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Editorial: Methods and Applications in
Molecular Phylogenetics
Juan Wang*

School of Computer Science, Inner Mongolia University, Hohhot, China

Keywords: molecular phylogenetics, whole genome sequences, protein, application, disease

Editorial on the ResearchTopic

Methods and Applications in Molecular Phylogenetics

The purpose of molecular phylogenetics is to infer the evolutionary history of organisms and gene
sequences. In the early stages of research, molecular phylogenetics mainly considers the changes
vertically, such as insertion, substitution, and deletion in loci (Siepel and Haussler, 2004). With the
development of sequencing technologies, the whole genomes are available for more and more
organisms and are used to analyze their phylogenetics (Henz et al., 2005; Birin et al., 2008). The
evolutionary history of organisms at this stage is described as a phylogenetic tree (Bruno et al., 2000).
Then, genes of genomes are rearranged under horizontal events, such as inversions, duplications, and
transpositions, which change the content and order of genes. Many studies introduce computing
methods of molecular phylogenetics for whole genomes (Greenman et al., 2012). Phylogenetic
networks are used to describe the evolutionary history (Wang and Guo, 2019). Molecular
phylogenetics has been applied in many areas, such as the analysis of proteins (Lv et al., 2020).

Traditional methods for molecular phylogenetics need to do the alignment for sequences. It is
very time-consuming to process the alignment of whole genome sequences. Therefore, it is a hard
issue to do phylogenetic analysis from whole genome sequences of organisms. Wu et al. introduce a
metric called information-entropy position-weighted k-mer relative measure (IEPWRMkmer),
which combines the position-weighted measure and the information entropy of frequency for
k-mers. Accordingly, they denote the whole genomes as feature sequences and then use Manhattan
distance to compute the distance between two whole genomes. Finally, they use the Neighbor-Joining
method to construct the phylogenetic tree from distance matrices. The IEPWRMkmer is efficient and
effective for extracting key information for evolutionary analysis, and it is free to align for whole
genomes.

Many studies have been done in applications of molecular phylogenetics. A protein complex
contains proteins that interact with each other in function due to the evolutionary
relationship. Wang et al. used semantic information of GO terms and the topological
information of PPI networks to propose a method called TSSN for constructing a weighted PPI
network. They proposed a new algorithm (NNP) for recognizing protein complexes from the
weighted PPI network. Experiments showed that the algorithm could identify more protein
complexes more accurately. PredMHC, proposed by Chen et al., is used to predict major
histocompatibility complex (MHC). The PredMHC extracts information on amino acid
composition from proteins, which is different due to the evolution of coding genes. It uses the
voting of the SGD, the SMO, and random forest to predict and achieve the best performance on both
training and testing datasets than other methods.

Molecular phylogenetics is also applied in predicting disease-related proteins. Anti-inflammatory
peptides (AIPs) are important to treat some inflammatory and autoimmune diseases. Zhao et al.
introduced a model (called iAIPs) to identify AIPs. iAIPs extract features from AIPs based on the
information of sequences changed in evolution and then use the random forest to train.

Edited and reviewed by:
Simon Charles Heath,

Center for Genomic Regulation (CRG),
Spain

*Correspondence:
Juan Wang

wangjuan@imu.edu.cn

Specialty section:
This article was submitted to

Statistical Genetics and Methodology,
a section of the journal
Frontiers in Genetics

Received: 19 April 2022
Accepted: 27 May 2022
Published: 14 July 2022

Citation:
Wang J (2022) Editorial: Methods and

Applications in
Molecular Phylogenetics.
Front. Genet. 13:923409.

doi: 10.3389/fgene.2022.923409

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9234091

EDITORIAL
published: 14 July 2022

doi: 10.3389/fgene.2022.923409

4

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.923409&domain=pdf&date_stamp=2022-07-14
https://www.frontiersin.org/articles/10.3389/fgene.2022.923409/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.923409/full
https://www.frontiersin.org/researchtopic/24512
https://www.frontiersin.org/articles/10.3389/fgene.2021.766496/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.792265/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.875112/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.773202/full
http://creativecommons.org/licenses/by/4.0/
mailto:wangjuan@imu.edu.cn
https://doi.org/10.3389/fgene.2022.923409
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.923409


Experimental results show that iAIPs can identify AIPs
accurately. Cancer is a serious threat to human health and is
one of the main causes of disease death. MultiGATAE, proposed
by Zhang et al., can identify the cancer subtypes. It first constructs
a similarity graph from multi-omics data (i.e., mRNA, miRNA,
and DNA methylation) and then uses a deep learning method to
learn embedding representation. It uses the K-means clustering

method to identify cancer subtypes from embedding
representation.
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Hypertension-Related Drug Activity
Identification Based on Novel
Ensemble Method
Bin Yang1, Wenzheng Bao2* and Jinglong Wang3

1School of Information Science and Engineering, Zaozhuang University, Zaozhuang, China, 2School of Information and Electrical
Engineering, Xuzhou University of Technology, Xuzhou, China, 3College of Food Science and Pharmaceutical Engineering,
Zaozhuang University, Zaozhuang, China

Hypertension is a chronic disease and major risk factor for cardiovascular and
cerebrovascular diseases that often leads to damage to target organs. The prevention
and treatment of hypertension is crucially important for human health. In this paper, a novel
ensemble method based on a flexible neural tree (FNT) is proposed to identify
hypertension-related active compounds. In the ensemble method, the base classifiers
are Multi-Grained Cascade Forest (gcForest), support vector machines (SVM), random
forest (RF), AdaBoost, decision tree (DT), Gradient Boosting Decision Tree (GBDT), KNN,
logical regression, and naïve Bayes (NB). The classification results of nine classifiers are
utilized as the input vector of FNT, which is utilized as a nonlinear ensemble method to
identify hypertension-related drug compounds. The experiment data are extracted from
hypertension-unrelated and hypertension-related compounds collected from the up-to-
date literature. The results reveal that our proposed ensemble method performs better
than other single classifiers in terms of ROC curve, AUC, TPR, FRP, Precision, Specificity,
and F1. Our proposed method is also compared with the averaged and voting ensemble
methods. The results reveal that our method could identify hypertension-related
compounds more accurately than two classical ensemble methods.

Keywords: hypertension, flexible neural tree, ensemble, network pharmacology, machine learning

INTRODUCTION

Hypertensive disease is a frequent cardiovascular disease characterized by elevated arterial blood
pressure and accompanied by the target organ injury or clinical diseases (Essiarab et al., 2011; Owlia
and Bangalore, 2016). It is a risk factor leading to many serious complications such as stroke,
hypertensive heart disease, renal failure, atherosclerosis, and so on (Sakai and Sigmund, 2005; Brinks
and Eckhart, 2010). Due to the increasing pressure of work and life, many people do not develop
good eating and living habits, and often stay up late. The age of hypertensive patients tends to be
younger. Therefore, the prevention and treatment of hypertension has become very important for
human health.

Network pharmacology (NP) could construct a multi-dimensional network based on “traditional
Chinese medicine prescription-chemical component-targets-disease targets” to analyze the
relationships between traditional Chinese medicine multi-components and activity, which could
provide a theoretical basis for further experimental research on a pharmacodynamic material basis
and action mechanism (Wang et al., 2018; Xu et al., 2018). In recent years, network pharmacology
has revealed therapeutic targets for hypertension and become a research hotspot, as it has been
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clinically verified to be an effective method of drug screening
(Chen et al., 2020). Chen et al. screened out the key compounds
and targets of JiaWeiSiWu granule to reveal the mechanism of
JiaWeiSiWu granule in treating hypertension by NP method
(Chen et al., 2021a). By NP and molecular docking (MD)
methods, Zhai et al. investigated the mechanism of Pinellia
ternate in treating hypertension (Zhai et al., 2021). Chen et al.
analyzed the network based on Guizhi decoction, active
compounds, and targets, and found hypertension-related
targets and key pathways (Chen et al., 2021b). Chen et al.
utilized NP and MD to analyzed the genistein for treating
pulmonary hypertension (PH) and provided new guidance for
further PH-related research (Chen et al., 2019). Liu et al.
explained the pharmacological mechanism of TaohongSiwu
decoction in the treatment of essential hypertension (EH) by
the NP method (Liu et al., 2020). Wang et al. utilized NP to
analyze the mechanism of Yeju Jiangya decoction against
hypertension (Wang et al., 2021).

In recent decades, many data mining methods have been
applied to reveal the disease mechanism and medication law
of many complex diseases, especially hypertension (Ji and Wang,
2014; Ji et al., 2015; Hwang et al., 2016; Hu et al., 2018; Liang et al.,
2018; Amaratunga et al., 2020; Liu et al., 2021; Zhao et al., 2021).
Zhang et al. utilized SPSS21.0 and Apriori algorithm to analyze
the symptom/sign information of EH patients collected and gave
their distribution law and correlation (Zhang et al., 2019a). Yuan
and Chen proposed niche technology and an artificial bee colony
algorithm to mine association rules from Traditional Chinese
Medicine (TCM) cases for treating hypertension (Yuan and
Chen, 2011). Ma et al. collected the new literature about
hypertension and constructed the gene network by analysis
(Ma et al., 2018). Ramezankhani et al. utilized a decision tree
to predict the risk factors of hypertension incidence in data
collected from Iranian adults (Ramezankhani et al., 2016).
Aljumah et al. utilized a data mining method to predict the
treatment of hypertension patients with different age groups
(Aljumah et al., 2011). Fang et al. proposed a new model-
based KNN and LightGBM to predict the risk of hypertension
(Fang et al., 2021).

Few studies have involved the use of data mining methods to
improve network pharmacology. In this paper, a novel ensemble
method based on a flexible neural tree (FNT) is proposed to
identify hypertension-related active compounds. In the ensemble
method, the used base classifiers are Multi-Grained Cascade
Forest, support vector machines, random forest, AdaBoost,
decision tree, Gradient Boosting Decision Tree, KNN, logical
regression, and naïve Bayes. The classification results of nine
classifiers are input to the FNT model, which is trained to predict
hypertension-related compounds. The data used in the
experiment are from up-to-date literature collected about
hypertension and network pharmacology. By analysis of the
literature, hypertension-related compounds were collected as
positive samples and the generated decoys were utilized as
negative samples. The molecular descriptor of each compound
is extracted as the feature vector.

METHODS

Classifiers
Assume that the training data is T �
(x1, y1), (x2, y2), . . . , (xn, yn)}{ containing n sample points.
Sample point xi � x1

i , x
2
i , . . .x

m
i }{ contains m features and

category label yi � c1, c2}{ contains two cases. The nine
classifiers used are introduced in the following sections of the article.

Multi-Grained Cascade Forest
Multi-Grained Cascade Forest (gcForest) is a novel ensemble
machine learning method, which utilizes the cascade forest
(ensemble of decision trees) to learn and generate models
(Zhou and Feng, 2017). The core of gcForest mainly includes
two modules: multi-grained scanning and cascade forest. The
flowchart of gcForest is depicted in Figure 1.

1) Multi-grained scanning

Multi granularity scanning is a technical means to enhance
cascade forest and do more processing on features. Firstly, a
complete m- dimensional sample is input, and then sliding
sampling is carried out through the k1-dimensional and
k2-dimensional sampling windows in order to obtain s1 �
(m − k1) + 1 and s2 � (m − k2) + 1 feature subsample vectors,
respectively. Each sub-sample is used for the training of
completely random forest (A) and random forest (B). A
probability vector with 2-dimension is obtained in each forest,
so that two kinds of forests can produce 2s1 and 2s2
representation vectors, respectively. Finally, the results of all
forests are spliced together to obtain the sample output.

2) Cascade forest

Cascade forest includes several layers, each layer is composed
of many forests, and each forest is composed of many decision
trees. Completely random forest (A) and random forest (B) in
each layer ensure the diversity of the model. For a completely
random forest, each tree in the forest randomly selects a feature as
the splitting node of the splitting tree, which grows until each leaf
node is subdivided into only one class. For random forest, each
tree randomly selects

��
m

√
candidate features, and the splitting

nodes are filtered through the Gini coefficient. Each forest could
generate a two-dimensional class vector. The two-dimensional
class vectors of all forests are averaged to obtain the final two-
dimensional class vector. Finally, the category with the maximum
value in the final two-dimensional class vector is taken as the final
classification result.

Support Vector Machines
Support vector machines (SVM) is a supervised learning
algorithm based on statistical learning theory (Suykens and
Vandewalle, 1999; Furey et al., 2000). With the sample set
containing positive and negative samples, SVM could search a
hyperplane that could segment the samples according to positive
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and negative classes. The classification hyperplane can be given as
follows.

wTx + b � 0. (1)

Where x is the data point on the classification hyperplane, w is a
vector perpendicular to the classification hyperplane, and b is the
displacement.

Linear separated data can be distinguished by the optimal
classification hyperplane. For non-linear separated data, SVM
can be transformed into solving the following optimization
problem by the soft interval optimization and kernel techniques.⎧⎪⎪⎨⎪⎪⎩minϕ(w, ς) � ‖w‖2 + 1

2
C∑n

i�1
ςis.t.yi[(w · xi + b)]≥ 1 − ςi.

(2)

WhereCis the penalty factor, ςi is the relaxation variable, and xi is
mapped to a high-dimensional space by ϕ. SVM could find a
hyperplane with the largest interval in this high-dimensional
space to classify the data.

Random Forest
Random forest (RF) is a machine learning method based on an
ensemble of decision trees for classification and regression
(Breiman, 2001; Díaz-Uriarte and Alvarez de Andrés, 2006).
Random forest is a combined classification model composed
of many decision tree classification models. Each decision tree
has the right to vote to determine the best classification result. In
random forest, firstly, K sample sets are extracted from the
original training set by bootstrap sampling method, and the
size of each extracted sample set is the same as that of the
original training set. Then, K decision tree models are
established from K sample sets, respectively. And K trees will

createK classification results. The random forest integrates all the
classified results by voting method, and the category with the
most votes is designated as the final classification result.

AdaBoost
AdaBoost is a dynamic ensemble classification algorithm,
which is to reasonably combine multiple weak classifiers
(single-layer decision tree) to make it a strong classifier
(Morra et al., 2009; Cao et al., 2013). The detailed
algorithm is given as follows.

1) Initialize the weight of each sample. Assuming that the dataset
contains n samples, each training sample point is given the
same weight (1n) at the beginning.

2) Train weak classifiers. According to the samples, the weak
classifiers are trained. If a sample has been accurately
classified, its weight will be reduced in constructing the
next training set. On the contrary, if a sample point is not
accurately classified, its weight is increased. At the same time,
according to the classification error of the weak classifier, its
weight is calculated. Then, the sample set with updated
weights is used to train the next classifier, and the whole
training process goes on iteratively. T weak classifiers are
obtained after T iterations.

3) The trained weak classifiers are combined into strong
classifiers. Each weak classifier connects its respective
weights through the classification function to form a
strong classifier. After the training process of each weak
classifier, the weight of the weak classifier with a smaller
classification error rate is larger, which plays a greater
decisive role in the final classification function, while the
weight of the weak classifier with a larger classification error
rate is smaller, which plays a smaller decisive role in the final
classification function.

FIGURE 1 | The process of gcForest.
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Decision Tree
A Decision Tree (DT) learning algorithm is usually a process of
recursively selecting the optimal features and segmenting the
training data according to the features so that each sub dataset has
the best classification. The CART algorithm is one of the most
common decision tree algorithms, which is mainly used for
classification and regression (Breiman et al., 1984; Temkin
et al., 1995). CART introduces the knowledge of probability
theory and statistics into the research of decision tree.
Different from the C4.5 algorithm, the CART algorithm could
make a binary partition of the feature space and can split scalar
attributes and continuous attributes. The specific algorithm is as
follows:

1) Calculate the Gini index of the existing features. The feature
with the smallest Gini index is selected as the splitting
attribute of the root node. According to the optimal feature
and cut point, two sub-nodes are generated from the current
node, and the training dataset is allocated to the two sub-
nodes according to the feature. According to an attribute
value, a node is segmented to make the data in each
descendant subset more “pure” than the data in its parent
subset. Gini coefficient measures the impurity of sample
division, and the smaller the impurity is, the higher the
“purity” of the samples is.

For 2-class problems, the training set S is divided into two
subsets S1 and S2 according to an attributeA. The Gini coefficient
of the given division S is calculated as follows.

GiniA(S) � |S1|
|S| Gini(S1) +

|S2|
|S| Gini(S2). (3)

Where |S| is the number of samples in set S, and Gini(Si) is the
Gini coefficient of sample set Si, which is calculated as follows:

Gini(Si) � 1 −∑2
k�1

(|Ck|
|Si|)2

. (4)

Where |Ck| denotes the number of samples belonging to class k in
the set Si.

2) Step (1) is called recursively for two child nodes, and the
iteration continues until the samples in all child nodes belong
to the same category or no attributes can be selected as
splitting attributes.

4) Prune the CART decision tree generated.

Gradient Boosting Decision Tree
Gradient Boosting Decision Tree (GBDT) is an integrated
learning algorithm (Hu and Min, 2018; Zhang et al., 2019b).
By boosting method, N weak learners are created, which are
combined into a strong learner after many iterations. The
performance of the strong learner is higher than any weak
learner. In GBDT, the used weak learner is the CART
regression tree. During each iteration of GBDT, the residual of
the previous model is reduced, and a new model is trained and
established in the gradient direction of residual reduction, to

improve the performance of the classifier. The specific algorithm
is shown as follows:

1) Initialize the weak learner.

f0(x) � argminκ ∑n
i�1

L(yi, κ). (5)

Where L is the loss function.

2) For t − th iteration (t � 1, 2, . . . , T)

a) For i − th sample, the residual reduction is calculated as
follows.

rti � −[zL(yi, f(xi))
zf(xi) ]

f(x)�ft−1(x)
. (6)

Where ft−1(x) is the classifier during the t − 1 − th iteration.

κtj � argminκ ∑
xi∈Rtj

L(yi, ft−1(xi) + κ). (7)

Where κtj is the value of the leaf node in the regression tree.

b) The calculated residues are used as new sample data, (xi, rti) is
utilized to fit a new CART regression tree and the probability
of each category is calculated. The leaf node region of the
CART regression tree Rtj (j � 1, 2, . . . , J) is obtained. J is the
number of leaf nodes of the regression tree.

c) Calculate the optimal coefficient for the leaf area, which is
given as follows.

d) The strong learner is updated with Eq. 8.

ft(x) � ft−1(xi) +∑J
j�1

κtjI(x ∈ Rtj). (8)

Whenx ∈ Rtj is true, I is equal to 1; otherwise, it is equal to 0.

3) The final strong learner f(x) is obtained with Eq. 9.

f(x) � f0(x) +∑T
t�1

∑J
j�1

ctjI(x ∈ Rtj). (9)

K-Nearest Neighbor
K-Nearest Neighbor (KNN) is a classification algorithm based
on supervised learning, which is to classify the data points
according to the sample set with the known categories (Liao
and Vemuri, 2002). Select the K neighbors with the smallest
distance from the input data in the training set, and take the
category with the most times among the K neighbors as the
category of the classified data point. In the KNN algorithm, the
selected neighbors are objects that have been correctly
classified.

In the KNN method, the most commonly used
measurement of distance is the Euclidean distance. The
Euclidean distance of two variables (xi and xj) is defined as
follows.
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D((xi, xj) � ���∑m
k�1

√√ (xk
i − xk

j)2. (10)

Logistic Regression
Logistic regression (LR) is utilized to deal with the regression
problem, which obtains the minimum result of cost function by
gradient descent method to obtain the better classification
boundary (Maalouf, 2011; Munshi et al., 2014). LR maps the
values of linear regression to the interval [0, 1] by Sigmoid
function, which is defined as follows.

yi � hθ(xi) � 1

1 + e−θTxi
. (11)

Where θTxi � θ0 + θ1x1
i + θ1x2

i + . . . + θmxm
i , θ0 is a deviation

parameter and θi represents the weight.
In order to solve the logistic regression model, the gradient

descent algorithm is generally used to iteratively calculate the
optimal parameters of the model.

Naïve Bayes
Naïve Bayes (NB) is one of the most widely utilized models in
Bayesian classifiers, which is based on the assumption that the
influence of an attribute value on the given class is independent
of the values of other attributes (class conditional
independence) (Rish, 2001; Li and Guo, 2005). The specific
algorithm idea is as follows.

According to the joint probability and the prediction data x,
the prediction category of x is defined as follows.

argmaxp(y � ck
∣∣∣∣x). (12)

According to the Bayesian theorem, p(y � ck|x) is calculated
as follows.

p(y � ck
∣∣∣∣x) � p(x∣∣∣∣y � ck)p(y � ck)

p(x) . (13)

Since the denominator is constant for all categories, just
maximize the numerator, and Eq. 12 could be defined as
follows.

argmaxp(x∣∣∣∣y � ck)p(y � ck). (14)

Because each feature attribute is conditionally independent,
p(x|y � ck) could be calculated as follows.

p(x∣∣∣∣y � ck) � ∏m
i�1

p(xi
∣∣∣∣y � ck) (15)

According to Eq. 15, Eq. 14 can be calculated as follows.

argmaxp(y � ck)∏m
i�1

p(xi
∣∣∣∣y � ck) (16)

Select the category with the largest posteriori probability as
the prediction category.

Ensemble Methods
To improve the classification performance of a single classifier, a
novel ensemble method based on a flexible neural tree (FNT) is
proposed. An example of our proposed ensemble method is
depicted in Figure 2. From Figure 2, it could be seen that the
used base classifiers are gcForest, SVM, RF, AdaBoost, decision
tree, GBDT, KNN, logical regression, and naïve Baye, which are
introduced in detail in Classifiers. Firstly according to the training
data, these nine classifiers can output their corresponding
confidence level set (c � (c1, c2, . . . , c9)), which is utilized as
the input layer of the FNT model. The other hidden layers of
the FNT model can be created randomly from operator set
(F � (+2,+3, . . . ,+n)) and variable set (T � (c1, c2, . . . , c9))
(Chen et al., 2006). +i denotes a flexible neuron operator,
which can be calculated as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

neti � ∑i

j�1wjxj,

oi � f(ai, bi, neti) � e
−(neti − ai

bi
)2

.

(17)

Where f(·) is an activation function, ai and bi are the parameters
of function, xj is the input variable and wj is the corresponding
weight of the input variable.

FNT is a kind of cross-layer neural network, so each hidden
layer can contain both operator and variable nodes. Because the
structure of the FNT model is not fixed and this model contains
many parameters such as ai, bi, and wj, many swarm algorithms
have been proposed to search the optimal FNT model by
iterations. In this paper, a hybrid evolutionary method based
on genetic programming like structure optimization algorithm
and simulated annealing was utilized for the training dataset. The
detailed algorithms were introduced in another study (Yang et al.,
2013).

Hypertension-Related Activity Drug
Identification
In order to identify hypertension-related active compounds
accurately, an ensemble method based on nine classifiers and
a flexible neural tree is proposed. The process of hypertension-
related active compounds identification is depicted in Figure 3. A
total of 44 important studies were collected by querying the
literature database according to two keywords: hypertension and
network pharmacology. Through analyzing this literature, many
important medicines such as Banxia Baizhu Tianma Tang,
Chaihu Longgu Muli Decoction, compound reserpine and
triamterene tablets, and Huanglian Jiedu Decoction, were
collected and 88 hypertension-related compounds were
searched. These important compounds were verified by
biology experiments or molecular docking, which were used as
positive samples in this paper. To obtain the negative samples,
20% of these compounds were randomly selected and input into
the DUD•E website to generate decoys (Mysinger et al., 2012). In
total, 264 decoys are selected randomly as negative samples.
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FIGURE 2 | The flowchart of our proposed ensemble method.

FIGURE 3 | The flowchart of hypertension-related active compound identification.
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The molecular descriptions of positive and negative
compounds were extracted to constitute the hypertension-
related dataset. With the collected dataset, our proposed
ensemble method was fitted to predict other hypertension-
related compounds.

EXPERIMENT RESULTS

In this part, the hypertension-related dataset collected is utilized,
which contains 88 related compounds and 264 unrelated
compounds. AUC, ROC curve, TPR, FRP, Precision,

FIGURE 4 | Hypertension-related compound identification performances of ten methods with 2-cross validation methods.

FIGURE 5 | Hypertension-related compound identification performances of ten methods with 4-cross validation methods.
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Specificity, and F1 were used to test the performance of our
proposed method. In our method, the parameters of nine
classifiers were set by default. In FNT, the variable set is
defined as T � (c1, c2, . . . , c9) and the operator set is defined
as F � (+2,+3,+4,+5).

Six cross-validation methods were utilized to validate our
proposed method. Nine classifiers were also utilized to identify
hypertension-related compounds with the same dataset. The
ROC curves and AUC performances with the different cross-
validation methods are depicted in Figures 4–9, respectively.

FIGURE 6 | Hypertension-related compound identification performances of ten methods with 6-cross validation methods.

FIGURE 7 | Hypertension-related compound identification performances of ten methods with 8-cross validation methods.
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From these results, it can be seen that gcForest has the best ROC
curves and AUC values among the nine single classifiers. Our
proposed ensemble method could perform better than gcForest in

terms of ROC and AUC. With 2-cross, 4-cross, 6-cross, 8-cross,
10-cross, and 15-cross validation methods, in terms of AUC, our
method is 0.1, 0.3, 0.3, 0.7, 0.3, and 0.4% higher than gcForest,

FIGURE 8 | Hypertension-related compound identification performances of ten methods with 10-cross validation methods.

FIGURE 9 | Hypertension-related compound identification performances of ten methods with 15-cross validation methods.
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which reveals that our proposed method performs better than
nine single classifiers for hypertension-related compound
identification.

The TPR, FRP, Precision, Specificity, and F1 performances of
the ten methods with the different cross-validation methods are
listed in Tables 1–6, respectively. With 2-cross validation and 4-
cross validation methods, LR could obtain the highest TPR
performances, which shows that LR could identify more true
hypertension-related compounds. For Table 1, RF and SVM
have the best FPR performance, which shows that these two
methods could identify less non-related compounds as related
ones. SVM also has the highest Precision and Specificity

performances among the ten methods. For Table 2, RF has
the best FPR, Precision, and Specificity performances. Our
method performed best in terms of F1, which reveals that it
could identify hypertension-related compounds more
accurately overall. With 6-cross validation, 8-cross validation,
10-cross validation, and 15-cross validation methods, our
methods perform best among ten methods in terms of TPR,
FRP, Precision, Specificity, and F1, except that RF has the lowest
performance with 4-cross validation methods. The results show
that our proposed ensemble method could identify more true
hypertension-related and hypertension-unrelated compounds
than the other nine single classifiers.

TABLE 1 | Classification performances of ten methods with 2-cross validation
methods.

TPR FRP Precision Specificity F1

Our method 0.880597 0.019900 0.936508 0.980100 0.907692
gcForest 0.940299 0.054726 0.851351 0.945274 0.893617
AdaBoost 0.791045 0.014925 0.946429 0.985075 0.861789
Decision Tree 0.671642 0.114428 0.661765 0.885572 0.666667
GBDT 0.61194 0.104478 0.66129 0.895522 0.635659
KNN 0.701493 0.039801 0.854545 0.960199 0.770492
LR 0.985075 0.199005 0.622642 0.800995 0.763006
Naive Bayes 0.791045 0.074627 0.779412 0.925373 0.785185
RF 0.671642 0.00995 0.957447 0.99005 0.789474
SVM 0.850746 0.00995 0.966102 0.99005 0.904762

TABLE 2 | Classification performances of ten methods with 4-cross validation
methods.

TPR FRP Precision Specificity F1

Our method 0.895522 0.014925 0.952381 0.985075 0.923077
gcForest 0.925373 0.039801 0.885714 0.960199 0.905109
AdaBoost 0.835821 0.0199 0.933333 0.9801 0.88189
Decision Tree 0.686567 0.039801 0.851852 0.960199 0.760331
GBDT 0.671642 0.00995 0.957447 0.99005 0.789474
KNN 0.850746 0.034826 0.890625 0.965174 0.870229
LR 0.940299 0.074627 0.807692 0.925373 0.868966
Naive Bayes 0.80597 0.094527 0.739726 0.905473 0.771429
RF 0.791045 0.00995 0.963636 0.99005 0.868852
SVM 0.776119 0.024876 0.912281 0.975124 0.83871

TABLE 3 | Classification performances of ten methods with 6-cross validation
methods.

TPR FRP Precision Specificity F1

Our method 0.955224 0.004975 0.984615 0.995025 0.969697
gcForest 0.925373 0.024876 0.925373 0.975124 0.925373
AdaBoost 0.835821 0.0199 0.933333 0.9801 0.88189
Decision Tree 0.656716 0.054726 0.8 0.945274 0.721311
GBDT 0.791045 0.00995 0.963636 0.99005 0.868852
KNN 0.865672 0.049751 0.852941 0.950249 0.859259
LR 0.940299 0.049751 0.863014 0.950249 0.9
Naive Bayes 0.80597 0.094527 0.739726 0.905473 0.771429
RF 0.820896 0.014925 0.948276 0.985075 0.88
SVM 0.791045 0.014925 0.946429 0.985075 0.861789

TABLE 4 | Classification performances of ten methods with 8-cross validation
methods.

TPR FRP Precision Specificity F1

Our method 0.970149 0.004975 0.984848 0.995025 0.977444
gcForest 0.940299 0.0199 0.940299 0.9801 0.940299
AdaBoost 0.850746 0.014925 0.95 0.985075 0.897638
Decision Tree 0.835821 0.029851 0.903226 0.970149 0.868217
GBDT 0.80597 0.004975 0.981818 0.995025 0.885246
KNN 0.865672 0.044776 0.865672 0.955224 0.865672
LR 0.940299 0.044776 0.875 0.955224 0.906475
Naive Bayes 0.835821 0.089552 0.756757 0.910448 0.794326
RF 0.835821 0.00995 0.965517 0.99005 0.896
SVM 0.791045 0.014925 0.946429 0.985075 0.861789

TABLE 5 | Classification performances of ten methods with 10-cross validation
methods.

TPR FRP Precision Specificity F1

Our method 0.955224 0.014925 0.955224 0.985075 0.955224
gcForest 0.925373 0.0199 0.939394 0.9801 0.932331
AdaBoost 0.850746 0.014925 0.95 0.985075 0.897638
Decision Tree 0.850746 0.0199 0.934426 0.9801 0.890625
GBDT 0.776119 0.014925 0.945455 0.985075 0.852459
KNN 0.850746 0.049751 0.850746 0.950249 0.850746
LR 0.940299 0.044776 0.875 0.955224 0.906475
Naive Bayes 0.850746 0.089552 0.76 0.910448 0.802817
RF 0.820896 0.004975 0.982143 0.995025 0.894309
SVM 0.880597 0.014925 0.951613 0.985075 0.914729

TABLE 6 | Classification performances of ten methods with 15-cross validation
methods.

TPR FRP Precision Specificity F1

Our method 0.955224 0 1 1 0.977099
gcForest 0.940299 0.0199 0.940299 0.9801 0.940299
AdaBoost 0.880597 0.0199 0.936508 0.9801 0.907692
Decision Tree 0.850746 0.049751 0.850746 0.950249 0.850746
GBDT 0.835821 0.00995 0.965517 0.99005 0.896
KNN 0.895522 0.039801 0.882353 0.960199 0.888889
LR 0.940299 0.034826 0.9 0.965174 0.919708
Naive Bayes 0.955224 0.089552 0.780488 0.910448 0.85906
RF 0.850746 0.00995 0.966102 0.99005 0.904762
SVM 0.880597 0.014925 0.951613 0.985075 0.914729
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DISCUSSION

To investigate the performance of our proposed ensemble further, two
classical ensemble methods (averaged ensemble and voting ensemble)
were also utilized to infer hypertension-related compounds. The F1
and AUC performances of the hypertension-related compounds by
three ensemble methods are depicted in Figure 10 and Figure 11,
respectively. From Figures 10, 11, it can be seen that our proposed
ensemble method obtained better F1 and AUC performances than
averaged and voting ensemble methods, which also shows that our
method could identify hypertension-related compounds more
accurately than the other two classical ensemble methods.

CONCLUSION

To identify hypertension-related closely active compounds, this
paper proposed a novel ensemble method based on a flexible

neural tree and nine classifiers. In our method, the classification
results of nine single classifiers was utilized as the input vector of
the flexible neural tree. An FNT model was utilized as a nonlinear
ensemble method to identify hypertension-related drug activity. A
hybrid evolutionary method based on genetic programming like
structure optimization algorithm and simulated annealing is
proposed to evolve the FNT model. In order to test the
performance of our proposed ensemble method, data were
extracted from hypertension-unrelated and hypertension-related
compounds collected from up-to-date literature. By the different
cross-validation methods, our proposed method obtained better
ROC curves and AUC values than nine other single classifiers. Our
proposed method also performs better than other single classifiers
in terms of TPR, FRP, Precision, Specificity, and F1 in most cases.
We also compare our proposed ensemble method with the
averaged and voting ensemble methods. The results reveal that
our method could identify hypertension-related compounds more
accurately than the two classical ensemble methods.

FIGURE 10 | F1 performances of hypertension-related compound by three ensemble methods.

FIGURE 11 | AUC performances of hypertension-related compound by three ensemble methods.
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An Information-Entropy
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Alignment methods have faced disadvantages in sequence comparison and phylogeny
reconstruction due to their high computational costs in handling time and space
complexity. On the other hand, alignment-free methods incur low computational costs
and have recently gained popularity in the field of bioinformatics. Here we propose a new
alignment-free method for phylogenetic tree reconstruction based on whole genome
sequences. A key component is a measure called information-entropy position-weighted
k-mer relative measure (IEPWRMkmer), which combines the position-weighted measure
of k-mers proposed by our group and the information entropy of frequency of k-mers. The
Manhattan distance is used to calculate the pairwise distance between species. Finally, we
use the Neighbor-Joining method to construct the phylogenetic tree. To evaluate the
performance of this method, we perform phylogenetic analysis on two datasets used by
other researchers. The results demonstrate that the IEPWRMkmermethod is efficient and
reliable. The source codes of our method are provided at https://github.com/
wuyaoqun37/IEPWRMkmer.

Keywords: alignment-free method, k-mer relative distance, information entropy, phylogenetic analysis, genome

INTRODUCTION

The reconstruction of a phylogenetic tree is a primary problem in evolutionary biology.
Sequence alignment is a key step in the reconstruction, aiming to identify the homology of
sequences and uncover phylogenetic relationships in sequences. Traditional sequence
comparison is based on pairwise or multiple sequence alignment (Felsenstein and
Felenstein, 2004; Morrison, 2006) and was implemented by software packages such as
BLAST (Altschul et al., 1990), ClustalW (Thompson et al., 1994), and MrBayes (Ronquist
et al., 2012). However, the methods based on sequence alignment have some disadvantages,
including high computational cost in handling the time and space complexity of the algorithm.
Therefore, alignment-free methods have been proposed to overcome these problems (Zielezinski
et al., 2017). The computational cost of alignment-free methods is low because they are generally
of linear complexity (Fox et al., 1977).

Several alignment-free methods for sequence comparison are based on word counts
(Blaisdell, 1986; Höhl et al., 2006; Wang et al., 2016). A key idea is to use the close
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distribution of k-mers to imply the high correlation degree,
hence the similarity of the sequences. The methods have been
implemented in software tools, such as FFP (Sims et al., 2009),
kWIP (Murray et al., 2017), CVtree (Qi et al., 2004), and
DLtree (Wu et al., 2017). Many k-mer methods transform the
input sequence into a frequency vector of k-mers, then define
the distance of the sequences by that of the frequency vector of
k-mers (Qi et al., 2004; Wu et al., 2017). To reduce the
statistical dependence between adjacent word matches,
Spaced-Words (Leimeister and Boden, 2014) proposed to
use spaced words, which are defined by patterns of matches
without reference to positions. Some alignment-free methods
are based on match length, which defines the distance between
sequences based on the length of substring matches between
two sequences. These include the shortest unique substring
method (Haubold et al., 2005), ACS (Ulitsky et al. 2006), UA
(Comin and Verzotto, 2012), and ALFRED (Thankachan et al.
2016). In addition, graphical representation was used to
construct the probability distribution of a DNA sequence
(Yu et al., 2011). The chaos game representation transforms
the distribution of characters in a DNA sequence into the
distribution of nodes in a graph (Hoang et al. 2016; Yin, 2017;
Mendizabal-Ruiz et al., 2018). Many researchers considered
extracting the position information of a k-mer (Huang and
Wang, 2011; Ding et al., 2013; Tang et al., 2014). Ding et al.
(2013) used the average interval distance of normalized k-mers

to capture evolutionary information for sequence comparison.
Tang et al. (2014) presented the average relative distance of
normalized k-mers to improve the method of Ding et al.
(2013). Ma et al. (2020) proposed the PWKmer method,
which combines the k-mer counts and k-mer position
distributions for phylogenetic analysis.

In this work, we propose a new alignment-free method
which combines the position-weighted measure of k-mers
proposed by Ma et al. (2020) and the information entropy
of frequency of k-mers to obtain phylogenetic information for
sequence comparison. It is named information-entropy
position-weighted k-mer relative measure (IEPWRMkmer).
To evaluate the performance of this method, we carry out
phylogenetic analysis on two data sets used by other
researchers.

TABLE 1 |Names, species, and accession numbers for mitochondrial genomes of
30 mammalian species.

No Accession no Species Sequence name

1 AJ002189 Sus scrofa Pig
2 AJ010957 Homo sapiens Hippopotamus
3 AJ001588 Pan troglodytes Rabbit
4 U96639 Canis familiaris Dog
5 AF010406 Ovis aries Sheep
6 V00662 Homo sapiens Human
7 U20753 Felis catus Cat
8 X72004 Halichoerus grypus Gray seal
9 D38115 Pongo pygmaeus Orangutan
10 V00654 Bos taurus Cow
11 X97337 Equus asinus Donkey
12 D38116 Pan troglodytes Common chimpanzee
13 D38113 Pan paniscus Pigmy chimpanzee
14 Z29573 Didelphis virginiana Opossum
15 Y10524 Macropus robustus Wallaroo
16 X99256 Hylobates lar Gibbon
17 Y18001 Papio hamadryas Baboon
18 X97336 Rhinoceros unicornis Indian rhinoceros
19 Y07726 Ceratotherium simum White rhinoceros
20 X63726 Phoca vitulina Harbor seal
21 AJ238588 Sciurus vulgaris Squirrel
22 AJ001562 Glis glis Fat dormouse
23 AJ222767 Cavia porcellus Guinea pig
24 X79547 Equus caballus Horse
25 X14848 Rattus norvegicus Rat
26 V00711 Mus musculus Mouse
27 D38114 Gorilla gorilla Gorilla
28 X61145 Balenoptera physalus Fin whale
29 X72204 Balenoptera musculus Blue whale
30 X83427 Ornithorhyncus anatinus Platypus

TABLE 2 | Accession numbers, subtype, and area for 44 HIV-1.

No Area Accession no Subtype

1 Belgium (DRC) AF084936 G
2 Finland (Kenya) AF061641 G
3 Sweden (DRC) AF061642 G
4 Belgium AF190128 H
5 Belgium AF190127 H
6 Cent. Afr. Rep AF005496 H
7 Tanzania AF447763 CPZ
8 Cameroon L20571 O
9 Senegal AJ302647 O
10 Cameroon L20587 O
11 Cameroon AY169812 O
12 India AF067155 C
13 South Africa AY772699 C
14 Ethiopia U46016 C
15 Brazil U52953 C
16 Cameroon AY371157 D
17 DRC K03454 D
18 Uganda U88824 D
19 Somalia AF069670 A1
20 Uganda AF484509 A1
21 Uganda U51190 A1
22 Kenya AF004885 A1
23 DRC AF286238 A2
24 Cyprus AF286237 A2
25 Sweden AF082395 J
26 Sweden AF082394 J
27 Cameroon AJ249239 K
28 DRC AJ249235 K
29 Cameroon AJ249237 F2
30 Cameroon AY371158 F2
31 Cameroon AJ249236 F2
32 Cameroon AF377956 F2
33 Finland AF075703 F1
34 France AJ249238 F1
35 Brazil AF005494 F1
36 Belgium (DRC) AF077336 F1
37 Cameroon AJ271370 N
38 Cameroon AY532635 N
39 Cameroon AJ006022 N
40 Netherlands AY423387 B
41 Thailand AY173951 B
42 Australia Gray seal B
43 France K03455 B
44 U.S. AY331295 B
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MATERIALS AND METHODS

Genomic Datasets
Dataset 1
The first dataset for analysis consists of the same whole
genome DNA sequences of 30 mammalian species studied
in Li et al. (2001), Otu and Sayood (2003), and Tang et al.
(2014). The accession numbers, species, and species name are
listed in Table 1. All sequences were downloaded from NCBI
GenBank.

Dataset 2
The second dataset for analysis is the HIV-1 dataset studied inMa
et al. (2020). This dataset contains 43 HIV genome sequences
used in Wu et al. (2007) and a controversial taxonomic sequence
used in Chang et al. (2014). The dataset includes subtypes A, B, C,
D, F, G, J, K, and H of the HIV-1 M, O, N groups and the CPZ
sequence. The area, accession numbers, and subtypes are listed in
Table 2. All these sequences were downloaded from NCBI
GenBank.

We use two approaches to validate the method. First, we use
the Robinson-Foulds (RF) distance to compare our method with
other alignment-free methods. Second, we use the bootstrap
method to construct consensus trees and show the stability of
the trees obtained by our method.

METHODS

Let S � s1s2/sL be a DNA sequence with length L, a1a2/akis a
k-mer, where ai∈(A,T,C,G). If the k-mer a1a2/ak occurs in S, we
denote by pa1a2/ak the vector composed of the positions of
a1a2/ak in this given sequence and by pa1a2/ak (i) its ith
element. If the k-mer a1a2/ak does not occur in
S, we set pa1a2/ak�(0). For example, for the DNA sequence
GTAACCTGAACGTACTTGGA with length 20, we list all 2-
mer position vectors:

PAA�(3,9); PAC�(4,10,14); PAG� (0); PAT� (0); PCA�(0);
PCC�(5); PCG�(11); PCT�(6,15); PGA�(8,19); PGC�(0);
PGG�(18); PGT�(1,12); PTA�(2,13); PTC � 0; PTG�(7,17);
PTT�(16).

In this example, the 2-mers AG, AT, CA, GC, and TC do not
appear. For each k-mer, its position vector provides its position
distribution information in the sequence. One can use the k-mer
position vectors to reconstruct the DNA sequence (Ma et al.,
2020).

Ma et al. (2020) defined the position-weighted measure
D(a1a2/ak) of a1a2/ak based on its position in the
sequence as

D(a1a2/ak) �
⎧⎪⎪⎨⎪⎪⎩∑n

i�1pa1a2/ak(i)
L(L − k + 1) , n≠ 0,

0, n � 0,

(1)

where n is the length of the vector pa1a2/ak. Actually
pa1a2/ak (i)/L means the position weight of a1a2/ak in the
given sequence with length L.

We denote byN the number of sequences in a dataset. In order
to characterize the importance of k-mers in the whole dataset, we
count the number m of the sequences that contain a k-mer
a1a2/ak. Then the occurrence frequency F(a1a2/ak) of this
k-mer in the whole dataset is defined as m/N. We introduce the
Shannon entropy H(a1a2/ak) of frequency F(a1a2/ak) defined
by Murray et al. (2017) as

H(a1a2/ak) � −(F log2(F) + (1 − F)log2(1 − F)), (2)

where F stands for F (a1a2/ak).
In this study, we aim to get more DNA phylogenetic

information by combining the above two methods and defining

E(a1a2/ak) � D(a1a2/ak) ×H(a1a2/ak) (3)

Here, we regard Shannon entropy H (a1a2/ak) as another
weight.

For a fixed K, there are 4K k-mers. For each k-mer a1a2/ak,
we can calculate the corresponding E(a1a2/ak), then arrange 4K

of these E(a1a2/ak) to get a feature representation vector
(E1, E2,/, E4K ) according to the alphabet order of the 4K

k-mers for each genome.
For two given genome sequences A and B, we can obtain

EA � (EA
1 , E

A
2 ,/, EA

4K ) and EB � (EB
1 , E

B
2 ,/, EB

4K ) by the
method. We use the Manhattan distance to calculate the
pairwise distance between these two genome sequences:

D(A, B) � ∑4K

i

∣∣∣∣(EA
i − EB

i )∣∣∣∣ (4).

For a given dataset, we can derive a distance matrix by Eq. 4.
This distance matrix contains the sequence similarity
information. After obtaining the distance matrix, we insert it
into the mega 7.0 software (Sudhir et al., 2016) and use Neighbor-
Joining (NJ) program (Saitou et al. 1987) to construct the
phylogenetic tree.

Robinson-Foulds Distance and the
Bootstrap Method
We use the Robinson-Foulds (RF) distance (Robinson and Foulds
1981) to judge the quality of the method. A smaller RF value
means a closer distance between the phylogenetic tree and the
reference tree.

(Yu et al., 2010) proposed a modified version of the bootstrap
method to evaluate the reliability of the constructed phylogenetic
tree. We also use this method in the present work. Its workflow is
as follows: Each row is the feature vector (E1, E2,/, E4K ) of a
species, and each column is the feature value of all genome
sequences based on the same k-mer. Through random
sampling of all columns, in which some columns may be
selected many times, while some columns may not be selected
at all, we randomly select one column. After 4K times of selection,
a new N×4K feature matrix is constructed. Using the new feature
matrix, the Manhattan distance of any two rows is calculated to
get a new distance matrix. Then we use the NJ method to
construct a phylogenetic tree and repeat the above steps 100
times. Finally, a consensus tree is drawn by using consense. exe in
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the Phylip package. The frequency of a particular branch of a
phylogenetic tree can be used as a measure of the stability of this
branch.

RESULTS

Experiment 1
We use the genomes of 30 mammalian species in dataset 1 to
construct a phylogenetic tree using ClustalX (Larkin et al. 2007)
as the reference tree. ClustalX is one of the widely used multiple
alignment programs. The result is shown in Figure 1A. It is seen
that rabbit, fat dormouse, squirrel, guinea pig, mouse, rat,
platypus, opossum, and wallaroo belong to the rodents
group; human, baboon, orangutan, gibbon, gorilla, pigmy
chimpanzee, and common chimpanzee belong to the
primates group; blue whale, fin whale, hippopotamus, cow,
sheep, pig, donkey, horse, Indian-rhinoceros, white
rhinoceros, cat, dog, gray seal, and harbor seal belong to the
ferungulates group. When K < 5, it is not feasible to construct a
phylogenetic tree using our method. When K � 5, 6, the 30

mammals cannot be divided into three groups in our tree. When
K � 7, it can be divided into three groups, but the relationship
between guinea pig and fat dormouse is not correct. When K � 8,
9, the branches of the tree become correct. We list the RF
distances between the phylogenetic tree constructed by our
method at K � 5, 6, 7, 8, 9 and the reference tree constructed
by ClustalX in Table 3. From Table 3, we can see that the RF
distance reaches the minimum when K � 8. We show the
phylogenetic tree of K � 8 constructed by our method in
Figure 1B. From Figure 1B, we can see that the species in
the three main categories are grouped correctly. Primates and
ferungulates are closer, and this relationship is consistent with
that in Figure 1A. In terms of branches, monotremes (platypus),
marsupials (wallaroo, opossum), murid rodents (mouse, rat),
non-murid rodents (guinea pig, squirrel, fat dormouse, rabbit),
perissodactyls (white rhinoceros, horse, Indian rhinoceros,
donkey), carnivores (harbor seal, dog, gray seal, cat),
artiodactyls (sheep, cow, hippopotamus, pig), primates
(human, pigmy chimpanzee, common chimpanzee, gorilla,
baboon, gibbon, orangutan), and cetaceans (blue whale, fin
whale) are grouped into respective taxonomic classes accurately.

Figure 2 shows the RF distance between the reference tree
constructed by ClustalX and the phylogenetic tree constructed by
our method, Tang’s method, PWKmer, DLtree, and CVtree on
dataset 1. Using our method, whenK � 8, the RF distance is 8. The
shortest RF distance of DLtree (K � 9) is 10, the shortest distance
of CVtree (K � 9) is 16, the shortest distance of Tang’s method
(K � 7) is 16, and the shortest distance of PWKmer (K � 9) is 10.
Therefore, the results of our method are closer to those of

FIGURE 1 | (A) The phylogenetic tree of 30 mammalian species reconstructed by ClustalX. (B) The phylogenetic tree of 30 mammalian species at K � 8 based on
our method.

TABLE 3 | The RF distance between the phylogenetic tree conducted by our
method at K � 5,6,7,8,9 and the reference tree conducted by ClustalX.

K 5 6 7 8 9

RF distance 38 28 22 8 10
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ClustalX than those of the other methods, which indicates that
our method is effective.

Figure 3 shows the consensus tree of 30 mammalian species
based on our method. Compared with Figure 1B, 30 mammalian
species are divided into the rodents group, the ferungulates group,
and the primates group correctly. The support rate is 80% for the
rodents group and 100% for both ferungulates and primates
groups. Among the branches, marsupials (opossum, wallaroo),
carnivores (dog, cat, harbor seal, gray seal), murid roots (rat,
mouse), and cetaceans (fin whale, blue whale) are all supported by
a 100% rate. In the artiodactyls group (cow, sheep, pig,
hippopotamus), pig is separated out of the artiodactyls group,
but the support rate is low at 43%. It indicates that the
phylogenetic tree constructed by our method is quite robust.

Experiment 2
The human immunodeficiency viruses (HIV) represent a group
of retroviruses, which are not presumed to have originated from
human cellular DNA sequences, hence are distinct from
endogenous retroviruses (Wu et al., 2007). HIV-1 can be
classified into three major phylogenetic groups, namely M
(major), N (new), and O (others). Group M is responsible for
the HIV pandemic, it is divided into nine subtypes, namely A, B,
C, D, F, G, J, K, and H. Based on differential phylogenetic
clustering, the subtypes A and F are further divided into sub-
subtypes (A1, A2) and (F1, F2), respectively. Groups N and O are
derived from other primates and then infect humans. CPZ is a
non-human primate virus isolated from chimpanzees, which is
closest to human-to-human transmission of HIV.

We performed the phylogenetic analysis of 44 HIV-1 complete
genome sequences in dataset 2 using ClustalX and our method.

FIGURE 2 | The Robinson–Foulds distance between the tree reconstructed by ClustalX method and the phylogenetic trees reconstructed by our method
(IEPWRMkmer K � 8), the CVTree method, the DLTree method, Tang’s method (K � 7), and the PWKmer method (K � 9) on dataset 1 (we used the optimal tree by
CVTree and DLTree).

FIGURE 3 | The modified bootstrap consensus tree for Figure 1B
based on 100 replicates.
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FIGURE 4 | (A) The phylogenetic tree of 44 HIV-1 genomes reconstructed by ClustalX. (B) The phylogenetic tree of 44 HIV-1 genomes reconstructed by our
method (K � 7).

FIGURE 5 | The RF distance between the reference tree constructed by Clustalx and the phylogenetic trees constructed by our method (IEPWRMkmer, K � 7),
Tang’s method (K � 8), the PWKmermethod (K � 9), the DLtree method, and the CVtree method. (For the PWKmer method, the DLtree method, and the CVtree method,
we chose their optimal classification tree).
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The phylogenetic trees reconstructed by ClustalX and ourmethod
(K � 7) are shown in Figure 4A and Figure 4B, respectively. From
Figure 4B, we can see that the species from all subtypes can be
correctly classified into their groups (A, B, C, D, F, G, J, K, H, O,
and M), and CPZ as the reference sequence is separated into the
outermost. From the internal branches, both F and A contain two
subtypes (F1 and F2) and (A1 and A2), respectively. Our method
can separate the two subtypes, and in the branches, both F and A
subtypes can be closely grouped together.

Figure 5 shows the RF distances between the reference tree
constructed by ClustalX and the phylogenetic trees constructed by
our method, Tang’s method, PWKmer, DLtree, and CVtree. Using
our method, when K � 7, the RF distance is 10. The shortest RF
distance of the DLtree (K � 11) is 12, the shortest distance of the
CVtree (K � 9) is 16, the shortest distance of the PWKmer (K �9) is
10, and the shortest distance of Tang’smethod (K� 9) is 10. Therefore,
our method performs better than the DLtree and the CVtree on
dataset 2 and has the same performance as Tang’s method and
PWKmer. The results indicate that ourmethod is quite effective again.

Figure 6 shows the consensus tree of 44 HIV-1 based on our
method. Comparing with Figure 4B, all HIV-1 sequences are divided
into theM, N, O, and CPZ groups, whose support rate is 100%. From
the branch point of view, in group M, the branch support rate of all
subtypes is 100%. For subtypesA and F, the subtypes (A1, A2) and (F1
and F2) are clustered with 100% support. It again indicates that the
phylogenetic tree constructed by our method is quite robust.

Estimate of the Optimal Parameter K
Different lengths of k-mers contain different phylogenetic
information. Short k-mers may not contain sufficient DNA
sequence information. Long k-mers contain sufficient
phylogenetic information, but it needs large memory and takes
a long time to calculate the distance based on information on long
k-mers. Therefore, it is also very important to estimate an optimal
value of K as heralded in (Yu et al., 2010) for the DLTree method
and (Qi et al., 2004) for the CVTree method.

In this paper, we propose to use the Shannon entropy of the
feature matrix to determine the optimal value of K. Using Eq. 3,
we can obtain an N ×4K feature matrix for a dataset with N
genomes. Then, we propose to define a scoring strategy as

score(K) � − 1
N

∑N

j�1∑4K

i�1(Eij log2Eij + (1 − Eij)log2(1 − Eij)).
(5)

The optimal K is the value at which score(K) reaches its
maximum.

FIGURE 6 | The modified bootstrap consensus tree for Figure 4B
based on 100 replicates.

FIGURE 7 | The trend chart ofK value vs scoringmeasure score(K). The
red circles represent the scores of the dataset of 30 mammalian species for
differentK values, and the blue dots represent the scores of the HIV dataset for
different K values.
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We use Eq. 5 to calculate score(K) on datasets 1 and 2 for
different K. The relationship between score(K) and K is shown in
Figure 7 for these two datasets. It is seen that score(K) reaches
the largest value when K � 8 on the two datasets. Considering that
the larger K is, the more memory resources are consumed, we
only consider the values near K � 8 (e.g., K � 7, 8, 9). For the 30
mammalian species dataset, we have seen that the phylogenetic
tree for K � 8 constructed by our method is closest to the
reference tree. The same happened for the HIV-1 dataset with
K � 7. The outcomes indicate that score(K) can provide an
effective means to estimate the optimal value of K.

CONCLUSION

In this paper, a new alignment-free method is proposed for
phylogenetic analysis and sequence comparison based on
whole genome sequences. Our method combines the position-
weighted measure of k-mers and the information entropy of
frequency of k-mers. We used the Manhattan metric to measure
the distance between a pair of sequences and the NJ method to
construct the phylogenetic tree. In order to test the effectiveness
and reliability of our method, we applied it on two datasets of 30
mammalian species and 44 HIV-1 genomes. The results
demonstrated that the present method is efficient and reliable.
A suitable K value is important to capture rich phylogenetic
information of DNA sequences. In order to choose an optimal K
value, we proposed a scoring measure based on the information
entropy. The obtained results on two real datasets support that
the method can capture the k-mer distribution information and is
effective for whole genome sequence comparison and
phylogenetic analysis.

Remark: The method of this paper is derived from the two
studies Ma et al. (2020) and Murray et al. (2017). There are
differences between this work and previous works: Tang et al.
presented the average relative distance for normalized k-mers.
PWKmer uses the counts and position distributions of k-mers

to capture more evolutionary information. KWIP (Murray
et al. 2017) uses information entropy to weight the inner
product (SipSj), while we use information entropy to weight
the relative positions of k-mers. KWIP uses a kernel function
to calculate the distance, while we use the Manhattan metric to
calculate the pairwise distance between species. Here, we
claimed that the results obtained by the IEPWRMkmer
method are close to those by ClustalX and the
IEPWRMkmer is superior to the other distance metrics. We
used the phylogenetic tree constructed by ClustalX as the
reference tree or standard tree, hence we cannot claim that
our method is superior to the ClustalX method.
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iAIPs: Identifying Anti-Inflammatory
Peptides Using Random Forest
Dongxu Zhao1, Zhixia Teng1*, Yanjuan Li2 and Dong Chen2

1College of Information and Computer Engineering, Northeast Forestry University, Harbin, China, 2College of Electrical and
Information Engineering, Quzhou University, Quzhou, China

Recently, several anti-inflammatory peptides (AIPs) have been found in the process of the
inflammatory response, and these peptides have been used to treat some inflammatory
and autoimmune diseases. Therefore, identifying AIPs accurately from a given amino
acid sequences is critical for the discovery of novel and efficient anti-inflammatory
peptide-based therapeutics and the acceleration of their application in therapy. In
this paper, a random forest-based model called iAIPs for identifying AIPs is
proposed. First, the original samples were encoded with three feature extraction
methods, including g-gap dipeptide composition (GDC), dipeptide deviation from the
expected mean (DDE), and amino acid composition (AAC). Second, the optimal feature
subset is generated by a two-step feature selection method, in which the feature is
ranked by the analysis of variance (ANOVA) method, and the optimal feature subset is
generated by the incremental feature selection strategy. Finally, the optimal feature
subset is inputted into the random forest classifier, and the identification model is
constructed. Experiment results showed that iAIPs achieved an AUC value of 0.822
on an independent test dataset, which indicated that our proposed model has better
performance than the existing methods. Furthermore, the extraction of features for
peptide sequences provides the basis for evolutionary analysis. The study of peptide
identification is helpful to understand the diversity of species and analyze the evolutionary
history of species.

Keywords: anti-inflammatory peptides, random forest, feature extraction, evolutionary information, evolutionary
analysis

1 INTRODUCTION

As a part of the nonspecific immune response, inflammation response usually occurs in response to
any type of bodily injury (Ferrero-Miliani et al., 2007). When the inflammatory response occurs in
the condition of no obvious infection, or when the response continues despite the resolution of the
initial insult, the process may be pathological and leads to chronic inflammation (Patterson et al.,
2014). At present, the therapy for inflammatory and autoimmune diseases usually uses nonspecific
anti-inflammatory drugs or other immunosuppressants, which may produce some side effects
(Tabas and Glass, 2013; Yu et al., 2021). Several endogenous peptides found in the process of
inflammatory response have become anti-inflammatory agents and can be used as new therapies for
autoimmune diseases and inflammatory disorders (Gonzalez-Rey et al., 2007; Yu et al., 2020a).
Compared with small-molecule drugs, the therapy based on peptides has minimal toxicity and high
specificity under normal conditions, which is a better choice for inflammatory and autoimmune
disorders and has been widely used in treatment (de la Fuente-Núñez et al., 2017; Shang et al., 2021).
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Due to the biological importance of AIPs, many biochemical
experimental methods have been developed for identifying AIPs.
However, these biochemical methods usually need a long
experimental cycle and have a high experimental cost. In
recent years, machine learning has increasingly become the
most popular tool in the field of bioinformatics (Zhao et al.,
2017; Liu et al., 2020; Luo et al., 2020; Sun et al., 2020; Zhao et al.,
2020; Jin et al., 2021; Wang et al., 2021a). Many researchers have
tried to adopt machine learning algorithms to identify AIPs only
based on peptide amino acid sequence information. In 2017,
Gupta et al. proposed a predictor of AIPs based on the machine
learning method. They constructed the combined features and
inputted them in the SVM classifier to construct the prediction
model (Gupta et al., 2017).

In 2018, Manavalan et al. proposed a novel prediction model
called AIPpred. They encoded the original peptide sequence by
the dipeptide composition (DPC) feature representation method,
and then, they developed a random forest-based model to identify
AIPs (Manavalan et al., 2018). AIEpred is a novel prediction
model and is proposed by Zhang et al. AIEpred encodes peptide
sequences based on three feature representations. Based on
various feature representations, it constructed many base
classifiers, which are the basis of ensemble classifier (Zhang
et al., 2020a).

In this paper, we proposed a novel identification model of
AIPs for further improving the identification ability. First, we
encoded the samples with multiple features consisting of AAC,
DDE, and GDC. It has been proven that multiple features can
effectively discriminate positive instances from negative ones in
various biological problems. Second, we selected the optimal
features based on a feature selection strategy, which has

achieved better performance in many biological problems.
Finally, we used the random forest classifier to construct an
identification model based on the optimal features. The
experimental result shows that our proposed method in this
paper has better performance than the existing methods.

2 MATERIALS AND METHODS

Figure 1 gives the general framework of iAIPs proposed in this
paper. The framework consists of four steps as follows: 1) Dataset
preparation—It collects the data required for the experiment. 2)
Feature extraction—It converts the collected sequence data from
step 1 into numerical features. 3) Feature selection—removes
redundant features from a feature set. 4) Prediction model
construction. Each step of the framework will be described as
follows.

2.1 Dataset Preparation
A high-quality dataset is critical to construct an effective and
reliable prediction model. To measure the performance of our
model by comparing it with other existing machine learning-
based prediction models, we used the dataset with no change
proposed in AIPpred (Manavalan et al., 2018). The dataset was
first retrieved from the IEDB database (Kim et al., 2012; Vita
et al., 2019), and then the samples with sequence identity >80%
(Zou et al., 2020) are excluded by using CD-HIT (Huang et al.,
2010). The dataset contains 1,678 AIPs and 2,516 non-AIPs. For
this dataset, it is randomly selected as the training dataset, which
is inputted into the classifier and used to construct the
identification model. The training dataset is also used to
measure the cross-validation performance of our model. The
remaining dataset is used as an independent dataset, which will
be used to evaluate the generalization capability of our
identification model. In detail, the training dataset consists of
1,258 AIPs and 1,887 non-AIPs, and the independent dataset
consists of 420 AIPs and 629 non-AIPs.

2.2 Feature Extraction Methods
In the process of peptide identification, finding an effective
feature extraction method is the most important step (Liu,
2019; Fu et al., 2020; Cai et al., 2021). In this study, we tried a
variety of feature extraction methods and used the random forest
classifier to evaluate the performance of those methods. Finally,
we chose three efficient feature extraction methods to encode
peptide amino acid sequences, including amino acid
composition, dipeptide deviation from expected mean, and
g-gap dipeptide composition. The details of each feature
extraction method are described as follows.

2.2.1 Amino Acid Composition
Different peptide sequences consist of different amino acid
sequences. AAC tried to count the composition information of
peptides. In detail, AAC calculates the frequency of occurrence of
each amino acid type (Wei et al., 2018a; Liu et al., 2019; Ning
et al., 2020; Yang et al., 2020; Zhang and Zou, 2020; Wu and Yu,
2021). The computation formula of AAC is as follows:

FIGURE 1 | The framework of iAIPs.
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AAC(j) � N(j)
L

, j ∈ {A,C,D, E, F, ..., Y}

where L denotes the length of the peptide, which is the number of
characters in the peptide, AAC (j) denotes the percentage of
amino acid j, N (j) denotes the total number of amino acid j. The
dimension of AAC is 20.

2.2.2 Dipeptide Deviation From the Expected Mean
According to the dipeptide composition information, DDE
computes deviation frequencies from expected mean values
(Saravanan and Gautham, 2015). The feature vector extracted
by DDE is generated by three parameters: theoretical variance
(TV), dipeptide composition (DC), and theoretical mean (TM).
The formulas of the three parameters are as follows:

DC(j) � nj
L − 1

where nj denotes the occurred frequency of dipeptide j, and L
denotes the length of peptide sequences.

TM(j) � Cj1

CN
× Cj2

CN

Cj1 denotes the number of codons that encode for the first
amino acid, andCj2 denotes the number of codons that encode for
the second amino acid in the dipeptide j. CN denotes the total
number of possible codons.

TV(j) � TM(j)(1 − TM(j))
L − 1

The formula of DDE(i) is as follows.

DDE(j) � DC(j) − TM(j)�����
TV(j)√

2.2.3 G-Gap Dipeptide Composition
GDC is used to measure the correlation of two non-adjacent
residues; its dimension is 400 (Wei et al., 2018b). GDC can be
represented as follows:

GDC(g) � (fg
1 , f

g
2 , ..., f

g
400)

where fg
v is the frequency of v (v � 1,2, . . ., 400), and it can be

calculated as:

fg
v �

Ng
v∑400

v�1 N
g
v

where Ng
v denotes the number of the v-th g-gap dipeptide in a

given peptide. In this study, every peptide has a different length;
the minimum length is 5. Therefore, we set the range of g from 1
to 4. For the different values of g, we represent the feature as
GDC-gap1, GDC-gap2, GDC-gap3, and GDC-gap4.

2.3 Feature Selection
In the Feature extraction methods section, we introduced the
feature extraction method used in this paper. However, like other

feature representation methods, our feature representation may
also produce many noises (Wei et al., 2014; Wang et al., 2020a; Li
et al., 2020; Tang et al., 2020; Wang et al., 2021b). Recently, many
feature selection methods for eliminating noise has been used to
solve many bioinformatics problems (He et al., 2020), such as
TATA-binding protein prediction (Zou et al., 2016), DNA 4mc
site prediction (Manavalan et al., 2019), antihypertensive peptide
prediction (Manayalan et al., 2019), drug-induced hepatotoxicity
prediction (Su et al., 2019), and enhance-promoter interaction
prediction (Hong et al., 2020; Min et al., 2021).

Likewise, we will use a two-step feature selection method to
solve the noise of features. In detail, the feature is first ranked
based on the ANOVA score. Then, based on the orderly features,
we use the incremental feature selection (IFS) strategy to generate
different feature subsets, the feature subset with optimal
performance is selected as the optimal feature subset. In the
Result and discussion section, we will give the experiments about
feature extraction, in which we will verify the effectiveness of our
feature representation.

2.3.1 Analysis of Variance
In this work, the feature is first ranked based on the ANOVA
score. For every feature, ANOVA calculated the ratio of the
variance between groups and the variance within groups, which
can test the mean difference between groups effectively (Ding
et al., 2014). The score is calculated as follows:

S(t) � S2B(t)
S2W(t)

where S (t) is the score of the feature t, S2B(t) is the variance
between groups, and S2W(t) is the variance within groups. The
formula of S2B(t) and S2W(t) is as follows:

S2B(t) �
1

K − 1
∑K
i�1
mi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝∑mi
j�1 ft(i, j)

mi
− ∑K

i�1 ∑mi
j�1 ft(i, j)∑K
i�1mi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

S2w(t) �
1

N −K
∑K
i�1

∑mi

j�1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ft(i, j) − ∑mi
j�1 ft(i, j)

mi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

where K denotes the number of groups, and N denotes the total
number of instances; ft(i, j) denote the value of the j-th sample
in the i-th group of the feature t.

2.3.2 Incremental Feature Selection
Based on the orderly features, we use the incremental feature
selection strategy to generate different feature subsets; the feature
subset with optimal performance is selected as the optimal feature
subset. In the incremental feature selection method, the feature
set is constructed as empty at first, and then the feature vector is
added one by one from the ranked feature set. Meanwhile, the
new feature set is inputted into a classifier, and then a prediction
model is constructed. We evaluate the performance of the model
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according to some indicators. Finally, the feature subset with the
optimal performance is considered as the optimal feature set.

2.4 Machine Learning Methods
In this paper, we utilized various ensemble learning classification
algorithms to develop identification models, which contain
random forest (Ru et al., 2019; Wang et al., 2020b; Ao et al.,
2021), AdaBoost, Gradient Boost Decision Tree (Yu et al., 2020b),
LightGBM, and XGBoost. In addition, we also tried some
traditional machine learning classification algorithms, such as
logistic regression and Naïve Bayes. The description of these
methods is as follows.

2.4.1 Random Forest
As one of the most powerful ensemble learning methods, random
forest was proposed by Breiman (2001). Due to its effectiveness,
random forest has been widely used in bioinformatics areas.
Random forest can solve regression and classification tasks. To
solve the problem, random forest uses the random feature
selection method to construct hundreds or thousands of
decision trees (Akbar et al., 2020). By voting on these decision
trees, the final identification result is obtained. The random forest
algorithm used in this paper is from WEKA (Hall et al., 2008),
and all parameters are default.

2.4.2 AdaBoost
The AdaBoost algorithm is an iterative algorithm, which was
proposed by Freund (1990). For a benchmark dataset, AdaBoost
will train various weak classifiers and combine these weak
classifiers by sample weight to construct a stronger final
classifier. Among samples, low weights are assigned to easy
samples that are classified correctly by the weak learner, while
high weights are for the hard or misclassified samples. By
constantly adjusting the weight of samples, AdaBoost will
focus more on the samples that are classified incorrectly.

2.4.3 Gradient Boost Decision Tree
Similar to AdaBoost, Gradient Boost Decision Tree (GBDT) also
combines weak learners to construct a prediction model
(Friedman, 2001). Different from AdaBoost, GBDT will
constantly adapt to the new model when the weak learners are
learned. In detail, based on the negative gradient information of
the loss function of the current model, the new weak classifier is
trained. The training result is accumulated into the existing model
to improve its performance (Basith et al., 2018).

2.4.4 LightGBM and XGBoost
Both LightGBM and XGBoost are improved algorithms based on
GBDT. LightGBM is mainly optimized in three aspects. The
histogram algorithm is used to convert continuous features into
discrete features, the gradient-based one-side sampling (GOSS)
method is used to adjust the sample distribution and reduce the
numbers of samples, and the exclusive feature bundling (EFB) is
used to merge multiple independent features. XGBoost adds the
second-order Taylor expansion and regularization term to the
loss function.

2.4.5 Naïve Bayes
Naïve Bayes is a probabilistic classification algorithm based on
Bayes’ theorem, which assumes that the features are independent
of each other. According to this theorem, the probability of a
given sample classified into class k can be calculated as

P(Ck|X) � P(Ck)P(X|Ck)
P(X)

where the sample has the expression formula of {X, C}.

2.4.6 Other Machine Learning Methods
Other traditional machine learning methods used for
performance comparison include J48, logistic, SMO, and SGD.
J48 is a decision tree algorithm provided in Weka, which is
implemented based on the C4.5 idea. Logistic is a probability-
based classification algorithm. Based on linear regression, Logistic
introduces sigmoid function to limit the output value to [0,1]
interval. SMO and SGD are optimization algorithms provided in
Weka. SMO (sequential minimal optimization) is based on
support vector machine (SVM), and SGD is based on linear
regression.

2.5 Performance Evaluation
To measure the performance of our proposed model, we chose
four commonly used measurements: SN, SP, ACC, and MCC
(Jiang et al., 2013; Wei et al., 2017a; Ding et al., 2019; Shen et al.,
2019; Huang et al., 2020). These measurements are calculated as
follows.

SN � TP

TP + FN

SP � TN

TN + FP

ACC � TP + TN

TP + TN + FP + FN

MCC � (TP × TN) − (FP × FN)�������������������������������������������(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)√
where FP, FN, TN, and TP show the number of false-positive,
false-negative, true-negative, and true-positive, respectively.
These are widely used in bioinformatics studies, such as
protein fold recognition (Shao et al., 2021), DNA-binding
protein prediction (Wei et al., 2017b), protein–protein
interaction prediction (Wei et al., 2017c), and drug–target
interaction identification (Ding et al., 2020; Ding and
JijunGuo, 2020).

Furthermore, we also used the receiver operating characteristic
(ROC) curve (Hanley and McNeil, 1982; Fushing and Turnbull,
1996) to evaluate the performance of our proposed model. ROC
computes the true-positive rate and low false-positive rate by
setting various possible thresholds (Gribskov and Robinson,
1996). The area under the ROC curve (AUC) also shows the
performance of the proposed model, which is more accurate in
the aspect of evaluating the performance of the prediction model
constructed by an imbalanced dataset.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7732024

Zhao et al. Polarization in Atlantic Canada

31

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


3 RESULTS AND DISCUSSION

To verify the effectiveness of our proposed model, we will
measure the performance of our model from different
perspectives. The detailed process of these experiments is
presented as follows.

3.1 Performance of Different Features
In this study, we use a variety of feature extraction methods and
their combinations to encode peptide sequences. At first, we
measure the effectiveness of single features. The comparison
results of the fivefold cross-validation on the training dataset
are shown in Table 1.

Table 1 shows that DDE is much better than other features
according to the indicators of AUC, MCC, ACC, SP, and SN.
In detail, the AUC value reaches 0.784, which is 2%–11.6%
higher than other features. Based on the indicator of AUC,
the features of DDE, GDC-gap1, and AAC have the best
performance.

To achieve better performance, we further test the
performance of multiple features on the basis of DDE, GDC,
and AAC. In detail, the GDC feature adopts four different
parameters, that is, gap1, gap2, gap3, and gap4. The
corresponding feature is GDC-gap1, GDC-gap2, GDC-gap3,

and GDC-gap4. The performance comparison of the fivefold
cross-validation on the training dataset is shown in Table 2.

According to Table 2, the multiple features of
AAC + DDE + GDC-gap1 has the best performance. Its value
of SN, SP, ACC, MCC, and AUC are 0.585, 0.860, 0.750, 0.468,
and 0.794, respectively.

To verify the performance of these combined features, we
tested them on the independent test set. Table 3 shows the
experimental results on the independent dataset. The results
show that the combined features of AAC + DDE + GDC-gap1
have the best performance on the independent dataset.

3.2 Performance of Different Classifiers
In this study, we chose the random forest algorithm to construct
the classifier. To verify the effectiveness of the random forest
classifier, we compared its performance with other classifiers. We
chose several ensemble classifiers that are similar to the random
forest classifier, including AdaBoost, GBDT, LightGBM, and
XGBoost. In addition, we also chose some machine learning
classifiers, including J48, Logistic, SMO, SGD, and Naïve Bayes.

Based on the best feature combination, which is obtained from
previous experiments, we constructed different identification
models using different classifiers. The performance of these
classifiers on the training dataset is shown in Table 4.

TABLE 1 | Performance comparison of various single features.

Feature SN SP ACC MCC AUC

Amino acid composition (AAC) 0.529 0.845 0.719 0.398 0.760
Dipeptide deviation for the expected mean (DDE) 0.589 0.854 0.748 0.464 0.784
G-gap dipeptide composition (GDC)-gap1 0.456 0.862 0.700 0.353 0.764
GDC-gap2 0.466 0.852 0.697 0.348 0.751
GDC-gap3 0.454 0.869 0.703 0.361 0.741
GDC-gap4 0.449 0.853 0.692 0.335 0.733
CKSAAGP 0.477 0.861 0.707 0.371 0.732
CTriad 0.215 0.897 0.624 0.155 0.668
GAAC 0.533 0.750 0.663 0.288 0.679
GDPC 0.525 0.826 0.706 0.370 0.727
GTPC 0.470 0.855 0.701 0.357 0.742
TPC 0.304 0.910 0.668 0.277 0.739

TABLE 2 | Performance comparison of various combined features of fivefold
cross-validation on the training dataset.

Feature SN SP ACC MCC AUC

AAC+DDE 0.582 0.857 0.747 0.461 0.784
AAC+GDC-gap1 0.483 0.870 0.715 0.388 0.770
AAC+GDC-gap2 0.453 0.871 0.704 0.363 0.773
AAC+GDC-gap3 0.435 0.866 0.694 0.339 0.759
AAC+GDC-gap4 0.447 0.873 0.703 0.360 0.760
DDE+GDC-gap1 0.586 0.858 0.749 0.466 0.790
DDE+GDC-gap2 0.588 0.854 0.748 0.464 0.791
DDE+GDC-gap3 0.583 0.860 0.749 0.466 0.785
DDE+GDC-gap4 0.587 0.851 0.746 0.459 0.784
AAC+DDE+GDC-gap1 0.585 0.860 0.750 0.468 0.794
AAC+DDE+GDC-gap2 0.584 0.852 0.745 0.457 0.790
AAC+DDE+GDC-gap3 0.593 0.857 0.751 0.471 0.784
AAC+DDE+GDC-gap4 0.587 0.855 0.748 0.464 0.785

TABLE 3 | Performance comparison of various combined features on the
independent dataset.

Feature SN SP ACC MCC AUC

AAC+DDE 0.564 0.860 0.742 0.450 0.808
AAC+GDC-gap1 0.488 0.884 0.725 0.413 0.799
AAC+GDC-gap2 0.455 0.878 0.708 0.373 0.787
AAC+GDC-gap3 0.448 0.881 0.707 0.371 0.795
AAC+GDC-gap4 0.462 0.865 0.704 0.362 0.783
DDE+GDC-gap1 0.569 0.857 0.742 0.450 0.812
DDE+GDC-gap2 0.560 0.854 0.736 0.437 0.805
DDE+GDC-gap3 0.576 0.857 0.745 0.456 0.808
DDE+GDC-gap4 0.569 0.857 0.742 0.450 0.801
AAC+DDE+GDC-gap1 0.56 0.859 0.739 0.443 0.806
AAC+DDE+GDC-gap2 0.557 0.855 0.736 0.437 0.805
AAC+DDE+GDC-gap3 0.552 0.855 0.734 0.433 0.806
AAC+DDE+GDC-gap4 0.567 0.859 0.742 0.450 0.801
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The results in Table 4 show that the performance of the
random forest classifier is the best, and its AUC value is
10.8%–20.4% higher than other classifiers. To further compare
the generalization ability of these classifiers, we test those models
on the independent dataset. Table 5 shows the experimental
results. The results showed that the random forest classifier is also
better than other classifiers on the independent dataset.

3.3 The Analysis of Feature Selection
In the extracted features, some feature vectors may be noisy or
redundant. To further improve the identification performance,
we try to find optimal features by feature selection methods in
this section. In this paper, the two-step feature selection
strategy is used as the feature selection strategy to eliminate
noise. In detail, we first used the ANOVA method to rank
feature vectors, and then we used the IFS strategy to filter the
optimal feature set.

The comparison of performance before and after
dimensionality reduction is shown in Figure 2. All
indicators of the selected features have higher values than
the original ones. The results suggest that the optimal feature
set can improve the overall performance of our identification
model and our fewer selected features can still accurately
describe AIPs.

3.4 Comparison With Existing Methods
Independent dataset test plays an important role in testing the
generalization ability of the identification model. Therefore,
the independent dataset was used to measure our identification
model; the performance of our identification model was

TABLE 4 | Performance of various classifiers utilizing AAC-DDE-GDC-gap1 feature and fivefold cross-validation on the training dataset.

Classifier SN SP ACC MCC AUC

Random forest 0.585 0.860 0.750 0.468 0.794
AdaBoost 0.579 0.743 0.678 0.324 0.661
Gradient Boost Decision Tree (GBDT) 0.583 0.788 0.706 0.379 0.686
LightGBM 0.564 0.754 0.678 0.321 0.659
XGBoost 0.576 0.757 0.684 0.336 0.666
J48 0.552 0.737 0.663 0.292 0.647
Logistic 0.497 0.677 0.605 0.175 0.624
Sequential minimal optimization (SMO) 0.476 0.725 0.626 0.206 0.601
SGD 0.491 0.689 0.610 0.182 0.590
Naïve Bayes 0.483 0.684 0.603 0.168 0.604

TABLE 5 | Performance of various classifiers based on AAC-DDE-GDC-gap1
feature on the independent dataset.

Classifier SN SP ACC MCC AUC

Random forest 0.560 0.859 0.739 0.443 0.806
AdaBoost 0.607 0.809 0.728 0.426 0.708
GBDT 0.640 0.798 0.735 0.443 0.719
LightGBM 0.538 0.859 0.730 0.424 0.698
XGBoost 0.579 0.847 0.740 0.446 0.713
J48 0.524 0.738 0.652 0.266 0.621
Logistic 0.498 0.658 0.594 0.156 0.615
SMO 0.442 0.701 0.598 0.147 0.572
SGD 0.493 0.679 0.604 0.173 0.586
Naïve Bayes 0.486 0.676 0.600 0.162 0.602

FIGURE 2 | Comparison of identification performance before and after dimensionality reduction.
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compared with existing methods, which contains AntiInflam
(Ferrero-Miliani et al., 2007), AIPpred, and AIEpred. Table 6
shows the detailed results of the different methods for
identifying AIPs, where the results are ranked according
to AUC.

As shown in Table 6, the value of our proposed identification
model iAIPs in SN, SP, ACC, AUC, and MCC are 0.567, 0.874,
0.751, 0.822, and 0.471, respectively. Furthermore, the same
independent dataset-based experimental results showed that
the ACC of iAIPs was 0.007–0.186 higher than that of
AntiInflam and AIPpred, which is similar to AIEpred.
Moreover, according to AUC, our performance is better than
the other methods, which is 0.009–0.175 higher than the others.
The results indicate that our method has better performance than
other existing prediction models.

4 CONCLUSION

In this paper, an identifying AIP model based on peptide
sequence is proposed. We tried various features and their
combinations, utilized various commonly used ensemble
learning classification algorithms and the two-step feature
selection strategy. After trying a large number of experiments,
we finally constructed an effective AIP prediction model. By
conducting a large number of experiments on the training dataset
and independent dataset, we verified that our proposed

prediction model iAIPs could efficiently identify AIPs from
the newly synthesized and discovered peptide sequences,
which is better than the existing AIP prediction models.

In the future, the optimization of the feature representation
method is a research direction. Especially, the research on a new
feature representation method that can adaptively encode peptide
sequences is of great significance. Furthermore, other optimization
methods and computational intelligence models will be considered
for identifying anti-inflammatory peptides. Deep learning (Lv et al.,
2019; Zeng et al., 2020a; Zeng et al., 2020b; Zhang et al., 2020b; Du
et al., 2020; Pang and Liu, 2020), unsupervised learning (Zeng et al.,
2020c), and ensemble learning (Sultana et al., 2020; Zhong et al.,
2020; Li et al., 2021; Niu et al., 2021; Shao and Liu, 2021) will be
employed when the dataset is large enough.
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A New Method for Recognizing
Protein Complexes Based on Protein
Interaction Networks and GO Terms
Xiaoting Wang, Nan Zhang, Yulan Zhao and Juan Wang*

School of Computer Science, Inner Mongolia University, and with Ecological Big Data Engineering Research Center of theMinistry
of Education, Hohhot, China

Motivation: A protein complex is the combination of proteins which interact with each
other. Protein–protein interaction (PPI) networks are composed of multiple protein
complexes. It is very difficult to recognize protein complexes from PPI data due to the
noise of PPI.

Results: We proposed a new method, called Topology and Semantic Similarity Network
(TSSN), based on topological structure characteristics and biological characteristics to
construct the PPI. Experiments show that the TSSN can filter the noise of PPI data. We
proposed a new algorithm, called Neighbor Nodes of Proteins (NNP), for recognizing
protein complexes by considering their topology information. Experiments show that the
algorithm can identify more protein complexes and more accurately. The recognition of
protein complexes is vital in research on evolution analysis.

Availability and implementation: https://github.com/bioinformatical-code/NNP.

Keywords: protein interaction network, protein complex, GO terms, NNP, function of proteins

INTRODUCTION

The recognition for protein complexes based on the PPI network has become one of the most
important channels in current research. Detection of protein complexes from PPI networks is an
important work in the understanding of biological processes. It is also of great significance for
researching mechanisms and developing new drugs. Researchers have put forward a variety of
effective methods to recognize protein complexes. The MCODE algorithm chooses a vertex with the
maximum weight as the initial cluster, and then recursively searches for the vertices that meet a
threshold value to add to the cluster (Bader and Hogue, 2003). The DPClus is a modified algorithm
that chooses the vertices with high connectivity with the present cluster iteratively (Altaf-Ul-Amin
et al., 2006). Jerarca uses the hierarchical cluster to partition the complexes based on the distance
among proteins (Aldecoa andMarín, 2010). RNSC divides the complexes by means of a cost function
(King et al., 2004). MCL (Enright et al., 2002) simulates network flow by constructing a similarity
matrix, alternately performs expansion and inflation operations, and achieves clustering effect after
multiple iterations. But the method is difficult to identify the complexes with little overlap. After that,
an improvedmethod was proposed whichmeasured the reliability of PPI based on the annotations of
protein function (Cho et al., 2007). SCI-BN and ClusterM combine topology of PPI and biological
information of sequences to identify complexes (Qi et al., 2008; Wang et al., 2020).

Although these methods can effectively identify functional modules of proteins, they all ignore the
internal structure of the modules. The basic structure of a protein complex is composed of the
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nucleus of a protein complex and all its subordinate proteins
(Gavin et al., 2006). So, a protein complex can be regarded as a
subgraph with a nucleus and its subordinate proteins for assisting
the nucleus to play a specific role. COACH (Wu et al., 2009) and
CORE (Leung et al., 2009) are proposed based on the idea. The
F-MCL algorithm combines firefly algorithm and MCL (Lei et al.,
2016). ClusterONE is a clustering algorithm guided by cohesion
which can identify subgraphs of dense substructure (Nepusz et al.,
2012). However, the cohesion formula may lead to deviation in
the clustering process. EA (Halim et al., 2015) uses multi-
population evolutionary algorithm to cluster the probability
map. MNC is a novel clustering model based on multi
networks which combines the shared clustering structure in
PPI and domain–domain interaction (DDI) networks in order
to improve the accuracy of identification (Ou-Yang et al., 2017).
IdenPC-CAP recognizes protein complexes from the interaction
networks consisting of RNA–RNA interactions, RNA–protein
interactions, and PPIs (Wu et al., 2021). CSC uses both topological
and biological characteristics to identify protein complexes (Liu et al.,
2018; Sharma et al., 2018). DPCMNE detects protein complexes via
multilevel network embedding (Meng et al., 2021). PC2P formalizes
protein complexes as biclique spanned subgraphs and converts the
problem of detecting protein complex to coherent partition
(Omranian et al., 2021). A semi-supervised model based on non-
negative matrix tri-factorization is also used to detect protein complex

(Liu et al., 2021). In the FCAN-PCI, the semantic similarity of proteins
and the topology of PPI network are integrated into a fuzzy clustering
model (Pan et al., 2021). GECA proposes a model based on the gene
expression and core-attachment (Noori et al., 2021). The idenPC-
MIIP method modifies the weights of original network by defining
mutually important neighbors on the weighted network and then
identifies protein complexes using a greedy algorithm (Wu et al.,
2021)

METHODS

For a PPI network N, TSSN computes the edge aggregation
coefficient as the topology characteristics of N, makes use of
the GO annotation as the biological characteristics of N, and then
constructs a weighted network. NNP identifies protein complexes
based on this weighted network.

TSSN
A PPI network can be seen as an undirected graph G� (V, E), and
each protein is a node in V. Two proteins interact with each other
if and only if there is an edge between the two nodes representing
two proteins. In order to describe the structural similarity among
proteins in the PPI network, Jaccard coefficient between two
nodes u and v in G� (V, E) is defined as follows:

J(u, v) � |N(u) ∩ N(v)|
|N(u) ∪ N(v)|, (1)

where N(u) [or N(v)] represents the set of all neighbor nodes of
protein u (or v) in the network.

We adopted the simGIC method (Tian and Guo, 2017), which
is an improved method from the GIC (Pesquita et al., 2007) to
calculate semantic similarity between proteins. Assuming that
proteins u and v are annotated by term setsA�{T1, T2,/, Tm} and
B�{S1, S2, /, Sn} respectively, the semantic similarity between u
and v is defined as follows:

se(u, v) � ∑Ti∈A ∩ B − logp(Ti)
max{IC(A), IC(B)}, (2)

FIGURE 1 | Workflow of the NNP.

TABLE 1 |Results of methods are used in the unweighted networks and weighted
networks computed by the TSSN.

Metrics
Method

R P F1

ClusterOne-u 0.32 0.415 0.361
ClusterOne-T 0.34 0.43 0.38
MCODE-u 0.21 0.49 0.294
MCODE-T 0.23 0.51 0.317
MCL-u 0.58 0.21 0.308
MCL-T 0.605 0.228 0.331

Bold values represents the experimental results on ClusterOne, MCode and MCL
weighted by the TSSN method.
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Where IC(A) is the set of {−log(T1), −log(T2),. . ., −log(Tm)}, and
p(Ti) represents the times that GO terms or single function of
protein appear in the specified term data.

Here, the similarity between two proteins u and v is defined as
the average between their topological similarity and semantic
similarity, that is,

s(u, v) �
∑

u1∈N(u),v1∈N(v)
(J(u1, v1) + se(u1, v1))

2
, (3)

where the value of s(u,v) is [0,1].

NNP
Given a weighted network G� (V, E, W), where V � {v1, v2,/, vm},
E � {e1, e2,/, en},W � {w(e1), w(e2),/, w(en)}, and w(ei) represents
the weight of the edge ei. The distance between the nodes vi and vj is
the minimum among all lengths of paths. Vj is denoted as the set
of nodes with the distance 2 between vj, which is referred to as
the set of second-order neighbor nodes between vj. The network
Gj� (Vj, Ej, Wj) is derived by Vj. The weighed degree of vj in G is
defined as follows:

WD(vj, G) � ∑n
i�1

w(vj, vi), (4)

where (vj, vi)∈E and w(vj, vi) indicates the weight of the edge
between node j and node i. The average weighted degree of vj in G
is computed by the following equation:

AWD(vj, G) � ∑n
i�1

w(vj, vi)/∣∣∣∣V∣∣∣∣. (5)

The weighted neighbor ratio is defined as follows:

WN(vj, G) � WD(vj, G)
WD(vj, G) +WD(vj, Gj). (6)

In order to assess complexes, we compute the tightness degree
of a complex G� (V, E, W) as follows:

WDt(G) � 2∑n
i�1

w(ei)/(|V| × (|V| − 1)). (7)

For two complexes C1 and C2, the overlap ratio (OL) between
them is defined as follows:

OL(C1, C2) � |C1 ∩ C2|2
|C1| · |C2| . (8)

NNP identifies complexes by four main steps. First, the NNP uses
the TSSN method to compute the similarity among proteins, and
then builds a PPI weighted network and neighbor networks. Second,
it calculates a conditional threshold in order to reduce the noise, and
then the network is transformed into a matrix, which is arranged in
descending order according to the average weighted degree (AWD)
of nodes to form a seed list. Third, it selects nodes from the seed list
iteratively as the initial complex to cluster, and then removes or
retains the node according to the weighted neighbor ratio (WN) until
all nodes list are solved. Finally, it calculates the OL among protein
complexes and judges whether the complexes are retained or
discarded through the network tightness (WDt). Finally, the
complex set was obtained. Figure 1 shows the workflow of NNP.
The pseudo code can be seen in the Algorithm.

RESULTS AND DISCUSSION

In order to assess the TSSN method, we compare the protein
complexes identified by three classical methods, that is,
ClusterONE, MCODE, and MCL, respectively, based on the
PPI networks with the weight computed by TSSN and the PPI
networks without weight. We compare the results of protein
complexes predicted by CFinder, ClusterONE, MCODE, MCL,
EA, and NNP methods.

Datasets
In all experiments, we use the PPI data of yeast downloaded from
the DIP database (https://dip.doe-mbi.ucla.edu/dip/Download.
cgi?SM�7&TX�4932), version 20170205. In order to reduce
the noise of data, we delete the repeated interactions and the

TABLE 2 | F1 values of NNP on different thresholds of WNT.

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
F1 0.4 0.41 0.42 0.41 0.4 0.39 0.395 0.37 0.3 0.2 0.13

Bold values shows that when the threshold t is 0.2, the value of F1 reaches a maximum of 0.42.

TABLE 3 | Precision values of NNP on different thresholds of WNT.

t 0.2 0.21 0.22 0.23 0.24 0.25
Precision 0.491 0.492 0.5 0.495 0.493 0.493

Bold values shows that when the threshold t is 0.5, the precision value reaches the
maximum 0.5.

TABLE 4 | Each algorithm identifies the cluster information.

No. Algorithm Number Average Coverage

1 CYC2008 408 4.71 1,628
2 CFinder 178 11.31 2,147
3 ClusterONE 413 5 1898
4 MCODE 110 6.5 1,299
5 NNP 538 4.54 1937
6 MCL 623 6.57 4096
7 EA 398 13.5 2,661
8 PC2P 434 4.50 1953
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circle of a node to itself. Then the PPI network contains 5,115
nodes and 22,552 edges. GO annotations and ontology data of
yeast are downloaded from the website (http://www.
geneontology.org/).

Reference Sets
Here, two standard sets, namely, CYC2008 (Pu et al., 2009) and
NewMIPS (Friedel et al., 2008), are used in the experiments,
where CYC2008 is downloaded from (http://wodaklab.org/
cyc2008/downloads). These data are predicted by biological

methods, including 408 complexes and 1,628 proteins. The
NewMIPS is a set of protein complexes, including 428
complexes and 1,171 proteins.

Metrics
For a prediction algorithm, its effectiveness is measured by four
indexes: recall, precision, F1, and overlap ratio. The recall value R is
the ratio of the number of complexes which are identified by
methods and matched with the complexes in the standard set to
the number of complexes in the standard set; the precision value P is
the ratio of the number of complexes which are identified by
methods and matched with the complexes in the standard set to
the number of all complexes identified by the algorithm. F1 is the
harmonic average of P and R, that is,

F1 � 2 × R × P

R + P
. (9)

To judge the biological significance of complexes, a functional
enrichment analysis is used to analyze the gene annotation
information in the GO database, that is, p-value. The
calculation method is given as follows:

p − value � 1 − ∑m−1

i�0

( |F|
i
)( |V| − |F|

|C| − i
)

( |V|
|C|) , (10)

wherem is the number of identified complexes that are the same as
those in the standard data set, F the complexes in the standard data
set, V the number of proteins contained in the PPI network, and C
the number of identified complexes. Here, if p-value is less than 0.01,
the complex is regarded with biological significance.

RESULTS

In all recorded experimental results, we use CYC2008 as the
standard set and set the threshold of OL as 0.2. OL represents the
overlap rate between the two complexes. The value of OL being
0.2 indicates that the identified complex is considered correct
when the OL with the standard complex reaches 0.2.

Table 1 shows the results. For each method in Table 1, u
represents the methods that are used to identify the complexes
from the unweighted networks and T represents the methods that
are used to identify the complexes from the weighted
networks computed by the TSSN. From Table 1, we can
see that the precision values for the weighted networks

TABLE 5 | Three complexes identified by methods were analyzed from the DIP.

Algorithm
Protein complex

CFinder (%) Cluster
-ONE

MCODE (%) NNP (%) MCL (%) EA (%) PC2P (%)

CFI 100 100% 100 100 100 100 83.3
NEC 83.3 64.1% 91.7 100 100 91.7 83.3
DRC 56.3 100% 61.4 91.7 67.5 83.3 53.3

TABLE 6 | Results of protein complexes recognized by algorithms.

Metrics method R P F1

CFinder 0.3408 0.2698 0.3012
ClusterONE 0.4068 0.3554 0.3794
MCODE 0.2293 0.501 0.3146
NNP 0.3515 0.5107 0.4164
MCL 0.3326 0.4093 0.367
EA 0.34 0.383 0.3602
PC2P 0.4340 0.1935 0.2677

Bold values show that the experimental results of the NNP method are optimal.

TABLE 7 |Numbers of protein complexes perfectly matched by each algorithm for
DIP data set.

Algorithm Perfect matching

CFinder 11
ClusterONE 10
MCODE 6
NNP 17
MCL 15
EA 14
PC2P 0

Bold values show that the experimental results of the NNP method are optimal.

TABLE 8 | Protein complexes with lower p-value identified by the algorithm on
the DIP.

GO term OL (%) p-value

mRNA processing 96 1.54E-36
Small nuclear ribonucleo protein complex 86.1 2.73E-58
mRNA splicing, via spliceosome 95.7 4.48E-38
Transferase activity, transferring glycosyl groups 89.59 1.81E-76
Ribosomal small subunit biogenesis 88.2 2.45E-48
Transporter activity 94.38 6.84E-100
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computed by the TSSN method are higher than those for the
unweighted networks. So the TSSN method is efficient for
computing the weigh values of networks.

The precision results of the NNP algorithm depend on the
thresholds of weighted neighbor ratio (WNT). Table 2 shows that
F1 values gradually increase with the increase in t values if the
thresholds of WNT is (0,0.2), and F1 gradually decreases as a
whole if the t values of WNT continue to increase from 0.2. So F1
can reach themaximum 0.42 if values ofWNT are (0.2, 0.25).Table 3
shows the precision values of NNP on different thresholds of WNT.
When the WNT value is 0.22, the precision is 0.5, which is slightly
higher than the other five values. Therefore, it is reasonable for the
NNP algorithm to set the threshold of the WNT as 0.22.

Table 4 lists the comparison of the cluster information
identified by the six algorithms compared with CYC2008.
CYC2008 is selected as the benchmark, and its average size

is 4.71; the closer the average size of the cluster identified by a
method is to 4.71, the more accurate the method is. Among
the six algorithms, the average size of clusters identified by the
NNP is 4.54, which is closest to the size of clusters in the
standard data. So the recognition result of NNP has high
theoretical reliability.

Table 5 shows the results identified by the CFinder,
ClusterONE, MCODE, MCL, EA, NNP, and PC2P methods
for three complexes randomly selected from DIP. CFI is the
mRNA cleavage factor complex with size 5; NEC is the nuclear
exosome complex with size 12, and DRC is the DNA-directed
RNA polymerase II complex. The table shows that six
methods recognize the same proteins as the CYC2008 for
the CFI, that is, OL 100%, OL of NNP, and MCL is both 100%
for NEC. The OL of PC2P is 83.3%. The OL of EA and that of
MCODE are the same, which is 91.7%, ranking second. There
is one missed protein: YHR081W. CFinder has two missed
proteins and the OL is 84%. The OL of PC2P is 83.3%. So, the
accuracy of ClusterONE is low. For DRC, the performance of
NNP and ClusterONE is better, while the OL value of EA is
83.3%. There are many omissive and wrong proteins detected
by CFinder, MCODE, MCL, and PC2P. The OL of CFinder is
56.3%. The OL of PC2P is only 53.3%.

Table 6 shows the results of six methods. In terms of precision,
the value of CFinder is lowest, which is only 26.98%, and the value
of NNP is largest compared with other algorithms, reaching
51.07%. The precision of MCODE lists second, reaching
50.1%. Although the precision of MCODE is high, the recall is
low, which leads to the low F1 value. From the table, it is obvious
that the F1 of NNP is max among all other methods. So NNP has
better accuracy in identifying protein complexes than other
methods.

Table 7 lists the number of protein complexes identified by
CFinder, ClusterONE,MCODE,MCL, EA,NNP, and PC2P fromDIP
data set, matched with CYC2008. As shown in Table 7, the protein
complexes identified by NNP based on the DIP data set are
perfectly matched with 17 protein complexes. The MCODE
only has six complexes perfectly matched with the standard
set. The PC2P has no perfectly matched complex with the
standard set. Therefore, compared with other algorithms, the
NNP algorithm can accurately and perfectly match more
protein complexes on the DIP data set.

Table 8 lists some protein complexes with low p-values
identified by the NNP algorithm on the DIP, which can show
that the protein complexes identified by the NNP algorithm
have significant biological significance. Table 9 lists three
protein complexes perfectly matched with DIP and NewMIPS
identified by the NNP method.

TABLE 9 | Algorithm perfectly matches the protein complex on the DIP.

GO term OL (%) p-value

mRNA metabolic process 100 7.37E-27
Anaphase-promoting complex–dependent catabolic process 100 4.68E-24
Polyadenylation-dependent snoRNA 3′-end processing 100 1.45E-32

Algorithm | detecting protein complexes.
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CONCLUSION

Considering the topological structure of the PPI network, it introduces
the gene ontology in biological information. We propose the methods
for computing weight of protein interaction network and the
recognizing of protein complexes on the weighted network. By
comparing with other algorithms, the TSSN method based on
topological features and GO term similarity can filter the noise,
which can reduce the impact of noise data. The NNP algorithm
can identify the protein complexes. The experimental results show that
the NNP is superior to other classical algorithms.

In the future, we will adopt new technologies to detect false-
positive edges and predict false-negative edges in the PPI
network, thus improving the quality of the PPI network.
Machine learning methods will be used to detect protein
complexes based on their biological characteristics. Finally,
since static PPI networks only contain the interaction between
proteins and cannot reflect the dynamic characteristics of proteins
interactions over time, we will study how to build a dynamic PPI
network and identify protein complexes in the dynamic network.
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Naturally derived bioactive peptides with antihypertensive activities serve as promising
alternatives to pharmaceutical drugs. There are few relevant reports on the mapping
relationship between the EC50 value of antihypertensive peptide activity (AHTPA-EC50) and
its corresponding amino acid sequence (AAS) at present. In this paper, we have
constructed two group series based on sorting natural logarithm of AHTPA-EC50 or
sorting its corresponding AAS encoding number. One group possesses two series, and
we find that there must be a random number series in any group series. The random
number series manifests fractal characteristics, and the constructed series of sorting
natural logarithm of AHTPA-EC50 shows good autocorrelation characteristics. Therefore,
two non-linear autoregressive models with exogenous input (NARXs) were established to
describe the two series. A prediction method is further designed for AHTPA-EC50

prediction based on the proposed model. Two dynamic neural networks for NARXs
(NARXNNs) are designed to verify the two series characteristics. Dipeptides and
tripeptides are used to verify the proposed prediction method. The results show that
the mean square error (MSE) of prediction is about 0.5589 for AHTPA-EC50 prediction
when the classification of AAS is correct. The proposed method provides a solution for
AHTPA-EC50 prediction.

Keywords: antihypertensive peptides, NARXNN, fractal characteristics, EC50 prediction, machine learning

1 INTRODUCTION

Hypertension is a clinical syndrome characterized by increased systemic arterial blood pressure,
which can be accompanied by functional or organic damage of the heart, brain, kidney, and
other organs. The renin–angiotensin system (RAS) controls blood pressure by regulating the
volume of blood in blood vessels. The angiotensin-converting enzyme (ACE) is the core
component of the RAS. The ACE can convert inactive angiotensin I into angiotensin II with
vasoconstriction, which indirectly increases blood pressure (Zhang et al., 2000). Therefore, ACE
inhibitors are widely used as drugs for the treatment of cardiovascular diseases (Stone, 2018).
Antihypertensive active peptide is an effective ACE inhibitor (Tu et al, 2018a; Tu et al, 2018b; Wu
et al, 2019), which has attracted great attention in the treatment and prevention of
hypertension. The EC50 value (sample concentration when the ACE inhibition rate is 50%)
describes the activity of antihypertensive peptide, which is the most important index to select
antihypertensive active peptide. Some research studies focus on feature representation (Tong,
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et al, 2008; Manavalan et al, 2019), and some research studies
focus on identification (Majumder, and Wu, 2010). Machine
learning (ML) approaches are becoming more and more
popular in bioinformatics (Baldi et al., 2001; Libbrecht and
Noble, 2015; Zou and Qiliu, 2019; Yang et al., 2020; Zhang
et al., 2021). Some research studies are associated with
classification, and some are associated with regression. In
2015, Kumar et al. developed four different model types for
predicting AHTPs with varied lengths using ML approaches
(Kumar et al., 2015a; Kumar et al., 2015b). Another paper on
AHTP prediction used random forest (RF) approaches (Win
et al., 2018). However, there is great uncertainty in the
relationship between the AAS of antihypertensive peptides
and its corresponding AHTPA-EC50. So far, the mapping
relationship between AHTPA-EC50 and its corresponding
AAS has not been reported. The existing published data
show that AHTPA-EC50 has multi-scale characteristics. It is
difficult to establish a deterministic model between the AAS
and AHTPA-EC50 directly.

Fractal phenomena generally exist in nature. Fractal data
have the characteristics of instability, self-similarity, and
multi-scale (Ruderman, 1996; Ghosh and Somvanshi, 2008;
Al-Hamdan, et al, 2010; Al-Hamdan et al, 2012). The spectrum
of fractal data is consistent (Pentland, 1984; Nill and Bouzas,
1992; Wornell and Oppenheim, 1992). These characteristics
can be used to describe physical phenomena with statistical
fractal. Fractional Brownian motion (FBM) (Chow, 2011; Kim
and Kim, 2004; Fouché and Mukeru, 2013) is more universal
than ordinary Brownian motion, and it can better describe the
fractal phenomena in nature. FBM can be modeled and
described by the time series of dynamic system, and time-
series analysis is an important method of system identification
and analysis. Yule first proposed the autoregressive (AR)
model to predict the law of market change in 1927. In the
1960s, time-series analysis made a great progress in spectral
analysis and estimation. The research of linear time-series
model has been greatly developed from the AR model to
autoregressive moving average (ARMA) modeling theory.

Engle and Granger developed estimation procedures, tests,
and empirical examples for the relationship between
co-integration and error correction models (Engle and
Granger 1987), and Hannan and Deistler proposed the
multivariable VARMA model and VARMAX model
(Hannan and Deistler, 1988). However, Moran proposed the
limitations of linear model in the 1950s (Moran, 1953). The
non-linear time-series model follows to become an attracting
research topic until the late 1970s and early 1980s. These
research studies include the threshold autoregressive model,
exponential autoregressive model, bilinear model, non-linear
autoregressive model, and state-dependent model. Tong et al.
gave the threshold autoregressive model (Tong, 1983), and
Ozaki proposed an exponential autoregressive model (Ozaki,
1980). The system identification is generally based on the
complete clarity of input–output causality. In practical
application, the system output can be measured, but the
input of some specific systems is difficult to observe and
measure. In that situation, it is not easy to determine the
causal relationship between input and output. In that case,
the traditional system identification method is difficult to
apply. Although the system’s input cannot always be
determined, it is certain that there is a relationship between
some known parameters or data and the system output. These
known parameters or data can directly or indirectly affect the
system output. If the relevant data are also regarded as the
system input, then the time-series model with exogenous input
is determined. Tong analyzed the non-linear time series with
exogenous input, established the relationship between non-
linear time series and non-linear dynamic system (chaos), and
studied the prediction based on non-linear time series (Tong,
1990).

In this paper, a kind of time series construction method on
AHTPA-EC50 and its corresponding AAS is proposed firstly.
We can find a lot of fractal characteristics from the two group
time series. Then, the two groups of constructed series are
modeled as two different NARX time-series models.
Furthermore, two NARXNNs are used to perform the

FIGURE 1 | Constructed time series of natural logarithm of AHTPA-EC50 and its corresponding amino acid combination.
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proposed model. And then we further proposed a prediction
method for AHTPA-EC50 based on two NARXNNs and ML
classification algorithms. The model and prediction method are
useful and meaningful on antihypertensive active peptide
research, drug design, and industrial production.

2 MATERIALS AND METHODS

2.1 Analysis of AHTPA-EC50 and Its
Corresponding AAS
2.1.1 Statistical Analysis of AHTPA-EC50

559 group AHTPA-EC50 data and their corresponding AAS
are shown in Figure 1. Due to the difficulty of display,

Supplementary Material marks the corresponding AAS
every four EC50 values (interval � 3). The statistical
histogram is analyzed, and histogram analysis of AHTPA-
EC50 is shown in Figure 2A. We can see that AHTPA-EC50 is
concentrated on the right side of the longitudinal axis of the
coordinate and there is some very large AHTPA-EC50 value
in these data. The characteristics of large distribution span and
asymmetry appear in AHTPA-EC50 data. Comparing with the
normal distribution data with the same mean and variance, it can
be seen that AHTPA-EC50 data deviate very far from the normal
distribution. In order to reduce the scale of AHTPA-EC50, the
natural logarithm of AHTPA-EC50 data is calculated. The
distribution of natural logarithm of AHTPA-EC50 is further
analyzed, and the histogram distribution is shown in Figure 2B.
Compared with the normal distribution of the same mean and
variance, the natural logarithm histogram of AHTPA-EC50 cut off
more slowly in the tail, and it shows the characteristics of a long tail.
This is an important feature of fractal data.

2.1.2 Encoding for AAS
The expression of amino acid is different from the digital
number, and it is a symbolic quantity that cannot be directly
quantified. In order to analyze the relationship between the
AAS and its corresponding AHTPA-EC50, it is necessary to
encode for the AAS. The numerical definitions of different
amino acids are shown in Table 1. The AAS is digitally
encoded in a 21 base system. Because the number 0 cannot
appear in the first place of the combined code, the number 0 is
not defined here.

2.1.3 Constructed Time Series and Its Time–Frequency
Characteristics
(1) Constructed time series based on sorting code of AAS

As mentioned above, the AAS can be converted to decimal
digit by numerical definitions of amino acids. After sorting
the natural logarithm of coding numbers from small to large,
the natural logarithm of AHTPA-EC50 can be constructed.
The constructed time series is shown in Figure 3A. Multi-scale
wavelet transform is performed to the constructed AHTPA-
EC50 time series, and the time–frequency distribution is
shown in Figure 3B. There is also no obvious law between
high-energy data and series number and frequency in
Figure 3B, and different time–frequency relationships show
similar patterns.

(2) Constructed time series based on sorting AHTPA-EC50

TABLE 1 | Numerical definitions of amino acids.

Amino
acids

A C D E F G H I K L

Numerical definitions 1 2 3 4 5 6 7 8 9 10
Amino acids M N P Q R S T V W Y
Numerical definitions 11 12 13 14 15 16 17 18 19 20

FIGURE 2 | Statistical histogram: frequency histogram of (A) AHTPA-
EC50 and (B) natural logarithm of AHTPA-EC50.
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We also constructed natural logarithm of AHTPA-EC50 time
series by sorting the data from small to large. The AAS is
converted to decimal digit by numerical definitions of amino
acids. After sorting the natural logarithm of AHTPA-EC50 from
small to large, the time series of natural logarithm of coding
value of AAS is also constructed. The constructed time series is
shown in Figure 4A. Multi-scale wavelet transform is performed
to the natural logarithm of coding value of AAS. The
constructed time series of AAS and its time–frequency
distribution are shown in Figure 4B. And there is no obvious
law between high-energy data and series number and frequency.
However, different time–frequency relationships show similar
patterns.

In summary, the relationship between the natural logarithm of
AHTPA-EC50 and its corresponding natural logarithm of coding

AAS is special. If one of the series is sorted, the other will be a
random number series. We deduce that there is not a direct
regression modeling for their relationship.

The Haar wavelet is further used to decompose the
reconstructed time series to analyze fractal characteristics
(data in Figure 3A) in multiple scales. The low-frequency
data of different scales are shown in Figures 5A,B,C,D. The
Hurst index of the time series is estimated by multi-scale
wavelet transform data, as shown in Figure 6A, in which the
wavelet transform scales are 1–9. The estimated Hurst index
is used to generate FBM, and the empirical probability
distribution of the generated FBM data is shown in
Figure 6B. 10,000 FBM data are generated by the Monte
Carlo method here. The probability distribution data
corresponding to the constructed natural logarithm of

FIGURE 3 | Constructed first time series and its multi-scale wavelet
transform: (A) time series of natural logarithm of AHTPA-EC50 and (B)
time–frequency distribution of multi-scale wavelet transform.

FIGURE 4 | Constructed second time series and its multi-scale wavelet
transform: (A) time series of natural logarithm of coding AAS and (B)
time–frequency distribution of multi-scale wavelet transform.
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AHTPA-EC50 are represented in red, and the curve closest to
the constructed natural logarithm of AHTPA-EC50 is shown
in blue. It can be seen that the constructed AHTPA-EC50 is
very close to the FBM time series.

2.2 Non-Linear Autoregressive Time-Series Modeling
and Its Implementation
2.1.4 Correlation Analysis
Although the constructed series shows fractal characteristics,
the relationship between the natural logarithm of coding
value of AAS and its corresponding natural logarithm of
AHTPA-EC50 still needs to be analyzed. Figure 7A shows
the cross-correlation analysis for the first group of
constructed time series, and it shows weak correlation
between the two time series. Figure 7B shows the
autocorrelation analysis for sorting natural logarithm of

AHTPA-EC50. We can see that the sorting natural
logarithm of AHTPA-EC50 showed weak autocorrelation.
Figure 8A shows the cross-correlation analysis for the
second group of time series, and it shows weak correlation
between the two time series. Figure 8B shows the
autocorrelation analysis for constructed natural
logarithm of AHTPA-EC50, and the natural logarithm of
AHTPA-EC50 based on the coding value AAS showed
obvious autocorrelation.

2.1.5 Non-Linear Autoregressive Model With Exogenous
Input
According to the above analysis, the two groups’ constructed
AHTPA-EC50 data are modeled as an autoregressive time series,
and the natural logarithm of coding AAS is used as the exogenous
input parameter. The non-linear autoregressive model with

FIGURE 5 | Multi-scale wavelet decomposition of constructed time series: low frequency data of (A) level 1 wavelet transform, (B) level 2 wavelet transform, (C)
level 3 wavelet transform, and (D) level 4 wavelet transform.
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exogenous input is established to describe the relationship
between the AAS and its corresponding AHTPA-EC50, and
this relationship is described as

y(t) � f[y(t − 1), y(t − 2), ..., y(t − ny)
u(t − 1), u(t − 2), ..., u(t − nu) ], (1)

where y(t), y(t − 1), y(t − 2), ..., y(t − ny) represent time series
at different time and u(t − 1), u(t − 2), ..., u(t − nu) represent
exogenous inputs at different time, y denotes the natural
logarithm of AHTPA-EC50, and u denotes the natural
logarithm of coding AAS value. According to the
characteristics of AAS and its corresponding AHTPA-EC50,
the AAS is defined as the input parameter affecting AHTPA-
EC50 here.

2.1.6 Neural Network Implementation of Model
The NARX model of AHTPA-EC50 and AAS was realized by
the NARXNN. This neural network was performed in Matlab.
The two neural network structures are shown in Figure 9. The
mean square error (MSE) is selected as the performance
function of NARXNN. The Levenberg–Marquardt algorithm
is used for net training. The division ratio of training set,
verification set, and test set in neural network learning samples
is 0.7:0.15:0.15. The delay corresponding to the two
constructed series is 1:3 and 1:2, respectively, and the
hidden layer has 10 neurons.

FIGURE 6 | Estimation of Hurst index of the time series (A) and empirical
probability distribution of FBM with the same Hurst index (B). FIGURE 7 | Correlation analysis of the second group time series. (A)

Cross-correlation with the sorting natural logarithm of coding AAS. (B)
Autocorrelation of natural logarithm of AHTPA-EC50.
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2.1.7 Prediction Method for AHTPA-EC50

We further proposed a method for AHTPA-EC50 prediction. This
method includes two parts: classification and AHTPA-EC50

prediction. The ML algorithm is used to classify the AAS. The
classification corresponds to different digital segments of
AHTPA-EC50. The feature representation is necessary in this
process. This prediction method is described in Figure 10.
Support vector machine (SVM) is used for classification in this
research.

3 Results
3.1 Prediction Results of the Proposed Model
As mentioned above, there are 559 groups of samples in total.
However, these data include different antihypertensive

peptides, whose length is from 2 to 20. We select the
samples of AAS, whose length is fixed. There are 231
samples of dipeptides and tripeptides in our dataset. They
are larger than other peptides. These data are used to
verify the proposed model and prediction model. We also
constructed two series according to the above method. The
first 200 groups in the first series of samples are used for
training, and the last 31 data are used for validation and
testing. The training results of the constructed series are
shown in Figure 11.

For the first NARXNN corresponding to the first group
series, the training error is 4.895193, the validation error is
4.636605, and the testing error is 3.546904. For the second
NARXNN corresponding to the second group series, the
training error is 0.001881, the validation error is 0.124045,
and the testing error is 0.010165. The second NARXNN has
high accuracy; however, it needs the sorting number, and it
cannot be used for prediction alone. The classification of
the proposed prediction method can provide a rough
location in the series. The first NARXNN also gives an
original estimation value of AHTPA-EC50. The AHTPA-
EC50 will be predicted in the segment of the second
series, and two known term AASs help in prediction. The
known AASs are selected by the rough location and
original estimation value. The second NARXNN is
trained every time; therefore, the output will be changed
slightly. The first and second NARXNNs are trained in
Figures 11A,B.

The AHTPA-EC50 of dipeptides and tripeptides is used to
verify the prediction method. The first 200 groups in the first
series of samples are used for training, and the last 31 data in the
first series are used for testing. The proposed method demands
classification, and we assume that the classification is correct here;
thus, we input the AAS in segments. And the classification is
designed as three classification. AHTPA-EC50 � 1, and median
values of the series are designed as segment points. The results of
prediction are shown in Figure 12. Therefore, when the
classification is correct, the MSE is 0.5589. We also designed a
backpropagation neural network (BPNN) for comparison.
The network structure is designed as 3–10–1. The mean
square error (MSE) is selected as a performance function. The
Levenberg–Marquardt algorithm is used for net training. The
logsig function is set as the input function, and the pure linear
function is used in the second layer. The number of iterations is
set to 1000, the learning rate is 0.1, and the learning target is
0.00001. The results are shown in Figure 13, where test samples
are randomly selected 100 times. The results reveal that the
proposed method has better accuracy than the BPNN.

3.2 Classification of AAS for AHTPA-EC50

As mentioned above, the proposed prediction method
demands a rough position which is used in NARX2
prediction. Two classification and three classification are
designed for the proposed prediction method here. SVM is
used for the classification of AHTPA-EC50 and its
corresponding AAS here. We classify the AAS whose length
is less than three amino acids. 231 samples of dipeptides and

FIGURE 8 | Correlation analysis of the first group time series. (A) Cross-
correlation with the natural logarithm of coding value of AAS. (B)
Autocorrelation of sorting natural logarithm of AHTPA-EC50.
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tripeptides are classified here. For three classification, AHTPA-
EC50 � 1 and median values of the series are designed as
segment points. For two classification, the median value of
the series is designed as the segment point. The label design is
shown in Figure 14.

For two classification, there are 161 training data pairs and 70
testing data pairs which are used for classification. And eight
feature descriptors are extracted from the peptide sequence. They
are the amino acid composition, the digital description of AAS,
the peptide sequence code, and the length of peptide sequence.

FIGURE 9 | Structures of the neural network for the (A) first series and (B) second series.

FIGURE 10 | Prediction method for AHTPA-EC50–based NARX.
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The classification results are shown in Figure 15. We can see that
the two classification accuracy is 68.57% and the three
classification accuracy is 60.00%. Due to the limitations in
training, the effect of three classification is not very good. If
the quantity of training sample increases and other ML
algorithms are also used, we think the accuracy can be improved.

4 Conclusion
In this paper, the statistical distribution of AHTPA-EC50 is
analyzed. Two group time series are constructed between
AHTPA-EC50 and its corresponding AAS. According to the
characteristics of constructed time series, AHTPA-EC50 is
modeled by the NARX model. Then, a prediction method of
AHTPA-EC50 is proposed. Dipeptides and tripeptides are used

to verify the proposed model and prediction method. The
results show that the MSE is 0.5589 when the classification is
correct. Finally, we tried to classify the dipeptide and tripeptide
data by SVM. Although the accuracy of classification is not
very high, it is still feasible. The proposed model and
prediction method provide a solution for AHTPA-EC50

prediction, and they are useful and meaningful on
antihypertensive active peptide research, drug design, and
industrial production (Chen et al., 2020; Granger and
Joyeux 1980).

FIGURE 11 | Training and testing data: (A) the first NARXNN prediction
for the first group series and (B) the second NARXNN prediction for the
second group series.

FIGURE 12 | Prediction results by the proposed method.

FIGURE 13 | Prediction results by the BPNN.
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Identify DNA-Binding Proteins
Through the Extreme Gradient
Boosting Algorithm
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The exploration of DNA-binding proteins (DBPs) is an important aspect of studying
biological life activities. Research on life activities requires the support of scientific
research results on DBPs. The decline in many life activities is closely related to DBPs.
Generally, the detection method for identifying DBPs is achieved through biochemical
experiments. This method is inefficient and requires considerable manpower, material
resources and time. At present, several computational approaches have been developed
to detect DBPs, among which machine learning (ML) algorithm-based computational
techniques have shown excellent performance. In our experiments, our method uses fewer
features and simpler recognition methods than other methods and simultaneously obtains
satisfactory results. First, we use six feature extraction methods to extract sequence
features from the same group of DBPs. Then, this feature information is spliced together,
and the data are standardized. Finally, the extreme gradient boosting (XGBoost) model is
used to construct an effective predictive model. Compared with other excellent methods,
our proposed method has achieved better results. The accuracy achieved by our method
is 78.26% for PDB2272 and 85.48% for PDB186. The accuracy of the experimental results
achieved by our strategy is similar to that of previous detection methods.

Keywords: DNA-binding protein prediction,machine learning, feature extraction, dimensionality reduction, XGBoost
model

INTRODUCTION

Organisms contain many macromolecular substances, such as DNA and proteins, which contain the
genetic information of organisms and are important components of all cells and tissues that make up an
organism. To study the life activities of cells, it is necessary to study DNA and proteins and the interaction
between them. Research onDBPs has an extremely important status and significance in related life sciences
and plays an important role in DNA replication and recombination, virus infection and proliferation. It is
necessary to study the combination of DNA and protein to study the gene expression of organisms at the
molecular level. Researchers are paying increasing attention toDBP studies. DBPs are a kind of protein that
binds to DNA, and it is critical to determine which of the numerous proteins can attach to DNA (Liu et al.,
2019a; Li et al., 2019; Li et al., 2020) However, the traditional use of biochemical methods to find DBP
consumes considerable time and money. Based on the above requirements and the development of
computer science and ML(Zheng et al., 2019; Zheng et al., 2020; Wang et al., 2021a), relevant researchers
have developed many detection methods based on ML algorithms in the hopes of improving the
efficiency of detecting DBP and saving manpower and material resources.
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ML is frequently utilized in the fields of computational biology
(Jiang et al., 2013a; Cheng et al., 2019a; Liu et al., 2019b; Wang
et al., 2019; Liu et al., 2020a; Tao et al., 2020a; Wang et al., 2020a;
Zhang et al., 2020a; Zhao et al., 2020a; Zhu et al., 2020; Wang
et al., 2021b;Wang et al., 2021c; Dao et al., 2021; Yu et al., 2021) to
analyze brain disease (Liu et al., 2018a; Cheng et al., 2019b; Bi
et al., 2020; Iqubal et al., 2020; Zhang et al., 2021a), lncRNA-
miRNA interactions (Cheng et al., 2016; Liu et al., 2020b; Han
et al., 2021), protein remote homology (Hong et al., 2020), protein
functions (Wei et al., 2018a; Shen et al., 2019a; Shen et al., 2019b;
Ding et al., 2019; Wang et al., 2020b; Shen et al., 2020; Tang et al.,
2020; Wang et al., 2021d; Shang et al., 2021; Shao and Liu, 2021;
Zhao et al., 2021), electron transport proteins (Ru et al., 2019),
differential expression (Yu et al., 2020a; Zhao et al., 2020b; Zhai
et al., 2020) and protein-protein interconnections (Ding et al.,
2016a; Ding et al., 2016b; Yu et al., 2020b).

The protein sequence is very sizeable, and its number far exceeds
the number of structures known to researchers (Zuo et al., 2017).
Therefore, ML is used in various computer programs that predict
DBP. The model IDNA-Prot|dis (Liu et al., 2014) was proposed by
Liu et al. and is used to detect DBP based on the pseudo amino acid
composition (PseAAC), and it can accurately extract the
characteristics of DNA binding proteins. There are two models
that use PseACC and physical-chemical distance transformation
and support vector machine (SVM) algorithms, named PseDNA-
Pro (Liu et al., 2015a) and iDNAPro-PseAAC (Liu et al., 2015b). Lin
et al. developed the IDNA-Prot (Lin et al., 2011) prediction model
based on the random forest (RF) algorithm through the PseACC
feature. Kummar et al. developed two models based on RF and SVM
classifiers called DNA-Prot (Kumar et al., 2009) and DNAbinder
(Kumar et al., 2007). Dong et al. proposed the Kmer1+ACC (Liu
et al., 2016) model based on the SVM algorithms Kmer composition
and autocross covariance transformation. The position-specific
scoring matrix (PSSM) can be obtained by calculating the protein
sequence’s position frequency matrix, which has evolutionary
information on the protein (Shao et al., 2021). The Local-DPP
(Wei et al., 2017) uses the local pseudo position-specific scoring
matrix (Pse-PSSM) and random forest algorithm to detect DBPs.
Multiple kernel SVM is a DBP predictor from heuristically kernel
alignment, and it is also named MKSVM-HKA (Ding et al., 2020a),
which includes a variety of characteristics and was developed byDing
et al. The MSFBinder (Liu et al., 2018b) model proposed by Liu et al.
is based on multiview features as well as classifiers. DPP-PseAAC
(Rahman et al., 2018) is a model based on Chou’s general PseAAC,
and it is used to detect DBPs. Methods have also been developed that
combine multiscale features and deep neural networks to predict
DBPs, such as MsDBP (Du et al., 2019).Adilina et al. (2019) analyzed
protein sequence characteristics and implemented two different
feature selection methods to build a DBP predictor.

In recent years, an increasing number of researchers have
adopted complex feature extraction methods (Fu et al., 2020; Jin
et al., 2021) and classification models to identify DBPs. It is
critical to develop a method that uses as few DBP features as
possible and includes a simple classification model while also
ensuring a good ability to detect DPB. According to previous work,
we proposed a DBP identification method based on the XGBoost
model. First, several features were extracted from the protein

sequence. Second, the features of these sequences were spliced.
Third, the dimension of the data was standardized and reduced.
Finally, the XGBoost model was used to detect DBPs. We have
evaluated the effectiveness of our method on some benchmark data
sets. Compared with some current experimental methods, our
method achieves a better Matthew’s correlation coefficient (MCC),
with a value of 0.713 for PDB186 and 0.5652 for PDB2272.

METHODS

Identifying DBPs is a common dichotomy problem. First, we used
six different feature extraction models for DBPs sequences to
extract the corresponding sequence feature information. Then,
the sequence feature information was spliced. Next,
dimensionality reduction was performed on the spliced
sequence feature information. Finally, the XGBoost model was
utilized to identify DBPs. Figure 1 depicts the flowchart of our
adopted technique.

Extracting Features
To recognize DBPs, the corresponding features must be extracted.
We adopt six feature extraction methods to obtain sequence
information: global encoding, GE (Li et al., 2009); multi-scale
continuous as well as discontinuous descriptor, MCD (You et al.,
2014); normalized Moreau-Broto auto correlation, NMBAC (Ding
et al., 2016b; Feng and Zhang, 2000); position specific scoringmatrix-
based average blocks, PSSM-AB (Jeong et al., 2011; Zhu et al., 2019);
PSSM-based discrete cosine transform, PSSM-DCT (Huang et al.,
2015); and PSSM-based discrete wavelet transform, PSSM-DWT
(Nanni et al., 2012). The abovementioned feature extraction models
are all well-known protein sequence extraction algorithm s and
commonly used, which could be described in related works (Zou
et al., 2021).Table 1 shows the feature dimensions derived by various
feature extraction methods. After completing the above work, we
used MATLAB to horizontally stitch together (Ding et al., 2020c;
Ding et al., 2020d; Yang et al., 2021a) the features extracted from the
same protein sequence using different feature extraction methods.
The spliced features are represented by Zp. After splicing, the
dimensions of PDB14189 and PDB2272 are 2692, and the
dimensions of PDB1075 and PDB186 are 3092.

Standardize the Data
To make the data more standardized and unified and to strengthen
the relationship between the characteristics of the data and the labels
of the data, we use Z-score standardization to process the data.

Z-score standardization is defined as follows:

Mp � Zp
i − �Z
σ

(1A)

�Z � ∑N
i�0Z

p
i

N
(1B)

σ �
������������∑N

i�0(Zp
i − �Z )2
N

√
(1C)

i � 1, 2, . . . ,N (1D)
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where N is the total number of samples and σ is the standard
deviation.

The DBP sequence was processed in three stages: feature
extraction, feature information splicing, and data
standardization. Following the aforementioned three stages, we
can obtain the sequence feature information Mp.

Dimensionality Reduction by
Max-Relevance-Max-Distance
Zou et al. (Quan et al., 2016; Niu et al., 2020) developed a
dimensionality reduction method in 2015 named Max-
Relevance-Max-Distance (MRMD), and the user guide and
complete runtime program can be obtained and downloaded

from the following URL: https://github.com/heshida01/MRMD3.
0. It judges data independence through a distance function and
completes the dimensionality reduction operation in three steps
(Tao et al., 2020b). It first evaluates each feature’s contribution to
the classification and then quantifies each feature’s contribution
to the classification. Second, the weights of different features are
calculated for classification and the selected features are sorted
accordingly. Third, the different numbers of features are filtered
and classified and the results are recorded. We analyze and
compare the results of the previous step to select the most
effective group and use the sequence features chosen from this
group as the result of dimensionality reduction.

The maximum correlation and the maximum distance are the
main bases for the MRMD algorithm to judge the weight of each
feature to the prediction result. The Pearson correlation
coefficient can be used to quantify the degree of correlation
between features and cases, and it can be calculated by the
maximum relevance (MR).

The Pearson correlation coefficient is defined as follows:

ρX,Y � cov(X,Y)
σXσY

(2)

The ith characteristic from the sequence and the category label
to which those sequences belong make up the vectors X and Y.

FIGURE 1 | Process of predicting DBPs.

TABLE 1 | Dimensional information about the features.

Model Dimensionality

GE 150
MCD 882
MNBAC 200
PSSM-AB 200
PSSM-DCT 399
PSSM-DWT 1,040
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The maximum distance (MD) is used to assess feature
redundancy. We calculate the three indices between
characteristics in total.

ED(X,Y) �

�����������∑N
i�0
(xi − yi)2√√

(i � 1, 2, . . . ,N) (3A)

cos(X,Y) � X · Y
‖X‖‖Y‖ (3B)

TC(X,Y) � X · Y
‖X‖2 + ‖Y‖2 −X · Y (3C)

Equations 3A, E3B, E3C represent Euclidean distance, cosine
similarity and Tanimoto coefficient, respectively. We can obtain
the MD value by calculating the three indicators. Finally, the
classification contribution value of each feature is calculated by
combining MR and MD in a specific ratio.

After dimensionality reduction, the dimensions of PDB14189
and PDB2272 are 379, and the dimensions of PDB1075 and
PDB186 are 1460.

Based on the three steps of feature extraction and splicing, data
standardization and dimensionality reduction operations, we
obtain the final sequence features.

Extreme Gradient Boosting Algorithm
In 2011, Tianqi Chen and Carlos Guestrin (Chen and
Guestrin, 2016) first proposed the XGBoost algorithm, or
the extreme gradient boosting algorithm. It is a machine
learning model that achieves a stronger learning effect by
integrating multiple weak learners. The XGBoost model has
many advantages, such as strong flexibility and scalability
(Yang et al., 2021b; Zhang et al., 2021b).

Generally, most boosting tree models have difficulty
implementing distributed training because when training nth
trees, they will be affected by the residuals of the first n-1 trees
and only use first-order derivative information. The XGBoost
model is different. It performs a second-order Taylor expansion
of the loss function and uses a variety of methods to prevent
overfitting as much as possible. XGBoost can also automatically
use the CPU’s multithreaded parallel computing to speed up the
running speed. This feature represents a great advantage of
XGBoost over other methods. XGBoost has improved
significantly in terms of effect and performance.

The XGBoost algorithm is described in detail as follows:

ŷi � ∑M
m�1

fm(xi), fm ∈ F (4)

whereM is the number of trees and F represents the basic model
of the trees.

The objective function is defined as follows:

L � ∑
i

l(ŷi, yi) +∑
m

Ω(fm) (5)

The error between the predicted value and the true value is
represented by the loss function l, and the regularized function Ω
to prevent overfitting is defined as follows:

Ω(f) � γT + 1
2
λ‖w‖2 (6)

where the weight and number of leaves of each tree are
represented by w and T, respectively.

After performing the quadratic Taylor expansion on the
objective function, the information gain generated after each
split of the objective function can be expressed as follows:

Gain � 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
( ∑

i ∈ IL

gi)2

∑
i∈IL

hi + λ
+
( ∑

i ∈ IR

gi)2

∑
i∈IR

hi + λ
+
( ∑

i ∈ I
gi)2

∑
i∈I
hi + λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − c (7)

We can see that the split threshold c is added to Eq. 7 to prevent
overfitting and inhibit the overgrowth of the tree. Only when the
information gain is greater than c is the leaf node allowed to split. It
can optimize the objective function at the same time because the tree
is prepriced.

XGBoost also has the following two features:

1. Splitting stops when the threshold is greater than the weight of
all samples on the leaf node too prevent the model from
learning special training samples.

2. The features are randomly sampled when constructing
each tree.

These features can prevent the XGBoost model from
overfitting during the experiment.

EXPERIMENTAL RESULTS

In this chapter, we obtain experimental results through experiments
on four benchmark data sets, evaluate our methods of identifying
DBP and compare our experimental results with that of other
methods.

Data Sets
The four benchmark data sets are PDB1075, PDB186, PDB14189,
and PDB2272. Liu et al. (2015a) and Lou et al. (2014) provided
PDB1075 (training set) and PDB186 (independent testing set),
respectively, and Du et al. (2019) provided PDB14189 (training
set) and PDB2272 (independent testing set). These data sets are
from the Protein Data Bank (PDB), and Table 2 shows the results of
their detailed information.

Measurement Standard
In this research, the following coefficients are used to evaluate
our method: specificity (SP), sensitivity (SN), Matthew
correlation coefficient (MCC), accuracy (ACC) and area
under the ROC curve (AUC) (Jiang et al., 2013b; Wei
et al., 2014; Wei et al., 2018a; Wei et al., 2018b; Cheng
et al., 2018; Jin et al., 2019; Zhang et al., 2020b; Cheng
et al., 2020; Liu et al., 2020c; Wang et al., 2020c; Guo et al.,
2020; Huang et al., 2020; Wei et al., 2020; Zeng et al., 2020;
Zhai et al., 2020). The calculation formulas for these
coefficients are as follows:
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Spec � TN

TN + FP
(8A)

SN � TP

TP + FN
(8B)

MCC � TP × TN − FP × FN�������������������������������������������(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)√
(8C)

ACC � TP + TN

TP + TN + FP + FN
(8D)

Among them, TN, TP, FP and FN reflect the values of true
negatives, true positives, false positives, and false negatives,
respectively.

Performance Analysis
On the PDB 1075 data set, the performance of the spliced
sequence features and single sequence features is evaluated by
randomly extracting 30% of the data as a test set. Figure 2;
Table 3 depict the experimental outcomes. PSSM-DWT (MCC:
0.4981) achieved better performance than other single sequence
features. The spliced sequence features perform better than the
single sequence feature on all parameters. The spliced sequence
feature (ROC: 0.81) also gained the best ROC performance.

Independent Data Set of PDB186
In this experiment, different sequence features have different
prediction performances. We use PDB1075 as the training set and
PDB186 as the test set to evaluate our experimental method and

compared the experimental findings of our approach to those of
13 other methods. Table 4 clearly shows the complete
experimental outcomes.

The MCC values of the five methods are all above 0.6 for
MSDBP, MSFBinder, Local-DPP MKSVM-HKA, and Adilina’s
work (0.606, 0.616, 0.625, 0.648 and 0.670, respectively). Thus,
these methods have excellent performance. Although Adilina’s
work (SN: 95.0%) performs best in terms of the value of SN, the
results of XGBoost achieve optimal ACC (85.48%), MCC (0.713)
and Spec (80.6%). On PDB1075 and PDB186, XGBoost
outperforms the other methods.

Independent Data Set of PDB2272
Du et al. (2019) removed proteins in PDB2272 that shared more
than 40% of their sequence with PDB14189 to avoid homology
bias between the two data sets. We conducted experiments on
Du’s data set to verify the performance of the XGBoost model.
PDB14189 is the training set, and PDB2272 is the test set. We
independently tested XGBoost on PDB2272, used PDB14189 as
the training set and compared it with five other classification
methods. The detailed experimental results can be seen in
Table 5. The results clearly show that XGBoost achieves the
best ACC, MCC and Spec values of 78.26%, 0.5652 and 76.05%,
respectively, compared with the other methods. For PDB2272,
XGBoost presents a superior performance relative to the other
classification methods.

Experimental Results With PDB2272 and
PDB186 as Test Set
We combined PDB14189 and PDB1075 as the training set,
and combined PDB2272 and PDB186 as the test set. After
normalization and dimensionality reduction operations, we
got an accuracy of 79.09% and the MCC value was 0.5818. It
can be seen that this result is between the previous two
experimental results.

DISCUSSION AND CONCLUSION

This paper proposes a method of predicting DBPs using the
XGBoost algorithm and by splicing sequence feature
information. The final sequence feature is built from
multiple sequence features and spliced by MATLAB. To
make the data more standardized and strengthen the
relationship between data characteristics and data tags, the
data are processed using Z-Score standardization. During the
experiment, we used MRMD to reduce the dimensionality of
the data and thus reduce the characteristics of the data. We

TABLE 2 | Basic information about four standard data sets.

Data sets The number of negative The number of positive The total numbers

PDB14189 7,060 7,129 14,189
PDB1075 550 525 1,075
PDB2272 1,119 1,153 2,272
PDB186 93 93 186

FIGURE 2 | ROC curves of different feature extraction methods on
PDB1075 data.
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performed experiments and compared the performance of
XGBoost in terms of single sequence feature information

and spliced sequence feature information. On the PDB 1075
data set, performance of the spliced sequence feature (MCC:
0.7272) is obviously better than that of the single sequence
feature. To further assess our method, we applied the XGBoost
model to the PDB186 and PDB2272 data sets. XGBoost
produced superior results for PDB186 (MCC: 0.713) and
PDB2272 (MCC: 0.5652) compared to available methods.
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The functional study on circRNAs has been increasing in the past decade due to its
important roles in micro RNA sponge, protein coding, the initiation, and progression of
diseases. The study of circRNA functions depends on the full-length sequences of
circRNA, and current sequence assembly methods based on short reads face
challenges due to the existence of linear transcript. Long reads produced by long-read
sequencing techniques such as Nanopore technology can cover full-length sequences of
circRNA and therefore can be used to evaluate the correctness and completeness of
circRNA full sequences assembled from short reads of the same sample. Using long reads
of the same samples, one from human and the other from mouse, we have
comprehensively evaluated the performance of several well-known circRNA sequence
assembly algorithms based on short reads, including circseq_cup, CIRI_full, and CircAST.
Based on the F1 score, the performance of CIRI-full was better in human datasets,
whereas in mouse datasets CircAST was better. In general, each algorithmwas developed
to handle special situations or circumstances. Our results indicated that no single
assembly algorithm generated better performance in all cases. Therefore, these
assembly algorithms should be used together for reliable full-length circRNA sequence
reconstruction. After analyzing the results, we have introduced a screening protocol that
selects out exonic circRNAs with full-length sequences consisting of all exons between
back splice sites as the final result. After screening, CIRI-full showed better performance for
both human and mouse datasets. The average F1 score of CIRI-full over four circRNA
identification algorithms increased from 0.4788 to 0.5069 in human datasets, and it
increased from 0.2995 to 0.4223 in mouse datasets.

Keywords: circRNA, full-length sequences, short reads, long reads, assembly

INTRODUCTION

Only recently has circular RNA (circRNA) appeared as a hot research topic since it was first
discovered in the 1970s (Sanger et al., 1976; Arnberg et al., 1980; Kos et al., 1986). Different from
linear RNAs, the special covalent circular structure of circRNA is formed by back splicing (Jeck et al.,
2013). Identifying the back splice sites is the most important factor for circRNA identification from
the sequencing reads (Kristensen et al., 2019). Based on sequencing data, various identification
algorithms were developed, such as find_circ (Memczak et al., 2013), KNIFE (Szabo et al., 2015),
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CIRI (Y. Gao et al., 2015), and PCirc (Yin et al., 2021), some of
which require annotation information of genome sequences to
improve identification sensitivity and reduce the false discovery
rate (FDR) (Memczak et al., 2013; Baruzzo et al., 2017).

As more and more circRNAs were discovered in animals and
plants in recent years (Glažar et al., 2014; J.; Zhang et al., 2020a),
new functions of circRNAs in the organism have also been
discovered. Acting as micro RNA (miRNA) sponge is mostly
studied for circRNAs, and circRNAs regulate expression of
miRNA target gene indirectly (Piwecka et al., 2017). Hansen
et al found that exonic circRNA CDR1as can bind with miR-
671, which can degrade CDR1as mediated by AGO (Hansen et al.,
2013), and the binding sites are highly conserved. In addition,
circRNAs can also interact with RNA binding proteins as
endogenous competitive RNA (S. Zheng et al., 2021). The gene
muscleblind (MBL) of Drosophila can encode MBL protein as a
transcript factor, and MBL regulates the dynamic balance of
circular transcript (circRNA circMbl) and linear transcript
(Ashwal-Fluss et al., 2014). Although circRNAs were considered
to be noncoding RNAs (Qu et al., 2015), some circRNAs have been
found to translate proteins (Shi et al., 2020). For example, circRNA
circPINT can translate into protein PINT-87aa for inhibiting
malignant glioma (M. Zhang et al., 2018). Another circRNA,
circE7, derived from oncogenic human papilloma viruses
(HPVs), is found to produce E7 oncoprotein with modified N6-
methyladenosine (m6A) (Zhao et al., 2019).

For the study of circRNA functions, sequence information is
vital. Due to its special structure, it is difficult to obtain correct
and complete sequences of circRNAs (full-length sequences)
directly. Reconstruction of circRNAs full-length sequences was
effected by linear transcripts (Szabo & Salzman, 2016).
Computational tools such as circseq_cup (Ye et al., 2017),
CIRI-full (Y. Zheng et al., 2019), and CircAST (Wu et al.,
2019) were developed to assemble full-length sequences for
circRNAs according to short reads (next-generation
sequencing data and RNA-Seq data).

circseq_cup predicts circRNAs and constructs full-length
sequences based on paired-end (PE) short reads. This method
first relies on an alignment software (TopHat-Fusion, STAR-
Fusion, or segemehl (Kim & Salzberg, 2011; Dobin et al., 2013;
Hoffmann et al., 2014)) to identify fusion junction sites. The
construction of the virtual reference sequence concatenates
sequences between fusion junction sites. Full-length sequences
of circRNAs were assembled by PE reads that could align to the
middle of virtual reference sequences. Then, some criteria were
used to filter out false-positive circRNAs, such as sequences
supported by less than two pairs of PE reads. CIRI-full
introduces a new feature named reverse overlap (RO) for
assembling candidate circRNA sequences. Back-splice
junctions (BSJs) are PE reads that are aligned to back splice
sites which support the identification of circRNA. If RO reads or
BSJ reads can cover all cirexons (circRNA’s exon) between back
splice sites, the complete sequences of circRNA can be assembled
by connecting the cirexons. Otherwise, a combined strategy based
on both RO reads and BSJ reads were used to reconstruct
circRNA full-length sequences. Performance improvement of
CIRI-full relies on longer reads, such as longer than 250 bp.

CircAST assembles circRNA full-length sequences with mapped
fragments using a multiple splice graph model. Each transcript
was represented by a directed acyclic graph (DAG), exons
between back splice sites represent the nodes on the graph,
and directed edges on the graph indicate the mapped reads
mapped on these two different exons. Source node and sink
node should be the exons mapped by the fragments of back splice
reads of circular transcript. In addition, CircAST is an annotated-
based method and shows better performance on shorter read
lengths (from 75 bp to 125 bp). For all the software/methods, the
correctness and completeness of the constructed circRNA
sequences are difficult to evaluate. Assembly software based on
short reads could only reconstruct full-length sequences for some
circRNAs due to the interference of linear transcripts, and some
assembled circRNA full-length sequences are false positive due to
the same reason (X. Li et al., 2020).

Long-read sequencing, such as Nanopore sequencing, is
capable of generating longer lengths, between 5,000 and
30,000 base pairs (van Dijk et al., 2018). Long reads have a
higher error rate (10–15%), but these sequencing errors are
randomly distributed; the rates can therefore be greatly
reduced through the use of circular consensus sequencing
(Larsen et al., 2014). This makes direct sequencing the full-
length sequences of circRNAs possible since the length of
most circRNAs under study is shorter than 5,000 bp (Z. Gao
et al., 2019; J. Zhang et al., 2020b). Thus, by using long-read
sequencing results of a sample, it is possible to evaluate the quality
of assembled circRNA full-length sequences based on the short
read sequencing results of the same sample.

In this study, we used three evaluation strategies (read
alignment, CIRI-long, and isoCirc; see in Method) based on
long reads to verify the quality of full-length sequences
assembled based on short reads. In our results, each assembly
algorithm showed its own advantage; in CircAST and
circseq_cup, the precision was high but the sensitivity was
low, whereas in CIRI-full, the precision was low but the
sensitivity was high. CIRI-full performed better (F1 score, read
alignment: 0.6348, CIRI-long: 0.4093, isoCirc: 0.5965) in Homo
sapiens (human) datasets, while CircAST was the better
performer in Mus musculus (mouse) datasets (F1 score, read
alignment: 0.4112, CIRI-long: 0.4733, isoCirc: 0.3212). Among
these assembly tools, CIRI-full assembled more circRNA full-
length sequences with less than 57% of precision in human
datasets, while circseq_cup and CircAST assembled few
circRNAs full-length sequences with about 80% of precision in
human datasets. After careful analysis, we have introduced a
screening protocol that selects out exonic circRNAs with full-
length sequences consisting of all exons between back splice sites
as the final result. After screening, CIRI-full showed the best
performance for both human and mouse datasets.

MATERIALS AND METHODS

Data Collection
RNA-seq libraries (short reads; next-generation sequencing data)
were downloaded from the Sequence Reads Archive (accession
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ID: SRR10612068, SRR10612069, and SRR10612070) and the
National Genomics Data Center (https://bigd.big.ac.cn/gsa)
(accession ID: CRR194214 and CRR194215). Nanopore
libraries (long reads; third-generation sequencing data) were
downloaded from the Sequence Reads Archive (accession ID:
SRR10612050, SRR10612051, SRR10612052, SRR10612053,
SRR10612054, and SRR10612055) and the National Genomics
Data Center (accession ID: CRR194190, CRR194191,
CRR194194, and CRR194195). Short reads and long reads
from the same database were derived from the same
experiment samples. Sequencing data downloaded from the
SRA were all derived from the cultured HEK293 cells, and
data downloaded from the NGDC were derived from adult
mice. Table S1 provides a summary of all of the datasets. The
reference genomes of human (GRCh38/hg38) and mouse
(GRCm38/mm10) were downloaded from UCSC.

Identification of circRNA and Recontruction
of circRNA Full-Length Sequence Based on
Short Reads
For analysis of short reads, sequencing reads were mapped to the
genome using BWA (H. Li & Durbin, 2009), STAR (Dobin et al.,
2013), and Tophat2 (Kim et al., 2013) with default parameters. Four
tools, including CIRI2 (v2.0.6) (Y. Gao et al., 2018), CIRCexplorer2
(v2.3.5) (X. O. Zhang et al., 2014), circRNA_finder (v1.1)
(Westholm et al., 2014), and find_circ (v1.2) (Memczak et al.,
2013), were used for circRNA identification following the
instructions of the software documentation. The identified
circRNAs were selected with at least two back splice reads
which were aligned to the circRNA junction sites.

Three pieces of software, circseq_cup, CIRI-full, and CircAST,
were used for reconstruction of full-length sequences of circRNA
with default parameters. Among them, CIRI-full and CircAST
both require information of identified circRNA and sequencing
reads as input, while circseq_cup only needs sequencing reads as
input. Thus, for each short reads sequencing data, nine different
results of full-length sequences are generated using different
strategies, due to different combinations of identification
algorithms and assembly algorithms.

Evaluation of circRNA Full-Length
Sequences Using Long Reads
Long reads data are a cluster of long-read sequences, most of
which are longer than the full sequences of circRNA. One could
assess whether circRNAs full-length sequences (most of their
length <1,000 bp) that were reconstructed based on short reads
are correct according to long-read sequences, given that both
short reads and long reads are derived from the same samples.

In this study, we have used three strategies based on long reads
to evaluate the assembled circRNA full-length sequences using
the short reads (Figure 1).

The correctness of the assembled sequence is evaluated using
three strategies as shown in Figure 1. For strategy 1, isoCirc was
used to determine the full-length circRNA isoforms from long
reads. A sequence reconstructed from short reads was considered

correct if it was similar to any one of the sequences of isoCirc
results. Similarly, for strategy 2, CIRI-long was used to
reconstruct full-length circRNA sequences using long reads.

Another evaluation strategy (strategy 3) used long reads to
evaluate the correctness of the assembled circRNA sequences
directly. Three main steps of strategy three were 1) we moved a
20 bp fragment on the upstream of the full-length sequence to the
end of the full-length sequence, which forms a new full-length
sequence with back splice sites; 2) long reads were mapped to the
new full-length sequences of circRNAs usingminimap2 (H. Li, 2018)
with default parameters (-a); 3) for each alignment, mapped_ratio
(M/L, whereM is the number of mapped bases, and L is the number
of bases of circRNA full-length sequences) was calculated; and 4) we
discarded any alignment record with mapped_ratio >1 or <0.8, or
they contained more than two bp mismatch, insertion, or deletion.

Evaluation Metrics
In all evaluation strategies, full-length circRNAs that were verified
correct by long reads were defined as true positives, while those
not verified by long reads were defined as false positives. Full-
length circRNAs were verified correct in other assembly
strategies, but those not assembled in the currently evaluated
assembly strategy were defined as false negatives. The assembly
performance is assessed using precision, sensitivity, and F1 score
and defined as follows:

precision � TP

TP + FP

sensitivity � TP

TP + FN

F1 � 2pprecisionpsensitivity
precision + sensitivity

where TP, FP, and FN are the number of true positives, false
positives, and false negatives. F1 score weights precision and
sensitivity equally and serves as a balanced metric to evaluate
whether a tool achieves favorable precision and sensitivity
simultaneously.

RESULTS

Identification of circRNAs Based on Short
Reads
Several identification algorithms have been developed for
circRNA identification based on short reads. In this study, we
selected four algorithms to identify circRNA in human and
mouse datasets, including CIRI, CIRCexplorer,
circRNA_finder, and find_circ. Among the identified
circRNAs, 13,027 (31.60%) were observed between all four
algorithms (Figure 2A), while 11,890 (28.80%) were only
found by a single algorithm. A total of 25,634 distinct
circRNAs candidates were identified by CIRI, 23,763 (92.70%)
of which were generated from exons, and the remaining were
generated from introns or intergenic regions. For circRNA_finder
and find_circ, 25,925 and 29,828 circRNAs were identified,
respectively. Similarly, most of these circRNAs were derived
from exons; only less than 10% were derived from introns and
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intergenic regions. However, among the circRNAs identified by
CIRCexplorer, 23,304 (99.08%) were exonic, and 217 (0.92%)
were intronic, but they were no intergenic circRNAs (Figure 2B).
The number of circRNA candidates in each sample is shown in
Table S2. By counting the number of back splice reads, 71.50% of
circRNAs were supported by less than five back splice reads
(Figure 2C), which agreed with the fact that circRNAs usually
showed lower expression than linear transcripts (X. Li et al.,
2018). CIRI produced a larger average number of back splice
reads per circRNA in human and mouse than other algorithms
(Figure 2D). In our results, more circRNAs were identified from
mouse than human (Table S2), and circRNAs in mouse were
supported by more back splice reads than in human (Figure 2D);
these phenomena can be attributed to longer reads length
(human: 101 bp and mouse: 151 bp) and greater sequencing
depth of mouse datasets (Supplementary Table S1).

Reconstruction of circRNA Full-Length
Sequences Using Short Reads
Full-length sequences are important to analyze the function of
circRNAs, such as miRNA sponges, RBP sites, and expression.

Three popular methods, circseq_cup, CircAST, and CIRI-full,
were used in this study for reconstructing full-length sequences of
circRNA for short reads datasets.

As shown in Figrue 3 (A and B), less than 5% of the full-length
circRNAs (circRNA that has the assembled full-length sequence)
were common among all the three assembly tools for human and
mouse datasets, and more than 95% of the reconstructed
sequences of these pieces of software/methods were different.
Thus, it is difficult for experimental biologists to select the
circRNA sequences, and the functional study of circRNAs
could be unreliable due to the wrongly selected circRNA
sequences.

Among three assembly tools, full-length circRNAs assembled
using CIRI-full were more than those assembled using CircAST
and circseq_cup. For example, for the circRNA identification
result of CIRI on sample SRR10612068, 300 (6.21%) and 1868
(38.69%) full-length circRNAs were assembled using CircAST
and CIRI-full, whereas circsesq_cup identified 323 full-length
circRNAs for sample SRR10612068 (Table 1 and
Supplementary Table S2). In addition, some unique
circRNAs that were only identified using a single circRNA
identification algorithm were reconstructed successfully

FIGURE 1 | Evaluation of circRNA full-length sequences using long reads. Blue lines and circles (B) represent long reads or circRNAs identified using long reads;
red lines and circles (A) represent assembled full-length sequence and circRNAs identified using short reads.
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(Supplementary Figure S1), indicating that the selection of
circRNA identification software had impact on CircAST and
CIRI-full. Using CIRI as a circRNA identification tool, CircAST
and CIRI-full generated more circRNA full-length sequences
than other identification tools (CIRCexplorer, circRNA_finder,
and find_circ). For common circRNA candidates in four
circRNA identification algorithms, most full-length circRNAs
(60%–90%) produced by CircAST and circseq_cup were
constructed from the common candidates, while less than
half of full-length circRNAs by CIRI-full were involved in
common candidates (Figure 3C). It was found that the
lengths of most full-length circRNAs were shorter than
1,000 bp (Figure 3D). CircAST can assemble longer
sequences for human and mouse, which is consistent with
the advantage of CircAST that it can assemble long circRNAs
without using long sequencing reads. However, the performance
of CIRI-full was not consistent in PE100 and PE150
(Figure 3D). Origin also is an important factor in
reconstructing full-length sequences; most full-length
circRNAs (94%) were derived from the exon region on the
genome in our results (Figure 3E), which can be explained by

the following: first, more than 90% circRNA candidates belong
to exonic circRNAs and second, exonic circRNAs were usually
supported by more back splice reads.

Evaluation of Different Sequence Assembly
Strategies From Short Reads
There are three assembly tools for assembly of circRNA full-
length sequences from short reads, but it is unknown which one
has the best performance. Here, we used three evaluation
strategies (read alignment, CIRI-long, and isoCirc) to evaluate
the performance of nine assembly strategies due to different
combinations of circRNA identification software (CIRI,
CIRIexplorer, circRNA_finder, and find_circ) and assembly
tools (circseq_cup, CIRI_full, and CircAST).

As shown in Figure 4, circseq_cup showed different precision
(56.57–89.26%) when evaluated using different evaluation
strategies in human datasets and lower than 30% sensitivity.
In mouse datasets, circseq_cup showed lower precision and
sensitivity. For human datasets, CircAST achieved precision
higher than 85% and sensitivity lower than 30%, and CIRI-full

FIGURE 2 | Identification and characterization of circRNAs. (A) Venn diagram depicting the overlap between the four different circRNA identification algorithms. (B)
The percentage of different genomic origins of circRNA. (C) The distribution of back splice reads number in four identification algorithms. (D) Barplot showing average
number of back splice reads per circRNA.
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gained precision lower than 60% and sensitivity higher than 39%.
CircAST and CIRI-full showed the same trend in mouse datasets.
circseq_cup and CircAST showed high precision and low
sensitivity whereas CIRI-full displayed low precision and high

sensitivity. It is feasible to improve the precision at the cost of
sensitivity for CIRI-full.

In addition, the assembly strategy of CIRI plus CIRI-full
showed the highest F1 score (read alignment: 0.6348, CIRI-long:

FIGURE 3 | Assembly results of three assembly tools. (A,B) Venn diagram depicting the overlap between different assembly algorithms in human and mouse
datasets. (C) The proportion of full-length circRNAs constructed from the common circRNA candidates. ‟inside” (dark gray) represents assembled circRNAs belonging
to common circRNAs among four identification tools, and ‘outside’ (light gray) represents assembled circRNAs not belonging to common circRNA among four
identification tools. (D) Length distribution of circRNA full-length sequences (the result of CIRI-full is scaled by 1/10). (E) The percentage of circRNA categories in all
assembled circRNA results.

TABLE 1 | Assembly rate and assembly number of circRNA using different assembly tools.

CircASTa CIRI-fulla circseq_cupa

CIRIb CIRCexplorerb circRNA_finderb find_circb CIRIb CIRCexplorerb circRNA_finderb find_circb

SRR10612068 300
(6.21%)

129 (3.98%) 128 (3.80%) 248
(4.86%)

1868
(38.69%)

1,121 (34.61%) 1,131 (33.56%) 1,661
(32.55%)

323

SRR10612069 256
(5.95%)

96 (3.71%) 95 (3.55%) 201
(4.51%)

1723
(40.03%)

948 (36.66%) 967 (36.11%) 1,452
(32.56%)

286

SRR10612070 259
(5.99%

111 (3.98%) 96 (3.37%) 204
(4.37%)

1723
(39.85%

950 (34.10%) 940 (33.01%) 1,508
(32.31%)

285

CRR194214 1958
(16.15%)

1,254 (11.64%) 1,155 (9.92%) 1,292
(10.81%)

7,353
(60.64%)

5,410 (50.23%) 5,658 (48.61%) 5,919
(49.54%)

1,509

CRR194215 2,724
(19.87%)

1852 (13.91%) 1706 (11.55%) 1769
(11.99%)

8,480
(61.86%)

6,526 (49.02%) 6,923 (46.89% 7,095
(48.10%)

1847

The table displays the number of full-length circRNA, and the assembly rate for CircAST, and CIRI-full (The numbers in parenthesis is the assembly rate); and the last column displays the
number of full-length circRNA, for circseq_cup. The superscript ‘a’ indicates that the term is an assembly tool, and superscript ‘b’ indicates that the term is a identification algorithm.
Assembly rate = A/I, where A is number of assembled circRNA, I is number of all identified circRNA.
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0.4093, and isoCirc: 0.5965) using all three evaluation strategies
in human datasets (Figure 4, Supplementary Table S3).
However, CircAST performed better than CIRI-full in mouse
datasets. For mouse datasets, using read alignment and CIRI-
long as evaluation strategies, the combination of CIRI and
CircAST showed the highest F1 score (read alignment:
0.4112, CIRI-long: 0.4733), and the combination of
CIRCexplorer and CircAST produced the highest F1 score
(0.3212) when using isoCirc as the evaluation strategy.
Overall, CIRI-full showed better performance for human
datasets, and CircAST showed better performance for mouse
datasets.

Comparison of Evaluation Strategies
As shown in Figure 1, three evaluation strategies (see the Method
section) were used to evaluate circRNA full-length sequence
assembly using long reads.

In Supplementary Figure S2, for each evaluation strategy, we
combined all positive datasets (full-length circRNAs that were
verified correctly) of nine assembly strategies to compare the
evaluation strategies. Of all correct full-length circRNAs in
human datasets, 1,337 full-length circRNAs (39.1%) were
observed between all evaluation strategies, and read alignment
confirmed 3,217 full-length circRNA that accounted for about
94% of all verified results (Supplementary Figure S2A).
Similarly, there were 1,391 (34.9%) verified full-length
circRNAs found in the results of all three evaluation strategies
in mouse datasets. For mouse datasets, instead of read alignment,
CIRI-long generated the largest number of verified circRNA
sequences (3,128, 78.5%) (Supplementary Figure S2B).

Then, we compared precision of nine assembly strategies
under three evaluation methods. In human datasets, read
alignment showed the highest precision for all nine assembly
strategies, while for mouse datasets, CIRI-long showed the

FIGURE 4 | Performance of different assembly strategies in terms of sensitivity and precision. Marked points are the best assembly strategy under different
evaluation methods. (A) Homo sapiens. (B) Mus musculus.
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highest precision for eight assembly strategies (Supplementary
Figure S2C,D). Evaluation strategies showed various
performances in human and mouse datasets. The precision of
CIRI-long was higher than that of isoCirc for human datasets,
while for mouse datasets, the opposite trend was observed.

To analyze the reason for the opposite trend observed
between CIRI-long and isoCirc, we generated five subset
samples from SRR10612050 according to read length
(<1,000 bp, 2000–2,300 bp, 3,500–3,530 bp, 5,000–5,050 bp,
and 6,900–7,000 bp) (Table S4). The majority of circRNAs
were identified by CIRI-long for read lengths less than 1,000
bp, and isoCirc identified more circRNAs when read length
was longer than 1,000 bp. The results showed that CIRI-long
and isoCirc tend to behave differently for different read
lengths.

From the above analysis, it was found that using circRNA
sequences that are verified by all three evaluation methods are
more reliable; however, in order to generate enough number of

circRNA sequences, we chose to use the circRNA sequences
verified by at least two of the three evaluation strategies. In
the flowing analysis, we combined all the correct full-length
circRNAs verified by at least two evaluation strategies.

Number of Back Splice Reads Affects the
Quality of Reconstructed circRNA
Sequences
It is found that the circRNA assembly results of circseq_cup and
CircAST displayed higher precision than CIRI-full, whereas
CIRI-full displayed the highest sensitivity. In this part, we
analyzed the impact of the back splice reads on the precision
of creditable full-length circRNAs which were verified by at least
two evaluation methods.

Supplementary Figure S3 illustrates the change of precision
of assembly tools with the increasing number of back splice reads
given in human datasets. With the increasing number of back

FIGURE 5 | Structure of full-length sequences reconstructed by CIRI-full in human datasets. Small letters (A,B) represent two back splice sites. Color rectangles
represent exons, and gray rectangles represent the uncertain region which may include exons or introns.
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splice reads, the precision of circseq_cup and CIRI-full were also
increased. However, the precision of CircAST did not show a
similar trend (Supplementary Figure S3). The curves of CircAST
showed larger fluctuations due to its low sensitivity, and a lower
number of wrong circRNAs causes a sharp decrease in precision.
In mouse datasets, the precision of all assembly strategies
increased with the increasing number of back splice reads
(Supplementary Figure S4). We can assemble more reliable

full-length sequences when circRNAs were supported by many
back splice reads.

Improving circRNA Sequence Assembly for
CIRI-Full
Previous results showed that for human datasets, circseq_cup and
CircAST assembled a lower number of circRNA sequences with high

FIGURE 6 | Performance of assembly strategies related to CIRI-full after adjustment (screening). (A,B) Performance of assembly strategies in human and mouse
datasets. (C,D) F1 score of assembly strategies in human and mouse datasets. “Adjusted” represents performance of CIRI-full after screening and “Unadjusted”
represents performance of CIRI-full before screening.
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precision and low sensitivities, andmost of them (~80%)were verified
as correct.Meanwhile, CIRI-full generatedmore full-length sequences
of circRNAs, and only less than 57% of circRNA sequences were
evaluated as correct. Therefore, one can improve the precision by
screening more credible sequences at the cost of sensitivity.

We first analyzed the sequences of exonic full-length circRNAs in
CIRI-full for human datasets (Figure 5). For full-length circRNAs
that were derived from a single exon, more than 90% of circRNA
full-length sequences were full exon sequences in assembly results
(Type 1). In the reconstructed results of circRNAs derived from two
adjacent exons, about 40–50% of sequences contained two complete
exons with no intron sequences (Type 2). Fewer (~16%) full-length
circRNAs derived from multiple exons consisted of all exon
sequences between back splice sites (Type 3).

In addition, we calculated the ratio between full-length
circRNAs that consisted of all exon back splice sites from CIRI-
full and the correct ones. It was found that more than 80% of full-
length sequences consisting of all exons between back splice sites
were verified correctly. Thus, to improve the precision of CIRI-full,
we screened exonic circRNA that full-length sequences consisted of
all exon sequences between back splice sites; these sequences were
considered more reliable and were selected as correct sequences.
After applying the screening protocol, the average precision of
CIRI-full over four circRNA identification algorithms increased
from 43.26 to 82.77% in human datasets (Figure 6A), and the
average F1 score increased from 0.4788 to 0.5069 (Figure 6C).

The same screening rule was also applied in the mouse
datasets; the average precision of CIRI-full over four circRNA
identification algorithms increased from 18.96 to 32.82%
(Figure 6B), and the average F1 score increased from 0.2995
to 0.4223 (Figure 6D). CIRI-full showed higher F1 score than
CircAST in mouse datasets after screening.

DISCUSSION

Reconstruction of circRNA full-length sequences is vital for its
function identification. Three assembly tools were developed to
assemble full-length sequences using short reads, and two of
them, CircAST and CIRI-full, require identification information
of circRNA to complete assembly.

Here, we calculated the assembly rate of CircAST andCIRI-full in
all datasets and the number of full-length circRNAs on circseq_cup
(Table 1). For the same sample, CIRI-full produced more circRNAs
full-length sequences than CircAST and circseq_cup.

As we know, in addition to BSJ, CIRI-full also proposed a new
feature, named RO (Y. Zheng et al., 2019). The combination of BSJ
and RO could assemble full-length sequences of some circRNAs,
these circRNAs lacking support reads on internal sequences when
they were assembled only using BSJ. Besides, incomplete full-length
sequences were also included in the results. Thus, CIRI-full had the
highest sensitivity and lowest precision among the three assembly
tools (Figure 4). CircAST and circseq_cup chose another way and
provided full-length sequences with high precision (Wu et al.,
2019). CircAST had a low assembly rate due to filtered out
circRNAs that were supported by less than 12 back splice reads.
circseq_cup screened reliable back splice reads by several criteria to

ensure the correctness of full-length sequences. High precision and
sensitivity are our ultimate goal. In this study, we screened some
circRNA full-length sequences that consisted of all exons between
back splice sites in CIRI-full as final results. This procedure
increased the precision and F1 score of CIRI-full (Figure 6).

In addition, as shown in Table 1, assembly tools displayed
higher assembly rate in mouse than human, whereas assembly
tools displayed poor performance in mouse datasets when we
evaluated the performance using three evaluation strategies based
on long reads (Supplementary Table S3). High assembly rate in
mouse datasets is due to the feature of short reads. Short reads of
mouse had bigger sequencing depth and longer sequence reads
than human datasets (Supplementary Table S1) (X. Li et al., 2020).
The number and length of back splice reads affect the assembly rate
of assembly tools. Mouse datasets find it easier to assemble more
circRNA full-length sequences than human datasets. Evaluation of
performance was based on corresponding long reads in this study.
For short reads of mouse, long reads datasets and short reads are
not matched perfectly. The small long reads datasets lead to only
part of full-length sequences that could be verified. Big short reads
datasets and small long reads datasets make assembly tools show
poor performance and low precision and sensitivity.

As shown in Figure 6A and Figure 6C, the precision of CIRI-
full is improved by about 40% in human datasets and about 10%
in mouse datasets. The difference was caused by sequencing
datasets. The size of short reads and long reads are similar in
human datasets; long reads could be used to verify most candidate
circRNAs. By removing part of low-confidence full length
circRNAs, the precision of CIRI-full was greatly improved.
The short reads data are much bigger than long reads in
mouse datasets; thus, only a small part of candidate circRNAs
was verified by the long reads, and the precision of CIRI-full for
mouse datasets was not improved as much as for human datasets.

This work indicated that the combination of CIRI and CIRI-full
is a better assembly strategy for the single assembly algorithm, and
several reported assembly tools should be used simultaneously to
obtain comprehensive and reliable results. However, we only used
two datasets (in human andmouse) to evaluate the performance of
assembly tools, and human and mouse are both mammals. Thus,
our conclusion is more applicable to mammals, and whether it is
applicable to other animals or plants still needs further verification.
In addition, developing a new assembly algorithm that has the
advantages of lower data requirements and more reliable assembly
results is more significant.
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A Novel Necroptosis-Related lncRNA
Signature Predicts the Prognosis of
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Background: Necroptosis is closely related to the tumorigenesis and development of
cancer. An increasing number of studies have demonstrated that targeting necroptosis
could be a novel treatment strategy for cancer. However, the predictive potential of
necroptosis-related long noncoding RNAs (lncRNAs) in lung adenocarcinoma (LUAD) still
needs to be clarified. This study aimed to construct a prognostic signature based on
necroptosis-related lncRNAs to predict the prognosis of LUAD.

Methods: We downloaded RNA sequencing data from The Cancer Genome Atlas
database. Co-expression network analysis, univariate Cox regression, and least
absolute shrinkage and selection operator were adopted to identify necroptosis-related
prognostic lncRNAs. We constructed the predictive signature by multivariate Cox
regression. Kaplan–Meier analysis, time-dependent receiver operating characteristics,
nomogram, and calibration curves were used to validate and evaluate the signature.
Subsequently, we used gene set enrichment analysis (GSEA) and single-sample gene set
enrichment analysis (ssGSEA) to explore the relationship between the predictive signature
and tumor immune microenvironment of risk groups. Finally, the correlation between the
predictive signature and immune checkpoint expression of LUAD patients was also
analyzed.

Results: We constructed a signature composed of 7 necroptosis-related lncRNAs
(AC026355.2, AC099850.3, AF131215.5, UST-AS2, ARHGAP26-AS1, FAM83A-AS1,
and AC010999.2). The signature could serve as an independent predictor for LUAD
patients. Compared with clinicopathological variables, the necroptosis-related lncRNA
signature has a higher diagnostic efficiency, with the area under the receiver operating
characteristic curve being 0.723. Meanwhile, when patients were stratified according to
different clinicopathological variables, the overall survival of patients in the high-risk group
was shorter than that of those in the low-risk group. GSEA showed that tumor- and
immune-related pathways were mainly enriched in the low-risk group. ssGSEA further
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confirmed that the predictive signature was significantly related to the immune status of
LUAD patients. The immune checkpoint analysis displayed that low-risk patients had a
higher immune checkpoint expression, such as CTLA-4, HAVCR2, PD-1, and TIGIT. This
suggested that immunological function is more active in the low-risk group LUAD patients
who might benefit from checkpoint blockade immunotherapies.

Conclusion: The predictive signature can independently predict the prognosis of LUAD,
helps elucidate the mechanism of necroptosis-related lncRNAs in LUAD, and provides
immunotherapy guidance for patients with LUAD.

Keywords: lung adenocarcinoma, necroptosis gene, long noncoding RNA, tumor immune microenvironment,
prognostic signature

INTRODUCTION

Lung cancer is one of the most frequently diagnosed cancers and
the leading cause of cancer-related deaths worldwide (Ferlay
et al., 2021). Lung cancer is usually divided into non-small cell
lung cancer (NSCLC) and small cell lung cancer; 85% of patients
are NSCLC, of which lung adenocarcinoma (LUAD) accounts for
about 50% (Thai et al., 2021). Recently, substantial
improvements, such as chemotherapy, radiotherapy, and
immunotherapy, have been made in the treatment of NSCLC
patients. However, there is still a proportion of patients with
distant metastasis that cannot be effectively treated at an early
stage due to the lack of specific biomarkers, resulting in poor 5-
year survival rates (Jurisic et al., 2020). Therefore, the
identification of a reliable and specific biomarker for diagnosis
and prognosis is urgently crucial for NSCLC.

Necroptosis is a form of programmed inflammatory cell death
mediated by receptor-interacting protein kinases RIPK1, RIPK3,
and mixed lineage kinase domain-like protein (MLKL).
Necroptosis is characterized by early loss of plasma membrane
integrity, leakage of intracellular contents, and organelle swelling
(Krysko et al., 2017; Jiao et al., 2018). Recent studies have
indicated that necroptosis has an important role in
tumorigenesis, tumor metastasis, and tumoral immune
response (Gong et al., 2019). Of note is the fact that
necroptosis appears to be antitumorigenic or protumorigenic,
depending on the tumor type and conditions during
tumorigenesis (Yan et al., 2022). RIPK3 may restrict myeloid
leukemogenesis and the differentiation of leukemia-initiating
cells by promoting RIPK3–MLKL-mediated necroptosis
(Höckendorf et al., 2016). Necroptosis could promote
pancreatic cancer cell migration and invasion by the release of
CXCL5 (Ando et al., 2020). Necroptosis blockage by MLKL
ablation could substantially decrease the lung metastasis of
breast cancer cells (Jiao et al., 2018). In addition, necroptosis
is expected to develop an inflammatory tumor immune
microenvironment via releasing damage-associated molecular
patterns (DAMPs), cytokines, and/or chemokines in the tumor
microenvironment, resulting in tumor-promoting or anti-tumor
effects (Sprooten et al., 2020). On one hand, necroptotic tumor
cells attract macrophages and DC cells, which are activated by
DAMPs and cytokines. The activated DC cells migrate to the

lymph nodes and activate naive CD4+ and CD8+ T cells. The
naive T cells are activated and differentiated into effector T cells
that leave the lymph nodes, re-enter the blood circulation, and
infiltrate into tumor tissue to produce anti-tumor effects (Sancho
et al., 2009). RIPK1 expression and NF-κB activation during
necroptotic cell death are necessary for efficient cross-priming
and antitumor immunity (Yatim et al., 2015). Consistently,
vaccination with necroptotic cancer cells could also induce
efficient antitumor immunity in an experimental mouse model
(Aaes et al., 2016). On the other hand, necroptotic tumor cells
also attract myeloid suppressor cells and tumor-associated
macrophages, resulting in tumor-associated immunosuppression.
Necroptosis-induced CXCL1 promoted pancreatic cancer
progression via tumor-associated macrophage-induced immune
suppression (Seifert et al., 2016). What is mentioned above
implies the potential of targeting necroptosis as a novel cancer
therapy, especially for immunotherapy.

Long non-coding RNAs (lncRNAs) are non-coding RNAs
with transcripts of more than 200 nucleotides. Growing
evidence has ascertained that lncRNAs are involved in the
progression and metastasis of NSCLC and were associated
with the immune pathway (Pang et al., 2021). LINC01748
exerted carcinogenic effects in NSCLC cell lines by regulating
the microRNA-520a-5p/HMGA1 axis (Tan et al., 2022). lncRNA-
SChLAP1 was verified to induce NSCLC progression and
immune evasion by regulating the AUF1/PD-L1 pathway (Du
et al., 2021). In addition, several studies demonstrated that
lncRNA could also regulate necroptosis via functioning as
competitive RNAs to influence the expression of target genes.
lncRNA-107053293 was demonstrated to regulate necroptosis
by acting as a competing endogenous RNA of miR-148a-3p
(WangW et al., 2020). The depletion of Linc00176 disrupted the
cell cycle and induced necroptosis in hepatocellular carcinoma
via regulating the expression of miRNAs, such as miR-9 and miR-
185 (Tran et al., 2018). Based on the important role of lncRNA on
the tumor, the prognostic signatures based on lncRNAs of LUAD
patients have been widely introduced (ChenH et al., 2021; Xu et al.,
2021). Nevertheless, research on necroptosis-related lncRNAs
(NRlncRNAs) in LUAD prognosis and tumor immune
microenvironment (TIME) has not been reported.

In this study, we constructed a novel predictive signature
based on NRlncRNAs to forecast the prognosis of LUAD. We
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also validated its clinical value and confirmed that this signature
can be used as a predictor of immunotherapy, which may offer a
guiding function for clinicians.

MATERIALS AND METHODS

Preparation of Transcriptomic Data and
Clinical Information
Wedownloaded the transcriptome RNA sequencing data of LUAD
samples from The Cancer Genome Atlas (TCGA) (https://portal.
gdc.cancer.gov/). Meanwhile, we obtained the corresponding
clinical parameters of these patients and excluded patients with
missing overall survival (OS) or poor OS (less than 60 days) to
reduce statistical bias in this analysis.

Identification of Necroptosis-Related
lncRNA
A list of 67 necroptosis genes was obtained from previously
reported literature (Zhao et al., 2021). The correlations between
67 necroptosis-related genes and lncRNA expression were analyzed
via Pearson correlation analysis. All NRlncRNAs (2,154) should
conform to the standard of correlation coefficients (|PearsonR|)>0.4
and p <0.001. Then, we obtained 1,061 differentially expressed
lncRNAs [log2 fold change > 1, false discovery rate (FDR) <0.05]
after screening the synthetic data matrix by Strawberry Perl V-5.30.0
(https://www.perl.org/) and R software V-4.1.2 (https://www.r-
project.org/) with limma R package.

Establishment and Validation of the Risk
Signature According to
Necroptosis-Related lncRNAs in LUAD
The entire 481 TCGA set of LUADwas divided into a train risk set
and a test risk set randomly by the caret R package. The ratio was 1:
1. The train set was used to construct a necroptosis-related lncRNA
signature, and the test set and entire set were applied to validate the
signature. Combined with the clinical information of LUAD in
TCGA, we screened and obtained 40 NRlncRNAs linked to OS
significantly by univariate Cox (uni-Cox) regression analysis (p <
0.05). Subsequently, we performed least absolute shrinkage and
selection operator (LASSO) Cox analysis (using the penalty
parameter estimated by 10-fold cross-validation) via the glmnet
R package to screen out optimal lncRNAs associated with LUAD
prognosis. This method aims to prevent over-fitting during
modeling. Finally, a prognostic risk signature based on the
optimal lncRNAs was established with the multivariate Cox
(multi-Cox) regression analysis, and the risk score of every
patient with LUAD was calculated based on the following formula:

risk score � ∑n
i�1
Coef(i) × Expr(i)

Coef(i) and Expr(i) represent the regression coefficient of the
multi-Cox regression analysis for each lncRNA and each lncRNA
expression level, respectively. The patients were stratified into

low- and high-risk groups, with the risk score as the cutoff.
Kaplan–Meier method and log-rank test were conducted to
analyze whether there is a difference in the OS of LUAD
patients between the low- and high-risk groups using the
survival R package.

We evaluated the prognostic value of the established risk
signature between the model and the clinical characteristics
via chi-square test. Uni-Cox and multi-Cox regression
analyses were performed to explore whether the prognostic
signature was a potential independent prognostic indicator for
patients with LUAD, and the results were visualized with two
forest maps. Several receiver operating characteristic (ROC)
curves were generated, and the area under the ROC curve
(AUC) was calculated by the survival, survminer, and
timeROC R packages to validate the predictive value of the
prognostic signature.

Nomogram and Calibration
We combined the risk score with the clinical variables of age,
gender, N stage, T stage, M stage, and tumor stage to set up a
nomogram for the 1-, 3-, and 5-year OS of LUAD patients by the
rms R package. Correction curves based on the
Hosmer–Lemeshow test were applied to illustrate the
uniformity between the actual outcome and the signature
prediction outcome.

Enrichment of Functions and Pathways in
the Risk Prognosis Signature
We used gene set enrichment analyses (GSEA) software 4.1.2
(http://www.gsea-msigdb.org/gsea/index.jsp) to carry out GSEA
and to identify significantly enriched pathways between the low-
and high-risk groups. Values of p <0.05 and FDR <0.25 were
considered the thresholds for statistical significance. The results
were visualized by the gridExtra, grid, and ggplot2 R packages.

Estimation of the Tumor Immune
Microenvironment of the Prognostic
Signature
To figure out the relationship between this signature and TIME,
firstly, we calculated the infiltration values for TCGA-LUAD
dataset samples based on 7 algorithms: XCELL (Aran et al., 2017),
TIMER (Li T et al., 2017; Li et al., 2020), QUANTISEQ (Finotello
et al., 2019), MCPCOUNTER (Dienstmann et al., 2019), EPIC
(Racle et al., 2017), CIBERSORT-ABS (Tamminga et al., 2020),
and CIBERSORT (Chen et al., 2018). Using Spearman correlation
analysis, the relationship of immune cell subpopulations and risk
score value was evaluated. Wilcoxon signed-rank test, limma,
scales, ggplot2, ggtext, tidyverse, and ggpubr R packages were
applied, and the results are displayed in a bubble chart. Then, we
explored the abundance of immune cells and stromal cells
between different groups. The StromalScore, ImmuneScore,
and ESTIMATEScore (StromalScore + ImmuneScore) of each
patient were calculated. Their differences were compared using
the Wilcoxon signed-rank test, and p <0.05 was considered to be
significant. Subsequently, single-sample GSEA (ssGSEA) was
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FIGURE 1 | Identification of necroptosis-related lncRNA prognostic signature in lung adenocarcinoma (LUAD). (A) Forest plot of 40 necroptosis-related lncRNAs
selected by univariate Cox regression analysis. (B) The differential expressions of 40 necroptosis-related lncRNAs linked to survival between LUAD and normal samples.
(C) The 10-fold cross-validation for variable selection in the least absolute shrinkage and selection operator (LASSO) algorithm. (D) The LASSO coefficient profile of
necroptosis-related lncRNAs. (E) The Sankey diagram of the connection between 19 necroptosis genes and 7 necroptosis-related lncRNAs. *p < 0.05, **p < 0.01,
***p < 0.001.
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conducted for scoring LUAD-infiltrating immune cells to
quantify their relative content via the “GSVA” package. The
scores of immune cells and pathways in different groups are
shown on multi-boxplots, respectively. Finally, we also made
comparisons about the immune checkpoint activation between
low- and high-risk groups by the ggpubr R package.

RESULTS

Identification of Necroptosis-Related
lncRNAs in LUAD Patients
The detailed flow diagram of our study is exhibited in
Supplementary Figure S1. The transcriptome data of LUAD
downloaded from TCGA included 59 normal samples and 539
tumor samples. We distinguished the mRNAs and lncRNAs by
GTF files. According to the expression of 67 necroptosis genes
and differentially expressed lncRNAs between normal and tumor
samples, we finally obtained 1,016 NRlncRNAs (Supplementary
Table S1), including 97 downregulated lncRNAs and 919
upregulated ones (Supplementary Figure S2).

Construction of the Necroptosis-Related
lncRNA Predictive Signature
Using uni-Cox regression analysis in the TCGA train set, we
obtained 40 NRlncRNAs which were significantly correlated with
OS and made a heat map (Figures 1A,B). To avoid overfitting
and improve the accuracy and explainability of the prognostic
signature, we performed the LASSO-penalized Cox analysis on
these lncRNAs and extracted 19 lncRNAs related to necroptosis
in LUAD when the first-rank value of Log(λ) was the minimum
likelihood of deviance (Figures 1C,D). Subsequently, we
constructed the predictive signature composed of 7
NRlncRNAs (AC026355.2, AC099850.3, AF131215.5, UST-
AS2, ARHGAP26-AS1, FAM83A-AS1, and AC010999.2) via
multi-Cox regression analysis. Of those lncRNAs, 6 lncRNAs
were regulated positively by necroptosis genes in the Sankey
diagram (Figure 1E). Meanwhile, some of those lncRNAs
(AC099850.3, AF131215.5, and FAM83A-AS1) were
demonstrated to be highly associated with NSCLC previously.
Subsequently, the risk score of every LUAD patient was calculated
based on correlation coefficients calculated by multivariate Cox
regression analysis, and the patients were divided into low- and
high-risk groups according to the median value of the risk score.
The risk score was calculated as follows: risk score = (−0.3641 ×
AC026355.2 expression) + (0.1747 × AC099850.3 expression) +
(−0.3943 × AF131215.5 expression) + (−0.6257 × UST-AS2
expression) + (−2.8454 × ARHGAP26-AS1 expression) +
(0.3281 × FAM83A-AS1 expression) + (−2.1752 × AC010999.2
expression) (Supplementary Table S2).

Prognosis Values of the
Necroptosis-Related lncRNA Signature
To value the prognostic ability of the risk signature, we compared
the distribution of risk score, the pattern of survival time, the

survival status, and the relevant expression of 7 NRlncRNAs
between the low- and high-risk groups in the train, test, and entire
sets (Figures 2A–L). These all indicated that the low-risk group
had better prognoses. Meanwhile, the LUAD patients were
separated into groups according to age, gender, stage, T stage,
N stage, and M stage to study the relationship between the risk
signature and the prognosis of LUAD patients among universal
clinicopathological variables. For different classifications, except
T3-4 and M1 stage (Figures 3H, L), the OS of the patients in the
low-risk group was significantly longer than that of the patients in
the high-risk group (Figures 3A–G, Figures 3I–K). The possible
explanation of the T3–T4 and M1 stage might be the limited
number of patients due to poor prognoses in advanced NSCLC.
These results suggest that the predictive signature can also predict
the prognosis of LUAD patients in a different group of age,
gender, stage, N stage, T1-2 stage, and M0 stage.

An Independent LUAD Prognostic Indicator
of the Necroptosis-Related lncRNA
Signature
To determine whether the predictive signature is an independent
prognostic factor for LUAD patients, Cox regression analysis was
performed in the entire set. The Uni-Cox regression analysis
showed that stage, T stage, N stage, and risk score were
significantly associated with the OS of LUAD patients
(Figure 4A). The multi-Cox regression analysis showed that
only risk score (hazard ratio = 1.331, confidence interval =
1.175–1.507, p < 0.001) was an independent predictor of OS
in LUAD patients (Figure 4B). Then, we used AUC to validate
the sensitivity and the specificity of the signature in the entire set.
The AUC of the risk score was 0.723, which was better than that
of clinicopathological variables in predicting the prognosis of
LUAD patients (Figure 4C). The AUCs of 1-, 3-, and 5-year
survival were 0.723, 0.679, and 0.715, respectively, which
indicated a good predictive value (Figure 4D). These results
further implied that the signature was a promising biomarker for
indicating the prognosis risk of LUAD.

Construction and Evaluation of the
Prognostic Nomogram
The nomogram including clinicopathological variables and the
risk score were constructed to predict the 1-, 3-, and 5-year
prognosis of LUAD patients (Figure 5A). The calibration curves
indicated a good consistency between the actual OS rates and the
predicted survival rates at 1, 3, and 5 years (Figure 5B).

Tumor Immune Microenvironment of the
Necroptosis-Related lncRNA Signature
Based on the different prognoses of patients in the high- and low-
risk groups, we conducted GSEA to explore the underlying
differences in biological functions between risk groups. We
found that the T/B cell receptor signaling pathway, Fc epsilon
RI signaling pathway, cytokine receptor interaction, and JAK-
STAT signaling pathway were significantly enriched in the low-
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risk group (Figure 6A), indicating that low-risk patients are
closely related to tumor- and immune-related pathways. The
GSEA results also revealed that the Notch signaling pathway,
Wnt signaling pathway, and p53 signaling pathway, pathways in
cancer and small cell lung cancer, were significantly enriched in
the high-risk group. The Notch pathway plays a vital role in lung
tumorigenesis and progression. Researchers found that cigarette
smoke could promote LUAD progression via activating the
Notch-1 pathway (Chiappara et al., 2022). Additionally,
Notch-1 signaling synergized with Hif-1α could upregulate the
expression of survivin in LUAD cell line A549 (Chen et al., 2011).
The overexpression of Wnt pathway-activating genes and the
down-expression of negative regulators of the pathway are closely
correlated with NSCLC tumorigenesis, prognosis, and resistance
to therapy (Stewart, 2014; Zeybek et al., 2022). The Wnt
responder cells showed an increased tumor propagation

ability, suggesting that they have features of normal tissue
stem cells (Tammela et al., 2017). These mechanisms may
explain why the high-risk group has a worse prognosis. Then,
we studied the correlation between risk scores and tumor-
infiltrating immune cells (Figure 6B). More immune cells are
closely related to the low-risk group on different platforms.
Consistently, we also found that StromalScore, ImmuneScore,
and ESTIMATEScore in low-risk patients were significantly
higher than those of high-risk patients (Figures 6C–E). To
further explore the correlation between risk scores and
immune cells and functions, we quantified the enrichment
scores of ssGSEA for different immune cell subgroups, related
functions, or pathways. The results exhibited that activated
dendritic cells (aDCs), B cells, DCs, immature dendritic cells
(iDCs), mast cells, neutrophils, T helper cells, T follicular helper
(Tfh) cells, tumor-infiltrating lymphocyte (TIL), and T regulatory

FIGURE 2 | Prognosis values of the 7 necroptosis-related lncRNA signatures in the train, test, and entire sets. The distribution of risk scores (A–C), survival time and
survival status (D–F), heat maps of 7 lncRNA expressions (G–I), and Kaplan–Meier survival curves of overall survival of LUAD patients (J–L) between low- and high-risk
groups in the train, test, and entire sets, respectively.
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cells (Tregs) were significantly negatively correlated with the risk
score (Figure 6F). Compared with the high-risk group, several
immune pathways, e.g., checkpoint, cytolytic activity, human
leukocyte antigen (HLA), T cell co-inhibition, T cell co-
stimulation, and type II IFN response were higher in the low-
risk group (Figure 6G). Furthermore, by comparing immune
checkpoint activation between different risk groups, we found
that almost all the immune checkpoints expressed more activity in
the low-risk group, such as CTLA-4, HAVCR2 (TIM3), PDCD1
(PD-1), TIGIT, and CD70 (Figure 6H). These findings suggested
that, in the low-risk group, the immunological function is more
active and might be more sensitive to immunotherapy.

DISCUSSION

As the most common subtype of lung cancer, LUAD still poses a
huge threat to human health worldwide, with mounting
morbidity and mortality. The identification of a specific and
reliable prognostic signature for LUAD patients is extremely
vital to improve the prognosis. Although there are a lot of
other signatures using lncRNAs to predict the survival
outcomes of LUAD, a necroptosis-related lncRNA predictive
signature has not been reported. Herein we constructed a
necroptosis-related lncRNA signature to explore the prognosis
and TIME of LUAD patients.

FIGURE 3 | Kaplan–Meier survival curves of low- and high-risk groups sorted by different clinicopathological variables. (A,B) Age, (C,D) sex, (E,F) stage, (G,H)
T stage, (I,J) N stage, and (K,L) M stage.
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In this study, 1,016 differentially expressed NRlncRNAs were
acquired to explore the prognostic function. We conducted
univariate, LASSO, and multivariate Cox regression analyses and
identified seven NRlncRNAs (AC026355.2, AC099850.3,
AF131215.5, UST-AS2, ARHGAP26-AS1, FAM83A-AS1, and
AC010999.2) significantly linked to the OS of LUAD patients to
construct the necroptosis-related lncRNA signature. Among those
lncRNAs, AC099850.3 has been reported to be highly expressed in
tumors and closely related to the development and procession of
NSCLC (Zhou et al., 2021); AC099850.3 is demonstrated to promote
proliferation and migration in hepatocellular carcinoma and is also
an important member of the prognosis model in hepatocellular
carcinoma and colorectal cancer (Wu et al., 2021; Zhang et al., 2021).
AF131215.5 also represented the independent prognostic
significance of OS in patients with LUAD (Hou and Yao, 2021).
FAM83A-AS1 could increase FAM83A expression by enhancing
FAM83A pre-mRNA stability and promote the tumorigenesis of
LUAD (Wang et al., 2021). FAM83A-AS1 was also verified to
contribute to LUAD proliferation and stemness via the HIF-1α/
glycolysis axis (Chen et al., 2022). Other lncRNAs (AC026355.2,
UST-AS2, ARHGAP26-AS1, and AC010999.2) were revealed for
the first time. It is noteworthy that knowledge on those newly
distinguished NRlncRNAs could develop a better mechanistic
understanding of LUAD, which might be new targets for cancer
treatment. Then, the LUAD patients were divided into high- and
low-risk groups based on the median value of the risk score. The

results all indicated that the low-risk group had a better prognosis
than the high-risk group, and risk score was an independent
predictor of OS in LUAD patients. The ROC analysis showed
that the signature was superior to conventional clinical
characteristics in the survival prediction of LUAD. Similarly, the
predictive nomogram established also showed a perfect consistency
between the observed and predicted rates for the 1-, 3-, and 5-year
OS. Collectively, these studies mentioned above indicate that our
necroptosis-related lncRNA signature could predict the prognosis of
LUAD patients accurately.

Researchers have demonstrated that necroptosis is strongly
associated with tumorigenesis, tumor immune response, and poor
prognosis (Gong et al., 2019), especially in solid tumors, but the
specific role of necroptosis in those processes is still largely unknown.
Therefore, we continued to explore the underlying mechanism of
necroptosis-related lncRNA signature among different risk groups.

GSEA showed that the T/B cell receptor signaling pathway, Fc
epsilon RI signaling pathway, cytokine receptor interaction, and
JAK/STAT signaling pathway were significantly enriched in the
low-risk group. Researchers found that the aberrant activation of
the JAK/STAT signaling pathway was closely related to the
occurrence, development, metastasis, and drug resistance of
lung cancer (Li S. D. et al., 2017). The overexpression of JAK2
induced the proliferation, migration, and invasion abilities of
lung adenocarcinoma A549 cells; conversely, the downregulation
of JAK2 could suppress the protumorigenic effect (Xu et al.,

FIGURE 4 | Validation of the predictive value of the prognostic signature. (A)Uni-Cox and (B)multi-Cox regression analyses of clinical characteristics and risk score
with overall survival. (C) Comparison of the prediction accuracy of the risk model with clinicopathological features, such as age, gender, stage, T stage, M stage, and N
stage. (D) Accuracy of the risk signature in predicting 1-, 3-, and 5-year receiver operating characteristic curves based on the entire sets.
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2017). EGFR tyrosine kinase inhibitors (TKIs), such as afatinib
and dacomitinib, could activate STAT3 via autocrine interleukin-6
(IL-6) production, and that blockade of the IL-6R/JAK1/STAT3
signaling pathway potentiated sensitivity to those EGFR TKIs in
NSCLC cells (Kim et al., 2012). In addition, the researcher found that
zVAD (a pan-caspase inhibitor) induced necroptotic death in TLR3-
and TLR4-activatedmacrophages via the JAK/STAT1/ROS pathway
(Chen Y. S. et al., 2021). IFN-activated JAK/STAT signaling induced
the robust expression of ZBP1, which complexed with RIPK3 to
trigger MLKL-driven necroptosis (Ingram et al., 2019). Similarly,
TNF-α synergized with IFN-γ could induce epithelial cell
necroptosis through the CASP8-JAK1/2-STAT1 module
(Woznicki et al., 2021). Taken together, we speculated that

necroptosis probably contributed to the occurrence and
development of LUAD through the JAK/STAT signaling pathway.

According to the role of necroptosis in regulating tumor
immunity and the enrichment of immune-related pathways in
low-risk groups, we performed ssGSEA to explore the immune
status in different groups. The immune cells (aDCs, B cells, DCs,
iDCs, mast cells, neutrophils, T helper cells, Tfh cells, TIL, and
Tregs) and immune functions (checkpoint, cytolytic activity, HLA,
T cell co-inhibition, T cell co-stimulation, and type II IFN
response) were mainly active among the low-risk groups, some
of which were closely linked to necroptosis. Necroptotic cells can
provide both tumor-specific antigens and inflammatory cytokines
to DCs for antigen cross-priming which activates cytotoxic CD8+ T

FIGURE 5 |Construction and verification of the nomogram. (A) A nomogram combining clinicopathological variables and risk score predicts the 1-, 3-, and 5- year
overall survival of lung adenocarcinoma patients. (B) The calibration curves test the consistency between the actual outcome and the predicted outcome at 1, 3, and
5 years.
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lymphocytes. RIPK3 was necessary for the regulation of cytokine
expression in DCs, which could participate in innate and adaptive
immune systems (Park et al., 2021). Wang X et al. found that a
serine protease was involved in the RIPK3–MLKL-mediated
necroptotic death pathway in neutrophils (Wang X et al., 2020).
These results further illustrated that necroptosis might be involved
in the progression of LUAD by regulating tumor immunity.

Subsequently, we analyzed the correlation between common
immune checkpoint expression and necroptosis-related lncRNA
signature. Some researchers have indicated that the expression
levels of immune checkpoint genes are highly associated with the
efficacy of immunotherapy (Ahluwalia et al., 2021; Hu et al., 2021).
Our findings demonstrated that most of the immune checkpoints’
expression was elevated in low-risk LUAD patients compared to
the high-risk group. Among those, PD-1 and CTLA-4 inhibitors
have been validated to benefit patients with advanced NSCLC in
clinical trials (Paz-Ares et al., 2021). In addition, TIM3, TIGIT, and
CD70 have been under investigation, and drugs blocking these
immune checkpoints are in clinical or preclinical developments
(Bewersdorf et al., 2021; Hansen et al., 2021). Therefore, this
signature implied that it would be more advantageous for
LUAD patients at a lower risk to receive immunotherapy.

However, our research has several limitations and shortcomings.
Firstly, it was better to include more clinical databases for external
validation. Secondly, the underlying molecular mechanisms of the
NRlncRNAs in LUAD should be further validated by experiments.
Thus, we will recollect and expand clinical samples and attempt to
validate the accuracy of this model viamore external experiments in
our following work.

In conclusion, the necroptosis-related lncRNA predictive signature
can independently predict the prognosis of LUAD patients, helps
elucidate the process and mechanism of NRlncRNAs in LUAD, and
provides immunotherapy guidance for patients with LUAD, but it still
needs further experimental verification in the future.
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MultiGATAE: A Novel Cancer Subtype
Identification Method Based on
Multi-Omics and AttentionMechanism
Ge Zhang1, Zhen Peng1, Chaokun Yan1, Jianlin Wang1, Junwei Luo2 and Huimin Luo1*

1School of Computer and Information Engineering, Henan University, Kaifeng, China, 2College of Computer Science and
Technology, Henan Polytechnic University, Jiaozuo, China

Cancer is one of the leading causes of death worldwide, which brings an urgent need for its
effective treatment. However, cancer is highly heterogeneous, meaning that one cancer
can be divided into several subtypes with distinct pathogenesis and outcomes. This is
considered as the main problem which limits the precision treatment of cancer. Thus,
cancer subtypes identification is of great importance for cancer diagnosis and treatment. In
this work, we propose a deep learning method which is based on multi-omics and
attention mechanism to effectively identify cancer subtypes. We first used similarity
network fusion to integrate multi-omics data to construct a similarity graph. Then, the
similarity graph and the feature matrix of the patient are input into a graph autoencoder
composed of a graph attention network and omics-level attention mechanism to learn
embedding representation. The K-means clustering method is applied to the embedding
representation to identify cancer subtypes. The experiment on eight TCGA datasets
confirmed that our proposed method performs better for cancer subtypes identification
when compared with the other state-of-the-art methods. The source codes of our method
are available at https://github.com/kataomoi7/multiGATAE.

Keywords: cancer subtype identification, multi-omics, graph attention network, omics-level attention mechanism,
cluster

1 INTRODUCTION

Cancer is one of the leading causes of death worldwide and is a serious threat to human health (Sung
et al., 2021). Cancer is extremely heterogeneous, and distinct molecular subtypes have different
clinical outcomes (Zhao and Yan, 2019). The goal of cancer subtype identification is to discover
patient groups with different clinical outcomes, thus facilitating personalized treatment (Liang et al.,
2021). For instance, four potential molecular subtypes of gastric cancer, i.e., EBV, MSI, GS, and CIN,
were uncovered by The Cancer Genome Atlas (TCGA) project (Bass et al., 2014), and each of these
four molecular subtypes has specific clinical significance signatures (Sohn et al., 2017). Therefore,
cancer subtype identification is of great importance.

The rapid development of high throughput sequencing technology has made a massive amount of
omics data from the different levels available. This provides an opportunity to investigate the
heterogeneity of cancer and to identify cancer subtypes (Zhao et al., 2019). Since omics data lack
labels associated with cancer subtypes, cancer subtype identification is usually addressed using
clustering (Xu et al., 2019). Earlier studies usually used only single-omics data; however, single-omics
data provide only a very limited view on cancer subtype identification (Gomez-Cabrero et al., 2014;
Le Van et al., 2016). Thus, many researchers integrate multi-omics data to identify cancer subtypes.
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Yang et al. (2021a) proposed a computational method called
Deep Subspace Mutual Learning (DSML). DSML constructed
branching models for each type of omics data and then
constructed a main stem model to optimize the feature
representation learned from single-omics data. Finally, spectral
clustering was applied to the learned representation to identify
cancer subtypes. Chaudhary et al. (2018) applied an autoencoder
to process multi-omics data to gain low-dimensional features,
then the features were further filtered using Cox-PH analysis.
Finally, K-means was applied to the resulting features to cluster
cancer subtypes. While using multi-omics data provides a
comprehensive view, it also introduces additional
computational costs.

Apart from the differences in the used data, some studies have
typically focused on analyzing the features of omics data and the
distribution of each data type to identify cancer subtypes. Shen
et al. (2009) proposed an integrative clustering method named
iCluster. iCluster models the subtypes of cancer as latent variables
which can be simultaneously estimated from the omics data. Yang
et al. (2021) introduced a deep-learning method named Subtype-
GAN for cancer subtyping. Subtype-GAN consists of three
modules: encoder, decoder, and discriminator. The encoder
takes multi-omics data as input and encodes them into low-
dimensional representation. The decoder reconstructs the
original input using the low-dimensional representation. The
discriminator is used to force the representation encoded by
the encoder to follow the prior Gaussian distribution. Finally,
Consensus GMM clustering is applied to the low-dimensional
representation to determine the most appropriate clustering
number and to predict the subtype results. However, these
methods are limited by strong assumptions on the distribution
of the omics data (Song et al., 2021). Noise in the omics data may
affect the results of cancer subtyping. Similarity-based
approaches for multi-omics data can avoid this problem (Song
et al., 2021). Wang et al. (2014) proposed a method named
Similarity Network Fusion (SNF) for integrating multi-omics
data. SNF first generates a sample similarity network for each
type of data and then iteratively fuses these similarity networks.
Zhao and Yan (2019) proposed a cancer subtyping method
named Molecular and Clinical Networks Fusion (MCNF),
which integrates multi-omics and clinical data. MCNF first
applies unsupervised random forest to multi-omics and
clinical data to generate a patient affinity network and then
uses random walk to fuse the patient affinity networks. After
obtaining the fused network, PAM clustering is used to identify
the cancer subtypes. Yang et al. (2021b) introduced a clustering
method, Deep Subspace Fusion Clustering (DSFC), for cancer
subtype prediction. DSFC calculates data self-expressiveness to
generate a patient similarity network, and then fuses these patient
similarity networks to gain a combined network. Finally, spectral
clustering is performed on the combined similarity network to
find cancer subtypes. Similarity-based approaches usually just use
the omics data to generate a similarity network, and completely
disregard the feature information of the omics data in subsequent
calculations. This may lead to incomplete subtype results.

To make full use of the feature information of the omics data
and the similarity graph, a graph-based neural network was used

because it takes both the feature information as well as the
similarity graph into consideration (Wu et al., 2021). In this
work, we proposed a deep-learning method named multiGATAE
for cancer subtype identification. multiGATAE first applies
multi-omics data to construct a similarity graph and then
establish a graph autoencoder network which is composed of a
graph attention network and an omics-level attention mechanism
to obtain the embedding representation. Finally, the K-means
clustering method is applied to the embedding representation to
identify cancer subtypes. multiGATAE was compared with serval
state-of-the-art methods on eight public cancer datasets, and the
results demonstrated that our proposed method performs better.

The remainder of this article is organized as follows. In section
2, we present the proposed method. The datasets we used and the
experiment results are shown in section 3. In section 4, we
conclude this article and discuss the future work.

2 MATERIALS AND METHODS

In this section, the details of our proposed-method multiGATAE
are described. Our proposed method consists of three parts.
Firstly, a similarity graph is constructed by integrating multi-
omics data. Then, the similarity graph and omics data are input to
a graph autoencoder composed of a graph attention network and
omics-level attention mechanism to learn the embedding
representation. Finally, the K-means method is applied to the
embedding representation to identify the cancer subtypes. The
workflow of multiGATAE is shown in Figure 1.

2.1 Construction of Similarity Graph
A network fusion method named SNF (Wang et al., 2014) was
used to construct the similarity graph. SNF first generated specific
similarity graphs for each omics, and then iteratively integrated
them to construct the combined similarity graph. Suppose that
there are n patients and m views (such as mRNA, miRNA, and
DNAmethylation). The similarity graph is defined as a graph G =
(V, E), where V is the set of patients \{x1, x2, x3 . . . , xn\} and the
edges E correspond to the similarity between vertices v ∈ V. The
edge weights are represented by an n × n similarity matrixW, and
W is computed by Eq. 1.

Wi,j � exp −ϕ
2 xi, xj( )
αγi,j

⎛⎝ ⎞⎠ (1)

where α is a hyperparameter, ϕ (xi, xj) is the Euclidean distance
between patients xi, and xj, and γi,j is used to eliminate the scaling
problem. In order to compute the fused matrix from multiple
types of data, the similarity matrix is normalized as Eq. 2.

Pi,j �
Wi,j

2∑k≠i Wi,k
j ≠ i

1
2

j � i

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (2)

assuming Ni is a set of xi ’s neighbors. Then, the local affinity
matrix S is calculated by Eq. 3.
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Si,j �
Wi,j∑k∈Ni

Wj,k
j ∈ Ni

0 otherwise

⎧⎪⎪⎨⎪⎪⎩ (3)

Let Pt
(h) represent the normalized similarity matrix of h-th

type data (1 ≤ h ≤ m) in the t-th iteration; Pt
(h) is updated

according to Eq. 4.

P h( )
t+1 � S h( )

∑
k≠h

P k( )
t

m − 1
⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠ S h( )( )T (4)

where S(h) represents the local affinity matrix of the h-th type
data. Through this process of continuous iterative fusion, the
combined similarity graph, which contains complementary
information from three omics datasets, is finally obtained and
then taken as the input of multiGATAE to learn the embedding
representation.

2.2 Embedding Representation Learning
Cancer subtype identification is a typical clustering problem
because of the lack of labels associated with the cancer
subtypes (Xu et al., 2019). A key problem of clustering is how
to capture the feature information of the nodes and the
relationship between the nodes (Wang et al., 2019). A graph-
based neural network may be able to solve this problem because it
considers both the feature information of the nodes as well as the
similarity relationships (Wu et al., 2021). In this work, we
constructed a graph autoencoder composed of a graph
attention network and omics-level attention mechanism to
learn the embedding representation. We first introduce the
Graph Convolutional Network (GCN) (Kipf and Welling,
2016a). The aim of the GCN is to learn a latent representation

Z based on the node feature matrix X, which describes every node
in the graph, and a similarity matrix A, which encodes the
similarities between the nodes. The layer-wise propagation rule
of GCN can be formulated as Eq. 5.

ZL � σ ~D
−1
2 ~A ~D

−1
2ZL−1WL−1( ) (5)

where ~A = A + E, which is a similarity matrix adding self-
connections. ~D is the diagonal node degree matrix of ~A. σ(·) is
a nonlinear activation function. ZL is the output of the L layer.
However, a limitation of GCN is that it does not assign different
weights to different nodes in the neighborhood (Veličković et al.,
2017). In a practical situation, different neighbor nodes may play
different roles for the current node. Therefore, we chose to use
GAT (Veličković et al., 2017) which aggregates the neighbor nodes
through the self-attention mechanism (Vaswani et al., 2017) and
enables the adaptive assignment of weights to different neighbors.
GAT first computes the attention coefficients by Eq. 6

eij � α Wxi,Wxj( ) (6)
where α(·) is a shared attentional mechanism, and xi and xj
represent the features of node i and node j, respectively. The
attention coefficients indicate the importance of node j’s features
to node i. To make the attention coefficients comparable across
different nodes, the softmax function is used to normalize them:

αij � softmax eij( ) (7)
The normalized attention coefficients are then used to

compute the final output Z as Eq. 8

ZL � σ αij
~D
−1
2 ~A ~D

−1
2ZL−1WL−1( ) (8)

FIGURE 1 | Workflow of multiGATAE. (A) Construction of similarity graph. (B) Embedding representation learning. (C) Cancer subtype clustering.
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In order to make the output Z more approximate to the
similarity graph A, we propose an omics-level attention
mechanism to aggregate the output of multi-omics. The
attention score is defined as Eq. 9

wi � vT tanh Wz · Zi +Wa · A( ) (9)
where wi and Zi represent the attention score and the output of
omics i. v,Wz,, andWa are trainable vectors. As mentioned above,
we normalize the omics-level attention scores using the softmax
function as Eq. 10

βi � softmax wi( ) (10)
We then obtain the final representation Zfinal by aggregating

the output of multi-omics as Eq. 11.

Zfinal � ∑ βiZi( ) (11)
The final representation Zfinal is input into the decoder to

reconstruct the original similarity graph. The decoder is defined
as Eq. 12 (Kipf and Welling, 2016b).

Â � τ ZfinalZfinalT( ) (12)

After the neural network optimization is completed, a
standard clustering method named K-means (Ding and He,
2004) is applied to the final representation Zfinal to identify
cancer subtypes.

3 EXPERIMENTS AND RESULTS

To evaluate the performance of our proposed-method
multiGATAE, we compared it with eight state-of-the-art
clustering methods, namely, DLSF (Zhang et al., 2022), subtype-
WESLR (Song et al., 2021), SNF (Wang et al., 2014), NEMO
(Rappoport and Shamir, 2019), iClusterBayes (Mo et al., 2018),
moCluster (Meng et al., 2016), LRAcluster (Wu et al., 2015), and
PFA (Shi et al., 2017) on eight public cancer multi-omics datasets.
Here, we first introduce the details of these eight state-of-the-art
methods, then we introduce the datasets used in this section and
show the experiment results on these eight datasets.

• NEMO is a multi-omics clustering method based on the
neighborhood. NEMO first constructs inter-patient
similarity network for each omics and then integrates
these networks into one network. Finally, the network is
used for clustering.

• iClusterBayes adopts latent variables to capture the inherent
structure of multi-omics datasets. The latent variable space
is then used to identify cancer subtypes.

• moCluster investigates the joint patterns among multi-
omics datasets. It uses multi-block multivariate analysis
to define a set of latent variables and passes it to the
clustering method to identify the cancer subtypes.

• LRAcluster discovers shared latent subspaces of the multi-
omics data based on the integrative probabilistic model.

The shared latent subspaces can be applied to identify
subtypes.

• SNF is a network fusion method. It generates similarity
networks for single-omics data and fuses these independent
similarity networks into a combined network. This
combined network can be used for cancer clustering.

• PFA is a pattern fusion analysis framework. It can capture
intrinsic structure from multi-omics data for cancer
clustering.

• subtype-WESLR uses a weighted ensemble strategy to fuse
base clustering obtained by distinct methods as prior
knowledge and maps each omics data into a common
latent subspace. The common latent subspace is
optimized iteratively to identify cancer subtypes.

• DLSF is a novel cancer clustering method based on deep
neural network. It uses a cycle autoencoder which has a
shared self-expressive layer to merge latent representation at
each omics level into a fused representation at the multi-
omics level. The fused representation can be used to identify
cancer subtypes.

3.1 Data Set and Data Preprocessing
Eight TCGA cancer public datasets including kidney renal clear
cell carcinoma (KIRC), breast invasive carcinoma (BRCA),
colon adenocarcinoma (COAD), skin cutaneous melanoma
(SKCM), lung squamous cell carcinoma (LUSC),
glioblastoma multiforme (GBM), liver hepatocellular
carcinoma (LIHC), and ovarian serous cystadenocarcinoma
(OV) were used in this work. They were downloaded from
TCGA (Cancer Genome Atlas Research Network, 2008), and
each of them contains four types of data: miRNA expression,
mRNA expression, DNA methylation, and clinical profiles.
These three datasets are preprocessed by the following steps.
Outlier removal is the first step. The features with missing values
in more than 20% samples were deleted. Similarly, samples
which have more than 20% features were removed. Finally, 206
samples in KIRC, 623 in BRCA, 214 in COAD, 439 in SKCM,
271 in GBM, 337 in LUSC, 404 in LIHC, and 290 in OV
remained in this step. The next step is missing-data
imputation. K nearest neighbor (Troyanskaya et al., 2001)
imputation had been applied to impute the missing values.
Finally, all of these datasets were normalized as Eq. 13:

~f � f − E f( )�������
Var f( )√ (13)

where E(f) is the mean of f, and Var(f) is the variance of f.

3.2 Optimal Number of Clusters
Since the K-means clustering method cannot automatically
determine the optimal number of clusters, a silhouette width
(Rand, 1971) was adopted to find the optimal clustering number.
The parameters of our proposed method were also adjusted
according to the silhouette width. We determined the optimal
hidden layers, learning rate (Lr), and the dropout according to the
grid search method. The optimal hidden layers were 2, Lr was
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0.01, and dropout was 0.5, which achieved the best silhouette
width and were finally applied in this work. In addition, for the
compared methods, the parameters as given in their original

articles were slightly modified to make themmore suitable for our
dataset. The silhouette width that our proposed method achieved
on the eight datasets is shown in Figure 2.

FIGURE 2 | Silhouette width multiGATAE achieved on the eight datasets.
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Since the sample size of the cancer omics data is not very
large, an excessive number of clusters may introduce bias.
Thus, the number of clusters adopted in this work ranged from
two to 10. The range of the silhouette width was from −1 to 1,
and the closer it was to 1 meant the better the clustering
performance was. We can see from Figure 2 that within a
certain range, the silhouette width exhibited an increasing
tendency. After reaching the optimal cluster number, the
silhouette width started to gradually decrease. Specifically,
for the KIRC datasets, the silhouette width achieved was the
best when the cluster number was set to 4. This meant that the
best clustering results were obtained when KIRC was clustered
into four subtypes. Similarly, the BRCA was finally clustered
into five subtypes, the COAD into three subtypes, the SKCM
into three subtypes, the GBM into four subtypes, the LUSC
into three subtypes, the LIHC into three subtypes, and the OV
dataset into three subtypes. We can see that all the optimal
numbers are within five, and this may indicate that the amount
of available data was not sufficient to identify numerous cancer
subtypes.

3.3 Comparison With Other Methods
To validate the performance of our proposed-method
multiGATAE, we compared it with eight state-of-the-art
methods on eight cancer datasets. Due to the lack of labels for
the omics data, the negative log10 p-value and C-index of log-rank
test were used as the metric. The log-rank test of the Cox regression
(Hosmer and Lemeshow, 1999) is a statistical model and is used to
assess the difference in survival profiles between subtypes. The
p-value represents whether the observed differences are significant.
If the p-value is less than 0.05, the observed subtypes are considered
significantly different. To facilitate comparison, the negative and
log operations were performed. The C-index was used to assess the
predictive performance of the survival model. The results are
shown in Table 1.

It can be seen from Table 1 that our proposed-method
multiGATAE achieved the best performance on most
datasets. Specifically, on the KIRC dataset, the negative
log10 p-value that multiGATAE achieved was 5.30, which
is 0.54 higher than the best remaining method subtype-
WESLR. As for COAD, SKCM, LUSC, and OV datasets,
the multiGATAE achieved 0.69, 0.52, 0.3, and 1.96
improvements compared with the best remaining method.
As for the C-index, except for KIRC and BRCA, multiGATAE
outperformed the compared methods on the other datasets.
This demonstrates that the subtypes identified by our
proposed method are indeed survival distinct. To illustrate
the difference between the subtypes identified by our
proposed method clearly, the survival curves for the eight
cancer datasets are shown in Figure 3. As can be seen in
Figure 3, except for BRCA, the cancer subtypes identified by
our method on the other seven datasets all exhibit
significantly different survival curves. The survival curve
was significantly different between the subtypes, and this
difference became progressively greater with time, indicating
that the probability of survival varies between subtypes. For
example, in the case of KRIC, subtype 3 showed a very low
survival probability compared to the other subtypes when the
time was above 1,000. This suggests that our method could
identify groups of patients with different prognoses and help
with precision treatment.

3.4 Analysis of Identified Subtypes on Lung
Squamous Cell Carcinoma
In order to further validate our proposed method, we selected
LUSC for a relevant biological analysis of identified subtypes.
There were three subtypes identified by our proposed method,
and in order to discover the differences at the molecular level
between these three subtypes, we performed differential

TABLE 1 | Results of comparison methods and the proposed method, the first value is cluster number and the second is the negative log10 p-value.

Metric Algorithm KIRC BRCA COAD SKCM GBM LUSC LIHC OV

p-value NEMO 3/4.48 4/0.31 4/0.96 4/2.74 3/2.96 3/2.15 3/1.60 3/0.05
iClusterBayes 4/2.51 5/1.06 4/0.09 4/1.85 3/0.22 3/1.24 3/1.11 3/1.48
moCluster 3/2.82 5/3.31 3/1.04 4/2.98 3/1.96 3/2.31 2/1.02 3/1.60
LRAcluster 3/2.07 5/2.23 4/1.17 3/3.25 3/2.00 3/2.35 3/0.39 3/2.96
SNF 3/3.40 4/2.82 3/1.07 4/2.31 3/2.92 3/2.03 3/1.54 3/1.15
PFA 2/2.08 5/2.89 3/1.00 4/2.64 2/2.23 3/1.04 2/2.64 3/0.05
subtype-WESLR 4/4.76 5/5.24 4/2.43 5/5.00 3/3.84 5/2.30 4/5.21 3/3.44
DLSF 4/2.76 3/1.89 4/0.05 5/3.85 5/4.53 3/0.11 3/3.15 4/0.03
multiGATAE 4/5.30 5/1.68 3/3.12 3/5.52 4/4.0 3/2.60 3/3.51 3/5.40

C-index NEMO 0.654 0.526 0.557 0.56 0.533 0.565 0.535 0.514
iClusterBayes 0.617 0.535 0.552 0.542 0.515 0.516 0.557 0.536
moCluster 0.626 0.588 0.543 0.566 0.538 0.576 0.553 0.56
LRAcluster 0.597 0.539 0.579 0.562 0.551 0.572 0.541 0.584 2
SNF 0.638 0.587 0.568 0.565 0.544 0.566 0.538 0.543
PFA 0.581 0.544 0.57 0.564 0.538 0.52 0.555 0.567
subtype-WESLR 0.66 0.595 0.632 0.58 0.559 0.587 0.594 0.581
DLSF 0.623 0.627 0.539 0.578 0.582 0.527 0.575 0.563
multiGATAE 0.618 0.574 0.644 0.594 0.587 0.614 0.599 0.61

Bold values indicates the best values.
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mRNA expressions by R package limma (Smyth, 2005). The
differentially expressed mRNAs are shown by the heat map in
Figure 4. As we can see from Figure 4, there are mRNAs which

are significantly differentially expressed. This demonstrates
that the subtypes identified by our proposed method have
molecular-level differences.

FIGURE 3 | Survival curves for eight cancer datasets.
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3.5 Effectiveness of Multi-Omics Data
In this work, we used multi-omics data in order to obtain a
comprehensive view on cancer subtype identification. To
investigate the difference in results between single-omics
and multi-omics data, we carried out experiments with
single-omics data. The results are shown in Table 2. It can

be seen from Table 2 that multiGATAE with multi-omics data
performed better than using single-omics data. This suggests that
integrating multi-omics data helps to capture a better embedded
expression and thus identify more stable cancer subtypes. Besides,
theDNAmethylation data showed relatively better results compared
with the other omics data. This may indicate that the DNA

FIGURE 4 | Differentially expressed mRNAs of the LUCS subtypes. (A) Subtype 0 and subtype 1. (B) Subtype 0 and subtype 2. (C) Subtype 1 and subtype 2.

TABLE 2 | Results of multi-omics and single-omics, the first value is cluster number and the second is the negative log10 p-value.

KIRC BRCA COAD SKCM GBM LUSC LIHC OV

mRNA 4/1.31 3/0.20 3/0.24 3/1.52 4/1.27 3/0.38 3/0.8 3/0.97
DNA methylation 3/1.75 3/0.71 3/0.73 3/1.69 4/1.71 3/0.03 3/0.87 3/2.85
miRNA 4/1.57 4/0.39 3/0.98 3/1.98 4/1.24 4/0.53 3/0.667 3/1.35
Multi-omics 4/5.30 5/1.68 3/3.12 3/5.52 4/4.0 3/2.60 3/3.51 3/5.40
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methylation data contains more information that facilitates cancer
subtype identification.

4 CONCLUSION

Cancer is a highly heterogeneous disease that causes a large number of
deaths every year. Cancer subtype identification aims to identify
groups of patients with different clinical outcomes for precise
treatment. In this work, we proposed a novel cancer subtype
identification method named multiGATAE. multiGATAE first
constructed a similarity graph by integrating multi-omics data, and
then input the similarity graph and the omics data into a graph
autoencoder networkwhich is composed of a graph attention network
and an omics-level attention mechanism to obtain the embedding
representation. Once gaining the embedding representation, the
K-means clustering method was applied to it to identify subtypes.
multiGATAE was compared with eight state-of-the-art methods on
eight public cancer datasets. The results demonstrate that our
proposed method can identify distinct subtypes with different
survival outcomes. In the future, we consider integrating more data
to develop our method. In addition, when learning embedding
representation, taking clustering losses into consideration is also a
way to improve our method.
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PredMHC: An Effective Predictor of
Major Histocompatibility Complex
Using Mixed Features
Dong Chen and Yanjuan Li*

College of Electrical and Information Engineering, Quzhou University, Quzhou, China

The major histocompatibility complex (MHC) is a large locus on vertebrate DNA that
contains a tightly linked set of polymorphic genes encoding cell surface proteins essential
for the adaptive immune system. The groups of proteins encoded in the MHC play an
important role in the adaptive immune system. Therefore, the accurate identification of the
MHC is necessary to understand its role in the adaptive immune system. An effective
predictor called PredMHC is established in this study to identify the MHC from protein
sequences. Firstly, PredMHC encoded a protein sequence with mixed features including
188D, APAAC, KSCTriad, CKSAAGP, and PAAC. Secondly, three classifiers including
SGD, SMO, and random forest were trained on the mixed features of the protein
sequence. Finally, the prediction result was obtained by the voting of the three
classifiers. The experimental results of the 10-fold cross-validation test in the training
dataset showed that PredMHC can obtain 91.69% accuracy. Experimental results on
comparison with other features, classifiers, and existing methods showed the
effectiveness of PredMHC in predicting the MHC.

Keywords: protein classification, major histocompatibility complex, machine learning, feature extraction,
identification

INTRODUCTION

As a large locus on vertebrate DNA, the major histocompatibility complex (MHC) contains a tightly
linked set of polymorphic genes encoding cell surface proteins that are essential for immune
surveillance. These cell surface proteins are called MHC molecules (Kubiniok et al., 2022). MHC
molecules are classified into MHC class I, MHC class II, and MHC class III according to variation in
molecular structure, function, and distribution (Marcoux et al., 2021). MHC class I molecules are
expressed in all nucleated cells and platelets—essentially all cells except red blood cells, which display
antigens to signal cytotoxic T lymphocytes, including clusters of differentiation (CD8+) (McShan
et al., 2021). MHC class II molecules are expressed in antigen-presenting cells, such as B cells,
dendritic cells, and macrophages, where they normally bind to CD4+ receptors on helper T cells to
clear foreign antigens. MHC class III genes are interleaved with class I and class II genes on the short
arm of chromosome 6, but their proteins play different physiological roles.

MHC molecules are cell surface glycoproteins with a three-dimensional structure and are of vital
importance to infection, autoimmunity, transplantation, and tumor immunotherapy. MHC-binding
prediction plays an important role in identifying potential novel therapeutic strategies. Mahoney
et al. (2021) pointed out that MHC phosphopeptides can be considered potential
immunotherapeutic targets for cancer and other chronic diseases. Therefore, many scholars
carried out a lot of research work on MHC-binding prediction. The first computational method
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(Altuvia et al., 1995) to uncover the MHC-binding peptide was
developed by Altuvia et al., which is based on protein structure
and is further improved to distinguish candidate peptides that
bind to hydrophobic binding pockets of the MHC molecules
(Altuvia et al., 1997). The SVRMHC (Liu et al., 2006) is an MHC-
binding peptide model which encoded peptides with
physicochemical properties and trained support vector
machines to construct a prediction model on mice. NetMHC-
3.0 (Lundegaard et al., 2008) is a web server with high
performance for predicting peptide binders based on artificial
neural networks. Boehm et al. proposed a method named
ForestMHC (Boehm et al., 2019) to identify immunogenic
peptides. ForestMHC encoded a peptide sequence with
physicochemical properties and trained a random forest
classifier to construct an identification model. Saxena et al.
(2020) predicted the binding potential of peptides to the
MHC, which is critical for designing peptide-based
therapeutics, using a deep learning model named OnionMHC.
In consideration of the importance of structural information, the
OnionMHC represents peptides with its sequence and structure-
based features for peptide-HLA-A*02:01 binding predictions. (Lv
et al., 2020) Jiang et al. (2021) gave a comprehensive review of the
state-of-the-art literature on MHC-binding peptide prediction
and an in-depth evaluation of feature representation methods,
prediction models, and model training strategies on benchmark
datasets. Based on the limitation of only handling peptide
sequences with fixed length, Jiang et al. proposed a novel
variable-length MHC-binding prediction model named
BVLSTM-MHC. Experimental results on an independent
validation dataset showed that BVLSTM-MHC has better
performance than the ten mainstream prediction tools.

Scientists are devoted to discover MHC molecules in various
vertebrate genomes. Hopkins et al. (1986) described a rat
monoclonal antibody which can recognize MHC class II
antigens in sheep and seems to recognize determinants which
are nonpolymorphic. Moreover, based on the antibody, the
distribution of sheep class II molecules is investigated, and the
class II- expression variations by cells in efferent lymph and
peripheral is also investigated. Westbrook et al. (2015) combined
the SMRT sequencing technology and CCS and introduced and
validated the technology of SMRT-CCS on identifying class I
transcripts in Mauritian-origin cynomolgus macaques.
Furthermore, SMRT-CCS was applied to characterize 60 new
full-length class I transcriptional sequences expressed in the
Chinese cynomolgus monkey population. By using
pyrosequencing with high-resolution and Sanger sequencing
technology, Shiina et al. (2015) genotyped 127 unrelated
animals and identified 112 different alleles. Moreover, the
International Society for Animal Genetics (ISAG) standardized
the nomenclature and established the IPD-MHC database which
is used to scientifically manage the MHC allele sequences and
genes from nonhuman organisms (Giuseppe et al., 2017; Maccari
et al., 2018; Ali et al., 2021; Burton et al., 2021; Karcioglu and
Bulut, 2021; Roy et al., 2021; Safaei et al., 2021; Wang et al., 2021).

At early stages, the research studies related to the MHC are
developed based on mice experiments. With the availability of a
large amount of data and development of machine learning,

developing a machine learning–based model to research the
MHC was feasible. Li et al. (2019) proposed an identification
method of the MHC based on an extreme learning machine
algorithm. Although high accuracy has been achieved, there are
still many aspects worthy of further investigation (Lv et al., 2019;
Lv et al., 2021a; Lv et al., 2021b). In this study, we aim to propose a
new MHC predictor, PredMHC, to further improve prediction
performance.

MATERIALS AND METHODS

Framework of PredMHC
In this study, we introduced a novel MHC predictor named
PredMHC, the framework of which is shown in Figure 1. First,
PredMHC encoded a protein sequence with mixed features
including 188D, APAAC, KSCTriad, CKSAAGP, and PAAC.
Second, three classifiers including SGD, SMO, and random
forest were trained on the mixed features of protein sequence.
Finally, the prediction result was obtained by the voting of the
three classifiers.We will introduce the datasets, feature extraction,
and classifiers in detail in the following section.

Dataset
The dataset constructed by Li et al. (2019) is used in this study. A
web server called ELM-MHC was developed by Li et al., from
which the dataset can be downloaded. The reason that we used
the same dataset as ELM-MHC is as follows. First, the dataset is
constructed by searching for MHC sequences on the Uniprot
database, and it is reliable. Second, the dataset is used cd-hit to de-
duplication processing. The protein sequences are clustered based
on the parameter setting, and the sequence with the maximum
length in every cluster is used as a representative sequence. The
redundant and homology-biased sequences are removed in this
dataset. Finally, the most important inference was that we can
fairly compare with the existing method by using the same
dataset. The final dataset contained 13,488 protein sequences,
which consists of 6,712 MHC protein sequences (positive
examples) and 6,776 nonMHC protein sequences (negative
examples). All protein sequences were divided into two
groups: 10,790 sequences as a set of 10-fold cross-validation
and 2,698 sequences as a set of independent validation. The
training dataset (Train-10790) comprised 5,370 MHC protein
sequences and 5,420 nonMHC protein sequences, all randomly
selected from the set of positive and negative examples,
respectively. They were then further randomly divided into
five sets for the input of 10-fold cross-validation. The
independent testing dataset (Test-2698) contained 1,342
positive and 1,356 negative examples.

Feature Extraction
To classify a protein sequence into different categories using the
machine learning method, the first step is to encode the protein
sequence with features. A feature that can effectively discriminate
positive examples from negative examples can greatly improve
the prediction performance of the model. In this study, we try to
encode protein sequences with mixed features including 188D,
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APAAC, KSCTriad, CKSAAGP, and PAAC. The mixed features
can represent a protein sequence from different prospectives;
thus, it can better distinguish different protein sequences.

SVMProt-188D
SVMProt-188D is a feature extraction method based on the
amino acid composition and physicochemical properties
(Dubchak et al., 1995; Saxena et al., 2021). It encodes each
protein sequence as a 188-dimensional feature vector. The first
20 features are the frequencies of the 20 amino acids (A, C, D, E,
F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y in alphabetical
order) occurring in the sequence. The formula is defined as

(V1, V2, ..., V20) � Ni

L
,

where Ni denotes the number of the ith amino acid in the protein
sequence and L denotes the length of a sequence. Obviously,∑Vi � 1.

The latter dimensions are correlated with eight
physicochemical properties, namely, hydrophobicity,
normalized Van der Waals volume, polarity, polarizability,
charge, surface tension, secondary structure, and solvent
accessibility. Each physicochemical property consists of 21
numbers. In detail, each property consists of three descriptors,
composition (C), transition (T), and distribution (D). C indicates
the proportion of amino acids with specific physicochemical
properties to all amino acids, and the dimension of C is 3; T
represents the percentage frequency of amino acids with a specific
property behind amino acids with another property, and its
dimension is 3; and D represents the proportions of the chain
length of 0, 25, 50, 75, and 100% amino acids with a specific

property, and its dimension is 8. Therefore, after analyzing the
composition and eight physicochemical properties of amino
acids, we can obtain a total of 20+(3 + 5+8)×8 = 188 features.

Amphiphilic Pseudo Amino Acid Composition
The concept of amphiphilic pseudo amino acid composition
(APAAC), originally proposed by Chou (Chou, 2005; Lv et al.,
2021a; Awais et al., 2021; Naseer et al., 2021; Yan et al., 2021), is
an effective protein descriptor and has been applied for diverse
protein sequence analysis. APAAC is different from traditional
AAC. It can incorporate a partial sequence-order effect by using
the hydrophobicity and hydrophilicity of the constituent amino
acids in a protein. For the convenience of the readers, we will
briefly introduce the concept of APAAC. Let R1R2R3...RL be a
protein sequence with length L, where R1 denotes the residue at
position 1, R2 denotes the residue at positon 2, and so forth.
According to the definition of APAAC, a protein can be denoted as
a vector P with dimension (20+2λ). Vector P is defined as follows.

P � [P1, . . . , P20,P20+1, . . . ,P20+λ, . . . ,P20+2λ], (1)
where P1, P2, . . . , P20 in Eq. 1 represent the classic AAC and the
next 2λ discrete numbers describe the sequence correlation factor.

K-Spaced Conjoint Triad
The k-spaced conjoint triad (KSCTriad) (Chao et al., 2018; Zhen
et al., 2020) is an effective protein descriptor and has been
comprehensively applied for diverse biological sequence
analyses. Different from the conjoint triad descriptor,
KSCTriad not only calculates the number of three continuous
amino acid units but also incorporates the continuous amino acid
units that are separated by any k-residues.

FIGURE 1 | Framework of PredMHC.
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Composition of K-Spaced Amino Acid Group Pairs
The composition of k-spaced amino acid pairs (CKSAAP) (Chen
et al., 2010; Ahmad et al., 2021; Akbar et al., 2021; Al-Qazzaz
et al., 2021; Alar and Fernandez, 2021; Alim et al., 2021; Buriro
et al., 2021) method describes the order-related information of
the protein sequence, which takes the occurrence frequency of
two amino acids separated by k-residues in the sequence as a
feature element. The protein contains 20 amino acids; thus, a 400-
dimensional feature vector can be obtained for each interval. The
composition of k-spaced amino acid group pairs (CKSAAGP) is a
variation of the CKSAAP method. The 20 amino acids can be
classified into five groups based on the chemical properties of
their side chains: the aliphatic group, aromatic group, positive
charged group, negative charged group, and uncharged group.
The CKSAAGP method is based on the frequency of the two
groups separated by a k-spaced amino acid.

Pseudo-Amino Acid Composition
The conventional amino acid composition is defined in a 20-D
space, and each dimension represents the frequency of the
occurrence of one of the 20 native amino acids. Different from
the conventional amino acid protein composition, the pseudo-
amino acid composition (Chou, 2001; Awais et al., 2021), which is
a vector with 20+λ discrete components, will contain much more
sequence-order and sequence-length information. According to
the concept of pseudo-amino acid composition, the feature is
given by

P �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
p1

..

.

p20

p20+1
..
.

p20+λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
where the first 20 components are the occurrence frequencies of
the 20 amino acids in the protein which is the same as in the
conventional amino acid composition, while the additional
components p20+1 . . . p20+λ are the sequence-order correlation
factors of the different ranks.

Classifier
To obtain better classification results, we adopted the voting of
three base classifiers as the final classification result. The three
classifiers were, respectively, random forest, SMO, and SGD. The
three classifiers are popular and have been successfully used in
bioinformatics many times.

Random forest is an ensemble classifier based on the decision
tree algorithm proposed by Breiman in 2001 (Breiman, 2001).
To solve regression or classification tasks, random forests
construct many decision trees by extracting subsets from all
the samples through the bootstrap technique and obtain the
prediction result by voting on these decision trees. Random
forests are widely used in bioinformatics because of their low
computational overhead and ability of handling
unbalanced data.

The support vector machine (SVM) (Hearst et al., 1998) is a
well-known machine learning algorithm that completes various
classification tasks by constructing a separating hyperplane in the
high-dimensional space. However, the training speed of support
vector machines is heavily influenced by data size. To solve this
problem, the sequential minimum optimization (SMO) (Platt,
1999) algorithm was proposed, which decomposes large
quadratic programming problems (OPs) of an original SVM
into a series of the smallest possible QP problems. Moreover,
the solution process of SMO needs no additional matrix storage,
thus saving both time and space costs.

The goal of the stochastic gradient descent (SGD) algorithm is
to find a path that leads to optimal result. When using this
algorithm, the parameter values are first initialized, and then
these values are continuously changed until the target function
converges. The SGD algorithm is widely used to process large-
scale sparse data, such as text classification tasks.

Measurement
To evaluate the performance of the proposed method, we
introduced four indicators commonly used in bioinformatics:
sensitivity (SE), specificity (SP), accuracy (ACC), and Matthew’s
correlation coefficient (MCC). The formulae of these indicators
are as follows (Zhang et al., 2021a; Lv et al., 2021b; Zhang et al.,
2021b; Zhang et al., 2021c; Zhang et al., 2021d; Zhang et al.,
2021e; Zhao et al., 2021; Zhu et al., 2021; Zou et al., 2021; Zhao
et al., 2022).

SE � TP

TP + FN
,

SP � TN

TN + FP
,

ACC � TN + TP

TN + FP + TP + FN
,

MCC � (TP × TN) − (FP × FN)																																												(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)√ ,

where TP is an abbreviation for true positives, representing the
number of MHC proteins predicted in positive examples; FP is an
abbreviation for false positives, representing the number of MHC
proteins predicted in negative examples; TN is an abbreviation for
true negatives, representing nonMHC proteins predicted in
negative examples; and FN is an abbreviation for false negatives
and indicates the number of predicted nonMHC proteins in
positive examples. SE and SP represent the predictive accuracy
of the model in positive and negative samples, respectively. Both
ACC and MCC represent the overall performance of the model.
For all the aforementioned metrics , the higher the score they get
the better the performance of the model.

RESULT AND DISCUSSION

Cross-Validation Results of Train-10790
In many experiments, we tried a variety of methods to extract
highly recognizable features from protein sequences in the
training set and used several algorithms to train the model to
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achieve optimal accuracy. The experimental comparison results
of different features are explained in Performance of Different
Features on Cross-Validation, and the experimental comparison
results of different classifiers are explained in Performance of
Different Classifiers on Cross-Validation.

Performance of Different Features on Cross-Validation
Using the voting of random forest, SMO, and SGD as the
classification model, we first tried 188D, APAAC, KSCTriad,
CKSAAGP, PAAC, and their combinations. Table 1 shows the
performance of the five single features and several combinations
of features with good performance in the 10-fold cross-validation.
As shown in Table 1, according to the indexes MCC and ACC,
the mixed features proposed in this study have the highest score;
thus, our method has better overall performance. According to
the indicator of SE, the feature of APAAC has the highest score,
whereas its value of ACC, MCC, and SP is lower; it verifies that
the feature of APAAC was bias to classify a protein into the MHC
protein. Similar to APAAC, PAAC also has higher value on the
indicator SE and lower value on other indicators. Therefore, from
the overall perspective, our method obviously performs better
than all other methods.

Performance of Different Classifiers on
Cross-Validation
To verify the performance of our used classifier, we compared the
classifier used in this study with other classifiers. Table 2 shows
the experimental results. As shown in Table 2, the voting of SGD,
SMO, and random forest used in our identification system has

better performance than other single classifiers. As shown in
Table 2, our classification model has 0.9169% accuracy and
0.8370 MCC, which are higher than those of other classifiers.
It verified that our classification model has better overall
performance. According to the number of winning incidences,
our classification wins on three indicators and has the highest
number of wins. It is shown in Table 2 that the SE of our
classification model was slightly lower than that of random forest.
However, the values of ACC, MCC, and SP of our classification
model are obviously higher than those of random forest.
Therefore, from the overall perspective, our classification
model obviously performs better than all other classifiers.

Independent-Validation Results of
Test-2698
To evaluate the generalization performance of the proposed
model, we tested its performance on the Test-2698 dataset. In
detail, we trained the model proposed in this study on the
Train-10790 dataset and then computed its performance on
the test-2698 dataset. The experimental results are shown in
Tables 3, 4. As shown in Tables 3, 4, the feature extraction
method and classifier used in this study have better
performance than the other feature extraction methods and
classifiers, respectively.

Comparison With Other Predictors
To evaluate the performance of the classifier PredMHC, we
compared it with ELM-MHC on the same dataset including
Train-10790 and Test-2698. The comparison results on the
10-fold cross-validation are shown in Table 5. As we can see
from Table 5, PredMHC has higher score than ELM-MHC on
the indicators ACC, MCC, and SP. According to the number of
winning incidence, PredMHC has better performance than
ELM-MHC. According to ACC and MCC, PredMHC has
better overall performance than ELM-MHC. Therefore,
PredMHC is superior to the existing methods in the
prediction of MHC protein.

TABLE1 | Result of different features on Train-10790.

Feaures ACC MCC SE SP

(1)-188D 0.8953 0.7927 0.8596 0.9310
(2)-APAAC 0.8329 0.6824 0.9494 0.7108
(3)-KSCTriad 0.8764 0.7580 0.8177 0.9350
(4)-CKSAAGP 0.8682 0.7469 0.7826 0.9529
(5)-PAAC 0.8283 0.6739 0.9485 0.7018
188D + APAAC 0.9003 0.8019 0.8735 0.9276
APAAC + KSCTriad 0.8872 0.7782 0.8386 0.9360
KSCTriad + CKSAAGP 0.8993 0.8039 0.8404 0.9576
CKSAAGP + PAAC 0.8848 0.7728 0.8376 0.9316
188D + APAAC + KSCTriad 0.9121 0.8268 0.8734 0.9511
APAAC + KSCTriad + CKSAAGP 0.9054 0.8155 0.8518 0.9589
KSCTriad + CKSAAGP + PAAC 0.9041 0.8127 0.8516 0.9565
188D + APAAC + KSCTriad + CKSAAGP 0.9157 0.8351 0.8701 0.9618
APAAC + KSCTriad + CKSAAGP + PAAC 0.9065 0.8178 0.8522 0.9608
Our mixed feature 0.9169 0.8370 0.8761 0.9587

TABLE 2 | Result of different classifiers on Train-10790.

Classifiers ACC MCC SE SP

SGD 0.8794 0.7600 0.8504 0.9081
SMO 0.9038 0.8106 0.8594 0.9478
Random forest 0.8850 0.7699 0.8830 0.8869
Our classification model 0.9169 0.8370 0.8761 0.9587
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CONCLUSION

In this study, we proposed an efficient, reliable, and simple
experimental model for predicting the MHC protein based on
mixed features. After a large number of comparative
experiments, we selected the mixed features of 188D,
APAAC, KSCTriad, CKSAAGP, and PAAC, which showed
global performance on the 10-fold cross-validation training
dataset and independent test dataset. We then used the
voting of SGD, SMO, and random forest to build a
prediction model which also achieved the best performance
on both training and test datasets. In terms of important
indicators, our model obtained an MCC of 0.8370 and ACC
of 0.9169 in the 10-fold cross-validation based on the Train-
10790 dataset and MCC of 0.8502 and ACC of 0.9246 in the

independent validation based on the Test-2698 dataset. In
conclusion, we believe that our novel model provides an
efficient and reliable method to screen MHCs from a large
number of protein sequences. In the future, we will pay more
attention to deep learning classifiers and evolution strategies
(Tahoces et al., 2021; Tandel et al., 2021; Tavolara et al., 2021;
Togacar, 2021; Tsiknakis et al., 2021; Turki and Taguchi, 2021;
Usman et al., 2021; Vafaeezadeh et al., 2021; Wang et al., 2021;
Watanabe et al., 2021; Yap et al., 2021; Yildirim et al., 2021).
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