such as prefrontal
cortices and ventral striatum (Domino et al., 2015), further
suggesting that nicotine administration increases enkephalin
release in reward brain regions.

Similar to peptide levels, acute administration of nicotine
in mice and rats increased PENK mRNA in the striatum and
hippocampus (Dhatt et al., 1995; Houdi et al., 1998). These
effects were blocked by the nicotinic acetylcholine receptor
antagonist mecamylamine, but not the muscarinic antagonist
atropine nor dopamine receptor antagonist haloperidol (Dhatt
et al., 1995). The effects of repeated nicotine administration on
PENK mRNA also vary across studies and across brain regions
(Höllt and Horn, 1992; Dhatt et al., 1995; Houdi et al., 1998;
Mathieu-Kia and Besson, 1998; Ugur et al., 2017). Therefore,
potential compensatory adaptations in PENK mRNA following
repeated nicotine may be different across reward circuitry.

Cannabinoids

Endogenous cannabinoids and their receptors (CB1) are
present in many of the same brain regions as opioid receptors
(Befort, 2015), indicating possible overlap and interaction
between the two systems. Indeed, acute, moderate doses
of THC increased enkephalin-like material in the NAc
determined by RIA (Valverde et al., 2001) and increased met-
enkephalin immunoreactivity in preoptic area and medial basal
hypothalamus after repeated THC exposure (Patel et al., 1985).

The effects of cannabinoids on enkephalins may be greater
in non-reward brain regions. Subchronic THC increased PENK
mRNA levels in rat hypothalamus, PAG, and mammillary
nucleus (Corchero et al., 1997; Manzanares et al., 1998), with no
change in the striatum or NAc. Repeated treatment of a synthetic
cannabinoid receptor agonist, CP-55,940, also increased PENK
mRNA in hypothalamus and additionally the striatum and NAc
(Manzanares et al., 1998). Clearly, the effects of cannabinoids on
endogenous opioids and PENK mRNA are largely unknown and
should be investigated further.

Other and summary

Other conditions have also been shown to change levels of
enkephalin peptides. Consumption of palatable food leads to a
surge of met- and leu-enkephalin in the anteromedial portion
of the dorsal neostriatum, analyzed by LCMS (DiFeliceantonio
et al., 2012). Optogenetic stimulation of dynorphin-expressing
neurons in either ventral or dorsal NAc shell leads to increased
met- and leu-enkephalin in both brain regions. This could
suggest that cross-modulation of opioid peptides occurs within
local circuitry in the NAc (Al-Hasani et al., 2018). Together, all
of these data suggest that many drugs of abuse (and potentially
non-drug reinforcers) increase enkephalin levels, which may
underlie and contribute to their reinforcing effects and abuse
potential by further promoting reward neurotransmission
through inhibition of GABAergic signaling.

Enkephalinergic system and
reward-related behaviors

The role of the endogenous enkephalinergic system has been
evaluated in reward related behaviors as well as other potentially
related (and co-morbid) behaviors and physiological functions,
such as stress resiliency, pain, and emotion (Jutkiewicz and
Roques, 2012; Henry et al., 2017; Corder et al., 2018).

For example, increasing enkephalin levels with thiorphan
in the VTA (Glimcher et al., 1984) or mimicking enkephalin
with a met-enkephalin peptide analog (Phillips and LePiane,
1982) given into the VTA induces conditioned place preference
(CPP), in a naloxone-sensitive manner. In addition, infusions
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of met-enkephalin into the NAc maintained lever pressing
behavior (e.g., self-administration behavior), and this behavior
was blocked by naloxone (Goeders et al., 1984). Furthermore,
preventing the breakdown of endogenous enkephalins with
the enkephalinase inhibitor thiorphan increased ethanol intake
(Froehlich et al., 1991). These studies indicate that enkephalin
may have some primary reinforcing properties and is able to
activate reward circuitry.

The rewarding and reinforcing effects of various drugs of
abuse are also altered by attenuating endogenous enkephalin
signaling with the administration of opioid receptor antagonists
or by genetic deletion of PENK. Administration of opioid
receptor antagonists, which presumably block the effects of
endogenous enkephalins or other opioid peptides, attenuated
or blunted cocaine-induced CPP (Menkens et al., 1992),
heroin self-administration (Martin et al., 2000; Tomasiewicz
et al., 2012), and alcohol seeking behavior and alcohol
withdrawal (Perry and McNally, 2013; Alongkronrusmee
et al., 2016). Consistently, PENK KO decreased cocaine
self-administration (Gutiérrez-Cuesta et al., 2014), cocaine-
induced locomotor sensitization (Mongi-Bragato et al.,
2016, 2021), and nicotine-induced CPP (Berrendero et al.,
2005). However, PENK KO did not alter morphine (Le
Merrer et al., 2011) or ethanol self-administration (Koenig
and Olive, 2002; Hayward et al., 2004; Racz et al., 2008)
or morphine CPP (Skoubis et al., 2005). These studies
suggest enkephalinergic signaling, via opioid receptor
activation, contributes to the rewarding effects of various
drugs of abuse. This is likely due to multiple indirect
mechanisms culminating in disinhibition of dopamine,
either via disinhibiting glutamate efferents in NAc or inhibiting
GABAergic interneurons in the VTA.

Interestingly, in animals trained to discriminate morphine,
systemic administration of an enkephalinase inhibitor, RB 120,
did not generalize to the discriminative stimulus effects of
morphine and, conversely, morphine did not generalize to the
discriminative stimulus effects of RB 120. Together, these data
suggest that, even though enkephalins may have some rewarding
properties, endogenous enkephalin and the MOR agonists may
produce different subjective effects (Hutcheson et al., 2000).
Therefore, targeting the endogenous enkephalinergic system for
various therapeutic endpoints may lack the abuse liability of
high affinity, efficacious MOR agonists. Future studies would
need to investigate this further.

The endogenous enkephalinergic system may also be
involved in other aspects related to the development and
maintenance of SUDs. For example, MOR activation in the
NAc and VP enhances hedonic impact or “liking,” a distinct
but related function to drug “wanting” (for reviews, see:
Smith et al., 2009; Castro and Berridge, 2014). Other evidence
suggests enkephalin is involved in the formation of drug-
context/cue associations. Activation of MORs or DORs (specific
localization unknown) by protected endogenous enkephalins in

the NAc or with exogenous agonists induces reinstatement of
cocaine-seeking behavior (Simmons and Self, 2009), which was
blocked by a MOR antagonist given into the NAc (Simmons
and Self, 2009) and VP (Tang et al., 2005) and a DOR
antagonist in the NAc. Studies have also shown that cue-induced
reinstatement may be a result of cocaine-induced increased
enkephalinergic tone in the VP on presynaptic MORs, causing
disinhibition of VP neurons projecting to VTA or other brain
regions (Heinsbroek et al., 2017, 2020). These interpretations
are supported by other findings demonstrating that opioid
receptor blockade and MOR and DOR knockout reduced cue-
induced cocaine seeking behavior and impaired morphine CPP
(Burattini et al., 2008; Gutiérrez-Cuesta et al., 2014). Overall, the
enkephalinergic system may act as a modulator of SUD-related
behaviors by promoting drug-cue associations that enhance
the rewarding effects of drugs of abuse and/or drive drug-
seeking behaviors.

Conclusion

This review highlights the role of enkephalins as
neuromodulators of reward-related circuitry and behaviors
underlying SUDs. However, many questions still remain. As
mentioned earlier, few studies directly identify and measure
the specific opioid peptides involved in reward-related
neurotransmission and behaviors. Therefore, in many cases, the
effects are assumed to be regulated by endogenous enkephalins
or other opioid peptides, such as β-endorphin. Further work
identifying the specific opioid peptides and their targets
(either specific or non-specific receptor targets) will provide
a better understanding of the mechanisms involved in SUDs.
In order to accomplish this, we must also have an improved
appreciation of the sites of enkephalin synthesis, the sources
of enkephalins, and the regulation of enkephalin catabolism.
Finally, manipulating enkephalin directly and with brain region
or cell type specificity will be crucial to measure enkephalinergic
influence on reward-related behaviors.

The studies described in this review used a multitude
of techniques to probe the role of enkephalin, and each
technique has limitations that can influence interpretations
of results. Limitations of enkephalin measurement techniques
(Conway et al., 2022) are due, in part, to the complexity of the
endogenous enkephalinergic system. Opioid peptides are highly
homologous peptides that are rapidly degraded and bind to
multiple opioid receptor types. Endogenous enkephalins are also
released in smaller amounts than “classical” neurotransmitters,
complicating measuring techniques. Cleavage of the opioid
prepropeptides yield differential, yet overlapping, quantities
of each peptide. Again, many of the studies implicating
endogenous opioid release may presumably involve enkephalin
due to its high prevalence in reward circuitry, yet β-endorphin
cannot be ruled out as the ligand or one of the peptides involved.
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Technological advancements to improve detection and
quantification of endogenous opioid peptides and their
regulation by enkephalinases will help our understanding
of the role of enkephalins in circuitry and reward-related
behaviors. Tools for measuring extracellular enkephalin
specifically, such as liquid chromatography coupled with
mass spectrometry analysis of in vivo samples (Mabrouk
et al., 2011; DiFeliceantonio et al., 2012; Al-Hasani
et al., 2018) and voltammetry to measure met-enkephalin
(Calhoun et al., 2019) can be further applied during drug
self-administration and while measuring other reward-
related behaviors. Recent advancements in sensors to
track dynamics of dopamine can ideally be applied to
other neuromodulators like enkephalin (Patriarchi et al.,
2018). Similarly, fluorescent reporters that can detect MOR
activation are in development (Kroning and Wang, 2021).
The ability to measure the dynamics of enkephalin degrading
enzymes will also be necessary for better understanding
of enkephalin regulation. Other tools such as conditional
PENK knockout animal models (Gaveriaux-Ruff et al.,
2011; Charbogne et al., 2014), caged-opioids, and allosteric
modulators may be further implemented to study endogenous
enkephalin release and function. Novel tools for more specific
functional manipulations may be better for establishing
causality, such as the use of CRISPR-Cas9 technology
to selectively knockout enkephalin in specific cell types
(Castro et al., 2021).

The studies discussed in this review provide strong
evidence that the endogenous enkephalinergic system plays
an important role in modulating reward circuitry and driving
maladaptive behaviors to SUDs. In order to further understand
the underlying mechanisms of SUDs, more research should
probe the direct involvement of enkephalins and other opioid
peptides in the formation, persistence, and relapse to SUDs.

Furthermore, the endogenous enkephalinergic system may also
be a potential target for novel therapeutics to prevent and treat
SUDs and relapse.
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The descending pain modulatory pathway exerts important bidirectional

control of nociceptive inputs to dampen and/or facilitate the perception of

pain. The ventrolateral periaqueductal gray (vlPAG) integrates inputs from

many regions associated with the processing of nociceptive, cognitive,

and affective components of pain perception, and is a key brain area

for opioid action. Opioid receptors are expressed on a subset of vlPAG

neurons, as well as on both GABAergic and glutamatergic presynaptic

terminals that impinge on vlPAG neurons. Microinjection of opioids into

the vlPAG produces analgesia and microinjection of the opioid receptor

antagonist naloxone blocks stimulation-mediated analgesia, highlighting the

role of endogenous opioid release within this region in the modulation of

nociception. Endogenous opioid effects within the vlPAG are complex and

likely dependent on specific neuronal circuits activated by acute and chronic

pain stimuli. This review is focused on the cellular heterogeneity within vlPAG

circuits and highlights gaps in our understanding of endogenous opioid

regulation of the descending pain modulatory circuits.

KEYWORDS

vlPAG, cellular diversity, circuit diversity, endogenous opioids, descending pain
modulation

Descending pain modulation

Noxious stimuli evoke a sensory experience perceived
as pain. Noxious signals initiated in the periphery are
transmitted to many supraspinal structures that process
the sensory, cognitive, affective, and motivational components
that concurrently shape pain perception. These higher-
order brain regions collectively project to the descending
pain modulatory pathway, consisting of the ventrolateral
column of the periaqueductal grey (vlPAG; Bandler et al.,

1991; Bandler and Shipley, 1994) and the rostroventromedial
medulla (RVM). RVM efferents to the dorsal horn of the
spinal cord facilitate or inhibit incoming nociceptive inputs
from the periphery (Basbaum and Fields, 1979; Mantyh
and Peschanski, 1982; Vanegas et al., 1984b). The net
output of this circuit under various acute and chronic pain
conditions has been well-studied, especially the role of the
RVM in bidirectional pain modulation (Basbaum and Fields,
1984; Lau and Vaughan, 2014; Heinricher and Ingram,
2020).
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Bidirectional pain modulation by the RVM has been
demonstrated through many studies using stimulation,
pharmacology, in vivo electrophysiology, and various pain
models. Neurons in the RVM have been characterized with
respect to their role in modulating pain, identifying three
distinct types of neurons: ON-, OFF-, and NEUTRAL-cells.
These neuron types were initially characterized by their unique
responses (in vivo) to acute noxious stimuli (Fields et al., 1983a;
Vanegas et al., 1984b). ON-cells increase firing just prior to the
tail-flick or paw withdrawal behavioral response to an acute
noxious stimulus, OFF-cells pause just before the ON-cell burst
and withdrawal response, and NEUTRAL-cells show no changes
in firing. Some of each cell type project down to the dorsal horn
(Vanegas et al., 1984b; Fields et al., 1995). Increased OFF-cell
firing suppresses nociceptive reflexes (Fields and Heinricher,
1985) producing descending inhibition of pain, which can be
seen most clearly in response to morphine or other opioids.
Conversely, ON-cell firing contributes to descending facilitation
of pain, which can be produced by many different pain models
(Morgan and Fields, 1994; Porreca et al., 2002; Edelmayer et al.,
2009) or pharmacological manipulations. Further, hyperalgesia
and allodynia can result from either a reduction in OFF-cell
firing or enhanced ON-cell firing (Martenson et al., 2009; Cleary
and Heinricher, 2013). Importantly, although hyperexcited
ON-cells promote descending facilitation, increased OFF-cell
activation overrides the facilitation, yielding a net inhibitory
output for the descending circuit (Satoh et al., 1983; Hentall
et al., 1984; Fields and Heinricher, 1985; Jensen and Yaksh, 1989;
Heinricher and Ingram, 2020).

In contrast to the bidirectional modulation of pain by the
RVM, the upstream vlPAG has been primarily implicated in
producing descending inhibition, due to the analgesic effect
of both vlPAG stimulation (electrical or chemical) and locally
applied opioid agonists (Reynolds, 1969; Mayer et al., 1971;
Mayer and Liebeskind, 1974; Akil and Liebeskind, 1975; Soper
and Melzack, 1982; Vanegas et al., 1984a; Jensen and Yaksh, 1989;
Bandler et al., 1991; Bandler and Shipley, 1994; Tortorici and
Morgan, 2002). vlPAG stimulation-mediated analgesia occurs
predominantly via the dense projection to the RVM (Behbehani
and Fields, 1979; Gebhart et al., 1983; Prieto et al., 1983), as
the vlPAG sends sparse efferents directly to the dorsal horn
(Basbaum and Fields, 1979). In particular, vlPAG stimulation
activates an excitatory connection between the vlPAG and
RVM OFF-cells (Behbehani and Fields, 1979; Basbaum and
Fields, 1984; Vanegas et al., 1984a). More recent studies have
reinforced the antinociceptive role of vlPAG glutamate neurons
using selective, chemogenetic activation and have demonstrated
that selective activation of vlPAG GABAergic neurons can
produce hyperalgesia (Samineni et al., 2017a)—suggesting the
capacity for the vlPAG to be an additional locus of bidirectional
pain modulation. Interestingly in opposition to the role vlPAG
glutamate neurons play in descending inhibition, a recent
study has identified a subpopulation of dynorphin-expressing

v/lPAG glutamate neurons, which when chemogenetically
activated facilitate nociception (Nguyen et al., 2022). The
key question remains whether distinct vlPAG populations,
such as RVM-projecting glutamatergic or GABAergic neurons
or more specific subpopulations within these groups, are
activated by acute noxious stimuli or in persistent and
chronic pain conditions mirroring these different experimental
manipulations that produce descending inhibition or facilitation.

The vlPAG is a key site of opioid-induced analgesia
mediated by mu-opioid receptors (MOR; Heinricher and
Morgan, 1999). Activation of postsynaptic MORs, expressed on
a subpopulation of vlPAG neurons, produces a hyperpolarizing
current; whereas, activation of MORs in presynaptic terminals
within the vlPAG inhibits neurotransmitter release. Pre-
and postsynaptic MORs coupled to different signaling
pathways work in concert to promote descending inhibition.
However, other forms of global inhibition of the vlPAG
(e.g., muscimol or baclofen) result in descending facilitation
of pain, not the inhibition (analgesia) produced by opioid
infusion. These contradictory findings were explained by
a circuit mechanism referred to as the opioid-mediated
disinhibition of pain hypothesis (Basbaum and Fields, 1984).
This mechanism hypothesizes that opioids inhibit GABA release
onto vlPAG neurons, either through selective postsynaptic
MOR expression on inhibitory interneurons or at the level of
the presynaptic GABAergic afferent terminals, disinhibiting
excitatory RVM-projecting neurons that promote descending
inhibition of pain. In subsequent sections, we consider
critical studies that identify additional complexity in MOR
expression, signaling, and regulation, that provide many loci
for pain-mediated alterations to influence opioid-mediated
pain modulation.

The descending pain modulatory circuit also exhibits sexual
dimorphism (Fullerton et al., 2018). Females have ∼33%
more RVM-projecting neurons than males, however, persistent
inflammation activates significantly more RVM-projecting
neurons in males than females (Loyd and Murphy, 2006,
2014). In addition, the antinociceptive potency of bicuculline, a
GABAA receptor antagonist, injected into the vlPAG is greater in
male rats compared to females (Bobeck et al., 2009), indicating
differences in GABA tone within the vlPAG between males
and females (Tonsfeldt et al., 2016). This same study showed
that the antinociceptive potency of kainic acid, which activates
glutamate receptors, is the same for males and females. This
indicates that direct activation of the vlPAG activates a sufficient
number of RVM OFF-cells needed to suppress nociception,
which has been estimated to require relatively few neurons
(<100; Hentall et al., 1984). Furthermore, RVM-projecting
vlPAG neurons are more strongly disinhibited by systemic
morphine in male rats compared to females (Loyd et al., 2007),
emphasizing the need to continue to improve our understanding
of how descending modulation of pain varies between males
and females.
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To date, studies have focused on defining the net output
of the vlPAG and RVM in response to nociceptive stimuli and
different pain states. However, many features of cellular- and
circuit-based diversity suggest additional layers of complexity
relevant to increasing our understanding of the role of
the vlPAG in descending pain modulation in uninjured
and pain states. Specifically, features including cortical and
subcortical afferent inputs, efferent targets, neurotransmitter
content, receptor and channel expression, morphology, intrinsic
membrane properties, and responses to stimuli, can be used to
discern between subpopulations of vlPAG neurons (Hamilton,
1973; Heinricher et al., 1987; Barbaresi and Manfrini, 1988;
Chieng and Christie, 1994a; Park et al., 2010; Heinricher
and Ingram, 2020; McPherson et al., 2021). The vlPAG is
involved in many behavioral circuits associated with survival
(i.e., threat, fear, pain) as well as vital autonomic functions
like breathing, feeding, and respiration (Bandler et al., 2000;
George et al., 2019; Silva and McNaughton, 2019). Thus, it is a
prime brain area for using genetically encoded circuit-mapping
tools to understand how specific PAG afferents participate
in different behaviors. The broad categorization of excitatory
and inhibitory neurons defined by these genetic methods is
a useful starting point, however, does not account for the
diversity that further distinguishes subpopulations of vlPAG
neurons. In addition, methods dependent on gene expression
(such as neurotransmitter content or MOR expression) assume
that large populations defined by one key descriptive feature
activate or inactivate in unison in response to stimuli, whereas
studies are increasingly showing that this interpretation does
not hold (Vaaga et al., 2020; McPherson et al., 2021). This
review is focused on what is known about different aspects of
heterogeneity within the vlPAG in relation to the descending
pain modulatory system.

Opioids in the descending pain
modulatory pathway

Endogenous opioids

Stimulation of the vlPAG produces analgesia in humans and
antinociception in rats that is blocked by the MOR antagonist
naloxone (Adams, 1976; Akil et al., 1976; Hosobuchi et al., 1977;
Behbehani and Fields, 1979; Barbaro, 1988; Bach and Yaksh,
1995), providing evidence for the release of endogenous opioids
in the vlPAG (Bagley and Ingram, 2020). Stimulation of the PAG
produces an increase in the release of met-enkephalin (ME; Bach
and Yaksh, 1995), a full MOR agonist, that is typically below
detection limits under basal conditions (Del Rio et al., 1983).
It is not clear where the ME originates as a subset of neurons
distributed throughout the vlPAG express enkephalin and
enkephalin-containing afferent terminals from other brain areas

(Moss et al., 1983; Williams and Dockray, 1983). Enkephalin-
containing vlPAG neurons send projections to the amygdala and
the nucleus accumbens (Li et al., 1990a,b) but they may also
send local collaterals. Both of these areas send inputs to vlPAG
indicating multiple reciprocal circuits exist between the vlPAG
and supraspinal brain areas where endogenous opioids may
influence descending modulation. This is further supported by
studies showing activation of enkephalin-expressing inhibitory
interneurons in the central nucleus of the amygdala (CeA)
increases Fos expression in non-serotonergic vlPAG neurons,
inducing analgesia (Poulin et al., 2008; Paretkar and Dimitrov,
2019).

The vlPAG also receives β-endorphin-containing fibers from
the arcuate nucleus of the hypothalamus (Finley et al., 1981; Ibata
et al., 1985; Sim and Joseph, 1991), with confirmed β-endorphin
release in the vlPAG following stimulation of the arcuate
nucleus (Bach and Yaksh, 1995). The hypothalamus sends
endomorphin-2 containing projections to the PAG (Chen et al.,
2008) and high levels of endomorphin-2 are observed within the
PAG (Martin-Schild et al., 1999). β-endorphin is a full agonist
while endomorphin-2 is a partial agonist of the MOR (Narita
et al., 2000) suggesting that these two agonists will activate
MORs differently. In addition to endogenous MOR agonists,
electrical stimulation of the CeA increases levels of the kappa-
opioid receptor (KOR) agonist dynorphin A in the lateral PAG
(Nakamura et al., 2013), however, dynorphin microinjection
within the PAG is not analgesic (Fang et al., 1989). A recent study
discovered a subpopulation of dynorphin-expressing vlPAG
glutamate neurons that can facilitate nociception through KOR
signaling within the RVM (Nguyen et al., 2022).

As one would anticipate, the release of endogenous opioid
peptides in response to pain states and exogenous opioids
varies significantly. Substance P induces ME release in the
PAG that is correlated with antinociception (Del Rio et al.,
1983; Rosén et al., 2004). The CFA-induced inflammatory pain
model increases neuropeptide release (neurotensin increased
133% and ME increased 353%), with differential time courses
for recovery (Williams et al., 1995). After 7 d of inflammation,
neurotensin returns to baseline but ME remains elevated.
Further, the enhancement in ME release in the vlPAG
with inflammation is seen uniformly across the rostral-
caudal axis and is maintained between 4 h, 4 d, and 14 d
post-CFA in male rats (Hurley and Hammond, 2001). Other
opioid peptides are also increased with other pain models.
Formalin-induced inflammation increases the release of β-
endorphin and endomorphin-2 within the PAG (Sun et al.,
2001; Nakamura et al., 2013) and β-endorphin is released
within the vlPAG during stress-induced analgesia (Külling
et al., 1989). Interestingly, endogenous ME release is increased
∼50% by systemic morphine injection (Williams et al., 1995).
Similarly, antinociception produced by DAMGO injections
into the basolateral amygdala (BLA) is occluded by blocking
endogenous MOR activation with MOR antagonists in the
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vlPAG (Tershner and Helmstetter, 2000), demonstrating synergy
between exogenous and endogenous opioid effects. The extent
of the endogenous opioid release and efficacy during naïve and
pain states with and without exogenous opioid use are key points
of an ongoing investigation.

Importantly, extensive work is still required to understand
endogenous opioid peptides in descending modulation in
females, as most of the early studies were conducted in male
rats. This is of particular importance given the sex differences
observed in pain states both in animal models and the clinical
population (Fullerton et al., 2018; Shansky and Murphy, 2021).
Similarly, these studies are largely carried out in adult rats,
overlooking the possible differences in the development of the
descending pain modulatory circuit. One prime example of
this is that activation of opioid receptors in the PAG produces
opposite effects in young rats compared to adults (Kwok et al.,
2014). This is a significant area of research considering 37%
of children in the clinical population experience chronic pain
(King et al., 2011). Our understanding of the mechanisms by
which endogenous opioids produce analgesia during pain states
is further complicated by the role of endogenous opioids in other
circumstances (i.e., stress-induced analgesia; Ferdousi and Finn,
2018).

Endogenous opioids must be released with the spatial and
temporal precision necessary to activate the circuit without
directly inhibiting excitatory PAG efferents that target RVM
OFF-cells involved in descending pain inhibition. Furthermore,
how the release and efficacy of endogenous opioids are
impacted by acute or ongoing pain states is not understood.
Complementary to release, it is crucial to understand the
specificity of opioid receptor expression and signaling across
diverse neuron populations and cellular compartments with
distinct mechanisms of action. Next, we consider many
important studies that shape our understanding of MOR action
in the vlPAG.

MOR expression and signaling

The PAG contains a high density of MOR expressing
neurons (Mansour et al., 1986; Kalyuzhny et al., 1996; Gutstein
et al., 1998; Commons et al., 1999, 2000; Wang and Wessendorf,
2002). As previously discussed, the disinhibition of pain
hypothesis provides a possible circuit mechanism for opioid-
mediated analgesia at the level of the vlPAG. Specifically, this
mechanism proposes selective MOR expression on the cell
bodies of vlPAG inhibitory interneurons within the vlPAG
(Basbaum and Fields, 1984) and was later updated to include
expression on GABAergic presynaptic terminals within the
vlPAG (Chieng and Christie, 1994b; Lau and Vaughan, 2014).

MORs are Gi/o-coupled G protein-coupled receptors
(GPCRs) expressed on postsynaptic cell bodies within the
vlPAG. Agonist-bound MORs initiate a cascade of many signal

transduction processes, including the activation of G protein-
coupled inwardly-rectifying potassium channels (GIRKs) by
βγ-subunits of activated Gi/o G proteins (Logothetis et al., 1987)
that produces a K+ efflux and subsequent hyperpolarization of
the neuron, inhibiting firing (North et al., 1987). MOR agonists
exhibit functional selectivity differences in Gi/o recruitment in
MOR-GIRK signaling. In particular, maximal GIRK currents
induced by DAMGO and fentanyl require Go G proteins,
compared to ME, which requires Gi (McPherson et al., 2018).

MORs are also expressed on presynaptic terminals within
the vlPAG where they inhibit the release of the neurotransmitter
(Chieng and Christie, 1994b; Vaughan et al., 1997). In
GABAergic terminals, MORs couple to voltage-gated potassium
channels through the phospholipase A2→ arachidonic acid→
12-lipoxygenase cascade (Vaughan et al., 1997). This signaling
pathway is not necessary for MOR inhibition of glutamate release
in the vlPAG and is distinct from that used by other presynaptic
GPCRs that inhibit GABA release (i.e., GABAB; Vaughan et al.,
1997; Bouchet and Ingram, 2020). Agonist-specific functional
selectivity in the recruitment of Gi or Go G proteins also occurs
during the inhibition of presynaptic GABA release. Specifically,
in order to achieve maximal efficacy for inhibiting spontaneous
GABA release DAMGO requires Go, fentanyl requires both Go

and Gi, and ME sufficiently inhibits release with either (Bouchet
et al., 2021). Comparatively, for maximal inhibition of evoked
GABA release, DAMGO requires both Go and Gi, and fentanyl
and ME require Gi.

Postsynaptic MOR expression has been found on
∼30%–60% of vlPAG neurons where MOR agonist application
produces a GIRK current response reversible by a MOR
antagonist (Chieng and Christie, 1994a; McPherson et al.,
2018). Many studies have concluded that this subset of
MOR-expressing neurons is GABAergic interneurons that
tonically inhibit glutamatergic projection neurons (Yaksh
et al., 1976; Basbaum and Fields, 1984; Reichling et al., 1988;
Park et al., 2010; Lau and Vaughan, 2014). This selective
neuron-type expression has been challenged by several studies
showing evidence of postsynaptic MORs on neurons with
varied neurotransmitter content, intrinsic firing properties, and
morphology (Chieng and Christie, 1994a; Osborne et al., 1996;
Commons et al., 2000; Morgan et al., 2008; Zhang et al., 2020;
McPherson et al., 2021). Furthermore, MOR activation has been
shown to directly inhibit a subset (∼14%) of RVM-projecting
vlPAG neurons (Osborne et al., 1996). However, this does
not rule out the possibility that MORs can be expressed on
GABAergic projection neurons that send local collaterals within
the vlPAG. Thus, it is clear that the actions of opioids in vlPAG
are more complex than their ability to disinhibit excitatory
RVM-projecting vlPAG neurons.

The analgesic effect of morphine microinjected into the
PAG is reversed by muscimol also microinjected into the PAG
(Moreau and Fields, 1986), underscoring the overall role of
opioids in alleviating inhibitory tone to produce analgesia.
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As a result of both pre- and postsynaptic mechanisms, MOR
activation disinhibits excitatory RVM-projecting vlPAG neurons
(Lau et al., 2020), which can activate downstream nociception-
inhibiting OFF-cells within the RVM (Fields et al., 1983b;
Basbaum and Fields, 1984; Cheng et al., 1986). The non-selective
excitatory amino acid (EAA) receptor antagonist kynurenate
in the RVM abolishes systemic opioid-mediated activation
of OFF-cells and antinociception (Heinricher et al., 1999),
confirming the antinociceptive role of glutamate release from
afferents within the RVM. However, both GABAergic and
non-GABAergic vlPAG neurons have also been found to project
to ON- and OFF-cells within the RVM, with varied MOR
expression on their cell bodies and axon terminals within the
RVM (Commons et al., 2000; Zhang et al., 2020). Parallel
descending circuits, both excitatory and inhibitory vlPAG
afferents within the RVM, have been discussed to encompass
these findings (Lau and Vaughan, 2014).

Although MORs are most effective in inhibiting presynaptic
GABA release in the vlPAG, they also inhibit release to a
lesser extent from glutamatergic afferents (Lau et al., 2020).
This suggests that in the presence of opioids, there is a
net excitatory effect (increased E/I balance). Additionally, the
EC50 for DAMGO-mediated inhibition of presynaptic release
is roughly four times lower than that for postsynaptic K+

current (Pennock and Hentges, 2011). This creates the possibility
for a MOR-expressing neuron to be either disinhibited by
a low dose of opioids (removing inhibitory afferent tone)
or inhibited by a higher dose (triggering a hyperpolarizing
GIRK-mediated K+ current). Interestingly, there is functional
selectivity between opioid agonists for pre- vs. postsynaptic
signaling. To achieve maximal antinociceptive efficacy morphine
requires presynaptic MOR activation and fentanyl requires
postsynaptic MOR activation (Morgan et al., 2020). Overall,
the activation of presynaptic MORs alone sufficiently produces
analgesia. These findings present interesting questions about
how smaller concentrations of targeted endogenous opioid
release may alter vlPAG neuron activity differently than
larger concentrations of globally delivered exogenous opioids.
These compartment-specific differences in opioid potency also
demonstrate the ability for opioids to have many different effects
on vlPAG neurons and the subsequent signaling they trigger at
efferent targets depending on E/I balance and postsynaptic MOR
expression.

Interestingly, KOR, and not DOR, activation inhibits evoked
inhibitory synaptic release from afferent terminals comparably
to MOR activation (Lau et al., 2020). Despite this overlap in
presynaptic function, vlPAG KOR activation does not produce
analgesia in rats (Bodnar et al., 1988; Smith et al., 1988; Fang
et al., 1989; Ossipov et al., 1995). Optogenetic studies examining
KOR and MOR sensitivity of specific afferents may be able to
solve this contradictory observation. It is likely that KORs are
expressed on different afferent terminals from brain areas that
do not have a strong role in opioid analgesia, further reinforcing

the importance of identifying whether inhibiting selective vlPAG
afferent inputs are necessary to produce analgesia, how these
inputs are altered by pain states, and whether these alterations
impact the ability for endogenous opioids to sufficiently dampen
their signal.

Pain-state-mediated alterations to these parallel circuits,
such as the E/I balance onto RVM-projecting vlPAG neurons
or vlPAG afferent inputs onto specific neuron types in the
RVM, have yet to be defined but seem likely due to known
changes in opioid efficacy in these regions during pain states.
Persistent inflammation (24 h) prior to systemic morphine
administration significantly increases the analgesic response
compared to uninjured animals (Eidson and Murphy, 2013). A
study completed in male rats showed greater analgesic efficacy
by DAMGO locally infused downstream in the RVM 14 d after
CFA-induced inflammatory pain (Hurley and Hammond, 2001).
The attenuation of morphine tolerance by persistent peripheral
inflammation aligns with clinical literature, where chronic
pain patients do not readily demonstrate opioid tolerance
(Collett, 1998; Dworkin et al., 2005). Altogether, the effect of
opioids within the vlPAG is much more complex than selective
postsynaptic MOR expression inhibiting GABA interneurons.
The next critical questions include whether the E/I balance is
distributed uniquely across distinct subpopulations of vlPAG
neurons, how opioid modulation of neuronal activity is impacted
by alterations induced by pain states (i.e., altered intrinsic
activity neuronal activity or presynaptic inputs), and how this
influences vlPAG efferent engagement with functionally distinct
ON- and OFF-cells within the RVM. In the next section,
we consider different MOR signaling regulation mechanisms
that reveal additional compartmental specificity in MOR
signaling.

Regulation of MOR signaling

Multiple mechanisms exist to regulate ongoing MOR
signaling. Continuous MOR activation triggers the
phosphorylation of the intracellular C-terminal tail of the
receptor by several different protein kinases, including
protein kinase A, protein kinase C (PKC), and G protein
receptor kinases (Williams et al., 2013). Phosphorylation of
the C-terminus triggers desensitization and recruitment of
β-arrestin (βarr), resulting in the internalization of the receptor.
MOR signaling is recovered around 60 m following maximal
desensitization, indicating the time course for receptor recycling
back to the membrane. Postsynaptic MOR-mediated GIRK
currents within the vlPAG are relatively small, however, they
do desensitize during prolonged MOR agonist exposure, and
this desensitization is even greater in morphine-tolerant rats
(Ingram et al., 2008). Desensitized MOR-GIRK signaling,
enhanced by morphine tolerance, reduces the ability for opioids
to hyperpolarize vlPAG neurons, suppressing their firing rates.
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Although postsynaptic MORs in the vlPAG desensitize, the
inhibition of GABA release by presynaptic MORs within the
vlPAG does not desensitize during prolonged exposure to an
agonist in drug naïve or chronic morphine treated rats (Fyfe
et al., 2010). Additional evidence from the arcuate nucleus of
the hypothalamus confirms presynaptic MORs, as well as other
presynaptic GPCRs, are resistant to desensitization (Pennock
et al., 2012). Interestingly, presynaptic MORs have been shown to
undergo internalization in the continued presence of ligand, but
are quickly replaced by lateral diffusion along the axon surface
(Jullié et al., 2020). Thus, despite the dynamic movement of
MORs in the presynaptic compartment, signaling is maintained.

In addition to βarr-mediated desensitization, activated G
proteins that bind and activate effector targets are also regulated
by the regulator of G protein signaling (RGS) proteins. RGS
proteins bind to active α-subunits driving GTP-hydrolysis to
GDP, boosting the affinity between the α- and βγ-subunits
resulting in the reformation of the inactive heterotrimer. Many
RGS proteins are involved in the regulation of MORs, including
RGS4 (Garzón et al., 2005a; Roman et al., 2007; Leontiadis et al.,
2009; Santhappan et al., 2015), RGS9-2 (Psifogeorgou et al.,
2007; Papachatzaki et al., 2011; Gaspari et al., 2017), RGS19
(Wang and Traynor, 2013), and RGSz (Garzón et al., 2005b;
Gaspari et al., 2018; Sakloth et al., 2019). Within the vlPAG, a
mouse model with RGS-insensitive G proteins exhibits increased
opioid-mediated inhibition of presynaptic GABA release and
increased morphine antinociception (Lamberts et al., 2011).
These findings support the idea that RGS proteins negatively
modulate MOR inhibition of evoked GABA release (eIPSCs),
influencing supraspinal nociception. Antagonizing hydrolysis by
RGS4 in the vlPAG enhances morphine-mediated analgesia, but
not fentanyl, which may be a function of their different signaling
pathways (Morgan et al., 2020).

In contrast, RGS proteins positively modulate postsynaptic
MOR-mediated GIRK activation in the vlPAG (McPherson et al.,
2018). RGS proteins playing a facilitatory role in MOR-GIRK
signaling is counterintuitive, as RGS proteins inactivate G
proteins which activate GIRK channels. However, a “kinetic
scaffolding” model outlines the necessity of rapid turnover of G
proteins to replenish the inactive G protein substrate pool for
quick re-activation by the receptor (Clark et al., 2003; Zhong
et al., 2003). The proximity of substrates and binding partners,
here MORs and GIRKs, allows for expedient activation→
channel gating → inactivation. As a result, when the RGS
binding is disrupted in the RGS-insensitive mouse model, the
efficiency in coupling is lost and the substrate pool turnover
is hindered, reducing the overall K+ conductance through the
GIRK channel. Thus, this model suggests that RGS proteins
serve as key components in receptor and effector coupling,
enhancing the efficiency of the signal transduction pathway.
Distinct actions of RGS proteins and agonist-specific G protein
recruitment, in pre- and postsynaptic MOR signaling provide
another avenue for compartment-specific MOR signaling that

can affect the analgesic circuit. Future studies on how acute
and persistent pain states may influence RGS actions in pre-
and postsynaptic MOR signaling will further our understanding
of how RGS-mediated positive and negative modulation
of compartment-specific MOR signaling within the vlPAG
influence pain states. Furthermore, the duration of opioid (i.e.,
morphine) exposure impacts the association between MORs
and specific RGS proteins in the PAG (Garzón et al., 2005a),
highlighting one mechanism by which treating pain states with
exogenous opioids can influence MOR regulation.

Sustained MOR activation can also produce heterologous
desensitization at adjacent receptors that use the same
intracellular signaling components (Leff et al., 2020; Adhikary
et al., 2022). As a result, these mechanisms associated with
MOR desensitization could be adapting the signaling of other
receptors, which then influence tolerance and withdrawal.
Additional receptors within the vlPAG have been hypothesized
to contribute to the analgesic tolerance of opioids, such
as the nociceptin receptor (NOP), which is another GPCR
that is densely expressed within the vlPAG with similar
homology to MOR/DOR/KOR but low affinity for opioid
agonists and antagonists (Anton et al., 1996). Activation of
NOP blocks analgesia and NOP antagonists microinjected into
the vlPAG stop the development and expression of analgesic
tolerance to systemic morphine administration (Parenti and
Scoto, 2010; Scoto et al., 2010). Ongoing activation of NOP
produces PKC-mediated heterologous desensitization of MORs
in cultured cells (Mandyam et al., 2002), providing an example
of how cross-talk between these receptor signaling systems can
influence analgesic efficacy.

Cellular diversity

Many methods have been used to characterize different
neuronal populations within brain regions. Tools that utilize
genetic approaches to selectively alter neuronal activation,
such as optogenetics or DREADDs, have reinforced our
understanding of how the activation of excitatory and inhibitory
vlPAG neurons influences the net output of the descending pain
modulatory pathway. However, these studies do not address the
question of which vlPAG neurons are recruited during acute
and persistent pain states to influence ongoing nociception.
Additional features such as intrinsic firing and membrane
properties, receptor and channel expression, endogenous opioid
peptide production, afferent inputs, and efferent targets can
collectively define vlPAG neurons engaged by acute nociceptive
stimuli, ongoing pain states, and endogenous or exogenous
opioids. Other cell types within the vlPAG, such as microglia,
also play important and extensive roles in the pain response and
analgesia (Loyd and Murphy, 2006; Fullerton et al., 2018; Averitt
et al., 2019).
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Neurotransmitter content

Early work using GAD-immunoreactivity, labeled a subset
of ∼33% of vlPAG cell bodies (Barbaresi and Manfrini, 1988;
Reichling and Basbaum, 1990). The GABAergic subpopulation
combined with the identification of a direct, excitatory
connection between the vlPAG and the RVM that contributes
to stimulation-mediated analgesia (Behbehani and Fields, 1979),
leads to the proposed circuit where inhibitory neurons in
the vlPAG serve as an interneuron population that control
the intensity of the output signal to the RVM (Basbaum and
Fields, 1984). To determine the effect of GABA on vlPAG
output, GABA receptor antagonists were locally infused into the
vlPAG increasing vlPAG firing and the firing of downstream
RVM OFF-cells, producing analgesia (Moreau and Fields,
1986; Behbehani et al., 1990; Knight et al., 2002). These
studies do not determine the source of GABA, which can
come from GABAergic interneurons or GABAergic afferents
originating from many different brain regions. Direct evidence
for GABAergic interneurons within the vlPAG has not been
provided to date.

Selective activation of vlPAG GABA neurons using
DREADDs produces hyperalgesia and confirms the
pronociceptive role of vlPAG GABA neurons independent
of GABA afferents from other regions (Samineni et al., 2017a).
However, this experiment does not rule out that this behavioral
outcome could be the result of GABAergic neurons that project
to the RVM that directly inhibit spontaneous OFF-cell firing
(Heinricher et al., 1991). Histological studies confirm that
GABAergic afferents in the RVM coming from the vlPAG come
in contact with both OFF- and ON-cell populations (Morgan
et al., 2008). Additionally, DREADD-mediated activation of
GABAergic neurons does not address whether acute or ongoing
nociceptive stimuli activate the same neurons within the vlPAG,
demonstrating the physiological relevance of the impact of
selectively activating this population or if neuronal activation
is more heterogeneous, and if so, what resulting output that
produces. Additionally, it is important to identify whether there
are other circuit consequences of increased activity of vlPAG
GABAergic neurons, such as increasing GABA release onto
RVM OFF-cells, which would also produce hyperalgesia.

The proinflammatory cytokine Tumor Necrosis Factor-
α (TNF-α) has been recently shown to selectively activate
GABAergic neurons within the vlPAG (Pati and Kash, 2021),
suggesting a possible mechanism by which a pain state can
produce the targeted activation of vlPAG GABA neurons.
TNF-α is one of many proinflammatory cytokines released
by activated microglia, which are activated by inflammatory
pain states (Fullerton et al., 2018). Interestingly, the enhanced
activity of vlPAG GABA neurons by TNF-α did not increase
GABAergic synaptic inputs onto neighboring vlPAG dopamine
(DA) neurons—suggesting that if these GABAergic neurons
send local collaterals within the vlPAG, they do not target

DA neurons. Altogether, it is possible that pain states activate
microglia, which release TNF-α, activating GABA neurons to
enhance local GABA tone—resulting in descending facilitation
through a specific subpopulation of vlPAG neurons. However,
this possible mechanism would need to be confirmed in a pain
model to implicate selective activation of vlPAG GABA neurons
in altered pain modulation during pain states.

Selective activation of glutamatergic neurons in the vlPAG
with DREADDs promotes analgesia (Samineni et al., 2017a).
This reinforces the conclusion from many early studies that
stimulation-mediated analgesia is driven by the activation of
glutamatergic neurons (Reynolds, 1969; Mayer et al., 1971;
Mayer and Liebeskind, 1974; Akil and Liebeskind, 1975;
Behbehani and Fields, 1979; Soper and Melzack, 1982; Jensen
and Yaksh, 1989). However, selective activation of glutamatergic
vlPAG neurons also enhances anxiety (Taylor et al., 2019), one of
the many off-target effects precluding this stimulation target as
a therapeutic option for clinical pain management. Deep brain
stimulation targeting the vlPAG has been applied therapeutically
for treatment-resistant hypertension (Patel et al., 2011;
O’Callaghan et al., 2014), emphasizing the many subcircuits that
utilize this region and the importance of understanding whether
specific stimuli engage different neuronal subpopulations within
the vlPAG. Furthermore, a recent study using single nucleus
RNA-sequencing and Multiplexed Error-Robust Fluorescence
in situ Hybridization (MERFISH) identified over 100 excitatory
and inhibitory neuronal populations (Vaughn et al., 2022). In
addition to unique transcriptional profiles, these neurons were
found to be spatially distributed uniquely along the rostral-
caudal axis, and multiple populations were activated in unison
by different instinctive behaviors (i.e., mating, aggression,
etc.)—underscoring the complexity in subpopulations of
excitatory and inhibitory vlPAG neurons.

An increasing number of studies are providing evidence
that glutamate neurons do not represent a functionally
homogeneous population of vlPAG neurons. One example
is a Chx10-expressing subpopulation of glutamate neurons
that are specifically involved in mediating freezing behaviors
(Vaaga et al., 2020). Activation of another subpopulation vlPAG
glutamate neurons that express dynorphin produces dynorphin-
mediated facilitation of nociception through signaling at
terminals in the RVM (Nguyen et al., 2022). Findings
such as these emphasize the caution we should take when
using neurotransmitter content as the only genetic marker
in behavioral studies. Although it is interesting to know
that the net output of activating all glutamate neurons is
analgesia, important questions remain. First, how many vlPAG
glutamate neurons are necessary to produce analgesia? Second,
do glutamate neurons that promote descending inhibition
overlap with glutamate populations involved in other outputs
(i.e., freezing)? Lastly, are there markers for subpopulations
of glutamate neurons that are activated by nociceptive stimuli
or necessary for producing analgesia that can be harnessed to
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develop targeted drug delivery methods? Together, the answers
to these questions will equip us with the information needed
to develop therapeutic manipulations that produce the smallest
intervention possible that drives descending inhibition from the
level of the vlPAG.

Additional neuron populations within the vlPAG with
different neurotransmitter content engage with descending
modulation differently. Most notably, DA neurons have been
implicated in the broader supraspinal pain circuitry and
analgesia (Hökfelt et al., 1976; Meyer et al., 2009; Taylor et al.,
2019; Yu et al., 2021) despite not projecting directly to the RVM
(Suckow et al., 2013). Interestingly, these DA neurons co-release
both DA and glutamate at terminals in the bed nucleus of the
stria terminalis (BNST; Li et al., 2016). Selective activation of
these vlPAG DA neurons produces antinociception in male rats
(Yu et al., 2021). Serotonergic neurons that are densely populated
in the dorsal raphe and extend diffusely up into the most ventral
portion of the vlPAG (Crawford et al., 2010), have also been
implicated in opioid-mediated analgesia (Samanin et al., 1970).

Altering the activity of vlPAG neuron populations
with distinct neurotransmitter content can influence
pain modulation, however, this alone does not answer
important questions: (1) are these molecularly defined
subpopulations selectively engaged by pain states, mirroring
these activation/inhibition studies in a physiological condition;
(2) how does this change over the course of acute, persistent,
and chronic stages; and (3) how do endogenous and exogenous
opioids influence how these neurons participate in descending
circuitry in naïve and pain states?

Receptor or channel expression

In addition to neurotransmitter content, the expression
of receptors and channels amongst vlPAG neurons can
differentiate distinct populations and potentially define any
selective, population-specific engagement by pain states or
opioids (Chieng and Christie, 1994a; Park et al., 2010; Liao
et al., 2011; Du et al., 2013; Lau and Vaughan, 2014; McDermott
et al., 2019). Although MORs mediate morphine antinociception
(Matthes et al., 1996) all three opioid receptors (MOR, DOR
and KOR) are expressed in vlPAG. DOR and KOR are densely
expressed within the vlPAG, both on cell bodies (including
RVM-projecting neurons) and on afferent terminals (Mansour
et al., 1986; Kalyuzhny et al., 1996; Gutstein et al., 1998;
Kalyuzhny and Wessendorf, 1998; Wang and Wessendorf, 2002).
Neither DOR nor KOR activation elicits GIRK currents from
vlPAG neurons in rats (Chieng and Christie, 1994a), although
both activate GIRK currents in mouse vlPAG (Vaughan et al.,
2003). Interestingly, DOR activation alone does not produce
analgesia but potentiates MOR-mediated analgesia (Rossi et al.,
1994). This effect is observed when MOR agonist DAMGO
is microinjected into the vlPAG or RVM and DOR agonist

deltorphin is microinjected into the other region and not when
they are microinjected into the same region—suggesting synergy
is occurring at the circuit and not cellular level.

Several studies have tried to use MOR as a marker for
a specific functional subpopulation of vlPAG neurons. One
interesting possibility identified in mice showed that MOR
expressing, tonic firing GABAergic neurons also expressed
T-type calcium channel, indicated by low-threshold spiking
(LTS; Park et al., 2010). Using MOR-mediated GIRK currents,
they observed that T-type channel expressing GABAergic
neurons were opioid-sensitive (five neurons) and the remaining
GABAergic (four neurons) and phasic firing, non-GABAergic
neurons were opioid-insensitive. However, in a larger data set in
the vlPAG of rats, LTS was not a predictor of opioid sensitivity
(McPherson et al., 2021). Furthermore, LTS was observed in
phasic firing neuronal populations in rats in addition to the tonic
firing populations that exclusively had LTS in the mouse study.
Together these discrepancies suggest either T-type channels are
more broadly expressed in rats than in mice or the mouse data set
did not capture a large enough sample to observe phasic firing,
non-GABAergic, opioid-sensitive neurons.

Other receptors expressed in the vlPAG can also modulate
the effects of opioids. For example, activating NOP with
the endogenous ligand nociception/orphanin FQ reduces the
analgesic efficacy of endogenous opioids and systemic morphine
(Mogil et al., 1996). Conversely, NOP antagonists potentiate
DAMGO efficacy, whether the animal is pretreated or given
the antagonist after DAMGO administration (all microinjected
within the vlPAG; Scoto et al., 2007). NOP activation also
appears to be contributing to the development and expression of
allodynia in acute inflammatory pain and chronic neuropathic
pain (Scoto et al., 2009), making it a potential therapeutic target
to both modulate opioid efficacy and nociceptive thresholds in
the absence of opioid use.

Additionally, recent studies found that GPR171, a recently
deorphanized GPCR, is expressed on GABAergic vlPAG
neurons where it regulates opioid-mediated antinociception
(McDermott et al., 2019). GPR171 agonists enhance morphine
efficacy while antagonists do the opposite, with the most
substantial effect seen with the supraspinal antinociceptive test
(hotplate). The GPR171 agonist MS15203 administered daily
after injury alleviated thermal hypersensitivity (after CFA) and
allodynia (after neuropathic pain) in males only (Ram et al.,
2021). Of note, the neuropathic pain model reduced PAG
GPR171 expression in male mice only, which was recovered by
the agonist treatment.

The DA and opioid receptor systems provide examples of
signaling interactions that influence pain modulation at the level
of the vlPAG. Activation of vlPAG DA receptors directly with
agonist (-) apomorphine or indirectly with D-amphetamine,
produces robust antinociception via the descending circuit
with the RVM, and is attenuated by D2 receptor blockade
(Flores et al., 2006; Meyer et al., 2009; Ferrari et al., 2021). In
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addition to DA-mediated antinociception, blocking either D1

or D2 DA receptors inhibits opioid-mediated antinociception
in a dose-dependent manner (Flores et al., 2004; Meyer et al.,
2009; Tobaldini et al., 2018). These results are consistent with
previous findings that show a significant reduction in the
antinociceptive effect of systemic opioids (specifically, heroin
and morphine) after selectively ablating DA neurons within the
vlPAG (Flores et al., 2004). Mechanistically, activation of D2

receptors induces GIRK currents (Pillai et al., 1998; Marcott
et al., 2014) and dopamine applied on slices in vitro reduces
presynaptic GABA release (Meyer et al., 2009). Interestingly,
unlike the antinociceptive tolerance observed with repeated
opioid administration, the DA-receptor system sensitizes to
repeat (-) apomorphine administration, producing increased
antinociception, making the furthered understanding of these
mechanisms of particular relevance for the development of novel
therapeutics (Schoo et al., 2018).

Overall, defining the specific combinations of receptor and
channel expression in combination with other features of cellular
heterogeneity (neurotransmitter content, intrinsic properties,
and specific circuitry) will increase our understanding of
neuron types within the vlPAG. Compiling these features into
comprehensive vlPAG neuron profiles may provide interesting
insight into how pain states alter these neurons, the descending
modulatory circuit, and the efficacy of drugs targeting these
receptor-channel complexes.

Intrinsic firing properties

Characterizing intrinsic membrane and firing properties
is a common approach to defining neuronal heterogeneity
(Prescott and De Koninck, 2002; Sedlacek et al., 2007; Van Aerde
and Feldmeyer, 2015; Pradier et al., 2019) and determining
these properties in naïve animals allows for the evaluation of
alterations induced by persistent inflammation (Li and Sheets,
2018; Adke et al., 2021; McPherson et al., 2021). Neuronal firing
properties and response to noxious stimuli have been used to
define important, functionally distinct neurons within the RVM
(Fields et al., 1983a; Vanegas et al., 1984b). These landmark
papers that characterized responses of distinct neuron types to
noxious stimuli (ON-, OFF-, and NEUTRAL-cells) have served
as a useful framework for subsequent findings.

ON- and OFF-cells respond differently to opioids,
application of EAAs, and blocking inhibitory inputs. First,
RVM ON-cells selectively express MORs and as a result,
iontophoretic application of morphine inhibits ON-cell firing
without affecting OFF-cell firing (Heinricher et al., 1992). ON-
and OFF-cells respond differently to excitatory and inhibitory
afferent input. Iontophoretic application of a glutamate
receptor antagonist reduces the ON-cell burst triggered by the
noxious stimulus and ON-cell spontaneous firing and does not
alter OFF-cell firing (Heinricher and Roychowdhury, 1997;

Heinricher et al., 1999). Conversely, iontophoretic application of
the GABA antagonist bicuculline eliminates the OFF-cell pause
triggered by the noxious stimulus but does not change ON-cell
firing (Heinricher et al., 1991). Together these studies suggest
that enhanced glutamate release within the RVM can increase
ON-cell firing while keeping the OFF-cells unaltered and
enhanced GABA release within the RVM can reduce OFF-cell
firing without impacting ON-cell firing. This highlights the
importance of identifying which vlPAG neurons are activated by
pain states, how they alter afferent inputs in the RVM, and where
endogenous or exogenous opioids intervene in the circuit.

In addition to determining how specific synaptic inputs can
affect RVM ON- and OFF-cells, studies have examined how
these cells respond to noxious stimuli during different pain
stages. Upon CFA injection, both ON- and OFF-cell spontaneous
activity are enhanced but spontaneous firing for both neuron
types returns to baseline after a couple of hours; however,
mechanical thresholds are reduced into the innocuous range
(Cleary et al., 2008). Furthermore, blocking excitatory afferent
inputs within the RVM prior to chronic constriction injury
results in slower and diminished development of mechanical
allodynia, correlating with a reduction in the hyperexcitability
of spinal neurons (Sanoja et al., 2008). Combined with what
is known about the effect of afferent inputs that impinge onto
distinct neuron types in the naïve condition, this suggests
that glutamatergic inputs onto ON-cells are important for
the development of hyperalgesia, calling into question how
excitatory and inhibitory projections from the vlPAG contribute
to these changes.

In vivo recordings from the vlPAG have also identified
neurons that respond to nociceptive stimuli (Heinricher et al.,
1987; Samineni et al., 2017b), finding ON-, OFF-, and
NEUTRAL-cells. Neuropathic pain induced by paclitaxel, a
commonly used chemotherapy drug, enhances spontaneous
firing and lowers the response thresholds in vlPAG ON-cells
and OFF- and NEUTRAL-cells in response to noxious and
previously innocuous stimuli (Samineni et al., 2017b). These
studies provided evidence that pain states selectively activate
subpopulations of neurons within the vlPAG and that the acute
firing response to a noxious stimulus can be used to distinguish
distinct vlPAG neuron populations.

An ex vivo survey of nearly 400 neurons using in vitro
whole-cell patch-clamp experiments identified four distinct
neuron types based on their intrinsic firing properties: Tonic
(35%), Phasic (46%), Onset (10%), and Random (9%; McPherson
et al., 2021). Tonic neurons (35%) fired continuously in response
to depolarizing current steps compared to Phasic neurons
(46%) which reached depolarization block in the more strongly
depolarizing steps. These neuron types allowed the same study
to identify that persistent CFA-induced inflammation (5–7 d)
selectively enhances the spontaneous firing rate of Phasic
neurons. Identifying activation of specific subtypes of vlPAG
neurons prompts many interesting follow-up studies, including
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examining intrinsic changes in receptors and/or channels or
adaptations in afferent inputs. A study evaluating GABAergic
neurons in a genetically defined mouse model observed that
firing patterns in mice largely correlated with neurotransmitter
content, with 31/33 GABAergic neurons having a tonic firing
pattern with the other 2/33 showing a phasic pattern (Park
et al., 2010). If this correlation observed in mice is upheld
in rats, enhanced spontaneous activity of Phasic neurons after
persistent inflammation may be producing the glutamate afferent
input onto RVM ON-cells that contributes to allodynia. These
interpretations are made even more interesting if neurons
with distinct firing patterns have unique afferent inputs, that
could for example contribute to enhanced Phasic firing after
persistent inflammation or unique efferent targets that implicate
the enhanced Phasic firing in altering signaling within different
circuits.

In addition to providing a useful framework to identify
mechanisms of targeted neuronal activation after different
stimuli, firing patterns provide insight into how neurons may
encode noxious stimuli. For example, a tonic firing neuron can
entrain stimuli of varying intensities, whereas a phasic neuron
can only do so at low-intensity ranges. At the higher depolarizing
intensities a Phasic neuron becomes a coincidence detector,
similar to the Onset neuron (Prescott and De Koninck, 2002).
This can change whether presynaptic release from these neurons
onto their downstream targets is ongoing (Tonic) or transient
(Phasic). Recently published work has discovered opposing
functional outputs produced by activating the same GABAergic
neuron population with different channelrhodopsin-2 variants
that have distinct off-kinetics (Baleisyte et al., 2022). The
two variants produce two different firing patterns with the
same optogenetic stimulation paradigm; the faster variant has
identical action potentials with each stimulation, whereas the
slower variant leads to significant attenuation of the action
potential peak over repeated stimulation—demonstrating
the importance of combining firing properties with
neurotransmitter content to more completely understand
the implication of neuron populations within a circuit.

Circuit diversity

Afferent inputs

The vlPAG receives inputs from many cortical and
subcortical regions associated with nociceptive, cognitive, and
affective components of pain. Ascending nociceptive inputs to
the vlPAG come through the spinothalamic, spinoparabrachial,
and spinomesocenphalic tracts, with some inputs coming
directly from the spinal cord to the vlPAG (Menétrey et al.,
1982; Yezierski and Mendez, 1991). The spinomesencephalic
tract provides direct inputs to the PAG, however, these inputs

have been linked to nociception and analgesia, as well as
aversive behaviors (Willis and Westlund, 1997). Additional
ascending nociceptive inputs come from the parabrachial
complex (Gauriau and Bernard, 2002), which receives inputs
from the superficial and deep dorsal horn (Roeder et al.,
2016). Forebrain regions including the medial prefrontal,
agranular insular, and anterior cingulate cortices, amygdala,
BNST, and hypothalamus send the most significant supraspinal
inputs to the PAG (Shipley et al., 1991; An et al., 1998;
Floyd et al., 2000; Hao et al., 2019; Silva and McNaughton,
2019). In addition to anatomical studies showing connections
between these regions and the vlPAG, studies using lesions
and pharmacological manipulations have provided evidence that
these regions participate in pain circuitry (Donahue et al., 2001;
Ikeda et al., 2007; Starr et al., 2009; Bliss et al., 2016; Mills
et al., 2018). For example, antinociception induced by morphine
injected into the basolateral and medial nuclei of the amygdala
is interrupted by lesioning the vlPAG (Helmstetter et al., 1998;
McGaraughty et al., 2004)—emphasizing the importance of the
vlPAG as an integration site for cortical inputs involved in pain
modulation and opioid-mediated analgesia.

Supraspinal inputs are both excitatory and inhibitory so
vlPAG neuronal activity is dictated by the E/I balance onto
an individual neuron. Opioid-mediated disinhibition of pain
is one example where it is presumed that glutamatergic PAG
output neurons are biased towards a more inhibited state by
GABAergic afferent inputs. In one study, glutamatergic inputs
from the medial (fastigial) cerebellar nuclei synapse onto 20%
of Chx10-expressing glutamatergic neurons, 21% of GABAergic
(GAD2+) neurons, and 70% of DA neurons within the vlPAG
(Vaaga et al., 2020), clearly demonstrating that afferent inputs
are not universally distributed within the vlPAG. These results
highlight the importance of identifying specific afferent inputs
that are activated by either pain or opioids that could be useful
in defining subpopulations of vlPAG neurons.

Persistent inflammation induced with CFA enhances GABA
tone in the vlPAG of female rats (Tonsfeldt et al., 2016).
In addition to changes in GABA release by pain states, the
glutamatergic release was decreased in the vlPAG 3 and 10 d after
spinal nerve ligation (Ho et al., 2013). Although different pain
models were used in these studies, the results suggest possible
changes in the balance of excitatory and inhibitory inputs
(E/I balance). Altered afferent release from either excitatory or
inhibitory terminals can influence firing rates, and the changes
to firing induced by opioid-mediated inhibition of presynaptic
release, thus yielding altered engagement with downstream
targets like the RVM. For example, if the afferent inputs onto a
neuron are excitatory-dominant in the naïve condition, opioids
will remove the excitatory drive, resulting in inhibition of firing.
However, if the known enhanced GABA tone after persistent
pain shifts the E/I balance onto this same neuron to becoming
inhibitory-dominant, opioids will now activate firing. This shift
in how opioids can alter vlPAG neuronal firing can have a
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significant effect when considering how any specific neuron
engages with ON- or OFF-cells within the RVM.

Efferent targets

Projection target is another important feature that can
increase our understanding of how distinct types of vlPAG
neurons engage with downstream targets and how that
connection is altered by persistent inflammation or opioid
action. The vlPAG contributes to the overall output of the
descending pain modulatory pathway at the level of the
dorsal horn of the spinal cord through its connection with
the RVM (Behbehani and Fields, 1979; Gebhart et al., 1983;
Prieto et al., 1983). The RVM-projecting population contains
both GABAergic and non-GABAergic neurons (Commons
et al., 2000; Morgan et al., 2008). In the mouse, both tonic
firing (7/12) and phasic firing (5/12) neurons project to the
RVM with comparable density; however, low-threshold spiking,
MOR-expressing GABAergic tonic firing neurons did not project
to the RVM (Park et al., 2010). Lau et al. (2020) found that
RVM-projecting vlPAG neurons lacking MOR expression are
disinhibited by DAMGO application compared to non-RVM-
projecting neurons which are inhibited (n = 9), however,
other findings show that RVM-projecting vlPAG neurons can
express MORs (Commons et al., 2000). A subset of dynorphin-
releasing glutamatergic vlPAG neurons (∼32%) project to the
RVM, making up ∼10% of the RVM-projecting vlPAG neurons
(Nguyen et al., 2022). Altering the activity of this particular
subpopulation of excitatory neurons can impact responses to
cold, thermal, itch, and nociception.

Recent studies have also shown that vlPAG projections
to regions other than the RVM can be implicated in
antinociception, expanding the definition of subpopulations
involved in descending pain modulation beyond
RVM-projecting neurons. One example is DA neurons
that project to the BNST (Hasue and Shammah-Lagnado, 2002;
Yu et al., 2021), which interestingly has reciprocal connections
with the vlPAG via GABAergic efferents (Hao et al., 2019).
Despite not projecting to the RVM (Suckow et al., 2013), these
DA neurons have been implicated in the broader supraspinal
pain circuitry and analgesia (Meyer et al., 2009; Taylor et al.,
2019; Yu et al., 2021). Another is the connection between the
central medial nucleus of the thalamus, which when lesioned
temporarily alleviates mechanical hyperalgesia in a neuropathic
pain model (Sun et al., 2020). Additional examples of reciprocal
connections between the vlPAG and other brain regions, such as
the amygdala (Ottersen, 1981; Hasue and Shammah-Lagnado,
2002; Oka et al., 2008; Sun et al., 2019), show pain-induced
alterations (Li and Sheets, 2018). Multi-region circuits, such
as that between the vlPAG, central medial thalamic nucleus,
and the BLA are activated by neuropathic pain (Sun et al.,
2020), which is known to project back to the vlPAG via neurons

with distinct intrinsic membrane properties within the central
medial and lateral nuclei of the amygdala (Rizvi et al., 1991; Li
and Sheets, 2018). These reciprocal connections could account
for the polysynaptic responses that lead to latent changes
in RVM neuronal firing in response to vlPAG stimulation
(Odeh et al., 2003).

The vlPAG has many other efferent targets that are associated
with other behaviors. GABAergic projections to the VTA have
been implicated in freezing behaviors (Laurent et al., 2020).
Single-unit recordings in awake behaving animals have linked
vlPAG cellular activity to threat probability evaluation (Wright
et al., 2019). The subpopulation of neurons in mice involved
in freezing with distinct connectivity, molecular markers
(Chx10 and glutamate), and electrophysiological features (Vaaga
et al., 2020). An entire field of work has implicated this region
in the acquisition, expression, and extinction of fear, anxiety,
or defensive response (Borszcz et al., 1989; Fanselow, 1991; De
Oca et al., 1998; McDannald, 2010; Wright and McDannald,
2019; Wright et al., 2019). It is important to understand whether
the circuits associated with behaviors or physiological states
other than pain overlap with the vlPAG neurons that are
specifically engaged in pain modulation. This could shed light
on possible circuit mechanisms for comorbidities observed with
chronic pain or other conditions that increase an individual’s
susceptibility to developing pain conditions.

Conclusion

The heterogeneity of the vlPAG calls for understanding
neuronal subpopulations that comprise pain circuits with a
greater resolution than the field currently uses. Combining
multiple features, such as neurotransmitter content,
receptor/channel expression, intrinsic firing properties,
afferents inputs, efferent targets, etc., will create the opportunity
to identify novel targets that interfere with pain processing,
especially in chronic pain states. As new innovative approaches
are developed, we can address key questions that remain
in the field regarding the spatial and temporal specificity
of endogenous opioid release within the descending pain
modulatory pathway.
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Amygdaloid circuits are involved in a variety of emotional and motivation-

related behaviors and are impacted by stress. The amygdala expresses several

neuromodulatory systems, including opioid peptides and their receptors. The

Dynorphin (Dyn)/kappa opioid receptor (KOR) system has been implicated in

the processing of emotional and stress-related information and is expressed

in brain areas involved in stress and motivation. Dysregulation of the Dyn/KOR

system has also been implicated in various neuropsychiatric disorders.

However, there is limited information about the role of the Dyn/KOR system

in regulating amygdala circuitry. Here, we review the literature on the

(1) basic anatomy of the amygdala, (2) functional regulation of synaptic

transmission by the Dyn/KOR system, (3) anatomical architecture and function

of the Dyn/KOR system in the amygdala, (4) regulation of amygdala-

dependent behaviors by the Dyn/KOR system, and (5) future directions for

the field. Future work investigating how the Dyn/KOR system shapes a

wide range of amygdala-related behaviors will be required to increase our

understanding of underlying circuitry modulation by the Dyn/KOR system.

We anticipate that continued focus on the amygdala Dyn/KOR system

will also elucidate novel ways to target the Dyn/KOR system to treat

neuropsychiatric disorders.

KEYWORDS

basolateral amygdala, central nucleus of amygdala, dynorphin, kappa-opioid
receptor (KOR), G-protein coupled receptors, stress, anxiety, addiction
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Dynorphin/kappa opioid receptor
signaling overview

Translational/clinical significance of
dynorphin/kappa opioid receptor
signaling

The neuropeptide dynorphin (Dyn) and its cognate
receptor, the kappa opioid receptor (KOR), have been
implicated in maladaptive behaviors associated with several
psychiatric disorders. The Dyn/KOR system constitutes a class
of opioidergic signaling that is in large part distinct from other
opioid systems such as the mu-or delta-opioid receptor system.
In humans, stimulation of KORs drives anxiety, dysphoria,
and psychotomimesis (Pfeiffer et al., 1986). These behavioral
effects have been observed with various KOR agonists, including
the naturally occurring KOR agonist Salvinorin A (Tejeda
and Bonci, 2019). Salvinorin A is the primary psychoactive
compound in Salvia divinorum, a hallucinogenic plant. KOR
antagonists have been investigated in the clinic primarily as
potential treatments for mood and substance use disorders
(Carlezon and Krystal, 2016; Fava et al., 2020) but see Jacobson
et al. (2020). Selective antagonism of KORs in humans alleviates
symptoms of anhedonia in transdiagnostic studies (Pizzagalli
et al., 2020), with a corresponding rescue of activation of the
ventral striatum in anticipation of reward delivery (Krystal et al.,
2020). Similarly, in rodents, KOR activation with endogenous
Dyn or exogenous agonists promotes anxiety-like behavior,
aversion, and anhedonia, impairs social interactions, and drives
deficits in active coping in response to stressors [reviewed in
Bruchas et al. (2010), Wee and Koob (2010), Tejeda et al.
(2012), Crowley and Kash (2015), Karkhanis and Al-Hasani
(2020)]. It has been speculated that over short periods, Dyn-
mediated agonism of KOR may act as an acute punisher to
reduce the seeking for other drugs and reinforcers (Freeman
et al., 2014; Butelman and Kreek, 2015; Heinsbroek et al.,
2018), but over the long term, it may act as a negative
reinforcer of such behaviors (Bruchas et al., 2010; Wee and
Koob, 2010; Walker et al., 2012; Chartoff et al., 2016; Escobar
et al., 2020). Consistent with effects produced by synthetic KOR
agonists, the recreational drug salvinorin A promotes similar
behavioral effects and blocks the reinforcing effects of other
drugs, most notably psychostimulants (Gonzalez et al., 2006;
dos Santos et al., 2014; Brito-da-Costa et al., 2021). Salvinorin
A, unlike other hallucinogens, does not bind the 5-HT2A
receptor (Sheffler and Roth, 2003). Ketamine, a recreational and
rapid-acting antidepressant, has also been used as a means to
model certain domains of schizophrenia and other dissociative
disorders in animal models (Moghaddam and Jackson, 2003;
Frohlich and Van Horn, 2014; Beck et al., 2020; Schmack
et al., 2021). Ketamine antagonizes NMDA receptors, as well as
KORs (Nemeth et al., 2010; Bonaventura et al., 2021). However,
it is currently unclear whether direct actions of ketamine

on KOR mediates any of the behavioral effects produced by
ketamine. The Dyn/KOR system interacts with other stress-
related neuropeptide systems, including corticotropin-releasing
factor (CRF), which is enriched in neuronal circuits that control
affect and motivation (e.g., the central nucleus of the amygdala).
Dyn/KOR interactions with CRF contribute to dysregulation
of innate and learned fear responses relevant to anxiety-like
behavior and affect.

The effects of Dyn/KOR agonism by exogenous or
endogenous agonists in animal models result in affective,
motivational, and cognitive phenotypes relevant to psychiatric
disorders including PTSD, depression, schizophrenia, and
substance use disorder. Indeed, such disorders have been
associated with alterations in Dyn/KOR expression or function
[see Hang et al. (2015), Bruchas et al. (2010), Jacobson et al.
(2020) for reviews on this topic]. In psychotic disorders, such
as schizophrenia, altered Dyn/KOR signaling may be one
factor that contributes to the dysfunction of dopaminergic
transmission in mesolimbic and mesocortical circuitry, which
mediate various features of positive and negative symptoms,
and cognitive deficits [see Tejeda et al. (2012), Clark and
Abi-Dargham (2019)]. The Dyn/KOR system may also be
involved in substance use disorder, potentially contributing to
the development of pro-addictive behaviors during stressful
experiences [see Bruchas et al. (2010)]. In mice, stress is
also thought to promote alcohol-and drug-seeking behaviors
through Dyn/KOR interactions with the CRF system [see
Bruchas et al. (2010), Wee and Koob (2010), Walker et al. (2012),
Anderson and Becker (2017), Karkhanis and Al-Hasani (2020)].
Together, this highlights a role for Dyn/KOR activation during
aversive and stressful experiences and underscores its potential
to contribute to psychiatric dysfunction in humans.

The Dyn/KOR system regulates stress-related and goal-
directed behaviors via actions in circuits that subserve
the aforementioned behaviors. Early studies identified that
the Dyn/KOR system is embedded in the substantia nigra
and the ventral tegmental area, nucleus accumbens (NAcc),
amygdala, hypothalamus, paraventricular thalamus (PVT),
hippocampus, and septum, and caudate/putamen (Chavkin
et al., 1985; Fallon et al., 1985; Slater and Cross, 1986;
Mansour et al., 1987; Rattan et al., 1992; DePaoli et al.,
1994; Jamensky and Gianoulakis, 1997; Chou et al., 2001).
These regions are part of an interconnected limbic network
that control various facets of learning/memory, goal-directed
behavior, stress, arousal, attention, and energy homeostasis.
The Dyn/KOR system is also found in multiple cortical
areas including the auditory cortex (Ramsdell and Meador-
Woodruff, 1993), the somatosensory cortex (Loh et al.,
2017), periamygdaloid cortex (Anderson et al., 2013), and
the parietal cortex (DePaoli et al., 1994). Prodynorphin-
expressing neurons have also been identified in mouse
and human brainstem (Agostinelli et al., 2021), as well
as the lateral parabrachial nucleus (Chiang et al., 2020;
Norris et al., 2021).
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In the vein of translational considerations, there have
also been reports of sex differences in the Dyn/KOR system.
A PET imaging study detected increased KOR-selective tracer
in healthy human males relative to healthy females (Vijay
et al., 2016). Multiple single nucleotide polymorphisms (SNPs)
in the prodynorphin gene have also been associated with
differential susceptibility to development of opioid dependence,
with the overall risk of each SNP often differing between
sexes and across ethnic populations (Chartoff and Mavrikaki,
2015). The Dyn/KOR system may also be regulated through
hormonal signaling, either through direct or indirect regulation
of transcription factor binding or other signaling pathways
(Chartoff and Mavrikaki, 2015). For example, in the mouse
spinal cord, KORs heterodimerize with MORs in a sex-
dependent manner, which is regulated by estrogen signaling
(Chakrabarti et al., 2010; Liu et al., 2011). The extent to which
KOR/MOR heterodimerization occurs in the human brain is
still largely unknown, however, thus highlighting the need for
additional studies on sex-dependent regulation of this system.

Mechanisms of circuit
neuromodulation by dynorphin and
kappa opioid receptor

Ultrastructural evidence shows KOR immunoreactivity
within dendritic spines and axon terminals. These results
provide an anatomical substrate by which KOR activation
regulates the presynaptic release and postsynaptic neuron
activity (Drake et al., 1996; Svingos et al., 1999; Svingos and
Colago, 2002), to ultimately impact the activity of limbic circuits.
KOR is a G-protein coupled receptor (GPCR), coupled to
inhibitory Gi/o proteins to decrease the membrane excitability
via activation of G-protein gated inwardly rectifying potassium
channels (Kir3 family). The activation of GIRK causes cellular
hyperpolarization and inhibits neural activity (Torrecilla et al.,
2002; Margolis et al., 2003; Ford et al., 2007; Chen et al., 2015).
Besides Kir3 activation, KOR activation inhibits Ca2+ currents
mediated by P/Q-type, N-type, and L-type channels to reduce
calcium conductance and/or interfere with presynaptic release
machinery downstream of Ca2+ entry (Grudt and Williams,
1993; Castillo et al., 1996; Simmons and Chavkin, 1996; Rusin
et al., 1997; Hjelmstad and Fields, 2003; Iremonger and Bains,
2009; Tejeda et al., 2017). The impact of Dyn/KOR signaling
may be complex depending on how this system is integrated into
circuits. For example, Dyn/KOR signaling inhibits glutamate
release in the NAcc from specific excitatory inputs, in addition
to acting on local inhibitory connections from KOR-expressing
accumbal medium-sized spiny neurons. The direct inhibitory
effects of KOR signaling on presynaptic inputs filters glutamate
release from incoming KOR-sensitive inputs and any influence
those inputs may have on post-synaptic activity. Conversely,
KOR acting on local circuit collaterals disinhibits other MSNs
and facilitates the integration of incoming excitatory input from

KOR-lacking afferent inputs (Tejeda et al., 2017). In summary,
the available evidence indicates that the KORs are localized on
axon terminals as well as on neuronal cell bodies to modulate
the activity of the presynaptic compartment or the neuronal
activity acting on the postsynaptic cell. A deep understanding of
how KORs are embedded within circuits (e.g., on presynaptic vs.
post-synaptic compartments, excitatory vs. inhibitory cells, etc.)
is essential to deconstruct how the Dyn/KOR system regulates
affect and motivation via its actions in limbic structures,
including the amygdala.

Amygdala overview

Functional KORs and Dyn peptides have been described
in the amygdala, an area which, in humans and other
mammals, is critical for cognitive and emotional processing,
learning and memory (LeDoux, 2000; Phelps, 2006). Amygdala
dysfunction has been implicated in mediating symptomology
in a host of psychiatric conditions. Often described as a
hub for learning and memory and regulating affective states,
the amygdala, like the Dyn/KOR system, is recruited during
motivationally-charged experiences, including those associated
with physiological or psychological stress (Roozendaal et al.,
2009; Janak and Tye, 2015). It is also a region associated with
pronounced changes following exposure to stress or stress-
related hormones (McEwen, 2007; Roozendaal et al., 2009) and
Dyn/KOR signaling within amygdala circuitry may be a key
player in this process. Humans bearing the gene polymorphism
(T) allele of prodynorphin at rs1997794 show impaired fear
extinction and significant decreases in functional connectivity
between the amygdala and PFC (Bilkei-Gorzo et al., 2012). As
such, the Dyn/KOR system within the amygdala may serve as an
interface through which stressors and noxious signals modulate
key behavioral and affective states.

Importantly, key populations of excitatory and inhibitory
neurons alike have been reported to be largely similar across
humans and mice. One study performed a single-nucleus
expression profiling of human amygdala and compared these
results with a previous profiling study on mouse amygdala,
finding that just 10.4% of detected genes were human-specific
(Tran et al., 2021). A separate study found that sexual
dimorphism in gene expression is largely conserved across
human and mice (Lin et al., 2011). Additional controlled studies
are needed to further characterize the peptidergic cell types of
the human amygdala and contrast them with other species,
especially given that the conventional notion of “cell type”
has become harder to define in the era of transcriptomics
(Yuste et al., 2020). Similarly, investigations on how Dyn/KOR
expression, signaling, and/or modulation of amygdala circuit
function changes across development are warranted. Research
in this area may elucidate how neurodevelopmental challenges,
such as early life stress, may contribute to dysfunction of
limbic circuits and/or the function of the Dyn/KOR system in

Frontiers in Systems Neuroscience 03 frontiersin.org

88

https://doi.org/10.3389/fnsys.2022.963691
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-963691 September 29, 2022 Time: 15:4 # 4

Limoges et al. 10.3389/fnsys.2022.963691

promoting maladaptive behaviors in adulthood in patients with
psychiatric disorders.

Functions of the amygdala in behavior

Amygdala circuits control multiple domains of behavior and
contribute to cognitive, affective, and social processing. Situated
between the cortex and deeper brain regions, connectivity of the
amygdala suggests it may serve to integrate incoming sensory
streams with state-and experience-dependent information to
guide behavior (Sah et al., 2003; Pape and Pare, 2010; Janak and
Tye, 2015). The amygdala has been studied extensively as a brain
region critical for associative learning for stimuli of both positive
and negative valence [see LeDoux (2007), Calu et al. (2010),
Pape and Pare (2010), Janak and Tye (2015), Namburi et al.
(2015), Kim et al. (2016), O’Neill et al. (2018), Kong and Zweifel
(2021)]. Furthermore, the role of the amygdala extends beyond
acquisition, as it is also critical for the extinction of associative
memories, similarly processing conditioned stimuli of both
positive and negative valence (Maren and Quirk, 2004; Tye
et al., 2010; Zhang et al., 2020; Whittle et al., 2021). Cognitive
flexibility and decision-making are also impacted by amygdala
function (Keefer et al., 2021). A recent study also showed the
amygdala processes cue contingencies and motivational states to
help select behavioral responses under a range of environmental
and internal state demands (Courtin et al., 2022). In addition to
learning and memory, the amygdala regulates facets of affective
behavior (Gallagher and Chiba, 1996). Amygdala dysfunction
has been linked to major depressive disorder (MDD) in humans
(Nestler et al., 2002), and in mice may also play a role
in governing anhedonia-like phenotypes (Ramirez S. et al.,
2015). Similarly, because anxiety and depression often co-occur
(Britton et al., 2011; Tiller, 2013), it is possible that dysregulated
amygdala activity can contribute to both of these conditions (He
et al., 2019; Espinoza Oyarce et al., 2020).

Alterations in amygdala activity have been linked to post-
traumatic stress disorder (PTSD) as well as substance use
disorders in humans (Grillon et al., 1996; Sharp, 2017; Morey
et al., 2020; Zhang W.H. et al., 2021; Alexandra Kredlow
et al., 2022). Following its role in learning, memory, and
affect, especially in the context of psychiatric conditions such
as PTSD, the amygdala is also susceptible to stress and
itself regulates components of stress processing (Zhang W.H.
et al., 2021). As previously mentioned, stress produces lasting
changes in amygdala circuitry and connectivity (McEwen, 2007;
Roozendaal et al., 2009; Zhang et al., 2019), and the amygdala
contains neural populations that express and release CRF
(Gray and Bingaman, 1996; George and Koob, 2010; Koob
et al., 2014; Zorrilla et al., 2014; Marcinkiewcz et al., 2016).
CRF in turn activates other stress-associated neuromodulatory
systems in the amygdala, namely cell populations expressing
norepinephrine (NE) and dynorphin (George and Koob, 2010;

Knoll and Carlezon, 2010; Koob et al., 2014). Together, these
studies suggest that changes in stress-related signaling perturb
amygdala function and may promote behavioral reactions in
response to stressors or gate active behaviors that promote
avoidance or escape from stressors and threats.

Overall, the precise mechanisms through which the
amygdala governs diverse behaviors are complex. Recently there
have been significant advances in understanding the cell types
and amygdala microcircuits and long-range interactions that
permit amygdala circuitry to control cognitive, emotional, and
social behaviors. Studies such as these are necessary to resolve
questions on how or why the amygdala specifies affective states
such as anxiety and depression as well as cognitive tasks such as
learning and extinction.

Amygdala subregions and circuitry

The amygdala comprises several subregions which vary in
their connectivity, cellular subtypes, and function. This includes
the central nucleus of the amygdala, basal, and lateral nuclei of
the amygdala, and the intercalated cell masses (ITCs). The bulk
of this review will focus primarily on the basolateral amygdala
(BLA) and central amygdala (CeA), which are two of the most
characterized regions of the amygdala.

Most hypotheses of amygdala function contend that the
BLA integrates the temporal structure of sensory and state
information before passing it to other regions, such as the
downstream CeA, through glutamatergic projection neurons.
The excitatory inputs from BLA target both the lateral and
medial compartments of the CeA, with innervation of the lateral
compartment coming primarily from the LA and innervation of
the medial compartment from the BA. The lateral nucleus of the
CeA (CeL) also targets the medial nucleus of the CeA (CeM), but
reciprocal projections from CeM to CeL have not been observed.
Importantly, the CeL is involved in fear acquisition, while the
CeM is critical for fear expression and extinction (Ciocchi et al.,
2010; Haubensak et al., 2010). A third subregion of the CeA
is the capsular region, although this area is less well-studied
(Figure 1).

Recent studies have refined the model of BLA-CeA
processing by investigating the effects of this pathway on
appetitive behaviors. Kim et al. found that genetically distinct
populations of BLA neurons target specific populations of CeA
neurons that are responsible for appetitive or aversive behaviors
(Kim et al., 2017).

Basolateral amygdala inputs and
outputs

The regions supplying the densest afferents to the BLA
include the thalamus, ventral hippocampus, dorsal raphe
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FIGURE 1

Overview of basolateral amygdala (BLA) and central amygdala (CeA) connectivity and projection targets. This depicts a layout of multiple BLA
and CeA cell types and their connectivity schemes in local and long-range circuitry. Cells are labeled as “Aversion on” or “Reward on” that has
been tested experimentally. Ppp1r1b+ BLA neurons target PKCδ+ and SOM+ neurons throughout the CeA, and they also project to the NAcc
and PFC. Rspo2+ BLA neurons target PKCδ+ neurons in the CeC and send projections to the NAcc and PFC. Other BLA principal neurons
project to the CeA as well as to several other brain regions including the hippocampus, BNST, NAcc, DMS, and PFC. Within the CeL, SOM+, and
PKCδ+ populations reciprocally inhibit one another. CeM neurons also send long-range inhibitory projections to the VTA, SN, PBN, and PAG,
while the CeL sends long-range inhibitory projections to the LC. Through these projections, the CeA regulates arousal, attention, movement,
and defensive behaviors.

nucleus, posterior intralaminar nucleus, medial geniculate
nucleus, ventral tegmental area, nucleus accumbens, and cortical
areas including the prefrontal cortical areas and other sensory
cortical regions (Steinbusch, 1981; Bocchio et al., 2016; Fu et al.,
2020; Hintiryan et al., 2021; Morikawa et al., 2021). Each of these
input pathways relays different forms of state, motivational,
or sensory information to the BLA. Synaptic integration of
these converging pathways into the BLA is regulated by
neuromodulators, including monoamines and neuropeptides,
via target receptors in the BLA and presynaptic terminals from
afferent inputs.

Outputs of the BLA include the CeA, BNST, lateral
hypothalamus (LH), nucleus accumbens, ventral tegmental area,
and the BLA’s reciprocal connections with the mPFC and
ventral hippocampus (Pape and Pare, 2010; Janak and Tye,
2015; Hintiryan et al., 2021; Murray and Fellows, 2022). Some
of these BLA projection targets also provide reciprocal inputs.
This implies that while the BLA exerts unidirectional control
on specific targets, other targets may exert influence on BLA
activity as well, but the degree to which the BLA is capable of
regulating aspects of its activity through these feedback loops
has remained elusive thus far (Figure 1). Future research is
needed to understand more about how these feedback circuits
are wired through specific cell types and how various feedback
mechanisms orchestrate amygdala activity to control behavioral
responses.

Recent studies have suggested that the projection targets of
the BLA may offer insight into the roles of various projecting
populations that originate in the BLA. For example, BLA
neurons that project to the NAcc are critical for reward and
avoidance learning (Ambroggi et al., 2008; Jones et al., 2010;
Pascoli et al., 2011; Stuber et al., 2011; Britt et al., 2012; Namburi
et al., 2015; Ramirez F. et al., 2015; Ramirez S. et al., 2015;
Zhang X. et al., 2021), while those that project to the CeA are
critical for fear (Jimenez and Maren, 2009; Namburi et al., 2015;
Kim et al., 2016). However, differential valence processing may
exist even within the same pathway as reward and aversion
activated neurons differentially engage CeA circuits (Kim et al.,
2017) and control different compartments of ventral striatal
circuitry (Zhang X. et al., 2021; Figure 1). Further, the encoding
of motivationally-relevant behaviors by the BLA may also
be influenced by anterior-posterior gradients in reward and
aversion neurons in the BLA and their outputs (Kim et al., 2016;
Beyeler et al., 2018). Recently, the ITCs of the amygdala have
been shown to inhibit BLA output neurons to the prelimbic
and infralimbic prefrontal cortex, which are involved in fear
acquisition and extinction, respectively (Hagihara et al., 2021).
This not only indicates that the BLA encodes valence but also
suggests that an understanding of the efferent and topographical
organization of the BLA may help to resolve its involvement in
various behaviors, offering a greater lens into how the BLA may
be engaged in both appetitive and aversive tasks.
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Central amygdala inputs and outputs

Unlike the BLA, the CeA receives few cortical inputs apart
from the insular cortex (Kargl et al., 2020), with virtually non-
existent outputs of the CeA to cortical areas. The CeA receives
afferent inputs from various limbic regions including the BLA,
thalamus, BNST, and the ITCs (Royer et al., 1999; Bienkowski
and Rinaman, 2013; Kim et al., 2017). Most output pathways
of the CeA arise from the CeM and send inhibitory projections
to various brainstem regions as well as the hypothalamus,
periaqueductal gray (PAG), substantia nigra/ventral tegmental
area, BNST, PVT, and parabrachial nucleus (PBN) (Pape and
Pare, 2010; Penzo et al., 2014; Gilpin et al., 2015; Douglass et al.,
2017; Ahrens et al., 2018; Baumgartner et al., 2021; Borrego
et al., 2022). These outputs are capable of rapidly modulating
defensive behaviors in response to threats, approach behavior,
and reward-related responses. Work has also demonstrated that
CeA projection neurons are involved in appetitive behaviors.
GABAergic serotonin receptor 2a (Htr2a)-expressing CeA
neurons modulate food consumption in mice (Douglass et al.,
2017), while CRF-expressing CeA neurons are involved in the
motivation to consume rewards and their activation enhances
the recruitment of brain areas involved in motivation and
reward (Calu et al., 2010; Steinberg et al., 2020; Warlow and
Berridge, 2021; Figure 1).

Subpopulations of basolateral
amygdala cell types

The BLA and CeA structures are quite different in
terms of their cellular composition. The BLA bears features
largely similar to cortical structures (Carlsen and Heimer,
1988). The BLA primarily contains cortical neuron types,
with glutamatergic cells comprising approximately 80% of
the total neurons in the BLA and GABAergic interneurons
making up the residual 20% (Pape and Pare, 2010). Genetic
profiling techniques have revealed that multiple subpopulations
of BLA principal neurons differentially contribute to valence
encoding. For example, subpopulations of principal neurons
expressing Rspo2 and Fezf2 have been shown to contribute to
aversive behaviors, while neurons expressing Ppp1r1b promote
appetitive behaviors (Kim et al., 2016; Rovira-Esteban et al.,
2019; Zhang X. et al., 2021). Anatomical arrangement from
dorsoventral/anteroposterior in BLA may in part contribute to
the encoding of positive or negative valence (Kim et al., 2016;
Beyeler et al., 2018; Figure 1).

The GABAergic population of BLA neurons consists of
many of the same interneuron subtypes found in cortical
regions, with distinct subpopulations of interneurons positive
for the calcium-binding proteins parvalbumin, calbindin,
and calretinin, along with neuropeptides including vasoactive
intestinal peptide (VIP), somatostatin (SOM), cholecystokinin

(CCK), among others. These various interneuron subtypes each
play a distinct role in the modulation of BLA excitability
and synaptic integration. As peptides diffuse over larger
areas than amino acid neurotransmitters (Nassel, 2009), the
peptidergic interneurons of the BLA are thought to provide
modulatory inputs to local interneurons and principal neurons
alike. Many studies have examined the involvement of BLA
peptidergic neurons in behavior, although very few of these
have probed the roles of the various peptides themselves in
these functions (Mascagni and McDonald, 2003; Krabbe et al.,
2019).

Kappa opioid receptors (KORs) are expressed in BLA
neurons, providing a means for Dyn inputs to the BLA
to regulate BLA microcircuit function (Figure 2). However,
the role of the Dyn/KOR system within BLA microcircuits
that control input-output transformations remains largely
unresolved. As such, the precise BLA circuits and cell types
through which this system regulates behavior must be clarified
in greater detail.

Central amygdala cell types

The cell types and circuits of the CeA bear more resemblance
to the inhibitory neurons of striatal circuits, in contrast to
primarily excitatory cell types seen in the BLA. Most CeA
neurons express GAD65 or GAD67, with very few expressing
vGlut1 or vGlut2 (Poulin et al., 2008). Like the striatum, the CeA
is embryonically derived from the lateral ganglionic eminence
(Swanson and Petrovich, 1998). The CeA and striatum are also
characterized by similar expression patterns of cell fate markers
(Medina et al., 2011) [see Aerts and Seuntjens (2021) for a recent
review on amygdala development].

Neurons in the lateral region of the CeA (CeL) are often
categorized by expression, or lack thereof, of the delta isoform
of protein kinase C (PKCδ) (Haubensak et al., 2010). PKCδ+

neurons in the CeL also tend to express oxytocin receptors and
are inhibited during fear states. Furthermore, this population
inhibits PKCδ− neurons in the CeL, although PKCδ+ and
PKCδ− neurons alike project to the CeM. The peptide SOM is
also expressed in the CeA, primarily in the CeL (Li et al., 2013;
Kim et al., 2017). Here it is important to note that the properties
and functions of these CeA SOM cells differ from the SOM
cells found in the BLA. Furthermore, the CeL SOM and PKCδ+

populations are distinct, with very little overlap (Li et al., 2013;
Kim et al., 2017; Wilson et al., 2019). Owing to the differential
functions of these populations, CeA SOM and PKCδ+ neurons
have a role in the consolidation of differential threat memories
in CeL, inhibition of SOM or PKCδ+ interneurons impaired the
time the animals freeze to a threat and safety responses (Wilson
et al., 2019; Shrestha et al., 2020; Figure 1).

Central amygdala (CeA) GABAergic neurons co-express
mRNA of several peptides including SOM, enkephalin, CRF,
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FIGURE 2

Dynorphin/kappa opioid receptor expression in basolateral amygdala (BLA) circuitry. Schematic of the experimentally-established components
of the BLA Dyn/KOR system [e.g., verified kappa opioid receptors (KORs)] as well as some outstanding questions (e.g., unverified KORs). The
lateral hypothalamus (LH) is the only structure currently reported to send Dyn inputs to the BLA, while other potential sources of Dyn to the BLA
remain to be discovered. Other inputs to the BLA are regulated by the Dyn/KOR system as well. The VTA expresses KORs at DAergic cell bodies,
and these same cell bodies are regulated by an inhibitory input that expresses KOR presynaptically, suggesting that the Dyn/KOR system may
modulate the release of other neuromodulators such as DA into the BLA. These VTA inputs, as well as other potential inputs to the BLA, may
also express KORs presynaptically. The BLA does not contain Dyn neurons, and the cell type-specific expression of KOR in BLA neurons is also
poorly understood. Similarly, whether local BLA interneurons express KOR, and, if so, whether KOR+ and KOR− interneurons differentially
regulate different populations of BLA neurons is unknown. KOR+ BLA principal neurons target the PFC, NAcc, and BNST, other projection
targets of KOR-expressing neurons remain to be discovered. Likewise, whether KOR is present at somatodendritic compartments or regulates
local collaterals within the BLA is not known.

neurotensin, and tachykinin (Day et al., 1999). Dyn-expressing
neurons are located primarily in the CeL and CeM subregions
of the CeA (Kim et al., 2017). Populations of CeA neurons
impact the function of the HPA axis (Buller et al., 2001). In
mice, the BLA-CeA circuit regulates anxiety-like behavior (Tye
et al., 2011), and the knockdown of CRF in CeA neurons reduces
anxiety-like behavior (Pomrenze et al., 2019; Ventura-Silva
et al., 2020). As such, it is thought that chronic stress produces
changes that remodel amygdala circuitry, which can negatively
impact performance on cognitive tasks (Roozendaal et al., 2009;
Cacciaglia et al., 2017; de Quervain et al., 2017). Conditioned
fear responses driven by CeM neurons, presumably PKCδ+

neurons, disinhibit CeL output neurons for fear acquisition
(Ciocchi et al., 2010; Figure 1).

Dynorphin/kappa opioid receptor
in amygdala circuits

Basolateral amygdala

Dynorphin/kappa opioid receptor signaling may shape
synaptic transmission in BLA circuits. KOR mRNA expression

and protein immunoreactivity in the BLA has been described
in several studies since the 1990s (DePaoli et al., 1994;
Knoll et al., 2011; Van’t Veer et al., 2013; Tejeda et al.,
2017; Maiya et al., 2021), while Dyn-expressing neurons
are largely absent in the BLA. In humans, prodynorphin
mRNA expression is observed in the amygdalohippocampal
and accessory basal nuclei, and this expression is reduced in
patients with major depressive disorder or bipolar disorder
(Hurd, 2002). Pdyn mRNA in the BLA is generally not observed
in mice but has been reported in lateral ITCs (Gomes et al.,
2020). The KOR agonist U50 reduces excitatory synaptic
transmission (as assessed by field EPSPs) in the BLA and blocks
high frequency stimulation-induced long-term potentiation
of excitatory synapses (Huge et al., 2009). However, in
another study examining glutamatergic transmission onto BLA
pyramidal neurons with spontaneous excitatory postsynaptic
currents using whole-cell slice electrophysiology, the KOR
agonist U69,593 was without effect (Przybysz et al., 2017). These
inconsistent findings may result from differential sampling of
excitatory synapses as the former study examined fEPSPs evoked
by LA stimulation, while the latter study was agnostic to the
source of excitatory synapses. In contrast, GABAergic sIPSC
frequency, but not amplitude, was increased by KOR agonists
(U69 and Dyn) in the BLA of adolescent, but not adult, rat
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brain slices (Przybysz et al., 2017). The U69 effect on sIPSC
frequency was blocked by the KOR antagonist nor-BNI and
TTX bath application, which indicates that this effect was
KOR-dependent and is consistent with a mechanism that acts
on action potential-dependent inhibitory transmission and/or
indirect circuit-level mechanisms. These results suggest that
KORs may act to limit synaptic transmission within BLA
circuits. However, from these studies, it is unclear whether
KORs act on BLA principal neurons, interneurons, or KOR-
expressing afferent inputs to the BLA. KOR in BLA neurons
also regulates their outputs to downstream targets (Tejeda et al.,
2013, 2015; Crowley et al., 2016). KORs are expressed in BLA
terminals innervating the NAcc where they preferentially inhibit
glutamate release onto D1 vs. D2 MSNs (Tejeda et al., 2017).
KORs also inhibit the release of glutamate from BLA terminals
in the mPFC and the BNST (Tejeda et al., 2015; Crowley et al.,
2016; Figure 2). These studies suggest that Dyn released within
BLA target regions, such as the NAcc, mPFC, and BNST, may
modulate glutamatergic inputs from BLA neurons, decoupling
BLA terminal control of target cells without inhibiting the BLA
projection neuron at the soma. KORs preferentially inhibit
inputs to NAcc D1 versus D2 MSNs (Tejeda et al., 2017),
raising the possibility that either KORs are trafficked to specific
BLA terminals based on their postsynaptic targets and/or that
KOR-containing and KOR-lacking BLA projecting neurons
differentially innervate D1 and D2 MSNs. It is unclear whether
KOR regulation of BLA outputs onto molecularly-or projection-
defined targets in other BLA terminal brain regions differs, such
as the BNST and mPFC (Figure 2). Together, these studies
demonstrate that the Dyn/KOR system can regulate inhibition
and excitation onto BLA neurons and their outputs to target
structures.

Central amygdala

In contrast to the BLA, neurons of the CeA express Dyn.
Pdyn and Oprk1 mRNA expressing cells are primarily non-
overlapping populations in the CeA, with a smaller subset
of cells expressing both Pdyn and Oprk1 mRNA (Bloodgood
et al., 2021). Dyn is also co-expressed with other neuropeptides
within the CeA. Nearly all Dyn-expressing neurons in the
CeL co-express proenkephalin (Penk), SOM, and Tac2 mRNA
(Kim et al., 2017), and approximately 80% of Dyn-expressing
CeL neurons co-express SOM peptide (Jungling et al., 2015).
About 35% of Penk-expressing neurons in CeL co-express
dynorphin (Kim et al., 2017). In the CeM, nearly all Dyn-
expressing neurons co-express the dopamine receptor Drd1a,
and nearly all Tac1 neurons co-express Dyn (Kim et al., 2017),
consistent with Dyn expression patterns observed in striatal
cells expressing Tac1 and Drd1a. Furthermore, a subset of
GABAergic CeL neurons co-expresses CRF and prodynorphin
(Marchant et al., 2007; Kim et al., 2017; Sanford et al.,

2017; Figure 3). Collectively, these results suggest that Dyn-
expression is embedded in CeA circuits in a sub-region and
cell-specific manner. Given that different molecularly defined
CeA cells and sub-regions play fundamentally different roles
in motivationally-charged behaviors then Dyn in distinct cell
types and sub-regions is hypothesized to differentially control
behavior and circuit function. Like we mentioned in the prior
section, it will be important for human postmortem studies
to investigate the distribution of the Dyn/KOR system among
populations of CeA neurons and contrast these with the
established circuitry of mice.

Dynorphin acting within the CeA regulates inhibitory
synaptic transmission. KOR activation inhibits GABA release
onto CeA cells via a presynaptic site of action (Kang-Park
et al., 2013, 2015; Gilpin et al., 2014; Hein et al., 2021).
These results suggest that Dyn may decrease inhibition of
CeA cells and contribute to the disinhibition of CeA circuits.
Approximately half of CeA neurons characterized by strong
spike accommodation and lack of an after-depolarization
potential (ADP) are hyperpolarized by the KOR agonist
U69,593, while cells lacking spike accommodation and with
ADPs were insensitive to U69,593 but directly hyperpolarized by
met-enkephalin (Zhu and Pan, 2004). These results demonstrate
that Dyn/KOR signaling may also directly hyperpolarize subsets
of cells in the CeA. Given that intrinsic firing properties differ
between CeA cell types (Zhu and Pan, 2004; Haubensak et al.,
2010; Wilson et al., 2019; Adke et al., 2021), these results suggest
that Dyn may decrease the excitability of subsets of CeA cells via
actions at somatodendritic KORs. Further, CeA cells form local
collaterals within CeA circuits (Cassell et al., 1999), and as such,
it is possible that pools of KOR-sensitive inhibitory synapses
may arise from within the CeA. KORs inhibit glutamatergic
transmission of electrically evoked glutamatergic transmission
in the BLA to subsets of CeL neurons (Kissiwaa et al., 2020), but
fails to modify PBN to CeL synapses (Kissiwaa et al., 2020; Hein
et al., 2021; Figure 3). These results suggest that Dyn released
from CeA neurons may regulate local circuit inhibition and
incoming afferent inputs in a pathway-specific manner.

Central amygdala Dyn neurons target several regions
involved in reward-, fear-, and stress-related behaviors. The
CeA sends a Dynergic projection to the locus coeruleus (LC),
and about 42% of those projection neurons co-express CRF
and Dyn (Reyes et al., 2011). Dyn-expressing CeA neurons
are modulated by LC neurons, specifically those expressing
NE (Kravets et al., 2015). Furthermore, approximately 30% of
these NE-expressing terminals from LC target CeA neurons that
co-express CRF and Dyn. Dynergic CeL neurons project to the
LC, and approximately 50% of the CeL inputs to the LC express
both Dyn and SOM (Jungling et al., 2015). Additionally, less
than 3% of the PKCδ− expressing CeL neurons that project to
peri-LC are positive for Dyn, suggesting that PKCδ and Dyn
populations are largely non-overlapping (Jungling et al., 2015).
In addition to the LC, Dyn CeA neurons also project to the PBN.
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FIGURE 3

Dynorphin/kappa opioid receptor expression in central amygdala (CeA) circuitry. Dyn is expressed in multiple cell types within the CeA. Extrinsic
Dyn inputs to the CeA arise from lateral hypothalamus (LH), but other sources remain unknown. Presynaptic KOR regulation of inhibitory
synapses onto CeA neurons has documented, but the source of KOR + GABA neurons is not known. Other inputs to the CeA may also express
KOR, including those arising from the VTA, basolateral amygdala (BLA), and other uncharacterized regions. Within the CeA, KOR expression
within specific cell types is not understood. KORs may directly hyperpolarize or inhibit collaterals established by CeA neurons. CeA projections
to the BNST are inhibited by presynaptic KORs. KOR expression at other CeA neuron outputs has not been demonstrated. CeA Dyn neurons are
known to project to multiple regions including the LC, VTA/SNc, PBN, and Peri-LC. The molecular profiles of Dyn neurons may also vary across
the CeA’s medial and lateral subdivisions, which we are omitted in the figure.

Approximately 20% of retrograde fluorogold-labeled neurons
in CeA that project to the PBN are Dyn+, and another 15%
co-express Dyn and SOM (Raver et al., 2020), suggesting that
co-expression of Dyn and SOM may differ between CeA outputs
(Figure 3). The CeA pathway is inhibited in mouse models
of chronic pain, and stimulation of this pathway blocks pain-
related behavioral phenotypes, providing a potential circuit-
based mechanism by which CeA Dyn neurons may influence
nociceptive and affective behaviors driven by pain states. PDyn-
and SOM-expressing neurons in the CeA also project to the
substantia nigra (Steinberg et al., 2020), thus targeting a key
brain region involved in appetitive behaviors and motivational
drive.

External inputs of Dyn to the CeA were documented by
Zardetto-Smith et al. (1988) who reported the presence of
Dyn-expressing neurons in the LH and perifornical nucleus
that project to the CeA of rats. Orexinergic neurons from
the LH also innervate the CeA, and about 95% of orexinergic
neurons express dynorphin (Peyron et al., 1998; Chou et al.,
2001). KORs also regulate CeA projections via inhibition of
presynaptic GABA release in downstream targets. For example,
application of KOR agonists reduced GABAergic transmission
onto BNST neurons from CeA afferents (Li et al., 2012).
Dyn released from BNST neurons activates presynaptic KORs
located on CeA afferents to inhibit GABAergic transmission to

the BNST and opposes the facilitatory effect of endogenously
released neurotensin from BNST neurons on CeA GABA inputs
(Normandeau et al., 2018). These results suggest that Dyn
released from BNST neurons may act as a retrograde signal
to limit KOR-sensitive inputs. Dynergic tone on inhibitory
synapses in the BNST, which may potentially arise from
CeA SOM-expressing CeA neurons, is enhanced in stressed
mice and mice lacking ErbB4 in SOM-positive neurons
(Ahrens et al., 2018; Figure 3). Collectively, these results
suggest that Dyn/KOR is integrated within CeA circuits and
regulates CeA local circuits and outputs. Taken together,
robust Dyn/KOR expression and regulation of amygdala circuit
function position this system to regulate amygdala-dependent
control of motivationally charged behaviors and experience-
dependent appetitive and aversive learning.

Stress and amygdala
dynorphin/kappa opioid receptor
signaling

The stress response plays a key role in the ability of
organisms to adapt following exposure to threatening stimuli
or experiences (LeDoux, 2000). CRF plays a significant role

Frontiers in Systems Neuroscience 09 frontiersin.org

94

https://doi.org/10.3389/fnsys.2022.963691
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-963691 September 29, 2022 Time: 15:4 # 10

Limoges et al. 10.3389/fnsys.2022.963691

in the integration of endocrine and behavioral responses to
stress (Vale et al., 1981). CRF is released as a neurotransmitter
from neurons in the CeA and BNST and is secreted as a
neurohormone from PVT neurons to induce the secretion
of adrenocorticotropic hormone (ACTH) from the anterior
pituitary gland. ACTH enters the bloodstream to access the
adrenal gland cortex, where it stimulates the secretion of
glucocorticoids, initiating the systemic stress response (Dedic
et al., 2018). Importantly, glucocorticoids can regulate gene
expression by binding glucocorticoid receptors (GR) (Meijsing,
2015). Dyn cells in the central amygdaloid nucleus contain
GR immunoreactivity (Cintra et al., 1991), suggesting that
glucocorticoids may regulate Dyn expression in CeA as they
do in other brain regions like the hippocampus (Thai et al.,
1992). Furthermore, early life stress may increase GR binding
to the second intron of OPRK1, the gene that encodes KOR
expression, to influence gene expression (Lutz et al., 2018).
These studies suggest that stressor-driven fluctuations in CRF
and glucocorticoids may modulate the Dyn/KOR system in
the amygdala to regulate behavior. Since stress modalities
and durations are diverse, different stress-related signaling
molecules and defensive behaviors may be mobilized to promote
resilience or susceptibility. Therefore, future work further
dissecting how the Dyn/KOR system is engaged or regulates
different forms of stress is imperative for furthering our
understanding.

Basolateral amygdala

Psychological stress increases Dyn/KOR activity in the BLA.
Dyn/KOR activation is necessary for a variety of stress-related
and aversive behaviors. Interestingly, acute forced swim stress
and CRF both increase phosphorylation of KOR (a putative
index of KOR activity) in the BLA, but not in the CeA (Land
et al., 2008). Dyn expression is also increased in the BLA of
male mice following 14 days of social defeat stress (Zan et al.,
2022). Moreover, systemic KOR antagonists abolish the increase
of phosphorylation of ERK after social defeat stress in the BLA,
suggesting that KOR signaling is potentially upstream of ERK
induction. KOR agonist decreases GABAergic transmission in
most BLA neurons from stressed adolescent male mice relative
to unstressed controls (Varlinskaya et al., 2020), suggesting that
stress may impact KOR regulation of inhibitory transmission.
Increased BLA KOR phosphorylation induced by CRF injection
is similarly blocked by KOR antagonism (Bruchas et al., 2009;
Knoll et al., 2011). BLA KORs also interact with stress-related
signaling pathways to drive the expression of stress-induced
nicotine drug reinstatement (Nygard et al., 2016). Together,
these findings highlight that activation of the BLA Dyn/KOR
system during stress may impact the function of the BLA
in regulating stress-associated behavioral responses. Given the
central role of stress in fear and anxiety, it is also important to
cover the role of the BLA Dyn/KOR system in these states.

Fear-related behaviors in response to threats are, by
definition, driven by aversion, and many signaling pathways
associated with stress are often similarly engaged during fear
states. As such, the Dyn/KOR system in the BLA is well-
suited to contribute to the formation and/or maintenance of
fear memory. In rats, KOR mRNA in the BLA increases with
conditioning with fear-potentiated startle (FPS) and decreases
with extinction of FPS (Knoll et al., 2011). Microinjection of
the KOR antagonist JDTic into the BLA of rats reduces fear
expression. In Dyn KO mice, levels of c-fos protein in the
BLA are decreased relative to WT controls in response to fear
extinction but not during fear conditioning to auditory cue
and footshock pairings (Bilkei-Gorzo et al., 2012). These studies
imply not only that fear expression is associated with changes
in Dyn/KOR signaling in the BLA, but also that the Dyn/KOR
system mediates fear behavior by acting within the BLA.

Similarly, activation of the BLA Dyn/KOR system during
stress may serve to regulate depressive-or anhedonia-like states
that persist after exposure to a stressor. BLA activity, as indexed
by c-fos, is reduced in Dyn KO mice relative to controls
following exposure to the anxiogenic zero maze (Bilkei-Gorzo
et al., 2008), suggesting that loss of Dyn/KOR signaling reduces
BLA neuronal activation. However, it is important to note that
this study did not provide measurements of BLA c-fos from
naive animals not exposed to the zero maze. Microinjection of
KOR antagonists in the BLA increases the time in the interaction
zone after social defeat stress and prevents the development
of depressive-like behaviors induced by chronic social defeat
stress (Zan et al., 2022). Intra-BLA administration of a KOR
antagonist produces anxiolytic-like effects in the elevated plus
maze in rats (Knoll et al., 2011). Consistent with the hypothesis
that BLA KOR is involved in anxiety-related behavior, deletion
of KOR from the BLA of adult male mice results in more time
in the open arms of the elevated plus maze, suggesting that loss
of BLA KOR function may confer an anxiolytic effect (Crowley
et al., 2016). Microinjections of the KOR antagonist nor-BNI
into the BLA reduce anxiety-like behavior following acute stress
exposure or CRF administration in mice (Bruchas et al., 2009).
Together, these results demonstrate that Dyn/KOR signaling
within the BLA may be engaged to promote innate anxiety-like
behavior and learned fear.

Central amygdala

The CeA Dyn/KOR system has also been studied in the
context of stress responsivity. Forced swim stress increases
dynorphin expression in the CeA of mice following stress
exposure (Chung et al., 2014). Another study showed that
unescapable tail shock increased DynA (1–8) immunoreactivity
in the anterior portion of the lateral CeA (Gouty et al., 2021).
In CeA, CRF, a neuropeptide that is a critical mediator of the
stress response, is co-expressed with Dyn (Reyes et al., 2008;
Kravets et al., 2015) and Dyn KO mice have been shown to
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have reduced expression of CRF in CeA (Wittmann et al., 2009).
Activation of KORs in the CeA with U69,593 drives aversion
and anxiety-like behavior, and this effect can be blocked by
optogenetic inhibition of CeA CRF neurons. KORs disinhibit
CeA CRF neurons via inhibition of presynaptic GABA release
and feed forward inhibition driven by the PBN onto CeA CRF
neurons (Hein et al., 2021). These results suggest that CeA
Dyn/KOR signaling may modulate CRF neuron activity and
CRF peptidergic transmission, which would influence defensive
responses to stressors and anxiety-related behavior under the
control of CeA CRF neurons (Fadok et al., 2017; Sanford et al.,
2017).

Loss of KORs in the CeA, as well as loss of Dyn inputs
to the CeA, increases anxiety-like behavior and promotes
fear generalization wherein defensive freezing is observed in
response to both threat-predictive cues and neutral cues alike
(Baird et al., 2021), suggesting that Dyn released from CeA
neurons may limit excessive passive defensive behaviors to
non-threatening experiences and environmental cues. In ErbB4
gene deficiency mice, the Dynergic activity of SOM-expressing
CeA inputs to BNST also promotes anxiety-like behavior via
a disinhibitory effect (Ahrens et al., 2018). Likewise, Dyn
knockdown in CRF-expressing CeA neurons reduces anxiety-
like behavior as evidenced by increased exploration of open
arms in the EPM as well as increased time in the center
of the OFT (Pomrenze et al., 2019). Fear conditioning and
fear retrieval increase pCREB in Dyn-expressing CeL neurons,
relative to both naive home cage mice as well as mice that
received unpaired CS/US delivery (Jungling et al., 2015),
suggesting that CeA Dyn neurons may not be solely engaged by
threats, but rather cues that predict threats.

Regulation of drug and alcohol
seeking behavior by amygdala
dynorphin/kappa opioid receptor
neurons

The basolateral amygdala
dynorphin/kappa opioid receptor
system modulates drug-seeking
behavior

The BLA Dyn/KOR system has also been studied in the
context of alcohol and nicotine seeking behavior, where it
has been implicated in playing a role as a negative reinforcer
that promotes drug-seeking behavior aimed at curbing drug
withdrawal-induced and stress-induced negative affect and/or
anhedonia which maintain drug-seeking behavior (Koob et al.,
2014). Male constitutive Dyn-KO mice have a higher preference
for alcohol consumption relative to WT controls, and footshock
increases alcohol consumption in WT mice but not Dyn-KO

mice (Racz et al., 2013). Furthermore, mild footshock following
chronic alcohol exposure increases BLA c-fos levels in WT
mice but reduces BLA c-fos in Dyn-KO mice (Racz et al.,
2013). A more recent study identified the KOR-encoding gene
OPRK1 as a target of the transcriptional regulator LMO4
(Maiya et al., 2021). The authors also found that U50,488-
mediated increases in alcohol consumption are attenuated in
LMO4-shRNABLA mice and that local infusion of the KOR
antagonist nor-BNI in the BLA reduces alcohol consumption
in mice. The role of Dyn/KOR signaling in mediating the
reinforcing properties of other drugs has not been thoroughly
investigated. KOR antagonism during reinstatement of stress-
induced nicotine conditioned place preference (CPP) reduces
c-fos expression in the BLA and deletion of KOR from BLA
neurons blocks reinstatement of stress-induced nicotine CPP
(Nygard et al., 2016). The finding that nor-BNI blocks stress-
induced reinstatement effects on BLA c-fos immunoreactivity
suggests that the function of KORs in the BLA is more complex
than simply blocking the inhibitory actions of KOR signaling.
Similar effects of KOR antagonism on stress-induced nicotine-
seeking behavior were observed in a separate study, although the
specific amygdala subregion studied was not delineated (Smith
et al., 2012). DREADD-mediated activation of Gai signaling, an
inhibitory signaling pathway that is known to be activated by
KORs, in BLA PNs is also sufficient to drive this reinstatement
effect (Nygard et al., 2016). These studies demonstrate that
Dyn/KOR signaling specifically in the BLA regulates negative
reinforcement processes that drive drug- and alcohol-seeking
behaviors.

The central amygdala dynorphin/kappa
opioid receptor system modulates the
consumption of alcohol,
psychostimulants, and opioids

Repeated alcohol exposure produces maladaptive behavioral
effects which in part are hypothesized to be mediated by
Dyn/KOR signaling in the CeA (Pohorecky et al., 1989; Dar,
1998; Matsuzawa et al., 1999; Walker and Kissler, 2013; Kissler
et al., 2014; Anderson et al., 2018). Alcohol consumption
increases the expression of both Dyn and KOR in the
amygdala, including the CeA and BLA (D’Addario et al.,
2013). In a rat model of alcohol dependency induced by
ethanol vapor exposure, dependent rats displayed increased Dyn
immunoreactivity and functional KOR coupling to G-proteins
in the amygdala (Kissler et al., 2014). However, binge alcohol
drinking in the drinking in the dark paradigm did not result
in changes in the expression of Pdyn and Oprk1 mRNA
in the CeA of mice (Bloodgood et al., 2021). An in vivo
microdialysis study also reported that extracellular Dyn peptide
levels in the CeA are increased following high doses of
ethanol associated with intoxication (Lam et al., 2008). These
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studies highlight that Dyn expression and release may be
recruited by intoxicating or dependence-producing ethanol
exposure. In slices, KOR activation by dynorphin impairs
ethanol-induced increases in IPSP amplitude in the CeA,
while KOR antagonism with nor-BNI increases CeA IPSPs
(Gilpin et al., 2014), suggesting that alcohol increases the
activity of KOR-mediated inhibitory synapses. Alcohol drinking
drives sex-specific effects on the excitability of Pdyn-expressing
neurons in the CeA without impacting excitatory synaptic drive
onto these neurons (Bloodgood et al., 2021). Together, these
studies indicate that ethanol consumption promotes Dyn/KOR
signaling in the CeA. Consistent with the hypothesis that
enhanced CeA Dyn promotes negative reinforcement of alcohol
seeking behavior, inhibition of the Dyn/KOR signaling pathway
in the CeA reduces alcohol consumption. Deletion of Pdyn
decreases ethanol drinking in both male and female mice, while
CeA Oprk1 ablation in reduces alcohol-seeking in males but
not females (Bloodgood et al., 2021). Administration of the
KOR antagonist nor-BNI in the CeA reduces ethanol self-
administration across multiple models of alcohol consumption,
including a drinking in the dark model and in alcohol-
dependent rats (Kissler et al., 2014; Kissler and Walker, 2016;
Anderson et al., 2019). Intra-CeA nor-BNI also reduces ethanol
self-administration during acute withdrawal and protracted
abstinence, suggesting mitigated psychological sensitivity to
withdrawal symptoms, although this surprisingly did not affect
physiological measures of alcohol withdrawal (Kissler and
Walker, 2016). Finally, alcohol consumption increases Pdyn-
mRNA expression in CeA, and inhibition of PDyn-expressing
neurons in the CeA or KOR antagonism in the CeA or bed
nucleus of the stria terminalis, also reduces alcohol consumption
(Anderson et al., 2019; Haun et al., 2022). These behavioral
studies underscore a causal role for Dyn/KOR signaling
in mediating negative reinforcement underlying compulsive
alcohol seeking behavior.

Dynorphin/kappa opioid receptor activity in the CeA
is also associated with psychostimulant and opioid seeking
behavior. One study found that the KOR antagonist nor-BNI
and KOR agonist U50,488 reduced and increased, respectively,
GABAergic neurotransmission in the CeA of rats with long
access (6 h) to cocaine (Kallupi et al., 2013). Interestingly,
in controls, CeA GABAergic transmission was inhibited by
KOR activation, suggesting that long access to cocaine inverts
KOR regulation of CeA inhibitory synaptic transmission. In
this study, CeA KOR antagonism blocked cocaine sensitization,
indicating that Dyn/KOR signaling in the CeA may promote
incentive salience with repeat cocaine exposure, as well as
decreasing anxiety-like behavior during cocaine withdrawal.
One study used the chemical stressor yohimbine to drive
stress-induced reinstatement of heroin seeking in rats. Here,
dynorphin precursor mRNA levels were enhanced in the
CeA, but not BLA or medial amygdala, of yohimbine-treated
mice, suggesting that CeA Dyn may promote stress-induced

heroin-seeking behavior (Zhou et al., 2013). Collectively, these
studies demonstrate that Dyn/KOR signaling within the CeA is
engaged by various misused substances and this subsequently
regulates drug-seeking behavior and ensuing maladaptive
behaviors.

Regulation of pain by amygdala
dynorphin/kappa opioid receptor
neurons

It is hypothesized that Dyn/KOR signaling in the CeA
may mediate aspects of pain processing. In a spinal nerve
ligation (SNL) model of pain, nor-BNI in the right CeA blocked
conditioned place preference (CPP) driven by gabapentin (an
FDA approved treatment for neuropathic pain), suggesting that
CeA KOR signaling is necessary for pain-induced negative affect
(Navratilova et al., 2019). Further, intra-CeA KOR antagonism
blocks anxiety-like behavior and ultasonic vocalizations in a
rat functional pain model wherein morphine priming sensitizes
stress-induced pain-like and affective behavior (Yakhnitsa et al.,
2022). Moreover, increased CeA Dyn signaling may shape pain-
related behavior as intra-CeA KOR antagonism blocks defensive
behaviors in response to noxious stimuli using Randall Selitto to
measure the paw withdrawal threshold (Phelps et al., 2019) or
sensitivity to capsaicin left forepaw injection in a functional pain
model involving morphine priming in rats exposed to a bright
light stimulus (Nation et al., 2018). Furthermore, electrically
evoked IPSCs onto CeA neurons are only potentiated by nor-
BNI in SNL rats but not sham controls (Navratilova et al., 2019).
Moreover, PBN-evoked polysynaptic inhibition or electrically-
evoked IPSCs are potentiated by nor-BNI in the functional pain
model described above (Yakhnitsa et al., 2022). These studies
suggest that heightened Dyn signaling may be contributing to
CeA neuron disinhibition in pain states. Disinhibition of CeA
neurons by increased Dyn tone facilitates synaptically-evoked
spiking in SNL rats, suggesting that Dyn may influence input-
output transformations within CeA circuits (Navratilova et al.,
2019). Administration of complete Freund’s adjuvant (CFA)
in mice increases G-protein stimulation in the CeA with the
KOR agonist ICI 199,441 relative to saline-injected control
mice (Narita et al., 2006), and Dyn content in the CeA of a
functional pain model (Nation et al., 2018). Furthermore, intra-
CeA KOR activation with U69,593 potentiates responsivity of
amygdala and spinal cord neurons in response to noxious
stimuli, an effect that is reversed by optogenetic silencing of
CeA CRF neurons (Ji and Neugebauer, 2020). These findings
suggest that Dyn disinhibition of CeA CRF neurons is a
critical component underlying the effects of Dyn on CeA
circuits and control of behavior. Recently, CeA SOM and
PKCδ neurons have been shown to be differentially involved
in pain regulation, with PKCδ and SOM cells promoting and
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inhibiting nociceptive responses, respectively (Wilson et al.,
2019). Given that CeA SOM neurons robustly respond to threats
[reviewed above and in Yu et al. (2016)], it is possible that pain,
a strong threat that promotes maladaptive passive defensive
behaviors, robustly recruits SOM neurons co-expressing Dyn.
Pain-induced recruitment of CeA Dyn neurons would disinhibit
incoming afferent inputs to the CeA that process noxious
stimuli, including the PBN. The aforementioned hypothesis
would address the discrepancy in the field wherein CeA SOM
neurons have been widely implicated in mediating fear-related
freezing (fear ON cells) and paradoxically inhibit nociceptive
responses in animal models of chronic pain (pain OFF cells).
However, further work is needed to understand how Dyn may be
interacting with distinct cell populations, such as PKCδ, SOM,
and CRF neurons, to orchestrate maladaptive behavior induced
by CeA dysfunction driven by pain, stress, and/or misused
substances.

Cracking the shell on the almond:
A circuit-based framework for
amygdala dynorphin/kappa opioid
receptor control of behavior

Here we posit that the Dyn/KOR system is poised to
orchestrate coordinated waves of inhibition or disinhibition by
targeting specific cell types and afferent inputs to amygdala
circuits via the circuit-specific actions of amygdala Dyn
on KOR-expressing neurons. As KOR is a Gi-coupled
receptor, which regulates presynaptic neurotransmitter release
or intrinsic excitability, activation of KOR by Dyn will
produce fundamentally different outcomes depending on which
amygdala cell type and/or afferent input expresses KORs.
An obvious major distinction is that the BLA and CeA
consists primarily of glutamatergic and GABAergic projection
neurons that also collateralize within local circuits. Thus, KOR
signaling in excitatory BLA neurons vs. CeA neurons would
produce distinct outcomes since divergent circuit motifs would
be engaged by the Dyn/KOR system, including decreased
excitatory drive or disinhibition, respectively. Within the BLA,
for example, activation of KORs on principal neurons would
suppress transmission of those neurons to downstream targets
such as the CeA. Activation of KORs on GABAergic CeA
neurons, meanwhile, would serve to disinhibit downstream
targets of those neurons and in efferent regions (Figure 2).
Since molecularly- and projection-defined cells in the BLA and
CeA in large part account for various aspects of threat and
reward processing, future work is needed to further resolve
the specificity of KOR expression within amygdala cell types.
It is currently unclear whether KOR is widely expressed in
different sub-classes of molecularly-defined neurons such as
RSPO2, PPP1R1B, and Fezf2 (Kim et al., 2016; Zhang X. et al.,

2021; Figure 2). KORs are on various presynaptic terminals
of BLA efferents where they inhibit glutamate release in areas
including the NAcc, PFC, and BNST, but whether KORs are
ubiquitously expressed across all BLA outputs remains to be
resolved. Further, it remains unclear whether KORs in the
BLA are poised to control microcircuitry within BLA circuits
or solely BLA outputs to downstream targets via presynaptic
inhibition (Figure 2). KORs in the BLA may be expressed
solely on excitatory neurons, or potentially in any of the
plethora of interneuron populations within the BLA (Figure 2).
Further, KORs may regulate excitatory synapses from KOR-
expressing BLA principal neurons to other BLA cell types
and interneuron populations. Dyn release and subsequent
KOR signaling within BLA circuits may depress recurrent
excitatory connections between BLA principal neurons or
engaged inhibitory circuit motifs by limiting interneuron
recruitment or outputs, depending on how KORs are embedded.
This information will be critical for understanding how the
Dyn/KOR system shapes activity dynamics of BLA projection
neurons. Lastly, Dyn expression is spare or absent in the BLA,
which raises the question of what specific sources of Dyn for the
BLA may be or whether all sources of BLA Dyn confer the same
effects on BLA circuit physiology and behavior. A recent study
reported expression of Pdyn mRNA in the lateral ITCs raising
the interesting possibility that this may be a source of Dyn to
BLA circuits (Gomes et al., 2020).

Within the CeA, Dyn expression is primarily concentrated
in SOM neurons, but is also expressed in other SOM-negative
cell types (Figure 3). Whether these subpopulations of Dyn-
expressing neurons are differentially integrated within CeA
local circuits and innervate downstream brain regions is not
known. Moreover, CeA Dyn neurons may release Dyn locally
to regulate local CeA microcircuits that directly or indirectly
impacted by KOR signaling. Determining the specific expression
profile of KORs in molecularly-defined cell types and CeA
projections would be significantly advance our understanding
of how the Dyn/KOR system regulates CeA control of behavior
(Figure 3). Dyn release from SOM neurons may regulate GABA
release from KOR-expressing terminals from defined cell types
within the CeA microcircuit, which has been hypothesized
to be critical for regulating different aspects of threat-related
behaviors (Moscarello and Penzo, 2022). For example, PKCδ+

neurons in the CeA may inhibit SOM+ neurons via GABA
release to diminish freezing behavior in response to a threat,
and Dyn release from SOM neurons may limit PKCδ+-mediated
lateral inhibition if these cells express KORs. Therefore, further
research into KOR expression on specific cell types will be
critical for our understanding of how Dyn signaling regulates
activity among amygdala targets. Through specific functional
effects on cellular physiology (e.g., regulation of synaptic
transmission and excitability), Dyn signaling in specific cell
types expressing KOR may forge inter-cellular communication
within amygdala circuitry. Such a mechanism, when considered
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at the population scale, may help determine the selection
and deselection of specific subpopulations to form neuronal
ensembles within the amygdala whose signal is able to stand
out above the noise of the network (Figure 3). This, of course,
remains to be tested with rigorous functional studies that
examine the activation patterns of Dyn-or KOR-expressing
neurons and how their activity influences inputs and outputs of
the amygdala during behavior.

The amygdala Dyn/KOR system may also interact with
other neuromodulatory systems that influence amygdala
dependent behavior. Dyn neurons in the CeA target other brain
regions rich in specific neuromodulators. For example, CeA
Dyn neurons project to the VTA and substantia nigra, two
known dopaminergic hubs (Fallon et al., 1985; Steinberg et al.,
2020; Figure 3). Dyn decreases excitability BLA-projecting VTA
DA neurons (Ford et al., 2007; Margolis et al., 2008; Baimel
et al., 2017) in addition to inhibiting GABAergic transmission
onto these cells (Ford et al., 2007; Figure 2). However, whether
the Dyn supplied to the VTA that influence nigro- and meso-
amygdaloid neurons arises from the CeA or some other
Dynergic region remains to be determined. An alternative,
but not mutually exclusive possibility, is that dopaminergic
terminals in the amygdala express presynaptic KORs similar to
what is observed in mesolimbic and mesocortical dopaminergic
pathways (Chefer et al., 2013; Tejeda et al., 2013; Figure 2). If
KORs regulate presynaptic DA terminals in amygdala circuitry
it would provide a mechanism for Dyn inputs to the BLA or
CeA Dyn-expressing neurons to regulate incoming DA inputs
which are critical for aversive and reward learning. Amygdala
Dyn/KOR signaling may also influence other monoamines.
CeA Dyn neurons project to the norepinephrine-rich LC
(Kravets et al., 2015), which in turn influences amygdala
circuitry and distributed networks (Figure 3). However, how
the Dyn/KOR system regulates the norepinephrine system
during various behaviors is unknown. In CeA, Dyn expression
highly overlaps with SOM, another neuropeptide. Although
Dyn and SOM are often expressed in the same CeA neurons
(Jungling et al., 2015), much remains unknown about the
implications of this co-expression. It is unclear what the
behavioral effects of SOM neuropeptide transmission is on
affective and motivated behaviors. Further, it is unknown
whether Dyn and SOM are differentially released during
behavior, and, if so, whether they exert complementary or
antagonistic effects on amygdala microcircuitry. It is possible
that differences in expression patterns of KOR and the SOM
receptor on distinct CeA cell types may confer another layer
of complexity by which these two peptides engage or disengage
discrete microcircuits. Together, these results highlight the
importance of understanding the way the Dyn/KOR system may
interact with other neuromodulators in amygdala circuits to
influence behavior.

Future efforts should be aimed at investigating how the
compartmentalization of the Dyn/KOR system within the

amygdala shapes different aspects of amygdala-dependent
behavior. Though tremendous progress has been made in
understanding the role of amygdala circuitry in controlling
associative learning, primarily threat conditioning, over the last
couple of decades it has become increasingly clear that the
amygdala as a whole regulates many nuanced facets of emotion,
goal-directed behavior, and motivation. Through the selection
of distinct cell types and circuit motifs, the Dyn/KOR system
may aid in mediating specific behavioral outcomes, including
associative learning. The Pearce-Hall learning model posits that
attention and salience are also critical factors underpinning
associative learning, and a growing body of work underscores
the role of the amygdala in regulating attentional processing
(Roesch et al., 2012). Furthermore, given the restriction of
Dyn expression to largely PKCδ− neurons, which are thought
to be engaged during fear (Ciocchi et al., 2010; Haubensak
et al., 2010), the Dyn/KOR system in the amygdala may
regulate valence processing. Therefore, understanding whether
the amygdala Dyn/KOR system may be regulating appetitive
associative and instrumental behavior is needed to further
understand how cells expressing Dyn and/or KOR may be
involved in learning processes. Because dopamine in the
amygdala is critical for appropriate associative learning (Jo
et al., 2018; Lutas et al., 2019). Therefore, in addition to the
direct actions of Dyn/KOR signaling on amygdala neurons,
the potential for Dyn to inhibit KOR-expressing dopaminergic
neurons that project to the amygdala could constitute a
mechanism that regulates learning. As models of BLA and CeA
circuit function are refined and projection-and molecularly-
defined neurons are characterized in terms of how their activity
is explained by different learning models, we will be able to
place activity of amygdala Dyn neurons or KOR-expressing
cells in the context of neural correlates that adhere to different
leaning models, such as the Pearce-Hall learning model (Roesch
et al., 2012). Moreover, manipulating Dyn/KOR signaling (e.g.,
pharmacologically, genetically, etc.,) and monitoring the activity
of amygdala circuitry broadly in the context of molecular
markers and/or connectivity will be essential for determining
the role this system plays in learning and cognitive processes by
shaping amygdala circuit dynamics. Activation of the Dyn/KOR
system by stressors, in conjunction with its ability to itself
drive aspects of the stress response, raises the possibility that
the Dyn/KOR system may be an important neuromodulator at
the interface between an organism’s internal state and external
events and stimuli essential for guiding behavior. The amygdala
receives significant inputs from structures that incorporate
interoception, environmental features, flexible behavior, and
action selection, including various prefrontal cortical and
neuromodulatory factors such as dopamine to ultimately
influence overall behavioral states (Grundemann et al., 2019;
Courtin et al., 2022). To summarize, several lines of research
are needed in order to piece together how the Dyn/KOR system
in the amygdala functions to shape the selection/deselection
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of distinct cell types, microcircuits, and pathways couple with
internal states to regulate complex innate and learned behaviors.

Conclusion

In conclusion, here we provide an overview of the literature
on the amygdala Dyn/KOR system (Figures 2, 3). Despite the
considerable evidence that implicates the Dyn/KOR system in
the amygdala complex in promoting threat reactivity, chronic
pain, and negative reinforcement in models of alcohol and
substance use disorder, there is still a major gap in our
understanding of the Dyn/KOR system in the amygdaloid
nuclei. We identify unknowns and provide a framework
that places the function of the Dyn/KOR system in the
context of the recent advancements in identifying the role of
specific cell types and incoming and outgoing pathways of
the amygdaloid complex (Figures 2, 3). This model will also
provide general principles that are shared or distinct across
neuropeptide signaling in amygdala circuits and the brain.
A better understanding of this system will be invaluable in
identifying how the Dyn/KOR systems regulate information
processing in amygdala circuits and behaviors related to
motivation. Additionally, uncovering novel potential targets
and translational work will help elucidate new treatments for
neuropsychiatric disorders and provide potential mechanisms
for targets currently in clinical trials.
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Decades of research advances have established a central role for endogenous

opioid systems in regulating reward processing, mood, motivation, learning

and memory, gastrointestinal function, and pain relief. Endogenous opioid

systems are present ubiquitously throughout the central and peripheral

nervous system. They are composed of four families, namely the µ (MOPR),

κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors

systems. These receptors signal through the action of their endogenous

opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins,

respectfully, to maintain homeostasis under normal physiological states. Due

to their prominent role in pain regulation, exogenous opioids—primarily

targeting the MOPR, have been historically used in medicine as analgesics,

but their ability to produce euphoric effects also present high risks for

abuse. The ability of pain and opioid use to perturb endogenous opioid

system function, particularly within the central nervous system, may increase

the likelihood of developing opioid use disorder (OUD). Today, the opioid

crisis represents a major social, economic, and public health concern.

In this review, we summarize the current state of the literature on the

function, expression, pharmacology, and regulation of endogenous opioid

systems in pain. Additionally, we discuss the adaptations in the endogenous

opioid systems upon use of exogenous opioids which contribute to the

development of OUD. Finally, we describe the intricate relationship between

pain, endogenous opioid systems, and the proclivity for opioid misuse, as well

as potential advances in generating safer and more efficient pain therapies.

KEYWORDS

opioids, pain, addicition, opioid use and abuse, opioid use disorder (OUD), reward,
endogenous opioids, opioid receptors
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Introduction

The intersection between pain and opioid use presents a
major dilemma for public health. Efforts to curb the burden
of the ongoing opioid crisis continue to be challenged by the
need to provide adequate relief for pain patients and at the
same time lessen the negative impact of opioid misuse. Pain
is extremely prevalent with over half of US adults reporting
pain symptoms within the past 3 months (Lucas et al., 2021).
Similarly, detriments of opioid abuse are evident in the annual
increases in opioid overdose deaths, with the most recent
provisional estimates exceeding 80,000 in 2021 (Ahmad et al.,
2022). Although the prevalence of problematic opioid use in
pain patients is difficult to pin-point for a myriad of reasons
(Ballantyne, 2015; Voon et al., 2017), estimates derived from a
number of metanalyses suggest rates of problematic prescription
opioid use may occur in >80% of pain patients (Minozzi
et al., 2013; Ballantyne, 2015; Chou et al., 2015; Vowles et al.,
2015; Voon et al., 2017). Collectively, pain and opioid use pose
tremendous societal costs, with pain-related health care and lost
productivity exceeding $635 billion and opioid abuse-related
health care, criminal justice, lost productivity, reduced quality
of life, and life lost due to overdose exceeding $1.03 trillion
annually (Institute of Medicine Committee on Advancing Pain
Research, 2011; Gaskin and Richard, 2012; Florence et al.,
2021). Linking the putative relationship between pain and
maladaptive opioid use, is the endogenous opioid system, a
primary biological substrate of pain and opioid reward. In the
present review, we examine how pain and concurrent opioid
use may disrupt endogenous opioid system function leading to
alterations in reward signaling pathways and ultimately, higher
risk for negative outcomes associated with opioid use.

Problematic opioid use in the
context of pain

In 2019, the National Survey on Drug Abuse reported that
almost all (>96%) instances of opioid misuse, or use deviating
from physicians’ instructions, was restricted to prescription
opioid pain medications (Center for Behavioral Health Statistics
and Quality, 2019). This same report indicated that among
those that misused prescription opioids, the most common
reason for misuse was to relieve physical pain (65%). Based
on this evidence and the lack of therapeutic alternatives to
prescription opioids suggests that the US is undertreating pain
or undermining an overlapping and vulnerable population. The
former could have likely been fueled by pain management
initiatives in the 1990s that recognized pain as a fifth
vital sign (Morone and Weiner, 2013; Meisenberg et al.,
2018). This notion encouraged physicians to prioritize pain
reduction through the liberalization of opioid prescriptions

(Compton and Volkow, 2006; U.S. Department of Health and
Human Services, 2019) which led to the initial wave of
prescription overdose deaths (Rudd et al., 2016). This was
addressed by several opioid diversion and mitigation strategies,
including revisions to opioid prescribing practices in 2016 by
the Center of Disease Control (CDC) that limit the number
of opioid prescriptions (Lappin, 2016; Volkow and McLellan,
2016). Although these efforts appeared to bring prescription
overdoses to a plateau, synthetic opioid overdoses (both illicit
and prescribed) increased at alarming rates (CDC WONDER,
2018). It is difficult to pin down whether the continued rise
in opioid overdoses was driven by the unmet needs of pain
patients, growth in illicit markets, or a combination of both.
Despite additional government-backed initiatives intended to
curb opioid use and facilitate research for pain management
alternatives (U.S. Department of Health and Human Services,
2019), the prevalence of chronic pain and opioid overdose
deaths continue to rise each year (Goldstick et al., 2021; Zajacova
et al., 2021; Ahmad et al., 2022), and have even been amplified
by the COVID-19 pandemic (Fallon et al., 2021; Manchikanti
et al., 2021; Soares et al., 2021). The National Institute of Health’s
(NIH) most recent endeavor, the HEAL initiative (Helping to
End Addiction Long-term), recognized the need to address
the opioid crisis through improvements to pain management
(Wandner et al., 2022). As such, our ability to curtail opioid
abuse and improve the treatment of pain relies heavily on
our capacity to understand the neurobiological mechanisms
underlying pain and opioid systems.

According to the International Association for the Study
of Pain (IASP), pain is defined as “an unpleasant sensory
and emotional experience associated with, or resembling that
associated with, actual or potential tissue damage” (Raja et al.,
2020). The intersection between these two dimensions of pain—
sensation and emotion—present a substantial problem for
chronic pain patients on long-term opioid therapy which can
play a synergistic role in perpetuating pain, mood disruptions,
and problematic opioid use. The occurrence of mood disorders
can predict not only opioid misuse liability (NIDA, 2008;
Davis et al., 2017; Center for Behavioral Health Statistics and
Quality, 2019; Jones and McCance-Katz, 2019; Smit et al.,
2020) but also, susceptibility to pain conditions (Viana et al.,
2018; Rizvi et al., 2021). Likewise, patients with opioid use
disorder (OUD), a chronic and relapsing disorder characterized
by persistent and compulsive drug-seeking behavior despite
negative outcomes, frequently report comorbidities of chronic
pain (up to 65%) and mood disorders (up to 82%) (Davis
et al., 2017; Hser et al., 2017; Peciña et al., 2018; Jones and
McCance-Katz, 2019; Higgins et al., 2020; Latif et al., 2021).
It is therefore not surprising that chronic pain patients are 2–
3 times more likely to meet diagnostic criteria for an anxiety,
mood, and mental disorders (Pereira et al., 2017) and are at
higher risk (>50%) for developing opioid or substance use
disorder (Højsted and Sjøgren, 2007; Morasco et al., 2011).
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Collectively, the co-occurrence of pain, mood disruptions, and
problematic opioid use can have additive effects on the severity
and risk for the other. The extensive overlap of these conditions
alludes to a common underlying mechanism; and while each of
these conditions are associated with dysfunction across multiple
biological systems, one potential source of shared functional
disruption lies within the endogenous opioid system (Jarcho
et al., 2012; Witkin et al., 2014; Peciña et al., 2018; Jones and
McCance-Katz, 2019; Toubia and Khalife, 2019).

The endogenous opioid system

Both pain and exogenous opioids can disrupt function
of the endogenous opioid system (Roeckel et al., 2016) and
similarly, alterations in endogenous opioid activity can predict
variations in pain thresholds, opioid-induced analgesia, and the
proclivity for opioid misuse and abuse (Corder et al., 2018;
Jassar et al., 2019; Llorca-Torralba et al., 2019a; Massaly and
Morón, 2019; Bodnar, 2021). The endogenous opioid system
plays an important role in analgesia, but it is also critically
involved in autonomic regulation, immunological responses,
gastrointestinal function, learning and memory, and many other
functions (Bodnar, 2021). As such, the endogenous opioid
system is crucial for maintaining homeostasis and alterations
in its activity are largely state dependent (Darcq and Kieffer,
2018; Valentino and Volkow, 2018). This system is also highly
integrated with other biological systems involved in stress
regulation, mood, and reward such as the endocannabinoid,
serotonin, oxytocin, vasopressin, and dopamine (DA) systems
and the hypothalamic adrenal pituitary axis (Leknes and Tracey,
2008; Toubia and Khalife, 2019; Emery and Akil, 2020; Koob,
2020; Bodnar, 2021; Mohammadkhani and Borgland, 2022).
Implicitly, the extensive crosstalk between these contributes
to the highly adaptive nature of the opioid system and its
ability to acutely respond to noxious stimuli. However, chronic
perturbations to opioid systems can leave the system vulnerable
to dysfunction and have debilitating consequences (Stoeber
et al., 2018). Here, we focus on the impact of pain and opioids on
function of the endogenous opioid system and reward pathways
and examine their putative role in provoking maladaptive
patterns of opioid use and OUD.

Opioids

Opioids are natural, synthetic, or semi-synthetic chemicals
acting on opioid receptors to produce analgesia among other
peripheral effects (Zöllner and Stein, 2007). Opium is a dried
milky exudate obtained from the unripe seed pods of the opium
poppy, papaver somniferum (Brownstein, 1993). Among the
dozens of alkaloids found in opium, the pharmacologically

relevant constituents include morphine (10–15%), codeine (1–
3%, noscapine (4–8%), papaverine (1–3%), and thebaine (1–
2%) (Zöllner and Stein, 2007). The antiquity of opium for
medicinal use was documented as early as ∼2100 BCE in
Sumerian medical tablets (Duarte, 2005). The unrivaled ability
of opium to relieve pain was recognized in texts for millennia,
but the therapeutic application of opioids was transformed
when a young German apothecary’s assistant, F.W.A. Sterürner,
isolated crystalline morphine (1803–1817), naming it after
Greek god of sleep and dreams (Krishnamurti and Rao, 2016).
The subsequent invention of the hypodermic syringe needle in
the 1850s facilitated the use of morphine for surgical procedures,
pain relief, and as an adjunct to general anesthetics (Brownstein,
1993). Since then, the broad application of various opioid
analgesics has facilitated a greater understanding of the opioid
system and the clinical utility of opioids for pain management.

The existence of opioid receptors was first proposed in the
1950s (Beckett and Casy, 1954), but it was not until the 1970s
that different bioassays began to identify stereospecific binding
sites for opioids in the brain (Pert and Snyder, 1973; Simon
et al., 1973; Terenius, 1973; Martin et al., 1976; Lord et al.,
1977). These studies revealed that exogenous opioid ligands
produce their narcotic effects through actions at different opioid
receptors which led to the discovery that endogenous opioid-
like peptides can produce similar effects through their activity
at the same peptide receptors (Cox et al., 1976; Hans et al.,
1977; Olson et al., 1979). The first evidence of distinct opioid
receptor types was determined by detailing the actions of several
analgesic drugs. As such, the first two opioid receptor types
were named after the prototypic drugs used in these studies
to distinguish them, mu (µ) for morphine and kappa (κ) for
ketocyclazocine (Martin et al., 1976). Pharmacological analysis
revealed a third opioid receptor type in the mouse vas deferens
that exhibited a pharmacological profile markedly different from
those previously identified (µ and κ) and was accordingly,
named delta (δ) to signify this difference (Lord et al., 1977).
The heterogeneity of these receptor types was later confirmed
when distinct mRNAs for each receptor type were cloned and
characterized (Evans et al., 1992; Kieffer et al., 1992; Chen
et al., 1993; Yasuda et al., 1993). Together, the µ, κ, and
δ opioid receptors (MOPR, KOPR, DOPR, respectively) are
considered the classical opioid peptide receptors based on their
structural homology and sensitivity to the non-selective opioid
receptor antagonist, naloxone (Dietis et al., 2011). A fourth
opioid receptor-like (OPRL1) gene was later revealed to encode
a receptor with a primary structure analogous to previously
identified opioid receptors and yet, it lacked sensitivity to
traditional opioid ligands (Bunzow et al., 1994; Mollereau et al.,
1994). As such, OPRL1 remained an ‘orphan’ receptor until two
independent groups isolated its endogenous ligand, nociception
(Meunier et al., 1995) or orphanin FQ (Reinscheid et al., 1995)
(N/OFQ), for which the OPRL1 or N/OFQ opioid receptor is
referred to here on as NOPR. While MOPR, KOPR, DOPR,
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and NOPR comprise the four major opioid receptor systems
due to homology in structure and function, NOPR is often
excluded from “classical” opioid receptor types based on its lack
of sensitivity to naloxone or prototypical opioid ligands.

Four major opioid peptide families are commonly associated
with complimentary opioid receptor systems for which they
exhibit preferential activity: β-endorphins (MOPR), dynorphins
(KOPR), enkephalins (DOPR), and N/OFQ (NOPR) (Hughes
et al., 1977; Nakanishi et al., 1979; Horikawa et al., 1983;
Pathan and Williams, 2012; Shenoy and Lui, 2018). However,
despite greater selectivity of these endogenous ligands and
their respective receptors, the activity of both endogenous
and exogenous opioids at distinct receptor types is rarely
exclusive to one family and can often activate multiple receptor
types to varying degrees (Stein, 2016). Opioid receptors are
seven-transmembrane G protein-coupled receptors (GPCR)
that generally couple to inhibitory G proteins, thereby reducing
signal transduction and neurotransmission by engaging several
second- and third-messenger systems and regulating ion
channel activity (Zöllner and Stein, 2007; Al-Hasani and
Bruchas, 2011; Toll et al., 2016; Corder et al., 2018).
Different opioids can also engage biased signaling pathways
to preferentially activate GPCR-dependent signaling or β-
arrestin-dependent signaling, which can produce analgesia or
unwanted side-effects, respectively (Ballantyne and Chavkin,
2020). Allosteric binding sites on opioid receptors, distinct from
orthostatic sites or the ligand binding pocket, can also modulate
opioid receptor function through activation by various other
neurotransmitters and neuropeptides (Kathmann et al., 2006;
Burford et al., 2015; Remesic et al., 2017; Livingston and
Traynor, 2018). For example, cannabidiol (CBD), an exogenous
cannabinoid ligand, can act as a negative allosteric modulator
at MOPR or DOPR in rat cerebral cortices to reduce their
function (Kathmann et al., 2006). Positive allosteric modulators
for MOPR have also been sought after as they may reduce some
of the unwanted side-effects attributed to traditional opioid
medications or facilitate the activity of endogenous opioids
(Burford et al., 2015). Adding another layer of complexity
to opioid receptor signaling is the fact that different opioid
receptors can associate with each other to form heteromers (e.g.,
MOPR-DOPR, DOPR-KOPR, KOPR-MOPR). For example,
DOPR antagonism of DOPR-MOPR heteromers can act to
enhance MOPR agonist-mediated analgesia (Gomes et al.,
2004). The complexity of opioid receptor signaling mechanisms
shed light on the multiple means by which opioid system
function can be disrupted.

Opioid receptors are among the most widely expressed
receptors in the central and peripheral nervous systems,
although the composition and distribution of different opioid
receptor types varies across regions (Corder et al., 2018).
In the periphery, opioid receptors expressed in the lungs,
heart, kidney, small intestine, and pancreas, can modulate
organ function, inflammation, as well as multiple homeostatic

processes (Peng et al., 2012). Opioid receptors can also
be found in neuroendocrine (adrenals, pituitary), immune
(leukocytes), and ectodermal cells, where they can modulate
nociception and inflammation (Zöllner and Stein, 2007; Stein,
2013). In the context of pain, opioid receptors are ideally
situated among, and connected with, somatosensory neurons
of dorsal root ganglion (DRG) and second-order neurons
of the dorsal horn of the spinal cord where they transmit
ascending nociceptive signals to cortical areas through the
spinothalamic, spinoreticular, and spinoparabrachial pathways
(Basbaum and Fields, 1984; Marchand, 2008; DosSantos et al.,
2017; Ringkamp et al., 2018). Local release of endogenous
opioids or acute application of exogenous opioids at injury sites
can suppress DRG activity to reduce nociceptive signaling and
pain perception (Dickenson et al., 1990; Stein et al., 2003; Spahn
et al., 2017; Corder et al., 2018; Massaly et al., 2020). Similarly,
top-down regulation by opioid receptor systems within the
periaqueductal gray (PAG) and rostral ventral medulla (RVM)
can exert descending modulatory control over nociceptive
signal transduction (Marchand, 2008; Ringkamp et al., 2018).
The level of top-down control over anti-nociceptive responses
can also be influenced by opioid receptor systems in other
brain regions involved in cognition, affect, sensation, and
motivation (Corder et al., 2018; Bannister and Dickenson,
2020; Dickenson et al., 2020). As such, the central and
peripheral presence of opioid systems yields the ability of opioid
receptors to functionally modulate reward-aversion networks
through ascending and descending modes of control, and
therefore, play a substantial role in aversive pain states, reward
from pain relief, and hedonic balance (Darcq and Kieffer,
2018).

Proper functioning of the endogenous opioid system is
essential for survival mechanisms involved in reward- and
aversion-based learning and behavior. When the integrity of
this system becomes compromised, the ability to integrate
opioid reward- and pain aversion-related information will also
become impaired. Among the many debilitating consequences
associated with compromised opioid system function, is
the risk of OUD. After repeated drug exposure, reward-
processing centers can undergo neuroadaptations that leave
affected individuals with enhanced incentive salience and habit
formation, impulsivity, stress reactivity, and negative affect in
the absence of drug; thereby producing overall disruptions in
motivation (Koob and Volkow, 2010). As a result, maladaptive
drug use is perpetuated through cycles of binge/intoxication,
withdrawal/negative affect, and preoccupation/craving (Koob
and Volkow, 2010). OUD and other substance use disorders
are linked with adaptations to the opioid system (Darcq and
Kieffer, 2018) because of its central role in reward processing (le
Merrer et al., 2009). Therefore, the ability of the opioid system
to regulate both pain states and the actions of opioid drugs may
exacerbate the risk for the development of OUD in pain patients
on long-term opioid therapies. Here, we focus on adaptations
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within mesolimbic reward pathways and the putative synergistic
effects of pain and opioid use in driving opioid misuse liability.

µ Opioid receptor

The role of MOPR in mediating opioid-dependent analgesia
and reward provides support for the abundance of research
on this opioid receptor family. The analgesic effects of MOPR
activity are attributed to their hyperpolarizing effects and
suppression of neuronal activity. This is regulated by Gαi-
mediated inhibition of cAMP production (Raffa et al., 1994),
activation of G protein-coupled inwardly rectifying potassium
(GIRK) channels (Ikeda et al., 2000), Gβγ -mediated inhibition
of L-type calcium channels (Bourinet et al., 1996), and inhibition
of voltage-dependent calcium channels (VDCC) (Saegusa et al.,
2000). Alternatively, β-arrestins can modulate MOPR signaling
by decoupling the receptor from G proteins and facilitating
receptor internalization (Siuda et al., 2017; Cong et al., 2021).
β-arrestins can also engage multiple intracellular signaling
cascades independent of G proteins (Macey et al., 2006) and
biased signaling mechanisms through β-arrestins or G proteins
often produce distinct effects (discussed below).

Endogenous MOPR agonists, like β-endorphins, can be
locally released at injury sites to provide acute pain relief
through their signaling at the MOPR (Hassan et al., 1993;
Truong et al., 2003; Stein et al., 2009). Similarly, acute
administration of exogenous MOPR agonists, like morphine,
can provide both pain relief and reinforcement. Evidence
from positron emission tomography (PET) studies in humans
demonstrate that acutely painful stimuli increase MOPR activity
in multiple brain regions, including those implicated in
nociception and reward processing, such as the PAG and the
nucleus accumbens (NAc), respectively (Zubieta et al., 2001,
2002; Bencherif et al., 2002). Relative to pain-free conditions,
acute pain enhances MOPR activity while its activity is
decreased under conditions of chronic pain. In animal models
of neuropathic pain, MOPR expression is downregulated in
the spinal cord, DRG, and several cortical regions in the
days and weeks following injury (Porreca et al., 1998; Zhang
et al., 1998; Rashid et al., 2004; Pol et al., 2006; Thompson
et al., 2018). Similarly, patients with chronic lower back pain
exhibit lower circulating levels of β-endorphin (Bruehl et al.,
2012, 2014, 2017, 2013; Rhodin et al., 2013), while deficits in
MOPR binding potential have been linked with multiple pain
conditions including fibromyalgia, chronic migraine, trigeminal
neuropathic pain, and chronic lower back pain (Harris et al.,
2007; DosSantos et al., 2012; Hagelberg et al., 2012; Martikainen
et al., 2013; Schrepf et al., 2016; Jassar et al., 2019; Toubia and
Khalife, 2019). Therefore, the function of the MOPR system can
differ depending on the persistence of pain conditions, losing
efficacy over time.

Importantly, MOPR activity can contribute to both
sensational and emotional aspects of pain. In healthy controls,
baseline MOPR binding can predict pain thresholds, such that
lower MOPR binding in multiple cortical regions is associated
with higher pain sensitivity (Zubieta et al., 2001, 2002; Hagelberg
et al., 2012). Moreover, MOPR binding is negatively correlated
with affective pain ratings (Zubieta et al., 2001, 2002), adding
further support to the idea that MOPR activity can modulate
sensory and affective components of pain. In patients with
various chronic pain conditions, the ability of MOPR binding
to predict pain sensitivity is similar. For example, patients with
trigeminal neuropathic pain exhibit reduced MOPR binding
in the NAc which is negatively correlated with pain ratings
(DosSantos et al., 2012). Consistent with this relationship,
reduced MOPR binding in the prefrontal cortex is associated
with migraine severity (DaSilva et al., 2014). Similar results
have been recapitulated in rodent models of neuropathic pain.
Months after spared nerve injury, rats show reduced MOPR
availability and expression in the insula, caudate putamen, and
motor cortices, and these levels are correlated with deficits
in sucrose preference, a measure of anhedonia (Thompson
et al., 2018). Together, these findings indicate that chronic pain
disrupts MOPR function to negatively regulate sensory and
affective components of pain.

The MOPR system is also influenced by acute or chronic
exposure to exogenous opioids. In patients undergoing surgery
under general anesthesia, plasma β-endorphin levels are
increased, and this effect is inhibited by administration of
fentanyl, a potent MOPR agonist (Dubois et al., 1982; Cork
et al., 1985). Fentanyl administration also induces MOPR
phosphorylation in the striatum of mice at sites involved in
receptor desensitization and internalization (Macey et al., 2006),
suggesting that acute opioid exposure can have rapid effects
on receptor desensitization and tolerance. In contrast, MOPR
antagonism increases β-endorphin levels (Hargreaves et al.,
1986), adding further support to the idea that endogenous
β-endorphin release is regulated by MOPR activity. Chronic
opioid exposure can have detrimental effects on endogenous
opioid production and MOPR system function. For example,
chronic morphine treatment reduces expression levels of the β-
endorphin precursor protein, proopiomelanocortin (POMC), in
rats (Bronstein et al., 1990; Wardlaw et al., 1996; Przewlocki,
2004), and reduces MOPR density in β-endorphin-expressing
neurons of the hypothalamus (site of synthesis) in guinea pigs
(Zhang et al., 1996). As such, chronic exposure to exogenous
MOPR agonists reduce MOPR system function by reducing
endogenous production of MOPR agonists (β-endorphins) and
overall MOPR availability. Chronic opioid exposure can also
alter function of remaining MOPR by producing a switch
in MOPR G-protein coupling from Gi/o to Gs, leading to
activation of adenylyl cyclase rather than inhibition (Wang et al.,
2005). MOPR activation and subsequent phosphorylation by
GPCR kinases can also lead to the recruitment of β-arrestins,
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which—in conjunction with many other effectors—leads to
MOPR receptor desensitization and internalization (Koch and
Höllt, 2008; Roeckel et al., 2016; Corder et al., 2017; Derouiche
et al., 2020; Massaly et al., 2021). MOPR phosphorylation at
sites involved in receptor desensitization and internalization are
observed in mice seven days after partial sciatic nerve ligation,
a manipulation that produces tolerance to both the analgesic
and conditioned reinforcing properties of morphine (Petraschka
et al., 2007). Together, these disruptions to endogenous
opioid production and MOPR function in response to chronic
opioid exposure can lead to long-term plasticity underlying
the development of opioid-induced hyperalgesia, analgesic
tolerance, and negative affect, contributing to problematic
opioid use.

The ability of pain and exogenous opioids to modify MOPR
system function can lead to alterations within the mesolimbic
reward pathway that may “prime” the system to be more
vulnerable to the abuse of opioids, alcohol, and other substances
of abuse (Contet et al., 2004). Opioid activity at MOPR produces
rewarding effects by hyperpolarizing GABAergic inputs onto
ventral tegmental area (VTA) DA neurons, thereby disinhibiting
DA release (Elman and Borsook, 2016; Mitsi and Zachariou,
2016; Stoeber et al., 2018). Local infusion of MOPR agonists
in the VTA is sufficient to produce reinforcing behaviors and
conditioned reward-seeking behavior (Devine and Wise, 1994).
Additionally, VTA MOPR function is necessary for opioid-
dependent reward (Cui et al., 2014). Based on the ability of
opioids to provide both positive reinforcement and pain relief, it
seems evident that pain-induced alterations on MOPR signaling
within mesolimbic circuits may facilitate tendencies toward
opioid abuse (Koob, 2020). A large body of evidence indicates
that pain augments opioid reward thresholds by disrupting DA
transmission within the mesolimbic system (Hipólito et al.,
2015; Martikainen et al., 2015; Taylor et al., 2016; Selley et al.,
2020; Ren et al., 2021). This is regulated at least partly by deficits
in MOPR system function (Markovic et al., 2021). Preclinical
studies have shown that inflammatory and nerve injury pain
reduces MOPR agonist efficiency at silencing VTA GABAergic
transmission (Hipólito et al., 2015; Taylor et al., 2015), thus
decreasing the ability of MOPR agonists to disinhibit VTA DA
neurons (Ozaki et al., 2004, 2003, 2002; Hipólito et al., 2015)
and evoke DA release in the nucleus accumbens (NAc) (Niikura
et al., 2010; Hipólito et al., 2015; Taylor et al., 2015). These pain-
induced deficits in mesolimbic function significantly dampen
the rewarding properties of MOPR agonists. For example, rats
with sciatic nerve ligation exhibit reduced placed preference
induced by intra-VTA administration of the MOPR agonist,
DAMGO, or systemic administration of morphine—an effect
paralleled by attenuated MOPR binding in the VTA (Niikura
et al., 2008). Consistent with this idea, chronic pain patients at
low risk for opioid misuse exhibit less pain-induced activation
of MOPR in the NAc, and this effect is associated with fewer
mood disturbances and negative affect (Ballester et al., 2022).

Taken together, MOPR signaling is a primary mechanism by
which opioids yield high potential for abuse. As such, the
MOPR system has received interest as therapeutic target for
the treatment of chronic pain and OUD since the 1960s.
Methadone, a long-acting MOPR agonist, has been used as a
substitution therapy for chronic pain patients with long-term
opioid therapy and maintenance treatment for patients with
OUD (Kreek, 1973, 1991, 2000; Ferrari et al., 2004; Axelrod and
Reville, 2007; Shi et al., 2008; Mattick et al., 2009; Kreek et al.,
2010). The unique pharmacokinetic profile of methadone (slow
onset, slow offset) yields a useful strategy to target the MOPR
system while reducing the potential for opioid abuse, but the
efficacy of these treatments is often limited by inter-individual
variability, resources, and appropriate implementation (Dole
and Nyswander, 1976; Ward et al., 2009; Kreek et al., 2010).
As such, recent approaches have examined allosteric modulators
of MOPR and biased signaling mechanisms as a means of
offsetting the negative side effects of opioid pain medications
(Manglik et al., 2016). A better understanding of how different
pain conditions alter MOPR function with consideration of the
interplay with ongoing opioid use will aid the development of
future pharmacotherapeutic targeting strategies.

κ Opioid receptor

In contrast to the rewarding effects exerted by MOPR
activity, the KOPR system is often attributed to dysphoria,
anhedonia, and aversion (Spanagel et al., 1992; Darcq and
Kieffer, 2018; Liu et al., 2019; Massaly et al., 2019; Cahill et al.,
2022b). The opioid peptide, dynorphin, and its activity at KOPR
have been implicated in negative affect, pain, analgesia, stress,
and addiction (Bruchas et al., 2009; Darcq and Kieffer, 2018).
A large body of evidence demonstrates that pain increases
dynorphin mRNA expression and peptide production in the
spinal cord of rodents and humans (Iadarola et al., 1988; Millan
et al., 1988, 1985; Samuelsonn et al., 1993; Xu et al., 2004;
Podvin et al., 2016; Liu et al., 2019). Following the onset of
pain, the increase in dynorphin parallels the development of
hyperalgesia and KOPR antagonism can facilitate hyperalgesic
responses (Millan et al., 1987; Xu et al., 2004). This suggests that
the dynorphin-kappa system is actively recruited under pain
conditions to suppress nociceptive transmission. However, the
ability of KOPR activity to suppress hyperalgesic responses may
be dependent on the cell populations activated by dynorphin.
For example, spinally restricted dynorphin signaling at KOPR
expressed in astrocytes, rather than neurons, can produce
nociceptive responses (Chartoff and Mavrikaki, 2015; Cahill
et al., 2022b). In this regard, astrocytic KOPR activation
can trigger hypertrophy in spinal astrocytes to facilitate the
persistence of pain and the development of MOPR analgesic
tolerance (Donnelly et al., 2020).
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Pain can also trigger dynorphin-mediated KOPR activity
in supraspinal regions. Pain induced adaptations to KOPR
function within mesolimbic pathways may represent a primary
mechanism by which pain can lead to the emergence of negative
affect and altered motivational states. Indeed, pain conditions
increase dynorphin expression and KOPR activity in multiple
supraspinal sites including the VTA and NAc (Narita et al.,
2005; Tejeda et al., 2017; Liu et al., 2019; Massaly et al.,
2019; Navratilova et al., 2019; Wawrzczak-Bargieła et al., 2020).
Although genetic deletion of KOPR or KOPR antagonism
fails to alter pain-induced hyperalgesia, these manipulations
can effectively restore pain-induced anhedonia and aversion
(Narita et al., 2005; Tejeda et al., 2017; Liu et al., 2019; Massaly
et al., 2019; Navratilova et al., 2019; Vergara et al., 2020).
Recent evidence suggests that KOPR activity in NAc may be
important for the transition from acute to chronic pain. Using
hind paw injections of prostaglandin E2 to induce a persistent
hyperalgesic state in rats, KOPR manipulations did not affect
mechanical sensitivity during the induction phase (14 daily
injections) (Vergara et al., 2020). Rather, intra-NAc KOPR
agonists or antagonists facilitated or inhibited the persistence
of hyperalgesia, respectively (Vergara et al., 2020). The findings
suggest that the KOPR system may play an important role in
pain chronification (Borsook et al., 2016).

Dynorphin recruitment under conditions of pain and the
ability of KOPR activity to drive the transition from acute to
chronic pain, suggest that KOPR may also be important for
the development of comorbidities associated with persistent
pain states such as negative affect and motivational deficits
(Al-Hasani et al., 2015; Hipólito et al., 2015; Taylor et al.,
2015; Elman and Borsook, 2016; Liu et al., 2019; Massaly
et al., 2019). In general, KOPR agonists produce aversion
and are associated with negative affect across species. In
humans, KOPR agonists have psychotomimetic effects and
produce dysphoria and hallucinations (Pfeiffer et al., 1986;
Ranganathan et al., 2012) while increasing circulating stress
hormone levels of cortisol (Ur et al., 1997). Similarly, in rodent
models, both systemic and intracranial injections of KOPR
agonists are sufficient to produce a conditioned place aversion
(CPA) (Chefer and Ba, 2013; Tejeda et al., 2013) and increases
in circulating levels of the stress hormone, corticosterone
(Hayes and Stewart, 1985; Iyengar et al., 1986). These findings
indicate that dynorphin-mediated activation of KOPR is acutely
aversive and stimulates HPA axis activity, a putative mechanism
contributing to negative affect associated with pain conditions.
In support of this, increases in NAc dynorphin are found in
suicidal individuals (Hurd et al., 1997) and animal models
of depression (Carlezon and Krystal, 2016; Tejeda and Bonci,
2019). Importantly, these effects appear to be driven by the
ability of KOPR activity to attenuate DA release in the NAc
(Chefer and Ba, 2013; Conway et al., 2019; Escobar et al., 2020).

Dynorphin recruitment in mesolimbic pathways under
conditions of pain leads to motivational deficits. For example,

our lab showed that inflammatory pain increases KOPR
function and recruits dynorphin-containing neurons in the NAc
shell (Massaly et al., 2019). In this work, we found that the
recruitment of NAc shell dynorphin neurons and activity at
KOPR is both necessary and sufficient to drive pain-induced
motivational deficits for natural rewards (Massaly et al., 2019).
These effects also translate to motivational deficits for opioid
drug reward. In models of neuropathic or inflammatory pain,
morphine-induced conditioned place preference (CPP) scores
are attenuated but can be restored by intra-NAc infusions
of KOPR antagonists (Narita et al., 2005; Liu et al., 2019).
Moreover, pain reduced opioid-evoked DA release in the NAc,
an effect restored by intra-systemic KOPR antagonism (Narita
et al., 2005; Liu et al., 2019). This suggests that pain-induced
recruitment of dynorphin significantly decreases opioid reward
processing. Importantly, KOPR antagonism does not impact
opioid reward or dopamine release in the absence of pain
(Liu et al., 2019), further implicating the state-dependent role
of dynorphin. Opioid exposure, in the absence of pain, can
perturb KOPR function in a manner similar to pain. For
example, opioid self-administration or chronic opioid exposure
increases prodynorphin (dynorphin precursor) levels in the
NAc (Nylander et al., 1995; Trujillo et al., 1995; Solecki et al.,
2009; Schlosburg et al., 2013). Based on this, pain patients
on long-term opioid therapies may have compounding effects
of pain and opioid use on KOPR dysfunction, exacerbating
motivational deficits, negative affect, and leading to increased
risk for maladaptive opioid use. Consistent with this idea,
genetic polymorphisms to the prodynorphin gene have been
linked with increased risk for OUD (Clarke et al., 2012).

The role of the KOPR system in pain-related mood
disturbances and negative affect make this system an appealing
target from a treatment perspective (Roeckel et al., 2016; Jassar
et al., 2019; Llorca-Torralba et al., 2019b). Although systemic
KOPR agonists can produce analgesia, many undesirable
effects including hallucinations, impaired stress-coping skills,
and deficits in reward-driven motivation, limit their clinical
utility as therapeutic alternatives to traditional exogenous
opioids (Jarcho et al., 2012; Davis et al., 2017; Jones and
McCance-Katz, 2019; Toubia and Khalife, 2019; Emery and
Akil, 2020). However, pharmacotherapies with partial agonist
properties at KOPR have been examined in clinical trials
for treatment of alcohol use disorder (AUD). Nalmefene, a
MOPR inverse agonist and weak partial KOPR agonist can
effectively reduce alcohol consumption and heavy drinking
days (Barrio et al., 2018; Miyata et al., 2019), while improving
emotional processing in AUD patients (Vollstädt-Klein et al.,
2019). On the other hand, considering the upregulated KOPR
signaling in supraspinal sites driving negative affective states
under pain conditions, the development of KOPR antagonists
may yield promising therapeutic potential for the treatment or
prevention of neuropsychiatric disorders comorbid with pain
(Ghozland et al., 2002; Liu et al., 2019; Escobar et al., 2020;
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Ji et al., 2021; Cahill et al., 2022b). Buprenorphine is a KOPR
antagonist/partial agonist, a partial MOPR and NOPR agonist,
and DOPR antagonist with higher efficacy in the periphery
than centrally (Bloms-Funke et al., 2000; Lutfy and Cowan,
2004). As such, this treatment provides higher levels of analgesia
while sparing many of the negative side-effects associated with
traditional opioid medications (Cowan et al., 1977; Lutfy and
Cowan, 2004; Koppert et al., 2005; Gudin and Fudin, 2020).
The ability of buprenorphine to reduce depressive symptoms
has been demonstrated in patients with treatment resistant
depression (Karp et al., 2014) and patients with comorbid
depression and OUD (Yovell et al., 2016; Ahmadi et al., 2018a).
Adding further support to this strategy, buprenorphine is also
effective in reducing pain severity in experimentally-induced
pain (Koppert et al., 2005) and pain patients (Pergolizzi and
Raffa, 2019; Gudin and Fudin, 2020). In patients with OUD
and pain symptoms, combinatorial therapeutic approaches
with buprenorphine and naloxone can effectively reduce pain
severity (Worley et al., 2017, 2015; Shulman et al., 2020). The
ability of similar strategies to curb opioid use and craving are
less consistent (Blondell et al., 2010; Ahmadi et al., 2018b;
Parida et al., 2019). However, evidence suggests that the
efficacy of buprenorphine as a substitution therapy for OUD
is dependent on the dose and rate of tapering (Walsh et al.,
1994; Sturgeon et al., 2020), but concerns remain for the
potential for abuse (Cicero et al., 2018). To advance KOPR
targeting strategies, it will be critical for future research to
dissociate the analgesic properties of spinal KOPR and the
emotional component of pain mediated by supraspinal KOPR.
Biased ligands and peripherally restricted pharmacotherapeutics
targeting KOPR will be important developments for treating the
mood disruptions in the context of pain.

δ Opioid receptor

The DOPR system plays an important role in pain, analgesia,
and negative affective states (Quirion et al., 2020). Similar
to KOPR, the functional role of the DOPR system may be
selectively dependent on pain states. In rodent models of
inflammatory or neuropathic pain, DOPR expression increases
in the dorsal horn of the spinal cord and DRG neurons
(Cahill et al., 2003; Morinville et al., 2004a; Kabli and Cahill,
2007). The recruitment of DOPR in pain conditions appears
to have an inhibitory influence over nociception because
genetic deletion of DOPR, but not MOPR, exacerbates and
prolongs thermal and mechanical sensitivity in mice with
inflammatory pain (Gavériaux-Ruff et al., 2008). Similarly,
conditional knock-out of DOPR in the peripheral nociceptive
neurons exacerbates mechanical sensitivity in conditions of
inflammatory or neuropathic pain (Gaveriaux-Ruff et al.,
2011). Moreover, systemic, or local DOPR agonism effectively
reduces mechanical and thermal hyperalgesia in wild-type, but

not DOPR knock-out, mice, adding further support to the
anti-nociceptive role of DOPR (Gaveriaux-Ruff et al., 2011).
Importantly, the role of DOPR in nociception is dependent on
the presence of pain. In the absence of pain, DOPR activity has
negligible effects on analgesia; but in the presence of neuropathic
or inflammatory pain, DOPR agonists can reduce thermal and
mechanical pain sensitivity (Cahill et al., 2001; Gendron et al.,
2007a,b; Normandin et al., 2013). DOPR agonists have also
been shown to attenuate migraine associated-pain in preclinical
models via signaling through calcitonin gene-related peptide
(Moye et al., 2021). The weak antinociceptive effects of DOPR
agonists in pain naïve animals results from low levels of DOPR
expression in plasma membrane. In conditions of pain, the
density of DOPR increases at the membrane and cell surface in
spinal cord regions and DRG neurons (Quirion et al., 2020). The
ability of pain to increase DOPR trafficking is a potential cellular
mechanism to explain the pain selective analgesic properties of
DOPR agonists. DOPR trafficking is controlled by constitutive
pathways involving dynamic remodeling of actin filaments of
the cytoskeleton (Mittal et al., 2013) or regulated signaling
pathways involving G-protein receptor kinases (GRKs) (Quirion
et al., 2020), but the precise mechanisms of DOPR trafficking
remain unclear. The DOPR system can modulate nociceptive
components of pain not only through neuronal mechanisms,
but astrocytic mechanisms as well. For example, deletion of
astrocytic DOPR decreases cold allodynia in neuropathic pain
while mechanical allodynia is not affected (Reiss et al., 2021).
In contrast, DOPR activity in somatostatin-expressing neurons
of the dorsal horn of the spinal cord can reduce mechanical,
but not thermal, sensitivity in neuropathic pain models (Wang
et al., 2018). Therefore, DOPR can modulate distinct elements
of the nociceptive experience based on their activity in different
cellular populations.

The DOPR system has also received a lot of attention for
its role in emotional regulation of mood disorders like anxiety
and depression. For example, genetic ablation of DOPR or
DOPR antagonists has anxiogenic effects in animal models,
while DOPR agonists produce opposite effects (Filliol et al.,
2000; Saitoh et al., 2005; Narita et al., 2006a,b; Perrine et al.,
2006; Bilkei-Gorzo et al., 2007; Chu Sin Chung and Kieffer,
2013). Similarly, DOPR agonists are associated with higher
latency for immobility in the forced swim task, a measure of
depressive-like behavior in rodent models (Filliol et al., 2000;
Jutkiewicz et al., 2006; Torregrossa et al., 2006), suggesting that
pain-related recruitment of DOPR may function to offset mood
dysregulation in pain. Unlike MOPR, DOPR activity is not
rewarding in the absence of pain. DOPR agonists can elicit CPP
in mice with peripheral nerve injury, but not sham controls,
while DOPR antagonists selectively produce CPA in mice with
pain (Cahill et al., 2022a). This demonstrates the pain state-
dependent role of DOPR and suggests that DOPR activation acts
as negative reinforcer by alleviating pain rather than producing
positive reinforcement.
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Given the ability of the DOPR system to modulate analgesic
responses and negative affect while sparing any properties that
may lead to abuse, DOPR have been investigated for their
potential role in curbing opioid use (Quirion et al., 2020).
Exogenous opioid exposure can regulate DOPR trafficking in a
similar way to the induction of pain. For example, morphine
exposure increases DOPR expression at the cell surface of
DRG or cortical neurons (Cahill et al., 2001; Morinville
et al., 2004b; Gendron et al., 2006). DOPR may also play
an important role in the development of analgesic tolerance
to exogenous opioids because genetic deletion of DOPR or
DOPR antagonists can prevent the development of analgesic
tolerance to morphine (Zhu et al., 1999; Abul-Husn et al.,
2007; Beaudry et al., 2015). However, the role of DOPR in
regulating opioid reward is less clear. DOPR knock-out or
DOPR antagonists can facilitate morphine-induced locomotor
sensitization (Chefer and Shippenberg, 2009; Billa et al., 2010),
a measure of drug responsivity manifesting after repeated drug
exposures. However, similar DOPR manipulations have been
shown to reduce morphine CPP (Chefer and Shippenberg, 2009;
le Merrer et al., 2009, 2011; Billa et al., 2010). These effects may
not be attributed to reductions in opioid reinforcement, per se,
as these manipulations fail to alter morphine self-administration
(David et al., 2008; le Merrer et al., 2011). Instead, DOPR may
play an important role in drug-cue associated learning.

DOPR signaling is necessary for cued value-based decisions
making, particularly within the NAc shell (Laurent et al., 2014,
2012). This effect is driven by distinct anatomical regulation of
DA transmission in the NAc by DOPR (Saigusa et al., 2017),
such that DOPR agonists in the NAc core increase extracellular
DA, while decreasing DA release in the NAc shell (Hirose
et al., 2005; Hipólito et al., 2008; Saigusa et al., 2017). Adding
another layer of complexity to DOPR-mediated effects on DA
release, is that distinct DOPR subtypes (DOPR-1 and DOPR-2)
can differentially regulate DA release through their interactions
with MOPR. While stimulation of either subtype can have an
inhibitory influence over MOPR-mediated slow increases DA
release, the precise mechanisms underlying these effects are
less clear. For example, stimulation of DOPR-1, not DOPR-
2, can activate MOPR causing rapid increases in extracellular
DA. However, DOPR agonists can also facilitate DA release
independent of MOPR or DOPR, possibly by regulating sodium
channel activity (Murakawa et al., 2004; Hirose et al., 2005;
Saigusa et al., 2017). In contrast, DOPR-2, not DOPR-1, may
play an important role in the development of analgesic tolerance
(Beaudry et al., 2015). Future research delineating the precise
role of DOPR in mesolimbic circuits will be crucial to exploit
on the therapeutic potential of targeting the DOPR system
for pain and opioid abuse. Interestingly, gene polymorphisms
to the DOPR encoding gene have been linked with increased
risk for drug dependence, further strengthening the need for
untangling the DOPR system from the behavioral to the genetic
level (Zhang et al., 2008; Crist et al., 2013). Moreover, because

DOPR agonists have lower abuse liability than MOPR agonists
(Stevenson et al., 2005), the DOPR system may represent a
useful target for managing pain states during long-term opioid
therapy. While the analgesic properties and anxiolytic effects
of DOPR agonists are desirable for improving mood states
of chronic pain patients, it should be noted that activation
of DOPRs can lead to convulsions which may limit their
clinical utility (Pradhan et al., 2011). As such, advancing clinical
use of DOPR-based ligands will likely be dependent on the
development of biased-ligands or dimer-specific drugs capable
of DOPR heteromized with other GPCRs (Chu Sin Chung and
Kieffer, 2013). Nevertheless, the DOPR system represents a
promising target for the development of chronic pain therapies
with improved analgesia and minimal unwanted side-effects
attributed to traditional opioid medications.

Nociceptin/orphanin FQ opioid
receptor

The role of the NOPR system in pain is complex (Toll et al.,
2016). In animal models of inflammatory pain, neuropathic
pain, and fibromyalgia, NOPR expression and respective
endogenous peptide, nociceptin/orphanin FQ (N/OFQ), are
upregulated in DRG neurons, spinal tissue, and supraspinal
sites (Andoh et al., 1997; Briscini et al., 2002; Dagnino
et al., 2019). The ability of NOPR to regulate nociception
is related to crosstalk between the NOPR system and stress
systems and anatomical distinctions in NOPR function in
spinal versus supraspinal sites. Early studies found that
intracerebroventricular administration of N/OFQ reduced hot
plate and tail flick latencies, suggesting a pro-nociceptive role
of supraspinal NOPR activity (Meunier et al., 1995). However,
subsequent studies determined that this pro-nociceptive effect
was solely related to stress-induced analgesia (Mogil et al.,
1996a,b; Morgan, 1997; Rizzi et al., 2001, 2007), a phenomenon
triggering the release of endogenous opioids. The pro-
nociceptive effects supraspinal N/OFQ are driven partially by
antagonistic effects at MOPR, DOPR, and KOPR (Mogil et al.,
1996a,b) as well as non-opioid components of stress-induced
analgesia (Rizzi et al., 2001). On the contrary, intrathecal
administration of N/OFQ produces anti-nociceptive effects and
potentiates the effects of morphine (Xu et al., 1996; Yamamoto
et al., 1997), indicating the role of NOPR signaling in pain
is anatomically specific. Intrathecal administration of N/OFQ
or NOPR agonists reduce pain sensitivity in animal models of
neuropathic and inflammatory pain (Hao et al., 1998; Ko and
Naughton, 2009; Tzschentke et al., 2017). Similar effects are
observed with systemic NOPR agonists on mechanical allodynia
in preclinical models of cancer-induced bone pain (Sliepen et al.,
2021).

NOPR function also varies depending on the persistence
of pain. Genetic deletion of NOPR does not alter acute pain
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sensitivity but exacerbates hyperalgesic responses in conditions
of persistent inflammatory pain (Depner et al., 2003; Rizzi et al.,
2011). However, significant differences in NOPR supraspinal
distribution and localization is observed between species,
particularly between preclinical animal models and non-human
primates/humans (Florin et al., 2000; Berthele et al., 2003). As
such, the effects of NOPR manipulations in preclinical models
of pain may not directly translate to clinical populations (Spetea
et al., 2022). Because cellular adaptations within the NOPR
system and anatomical distribution of NOPR vary across species
and different pain models, future research is required to uncover
how recruiting/silencing NOPR signaling can efficiently treat
pain symptoms in a more individualized setting.

When considering the clinical utility of targeting the
NOPR system for treating opioid abuse in pain patients, it is
important to highlight that NOPR activity is neither rewarding
nor aversive (Devine et al., 1996). This significantly adds to
the therapeutic potential of targeting the NOPR system since
NOPR manipulations mitigate abuse potential while sparing
negative side-effects. NOPR agonists reduce extracellular release
of DA in the NAc (Murphy et al., 1996; Lutfy et al., 2001a),
suggesting an inhibitory influence of NOPR activity over
drug reward. Indeed, intracerebroventricular administration
of N/OFQ or NOPR agonists block the acquisition of
CPP for morphine, cocaine, alcohol, and methamphetamine
(Ciccocioppo et al., 2000; Kotliñska et al., 2002, Kotlinska
et al., 2003; Sakoori and Murphy, 2004; Zaveri et al., 2018).
This evidence further solidifies the therapeutic potential of
the NOPR system in mitigating opioid abuse and substance
use disorders in general. Recent studies found that local
administration of N/OFQ in the central amygdala attenuates
escalation of oxycodone self-administration (Kallupi et al.,
2020). These effects may be attributed to site-specific NOPR
regulation as intracerebroventricular administration of N/OFQ
fails to reduce heroin self-administration (Walker et al.,
1998.). Further adding to this complexity is that the effects
of NOPR manipulations have inconsistent effects on alcohol
self-administration (Ciccocioppo et al., 1999, 2004; Kuzmin
et al., 2004; Economidou et al., 2008). One possibility is that
NOPR function may be important for drug-associated memory
formation given that NOPR activity can negatively impact
memory (Moulédous, 2019). In this regard, NOPR activity may
impact the formation of drug-context association (conditioned
place preference) rather than impact drug reinforcement and
thus, instrumental drug-seeking behavior. This would align
with findings demonstrating that NOPR agonists effectively
block the acquisition of morphine CPP, but not its expression
(Shoblock et al., 2005). The precise mechanisms underlying
the effects of pain and opioid use on NOPR function remain
unclear, but emerging evidence indicates that NOPR agonists,
like cebranopadol, have high analgesic efficacy in chronic pain,
delayed development of analgesic tolerance, and lower abuse
potential (Linz et al., 2014; Tzschentke et al., 2019). Therefore,

it will be important for ongoing research endeavors to fully
characterize the role of NOPR in the context of pain and opioid
misuse liability and determine whether this opioid system is a
therapeutic target with clinical utility.

Opioid system dysfunction by
exogenous opioids

Chronic exogenous opioid use can lead to the development
of tolerance, a progressive decrease in opioid efficacy which
can be mitigated by increasing opioid doses (Lee et al., 2011).
Pain patients on long-term opioid therapy typically require
increasing doses of opioids to achieve the same level of analgesia
(Williams et al., 2001; Zernig et al., 2007; Hayes et al., 2020).
In addition to analgesia, tolerance to other opioid-induced
effects, like euphoria, sedation, nausea, respiratory depression,
and constipation, can also develop over time, albeit not at
the same rate (Hayhurst and Durieux, 2016). For example,
the development of analgesic and euphoric tolerance occurs
on a faster time scale than tolerance to respiratory depression
(Ling et al., 1989; Volkow et al., 2018), which contributes
to the heightened risk of overdose for opioid users with
escalating opioid doses (Kaplovitch et al., 2015; Hayes et al.,
2019, 2020). Furthermore, the rate at which tolerance develops
often depends on genetic variability and differential responses
to different opioid ligands, duration of exposure, and route of
administration (Dumas and Pollack, 2008; Ballantyne and Koob,
2021).

Tolerance

The development of tolerance stems from desensitization
of the opioid system and inflammatory immune responses
within peripheral and central nervous systems (Zhu et al.,
1999; Dumas and Pollack, 2008; Koch and Höllt, 2008; Matsui
et al., 2014; Corder et al., 2017; Lueptow et al., 2018; Eidson
and Murphy, 2019). Following activation, opioid receptors
can be phosphorylated by GPCR kinases, which triggers
G-protein uncoupling and binding of β-arrestins (Dumas
and Pollack, 2008; Zhou et al., 2021). β-arrestin pathway
signaling causes desensitized receptors to remain inactive
at the plasma membrane, facilitates their endocytosis and
subsequent degradation or recycling. As such, these cellular
mechanisms represent a critical component in facilitating the
development of tolerance at multiple levels (Hutchings et al.,
1997; Bohn et al., 2000; Koch and Höllt, 2008; Zhou et al., 2021).
Biased agonists, that preferentially activate G-protein signaling
cascades with minimal β-arrestin pathway activity, have received
great interest as therapeutic alternatives with the thought that
such ligands may minimize the development of tolerance and
other unwanted side-effects (Ballantyne and Chavkin, 2020). In
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mice with genetic deletion of the β-arrestin2 isoform, acute
morphine prolongs analgesia while reducing the unwanted
side-effects of respiratory depression and constipation, while
chronic morphine treatment reduces MOPR desensitization
and the development of tolerance (Bohn et al., 1999, 2000;
Raehal et al., 2011). These findings led to the development of
functionally selective MOPR agonists, like oliceridine, which
exhibit preference for G protein-biased signaling and produce
less respiratory depression in preclinical models compared
to non-selective agonists (DeWire et al., 2013). However,
subsequent studies found that opioid-induced respiratory
depression and constipation may occur independent of β-
arrestins (Kliewer et al., 2020) and G-protein selectivity may
worsen some side effects (Kliewer et al., 2019). Although
negative side-effects remained during clinical trials (Hertz,
2018), the risk for respiratory depression with oliceridine was
lower than morphine (Dahan et al., 2020). Similar findings
were found for another biased-MOPR agonist, PZM21 (Graeme
Henderson et al., 2018), further highlighting the need to better
understand biased opioid ligand signaling mechanisms and their
role tolerance.

NOPR signaling appears to play facilitative role in the
development of tolerance in the context of pain. As previously
mentioned, NOPR expression increases after the induction of
pain in spinal and supraspinal sites (Andoh et al., 1997; Briscini
et al., 2002; Dagnino et al., 2019) which, under conditions of
chronic pain, can suppress hyperalgesic responses (Depner et al.,
2003; Rizzi et al., 2011). Based on this, it is somewhat surprising
that N/OFQ potentiates the development of opioid tolerance.
Genetic ablation of the endogenous peptide, nociceptin, N/OFQ,
its receptor (NOPR), or blocking NOPR signaling using an
exogenous antagonist, prevents and reverses the development of
morphine tolerance (Ueda et al., 1997; Lutfy et al., 2001b; Chung
et al., 2006; Scoto et al., 2010). These likely are attributed to
the antagonistic properties of N/OFQ at other opioid receptors
(Mogil et al., 1996b). NOPR can also undergo desensitization
after chronic or acute stimulation (Donica et al., 2013). While
these findings suggest that pain-induced upregulation of the
NOPR system underlies attenuated analgesic responses to
exogenous opioids, they also suggest that targeting the NOPR
system may be a useful target to treat vulnerabilities in opioid
tolerance, escalation, and abuse in pain patients.

The development of tolerance can also develop in response
to the recruitment of neuroinflammatory mediators. Long-
term opioid use triggers neuroinflammatory responses in the
CNS to increase neuronal excitability which can contribute
to tolerance (Eidson and Murphy, 2019; Zhang et al., 2020;
Zhou et al., 2021). In particular, the ventrolateral PAG
(vlPAG) is a critical hub in which descending control over
nociceptive signaling is negatively affected by chronic opioid
use. Chronic intra-vlPAG opioid agonist administration is
sufficient to produce tolerance to systemically administered
opioids. Similarly, blocking vlPAG opioid receptor-mediated

signaling can prevent the development of tolerance to chronic
systemic administration of exogenous opioids (Lane et al., 2004;
Morgan et al., 2006; Meyer et al., 2007; Loyd et al., 2008; Macey
et al., 2009; Bobeck et al., 2012; Eidson and Murphy, 2019).
Opioid-induced activation of toll-like receptor 4 (TLR4) in
astrocytes and microglia within the spinal cord or PAG triggers
inflammatory responses through activation of nuclear factor
kappa B (NFκB) and the release of pro-inflammatory cytokines
such as tumor necrosis factor α (TNFα) and interleukins, IL-1β

and IL-6 (Raghavendra et al., 2002; Eidson et al., 2016; Liang
et al., 2016; Eidson and Murphy, 2019; Wang et al., 2020). This
release in cytokines leads to down-regulation of GABA receptors
resulting in increased function of glutamate receptor systems.
Consequently, hyper-excitability in nociceptive pathways acts to
oppose the analgesic actions of opioids, resulting in tolerance
(DeLeo et al., 2004; Eidson and Murphy, 2019; Zhou et al.,
2021). Based on the role of cytokines in opioid tolerance,
significant efforts have been directed toward the development of
treatments that may inhibit opioid-induced cytokine production
(Namba et al., 2021). For example, manipulations inhibiting
TNF signaling through TLR4 can prevent morphine tolerance
and associated hyperexcitability (Shen et al., 2011; Eidson
et al., 2016; Wang et al., 2020). As such, modulation of TNF
signaling represents a promising adjunctive therapy to curb
the development of opioid tolerance. Taken together, opioid
tolerance manifests through adaptations to endogenous opioid
and inflammatory systems, but a better understanding of the
relationship between these systems will facilitate our ability to
identify novel therapeutic targets to overcome the development
of opioid tolerance.

Opioid-induced hyperalgesia

In contrast to the development of tolerance, chronic opioid
use can also result in opioid-induced hyperalgesia (OIH), a
paradoxical increase in pain sensitivity either at the initial
source of pain or elsewhere (Chu et al., 2008; Hay et al.,
2009; Roeckel et al., 2016). While the phenomenon of tolerance
represents a reduction in drug potency and creates a rightward
shift in analgesic opioid dose response curves, OIH increases
pain sensitivity modeled by a significant downward shift in
analgesic dose response (Chu et al., 2008). It is, thus, distinct
from tolerance in that escalating opioid doses may exacerbate
the development of OIH in the long-term. However, both
tolerance and OIH are associated with hyperexcitability in
glutamatergic systems and up-regulation of pro-inflammatory
molecules at spinal synapses and supraspinal regions, like
the RVM (Bederson et al., 1990; Kaplan and Fields, 1991;
Kovelowski et al., 2000; Vanderah et al., 2001). OIH is a pro-
nociceptive process that can be observed independently of
tolerance through acute exposure to ultra-low opioid doses.
However, the development of OIH is more often observed after
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the development of tolerance, following chronic exposure to
higher, analgesic doses (Drdla et al., 2009; Silverman, 2009; Lee
et al., 2011; Hayhurst and Durieux, 2016; Roeckel et al., 2016).

Opioid-induced hyperalgesia is driven by cellular
adaptations in pronociceptive signaling pathways, particularly
within glutamatergic systems (Lee et al., 2011). Opioid
agonists increase cellular excitability underlying OIH by
inhibiting glutamate transporter systems (Mao et al., 2002).
The resulting abundance in synaptic glutamate can lead to
NMDA receptor-dependent long-term potentiation (LTP) at
primary afferents and second-order spinal neurons resulting
in sensitization of pain signaling pathways (Drdla et al., 2009;
Silverman, 2009; Heinl et al., 2011; Drdla-Schutting et al.,
2012; Roeckel et al., 2016; Corder et al., 2018). Adding to this,
previous reports from our lab found that OIH is driven by
insertion of GluA4-containing AMPA receptors in the dorsal
horn of the spinal cord (Cabañero et al., 2013). Similar to
the development of tolerance, OIH is also associated with
opioid-dependent production and release of nociceptive
signaling molecules from microglia and astrocytes such as
pro-inflammatory cytokines, chemokines, ATP, nitric oxide,
and others detailed elsewhere (Chu et al., 2008; Lee et al., 2011;
Roeckel et al., 2016). Consequent release of the neuropeptide,
cholecystokinin (CCK) in the RVM has been shown to have
‘anti-opioid’ actions that facilitate pronociceptive pathways
contributing to OIH (Kaplan and Fields, 1991; Kovelowski et al.,
2000; Friedrich and Gebhart, 2003; Heinricher and Neubert,
2004). The NMDA receptor-dependent hyperexcitability
associated with OIH has been targeted in efforts to mitigate
the impact of opioids on central sensitization. For example,
low-dose ketamine (non-selective NMDA receptor antagonist)
administration in conjunction with opioid analgesics can
prevent the development of OIH in animal models and clinical
patients with postoperative pain (Célèrier et al., 2000; Maher
et al., 2017). Similarly, methadone, a potent MOPR agonist
and weak NMDA receptor antagonist, has been examined as
a substitute for opioid therapies and can effectively reduce
opioid-induced OIH (Sjøgren et al., 1994; Shimoyama et al.,
1997; Davis and Inturrisi, 1999; Axelrod and Reville, 2007).
While the efficacy of methadone maintenance treatment
(MMT) is less reliable in patients with opioid dependence
or a prior history of abuse, MMT reduce instances of heroin
use, drug craving, and criminal activity (Dole and Nyswander,
1965, 1976; Shi et al., 2008; Mattick et al., 2009; Ward et al.,
2009; Lee et al., 2011). Despite this, moral reservations among
some groups precipitated shifts in the treatment goals initially
outlined for long-term MMT advising sufficient dosing and
instead, goals were centered around achieving abstinence
and using less-than-effective doses, which compromised
treatment outcomes and funding for MMT research (Dole and
Nyswander, 1976; Ward et al., 2009). As such, OIH remains
a barrier to effective treatment with opioids. Further research
delineating the mechanisms mediating the physiological

and behavioral effects of opioids and whether pain affects
these properties will help facilitate the development of novel
and safer pharmacotherapies to improve patient care and
well-being.

Pain, opioids, and reward

The mesolimbic pathway integrates both aversive and
rewarding properties of external stimuli (Bromberg-Martin
et al., 2010). Activation of the mesolimbic pathway by rewarding
stimuli results in phasic DA release from the VTA into
the NAc to reinforce goal-directed behaviors (Fibiger et al.,
1987; Berridge and Robinson, 1998; Becerra and Borsook,
2008; Pignatelli and Bonci, 2015). As described previously,
opioids reliably activate mesolimbic DA pathway and thus
promote motivational salience (Matsui et al., 2014; Galaj
et al., 2020; Doyle and Mazei-Robison, 2021). In conditions of
pain, the ability of opioids to trigger comparable responses is
significantly reduced. Furthermore, the motivational salience
of opioid reward may be driven by hedonic pleasure (positive
reinforcement) or pain relief (negative reinforcement) (Koob,
2020). Similar to exogenous opioids in pain-naïve conditions,
relief from pain itself can elicit increases in DA release and
reinforce motivated behaviors (Martin et al., 2006; Leknes et al.,
2011; Navratilova et al., 2015; Eikemo et al., 2021). As such, the
presence of pain may perpetuate maladaptive patterns of opioid
use.

Pain disrupts mesolimbic DA function contributing to
maladaptive effects on reward processing. Deficits in DA
signaling, or administration of DA receptor antagonists reduce
approach behaviors and hedonic responses to rewarding
stimuli (Frank et al., 2016; Nguyen et al., 2019). In rodent
models of inflammatory and nerve injury pain, motivated
behaviors for natural and drug rewards, such as opioids, are
significantly impaired (Schwartz et al., 2014; Hipólito et al.,
2015; Taylor et al., 2015; Massaly et al., 2019). This pain-
induced decrease in motivation is strongly correlated with
blunted DA signaling in the mesolimbic pathway (Cahill
et al., 2013; Schwartz et al., 2014; Hipólito et al., 2015).
These findings parallel clinical studies in which pain-induced
negative emotional states positively correlates with reductions
in DA neurotransmission and maladaptive changes in NAc
function (Lee and Tracey, 2010; Jarcho et al., 2012; Martikainen
et al., 2015; Makary et al., 2020). Importantly, pain-related
alterations in DA signaling are also associated with deficits
in emotional and sensory processing. For example, deficits in
DA receptor binding potential in the NAc are observed in
patients with lower back pain, which can predict the severity
of negative affect and pain (Baliki et al., 2010; Martikainen
et al., 2015). In line with this, DA transporter activity, a
mechanism important for clearing DA from the synaptic cleft, is
increased in the NAc of animal models of chronic neuropathic
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or inflammatory pain (Ren et al., 2015, 2021; Selley et al.,
2020). Moreover, morphine-induced DA release in the NAc is
suppressed by sciatic nerve ligation (Niikura et al., 2008). These
changes in mesolimbic DA function strongly impact reward
thresholds which may contribute to pain-related occurrences
of negative affect and enhanced vulnerability for opioid abuse
(Massaly et al., 2019, 2021). Supporting this, pain patients
are more likely to initiate and continue opioid treatment
if they have a cooccurring mood disorder (Halbert et al.,
2016).

Opioid abuse susceptibility in pain states is likely
exacerbated by a rightward shift in opioid reinforcement
thresholds due to pain-related deficits in mesolimbic pathway
function. In lower back pain patients, the propensity for risky
monetary behavior is associated with altered connectivity
of the NAc (Berger et al., 2014). The severity of pain is
also associated with increased impulsivity in humans and
rodent models (Wakaizumi et al., 2019; Cunha et al., 2020).
These would suggest that pain patients are predisposed to
developing problematic opioid use. Although it is recognized
that chronic pain patients receiving prescription opioids are
at high risk for opioid dependence (Ballantyne, 2015), the
prevalence of maladaptive opioid use in pain patients has
been difficult to determine based on confounding outcome
measurements (i.e., mortality) and imprecise or poorly defined
terminology (i.e., “abuse,” “misuse,” “addiction”) (Vowles et al.,
2015). Opioid “misuse,” or use contrary to the prescribed
pattern, occurs in up to 29% of pain patients receiving opioid
medications while “addiction,” or continued use despite
negative consequences, can occur in up to 12% (Vowles et al.,
2015). Opioid “abuse,” or aberrant drug taking behavior often
predictive of maladaptive opioid use has been reported in
46–81% of pain populations (Butler et al., 2004; Wilsey et al.,
2008; Vowles et al., 2015). However, there remains a general
consensus that high-quality research on this relationship is
lacking (Ballantyne, 2015; Voon et al., 2017; Nadeau et al.,
2021). Nevertheless, qualitative evidence from clinical literature
indicates that negative outcomes associated with opioid use
can be instigated by pain severity (Grol-Prokopczyk, 2017;
Zajacova et al., 2021), duration of opioid use (Chung et al.,
2019; Jantarada et al., 2021), escalating opioid doses (Zernig
et al., 2007; Kaplovitch et al., 2015), comorbid anxiety and
depression (Peciña et al., 2018; Emery and Akil, 2020; Rogers
et al., 2020), discontinuation of opioid medications (Mark
and Parish, 2019; Stein et al., 2021), and inherent risk factors
like sex (Manubay et al., 2015; McHugh, 2020) or genetics
(Kendler et al., 2003; Agarwal et al., 2017). Evidence from
patients with pain and long-term opioid use have been critical
in identifying potential risk factors for maladaptive opioid
use but have yielded minimal impacts on either public health
concern.

Determining the level of synergy between pain, long-term
opioid use, and opioid misuse can be difficult for many reasons,

but preclinical pain models of opioid self-administration
provide a translational means to better understand how
pain may provoke motivational shifts to alter opioid misuse
liability. Although pain-induced dysfunction of mesolimbic
reward pathways produces clear deficits in motivation for
natural rewards (Massaly et al., 2019, 2021; Reiner et al.,
2019), the effects of pain on opioid motivation are more
complex. Evidence from self-administration studies suggest
that the ability of pain to effect opioid self-administration is
related to the chronicity of pain, selected opioid/dose, and
the duration of daily opioid exposure. For example, chronic
arthritic pain has biphasic effects on rates of oral fentanyl
self-administration, that interestingly, follow the time-course
of pain progression (Colpaert et al., 2001, 1982). Specifically,
one week after the onset of pain there are no effects on
fentanyl consumption but, during successive weeks, fentanyl
intake dramatically increases—peaking at 2–3 weeks – and
declines to baseline levels several weeks later. Importantly,
the time course of fentanyl consumption rates parallels the
time course of progressive pain sensitivity (Colpaert et al.,
1982, 2001). Similarly, spinal cord injury has time-dependent
effects on long-access morphine self-administration in rats.
In this regard, pain reduces morphine intake 24 h after
the induction of pain, then peaks at 14–21 days before
normalizing 35–42 days later (Woller et al., 2014). These
findings indicate that the persistence of pain is an important
driver of opioid consumption. Adding further support to this,
acute pain manipulations with capsaicin or lactic acid do
not alter rates of fentanyl or heroin self-administration, but
persistent inflammatory pain-induced reductions in fentanyl
vs. food choice procedures match controls by one week after
the induction of pain (Reiner et al., 2021). Notably, a small
study found that arthritic pain reduced self-administration
of relatively high doses of morphine with 24-h access for
weeks following pain onset (Lyness et al., 1989) while another
found that multiple forms of chronic pain attenuated oral
fentanyl self-administration and discrimination in mice (Wade
et al., 2013). These findings allude to the notion that pain
may produce a shift opioid dose-response. Consistent with
this, our lab found that inflammatory pain reduces heroin
intake at low doses, but increases intake when doses are high
(Hipólito et al., 2015). Our findings suggest that these effects
are driven by deficits in VTA DA cell excitability (Hipólito
et al., 2015) and this is exemplified by evidence showing
that pain reduces the ability of low-dose opioids to facilitate
VTA intracranial self-stimulation (Ewan and Martin, 2011).
Spinal nerve ligation also produces a rightward shift in dose-
response for multiple opioids, but the time-dependency of
these effects has not been examined (Martin et al., 2007).
Taken together, evidence from preclinical pain models of
opioid abuse suggest that chronic pain can increase motivation
for high opioid doses in a time-dependent manner that
parallels the progression of pain. It will be important for
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future studies to evaluate whether the time- and dose-dependent
effects of pain on opioid consumption are related to time-
dependent disruptions in mesolimbic pathway function.

Conclusions

Pain conditions, chronic opioid use, and withdrawal from
chronic opioid use disrupt the endogenous opioid system
function at spinal and supraspinal levels to negatively impact
pain thresholds, opioid sensitivity, mood, and reward sensitivity.
These physiological and behavioral alterations, particularly
among opioid systems and mesolimbic reward pathways, may
contribute to persistent use of opioid medications in an attempt
to alleviate adverse physical and emotional states, thereby
creating a susceptibility for opioid misuse. In addition, other
mediating factors outside the scope of this review contribute
to individual variabilities in pain perception and opioid
sensitivity like sex differences (Huhn et al., 2018; Pisanu et al.,
2019), genetic (Tremblay and Hamet, 2010; Mogil, 2012), and
epigenetic mechanisms (Liang et al., 2015; Browne et al., 2019)
and likely influence proclivity for opioid abuse in the context
of pain. Neuroadaptive processes produced by pain conditions
and long-term opioid use have compounding effects on negative
outcomes, like the development of tolerance or opioid-induced
hyperalgesia. An understanding of the synergy between these
processes remains incomplete, but the ability to curb the opioid
crisis and the prevalence of pain relies heavily on the ability to
identify safer pharmacotherapeutic alternatives derived from a
better comprehension of pain- and opioid-induced adaptations
to opioid systems and functional neurocircuitry.
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United States, 5Center for Systems Neuroscience, Boston University, Boston, MA, United States

Despite the prevalence of opioid misuse, opioids remain the frontline

treatment regimen for severe pain. However, opioid safety is hampered by

side-effects such as analgesic tolerance, reduced analgesia to neuropathic

pain, physical dependence, or reward. These side effects promote

development of opioid use disorders and ultimately cause overdose deaths

due to opioid-induced respiratory depression. The intertwined nature of

signaling via µ-opioid receptors (MOR), the primary target of prescription

opioids, with signaling pathways responsible for opioid side-effects presents

important challenges. Therefore, a critical objective is to uncouple cellular

and molecular mechanisms that selectively modulate analgesia from those

that mediate side-effects. One such mechanism could be the transactivation

of receptor tyrosine kinases (RTKs) via MOR. Notably, MOR-mediated side-

effects can be uncoupled from analgesia signaling via targeting RTK family

receptors, highlighting physiological relevance of MOR-RTKs crosstalk. This

review focuses on the current state of knowledge surrounding the basic

pharmacology of RTKs and bidirectional regulation of MOR signaling, as

well as how MOR-RTK signaling may modulate undesirable effects of

chronic opioid use, including opioid analgesic tolerance, reduced analgesia
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to neuropathic pain, physical dependence, and reward. Further research is

needed to better understand RTK-MOR transactivation signaling pathways,

and to determine if RTKs are a plausible therapeutic target for mitigating opioid

side effects.

KEYWORDS

mu-opioid receptor, opioid signaling, pain, tolerance, neuropathic pain, physical
dependence, reward, receptor tyrosine kinase

Introduction

The opioid epidemic has reached unprecedented
proportions globally. In the United States alone, overdoses
caused by opioids have claimed the lives of over hundreds of
thousands of people, with rates of lethal overdoses expected to
double in the next five years (Holland et al., 2021; Pickard and
Lee, 2021). Prescription opioids are major contributors to the
current opioid crisis, despite serving as the mainstay treatment
for severe and chronic pain. Safe use of opioids is hampered by
potentially severe side-effects including respiratory depression
and the development of dependence and addiction (Benyamin
et al., 2008; Pattinson, 2008; Henry et al., 2015; Hayhurst and
Durieux, 2016; Algera et al., 2019). Emergence of these side-
effects is promoted by escalating doses of opioids in chronic
pain patients to mitigate the development of analgesic tolerance
(Collett, 1998; Benyamin et al., 2008; Henry et al., 2015). High
opioid doses are also necessary in neuropathic pain patients to
overcome the minimal analgesic efficacy of current opioid-based
therapies (Przewlocki and Przewlocka, 2001; Balayssac et al.,
2009; Donica et al., 2014; Puig et al., 2020b). Such chronically
high opioid doses promote physical dependence, causing
deleterious physiological symptoms upon opioid withdrawal
(Azolosa et al., 1994; Epstein et al., 2006; Burma et al., 2017), and
ultimately prevents the discontinuation of opioid treatment.
As a result, patients are forced to choose between effective
pain treatments and the risk of physical dependence and/or
addiction. With high doses, patients also risk developing
respiratory depression (decreased respiration), the main cause
of overdoses death (Pattinson, 2008; Algera et al., 2019). Opioid
addiction has resulted in severe social and steep economic
costs of hundreds of billions of dollars annually (The Council
of Economic Advisers, 2017) and spurred a growing effort
on finding new strategies to treat pain effectively and safely.
One focus is toward finding a safe and “ideal” analgesic drug
that would be free of addiction potentiating side-effects and
have a low lethality. Unfortunately, to date, no safer alternative
with equal analgesic efficacy to opioids has been found (Stuart
et al., 2018). Many other proposed strategies involve reducing
opioid dosage by locally targeting injured tissue (and limit
central penetration), or reducing opioid prescriptions including

establishing multimodal pain treatment regimens (as opposed
to opioid monotherapy), opioid prescription monitoring, and
restricted prescribing guidelines (Saloner et al., 2018; Mir
et al., 2019; Franz et al., 2021). Yet this has not been enough.
Therefore, it is imperative to continue efforts toward preserving
long-term opioid analgesia, while mitigating side-effects. To
this end, a better understanding of the molecular mechanisms
underlying opioid signaling is needed.

Opioid receptors currently characterized include µ-opioid
receptor (MOR), κ-opioid receptor (KOR), δ-opioid receptor
(DOR), and opioid receptor like-1 (ORL1). These opioid
receptors (ORs) belong to the class A (rhodopsin family) family
of G protein-coupled receptors (GPCRs) which are coupled
to inhibitory Gαi/o G proteins. These GPCRs function to
reduce neuronal excitability primarily by increasing potassium
conductance and inhibiting voltage-gated calcium channels (Al-
Hasani and Bruchas, 2011). Prescription opioids specifically
modulate analgesia through MOR (Matthes et al., 1996; Loh
et al., 1998), which is concentrated in structures essential
for conductance of pain-related signaling including peripheral
sensory neurons, spinal cord, brainstem and central brain nuclei
(Mansour et al., 1994a,b, 1995a,b; Basbaum et al., 2009; Scherrer
et al., 2009). Activation of MOR expressed on pain processing
neurons via endogenous (e.g., endorphin) or exogenous (e.g.,
morphine or fentanyl) opioids directly inhibits these cells’
activity and controls analgesia (Al-Hasani and Bruchas, 2011).

Mechanisms of opioid analgesic tolerance and side-effects
are still poorly understood (Adhikary and Williams, 2022).
Traditionally, tolerance was thought to occur via the direct
modulation of MOR signaling and trafficking (Williams et al.,
2013). More recent evidence suggests that MOR-mediated
side-effects can be uncoupled from analgesia, suggesting
distinct signaling pathways for opioid-induced side effects
versus analgesia (Puig and Gutstein, 2017; Paul et al.,
2021). Separable pathways suggests that specific therapeutic
strategies can be developed to selectively target side-effects
without altering analgesia. This is further complicated by
the fact that, apart from observational clinical studies, in
contrast to animal experiments, practically no rigorously
controlled clinical trials have unequivocally demonstrated
pharmacodynamic tolerance to opioids in human patients

Frontiers in Systems Neuroscience 02 frontiersin.org

132

https://doi.org/10.3389/fnsys.2022.1059089
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-1059089 November 25, 2022 Time: 15:59 # 3

Gamble et al. 10.3389/fnsys.2022.1059089

(Collett, 1998; Henry et al., 2015), hampering the clinical
translatability of earlier preclinical models.

Though the precise mechanisms for the above opioid-
related signaling pathways remain to be determined, important
clues have emerged which involve the receptor tyrosine kinase
(RTK) family (Wang et al., 2012). More specifically, RTK
signaling selectively regulates analgesic tolerance to MOR
selective agonists (Puig et al., 2020a,b). Emerging evidence
also suggests that RTKs could be involved in reduced opioid
analgesia against neuropathic pain (Donica et al., 2014; Puig
et al., 2020b), physical dependence (Rezamohammadi et al.,
2020; Dorval et al., 2022), and reward (Koo et al., 2014; Fetterly
et al., 2021). Together, these studies suggest that targeting
opioid side-effects with RTK inhibitors could constitute a
promising strategy to improve opioid safety. This review
summarizes current knowledge about signaling interactions and
crosstalk between MORs and RTKs. Furthermore, we discuss
the implications of these mechanisms in opioid-mediated
side-effects, with a focus on tolerance, reduced neuropathic
pain analgesia, physical dependence, and reward. Finally, we
discuss the potential clinical use of RTK inhibitors. Though
RTK inhibitors are FDA-approved cancer chemotherapy drugs
(Karaman et al., 2008; Gialeli et al., 2014; Roskoski, 2018), we
present the possibility that these medications can be repurposed
as a novel therapy for chronic pain and to improve opioid safety.

Overview of mu-opioid receptor
signaling

Brief overview of mu opioid receptor
signaling transduction pathways

As a canonical GPCR, MOR recruits Gαi/o G proteins
upon stimulation. These inhibitory G proteins are composed
of a monomeric αi/o subunit and a dimeric Gβγ complex
and are characterized by their sensitivity to pertussis toxin
(Connor and Christie, 1999). At rest, the G proteins exist as
an inactive Gα/βγ heterotrimeric complex that is GDP-bound.
However, upon receptor activation by opioid ligands, changes
in receptor conformation lead to the dissociation of Gα and Gβγ

subunits via GDP/GTP exchange, which triggers intracellular
signaling through downstream signaling effectors (Figure 1A).
Canonical signaling pathways of Gαi/o include inhibition of
adenylyl cyclase (AC), the enzyme responsible for production
of cyclic adenosine monophosphate (cAMP)—a critical second
messenger of ORs. The resulting decrease in intracellular
cAMP diminishes activity of protein kinase A (PKA) and
PKA-dependent processes including activation of the C-AMP
Response Element-binding protein (CREB) transcription factor.
Gαi/o signaling also positively regulates the activity of G protein-
gated inwardly rectifying potassium (GIRK) channels, causing
cellular hyperpolarization (Navarro et al., 1996). In parallel, Gβγ

negatively regulates Ca2+ currents via inhibition of P/Q-type,
N-type, or L-type Ca2+ channels, further contributing to
overall inhibition of cellular activity (for review see: (Al-Hasani
and Bruchas, 2011; Williams et al., 2013)). To illustrate, in
pain circuitry, release of Gβγ subunits in presynaptic neurons
results in inhibition of N-type Ca2+ channels for negatively
modulating neurotransmitter release, while Gβγ subunits in
postsynaptic neurons activate GIRKs, preventing neuronal
depolarization (Chieng and Christie, 1994; Zamponi et al.,
1997). Together, these mechanisms activated by MOR agonists
result in analgesia via modulation of neuronal transmission
in circuits conveying nociception. Following G protein signal
transduction, G protein receptor kinases (GRKs) are recruited
for phosphorylation of MOR on 11 potential phosphorylation
sites present on the carboxyl terminal domain of the receptor,
including serine (S), threonine (T), and tyrosine (Y) residues
(Doll et al., 2011; Lau et al., 2011). Several GRKs (e.g., GRK2,
GRK3, GRK5, GRK6) selectively phosphorylate different MOR
phosphorylation sites, modulating signal transduction in a
ligand and context-dependent manner (Lemel et al., 2020).
Of note, other kinases, such as protein kinase C (PKC) or
calcium/calmodulin-dependent protein kinase II (CaMKII),
also phosphorylate MOR on selective phosphorylation sites in
a ligand-dependent manner (Kelly et al., 2008). Additionally,
MOR phosphorylation initiates receptor desensitization via
receptor recruitment of β-arrestin2 (Figure 1B; Whistler
and Von Zastrow, 1998; Martini and Whistler, 2007). This
activates clathrin-mediated endocytosis of the MOR-β-arrestin2
complex, resulting in MOR internalization and recycling which
terminates receptor signaling at the plasma membrane. The
MOR-β-arrestin2 complex also recruits specific transduction
signal proteins including kinases such as src, phosphoinositide
3-kinases (PI3K), or Mitogen-Activated Protein Kinases
(MAPK), including extracellular signal-regulated kinases 1
and 2 (ERK 1 and 2), or c-Jun N- terminal Kinases (JNK) 1–3
(Pierce et al., 2001) (for full review of pathways see Williams
et al., 2013; Jean-Charles et al., 2017). Finally, MOR signaling
can be terminated by degradation via ubiquitination pathways
(Chaturvedi et al., 2001; Petäjä-Repo et al., 2001).

Proposed mechanisms of
opioid-mediated side-effects

Mu-opioid receptor signaling is essential for opioids to
induce analgesia and their side-effects, as global deletion of
the gene encoding MOR (Oprm1) completely blocks opioid
analgesia, reward, and physical dependence in rodents (Matthes
et al., 1996; Loh et al., 1998). Indeed, most signaling pathways
downstream of MOR are critical for the development and
maintenance of opioid side-effects (Al-Hasani and Bruchas,
2011; Williams et al., 2013; Allouche et al., 2014; Zhou
et al., 2021). Historically, mechanisms explaining side-effects
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FIGURE 1

Mu-opioid receptor (MOR) signaling transduction pathways, internalization, and recycling. (A) Ligand-activation of MOR activates Gαi/o-induced
inhibition of adenylate cyclase, resulting in decreased intracellular cAMP levels and depleted downstream signaling. Gαi/o also serves to activate
G protein gated inwardly rectifying potassium channels, leading to efflux of potassium ions while βγ heterodimers simultaneously perturb
calcium influx by inhibiting voltage gated calcium channels, overall inhibiting intracellular signaling and cellular activity. (B) Ligand-activation of
MOR also eventually leads to phosphorylation of MOR c-terminal tail by G protein receptor kinases (GRKs), which enables docking of
β-arrestin2 and initiates MOR endocytosis for further receptor degradation or recycling. Note that recruitment of β-arrestin2 can also drive
activation of downstream signaling effectors, including ERK, p38 or JNK pathways.

of morphine were generalized to all MOR ligands, however,
it has been difficult to find a single unifying mechanism that
could explain side-effect profiles shared by all MOR agonists
(Raehal and Bohn, 2011; Raehal et al., 2011; Whistler, 2012).
This is likely since MOR ligands differ in their potencies,
pharmacokinetics, and receptor internalization. Such drug-
specific differences may also lead to varying recruitment of
signaling effectors and pathways (Duttaroy and Yoburn, 1995;
Keith et al., 1996, 1998; Trafton et al., 2000; Bohn et al.,
2004; Kenakin, 2011; Posa et al., 2016; Schmid et al., 2017).
Relatedly, different MOR ligands can stabilize the receptor in
distinct conformations unique to each drug. As a result, different
ligands can preferentially activate distinct signaling cascades
that are biased toward either G protein versus β-arrestin2
pathways (Alvarez et al., 2002; Kenakin, 2011). Biased signaling
downstream of MOR was proposed to drive the distinction
between opioid side-effects and analgesia. In such a model,

β-arrestin2 signaling preferentially mediates opioid-induced
side effects while G protein signaling preferentially mediates
the analgesic properties of these drugs (Bohn et al., 1999,
2000, 2002, 2003, 2004; Raehal and Bohn, 2011; Schmid
et al., 2017). Consequently, much research has focused on
identifying opioid ligands with higher intrinsic efficacy for
stimulating G protein signaling downstream of MOR, while
not triggering activation of the β-arrestin2 pathway (Soergel
et al., 2014; Manglik et al., 2016). Although several G protein-
biased compounds provide efficacious analgesia (Singla et al.,
2019; Viscusi et al., 2019), adverse effects remain (Hill et al.,
2018; Conibear and Kelly, 2019). Additionally, despite different
signaling bias, all prescription opioids cause side-effects such
as tolerance. G protein-biased MOR ligands thus cannot fully
explain the mechanisms responsible for analgesia versus side-
effects (Gillis et al., 2020).

Frontiers in Systems Neuroscience 04 frontiersin.org

134

https://doi.org/10.3389/fnsys.2022.1059089
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-1059089 November 25, 2022 Time: 15:59 # 5

Gamble et al. 10.3389/fnsys.2022.1059089

Ultimately, a major thrust of opioid research is to uncouple
the signaling mechanisms that selectively regulate analgesia
from mechanisms that regulate undesired side-effects. New
approaches proposing mechanisms that may not involve
traditional canonical MOR signaling pathways may be key in
addressing this issue. We propose that RTK signaling may be
a common signaling pathway recruited downstream of MOR
by all opioid agonists beyond their signaling bias. Here, we
will present evidence suggesting that RTK signaling selectively
modulates opioid side-effects but not analgesia. Therefore,
we hypothesize that targeting RTKs offers a novel strategy
to prevent and/or treat opioid side-effects without altering
analgesia a critical objective for the field.

Overview of receptor tyrosine
kinase signaling

Receptor tyrosine kinases are a subclass of tyrosine kinases
expressed at the cell surface which respond with high affinity
to selective soluble polypeptide growth factors, cytokines, and
hormones. RTKs constitute 20 sub-families (Robinson et al.,
2000), including the ErbB family comprising the epidermal
growth factor receptor (EGFR), platelet-derived growth factor
receptor family (PDGFR), vascular-endothelial growth factor
receptor family (VEGFR), tropomyosin receptor family (Trk),
fibroblast growth factor receptor family (FGFR), ephrin receptor

family (EphR), and insulin receptor family (IR) (Table 1).
Structurally, RTKs are composed of single transmembrane
glycoproteins, with the N-terminal extracellular domain
containing the ligand-binding sequence, and the C-terminal
intracellular domain containing multiple tyrosine residues
which form the protein kinase catalytic core of these receptors
(Du and Lovly, 2018; Figure 2). Ligand activation of RTKs
elicits non-covalent oligomerization of monomeric RTKs and
promotes formation of homo- or heterodimers. This process
leads to trans-autophosphorylation (Honegger et al., 1989;
Favelyukis et al., 2001) of key tyrosine residues on the interacting
receptors. This activates downstream signaling via recruitment
of selective docking proteins possessing Src homology-2 (SH2)
and phosphotyrosine-binding (PTB) domains (Pawson, 2004);
SH2 and PTB-domain-containing proteins include insulin
receptor substrate-1 (IRS1), Grb2-associated binder (Gab1),
and FGFR substrate 2 (FRS2α/FRS2β). These downstream
proteins, lacking intrinsic kinase activity, serve as scaffolds to
organize signaling complexes and trigger intracellular signaling
cascades. Most docking proteins like Gab1 can be recruited
by multiple RTKs. However, some are specific to a subset of
receptors. For example, FRS2α and FRS2β are only involved in
FGFR-, and Trk-mediated signaling (Schlessinger, 2000). This
confers activation of specific signaling pathways by different
subsets of RTKs and possibly enables signaling specificity.
Pathways activated following docking protein recruitment
include phospholipase Cγ (PLCγ), phosphoinositide 3-kinases

TABLE 1 Receptor tyrosine kinases identified to modulate opioid-mediated behaviors.

Receptor tyrosine
kinase (RTK)

RTK-MOR
crosstalk

Analgesic
tolerance

Resistance of
neuropathic pain
to opioid analgesia

Opioid
dependence

Opioid reward

Epidermal growth factor
receptor (EGFR)

Belcheva et al., 2001;
Belcheva et al., 2003;
Belcheva et al., 2005;
Miyatake et al., 2009;
Zhao et al., 2013;
Phamduong et al., 2014;
Yang et al., 2021

Puig et al., 2020b Martin et al., 2017; Puig
et al., 2020b

Fibroblast growth factor
receptor (FGFR)

Fujita-Hamabe et al.,
2011

Blackwood et al., 2019

Platelet-derived growth
factor receptor (PGFR)

Wang et al., 2012; Weber
et al., 2013; Li et al., 2020

Wang et al., 2012; Puig
and Gutstein, 2017; Puig
et al., 2020a

Narita et al., 2005;
Donica et al., 2014

Insulin Receptor (IR) Mclaughlin and Chavkin,
2001; Li et al., 2003

Li et al., 2003; Xu et al.,
2012

Ephrin B Liu et al., 2011 Liu et al., 2011 Han et al., 2008 Xia et al., 2014

Tyrosine receptor kinase
B (TrkB)

Peregud et al., 2016;
Rezamohammadi et al.,
2020

Freeman et al., 2003; Koo
et al., 2012; Koo et al.,
2014; Jorjani et al., 2021

Fms-like tyrosine kinase
(FLT3)

Rivat et al., 2018

Vascular endothelial
growth factor receptor
(VEGFR)

Lopez-Bellido et al., 2019
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FIGURE 2

Receptor tyrosine kinase (RTK) structure, ligand binding and autophosphorylation, and common downstream signaling pathways. (A) RTK
monomers are single transmembrane crossing peptides with extracellular ligand binding sites and tyrosine-rich intracellular effector regions.
(B) RTK ligands bind as homo or heterodimers to RTKs inducing trans-autophosphorylation of opposing intracellular tyrosine residues.
(C) Ligand-bound RTKs typically recruit protein complexes with SH2 and PTB domains which may activate a number of secondary intracellular
messengers known to modulate other transmembrane receptors, intracellular signaling, or transcriptional regulation.

(PI3K), mitogen-activated protein kinase/p38 (MAPK/p38),
Ras-GTPase-activating protein (Ras-GAP), Janus kinase/signal
transducer and activator of transcription (JAK/STAT), proto-
oncogene c-Src, or focal adhesion kinase (FAK) signaling
cascades (for a review see: (Lemmon and Schlessinger, 2010; Du
and Lovly, 2018).

Historically, RTK signaling pathways were found to be
involved in cell proliferation, differentiation, migration, or
metabolic changes (Lemmon and Schlessinger, 2010), and were
also associated with cancer development (Du and Lovly, 2018).
Most, if not all, RTK signaling effectors are also activated by
opioid receptors. Numerous protein kinases including, ERK,
JNK, p38, PKC, AKT, and CaMKII are utilized by both MOR
and RTKs (Lemmon and Schlessinger, 2010; Williams et al.,
2013). The ability of multiple receptors to concurrently activate
signaling effectors raises the possibility of complex crosstalk
between these receptors or even receptor cross-activation by the
same molecule. Importantly, nearly all downstream pathways
utilized by RTK receptors including MAP kinase cascades
(Mckay and Morrison, 2007), PI3K (Haglund et al., 2007),
PKC (Heckman and Wade, 2018), Akt (Choudhary et al.,

2009), or ubiquitination (Haglund et al., 2003) play roles in
opioid signaling in analgesia, tolerance, and dependence. It
remains unclear, however, how these pathways pertain to opioid
behaviors and side-effects (Mouledous et al., 2007; Chen et al.,
2008a; Macey et al., 2009; Wang et al., 2009; Gregus et al., 2010).
These discrepancies could be related to cellular context and,
most importantly, they may involve modulation of signaling
via differential engagement of RTK signaling in response to
specific opioids.

Mu-opioid receptors-receptor
tyrosine kinases crosstalk

General mechanisms of G
protein-coupled receptors-receptor
tyrosine kinases transactivation

Crosstalk between GPCRs and RTKs can amplify signaling
pathways downstream of one or both receptors in a process
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known as GPCR-RTK transactivation (Daub et al., 1996).
This mechanism enables the integration of signal transduction
between GPCRs and RTK signaling networks at signaling hubs
shared between the respective receptor signaling pathways
(Ragunathrao et al., 2019). Two major pathways of GPCR-
RTK transactivation have been identified which involve
either extracellular RTK ligand release (ligand-dependent)
or intracellular recruitment of signaling effectors such as
phosphotyrosine kinases (ligand-independent) (for review see
Wetzker and Bohmer, 2003; Figure 3.

Ligand-dependent transactivation requires GPCR activation
of matrix regulatory proteins such as membrane-bound
matrix metalloproteinases (MMPs) or A Disintegrin and
Metalloproteases (ADAMs) which contribute to the shedding
of ligands. Several different MMPs or ADAMs are involved
in the proteolytic ectodomain shedding of membrane bound
RTK ligands from the extracellular matrix (ECM), which in
turn, may transactivate several different RTKs (Cattaneo et al.,
2014). This has been mostly described for EGFR as MMPs can
cleave the heparin binding EGFR (Hb-EGF) to activate EGFR
(Kilpatrick and Hill, 2021). Though the precise mechanisms of
GPCR-mediated activation of MMPs or ADAMS are not fully
understood, studies have implicated kinases such as c-src and
PKC or calcium influx as activators of these proteases Figure 3A,
for review, see Cattaneo et al. (2014). Notably, GPCR effectors
like Gβγ (Overland and Insel, 2015) and β-arrestin2 (Noma
et al., 2007; Oligny-Longpré et al., 2012).

Ligand-independent transactivation pathways involve
complex intracellular signaling cascades which recruit kinases
like Src or PI3K (Di Liberto et al., 2019) to phosphorylate
selective tyrosine residues on RTKs (Figure 3B). This mode
of GPCR-RTK transactivation can also require association of
the two receptors via protein complex formation (for review
see Wetzker and Bohmer, 2003). Of importance, GPCR-RTK
heterodimerization may completely change GPCR signal
transduction mechanisms and even promote a switch in the
associated G protein. This is of particular interest because MOR
signals via pertussis-toxin-insensitive stimulatory Gαs proteins
following chronic morphine exposure or neuropathic pain
(Chakrabarti et al., 2005, 2010; Chakrabarti and Gintzler, 2007;
Tsai et al., 2009). Therefore, involvement of RTKs in G protein
switching downstream of MOR is a possibility that remains to
be investigated.

Other ligand-independent transactivation involves atypical
mechanisms of GPCR-RTK crosstalk via reactive oxygen species
(ROS), such as nitric oxide (NO) (Figure 3C). ROS production
by GPCRs could block protein-tyrosine phosphatases, activate
phosphotyrosine kinases and modulate phosphorylation of RTK
tyrosine residues (Cattaneo et al., 2014). Such a mechanism may
be particularly relevant to opioid actions since ROS modulate
MOR-mediated behaviors in rodents (Doyle et al., 2013). This
therefore raises the possibility that RTKs could be involved in
these ROS-mediated signaling pathways.

Mu-opioid receptors-receptor tyrosine
kinases transactivation in vitro

Most in vitro studies investigating RTK transactivation by
MORs have focused on EGFR or PDGFRβ. In immortalized cell
lines transfected with MOR, acute treatment with selective MOR
agonists such as [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin
(DAMGO) or morphine resulted in transactivation of EGFR
(Belcheva et al., 2001, 2003, 2005; Phamduong et al., 2014) or
PDGFRβ (Weber et al., 2013) as shown by phosphorylation
of these RTKs. Interestingly, transactivation of RTKs by MOR
activates downstream effector signaling at levels comparable to
activation to direct activation of the RTKs themselves (Belcheva
et al., 2001; Weber et al., 2013; Phamduong et al., 2014), and
MOR-RTK transactivation can be abolished by pre-treatment
with selective RTK inhibitors (Belcheva et al., 2001; Chen et al.,
2008b; Weber et al., 2013). In cultured cells, mechanisms of
MOR-EGFR and MOR-PDGFRβ transactivation were shown
to require release of EGF (Belcheva et al., 2001, 2003, 2005;
Phamduong et al., 2014) or of PDGF-B (Wang et al., 2012;
Weber et al., 2013), respectively. Consistent with mechanisms
of ligand-dependent GPCR-RTK transactivation, MOR-EGFR
and MOR-PDGFRβ transactivation also require MMP activity
(Belcheva et al., 2001). MMP activation by MOR may involve
calmodulin (CaM), a Ca2+ sensor and binding protein. In
resting conditions, CaM prevents MMP activity at the plasma
membrane (PM) in HEK293 cells (Belcheva et al., 2001).
Acute treatment with MOR agonist DAMGO promotes CaM
translocation from the plasma membrane (PM) to MOR
intracellular domains, lifting CaM inhibition on MMP via
mechanisms involving activation of phospholipase C (PLC)
and PKCε signaling (Belcheva et al., 2001, 2005; Miyatake et al.,
2009; Figure 4A).

Other signaling effectors of MOR are involved in MOR-
RTK transactivation. MOR-EGFR transactivation requires
both Gαi/o and β-arrestin2. Indeed, opioid-mediated EGFR
phosphorylation can be attenuated via pertussis toxin or
by siRNA-mediated β-arrestin2 silencing in cultured rat
astrocytes (Miyatake et al., 2009). In addition to canonical
MOR transduction pathways, other common signaling effectors
between GPCRs and RTKs can take part in MOR-RTK
transactivation. PI3K inhibitors abolish EGFR activation by
DAMGO-activated MORs in cultured rat astrocytes, suggesting
involvement of this kinase in MOR-RTK transactivation
(Belcheva et al., 2005). Similarly, JNK inhibitors block MOR-
PDGFRβ transactivation in rat spinal neurons (Li et al., 2020).
Together, these studies indicate that MOR-RTK transactivation
likely involves a complex network of converging signaling
pathways (Figure 4A). It is important to note that most studies
of mechanisms of MOR-RTK transactivation have employed
acute MOR agonist treatments. However, longer MOR agonism
may have different effects on RTK activity (Belcheva et al.,
2003; Miyatake et al., 2009). Over hours, longer term treatment
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FIGURE 3

Ligand-dependent, ligand-independent, and atypical mechanisms of GPCR modulation of RTKs. (A) Ligand-dependent transactivation:
Activated GPCRs induce a variety of downstream signaling pathways including activation of phospho-tyrosine kinases (PTKs), or increase of the
influx of Ca2+, which activates matrix metalloproteinases (MMP) to cleave cell membrane-bound RTK ligands. (B) Ligand-independent
transactivation: Activated GPCRs may also recruit intracellular PTKs to directly phosphorylate tyrosine residues on the intracellular domain of
RTKs and induce their activation in a ligand-independent manner. (C) Atypical transactivation: Phox protein complexes activated by GPCRs
generate reactive oxygen species which modulate phospho-tyrosine kinases (PTK) and phosphotyrosine phosphatases (PTP) activity to promote
phosphorylation of intracellular RTK tyrosine residues. GPCR, G protein coupled receptor; MMP, matrix metalloproteinase; PTK,
phosphotyrosine-kinase; PTP, phosphotyrosine phosphatases.

with MOR agonists DAMGO, enkephalin, or morphine
induces EGFR phosphorylation as well as both downregulation
and decreased ERK phosphorylation. These mechanisms are
β-arrestin2- and Gαi/o-dependent and not observed with acute
opioid treatments on the order of minutes, suggesting that acute
versus longer-term events cause temporally distinct effects on
signaling (Belcheva et al., 2003; Miyatake et al., 2009). Because
most opioid-mediated side-effects occur after long-term opioid
treatment, further studies to understand the specific alterations
of MOR-RTK transactivation mechanisms by long-term opioid
MOR stimulation are still needed.

Intriguingly, mechanisms of MOR-EGFR transactivation
identified in vitro in immortalized cell lines do not differ
between opioids with different ability to internalize MOR
(Belcheva et al., 2001). Belcheva and colleagues (Belcheva et al.,
2001) found that EGFR was phosphorylated by MOR whether
it was activated by morphine (low internalizing (Sternini et al.,

1996), DAMGO (highly internalizing synthetic opioid peptide
(Keith et al., 1998) or endomorphin (highly internalizing
endogenous opioid peptide (Mcconalogue et al., 1999). In
addition, mechanisms of MOR-EGFR transactivation by these
agonists all required similar mechanisms of CaM recruitment
and PKC signaling, although they had been characterized
as opioids with different signaling bias toward G protein
and β-arrestin recruitment (Schmid et al., 2017). Together
this implies that RTK transactivation mechanisms may be
independent from MOR-ligands bias.

Receptor tyrosine kinases
transactivation of mu-opioid receptors

In addition to modulation of RTK signaling by GPCRs,
RTKs can also modulate GPCR-mediated signaling, suggesting
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FIGURE 4

Identified mechanisms of MOR-RTK crosstalk. (A) Identified mechanisms of MOR-RTK transactivation: Activated MOR can induce MMP
activation via mechanisms including disinhibition Calmodulin (CaM), leading to ligand shedding and ligand-dependent RTK activation. Other
ligand-independent mechanisms may involve recruitment of intracellular phosphotyrosine kinases (PTKs) to phosphorylate RTK tyrosine
residues. G protein and β-arrestin2 signaling may also be involved in MOR-RTK transactivation. (B) Identified mechanisms of RTK modulation of
MOR signaling: Phosphorylated RTK may modulate activation of GPCR via a recruitment of PTKs, or β-arrestins activity. RTK activation may also
lead to altered GPCR ligand gene expression or MOR internalization. MOR, mu-opioid receptor; MMP, matrix metalloproteinase; RTK, receptor
tyrosine kinase; GPCR, G protein coupled receptor.

that the relationship between GPCRs and RTKs is reciprocal
(Delcourt et al., 2007; Figure 4B). General mechanisms
of GPCR transactivation by RTKs or “GPCR highjacking”
(Delcourt et al., 2007) can involve recruitment of GPCR
signaling effectors like GRKs (García-Sáinz et al., 2010; Sun
et al., 2018), β-arrestins (Dalle et al., 2001; Povsic et al.,
2003; Hupfeld and Olefsky, 2007) or activation of RTK
downstream kinases including PI3K (Molina-Munþoz et al.,
2006), Akt, or c-Src (Baltensperger et al., 1996; Doronin
et al., 2002; Gavi et al., 2007). These mechanisms either
require physical interactions between GPCRs and RTKs or
transcriptional regulation of GPCR ligand synthesis (Delcourt
et al., 2007). Relevant to this review, accumulating studies
show that RTK signaling influences MOR signal transduction
by modulation of phosphorylation. In cultured Xenopus laevi
oocytes co-transfected with MOR and the insulin receptor
(IR), pretreatment with insulin potentiated DAMGO-activated

GIRK inward currents via MAPK signaling and possible
dephosphorylation of MOR tyrosine residues, Y-106, or Y-166.
Thus, indirectly demonstrating that IR signaling modulates
MOR-signaling efficacy (Mclaughlin and Chavkin, 2001). In
contrast, concomitant activation of MOR by DAMGO and
activation of EGFR by EGF in HEK293 cells promotes
MOR phosphorylation on Y-166 in a src-dependent manner,
resulting in negative regulation of MOR-G protein coupling
(Clayton et al., 2010). This suggests that regulation of MOR
phosphorylation by opioids may be modulated by RTK-
dependent activity. In separate studies, EGFR activation by
EGF caused recruitment and translocation of G-coupled protein
receptor kinase 2 (GRK-2) to the plasma membrane where
it phosphorylated MOR on Serine-residues 363 and 375 (S-
363, S-375), and Threonine-residue-370 (T-370), and enabled
DAMGO-mediated MOR internalization (Chen et al., 2008b).
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Together, these studies highlight that RTKs can modulate MOR
phosphorylation, signaling and internalization.

Involvement of receptor tyrosine
kinase signaling opioid-mediated
behaviors

While much of the literature has focused on MOR-RTK
transactivation in vitro, this phenomenon is also relevant
physiologically in vivo, particularly in the development and
maintenance of deleterious opioid side-effects caused by MOR
agonists. Reviewed here is evidence that several RTKs (Table 1)
play major roles in mediating opioid side-effects such as
analgesic tolerance, resistance of neuropathic pain to opioid
analgesia, physical dependence or reward.

Receptor tyrosine kinase signaling and
opioid analgesic tolerance

In the clinic, opioid analgesic tolerance is defined by a
gradual loss of analgesic efficacy to a fixed dose of an opioid.
As a result, escalation of opioid doses occurs over time to
maintain analgesic benefit (Henry et al., 2015; Hayhurst and
Durieux, 2016). MOR signaling is essential in the mechanisms
of tolerance (Williams et al., 2013; Adhikary and Williams,
2022) and MOR is expressed in structures strongly implicated
in tolerance and pain mechanisms including dorsal root ganglia
(DRG) neurons and neurons of the spinal cord substantia
gelatinosa (Mansour et al., 1988, 1995a; Scherrer et al., 2009;
Corder et al., 2017; Puig and Gutstein, 2017). RTKs are
similarly expressed alongside MOR in the spinal cord and
DRG, including PDGFRβ (Sasahara et al., 1991; Eccleston
et al., 1993), EGFR (Werner et al., 1988; Huerta et al.,
1996), VEGFR2 (Spliet et al., 2004; Herrera et al., 2009),
or Ephrin type-B receptor 1 (EphRB1) (Liu et al., 2011).
Putative roles for RTK signaling in opioid tolerance were
first shown in mice with global deletion of EphRB1 (Liu
et al., 2011) as they failed to develop tolerance to spinal
morphine administration. Similarly, we and others found
that systemic or intrathecal co-administration of morphine
alongside RTK inhibition via inhibitors of PDGFRβ (Wang
et al., 2012; Li et al., 2020; Puig et al., 2020a), EGFR
(Puig et al., 2020b), or VEGFR-2 (Lopez-Bellido et al.,
2019) completely blocked tolerance. Together, these studies
show that spinal RTK signaling is essential in morphine
tolerance development. In addition, supraspinal inhibition of
the RTK, FGFR, via intracerebroventricular (i.c.v.) injection also
blocks tolerance to morphine injected subcutaneously (Fujita-
Hamabe et al., 2011). Thus, other supraspinal structures of the

pain circuitry may additionally contribute to RTK-mediated
tolerance behaviors.

Precluding spinal signaling from one RTK at a time is
sufficient to fully ablate tolerance. This apparent signaling
redundancy raises the possibilities that: (1) spinal RTKs may
work in parallel to transduce complex signaling cascades
that specifically mediate tolerance and (2) that all signaling
cascades recruited by RTKs are essential for tolerance.
Interestingly, RTKs including EGFR and PDGFR-β were shown
to heterodimerize in vitro (Habib et al., 1998; Saito et al.,
2001). Heterodimerization could also happen in vivo, and
co-transactivation of several spinal RTKs by MOR may be
involved in mechanisms of tolerance. However, inhibition of
RTKs individually alters tolerance in different ways depending
on the RTK. For example, PDGFRβ inhibition only masks
the expression of morphine tolerance (Wang et al., 2012),
while EGFR inhibition completely blocks its development (Puig
et al., 2020b). Importantly, these results have been reproduced
by several independently conducted studies, highlighting the
robustness of these findings (Wang et al., 2012; Li et al., 2020;
Puig et al., 2020a).

In addition, we found that PDGFRβ inhibition blocks
tolerance to several opioid analgesics used in the clinic including
fentanyl, sufentanil, hydromorphone, and oxycodone (Puig
et al., 2020a). Interestingly, these opioids have profoundly
different pharmacokinetic and pharmacodynamic properties
and have different signaling bias (Keith et al., 1998; Schmid
et al., 2017). These findings show functional dissociation
between MOR endocytosis, ligand signaling bias and tolerance,
challenging the long-held hypotheses that mechanisms of MOR
internalization (Whistler et al., 1999; Finn and Whistler, 2001)
or of recruitment of β-arrestin2 (Bohn et al., 2000, 2004)
are at the core of tolerance signaling. Instead, it suggests
that PDGFRβ signaling could be a core mediator of opioid
analgesic tolerance (Puig et al., 2020a). This is further supported
by the fact that tolerance occurs independently of opioid-
induced MOR internalization, and PDGFRβ inhibition does
not modify levels of internalization while preventing tolerance
(Puig et al., 2020a).

The precise RTK signaling pathways activated by opioid-
stimulated MOR that mediate tolerance remain completely
unknown. However, a recent in vivo study suggested that
they could involve JNK signaling downstream of PDGFRβ

(Li et al., 2020). Mechanisms of MOR-RTK transactivation
in the spinal cord to mediate tolerance are similarly unclear.
However, they seem to involve RTK ligand-dependent signaling
pathways (Liu et al., 2011; Wang et al., 2012). Therefore,
MOR may recruit RTK signaling in either an autocrine or
a paracrine manner and RTKs may not necessarily need to
be co-expressed with MOR. In addition, RTKs that have
been involved in tolerance are closely phylogenetically related
(Brunet et al., 2016). Indeed, VEGFR-2 and PDGFRβ share
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a direct ancestor gene, the RTK PDGF/VEGF receptor (Pvr)
(Lopez-Bellido et al., 2019). This implies that involvement
of RTKs in opioid tolerance could be a phylogenetically
conserved function.

Receptor tyrosine kinase signaling and
reduced opioid analgesia to
neuropathic pain

Neuropathic pain results from lesions or diseases of
the somatosensory system that lead to a combination of
inflammation and nerve compression (Dworkin et al., 2003,
2010). NP can also result from nerve damage as a consequence
of prolonged chemotherapy (Murnion, 2018; Finnerup et al.,
2021). Due to a lack of better alternatives, opioids are commonly
used for NP (Quasthoff and Hartung, 2002; Chong and Bajwa,
2003; Lynch et al., 2004; Balayssac et al., 2009). Nevertheless,
opioids are not very effective in treating NP as several
clinical studies have shown that, despite high opioid dosage,
NP could not be alleviated following opioid administration
(Chaparro et al., 2012; Cooper et al., 2017). Although
combination therapy between opioids and gabapentin, a blocker
of voltage-gated calcium channels, proved effective, it has
been associated with severely debilitating side-effects including
nausea, constipation, and vomiting (Chaparro et al., 2012).
Therefore, new therapeutic strategies and targets are needed for
ameliorating NP.

NP can be modeled in rodents by inducing nerve injury on
spinal nerves via spinal nerve ligation (SNL) (Kim and Chung,
1992) or chronic contraction injury (CCI) of the sciatic nerve
(Bennett and Xie, 1988). In these models, low doses of opioids
fail to produce analgesia. Several studies have established the
impact of signaling from different RTKs in neuropathic pain
development and maintenance in rodents including signaling by
PDGFRα (Narita et al., 2005), FLT3 (Rivat et al., 2018), EphRB1
(Han et al., 2008), EGFR (Martin et al., 2017), or TrkA (Ugolini
et al., 2007). In addition, a clinical study demonstrated that
targeted inhibition of EGFR significantly reduces pain in male
and female NP patients (Kersten et al., 2019). Groundbreaking
recent discoveries also established direct involvement of RTK
signaling in NP resistance to opioid analgesia. Pharmacological
inhibition of either PDGFRβ (Donica et al., 2014) or EGFR
(Puig et al., 2020b) restores analgesia to a dose of morphine
previously ineffective on mechanical allodynia caused by SNL.
This shows that PDGFRβ or EGFR inhibition is sufficient to
restore morphine analgesic properties that were abolished by
alterations caused by nerve injury. Importantly, administration
of the same doses of PDGFRβ or EGFR inhibitors alone does
not have any analgesic effect. In fact, we estimated that the
dose of EGFR inhibitor used to restore morphine analgesia
is ∼20-fold lower than the dose previously needed to induce
analgesia (Nair and Jacob, 2016; Puig et al., 2020b). These results

emphasize that RTK inhibitors restore morphine-mediated
analgesia rather than causing analgesia by themselves. This
indicates that recruitment of PDGFRβ and EGFR signaling by
nerve injury activates signaling pathways that may block opioid
analgesic signaling during NP. Moreover, these mechanisms
resemble findings in the context of opioid tolerance (Wang
et al., 2012; Puig et al., 2020a,b), and imply that convergent
mechanisms between opioid tolerance and NP involve RTK
signaling. Based on these observations, it was speculated
that injured nerves release growth factors such as PDGF-B
to activate PDGFRβ signaling and induce morphine-resistant
states (Donica et al., 2014). It has also been proposed that this
endogenous PDGF-B release by injured nerves, is similar to
the release of PDGF-B in response to opioid administration,
leading to activation of MOR to mediate tolerance (Wang et al.,
2012). In conclusion, RTK signaling mediating opioid analgesic
resistance may form a mechanistic link between neuropathic
pain development and opioid tolerance (Mao et al., 1995;
Mayer et al., 1999; Joseph et al., 2010; Donica et al., 2014;
Puig et al., 2020b).

Receptor tyrosine kinase signaling and
opioid dependence

There is a complex bidirectional relationship between
RTK gene expression and opioid dependence. Dorval and
colleagues showed that mice that overexpress FGF21, an
FGFR ligand (FGF21-Tg mice, 50-fold overexpression), have
a reduced preference to morphine in a conditioned place
preference paradigm (Dorval et al., 2022). Further, naloxone-
precipitated physical dependence behavior, (i.e., number of
vertical jumps post-naloxone injection) is depressed in FGF21-
Tg mice compared to wildtype littermates, suggesting that acute
morphine physical dependence is regulated by FGF21 activity.
Interestingly, morphine analgesia and tolerance development
were not altered in FGF21-Tg mice, showing that FGF21 plays
a role in opioid dependence but not in analgesia or tolerance.
These findings are consistent with previous studies showing
that oxycodone self-administration is associated with elevated
striatal fgf2, fgfr2, and fgfr3mRNA levels during incubation
of oxycodone seeking (Blackwood et al., 2019). Furthermore,
these changes in FGF receptor gene expression are associated
with elevated c-fos mRNA expression in the dorsal striatum,
and elevated junB mRNA levels in these same regions. Given
that the striatum is an important region of the reward
circuitry, Blackwood and collaborators (Blackwood et al., 2019)
hypothesized that incubation of oxycodone seeking, a behavior
correlated with future dependence, is mediated at least in-part
by FGF2-dependent signaling. However, the mechanisms of
FGF receptor-driven opioid dependence remain unknown.

Other studies have also indicated that brain-derived
neurotrophic factor (BDNF), as well as its receptor, tropomyosin
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receptor kinase B (TrkB), may also play integral roles in opioid
dependence and withdrawal development. BDNF, TrkB, IGF1,
and IFG1R mRNA levels were found to be elevated in rodents
frontal cortex in a model of physical dependence to morphine.
In addition, BDNF was upregulated in hippocampus and
midbrain (Peregud et al., 2016). Recruitment of BDNF-TrkB
signaling by MOR during exposure to opioids or during
withdrawal may be mediated via mechanisms of atypical
GPCR-RTK transactivation involving a ROS, nitric oxide
(NO) (as illustrated in Figure 3C). Withdrawal associated
elevation of BDNF and TrkB and their respective receptors
is markedly lower in animals pretreated with the nitric oxide
synthase (NOS) inhibitor L-NG-nitroarginine methyl ester
(L-NAME). L-NAME-treated animals also exhibited depressed
amounts of phosphorylated TrkB following abstinence from
morphine (Peregud et al., 2016). Confirming the role of
TrkB signaling in withdrawal behaviors, a recent study
showed that rats pre-treated with ANA-12, a TrkB antagonist,
displayed greater drug dependence and significantly more
spontaneous withdrawal behaviors after a chronic treatment
with morphine. Furthermore, BDNF levels in the cerebrospinal
fluid (CSF) of ANA-12 treated animals are depressed during
morphine dependence, and elevated during withdrawal
(Rezamohammadi et al., 2020). Together these studies show
that FGFR and TrkB activation may have protective effects
against physical dependence, highlighting that this should be
carefully considered in the process of testing RTK targeting
therapies to treat opioid side-effects.

One hallmark of chronic opioid use which occurs upon
opioid withdrawal is opioid-induced hyperalgesia (OIH). Of
interest, Ephrin receptors, the most prominent subfamily of
RTKs, which are commonly associated with neuron-neuron and
neuron-glia interactions have been implicated in OIH. In a
rat model of remifentanil-induced hyperalgesia, remifentanil-
induced decrease of mechanical and thermal pain threshold
has been correlated with elevated spinal Fos protein levels.
Interestingly, these effects were reversed by inhibition of either
EphB ligand (via EphB1-Fc) or the NMDA receptor (NMDAR)
(via MK801) (Xia et al., 2014). Further, intrathecal injection
of ephrinB/EphB agonist, was sufficient to induce significant
hyperalgesia in a NMDAR-dependent manner (Xia et al., 2014),
showing that activation of ephrinB/EphB pathways are sufficient
to mediate OIH development via NMDAR (Xia et al., 2014).
Importantly, other RTKs are also known to be involved in
NMDAR-mediated OIH, including BDNF-TrkB signaling in
the spinal dorsal horn. Notably, previous work demonstrated
that morphine-induced hyperalgesia occurs because of MOR-
dependent BDNF release leading to a downregulation of
K+/Cl− co-transporter (KCC2) in rat spinal lamina neurons
(Ferrini et al., 2013). The resulting Cl− dysequilibrium serves
as a driver of hyperalgesia which is reversible by inhibition of
BDNF-TrkB or via prevention of KCC2 downregulation (Ferrini
et al., 2017). Further, this reversible anion transport dysfunction

induces a dampening of GABAergic and glycinergic spinal
signaling and elevated NMDAR activity (Li et al., 2016).

Receptor tyrosine kinase signaling and
opioid reward

RTK signaling and opioid reward involve midbrain
dopamine neurons in the ventral tegmental area (VTA) which
project to the nucleus accumbens (NAc) in the striatum. In
the context of opioids, morphine promotes activation of striatal
D1 receptor (D1R)-expressing MSNs which increase reward
behaviors and decreases dopamine D2 receptor-expressing
(D2R) MSNs which promote aversion. TrkB is expressed in
both D1R+ and D2R+ MSNs (Freeman et al., 2003; Baydyuk
et al., 2011) and most evidence about involvement of RTK
signaling in opioid reward derives from work analyzing TrkB
and morphine administration. Indeed, there is decreased
conditioned place preference (CPP) for morphine when the
selective TrkB antagonist, ANA-12, is injected into the NAc
of rats (Jorjani et al., 2021). However, it was also shown that
selective knockout of TrkB from D1R+ MSNs of the NAc in
mice, enhances morphine CPP while knockout of D2R+ MSNs
produces no change (Koo et al., 2014). Moreover, knocking out
TrkB in the VTA produces a similar effect as TrkB knockout in
D1R+ MSNs in the NAc with enhanced morphine CPP (Koo
et al., 2014). Overall, these findings suggest that TrkB-based
RTK signaling in D1R+ versus D2R+ MSNs mediates opposing
actions that together modulate opioid-induced behaviors and
that these actions are dependent on striatal dopamine release
from projections of midbrain dopaminergic neurons.

IR signaling has also been implicated in opioid reward.
In the hippocampus and hypothalamus, morphine induces IR
phosphorylation in wildtype, but not MOR knockout mice,
suggesting that MORs are able to transactivate IRs in these
structures (Li et al., 2003). Additionally, given the important
role of glutamatergic neurotransmission in drug reward (Britt
et al., 2012), the increases in presynaptic glutamate release in
the NAc in response to IR activation (Fetterly et al., 2021) may
provide a further RTK-mediated mechanism for opioid actions.
In contrast, insulin growth factor like receptor (IGFR) activation
decreases presynaptic glutamate release in the same neuronal
population, demonstrating differential effects depending on
the RTK. Additional involvement of IR in opioid reward is
supported by work showing that prolonged morphine-activated
MORs in vitro can cause desensitization of IR signaling to
Akt and ERK cascades (Li et al., 2003), both of which have
been implicated in reward (Shi et al., 2014; Zamora-Martinez
and Edwards, 2014). Inhibition of ERK in the NAc shell
prevents development of morphine CPP (Xu et al., 2012).
While, in a separate study, Russo and colleagues showed that
downregulation of Akt and IR subunit 2, an essential component
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of functional IR signaling, in the VTA results in reward tolerance
as shown by decreased CPP behaviors over time (Russo et al.,
2007). Together, these results further reinforce the involvement
of IRs in modulation of MOR-mediated reward signaling within
the NAc. Further studies to establish if this could be generalized
to other opioids remain necessary. For example, PDGFRβ is also
expressed in brain regions involved in reward and addiction
such as mPFC, NAc and dStr (Balayssac et al., 2009; Bor et al.,
2017) and PDGFRβ levels were shown to be altered in the
striatum and midbrain of rodents with disrupted dopaminergic
signaling, a central component for reward signaling (Masuo
et al., 2004). Overall, this work suggests RTKs could be
promising, yet understudied, candidates to mitigate morphine
reward, especially IRs.

Clinical implications

Treating human disease with RTK-targeted therapies is an
established standard of care as a therapeutic strategy for cancer.
Indeed, RTK inhibitors serve as the gold standard treatment of
malignancies (Savage and Antman, 2002; Elisei et al., 2013; Sim
et al., 2018). These medications are being explored for putative
efficacy in other, non-oncological conditions. Specifically, EGFR
and PDGFR inhibitors have recently received attention for their
clinical therapeutic potential against pain. Several case reports
have described analgesic effects by EGFR inhibitors in patients
with severe pain (Kersten and Cameron, 2012; Kersten et al.,
2015). Patients with either cancer pain (Moryl et al., 2006; Macey
et al., 2009) or different types of neuropathic pain (Kersten et al.,
2015) were treated with EGFR inhibitors which significantly
improved their pain score after a few days. Most interestingly,
in a clinical study led by Kersten and collaborators (Kersten
et al., 2013), half the patients who experienced immediate
pain relief following administration of the EGFR inhibitor
cetuximab also decreased their required opioid doses. The
authors concluded that cetuximab reversed opioid tolerance.
Similarly, PDGFR-β inhibitor imatinib induced analgesia in
cancer patients (Stankovic Stojanovic et al., 2011; Kutlar, 2013).
Based on the promise of these recent clinical studies and case
reports, it is possible that the improved pain relief observed
with RTK inhibitors is due to the reversal of pre-existing opioid
tolerance. We propose that combined treatment with opioids
and RTK inhibitors may decouple the intertwined pathways
mediating analgesia and tolerance.

Conclusion

Uncoupling analgesia from undesirable effects of opioids
by RTK inhibitors could therefore enable patients to maintain
opioid efficacy at smaller doses, mitigating the risk of side-
effects associated with chronic opioid use. Importantly, in

rodents, efficacious doses to mitigate opioid tolerance appear
to be significantly lower than those required to treat cancers.
This holds the promise that RTK doses required for effective
prevention of opioid side-effects in humans should not have
a deleterious impact that could outweigh advantages of RTK
inhibitors. Nevertheless, more work is clearly needed to better
understand how RTK inhibitors work in the context of
tolerance. It is still unknown if RTK inhibitors could be used
to treat opioid withdrawal symptoms or prevent rewarding
properties of opioids in humans. It is imperative that future
studies assess the power of concurrent opioid-RTK inhibitors
treatments both in the clinic and in pre-clinical models of pain.
If successful, RTK inhibitors may represent a promising new
class of drugs to treat pain more safely in conjunction with
opioids and therefore positively impact the lives of millions
living with chronic pain.
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Due to the prevalence of chronic pain worldwide, there is an urgent need

to improve pain management strategies. While opioid drugs have long been

used to treat chronic pain, their use is severely limited by adverse effects

and abuse liability. Neurostimulation techniques have emerged as a promising

option for chronic pain that is refractory to other treatments. While different

neurostimulation strategies have been applied to many neural structures

implicated in pain processing, there is variability in efficacy between patients,

underscoring the need to optimize neurostimulation techniques for use

in pain management. This optimization requires a deeper understanding

of the mechanisms underlying neurostimulation-induced pain relief. Here,

we discuss the most commonly used neurostimulation techniques for

treating chronic pain. We present evidence that neurostimulation-induced

analgesia is in part driven by the release of endogenous opioids and

that this endogenous opioid release is a common endpoint between

different methods of neurostimulation. Finally, we introduce technological

and clinical innovations that are being explored to optimize neurostimulation

techniques for the treatment of pain, including multidisciplinary efforts

between neuroscience research and clinical treatment that may refine the

efficacy of neurostimulation based on its underlying mechanisms.

KEYWORDS

pain, analgesia, opioid, µ-opioid receptor, neurostimulation, neuromodulation, deep
brain stimulation (DBS), spinal cord stimulation (SCS)
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Introduction

Over 20% of people worldwide suffer from chronic pain
disorders (Goldberg and McGee, 2011). In response to an
unmet need for effective pain management, opioid drugs
have been widely adopted. Opioid drugs harness the body’s
endogenous opioid receptors, which are dispersed throughout
the central and peripheral nervous system to modulate pain
perception. While prescription opioids often provide effective
pain relief, they have undesirable and potentially dangerous
side effects including abuse liability and respiratory depression.
Their contribution to the ongoing opioid epidemic and the
enormous negative impact of chronic pain underscore the
need for safe and effective pain therapies (Manchikanti et al.,
2012). Neurostimulation therapies are potential alternatives
for managing medically refractory pain. However, these
therapies are hampered by inconsistent pain relief across
patients and diminishing analgesic effects over time (Kumar
K. et al., 1998). To optimize these therapies and predict
patient responses, we must first understand the mechanisms
of action underlying their therapeutic effects. The purpose of
this review is to summarize the evidence suggesting current
neurostimulation therapies may provide analgesia in part by
driving endogenous opioid mechanisms. We conclude by
discussing opportunities for multidisciplinary research to shed
new light on mechanisms of neurostimulation-induced pain
relief.

Chronic pain

Chronic pain is a condition often defined by the presence
of long-standing pain that persists beyond recovery of the
injured tissue. In humans, chronic pain is clinically defined
as pain that persists for longer than 6 months (Russo and
Brose, 1998), without regard to tissue healing. One type of
severe chronic pain for which neurostimulation techniques
are often used is neuropathic pain, which is defined by
the International Association for the Study of Pain as “pain
caused by a lesion or disease of the somatosensory system”
(Jensen et al., 2011). In the United States, an estimated 20.5%
of adults suffer from a chronic pain condition, with 10%
experiencing high-impact chronic pain that limits work and
diminishes quality of life (Yong et al., 2022). This figure
is mirrored by an estimated global prevalence of chronic
pain of 18% (Sá et al., 2019). Many patients experiencing
chronic pain are inadequately treated, with estimates ranging
from 40 to 77% depending on pain etiology and study
parameters (Deandrea et al., 2008; Majedi et al., 2019). Due
to its high prevalence worldwide, there is a clear and urgent
need for safe and effective therapies for managing chronic
pain.

Opioid analgesics

Prescription opioids have major drawbacks that limit
their tolerability, effectiveness, and safety. Opioids produce
disorienting psychoactive effects which can interfere with
daily activities. Opioid use can cause constipation which
produces significant discomfort. Repeated opioid use leads
to adaptations in opioid receptor signaling, such as receptor
desensitization, internalization, and augmented downstream
signaling pathways, which are thought to differentially
contribute to tolerance and limit effectiveness in treating pain
(von Zastrow et al., 2003; Gintzler and Chakrabarti, 2006;
Martini and Whistler, 2007). Activation of opioid receptors
in circuits that control breathing induces strong respiratory
depression that leads to death at high doses, with opioid-related
deaths rising steadily over the past 20 years and continuing
at epidemic levels (Rudd et al., 2016; Scholl et al., 2019).
Coupled with the rewarding aspects of opioid signaling that
reinforce drug consumption, respiratory depression is the most
dangerous aspect of opioid analgesics, as it is responsible for the
large number of opioid overdose deaths. There is thus an urgent
demand for novel effective and tolerable treatment paradigms
to lessen suffering of chronic pain patients, a mission that has
been recently prioritized by the US National Institutes of Health
(Collins et al., 2018).

Endogenous opioids

Opioid receptors are expressed throughout the nervous
system, including the cortex, midbrain, brainstem, spinal cord,
and in the presynaptic terminals of the primary afferents of
the dorsal root ganglion (le Merrer et al., 2009). Due to its
prominence as the primary target of opioid analgesics, most
studies of pain revolve around the µ-opioid receptor (MOR).
However, the δ- and κ-opioid receptors (DORs and KORs)
are also important in pain modulation (Fields, 2004; Corder
et al., 2018). MORs are activated by the endogenous opioid
neuropeptides enkephalin, beta-endorphin, and dynorphin.
Enkephalins, of which there are two forms that differ in
their C-terminal amino acid ([Met5]-enkephalin and [Leu5]-
enkephalin), also activate DORs with similar affinity (Toll et al.,
1998; Gomes et al., 2020). Beta-endorphin, which includes
[Met5]-enkephalin at its N-terminus, is usually considered
MOR-selective but can also activate DORs and KORs, with
notable signaling bias toward downstream G-protein signaling
compared to beta-arrestin signaling at MORs observed in vitro
(Gomes et al., 2020). Several opioid peptides that can be
described as short, C-terminally extended forms of [Met5]-
enkephalin have also been isolated from mammalian brains;
one of which (Met-enkephalin-Arg-Phe) has been recently
demonstrated to act at MORs when released endogenously
(Trieu et al., 2022). Several dynorphin peptides of different
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length and sequence are prominent in the mammalian nervous
system. Although dynorphins are usually considered KOR
agonists due their high affinity for KORs (especially the
longer forms), they can also activate MORs and DORs at
physiologically relevant concentrations (Toll et al., 1998; Gomes
et al., 2020).

It is generally assumed that endogenous opioids produce
pain relief through MOR activation. The most unequivocal
experimental manipulation in humans implicating endogenous
opioids in pain is the administration of naloxone, which is
a non-specific opioid antagonist that acts on MORs, DORs,
and KORs in a similar concentration range. Thus, endogenous
opioids may impart some of their antinociceptive effects
through activation of DORs and KORs, in addition to MORs.

Pain processing circuits and their
expression of opioid receptors

Pain information is processed by two broad pathways:
the ascending nociceptive pathway and the descending pain
modulatory system (DPMS). The ascending pathway begins
in peripheral nociceptors, which encode painful stimuli and
synapse onto projection neurons and interneurons in the
spinal cord dorsal horn (DH). Ascending pathways include
the spinothalamic, spinomesencephalic, and spinoreticular
tracts, which target the thalamus, midbrain areas such as
the periaqueductal gray (PAG), and the brainstem reticular
formation, respectively. Within the spinothalamic tract,
subdivisions that target the lateral thalamus and onto the
somatosensory cortices and insula are considered to mediate
the sensory-discriminative aspects of pain (i.e., the sensory
experience of pain involved in reflexive pain behaviors such as
limb withdrawal in response to noxious stimuli). Spinothalamic
subdivisions that target the medial thalamus and onto the
anterior cingulate cortex (ACC) are thought to contribute to
the affective percept of pain (i.e., the emotional-motivational
experience of pain which is non-reflexive). The descending
pain modulatory pathway begins in the PAG. Canonically,
ventrolateral PAG (vlPAG) projects to the rostroventral medulla
(RVM), which in turn sends projections to the DH to gate
spinal outflow of incoming pain information. A brief overview
of key brain areas that encode and modulate pain for the
understanding of neurostimulation-induced analgesia follows.
Schematics of the location, circuitry, and opioid receptor
expression in brain areas within the descending and ascending
pathways most relevant for current neurostimulation techniques
for the treatment of chronic pain are shown in Figure 1.

Descending pathway
Periaqueductal gray

The PAG, a heterogenous midbrain region known for
its roles in divergent behaviors such as defensive responses

and vocalization (Behbehani, 1995), represents the first major
hub in the DPMS. In the context of the pain, PAG receives
and consolidates top-down input from numerous cortical and
subcortical regions, including the prefrontal cortex (PFC),
ACC, anterior insula, and amygdala (Hardy and Leichnetz,
1981; Bingel et al., 2006; Lu et al., 2016; Cheriyan and
Sheets, 2018; Li and Sheets, 2018; Rozeske et al., 2018; Huang
et al., 2019; Zhu et al., 2021). In addition to the RVM and
nearby noradrenergic nuclei, the PAG displays broad ascending
efferent projections to brain regions such as the thalamus,
hypothalamus, and ventral tegmental area (Cameron et al.,
1995a,b; Linnman et al., 2012; Ntamati et al., 2018). Though
human tractography studies indicate some differences in PAG
cortical connectivity between rodents and humans, midbrain
and hindbrain connectivity is conserved, which is critical to our
understanding of neurostimulation techniques that may harness
descending pain modulatory mechanisms (Ezra et al., 2015;
Menant et al., 2016).

In the rodent, the anatomy and function of the PAG opioid
system has been extensively studied and recently reviewed by
Bagley and Ingram, 2020. The canonical circuit by which opioids
signal in the PAG follows a disinhibitory mechanism: MORs
are highly expressed on local vlPAG GABAergic interneurons
that provide tonic inhibition onto PAG projection neurons.
In the presence of endogenous or exogenous opioids, these
inhibitory inputs are suppressed by MOR signaling, leading to
the disinhibition of glutamatergic PAG-RVM projections (Lau
and Vaughan, 2014). The resultant activation of descending
GABAergic, opioidergic and serotonergic RVM neurons directly
inhibits spinal cord neurons to suppress nociception (Salas et al.,
2016; Weiwei et al., 2021).

In line with this hypothesis, vlPAG microinfusion of
glutamate receptor agonists and GABA receptor antagonists
produces antinociception in rodents (Moreau and Fields, 1986;
Jones and Gebhart, 1988; Jensen and Yaksh, 1989). More
recently, modern chemogenetic methods in behaving rodents
indicate that activation of glutamatergic vlPAG neurons or
inhibition of GABAergic neurons is antinociceptive, while
inhibition of glutamatergic neurons or activation of GABAergic
neurons is pronociceptive, although the opioid dependence
of this analgesia was not examined (Samineni et al., 2017).
Local opioid infusion in the PAG, especially vlPAG, has long
been noted for its strong antinociceptive properties in rodents
(Yaksh, 1979; Jones and Gebhart, 1988; Jensen and Yaksh, 1989).
MORs can also be found, however, in a subpopulation of
PAG projection neurons (Wang and Wessendorf, 2002; Bagley
and Ingram, 2020), suggesting that this accepted circuitry may
not account for non-canonical or bidirectional signaling from
PAG to RVM, which may involve competing facilitation and
inhibition. Indeed, about half of RVM-projecting PAG neurons
are actually hyperpolarized by MOR agonists (Osborne et al.,
1996; Umana et al., 2017).
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FIGURE 1

Overview of three neural structures that have been targeted by neurostimulation therapies. Schematic of ascending (purple) and descending
(blue) pain modulatory pathways (left). Middle: Macro level anatomy of the cortex, brainstem and spinal cord, showing key nodes in the
ascending and descending pain modulatory pathways. Connections between the brainstem and spinal cord via the RVM are indicated. Right:
Select synaptic connections and microcircuitry of the ACC, vlPAG and DH are shown. Mu-and delta-opioid receptors are expressed on cell
bodies and pre-synaptic terminals of neurons throughout the pain neuraxis to modulate ascending and descending pain pathways. ACC,
anterior cingulate cortex; RVM, rostroventromedial medulla; vlPAG, ventrolateral periaqueductal gray; LC, locus coeruleus; DH, dorsal horn.

Using functional imaging in humans, PAG activity has
been implicated in a multitude of functions, from pain-and
placebo-related conditions to homeostatic bodily processes
and the manifestation of negative emotional states in panic
and depression (Zhao, 2008; George et al., 2019). For a
comprehensive review of human functional imaging of PAG, we
recommend the meta-analysis provided by Linnman et al., 2012.
In brief, many studies have found pain-induced PAG activation
in response to noxious stimuli such as heat, cold, pressure, and
light touch on allodynic regions, as well as in chronic pain
conditions such as neuropathic pain. PAG fMRI indicates its
functional connectivity at rest with ACC and RVM (Kong et al.,
2010), and this ACC-PAG interaction correlates with attentional
analgesia and can be disrupted by opioid antagonists (Oliva
et al., 2022). Placebo conditioning in humans increases PAG
activity during the anticipation of a painful stimulus (Wager
et al., 2004) and induces coupling of ACC and PAG activity
that is sensitive to systemic naloxone (Eippert et al., 2009).
Due to the abundance of opioid receptors expressed, PAG is
thought to play a key role in pain modulation produced by
exogenous and endogenous opioids. In humans, PET imaging

of [11C]-carfentanil indicates a decrease in radiotracer binding
and therefore an increase in PAG endogenous opioid signaling
in response to pain (Zubieta et al., 2005) and placebo analgesia
(Scott et al., 2008).

Rostroventral medulla

Rostroventral medulla (RVM) receives inputs from PAG
and sends projections to the DH to modulate spinal signaling
through GABAergic, serotonergic, and opioidergic mechanisms
(Millan, 2002; François et al., 2017). RVM neurons are
categorized as ON, OFF, and neutral cells based on their
electrophysiological responses to noxious stimuli and during
nocifensive responses. RVM receives input from the PAG
and has recently been shown to receive synaptic connections
from the parabrachial nucleus (Chen et al., 2017). RVM
outputs relevant for pain modulation include the spinal cord
and midbrain and brainstem noradrenergic nuclei (Clark and
Proudfit, 1991a).

Like PAG, RVM is a known locus of exogenous and
endogenous opioids in pain modulation (Bagley and Ingram,
2020). RVM neurons express opioid receptors in serotonergic
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and non-serotonergic neurons that project to the spinal cord
(Gutstein et al., 1998; Wang and Wessendorf, 1999). Supporting
a role for endogenous opioids, all three opioid receptor types
are also expressed by terminals in the neuropil around RVM
neurons (Kalyuzhny et al., 1996; Gutstein et al., 1998). RVM
receives input from enkephalinergic terminals and some RVM
neurons are enkephalinergic, including a subset of spinally-
projecting GABAergic neurons (Khachaturian et al., 1983;
Zhang et al., 2015). In addition to enkephalins, RVM receives
dynorphinergic input from PAG and contains KOR-expressing
spinally-projecting neurons that inhibit pain and itch via
descending mechanisms (Nguyen et al., 2022). RVM may also
contain dynorphin-expressing neuronal cell bodies (Menetrey
and Basbaum, 1987). Application of opioids to the RVM leads
to the increase in activity of antinociceptive OFF-cells and
the decrease in spiking of pronociceptive ON-cells (Heinricher
et al., 1994) as well as strong antinociception in rodents
(Dickenson et al., 1979; Azami et al., 1982).

Noradrenergic cell groups

Rodent intrathecal pharmacological studies have long
implicated spinal noradrenergic signaling as a key component
in supraspinal influence on pain suppression (Yaksh, 1979;
Proudfit and Hammond, 1981; Hammond and Yaksh, 1984;
West et al., 1993). The locus coeruleus (LC) (A6), brainstem
(A5), and midbrain (A7) noradrenergic cell groups display
projections to the spinal cord in parallel with the RVM
(Westlund et al., 1983, 1984; Clark and Proudfit, 1991b,c, 1993;
Proudfit and Clark, 1991; Bruinstroop et al., 2012; Li et al.,
2016; Hirschberg et al., 2017) and receive anatomical input from
canonical DPMS nuclei PAG and RVM (Clark and Proudfit,
1991a; Bajic and Proudfit, 1999).

Locus coeruleus (LC) highly expresses opioid receptors (Pert
et al., 1976) and LC neuron activity is directly suppressed
by both endogenous and exogenous opioids (Williams et al.,
1982). Opioid receptor expression in LC, A5, and A7 neurons
appears to be limited to MORs (Williams and North, 1984;
North et al., 1987; Guajardo et al., 2017), although a subset
of presynaptic terminals in these areas have been shown to
express DORs (Arvidsson et al., 1995; van Bockstaele et al., 1997;
Holden et al., 1999; Erbs et al., 2015). Additionally, LC and
the pericoerulear region are densely innervated by enkephalin-
expressing terminals (Drolet et al., 1992). Microinfusion of
morphine directly into the LC is antinociceptive in rodents
(Bodnar et al., 1988).

Spinal cord

The spinal cord, especially the DH, is the ultimate target of
the DPMS. Release of neuromodulators and neurotransmitters
in the DH from descending sources modulates spinal outflow
of ascending nociceptive information arriving from the
periphery. Aδ and C nociceptive fibers terminate onto DH
superficial laminae I projection neurons that respond to high

threshold stimulation, as well as onto deeper layer V wide
dynamic range projection neurons. Most neurons in the
laminae II-III, however, are not supraspinally-projecting, but
instead are excitatory or inhibitory interneurons that signal
locally in the spinal cord. It is thought that descending
fibers from the midbrain and brainstem can terminate onto
primary afferent terminals, spinal interneurons, and spinal
projection neurons to modulate the spinal circuit response to
incoming pain information at multiple levels (Mannion and
Woolf, 2000; D’Mello and Dickenson, 2008). In addition to
neurotransmitters, spinal pain transmission is also modulated
by a complicated combination of other neurochemicals such
as neurokinins, CGRP, somatostatin, and opioids (Dickenson,
1995).

Endogenous opioid peptides and receptors play a substantial
role in spinal cord pain-related activity. The rat spinal cord
predominantly expresses MORs, but also exhibits some DORs
and very low KOR expression. Within each of these receptor
subtypes, all show predominant expression on presynaptic
terminals entering the DH, with a smaller proportion on
postsynaptic neurons (Besse et al., 1990; Dickenson, 1995).
Recordings from DH neurons during intrathecal morphine
application show that C and Aδ fibers that convey noxious
information are the most highly inhibited by morphine, while
the pain evoked activity of larger Aβ mechanosensory fibers is
only mildly opioid-modulated (Dickenson and Sullivan, 1986;
Heinke et al., 2011). Intrathecal application of enkephalin is
analgesic (Yaksh et al., 1977), presumably due to activation of the
same opioid receptors affected by morphine. Enkephalin- and
dynorphin-immunoreactive cell bodies and fibers are present in
the DH, suggesting that endogenous opioid peptides are released
in the DH locally and by descending mechanisms (Seybold and
Elde, 1980; Harlan et al., 1987; Marvizón et al., 2009; François
et al., 2017). However, parsing the contribution of local and
descending opioid release has been experimentally challenging.

Ascending pathway
Thalamus

The thalamus receives nociceptive information directly
from the spinal cord and relays it to the cortex (Ab Aziz and
Ahmad, 2006). The spinothalamic tract conveys information
about non-noxious and noxious stimuli to the lateral and
medial thalamus. The lateral thalamic ventral posterolateral
(VPL) and ventral posteromedial (VPM) nuclei project to
the somatosensory cortex and relay tactile, proprioceptive,
and nociceptive signals from the body and face, respectively
(Monconduit et al., 1999; Alitto and Usrey, 2003). Medial
thalamic nuclei receive additional nociceptive information from
ascending spinal tracts. These nuclei transmit information
thought to be related to the affective components of pain to
areas involved in emotional processing, such as the ACC and
the insular cortices (Friedman and Murray, 1986). A study in
rats found a functional correlation between medial thalamus and
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ACC activity during electrical stimulation, supporting the idea
that thalamus conveys information on the affective components
of pain through this projection (Shyu et al., 2004). Among the
medial thalamic nuclei, the mediodorsal nucleus (MD) is the
major source of inputs to the ACC. Also implicated in pain
processing is the medial thalamic nucleus submedius (Sm),
which projects to the ventrolateral orbital cortex (VLO) and
on to the PAG, a pathway that has been shown to mediate
antinociception (Zhang et al., 1995; Huang et al., 2021). Imaging
and electrophysiology studies in both animals and humans have
also found that, like ACC, the MD is hyperactive in chronic pain
conditions (Whitt et al., 2013; Meda et al., 2019). In mice with
neuropathic pain, optogenetic activation of MD inputs to ACC
induces behavioral avoidance and is considered aversive (Meda
et al., 2019).

A meta-analysis of published fMRI data in humans with
acute, experimentally-induced and chronic pain showed that
the thalamus is active in both conditions (Friebel et al., 2011).
Chronic pain patients show altered thalamic regional cerebral
blood flow (rCBF) and several imaging studies suggest that
altered thalamic activity is involved in the development of
neuropathic pain (Witting et al., 2001; Casey et al., 2003).
Studies in animal models of neuropathic pain have also shown
a correlation between chronic pain and changes in biochemistry
and immediate early gene expression in the thalamus (Narita,
2003).

Opioid receptors are widely expressed in the thalamus. High
levels of MOR mRNA are observed in several thalamic nuclei,
including the medial habenula, laterodorsal, paraventricular,
centromedial, and reuniens nuclei. DOR mRNA expression is
also observed in the thalamus, but KOR mRNA expression is
limited to fewer nuclei in the paraventricular and zona incerta
(Mansour et al., 1994; Erbs et al., 2015). In rodent brain slices,
thalamic output to ACC and dorsal striatum is suppressed in
the presence of a MOR agonist, indicating the sensitivity of
thalamic output to opioids and suggesting the attenuation of
noxious information relay to cortex during opioid treatment
(Birdsong et al., 2019). In rodents, pharmacological blockade of
MORs in the dorsal midline thalamus induced a fear memory
extinction deficit (Bengoetxea et al., 2020), while stimulation
of MORs caused increased locomotor activity associated with
decreased freezing extinction. These data suggest that targeting
dorsal midline thalamus MORs could have therapeutic effects on
stress-related and anxiety disorders. Animal research using both
electrophysiology and EEG points to the medial thalamus as the
primary site of morphine action (Linseman and Grupp, 1980).
Indeed, morphine microinfused in the medial or intralaminar
thalamic nuclei has been shown in a small number of rodent
studies to produce analgesia (Carr and Bak, 1988; Wang
et al., 2006; Erfanparast et al., 2015). Consistently, studies
in both humans measuring [11C]diprenorphine binding via
PET imaging and rodents have found lower opioid receptor
availability in chronic pain conditions in the thalamus, ACC,

posterior temporal and orbitofrontal cortices, as well as in the
posterior midbrain (Thompson et al., 2018).

Anterior cingulate cortex

The ACC refers to a subregion of frontal cortex with
heterogenous subdivisions that are differentially involved in
the affective, cognitive, and emotional components of pain
processing (Bush et al., 2000; Vogt, 2005; Heilbronner and
Hayden, 2016). In humans, ACC receives inputs from the
anterior insular cortex (aI) (Peltz et al., 2011; Wiech et al.,
2014) and amygdala (Sharma et al., 2020). It receives ascending
noxious sensory information mainly via the medial thalamic
nuclei (Xiao and Zhang, 2018). The ACC pain-aversive response
can be increased by inputs from the primary somatosensory
cortex on a subset of ACC neurons (Singh et al., 2020). Several
pieces of evidence suggest that projections from ACC to the
brainstem, specifically through the PAG or by way of the medial
thalamic nuclei, are important for the cortical contribution to
opioid analgesia and to placebo analgesia (Hardy and Leichnetz,
1981; Royce, 1983; Devinsky et al., 1995). ACC also sends
reciprocal projections to the amygdala (Allsop et al., 2018)
and insular cortex; while functional connectivity between these
regions is associated with negative affective states (Shao et al.,
2018), the role of this circuitry in the emotional and affective
components of pain remains to be determined.

Early single neuron recordings in cingulotomy patients
showed that ACC neurons respond selectively to mechanical
and thermal painful stimuli, but not to innocuous stimuli
(Hutchison et al., 1999). Likewise, single-unit recordings in
rabbits demonstrate that ACC neurons which respond to
noxious stimuli have diffuse receptive fields covering the entire
body (Sikes and Vogt, 1992). In non-human primates, ACC
neurons were reported to encode the integration of nociception,
specifically the anticipation of pain following cutaneous electric
stimulation (Koyama et al., 1998). Interestingly, ACC activation
has also been observed during placebo-induced analgesia
(Wager et al., 2004), though this activation may occur in a
different substructure than that activated by noxious stimuli.
Subsequent human fMRI and PET studies further confirm that
ACC is activated by noxious stimuli (Kwan et al., 2000) and
the response magnitude correlates with stimulus intensity and
changes in the perceived unpleasantness of painful stimuli (Vogt
et al., 1996; Rainville et al., 1997; Tölle et al., 1999). Together,
these findings confirm that nociceptive stimuli activate ACC
across species.

Arguing against a simple role for the ACC in nociception,
patients with ACC lesions experience reduced pain-related
unpleasantness and reduced avoidance of noxious stimuli, but
their ability to identify intensity and location of noxious stimuli
remains intact (Foltz and White, 1962; Ballantine et al., 1967;
Wayne Hurt et al., 1974). Similarly, microinjection of excitatory
amino acids into the ACC in naïve rodents elicits conditioned
place aversion without altering pain thresholds (Johansen and
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Fields, 2004), while ACC lesions eliminate the aversiveness of
neuropathic pain but not stimulus-evoked hypersensitivity (Qu
et al., 2011). These findings argue against the role of ACC in
nociceptive processing per se. Instead, several studies in both
humans and rodents have shown that ACC contributes to the
unpleasantness of pain (Seminowicz et al., 2009; Fuchs et al.,
2014; Bliss et al., 2016). Functional and structural alterations
of ACC, such as hyperactivation and reduction of gray matter,
have been observed in neuropathic patients and are associated
with emotional and psychological pain (Rodriguez-Raecke et al.,
2009; Bushnell et al., 2013).

Early human studies reported high [3H]diprenorphine
binding in the ACC of healthy subjects but a reduction in
patients with central post-stroke pain (Willoch et al., 1999),
suggesting that opioids can directly impact aspects of pain
processing by binding ACC opioid receptors (Vogt et al., 1995;
Jones et al., 1999). Further receptor-imaging studies confirm
the involvement of ACC in opioid-dependent analgesia and,
intriguingly, suggest a role in placebo analgesia (Petrovic et al.,
2002). PET studies performed with [11C]Carfentanil observed
endogenous ACC opioid release during placebo analgesia and
the consequent endogenous opioid-induced ACC activation
correlated with a reduction in pain affect during a sustained
painful stimulus (Zubieta et al., 2001). Consistent with this,
rodent ACC morphine microinjection selectively suppresses
pain affect but not withdrawal responses (LaGraize et al., 2006;
Gomtsian et al., 2018).

Opioid receptors are abundantly expressed in the ACC, with
MOR expression most prominent in superficial layers (Vogt
et al., 1995). MORs are expressed by both cortical neurons
and afferent axons from subcortical regions. Presynaptic MORs
are predominant on thalamic axonal projections to the ACC
(Vogt et al., 1995). This distribution pattern led to the idea
that endogenous opioids can regulate nociception by inhibiting
the thalamocortical afferents in the ACC or by modulating the
activity of interneurons and projection neurons (Navratilova
et al., 2015). This model has been recently expanded upon by
examining the thalamo-cortico-striatal circuit (Birdsong et al.,
2019), whose involvement in pain processing was first described
by Rainville et al. (1997). Thalamic inputs to ACC are potently
inhibited by MOR agonists, but ACC inputs to dorsomedial
striatal neurons are not affected. In contrast, DOR agonists
disinhibit ACC pyramidal neurons and allow for the excitation
of ACC inputs onto striatal medium spiny neurons. These
mechanisms are mediated by different receptors and suggest
that opioid-mediated attenuation of nociceptive information
transfer to ACC from thalamus may be a primary mechanism by
which opioids reduce the negative affective component of pain.

Prefrontal cortex

While most frequently studied in the context of executive
cognitive function, recent evidence has begun to implicate
the PFC in processing acute nociceptive stimuli and in the

development of chronic pain. Within the PFC, the dorsolateral
PFC (dlPFC) is considered a master regulator of higher order
cognitive functions and is also involved in the cognitive and
affective modulation of pain (Lorenz et al., 2003), including
placebo analgesia (Petrovic et al., 2002). Functional imaging
in humans with acute and chronic pain reveal that PFC
activity correlates with the activity of pain-implicated regions
above, including ACC, insula, and thalamus (Apkarian et al.,
2005). Further, it has been posited that PFC-PAG output and
reciprocal PFC connections with the amygdala play a role in
antinociception, whereas thalamocortical PFC input and PFC
output to the basal ganglia may contribute to pain chronicity
(Ong et al., 2019). Previous fMRI studies have found that the
magnitude of placebo-induced dlPFC activity correlates with an
increase in PAG activity, supporting the idea that this circuit is
involved in expectancy-based placebo (Wager et al., 2004, 2007).
The prelimbic cortex in rodents is often included in definitions
of the rodent PFC, and while not considered homologous to
dlPFC in primates (Laubach et al., 2018), recent work has
revealed a role for this structure in pain processing. Specifically,
inflammatory pain decreases both basal firing rate and evoked
nociceptive responses in prelimbic neurons (Dale et al., 2018),
while inhibition of prelimbic neurons and their outputs to the
nucleus accumbens enhances pain responses (Zhou et al., 2018).

The effects of opioids in the PFC are less well-characterized.
Rodent PFC neuronal activity has been shown to be opioid
sensitive (Williams and Zieglgänsberger, 1981; Giacchino and
Henriksen, 1998), while in humans, PET imaging implicates
PFC endogenous opioid signaling in placebo-induced analgesia
(Wager et al., 2007). Caution is required, however, when
attempting to draw parallels between the rodent and human
PFC as expansion over the course of evolution has led to
more distinct functions and subregions within the human
PFC as compared to the rodent (Carlén, 2017; Laubach et al.,
2018), with rodents lacking a specific homologue of the dlPFC.
Nonetheless, important findings for the implications for PFC
in pain signaling may still be gleaned by carefully designing
and interpreting experiments and corroborating findings across
experimental models.

Neurostimulation therapies for
chronic pain

It is now well-established that the widespread adoption
of prescription opioids for the treatment of chronic pain has
been instrumental in driving the ongoing opioid epidemic.
The continuing burden of untreated chronic pain on patients
underscores the need for safe and effective pain therapies.
Neurostimulation therapies that target peripheral or central
pain mechanisms are promising alternatives for managing
medically refractory pain. However, these therapies are
hampered by inconsistent pain relief across patients and
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frequently diminishing analgesic effects over time. Across all
neurostimulation therapies, we do not currently understand the
physiological mechanisms of action by which these therapies
provide pain relief. A clear understanding of the mechanisms of
stimulation-induced analgesia is crucial to improve the efficacy
of these therapies.

Overview of neurostimulation for
chronic pain

Neurostimulation therapies (Figure 2) are non-addictive,
reversible strategies for managing intractable chronic
pain. Neurostimulation therapies aim to modulate neural
activity through targeted delivery of electrical stimuli to
specific regions of the nervous system. In the clinical
context, the term “neuromodulation” commonly refers
to electrical neurostimulation therapies, but may also

refer to targeted drug delivery (e.g., intrathecal pumps),
radiofrequency ablation therapies, or modulation of neural
activity via ultrasound, which are outside the scope of
this review. We use the terms “neuromodulation” and
“neurostimulation” interchangeably to describe therapies
which use electrical stimulation of the nervous system to treat
neurological disorders.

Neurostimulation therapies range in invasiveness.
Non-invasive therapies, such as transcranial direct current
stimulation (tDCS), place electrodes on the scalp or magnetic
coils proximal to the head. Invasive neurostimulation therapies,
such as deep brain stimulation (DBS) or spinal cord stimulation
(SCS), involve placing small electrode arrays in the body
near the neural structure of interest, which are connected to
implantable pulse generators. After electrode placement, a
clinician programs the stimulus pulse (i.e., sets the stimulus
pulse amplitude, duration, and frequency) to maximize
therapeutic effect while minimizing unwanted side effects.

FIGURE 2

Overview of neurostimulation modalities for the treatment of chronic pain. (Left) Schematic of application of neurostimulation devices for the
treatment of chronic pain. (A) DBS electrodes are surgically targeted to specific brain nuclei (i.e., ACC, midline thalamus, PAG) with an external
pulse generator. Following optimization of stimulation settings, the pulse generator and leads are internalized under the clavicle to deliver
electrical stimulation to the brain. (B) With tDCS, small amounts of electric current are applied externally via electrodes held in place against the
scalp. (C) rTMS is applied with an external electromagnetic coil to generate an electromagnetic field in the underlying cortical regions. Both
tDCS and rTMS are applied for 20–60 min over repeated sessions without requiring anesthesia. (D) SCS employs implanted electrodes in the
epidural space to apply electrical current to the spinal cord. Similar to DBS, SCS patients undergo a trial period to ensure adequate pain relief
before the pulse generator and leads are internalized in the posterior flank. (Bottom) For all modalities, several properties of the stimulus
waveform can be modulated, including the waveform shape, pulse amplitude, duration, and frequency, as well as whether it is applied
continuously, in regular burst patterns or in a closed-loop manner in response to neural activity or patient control. DBS, deep brain stimulation;
tDCS, transcranial direct current stimulation; rTMS, repeated transcranial magnetic stimulation; SCS, spinal cord stimulation; IPG, implanted
pulse generator.
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These stimulation parameters may be adjusted at follow-up
visits to ensure consistent therapeutic benefit.

Neurostimulation has emerged in the past 60 years as
an effective therapeutic approach to treating pain and other
disorders (Bittar et al., 2005; Moisset et al., 2020). Based on
the premise that pain percept is encoded by aberrant patterns
of neural activity, the objective of neurostimulation is to alter
neural activity in a way that minimizes the experience of pain.
Melzack and Wall’s Gate Control Theory of Pain formed the
scientific basis for the first modern uses of electrical stimulation-
induced pain relief in humans (Melzack and Wall, 1965).
This theory suggests that driving the activity of large-diameter
afferents may produce pain relief by increasing the activity of
inhibitory interneurons in the spinal cord DH. Only 2 years
after the publication of the Gate Control Theory, Wall and
Sweet demonstrated analgesia via peripheral nerve stimulation
(Wall and Sweet, 1967), and Shealy and colleagues demonstrated
analgesia via electrical stimulation of the dorsal columns of the
spinal cord (Shealy et al., 1967). Conventional neurostimulation
theory suggests that extracellular electrical stimulation induces
action potentials (APs) in myelinated axons at lower stimulus
amplitudes than other neural structures (e.g., non-myelinated
axons, cell bodies) (Rattay, 1986, 1999; McIntyre and Grill,
1999). Therefore, electrical stimulation of peripheral nerves and
the dorsal columns likely provides analgesia by driving the
activity of myelinated tactile afferent axons and feed-forward
pain-gating circuitry (Mendell, 2013; Braz et al., 2014; Duan
et al., 2018).

The past several decades have produced many innovations
in stimulation-induced analgesia. Therapies such as spinal cord
stimulation (SCS) are most commonly indicated for neuropathic
limb pain conditions, such as failed back surgery syndrome and
complex regional pain syndrome. Modern neurostimulation
approaches have also been investigated to treat central chronic
pain syndromes, such as post-stroke and phantom limb pain
(Bittar et al., 2005; Moisset et al., 2020). Furthermore, novel
stimulation targets (e.g., deep brain stimulation (DBS) of the
ACC (Spooner et al., 2007)) and stimulus pulse paradigms
[e.g., burst SCS (de Ridder et al., 2013)] are hypothesized
to modulate the neural activity associated with the affective
component of pain, rather than affecting circuits associated
with the sensory component (e.g., the spinal cord DH).
Recent years have seen numerous promising innovations in
neurostimulation for pain, and these modalities of exogenous
electrical stimulation likely have broad effects across the pain
neuraxis, which are not limited to circuits being directly
stimulated. This property poses additional challenges to
understanding the specific therapeutic mechanisms underlying
each neurostimulation technique. Therefore, understanding
how different neurostimulation therapies affect specific circuits,
such as opioidergic circuits, is crucial to understanding the
mechanisms that will ultimately be necessary for optimizing the
design and implementation of each therapy.

Spinal cord stimulation

Spinal cord stimulation (SCS) is the most common
neurostimulation therapy, with more than 50,000 SCS systems
implanted each year (Sdrulla et al., 2018). SCS is primarily
indicated for chronic neuropathic pain of the trunk or limbs
which is refractory to conventional medical management
(Kumar et al., 2007). SCS is achieved by implanting an electrode
array in the dorsal epidural space, either via percutaneous
implantation of a cylindrical electrode array, or by implanting
a paddle electrode array which requires a laminectomy (Sears
et al., 2011). Traditionally, SCS is applied with stimulus pulse
frequencies between 40 and 60 Hz, pulse durations between
200 and 600 µs, and pulse amplitudes on the order of
several Volts or milliamps for voltage-and current-controlled
stimulation, respectively (Kumar R. et al., 1998; Kapural et al.,
2015; Malinowski et al., 2020). Recent innovations in SCS
technology apply novel stimulus pulse paradigms, particularly
with regards to stimulus pulse frequency (Lempka and Patil,
2018). However, few studies have provided evidence regarding
the involvement of endogenous opioid mechanisms in analgesia
achieved with these novel SCS therapies. Therefore, we will
focus our discussion on the possible opioidergic mechanisms of
conventional SCS. Furthermore, to the extent that peripherally-
targeted neurostimulation therapies such as peripheral nerve
stimulation (PNS) (Helm et al., 2021) and dorsal root ganglion
stimulation (DRGS) (Deer et al., 2017) engage the CNS,
they are hypothesized to directly stimulate similar neural
targets as conventional SCS (Lin et al., 2020; Graham et al.,
2022). Accordingly, in addition to potentially modulating
action potential propagation in nociceptors, these therapies
likely engage similar central analgesic mechanisms as with
conventional SCS.

Conventional SCS applied with pulse frequencies between
∼40 and 60 Hz evokes paresthesia (i.e., tingling or pins-
and-needles sensations) in the area of the body targeted by
stimulation. The goal of stimulator programming is to overlap
these evoked paresthesias with the patient’s painful region
(North et al., 1991). Conventional SCS induces bidirectionally
propagating action potentials (APs) in Aβ axons in the dorsal
columns (Struijk et al., 1991; Holsheimer, 2002; Zhang et al.,
2014; Lempka et al., 2020; Rogers et al., 2022). Antidromically
propagating APs enter the dorsal horn caudal to the spinal
level where SCS is applied, where they likely provide pain relief
by activating feed-forward pain-gating circuitry in the spinal
cord. Orthodromically propagating APs are likely responsible
for SCS-induced paresthesia (Moffitt et al., 2009) and enter
the brain at the brainstem dorsal column nuclei. It is possible
that SCS simultaneously engages the endogenous opioid system
both via orthodromically propagating APs to the brain and
antidromically propagating APs into the DH.

Several brain structures related to the endogenous opioid
system have been implicated in the supraspinal mechanisms
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of action of SCS, such as the PAG, RVM, and thalamic VPL
nucleus (Sivanesan et al., 2019). Many studies have examined the
role of the DPMS, particularly the GABAergic and serotonergic
components, in SCS-induced analgesia (Cui et al., 1996; Song
et al., 2009, 2011). Early work in four patients suggested
that SCS-induced analgesia is not reversed by naloxone
administration, suggesting opioid-independent mechanisms
(Freeman et al., 1983). However, this study examined a limited
number of patients, and subsequent preclinical work has
demonstrated RVM activation during SCS, a structure known to
be crucial in endogenous opioid release (Dejongste et al., 1998),
leaving the role of opioidergic circuits in SCS-induced analgesia
unclear.

In more recent preclinical work, SCS applied to the cervical
spinal cord caused dynorphin release in spinal segments caudal
to the stimulation site (Ding et al., 2008), suggesting a potential
role for segmental opioid release in SCS. In addition, SCS-
induced analgesia in rats can be abolished by systemic naloxone,
with both SCS-frequency and naloxone-dose dependent effects
(Sato et al., 2013). A naloxone dose of 3 mg/kg/h reversed
the effects of 4 Hz SCS, but the dose had to be increased
to 10 mg/kg/h to reverse the analgesic effects of 60 Hz SCS.
Interestingly, administering the DOR antagonist naltrindole
abolished analgesia induced by 60 Hz but not by 4 Hz SCS.
Finally, a recent preclinical study simultaneously applied SCS
and the cholecystokinin (CCK) receptor antagonist proglumide
(Inoue et al., 2017). While CCK receptor antagonists typically
enhance opioid-dependent analgesia, co-application of SCS and
proglumide did not provide enhanced analgesia compared to
a single therapy alone. Taken together, these data present a
murky picture regarding opioid-dependent analgesia during
SCS, warranting continued study into both the involvement
of endogenous opioids in SCS-induced analgesia and how
SCS pulse parameters influence the engagement of these
mechanisms.

Deep brain stimulation

Deep brain stimulation (DBS) is a surgical therapy whereby
electrode arrays are implanted in discrete nuclei in the brain.
Current is then passed through these electrode contacts through
a fully implanted pulse generator to manipulate brain activity.
Due to its invasiveness, DBS is typically reserved as a late-stage
intervention after pharmacological and behavioral treatments
have proven ineffective. Brain regions targeted for DBS are
often historically identified as sites at which surgical lesions
provide some relief for a disorder. Relative to ablative surgery,
DBS is reversible and individually programmable, enabling
stimulation parameters to be titrated for each patient. Although
most commonly used for treatment of movement disorders,
indications for DBS have recently expanded to include major
depressive disorder, obsessive compulsive disorder, Tourette

syndrome, cluster headache, and chronic pain. We focus
our discussion on three brain sites that have been targeted
clinically for pain relief and highlight evidence for involvement
of opioidergic mechanisms in the therapeutic effects of DBS
applied to these brain targets.

Periaqueductal gray-deep brain stimulation
When targeting PAG, DBS electrodes are placed bilaterally

or contralaterally to the site of pain. Some studies indicate
that even unilateral electrode placement provides a largely
generalized pain relief described as a feeling of warmth and
analgesia (Hosobuchi et al., 1977; Boccard et al., 2015). Across
multiple case studies, PAG-DBS has proven effective in patients
with “nociceptive pain” (Kumar and Wyant, 1985; Levy et al.,
1987; Gybels and Kupers, 1990; Kumar et al., 1990), referring
to pain generated through ascending dorsal horn input, such
as peripheral neuropathic pain, spinal cord injury, plexopathy
or phantom limb pain (Prévinaire et al., 2009; Subedi and
Grossberg, 2011). Conversely, PAG-DBS exhibits much lower
efficacy in centrally generated pain (e.g., post-stroke pain or
headache) (Levy et al., 1987; Kumar et al., 1990; Gray et al., 2014;
Kashanian et al., 2020). PAG-DBS was largely abandoned in
2000 after two large scale clinical trials (206 total patients) failed
to meet clinical endpoints (Coffey, 2001). However, several
design and interpretation issues have been raised concerning
these studies, including the absence of randomization or placebo
control, heterogeneity of the initial pain condition, and attrition
of patients from the study which reduced statistical power to
detect treatment differences (Shirvalkar et al., 2020). Critically,
most data on PAG-DBS has been collected in case series or small
clinical trials, without proper randomization or double blinding,
the latter of which is arguably unfeasible due to PAG-DBS-
induced paresthesia. Though its popularity has decreased, PAG-
DBS is still used clinically to treat patients who are treatment
refractory with good overall outcomes (Boccard et al., 2013).
In the future, patient selection will be a key focus point for
refinement to optimize treatment efficacy (Farrell et al., 2018;
Frizon et al., 2020).

The therapeutic effects of PAG-DBS are frequency-
dependent, with frequencies between 5 and 25 Hz being more
efficacious than frequencies above 50 Hz (Nandi et al., 2002;
Hentall et al., 2016). Interestingly, patients tended to prefer
stimulation frequencies as low as 0.67 Hz (Jermakowicz et al.,
2017) and between 5 and 35 Hz (Nandi and Aziz, 2004)
when given the opportunity to blindly tune the parameters
of their own DBS. It is interesting to note that pain-relieving
stimulation in the 5 to 25 Hz range is within the physiological
firing frequency of PAG neurons (Yu et al., 2021) and stands in
sharp contrast to frequencies classically used to treat movement
disorders, which are typically above 100 Hz (Creed, 2018). This
supports the interpretation that intermittent activation of PAG
descending projections with DBS applied at a physiological
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firing rate could induce its effects through downstream opioid
release.

In rodents with nerve injury, electrical stimulation of vlPAG
was effective in reducing spontaneous pain behaviors and
mechanical allodynia even 30–40 min after stimulation (Lee
et al., 2012). A similar study using acute noxious stimuli found
that unilateral vlPAG stimulation produces significant bilateral
analgesia in rodents (Wang N. et al., 2016). Both studies state
that the mechanism of this analgesia is still unclear, although
opioids have been identified as a probable factor due to the
concentration of MORs in PAG (Wang and Wessendorf, 2002;
Loyd et al., 2008) and the finding that naloxone reverses some of
the PAG stimulation-induced analgesia (Mayer et al., 1971; Akil
et al., 1976; Morgan et al., 1991). Further downstream, the role
of endogenous opioid release in the RVM for antinociception
achieved by pharmacological and electrical activation of PAG
has been assayed in preclinical models. PAG microinjection
of GABA receptor antagonists (to cause PAG disinhibition),
morphine, and non-opioid painkillers leads to antinociception
that can be blocked by RVM microinfusion of naloxone
(Llewelyn et al., 1984; Aimone and Gebhart, 1986; Kiefel et al.,
1993; Roychowdhury and Fields, 1996; Vasquez and Vanegas,
2000). The role of endogenous opioid activity in the spinal
cord with activation of DPMS by PAG and RVM electrical
stimulation is still unclear; these stimulation interventions
produce antinociception that can be blocked by intrathecal
naloxone in some studies, while others have found a lack of an
effect on antinociception by spinal opioid antagonism (Aimone
et al., 1987; Miller and Proudfit, 1990; Morgan et al., 1991).

Clinical studies also suggest a role of endogenous opioids in
PAG-DBS-induced analgesia. Early studies found that treatment
with systemic naloxone blocks the analgesic effects of PAG-DBS
in humans (Adams, 1976; Hosobuchi et al., 1977). A more recent
study investigating dlPAG DBS-produced local field potentials
also found that naloxone reversed the analgesia while increasing
the 30–60 Hz band power measured at the same site, but this
experiment was restricted to only two human subjects (Pereira
et al., 2013). However, in a study of 45 patients with electrodes
implanted in the PAG or periventricular gray (PVG), the
attenuation of PAG-DBS pain relief by naloxone was similar in
magnitude in both active and sham DBS conditions, suggesting
the effect of naloxone may not specifically block PAG-DBS, but
may instead enhance subjective pain ratings independent of
stimulation (Young and Chambi, 1987). A study utilizing PET
imaging to observe PAG opioid release found an increase in
endogenous release during DBS, but it was not correlated with
subjective analgesia (Sims-Williams et al., 2017). Furthermore,
upon naloxone treatment, analgesia was still observed, with no
significant effect to ongoing pain scores.

Additionally, it has been reported that patients may develop
tolerance to chronic PAG-DBS stimulation and cross tolerance
to opioids such that morphine becomes less effective after
chronic PAG stimulation, suggesting occlusion of descending

pain modulatory pathways and endogenous opioid release
(Hosobuchi, 1986). However, other studies of PAG-DBS in
humans have found tolerance to stimulation in other brain
regions that are not presumed to function through endogenous
opioid signaling and a lack of cross tolerance to morphine in
chronic PAG-DBS (Young et al., 1985; Young and Chambi,
1987; Duncan et al., 1991). Finally, initial reports of endogenous
opioid release driven by PAG stimulation in humans found
increased enkephalin and beta-endorphin in cerebrospinal fluid
of patients that had a positive, pain-relieving response to
stimulation (Akil et al., 1978; Hosobuchi et al., 1979). Follow-up
studies, however, found that this effect may be due to artifacts
in immunoreactivity assays caused by contrast media (Dionne
et al., 1984; Fessler et al., 1984). As a result of these collective
studies, involvement of endogenous opioid peptides in PAG-
DBS-driven analgesia remains unresolved.

Thalamus-deep brain stimulation
Compared to PAG-DBS, DBS in the sensory thalamus is

thought to be more effective for deafferentation pain (Bittar
et al., 2005), which is caused by damage to the peripheral or
central nervous system that causes the loss of normal incoming
pain signals. Examples of this type of pain include post-
stroke pain, spinal cord injury, and facial anesthesia dolorosa
(Hosobuchi et al., 1973; Adams et al., 1974). The theory behind
the effectiveness of sensory thalamus DBS for this type of
pain is that deafferentation pain is caused by a lack of normal
proprioceptive information reaching the thalamus, which is
combated by direct stimulation of VPL and VPM (Duncan et al.,
1991). Additionally, stimulation may modulate the altered firing
patterns in the sensory thalamus that are found in chronic pain
patients (Dostrovsky, 2000; Moisset et al., 2020). When targeting
sensory thalamus, stimulating electrodes are typically placed
contralaterally and somatotopically according to the location of
the painful area, and stimulation produces paresthesia in that
area that masks pain (Hosobuchi et al., 1973; Boccard et al.,
2015; Moisset et al., 2020). Comparatively, studies of sensory
thalamic-DBS often use higher stimulus pulse frequencies than
PAG-DBS, with frequencies falling between 50 and 100 Hz
(Bittar et al., 2005; Moisset et al., 2020).

Deep brain stimulation (DBS) of medial thalamic
centromedian-parafascicular nuclear complex (CM-Pf)
has been attempted in humans under the assumption that
this stimulation may activate descending pain modulatory
opioidergic or non-opioidergic mechanisms, as well as drive
a sensory feedforward loop with cortical targets (Andy, 1980;
Duncan et al., 1991). While this manipulation appeared to be
effective in a small cohort of patients with painful dyskinesia
(Andy, 1980), other studies have produced variable results
on reported painfulness and report a variety of potentially
unpleasant side effects (Thoden et al., 1979; Hollingworth
et al., 2017). Interestingly, a recent case study in 3 patients
refractory to conventional neuromodulatory therapies found
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potential therapeutic benefits of dual stimulation of CM-Pf
and PAG/PVG using a single electrode at different frequencies
(Hollingworth et al., 2017).

The different electrical stimulation parameters of successful
PAG-and thalamic-DBS strongly suggest that these two
therapies exert their effects through distinct neural mechanisms.
Early neurostimulation trials provide further evidence for this
distinction. Specifically, responsiveness to morphine is used
throughout the literature to select patients for PAG-or thalamic-
DBS. Patients that respond moderately well to morphine are
selected for PAG-DBS, while those that do not respond well
to high doses of morphine are still able to find pain relief
via thalamic-DBS whereas PAG-DBS would be ineffective
(Hosobuchi, 1986). Along these lines, centrally generated pain is
attenuated by thalamic-DBS, whereas PAG-DBS is not effective.
These findings, coupled with the observation of low-threshold
spontaneous discharge patterns in midline thalamic nuclei
associated with pain states (Andy, 1983), lead to the hypothesis
that thalamic-DBS produces a “functional lesion” by inducing
depolarization block and inactivating low threshold discharging
neurons surrounding the stimulation electrode. This “functional
lesion” mechanism has also been proposed to account for the
anti-dyskinetic effects of subthalamic nucleus-DBS applied for
Parkinson’s disease, which shows pathological burst activity
that correlates with onset of motor symptoms (Lobb, 2014). If
an analogous mechanism of thalamic-DBS were confirmed, it
presents the opportunity to trigger thalamic-DBS in response to
nociceptive-related spontaneous discharge patterns of thalamic
nuclei. Such closed-loop stimulation protocols have been
increasingly adopted with STN-DBS for Parkinson’s disease and
have the advantage of reduced off-target effects and extended
battery life by requiring only intermittent stimulation.

Anterior cingulate cortex-deep brain
stimulation

In contrast to PAG and thalamus which have been targeted
with electrical stimulation for pain relief for over 30 years, DBS
of dorsal ACC (dACC) has only recently emerged as treatment
for neuropathic pain. In an initial case report (Spooner et al.,
2007), a single patient with neuropathic pain resulting from a
spinal cord injury received bilateral dACC-DBS electrodes and
a unilateral electrode in the PVG. In this patient, DBS applied
to the dACC at 130 Hz provided superior pain relief, mood
improvement, and reduction in medication usage compared to
PVG-DBS applied at 20 Hz. This treatment resulted in reduced
pain as assessed via visual analog scale (VAS) pain ratings
and pain medication usage. This patient also showed improved
mood in terms of reduction of fear, anxiety, and depression,
suggesting that dACC stimulation works at least in part by
targeting pain affect.

Anterior cingulate cortex (ACC) stimulation in rodents
can produce diverse behavioral effects depending on stimulus
pulse frequency and which neuronal subtypes are stimulated.

Unilateral electrical stimulation of the rodent ACC with
intermittent trains of 100 Hz pulses (200 ms inter-train
interval) induced fear-like freezing responses (Tang et al.,
2005). Optogenetically activating ACC Thy1 + neurons
at 20 Hz induced anxiodepressive behaviors, but did not
increase the hindpaw withdraw threshold to mechanical stimuli
(Barthas et al., 2015). Optogenetic activation at 10 Hz of
CaMKII + excitatory ACC neurons (which partially overlap with
the Thy1 + population) increased paw withdrawal thresholds
in naïve mice, while inhibition reversed inflammatory pain-
induced behavior (Kang et al., 2015). Further, nociceptive
responses have been demonstrated to be attenuated in rodents
following optogenetic and chemogenetic activation of subsets
of ACC interneurons (Gu et al., 2015; Kang et al., 2015; Shao
et al., 2021). These findings suggest that heterogeneity in both
function, topography, and cellular architecture contribute to the
diverse behavioral responses produced by ACC stimulation.

Clinical applications of ACC-DBS are typically applied at
stimulation frequencies of approximately 130 Hz and stimulus
pulse widths around 450 µs (Boccard et al., 2014, 2017). The
efficacy of ACC-DBS has been shown for patients suffering
from failed back surgery syndrome, poststroke pain, brachial
plexus injury, cervical spinal cord injury, head injury, and
pain of unknown origin (Boccard et al., 2014). Interestingly,
some patients receiving ACC-DBS do not report significant
reductions in pain as measured by numerical rating scales.
However, many ACC-DBS patients report improvements in
metrics related to the affective component of pain as well as
overall improvements in quality of life and describe their pain as
being “separate from them” or “not distressing” (Boccard et al.,
2017).

Due to its novelty, there are few published studies on
ACC-DBS mechanisms of action. However, the ACC projects
to many pain matrix structures, such as amygdala and PAG
(Shi et al., 2022). Therefore, it is possible that the analgesic
effects of ACC-DBS are due to postsynaptic DPMS engagement.
MORs are present both on local ACC cells and afferents
(particularly from the thalamus) terminating in the ACC (Vogt
et al., 1995). Furthermore, it is understood that terminating
afferents are highly excitable near DBS electrodes (Bower
and McIntyre, 2020). This suggests that local opioid release
could occur during ACC-DBS to either engage the DPMS or
suppress thalamocortical relay of noxious sensory information.
Preclinical and clinical data are needed to test these hypotheses.

Motor cortex stimulation

For more superficial brain targets, some researchers and
physicians have opted for intracortical or epidural stimulation.
Using this method, a craniotomy is performed, and electrodes
are placed on the surface of the brain in the epidural space.
Intracortical stimulation (ICS) is used for patients with chronic
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neuropathic pain that cannot be treated by medication and
does not respond to other forms of stimulation, such as post-
stroke pain (Moisset et al., 2020). For chronic pain patients, ICS
is mostly performed on the surface of the motor cortex in a
procedure called intracortical motor cortex stimulation (iMCS).
iMCS is typically applied at stimulus frequencies between 30
and 90 Hz and requires constant, continuous stimulation via an
implanted device for patients to continue the therapy at all times
(Fontaine et al., 2009; Lefaucheur et al., 2009). The stimulus
pulse amplitude is set at 80% of the amplitude necessary to elicit
a motor response, but is generally imperceptible to the patient
(Moisset et al., 2020).

Primary motor cortex (M1) is not particularly rich in
endogenous opioid peptides or receptors. Rat M1 exhibits
radiolabeled ligand binding at MORs at intermediate levels in
layers I and VI, but the level of MOR expression is much
less than in nearby limbic cortical areas. Ligand binding to
DORs is also very low (Lewis et al., 1983). Similarly, M1
dynorphin and enkephalin immunoreactivity reveals extremely
sparse expression of these endogenous opioids (Fallon and
Leslie, 1986). However, because M1 stimulation is thought to
activate the DPMS, endogenous opioid signaling in downstream
circuits could still be an important mechanism of action. In
the rat, iMCS has been shown to effectively activate M1 layer
V output neurons via transsynaptic mechanisms, underscoring
a mechanism by which superficial electrodes can affect motor
cortex output (Hussin et al., 2015). In rodents, iMCS activates
PAG and decreases activity in the DH, as assessed by recordings
of neuronal activity and immunohistochemistry for immediate
early genes, such as cFOS (Pagano et al., 2012; França et al.,
2013). Some of the strongest evidence implicating endogenous
opioid signaling in M1 stimulation-driven analgesia arises from
the finding in rats that the resulting analgesia is consistently
blocked by systemic naloxone (Fonoff et al., 2009). Further, PAG
naloxone pretreatment in rats blocked the inhibition of sensory
evoked potentials in the somatosensory cortex induced by M1
stimulation (Chiou et al., 2013). These preclinical data suggest
that release of endogenous opioids may be a key component of
iMCS-induced analgesia.

Exactly how M1 stimulation activates the DPMS remains
unclear. In rats, iMCS activates striatum, cerebellum and some
thalamic areas, while responses to noxious stimuli in VPL, S1,
and PFC are inhibited (Jiang et al., 2014; Kim et al., 2016).
In humans, functional imaging and electrophysiological studies
have revealed that iMCS rapidly activates lateral thalamus.
Hours later, activation of medial thalamus, ACC, orbitofrontal
cortex (OFC), and PAG is observed. The PAG receives input
from ACC and OFC, and functional connectivity between ACC
and PAG in particular is associated with pain suppression in the
contexts of opioid analgesia, placebo analgesia, and attentional
analgesia (García-Larrea et al., 1999; Peyron et al., 2007). It is
plausible to hypothesize that the prefrontal pain modulatory
network engages the PAG, yet it remains unclear precisely how

M1 stimulation recruits the prefrontal cortex and how this
unfolds on such a slow timescale. The precentral gyrus in the
macaque, which contains M1, additionally sends projections to
PAG, suggesting a possible direct route for DPMS activation via
iMCS (von Monakow et al., 1979).

In a meta-analysis of 14 studies that used iMCS in 210
chronic pain patients, subjective classification of outcomes
yielded a positive response to iMCS in ∼55% of patients, which
dropped to 45% in patients that were able to be assessed more
than 1 year later. For the patients that provided visual analog
scale scores of pain, their pain ratings improved by 56% after
receiving the intracortical stimulation. Importantly, however, in
the two studies that had internal controls for stimulation by
cycling through “on” and “off” stimulation periods, patients
did not show significant differences in pain outcomes between
the two (Fontaine et al., 2009), suggesting the possibility
that at least some aspects of iMCS pain relief result from
placebo effects. Alternatively, “wash-out” effects of stimulation
or induction of plasticity may also contribute to persistently
reduced pain outcomes during the “off” stimulation periods.
Future experiments are required to parse the contribution of
these factors.

As assessed by PET imaging using [11C]diprenorphine,
iMCS leads to endogenous opioid release in patients with
refractory neuropathic pain in anterior midcingulate cortex
(aMCC), PAG, PFC, and cerebellum, with aMCC and PAG
changes correlating with pain relief (Maarrawi et al., 2007).
Additionally, high opioid receptor availability in insula,
thalamus, PAG, ACC, and OFC were positively correlated
with later MCS pain relief efficacy (Maarrawi et al., 2013).
However, another study appears to challenge the evidence
pointing to endogenous opioid recruitment of the DPMS by
iMCS. Although M1 stimulation increased discharge rates in
LC neurons in rats experiencing neuropathic pain, lidocaine
block of LC or intrathecal alpha2-adrenergic antagonists
did not attenuate M1 stimulation-induced antinociception in
neuropathic pain or control rats (Viisanen and Pertovaara,
2010). Continued study is needed to elucidate the exact
mechanisms of endogenous opioid release during iMCS, and
how it may correlate with resultant analgesia.

Repetitive transcranial magnetic
stimulation

Repetitive transcranial magnetic stimulation (rTMS) is
a non-invasive neurostimulation method during which an
electromagnetic coil is placed against the scalp in alignment
with a target brain region. A current is passed through the coil
to produce pulsatile changes in the magnetic field surrounding
the coil. This magnetic field passes through the skull and
into the brain, where it induces electrical currents which
modulate the activity of neurons in target regions. rTMS is
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most commonly used to treat depression in patients who
are unresponsive to or unable to tolerate medications (Speer
et al., 2000). However, a systematic review of the literature
concluded that rTMS is effective for central pain, peripheral
nerve disorders, fibromyalgia, and migraine, and that studies
using rTMS for orofacial pain, phantom limb pain, lower back
pain, and complex regional pain syndrome were promising
but inconclusive (Yang and Chang, 2020). Importantly, when
targeted to the appropriate brain regions, the reported rTMS
effects are pain-specific (Nahmias et al., 2009).

Repetitive transcranial magnetic stimulation (rTMS)
treatment paradigms are widely used in the clinic and are
therefore highly standardized. Typically, a patient receives
rTMS for several min per session, undergoing 10s of sessions
over several months. rTMS frequencies for pain treatment
range between ∼0.5 and 10 Hz, with the consensus being that
frequencies greater than 5 Hz are most effective (Lefaucheur
et al., 2006; Moisset et al., 2015). rTMS has been extensively
studied at two sites: the dlPFC, based on its accessibility and
role in pain processing, and primary motor cortex (M1). M1
rTMS has been consistently reported to provide pain relief in
both chronic pain patients and experimental models of pain
(Lefaucheur et al., 2006; Nahmias et al., 2009; de Andrade et al.,
2011; Moisset et al., 2015). Although there is some disagreement
in the literature (Yoo et al., 2006), there is a general consensus
that dlPFC rTMS also provides pain relief in models of
experimental pain in healthy subjects (Graff-Guerrero et al.,
2005; Borckardt et al., 2007; Nahmias et al., 2009; Valmunen
et al., 2009; de Andrade et al., 2011; Taylor et al., 2012). While
rTMS is performed contralateral to the painful site, bilateral
analgesia can be evoked in humans (Nahmias et al., 2009). M1
rTMS produces bilateral analgesia in healthy patients that does
not affect thermal detection thresholds, which points toward
a role for diffuse descending pain modulation (Nahmias et al.,
2009). rTMS provides both short-term pain relief immediately
after the stimulation session, which may take 2–3 days to
reach its peak, as well as long term relief that lasts for weeks to
months after the end of session in contrast with the previously
introduced stimulation techniques (Lefaucheur et al., 2001,
2006). Interestingly, the impact on pain affect lasts longer than
on the sensory component of pain (Passard et al., 2007).

In humans, evidence for the involvement of endogenous
opioids in M1 rTMS-induced analgesia has emerged from
studies in healthy subjects in which naloxone blocked the
rTMS-induced short-term analgesia. However, dlPFC studies
by different groups reached different conclusions. A landmark
study found that naloxone attenuated the analgesic effect of M1
stimulation but not dlPFC or sham rTMS (de Andrade et al.,
2011), whereas another study found that naloxone blocked the
analgesic effect of dlPFC rTMS (Taylor et al., 2012). A PET study
using the radioligand [11C]carfentanil administered several
hours after rTMS treatment of a diffuse area containing M1
and primary somatosensory cortex in healthy subjects revealed

endogenous opioid release in the ipsilateral ventral striatum,
mOFC, PFC, ACC, contralateral insula, superior temporal
gyrus, dlPFC, and precentral gyrus, without impacting striatal
D2 receptor availability (Lamusuo et al., 2017).

Transcranial direct current stimulation

Transcranial direct current stimulation (tDCS) applies low
levels of electrical current via small battery powered electrodes
placed on the head. Although it is not currently approved
by the Federal Drug Administration in the United States
as its regulatory status is only “investigational,” studies on
small cohorts have shown promising results for the use of
tDCS in patients with fibromyalgia, spinal cord injury, and
migraine (Fregni et al., 2006a,b; Dasilva et al., 2012). In
other studies, however, tDCS was not effective for chronic
low back pain or in spinal cord injury (O’Connell et al.,
2013; Wrigley et al., 2013). Similar to iMCS and rTMS, tDCS
appears most effective when applied over the motor cortex.
Interestingly, PET imaging for radiolabeled opioids revealed
motor cortex tDCS-driven endogenous opioid release, which
reveals a possible mechanism for the measured improvements
in thermal pain thresholds (DosSantos et al., 2014). Although
both tDCS and placebo stimulation caused endogenous opioid
release in PAG and precuneus, tDCS alone produced analgesia
and additional opioid release in left PFC. Though naloxone was
not administered to determine the causality of opioid signaling
in the observed analgesia, these studies suggest opioidergic
signaling is responsible at least in part for the tDCS-induced
pain relief.

Future outlook

Technological innovation

Stimulus pulse paradigms
In recent years, there have been several innovations

regarding the electrical stimulus waveforms applied by
neurostimulation therapies for chronic pain. With SCS, many
of these innovations apply tonic SCS at frequencies not typically
utilized by conventional (i.e., 40 to 60 Hz) SCS. Kilohertz
frequency SCS (KHFSCS), ultra-low frequency SCS (ULFSCS),
and burst SCS all provide pain relief without producing
paresthesias. KHFSCS utilizes frequencies greater than 1,000 Hz
(Kapural et al., 2015), while ULFSCS applies frequencies below
0.1 Hz (Jones et al., 2021). Burst SCS employs bursts of SCS
pulses at ∼40 Hz with an intraburst frequency of 500 Hz
(de Ridder et al., 2013). Similar to conventional SCS, the
physiological mechanisms of analgesia for each of these novel
forms of SCS are unknown, presenting the same challenges to
improving their design and implementation. However, these
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paresthesia-free SCS waveforms allow for placebo-controlled
clinical studies, providing exciting new opportunities to
systematically examine the effects of these new therapies in the
patient’s pain experience.

In addition to new tonic SCS waveforms, new stimulus
paradigms are emerging in clinical neuromodulation.
Differential targeted multiplexed SCS (DTMSCS) applies
two simultaneous SCS waveforms: a lower frequency 50 Hz
waveform, and a higher frequency 1,200 Hz waveform (Vallejo
et al., 2020). It is hypothesized that in addition to inducing
conventional segmental pain inhibition, DTMSCS also affects
properties of spinal glial cells (Vallejo et al., 2020). A recent
innovation in DBS, Coordinated Reset DBS (CRDBS), applies
precisely timed, spatially distributed stimuli to desynchronize
pathological brain activity, possibly by rectifying aberrant
synapses which were remodeled by disease conditions (Tass,
2003). Interestingly, CRDBS may produce long-lasting
therapeutic benefit, even after the stimulus pulse is switched off
(Wang J. et al., 2016). These stimulus paradigms suggest that it
is critical to consider the effects of neuromodulation therapies
on pre-and post-synaptic terminals and on non-neuronal cells,
and that improving our scientific understanding of how the
timing of exogenous electrical stimuli is integrated by neurons
and synapses may allow for the evidence-based design of novel
stimulus protocols which directly target the synaptic basis of
pathological neural activity.

Closed-loop neurostimulation
A major challenge in diagnosis and treatment of chronic

pain conditions is that there are no objective biomarkers of
the pain experience. Most existing neurostimulation therapies
apply stimulation in an “open-loop” fashion, where electrical
stimuli are delivered at a constant frequency with no variation in
intensity or rate. Given temporal fluctuations in severity of pain
symptoms in chronic pain patients, modulating stimulation in
response to changes in neural activity or behavioral biomarkers
would represent an important treatment advance and may
prevent tolerance by delivering stimulation only when needed
and limiting unwanted side effects. Closed-loop approaches
are beginning to be adopted in neurostimulation for pain,
such as monitoring the amplitude of evoked compound action
potentials recorded from the dorsal columns to modulate SCS
pulse amplitudes. This approach was recently demonstrated
to provide superior pain relief compared to open-loop SCS
(Mekhail et al., 2020). Improving our understanding of how
chronic pain pathogenesis and neurostimulation therapies affect
the characteristics and behavior of opioidergic (and other)
circuits could reveal new biomarkers with which to design
closed-loop stimulation algorithms.

Alternate sites for neurostimulation
Continued study of the complicated matrix of brain areas

involved in pain processing has revealed other targets that may

provide therapeutic benefit by neurostimulation, including the
insular cortex (IC). The IC can be divided along the anterior-
posterior axis, with the posterior insula (pI) participating in
somatosensory features of pain, whereas the anterior portion
(aI) is implicated in encoding pain unpleasantness (Craig, 2002).

Low frequency electrical stimulation of the right pI elicits
nociception in humans and primates with some somatotopy
(Ostrowsky et al., 2002; Mazzola et al., 2009), while high
frequency stimulation of pI and aI reduces pain thresholds
with no obvious side effects, consistent with insular inactivation
(Denis et al., 2016; Liu et al., 2021). A form of rTMS in IC has
been shown to produce bilateral thermal analgesia in humans
without affecting the ability to perceive innocuous thermal
or vibrotactile sensations (Lenoir et al., 2018). Similarly, pI-
rTMS increases thermal pain thresholds in patients with central
neuropathic pain, but this did not translate to differences in
relief from chronic pain and quality of life (Galhardoni et al.,
2019). Although studies have not yet extended ICS to the human
insula, one preclinical study in rodents suggests a potential
role for low frequency intracortical pI stimulation in relief
from chronic neuropathic pain. Importantly for this review,
all forms of analgesia examined in this study were blocked
by naloxone, clearly implicating endogenous opioid release
(Komboz et al., 2022). Although opioid peptides and receptors
are prominent in pI, it remains to be determined whether local
opioid signaling, activation of afferents from other structures, or
projections to the DPMS are involved. Innovation in the brain
areas targeted by neurostimulation techniques may elucidate
stimulation paradigms that provide pain relief in the absence of
adverse side effects.

Innovating clinical paradigms

Pharmacological adjuvants
A key challenge with electrical stimulation of any neural

structure is the cellular heterogeneity of the target. Electrical
stimulation is inherently non-specific; all neurons in the vicinity
of the electrode are subject to modulation, which presents a
challenge when the target structure is comprised of diverse
neuronal subtypes which may play distinct or even opposing
functional roles in neural circuits. In some cases, it may be
advantageous to preferentially modulate specific subpopulations
of neurons within a target structure. For example, the PAG can
be subdivided into populations of glutamatergic and GABAergic
neurons with subpopulations of each type projecting to the
RVM to drive descending pain modulation. We hypothesize that
MOR-expressing PAG-RVM projection neurons may facilitate
pain, since they are inhibited by opioid analgesics. Thus,
selective recruitment of the MOR-lacking PAG projection
neurons using electrical stimulation may produce the most
effective pain relief.
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We recently demonstrated that pharmacological adjuvants
can be combined with DBS to enhance its specificity (Creed
et al., 2015; Creed, 2017). Pharmacological adjuvants have also
been applied in preclinical (Cui et al., 1996) and clinical (Lind
et al., 2004, 2007) studies of SCS, suggesting that co-application
of SCS and the GABAB receptor agonist baclofen may increase
analgesia compared to the application of a single therapy
alone. Currently, the combined approach of simultaneous
electrical and chemical neuromodulation is not widely adopted
in the clinical neuromodulation field. However, characterizing
differences in ion channel or receptor expression between
functional subpopulations of a target structure could identify
pharmacological targets to be chemically manipulated during
concurrent electrical stimulation. A dual electrical and chemical
modulatory approach may allow for greater symptom control
in cases where symptoms of a given disease are governed by
biochemically distinct neuronal subpopulations. This approach
may improve the specificity of a therapy, and thus increase
efficacy while limiting off-target effects.

The advent of non-invasive, region-specific drug delivery
and devices capable of delivering simultaneous electrical and
chemical stimulation (Capogrosso et al., 2018) makes this an
even more exciting and tractable possibility. Recently, focused
ultrasound has been used to target drug release to specific sites
in the brain in a non-invasive manner (Airan and Butts Pauly,
2018; Wang et al., 2018; McMahon et al., 2021). We anticipate
that light-driven activation of drugs and neurotransmitters (i.e.,
photopharmacology) will also emerge as a viable approach that
offers improved spatial and temporal precision for in vivo drug
delivery (Banghart and Sabatini, 2012; Font et al., 2017; Hüll
et al., 2018; López-Cano et al., 2021). Photopharmacology may
interface particularly well with DBS and iCS, as light sources can
be readily incorporated into stimulating electrodes (Royer et al.,
2010; Lechasseur et al., 2011).

Early stimulation
Neurostimulation therapies are usually reserved for patients

who are treatment refractory to every other standard of
care in chronic pain conditions and for other neurological
and psychiatric disorders. However, chronic pain, like other
neurological and psychiatric disorders, is a disease of neural
plasticity, with reorganization of neural pathways involved in
pain and affective processing contributing to the persistence of
pain symptoms. Recently, it has been proposed that patients
receiving stocktickerSCS to manage their chronic pain would
benefit from implementing the therapy earlier in disease
pathogenesis (Kumar et al., 2014; Taylor et al., 2014; Lad
et al., 2016; Campos et al., 2019). Along the same lines,
novel DBS protocols have been shown to effectively reverse
maladaptive plasticity associated with behavioral symptoms
in Parkinson’s disease (Wang J. et al., 2016; Mastro et al.,
2017; Spix et al., 2021) and addiction (Creed et al., 2015;
Lüscher et al., 2015). Because these protocols alter plasticity

in neural circuits, their therapeutic effects outlast the duration
of stimulation, which is in stark contrast to classically applied
tonic ∼100 Hz DBS in which motor or psychiatric symptoms
reappear nearly immediately after DBS offset (Lüscher et al.,
2015). An intriguing prospect would be to apply DBS in patients
with pain disorders before nociceptive and affective circuitry
undergo pain-induced plasticity that contributes to affective
comorbidities or cognitive symptoms of chronic pain (Andrade
et al., 2013). Alternatively, designing DBS protocols capable
of normalizing chronic pain-induced synaptic adaptations
in nociceptive processing pathways would hold enormous
therapeutic promise.

Novel pain assessment metrics
Accurate assessment of treatment efficacy is crucial for any

therapy. The success of neurostimulation therapies for chronic
pain is typically defined as a ≥ 50% reduction in a patient’s
overall pain, measured by the visual analog scale (VAS), verbal
rating scale (VRS), or numeric rating scale (NRS). However,
subjective measurements made with different scales are not
always comparable (Ohnhaus and Adler, 1975; Lund et al.,
2005) and may suffer from low reproducibility (van Tubergen
et al., 2002). Furthermore, some have shown that the percentage
of a patient cohort satisfied with SCS is disproportionately
greater than the percentage of the cohort which met the ≥ 50%
reduction in VAS (Sears et al., 2011). Taken together, these
findings suggest that novel, holistic assessments of a patient’s
pain experience may more accurately capture the efficacy of
a neurostimulation therapy than a single pain rating alone.
Some have suggested that dynamic pain measures, such as
temporal summation and conditioned pain modulation, which
are proxy measures for central sensitization and descending
inhibitory tone respectively, may hold clinical value in both
patient selection and assessing the efficacy of SCS (Yarnitsky
et al., 2010; Campbell et al., 2015; Sankarasubramanian et al.,
2019, 2021). Others have demonstrated that composite metrics
which incorporate measurements of pain intensity, physical
functioning, quality of life, and affect more closely represent the
patient’s impression of therapeutic benefit (Pilitsis et al., 2021).
These measures could provide a more accurate and reliable
readout of a patient’s experience with a therapy for use during
stimulator programming and as primary endpoints in clinical
trials of neurostimulation therapies.

Improving our mechanistic
understanding to improve therapeutic
strategies

A key limitation facing all neurostimulation therapies is that
we do not understand their therapeutic mechanisms of action.
Uncovering these mechanisms may allow for the evidence-based
design of targeted therapies which produce robust therapeutic
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benefit with minimal side effects. The study of neurostimulation
therapies highlights several key knowledge gaps pertaining to
understanding the neural substrates of symptom management
in neurological disorders.

The rationale for selecting an implant location for a
neurostimulation therapy, such as ACC-DBS, is often based
on historical lesioning studies (Boccard et al., 2017). However,
the selection of stimulus pulse parameters is largely initially
arbitrary and empirically adjusted based on subjective patient
feedback. The stimulus pulse frequencies which produce
therapeutic benefit in the many therapies discussed in this
review are quite variable, with some therapies using pulse
frequencies greater than 100 Hz, while others use pulse
frequencies closer to 20 Hz. A notable finding of the involvement
of endogenous opioids in preclinical SCS studies is that
opioidergic analgesia during SCS may be dependent on stimulus
pulse frequency. SCS applied at 60 Hz required higher doses of
naloxone to abolish SCS-induced analgesia and was sensitive to
a DOR antagonist, while SCS applied at 4 Hz required lower
doses of naloxone to abolish analgesia and was not sensitive to
a DOR antagonist (Sato et al., 2013). These data imply that the
stimulus pulse frequency, putatively the rate at which axons near
the stimulating electrode are conducting artificially generated
APs (McIntyre et al., 2004), may affect the characteristics of
neurotransmitter release from the presynaptic terminals of
stimulated neurons. Future studies should examine how varying
stimulus pulse frequency affects neurotransmitter release and
pre-and post-synaptic receptor activation.

Many studies of neurostimulation therapies focus on the
effects of stimulation on the neurons which are directly
responding to the stimulus pulse. However, the resulting effects
on postsynaptic networks are likely complex and intricately
involved in symptom relief. Novel experimental techniques
to study the activity of large networks such as in vivo
calcium imaging (Göbel and Helmchen, 2007) and high-density
electrical recordings (Jun et al., 2017; Juavinett et al., 2019;
Steinmetz et al., 2021) provide the opportunity to monitor
the behavior and properties of neural networks over time.
These techniques could be used to observe the network
response to neurostimulation therapies (Trevathan et al., 2021).
Crucially, these methods also allow for the characterization of
network properties across different behavioral states (Sweeney
et al., 2021). Comparing network properties during both pain
pathogenesis and intervention could give key insights into the
development of neurological disease and reveal novel methods
for targeted intervention.

Conclusion

Neurostimulation therapies are important tools in
managing intractable chronic pain. Our incomplete
understanding of the mechanisms of action of such therapies
precludes their improvement to maximize pain relief.
In this review, we summarized the evidence that many

neurostimulation therapies for pain may provide analgesia in
part by modulating opioidergic circuits throughout the neuraxis.
Further study is needed to understand the mechanisms by,
and extent to which, neurostimulation therapies modulate
these circuits. Continued study of the interactions between
exogenous electric fields and neuronal and synaptic dynamics
will be critical to the evidence-based design of neurostimulation
therapies which specifically target mechanisms underlying
neurological disease. We believe that a multidisciplinary
approach combining basic neurobiological studies, innovation
in clinical paradigms, and novel technology development will
be key to engineering the next generation of safe and effective
therapies for chronic pain.
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Bushnell, M. C., Čeko, M., and Low, L. A. (2013). Cognitive and emotional
control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14, 502–511.
doi: 10.1038/nrn3516

Cameron, A. A., Khan, I. A., Westlund, K. N., and Willis, W. D. (1995b). The
efferent projections of the periaqueductal gray in the rat: A Phaseolus vulgaris-
leucoagglutinin study. II. Descending projections. J. Comp. Neurol. 351, 585–601.

Cameron, A. A., Khan, I. A., Westlund, K. N., Cliffer, K. D., and Willis, W. D.
(1995a). The efferent projections of the periaqueductal gray in the rat: A Phaseolus
vulgaris-leucoagglutinin study. I. Ascending projections. J. Comp. Neurol. 351,
568–584.

Campbell, C. M., Buenaver, L. F., Raja, S. N., Kiley, K. B., Swedberg, L. J.,
Wacnik, P. W., et al. (2015). Dynamic pain phenotypes are associated with spinal
cord stimulation-induced reduction in pain: A repeated measures observational
pilot study. Pain Med. 16, 1349–1360. doi: 10.1111/pme.12732

Campos, W. K., Linhares, M. N., Sarda, J., Santos, A. R. S., Licinio, J., Quevedo,
J., et al. (2019). Determinants for meaningful clinical improvement of pain and

Frontiers in Systems Neuroscience 18 frontiersin.org

166

https://doi.org/10.3389/fnsys.2022.1044686
https://doi.org/10.1016/0304-3959(76)90111-1
https://doi.org/10.1523/JNEUROSCI.06-06-01803.1986
https://doi.org/10.1523/JNEUROSCI.06-06-01803.1986
https://doi.org/10.1016/0304-3959(87)90012-1
https://doi.org/10.1016/J.NEURON.2018.05.031
https://doi.org/10.1126/science.1251210
https://doi.org/10.1126/science.663668
https://doi.org/10.1016/S0959-4388(03)00096-5
https://doi.org/10.1016/S0959-4388(03)00096-5
https://doi.org/10.1016/j.cell.2018.04.004
https://doi.org/10.1016/j.cell.2018.04.004
https://doi.org/10.1586/ERD.12.90
https://doi.org/10.1159/000102247
https://doi.org/10.1159/000101250
https://doi.org/10.1016/J.EJPAIN.2004.11.001
https://doi.org/10.1523/jneurosci.15-02-01215.1995
https://doi.org/10.1016/0304-3959(82)90155-5
https://doi.org/10.1016/j.neuropharm.2020.108131
https://doi.org/10.1016/j.neuropharm.2020.108131
https://doi.org/10.1002/(SICI)1096-9861(19990315)405:3<359::AID-CNE6<3.0.CO;2-W
https://doi.org/10.1002/(SICI)1096-9861(19990315)405:3<359::AID-CNE6<3.0.CO;2-W
https://doi.org/10.3171/JNS.1967.26.5.0488
https://doi.org/10.1016/j.neuron.2011.11.016
https://doi.org/10.1016/J.BIOPSYCH.2014.08.004
https://doi.org/10.1016/0301-0082(95)00009-K
https://doi.org/10.1016/0301-0082(95)00009-K
https://doi.org/10.1177/0269881120940919
https://doi.org/10.1016/0006-8993(90)91519-M
https://doi.org/10.1016/j.pain.2005.08.027
https://doi.org/10.7554/eLife.45146
https://doi.org/10.1016/j.jocn.2004.10.005
https://doi.org/10.1038/nrn.2016.68
https://doi.org/10.1227/NEU.0000000000000321
https://doi.org/10.1227/NEU.0000000000000321
https://doi.org/10.1016/J.JOCN.2015.04.005
https://doi.org/10.1016/J.JOCN.2015.04.005
https://doi.org/10.1227/NEU.0B013E31827B97D6
https://doi.org/10.1016/j.wneu.2017.06.173
https://doi.org/10.1016/j.wneu.2017.06.173
https://doi.org/10.1016/0006-8993(88)90962-6
https://doi.org/10.1155/2007/741897
https://doi.org/10.1016/j.brs.2020.09.001
https://doi.org/10.1016/J.NEURON.2014.01.018
https://doi.org/10.1002/cne.23024
https://doi.org/10.1002/cne.23024
https://doi.org/10.1038/nrn3516
https://doi.org/10.1111/pme.12732
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-1044686 December 8, 2022 Time: 15:53 # 19

Lubejko et al. 10.3389/fnsys.2022.1044686

health-related quality of life after spinal cord stimulation for chronic intractable
pain. Neuromodulation 22, 280–289. doi: 10.1111/ner.12891

Capogrosso, M., Gandar, J., Greiner, N., Moraud, E. M., Wenger, N.,
Shkorbatova, P., et al. (2018). Advantages of soft subdural implants for the delivery
of electrochemical neuromodulation therapies to the spinal cord. J. Neural. Eng.
15:026024. doi: 10.1088/1741-2552/aaa87a

Carlén, M. (2017). What constitutes the prefrontal cortex? Science 358, 478–482.
doi: 10.1126/SCIENCE.AAN8868

Carr, K. D., and Bak, T. H. (1988). Medial thalamic injection of opioid agonists:
µ-agonist increases while κ-agonist decreases stimulus thresholds for pain and
reward. Brain Res. 441, 173–184. doi: 10.1016/0006-8993(88)91396-0

Casey, K. L., Lorenz, J., and Minoshima, S. (2003). Insights into the
pathophysiology of neuropathic pain through functional brain imaging. Exp.
Neurol. 184, 80–88. doi: 10.1016/j.expneurol.2003.07.006

Chen, Q. L., Roeder, Z., Li, M. H., Zhang, Y. M., Ingram, S. L., and Heinricher,
M. M. (2017). Optogenetic evidence for a direct circuit linking nociceptive
transmission through the parabrachial complex with pain-modulating neurons
of the rostral ventromedial medulla (RVM. eNeuro 4, 202–219. doi: 10.1523/
ENEURO.0202-17.2017

Cheriyan, J., and Sheets, P. L. (2018). Altered excitability and local connectivity
of mPFC-PAG neurons in a mouse model of neuropathic pain. J. Neurosci. 38,
4829–4839. doi: 10.1523/JNEUROSCI.2731-17.2018

Chiou, R. J., Chang, C. W., and Kuo, C. C. (2013). Involvement of the
periaqueductal gray in the effect of motor cortexstimulation. Brain Res. 1500,
28–35. doi: 10.1016/j.brainres.2013.01.022

Clark, F. M., and Proudfit, H. K. (1991a). Projections of neurons in the
ventromedial medulla to pontine catecholamine cell groups involved in the
modulation of nociception. Brain Res. 540, 105–115. doi: 10.1016/0006-8993(91)
90496-I

Clark, F. M., and Proudfit, H. K. (1991b). The projection of locus coeruleus
neurons to the spinal cord in the rat determined by anterograde tracing combined
with immunocytochemistry. Brain Res. 538, 231–245. doi: 10.1016/0006-8993(91)
90435-X

Clark, F. M., and Proudfit, H. K. (1991c). The projection of noradrenergic
neurons in the A7 catecholamine cell group to the spinal cord in the rat
demonstrated by anterograde tracing combined with immunocytochemistry.
Brain Res. 547, 279–288. doi: 10.1016/0006-8993(91)90972-X

Clark, F. M., and Proudfit, H. K. (1993). The projections of noradrenergic
neurons in the A5 catecholamine cell group to the spinal cord in the rat:
Anatomical evidence that A5 neurons modulate nociception. Brain Res. 616,
200–210. doi: 10.1016/0006-8993(93)90210-E

Coffey, R. J. (2001). Deep brain stimulation for chronic pain: Results of two
multicenter trials and a structured review. Pain Med. 2, 183–192. doi: 10.1046/j.
1526-4637.2001.01029.x

Collins, F. S., Koroshetz, W. J., and Volkow, N. D. (2018). Helping to end
addiction over the long-term the research plan for the NIH HEAL initiative. JAMA
320, 129–130. doi: 10.1001/jama.2018.8826

Corder, G., Castro, D. C., Bruchas, M. R., and Scherrer, G. (2018). Endogenous
and exogenous opioids in pain. Annu. Rev. Neurosci. 41, 453–473. doi: 10.1146/
annurev-neuro-080317-061522

Craig, A. D. (2002). How do you feel? Interoception: The sense of the
physiological condition of the body. Nat. Rev. 3, 655–666. doi: 10.1038/nrn894

Creed, M. (2018). Current and emerging neuromodulation therapies for
addiction: Insight from pre-clinical studies. Curr. Opin. Neurobiol. 49, 168–174.
doi: 10.1016/j.conb.2018.02.015

Creed, M. C. (2017). Toward a targeted treatment for addiction. Science 357,
464–465. doi: 10.1126/SCIENCE.AAO1197

Creed, M., Pascoli, V. J., and Lüscher, C. (2015). Addiction therapy. Refining
deep brain stimulation to emulate optogenetic treatment of synaptic pathology.
Science 347, 659–664. doi: 10.1126/SCIENCE.1260776

Cui, J. G., Linderoth, B., and Meyerson, B. A. (1996). Effects of spinal cord
stimulation on touch-evoked allodynia involve GABAergic mechanisms. An
experimental study in the mononeuropathic rat. Pain 66, 287–295. doi: 10.1016/
0304-3959(96)03069-2

D’Mello, R., and Dickenson, A. H. (2008). Spinal cord mechanisms of pain. Br.
J. Anaesth. 101, 8–16. doi: 10.1093/bja/aen088

Dale, J., Zhou, H., Zhang, Q., Martinez, E., Hu, S., Liu, K., et al. (2018). Scaling
up cortical control inhibits pain. Cell Rep. 23, 1301–1313. doi: 10.1016/j.celrep.
2018.03.139

Dasilva, A. F., Mendonca, M. E., Zaghi, S., Lopes, M., Dossantos, M. F.,
Spierings, E. L., et al. (2012). tDCS-induced analgesia and electrical fields in

pain-related neural networks in chronic migraine. Headache 52, 1283–1295. doi:
10.1111/J.1526-4610.2012.02141.X

de Andrade, D. C., Mhalla, A., Adam, F., Texeira, M. J., and Bouhassira,
D. (2011). Neuropharmacological basis of rTMS-induced analgesia: The role of
endogenous opioids. Pain 152, 320–326. doi: 10.1016/J.PAIN.2010.10.032

de Ridder, D., Plazier, M., Kamerling, N., Menovsky, T., and Vanneste, S. (2013).
Burst spinal cord stimulation for limb and back pain. World Neurosurg. 80,
642–649.e1. doi: 10.1016/J.WNEU.2013.01.040

Deandrea, S., Montanari, M., Moja, L., and Apolone, G. (2008). Prevalence of
undertreatment in cancer pain. A review of published literature. Ann. Oncol. 19,
1985–1991. doi: 10.1093/annonc/mdn419

Deer, T. R., Levy, R. M., Kramer, J., Poree, L., Amirdelfan, K., Grigsby, E., et al.
(2017). Dorsal root ganglion stimulation yielded higher treatment success rate for
complex regional pain syndrome and causalgia at 3 and 12 months: A randomized
comparative trial. Pain 158, 669–681. doi: 10.1097/j.pain.0000000000000814

Dejongste, M. J., Hautvast, R. W., Ruiters, M. H., and ter Horst, G. J. (1998).
Spinal cord stimulation and the induction of c-fos and heat shock protein 72 in
the central nervous system of rats. Neuromodulation 1, 73–84. doi: 10.1111/J.1525-
1403.1998.TB00020.X

Denis, D. J., Marouf, R., Rainville, P., Bouthillier, A., and Nguyen, D. K. (2016).
Effects of insular stimulation on thermal nociception. Eur. J. Pain 20, 800–810.
doi: 10.1002/ejp.806

Devinsky, O., Morrell, M. J., and Vogt, B. A. (1995). Contributions of anterior
cingulate cortex to behaviour. Brain 118, 279–306.

Dickenson, A. H. (1995). Spinal cord pharmacology of pain. Br. J. Anaesth. 75,
193–200. doi: 10.1093/bja/75.2.193

Dickenson, A. H., and Sullivan, A. F. (1986). Electrophysiological studies on the
effects of intrathecal morphine on nociceptive neurones in the rat dorsal horn.
Pain 24, 211–222.

Dickenson, A. H., Oliveras, J. L., and Besson, J. M. (1979). Role of the nucleus
raphe Magnus in opiate analgesia as studied by the microinjection technique in
the rat. Brain Res. 170, 95–111. doi: 10.1016/0006-8993(79)90943-0

Ding, X. H., Hua, F., Sutherly, K., Ardell, J. L., and Williams, C. A. (2008).
C2 spinal cord stimulation induces dynorphin release from rat T4 spinal cord:
Potential modulation of myocardial ischemia-sensitive neurons. Am. J. Physiol.
Regul. Integr. Comp. Physiol. 295, R1519–R1528. doi: 10.1152/AJPREGU.00899.
2007

Dionne, R. A., Mueller, G. P., Young, R. F., Greenberg, R. P., Hargreaves, K. M.,
Gracely, R., et al. (1984). Contrast medium causes the apparent increase in β-
endorphin levels in human cerebrospinal fluid following brain stimulation. Pain
20, 313–321. doi: 10.1016/0304-3959(84)90109-X

DosSantos, M. F., Martikainen, I. K., Nascimento, T. D., Love, T. M.,
DeBoer, M. D., Schambra, H. M., et al. (2014). Building up analgesia in
humans via the endogenous µ-opioid system by combining placebo and active
tDCS: A preliminary report. PLoS One 9:e102350. doi: 10.1371/journal.pone.010
2350

Dostrovsky, J. O. (2000). Role of thalamus in pain. Prog. Brain Res. 129, 245–257.
doi: 10.1016/S0079-6123(00)29018-3

Drolet, G., van Bockstaele, E. J., and Aston-Jones, G. (1992). Robust enkephalin
innervation of the locus coeruleus from the rostral medulla. J. Neurosci. 12,
3162–3174. doi: 10.1523/jneurosci.12-08-03162.1992

Duan, B., Cheng, L., and Ma, Q. (2018). Spinal circuits transmitting mechanical
pain and itch. Neurosci. Bull. 34, 186–193. doi: 10.1007/s12264-017-0136-z

Duncan, G. H., Bushnell, M. C., and Marchand, S. (1991). Deep brain
stimulation: A review of basic research and clinical studies. Pain 45, 49–59. doi:
10.1016/0304-3959(91)90164-S

Eippert, F., Bingel, U., Schoell, E. D., Yacubian, J., Klinger, R., Lorenz, J., et al.
(2009). Activation of the opioidergic descending pain control system underlies
placebo analgesia. Neuron 63, 533–543. doi: 10.1016/j.neuron.2009.07.014

Erbs, E., Faget, L., Scherrer, G., Matifas, A., Filliol, D., Vonesch, J. L., et al.
(2015). A mu–delta opioid receptor brain atlas reveals neuronal co-occurrence in
subcortical networks. Brain Struct. Funct. 220, 677–702. doi: 10.1007/s00429-014-
0717-9

Erfanparast, A., Tamaddonfard, E., Taati, M., and Dabaghi, M. (2015). Role
of the thalamic submedius nucleus histamine H1 and H2 and opioid receptors
in modulation of formalin-induced orofacial pain in rats. Naunyn Schmiedebergs
Arch. Pharmacol. 388, 1089–1096. doi: 10.1007/s00210-015-1143-0

Ezra, M., Faull, O. K., Jbabdi, S., and Pattinson, K. T. (2015). Connectivity-
based segmentation of the periaqueductal gray matter in human with brainstem
optimized diffusion MRI. Hum. Brain Mapp. 36, 3459–3471. doi: 10.1002/hbm.
22855

Frontiers in Systems Neuroscience 19 frontiersin.org

167

https://doi.org/10.3389/fnsys.2022.1044686
https://doi.org/10.1111/ner.12891
https://doi.org/10.1088/1741-2552/aaa87a
https://doi.org/10.1126/SCIENCE.AAN8868
https://doi.org/10.1016/0006-8993(88)91396-0
https://doi.org/10.1016/j.expneurol.2003.07.006
https://doi.org/10.1523/ENEURO.0202-17.2017
https://doi.org/10.1523/ENEURO.0202-17.2017
https://doi.org/10.1523/JNEUROSCI.2731-17.2018
https://doi.org/10.1016/j.brainres.2013.01.022
https://doi.org/10.1016/0006-8993(91)90496-I
https://doi.org/10.1016/0006-8993(91)90496-I
https://doi.org/10.1016/0006-8993(91)90435-X
https://doi.org/10.1016/0006-8993(91)90435-X
https://doi.org/10.1016/0006-8993(91)90972-X
https://doi.org/10.1016/0006-8993(93)90210-E
https://doi.org/10.1046/j.1526-4637.2001.01029.x
https://doi.org/10.1046/j.1526-4637.2001.01029.x
https://doi.org/10.1001/jama.2018.8826
https://doi.org/10.1146/annurev-neuro-080317-061522
https://doi.org/10.1146/annurev-neuro-080317-061522
https://doi.org/10.1038/nrn894
https://doi.org/10.1016/j.conb.2018.02.015
https://doi.org/10.1126/SCIENCE.AAO1197
https://doi.org/10.1126/SCIENCE.1260776
https://doi.org/10.1016/0304-3959(96)03069-2
https://doi.org/10.1016/0304-3959(96)03069-2
https://doi.org/10.1093/bja/aen088
https://doi.org/10.1016/j.celrep.2018.03.139
https://doi.org/10.1016/j.celrep.2018.03.139
https://doi.org/10.1111/J.1526-4610.2012.02141.X
https://doi.org/10.1111/J.1526-4610.2012.02141.X
https://doi.org/10.1016/J.PAIN.2010.10.032
https://doi.org/10.1016/J.WNEU.2013.01.040
https://doi.org/10.1093/annonc/mdn419
https://doi.org/10.1097/j.pain.0000000000000814
https://doi.org/10.1111/J.1525-1403.1998.TB00020.X
https://doi.org/10.1111/J.1525-1403.1998.TB00020.X
https://doi.org/10.1002/ejp.806
https://doi.org/10.1093/bja/75.2.193
https://doi.org/10.1016/0006-8993(79)90943-0
https://doi.org/10.1152/AJPREGU.00899.2007
https://doi.org/10.1152/AJPREGU.00899.2007
https://doi.org/10.1016/0304-3959(84)90109-X
https://doi.org/10.1371/journal.pone.0102350
https://doi.org/10.1371/journal.pone.0102350
https://doi.org/10.1016/S0079-6123(00)29018-3
https://doi.org/10.1523/jneurosci.12-08-03162.1992
https://doi.org/10.1007/s12264-017-0136-z
https://doi.org/10.1016/0304-3959(91)90164-S
https://doi.org/10.1016/0304-3959(91)90164-S
https://doi.org/10.1016/j.neuron.2009.07.014
https://doi.org/10.1007/s00429-014-0717-9
https://doi.org/10.1007/s00429-014-0717-9
https://doi.org/10.1007/s00210-015-1143-0
https://doi.org/10.1002/hbm.22855
https://doi.org/10.1002/hbm.22855
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-1044686 December 8, 2022 Time: 15:53 # 20

Lubejko et al. 10.3389/fnsys.2022.1044686

Fallon, J. H., and Leslie, F. M. (1986). Distribution of dynorphin and enkephalin
peptides in the rat brain. J. Comp. Neurol. 249, 293–336. doi: 10.1002/CNE.
902490302

Farrell, S. M., Green, A., and Aziz, T. (2018). The current state of deep brain
stimulation for chronic pain and its context in other forms of neuromodulation.
Brain Sci. 8:158. doi: 10.3390/BRAINSCI8080158

Fessler, R. G., Brown, F. D., Rachlin, J. R., Mullan, S., and Fang, V. S. (1984).
Elevated β-endorphin in cerebrospinal fluid after electrical brain stimulation:
Artifact of contrast infusion? Science 224, 1017–1019. doi: 10.1126/SCIENCE.
6326266

Fields, H. (2004). State-dependent opioid control of pain. Nat. Rev. Neurosci. 5,
565–575. doi: 10.1038/nrn1431

Foltz, E. L., and White, L. E. (1962). Pain “Relief” by frontal cingulumotomy.
J. Neurosurg. 19, 89–100. doi: 10.3171/JNS.1962.19.2.0089

Fonoff, E. T., Dale, C. S., Pagano, R. L., Paccola, C. C., Ballester, G., Teixeira,
M. J., et al. (2009). Antinociception induced by epidural motor cortex stimulation
in naive conscious rats is mediated by the opioid system. Behav. Brain Res. 196,
63–70. doi: 10.1016/j.bbr.2008.07.027

Font, J., López-Cano, M., Notartomaso, S., Scarselli, P., di Pietro, P., Bresolí-
Obach, R., et al. (2017). Optical control of pain in vivo with a photoactive mGlu5
receptor negative allosteric modulator. Elife 6:e23545. doi: 10.7554/eLife.23545

Fontaine, D., Hamani, C., and Lozano, A. (2009). Efficacy and safety of motor
cortex stimulation for chronic neuropathic pain: Critical review of the literature.
J. Neurosurg. 110, 251–256. doi: 10.3171/2008.6.17602

França, N. R. M., Toniolo, E. F., Franciosi, A. C., Alves, A. S., de Andrade, D. C.,
Fonoff, E. T., et al. (2013). Antinociception induced by motor cortex stimulation:
Somatotopy of behavioral response and profile of neuronal activation. Behav. Brain
Res. 250, 211–221. doi: 10.1016/j.bbr.2013.05.019

François, A., Low, S. A., Sypek, E. I., Christensen, A. J., Sotoudeh, C., Beier,
K. T., et al. (2017). A brainstem-spinal cord inhibitory circuit for mechanical pain
modulation by GABA and enkephalins. Neuron 93, 822–839.e6. doi: 10.1016/J.
NEURON.2017.01.008

Freeman, T. B., Campbell, J. N., and Long, D. M. (1983). Naloxone does not
affect pain relief induced by electrical stimulation in man. Pain 17, 189–195.
doi: 10.1016/0304-3959(83)90142-2

Fregni, F., Gimenes, R., Valle, A. C., Ferreira, M. J. L., Rocha, R. R., Natalle,
L., et al. (2006b). A randomized, sham-controlled, proof of principle study of
transcranial direct current stimulation for the treatment of pain in fibromyalgia.
Arthritis Rheum. 54, 3988–3998. doi: 10.1002/art.22195

Fregni, F., Boggio, P. S., Lima, M. C., Ferreira, M. J. L., Wagner, T., Rigonatti,
S. P., et al. (2006a). A sham-controlled, phase II trial of transcranial direct current
stimulation for the treatment of central pain in traumatic spinal cord injury. Pain
122, 197–209. doi: 10.1016/j.pain.2006.02.023

Friebel, U., Eickhoff, S. B., and Lotze, M. (2011). Coordinate-based meta-
analysis of experimentally induced and chronic persistent neuropathic pain.
Neuroimage 58, 1070–1080. doi: 10.1016/j.neuroimage.2011.07.022

Friedman, D. P., and Murray, E. A. (1986). Thalamic connectivity of the second
somatosensory area and neighboring somatosensory fields of the lateral sulcus of
the macaque. J. Comp. Neurol. 252, 348–373. doi: 10.1002/cne.902520305

Frizon, L. A., Yamamoto, E. A., Nagel, S. J., Simonson, M. T., Hogue, O., and
Machado, A. G. (2020). Deep brain stimulation for pain in the modern era: A
systematic review. Clin. Neurosurg. 86, 191–202. doi: 10.1093/neuros/nyy552

Fuchs, P. N., Peng, Y. B., Boyette-Davis, J. A., and Uhelski, M. L. (2014).
The anterior cingulate cortex and pain processing. Front. Integr. Neurosci. 8:35.
doi: 10.3389/fnint.2014.00035

Galhardoni, R., da Silva, V. A., García-Larrea, L., Dale, C., Baptista, A. F.,
Barbosa, L. M., et al. (2019). Insular and anterior cingulate cortex deep stimulation
for central neuropathic pain disassembling the percept of pain. Neurology 92,
E2165–E2175. doi: 10.1212/WNL.0000000000007396

García-Larrea, L., Peyron, R., Mertens, P., Gregoire, M. C., Lavenne, F., le
Bars, D., et al. (1999). Electrical stimulation of motor cortex for pain control:
A combined PET-scan and electrophysiological study. Pain 83, 259–273. doi:
10.1016/S0304-3959(99)00114-1

George, D. T., Ameli, R., and Koob, G. F. (2019). Periaqueductal GRAY sheds
light on dark areas of psychopathology. Trends Neurosci. 42, 349–360. doi: 10.
1016/j.tins.2019.03.004

Giacchino, J. L., and Henriksen, S. J. (1998). Opioid effects on activation
of neurons in the medial prefrontal cortex. Prog. Neuropsychopharmacol. Biol.
Psychiatry 22, 1157–1178. doi: 10.1016/S0278-5846(98)00053-0

Gintzler, A. R., and Chakrabarti, S. (2006). Post-opioid receptor adaptations to
chronic morphine; altered functionality and associations of signaling molecules.
Life Sci. 79, 717–722. doi: 10.1016/j.lfs.2006.02.016

Göbel, W., and Helmchen, F. (2007). In vivo calcium imaging of neural network
function. Physiology 22, 358–365. doi: 10.1152/physiol.00032.2007

Goldberg, D. S., and McGee, S. J. (2011). Pain as a global public health priority.
BMC Public Health 11:770. doi: 10.1186/1471-2458-11-770

Gomes, I., Sierra, S., Lueptow, L., Gupta, A., Gouty, S., Margolis, E. B., et al.
(2020). Biased signaling by endogenous opioid peptides. Proc. Natl. Acad. Sci.
U.S.A. 117, 11820–11828. doi: 10.1073/pnas.2000712117

Gomtsian, L., Bannister, K., Eyde, N., Robles, D., Dickenson, A. H., Porreca,
F., et al. (2018). Morphine effects within the rodent anterior cingulate cortex
and rostral ventromedial medulla reveal separable modulation of affective and
sensory qualities of acute or chronic pain. Pain 159, 2512–2521. doi: 10.1097/j.
pain.0000000000001355

Graff-Guerrero, A., González-Olvera, J., Fresán, A., Gómez-Martín, D., Carlos
Méndez-Núñez, J., and Pellicer, F. (2005). Repetitive transcranial magnetic
stimulation of dorsolateral prefrontal cortex increases tolerance to human
experimental pain. Cogn. Brain Res. 25, 153–160. doi: 10.1016/j.cogbrainres.2005.
05.002

Graham, R. D., Sankarasubramanian, V., and Lempka, S. F. (2022). Dorsal root
ganglion stimulation for chronic pain: Hypothesized mechanisms of action. J. Pain
23, 196–211. doi: 10.1016/j.jpain.2021.07.008

Gray, A. M., Pounds-Cornish, E., Eccles, F. J. R., Aziz, T. Z., Green, A. L., and
Scott, R. B. (2014). Deep brain stimulation as a treatment for neuropathic pain: A
longitudinal study addressing neuropsychological outcomes. J. Pain 15, 283–292.
doi: 10.1016/J.JPAIN.2013.11.003

Gu, L., Uhelski, M. L., Anand, S., Romero-Ortega, M., Kim, Y., Fuchs, P. N.,
et al. (2015). Pain inhibition by optogenetic activation of specific anterior cingulate
cortical neurons. PLoS One 10:e0117746. doi: 10.1371/journal.pone.0117746

Guajardo, H. M., Snyder, K., Ho, A., and Valentino, R. J. (2017). Sex differences
in µ-opioid receptor regulation of the rat locus coeruleus and their cognitive
consequences. Neuropsychopharmacology 42, 1295–1304. doi: 10.1038/npp.2016.
252

Gutstein, H. B., Mansour, A., Watson, S. J., Akil, H., and Fields, H. L. (1998).
Mu and kappa opioid receptors in periaqueductal gray and rostral ventromedial
medulla. Neuroreport 9, 1777–1781. doi: 10.1097/00001756-199806010-0
0019

Gybels, J., and Kupers, R. (1990). Deep brain stimulation in the treatment
of chronic pain in man: Where and why? Neurophysiol. Clin. 20, 389–398. doi:
10.1016/S0987-7053(05)80206-0

Hammond, D. L., and Yaksh, T. L. (1984). Antagonism of stimulation-produced
antinociception by intrathecal administration of methysergide or phentolamine.
Brain Res. 298, 329–337. doi: 10.1016/0006-8993(84)91432-X

Hardy, S. G. P., and Leichnetz, G. R. (1981). Frontal cortical projections to
the periaqueductal gray in the rat: A retrograde and orthograde horseradish
peroxidase study. Neurosci. Lett. 23, 13–17. doi: 10.1016/0304-3940(81)90183-X

Harlan, R. E., Shivers, B. D., Romano, G. J., Pfaff, D. W., and Howells, R. D.
(1987). Localization of preproenkephalin mRNA in the rat brain and spinal
cord by in situ hybridization. J. Comp. Neurol. 258, 159–184. doi: 10.1002/cne.
902580202

Heilbronner, S. R., and Hayden, B. Y. (2016). Dorsal anterior cingulate cortex: A
bottom-up view. Annu. Rev. Neurosci. 39:149. doi: 10.1146/ANNUREV-NEURO-
070815-013952

Heinke, B., Gingl, E., and Sandkühler, J. (2011). Multiple targets of µ-opioid
receptor-mediated presynaptic inhibition at primary afferent Aδ- and C-fibers.
J. Neurosci. 31, 1313–1322. doi: 10.1523/JNEUROSCI.4060-10.2011

Heinricher, M. M., Morgan, M. M., Tortorici, V., and Fields, H. L. (1994).
Disinhibition of off-cells and antinociception produced by an opioid action within
the rostral ventromedial medulla. Neuroscience 63, 279–288. doi: 10.1016/0306-
4522(94)90022-1

Helm, S., Shirsat, N., Calodney, A., Abd-Elsayed, A., Kloth, D., Soin, A., et al.
(2021). Peripheral nerve stimulation for chronic pain: A systematic review of
effectiveness and safety. Pain Ther. 10, 985–1002. doi: 10.1007/s40122-021-00306-
4

Hentall, I. D., Luca, C. C., Widerstrom-Noga, E., Vitores, A., Fisher, L. D.,
Martinez-Arizala, A., et al. (2016). The midbrain central gray best suppresses
chronic pain with electrical stimulation at very low pulse rates in two human cases.
Brain Res. 1632, 119–126. doi: 10.1016/j.brainres.2015.12.021

Hirschberg, S., Li, Y., Randall, A., Kremer, E. J., and Pickering, A. E. (2017).
Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules
splits descending noradrenergic analgesia from ascending aversion and anxiety in
rats. Elife 6, 1–26. doi: 10.7554/elife.29808

Holden, J. E., Schwartz, E. J., and Proudfit, H. K. (1999). Microinjection of
morphine in the A7 catecholamine cell group produces opposing effects on

Frontiers in Systems Neuroscience 20 frontiersin.org

168

https://doi.org/10.3389/fnsys.2022.1044686
https://doi.org/10.1002/CNE.902490302
https://doi.org/10.1002/CNE.902490302
https://doi.org/10.3390/BRAINSCI8080158
https://doi.org/10.1126/SCIENCE.6326266
https://doi.org/10.1126/SCIENCE.6326266
https://doi.org/10.1038/nrn1431
https://doi.org/10.3171/JNS.1962.19.2.0089
https://doi.org/10.1016/j.bbr.2008.07.027
https://doi.org/10.7554/eLife.23545
https://doi.org/10.3171/2008.6.17602
https://doi.org/10.1016/j.bbr.2013.05.019
https://doi.org/10.1016/J.NEURON.2017.01.008
https://doi.org/10.1016/J.NEURON.2017.01.008
https://doi.org/10.1016/0304-3959(83)90142-2
https://doi.org/10.1002/art.22195
https://doi.org/10.1016/j.pain.2006.02.023
https://doi.org/10.1016/j.neuroimage.2011.07.022
https://doi.org/10.1002/cne.902520305
https://doi.org/10.1093/neuros/nyy552
https://doi.org/10.3389/fnint.2014.00035
https://doi.org/10.1212/WNL.0000000000007396
https://doi.org/10.1016/S0304-3959(99)00114-1
https://doi.org/10.1016/S0304-3959(99)00114-1
https://doi.org/10.1016/j.tins.2019.03.004
https://doi.org/10.1016/j.tins.2019.03.004
https://doi.org/10.1016/S0278-5846(98)00053-0
https://doi.org/10.1016/j.lfs.2006.02.016
https://doi.org/10.1152/physiol.00032.2007
https://doi.org/10.1186/1471-2458-11-770
https://doi.org/10.1073/pnas.2000712117
https://doi.org/10.1097/j.pain.0000000000001355
https://doi.org/10.1097/j.pain.0000000000001355
https://doi.org/10.1016/j.cogbrainres.2005.05.002
https://doi.org/10.1016/j.cogbrainres.2005.05.002
https://doi.org/10.1016/j.jpain.2021.07.008
https://doi.org/10.1016/J.JPAIN.2013.11.003
https://doi.org/10.1371/journal.pone.0117746
https://doi.org/10.1038/npp.2016.252
https://doi.org/10.1038/npp.2016.252
https://doi.org/10.1097/00001756-199806010-00019
https://doi.org/10.1097/00001756-199806010-00019
https://doi.org/10.1016/S0987-7053(05)80206-0
https://doi.org/10.1016/S0987-7053(05)80206-0
https://doi.org/10.1016/0006-8993(84)91432-X
https://doi.org/10.1016/0304-3940(81)90183-X
https://doi.org/10.1002/cne.902580202
https://doi.org/10.1002/cne.902580202
https://doi.org/10.1146/ANNUREV-NEURO-070815-013952
https://doi.org/10.1146/ANNUREV-NEURO-070815-013952
https://doi.org/10.1523/JNEUROSCI.4060-10.2011
https://doi.org/10.1016/0306-4522(94)90022-1
https://doi.org/10.1016/0306-4522(94)90022-1
https://doi.org/10.1007/s40122-021-00306-4
https://doi.org/10.1007/s40122-021-00306-4
https://doi.org/10.1016/j.brainres.2015.12.021
https://doi.org/10.7554/elife.29808
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-1044686 December 8, 2022 Time: 15:53 # 21

Lubejko et al. 10.3389/fnsys.2022.1044686

nociception that are mediated by α1- and α2- adrenoceptors. Neuroscience 91,
979–990. doi: 10.1016/S0306-4522(98)00673-3

Hollingworth, M., Sims-Williams, H. P., Pickering, A. E., Barua, N., and Patel,
N. K. (2017). Single electrode deep brain stimulation with dual targeting at dual
frequency for the treatment of chronic pain: A case series and review of the
literature. Brain Sci. 7:9. doi: 10.3390/BRAINSCI7010009

Holsheimer, J. (2002). Which neuronal elements are activated directly by
spinal cord stimulation. Neuromodulation 5, 25–31. doi: 10.1046/j.1525-1403.
2002._2005.x

Hosobuchi, Y. (1986). Subcortical electrical stimulation for control of
intractable pain in humans. Report of 122 cases (1970-1984). J. Neurosurg. 64,
543–553. doi: 10.3171/jns.1986.64.4.0543

Hosobuchi, Y., Adams, J. E., and Linchitz, R. (1977). Pain relief by electrical
stimulation of the central gray matter in humans and its reversal by naloxone.
Science 197, 183–186. doi: 10.1126/SCIENCE.301658

Hosobuchi, Y., Adams, J. E., and Rutkin, B. (1973). Chronic thalamic
stimulation for the control of facial anesthesia dolorosa. Arch. Neurol. 29, 158–161.
doi: 10.1001/ARCHNEUR.1973.00490270040005

Hosobuchi, Y., Rossier, J., Bloom, F. E., and Guillemin, R. (1979). Stimulation of
human periaqueductal gray for pain relief increases immunoreactive β-endorphin
in ventricular fluid. Science 203, 279–281. doi: 10.1126/science.83674

Huang, J., Gadotti, V. M., Chen, L., Souza, I. A., Huang, S., Wang, D., et al.
(2019). A neuronal circuit for activating descending modulation of neuropathic
pain. Nat. Neurosci. 22, 1659–1668. doi: 10.1038/s41593-019-0481-5

Huang, J., Zhang, Z., Gambeta, E., Chen, L., and Zamponi, G. W. (2021).
An orbitofrontal cortex to midbrain projection modulates hypersensitivity
after peripheral nerve injury. Cell Rep. 35:109033. doi: 10.1016/j.celrep.2021.10
9033

Hüll, K., Morstein, J., and Trauner, D. (2018). In vivo photopharmacology.
Chem. Rev. 118, 10710–10747. doi: 10.1021/acs.chemrev.8b00037

Hussin, A. T., Boychuk, J. A., Brown, A. R., Pittman, Q. J., and Campbell
Teskey, G. (2015). Intracortical microstimulation (ICMS) activates motor cortex
layer 5 pyramidal neurons mainly transsynaptically. Brain Stimul. 8, 742–750.
doi: 10.1016/J.BRS.2015.03.003

Hutchison, W. D., Davis, K. D., Lozano, A. M., Tasker, R. R., and Dostrovsky,
J. O. (1999). Pain-related neurons in the human cingulate cortex. Nat. Neurosci. 5,
403–405. doi: 10.1038/8065

Inoue, S., Johanek, L. M., and Sluka, K. A. (2017). Lack of analgesic synergy of
the cholecystokinin receptor antagonist proglumide and spinal cord stimulation
for the treatment of neuropathic pain in rats. Neuromodulation 20, 534–542.
doi: 10.1111/NER.12601

Jensen, T. S., and Yaksh, T. L. (1989). Comparison of the antinociceptive effect
of morphine and glutamate at coincidental sites in the periaqueductal gray and
medial medulla in rats. Brain Res. 476, 1–9. doi: 10.1016/0006-8993(89)91529-1

Jensen, T. S., Baron, R., Haanpää, M., Kalso, E., Loeser, J. D., Rice, A. S. C.,
et al. (2011). A new definition of neuropathic pain. Pain 152, 2204–2205. doi:
10.1016/J.PAIN.2011.06.017

Jermakowicz, W. J., Hentall, I. D., Jagid, J. R., Luca, C. C., Adcock, J., Martinez-
Arizala, A., et al. (2017). Deep brain stimulation improves the symptoms and
sensory signs of persistent central neuropathic pain from spinal cord injury: A
case report. Front. Hum. Neurosci. 11:177. doi: 10.3389/FNHUM.2017.00177

Jiang, L., Ji, Y., Voulalas, P. J., Keaser, M., Xu, S., Gullapalli, R. P., et al. (2014).
Motor cortex stimulation suppresses cortical responses to noxious hindpaw
stimulation after spinal cord lesion in rats. Brain Stimul. 7, 182–189. doi: 10.1016/
J.BRS.2013.12.013

Johansen, J. P., and Fields, H. L. (2004). Glutamatergic activation of anterior
cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 7, 398–403.
doi: 10.1038/nn1207

Jones, A. K. P., Kitchen, N. D., Watabe, T., Cunningham, J., Jones, T., Luthra,
K., et al. (1999). Measurement of changes in opioid receptor binding in vivo
during trigeminal neuralgic pain using e 1 C]diprenorphine and positron emission
tomography. J. Cereb. Blood Flow Metab. 19, 803–808. doi: 10.1097/00004647-
199907000-00011

Jones, M. G., Rogers, E. R., Harris, J. P., Sullivan, A., Ackermann, D. M.,
Russo, M., et al. (2021). Neuromodulation using ultra low frequency current
waveform reversibly blocks axonal conduction and chronic pain. Sci. Transl. Med.
13:eabg9890. doi: 10.1126/scitranslmed.abg9890

Jones, S. L., and Gebhart, G. F. (1988). Inhibition of spinal nociceptive
transmission from the midbrain, pons and medulla in the rat: Activation of
descending inhibition by morphine, glutamate and electrical stimulation. Brain
Res. 460, 281–296. doi: 10.1016/0006-8993(88)90373-3

Juavinett, A. L., Bekheet, G., and Churchland, A. K. (2019). Chronically
implanted neuropixels probes enable high-yield recordings in freely moving mice.
Elife 8:e47188. doi: 10.7554/eLife.47188

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B.,
et al. (2017). Fully integrated silicon probes for high-density recording of neural
activity. Nature 551, 232–236. doi: 10.1038/nature24636

Kalyuzhny, A. E., Arvidsson, U., Wu, W., and Wessendorf, M. W. (1996). µ-
opioid and δ-opioid receptors are expressed in brainstem antinociceptive circuits:
Studies using immunocytochemistry and retrograde tract-tracing. J. Neurosci. 16,
6490–6503. doi: 10.1523/jneurosci.16-20-06490.1996

Kang, S. J., Kwak, C., Lee, J., Sim, S. E., Shim, J., Choi, T., et al. (2015).
Bidirectional modulation of hyperalgesia via the specific control of excitatory and
inhibitory neuronal activity in the ACC. Mol. Brain 8, 1–11. doi: 10.1186/s13041-
015-0170-6

Kapural, L., Yu, C., Doust, M. W., Gliner, B. E., Vallejo, R., Todd Sitzman, B.,
et al. (2015). Novel 10-kHz high-frequency therapy (HF10 Therapy) is superior
to traditional low-frequency spinal cord stimulation for the treatment of chronic
back and leg pain: The SENZA-rct randomized controlled trial.Anesthesiology 123,
851–860. doi: 10.1097/ALN.0000000000000774

Kashanian, A., DiCesare, J. A. T., Rohatgi, P., Albano, L., Krahl, S. E., Bari, A.,
et al. (2020). Case series: Deep brain stimulation for facial pain. Oper. Neurosurg.
(Hagerstown) 19, 510–517. doi: 10.1093/ONS/OPAA170

Khachaturian, H., Lewis, M. E., and Watson, S. J. (1983). Enkephalin systems
in diencephalon and brainstem of the rat. J. Comp. Neurol. 220, 310–320. doi:
10.1002/cne.902200305

Kiefel, J. M., Rossi, G. C., and Bodnar, R. J. (1993). Medullary µ and δ opioid
receptors modulate mesencephalic morphine analgesia in rats. Brain Res. 624,
151–161. doi: 10.1016/0006-8993(93)90073-V

Kim, J., Ryu, S. B., Lee, S. E., Shin, J., Jung, H. H., Kim, S. J., et al. (2016). Motor
cortex stimulation and neuropathic pain: How does motor cortex stimulation
affect pain-signaling pathways? J. Neurosurg. 124, 866–876. doi: 10.3171/2015.1.
JNS14891

Komboz, F., Mehsein, Z., Kobaïter-Maarrawi, S., Chehade, H. D., and Maarrawi,
J. (2022). Epidural posterior insular stimulation alleviates neuropathic pain
manifestations in rats with spared nerve injury through endogenous opioid
system. Neuromodulation doi: 10.1016/j.neurom.2022.01.002

Kong, J., Tu, P. C., Zyloney, C., and Su, T. P. (2010). Intrinsic functional
connectivity of the periaqueductal gray, a resting fMRI study. Behav. Brain Res.
211, 215–219. doi: 10.1016/j.bbr.2010.03.042

Koyama, T., Tanaka, Y. Z., and Mikami, A. (1998). Nociceptive neurons in the
macaque anterior cingulate activate during anticipation of pain. Neuroreport 9,
2663–2667. doi: 10.1097/00001756-199808030-00044

Kumar, K., and Wyant, G. M. (1985). Deep brain stimulation for alleviating
chronic intractable pain. Can. J. Surg. 28, 20–22.

Kumar, K., Rizvi, S., Nguyen, R., Abbas, M., Bishop, S., and Murthy, V. (2014).
Impact of wait times on spinal cord stimulation therapy outcomes. Pain Pract. 14,
709–720. doi: 10.1111/PAPR.12126

Kumar, K., Taylor, R. S., Jacques, L., Eldabe, S., Meglio, M., Molet, J., et al. (2007).
Spinal cord stimulation versus conventional medical management for neuropathic
pain: A multicentre randomised controlled trial in patients with failed back surgery
syndrome. Pain 132, 179–188. doi: 10.1016/J.PAIN.2007.07.028

Kumar, K., Toth, C., Nath, R., and Laing, P. (1998). Epidural spinal cord
stimulation for treatment of chronic pain–some predictors of success. A 15-year
experience. Surg. Neurol. 50, 110–121. doi: 10.1016/S0090-3019(98)00012-3

Kumar, R., Lozano, A. M., Kim, Y. J., Hutchison, W. D., Sime, E., Halket, E., et al.
(1998). Double-blind evaluation of subthalamic nucleus deep brain stimulation in
advanced Parkinson’s disease. Neurology 51, 850–855. doi: 10.1212/WNL.51.3.850

Kumar, K., Wyant, G. M., and Nath, R. (1990). Deep brain stimulation for
control of intractable pain in humans, present and future: A ten-year follow-up.
Neurosurgery 26:774. doi: 10.1097/00006123-199005000-00007

Kwan, C. L., Crawley, A. P., Mikulis, D. J., and Davis, K. D. (2000). An fMRI
study of the anterior cingulate cortex and surrounding medial wall activations
evoked by noxious cutaneous heat and cold stimuli. Pain 85, 359–374. doi: 10.
1016/S0304-3959(99)00287-0

Lad, S. P., Petraglia, F. W., Kent, A. R., Cook, S., Murphy, K. R., Dalal, N., et al.
(2016). Longer delay from chronic pain to spinal cord stimulation results in higher
healthcare resource utilization. Neuromodulation 19, 469–476. doi: 10.1111/NER.
12389

LaGraize, S. C., Borzan, J., Peng, Y. B., and Fuchs, P. N. (2006). Selective
regulation of pain affect following activation of the opioid anterior cingulate cortex
system. Exp. Neurol. 197, 22–30. doi: 10.1016/J.EXPNEUROL.2005.05.008

Frontiers in Systems Neuroscience 21 frontiersin.org

169

https://doi.org/10.3389/fnsys.2022.1044686
https://doi.org/10.1016/S0306-4522(98)00673-3
https://doi.org/10.3390/BRAINSCI7010009
https://doi.org/10.1046/j.1525-1403.2002._2005.x
https://doi.org/10.1046/j.1525-1403.2002._2005.x
https://doi.org/10.3171/jns.1986.64.4.0543
https://doi.org/10.1126/SCIENCE.301658
https://doi.org/10.1001/ARCHNEUR.1973.00490270040005
https://doi.org/10.1126/science.83674
https://doi.org/10.1038/s41593-019-0481-5
https://doi.org/10.1016/j.celrep.2021.109033
https://doi.org/10.1016/j.celrep.2021.109033
https://doi.org/10.1021/acs.chemrev.8b00037
https://doi.org/10.1016/J.BRS.2015.03.003
https://doi.org/10.1038/8065
https://doi.org/10.1111/NER.12601
https://doi.org/10.1016/0006-8993(89)91529-1
https://doi.org/10.1016/J.PAIN.2011.06.017
https://doi.org/10.1016/J.PAIN.2011.06.017
https://doi.org/10.3389/FNHUM.2017.00177
https://doi.org/10.1016/J.BRS.2013.12.013
https://doi.org/10.1016/J.BRS.2013.12.013
https://doi.org/10.1038/nn1207
https://doi.org/10.1097/00004647-199907000-00011
https://doi.org/10.1097/00004647-199907000-00011
https://doi.org/10.1126/scitranslmed.abg9890
https://doi.org/10.1016/0006-8993(88)90373-3
https://doi.org/10.7554/eLife.47188
https://doi.org/10.1038/nature24636
https://doi.org/10.1523/jneurosci.16-20-06490.1996
https://doi.org/10.1186/s13041-015-0170-6
https://doi.org/10.1186/s13041-015-0170-6
https://doi.org/10.1097/ALN.0000000000000774
https://doi.org/10.1093/ONS/OPAA170
https://doi.org/10.1002/cne.902200305
https://doi.org/10.1002/cne.902200305
https://doi.org/10.1016/0006-8993(93)90073-V
https://doi.org/10.3171/2015.1.JNS14891
https://doi.org/10.3171/2015.1.JNS14891
https://doi.org/10.1016/j.neurom.2022.01.002
https://doi.org/10.1016/j.bbr.2010.03.042
https://doi.org/10.1097/00001756-199808030-00044
https://doi.org/10.1111/PAPR.12126
https://doi.org/10.1016/J.PAIN.2007.07.028
https://doi.org/10.1016/S0090-3019(98)00012-3
https://doi.org/10.1212/WNL.51.3.850
https://doi.org/10.1097/00006123-199005000-00007
https://doi.org/10.1016/S0304-3959(99)00287-0
https://doi.org/10.1016/S0304-3959(99)00287-0
https://doi.org/10.1111/NER.12389
https://doi.org/10.1111/NER.12389
https://doi.org/10.1016/J.EXPNEUROL.2005.05.008
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-1044686 December 8, 2022 Time: 15:53 # 22

Lubejko et al. 10.3389/fnsys.2022.1044686

Lamusuo, S., Hirvonen, J., Lindholm, P., Martikainen, I. K., Hagelberg, N.,
Parkkola, R., et al. (2017). Neurotransmitters behind pain relief with transcranial
magnetic stimulation–positron emission tomography evidence for release of
endogenous opioids. Eur. J. Pain 21, 1505–1515. doi: 10.1002/ejp.1052

Lau, B. K., and Vaughan, C. W. (2014). Descending modulation of pain: The
GABA disinhibition hypothesis of analgesia. Curr. Opin. Neurobiol. 29, 159–164.
doi: 10.1016/j.conb.2014.07.010

Laubach, M., Amarante, L. M., Swanson, K., and White, S. R. (2018). What, if
anything, is rodent prefrontal cortex? eNeuro 5. doi: 10.1523/ENEURO.0315-18.
2018

le Merrer, J., Becker, J. A. J., Befort, K., and Kieffer, B. L. (2009). Reward
processing by the opioid system in the brain. Physiol. Rev. 89, 1379–1412. doi:
10.1152/physrev.00005.2009

Lechasseur, Y., Dufour, S., Lavertu, G., Bories, C., Deschênes, M., Vallée, R.,
et al. (2011). A microprobe for parallel optical and electrical recordings from single
neurons in vivo. Nat. Methods 8, 319–325. doi: 10.1038/nmeth.1572

Lee, K. S., Huang, Y. H., and Yen, C. T. (2012). Periaqueductal gray stimulation
suppresses spontaneous pain behavior in rats. Neurosci. Lett. 514, 42–45. doi:
10.1016/J.NEULET.2012.02.053

Lefaucheur, J. P., Drouot, X., and Nguyen, J. P. (2001). Interventional
neurophysiology for pain control: Duration of pain relief following repetitive
transcranial magnetic stimulation of the motor cortex. Neurophysiol. Clin. 31,
247–252. doi: 10.1016/S0987-7053(01)00260-X

Lefaucheur, J. P., Drouot, X., Cunin, P., Bruckert, R., Lepetit, H., Crange, A.,
et al. (2009). Motor cortex stimulation for the treatment of refractory peripheral
neuropathic pain. Brain 132, 1463–1471. doi: 10.1093/BRAIN/AWP035

Lefaucheur, J. P., Drouot, X., Menard-Lefaucheur, I., Keravel, Y., and Nguyen,
J. P. (2006). Motor cortex rTMS restores defective intracortical inhibition
in chronic neuropathic pain. Neurology 67, 1568–1574. doi: 10.1212/01.wnl.
0000242731.10074.3c

Lempka, S. F., and Patil, P. G. (2018). Innovations in spinal cord stimulation for
pain. Curr. Opin. Biomed. Eng. 8, 51–60. doi: 10.1016/J.COBME.2018.10.005

Lempka, S. F., Zander, H. J., Anaya, C. J., Wyant, A., Ozinga, J. G. IV, and
Machado, A. G. (2020). Patient-specific analysis of neural activation during spinal
cord stimulation for pain. Neuromodulation 23, 572–581. doi: 10.1111/ner.13037

Lenoir, C., Algoet, M., and Mouraux, A. (2018). Deep continuous theta burst
stimulation of the operculo-insular cortex selectively affects Aδ-fibre heat pain.
J. Physiol. 596, 4767–4787. doi: 10.1113/JP276359

Levy, R. M., Lamb, S., and Adams, J. E. (1987). Treatment of chronic pain
by deep brain stimulation: Long term follow-up and review of the literature.
Neurosurgery 21, 885–893. doi: 10.1227/00006123-198712000-00017

Lewis, M. E., Pert, A., Pert, C. B., and Herkenham, M. (1983). Opiate receptor
localization in rat cerebral cortex. J. Comp. Neurol. 216, 339–358. doi: 10.1002/
CNE.902160310

Li, J., and Sheets, P. L. (2018). The central amygdala to periaqueductal gray
pathway comprises intrinsically distinct neurons differentially affected in a model
of inflammatory pain. J. Physiol. 596, 6289–6305. doi: 10.1113/JP276935

Li, Y., Hickey, L., Perrins, R., Werlen, E., Patel, A. A., Hirschberg, S., et al.
(2016). Retrograde optogenetic characterization of the pontospinal module of
the locus coeruleus with a canine adenoviral vector. Brain Res. 1641, 274–290.
doi: 10.1016/j.brainres.2016.02.023

Lin, T., Gargya, A., Singh, H., Sivanesan, E., and Gulati, A. (2020). Mechanism of
peripheral nerve stimulation in chronic pain. Pain Med. 21, S6–S12. doi: 10.1093/
pm/pnaa164

Lind, G., Meyerson, B. A., Winter, J., and Linderoth, B. (2004). Intrathecal
baclofen as adjuvant therapy to enhance the effect of spinal cord stimulation in
neuropathic pain: A pilot study. Eur. J. Pain 8, 377–383. doi: 10.1016/j.ejpain.2003.
11.002

Lind, G., Schechtmann, G., Winter, J., and Linderoth, B. (2007). “Drug-
enhanced spinal stimulation for pain: A new strategy,” in Operative
neuromodulation, eds D. E. Sakas, B. A. Simpson, and E. S. Krames (Vienna:
Springer), 57–63. doi: 10.1007/978-3-211-33079-1_7

Linnman, C., Moulton, E. A., Barmettler, G., Becerra, L., and Borsook, D.
(2012). Neuroimaging of the periaqueductal gray: State of the field. Neuroimage
60, 505–522. doi: 10.1016/j.neuroimage.2011.11.095

Linseman, M. A., and Grupp, L. A. (1980). Acute and chronic opiate effects on
single units and EEG of medial thalamus and hippocampus: A latency analysis.
Psychopharmacology (Berl) 71, 11–20. doi: 10.1007/BF00433246

Liu, C. C., Moosa, S., Quigg, M., and Elias, W. J. (2021). Anterior insula
stimulation increases pain threshold in humans: A pilot study. J. Neurosurg. 135,
1487–1492. doi: 10.3171/2020.10.JNS203323

Llewelyn, H. B., Azami, J., and Roberts, M. H. T. (1984). Antinociception
produced by stimulation of the periaqueductal grey matter: Effects of antagonists
microinjected into the nucleus raphe Magnus. Pain 18:S220. doi: 10.1016/0304-
3959(84)90459-7

Lobb, C. J. (2014). Abnormal bursting as a pathophysiological mechanism in
Parkinson’s disease. Basal Ganglia 3, 187–195. doi: 10.1016/j.baga.2013.11.002

López-Cano, M., Font, J., Aso, E., Sahlholm, K., Cabré, G., Giraldo, J., et al.
(2021). Remote local photoactivation of morphine produces analgesia without
opioid-related adverse effects. Br. J. Pharmacol. 1–17. doi: 10.1111/bph.15645

Lorenz, J., Minoshima, S., and Casey, K. L. (2003). Keeping pain out of mind:
The role of the dorsolateral prefrontal cortex in pain modulation. Brain 126,
1079–1091. doi: 10.1093/brain/awg102

Loyd, D. R., Wang, X., and Murphy, A. Z. (2008). Sex differences in µ-opioid
receptor expression in the rat midbrain periaqueductal gray are essential for
eliciting sex differences in morphine analgesia. J. Neurosci. 28:14007. doi: 10.1523/
JNEUROSCI.4123-08.2008

Lu, C., Yang, T., Zhao, H., Zhang, M., Meng, F., Fu, H., et al. (2016). Insular
cortex is critical for the perception, modulation, and chronification of pain.
Neurosci. Bull. 32, 191–201. doi: 10.1007/s12264-016-0016-y

Lund, I., Lundeberg, T., Sandberg, L., Budh, C. N., Kowalski, J., and Svensson,
E. (2005). Lack of interchangeability between visual analogue and verbal rating
pain scales: A cross sectional description of pain etiology groups. BMC Med. Res.
Methodol. 5:31. doi: 10.1186/1471-2288-5-31

Lüscher, C., Pascoli, V., and Creed, M. (2015). Optogenetic dissection of
neural circuitry: From synaptic causalities to blue prints for novel treatments of
behavioral diseases. Curr. Opin. Neurobiol. 35, 95–100. doi: 10.1016/J.CONB.2015.
07.005

Maarrawi, J., Peyron, R., Mertens, P., Costes, N., Magnin, M., Sindou, M.,
et al. (2007). Motor cortex stimulation for pain control induces changes in
the endogenous opioid system. Neurology 69, 827–834. doi: 10.1212/01.wnl.
0000269783.86997.37

Maarrawi, J., Peyron, R., Mertens, P., Costes, N., Magnin, M., Sindou, M., et al.
(2013). Brain opioid receptor density predicts motor cortex stimulation efficacy
for chronic pain. Pain 154, 2563–2568. doi: 10.1016/j.pain.2013.07.042

Majedi, H., Dehghani, S. S., Soleyman-Jahi, S., Tafakhori, A., Emami, S. A.,
Mireskandari, M., et al. (2019). Assessment of factors predicting inadequate pain
management in chronic pain patients. Anesth. Pain Med. 9:97229. doi: 10.5812/
AAPM.97229

Malinowski, M. N., Jain, S., Jassal, N., and Deer, T. (2020). Spinal cord
stimulation for the treatment of neuropathic pain: Expert opinion and 5-year
outlook. Exp. Rev. Med. Devices 17, 1293–1302. doi: 10.1080/17434440.2020.
1801411

Manchikanti, L., Helm, S. II, Fellows, B., Janata, J. W., Pampati, V., Grider, J. S.,
et al. (2012). Opioid epidemic in the United States. Pain Physician 15, ES9–ES38.

Mannion, R. J., and Woolf, C. J. (2000). Pain mechanisms and management:
A central perspective. Clin. J. Pain 16, S144–S156. doi: 10.1097/00002508-
200009001-00006

Mansour, A., Fox, C. A., Burke, S., Meng, F., Thompson, R. C., Akil, H., et al.
(1994). Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS:
An in situ hybridization study. J. Comp. Neurol. 350, 412–438. doi: 10.1002/cne.
903500307

Martini, L., and Whistler, J. L. (2007). The role of mu opioid receptor
desensitization and endocytosis in morphine tolerance and dependence. Curr.
Opin. Neurobiol. 17, 556–564. doi: 10.1016/j.conb.2007.10.004

Marvizón, J. C. G., Chen, W., and Murphy, N. (2009). Enkephalins,
dynorphins, and β-endorphin in the rat dorsal horn: An immunofluorescence
colocalization study. J. Comp. Neurol. 517, 51–68. doi: 10.1002/cne.
22130

Mastro, K. J., Zitelli, K. T., Willard, A. M., Leblanc, K. H., Kravitz, A. V., and
Gittis, A. H. (2017). Cell-specific pallidal intervention induces long-lasting motor
recovery in dopamine-depleted mice. Nat. Neurosci. 20, 815–823. doi: 10.1038/
NN.4559

Mayer, D. J., Wolfle, T. L., Akil, H., Carder, B., and Liebeskind, J. C. (1971).
Analgesia from electrical stimulation in the brainstem of the rat. Science 174,
1351–1354.

Mazzola, L., Isnard, J., Peyron, R., Guénot, M., and Mauguière, F. (2009).
Somatotopic organization of pain responses to direct electrical stimulation of the
human insular cortex. Pain 146, 99–104. doi: 10.1016/J.PAIN.2009.07.014

McIntyre, C. C., and Grill, W. M. (1999). Excitation of central nervous system
neurons by nonuniform electric fields. Biophys. J. 76, 878–888. doi: 10.1016/S0006-
3495(99)77251-6

Frontiers in Systems Neuroscience 22 frontiersin.org

170

https://doi.org/10.3389/fnsys.2022.1044686
https://doi.org/10.1002/ejp.1052
https://doi.org/10.1016/j.conb.2014.07.010
https://doi.org/10.1523/ENEURO.0315-18.2018
https://doi.org/10.1523/ENEURO.0315-18.2018
https://doi.org/10.1152/physrev.00005.2009
https://doi.org/10.1152/physrev.00005.2009
https://doi.org/10.1038/nmeth.1572
https://doi.org/10.1016/J.NEULET.2012.02.053
https://doi.org/10.1016/J.NEULET.2012.02.053
https://doi.org/10.1016/S0987-7053(01)00260-X
https://doi.org/10.1093/BRAIN/AWP035
https://doi.org/10.1212/01.wnl.0000242731.10074.3c
https://doi.org/10.1212/01.wnl.0000242731.10074.3c
https://doi.org/10.1016/J.COBME.2018.10.005
https://doi.org/10.1111/ner.13037
https://doi.org/10.1113/JP276359
https://doi.org/10.1227/00006123-198712000-00017
https://doi.org/10.1002/CNE.902160310
https://doi.org/10.1002/CNE.902160310
https://doi.org/10.1113/JP276935
https://doi.org/10.1016/j.brainres.2016.02.023
https://doi.org/10.1093/pm/pnaa164
https://doi.org/10.1093/pm/pnaa164
https://doi.org/10.1016/j.ejpain.2003.11.002
https://doi.org/10.1016/j.ejpain.2003.11.002
https://doi.org/10.1007/978-3-211-33079-1_7
https://doi.org/10.1016/j.neuroimage.2011.11.095
https://doi.org/10.1007/BF00433246
https://doi.org/10.3171/2020.10.JNS203323
https://doi.org/10.1016/0304-3959(84)90459-7
https://doi.org/10.1016/0304-3959(84)90459-7
https://doi.org/10.1016/j.baga.2013.11.002
https://doi.org/10.1111/bph.15645
https://doi.org/10.1093/brain/awg102
https://doi.org/10.1523/JNEUROSCI.4123-08.2008
https://doi.org/10.1523/JNEUROSCI.4123-08.2008
https://doi.org/10.1007/s12264-016-0016-y
https://doi.org/10.1186/1471-2288-5-31
https://doi.org/10.1016/J.CONB.2015.07.005
https://doi.org/10.1016/J.CONB.2015.07.005
https://doi.org/10.1212/01.wnl.0000269783.86997.37
https://doi.org/10.1212/01.wnl.0000269783.86997.37
https://doi.org/10.1016/j.pain.2013.07.042
https://doi.org/10.5812/AAPM.97229
https://doi.org/10.5812/AAPM.97229
https://doi.org/10.1080/17434440.2020.1801411
https://doi.org/10.1080/17434440.2020.1801411
https://doi.org/10.1097/00002508-200009001-00006
https://doi.org/10.1097/00002508-200009001-00006
https://doi.org/10.1002/cne.903500307
https://doi.org/10.1002/cne.903500307
https://doi.org/10.1016/j.conb.2007.10.004
https://doi.org/10.1002/cne.22130
https://doi.org/10.1002/cne.22130
https://doi.org/10.1038/NN.4559
https://doi.org/10.1038/NN.4559
https://doi.org/10.1016/J.PAIN.2009.07.014
https://doi.org/10.1016/S0006-3495(99)77251-6
https://doi.org/10.1016/S0006-3495(99)77251-6
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-1044686 December 8, 2022 Time: 15:53 # 23

Lubejko et al. 10.3389/fnsys.2022.1044686

McIntyre, C. C., Grill, W. M., Sherman, D. L., and Thakor, N. V. (2004).
Cellular effects of deep brain stimulation: Model-based analysis of activation and
inhibition. J. Neurophysiol. 91, 1457–1469. doi: 10.1152/JN.00989.2003

McMahon, D., O’Reilly, M. A., and Hynynen, K. (2021). Therapeutic agent
delivery across the blood-brain barrier using focused ultrasound. Annu. Rev.
Biomed. Eng. 23, 89–113. doi: 10.1146/ANNUREV-BIOENG-062117-121238

Meda, K. S., Patel, T., Braz, J. M., Malik, R., Turner, M. L., Seifikar, H., et al.
(2019). Microcircuit mechanisms through which mediodorsal thalamic input to
anterior cingulate cortex exacerbates pain-related aversion. Neuron 102, 944–
959.e3. doi: 10.1016/j.neuron.2019.03.042

Mekhail, N., Levy, R. M., Deer, T. R., Kapural, L., Li, S., Amirdelfan, K., et al.
(2020). Long-term safety and efficacy of closed-loop spinal cord stimulation to
treat chronic back and leg pain (Evoke): A double-blind, randomised, controlled
trial. Lancet Neurol. 19, 123–134. doi: 10.1016/S1474-4422(19)30414-4

Melzack, R., and Wall, P. D. (1965). Pain mechanisms: A new theory. Science
150, 971–979. doi: 10.1126/SCIENCE.150.3699.971

Menant, O., Andersson, F., Zelena, D., and Chaillou, E. (2016). The benefits of
magnetic resonance imaging methods to extend the knowledge of the anatomical
organisation of the periaqueductal gray in mammals. J. Chem. Neuroanat. 77,
110–120. doi: 10.1016/j.jchemneu.2016.06.003

Mendell, L. M. (2013). Constructing and deconstructing the gate theory of pain.
Pain 155, 210–216. doi: 10.1016/J.PAIN.2013.12.010

Menetrey, D., and Basbaum, A. I. (1987). The distribution of substance P-,
enkephalin-and dynorphin-immunoreactive neurons in the medulla of the rat
and their contribution to bulbospinal pathways. Neuroscience 23, 173–187. doi:
10.1016/0306-4522(87)90281-8

Millan, M. J. (2002). Descending control of pain. Prog. Neurobiol. 66, 355–474.

Miller, J. F., and Proudfit, H. K. (1990). Antagonism of stimulation-produced
antinociception from ventrolateral pontine sites by intrathecal administration of
α-adrenergic antagonists and naloxone. Brain Res. 530, 20–34. doi: 10.1016/0006-
8993(90)90653-S

Moffitt, M. A., Lee, D. C., and Bradley, K. (2009). “Spinal cord stimulation:
Engineering approaches to clinical and physiological challenges,” in Implantable
neural prostheses 1. Biological and medical physics, biomedical engineering, eds E.
Greenbaum and D. Zhou (New York, NY: Springer), 155–194. doi: 10.1007/978-
0-387-77261-5_5

Moisset, X., Goudeau, S., Poindessous-Jazat, F., Baudic, S., Clavelou, P.,
and Bouhassira, D. (2015). Prolonged continuous theta-burst stimulation is
more analgesic than “classical” high frequency repetitive transcranial magnetic
stimulation. Brain Stimul. 8, 135–141. doi: 10.1016/j.brs.2014.10.006

Moisset, X., Lanteri-Minet, M., and Fontaine, D. (2020). Neurostimulation
methods in the treatment of chronic pain. J. Neural Transm. 127, 673–686. doi:
10.1007/s00702-019-02092-y

Monconduit, L., Bourgeais, L., Bernard, J.-F., le Bars, D., and Villanueva, L.
(1999). Ventromedial thalamic neurons convey nociceptive signals from the whole
body surface to the dorsolateral neocortex. J. Neurosci. 19, 9063–9072. doi: 10.
1523/JNEUROSCI.19-20-09063.1999

Moreau, J. L., and Fields, H. L. (1986). Evidence for GABA involvement in
midbrain control of medullary neurons that modulate nociceptive transmission.
Brain Res. 397, 37–46. doi: 10.1016/0006-8993(86)91367-3

Morgan, M. M., Gold, M. S., Liebeskind, J. C., and Stein, C. (1991).
Periaqueductal gray stimulation produces a spinally mediated, opioid
antinociception for the inflamed hindpaw of the rat. Brain Res. 545, 17–23.
doi: 10.1016/0006-8993(91)91264-2

Nahmias, F., Debes, C., de Andrade, D. C., Mhalla, A., and Bouhassira, D.
(2009). Diffuse analgesic effects of unilateral repetitive transcranial magnetic
stimulation (rTMS) in healthy volunteers. Pain 147, 224–232. doi: 10.1016/J.PAIN.
2009.09.016

Nandi, D., and Aziz, T. Z. (2004). Deep brain stimulation in the management of
neuropathic pain and multiple sclerosis tremor. J. Clin. Neurophysiol. 21, 31–39.
doi: 10.1097/00004691-200401000-00005

Nandi, D., Liu, X., Joint, C., Stein, J., and Aziz, T. (2002). Thalamic field
potentials during deep brain stimulation of periventricular gray in chronic pain.
Pain 97, 47–51. doi: 10.1016/S0304-3959(01)00486-9

Narita, M. (2003). Change in the expression of c-fos in the rat brain following
sciatic nerve ligation. Neurosci. Lett. 352, 231–233. doi: 10.1016/s0304-3940(03)
01045-0

Navratilova, E., Xie, J. Y., Meske, D., Qu, C., Morimura, K., Okun, A., et al.
(2015). Endogenous opioid activity in the anterior cingulate cortex is required for
relief of pain. J. Neurosci. 35, 7264–7271. doi: 10.1523/JNEUROSCI.3862-14.2015

Nguyen, E., Smith, K. M., Cramer, N., Holland, R. A., Bleimeister, I. H., Flores-
Felix, K., et al. (2022). Medullary kappa-opioid receptor neurons inhibit pain
and itch through a descending circuit. Brain 145, 2586–2601. doi: 10.1093/brain/
awac189

North, R. A., Williams, J. T., Surprenant, A., and Christie, M. J. (1987). Mu
and delta receptors belong to a family of receptors that are coupled to potassium
channels. Proc. Natl. Acad. Sci. U.S.A. 84, 5487–5491. doi: 10.1073/pnas.84.15.
5487

North, R. B., Ewend, M. G., Lawton, M. T., and Piantadosi, S. (1991). Spinal cord
stimulation for chronic, intractable pain: Superiority of “multi-channel” devices.
Pain 44, 119–130. doi: 10.1016/0304-3959(91)90125-H

Ntamati, N. R., Creed, M., Achargui, R., and Lüscher, C. (2018). Periaqueductal
efferents to dopamine and GABA neurons of the VTA. PLoS One 13:e190297.
doi: 10.1371/journal.pone.0190297

O’Connell, N. E., Cossar, J., Marston, L., Wand, B. M., Bunce, D., de Souza,
L. H., et al. (2013). Transcranial direct current stimulation of the motor cortex in
the treatment of chronic nonspecific low back pain: A randomized, double-blind
exploratory study. Clin. J. Pain 29, 26–34. doi: 10.1097/AJP.0B013E318247EC09

Ohnhaus, E. E., and Adler, R. (1975). Methodological problems in the
measurement of pain: A comparison between the verbal rating scale and the visual
analogue scale. Pain 1, 379–384. doi: 10.1016/0304-3959(75)90075-5

Oliva, V., Hartley-davies, R., Moran, R., Pickering, A. E., and Brooks, C. W.
(2022). Simultaneous brain, brainstem and spinal cord pharmacological-fMRI
reveals involvement of an endogenous opioid network in attentional analgesia.
Elife 11:e71877. doi: 10.7554/eLife.71877

Ong, W. Y., Stohler, C. S., and Herr, D. R. (2019). Role of the prefrontal cortex in
pain processing. Mol. Neurobiol. 56, 1137–1166. doi: 10.1007/S12035-018-1130-9

Osborne, P. B., Vaughan, C. W., Wilson, H. I., and Christie, M. J. (1996). Opioid
inhibition of rat periaqueductal grey neurones with identified projections to rostral
ventromedial medulla in vitro. J. Physiol. 490(Pt 2), 383–389. doi: 10.1113/jphysiol.
1996.sp021152

Ostrowsky, K., Magnin, M., Ryvlin, P., Isnard, J., Guenot, M., and Mauguière, F.
(2002). Representation of pain and somatic sensation in the human insula: A study
of responses to direct electrical cortical stimulation. Cereb. Cortex 12, 376–385.
doi: 10.1093/CERCOR/12.4.376

Pagano, R. L., Fonoff, E. T., Dale, C. S., Ballester, G., Teixeira, M. J., and Britto,
L. R. G. (2012). Motor cortex stimulation inhibits thalamic sensory neurons and
enhances activity of PAG neurons: Possible pathways for antinociception. Pain
153, 2359–2369. doi: 10.1016/j.pain.2012.08.002

Passard, A., Attal, N., Benadhira, R., Brasseur, L., Saba, G., Sichere, P., et al.
(2007). Effects of unilateral repetitive transcranial magnetic stimulation of the
motor cortex on chronic widespread pain in fibromyalgia. Brain 130, 2661–2670.
doi: 10.1093/brain/awm189

Peltz, E., Seifert, F., DeCol, R., Dörfler, A., Schwab, S., and Maihöfner, C.
(2011). Functional connectivity of the human insular cortex during noxious
and innocuous thermal stimulation. Neuroimage 54, 1324–1335. doi: 10.1016/j.
neuroimage.2010.09.012

Pereira, E. A. C., Wang, S., Peachey, T., Lu, G., Shlugman, D., Stein, J. F.,
et al. (2013). Elevated gamma band power in humans receiving naloxone suggests
dorsal periaqueductal and periventricular gray deep brain stimulation produced
analgesia is opioid mediated. Exp. Neurol. 239, 248–255. doi: 10.1016/j.expneurol.
2012.10.017

Pert, C. B., Kuhar, M. J., and Snyder, S. H. (1976). Opiate receptor:
Autoradiographic localization in rat brain. Proc. Natl. Acad. Sci. U.S.A. 73, 3729–
3733.

Petrovic, P., Kalso, E., Petersson, K. M., and Ingvar, M. (2002). Placebo and
opioid analgesia–imaging a shared neuronal network. Science 295, 1737–1740.
doi: 10.1126/SCIENCE.1067176

Peyron, R., Faillenot, I., Mertens, P., Laurent, B., and Garcia-Larrea, L. (2007).
Motor cortex stimulation in neuropathic pain. Correlations between analgesic
effect and hemodynamic changes in the brain. A pet study. Neuroimage 34,
310–321. doi: 10.1016/j.neuroimage.2006.08.037

Pilitsis, J. G., Fahey, M., Custozzo, A., Chakravarthy, K., and Capobianco, R.
(2021). Composite score is a better reflection of patient response to chronic
pain therapy compared with pain intensity alone. Neuromodulation 24, 68–75.
doi: 10.1111/ner.13212

Prévinaire, J. G., Nguyen, J. P., Perrouin-Verbe, B., and Fattal, C. (2009).
Chronic neuropathic pain in spinal cord injury: Efficiency of deep brain and
motor cortex stimulation therapies for neuropathic pain in spinal cord injury
patients. Ann. Phys. Rehabil. Med. 52, 188–193. doi: 10.1016/J.REHAB.2008.
12.002

Frontiers in Systems Neuroscience 23 frontiersin.org

171

https://doi.org/10.3389/fnsys.2022.1044686
https://doi.org/10.1152/JN.00989.2003
https://doi.org/10.1146/ANNUREV-BIOENG-062117-121238
https://doi.org/10.1016/j.neuron.2019.03.042
https://doi.org/10.1016/S1474-4422(19)30414-4
https://doi.org/10.1126/SCIENCE.150.3699.971
https://doi.org/10.1016/j.jchemneu.2016.06.003
https://doi.org/10.1016/J.PAIN.2013.12.010
https://doi.org/10.1016/0306-4522(87)90281-8
https://doi.org/10.1016/0306-4522(87)90281-8
https://doi.org/10.1016/0006-8993(90)90653-S
https://doi.org/10.1016/0006-8993(90)90653-S
https://doi.org/10.1007/978-0-387-77261-5_5
https://doi.org/10.1007/978-0-387-77261-5_5
https://doi.org/10.1016/j.brs.2014.10.006
https://doi.org/10.1007/s00702-019-02092-y
https://doi.org/10.1007/s00702-019-02092-y
https://doi.org/10.1523/JNEUROSCI.19-20-09063.1999
https://doi.org/10.1523/JNEUROSCI.19-20-09063.1999
https://doi.org/10.1016/0006-8993(86)91367-3
https://doi.org/10.1016/0006-8993(91)91264-2
https://doi.org/10.1016/J.PAIN.2009.09.016
https://doi.org/10.1016/J.PAIN.2009.09.016
https://doi.org/10.1097/00004691-200401000-00005
https://doi.org/10.1016/S0304-3959(01)00486-9
https://doi.org/10.1016/s0304-3940(03)01045-0
https://doi.org/10.1016/s0304-3940(03)01045-0
https://doi.org/10.1523/JNEUROSCI.3862-14.2015
https://doi.org/10.1093/brain/awac189
https://doi.org/10.1093/brain/awac189
https://doi.org/10.1073/pnas.84.15.5487
https://doi.org/10.1073/pnas.84.15.5487
https://doi.org/10.1016/0304-3959(91)90125-H
https://doi.org/10.1371/journal.pone.0190297
https://doi.org/10.1097/AJP.0B013E318247EC09
https://doi.org/10.1016/0304-3959(75)90075-5
https://doi.org/10.7554/eLife.71877
https://doi.org/10.1007/S12035-018-1130-9
https://doi.org/10.1113/jphysiol.1996.sp021152
https://doi.org/10.1113/jphysiol.1996.sp021152
https://doi.org/10.1093/CERCOR/12.4.376
https://doi.org/10.1016/j.pain.2012.08.002
https://doi.org/10.1093/brain/awm189
https://doi.org/10.1016/j.neuroimage.2010.09.012
https://doi.org/10.1016/j.neuroimage.2010.09.012
https://doi.org/10.1016/j.expneurol.2012.10.017
https://doi.org/10.1016/j.expneurol.2012.10.017
https://doi.org/10.1126/SCIENCE.1067176
https://doi.org/10.1016/j.neuroimage.2006.08.037
https://doi.org/10.1111/ner.13212
https://doi.org/10.1016/J.REHAB.2008.12.002
https://doi.org/10.1016/J.REHAB.2008.12.002
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-1044686 December 8, 2022 Time: 15:53 # 24

Lubejko et al. 10.3389/fnsys.2022.1044686

Proudfit, H. K., and Clark, F. M. (1991). The projections of locus coeruleus
neurons to the spinal cord. Amsterdam: Elsevier. doi: 10.1016/S0079-6123(08)
63803-0

Proudfit, H. K., and Hammond, D. L. (1981). Alterations in nociceptive
threshold and morphine-induced analgesia produced by intrathecally
administered amine antagonists. Brain Res. 218, 393–399. doi: 10.1016/0006-
8993(81)91318-4

Qu, C., King, T., Okun, A., Lai, J., Fields, H. L., and Porreca, F. (2011). Lesion
of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous
neuropathic pain following partial or complete axotomy. Pain 152, 1641–1648.
doi: 10.1016/J.PAIN.2011.03.002

Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., and Bushnell, M. C. (1997).
Pain affect encoded in human anterior cingulate but not somatosensory cortex.
Science 277, 968–971.

Rattay, F. (1986). Analysis of models for external stimulation of axons. IEEE
Trans. Biomed. Eng. 33, 974–977. doi: 10.1109/TBME.1986.325670

Rattay, F. (1999). The basic mechanism for the electrical stimulation of the
nervous system. Neuroscience 89, 335–346. doi: 10.1016/S0306-4522(98)00330-3

Rodriguez-Raecke, R., Niemeier, A., Ihle, K., Ruether, W., and May, A. (2009).
Brain gray matter decrease in chronic pain is the consequence and not the cause
of pain. J. Neurosci. 29, 13746–13750. doi: 10.1523/JNEUROSCI.3687-09.2009

Rogers, E. R., Zander, H. J., and Lempka, S. F. (2022). Neural recruitment
during conventional, burst, and 10-kHz spinal cord stimulation for pain. J. Pain
23, 434–449. doi: 10.1016/j.jpain.2021.09.005

Royce, G. J. (1983). Cortical neurons with collateral projections to both
the caudate nucleus and the centromedian-parafascicular thalamic complex: A
fluorescent retrograde double labeling study in the cat. Exp. Brain Res. 50, 157–165.
doi: 10.1007/BF00239179

Roychowdhury, S. M., and Fields, H. L. (1996). Endogenous opioids acting
at a medullary mu-opioid receptor contribute to the behavioral antinociception
produced by GABA antagonism in the midbrain periaqueductal gray.Neuroscience
74, 863–872. doi: 10.1016/0306-4522(96)00180-7

Royer, S., Zemelman, B. V., Barbic, M., Losonczy, A., Buzsáki, G., and Magee,
J. C. (2010). Multi-array silicon probes with integrated optical fibers: Light-assisted
perturbation and recording of local neural circuits in the behaving animal. Eur. J.
Neurosci. 31, 2279–2291. doi: 10.1111/j.1460-9568.2010.07250.x

Rozeske, R. R., Jercog, D., Karalis, N., Chaudun, F., Khoder, S., Girard, D., et al.
(2018). Prefrontal-periaqueductal gray-projecting neurons mediate context fear
discrimination. Neuron 97, 898–910.e6. doi: 10.1016/j.neuron.2017.12.044

Rudd, R. A., Aleshire, N., Zibbell, J. E., and Gladden, R. M. (2016). Increases in
drug and opioid overdose deaths–United States, 2000-2014. Morb. Mortal. Wkly.
Rep. 64, 1378–1382. doi: 10.15585/mmwr.mm6450a3

Russo, C. M., and Brose, W. G. (1998). Chronic pain. Annu. Rev. Med. 49,
123–133.

Sá, K. N., Moreira, L., Baptista, A. F., Yeng, L. T., Teixeira, M. J., Galhardoni, R.,
et al. (2019). Prevalence of chronic pain in developing countries: Systematic review
and meta-analysis. Pain Rep. 4:e779. doi: 10.1097/PR9.0000000000000779

Salas, R., Ramirez, K., Vanegas, H., and Vazquez, E. (2016). Activity correlations
between on-like and off-like cells of the rostral ventromedial medulla and
simultaneously recorded wide-dynamic-range neurons of the spinal dorsal horn
in rats. Brain Res. 1652, 103–110. doi: 10.1016/J.BRAINRES.2016.10.001

Samineni, V. K., Grajales-Reyes, J. G., Copits, B. A., O’Brien, D. E., Trigg, S. L.,
Gomez, A. M., et al. (2017). Divergent modulation of nociception by glutamatergic
and GABAergic neuronal subpopulations in the periaqueductal gray. eNeuro 4.
doi: 10.1523/ENEURO.0129-16.2017

Sankarasubramanian, V., Chiravuri, S., Mirzakhalili, E., Anaya, C. J., Scott, J. R.,
Brummett, C. M., et al. (2021). Quantitative sensory testing of spinal cord and
dorsal root ganglion stimulation in chronic pain patients. Neuromodulation 24,
672–684. doi: 10.1111/NER.13329

Sankarasubramanian, V., Harte, S. E., Chiravuri, S., Harris, R. E., Brummett,
C. M., Patil, P. G., et al. (2019). Objective measures to characterize the
physiological effects of spinal cord stimulation in neuropathic pain: A literature
review. Neuromodulation 22, 227–248. doi: 10.1111/ner.12804

Sato, K. L., King, E. W., Johanek, L. M., and Sluka, K. A. (2013). Spinal cord
stimulation reduces hypersensitivity through activation of opioid receptors in a
frequency-dependent manner. Eur. J. Pain 17, 551–561. doi: 10.1002/J.1532-2149.
2012.00220.X

Scholl, L., Seth, P., Kariisa, M., Wilson, N., and Baldwin, G. (2019). Drug and
opioid-involved overdose deaths–United States, 2013-2017. Morb. Mort. Wkly.
Rep. 67, 1419–1427. doi: 10.15585/mmwr.mm675152e1

Scott, D. J., Stohler, C. S., Egnatuk, C. M., Wang, H., Koeppe, R. A., and
Zubieta, J. K. (2008). Placebo and nocebo effects are defined by opposite opioid
and dopaminergic responses. Arch. Gen. Psychiatry 65, 220–231. doi: 10.1001/
archgenpsychiatry.2007.34

Sdrulla, A. D., Guan, Y., and Raja, S. N. (2018). Spinal cord stimulation: Clinical
efficacy and potential mechanisms. Pain Pract. 18, 1048–1067. doi: 10.1111/papr.
12692

Sears, N. C., MacHado, A. G., Nagel, S. J., Deogaonkar, M., Stanton-Hicks, M.,
Rezai, A. R., et al. (2011). Long-term outcomes of spinal cord stimulation with
paddle leads in the treatment of complex regional pain syndrome and failed back
surgery syndrome. Neuromodulation 14, 312–318. doi: 10.1111/J.1525-1403.2011.
00372.X

Seminowicz, D. A., Laferriere, A. L., Millecamps, M., Yu, J. S. C., Coderre, T. J.,
and Bushnell, M. C. (2009). MRI structural brain changes associated with sensory
and emotional function in a rat model of long-term neuropathic pain. Neuroimage
47, 1007–1014. doi: 10.1016/j.neuroimage.2009.05.068

Seybold, V., and Elde, R. (1980). Immunohistochemical studies of peptidergic
neurons in the dorsal horn of the spinal cord. J. Histochem. Cytochem. 28, 367–370.
doi: 10.1177/28.4.6154731

Shao, F. B., Fang, J. F., Wang, S. S., Qiu, M. T., Xi, D. N., Jin, X. M., et al. (2021).
Anxiolytic effect of GABAergic neurons in the anterior cingulate cortex in a rat
model of chronic inflammatory pain. Mol. Brain 14:139. doi: 10.1186/S13041-021-
00849-9

Shao, R., Lau, W. K. W., Leung, M. K., and Lee, T. M. C. (2018). Subgenual
anterior cingulate-insula resting-state connectivity as a neural correlate to trait and
state stress resilience. Brain Cogn. 124, 73–81. doi: 10.1016/j.bandc.2018.05.001

Sharma, K. K., Kelly, E. A., Pfeifer, C. W., and Fudge, J. L. (2020). Translating
fear circuitry: Amygdala projections to subgenual and perigenual anterior
cingulate in the macaque. Cereb. Cortex 30, 550–562. doi: 10.1093/cercor/bhz106

Shealy, C. N., Mortimer, J. T., and Reswick, J. B. (1967). Electrical inhibition
of pain by stimulation of the dorsal columns: Preliminary clinical report. Anesth.
Analg. 46, 489–491.

Shi, W., Xue, M., Wu, F., Fan, K., Chen, Q. Y., Xu, F., et al. (2022). Whole-brain
mapping of efferent projections of the anterior cingulate cortex in adult male mice.
Mol. Pain 18, 1–12. doi: 10.1177/17448069221094529

Shirvalkar, P., Sellers, K. K., Schmitgen, A., Prosky, J., Joseph, I., Starr, P. A., et al.
(2020). A deep brain stimulation trial period for treating chronic pain. J. Clin. Med.
9, 1–15. doi: 10.3390/jcm9103155

Shyu, B. C., Lin, C. Y., Sun, J. J., Chen, S. L., and Chang, C. (2004). Bold response
to direct thalamic stimulation reveals a functional connection between the medial
thalamus and the anterior cingulate cortex in the rat. Magn. Reson. Med. 52, 47–55.
doi: 10.1002/mrm.20111

Sikes, R. W., and Vogt, B. A. (1992). Nociceptive neurons in area 24 of rabbit
cingulate cortex. J. Neurophysiol. 68, 1720–1732. doi: 10.1152/JN.1992.68.5.1720

Sims-Williams, H., Matthews, J. C., Talbot, P. S., Love-Jones, S., Brooks, J. C.,
Patel, N. K., et al. (2017). Deep brain stimulation of the periaqueductal gray
releases endogenous opioids in humans. Neuroimage 146, 833–842. doi: 10.1016/j.
neuroimage.2016.08.038

Singh, A., Patel, D., Li, A., Hu, L., Zhang, Q., Liu, Y., et al. (2020). Mapping
cortical integration of sensory and affective pain pathways. Curr. Biol. 30, 1703–
1715.e5. doi: 10.1016/j.cub.2020.02.091

Sivanesan, E., Maher, D. P., Raja, S. N., Linderoth, B., and Guan, Y. (2019).
Supraspinal mechanisms of spinal cord stimulation for modulation of pain: Five
decades of research and prospects for the future. Anesthesiology 130, 651–665.
doi: 10.1097/ALN.0000000000002353

Song, Z., Meyerson, B. A., and Linderoth, B. (2011). Spinal 5-HT receptors
that contribute to the pain-relieving effects of spinal cord stimulation in
a rat model of neuropathy. Pain 152, 1666–1673. doi: 10.1016/J.PAIN.2011.
03.012

Song, Z., Ultenius, C., Meyerson, B. A., and Linderoth, B. (2009). Pain relief by
spinal cord stimulation involves serotonergic mechanisms: An experimental study
in a rat model of mononeuropathy. Pain 147, 241–248. doi: 10.1016/J.PAIN.2009.
09.020

Speer, A. M., Kimbrell, T. A., Wassermann, E. M., Repella, J. D., Willis, M. W.,
Herscovitch, P., et al. (2000). Opposite effects of high and low frequency rTMS
on regional brain activity in depressed patients. Biol. Psychiatry 48, 1133–1141.
doi: 10.1016/S0006-3223(00)01065-9

Spix, T. A., Nanivadekar, S., Toong, N., Kaplow, I. M., Isett, B. R., Goksen, Y.,
et al. (2021). Population-specific neuromodulation prolongs therapeutic benefits
of deep brain stimulation. Science 374, 201–206. doi: 10.1126/SCIENCE.ABI7852

Frontiers in Systems Neuroscience 24 frontiersin.org

172

https://doi.org/10.3389/fnsys.2022.1044686
https://doi.org/10.1016/S0079-6123(08)63803-0
https://doi.org/10.1016/S0079-6123(08)63803-0
https://doi.org/10.1016/0006-8993(81)91318-4
https://doi.org/10.1016/0006-8993(81)91318-4
https://doi.org/10.1016/J.PAIN.2011.03.002
https://doi.org/10.1109/TBME.1986.325670
https://doi.org/10.1016/S0306-4522(98)00330-3
https://doi.org/10.1523/JNEUROSCI.3687-09.2009
https://doi.org/10.1016/j.jpain.2021.09.005
https://doi.org/10.1007/BF00239179
https://doi.org/10.1016/0306-4522(96)00180-7
https://doi.org/10.1111/j.1460-9568.2010.07250.x
https://doi.org/10.1016/j.neuron.2017.12.044
https://doi.org/10.15585/mmwr.mm6450a3
https://doi.org/10.1097/PR9.0000000000000779
https://doi.org/10.1016/J.BRAINRES.2016.10.001
https://doi.org/10.1523/ENEURO.0129-16.2017
https://doi.org/10.1111/NER.13329
https://doi.org/10.1111/ner.12804
https://doi.org/10.1002/J.1532-2149.2012.00220.X
https://doi.org/10.1002/J.1532-2149.2012.00220.X
https://doi.org/10.15585/mmwr.mm675152e1
https://doi.org/10.1001/archgenpsychiatry.2007.34
https://doi.org/10.1001/archgenpsychiatry.2007.34
https://doi.org/10.1111/papr.12692
https://doi.org/10.1111/papr.12692
https://doi.org/10.1111/J.1525-1403.2011.00372.X
https://doi.org/10.1111/J.1525-1403.2011.00372.X
https://doi.org/10.1016/j.neuroimage.2009.05.068
https://doi.org/10.1177/28.4.6154731
https://doi.org/10.1186/S13041-021-00849-9
https://doi.org/10.1186/S13041-021-00849-9
https://doi.org/10.1016/j.bandc.2018.05.001
https://doi.org/10.1093/cercor/bhz106
https://doi.org/10.1177/17448069221094529
https://doi.org/10.3390/jcm9103155
https://doi.org/10.1002/mrm.20111
https://doi.org/10.1152/JN.1992.68.5.1720
https://doi.org/10.1016/j.neuroimage.2016.08.038
https://doi.org/10.1016/j.neuroimage.2016.08.038
https://doi.org/10.1016/j.cub.2020.02.091
https://doi.org/10.1097/ALN.0000000000002353
https://doi.org/10.1016/J.PAIN.2011.03.012
https://doi.org/10.1016/J.PAIN.2011.03.012
https://doi.org/10.1016/J.PAIN.2009.09.020
https://doi.org/10.1016/J.PAIN.2009.09.020
https://doi.org/10.1016/S0006-3223(00)01065-9
https://doi.org/10.1126/SCIENCE.ABI7852
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-1044686 December 8, 2022 Time: 15:53 # 25

Lubejko et al. 10.3389/fnsys.2022.1044686

Spooner, J., Yu, H., Kao, C., Sillay, K., and Konrad, P. (2007). Neuromodulation
of the cingulum for neuropathic pain after spinal cord injury. Case report.
J. Neurosurg. 107, 169–172. doi: 10.3171/JNS-07/07/0169

Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza,
M., et al. (2021). Neuropixels 2.0: A miniaturized high-density probe for stable,
long-term brain recordings. Science 372:eabf4588. doi: 10.1126/science.abf4588

Struijk, J. J., Holsheimer, J., van Veen, B. K., and Boom, H. B. K. (1991). Epidural
spinal cord stimulation: Calculation of field potentials with special reference to
dorsal column nerve fibers. IEEE Trans. Biomed. Eng. 38, 104–110. doi: 10.1109/
10.68217

Subedi, B., and Grossberg, G. T. (2011). Phantom limb pain: Mechanisms and
treatment approaches. Pain Res. Treat. 2011:864605. doi: 10.1155/2011/864605

Sweeney, P., Chen, C., Rajapakse, I., and Cone, R. D. (2021). Network dynamics
of hypothalamic feeding neurons. Proc. Natl. Acad. Sci. U.S.A. 118:e2011140118.
doi: 10.1073/PNAS.2011140118/SUPPL_FILE/PNAS.2011140118.SM02.MP4

Tang, J., Ko, S., Ding, H.-K., Qiu, C.-S., Calejesan, A. A., and Zhuo, M. (2005).
Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol.
Pain 1:6. doi: 10.1186/1744-8069-1-6

Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a
demand-controlled coordinated reset of neural subpopulations. Biol. Cybern. 89,
81–88. doi: 10.1007/S00422-003-0425-7

Taylor, J. J., Borckardt, J. J., and George, M. S. (2012). Endogenous opioids
mediate left dorsolateral prefrontal cortex rTMS-induced analgesia. Pain 153,
1219–1225. doi: 10.1016/j.pain.2012.02.030

Taylor, R. S., Desai, M. J., Rigoard, P., and Taylor, R. J. (2014). Predictors of pain
relief following spinal cord stimulation in chronic back and leg pain and failed
back surgery syndrome: A systematic review and meta-regression analysis. Pain
Pract. 14:489. doi: 10.1111/PAPR.12095

Thoden, U., Doerr, M., Dieckmann, G., and Krainick, J.-U. (1979). Medial
thalamic permanent electrodes for pain control in man: An electrophysiological
and clinical study. Electroencephalogr. Clin. Neurophysiol. 47, 582–591. doi: 10.
1016/0013-4694(79)90259-1

Thompson, S. J., Pitcher, M. H., Stone, L. S., Tarum, F., Niu, G., Chen,
X., et al. (2018). Chronic neuropathic pain reduces opioid receptor availability
with associated anhedonia in rat. Pain 159, 1856–1866. doi: 10.1097/j.pain.
0000000000001282

Toll, L., Berzetei-Gurske, I. P., Polgar, W. E., Brandt, S. R., Adapa, I. D.,
Rodriguez, L., et al. (1998). Standard binding and functional assays related to
medications development division testing for potential cocaine and opiate narcotic
treatment medications. NIDA Res. Monogr. 178, 440–466.

Tölle, T. R., Kaufmann, T., Siessmeier, T., Lautenbacher, S., Berthele, A., Munz,
F., et al. (1999). Region-specific encoding of sensory and affective components of
pain in the human brain: A positron emission tomography correlation analysis.
Ann. Neurol. 45, 40–47. doi: 10.1002/1531-8249

Trevathan, J. K., Asp, A. J., Nicolai, E. N., Trevathan, J. M., Kremer, N. A., Kozai,
T. D. Y., et al. (2021). Calcium imaging in freely moving mice during electrical
stimulation of deep brain structures. J. Neural Eng. 18:026008. doi: 10.1088/1741-
2552/ABB7A4

Trieu, B. H., Remmers, B. C., Toddes, C., Brandner, D. D., Lefevre, E. M.,
Kocharian, A., et al. (2022). Angiotensin-converting enzyme gates brain circuit–
specific plasticity via an endogenous opioid. Science 375, 1177–1182. doi: 10.1126/
science.abl5130

Umana, I. C., Daniele, C. A., Miller, B. A., Abburi, C., Gallagher, K., Brown,
M. A., et al. (2017). Nicotinic modulation of descending pain control circuitry.
Pain 158, 1938–1950. doi: 10.1097/j.pain.0000000000000993

Vallejo, R., Kelley, C. A., Gupta, A., Smith, W. J., Vallejo, A., and Cedeño, D. L.
(2020). Modulation of neuroglial interactions using differential target multiplexed
spinal cord stimulation in an animal model of neuropathic pain. Mol. Pain
16:1744806920918057. doi: 10.1177/1744806920918057

Valmunen, T., Pertovaara, A., Taiminen, T., Virtanen, A., Parkkola, R., and
Jääskeläinen, S. K. (2009). Modulation of facial sensitivity by navigated rTMS in
healthy subjects. Pain 142, 149–158. doi: 10.1016/j.pain.2008.12.031

van Bockstaele, E. J., Commons, K., and Pickel, V. M. (1997). δ-Opioid receptor
is present in presynaptic axon terminals in the rat nucleus locus coeruleus:
Relationships with methionine5-enkephalin. J. Comp. Neurol. 388, 575–586. doi:
10.1002/(sici)1096-9861(19971201)388:4<575::aid-cne6<3.0.co;2-\#

van Tubergen, A., Debats, I., Ryser, L., Londoño, J., Burgos-Vargas, R., Cardiel,
M. H., et al. (2002). Use of a numerical rating scale as an answer modality in
ankylosing spondylitis-specific questionnaires. Arthritis Rheum. 47, 242–248. doi:
10.1002/ART.10397

Vasquez, E., and Vanegas, H. (2000). The antinociceptive effect of PAG-
microinjected dipyrone in rats is mediated by endogenous opioids of the rostral
ventromedical medulla. Brain Res. 854, 249–252. doi: 10.1016/S0006-8993(99)
02303-3

Viisanen, H., and Pertovaara, A. (2010). Antinociception by motor cortex
stimulation in the neuropathic rat: Does the locus coeruleus play a role? Exp. Brain
Res. 201, 283–296. doi: 10.1007/S00221-009-2038-4

Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate
gyrus. Nat. Rev. Neurosci. 6, 533–544. doi: 10.1038/nrn1704

Vogt, B. A., Derbyshire’, S., and Jones’, A. K. P. (1996). Pain processing in
four regions of human cingulate cortex localized with co-registered PET and MR
imaging. Eur. J. Neurosci. 8, 1461–1473. doi: 10.1111/j.1460-9568.1996.tb01608.x

Vogt, B. A., Watanabe, H., Grootoonk, S., and Jones, A. K. P. (1995).
Topography of diprenorphine binding in human cingulate gyrus and adjacent
cortex derived from coregistered PET and MR images. Hum. Brain Mapp. 3, 1–12.

von Monakow, K. H., Akert, K., and Künzle, H. (1979). Projections of precentral
and premotor cortex to the red nucleus and other midbrain areas in Macaca
fascicularis. Exp. Brain Res. 34, 91–105. doi: 10.1007/BF00238343

von Zastrow, M., Svingos, A., Haberstock-Debic, H., and Evans, C. (2003).
Regulated endocytosis of opioid receptors: Cellular mechanisms and proposed
roles in physiological adaptation to opiate drugs. Curr. Opin. Neurobiol. 13,
348–353. doi: 10.1016/S0959-4388(03)00069-2

Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J.,
et al. (2004). Placebo-induced changes in fMRI in the anticipation and experience
of pain. Science 303, 1162–1167. doi: 10.1126/science.1093065

Wager, T. D., Scott, D. J., and Zubieta, J. K. (2007). Placebo effects on human
µ-opioid activity during pain. Proc. Natl. Acad. Sci. U.S.A. 104, 11056–11061.
doi: 10.1073/pnas.0702413104

Wall, P. D., and Swert, W. H. (1967). Temporary abolition of pain in man.
Science 155, 108–109. doi: 10.1126/SCIENCE.155.3758.108

Wang, H., and Wessendorf, M. W. (1999). µ- and δ-opioid receptor mRNAs are
expressed in spinally projecting serotonergic and nonserotonergic neurons of the
rostral ventromedial medulla. J. Comp. Neurol. 404, 183–196. doi: 10.1002/(sici)
1096-9861(19990208)404:2&lt;183::aid-cne4&gt;3.0.co;2-n

Wang, H., and Wessendorf, M. W. (2002). µ- and δ-opioid receptor
mRNAs are expressed in periaqueductal gray neurons projecting to the rostral
ventromedial medulla. Neuroscience 109, 619–634. doi: 10.1016/S0306-4522(01)00
328-1

Wang, J. B., Aryal, M., Zhong, Q., Vyas, D. B., and Airan, R. D. (2018).
Noninvasive ultrasonic drug uncaging maps whole-brain functional networks.
Neuron 100, 728–738.e7. doi: 10.1016/J.NEURON.2018.10.042

Wang, J. Y., Zhao, M., Yuan, Y. K., Fan, G. X., Jia, H., and Tang, J.-S. (2006). The
roles of different subtypes of opioid receptors in mediating the nucleus submedius
opioid-evoked antiallodynia in a neuropathic pain model of rats.Neuroscience 138,
1319–1327. doi: 10.1016/j.neuroscience.2005.11.071

Wang, N., Zhang, T., Su, Y.-L., Wang, J.-Y., and Luo, F. (2016). Differential
modulation of electrical stimulation of periaqueductal gray and thalamus on
nociceptive behaviors of rats. Sheng Li Xue Bao 68, 115–125.

Wang, J., Nebeck, S., Muralidharan, A., Johnson, M. D., Vitek, J. L., and Baker,
K. B. (2016). Coordinated reset deep brain stimulation of subthalamic nucleus
produces long-lasting, dose-dependent motor improvements in the 1-Methyl-4-
phenyl-1,2,3,6-tetrahydropyridine Non-human primate model of parkinsonism.
Brain Stimul. 9, 609–617. doi: 10.1016/J.BRS.2016.03.014

Wayne Hurt, R., Thomas Ballantine, H., THOl, H., and Ballantine, I. (1974).
Stereotactic anterior cingulate lesions for persistent pain: A report on 68 cases.
Neurosurgery 21, 334–351. doi: 10.1093/NEUROSURGERY/21.CN_SUPPL_1.334

Weiwei, Y., Wendi, F., Mengru, C., Tuo, Y., and Chen, G. (2021). The cellular
mechanism by which the rostral ventromedial medulla acts on the spinal cord
during chronic pain. Rev. Neurosci. 32, 545–558. doi: 10.1515/REVNEURO-2020-
0121

West, W. L., Yeomans, D. C., and Proudfit, H. K. (1993). The function
of noradrenergic neurons in mediating antinociception induced by electrical
stimulation of the locus coeruleus in two different sources of Sprague-Dawley rats.
Brain Res. 626, 127–135. doi: 10.1016/0006-8993(93)90571-4

Westlund, K. N., Bowker, R. M., Ziegler, M. G., and Coulter, J. D. (1983).
Noradrenergic projections to the spinal cord of the rat. Brain Res. 263, 15–31.
doi: 10.1016/0006-8993(83)91196-4

Westlund, K. N., Bowker, R. M., Ziegler, M. G., and Coulter, J. D. (1984).
Origins and terminations of descending noradrenergic projections to the

Frontiers in Systems Neuroscience 25 frontiersin.org

173

https://doi.org/10.3389/fnsys.2022.1044686
https://doi.org/10.3171/JNS-07/07/0169
https://doi.org/10.1126/science.abf4588
https://doi.org/10.1109/10.68217
https://doi.org/10.1109/10.68217
https://doi.org/10.1155/2011/864605
https://doi.org/10.1073/PNAS.2011140118/SUPPL_FILE/PNAS.2011140118.SM02.MP4
https://doi.org/10.1186/1744-8069-1-6
https://doi.org/10.1007/S00422-003-0425-7
https://doi.org/10.1016/j.pain.2012.02.030
https://doi.org/10.1111/PAPR.12095
https://doi.org/10.1016/0013-4694(79)90259-1
https://doi.org/10.1016/0013-4694(79)90259-1
https://doi.org/10.1097/j.pain.0000000000001282
https://doi.org/10.1097/j.pain.0000000000001282
https://doi.org/10.1002/1531-8249
https://doi.org/10.1088/1741-2552/ABB7A4
https://doi.org/10.1088/1741-2552/ABB7A4
https://doi.org/10.1126/science.abl5130
https://doi.org/10.1126/science.abl5130
https://doi.org/10.1097/j.pain.0000000000000993
https://doi.org/10.1177/1744806920918057
https://doi.org/10.1016/j.pain.2008.12.031
https://doi.org/10.1002/(sici)1096-9861(19971201)388:4<575::aid-cne6<3.0.co;2-\
https://doi.org/10.1002/(sici)1096-9861(19971201)388:4<575::aid-cne6<3.0.co;2-\
https://doi.org/10.1002/ART.10397
https://doi.org/10.1002/ART.10397
https://doi.org/10.1016/S0006-8993(99)02303-3
https://doi.org/10.1016/S0006-8993(99)02303-3
https://doi.org/10.1007/S00221-009-2038-4
https://doi.org/10.1038/nrn1704
https://doi.org/10.1111/j.1460-9568.1996.tb01608.x
https://doi.org/10.1007/BF00238343
https://doi.org/10.1016/S0959-4388(03)00069-2
https://doi.org/10.1126/science.1093065
https://doi.org/10.1073/pnas.0702413104
https://doi.org/10.1126/SCIENCE.155.3758.108
https://doi.org/10.1002/(sici)1096-9861(19990208)404:2&lt;183::aid-cne4&gt;3.0.co;2-n
https://doi.org/10.1002/(sici)1096-9861(19990208)404:2&lt;183::aid-cne4&gt;3.0.co;2-n
https://doi.org/10.1016/S0306-4522(01)00328-1
https://doi.org/10.1016/S0306-4522(01)00328-1
https://doi.org/10.1016/J.NEURON.2018.10.042
https://doi.org/10.1016/j.neuroscience.2005.11.071
https://doi.org/10.1016/J.BRS.2016.03.014
https://doi.org/10.1093/NEUROSURGERY/21.CN_SUPPL_1.334
https://doi.org/10.1515/REVNEURO-2020-0121
https://doi.org/10.1515/REVNEURO-2020-0121
https://doi.org/10.1016/0006-8993(93)90571-4
https://doi.org/10.1016/0006-8993(83)91196-4
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-1044686 December 8, 2022 Time: 15:53 # 26

Lubejko et al. 10.3389/fnsys.2022.1044686

spinal cord of monkey. Brain Res. 292, 1–16. doi: 10.1016/0006-8993(84)90
884-9

Whitt, J. L., Masri, R., Pulimood, N. S., and Keller, A. (2013). Pathological
activity in mediodorsal thalamus of rats with spinal cord injury pain. J. Neurosci.
33:3915. doi: 10.1523/JNEUROSCI.2639-12.2013

Wiech, K., Jbabdi, S., Lin, C. S., Andersson, J., and Tracey, I. (2014). Differential
structural and resting state connectivity between insular subdivisions and other
pain-related brain regions. Pain 155, 2047–2055. doi: 10.1016/j.pain.2014.07.009

Williams, J. T., and North, R. A. (1984). Opiate-receptor interactions on single
locus coeruleus neurones. Mol. Pharmacol. 26, 489–497.

Williams, J. T., and Zieglgänsberger, W. (1981). Neurons in the frontal cortex
of the rat carry multiple opiate receptors. Brain Res. 226, 304–308. doi: 10.1016/
0006-8993(81)91103-3

Williams, J. T., Egan, T. M., and North, R. A. (1982). Enkephalin opens
potassium channels on mammalian central neurones. Nature 299, 74–77.

Willoch, F., Tölle, T. R., Wester, H. J., Munz, F., Petzold, A., Schwaiger, M., et al.
(1999). Central pain after pontine infarction is associated with changes in opioid
receptor binding: A pet study with 11 C-diprenorphine. AJNR Am. J. Neuroradiol.
20, 686–690.

Witting, N., Kuper, R. C., Svensson, D. D. S., Arendt-Nielsen, L., Gjedde, A.,
and Jensen, T. S. (2001). Experimental brush-evoked allodynia activates posterior
parietal cortex. Neurology 57, 1817–1824.

Wrigley, P. J., Gustin, S. M., McIndoe, L. N., Chakiath, R. J., Henderson, L. A.,
and Siddall, P. J. (2013). Longstanding neuropathic pain after spinal cord injury
is refractory to transcranial direct current stimulation: A randomized controlled
trial. Pain 154, 2178–2184. doi: 10.1016/J.PAIN.2013.06.045

Xiao, X., and Zhang, Y. Q. (2018). A new perspective on the anterior cingulate
cortex and affective pain. Neurosci. Biobehav. Rev. 90, 200–211. doi: 10.1016/J.
NEUBIOREV.2018.03.022

Yaksh, T. L. (1979). Direct evidence that spinal serotonin and noradrenaline
terminals mediate the spinal antinociceptive effects of morphine in the
periaqueductal gray. Brain Res. 160, 180–185. doi: 10.1016/0006-8993(79)90
616-4

Yaksh, T. L., Huang, S. P., Rudy, T. A., and Frederickson, R. C. A. (1977). The
direct and specific opiate-like effect of Met5-enkephalin and analogues on the
spinal cord. Neuroscience 2, 593–596. doi: 10.1016/0306-4522(77)90055-0

Yang, S., and Chang, M. C. (2020). Effect of repetitive transcranial magnetic
stimulation on pain management: A systematic narrative review. Front. Neurol.
11:114. doi: 10.3389/fneur.2020.00114

Yarnitsky, D., Arendt-Nielsen, L., Bouhassira, D., Edwards, R. R., Fillingim,
R. B., Granot, M., et al. (2010). Recommendations on terminology and practice
of psychophysical DNIC testing. Eur. J. Pain 14, 339–339. doi: 10.1016/j.ejpain.
2010.02.004

Yong, R. J., Mullins, P. M., and Bhattacharyya, N. (2022). Prevalence of chronic
pain among adults in the United States. Pain 163, E328–E332. doi: 10.1097/J.PAIN.
0000000000002291

Yoo, W.-K., Kim, Y.-H., Doh, W.-S., Lee, J.-H., Jung, K.-I., Park, D.-S.,
et al. (2006). Dissociable modulating effect of repetitive transcranial magnetic
stimulation on sensory and pain perception. Neuroreport 17, 141–144. doi: 10.
1097/01.wnr.0000198438.37012.d6

Young, R. F., and Chambi, V. I. (1987). Pain relief by electrical stimulation of
the periaqueductal and periventricular gray matter. Evidence for a non-opioid
mechanism. J. Neurosurg. 66, 364–371. doi: 10.3171/jns.1987.66.3.0364

Young, R. F., Kroening, R., Fulton, W., Feldman, R. A., and Chambi, I. (1985).
Electrical stimulation of the brain in treatment of chronic pain. Experience over 5
years. J. Neurosurg. 62, 389–396. doi: 10.3171/JNS.1985.62.3.0389

Yu, H., Xiang, X., Chen, Z., Wang, X., Dai, J., Wang, X., et al. (2021).
Periaqueductal gray neurons encode the sequential motor program in hunting
behavior of mice. Nat. Commun. 12, 1–15. doi: 10.1038/S41467-021-26
852-1

Zhang, T. C., Janik, J. J., and Grill, W. M. (2014). Mechanisms and models of
spinal cord stimulation for the treatment of neuropathic pain. Brain Res. 1569,
19–31. doi: 10.1016/j.brainres.2014.04.039

Zhang, Y., Zhao, S., Rodriguez, E., Takatoh, J., Han, B. X., Zhou, X., et al. (2015).
Identifying local and descending inputs for primary sensory neurons. J. Clin.
Invest. 125, 3782–3794. doi: 10.1172/JCI81156

Zhang, Y. Q., Tang, J. S., Yuan, B., and Jia, H. (1995). Effects of thalamic
nucleus submedius lesions on the tail flick reflex inhibition evoked by hindlimb
electrical stimulation in the rat.Neuroreport 6, 1237–1240. doi: 10.1097/00001756-
199506090-00002

Zhao, Z. Q. (2008). Neural mechanism underlying acupuncture analgesia. Prog.
Neurobiol. 85, 355–375. doi: 10.1016/j.pneurobio.2008.05.004

Zhou, H., Martinez, E., Lin, H. H., Yang, R., Dale, J. A., Liu, K., et al. (2018).
Inhibition of the prefrontal projection to the nucleus accumbens enhances pain
sensitivity and affect. Front. Cell. Neurosci. 12:240. doi: 10.3389/fncel.2018.00240

Zhu, X., Xu, Y., Shen, Z., Zhang, H., Xiao, S., Zhu, Y., et al. (2021). Rostral
anterior cingulate cortex–ventrolateral periaqueductal gray circuit underlies
electroacupuncture to alleviate hyperalgesia but not anxiety-like behaviors in mice
with spared nerve injury. Front. Neurosci. 15:757628. doi: 10.3389/FNINS.2021.
757628

Zubieta, J. K., Bueller, J. A., Jackson, L. R., Scott, D. J., Xu, Y., Koeppe, R. A.,
et al. (2005). Placebo effects mediated by endogenous opioid activity on µ-opioid
receptors. J. Neurosci. 25, 7754–7762. doi: 10.1523/JNEUROSCI.0439-05.2005

Zubieta, J.-K., Smith, Y. R., Bueller, J. A., Xu, Y., Kilbourn, M. R., Jewett, D. M.,
et al. (2001). Regional mu opioid receptor regulation of sensory and affective
dimensions of pain. Science 293, 311–315. doi: 10.1126/science.1060952

Frontiers in Systems Neuroscience 26 frontiersin.org

174

https://doi.org/10.3389/fnsys.2022.1044686
https://doi.org/10.1016/0006-8993(84)90884-9
https://doi.org/10.1016/0006-8993(84)90884-9
https://doi.org/10.1523/JNEUROSCI.2639-12.2013
https://doi.org/10.1016/j.pain.2014.07.009
https://doi.org/10.1016/0006-8993(81)91103-3
https://doi.org/10.1016/0006-8993(81)91103-3
https://doi.org/10.1016/J.PAIN.2013.06.045
https://doi.org/10.1016/J.NEUBIOREV.2018.03.022
https://doi.org/10.1016/J.NEUBIOREV.2018.03.022
https://doi.org/10.1016/0006-8993(79)90616-4
https://doi.org/10.1016/0006-8993(79)90616-4
https://doi.org/10.1016/0306-4522(77)90055-0
https://doi.org/10.3389/fneur.2020.00114
https://doi.org/10.1016/j.ejpain.2010.02.004
https://doi.org/10.1016/j.ejpain.2010.02.004
https://doi.org/10.1097/J.PAIN.0000000000002291
https://doi.org/10.1097/J.PAIN.0000000000002291
https://doi.org/10.1097/01.wnr.0000198438.37012.d6
https://doi.org/10.1097/01.wnr.0000198438.37012.d6
https://doi.org/10.3171/jns.1987.66.3.0364
https://doi.org/10.3171/JNS.1985.62.3.0389
https://doi.org/10.1038/S41467-021-26852-1
https://doi.org/10.1038/S41467-021-26852-1
https://doi.org/10.1016/j.brainres.2014.04.039
https://doi.org/10.1172/JCI81156
https://doi.org/10.1097/00001756-199506090-00002
https://doi.org/10.1097/00001756-199506090-00002
https://doi.org/10.1016/j.pneurobio.2008.05.004
https://doi.org/10.3389/fncel.2018.00240
https://doi.org/10.3389/FNINS.2021.757628
https://doi.org/10.3389/FNINS.2021.757628
https://doi.org/10.1523/JNEUROSCI.0439-05.2005
https://doi.org/10.1126/science.1060952
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Advances our understanding of whole systems of 

the brain

Part of the most cited neuroscience journal series, 

this journal explores the architecture of brain 

systems and information processing, storage and 

retrieval.

Discover the latest 
Research Topics

See more 

Frontiers in
Systems Neuroscience

https://www.frontiersin.org/journals/Systems-Neuroscience/research-topics
https://www.frontiersin.org/journals/Systems Neuroscience/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT 
	Endogenous opioids in systems neuroscience
	Table of contents
	Editorial: Broadening our conceptual understanding of endogenous opioids in systems neuroscience
	Author contributions
	Conflict of interest
	Publisher's note

	Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain
	Introduction
	Amygdala
	Basolateral Amygdala
	Bed Nucleus of the Stria Terminalis
	Centromedial Amygdala
	Medial Intercalated Cell Region

	Brainstem and Midbrain
	Dorsal Motor Nucleus of the Vagus
	Locus Coeruleus
	Nucleus of the Solitary Tract
	Periaqueductal Gray
	Raphe Nuclei
	Rostral Ventromedial Medulla
	Substantia Nigra
	Ventral Tegmental Area and Rostromedial Tegmental Nucleus

	Cortex
	Anterior Cingulate Cortex
	Insular Cortex
	Medial Prefrontal Cortex
	Orbitofrontal Cortex
	Sensorimotor Cortices

	Hippocampus
	CA1
	CA2
	CA3
	Dentate Gyrus

	Hypothalamus
	Arcuate Nucleus
	Preoptic Hypothalamus
	Paraventricular Nucleus
	Supraoptic Nucleus

	Lateral Habenula
	Pallidum
	Globus Pallidus
	Entopeduncular Nucleus
	Ventral Pallidum

	Striatum
	Dorsal Striatum
	Ventral Striatum (Nucleus Accumbens)

	Thalamus
	Other Regions
	Lateral Hypothalamus
	Medial Vestibular Nucleus
	Pons
	Ventromedial Hypothalamus

	General Principles, Knowledge Gaps, and Future Directions
	Author Contributions
	Funding
	References

	Cellular Tolerance Induced by Chronic Opioids in the Central Nervous System
	Introduction
	Areas Where Neurons Have Been Examined Following Chronic Morphine Treatment
	Postsynaptic Adaptive Mechanisms
	Presynaptic Adaptive Mechanisms
	Adaptive Mechanisms Following Chronic Treatment With Agonists of Varying Potency and Efficacy
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References

	Nucleus Tractus Solitarius Neurons Activated by Hypercapnia and Hypoxia Lack Mu Opioid Receptor Expression
	Introduction
	Methods
	Animals
	Drugs
	Chemoreflex and Morphine Challenges
	Plethysmography
	Immunohistochemistry
	Image Processing and Cell Counting
	Statistics

	Results
	The Hypercapnic Ventilatory Response Is Suppressed by Morphine
	NTS cFos Expression Induced by Hypercapnia
	NTS cFos Expression Induced by Acute Morphine
	Hypercapnia Induces cFos Expression in MOR-Negative Cells
	Hypoxia Induces cFos Expression in MOR-Negative Cells
	Morphine Induces cFos Expression in MOR-Negative and MOR-Positive Cells

	Discussion
	Morphine Activation of NTS Neurons
	Presynaptic MORs in the NTS
	Other Brain Areas Involved in Opioid Suppression of Chemoreflexes
	NTS Endogenous Opioids in Physiological Responses

	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	The role of enkephalinergic systems in substance use disorders
	Introduction
	Basic biology
	Anatomy & distribution in reward circuitry
	Methods used to evaluate enkephalin

	Effects of enkephalin on neurotransmission in reward pathways
	Enkephalinergic modulation of dopamine neurotransmission
	Enkephalinergic modulation of GABA neurotransmission
	Enkephalinergic modulation of glutamate neurotransmission
	Enkephalinergic modulation of cholinergic neurotransmission

	Drugs alter enkephalin levels: Peptide levels and mRNA
	Indirect and direct dopamine receptor agonists
	Opioids
	Ethanol
	Nicotine
	Cannabinoids
	Other and summary

	Enkephalinergic system and reward-related behaviors
	Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Cellular and circuit diversity determines the impact of endogenous opioids in the descending pain modulatory pathway
	Descending pain modulation
	Opioids in the descending pain modulatory pathway
	Endogenous opioids
	MOR expression and signaling
	Regulation of MOR signaling

	Cellular diversity
	Neurotransmitter content
	Receptor or channel expression
	Intrinsic firing properties

	Circuit diversity
	Afferent inputs
	Efferent targets

	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders
	Dynorphin/kappa opioid receptor signaling overview
	Translational/clinical significance of dynorphin/kappa opioid receptor signaling
	Mechanisms of circuit neuromodulation by dynorphin and kappa opioid receptor

	Amygdala overview
	Functions of the amygdala in behavior
	Amygdala subregions and circuitry
	Basolateral amygdala inputs and outputs
	Central amygdala inputs and outputs
	Subpopulations of basolateral amygdala cell types
	Central amygdala cell types

	Dynorphin/kappa opioid receptor in amygdala circuits
	Basolateral amygdala
	Central amygdala

	Stress and amygdala dynorphin/kappa opioid receptor signaling
	Basolateral amygdala
	Central amygdala

	Regulation of drug and alcohol seeking behavior by amygdala dynorphin/kappa opioid receptor neurons
	The basolateral amygdala dynorphin/kappa opioid receptor system modulates drug-seeking behavior
	The central amygdala dynorphin/kappa opioid receptor system modulates the consumption of alcohol, psychostimulants, and opioids

	Regulation of pain by amygdala dynorphin/kappa opioid receptor neurons
	Cracking the shell on the almond: A circuit-based framework for amygdala dynorphin/kappa opioid receptor control of behavior
	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Endogenous opioid systems alterations in pain and opioid use disorder
	Introduction
	Problematic opioid use in the context of pain
	The endogenous opioid system
	Opioids
	μ Opioid receptor
	κ Opioid receptor
	δ Opioid receptor
	Nociceptin/orphanin FQ opioid receptor

	Opioid system dysfunction by exogenous opioids
	Tolerance
	Opioid-induced hyperalgesia
	Pain, opioids, and reward

	Conclusions
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Mu-opioid receptor and receptor tyrosine kinase crosstalk: Implications in mechanisms of opioid tolerance, reduced analgesia to neuropathic pain, dependence, and reward
	Introduction
	Overview of mu-opioid receptor signaling
	Brief overview of mu opioid receptor signaling transduction pathways
	Proposed mechanisms of opioid-mediated side-effects

	Overview of receptor tyrosine kinase signaling
	Mu-opioid receptors-receptor tyrosine kinases crosstalk
	General mechanisms of G protein-coupled receptors-receptor tyrosine kinases transactivation
	Mu-opioid receptors-receptor tyrosine kinases transactivation in vitro
	Receptor tyrosine kinases transactivation of mu-opioid receptors

	Involvement of receptor tyrosine kinase signaling opioid-mediated behaviors
	Receptor tyrosine kinase signaling and opioid analgesic tolerance
	Receptor tyrosine kinase signaling and reduced opioid analgesia to neuropathic pain
	Receptor tyrosine kinase signaling and opioid dependence
	Receptor tyrosine kinase signaling and opioid reward

	Clinical implications
	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia
	Introduction
	Chronic pain
	Opioid analgesics
	Endogenous opioids
	Pain processing circuits and their expression of opioid receptors
	Descending pathway
	Periaqueductal gray
	Rostroventral medulla
	Noradrenergic cell groups
	Spinal cord

	Ascending pathway
	Thalamus
	Anterior cingulate cortex
	Prefrontal cortex



	Neurostimulation therapies for chronic pain
	Overview of neurostimulation for chronic pain
	Spinal cord stimulation
	Deep brain stimulation
	Periaqueductal gray-deep brain stimulation
	Thalamus-deep brain stimulation
	Anterior cingulate cortex-deep brain stimulation

	Motor cortex stimulation
	Repetitive transcranial magnetic stimulation
	Transcranial direct current stimulation

	Future outlook
	Technological innovation
	Stimulus pulse paradigms
	Closed-loop neurostimulation
	Alternate sites for neurostimulation

	Innovating clinical paradigms
	Pharmacological adjuvants
	Early stimulation
	Novel pain assessment metrics

	Improving our mechanistic understanding to improve therapeutic strategies

	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Back Cover



