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Editorial on the Research Topic

Ferroptosis in malignant brain tumors
Malignant primary brain tumors constitute around 30% of all primary brain tumor

diagnoses in the United States. Unfortunately, these type of tumors still have a fatal

prognosis despite advancements in the neuro-oncological toolbox. Although a multimodal

therapy approach is the current gold standard, malignant primary brain tumors display a

complex intratumoral heterogeneity. As a consequence, brain tumors trigger intricate

molecular and metabolic shifts within the tumor microenvironment which might be

responsible for therapy resistance and tumor relapse. However, our understanding of the

molecular composition and orchestration of malignant primary brain tumors is still

incomplete for efficient clinical translation. Thus, further investigations into the

mechanisms of brain tumor growth are urgently needed.

Recent research has highlighted the relevance of ferroptosis in tumorigenesis – a process of

iron-dependent programmed cell death. This novel mechanism also reveals clinical relevance

due to its potential to mitigate oxidative stress and treatment resistance. However, the

underlying mechanisms and regulators of ferroptosis remain elusive, with limited dedicated

research. Consequently, triggering ferroptosis emerges as a promising therapeutic route,

particularly for malignant brain tumors, which demand a new treatment paradigm.

This Research Topic aims to provide a comprehensive overview of ferroptosis in brain

tumor development, progression, recurrence, and its interplay with the immune and tumor

microenvironment, along with its therapeutic prospects. This endeavor culminated in a

collection of five original research articles and twelve review articles, contributed by

eminent global ferroptosis researchers.

Several manuscripts have illuminated distinct aspects of ferroptosis in malignant

gliomas. Zhou et al. investigated the impact of miR-29b-mediated targeting of GPx7

(glutathione peroxidase 7), revealing that GPx7 suppression enhances erastin-induced

ferroptosis. Dong et al. uncovered the influence of ferroptosis-related genes on immunity,

stemness and prognosis in glioblastoma, suggesting novel prognostic indicators. Fu et al.

identified LncRNA (long noncoding RNA) PELATON as a ferroptosis suppressor and

prognostic signature, introducing fresh insights into the intricate molecular landscape of
frontiersin.org015
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these tumors. Kram et al. showcased an upregulation of ACSL4

(acyl-CoA synthetase long-chain family member 4) and ALDH1A3

(aldehyde dehydrogenase 1A3) proteins during tumor relapses,

indicating an increased vulnerability of glioblastoma relapses to

ferroptosis. For further understanding of the dynamic progression

and structural attributes of necrosis in glioblastomas, Yee et al.

conducted a timely study of necrosis development in a mouse

glioblastoma model, linking radiographic and histological

observations. The extent of necrosis seen among glioblastoma

patients was reconstructed using orthotopic xenograft glioma

model induced by hyperactivation of the Hippo pathway

transcriptional coactivator with PDZ-binding motif (TAZ).

Within the realm of review articles, Zhao et al. meticulously

examined the pivotal role of iron transporters in ferroptosis within

malignant brain tumors. This exploration seamlessly segued into

the realm of PPARg modulation in further research by the

Yakubov team unraveling the intricate interplay between this

molecular orchestrator and the ferroptosis process within the

context of malignant glioma and tumor-related edema. On the

other hand, Ferrada et al. embarked on an exploration of

pharmacological avenues to incite ferroptosis, specifically

targeting glioblastoma and neuroblastoma. Meanwhile, Chi et al.

illuminated the potential benefits and challenges of harnessing

ferroptosis in treatments, revealing insights into the distinctive

molecular and microenvironmental traits inherent to these

separate brain tumors. A detailed analysis of the immunological

milieu of gliomas byWang et al. identified ferroptosis’s role within

the complex immune microenvironment.

The remaining publications in this Research Topic focus on the

current situation, prospects, drug applications and off-target effects

of ferroptosis induction in malignant brain tumors. Lu et al.

provided insights into the molecular mechanisms of ferroptosis in

glioma progression and treatment, while Yin et al. discussed the

mechanisms of long non-coding RNAs in glioma ferroptosis. Zhang

et al. explored ferroptosis-related ncRNAs in an effort to achieve

personalized treatment regimen for gliomas through ferroptosis.

Yao et al. proposed a ferroptosis-based drug delivery system for

malignant brain tumors. Zhou et al. highlighted the emerging role

of ferroptosis as a promising therapeutic target in glioblastoma

treatment, particularly in cases that are resistant to conventional

therapy. Xie et al. explored autophagy-dependent ferroptosis as a
Frontiers in Oncology 026
potential treatment for glioblastoma. In addition, Dahlmanns et al.

analyzed genetic profiles of ferroptosis in malignant brain tumors

and off-target effects of ferroptosis induction, emphasizing the need

for precision in harnessing this therapeutic strategy.

Collectively, the collection of research in this Research Topic

provides a comprehensive panorama of ferroptosis’s multifaceted

involvement in malignant brain tumors. These articles accentuate

specific molecular targets, such as GPx, long non-coding RNAs,

iron transporters, and PPARg, in the context of distinct brain

tumor types. The diverse array of mechanisms, prospective

therapeutic pathways, and challenges associated with ferroptosis

in malignant brain tumors underscore the imperative need for

further research to unlock its full therapeutic potential. This

pursuit not only opens avenues for innovative strategies but also

holds the potential to reshape the treatment terrain for malignant

brain tumors, ushering in renewed optimism for both patients and

the neuro-oncological community.
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Glioblastoma represents the most devastating form of human brain cancer, associated
with a very poor survival rate of patients. Unfortunately, treatment options are currently
limited and the gold standard pharmacological treatment with the chemotherapeutic drug
temozolomide only slightly increases the survival rate. Experimental studies have shown
that the efficiency of temozolomide can be improved by inducing ferroptosis – a recently
discovered form of cell death, which is different from apoptosis, necrosis, or necroptosis
and, which is characterized by lipid peroxidation and reactive oxygen species
accumulation. Ferroptosis can also be activated to improve treatment of malignant
stages of neuroblastoma, meningioma, and glioma. Due to their role in cancer
treatment, ferroptosis-gene signatures have recently been evaluated for their ability to
predict survival of patients. Despite positive effects during chemotherapy, the drugs used
to induce ferroptosis – such as erastin and sorafenib – as well as genetic manipulation of
key players in ferroptosis – such as the cystine-glutamate exchanger xCT and the
glutathione peroxidase GPx4 – also impact neuronal function and cognitive capabilities.
In this review, we give an update on ferroptosis in different brain tumors and summarize
the impact of ferroptosis on healthy tissues.

Keywords: ferroptosis, neuroblastoma, glioblastoma, erastin, neuron, xCT, brain tumor therapy, off-target effects
INTRODUCTION

Ferroptosis is as an iron-dependent form of cell death, which is different from previously known
forms of cell death such as apoptosis, necrosis, or necroptosis. It is characterized by the
accumulation of reactive oxygen species (ROS) and lipid peroxidation (1–3). After finding that
activating ferroptosis in cancer cells of mice improved the effectiveness of temozolomide
treatment – a first-line chemotherapeutic drug against glioblastoma (glioma WHO grade IV)
(4, 5) – further investigations revealed the important role of ferroptosis also in human cancer patients.

Glioma is a type of primary brain tumor that is generated from glial cells in the central nervous
system. These gliomas are classified by the WHO into low-grade glioma (WHO grade II) and high–
grade glioma (WHO grade III/IV), where higher grading is associated with poorer prognosis (6).
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Ferroptosis represents an option to improve treatment for
patients suffering especially from these more malignant
tumors, including glioblastomas, because these are difficult to
cure by radiation, resection, or pharmacological treatment alone.
Especially because pharmacological treatment is affected by drug
resistances (7).

Since the discovery of ferroptosis in 2012 (1) several key
molecules have been identified, which are either directly
integrated into the ferroptosis process or act as inducers.
Current data about key players in ferroptosis and their role in
glioma have been reviewed elsewhere (8, 9). The recently
launched database ferrDB provides an overview of these
regulators and markers in ferroptosis (10).

This review provides an overview of ferroptosis in the therapy
of various brain tumors with a focus on ferroptosis gene
signatures, which have a strong translational value in
predicting patients’ prognosis, and of the effects of ferroptosis
induction in non-cancerous tissue that is also affected during
treatment (Figure 1).
PROMISING FINDINGS ON FERROPTOSIS
INDUCTION IN NEUROBLASTOMA
AND MENINGIOMA

Expanding on the treatment boosting effects of ferroptosis
induction in glioma, there are also promising findings in other
types of cancer. Neuroblastoma is a highly relevant pediatric
cancer in younger children (11), with limited treatment options
and therapy resistance if occurring in its high–risk form (12).
Induction of ferroptosis to limit tumor growth has been
emerging as a striking new concept to treat neuroblastoma.

Ferroptosis can be induced by several small molecules [as
reviewed elsewhere (8)] or by inhibition of the glutathione
peroxidase GPx4 (13) and glutamate/cystine antiporter system
x−c (SLC7A11; also referred to as xCT) through the drugs erastin
(1), sulfasalazine (14), or sorafenib (15), amongst others.

Recently, treatment with the steroidal lactone withaferin A
was found to induce the nuclear factor erythroid 2–related factor
2 (Nrf2) pathway and to inactivate the GPx4 pathway, a duality
making this strategy highly effective in treating both
neuroblastoma cells and transplanted xenografts in mice (16).
In this study the substance was targeted to the tumor site with
nanoparticles, which reduces side-effects (17).

Chemosensitization to erastin–induced ferroptosis was also
accomplished after knockdown of the iron exporter ferroportin
in neuroblastoma SH-SY5Y cells (18).

In about 25% of neuroblastoma cases MYCN is amplified
(19). In patient-derived xenografts of these cases, the xCT-driven
antioxidant response after sulfasalazine application is increased
compared to controls, which leads to an increase in ferroptosis
and subsequently limited tumor growth (19). Further studies
revealed that the transferrin receptor 1 was upregulated in
response to such MYCN amplification, leading to increased
GPx4 sensitivity and rendering neuroblastoma cells vulnerable
Frontiers in Oncology | www.frontiersin.org 28
to ferroptosis induction (20). In addition to this genetically
mediated sensitization, the inhibition of PKCa stimulated
ferroptosis and sensitized neuroblastoma stem cells to
etoposide, which is particularly relevant given the central role
of stem cells in conferring resistance to therapy (21).
Neuroblastoma cell lines also express a very low level of
ferritin heavy chain 1, whose reduction leads to a rise in ROS
and a higher sensitivity to ferroptosis (22). In meningioma cell
lines derived from patients covering WHO Grades I–III, the
vulnerability to erastin-induced ferroptosis was increased both
by a loss of neurofibromin and by a low level of E-cadherin. The
expression of these proteins is driven by the myocyte enhancer
factor 2C, making it a promising factor to manipulate during
meningioma treatment (23, 24).

In summary, treatment of cancers such as neuroblastoma and
meningioma in their advanced stages may be improved by
exploiting the role of ferroptosis.
FERROPTOSIS-GENE SIGNATURES
IN GLIOMA

Gliomas represent a major form of brain cancer, divided into
WHO grades I to IV with glioblastoma being the most
devastating form of human brain cancer (6) because it is
associated with a low survival, therapy resistance and limited
treatment options (25). To overcome these obstacles, genetic
studies based on large patient databases have examined the link
between gene expression in glioma and overall survival in risk–
stratified patient cohorts. In these studies, ferroptosis– and
glioma–related genes of interest were identified by screening
RNA sequencing data and associated clinical data. These gene–
signatures constitute a risk-model, predicting the overall survival
of the patients. To avoid overfitting, the models were each
constructed in one database, e. g. Chinese Glioma Gene Atlas
(CGGA), and validated using other databases, e. g. Repository for
Molecular Brain in Neoplasia Data (REMBRANDT) or The
Cancer Genome Atlas (TCGA) (26–32). The risk–models are
shown and described in Table 1. The risk models that are based
on the ferroptosis–related genes stratified glioma patients into a
low–risk and high–risk cohort.

In high-risk cohorts, the median survival probabilities indicated
by Kaplan-Meier curves were significantly decreased. The risk-score
was often correlated with clinicopathological features such as the
WHO grade or the O–6–Methylguanine–DNA Methyltransferase
(MGMT) promotor methylation status, proving the suitability of
ferroptosis–related gene expression pattern for patient outcome
prediction. Interestingly, functional annotation of the ferroptosis–
related genes in the risk–models revealed that often the immune
system is involved: Investigation of RNA sequencing data from
glioblastoma (TCGA) revealed that the expression levels of
ferroptosis suppressors such as CD44, HSPB1 and SLC40A1
correlated with the degree of immunosuppression and were related
to survival of patients (34). The expression of these suppressors could
also be induced by acetaminophen (34).
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This bioinformatics-based immunology-ferroptosis-link was
substantiated by experimental data showing that glioma GL261
cells during their early ferroptotic stages (induced by RSL3)
promoted the activation of dendritic cells, which indicates a
vaccination-like effect of the tumor cells on the immune system
(35). With this, a link between ferroptosis and immunological
responses in the context of glioma is strongly suggested and
awaits further experimental clarification.

In Wan et al. the relevance of a link between ferroptosis and
metabolism in the context of glioma was suggested based on a
database analysis (29). For tumors, their increased metabolic
reliance on utilizing amino acids (36) and lipids (37) represents
malignancy hallmarks of cancer in general. In glioma, the
approach of developing an amino acid-risk score – alike the
here-described panels concerning ferroptosis-related genes -
revealed that the expression of genes involved in amino acid
metabolism is important for glioma patients’ survival prognosis
(38). In glioma with non-mutated isocitrate dehydrogenase
(IDH), branched-chain amino acids such as leucine and
isoleucine, and their catabolizing enzyme branched-chain
amino acid transaminase 1 (BCAT1), are more expressed – in
turn, BCAT1 knock-down in glioma cells reduces the viability of
glioma cells (39). Underlining the role of ferroptosis during
amino acid regulation in cancer, the induction of ferroptosis
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eventually inhibited transcription of BCAT2 and the direct
inhibition of BCAT2 led to ferroptosis in target cells (40).
Additionally, cysteine and glutamate represent important
amino acids during ferroptosis induction (41), whose
homeostasis is interrupted by blocking xCT to achieve cell death.

In general, cancer cell growth and development are reliant on
an increased lipid usage (42, 43). Thus, interfering with these
pathways by oxidation of the lipids may boost cancer therapy by
exploiting ferroptosis (31, 37). Increased lipid peroxidation is the
result of ferroptosis induction and eventually leads to ferroptotic
cell death (1). As one of the proteins that was used to generate
survival-predicting ferroptosis-related genes panels (Table 1),
ACSL4, increases the content of omega-6 polyunsaturated fatty
acids in cellular membranes and thus regulates how sensitive
cells are to ferroptosis (44).

In one ferroptosis–signature panel, the data suggested that a
risk–score built up by 19 ferroptosis genes was negatively
correlated with the expression of MGMT, which confers
resistance to temozolomide (26). However, many different
mechanisms have been proposed to be contributing to
temozolomide resistance in glioma (5, 45), which makes it
difficult to assess their respective translational importance.
Interestingly, not only coding RNA but also long non–coding
RNA was shown to be predictive regarding overall survival (30).
FIGURE 1 | Consequences of ferroptosis induction in cancer cells and neurons.
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In addition to the common prediction of overall survival, one
study was able to also accurately predict patients’ progression-
free survival based on ferroptosis–related proteins (33).

While all presented risk models were capable of stratifying
patients into high-risk and low-risk cohorts, the number of
ferroptosis–related genes required to create the prognostic
model substantially varies from 8 up to 59 included genes
(Table 1). Redundancies of several genes between different risk
models might indicate their general importance.

To evaluate if these genes are exclusively predictive of the
outcome prognosis in glioma, we examined their role in
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comparable gene signature panels in other cancer types: A
number of genes that are part of glioma risk–models (CARS,
FANCD2, HMGCR, NCOA4 and SLC7A11) (46) and (AKR1C1,
CARS1, CBS, CD44, CHAC1, DPP4, FANCD2, GOT1, HMGCR,
SLC1A5, NCOA4 and STEAP3) (47) also accurately predicted
patients’ prognosis in clear renal cell carcinoma. Similarly,
survival probability in hepatocellular carcinoma was reliably
predicted by a glioma prediction model (ACSL3, ACSL6,
ACACA, G6PD, SLC1A5, SLC7A11 and VDAC2) (48) and by
a risk model with a strong overlap with the genes in the glioma
models (G6PD, HMOX1, LOX, SLC7A11, STMN1/Stathmin 1)
TABLE 1 | Risk-models using ferroptosis-related genes and their predictive capabilities.

Study Databases Genes inside final gene signature Gene function based on
GO/KEGG

Correlation of the signature/
risk model with:

What does
the gene
signature
predict?

(26) CGGA, 19 genes Cell death, migration, and
immune systems function !
tumorigenesis and progression

WHO tumor grades, clinical/
pathological tumor features

Overall
survivalTCGA,

GSE16011,
SAT1, ATP5G3, HSPB1, FANCD2, HMGCR, CBS,
GCLC, GCLM, CD44, ALOX12B, ALOX5AP, CISD1,
NFE2L2, EMC2, ALOX4, DPP4, AKR1C2, LPCAT3
and NCOA4

REMBRANDT

(27) CGGA 25 genes Responses to oxidative stress,
nutrient level, and extracellular
stimuli; pathways involve fatty
acid synthesis, ferroptosis

1p/19q codeletion, IDH1
status, MGMT promoter
methylation status, histology,
age, WHO grading, PRS type

Overall
survivalTCGA Protective: BAP1, GLS2, CISD1, PRNP, AKRIC3, TF,

ACACA, ACSL6 and MAP3K5
Hazardous: CDKN1A, G6PD, HSPB1, LOX, STEP3,
ACSL1, CP, HMOX1, CYBB, ANO6, PCBP1, PGD,
AURKA, G3BP1 and TP53

(31) CGGA 12 genes (ferrDB-based) Metabolic processes related to
glutamate, immune systems
response, and plasma membrane
receptor complex

1p/19q codeletion, IDH1
status, MGMT promoter
methylation status, radiation
therapy

Overall
survivalTCGA Protective: VDAC2, MAP3K5, DNAJB6, CHMP5

Hazardous: TP63, NFE2L2, MT3, LAMP2, HSPB1,
FANCD2, ElF2AK4 and ARNTL

(28) CGGA 11 genes Cancer progression by
modulation of the immune system
function

1p/19q non-codeletion,
MGMT promoter methylation
status, IDH status, recurrent
and secondary tumors

Overall
survivalTCGA;

GSE16011,
REMBRANDT

Associated with a poor prognosis were a
-high expression of CD44, FANCD2, HSBP1, MT1G,
NFE2L2 and SAT1

-low expression of AKR1C3, ALOX12, CRYAB,
FADS2 and ZEB1

(29) REMBRANDT,
CGGA-693,
CGGA-325,
TCGA

59 genes, metabolism of Metabolism of iron, lipids,
antioxidants, and energy

High risk scores: glioma WHO
grade IV, IDH wildtype, no
codeletion 1p/19q

Overall
survival-Iron: FANCD2, NCOA4, TFRC, PHKG2, HSPB1,

ACO1, FTH1, STEAP3, NFS1, IREB2, HMOX1 and
MT1G

-Lipid: ACSL4, AKR1C1-3, ALOX15, ALOX5,
ALOX12, CARS, CBS, CISD1, CS, DPP4, GPX4,
HMGCR, LPCAT3, FDFT1, ACSL3, PEPB1, ZEB1,
SQLE, FADS2, ACSF2, PTGS2 and ACACA

-Antioxidants: GCLC, SLC7A11, KEAP1, NQO1,
ABCC1, CHAC1, GSS, GCLM and NFE2L2

-Energy: GLS2, SLC1A5, GOT1, G6PD, PGD and
ATP5G3

Other genes: CD44, HSPB1, CRYABM, RPL8, SAT1,
TP53, EMC2 and AIFM2

(30) TCGA, CGGA,
REMBRANDT

15 Long non-coding RNAs: – Low-risk groups: Radiotherapy
was effective

Overall
survival

SNAI3-AS1, GDNF-AS1, WDFY3-AS2, CPB2-AS1,
WAC-AS1, SLC25A21-AS1, ARHGEF26-AS1,
LINC00641, LINC00844, MIR155HG, MIR22HG,
PVT1, SNHG18, PAXIP1-AS2, SBF2-AS1

High-risk group:
Unfavorable immunological
situation

(33) Pubmed-reported
ferroptosis-
proteins, TCGA
GBMLGG, CGGA

8 genes: Lipid metabolism, carboxylic acid
metabolism

IDH1_p.R132H (6/8), tumor
purity (5/8), MGMT methylation
(5/8),

-Overall
survival

-Progression-
free survival

ALOX5, CISD1, FTL, CD44, FANCD2, NFE2L2,
SLC1A5, GOT1
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(49). It is, however, unlikely that ferroptosis signatures are
similar across all different types of cancer, which is exemplified
by a study predicting breast cancer based on a completely
different set of ferroptosis–related genes (50). It will be
interesting to investigate the minimum number of expressed
ferroptosis–related genes in a tumor for the patients’ outcome to
benefit from ferroptosis induction and to investigate, how the
gene expression is systematically distributed across different
kinds of tumors.
FERROPTOSIS IN HEALTHY NEURONS
AND POTENTIAL SIDE–EFFECTS OF
FERROPTOSIS INDUCTION

The functional property of cystine/glutamate exchanger xCT is the
uptake of cystine and the extrusion of glutamate – a keymolecule of
neuronal function, whose homeostasis is key for proper signal
transduction and cognitive behavior (39, 51, 52). Because another
function of xCT is the stimulation of the antioxidative response of
the cell, xCT–inhibitors can induce ferroptosis (1) (Figure 1).

Given the promising preclinical finding of improved
temozolomide (Temodal®, Temcad®) chemotherapy outcome
through combination with xCT–inhibitory small molecules (4),
it appears necessary to also investigate such drugs’ potential
impact on other cells in the vicinity of the tumor tissue and in the
whole body. In particular, diseases of the peripheral nervous
system are known side–effects of some chemotherapeutic
treatments (53), and also have been linked to ferroptosis (54).

Here, we take a closer look at the impact of xCT interference
on neuronal and cognitive function (Figure 1)

An investigation of how the xCT inhibitors erastin and
sorafenib affect cultured hippocampal neurons in their
morphology and their vesicle pool size – a parameter tightly
linked to neuronal function – has shown that such treatment
could significantly disturb neuronal viability (55). In the
hippocampus of xCT–deficient mice, long–term potentiation
and long–term memory were impaired (56), which highlights
the importance of xCT–driven glutamate homeostasis for
cognition. Although a reduction of extracellular glutamate
would be expected after xCT–inhibition or deletion, additional
extracellular glutamate could not reverse this effect (56). In
primary hippocampal cell cultures consisting of both, neurons
and glia, extracellular amino acid profiling could not confirm a
reduction, but rather an increase in extracellular glutamate after
erastin–induced xCT inhibition, suggesting a complex regulatory
interplay between different cell types of the brain (55).

Inhibition of xCT led to a myelination defect in organotypic
cerebellar slices after a few days of treatment, showing that
neuronal function is disturbed also on the axonal level (57).

On a behavioral level, xCT was linked to stress resilience in
the ventral hippocampus, because alterations in the histone
acetylation status increased xCT expression and in turn
recruited other glutamate receptors to modulate glutamate
homeostasis (58). Mice with intraperitoneal erastin injections
developed iron depositions in several organs such as brain,
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kidney and spleen, mild cerebral infarction and epithelial
changes in the duodenum (59).

Efforts to examine ferroptosis–inhibitory agents to protect
against such adverse effects have demonstrated that hippocampal
HT22 cells could be protected from ferroptosis with
Ajudecunoid C – a chemical isolated from Ajuga nipponensis –
via an activation of an antioxidant response element pathway
(60), or with diphenylamine compounds (61). Similarly, spinal
cord neurons have been protected from erastin–induced
ferroptosis through LipoxinA4–induced activation of the Akt/
Nrf2/HO–1 signaling axis (62), which represents a key player in
the regulating of ferroptosis and also in glioma treatment (63–65).
The impact of erastin on neuronal viability was further
counteracted in primary cortical neurons and SH–SY5Y cells by
the iron chelator deferoxamine (66). Despite ferroptosis being
similar in neurons and cancer cells, class 1 histone deacetylase
inhibitors (HDACs) treatment protected neurons from
ferroptosis but augmented ferroptosis in HT1080 fibrosarcoma
cells (67), thereby providing the best possible outcome. This
promising finding now awaits its experimental evaluation in
other cell types, for example in different glioma cell lines.

Ferroptosis can also be thwarted on other levels of the
ferroptosis–inducing process, for example by selenium–
mediated inhibition of the antioxidant glutathione peroxidase 4
(GPx4) (68), which is also implicated in the pathophysiology of
glioblastoma (7, 69, 70b). Similar to xCT–deficient mice (56),
conditional deletion of GPx4 in adult forebrain neurons resulted
in impaired functions of memory and spatial learning (71), and
its deletion from dopaminergic midbrain neurons increased
anxious behavior (72). These examples from a list of several
more ferroptosis–inhibitory agents demonstrate that such drugs,
initially intended to counteract neurodegeneration, could also act
as support during chemotherapy to protect healthy tissue.

In contrast to erastin, which remains a purely experimental
substance, multi–kinase inhibitor and ferroptosis inductor
sorafenib has entered human clinical trials that included
assessment of neuropsychological effects during cancer therapy.
Learning, memory, and executive functions suffered over the
course of treatment (73). This is further supported by a study in
rats that revealed neurochemical disturbances in the hippocampus
during treatment with sorafenib (74). Although the histology of
the hippocampus was unaffected in that study, treatment with
sorafenib for 28 days strongly decreased levels of several key
metabolites such as glutamate, GABA, serine, or choline, which
were measured by nuclear magnetic resonance spectroscopy. In
contrast, striatum and prefrontal cortex remained rather
unaffected (74). In primary rat hippocampus cultures, high–
performance liquid chromatography revealed that, already after
24 h of sorafenib treatment, levels of glutamate, serin, and alpha–
aminobutyric acid were increased, and levels of glycine, cystine,
and phosphoethanolamine were decreased (55). These data
illustrate metabolic disturbances in response to sorafenib
treatment, which may account for cognitive dysfunction.

In addition to emerging as possible side effects of ferroptosis
pathway manipulation, cognitive impairment was also described
as a glioblastoma symptom (75). Cognitive impairment often
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delays diagnosis and is associated with a reduced overall survival
(75), which should be considered when assessing cognitive
dysfunction as potential side effects of add–on drugs.
CONCLUSION

The pharmacological therapy of malignant brain tumors is
difficult, especially of late–stage glioma with its treatment
resistance and recurrences. The novel idea of enhancing
treatment outcome through ferroptosis induction continually
gains attention. Recent data uncovered a link between
ferroptosis–signatures in malignant glioma and overall survival,
with many studies using expression of ferroptosis–related genes to
accurately predict patients’ survival probability. Harnessing
ferroptosis to improve tumor therapy will be an appealing
approach also in malignant neuroblastoma and meningioma.
But interfering with ferroptosis induction also has off–target
effects, which may decrease the quality of life. Therefore, the
increase in survival probability predicted by ferroptosis–gene-
Frontiers in Oncology | www.frontiersin.org 612
based risk models should be traded of against potential harm
through ferroptosis–inducing add–on therapy. Ideally, patients
should be screened for ferroptosis-related gene expression - based
on a unified set of disease-relevant ferroptosis-related genes - and
stratified into high-risk or low-risk cohorts to judge their
individual clinical prospects. Future clinical trials may evaluate
the benefits versus side effects of ferroptosis inducing cancer
treatment enhancement for different patient groups.

In summary, ferroptosis induction is a hope yielding
approach to enhance antitumor therapy but requires an
intricate balance between attacking the tumor and preserving
the different cell types of the healthy tissue.
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GLOSSARY

ACACA Acetyl-CoA carboxylase 1
ACO1 Aconitase 1
ACSF2 Acyl-CoA Synthetase Family Member 2
ACSL1/3/4/6 Acyl-CoA Synthetase Long Chain Family Member 1/4/6
AKR1C1-3 Aldo-keto reductase family 1 member C3 1-3
ANO6 Anoctamin 6
AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2
ALOX12B Arachidonate 12-Lipoxygenase 12R Type
ALOX12 Arachidonate 12-Lipoxygenase 12S Type
ALOX15 Arachidonate 15-lipoxygenase
ALOX5 Arachidonate 5-Lipoxygenase
ALOX5AP Arachidonate 5-Lipoxygenase Activating Protein
ARNTL Aryl hydrocarbon receptor nuclear translocator-like protein 1
ABCC1 ATP Binding Cassette Subfamily C Member 1
ATP5G3 ATP Synthase Membrane Subunit C Locus 3
AURKA Aurora Kinase A
BAP1 BRCA1 Associated Protein 1
CISD1 CDGSH Iron Sulfur Domain 1
CP Ceruloplasmin
CHAC1 ChaC Glutathione Specific Gamma-Glutamylcyclotransferase 1
CHMP5 Charged multivesicular body protein 5
CS Citrate Synthase
CD44 Cluster of differentiation 44
CRYAB Crystallin Alpha B
CDKN1A Cyclin Dependent Kinase Inhibitor 1A
CBS Cystathionine Beta-Synthase
CARS Cysteinyl-TRNA Synthetase 1
SLC7A11 Cystine/Glutamine antiporter xCT or Solute Carrier Family 7

Member 11
CYBB Cytochrome b(-245) beta subunit
DPP4 Dipeptidyl peptidase 4
Hsp40 DnaJ Heat Shock Protein Family
DNAJB6 Member B6
EMC2 ER membrane protein complex subunit 2
ElF2AK4 Eukaryotic translation initiation factor 2a kinase 4
FANCD2 FA Complementation Group D2
FDFT1 Farnesyl-Diphosphate Farnesyltransferase 1
FADS2 Fatty acid desaturase 2
FTL Ferritin Light Chain
G6PD Glucose-6-phosphate dehydrogenase
GCLC Glutamate-Cysteine Ligase Catalytic Subunit
GCLM Glutamate-Cysteine Ligase Modifier Subunit
GOT1 Glutamic-Oxaloacetic Transaminase 1
GLS2 Glutaminase 2
GPX4 Glutathione Peroxidase 4
GSS Glutathione Synthetase
HSPB1 Heat shock protein beta-1
HMOX1 Heme oxygenase 1 gene
IREB2 Iron-responsive element-binding protein 2
KEAP1 Kelch Like ECH Associated Protein 1
LPCAT3 Lysophosphatidylcholine Acyltransferase 3
LAMP2 Lysosome-associated membrane protein 2
HMGCR HMG-CoA reductase
LOX Lysyl Oxidase
MT3 Metallothionein 3
MT1G Metallothionein-1G
MAP3K5 Mitogen-activated protein kinase kinase kinase 5
NQO1 NAD(P)H Quinone Dehydrogenase 1
SLC1A5 Neutral amino acid transporter B(0)
NFS1 NFS1 Cysteine Desulfurase
NFE2L2 Nuclear factor-erythroid 2-related factor 2
NCOA4 Nuclear Receptor Coactivator 4
PEPB1 Phosphatidylethanolamine Binding Protein 1
PGD Phosphogluconate Dehydrogenase
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PHKG2 Phosphorylase Kinase Catalytic Subunit Gamma 2
PRNP Prion protein
PTGS2 Prostaglandin-Endoperoxide Synthase 2
G3BP1 Ras GTPase-activating protein-binding protein 1
RB1 RB Transcriptional Corepressor 1
RPL8 Ribosomal Protein L8
STEAP3 Six-transmembrane epithelial antigen of the prostate 3
SAT1 Spermidine/Spermine N1-Acetyltransferase 1
SQLE Squalene Epoxidase
TFRC Transferrin Receptor
TP53 Tumor protein p53
TP63 Tumor protein p63
VDAC2 Voltage-dependent anion-selective channel protein 2
ZEB1 Zinc Finger E-Box Binding Homeobox 1
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and GPX7 Knockdown Enhances
Ferroptosis Induced by Erastin
in Glioma
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Background: Glioma is a lethal primary tumor of central nervous system. Ferroptosis is a
newly identified form of necrotic cell death. Triggering ferroptosis has shown potential to
eliminate aggressive tumors. GPX7, a member of glutathione peroxidase family (GPXs),
has been described to participate in oxidative stress and tumorigenesis. However, the
biological functions of GPX7 in glioma are still unknown.

Methods: Bioinformatics method was used to assess the prognostic role of GPX7 in
glioma. CCK8, wound healing, transwell and cell apoptosis assays were performed to
explore the functions of GPX7 in glioma cells. In vivo experiment was also conducted to
confirm in vitro findings. Ferroptosis-related assays were carried out to investigate the
association between GPX7 and ferroptosis in glioma.

Results: GPX7 was aberrantly expressed in glioma and higher expression of GPX7 was
correlated with adverse outcomes. GPX7 silencing enhanced ferroptosis-related oxidative
stress in glioma cells and the loss of GXP7 sensitized glioma to ferroptosis induced by
erastin. Furthermore, we found that miR-29b directly suppressed GPX7 expression post-
transcriptionally. Reconstitution of miR-29b enhanced erastin sensitivity, partly via GPX7
suppression.

Conclusions: Our study clarified the prognostic role of GPX7 in glioma and preliminarily
revealed the role of GPX7 in ferroptosis, which may be conducive to the exploration of
therapeutic targets of glioma.

Keywords: bioinformatics, ferroptosis, glioma, GPX7, miR-29b
INTRODUCTION

Glioma is the most common and lethal tumor of the central nervous system, and glioblastoma
(GBM, grade IV) is the most malignant subtype (5-year survival are only about 5.5%) (1).
Considering the high recurrence and mortality rates of glioma, it is crucial to investigate its
causes and potential molecular mechanisms to find new targets for early diagnosis and
personalized treatment.
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To defend oxidative stress, the living organisms have
evolved several antioxidative mechanisms that prevent cells
from damage induced by reactive oxygen species (ROS) (2).
Among these mechanisms, the glutathione peroxidase (GPXs)
family is a major antioxidant enzyme family (GPX1-GPX8)
that reduces various ROS such as hydrogen peroxide and lipid
peroxides (3).

In the past, GPX7 was viewed as an important intracellular
sensor that detects redox level and transmits ROS signals to
multiple biologic processes (4). Recent studies have reported that
GPX7 participated in the initiation and progression of tumors.
DunFa Peng et al. (5) reported that GPX7 had tumor suppression
function in oesophageal adenocarcinomas and was silenced by
promoter DNA methylation. Zheng Chen et al. (6) showed that
GPX7 was downregulated in gastric cancer and reconstitution of
GPX7 suppressed tumor growth in 3D organotypic models. E.
Guerriero et al. (7) showed that GPX7 had an overexpression in
hepatocellular carcinoma tissues. In glioma, only one
bioinformatic study reported that GPX7 was a potential
prognostic molecule based on Chinese Glioma Genome Atlas
(CGGA) database (8). However, the mechanisms by which GPX7
might exert its actions in the development of glioma remain to
be elucidated.

Ferroptosis is a newly discovered type of necrotic cell death
caused by the accumulation of lipid-based ROS and has gained
growing interest on account of its close relevance to multiple
pathological situations (e.g. neurodegeneration, ischemia/
reperfusion injuries and malignancies) (9, 10). Several small
molecule compounds have been developed to trigger
ferroptosis of tumors. Erastin is the most commonly used
ferroptosis inducer, which directly suppresses the cystine/
glutamate antiporter (system xc

-) to suppress GSH synthesis
(11, 12). GPX4, known as the key enzymatic inhibitor
of ferroptosis, can protect biological membranes from
peroxidative degradation (10). Yang et al. reported that the
inhibition of GPX4 elevated the lipid peroxidation level and
induced the ferroptosis of tumors (13). However, we need to take
into account the dependence of lipid metabolism and the
abundance of GPX4 in the specific tissues. Pharmacological
targeting of GPX4 may only achieve partial anti-tumor effects
(14). Based on the antioxidative functions and complex roles of
GPX7 in tumors, we speculate that GPX7 may participate in
glioma development by regulating ferroptosis, which need to be
further verified.

MicroRNAs (miRNAs) are endogenous small RNA
molecules, which inhibit gene expression by binding directly to
complementary sequences located mostly in the 3′-untranslated
regions (3′UTR) of mRNAs (15). In cancers, miRNAs can elicit
notable effects on cell phenotypes by suppressing the expression
of target genes (16). However, to date, whether GPX7 expression
is regulated by miRNA has not been reported.

Our study, for the first time, disclosed that GPX7 was targeted
by miR-29b and we preliminarily explored the relationship
between GPX7 and ferroptosis. Integrating bioinformatic
analysis and experimental analysis allow more effective
contributions to the promising target of GPX7 in glioma.
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MATERIALS AND METHODS

Dataset Selection
The transcript level of GPX7 in glioma was assessed by
Oncomine, The Cancer Genome Atlas (TCGA) (17),
GSE16011 dataset (from Gene Expression Ominibus database)
(18) and the Repository of Molecular Brain Neoplasia Data
(REMBRANDT) (19). Apart from that, the protein level of
GPX7 was validated by 127 glioma tissue samples obtained
from Huanhu Hospital (Department of Neurosurgery, Huanhu
Hospital, Tianjin, China; 2017). All cases were primary gliomas
and patients received no extra treatments such as radiotherapy
and chemotherapy before surgery. All the biopsies were acquired
from surgical resection and processed immediately into
formalin-fixed, paraffin-embedded tissues to produce the tissue
array. The clinicopathological features of patients were
concluded in Table S2.

Cells and Chemicals
The human glioblastoma cell lines U87, T98G and LN229 were
purchased from Beijing Beina Chuanglian Biotechnology
Institute and A172 and T98G were purchased from iCell
Bioscience Inc. Co. Ltd. (Shanghai, China). Erastin (T1765),
RSL3 (T3646), ferrostatin-1 (fer-1, T6500), liproxstatin-1 (lip-
1, T2376) and deferoxamine (DFO, T1637) were purchased from
TOPSCIENCE (Shanghai, China).

Cell Transfection and Lentivirus Infection
The sense oligonucleotide sequences of siRNAs and miRNAs
mimics were concluded in Supplementary Table S1. The
transfection of siRNA and miRNA mimics was conducted
using Lipofectamine 2000 (Thermo Fisher Scientific, MA,
USA). The establishment of stable GPX7 knockdown cell line
via lentivirus vectors (LV3-shGPX7, the sequence was shown in
Table S1) was conducted by GenePharma (Suzhou, Jiangsu,
China). The siRNAs, miRNA mimics, knockdown lentivirus
vectors and pcDNA3.1-GPX7 overexpression plasmid were
purchased from GenePharma (Suzhou, Jiangsu, China).

Quantitative Real-Time PCR (qPCR)
The qPCR was performed according to the processes, as
previously reported (20).The primers were designed as follows:
GPX7 forward, 5′-AGTAGCCCCAGATGGAAAG-3′ and
reverse, 5′-TCGCTTCAGTAGGATGAGC-3′ ; GAPDH
forward, 5′-CAATGACCCCTTCATTGACC-3′ and reverse, 5′-
GACAAGCTTCCCGTTCTCAG-3′. Relative quantification was
analyzed by the 2−DDCt method.

Western Blot and Immunohistochemistry
(IHC)
Western blot assay was carried out according to the manufacturer’s
protocol, as previously described (20). The blocked membrane was
incubated with antibody against GPX7 (1:500; 13501-1-AP,
Proteintech, IL, USA) or b-actin (1:1000; CST, MA, USA) for at
least 4 hours. After incubation with second antibody for 60 min,
chemiluminescence and exposure were performed.
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Immunohistochemistry assay was completed by two
experienced pathologists from Pathology Department of
Huanhu Hospital. Patients were grouped into high and low
expression cohorts grounded on the integrated scores of GPX7
expression, as previously reported (21). The primary antibodies
used in IHC were Ki67 (ab16667, abcam, UK), MMP2 (D4M2N,
CST, USA), N-cadherin (D4R1H, CST, USA).

CCK-8, Wound Healing, Invasion and
Apoptosis Analysis
Cells were seeded in 96-well plates (5 × 103 cells per well) and
transfected with siGPX7 or co-transfection of miR-29 mimics
and pcDNA3.1-GPX7 plasmid. CCK-8 agent (K009-500; ZETA
LIFE, CA, USA) was injected to each well for 30-minute
incubation at 0, 24, 48 and 72h time points, respectively.
Finally, microplate reader (iD5, Molecular Devices, CA, USA)
was employed to measure the absorbance at 450 nm. For wound
healing assay, cells were cultured in 12-well plates. Next, the
bottoms of wells were scratched with a pipette tip. After being
washed twice, cells were cultured within the serum-free medium
for 24h. Finally, the wound closure (%) was measured by ImageJ.
Transwell and apoptosis assays were performed according to the
manufacturer’s protocols, as previously described (22).

Glutathione Assay
GSH Detection Kit (Solarbio Co., Beijing, China) was used to
detect reduced glutathione (GSH) according to the
manufacturer’s instructions.

Lipid Peroxidation Assay
The level of lipid peroxidation was detected using BODIPY 581/591
C11 (GLPBIO, CA, USA) according to themanufacturer’s instructions.

Cellular Iron Concentration Assay
The iron assay kit (FerroOrange, F374, Dojindo Molecular
Technology) was used to detect cellular iron concentration
level according to the manufacturer’s protocols.

Dual Luciferase Reporter Assay
The wild/mutant-type 3′UTR of GPX7 was inserted into the GP-
miRGLO vector (Promega, WI, USA). LN229 and T98G cells
were cotransfected with wild or mutant vectors and NCmimic or
miR-29a/b/c-3p mimic. The activities of luciferase were
measured 48h after transfection according to the manuals of
the Dual Luciferase Assay System (Promega, WI, USA).

Immunofluorescence Assay
Cells plated onto poly-L-lysine-coated glass coverslips were fixed
with 4% paraformaldehyde for 20 min. The cells were
permeabilized with 0.5% Triton X-100 (Sigma, USA) and
blocked by 5% BSA for 2 h. The coverslips were incubated
with primary antibody and secondary antibody following the
manufacturer’s protocol. Primary antibodys were GPX7 (1:500;
13501-1-AP, Proteintech, IL, USA), Ki67 (1:1000, ab16667,
abcam, UK), MMP2 (1:800, D4M2N, CST, USA) and N-
cadherin (1:1000, D4R1H, CST, USA). Secondary antibody was
Alexa Fluor® 488-conjugated Anti-Rabbit IgG (H+L) (1:800,
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Jackson ImmunoResearch Inc, USA). After being mounted with
antifade mounting medium with DAPI (ZSGB-BIO, Beijing,
China), images were acquired under a confocal microscope
(LSM 800, Zeiss, Germany)

Xenograft Model With Nude Mice
BALB/c-A nude mice (female, 4 weeks old) were purchased from
Sibeifu Beijing Biotechnology Co. Ltd. (Beijing, China). Animal
assays were conducted under the approval of the Animal Care
and Used Committee of Tianjin Huanhu Hospital. First, the mice
were randomly allocated into four groups and 1 × 107 LN229
cells stably transfected with lentiv-GPX7 or lentiv-NC were
inoculated s.c. into the axillary fossa of mice every two groups.
When tumor volume reached approximately 50 mm3, one of
every two groups were treated with erastin dissolved in 5%
DMSO/corn oil (23) (30 mg/kg intraperitoneal injection, every
other day) for 3 weeks. The tumor size was estimated using
formula (length × width2/2). 42 days later, the mice were
sacrificed, and the tumors were removed for IHC assay.

Bioinformatics Analysis
The differential expression of GPXs was analyzed using GEPIA, a
web database containing abundant normal specimens from GTEx
database (24). Gene set enrichment analysis (GSEA) (25) was
conducted with the false discovery rate (FDR) < 0.25 and normal
P value < 0.05 as thresholds. The correlation of GPX7 and immune
infiltration in glioma was analyzed in TIMER (https://cistrome.
shinyapps.io/timer/) (26, 27), an online web portal which can
investigate immune cell infiltration levels using data from TCGA.

For ferroptosis analysis, ferroptosis gene set (contributed by
WikiPathways) was downloaded from Molecular Signatures
Database (28). Ferroptosis and GO and KEGG gene sets
related to redox biology and glutathione metabolism were
analysed by GSEA. A well-established model of ferroptosis
potential index (FPI) was defined as the enrichment score (ES)
of positive components minus that of negative components,
which was calculated using single sample gene set enrichment
analysis (ssGSEA). The details of FPI model could be obtained
from a previous paper (29).

Statistical Analysis
The relationships between GPX7 protein expression and clinical
variables of glioma were estimated using Chi-Square test.
Patients with missing information were excluded from the
corresponding analysis. Student’s t-test and one‐way analysis
of variance (ANOVA) were used to test for significant differences
between two or multiple groups, respectively. All tests were two-
sided. The statistical analysis was performed using R software
v3.6.3. and GraphPad Prism software.
RESULTS

Preparation of Datasets
The clinical characterastics of patients from 4 datasets were
concluded in Table 1. The detailed information of patients in
Huanhu cohort were recorded in Table S2.
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GPX7 mRNA Levels in Different Databases
Firstly, the mRNA expression level of GPX7 in GBM was
analyzed in Oncomine database. Pooled analysis of six datasets
revealed an upregulation of GPX7 in GBM than in normal
(Figure 1A, P = 0.038). This result was also validated in other
three datasets (Figures 1B–D, P < 0.001).

GPX7 Is Related to Clinicopathological
Factors of Glioma
In TCGA, GSE16011 and Rembrandt, GPX7 expression was
upregulated in tumor with grade IV compared with those with
lower grades (Figure 1E). For histopathologic type, higher
expression of GPX7 was found in the patients with adverse
histopathologic type (Figure 1F). Besides, GPX7 expression
increased among older patients and those with wild-type IDH1
(Figures 1G, H). Moreover, some other clinicopathological factors
(Karnofsky Performance Status (KPS) and gender) were also
analyzed (Figures 1I, J). These data indicated that GPX7 high
expression predicted adverse malignant phenotypes of glioma.

GPX7 Predicts Worse Survival in Glioma
Patients were grouped into two cohorts based on median
expression value. In TCGA, Kaplan-Meier survival analyses
showed that glioma patients with GPX7-high had a worse
prognosis than that with GPX7-low (Figure 2A). And ROC
analyses demonstrated that GPX7 was a good predictor of
survival (Figure 2A). Similar results were also obtained in
GSE16011 and Rembrandt datasets (Figures 2B, C).
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To further explore the independent prognostic value of
GPX7, the univariate analysis revealed that GPX7-high
correlated significantly with a worse OS (Figure 2D). In
multivariate analysis, GPX7 was still independently correlated
with OS (Figure 2E), along with age, grade and KPS.
Additionally, we also analyzed the expression levels of other
GPX family members in glioma based on GEPIA. We found
GPX1, GPX3, GPX4 and GPX8 had relative high expression
levels in both LGG and GBM, while GPX2 had low expression
level (Supplementary Figure S1A). However, in multivariate
analyses, none of them was independently correlated with OS
(Supplementary Figure S1B).

GPX7 Is Associated With Tumor and
Immune Related Pathways
GSEA was employed to find the biological functions of GPX7 in
glioma. In TCGA, we found some gene sets related to
tumorigenesis (e.g. P53 signaling pathway and cell cycle) and
immunity (e.g. natural killer cell mediated cytotoxicity and
antigen processing and presentation) were enriched in KEGG
analysis in the cohorts with GPX7 high expression (Figure 2F).
For GO terms, tumorigenesis and immunity related gene sets
(e.g. negative regulation of cell cycle phase transition, activation
of innate immune response and T cell receptor signaling
pathway) were also enriched (Figure 2F). Meanwhile, similar
consequences were also gained in CGGA (Figure 2G).

To better understand the roles of GPX7 in the immune
microenvironment of glioma, we analyzed the correlations
between GPX7 and several common immune cell types in
TIMER. As shown in Figure 2H, strong positive correlations
existed between GPX7 expression and the infiltrations of all six
immune cells types in LGG. Meanwhile, GPX7 was also
positively correlated with the infiltrations of B cells,
neutrophils, macrophages and dendritic cells in GBM.

Protein Expression of GPX7 in
Glioma Tissues
Representative IHC slides of specimens from Huanhu cohort
with different grades are shown in Figure 3A. Some examples of
high expression of GPX7 in patients with grade II and low
expression in grade III were showed in Supplementary Figure
S1C. We found that GPX7 had relative high expression levels in
samples with grade IV, histologic GBM, IDH1 wild and in
samples without 1p19q codeletion, while no association was
found between GPX7 and age, Ki67, P53 mutation and
MGMT methylation (Figure 3B and Table S2).

We also detect GPX7 expression in five GBM cell lines using
western blot and RT-PCR methods (Figures 3C, D). LN229 and
T98G were selected for subsequent experiments. Two siRNAs
(siGPX7-i and siGPX7-ii) were used to suppress GPX7
expression (Figures 3E, F).

GPX7 May be Relevant to Ferroptosis
in Glioma
Given that the loss of GPX7 causes the increase of the
intracellular ROS concentration and sensitizes cells to excessive
TABLE 1 | The information of patients in 4 datasets.

Characteristic TCGA GSE16011 REMBRANDT Huanhu

Total 703 284 472 127
Age
≥52 263 133 45
<52 407 143 82
Gender
Male 386 184 221 77
Female 284 92 126 50
Grade
I 8 2
II 248 24 98 39
III 261 85 85 35
IV 161 159 130 53
Histology
Pilocytic astrocytoma 8
Astrocytoma 192 29 147 28
Oligodendroglioma 190 52 67 46
Oligoastrocytoma 128 28
Glioblastoma 160 159 219 53
Mixed glioma 11
IDH1 mutation
Yes 91 81 87
No 34 140 40
1p19q codeletion
Yes 110 48
No 45 29
KPS
<80 71 82
≥80 341 182
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environmental oxygen (30), we explored preliminarily the
association between GPX7 and ferroptosis in both TCGA and
CGGA. As shown in Figure 4A and Supplementary Figure S2A,
GSEA revealed that ROS metabolic process, response to
oxidative stress, response to oxygen radical, glutathione
metabolism and ferroptosis gene sets were enriched in cohort
with GPX7-high. Then, we employed the ferroptosis potential
index (FPI) to represent the level of ferroptosis based on the
mRNA data from the two databases. As shown in Figures 4B, C
and Supplementary Figures S2B, C, higher FPI was correlated
with advanced tumor grades and shorter survival time in glioma.
Moreover, patients with GPX7-high tended to have higher FPI
levels (Figure 4D and Supplementary Figures S2D). These data
Frontiers in Oncology | www.frontiersin.org 520
implied a potential association between GPX7 and ferroptosis
in glioma.

GPX7 Silencing Enhances Ferroptosis-
Related Oxidative Stress in Glioma Cells
To verify the aforementioned bioinformatic analysis results,
ferroptosis-related oxidative stress indicators, such as reduced
GSH content, lipid peroxidation and Fe2+ concentration, were
assessed in glioma cells. The inhibitor (fer-1) and inducer
(erastin) of ferroptosis were employed in this research. Firstly,
the susceptibility of glioma cells to ferroptosis was evaluated.
CCK-8 assay showed that LN229 and T98G cells treated with
erastin (10 mM) for 24 h had a significant decline in cell viability,
A B D

E

F

G

I

H

J

C

FIGURE 1 | The expression of GPX7 among databases. (A) The expression differences of GPX7 between normal and GBM were analyzed across the six analyses
in Oncomine database. (B–D) The expression differences of GPX7 between normal and GBM in TCGA, GSE16011 and Rembrandt datasets. (E–J) The relationships
between GPX7 and clinical characteristics among different datasets.
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FIGURE 2 | The prognostic values of GPX7 in public databases and GSEA. (A–C) Kaplan–Meier analysis and 1, 3 and 5- year ROC curves of survival. (D, E) Univariate
and multivariate Cox regression in TCGA. (F, G) GO and KEGG enrichment analyses using GSEA method in TCGA and CGGA. (H) The correlation between GPX7 and
immune infiltration in LGG and GBM using the TIMER database.
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which was blocked by fer-1 (Figure 4E). Among two siRNAs, we
selected siGPX7-ii, which showed more effective inhibition of
gene expression (Figures 3E, F), for the follow-up experiments.
As shown in Figure 4F, GPX7 knockdown resulted in reduced
GSH depletion in both LN229 and T98G cells, which was
aggravated when combined with erastin treatment. The Fe2+
Frontiers in Oncology | www.frontiersin.org 722
level was detected by FerroOrange regent. We found GPX7
deficiency didn’t affect iron level, but the combination of GPX7
deficiency and erastin treatment leaded to higher iron level than
erastin treatment alone (Figure 4G). Lipid peroxidation is a key
indicator of ferroptosis which can be detected by C11 BODIPY
581/591 probe. Compared with control group, lipid peroxidation
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FIGURE 3 | The protein expression of GPX7 in Huanhu cohort. (A) Representative IHC slides of specimens with grade II, III and IV. Patients’ numbers were
recorded in Table S2. (B) Associations between GPX7 protein level and clinical variables in the Huanhu cohort. (C, D) The mRNA and protein levels of GPX7 in five
different GBM cell lines using qPCR (with U87 as a control) and western blot. (E, F) PCR and western blot were performed to determine the expression of GPX7
after transfection with two siRNAs (siGPX7-i and siGPX7-ii). ***P < 0.001.
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FIGURE 4 | The association of GPX7 and ferroptosis in glioma. (A–D) Bioinformatics analysis of the association of GPX7 and ferroptosis based on data from TCGA.
(A) GSEA of ferroptosis and redox biology related gene sets in cohort with GPX7 high and low. (B) The different FPI levels among different WHO grades of glioma.
(C) Kaplan-Meier analysis of OS according to the FPI level. (D) The association of GPX7 expression and FPI level in TCGA glioma samples. (E) CCK-8 assay was used to
detect the cell viability of glioma cells treated with erastin (10 mM) for 24 h with or without fer-1 (2 mM). (F) The reduced GSH level in glioma cells subjected to siGPX7-ii
transfection with or without erastin (10 mM) treatment. (G) The Fe2+ concentration was measured by FerroOrange probe. (H) Lipid peroxidation was detected in glioma
cells subjected to siGPX7-ii transfection with or without fer-1 (2 mM), erastin (10 mM), lip-1 (100 nM) and DFO (100 mM) treatment, using C11 BODIPY 581/591 probe on
flow cytometry. Within each chart, cells in P3 region in green represent those stained with oxidized dye. *P < 0.05, **P < 0.01, ***P < 0.001. ns, not significant.
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increased significantly in the GPX7 knockdown group
(Figure 4H). Fer−1 suppressed the accumulation of lipid
peroxidation and GPX7 deficiency could enhance the effect of
erastin (Figure 4H). We also used three ferroptosis inhibitors
(lip-1, fer-1 and DFO) on GPX7 knockdown cells treated with
erastin. We found that lip-1, fer-1 and DFO can abolish the
increase of lipid peroxidation of GPX7 knockdown cells treated
with erastin (Figure 4H). These results showed that GPX7
silencing could promote ferroptosis-related oxidative stress
induced by erastin in glioma cells in vitro.

GPX7 Silencing Synergizes With Erastin to
Suppress Glioma Both In Vitro and In Vivo
Based on the regulatory effect of GPX7 on ferroptosis-related
oxidative stress, we then investigated the GPX7 mediated effect
on glioma development and sensitivity to erastin. CCK-8, wound
healing, transwell and apoptosis flow cytometry assays were
conducted to examine proliferative, migratory and invasive
abilities of glioma cells with GPX7 knockdown alone or with
GPX7 knockdown and erastin (10 mM) cotreatment. As shown
in Figure 5A, CCK-8 assay revealed that GPX7 knockdown
alone did not affect the proliferation of glioma cells. However, the
combination of GPX7 knockdown and erastin treatment
significantly suppressed the proliferation of glioma cells. This
effect was more pronounced with higher erastin concentrations.
In addition, GPX7 knockdown and erastin cotreatment
significantly inhibited the migratory and invasive abilities
(Figures 5B, C) and increased apoptosis (Figure 5D) of
glioma cells, while GPX7 knockdown alone did not exhibit
obvious effects. Furthermore, immunofluorescence staining
revealed that the combination treatment downregulated the
expressions of several indicators related to cell proliferation,
migration and invasion, including Ki67, MMP2 and N-
Cadherin (Supplementary Figure S3A). We also found that
lip-1, fer-1 and DFO can suppress the apoptosis rate of GPX7
knockdown cells treated with erastin (Supplementary Figure
S3B). Additionally, we assessed the combinational effects of
GPX7 knockdown and RSL3, another ferroptosis inducing
agent which inhibits directly the activity of GPX4 (13).
However, the synergistic effects of GPX7 knockdown and RSL3
treatment were not obvious (Supplementary Figures S2E, F).
These results indicated that GPX7 deficiency enhanced
ferroptosis-related oxidative stress, which may not be adequate
to exert obvious effects on the malignant phenotypes of glioma
cells, but sensitized cells to erastin induced ferroptosis.

Then we explored whether GPX7 silencing promotes erastin-
induced ferroptosis in vivo. A tumor xenograft model was
established by subcutaneously inoculating LN229 cells infected
with lentiv-NC or lentiv-GPX7, respectively. As shown in
Figures 5E–G, the group subjected to the combination of
GPX7 knockdown and erastin treatment showed a significant
tumor growth inhibition, wheras the mice subjected to GPX7
knockdown alone exhibited no tumor growth suppression. Apart
from that, erastin treatment alone can also suppress tumor
growth. Furthermore, IHC staining revealed that the
combination treatment also downregulated the expressions of
Frontiers in Oncology | www.frontiersin.org 924
Ki67, MMP2 and N-Cadherin (Figure 5H). These results
indicated that GPX7 knockdown synergizes with erastin to
inhibit glioma both in vitro and in vivo.

GPX7 Is a Direct Target of miR-29 Family
MiRNA is closely related to tumorigenesis, angiogenesis and
chemoresistance (15). However, whether GPX7 is regulated by
miRNAs is still unknown. In this research, we used TargetScan
(31), miRDB (32), Tarbase (33) and mirDIP (34) databases to
predict which miRNAs target GPX7. Taking the intersection of
predicted results, miR-29 family (miR-29a/b/c-3p) were included
(Figure 6A). We then used dual luciferase assays to verify our
prediction. The seed sequences of miR-29 family that match the
3′UTR of the GPX7 gene were shown in Figure 6B. In dual
luciferase assays (Figure 6C), transfection with miR-29a/b/c-3p
mimics inhibited the WT luciferase reporter activity but did not
decrease MT luciferase reporter activity. More importantly,
qPCR and western blot showed that GPX7 expression was
significantly impaired after elevating miR-29a/b/c expression in
LN229 and T98G cells (Figures 6D, E). The evidence suggests
that GPX7 was targeted by miR-29 family. To explore whether all
miR-29 family members modulate GPX7 expression in glioma,
we mined tumor gene expression profiles in TCGA and CGGA
databases and found that only miR-29b-3p expression level was
inversely correlated with GPX7 expression in the two databases
(Figures 6F–H). Given that three miR-29 family members share
an identical seed sequence (Figure 6B) and usually have similar
biological functions (35), therefore, we only selected miR-29b-3p
(denoted as miR-29b) for subsequent experiments.

GPX7 Restoration Can Reverse miR-29b
Mediated Enhancement of Ferroptosis-
Related Oxidative Stress
Given GPX7 being a direct target of miR-29b, we then investigated
whether miR-29b also regulates ferroptosis-related oxidative stress
in glioma cells. Reduced GSH, Fe2+ concentration and lipid
peroxidation were measured. Compared with control group,
GSH levels (Figure 7A) were markedly reduced while Fe2+
concentration wasn’t affected in the mimic group (Figure 7B).
Furthermore, the accumulation of lipid peroxidation was
significantly promoted in the mimic group (Figure 7C).
Interestingly, we found miR-29b mediated changes in the
indicators of ferroptosis were abrogated by GPX7 restoration
(Figures 7A, C). Ferroptosis inhibitors (lip-1, fer-1 and DFO)
can abolish the increase of lipid peroxidation of cells subjected to
miR-29b mimic transfection and erastin treatment (Figure 7C).
These data indicated that miR-29b can regulate ferroptosis-related
oxidative stress in glioma cells, at least partially via GPX7.

MiR-29b Synergizes With Erastin to
Suppress Glioma Proliferation, Migration,
Invasion and Induce Apoptosis Partially
via GPX7
The above results stimulated us to explore whether miR-29b
can sensitize glioma cells to erastin. Using the same
experimental assays employed above, we found that LN229
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FIGURE 5 | GPX7 silencing sensitizes glioma cells to erastin both in vitro and in vivo. (A) CCK-8 assay was applied to analyze the viability of LN229 and T98G cells
treated with different concentrations of erastin following the transfection with siGPX7 and siScr. (B) Migration ability of cells was analyzed using wound-healing assay.
Scale bar, 250 mm. (C) Invasive ability of cells was evaluated by transwell assay. Scale bar, 100 mm. (D) FITC annexin V and PI apoptosis assay. (E) Knockdown of GPX7
enhanced erastin-induced ferroptosis in vivo. The volume of tumors was shown (F), and the tumor weight was measured at the endpoint (G). (H) Immunohistochemistry
staining of xenograft model-derived tumors for GPX7, Ki67, MMP2 and N-Cadherin. Scale bar = 100 mm. *P < 0.05, **P < 0.01, ***P < 0.001. ns, not significant.
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and T98G cells with miR-29b mimic transfection and erastin
cotreatment attenuated proliferative (Figure 8A), migratory
(Figure 8B) and invasive (Figure 8C) abilities and promoted
apoptosis rate of glioma cells (Figure 8D). Similarly,
restoration of GPX7 following transfection with miR-29b
mimic can reverse the miR-29b and erastin mediated
synergistic inhibitory effects on glioma cells (Figures 8A–D).
Apart from that, lip-1, fer-1 and DFO can abolish the increase
of apoptosis rate of cells cotreated with miR-29b mimic and
erastin (Supplementary Figure S3C). In summary, these
results revealed that miR-29b can sensitize glioma cells to
erastin partially via GPX7.
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DISCUSSION

To date, some, but not all, molecules involved in glioma
progression have been identified. In our study, multi-database
analyses showed that GPX7 expression was upregulated in
glioma and was an independent prognostic factor of glioma
patients. GSEA revealed that some tumor-related signaling
pathways and immunity-related activities are enriched in the
GPX7 high expression group. Additionally, some immune cells
were positively correlated with GPX7 expression in glioma.

Ferroptosis is a form of regulated cell death marked by lipid
peroxidation (14). Previously, the ferroptosis inducers, for instance
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FIGURE 6 | GPX7 is a direct target of miR-29 family. (A) The venn diagram of predicted mRNAs in four different databases. (B) The seed sequences of miR-29
family that match the 3′UTR of GPX7 gene and the reporter vectors containing wild-type or mutant GPX7 3’-UTR. (C) Dual luciferase reporter assays in LN229 and
T98G, following cotransfection with miR-29 family and empty vector (pcDNA-3.1) or plasmid containing wild or mutant type 3′UTR of GPX7. (D, E) The mRNA and
protein levels of GPX7 in cells transfected with miR-29 family mimic or miR-NC. (F–H) The correlations between GPX7 expression and miR-29 family in TCGA and
CGGA. R: Pearson correlation coefficient. *P < 0.05, **P < 0.01, ***P < 0.001.
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erastin, have shown potentials to eliminate malignancies, including
glioma (36), melanoma (37) and other tumors (38). In addition, the
combination of ferroptosis inducers and other therapies, such as
chemotherapeutic agents and radiation, can result in stronger effects
(36, 39). However, tumor cells can elevate the expression of other
antioxidant genes that results in increased resistance to cell death
(40). Yagoda N et al. reported that the expression of VDAC2/3, the
targets of erastin on the outer mitochondrial membrane, markedly
decreased after 10 h of erastin treatment, which led to erastin
resistance (41). Elucidating more factors that regulate ferroptosis
will certainly help to apply ferroptosis induction to anti-tumor
therapies. In this study, we found GPX7 knockdown promoted lipid
peroxidation and decreased the level of GSH. In addition, the
combination of GPX7 deficiency and erastin treatment showed a
remarkable synergistic effect on the induction of ferroptosis of
glioma. Therefore, targeting GPX7 may help reverse the erastin
resistance in glioma treatment.

As a peroxide sensor, GPX7 detoxifies peroxides and has been
described to play essential roles in diseases. In normal
oesophageal squamous epithelial cells, GPX7 knockdown can
lead to the increase of intracellular ROS and oxidative DNA
damage induced by pH4 bile acids, which increases the risk of
Frontiers in Oncology | www.frontiersin.org 1227
oncogenesis (4). In glioma, our work found that GPX7
knockdown alone exerted no direct effect on tumor growth,
although ferroptosis-related oxidative stress was promoted. We
speculated that an external stimuli of oxidative stress, for
instance erastin treatment, may be required for GPX7 targeting
therapy of glioma.

Unlike other glutathione peroxidases, protein disulfide
isomerase (PDI) and glucose-regulated protein GRP78, instead
of GSH, are the main substrates of GPX7 (42, 43). GPX7 may
exert antioxidant function through mechanisms different from
GPX4, the key regulator of ferroptosis. In our study, we found
that the loss of GPX7 resulted in decreased GSH level in glioma
cells. This effect may be attributed to the activation of other
antioxidant enzymes in the balance between the energy
metabolism and oxidative damage resistance.

MiRNA-mRNA regulation has been identified as important
regulatory mechanism in ferroptosis of tumors (15, 16, 23, 44).
Based on algorithm prediction and experimental validation, our
work found that miR-29b could directly inhibit GPX7 post-
transcriptionally, exerting similar ferroptosis induction effect on
glioma, synergizing with erastin treatment. In previous study,
miR-29b was also found to promote oxidative stress in ischemic
A B

C

FIGURE 7 | GPX7 restoration can reverse miR-29b mediated enhancement of ferroptosis-related oxidative stress. LN229 and T98G cells were transfected with miR-
29b mimic or cotransfected with miR-29b mimic and GPX7 overexpression plasmid. (A) The reduced GSH level of cells. (B) The Fe2+ concentration was measured
by FerroOrange probe. (C) Lipid peroxidation was detected in glioma cells treated with or without fer-1 (2 mM), erastin (10 mM), lip-1 (100 nM) and DFO (100 mM).
Within each chart, cells in P3 region in green represent those stained with oxidized dye. *P < 0.05, **P < 0.01, ***P < 0.001. ns, not significant.
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stroke (45). Therefore, miR-29b in oxidative stress is worthy of
further study.

Some limitations were present: first, the survival data of
patients in Huanhu hospital were missed. Second, we found
GPX7 expression was associated with immune infiltration, but
the specific roles of GPX7 in the immunomodulation are still
unclear. Third, more investigations should be conducted into
Frontiers in Oncology | www.frontiersin.org 1328
whether GPX7 affects the known ferroptosis-related signaling
pathways and how GPX7 knockdown enhances the effects of
erastin. Lastly, subcutaneous rather than intracranial in situ nude
mice xenograft model was applied in our study due to the
presence of the blood brain barrier which may prevent the
penetration of erastin into the tumor. These possibly limit the
cogency of our findings.
A
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FIGURE 8 | Synergistic inhibitory effects of miR-29b mimic transfection and erastin cotreatment on glioma cells, which can be partially reversed by GPX7
restoration. (A) LN229 and T98G cells transfected with miR-29b mimic or cotransfected with miR-29b mimic and GPX7 overexpression plasmid were treated
with erastin at different concentrations. Proliferation ability of cells was evaluated using CCK-8. (B) Wound healing assay. The concentration of erastin is 10 µM.
Scale bar, 250 mm. (C) Transwell assay with 10 µM erastin used. Scale bar, 100 mm. (D) Annexin V and PI apoptosis assay. The concentration of erastin is 10
µM. (E) The schematic diagram of the roles of miR-29b/GPX7 in glioma ferroptosis induced by erastin, which was created on the BioRender.com. *P < 0.05,
**P < 0.01, ***P < 0.001.
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In summary, multi-center data revealed that GPX7 high
expression was associated with poor clinical outcomes. GPX7
knockdown mediated enhancement of ferroptosis-related
oxidative stress promoted glioma ferroptosis induced by erastin.
Furthermore, miR-29b suppressed GPX7 expression post-
transcriptionally in glioma. Reconstitution of miR-29b enhanced
erastin sensitivity, partly via GPX7 suppression. All in all,
suppressing GPX7 could be a valuable strategy for glioma treatment.
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Supplementary Figure S1 | The expression of other GPX family members in
glioma based on TCGA. (A) The expression differences of GPXs between normal
and glioma were analyzed in GEPIA. (B) The multivariate Cox regression regarding
GPXs in TCGA. (C) Some examples of high expression of GPX7 in patients with
grade II and low expression in patients with grade III.

Supplementary Figure S2 | (A–D) Bioinformatics analysis of the association of
GPX7 and ferroptosis based on data from CGGA. (A) GSEA of ferroptosis and
redox biology related gene sets in cohort with GPX7 high and low. (B) The different
FPI levels among different WHO grades of glioma. (C) Kaplan-Meier analysis of OS
according to the FPI level. (D) The association of GPX7 expression and FPI level in
CGGA glioma samples. (E) CCK-8 assay was applied to analyze the viability of
LN229 and T98G cells treated with different concentrations of RSL3 following the
transfection with siGPX7 and siScr. (F) FITC annexin V and PI apoptosis assay was
applied analyze the apoptosis rate of LN229 and T98G cells treated with RSL3 (1
mM) following the transfection with siGPX7 or siScr.

Supplementary Figure S3 | (A) Immunofluorescence staining of LN229 and
T98G cells subjected to siGPX7-ii or siScr transfection with or without erastin (10
mM) treatment for GPX7 (orange), Ki67 (green), MMP2 (red) and N-Cadherin
(yellow). The nucleus is stained with DAPI (blue). Scale bar = 50 mm. (B) Apoptosis
assay was used to analyze the apoptosis rate of cells treated with or without erastin
(10 mM), fer-1 (2 mM), lip-1 (100 nM) and DFO (100 mM) following the transfection
with siGPX7 and siScr. (C) Apoptosis assay was used to analyze the apoptosis rate
of cells treated with or without erastin (10 mM), fer-1 (2 mM), lip-1 (100 nM) and DFO
(100 mM) following the transfection with miR-29b mimic or NC mimic.
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Ferroptosis, a recently discovered regulated programmed cell death, is associated with

tumorigenesis and progression in glioblastoma. Based on widely recognized ferroptosis-

related genes (FRGs), the regulation of ferroptosis patterns and corresponding

characteristics of immune infiltration of 516 GBM samples with GSE13041, TCGA-GBM,

and CGGA-325 were comprehensively analyzed. Here, we revealed the expression,

mutations, and CNV of FRGs in GBM. We identified three distinct regulation patterns

of ferroptosis and found the hub genes of immunity and stemness among DEGs in

three patterns. A prognostic model was constructed based on five FRGs and verified

at the mRNA and protein level. The risk score can not only predict the prognosis but

also the degree of immune infiltration and ICB responsiveness by functional annotation.

The overall assessment of FRGs in GBM patients will guide the direction of improved

research and develop new prognostic prediction tools.

Keywords: ferroptosis, glioblastoma multiforme, immunity, stemness, prognosis

INTRODUCTION

Grade IV glioma, which is termed as glioblastoma multiforme (GBM), is the most lethal glioma
(1). Despite advances in the treatment of GBM with surgery, radiation, and chemotherapy, the
survival rate of patients remains 18 months (2). Previous investigations have depicted some
malignant biological features that contribute to the highly recurrent and drug-resistance of GBM
(3). Tremendous research studies have focused on molecular markers that contribute to GBM
stemness and immunity (4, 5). Our previous study conducted a comprehensive analysis of the
stemness of GBM (6). However, many therapies targeting these molecular markers become less
effective in clinical practice. Therefore, the novel and effective prognostic models for the prediction
of GBM prognosis and immunotherapy response need to be investigated and clarified.

Ferroptosis is a new type of programmed cell death proposed by Stockwell et al. (7).
Research on the significance of ferroptosis in cancer has recently gained momentum, whereas
disruption of this process under human intervention may show clinical effects (8, 9). Ferroptosis
manifests cell membrane rupture and blebbing, mitochondrial and morphological changes,
with the cell nucleus remain intact (10). For instance, downregulation of SLC1A5 provides
melanoma cell partial immunity to ferroptosis induction (11). GOT1 inhibition promotes
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pancreatic cancer cell death by potentiating the activity of
ferroptosis (12). Knockdown of TFRC can inhibit the cell
proliferation of BRCA cell lines (13). More and more genes
related to ferroptosis have been identified in glioma, such as
ACSL4 that protects glioma cells and exerts antiproliferative
effects by activating a ferroptosis pathway (14), ATF3 that
contributes to brucine-induced glioma cell ferroptosis (15), and
COPZ1 that manipulates NCOA4 to regulate the ferroptosis
process in GBM (16). These ferroptosis-related genes (FRGs)
are closely linked to tumorigenesis and progression. However,
whether these genes are associated with the prognostic value and
molecular functions of GBM patients has not been elucidated.

Despite its implication in cell death, recent studies also
evaluated ferroptosis-associated diseases and their role on
immunity. For example, CD8+ T cells suppress tumor growth by
inducing ferroptosis and pyroptosis (17). In addition, ferroptosis
could release various damage-associated molecular patterns
(DAMPs) or lipid metabolites that are involved in the cellular
immune response (18). Notably, ferroptosis was associated with
tumor immune checkpoints in clear cell renal cell carcinoma
(19). These researches explored the mechanisms in ferroptosis
and immune microenvironment. However, these studies have
not specifically focused on GBM, and the relationship between
ferroptosis and immune response in GBM has not been
well characterized.

Herein, we integrated data from the public Gene Expression
Omnibus (GEO), The Cancer Genome Atlas (TCGA) databases,
and the Chinese Glioma Genome Atlas (CGGA) to evaluate
the role of FRGs signature in the prognosis in GBM patients.
We further identified three distinct regulations of ferroptosis.
Comparison of the DEG of three patterns unveiled five key
genes involved in immunity and stemness. These genes may
have potential value in the regulation of ferroptosis in GBM.
Finally, a risk score based on FRGs had been constructed. Within
functional annotation, we found that the risk score is not only a
good predictive value for survival but also a potential factor for
immune checkpoint blockade (ICB) responsiveness. Our study
could help to guide the link between ferroptosis and GBM stem
cells intensive research in the future and identify new ferroptosis-
related targets and immune therapies.

MATERIALS AND METHODS

Data Acquisition
Raw RNA-seq data (FPKM files) and clinical data on GBM
were extracted from The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/), Chinese Glioma Genome Atlas (CGGA,
http://www.cgga.org.cn/) and Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo). After data filtration,
GSE13041, TCGA-GBM, and CGGA-325 with 516 GBM
tissue samples were gathered in this study for further analysis.
Infiltration estimation for all TCGA tumors was collected from
TIMER2.0 (http://timer.comp-genomics.org/). Copy number
variant (CNV) data and somatic mutations of all genes were
downloaded from the UCSC Xena browser (https://xenabrowser.
net). CNV differences of all genes were calculated by the
chi-square test (p < 0.05). The location of the significantly

different genes on the chromosomes was shown by the RCircos R
package. The protein–protein interaction network was produced
by the STRING (https://www.string-db.org) database and was
reconstructed via Cytoscape software. The protein expressions
in human normal tissues and tumor tissues were validated via
the Human Protein Altas (HPA, https://www.proteinatlas.org/).

Identification of FRGs
Ferroptosis-related genes had been categorized according to
the existing literature which contains iron metabolism, oxidant
metabolism, lipid metabolism, energy metabolism, and other
unclassified factors (9, 20–22). According to the description of
FRGs in glioma research (23), 59 genes were incorporated into
follow-up studies and were provided in Supplementary Table 1.
Considering the small number of normal brain tissues in the
TCGA, we investigated the expression of the FRGs on the online
web server GEPIA (http://gepia.cancer-pku.cn/). Differentially
expressed genes (DEGs) were calculated using the R package
“LIMMA” (|logFC| > 1 and p < 0.05).

Functional Enrichment Analyses
To functionally annotate DEG sets during the analysis, Kyoto
Encyclopedia of Genes and Genomes (KEGG), pathway analysis,
and Gene Ontology (GO) were performed in R software
version 4.0.3 using ClusterProfiler package. To calculate mRNA
expression-based stemness index (mRNAsi), we used the OCLR
algorithm constructed by Malta’s team (24). The mRNAsi was
represented using an index between zero to one to signal that
the higher the mRNAsi, the greater activity of cancer stem cells.
The CytoHubba plugin version 0.1 in Cytoscape version 3.8.2
was employed to identify hub genes, and enrichment analysis was
performed using the ClueGO plugin version 2.5.8.

The TIMER, CIBERSORT, QUANTISEQ, Microenvironment
Cell Populations-counter (MCP-counter), XCELL, and
Estimating the Proportion of Immune and Cancer cells
(EPIC) algorithms were used to estimate the abundance
of immune cells between the high- and low-risk groups.
The “ESTIMATE” R package was used to assess immune
infiltration (based on the ImmuneScore, StromalScore, and
ESTIMATEScore). The clustering was performed usingWGCNA
and themodule–trait correlations withmRNAsi, EREG-mRNAsi,
and ESTIMATEScore. According to the number of the genes, the
minModuleSize of the mRNA was set to 50. Gene sets that could
predict the responses to immune checkpoint blockade therapy
were obtained from the work by Mariathasan. Single-sample
gene set enrichment analysis (ssGSEA) was used to estimate
immune-related functions in TCGA-GBM patients utilizing gene
set variation analysis (GSVA) (25) version 1.40.1.

Tumor immune dysfunction and exclusion (TIDE) (http://
tide.dfci.harvard.edu/), a well-established algorithm was
employed to predict the clinical response to ICB therapy (26).
TIDE is a computational framework developed to evaluate the
potential of tumor immune escape from the gene expression
profiles of cancer samples. The TIDE score could serve as a
surrogate biomarker to predict response to ICB. The SubMap
(https://www.genepattern.org/) was employed to validate
the reliability of the prediction of TIDE. Mapping result is
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represented as a subclass association matrix filled with p-values
for each subclass association (27).

Construction of a Scoring System and
Calculate the Risk Score
Univariate Cox regression analysis was implemented to filtrate
the prognostic FRGs. The ConsensusClusterPlus package in
R was employed to investigate the detailed information in
unsupervised subclasses discovery and to divide samples into
appropriate parts for maximum stability (28). Thereafter, we
used the R package “glmnet” to conduct least absolute shrinkage
and selection operator (LASSO) Cox regression algorithm and
development of a potential risk signature. The minimum value of
lambda was derived from 1,000 crossvalidations (“1-se” lambda),
which corresponding partial likelihood deviance value was the
smallest for the risk model (29, 30). At last, coefficients with
regression were confirmed by the “cvfit” function with 1,000
repeats. FRG prognostic signature involves five genes. The risk
score calculating formula is as follows:

Riskscore =

n∑

i= 1

Coefi ∗ xi

where Coefi means the coefficients and xi is the expression value
of each FRGs. This formula was used to calculate the risk score for
each GBM patient. The predictive ability of prognostic signature
for clinical traits and survival was reflected by receiver operating
characteristic (ROC) and the area under the curve (AUC).

The independent clinical factor validated by univariate and
multivariate Cox regression analyses was enrolled to construct
a nomogram for prognosis prediction. Patients with missing
data were excluded. The nomogram was performed using the
“survival” and “regplot” packages of R 4.1.0 to investigate the
probability of 1-, 3-, and 5-year overall survival (OS).

RNA Extraction and Real-Time PCR
For RNA extraction, three GBM tissues and one peritumoral
brain edema were collected in the Second Affiliated Hospital of
Harbin Medical University. This research was approved by all
the patients and the ethics committee of hospital. Total RNA
was isolated using TRIzol reagent (Invitrogen, USA) according to
the manufacturer’s instructions. According to the manufacturer’s
instructions of the Nanodrop ND-2000 spectrophotometer
(Thermo Scientific, USA), 2 µg of the total RNA was transcribed
into cDNA. SYBR Green PCR kit (Takara, Japan) was used for
qRT-PCR. The 2–11Cq method was used to calculate gene
transcription level, with β-actinmRNA as control. Data represent
the mean ± SD of triplicate real-time PCR. Primers (Tsingke
Biotechnology Co., Ltd, Beijing, China) used are displayed in
Supplementary Table 2. Clinical characteristics of patient cohort
are displayed in Supplementary Table 3.

Statistical Analysis
All the data were analyzed using the R software version 4.1.0.
The OS of the patients with glioma between different groups
was analyzed using Kaplan–Meier curves with the log-rank test.

Correlations were assessed via Spearman’s coefficient. Kruskal–
Wallis tests were applied for the comparison of gene expression
in two or more groups. The landscape of CNV and gene
location were visualized by the RCircos R package (31). A
p < 0.05 was considered as statistically significant. Statistical
analyses were performed using GraphPad Prism 9 for rest of
the data.

RESULTS

Landscape of FRGs in GBM
A total of 59 FRGs previously reported were included in this
study. We first analyzed the expression of these genes in TCGA-
GBM and normal tissues. The expression of 59 genes showed
significant differences in TCGA-GBM with normal samples
(Figure 1A). Among them, FANCD2, STEAP3, HMOX1, and
other eight genes were upregulated in GBM (p < 0.001), whereas
ACSL4, GLS2, and PEBP1 were the opposite (p < 0.001). We
next examined CNV and chromosome location. Chromosome
10 carried the largest number of genes that undergo copy
number variation. PGD and SLC1A5, the genes with the highest
frequency of copy number loss, were located on chromosomes 1
and 19, respectively (Figures 1B,C). After that, we investigated
the mutation frequencies of these genes in the TCGA-GBM
dataset. As a result, there were 21 FRGs with mutation frequency
>1%, and TP53 had the highest mutation frequency which was
predominantly missense mutation (Figure 1D). Given the high
frequency of copy number loss and mutation of TP53, we further
explored the gene expression of FRGs between TP53 wildtype
and mutant type. Four genes differentially expressed between
subgroups were shown, and ABCC1 exhibited an increased
expression in the TP53 mutant group (Figures 1E–H), which
may be associated with malignant progression of TP53 mutant
status (32).

The Relationship Between FRGs and
Prognosis
Three mRNA-seq datasets that include TCGA-GBM (n = 161),
CGGA325 (n= 137), and GSE12041 (n= 218) were integrated to
interrogate the prognostic significance of FRGs. According to the
previous studies of different metabolic pathways, genes related to
ferroptosis were preliminarily divided into five categories. Gene
expression, correlation, and prognostics are shown in Figure 2A.
Among them, AKR1C1, AKR1C3, FDFT1 that involved in lipid
metabolism, and NCOA4 that involved in iron metabolism were
significantly associated with improved prognosis, which can be
regarded as the protective factors. In contrast, the expression
of STEAP3, HMOX1 that involved in the iron metabolism, and
HSPB1 and SAT1 belong to other categories was associated
with poor prognosis, which can be regarded as the risk factors
(Figure 2A). Next, the Kaplan–Meier survival curve was used,
and six genes that include NCOA4, STEAP3, AKR1C1, AKR1C3,
FDFT1, and HSBP1 were most significantly related to OS
(Figures 2B–G), which indicates that they may be vital in
predicting patient prognosis.
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FIGURE 1 | Landscape of FRGs in TCGA-GBM. (A) The expression levels of FRGs in the TCGA dataset. Red: upregulated genes; blue: downregulated genes. (B)

CNV frequency; red: CNV gain; green: CNV loss. (C) The CNV distribution of all chromosomes. (D) The mutation of FRGs in GBM; green boxes represent missense

mutations, orange splicing mutations, blue frameshift mutations, and red nonsense mutations. (E–H) Four genes (ABCC1, GPX4, PEBP1, and ACSL3) with

significantly different expressions between TP53 wildtype and mutant (p < 0.01).

GSVA and ssGSEA Analysis in three
Clusters of FRGs
To characterize the functions of these FRGs in GBM, they
were clustered for further analysis (Figure 3A). The consensus

distributions for k (2 to 9) were displayed in the empirical
cumulative distribution function (CDF) plots (Figures 3B,C);
given the consensus matrix, k= 3 seemed to be the most suitable
choice. Besides, to verify the effectiveness of unsupervised
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FIGURE 2 | FRGs associated with prognosis. (A) The degree distribution of the prognostic-related gene network. The yellow circles indicate high-risk genes, and the

green circles indicate low-risk genes. The remaining five colored dots represent five types of FRGs. The blue line indicates a negative correlation, and the pink lines

indicate positive correlations with correlation coefficients of p < 0.0001. Cox regression analysis (Cox p-value range 0.0001–1). The size of the dot reflects the p-value.

(B–G) Six FRGs significantly associated with prognosis (NCOA4, STEAP3, AKR1C1, AKR1C3, and HSPB1 p < 0.001; FDFT1 p < 0.01).

clustering, principal component analysis (PCA) can clearly show
the distinction between 3 clusters which proved the accuracy
of our selection for k and the effectiveness (Figure 3D). K–
M analysis found significant differences in OS in the three
clusters (p = 0.008), and cluster A seemed to have the poorest
prognosis. Next, the expression of FRGs in the three clusters
and their clinical characteristics were shown in the heatmap
(Figure 3F). To gain insights into the functional implication,
GSVA was performed to analyze the differentially enriched
KEGG pathways in two of any three clusters. Samples in cluster
A showed prominent enrichment of nod-like receptor (NLR)
signaling pathway, apoptosis, amino sugar and nucleotide sugar
metabolism, and cytokine–cytokine receptor interaction, etc.
(Figures 3G–I). Finally, enrichment of immune cell fractions
in the tumor immune microenvironment (TIME) was assessed
using the ssGSEA algorithm. As a result, most types of
immune cells were significantly enriched in cluster A, such as

activated CD8T cell and eosinophil (Figure 3J). These findings
indicated that different regulatory patterns based on FRGs
reflected the mechanisms in tumor growth, apoptosis, and
immune infiltration.

Identification of Hub Genes in DEGs Using
WGCNA and Functional Annotation
To investigate the specific phenotype-related genes for each
regulatory pattern of ferroptosis, we used the “LIMMA” package
to identify the DEGs. A total of 1,622 DEGs were picked out
in three clusters (Figure 4A). Functional enrichment analysis
found that the main function of these DEGs enriched in
neutrophil activation neutrophil-mediated immunity (BP),
collagen-containing extracellular matrix, secretory granule
lumen (CC), and actin-binding (MF) (Figures 4B,C). For
the KEGG pathway, the most significant pathway for these
DEG enrichment was cytokine–cytokine receptor interaction.
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FIGURE 3 | The unsupervised clustering process for FRGs. (A) Consensus clustering matrix for k = 3. (B) Consensus clustering CDF for k = 2–9. (C) Relative change

in area under the CDF curve for k = 2–9. (D) A PCA plot of unsupervised clustering when k = 3. (E) Prognostic differences between the three clusters after merging

survival information (p < 0.01). (F) The heatmap of three clusters and their clinical characteristics. (G–I) Visualization for the results of KEGG for DEGs with three

clusters. (J) The relative enrichment of each immune cell fraction in the TIME with the gene sets using ssGSEA (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 4 | Characteristics of potential traits in different patterns of ferroptosis regulation. (A) A Venn diagram of differential genes in three patterns (p = 0.001). (B)

GO analyses of differentially expressed. (C) KEGG pathway analyses of differentially expressed. (D–F) Hierarchical clustering dendrograms of identified coexpressed

genes in modules. The branches of the cluster dendrogram correspond to the different gene modules. Each leaf corresponds to a gene. Each colored row represents

a color-coded module, which contains a group of highly connected genes. A total of 5 modules were identified after the merger. (F) Correlations between the gene

modules and target traits including mRNAsi, EREG-mRNAsi, and ESTIMATEScore. The corresponding p-value is increased in size from blue to red. (G–J) The four

modules most significantly correlated with mRNAsi and ESTIMATEScore. Cor was the coefficient indices and p was Pearson’s correlation.
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Next, WGCNA was performed to structure gene coexpression
networks and further identified biologically meaningful modules
that corresponded to designate phenotype-related genes,
which include stemness indices and the ESTIMATEScore. The
most appropriate β was 7, and the relatively balanced scale
independence and mean connectivity of the WGCNA were
identified (Figure 4D). A total of 5 modules (merged dynamic)
were identified (Figure 4E minModuleSize = 50). To analyze
the correlations between merged modules and the immune and
stemness phenotypes, module eigengenes (MEs), which could be
regarded as representative of the gene expression patterns in a
module, were determined and used to calculate the correlations
with designated phenotypes. The heatmap in Figure 4F revealed
the key modules (MEyellow and MEturquoise for the mRNAsi
and MEturquoise and MEbrown for the ESTIMATE). The
correlation graphs were plotted to select the hub genes in these
modules (Figures 4G–J). Interestingly, the module turquoise had
the most positive correlation with ESTIMATEScore and most
negative correlation with mRNAsi. Genes with p.MMturquoise
≥ 0.8 and GS.mRNAsi ≤ −0.5 or GS.ESTIMATEScore ≥ 0.5
were screened out (Supplementary Table 4).

The STRING was used to construct PPI networks. In
the module turquoise, 71 genes are negatively correlated
with mRNAsi, and 134 genes are positively correlated with
ESTIMATEScore (GS> 0.5 andMMturquoise> 0.8). According
to the confidence, the genes with significant interaction were
screened, and the filtered results were imported into the
Cytoscape for network visualization. The top 30 of these
genes associated with mRNAsi and ESTIMATEScore with the
highest combined score in STRING are exhibited (Figures 5A,B).
CytoHubba and Maximal Clique Centrality (MCC) were used
to explore important nodes. Top 10 MCC values were selected,
and then, the intersection was taken to get the hub genes in
PPI analysis (Figures 5C,D). As the result, we found that 5
genes, which include TLR4, TLR8, TNF, CD86, ITGAM, and
PTPRC, were the common hub genes in the two modules. These
five key genes were analyzed by KEGG and GO enrichment
using the “ClueGO” and “CluePedia” plugins for Cytoscape
software (Figures 5E,F p < 0.05). We found that these genes
showed the enrichment of GO terms related to microglial cell
activation, positive regulation of NIK/NF-kappaβ signaling and
interleukin (interleukin-8 production and regulation and positive
regulation of interleukin-1 beta production). Collectively, these
hub genes may be the key components of the GBM immune and
stemness module that contribute to immunoregulatory functions
during ferroptosis.

Cluster Analysis of DEG Levels
Previous results revealed the special performance of the DEGs
in immunity and stemness of GBM. To further study, the
association between these DEGs and FRGs was clustered into
three categories according to their correlations in GBM. Given
the consensus matrix for the analysis, k = 3 seemed to be the
most suitable choice (Figures 6A–D). Similarly, these clusters
also showed significant survival differences (Figure 6F p <

0.001). The differences in survival obtained by this clustering are
consistent with those using FRGs (Figure 3E). The expression

of DEGs in the clustering of the two methods and their clinical
characteristics were shown in the heatmap (Figure 6E), and
these findings were independent of clinical traits, such as age
and sex. For FRGs, we found that most genes show significant
differences in DEG clusters (Figure 6G). Interestingly, among the
FRGs, FTH1, STEAP3, HMOX1, and 13 other genes showed an
increased expression in cluster A, which had the worst prognosis.

Construct the FRG Prognostic Signature
Among the genes related to prognosis (Figure 2A), 16 FRGs were
correlated with the OS of GBM patients. LASSO Cox analysis
was performed to establish an FRG prognostic signature. In the
crossvalidation process, lambda.Min was regarded as the optimal
value (Figures 7A,B). A number of 5 FRGs were identified, and
corresponding coefficients were calculated. A number of 516
samples were divided into train set (TCGA-GBM and GSE13041)
and test set (CGGA-325), and samples were split into high-
and low-risk subgroups by the median value of the risk score.
Kaplan–Meier survival curves depicted that GBM patients with
increased risk scores had worse clinical outcomes (Figures 7C,D,
p < 0.001 in both train and test datasets). Next, we established
3- and 5-year ROC curves and found that the risk score can
effectively distinguish GBM patients with different survival
statuses in train set (Figure 7E, 3-year AUC = 0.706, 5-year
AUC = 0.782). The risk score and survival status distributions
of the train set are shown in Figure 7F. The mortality of patients
increased with the increase of the risk score. The expressions
of risk genes and protective genes in these 5 genes are shown
in the heatmap (Figure 7G), TFRC, and STEAP3 as the risk
factors increased in the high-risk score group. Conversely,
NCOA4, AKR1C1, and AKR1C3 become the protective
factors. The risk scores in the ferroptosis cluster and gene
cluster are shown in Figures 7H,I. Univariate and multivariate
Cox regression analyses show the independent prognostic
value of this risk score (Supplementary Figures 1A,B). A
Nomogram model was established which contained risk score,
recurrent, age, and gender to assess the survival prediction
in GBM patients (Supplementary Figure 1C). A Sankey
diagram is used to link clustering, scoring, and survival status
(Supplementary Figure 2). Most of the surviving patients
belong to the low-risk group and cluster C. Finally, considering
the small number of normal samples in the dataset, we validated
the expression of the five key genes by qRT-PCR with the
unpaired t-test in human GBM tissues. The results of qRT-PCR
(Figures 8A–E) and dates in GEPIA (Figure 8F) were consistent
with the expression of protein in HPA (Figures 8G–K).

Enrichment Analyses of Immune-Related
Functions
The enrichment scores of immune cells and corresponding
immune functions and pathways with ssGSEA were quantified
for the TCGA dataset. Silico approaches that include
TIMER, CIBERSORT, CIBERSORT–ABS, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC computational were
employed to quantify the immune cells in high- and low-risk
groups (Figure 9A). Consequently, the fraction of B cell, CD8+

T cell, and M2 macrophage were significantly increased in the
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FIGURE 5 | Identification of hub genes from the PPI network. (A,B) PPI network obtained using STRING and showing the top 30 highest scoring genes. The bar plots

of top 30 key genes of mRNAsi (A) and ESTIMATEScore (B). (C,D) Top 10 hub genes of mRNAsi (C) and ESTIMATEScore (D) explored by CytoHubba algorithm in

Cytoscape software 3.8.0. and red nodes represent hub genes. (E,F) KEGG pathway and GO analysis of five overlapping genes (TLR4, TLR8, TNF, CD86, ITGAM,

and PTPRC) using the “ClueGO” and “CluePedia” plugins (p < 0.05).

low-risk group. NK cell and T cell regulatory (Tregs) were
enriched in the high-risk group. The MHC class I scored higher
in the high-risk group. The GSVA method was used to calculate
the immune event scores of the high- and low-risk groups. APC
coinhibition, HLA, and type I IFN response scored higher in
the low-risk group (Figure 9B, p < 0.01). Next, we explored
the relationship between immune checkpoint-related genes and
risk score (Figure 9C). The expression of CD44, TNFRSF14,
and NRP1 in the high-risk group was significantly higher
than that in the low-risk group. Given this, we introduced the
TIDE algorithm to assess the efficacy of FRG signatures in
predicting ICB responsiveness in GBM. Submap was used to
compare the prediction results (Figure 9D). As a result, different
groups in train and test sets showed comparable performance
in predicting the GBM response to anti-CTLA4 therapy (p
< 0.05). Finally, we use GSEA to perform GO enrichment
analysis on high- and low-risk GBM patients. The samples of
the high-risk group were enriched in positive regulation of
transcription from RNA polymerase II promoter in response
to stress (GOBP), mitotic G2M transition checkpoint (GOBP),
BHLH transcription factor binding (GOMF) (Figure 9E). In
the low-risk group, enriched GO terms were cell cortex region
(GOCC), negative regulation of amyloid precursor protein

catabolic process (GOBP), and oxidoreductase activity acting
(GOMF). In conclusion, GBM patients with high- and low-risk
scores had different immune-related functions (Figure 9F).

DISCUSSION

Malignant glioma remains a considerable threat to human
health, and the prognosis of patients with GBM is dismal
(33, 34). Recently, regulated cell death has gained considerable
attention in cancer, especially ferroptosis (7, 35, 36). Herein, 59
FRGs in GBM were included in this study to investigate the
characteristics with expression, OS, and functions. CNV exists as
a genetic polymorphism in the human genome, and CNV alters
tumorigenesis by deletion or amplification of a copy number
of a gene (37, 38). In this study, the highest frequency of FRG
PGD and SLC1A5 CNV (loss) was located on chromosomes
1 and 19, respectively. SLC1A5 expression correlated positively
with immune cells, such as tumor-infiltrating B cells, CD4+ T
in hepatocellular carcinoma, and lower-grade glioma (39). For
mutations in FRGs, TP53 mutation is one of the most frequent
genetic alterations in primary glioma. Previous studies have
shown that TP53 polymorphism is associated with the risk of
primary glioma (40). Of note, the expression of ABCC1 was
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FIGURE 6 | Hierarchical cluster analysis of DEGs. (A–D) The consensus clustering matrix for k = 3 was determined by CDF for k = 2–9. (E) Prognostic differences

between the three clusters after merging survival information (p < 0.01). (F) The heatmap of three clusters and their clinical characteristics. (G) The expression levels

of FRGs in different clusters (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 7 | FRG prognostic signature. (A,B) The process of building the signature. LASSO regression was performed, calculating the minimum criteria. (C,D)

Kaplan–Meier curves showed that the high-risk subgroup had worse OS than the subgroup in training set (C, p < 0.001) and test set (D, p < 0.001). (E) ROC curves

showed the predictive efficiency of the risk signature on the 3-year and 5-year survival rates of training set (3-year AUC = 0.706, 5-year AUC = 0.782). (F) The

distributions of risk scores and the distributions of risk scores and OS status. The green and red dots indicated the alive and dead status, respectively. (G) The

heatmap based on the expression of the five genes in the high- and low-risk group. (H,I) According to the formula, the different clustered samples are scored using

the coefficients.
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FIGURE 8 | Validation of risk genes (A–E). (A) AKR1C1, (B) AKR1C3, (C) NCOA4, (D) STEAP3, and (E) TFRC expression in peritumoral brain edema and GBM

tissues. (F) The expression of prognostic model with five genes (NCOA4, TFRC, STEAP3, AKR1C1, and AKR1C3) in GEPIA. (G–K) Validation of five genes with

immunohistochemistry from the HPA database.

higher in mutant TP53 whereas the expression of GPX4, PEBP1,
and ACSL3 were higher in the wild-type TP53 group. The finding
implicated TP53 mutation status was an important link in the
regulation of other FRGs.

Unsupervised cluster analysis of the expression values of
FRGs identified three distinct patterns in GBM. Cluster A with
the worst prognosis showed high enrichment in NLR signaling

pathway apoptosis, and amino sugar and nucleotide sugar
metabolism. The NLR family of receptors had been recognized
as the key roles of immunity and inflammation with GBM
(41). Meanwhile, a variety of immune cells, such as activated
CD8T cell and eosinophil, exhibit aggregation in cluster A.
Whether a direct mechanism of immune cells on ferroptosis
nodes might be of physiological relevance remains elusive.
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FIGURE 9 | Enrichment analysis of immune-related functions. (A) The TIMER, CIBERSORT, CIBERSORT.ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC

algorithms were applied for the immune infiltration of the high- and low-risk groups. (B) Immune score estimated by single sample GSEA (ssGSEA) in different groups.

(C) Immune checkpoints in the tumor microenvironment. (D) TIDE prediction of the association of genes prognostic signature with ICB responsiveness in train and test

sets. (E,F) GO analysis for high-risk group (E) and low-risk group (F) using GSEA 4.1.0.

Recent studies have shown that CD8T cells may in sensitizing
tumor cells toward ferroptosis (42). In addition, 1,622 DEGs
were selected from three patterns. GO and KEGG pathway
analysis revealed that DEG enrichment was mainly involved
in the immunity biological process. Activated neutrophils are
induced by the microenvironment of GBM (43). Meanwhile,
some immune-associated lncRNAs in glioma were verified to

be closely related to cytokine–cytokine receptor interaction (44).
Functional annotation of the hub genes identified by WGCNA
illuminated the potential regulatory mechanisms by which of
FRGs regulate on the immune and stemness phenotypes. Recent
studies suggest a possible negative regulation between stemness
and immune activation (45). Glioblastomamultiforme stem cells,
characterized by self-renewal and therapeutic resistance, play
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vital roles in GBM (6). Using the app CytoHubba in Cytoscape,
we filtered 5 hub genes in both immune and stemness PPI
networks. TLRs are expressed on both immune and tumor cells,
which play dual roles in countering cell proliferation, migration,
invasion, and glioma stem cell maintenance responses (46). TNF-
α/NF-κB signaling is closely associated with glioma proliferation
(47). Also, CD86 is an unfavorable prognostic biomarker in
lower-grade glioma (48). It is worth noting that PTPRC, TLR8,
TLR4, and TNF all exhibit functions related to IL-8 regulation.
Interleukin-8 (IL-8) has been revealed as a critical regulator of
central nervous system (CNS) function and development with
participation in many CNS disorders including gliomas (49, 50).
These are the key genes of immunity and stemness from different
ferroptosis regulation patterns. This suggests that among the
multiple FRGs, some genes regulate GBM stem cells and the
immune microenvironment. The connection between them is
also the direction of our next research.

Based on five FRGs, a prognostic model was established
and validated in TCGA-GBM, GSE13041, and CGGA-325.
These databases have authoritative gene expression and clinical
information for GBM. The prognostic model contained five
genes (NCOA4, TFRC, STEAP3, AKR1C1, and AKR1C3).
The mRNA expression of genes was verified using qRT-
PCR. Based on the HPA database, genes were verified at the
protein levels. These FRGs affect many of the key processes
involved in the tumorigenesis and progression of cancer,
especially glioma. NCOA4 is a selective cargo receptor for the
autophagic degradation of ferritin in glioma which is known
as ferritinophagy (16, 51). The TFRC expression was higher in
glioma (52), and the progression and oncogenicity of glioma
were regulated by hsa-miR-144-3p/TFRC signaling (53). STEAP3
emerged as an important protein that induces mesenchymal
transition and stem-like traits in glioma (54). AKR1C1 and
AKR1C3 are members of the AKR superfamily which has been
previously shown to be associated with oncogenic potential and
proliferation capacity (55), and selective targeting of AKR1C
proteins in GBM could delay the acquisition of resistance to
TMZ of astroglioma cells (56). This prognostic model could
predict tumor prognosis, and targeting these prognostic model
genes may provide new ideas for the development of targeted
treatment tools.

Our results demonstrated that a high-risk score was associated
with a worse prognosis. Three-year and 5-year ROC curves
indicated the 5-gene signature as a potential diagnostic factor in
GBMpatients. Moreover, outcome of the nomogram showed that
risk score and age were associated with GBM prognosis, and it
was consistent with the actual clinical situation. We investigated
the correlation between high- and low-risk groups and immune
cells with the CIBERSORT, CIBERSORT-ABS, QUANTISEQ,
XCELL, MCPCOUNTER, and EPIC algorithms. Tregs were
elevated in the high-risk group. The findings of this study are
in line with those presented in previous studies, Tregs play
important known roles in suppressing the immune response and
maintaining immune homeostasis (57). Innovatively supporting
that the abundance of nonpolarized M0 macrophages rather
than M1 or M2 macrophages assembly in glioblastoma that
contributed to the malignancy of tumor was proposed recently

(58). Also, a recent mice study showed that increasing glioma-
associated monocytes in intracranial murine GL261 leads to
an increase in intratumoral and systemic myeloid-derived
suppressor cells (59). In summary, regulation of ferroptosis in
GBM patients may be important in controlling the inflammatory
and immune responses. Research on immune checkpoints has
now become a new hotspot. In this study, significant differences
in the expression of immune checkpoints between high- and low-
risk groups suggested that the sensitivity to immunotherapies is
associated with a risk score. Moreover, our risk score may screen
out potential ICB responders. This provides a new idea for in-
vivo experiments of immunotherapy. However, GBM patients
with low OS exhibit higher expression of markers characterizing
immune response activity and T cell infiltration (60). Besides,
the presence of the blood–brain barrier cannot be ignored for
the nature of immunotherapy. In fact, considering that targeting
these FRGs indirectly improves immunotherapy, many questions
need answering.

This study still has some limitations. First, all the data used to
construct and validate the prognostic model were obtained from
publicly available datasets. These three GBM databases inevitably
lead to the neglect of intra-tumor heterogeneity in different
databases. As confirmed in the study, tumor heterogeneity
has an important impact on diagnosis and treatment (61). A
prospective study is needed to assess the potential application
of the signature. Second, for the five key genes related to
GBM stemness, which FRGs or pathways regulate them remains
to be further elucidated. Third, although the survival benefits
and immune-related biological processes with ferroptosis-related
gene signature have been revealed through functional analysis,
in-vivo and in-vitro experiments are needed to further elucidate
the specific mechanism, preferably at the single-cell level
in humans. Finally, we expect that this work will provide
clues on immunity, stemness, and prognosis characteristics for
future studies.

CONCLUSIONS

In summary, by analyzing the expression of ferroptosis-related
genes in GBM, we identified three ferroptosis regulation patterns
of GBM patients. Comparison of the DEG of three patterns and
unveiled five key genes involved in immunity and stemness. A
prognostic model based on five FRGs was built. The risk score
can be a good predictor of prognosis and also predicts the degree
of immune infiltration and ICB responsiveness.
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Background: Despite the availability of various therapy options and being a widely
focused research area, the prognosis of glioblastoma (GBM) still remains very poor due to
therapy resistance, genetic heterogeneity and a diffuse infiltration pattern. The recently
described non-apoptotic form of cell death ferroptosis may, however, offer novel
opportunities for targeted therapies. Hence, the aim of this study was to investigate the
potential role of ferroptosis in GBM, including the impact of treatment on the expression of
the two ferroptosis-associated players glutathione-peroxidase 4 (GPX4) and acyl-CoA-
synthetase long-chain family number 4 (ACSL4). Furthermore, the change in expression of
the recently identified ferroptosis suppressor protein 1 (FSP1) and aldehyde
dehydrogenase (ALDH) 1A3 was investigated.

Methods: Immunohistochemistry was performed on sample pairs of primary and relapse
GBM of 24 patients who had received standard adjuvant treatment with
radiochemotherapy. To identify cell types generally prone to undergo ferroptosis, co-
stainings of ferroptosis susceptibility genes in combination with cell-type specific markers
including glial fibrillary acidic protein (GFAP) for tumor cells and astrocytes, as well as the
ionized calcium-binding adapter molecule 1 (Iba1) for microglial cells were performed,
supplemented by double stains combining GPX4 and ACSL4.

Results: While the expression of GPX4 decreased significantly during tumor relapse,
ACSL4 showed a significant increase. These results were confirmed by analyses of data
sets of the Cancer Genome Atlas. These profound changes indicate an increased
susceptibility of relapsed tumors towards oxidative stress and associated ferroptosis, a
cell death modality characterized by unrestrained lipid peroxidation. Moreover,
ALDH1A3 and FSP1 expression also increased in the relapses with significant results
for ALDH1A3, whereas for FSP1, statistical significance was not reached. Results
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obtained from double staining imply that ferroptosis occurs more likely in GBM tumor cells
than in microglial cells.

Conclusion:Our study implies that ferroptosis takes place in GBM tumor cells. Moreover,
we show that recurrent tumors have a higher vulnerability to ferroptosis. These results
affirm that utilizing ferroptosis processes might be a possible novel therapy option,
especially in the situation of recurrent GBM.
Keywords: ferroptosis, glioblastoma, glioma, immunohistochemistry, protein expression, cell death, therapy
resistance, relapse
INTRODUCTION

The poor overall survival (OS) of glioblastoma (GBM) patients,
even after extensive therapy including neurosurgical resection
followed by combined adjuvant radiation therapy and
chemotherapy with temozolomide (TMZ), is attributed to its
genetic heterogeneity, diffusely infiltrating growth pattern, high
proliferation rate and therapy resistance (1–3). Whilst the exact
mechanisms underlying the resistance to treatment remain
unknown, it seems to involve radiation-resistant tumor stem
cells (4–6). Until today, the methylation status of the O-6-
methylguanin-DNA methyltransferase (MGMT) promoter
remains one of the most significant prognostic markers (7).
Current research aims at finding new therapeutic targets to
improve the patients’ prognosis. In the course of this, it was
shown that the activation of the iron-dependent cell death
ferroptosis can drive cancer therapy by inducing cell death,
which led to the hypothesis that ferroptosis may offer new
therapeutic targets for difficult-to-treat entities, including
GBM (8).

The induction of ferroptosis might amplify the effect of
certain chemotherapeutics (9). For instance, diffuse large B cell
lymphomas and renal cell carcinomas show a high susceptibility
to the ferroptosis inducer erastin (10, 11). Similar promising
effects were seen for the combination of erastin with TMZ in
glioma and GBM cells (12, 13).

The process of ferroptosis defines an iron-dependent
oxidative destruction of lipid bilayers leading to rupturing of
cellular membranes and cell death (14, 15). In 2018, ferroptosis
was classified as a regulated cell death modality sensitive to
lipophilic antioxidant agents (16). One way to achieve this is to
perturb lipid hydroperoxide detoxification systems and to trigger
iron-dependent reactive oxygen species (ROS) generation (17).
l-CoA-synthetase long chain family
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The three hallmarks of ferroptosis include the loss of the lipid
peroxide regeneration system, an increase of polyunsaturated
fatty acids (PUFAs) and an increase of redox active iron (17).
The key enzyme in ferroptosis is glutathione-peroxidase 4
(GPX4). When GPX4 is either inhibited or has lost its
function, ROS accumulate and cause cell death (17). Especially
tumor cells rely on enzymes like GPX4 to prevent oxidative stress
and assure their survival by therapy resistance. A loss of GPX4
might offer a way to selectively kill therapy-resistant tumor cells
and prevent relapse (18). Because of its importance in the
process, GPX4 was chosen as one marker of ferroptosis in
this study.

PUFAs define the second hallmark of ferroptosis because they
are more susceptible for radicals or oxidation and hence, for
generating ROS. They get activated and oxidized by enzymes like
acyl-CoA-synthetase 4 (ACSL4) and lipid-oxygenase. Because of
its important regulatory role in in the ferroptotic cell death
process (19) and its sensitizing effects on (tumor) cells towards
ferroptosis (20), ACSL4 was also chosen as marker for ferroptosis
in this study. Moreover, an ACSL4 depletion showed inhibiting
effects on GBM tumor cell growth (20). The ferroptosis
suppressor protein 1 (FSP1) was recently identified to be the
second mainstay in ferroptosis control and therefore
included (21).

In addition to these canonical ferroptosis players, the enzyme
aldehyde dehydrogenase 1A3 (ALDH1A3) was analyzed, which
has been discussed as a stem cell marker in GBM (22–25). The
isoform ALDH1A3 appears to be the most active one in GBM
(23). Interestingly, an in-vitro study showed that ALDH knock-
out cells were more sensitive to therapy with TMZ compared to
the wildtype cells (26).

The mechanisms through which TMZ induces ROS
production (13, 27) and some type of autophagic cell death –
possibly ferroptosis - are still unknown (28, 29). We hypothesize
that they might involve accumulating aldehydes and complex
interactions between aldehyde dehydrogenase (ALDH) (26, 30),
key ferroptosis player GPX4 (13, 31), and cystine/cysteine (32). A
combination of TMZ and ferroptosis inducing agents thus might
be a promising approach in GBM patients (12).

The aim of the present study was to analyze the expression of
ferroptosis-associated proteins in GBM. To address the
expression evolvement, we compared the change the change of
GPX4, ACSL4, FSP1 and ALDH1A3 express ion in
corresponding pairs of primary and recurrent GBM. Our study
April 2022 | Volume 12 | Article 841418
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thus reveals new insights into ferroptosis in context of GBM,
particularly during the course of patient treatment.
MATERIAL AND METHODS

Material
24 pairs of primary and recurrent GBM (all isocitrate
dehydrogenase (IDH) wildtype; median age 58 years, range 27-
78 years; 17 male, 7 female) were retrieved from the archive of
the Institute of Pathology of the Technical University Munich
(Table 1). All patients had received surgery at the Department of
Neurosurgery of the Klinikum rechts der Isar between 2003 and
2017. Diagnoses were confirmed and reevaluated for this study
by experienced neuropathologists according to the classification
of brain tumors by the World Health Organization, 2016 (33).
Clinical information was gathered by searching the hospital
information system. Specification of the MGMT promotor
status was obtained by searching the information system of the
Institute of Pathology. The MGMT promotor status had been
determined by the methylation quantification of endonuclease-
resistant DNA (MethyQUESD) method (34).

All patients had been treated following the standard Stupp
scheme (6 weeks concomitant radiochemotherapy with TMZ,
followed by up to six cycles of TMZ alone (2)), and availability of
tissue samples of primary and recurrent tumor was given. For
GPX4, ACSL4 and ALDH1A3, 24 pairs of primary and recurrent
tumors were included for immunohistochemistry (IHC) and
double immunofluorescence (IF) with cell-type specific
markers. The expression of FSP1 was analyzed in 13 pairs.
Double immunofluorescence for GPX4 plus ACSL4 was
performed for 5 pairs of primary and corresponding
recurrent tumors.

A data analysis with transcriptome profiling datasets from the
Cancer Genome Atlas (TCGA) regarding a change of ACSL4 and
GPX4 gene expression in pairs of primary and recurrent GBM
was performed to verify our results. The dataset and associated
clinical information were acquired from the TCGA official
website (https://portal.gdc.cancer.gov). Six corresponding pairs
of primary and recurrent GBM were available (TCGA-06-0210,
Frontiers in Oncology | www.frontiersin.org 350
TCGA-06-0190, TCGA-19-4065, TCGA-14-1034, TCGA-06-0125,
TCGA-06-0211). For each patient, six to nine transcriptome
profiling datasets including the gene quantification expression
were accessible. The ACSL4 and GPX4 gene expression from
each primary GBM was compared to the corresponding recurrent
GBM using the natural logarithm of the gene quantification
expression (ln(expression value)).

This retrospective study was approved by the local Ethics
Committee of the Technical University Munich (vote number
164/19 S-SR) and conducted in accordance with the ethical
standards of the 1964 Declaration of Helsinki and its
later amendments.

Immunohistochemistry
Formalin-fixed, paraffin-embedded samples were cut in 2 mm-
thin sections and deparaffinized followed by epitope unmasking
in pH 6.0 citrate buffer at 95°C for 30 minutes. After incubating
with endogenous peroxidase, the slides were quenched with 1.5%
H2O2 and blocked in a mixture of blocking buffer (1x phosphate
buffered saline (Thermo Fisher Scientific, USA), 1% bovine
serum albumin (Biochrom AG, Germany), 0.2% gelatin of
cold-water fish skin (SIGMA-ALDRICH®, St. Louis), 0.1%
triton X 100 (Carl Roth GmbH+Co. KG, Germany)) with 2.5%
normal horse serum (Vector Laboratories, UK) before avidin
(Vector Laboratories, USA) was added. Afterwards, incubation
was performed with primary antibodies against ACSL4, GPX4,
ALDH1A3 and FSP1 overnight at 4˚C. The used antibodies with
corresponding dilution are listed in Table 2. The antibody
diluent consisted of blocking buffer and biotin. On the next
day, biotinylated secondary anti-rabbit IgG, anti-rat IgG or anti-
mouse IgG antibodies, were diluted at the rate of 1:400 and
incubated for 30 minutes. Afterwards, the ABC-reagent (Vector
Laboratories, USA) was applied and incubated for 30 minutes.
Antibody complexes were detected with 3,3’-diaminobenzidine
(DAB) reagent (Vector Laboratories, USA). Finally,
counterstaining with haematoxylin was performed. Positive
controls (human liver tissue for ACSL4, ALDH1A3 and FSP1;
human kidney tissue for GPX4) served as quality assurance.

The cytoplasmatic staining was analyzed using the
immunoreactive score (IRS) established by Remmele and
TABLE 1 | Patient data.

Sex Male 17 n = 24
Female 7

Age at first diagnosis median 58 y n = 24
range 27-78 y

PFS/time between primary tumor and relapse median 9 mth n = 19
range 3-53 mth

OS/time between first diagnosis and death/today median 18 mth n = 19
range 9-71 mth

Time between relapse diagnosis and death/today median 11 mth n = 19
range 3-56 mth

MGMT promoter status methylated 5 n = 22
unmethylated 17
April 2022 | Volume 12 | Article 8
24 patients have been included, of which 5 were still alive at the time of this study. y, years; mth, months. PFS, progression free survival; OS, overall survival; MGMT, O-6-methylguanine-
DNA methyltransferase. The MGMT promotor status of 22 patients was available. Survival data was accessible for 19 patients.
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Stegner (35). The score is a product of the percentage of positive
cells (0 = 0%, 1 = <10%, 2 = 10-50%, 3 = 51-80%, 4 = >80%) and
staining intensity (0 = no staining, 1 = weak, 2 = moderate, 3 =
strong positivity) allowing total values from 0 to 12. Three
randomly chosen high power fields (600-fold magnification;
ocular 10-fold, objective 60-fold) containing tumor core were
examined and the mean was calculated.

Immunofluorescence
To further investigate in which cells ferroptosis in principle may
occur, double immunofluorescence staining with cell markers
including glial fibrillary acidic protein (GFAP), which is
expressed in tumor cells and astrocytes, along with ionized
calcium-binding adapter molecule 1 (Iba1) for detecting
microglia cells was performed (36, 37). Like for IHC, the
samples were deparaffinized, unmasked, quenched and blocked.
Afterwards, anti-ACSL4 and anti-GPX4, respectively, antibodies
each in combination with anti-GFAP or Iba1 antibody (all diluted
in blocking buffer (1x phosphate buffered saline, 2.5% donkey
serum, 1% bovine serum albumin, 0.2% gelatin of cold-water fish
skin, 0.1% triton X 100) were incubated overnight at 4˚C, followed
by the second antibody, which incubated for 45 minutes. The used
antibodies with corresponding dilution are listed in Table 2.
Autofluorescence Quenching Kit including 4’,6-Diamidino-2-
phenylindol (DAPI) (Vector Laboratories, USA) was used to
reduce autofluorescence and to counterstain the nuclei. While
the ferroptosis-related enzymes were stained in a green-
fluorescent dye with excitation at 488 nm detectable with the
fluorescein isothiocyanate (FITC) filter, the cell type-specific
markers were colored in a red-fluorescent dye with absorption
at 568 nm and detected with the rhodon filter. The blue-
fluorescent nuclei were detected with the DAPI filter.

The same procedure was applied to the ACSL4 and GPX4
double immunofluorescence. Only the incubation time of the
Frontiers in Oncology | www.frontiersin.org 451
first antibodies was shortened to two hours to reduce
background straining.

For quantification, the amount of nuclei was counted.
Afterwards, a percentage of GPX4-positive (+) and ACSL4+

cells, as well as GFAP+ and Iba1+ cells was estimated.
Furthermore, the number of co-expressing cells (GPX4 or
ACSL4 plus GFAP or Iba1 and ACSL4 plus GPX4) was
counted. Again, three high power fields (630-fold
magnification; ocular 10-fold, objective 63-fold) containing
tumor core were examined and the mean calculated. Following
amounts were calculated: the ACSL4- and GFAP-co-stained cells
divided by the amount of GFAP-positive cells (ACSL4+/GFAP+),
ACSL4+/Iba1+, GPX4+/GFAP+ and GPX4+/Iba1+, as wells as
GFAP+/ACSL4+, Iba1+/ACSL4+, GFAP+/GPX4+ and
Iba1+/GPX4+.

Statistical Analysis
Statistical analyses were performed with R Version 3.6.1. Since
pairs of samples from the same patient had to be compared and a
normal distribution was not always given, all significance was
tested using the Wilcoxon signed-rank tests were used for
comparisons of primary and recurrent tumors and Spearman’s
rank correlation coefficients with corresponding tests for
assessment of associations between quantitative data. Since the
TCGA-dataset was also not coherently normally distributed, the
Wilcoxon signed-rank test was applied once more. For
correlating the IHC results with clinical outcome, a test on
association was performed and a cut-off score was estimated
using the ‘coin’ package which calculated the best threshold to
discriminate patients with regard to OS (38). Kaplan-Meier
survival curves are shown for the corresponding groups.
Moreover, the p-value was also estimated by the “maxstat”-
function from the “coin”-package. For all tests, statistical
significance was defined as p<0.05.
TABLE 2 | Used antibodies.

Antibody Company Clone Host
species

Dilution

Anti-ACSL4 Santa Cruz, USA Monoclonal, clone IgG2b mouse IHC: 1/100
IF: 1/20

Anti-GPX4 Abcam, UK Monoclonal, clone EPNCIR144 rabbit IHC: 1/3000
IF: 1/1000

Anti-ALDH1A3 Thermo Fisher Scientific, USA polyclonal rabbit IHC: 1/1000
Anti-FSP1 developed in house IgG2 monoclonal antibody raised against a N-terminal peptide of hXCT, clone

3A12-1-1
rat IHC:

undiluted
2nd antibody, anti-
rabbit

Vector Laboratories, USA IgG rabbit IHC: 1/400

2nd antibody, anti-
mouse

Vector Laboratories, USA IgG mouse IHC: 1/400

2nd antibody, anti-rat Vector Laboratories, USA IgG rat IHC: 1/400
anti-GFAP Dako, USA monoclonal mouse IF: 1/50
anti-GFAP Dako, USA polyclonal rabbit IF: 1/500
anti-Iba1 Abcam, UK monoclonal mouse IF: 1/500
anti-Iba1 Wako, USA polyclonal rabbit IF: 1/500
2nd antibody Invitrogen/Thermo Fisher Scientific,

USA
Polyclonal, (Alexa Fluor 568/488) mouse IF: 1/2000

2nd antibody Invitrogen/Thermo Fisher Scientific,
USA

Polyclonal, (Alexa Fluor 568/488) rabbit IF: 1/2000
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RESULTS

Dynamic Changes in Ferroptosis-Related
Enzymes in Primary and Recurrent GBM
By immunohistochemistry, a significant increase of ASCL4 and
ALDH1A3 expression and a significant decrease of GPX4
expression was observed when comparing primary and
corresponding recurrent tumor. FSP1 expression increased
slightly, not significantly, though.

Following, the results are demonstrated in detail. The IRS
allows values from 0 to 12. Inconsistencies between absolute
values and difference (D) are due to rounding.

The average of ACSL4 expression increased from IRS 2.40 in
the primary tumors to IRS 4.99 in the recurrent tumors
(Figures 1B, C, 2A). This change of 4.58 IRS points was highly
significant (p<0.001).

Expression of GPX4 decreased from IRS 6.53 in the primary
to IRS 2.17 in the recurrent tumors (D 4.36 IRS points,
Figures 1F, G, 2B). The decrease could be detected in 23 out
of 24 patients and was highly significant (p<0.001).

FSP1 expression increased slightly from IRS 1.46 to 2.08
(D 0.62 IRS points). This change was not significant (p=0.174,
Figures 1J, K, 2C).

ALDH1A3 expression increased in 22 out of 24 patients
(Figures 1N, O, 2D). The increase from IRS 2.24 in the
Frontiers in Oncology | www.frontiersin.org 552
primary to IRS 6.18 in the recurrent tumors (D 3.94 IRS
points) was highly significant (p<0.001).

The complete results of immunohistochemistry are
summarized in Table 3.

A TCGA data analysis was performed to verify our results.
The gene expression level was normalized using fragments per
kilobase of transcript per million mapped reads (FPKM).
Although insignificant (p=0.094), the ACSL4 gene expression
increased in five out of six patients (TCGA-06-0210, TCGA-06-
0190, TCGA-19-4065, TCGA-06-0125, TCGA-06-0211) by an
average of 0.36 (Figure 2E). Moreover, the GPX4 gene
expression decreased in four out of six patients (TCGA-06-
0210, TCGA-06-0190, TCGA-19-4065, TCGA-14-1034) by an
average of 0.06 (Figure 2F), again, not significantly, though
(p=0.844). The insignificant results may be allegeable by the
small sample size.

The results of the TCGA data analysis are summarized in
Table 4. Figure 1 also includes hematoxylin and eosin stain, as
well as ki67 immunohistochemistry as proliferation marker for
all examples of primary and recurrent GBM.

Co-Expression Analysis
With Immunofluorescence
Co-expression of ferroptosis-related proteins ACSL4 and GPX4
with the cell type specific markers GFAP and Iba1 was analyzed
FIGURE 1 | Examples of immunohistochemistry staining. Shown are paired GBM primary and relapse with stronger ACSL4 and ALDH1A3 expression in the relapse
(C, O) compared to the primary tumor (B, N). In contrast, GPX4 and FSP1 display a stronger expression in the primary tumor (F, J) compared to their relapse
(G, K). Furthermore, for each example of primary and recurrent GBM, a hematoxylin and eosin (HE) stains as well as a ki67 immunohistochemistry of representative
areas are provided (A, D, E, H, I, L, M, P). Scale bars of ACSL4, GPX4, FSP and ALDH1A3 immunohistochemistry: all 20 mm; Scale bars of HE and ki67
immunohistochemistry: all 50 mm.
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to further investigate which cell types become vulnerable to
ferroptosis. Many GFAP-positive (+) cells expressed the
ferroptosis-associated markers labelled by a yellow signal
(Figures 3A–F). In combination with Iba1, however, only a
few cells showed a clear yellow signal indicating co-expression
with ACSL4 and GPX4 (Figures 3G–L). To anticipate: the co-
expression analysis shows that 70% to 80% of the cells expressing
Frontiers in Oncology | www.frontiersin.org 653
the ferroptosis-associated marker genes ACSL4 or GPX4 do also
express GFAP.

In detail and illustrated in Figures 4A, B, the overall amount
of ACSL4+ cells in both combinations increased significantly
from primary to recurrent tumors. Moreover, a higher amount of
GFAP+ cells also expressed ACSL4 compared to Iba1+ cells. The
amount of ACSL4+ cells of the GFAP+ cells increased
TABLE 3 | Summary of results of immunohistochemistry.

Protein IRS total IRS primary IRS recurrent D primary-recurrent

Mean Range Mean Median Mean Median Mean Median SD p-value Z-score

ACSL4 4.69 0.00-10.00 2.40 2.50 6.99 6.67 +4.58 +5.00 2.12 <0.001 -7.181

GPX4 4.35 0.33-11.00 6.53 6.00 2.17 2.17 -4.36 -4.33 2.25 <0.001 -7.047

FSP1 1.77 0.00-6.00 1.46 1.33 2.08 1.67 +0.62 +0.67 2.28 0.174 -1.360

ALDH1A3 4.21 0.00-11.00 2.24 2.00 6.18 5.83 +3.94 4.17 2.91 <0.001 -6.672
April 2022
 | Volume 12
 | Article 84141
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FIGURE 2 | Protein expression in primary and recurrent GBM. The dots mark the level of IRS in the primary and relapse tumor. Each line represents the change in
expression of one patient, showing increase of expression for ACSL4 (A), FSP1 (C) and ALDH1A3 (D). GPX4 expression decreases significantly in 23 out of 24
patients (B). The results were verified by analyses of the TCGA data set showing an increase in ACSL4 expression (E) and a decrease in GPX4 expression (F).
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TABLE 4 | Summary of the TCGA analysis.

Protein Ln(expression-value) total Ln(expression-value) primary Ln(expression-value) recurrent D primary-recurrent

Mean Range Mean Median Mean Median Mean Median SD p-value Z-score

ACSL4 7.22 1.42-12.90 7.07 7.47 7.40 7.70 +0.36 +0.36 0.42 0.094 -1.676

GPX4 9.45 4.06-14.95 9.51 9.25 9.38 9.07 -0.06 -0.08 0.31 0.844 -0.197
1

TABLE 5 | Summary of results of co-expression analysis by immunofluorescence.

Proteins primary recurrent D primary-recurrent

Mean Median Mean Median Mean Median SD p-value Z-score

ACSL4+ in GFAP+ 47.1% 44.4% 76.5% 79.3% +29.3% +30.8% 18.6% <0.001 -6.647
Iba1+ 24.6% 19.1% 28.7% 28.6% +4.2% 10.4% 19.3% 0.027 -2.209

GPX4+ in GFAP+ 78.4% 79.6% 40.3% 39.4% -38.0% -40.4% 18.1% <0.001 -7.124
Iba1+ 34.5% 32.5% 25.3% 23.4% -9.2% -9.7% 20.0% 0.001 -3.192

GFAP+ in ACSL4+ 76.1% 76.9% 70.3% 72.6% -5.8% -4.4% 14.7% 0.026 -2.223
Iba1+ in 22.2% 20.0% 16.1% 17.4% -6.1% -0.1% 16.0% 0.026 -2.232
GFAP+ in GPX4+ 79.1% 82.9% 72.1% 76.3% -6.9% -6.6% 17.1% 0.006 -2.747
Iba1+ in 13.6% 12.5% 20.2% 15.5% +6.6% +4.9 15.1% 0.024 -2.255
ACSL4+ with GPX4+ 18.9% 15.7% 16.2% 17.1% -2.7% -3.4% 7.5% 0.625 -7.181
FIGURE 3 | Co-staining of ferroptosis-related proteins with cell type specific markers. (A–C) Double immunofluorescence with ACSL4 and GFAP in a primary GBM
shows several cells with co-expression (yellow arrow). (D–F) Double immunofluorescence with GPX4 and GFAP shows co-expression in many cells in a primary
GBM (yellow arrow). Additionally, one cell expressing only GPX4 (green arrow) is marked. (G–I) Double immunofluorescence with ACSL4 and Iba1 in a primary GBM
shows several Iba1+ cells which mostly do not express ACSL4 (red arrow: Iba1-positive cell lacking ACSL4 expression; green arrow: ACSL4-positive non-microglial
cell). (J–L) Double immunofluorescence with GPX4 and Iba1 in a relapse GBM. Most cells express either GPX4 (green arrow) or Iba1 (red arrow). Scale bars all
20 mm.
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A B

C D

FIGURE 4 | Co-expression of ferroptosis-associated markers with GFAP and Iba1. Given are the numbers of ACSL4+ or GPX4+ cells of GFAP+ or Iba1+ cells. The
dots indicate the amounts of each patient in the primary and relapse tumor. (A) The number of ACSL4+/GFAP+ cells increases significantly in the relapse. (B) The
amount of ACSL4+/Iba1+ cells increases significantly in the relapse. (C) The number of GPX4+/GFAP+ cells decreases significantly in the relapse. (D) The amount of
GPX4+/Iba1+ cells decreases significantly in the relapse.
A B

C D

FIGURE 5 | Co-expression of GFAP and Iba1 with ACSL4 and GPX4. Given are the numbers of GFAP+ or Iba1+ cells of ACSL4+ or GPX4+ cells. The dots indicate
the amounts of each patient in the primary and relapse tumor. (A) The number of GFAP+/ACSL4+ cells decreases insignificantly in the relapse. (B) The amount of
Iba1+/ACSL4+ cells significantly decreases in the relapse. (C) The number of GFAP+/GPX4+ cells decreases significantly in the relapse. (D) The amount of Iba1+/
GPX4+cells increased significantly in the relapse.
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significantly by an average of 29.3% (p<0.001) between primary
and relapsed tumor. The number of ACSL4+ cells in the Iba1+

cell population increased significantly by an average of
4.2% (p=0.027).

The count of GPX4+ cells of GFAP+ cells decreased
significantly by an average of 38.0% between primary and
recurrent tumors (p<0.001), while the amount of GPX4+ cells
of Iba1+ cells decreased significantly by an average of 9.2%
(p=0.001) in the relapse (Figures 4C, D).

The number of GFAP+ of ACSL4+ cells decreased
insignificantly by an average of 5.8% in the recurrent tumors
(p=0.026, Figure 5A). Moreover, the amount of Iba1+ cells of
ACSL4+ cells was three to four times lower in the primary tumor
Frontiers in Oncology | www.frontiersin.org 956
and decreased significantly by an average of 6.1% in the recurrent
tumor (p=0.026; Figure 5B).

A similar tendency can be observed in Figure 5C with the
amount of GFAP+ cells of GPX4+ cells. This number decreased
significantly by an average of 6.9% (p=0.006). On the other hand,
the amount of Iba1+ cells of the GPX4+ cell population was three
to four times lower (Figure 5D). It increased significantly by an
average of 6.6% (p=0.024). The quantitative results of the
described double immunofluorescences are summarized
in Table 5.

Since the changes in expression of ACSL4 and GPX4 from
primary to relapse GBM were already analyzed quantitively in
the IHC, double immunofluorescence of these two proteins was
FIGURE 6 | Co-staining of both ferroptosis-related proteins in pairs of primary and recurrent GBM. (A–C) Double immunofluorescence with ACSL4 and GPX4 in a
primary GBM (patient A) shows cells expressing either ACSL4 (red arrow) or GPX4 (green arrow). (D–F) Double immunofluorescence with ACSL4 and GPX4 in a
relapse GBM (patient A) shows several cells with co-expression (yellow arrow), as well as only ACSL4+ cells (red arrow) and GPX4+ cells (green arrow). (G–I) Double
immunofluorescence with ACSL4 and GPX4 in a primary GBM (patient B) shows ACSL4+ cells (red arrows) and GPX4+ cells (green arrow). Some cells express both
ACSL4 and GPX4 (yellow arrow). (J–L) Double immunofluorescence with ACSL4 and GPX4 in a relapse GBM (patient B). Whilst many cells show co-expression
(yellow arrow), one cell only expressing ACSL4 is marked (red arrow). Scale bars all 20 mm.
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performed to show parallel expression and possible interactions
in a qualitatively way. With a mean of 18.9% in primary and a
mean of 16.2% in relapse GBM, several cells show co-expression,
although there is no significant difference (p=0.625). Whilst
GPX4 remained prominent in the primary tumors
(Figures 6A–C, G–I), ACSL4 was expressed more in relapse
GBM (Figures 6D–F, J–L), affirming the results of IHC.

Association of Ferroptosis-Associated
Markers With Overall Survival
Furthermore, the association of the expression dynamic of
ACSL4, GPX4, FSP1 and ALDH1A3 with OS was evaluated.
The IRS differences between primary and recurrent tumor were
calculated for each marker and a threshold for every enzyme was
estimated. Patients with a larger increase than 2.00 in their
TABLE 6 | Summary of results of survival analysis.

Protein Cutpoint Time be

Mean

ACSL4 ≤2.00 26.0
>2.00 9.3

GPX4 ≤-3.67 13.6
>-3.67 10.0

FSP1 ≤0.67 9.7
>0.67 10.8

ALDH1A3 ≤2.00 24.8
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ACSL4 expression (Figure 7A) showed a poorer overall
survival with a median of 8 months compared to patients with
an increase of up to 2.00 and with a median OS of 16.5 months.
However, no significant association between ACSL4 expression
an OS was observed (p=0.077). Given that the GPX4 expression
decreased in almost all patients, the calculated cutpoint amounts
to -3.67 (Figure 7B). Patients with an even stronger decrease (≤
-3.67) displayed a slightly better overall survival with a median of
11 months compared to patients with a smaller decrease with a
median of 10.5 months, yet again no statistically significant
association between expression and OS was found (p=0.715).

The threshold for FSP1 was 0.67 (Figure 7C). Patients with a
higher increase in expression had a median OS of 11.0 months,
those with a lower change had a median OS of 10.0 months.
There was no significant association between FSP1 expression
A B

C D

FIGURE 7 | Kaplan-Meier survival curves. Starting point for measurement of survival time was the time at recurrent confirmation. The p-value describes a possible
association between enzyme expression and OS. (A) Patients whose ACSL4 expression increased by more than 2.00 IRS points had a worse outcome, although.
(B) GPX4 cutpoint is at -3.67. Patients with a higher pronounced decrease in GPX4 expression had a slightly better outcome. (C) FSP1 cutpoint is at 0.67. There is
no relevant association. (D) ALDH1A3 cutpoint is at 2.00. Patients with a higher increase had a worse outcome.
tween relapse diagnosis and death p- value

Median

16.5 0.077
8.0

11.0 0.715
10.5

10.0 0.798
11.0

16.0 0.166
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and OS (p=0.798). For ALDH1A3 expression, a cut-off value of
2.00 was identified (Figure 7D). Patients with a stronger increase
trended to have a poorer overall survival with a median of 8.0
months compared to the patients with less increase than 2.00 IRS
points with a median OS of 16 months. Again, no significant
association was observed (p=0.166).

In addition, the change in expression of each enzyme was
correlated with the methylation status of the MGMT promoter.
No significant correlations between the difference of expression
of ACSL4 (rho=-0.146, p=0.518), GPX4 (rho=0.205, p=0.359),
ALDH1A3 (rho=0.146, p=0.518) or FSP1 (rho=0.336, p=0.336)
and status of methylated MGMT promoter were detected.

The results of the survival analysis are summarized
in Table 6.
DISCUSSION

Despite extensive therapy, the prognosis of GBM remains very
poor. Therefore, new therapeutic approaches are a key topic of
many studies. Ferroptosis has been discussed as possible novel
therapeutic target in cancer, particularly in light of a number of
recent reports that suggested that therapy-resistant cancer cells
and those undergoing epithelial-mesenchymal transition display
a high vulnerability towards ferroptosis (8, 39). Thus, the
objective of this study was to analyze whether ferroptosis is in
principle activated in GBM and moreover, if there is a difference
in vulnerability between primary and relapsed tumors. Various
therapy options examined the effect of ferroptosis induction in
vitro and ex vivo (17, 19, 40). All of these studies could in fact
confirm an increased therapy response after the induction.
Therefore, the following enzymes implicated in the process of
ferroptosis were chosen (17): ACSL4, GPX4 and FSP1.

Our study shows that ACSL4 expression increases in GBM
relapses compared to their primaries, whilst the GPX4
expression decreases. The results of the TCGA data analysis
verified these results. An increased expression of ACSL4 is
ultimately linked to an increased generation of activated
PUFAs, which are used to produce oxidative stress and activate
even more PUFAs by forming radicals in the presence of iron.
Upon esterification into membranes they may become
peroxidized thus rendering cells more sensitive to ferroptosis
(19, 41, 42). Moreover, the decrease of GPX4 expression implies
that the detoxifying capacity might be diminished. Both changes
increase the propensity of cells to undergo lipid peroxidation (19,
43). This can also be caused by chemotherapeutics, radiation or
simply burning energy (44–46).

Since FSP1 was recently shown to efficiently protect against
ferroptosis caused by GPX4 deletion or inhibition (21, 47), it was
hypothesized that its expression may increase in response to a
loss of GPX4 expression. Accordingly, a slight, although not
significant increase in expression could be detected. Unlike the
glutathione/GPX4 axis that directly reduces lipid hydroperoxides
in the membranes to its corresponding alcohols, the
oxidoreductase FSP1 regenerates extra-mitochondrial
ubiquinone to ubiquinol, that in turn either directly or
Frontiers in Oncology | www.frontiersin.org 1158
indirectly via vitamin E prevents the lipid peroxidation chain
reaction by reducing peroxyl radicals in phospholipid acyl chains
(8). Furthermore, FSP1 was described as a protein prohibiting
ferroptosis through the suppression of lipid peroxidation.
Although two of the defined hallmarks can be detected in
GBM relapse, additional studies are warranted to show that
there is indeed increased lipid peroxidation in respective tissues
as this would ultimately tell us that an imbalance in PUFA
enrichment of membranes and a compromised protecting
system sensitizes tumors to ferroptosis (17). The antibody
against human FSP1 was reported in 2019 (21). Thus, its
analysis was complemented retroactively with sufficient
material from only 13 patients left.

This is the first study that investigated a potential relationship
between ALDH1A3 and ferroptosis susceptibility. IHC
demonstrated a significant increase of ALDH1A3 between
GBM primary and relapse. This is in accordance with the
mesenchymal transformation taking place during occurrence of
recurrent tumors or a selection of GBM tumor stem cells
surviving. ALDH1A3 has been associated with mesenchymal
differentiation in GBM by keeping cells in an undifferentiated,
stem-cell-like state which might also lead to therapy resistance
(22–24). Since ALDH1A3 is involved in the detoxification of
aldehydes generated as secondary products by lipid peroxidation,
an increase in ALDH1A3 expression could present a cellular
response towards more lipid peroxidation in GBM relapse.

Furthermore, since the quantitative changes of ACSL4 and
GPX4 were already analyzed in the IHC results, the double
immunofluorescence with ACSL4 and GPX4 was performed on
only 5 pairs of primary and relapse GBM to demonstrate possible
interactions. The detected co-expression, with GPX4 dominating
in the primary and ACSL4 in the relapse GBM, indicates a
complex equilibrium-like relation between the two ferroptosis-
markers. Regarding this, Sha et al. examined the combined status
of ACSL4 and GPX4 expression in breast cancer patients. They
discovered that the combined status could predict pathological
complete response to chemotherapy due to their balance-like
interactions. Moreover, patients with a high ACSL4 and low
GPX4 status showed higher sensitivity to chemotherapy leading
to the assumption that a combination of ACSL4 inducer and
GPX4 inhibitor could be beneficial for treatment efficacy (48).

In combinat ion with the resul t s o f the double
immunofluorescence with GFAP and Iba1, we furthermore
provide intriguing evidence that ferroptosis is more likely to
take place in GBM tumor cells and not in the surrounding
microglia cells.

There was no significant association between the change of
expression of ferroptosis-associated proteins and OS.
Nevertheless, patients with a high increase of ACSL4
expression had a poorer OS than those with a low increase.
This suggests that patients with a higher content of PUFAs in
membranes have a poorer overall outcome. Liu et al. identified 19
ferroptosis-related genes in glioma using data from genome
atlases including TCGA, upon which they evaluated a risk
score (49). The risk score of those genes positively correlated
with glioma malignancy, as well as migration and invasion.
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While higher risk scores regarding the ferroptosis-related genes
were associated with worse prognosis, the receiver operating
characteristic curve generated by the risk score could predict
patient OS. Since six signature genes of the 19 ferroptosis-related
genes were involved in the GPX4 regulation, GPX4 and its role in
ferroptosis might play a crucial role regarding survival of glioma
patients. Furthermore, mesenchymal cancer cells associated with
drug resistance proofed to be selectively dependent on GPX4
(18). Therefore, GPX4 inhibitors were selectively lethal to these
cells, offering yet another therapeutic option. Moreover, patients
with a higher ALDH1A3 increase showed poorer OS. This might
lead to the assumption that the detoxifying systems including
GPX4 and ALDH1A3 can sense the oxidative stress level in the
cell and therefore coordinate up- and downregulation
accordingly. When there is more ROS accumulating due to the
downregulation of one of the systems, the other one
possibly increases.

The lack of significance may be attributable to the small
sample size and, therefore, to the wider confidence intervals.
Nevertheless, these results support the hypothesis that an
increased generation of lipid hydroperoxides and increased
vulnerability towards ferroptosis may occur during primary
and relapse diagnosis. It remains, however, to be explored,
whether TMZ in fact contributes to the sensitization of GBM
towards the ferroptotic process. Sehm et al. combined several
ferroptosis inducers like erastin and sorafenib with TMZ and
showed that TMZ works in an xc-system expression dependent
manner (12). Furthermore, Buccarelli et al. reported increased
glioblastoma stem-like cells susceptibility to TMZ after induction
of ferroptosis (40). TMZ treatment thus may act as a possible
ferroptosis inducer but further experiments including a control
group without the treatment remain necessary. Moreover, the
amount of TMZ may have an effect on this process. If more
TMZ, maybe in form of more TMZ cycles, influences, or even
amplifies the ferroptosis induction, has yet to be investigated.

A shortcoming of this study is the small sample size, which
can be explained by the poor prognosis of GBM, where death
occurs often before relapse and in case of relapse situation, only a
small portion of GBM patients receive re-resection. The high
value of our cohort is demonstrated by considering the small
number of 6 pairs of primary and recurrent GBM available at the
TCGA data base. The heterogeneity of GBM was not fully
respected in this study. By calculating a mean of three
randomly chosen tumor containing areas, we tried to
incorporate the heterogeneity, though. As the heterogeneity
plays a key role for therapy resistance, following studies should
address differences in intratumoral expression. Another
limitation consists of a missing control group.

To conclude, this is the first study analyzing ferroptotic
processes in GBM between the primary and relapse tumor.
Based on our results, ferroptosis likely takes place in GBM
tumor cells. Moreover, we showed that there is a dynamic in
the expression of ferroptosis-associated between primary and
recurrent GBM with a higher vulnerability to ferroptosis in the
relapses. These results affirm that utilizing ferroptosis processes
might be a possible novel therapy option especially in the
Frontiers in Oncology | www.frontiersin.org 1259
situation of recurrent GBM. Particularly relevant for GBM is
the role of TMZ, although it remains to be determined whether it
acts as a true ferroptosis trigger or a sensitizer. Nonetheless,
prospective trials should be geared to examine a possible link
between TMZ and ferroptosis and to validate its true
clinical value.
CONCLUSION

Our study implies that ferroptosis may take place in GBM tumor
cells due to the profound changes in the expression of ACSL4
and GPX4. Moreover, we show that recurrent tumors have a
higher vulnerability to ferroptosis. These results affirm that
utilizing ferroptosis processes might be a possible novel
therapy option especially in the situation of recurrent GBM.
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Malignant brain tumors represent approximately 1.5% of all malignant tumors. The survival
rate among patients is relatively low and the mortality rate of pediatric brain tumors ranks
first among all childhood malignant tumors. At present malignant brain tumors remain
incurable. Although some tumors can be treated with surgery and chemotherapy, new
treatment strategies are urgent owing to the poor clinical prognosis. Iron is an essential
trace element in many biological processes of the human body. Iron transporters play a
crucial role in iron absorption and transport. Ferroptosis, an iron-dependent form of
nonapoptotic cell death, is characterized by the accumulation of lipid peroxidation
products and lethal reactive oxygen species (ROS) derived from iron metabolism.
Recently, compelling evidence has shown that inducing ferroptosis of tumor cells is a
potential therapeutic strategy. In this review, we will briefly describe the significant
regulatory factors of ferroptosis, iron, its absorption and transport under physiological
conditions, especially the function of iron transporters. Then we will summarize the
relevant mechanisms of ferroptosis and its role in malignant brain tumors, wherein the
role of transporters is not to be ignored. Finally, we will introduce the current research
progress in the treatment of malignant brain tumors by inducing ferroptosis in order to
explain the current biological principles of potential treatment targets and treatment
strategies for malignant brain tumors.

Keywords: iron transport, transporters, ferroptosis, malignant brain tumors, therapeutic strategy
1 INTRODUCTION

Brain tumors can be categorized as primary malignant types and secondary forms from metastasis
(1). Of these, roughly 40% will be malignant and the incidence rate of malignant brain tumors is
higher in males (2, 3). Primary brain tumors are the first common tumor and the first cause of
tumor death in children (3). Brain tumors can be classified based on origin, such as glioblastoma
(GBM), neuroblastoma and meningioma (4). GBM is the most common and aggressive malignant
primary brain tumor, with a limited response to the current standard of treatment. Most GBM
patients can only live up to 15-20 months (5).

Malignant brain tumors are commonly intratumoral heterogenic, which likely explains their
poor clinical prognosis of malignant brain tumors poor and easy to relapse (6). Despite current
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multimodality treatment efforts, combining in surgical resection
when feasible, with radiotherapy, chemotherapy and
symptomatic treatment, the median survival remains short (7).

Iron is necessary for life (8). Iron plays an extremely
significant role in brain development and function, and is
involve in many biological processes such as embryonic
neuronal development, myelin formation, neurotransmitter
synthesis and oxidative phosphorylation (9, 10). Iron
deficiency impairs the function of iron-requiring enzymes in
all tissues, however, excessive iron accumulation leads to toxicity
through oxidative stress activation of cell death signaling
pathways (11). To maintain adequate and safe amounts of iron
levels, cells express a the coordination of a wide variety of
proteins, which tightly control both intracellular and systemic
iron metabolism (12). Iron transporters participate in the
regulation of iron uptake, storage and distribution, wherein
help maintain iron homeostasis (13).

Ferroptosis is an iron-dependent form of regulated cell death
(14). The intracellular iron homeostasis and balance between the
oxidation and reduction of phospholipids is tightly associated
with ferroptosis. Ferroptosis occurs when iron overload induces
lipid peroxidation (11). Recent studies showed that ferroptosis is
involved in the death of pathological cells in malignant brain
tumors, which may have a therapeutic potential towards
malignant brain tumors (15, 16). The specific way of
ferroptosis inhibiting cancer may be to induce oxidative stress
and resist treatment antagonism of cancer cells, in which iron
transporters may has a stronger role. Although great progress has
been made in the study of the biological function and disease
correlation of ferroptosis, its biological signal pathway and
underlying mechanism remain to be elucidated.

Starting from the iron transport in the body under
physiological conditions, we further summarize the specific
mechanism of iron metabolism disorder and ferroptosis in the
pathological condition of malignant brain tumors, in particular,
the crucial role of transporters. Finally, we summarized the
specific mechanisms and targets for inducing ferroptosis in the
treatment of malignant brain tumors and introduced potentially
related drugs.
2 IRON PHYSIOLOGY

2.1 Iron and Iron Transporters
2.1.1 Iron Function
Iron is a vital micronutrient for nearly all living organisms due to
its significant role in many biological processes such as catalyzing
redox reactions and transporting oxygen. In addition, iron is
essential for the functions of many enzymes and prosthetic
groups (17, 18).
2.1.2 Dietary Sources of Iron
Iron is required across all human life stages, from embryological
development, to infancy or old age. Estimated daily average iron
requirements are the highest in pregnancy 3rd trimester (19).
Despite having an efficient iron recycling mechanism, humans
Frontiers in Oncology | www.frontiersin.org 263
need to absorb about 10% of our total iron needs from regular
dietary to maintain normal health. Dietary iron exists as either
heme iron or non-heme iron. Heme iron is derived from
hemoglobin, myoglobin and neuroglobin found in animal
foods, and its absorption is not affected by diet; meanwhile
non-heme iron is found mainly in plant foods, and its
absorption is influenced by inhibitors and enhancers found in
the diet. Nonetheless both are affected by iron storage levels in
the body (19, 20).

2.1.3 Iron Absorption
The absorption site of iron is mainly in the mucosa of duodenum
and upper jejunum. In a nutshell, iron absorption can be divided
into two steps; first iron in food enters intestinal mucosal cells,
second iron in intestinal mucosal cells crosses the cell membrane
into capillaries and is transported systemically to the whole body
in bloodstream (19).

2.1.4 Iron Transport
In humans, a number of proteins have evolved which tightly
regulate iron homeostasis since we cannot rapidly excrete iron in
the urine and iron must be transported and stored intracellular
on a protein carrier due to extremely low free iron levels both
systemically and intracellular (21). These includes the proteins
that are involved in iron transport, both in the circulation and
intracellularly, the reductases and oxidases that facilitate the
movement of iron across cell membranes, and other proteins
that regulate these processes (22). Iron transporters are vital role
to maintain iron homeostasis in the body, and a total of 22 iron
transporters have been identified (Table 1). The functions of
several iron transporters are introduced below.

Transferrin (TF) is regulator of free iron levels in body fluids,
binding, sequestering, and transporting Fe3+ ions. This iron
carrier protein helps maintain iron availability systemically and
prevents tissue oxidative damage caused by excessive free radical
accumulation (23).

SLC25A37 (Mitoferrin 1, Mfrn1) is a solute carrier localized
in the mitochondrial inner membrane. When iron enters cells,
Mfrn1 transport iron into mitochondria, which is used to
synthesize mitochondrial heme and iron sulfur clusters.
Mitoferrin-1 is necessary for neuronal energy metabolism and
influences brain function (24).

SLC11A2 (Divalent metal cation transporter 1, DMT1), is a
proton-dependent iron importer of Fe2+, is involved in systemic
iron recycling and cellular iron absorption. DMT1 is located on
the parietal membrane of duodenal intestinal epithelial cells,
where it brings dietary free iron into cells and promotes iron
absorption (25). DMT1 is also involved in transferrin/transferrin
receptor 1 (TF/TFR1) pathway, wherein transports iron
absorbed by this pathway from the endosome into the
cytosol (26).

SLC40A1 (Ferroportin 1, Fpn1), is a major iron export
protein, is expressed in many cells, such as placental
syncytiotrophoblasts, wherein plays a role in transferring
maternal iron to the fetus and releasing iron from tissue into
the blood. It should be noted that inactivating the murine Fpn1
gene globally is embryonic lethal (27).
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TABLE 1 | Iron Transporters. For detailed information about the gene tables, please visit: http://www.bioparadigms and http://www.org.genecards.org.

Human
gene
name

Protein
name

Aliases Substrates Tissue and cellular expression Sequence
accession ID

Mouse
KO

model

SLC11A1 NRAMP1 NRAMP1
NRAMP
LSH

Mn2+, Fe2+, other
divalent metal ions

Phagolysosomes of phagocytes (macrophages, neutrophils) NM_000578.4 No

SLC11A2 DMT1 NRAMP2
DCT1

Fe2+, Cd2+, Co2+,
Cu1+, Mn2+, Ni2+,
Pb2+, Zn2+

Widespread, including intestine (duodenum), erythroid cells, kidney,
lung, brain, testis (Sertoli cells), thymus

NM_
001174125.2

Yes

SLC22A17 BOIT BOCT, NGALR 1-methyl-4-phenyl-
pyridinium (MPP
(+)), Fe

Brain NM_020372.4 No

SLC25A28 Mitoferrin 2
(Mfrn2)

MRS3/4, MRS4L Fe2+ Ubiquitous (heart, liver, kidney) NM_031212.4 No

SLC25A37 Mitoferrin 1
(Mfrn1)

HT015, MSC,
MSCP

Fe2+ Fetal liver, bone marrow, spleen, placenta, liver, brain NM_016612.4 No

SLC39A14 ZIP14,
LZT-Hs4

ZIP14
KIAA0062
NET34

Zn, Fe, Mn, Cd Widespread, liver NM_
001128431.4

Yes

SLC40A1 MTP1,
IREG1

Ferroportin 1
(FPN1)

Fe2+ Duodenum, macrophages, liver Kupffer cells, placenta, kidney NM_014585.6 Yes

SLC41A1 MgtE MgtE, NPHPL2 Mg2+ (Sr2+, Zn2+,
Cu2+, Fe2+, Co2+,
Ba2+, Cd2+)

Kidney, heart, testis, skeletal muscle, prostate, adrenal gland, thyroid NM_173854.6 Yes

SLC41A2 SLC41A1-
L1,
SLC41A1-
like 1

SLC41A1-L1 Mg2+ (Ba2+, Ni2+,
Co2+, Fe2+, Mn2+)

Highest expression in cerebellum, lymph nodes, stomach, lungs, testis,
skin

NM_032148.6 No

SLC46A1 PCFT HCP1 Reduced folates,
folic acid,
antifolates, heme

Small intestine, choroid plexus, kidney (proximal tubule), liver
(sinusoidal), placenta

NM_080669.6 No

SLC48A1 HRG-1 HHRG-1
HRG1,
HRG-1

Heme Liver, heart, CNS, kidney, skeletal muscle, small intestine NM_017842.3 No

SLC49A1 FLVCR1 FLVCR,
MFSD7B,
AXPC1, PCARP

Heme Ubiquitous, high expression in intestine, liver, kidney, brain, bone
marrow

NM_014053.4 No

SLC49A2 FLVCR2 MFSD7C, CCT,
EPV, PVHH,
FLVCRL14q

Heme Liver, kidney, brain, lung, placenta, fetal liver, bone marrow NM_017791.3 No

SLC57A1 NIPA1 NIPA1,
SPG6,
FSP3

Mg2+, Sr2+, Fe2+,
Co2+

Constitutively express at low levels, significant enrichment in the brain
(human); widely expressed, including heart, kidney, liver, colon, less in
the brain, not in the small intestine (mouse)

NM_144599.5 No

SLC57A3 NIPAL1 NIPA3 Mg2+, Sr2+, Ba2+,
Fe2+, Cu2+

Biased expression in esophagus, skin and 13 other tissues NM_207330.3 No

SLC58A2 TUSC3 N33 Mg2+, Fe2+, Cu2+,
Mn2+

Placenta, pancreas, testis, ovary, heart, prostate NM_006765.4 No

TF TF Transferrin
HEL-S-71p,
PRO1557,
PRO2086,
TFQTL1

Fe2+ Liver NM_001063.4 No

ABCB6 ABCB6 ABC, LAN,
MTABC3, PRP,
umat

Iron Ubiquitous expression in testis, ovary and 25 other tissues NM_005689.4 No

ABCB7 ABCB7 ABC7, ASAT,
Atm1p,
EST140535

Iron Ubiquitous expression in duodenum, heart and 25 other tissues NM_004299.6 No

ABCB8 ABCB8 MITOSUR
M-ABC1
MABC1
EST328128

Organic and
inorganic
molecules

Mitochondria, cardiac NM_
001282291.2

No

(Continued)
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2.2 Brain Iron Transport
2.2.1 Brain Iron Function
Iron in the brain plays a crucial role in maintaining normal
physiological function through its participation in many cellular
activities such as mitochondrial respiration, myelin synthesis,
neurotransmitter synthesis and metabolism (10). Iron is also
essential in enzymes involved in the production of monoamines
(dopamine, epinephrine, norepinephrine and serotonin), which
are involved in social emotional development, executive function
and memory processes. Therefore, maintaining iron homeostasis
is essential for normal physiological activity of the brain (28).

Blood-brain barrier (BBB) and blood cerebrospinal fluid
barrier (BCSFB) are of great significance to maintain the
relative stability of physical and chemical factors in the internal
environment of brain tissue and prevent harmful substances in
blood from entering brain tissue (29). The BBB and BCSFB also
controls iron transport from the bloodstream to the brain
parenchyma, allowing for some independence of brain iron
levels from the total body iron and providing some resistance
to systemic iron toxicity (30, 31). Different cells types in the brain
acquire iron through different pathways, which involving a
myriad iron transporters (Table 2) (29).

Herein we provide a summary of recent literature unveiling the
mechanism of iron transport and regulation across the BBB and
BCSFB, as well as the characteristics of iron transport and
metabolism in different cell types of the central nervous system
(CNS) such as neurons, microglia, astrocytes, and oligodendrocytes.
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2.2.2 Iron and Iron Transporters in BBB and BCSFB
CNS is tightly sealed from the changeable milieu of blood by the
BBB and the BCSFB (31). BBB is an heterogenous multicellular
complex system. This system includes tightly connected
endothelial cells and a unique basement membrane. In
addition to the parenchymal basement membrane, the
basement membrane also contains an ensheathment of
astrocytic end-feet, pericytes and perivascular antigen-
presenting cells (32). BCSFB lies at the choroid plexuses in the
lateral, third and fourth ventricles of the brain where the choroid
plexus epithelial cells of the nonporous capillary wall contain a
special carrier system for transporting various substances. This
system is responsible for the exchange of substances between
cerebrospinal fluid (CSF) and blood, and transport across BBB
and BCSFB is important for the entry of iron into brain (33, 34).

TF/TFR1 pathway may be the main route of iron transporter
across the luminal (apical) membrane of the BBB. Additionally,
non-transferrin-bound iron (NTBI) uptake from the blood
through luminal DMT1 and H-ferritin uptake may be partly
responsible for iron transport across the BBB. Iron transport
across the abluminal (basal) membrane is a Fpn1/hephaestin
(Fpn1/Heph) and/or Fpn1/ceruloplasmin (CP)-mediated
process (35, 36).

TF/TFR1/DMT1 pathway is an important pathway for iron
transport across the BCSFB. Furthermore, iron export from the
choroid epithelium to the CSF is mediated by the Fpn1/CP or
Fpn1/Heph pathways. Beyond restriction of the access of
TABLE 1 | Continued

Human
gene
name

Protein
name

Aliases Substrates Tissue and cellular expression Sequence
accession ID

Mouse
KO

model

ABCG2 ABCG2 BCRP
ABCP
MXR
EST157481
CD338

Protoporphyrin IX
(PPIX), heme,
sphingosine-1-P

Biased expression in small intestine, duodenum and 12 other tissues NM_004827.3 Yes
April 2022 | V
olume 12 | Article
TABLE 2 | Proteins Involved in Brain Iron Transport.

Gene name Fe species bound Presence in Function

BBBBCSFB Neurons Microglia Astrocytes Oligodend-rocytes

TF
(Transferrin)

Fe3+ + + + + + Transport iron to cells

DMT1
(SLC11A2)

Fe2+ + + + + + Involved in iron absorption

Zip14
(SLC39A14)

Fe2+ + Transporter of NTBI

FPN1
(SLC40A1)

Fe2+ + + + + + Iron export from cells

CP
(Ceruloplasmin)

Fe2+ + + + Peroxidation of Fe2+ to Fe3+

HEPH
(Hephaestin)

Fe2+ + + + + Peroxidation of Fe2+ to Fe3+

Ferr
(Ferritin)

Fe3+ + + + + Intracellular iron storage protein
"+" refers to the existence of corresponding genes.
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substances from the blood to the CSF, it is possible that the
BCSFB has a bigger impact on iron removal from the brain than
iron uptake into the brain (35–37).

2.2.3 Iron and Iron Transporters in Neurons
Iron is essential for neuron development and function (38). First
iron is an essential cofactor for enzymes involved in energy
metabolism and amino acid biosynthesis. Iron also plays a
significant role for division of embryonic neurons as it is a
cofactor for the enzyme ribonucleotide reductase. In addition,
during early embryonic development, the dysfunction of yolk sac
cells caused by excessive iron uptake leads to the necrotic
degeneration of neuroectodermal cells (39, 40).

The neuronal expression levels of the TFR1 reflects their need
for iron (41). DMT1 is also expressed in neurons, suggesting that
after transferrin binding, iron is transported to the cytoplasm
through DMT1 (42). DMT1 is involved in hippocampal
neuronal iron uptake during development and memory
formation (43). The presence of NTBI in brain extracellular
fluids suggests that neurons can also take up iron as transferrin-
free iron (44). Fpn1 and Heph are involved in the output of iron
from the neuron (45, 46).

2.2.4 Iron and Iron Transporters in Microglia
Microglia have vital roles in brain development and CNS
homeostasis, including programmed cell death, clearance of
apoptotic newborn neurons, as well as pruning developing axons
andsynapses (47, 48).Microgliaare immunecells of theCNS,which
are implicated in brain inflammation and can modulate the
transport and metabolism of essential metal iron according to the
anti-inflammatory and pro-inflammatory environment (49).

The mechanism of iron transport in microglia has been
addressed in cell culture. The different sources of cells include
primary adult mouse microglia (49), primary 2-day-old Sprague-
Dawley microglia, primary newborn Wistar rat microglia (50),
primary C57BL/6 mice microglial (51) and BV-2 microglial cells
(52). Microglial cells interact with both TF bound-iron (TBI) and
NTBI. TBI is taken up via the TFR1/DMT1 pathway, and after the
release of iron in the acidic milieu of the endosome, this is
translocated into the cytosol by DMT1 or other transporters (53).
ForNTBIuptake, an endogenous cell surface ferrireductase reduces
Fe3+ to Fe2+ for uptake byDMT1 in a pH-dependentmanner at the
cell surface (54).

2.2.5 Iron and Iron Transporters in Astrocytes
Astrocytes are the most abundant glial cells in the brain (55). In
healthy CNS tissue, astrocytes maintain homeostasis of
extracellular fluids, provide energy substrates to neurons,
modulate local blood flow, and play essential roles in synapse
development and plasticity (56). In addition, astrocytic end-feet
form intimate contacts with the abluminal side of brain capillary
endothelial cells (BCECs) in all brain regions. This close
relationship makes it denotes an important role in nutrient
capture from the circulating blood such as iron (57). Astrocytes
theoretically can transport iron directly from BCECs to neurons
and oligodendrocytes through intracellular transport (58).
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The TF cycle is probably not the main process by which
astrocytes obtain iron from endothelial cells (59). It is more likely
that DMT1mediates some of this uptake, since this transporter is
strongly expressed in the astrocyte end-feet contacting with
BCECs directly. This suggests that astrocytes can potentially
uptake NTBI directly from BCECs (57).

In addition, the zinc transporter Zip14 and resident transient
receptor potential channels have been suggested to be involved in
the uptake of NTBI by astrocytes (60). Fpn1 and CP are highly
expressed on astrocytic cell membranes, and both proteins may
be essential in iron mobilization from these cells into the
extracellular brain space (61, 62).

2.2.6 Iron and Iron Transporters in Oligodendrocytes
Oligodendrocytes create myelin sheaths for CNS axons, assist in
the jumping and efficient transmission of bioelectric signals,
maintain and protect the normal function of neurons (63, 64).
Oligodendrocytes are the cells with the highest iron levels in the
brain. Oligodendroglia cells require iron as a cofactor for several
enzymes involved in the proliferation and differentiation of
oligodendrocyte precursor cells (OPCs), as well as enzymes
required for the production of cholesterol and phospholipids,
which are essential myelin components (65, 66).

In oligodendrocytes, TF/TFR1/DMT1 pathway plays a
significant role in iron transport in immature oligodendrocytes,
however the proportion of iron transported by this pathway may
decrease with the beginning of myelination (36). DMT1 is
essential for OPC maturation and normal myelination in
mouse brain, which is considered to be a crucial pathway for
many cells to uptake NTBI (67). Extensive literature suggests that
H-ferritin is the main source of iron in oligodendrocytes,
conferring high buffering capacity for iron (68). Heph is
expressed by mature oligodendrocytes and plays a role in iron
efflux from these cells , but white and gray matter
oligodendrocytes can regulate iron efflux differently; while
white matter oligodendrocytes upregulate the expression of Cp
in the absence of Heph, likely as a fail-safe mechanism, gray
matter oligodendrocytes lacks such compensatory pathway (69).
3 FERROPTOSIS AND TRANSPORTERS IN
MALIGNANT BRAIN TUMORS

3.1 The Transport Mechanisms in
Ferroptosis
Ferroptosis is a form of iron-dependent regulatory cell death
distinguished from necrosis, apoptosis and autophagy (70),
which can be triggered by the small-molecule compound
erastin and RSL3 (71, 72). Iron and polyunsaturated fatty acids
(PUFAs) act as raw materials for lipid peroxidation to promote
the occurrence of ferroptosis (73, 74). While glutathione
peroxidase 4 (GPX4) using glutathione (GSH) as the substrate
effectively removes excess ROS through antioxidant mechanism
and inhibits ferroptosis (75). The increase of intracellular iron
content, the accumulation of ROS and excessive lipid
peroxidation are crucial to induce ferroptosis (76). Ferroptosis
April 2022 | Volume 12 | Article 861834
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is closely related to iron metabolism, amino acid metabolism and
lipid metabolism in cells. Therefore, iron transporters and amino
acid transporters involved in metabolism have a marked effect on
the cell sensitivity to ferroptosis (70, 77).

3.1.1 Iron Transporters in Ferroptosis
DMT1 andTfR1 are involved in the absorption of intracellular iron
(78, 79), while Fpn1 transports iron from the cell to the blood (27).
They are both ubiquitous and crucial proteins that regulate the iron
content in cells and are essential for the maintenance of iron
homeostasis (Table 3). Iron is essential for cell growth, but it can
promote the formation of toxic ROS during ferroptosis. In the case
of excessive iron in cells, Fe2+ and H2O2 can generate hydroxyl
radicals (OH-) throughFenton reaction, promoting theoxidationof
PUFAs on the cell membrane, greatly accelerating lipid
peroxidation and ultimately causing cell damage or death (80).
Therefore, increasing the expression of TFR1 or decreasing the
expression of Fpn1will increase the accumulation of iron in the cell
and result in ferroptosis. DMT1 located on the lysosomal
membrane mediates iron transfer and the inhibitors of DMT1
cankill cells byaccelerating lysosomal ironoverloadandan increase
of ROS production (81).

Recently identified ferroptosis-related iron transporters ZIP14
(SLC39A14) can transport manganese, iron and zinc (Table 3).
However, its main function is to transport manganese ions, while
iron ions are not the main transport substrate of ZIP14 under
normal physiological conditions (82, 83). Only in the state of iron
overload, ZIP14 exhibits the function of transporting iron ions and
mediating ferroptosis (84).

3.1.2 Amino Acid Transporters in Ferroptosis
The amino acid transporter system Xc− on the cell membrane is
composed of two core components, SLC7A11 (Solute Carrier
Family 7 Member 11, xCT) and SLC3A2 (Solute Carrier Family
3 Member 2, 4F2hc), involved in the exchange of extracellular
cystine (Cys2) by transporting intracellular glutamate (Glu)
(Table 3) (70). Intracellularly, Cys2 will be reduced to cysteine
(Cys), thereby promoting the synthesis of GSH, the cofactor of
GPX4. As a central regulatory protein for ferroptosis, GPX4 can
convert GSH to oxidized glutathione (GSSG) whilst also reducing
lipid hydroperoxides (L-OOH) to lipid alcohols (L-OH), which is
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the main mechanism to prevent lipid peroxidation and inhibit
ferroptosis (85). In fact, knockout and inactivation of GPX4 both
contribute to ferroptosis (86). Ferroptosis inducer erastin can
result in GSH depletion and GPX4 inactivation by inhibiting
system Xc− transport of cystine (71), while RSL3 directly
induces ferroptosis by inhibiting the activity of GPX4 (72). Cys
is the crucial limiting amino acid for intracellular GSH synthesis
and GSH depletion directly affects the function of GPX4.
Therefore, system Xc− that participates in the uptake of Cys2 is
considered to be one of the most critical regulators of ferroptosis.
Recent studies suggest that regulation of TP53 (87), Nrf2 (15),
ATF4 (88), BECN1 (89) or interferon g(IFNg) released by CD8+ T
cells (90) significantly inhibits the system Xc−, leading to a
decrease in GSH synthesis and ferroptosis.

The transmembrane transport of glutamine (Gln) is
dependent on SLC1A5 (Solute Carrier Family 1 Member 5)
and SLC38A1 (Solute Carrier Family 38 Member 1) (Table 3).
After entering the cell, Gln is catalyzed by glutaminase (GLS) and
broken down into Glu and ammonia in the mitochondria (91).
Subsequently, Glu can be converted to a-ketoglutarate (a-KG)
that is involved in the oxidative energy supply as an important
intermediate for the tricarboxylic acid (TCA) cycle (92). Glu is an
indispensable molecule for generating GSH, which can effectively
scavenge intracellular ROS. In cancer cells, inhibition of
ferroptosis has been shown to be associated with high levels of
Gln (93). Although glutaminolysis promotes cancer cell growth,
this metabolic process can also induce ferroptosis toward cell
death (94). The pivotal role of dihydrolipoamide dehydrogenase
(DLD) in prompting ferroptosis induced by cystine deprivation
or cystine import inhibition has been recently confirmed. Apart
from stimulating DLD to produce hydrogen peroxides, a-KG
can be further converted into acetyl-CoA, facilitating fatty acid
synthesis and lipid peroxidation-dependent ferroptosis (95).
MIR137 (microRNA137) has also been recently identified as a
negative regulator of erastin or RSL3-induced ferroptosis
through down-regulation of SLC1A5 in melanoma cells (96).

3.2 Ferroptosis and Malignant
Brain Tumors
In 2021, the World Health Organization (WHO) released the
fifth edition of the Classification of Tumors of the Central
TABLE 3 | The characteristics of ferroptosis-related transport protein associated with malignant brain tumors.

Gene symbol Alias Protein name Subcellular Substrates Related Brain Cancer

SLC7A11 xCT Cystine/glutamate
transporter

Plasma membrane Cystine, Glutamate Glioblastoma, Neuroblastoma

SLC3A2 4F2hc 4F2 cell-surface antigen
heavy chain

Lysosome, Plasma membrane L-type amino Glioblastoma, Neuroblastoma

SLC1A5 ASCT2 Neutral amino acid
transporter B (0)

Plasma membrane Glutamine Glioblastoma

SLC38A1 SNAT1 Sodium-coupled neutral amino acid transporter 1 Plasma membrane Glutamine Glioblastoma
SLC11A2 DMT1 Natural resistance associated macrophage

protein 2
Plasma membrane,
Endosome, Mitochondrion

Fe2+ Glioblastoma

SLC40A1 Fpn1 Solute carrier family 40-member 1 Plasma membrane Fe2+ Glioblastoma, Neuroblastoma
SLC39A14 ZIP14 Metal cation symporter ZIP14 Plasma membrane Mn2+, Fe2+, Zn2+

TFR1 TFRC Transferrin receptor protein 1 Plasma membrane Fe3+ Glioblastoma, Neuroblastoma
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Nervous System (CNS) (WHO CNS5). Among various brain
tumors, childhood brain tumors, adult gliomas and
meningiomas are currently the most common brain neoplasia.
Neuroglioma is one of the common primary central nervous
system tumors that originate from glial cells. GBM is the most
malignant and deadliest type of neuroglioma (97). Neuroblastoma
is the most common extracranial tumor in children and nearly
half of neuroblastomaoccurs in infants and young children under 2
years of age (98). Meningiomas are tumors originating from
arachnoid cap cells, most of which are benign. However,
about 3% meningiomas are malignant, including invasive
meningiomas (99). The current treatment methods for malignant
brain tumors mainly include surgical resection, radiotherapy
and chemotherapy.

Recently increasing numbers of studies have shown that
ferroptosis is associated with the pathological process of a
variety of neurological diseases, including neurodegenerative
diseases, neurotrauma and brain tumors (100). Nevertheless,
there has been less research on brain tumors compared to the
other types of tumors so far. It is undeniable that ferroptosis, a
new form of non-apoptotic cell death, will open up new
therapeutic avenues for eliminating brain tumor cells (101).

Soon after ferroptosis was defined, researchers injected iron-
containing water into the rats transplanted with glioma-35 cells
and then focused on treating the tumor site with radiotherapy
(102). They found that the tumor volume in the experimental
group was significantly smaller than that in the control group.
Mechanistically, in a separate report, it is suggested that iron-
containing water treatment before radiation induces glioma cell
death through the combination of apoptosis and ferroptosis
(103). Furthermore, ferroptosis is proved to be involved in the
GBM cell death which can be induced by neutrophils. It appears
that this process requires activation signals given by the tumor
microenvironment. When mature neutrophils infiltrating into
the tumors are activated, they will trigger lipid peroxidation by
transferring myeloperoxidase into GBM cells and increase
cellular ROS, finally causing tumor cell ferroptosis (104).

Although most ferroptosis-related studies have concentrated
on gliomas, neuroblastoma, another malignant brain
tumor, is gradually coming into focus. Research suggests
that overexpression of Mitochondrial ferritin (FtMt) in
dopaminergic neuroblastoma cell line SH-SY5Y cells can
significantly inhibit erastin-induced ferroptosis (105). This is
mainly due to FtMt-mediated inhibition of cellular labile iron
pool (LIP) and the accumulation of cytoplasmic ROS which
protects against effects of ferroptosis. In another study with SH-
SY5Y, the ferroptosis inhibitor Ferrostatin-1 (Fer-1) was found
to have a neuroprotective effect under Rotenone-induced
oxidative stress conditions (106).

In a recently published study, researchers evaluated the
expression of Merlin/Neurofibromin2 (NF2) and the
ferroptosis regulator GPX4 in patients with primary
meningioma and found a positive correlation between them.
They speculated that the inactivation of NF2 in meningiomas
may be more likely to cause ferroptosis. Furthermore, it has been
determined that inhibition of NF2 and E-Cadherin can promote
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ferroptosis-related cytotoxicity and lipid peroxidation in
meningioma cell lines. The transcription factor MEF2C has
been shown to regulate the transcription of NF2 and E-
cadherin genes. Silencing MEF2C, the expression levels of NF2
and E-cadherin in meningiomas decreased, which inhibited the
growth of meningiomas mediated by ferroptosis (Figure 1).
Therefore, MEF2C can be used as a potential molecular target
for the treatment of aggressive meningiomas through
modulating ferroptosis (107).

3.3 The Role of Transporters
Associated With Ferroptosis in
Malignant Brain Tumors
Ferroptosis plays a key role in the development of malignant
brain tumors. As an important part of ferroptosis, relevant
transporters can regulate amino acid metabolism and iron
metabolism and are essential for the maintenance of iron
homeostasis. Disorders of iron homeostasis in the brain will
increase the risk of tumors, which may be one of the factors
leading to the increased incidence of brain tumors (108). In
addition, a group of ferroptosis-related genes have been
discovered that may predict the prognosis of glioma patients
based on clinical databases (109). In terms of iron metabolism,
CDGSH iron-sulfur domain-containing protein 1 (CISD1) (110),
poly r(C) binding protein 1 (PCBP1) (111) and transferrin (TF)
(94) have a marked impact on ferroptosis by regulating the
cellular content of iron. Here we compared the survival curve of
brain tumor patients with the expression of ferroptosis-related
genes and the results showed that the decrease in survival rate
was related to the high-level expression of the protein required
for iron intake (Figure 2). These data indicate that a better
understanding of the role of ferroptosis-related transporters in
malignant brain tumors may help provide more options for the
treatment and prevention of brain tumors.

The obvious increase of lipid and cytoplasmic ROS is an
important feature of ferroptosis and part of its regulatory factors
have been used as small molecule drug targets to induce the
death of cancer cells. Fpn1 can inhibit ferroptosis by reducing the
accumulation of iron-dependent lipid ROS. Studies have found
that in neuroblastoma cells, erastin induces the accumulation of
iron and the low expression of Fpn1 involved in iron outflow
(112). Furthermore, hepcidin, an amino acid peptide hormone
(113) that binds with Fpn1 and stimulates Fpn1 degradation,
increases antitumor activity of Erastin. This suggests that Fpn1
can be used as a potential therapeutic target for neuroblastoma in
the future and Fpn1 inhibitors may provide a new approach for
the treatment of neuroblastoma.

In neuroblastoma, gene amplification of the oncogenic
transcription factor MYCN makes tumor cells more malignant
and difficult to eliminate. Increased TFR1 expression and
decreased Fpn1 expression in MYCN-amplified neuroblastoma
cells results in high intracellular iron content. Overexpression of
MYCN activates Xc−/GPX4 pathway, resulting in increased
intracellular cystine and enhanced antioxidant protection
(114). Therefore, the use of system Xc− selective inhibitors or
TFR1 agonists to treat MYCN-amplified neuroblastoma will
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increase the level of lipid peroxidation and eventually lead to
ferroptosis of tumor cells (Figure 1).

In addition to neuroblastoma, GSH depletion caused by system
Xc− inhibition is associated with other malignant brain tumors
(115). Nuclear factor (erythoid-derived)-like 2(Nrf2)
overexpression or Kelch-like ECH associated protein 1(Keap1)
knockdown can accelerate the growth of glioblastoma and
promote the development of glioma cells (15). Similarly, xCT is
positively regulatedbyNrf2 and plays a crucial role in the inhibition
of ROS accumulation during the ferroptosis process of glioma cells.
Drug inhibitors targeting system Xc− can rescue ROS generation,
thereby increasing the sensitivity of glioma cells to ferroptosis and
achieving the goal of treating malignant gliomas (Figure 1) (15).

The first-line treatment anti-tumor drug Temozolomide can
inhibit the growth of glioblastoma. In order to explore the role of
ferroptosis in this process, researchers treated human glioblastoma
cell line TG905 cells with siRNA and found that knockdown of
DMT1 reduced the level of ROS and iron production induced by
Temozolomide (116). In addition, down-regulation of DMT1 also
increased the expression of GPX4, Nrf2 and HO-1, thereby
preventing the occurrence of ferroptosis. Temozolomide induces
ferroptosis of some glioblastoma cells by increasing the expression
of DMT1, so the divalent metal transporter DMT1 can be used as a
drug target in glioblastoma.
4 THERAPEUTIC STRATEGY

Mounting evidence suggests ferroptosis plays a beneficial role in
tumors treatment. With the need for new treatments for
malignant brain tumors, increased attention has been paid to
Frontiers in Oncology | www.frontiersin.org 869
drugs inducing ferroptosis that designed based on the regulatory
pathways of ferroptosis. The main types of malignant brain
tumors targeted by the novel Ferroptosis-based include GBM
(117), fibrosarcoma (118), head and neck carcinoma (119).

Ferroptosis can be induced by increasing intracellular iron or
ROS level (11). Inhibition of the glutathione peroxidase GPx4 or
glutamate/cystine antiporter system Xc− through the drugs is
beneficial, promoting ferroptosis though increased ROS
accumulation. Nrf2-Keap1 pathway promotes cell proliferation
and diminishes ferroptosis (15). Although some studies have
reported that inhibiting ferroptosis by activating Nrf2 pathway
can play a neuroprotective role, for example, astrocytes protect
neurons from ferroptosis by activating the Nrf2 pathway to
supply neurons with GSTM2 and other antioxidants, inhibiting
Nrf2 pathway in tumor cells to promote ferroptosis plays
a therapeutic effect (120). ATF4 and Pseudolaric acid B
promotes ferroptosis in a xCT-dependent manner (89, 121).
Dihydroartemisinin initiates ferroptosis through GPx4 inhibition
(122). Ibuprofen induces ferroptosis via downregulation of Nrf2-
Keap1 signaling pathway (123).

Other mechanisms of promoting ferroptosis have also been
reported, including activating the transcription factor BACH1
(BTB domain and CNC homology 1) (124) or Nox4 (121) to
promote oxidative stress, inhibition of autophagy (125), vitamin
C deficiency to reduce proliferation (126) and targeting ACSL4
which suppresses proliferation (127). Based on these
mechanisms, related drugs have been found, such as 2-
Nitroimidazoles, temozolomide, artemisinin and its derivatives.

Ferroptosis inducers may expand our arsenal of frontline
therapeutic agents for combinatory approaches. Temozolomide
toxicity operates is boost by ferroptosis (128). Androgen receptor
FIGURE 1 | Impacts of ferroptosis-related transport proteins in three malignant brain tumor cells. In GBM cell, iron transport-related proteins DMT1 (SLC11A2),
Fpn1 (SLC40A1), TFR1 and amino acid transporters system Xc– (SLC7A11/SLC3A2), ASCT2 (SLC1A5) regulate the occurrence of ferroptosis all together. In MYCN-
amplified neuroblastoma cell, lipid peroxidation and cell death are promoted due to increased expression of TFR1 and System Xc– and lower expression of Fpn1. In
meningioma cell, MEF2C mediated upregulation of NF2 and E-cadherin inhibits Erastin-induced ferroptosis. Arrows indicate promotion and blunt-ended lines indicate
inhibition. Cys, cysteine; Cys2, cystine; GSH, glutathione; GPX4, glutathione peroxidase 4; Glu, glutamate; Gln, glutamine; TF, transferrin; TFR1, transferrin receptor
1; PUFA, polyunsaturated fatty acid; ACSL4, acyl-CoA synthetase long-chain family member 4; TCA, tricarboxylic acid cycle; a-KG, a-ketoglutarate; NCOA4, nuclear
receptor coactivator 4; ATF4,activating transcription factor 4; Nrf2, nuclear factor erythroid-2-related factor; MYCN, BHLH Transcription Factor; MEF2C, Myocyte
Enhancer Factor 2C; NF2, neurofibromatosis type 2; BSO, buthionine sulphoximine.
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(AR) ubiquitination is induced by the curcumin analog which
suppresses growth of temozolomide-resistant GBM through
disruption of GPX4-mediated redox homeostasis (129).
Furthermore, T cell-promoted tumor ferroptosis is an anti-
tumor mechanism, and targeting this pathway in combination
with immunotherapy is another potential therapeutic approach
(91, 130, 131). Nivolumab therapy revealed that clinical benefits
correlate with reduced expression of SLC3A2 and increased IFNg
and CD8 (91).

Although many anticancer compounds that promote
ferroptosis have been found, there are still many treasures to
be discovered. Drugs targeting other mechanisms of ferroptosis
need to be explored, such as targeted iron accumulation. A
systematic assessment of the relationship between ferroptosis
related genes (FRGs) expression profiles and the occurrence and
development of tumors based on the Cancer Genome Atlas
(TCGA), Chinese Glioma Genome Atlas (CGGA) datasets and
FerrDb datasets may unveil new targets (77, 132). In fact, the
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potential impact of Acetaminophen in ferroptosis through
interaction with CD44, HSPB1, and SLC40A1 was found this
way (132).

To find out the potential correlation of GBM with
transporters involved in ferroptosis. Here we compared the
expression of several ferroptosis related transporters
(SLC7A11, SLC3A2, SLC1A5, SLC38A1, SLC11A2, SLC40A1,
SLC39A14, TFR1, TF) in normal people and GBM patients based
on TCGA data. It is worth mentioning that the differentially
expressed genes (DEGs) covered the majority of the transporters
that we screened related to ferroptosis. Box-plot shows the
expressions of SLC3A2, SLC1A5, SLC40A1, SLC39A14 and
TFR1 increased significantly, the expression of SLC38A1
decreased significantly (Figure 2A). The effect of DEGs on the
survival curve of GBM patients was further explored based on
TCGA data (Figure 2B). As shown in the Kaplan‐Meier survival
curve, median survival of GBM patients changed significantly
according to the expression of SLC39A14 (p = 0.016) and
A

B

FIGURE 2 | (A) Expression level of transporters (TFR1, SLC39A14, SLC1A5, SLC38A1, SLC40A1, SLC3A2) in tumor patients and normal people. Data mined from
TCGA (https://cancergenome.nih.gov/). *p < 0.05, **p < 0.01, ***p < 0.001, compared with tumor patient group. (B) Survival curves of GBM patients mined from
GEPIA2 (http://gepia2.cancer-pku.cn/). GBM patients were stratified into high or low expression groups based on the expression level of transporters (TFR1,
SLC39A14, SLC1A5, SLC38A1, SLC40A1, SLC3A2) of patients. p<0.05 in Log‐rank test. OS, overall survival in months.
April 2022 | Volume 12 | Article 861834

https://cancergenome.nih.gov/
http://gepia2.cancer-pku.cn/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Transporters and Ferroptosis in Tumors
SLC40A1 (p = 0.035), but the mechanism behind it remains to be
explored. The above analysis further proves the potential of
targeting these transporters and ferroptosis in the treatment
of GBM.

Ferroptosis induction may prove as an effective therapeutic
strategy against malignant brain tumors, yet a wide range of
ferroptosis inducers are prone to off-target effects and may cause
significant damage to normal cells. Therefore, it is urgent to
develop tumor targeting delivery strategies of ferroptosis
inducers. At present, many research are focusing on this
aspect. Class I histone deacetylase (HDAC) inhibitors can
selectively inhibit ferroptosis in neurons, but promote
ferroptosis in tumor cells, which may be due to its different
epigenetic regulation on the two cells. The combination of
HDAC inhibitors and ferroptosis inducers can not only reduce
the dosage of ferroptosis inducers to reduce toxicity, but also
protect neurons (133, 134). Nano-targeting of WA allows
systemic application and suppressed tumor growth due to an
enhanced accumulation at the tumor site (135, 136).

At present, the treatment strategy targeting ferroptosis has
been widely studied in various tumors, among which the
advanced treatment strategy can potentially use for malignant
brain tumors as well. Some new therapeutic mechanisms are
worth learning. For example, gene interference by transferring
genes with adeno-associated virus and iron nanoparticles
enhance ferroptosis and inhibit tumor growth (137);
ferroptosis inducer erastin or rsl3 is used independently or in
combination with standard-of-care second-generation for the
treatment of advanced prostate cancer (138); and activating
ferroptosis by sequestering iron in lysosomes kills cancer stem
cells (139). Studies have showed that targeted ferroptosis can
used to overcome drug resistance of tumors. For example,
Vorinostat promotes ferroptosis to overcome the resistance to
epidermal growth factor receptor-tyrosine kinase inhibitors
(EGFR-TKIs) (140); and artesunate inhibits growth of therapy-
resistant renal cell carcinoma through induction of ferroptosis
(141). Some advanced strategies are for targeted therapy. For
example, Photodynamic therapy site-specifically produces
reactive oxygen species for the Fenton reaction, which
promotes ferroptosis and suppresses tumors (142); and
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catalytic nanomedicine that contains natural glucose oxidase
and ultrasmall Fe3O4 nanoparticles selectively and effectively
strengthens ferroptosis of tumor cells (143). In short, the essence
can be drawn from the treatment of other tumors and used in the
treatment of malignant brain tumors.

Inducing ferroptosis of tumor cells is a newly discovered
strategy for the treatment of malignant brain tumors, but many
problems remain to be solved, including elucidating the
mechanism of ferroptosis in different malignant brain tumors,
discovering new therapeutic targets for inducing ferroptosis of
tumor cells, and increasing the tumor cell targeting of ferroptosis
inducers. It is worth noting that the regulation of iron transport
in tumor cells and the expression of transporters related to
ferroptosis may have good therapeutic potential. Many
transporters have become drug targets in recent years (144,
145). At the same time, clarifying iron transport under
physiological conditions also provides an important research
basis for targeted therapy of tumor cells, crucial to avoid the
damage of normal tissues through off target effects.
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PELATON is a long noncoding RNA also known as long intergenic nonprotein coding RNA
1272 (LINC01272). The known reports showed that PELATON functions as an onco-
lncRNA or a suppressor lncRNA by suppressing miRNA in colorectal cancer, gastric
cancer and lung cancer. In this study, we first found that PELATON, as an onco-lncRNA,
alleviates the ferroptosis driven by mutant p53 and promotes mutant p53-mediated GBM
proliferation. We also first confirmed that PELATON is a new ferroptosis suppressor
lncRNA that functions as a ferroptosis inhibitor mainly by mutant P53 mediating the ROS
ferroptosis pathway, which inhibits the production of ROS, reduces the levels of divalent
iron ions, promotes the expression of SLC7A11, and inhibits the expression of ACSL4 and
COX2.PELATON can inhibit the expression of p53 in p53 wild-type GBM cells and
regulate the expression of BACH1 and CD44, but it has no effect on p53, BACH1 and
CD44 in p53mutant GBM cells. PELATON and p53 can form a complex through the RNA
binding protein EIF4A3. Knockdown of PELATON resulted in smaller mitochondria,
increased mitochondrial membrane density, and enhanced sensitivity to ferroptosis
inducers to inhibit GBM cell proliferation and invasion. In addition, we established a
favourite prognostic model with NCOA4 and PELATON. PELATON is a promising target
for the prognosis and treatment of GBM.

Keywords: lncRNA, ferroptosis, PELATON, LINC01272, ROS
Abbreviations: FPI: ferroptosis potential index; GBM: Glioblastoma; PCD: programmed cell death; GPX4: glutathione
peroxidase; ROS: reactive oxygen species; NCOA4: Nuclear Receptor Coactivator 4; TMZ: temozolomide; lncRNAs: Long non-
coding RNAs; ACSL4: Acyl-CoA Synthetase Long Chain Family Member 4; COX2: Prostaglandin-Endoperoxide Synthase 2;
SLC7A11: Solute Carrier Family 7 Member 11; MM: module membership; GS: gene significance; KEGG: Kyoto Encyclopedia
of Genes and Genomes; OS: overall survival; IDH: Isocitrate Dehydrogenase; FPS: free-progression survival; GO: Gene
Ontology; GSEA: Gene Set Enrichment Analysis; TCGA: The Cancer Genome Atlas; ES: enrichment score; ssGSEA: single-
sample gene set enrichment analysis; TOM: topological overlap matrix.
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INTRODUCTION

Glioblastoma (GBM) is the most common malignant brain
tumour of the central nervous system, accounting for
approximately 45% of central nervous system tumours, with an
annual incidence of 3.19 cases/100000 people (1–3). Recent
studies have shown that the main factors affecting the
prognosis of glioblastoma patients include the degree of
surgical resection of the tumour tissue and the molecular
classification of the tumour. With improvements in surgical
accuracy and progress in tumour imaging, it is easier to
distinguish glioblastoma from normal brain tissue and
maximize the removal of tumour tissue. However, due to the
invasive growth of glioblastoma, tumour cells often infiltrate
normal brain tissue, resulting in treatment failure and recurrence
(4). At present, the conventional treatment of glioblastoma
patients mainly includes optimal and safe surgical resection of
tumour tissue, followed by adjuvant radiotherapy and
chemotherapy (5, 6). An increasing number of studies are
exploring targeted and personalized therapies for glioblastoma,
such as targeting DNA repair, tumour growth, apoptosis,
invasion, and angiogenesis and overcoming resistance to
chemotherapeutic drugs, including temozolomide (7–10).
Despite this, recurrence and drug resistance of glioblastoma are
still common, and recurrent tumour cells grow faster and more
aggressively. In the past decade, the poor prognosis of patients
with glioblastoma has not improved significantly, and the overall
median survival time remains at 16-18 months (11). Therefore,
according to the pathogenesis of glioblastoma, identifying new
therapeutic targets and developing effective alternative clinical
therapies are still urgent problems to be solved.

Ferroptosis was first proposed by Dr. Brent R. Stockwell in 2012
as an iron-dependent programmed cell death (PCD), which is
different from autophagy, apoptosis, and necrosis (12–14). The
process involves high levels of iron ions, accumulation of reactive
oxygen species, changes in mitochondrial morphology and lipid
peroxide metabolism genes (15–17). Ferroptosis is characterized by
the depletion of glutathione and a decrease in glutathione
peroxidase (GPX4) activity. As a result, lipid oxides cannot be
metabolized by the GPX4-catalyzed glutathione reductase reaction,
and bivalent iron ions oxidize lipids to produce reactive oxygen
species (ROS) (13, 18, 19). Related studies have shown that, as a new
mechanism of cell death, ferroptosis may be involved in the
development of disorders such as cancer, neurodegenerative
diseases, inflammatory diseases, cardiovascular diseases, and T cell
immunity (14, 20, 21). One of the reasons for the high degree of
malignancy and drug resistance of glioblastoma is that these
tumours can effectively escape ferroptosis (22). The induction of
glioblastoma ferroptosis molecules or the synthesis of small
molecule drugs and nanomaterials provides new ideas for the
treatment of glioblastoma (23–28). For example, loss of COPI
coat complex subunit zeta 1 induces nuclear receptor coactivator
4 (NCOA4)-mediated autophagy and ferroptosis in glioblastoma
cells (29). The curcumin analogues ALZ003 and quinkalim can lead
to ferroptosis in glioma cells, thus opening new avenues for the
treatment of temozolomide (TMZ)-resistant glioblastoma (30, 31).
Iron oxide nanoparticles are safe and effective ferroptosis and
Frontiers in Oncology | www.frontiersin.org 277
apoptosis inducers and can be used as a combination therapy for
glioblastoma (32, 33).

Long noncoding RNAs (lncRNAs) may promote or suppress
the occurrence and development of tumours (34). They are
involved in tumour invasion and metastasis, apoptosis,
proliferation, drug resistance, and angiogenesis and regulate
the expression of target genes at the transcriptional and
posttranscriptional levels. An increasing number of studies
have shown the important role of lncRNAs in the regulation of
ferroptosis in cancer, but only a few have focused on GBM (23).
At present, many reports have established the prognosis model of
ferroptosis related genes in cancer including GBM by screening
the differentially expressed ferroptosis related genes in the
database and other bioinformatics analysis, so as to evaluate
the tumour immune microenvironment and immune cell
infiltration, which has good predictive value for the survival
and immunotherapy of tumour patients (35, 36).Therefore, it is
still urgent to further explore and study new molecules in GBM
ferroptosis, so as to provide guidance for the clinical treatment
of GBM.

In this study, we obtained 13 known ferroptosis mRNAs and
12 unreported ferroptosis lncRNAs, found that LncRNA
PELATON and NCOA4 were prognostic ferroptosis genes, and
constructed a favourite ferroptosis risk model for GBM. We also
found that PELATON was mainly involved in the ROS
ferroptosis pathway by mutant p53, and in p53 mutant-type
GBM cells, it suppressed the expression of ferroptosis driver
genes and promoted the expression of ferroptosis suppressor
genes. PELATON is a novel ferroptosis suppressor. Knockdown
of PELATON promoted the production of ROS and the levels of
divalent iron ions, the mitochondria decreased, the cell
membrane density increased, and GBM cells displayed
proliferation inhibition.
MATERIALS AND METHODS

Collection of GBM Datasets
Based on The Cancer Genome Atlas (TCGA) database (https://
cancergenome.nih.gov/), we performed transcriptome profiling
by next-generation sequencing and obtained the corresponding
clinical information of the GBM set. The GSE43378 (GPL570)
dataset was obtained from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/), which contains gene expression and clinical
data of GBM.

WGCNA Analysis
A cluster dendrogram of the genes was constructed to check for
outliers using the hclust function. After removing the outlier
genes, the R package “weighted gene co-expression network
analysis” (“WGCNA”) was used to establish the co-expression
network of highly expressed genes (37). In our study, we used the
pick Soft Threshold function to determine the soft-thresholding
powers b over R2. Using the value of b for which the value of R2
is maximum with the transformed gene expression matrix, we
constructed the adjacency matrix and topological overlap matrix
(TOM). For the construction of the module, a dendrogram of
April 2022 | Volume 12 | Article 817737
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genes was constructed with a dissTOM matrix using the hclust
function with different colours. Based on the TOM dissimilarity
measurements, we established an average hierarchical linkage
clustering. Module dendrograms were built by setting the
minimum genome to 30, and highly similar modules were
merged by setting a cutoff of < 0.25. The dissimilarity of the
module eigengenes was calculated using the module eigengenes
function. The association between eigenvalues and FPI was
assessed using Pearson’s correlation.

Ferroptosis Potential Index (FPI)
The FPI was calculated according to the method of Liu Z et al.
(38). We assessed the ferroptosis level, which was established
based on the expression data for genes positively or negatively
regulating ferroptosis. The enrichment score (ES) for a gene
set that positively or negatively regulated ferroptosis was
calculated using single-sample gene set enrichment analysis
(ssGSEA) in the R package ‘GSVA’ (39), and the normalized
differences between the ES of the positive components
and negative components were defined as the FPI to
computationally dissect the ferroptosis levels/trends in the
tissue samples.

GEPIA Analysis
Differentially expressed genes, OS, and FPS were integrated using
Gene Expression Profiling Interactive Analysis 2 (GEPIA2,
http://gepia2.cancer-pku.cn/) (40). We identified the
differentially expressed genes with |log2FC| values > 1 and q
values < 0.05 using LIMMA. OS and DFS were evaluated using
the Kaplan–Meier method with the median cutoff and compared
using the log-rank test.

Enrichment Analysis
We utilized the “clusterprofiler” package to conduct Gene Set
Enrichment Analysis (GSEA) analysis for GO enrichment and
KEGG (41). KEGG pathway analysis was performed on
ferroptosis genes using the R package “clusterprofiler” (41).
Meanwhile, adjusted p<0.05 was regarded as statistically significant.

Antibodies and Reagents
The reagents, chemicals, and antibodies used in this study were
as follows: SLC7A11 (Abcam, ab175186, Massachusetts, US),
COX2 (Abcam, ab179800, Massachusetts, US), GPX4 (Abcam,
ab125066, US),ACSL4 (Abcam, ab155282, Massachusetts, US),
BACH1 (Abcam, ab180853, Massachusetts, US), CD44
(Abcam, ab243894,Massachusetts,US), P53(Proteintech,
CatNo.60283-2-Ig, China), GAPDH (Proteintech, 60004-1-Ig,
Wuhan, China), DMSO (MP Biomedicals, 19605580,
California, USA), and erastin (MedChemExpress, HY-15763,
Shanghai, China).

Tissue Collection, Glioblastoma Cell Lines
and Primary Cell Culture
These procedures were performed as previously described in
detail in our previous study (42, 43). Human clinical sample and
data were collected from the Department of Neurosurgery,
Frontiers in Oncology | www.frontiersin.org
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Central South University. All human experiments were
performed in accordance with the Declaration of Helsinki and
approved by the Joint Ethics Committee of the Central South
University Health Authority. All subjects provided informed
written consent. Primary tumour samples were minced about
lmm3 with a GentleMACS Dissociator (Miltenyi Biotec). The
cells were digested with trypsin and incubated at 37° for 10
minutes, then tissue suspension was filtered through the filter
screen(Jet Biofil) to remove the undigested tissue residue, and
centrifuged at 800 rpm for 5 ~ 8 minutes, Cells were cultured in
DMEM/F12 containing 10% FBS, 5% CO2 and 37°C. Primary
tumour cells were tested by GFAP, nestin, and CD133 staining
and subcutaneous implantation in nude mice.

Cell Transfection Assay
Cells with approximately 80% confluence were transiently
transfected with 3.1- or 3.1-PELATON Plasmid, PELATON-
siRNA ([226] 5′-GCAGCACAGUCACAUCCUATT-3′, [342]
5′-GCGCCUGUCCAGGACAAGUTT-3′, and [478] 5′-
GCACAGAAGUCUCUUCCCUTT-3 ′) . s iRNAs were
synthesized by RiboBio (Guangzhou, China). Cell transfection
was performed using Lipofectamine 3000 (Invitrogen Life
Technologies, Carlsbad, CA, USA) according to the
manufacturer’s instructions.

RT–qPCR
Total RNA was extracted from cells using TRI Reagent
(Molecular Research Center, TR118, Cincinnati, OH 45212,
USA), and its concentration and purity were determined using
a Nanodrop2000 microultraviolet spectrophotometer. The
extracted RNA was reverse transcribed into cDNA using the
RevertAid RT Reverse Transcription Kit (Thermo Scientific,
K1691, USA) according to the instructions of the
manufacturer, and qPCR was carried out on a real-time
fluorescence quantitative instrument (Bio–Rad, 788BR06968,
USA). The gene-specific primers used are as follows:

PELATON Forward:5 ′ACAAAGATGAGACGCAGGCT 3′;
PELATON Reverse:5 ′GTTAAGGGCCCGGGAATCTG 3′;
SLC7A11 Forward: 5′GGACAAGAAACCCAGGTGGT 3′;
SLC7A11 Reverse: 5′GCAGATTGCCAAGATCTCAAGT 3′;
COX2 Forward:5 ′CTATCCTGCCCGCCATCATC 3′;
COX2 Reverse: 5 ′GGGATCGTTGACCTCGTCTG 3′;
GPX4 Forward: 5′AGATCCAACCCAAGGGCAAG 3′;
GPX4 Reverse: 5′GGAGAGACGGTGTCCAAACT 3′;
ACSL4 Forward: 5′GCCCCTCCGATTGAAATCAC 3′;
ACSL4 Reverse:5 ′AGCCGACAATAAAGTACGCAA 3′;
BACH1 Forward: 5′ CGCCTCAGCTCTGGTTGAT 3′;
BACH1 Reverse: 5′ ATCAGCCTGGCCTACGATTC 3′;
CD44 Forward: 5′ AGTCACAGACCTGCCCAATG3′;
CD44 Reverse: 5′ TTGCCTCTTGGTTGCTGTCT3′;
GAPDH Forward: 5 ′GAATGGGCAGCCGTTAGGAA 3′;
GAPDH Reverse: 5′AAAAGCATCACCCGGAGGAG 3′;
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GAPDH was used as an internal control. The relative
transcriptional levels of the target genes were calculated using
the 2−△△CT method. Datas were mean ± SEM for three
independent experiments.

Western Blot Analysis
Cells were lysed in RIPA buffer (Beyotime, Shanghai, China) for
30 min and centrifuged at 12,000 rpm for 10 min at 4°C, and the
supernatants were collected. The protein concentration was
determined using the BCA method (Thermo Scientific, 23222,
USA). The proteins were separated by SDS–PAGE and
transferred to a polyvinylidene fluoride membrane (Merck
Millipore, ISEQ00010, USA). The PVDF membrane was
incubated for 1 h in 5% skim milk powder at room
temperature and then incubated with the corresponding anti-
antibody overnight at 4°C. After washing thrice for 10 min with
PBST, the membrane was incubated with the secondary antibody
at 37°C for 1 h. The protein bands were visualized using
enhanced chemiluminescence reagents (Abbkine, Wuhan,
China, BMU102-CN). The ChemiDoc imaging system (Bio–
Rad, USA) was used to capture the images and quantify the
intensity of the protein fragments.

Coimmunoprecipitation and RNA-Binding
Protein Immunoprecipitation Assay
Cells were extracted with lysis buffer, and the supernatants were
incubated with the indicated antibodies for 1 h at 4°C. Then, the
samples were precipitated with agarose beads for 1 h at 4°C. The
immunocomplexes were washed from agarose beads with Poly
FLAG Peptide and then subjected to the second co-IP with the
indicated antibodies and agarose beads. The final retrieved
protein was detected by Western blotting. The coprecipitated
RNAs were detected by RT–qPCR.

Transmission Electron Microscopy
These procedures have been previously described in detail (42).

Transwell Assay
The glioma cell suspension (1×106 cell/ml, 100 mL) was added
to the transwell chamber covered with Matrigel (Corning,
256234, USA), and 600 ml medium containing 15% FBS was
added to the 24-well subplate chamber. The transwell chamber
was removed after 48 h of culture and fixed with 4%
formaldehyde for 30 min. The cells were stained with 0.1%
crystal violet and washed thrice with PBS. Five microscope
fields were photographed for each group, and the cell numbers
were counted using ImageJ software. The experiment was
repeated three times.

Wound-Healing Assay
The glioma cells were inoculated into a 6-well plate and
transfected for 48 h. A 2 mm width scratch was made in the
middle of the tissue culture plate and cultured for another 48h.
Photographs were taken at certain time points, and the scratch
healing rate was calculated using ImageJ software. Datas were
mean ± SEM for three independent experiments.
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Detection of Intracellular ROS Levels
To calculate the production of intracellular ROS, a reactive
oxygen species detection kit (Biosharp, Shanghai, China) was
used. First, the ROS probe H2DCFH-DA was diluted to 10 mM in
serum-free culture medium, and 1 ml H2DCFH-DA working
solution was added to each well at 37°C in the dark for 30 min.
Then, the cells were washed with serum-free medium 3 times to
fully remove H2DCFH-DA that did not enter the cells. Finally,
the cells were observed under a fluorescence microscope
and photographed.

Iron Ion Detection
After protein extraction, the protein concentration was
determined using the BCA method (Thermo Scientific, 23222,
USA). Iron levels in the samples were determined using an iron
ion detection kit (Leagene, Beijing, China) according to the
manufacturer’s instructions. The corresponding reagents were
added in turn and mixed gently at 37°C for 10 min, and the
absorbance of the detection well was measured at 562 nm.
Finally, the plasma and serum Fe (mM/L) were measured as
follows: [Fe]= [A determination-(A serum blank × 0.970)]/A
standard × 35.8.

Fluorescence In Situ Hybridization (FISH)
Paraffin sections of glioma and normal brain tissues were baked
at 42°C for 2 h, dewaxed with xylene, dehydrated in graded
ethanol solutions (100%-95%-80%-50%-30%) for 5 min, treated
with DEPC water for 2×5 min, and washed with PBS (pH 7.4) for
2 × 5 min. Afterwards, the sections were treated with 0.3% Triton
X-100 for 15 min to permeabilize the membranes and washed
with PBS for 2×5 min. Subsequently, the sections were digested
with RNase-free protease K (20 g/ml) at 37°C for 20 min and
washed with 100 mM Gly/PBS and PBS. Then, 4%
paraformaldehyde (4°C) was added for 5 min to fix the
samples. Triethanolamine buffer (100 mM, pH 8.0) containing
0.25% (w/v) acetic anhydride was discharged for 15 min and
washed with PBS. Then, the following steps were performed
using an in situ hybridization detection kit from RiboBio
(Guangzhou, China) according to the instructions of the
manufacturer to avoid light in the whole process, and glioma
cells were used as in the RiboBio FISH kit. The sections were
analysed using a confocal microscope.

Statistical Analysis
The most significant ferroptosis gene signatures associated with
the OS of patients with GBM were identified using the Lasso-
penalized Cox regression model (44). We set 10-fold cross-
validation as the criterion to prevent overfitting with the
penalty parameter lambda. Then, we used the time-dependent
receiver operating characteristic (ROC) curve and the area under
the curve (AUC) to identify the prognostic accuracy of the two-
gene signature model in the discovery set and internal set with
the package “survival ROC” (45). To separate patients into high-
risk and low-risk score groups, we set the median risk score as the
cutoff value and then used Kaplan–Meier survival analysis and
the log-rank test to evaluate differences in OS between the two
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groups. The nomogram was established based on the
“regplot” package.

SPSS 21.0 (IBM Corp., Armonk, NY, USA) and Prism 7.0 were
used for statistical analysis. Statistical analysis was performed
using the t test and analysis of variance. Statistical significance
was set at p < 0.05. The measured data were expressed as “mean ±
SEM”. A single factor analysis of variance (ANOVA) was used for
comparison among the groups. Datas were mean ± SEM for three
independent experiments.
RESULTS

Identification of Ferroptosis
LncRNAs in GBM
To identify the ferroptosis genes of GBM, WGCNA analysis was
used to identify the key module correlated with ferroptosis in
GBM. Based on mRNAs found to be expressed at high levels
(average expression of FPKM >0.5) in the TCGA cohort, which
includes 18293 genes, 25 co-expression modules were
constructed (Supplementary Figures 1A-D) (37), in which the
Frontiers in Oncology | www.frontiersin.org 580
red module containing 1049 genes showed the highest
correlation with ferroptosis (Figures 1A, B). There was a
highly significant correlation between the module membership
(MM) of the red module and FPI gene significance (GS)
(Figure 1C) (38). In addition, we used a two-sided
hypergeometric test to find 12 ferroptosis driver sets
(FDR=7.32eE-06) and 8 suppressor sets (FDR=0.000345) in the
red module (Supplementary Figures 1E, F) (46). Furthermore,
the differentially expressed gene (DEG) analysis indicated that
58% (610/1049) of the ferroptosis genes of the red module were
differentially expressed in GBM (Supplementary Figure 1G).
We obtained 13 known ferroptosis mRNAs and 12 unreported
ferroptosis lncRNAs from 610 DEGs (Figure 1 D and Table 1).

The Favourite Ferroptosis Risk
Model for GBM
To determine whether the above 25 ferroptosis genes are associated
with the clinical prognosis of patients with GBM, we used survival
coxph function to perform univariable Cox proportional hazard
regression on the TCGA cohort. Then, by a single factor test
followed by Lasso regression analysis, two prognostic ferroptosis
A B

DC

FIGURE 1 | Ferroptosis gene identification in GBM. (A) Dendrogram of all highly expressed genes clustered based on a dissimilarity measure (1-TOM) together with
assigned module colours in the GBM cohort of TCGA. (B) Heatmap of the correlation between module genes and FPI in GBM. Each range contains the Pearson
correlation coefficient and P value. (C) Significant correlation between the module membership of the red module and FPI gene significance. (D) Identification and
correlation of 13 known ferroptosis-associated mRNAs and 12 unreported ferroptosis lncRNAs by Pearson correlation analysis from 610 DEGs (*p < 0.05; **p <
0.001; ***p < 0.001).
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genes were identified: LncRNA PELATON and NCOA4
(Supplementary Figures 2A–C). Combining the regression
coefficients with gene expression values, a risk score formula was
created as follows: risk score = -0.69641*NCOA4+ 0.35167*PELATON.

To evaluate the predictive ability of the ferroptosis risk model
with NCOA4 and LncRNA PELATON for patients with GBM, we
performed Kaplan–Meier survival and time-dependent ROC
analysis in the discovery set of TCGA (n=161) and the internal
set of GSE43378 (n=50). In the discovery set, the higher the risk
score (Figure 2A), the greater the number of deaths (Figure 2B),
and the lower the survival rate of patients with GBM
(Figure 2C), the predictive accuracy of the signature was 0.70,
0.74 and 0.75 at 1, 3, and 5 years, respectively (Figure 2D). We
obtained consistent results in the internal set (Supplementary
Figures 2D–G).

To develop a clinically applicable tool that can easily assess
the prognosis of patients with GBM, we established a graphical
nomogram. The nomogram was based on the discovery set for
predicting overall survival (OS). The independent prognostic
factors were age, sex, original subtype, isocitrate dehydrogenase
(IDH) status, and ferroptosis risk score. A nomogram capable of
predicting the OS probabilities of GBM at 1, 2 and 3 years was
constructed (Figure 2E). The calibration curves at 1, 2 and 3
years showed good consistency between actual observation and
prediction by the nomogram (Figure 2F).

PELATON in the ROS-Mediated
Ferroptosis Pathway by Mutant p53
To reveal the effects of PELATON on GBM progression, we
performed Gene Ontology (GO) and KEGG analyses by Gene Set
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Enrichment Analysis (GSEA) on RNA-seq data from the TCGA
cohort in GBM. Both GO and KEGG analyses suggested that
reactive oxygen species (ROS) biosynthesis was mainly in
response to the ferroptosis pathway involved by PELATON
(Figure 3A and Supplementary Figures 3A–C). To identify
which is likely the most important molecule of ROS biosynthesis
involved in the ferroptosis suppressor PELATON, we analysed
the top 20 genes that are differentially expressed between GBM
and normal brain tissue (Figure 3B) and then wanted to
determine which of these is most commonly mutated or
overexpressed in human GBM, which revealed P53, RYR2 and
IDH1 at the top of this analysis, with a mutation rate of p53 up to
30% (Figure 3C).

Since wild-type p53 is a tumour suppressor gene that mainly
acts as a transcription factor and prevents oncogenesis, its coding
gene p53 is highly mutated, and its activity is almost abrogated in
~50% of human cancers (47). Combining Figure 5C, next, we
mainly focused on the p53mutant-type GBM cells to explore the
function of PELATON. By hTFtarget database analysis, we
determined that P53 regulates ferroptosis-related target genes,
such as the ferroptosis suppressor genes SLC7A11, GPX4, and
CD44 and the ferroptosis driver genes ACSL4 and BACH1. Then,
pcDNA3.1-PELATON was transfected into GBM U251 cells,
which is a p53 mutant-type GBM cell line with lower levels of
PELATON expression (Supplementary Figure 3D), and
PELATON was knocked down in PG-3 cells, which are
primary cultured p53 mutant-type GBM cells with high levels
of PELATON expression (Supplementary Figure 3E). We found
that the overexpression of PELATON inhibited ACSL4
expression and promoted SLC7A11 expression in U251 cells
TABLE 1 | Screening of 12 LncRNAs and 13 mRNAs associated with Ferroptosis.

RNA Gene
abbreviation

Full name NCBI Entrez Gene Ensembl

LncRNA LINC01480 Long Intergenic Non-Protein Coding RNA 1480 101927931 ENSG00000270164
PELATON Plaque Enriched LncRNA In Atherosclerotic And Inflammatory Bowel Macrophage Regulation 100506115 ENSG00000224397
AC018755.4 NA NA ENSG00000273837
LINC01150 Long Intergenic Non-Protein Coding RNA 1150 101927624 ENSG00000229671
AL355922.1 NA NA ENSG00000136315
AL161785.1 NA NA ENSG00000224307
AC090559.1 NA NA ENSG00000255197
PCED1B-AS1 PCED1B Antisense RNA 1 100233209 ENSG00000247774
AC138207.5 NA NA ENSG00000265743
AC083799.1 NA NA ENSG00000203644
AL354919.2 NA NA ENSG00000254545
LINC01736 Long Intergenic Non-Protein Coding RNA 1736 101927532 ENSG00000228058

mRNA BACH1 BTB Domain And CNC Homolog 1 571 ENSG00000156273
TLR4 Toll Like Receptor 4 7099 ENSG00000136869
ALOX5 Arachidonate 5-Lipoxygenase 240 ENSG00000012779
ATF3 Activating Transcription Factor 3 467 ENSG00000162772
TGFBR1 Transforming Growth Factor Beta Receptor 1 7046 ENSG00000106799
CYBB Cytochrome B-245 Beta Chain 1536 ENSG00000165168
NCOA4 Nuclear Receptor Coactivator 4 8031 ENSG00000266412
SAT1 Spermidine/Spermine N1-Acetyltransferase 1 6303 ENSG00000130066
HMOX1 Heme Oxygenase 1 3162 ENSG00000100292
CDKN1A Cyclin Dependent Kinase Inhibitor 1A 1026 ENSG00000124762
CD44 CD44 Molecule (Indian Blood Group) 960 ENSG00000026508
ZFP36 ZFP36 Ring Finger Protein 738 ENSG00000128016
JUN Jun Proto-Oncogene, AP-1 Transcription Factor Subunit 3725 ENSG00000177606
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(Figures 3D, F), whereas knockdown of PELATON promoted
ACSL4 expression and inhibited SLC7A11 expression in PG-3
cells (Figures 3E, G). In wild-type p53 primary cultured GBM
PG-1 cells, PELATON inhibited the expression of BACH1 and
CD44 (Supplementary Figures 3F, H), but PELATON had no
effect on the expression of GPX4, BACH1 and CD44 in the p53
mutant GBM cells, such as PG-3 and PG-2 (Figures 3D–G and
Supplementary Figures 3G, I), suggesting that the mutant site of
P53 may affect the binding of P53 and target genes. In addition,
in mutant p53 GBM cells, we also found that the overexpression
of PELATON inhibited the expression of the ferroptosis-driven
gene COX2 (Figures 3D, F), and knockdown of PELATON
promoted the expression of COX2 (Figures 3E, G).

Bioinformatics correlation analysis showed that PELATON
was negatively correlated with p53 (Supplementary Figure 4A),
and wild-type or mutant P53 in GBM patients did not affect
PELATON expression (Supplementary Figure 4B). Further
results showed that PELATON inhibited the expression of
wild-type p53 in GBM PG-1 cells but had no effect on mutant
p53 in GBM PG-2 and PG-3 cells (Supplementary Figures 3H,
Frontiers in Oncology | www.frontiersin.org 782
I). In wild-type p53 GBM PG-1 cells, simultaneous
overexpression of PELATON and P53 inhibited PELATON’s
regulation of BACH1 and CD44 (Supplementary Figure 4C).
Further research and bioinformatics prediction found that
PELATON and P53 can form a complex through the RNA-
binding protein EIF4A3, which suggests a possible mechanism
by which PELATON mediates ferroptosis in p53 wild-type or
mutant GBM cells (Figure 3H and Supplementary Tables 2, 3)
(48). The above data suggested that PELATON suppressed the
expression of ferroptosis driver genes and promoted the
expression of ferroptosis suppressor genes, suggesting that
PELATON may be a ferroptosis suppressor.

PELATON Is a Novel Ferroptosis
Suppressor in GBM
Transmission electron microscopy observation showed that
mitochondria decreased, the cell membrane density increased,
and cristae decreased or even disappeared after PELATON was
knocked down in PG-3 primary GBM cells, whereas pcDNA3.1-
PELATON U251 cells had a relatively normal mitochondrial
A

B

D

E F

C

FIGURE 2 | Ferroptosis risk prognosis model with NCOA4 and PELATON. The distribution of risk factors (A, B), Kaplan–Meier survival analysis (C), and time-dependent
ROC curves at 1, 3, and 5 years (D) between patients at high and low risk based on the NCOA4 and PELATON prognostic models in the TCGA discovery set. (E)
Nomogram integrating the ferroptosis risk score, age, sex, original subtype and IDH status. (F) Calibration curve for predicting OS at 1, 2 and 3 years.
April 2022 | Volume 12 | Article 817737

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fu et al. LncRNA PELATON, a GBM Ferroptosis Suppressor
morphology (Figures 4A, B). The increase in reactive oxygen
species and divalent iron ions is a sign of ferroptosis. By
determining the levels of ROS and divalent iron ions, we found
that knockdown of PELATON PG-3 in primary GBM cells
promoted the production of ROS and induced the levels of
divalent iron ions (Figures 4C, E), even after treatment of
GBM cells with the ferroptosis inducer erastin (10 mM) for
4 h, and the opposite effect was observed in pcDNA3.1-
PELATON U251 cells (Figures 4D, F).

PELATON Promotes GBM Cell Phenotypes
Although there is a known relationship between NCOA4 and
ferroptosis (29, 49, 50), there is no information about PELATON
in ferroptosis. PELATON is a long intergenic nonprotein coding
RNA1272 (also known as LINC01272). Few studies have
Frontiers in Oncology | www.frontiersin.org 883
indicated that it promotes cancer cell migration and invasion,
such as gastric cancer (51, 52), colorectal cancer (53), and non-
small-cell lung cancer (54), but there is no report in GBM.
PELATON showed significantly higher expression in GBM
tissues and primary GBM cells, which were named PG-2, PG-
3, PA-2, and PA-3 (42), and was mainly located in the plasma
membrane of GBM cells (Supplementary Figure 5A and
Figures 5A–C). Patients with the highest 20% PELATON
expression had significantly shorter overall survival and free-
progression survival (FPS) than the remaining GBM patients
(Supplementary Figures 5B, C).

The CCK8 assay showed that pcDNA3.1-PELATON
increased U251 cell proliferation, comparable with that of
pcDNA3.1 U251 cells, which have relatively low expression
PELATON . Knockdown of PELATON inhibited the
A B

D E

F G

H

C

FIGURE 3 | PELATON in the ROS-mediated ferroptosis pathway by mutant p53. (A) GO analysis of biological processes related to PELATON in GBM. (B) Top 20
genes involved in ROS biosynthesis that are differentially expressed between GBM and normal brain tissue. (C) Gene mutation or overexpression in human GBM.
RT-qPCR analysis of ALSL4, COX2, SLC7A11 and GPX4 when PELATON was overexpressed (D) or knocked down (E) in glioblastoma cells (*p< 0.05, **p < 0.01;
***p < 0.001; ns, not significant). Datas were mean ± SEM for three independent experiments. western blot analysis of ALSL4, COX2, SLC7A11 and GPX4 when
PELATON was overexpressed (F) or knocked down (G) in glioblastoma cells. independent experiment was repeated for three times. (H). The PELATON-EIF4A3-P53
complex was detected by two-step immunoprecipitation and RT–PCR, Datas were mean ± SEM for three independent experiments.
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proliferation of PG-3 primary GBM cells, which have relatively
high PELATON expression (Figure 5D). Wound-healing and
transwell assays showed that pcDNA3.1-PELATON promoted
active migration and invasion in U251 cells and vice versa
(Figures 5E, F and Supplementary Figures 5D, E). We also
assessed the effect of PELATON on GBM cell proliferation in the
presence of the ferroptosis inducer erastin, in which ROS- and
iron-dependent signalling is required for erastin-induced
ferroptosis. pcDNA3.1-PELATON U251 cells and PG-3
primary GBM cells with high PELATON expression resisted
ferroptosis induced by erastin in a concentration- and time-
dependent manner, whereas knockdown or low PELATON
expression promoted ferroptosis induced by erastin to inhibit
PG-3 cell proliferation (Figure 5G).
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DISCUSSION

PELATON is a long noncoding RNA also known as long
intergenic nonprotein coding RNA 1272 (LINC01272), small
integral membrane protein 25 (SMIM25), or GC-related lncRNA
1 (GCRL1). A handful of reports indicated that PELATON has
dual functions as an oncogene or a suppressor gene by acting as a
miRNA sponge (53, 55, 56). PELATON promotes metastasis of
colorectal cancer or gastric cancer by targeting the miR-876/
ITGB2 axis (53) or miR-885-3p/CDK4 (52). PELATON also
inhibits lung cancer and non-small cell lung cancer by
targeting the miR-7-5p/CRLS1 axis or by inhibiting miR-1303
(52, 57). Our research first showed that PELATON is highly
expressed in gliomas and functions as an oncogene to promote
A
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FIGURE 4 | PELATON is a novel ferroptosis suppressor in GBM. The effect of downregulation (A) or upregulation (B) of PELATON on the morphology of
mitochondria in glioblastoma cells assayed by transmission electron microscopy, independent experiment was repeated for three times. The effect of downregulation
(C) or upregulation (D) of PELATON on the levels of iron in glioblastoma cells (**p < 0.01; ***p < 0.001; ns: not significant), Datas were mean ± SEM for three
independent experiments. The effect of downregulation (E) or upregulation (F) of PELATON on the levels of reactive oxygen species in glioblastoma cells (*p < 0.05;
ns, not significant), Datas were mean ± SEM for three independent experiments. Fluorescence intensity of the active oxygen probe photographed by laser confocal
microscopy (left) and quantification of the fluorescence intensity of the reactive oxygen species probe (right).
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the proliferation and invasion of P53 mutant-type GBM cells by
inhibiting ferroptosis.

Ferroptosis is an iron-dependent PCD in which cells die
because of the toxic accumulation of lipid ROS (58). In cancer,
the goal of treatment is to activate ferroptosis and cause the death
of tumour cells that are resistant to other PCDs. An increasing
number of studies have identified several drivers and suppressors
of ferroptosis. Zhou et al. annotated the genes in 784 articles on the
ferroptosis FerrDb website and found 253 regulatory factors,
including 108 drivers, 69 suppressors, 35 inducers, and 41
inhibitors (46). It is expected that interfering with ferroptosis-
Frontiers in Oncology | www.frontiersin.org 1085
related drivers and suppressors, inducers and inhibitors will
provide new approaches for the treatment of cancer and
metabolic diseases (23–25, 30). The common ferroptosis drivers
are PTGS2/COX2 (59), ACSL4 (1), NCOA4, BECN1 (60), BACH1
and P53 (58, 61). P53 promotes ferroptosis by inhibiting the
expression of SLC7A11 or increasing the expression of SAT1,
GLS2, and PTGS2. P53 also inhibits ferroptosis by directly
inhibiting the activity of dipeptidylpeptidase-4 or by inducing
the expression of cyclin-dependent kinase inhibitor 1A (61).
Ferroptosis suppressors have also achieved good research results,
such as nuclear factor, erythroid 2-like 2 (NRF2) (20, 62–66),
A B

D E

F

G

C

FIGURE 5 | PELATON promotes GBM cell phenotypes. Fluorescence in situ hybridization of PELATON in GBM tissues (A), normal brain tissues (B), and GBM cells
(C). (D) CCK8 analysis of PELATON knockdown or overexpression on glioblastoma cell proliferation (*p < 0.05; ***p < 0.001), independent experiment was repeated
for three times. (E) Quantification of the migration ability of PG-3 (left) and U251 (right) cells after interference or overexpression with PELATON (*p < 0.05; ns, not
significant), Datas were mean ± SEM for three independent experiments. (F) Quantification of the number of invasive cells after knockdown (left) or overexpression
(right) of PELATON in glioblastoma cells (*p< 0.05), Datas were mean ± SEM for three independent experiments. (G) CCK8 analysis of PELATON overexpression or
knockdown on proliferation and sensitivity to the ferroptosis inducer erastin (*p< 0.05, ***p < 0.001), Datas were mean ± SEM for three independent experiments.
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SLC7A11 (15), CD44 and GPX4 (13, 18, 58, 61). The cystine/
glutamate antiporter SLC7A11 (also known as xCT) is used to
uptake cysteine for glutathione biosynthesis and antioxidant
defence. SLC7A11 is a ferroptosis suppressor gene that is
overexpressed in many human cancers (16). Drugs that target
SLC7A11 and block cystine uptake can cause ferroptosis. SLC7A11
is regulated by the transcription factors NRF2, ATF4, and P53
(61). GPX4, a type of glutathione peroxidase (GPX), is a key
inhibitor of ferroptosis. Overexpression of GPX4 endows tumour
cells with resistance to ROS-induced cell death, while silencing
GPX4 sensitizes tumour cells (16, 64, 67). In our study, we first
confirmed that PELATON is a novel ferroptosis suppressor that
functions as a ferroptosis inhibitor mainly by mutant p53
mediating the ROS ferroptosis pathway. In p53 mutant-type
GBM cells, PELATON inhibits the production of ROS, reduces
the levels of divalent iron ions, promotes the expression of
SLC7A11, and inhibits the expression of ACSL4 and COX2.
GBM cells with PELATON knockdown showed smaller
mitochondria, increased mitochondrial membrane density, and
decreased mitochondrial cristae. To explore the possible
mechanism between PELATON and P53, we found that
PELATON and P53 can form a complex through the RNA
binding protein EIF4A3 (PELATON- EIF4A3- P53). EIF4A3 is
reported to be a new anticancer target whose consumption or
inhibition will activate p53 and inhibit the growth of cancer cells.
PELATON may inhibit the RNA and protein expression of P53
through the PELATON-EIF4A3-P53 complex to inhibit GBM
ferroptosis, which suggests a possible mechanism by which
PELATON mediates ferroptosis in p53 wild-type or mutant
GBM cells.

It is well known that the resistance of cancer cells to
chemotherapy is a major obstacle in cancer treatment. Activation
of the ferroptosis pathway can induce cancer cell death, especially in
the case of drug resistance, and enhance the sensitivity of tumours to
chemotherapeutic drugs (68). Studies have shown that TMZ
combined with erastin can significantly improve antitumor
activity, which reflects the importance of ferroptosis in the
treatment of gliomas (31, 69, 70). Our experiments confirmed
that knockdown of PELATON enhanced the sensitivity of GBM
cells to erastin and inhibited the proliferation of tumour cells.
Overexpression of PELATON inhibited the effect of erastin on
glioma cells. It is suggested that interference with PELATON may
provide a new target for treating glioma patients.

Nowadays, many reports screened differentially expressed
genes of ferroptosis in the database, and then conduct
enrichment analysis, interactive network analysis, univariate
and multivariate Cox regression analysis to establish the
prognosis model to predict the overall survival time, tumour
immune microenvironment and immune cell infiltration (71–
73). However, the study of ferroptosis in GBM needs to be
further deepened. We not only screened 12 lncRNAs which
closely related to ferroptosis, but also proposed a ferroptosis
prognostic model with NCOA4 and PELATON for patients with
GBM, risk score = -0.69641*NCOA4+ 0.35167*PELATON. The
higher the risk score is, the greater the death rate among patients
with GBM. The survival rate of patients with GBM in the high-
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risk group was significantly lower than that in the low-risk group.
Compared with other methods that require multiple genes for
risk scoring to determine the survival of patients (74), we only
use two genes to predict the effect, which is relatively accurate,
predictive accuracy of the signature was 0.70, 0.74 and 0.75 at 1,
3, and 5 years.

In conclusion, we confirmed that PELATON is a new
ferroptosis suppressor and an oncogene and established a
prognostic model and diagram of ferroptosis in GBM patients
withNCOA4 and PELATON, provided that PELATON alleviates
ferroptosis driven by wild-type or mutant p53 and suppresses
wild-type or mutant p53-mediated GBM proliferation.
Knockdown of PELATON enhances the sensitivity to
ferroptosis inducers to inhibit GBM cell proliferation and
invasion. PELATON is an important target for the prognosis
and treatment of GBM.
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Supplementary Figure 1 | Ferroptosis-related gene clustering and identification in
GBM. Sample gene clustering to detect seven outliers (A). The FPI of gene clustering
was calculated (B). Set the soft-thresholding value to 4 (scale free R2 = 0.9, mean
connectivity=115.71) (C) and cut height to 0.25 (D). Intersection of ferroptosis driver
and suppressor gene sets in FerrDb. The enrichment results of the constructing
module in ferroptosis driver (E) and suppressor (F) gene sets (FDR<0.05). (F)
Intersecting genes between DEGs (left, 6093) of GBM and the red module (right,
1050); 610 overlapping genes were selected (| Log2 (fold change) | ≥ 1, and p < 0.05).

Supplementary Figure 2 | Ferroptosis-related gene identification of NCOA4 and
PELATON. (A) Results of the univariate Cox regression analyses of OS in the TCGA
cohort. Seven genes (PELATON, NCOA4, AL354919.2, HMOX1, AL355922.1,
CD44, and ALOX5) were identified. (B) LASSO coefficient plot of 25 genes (13
mRNAs and 12 lncRNAs) correlated with ferroptosis. (C) The optimal parameter (l)
was chosen by cross validation. The distribution of risk factors (D–E)., Kaplan–
Meier survival analysis (F), and time-dependent ROC curves at 1, 3, and 5 years (G)
between patients at high and low risk based on the NCOA4 and PELATON
prognostic models in the internal set GSE43378.

Supplementary Figure 3 | PELATON regulates BACH1 and CD44 in p53-
mediated ferroptosis. (A–C) KEGG analysis of the ferroptosis signalling pathway
related to PELATON in GBM. (D) The expression of PELATON in U251 cells after
treatment with 3.1 or 3.1-PELATON (***p < 0.001), Datas were mean ± SEM for three
independent experiments. (E) The expression of PELATON in PG-3 glioma primary
cells after treatment with siRNAs (si226, si342, and si478), Datas were mean ± SEM
for three independent experiments. (**p < 0.01). (F–G) RNA level changes of BACH1
Frontiers in Oncology | www.frontiersin.org 1287
and CD44 when PELATON was knocked down or overexpressed in glioblastoma
cells, Datas were mean ± SEM for three independent experiments. (*p < 0.05, ***p <
0.001, ns: not significant). (H–I) Protein level changes of BACH1, CD44 and P53
when PELATON was knocked down or overexpressed in glioblastoma cells,
independent experiment was repeated for three times.

Supplementary Figure 4 | Regulatory Relationship between PELATON and P53.
(A) Bioinformatics correlation between PELATON and P53. (B) The difference in
PELATON expression between wild-type and mutant P53 in GBM patients. (C)
western blot analysis of BACH1, CD44 and P53 when PELATON and P53 were
overexpressed in glioblastoma cells, independent experiment was repeated for
three times.

Supplementary Figure 5 | Association of PELATON expression between patient
prognosis and GBM cell phenotype. (A) RT-qPCR analysis of PELATON in glioma
primary cells (PG-1, PG-2, PG-3, PA-1, PA-2, PA-3) and glioma cell lines (U118,
U251). PG-1, PG-2, and PG-3 are primary cells from patients with glioblastoma,
and PA-1, PA-2, and PA-3 are primary cells from patients with astrocytoma. Datas
were mean ± SEM for three independent experiments. Kaplan–Meier curves
showing overall survival (B) and disease-free survival (C) of patients with GBM
stratified based on PELATON expression levels (p <0.05 p.adjust<0.25). (D) The
effect of PELATON overexpression or knockdown on the invasion ability of
glioblastoma cells (left), independent experiment was repeated for three times. (E)
Migration ability of PG-3 and U251 cells after interference or overexpression with
PELATON. Photos were taken at 0, 24, 48 and 72 hours, independent experiment
was repeated for three times.
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Neuroblastomas are the main extracranial tumors that affect children, while glioblastomas
are the most lethal brain tumors, with a median survival time of less than 12 months, and
the prognosis of these tumors is poor due to multidrug resistance. Thus, the development
of new therapies for the treatment of these types of tumors is urgently needed. In this
context, a new type of cell death with strong antitumor potential, called ferroptosis, has
recently been described. Ferroptosis is molecularly, morphologically and biochemically
different from the other types of cell death described to date because it continues in the
absence of classical effectors of apoptosis and does not require the necroptotic
machinery. In contrast, ferroptosis has been defined as an iron-dependent form of cell
death that is inhibited by glutathione peroxidase 4 (GPX4) activity. Interestingly, ferroptosis
can be induced pharmacologically, with potential antitumor activity in vivo and eventual
application prospects in translational medicine. Here, we summarize the main pathways of
pharmacological ferroptosis induction in tumor cells known to date, along with the
limitations of, perspectives on and possible applications of this in the treatment of
these tumors.

Keywords: ferroptosis, cancer cell, brain tumors, GPX4, system x−c, lipid ROS, iron
INTRODUCTION

Cancer is one of the most frequent pathologies worldwide; according to the World Health
Organization (WHO) statistics, there were 18.1 million new cases and 9.6 million deaths related
to this disease in 2018 (https://www.who.int/news-room/fact-sheets/detail/cancer). Cancers are
difficult to treat because they employ multiple molecular mechanisms to evade different types of cell
death, such as apoptosis, due to their overexpression of antiapoptotic proteins such as Bcl-2 and Bcl-
xL and low expression of proapoptotic factors such as Bax, Bim and Puma (Figures 1A, B) (1). At
the same time, it is known that the low efficacy of apoptosis induction with conventional therapies is
due to the robust antioxidative defenses of tumor cells (2). Among the main antioxidants that confer
apoptosis resistance on tumor cells is glutathione (GSH) (3, 4).

Due to the high resistance of tumors to apoptosis, the induction of necroptosis was postulated to
be a potential therapeutic approach (5, 6). In contrast to apoptosis, which does not generate an
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Ferrada et al. Ferroptosis in Neuroblastoma and Glioblastoma
inflammatory response, necroptosis induces death by cellular
explosion, which generates a microenvironment of
proinflammatory signals that could favor tumor death (5, 6).
Thus, necroptosis, a form of regulated necrosis dependent on
RIPK1, RIPK3 and MLKL, was postulated as a potential therapy
Frontiers in Oncology | www.frontiersin.org 291
for cancer (Figures 1A, B) (7–9). Unfortunately, several tumor
cells evade necroptosis efficiently by inhibiting the expression of
RIPK3 via epigenetic control mechanisms (10–12).

In line with this idea, new and emerging forms of regulated
cell death with characteristics of necrotic disintegration have
A

B

FIGURE 1 | Survival programs in normal and tumor cells. (A) Under physiological conditions, normal cells maintain stable levels of death-executing proteins while
maintaining a constant balance of nutrients and trace elements, promoting cell survival. (B) To avoid death, tumor cells activate various mechanisms, such as decreasing the
expression of proapoptotic and necroptotic genes while increasing antioxidant defense by increasing GSH synthesis and GPX4 levels. In this way, ROS are efficiently
eliminated, avoiding the damage produced by the accumulation of iron due to low FPN levels. This death evasion program makes many types of cancer highly difficult to
treat, as classical apoptosis induction therapies fail because the machinery for the execution of this pathway is not available. FPN, Ferroportin; TfR1, Transferrin Receptor
1; DMT1, Divalent Metal Transporter 1; Cys2, Cystine; Cys, Cysteine; LIP, Labile Iron Pool.
June 2022 | Volume 12 | Article 858480
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been described and postulated as treatments for cancer; among
these, ferroptosis is highlighted (13–19). Here, we describe the
main pharmacological targets for the induction of ferroptosis
with emphasis on the treatment of brain tumors.
OVERVIEW OF THE INDUCTION OF
FERROPTOSIS IN CANCER CELLS:
TARGETING SYSTEM x−c
System x−c is an antiporter that imports cystine and exports
glutamate from the cell in a 1:1 ratio (Figures 1A, B). System x−c
is composed of 2 subunits: the SLC7A11 subunit (also called
xCT), with a transport function and solute carrier family 3
member 2 (SLC3A2; also called CD98hc or 4F2hc), a
chaperone with a plasma membrane anchoring function (20–
23). For the purposes of this review, we refer only to the
SLC7A11 subunit, given the importance of cystine transport to
the cell (Figures 1A, B). In this context, the uptake of cystine into
the cell is essential to maintain the redox state, since the reduced
form of this amino acid (nonessential) is necessary for the
biosynthesis of the main intracellular antioxidant, glutathione
(GSH) (Figure 1A). Interestingly, most cancer cells overexpress
SLC7A11 (22), suggesting a strong dependence on GSH to
maintain the levels of controlled reactive oxygen species (ROS)
(Figure 1B); thus, SLC7A11 is an potential therapeutic target.
Interestingly, in 2012, it was determined that the small molecule
erastin (13, 24) targeted SLC7A11 for inhibition, which led to
depletion of GSH, inducing a type of death dependent on iron
and lipid ROS, called ferroptosis (14). This type of cell death was
inhibited by radical trapping antioxidants (RTAs) such as
Ferrostatin-1 (Fer-1), lipophilic antioxidants such as vitamin E
or iron chelators such as Desferoxamine (DFO) (18, 25), with
potential application in the treatment of cancer and other
pathologies (Figure 2B) (26).

Thus, when tumor cells are incubated with erastin, cell death
is induced independent of caspases (13) or mitochondrial
oxidative stress but in a manner dependent on iron, ROS and
lipid ROS (14). Even though there is evidence that mitochondria
could be involved, regulating the “avidity” for ferroptosis
induction (27–29), they are not necessary for activation of this
pathway (30). Inhibition of system x−c results in intracellular
depletion of cysteine because extracellular cystine (Cys2) is
imported through SLC7A11 and reduced intracellularly to
cysteine (Figure 2B) (16, 31). Intracellular cysteine is necessary
for the biosynthesis of GSH (16, 32). In turn, GSH is a cofactor
for the selenoprotein GPX4, a hydroperoxidase responsible for
detoxifying toxic hydroperoxides to alcohols (15). Therefore,
erastin triggers indirect inhibition of GPX4 activity mediated by
GSH depletion (Figure 2B).

Despite this apparent dependence of cells on system x−c ,
animals with knockout of the slc7a11 gene are fertile and
develop completely normally (33), which prompted the
consideration of SLC7A11 inhibition as an eventual cancer
therapy with few adverse effects (Figure 2A).
Frontiers in Oncology | www.frontiersin.org 392
Thus, although many tumor cells can evade apoptosis and
necroptosis due to their low expression of key genes for the
activation of these pathways (Figure 1B) (1, 10, 11), RNA-seq
data show that most cancer cells have high expression levels of
SLC7A11 and GPX4 (https://portals.broadinstitute.org/ccle).
Similarly, tumor cells are “addicted” to iron because they have
decreased expression of ferroportin (FPN), the iron efflux pump,
and overexpress the transferrin receptor (TfR1), the iron importer
(Figure 1B) (34–37). Indeed, excess iron contributes to both tumor
initiation and tumor growth (34). These observations indicate that
SLC7A11, GPX4, iron and ferroptosis are potential therapeutic
targets for cancer (Figures 2B, 3). However, there are cancer cells
that do not express FPN (MCF-7 cells, among others) and therefore
accumulate excess intracellular iron but are still resistant to
ferroptosis (38, 39). An explanation for this phenomenon is the
recent finding that in addition to GPX4 and iron, acyl-CoA
synthetase long-chain family member 4 (ACSL4) is another
component that dictates sensitivity to ferroptosis (39).
Reinforcing this concept, ACSL4 is a key protein because it
incorporates long polyunsaturated fatty acids (PUFAs) into
membranes, which allows lipid peroxidation to proceed and
ferroptosis to be carried out (39–41). In another context, the
erastin analog imidazole ketone erastin (IKE) has been shown to
be metabolically stable and a potent inducer of ferroptosis in tumor
cells in vivo (19, 42). Thus, induction of ferroptosis in tumor cells
through inhibition of SLC7A11 may be a promising treatment for
use in patients.

Interestingly, high doses of glutamate can inhibit system x−c ,
emulating the effects induced by erastin (14, 43, 44). However, it
is known that the responses to glutamate treatment are diverse
and can induce cell death by apoptosis or necroptosis (45, 46)
and eventually by other pathways of regulated necrosis. Thus,
although high doses of glutamate can inhibit system x−c , they are
not necessarily a specific inducer of ferroptosis in tumor cells but
could induce ferroptosis in normal tissues under pathophysiological
conditions (44, 47–49).

Ferroptosis Beyond the Inhibition
of System x−c
Although the concept of ferroptosis was initially described in
response to treatment with erastin, various ferroptosis inducers
(FINs) have been developed to act independently of cystine
uptake and GSH levels. FINs are currently classified into four
classes (I-IV) (40, 50): class I FINs induce GSH depletion
(Figure 2B), class II FINs inhibit GPX4 (Figure 3), class III
FINs deplete GPX4 (Figure 4), and class IV FINs act through
iron oxidation/iron overload (Figure 5) (summarized in
Table 1). Interestingly, two research groups recently described
a new player in the regulation of ferroptosis in parallel:
ferroptosis suppressor protein 1 (FSP1) (Figure 4) (54, 55).
Previously called apoptosis-inducing mitochondria-associated
factor 2 (AIFM2), FSP1 is a flavoprotein with extramitochondrial
oxidoreductase activity that can be recruited into the plasma
membrane due to myristoylation. FSP1 in the plasma membrane
catalyzes the conversion of ubiquinone (coenzyme Q10, CoQ10) to
ubiquinol at the expense of NADPH (56).
June 2022 | Volume 12 | Article 858480
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Thus, the FSP1-ubiquinone-ubiquinol axis inhibits lipid
peroxidation and ferroptosis in parallel to GPX4 and
independent of GSH levels (54, 55). An inhibitor of FSP1
(iFSP1) (54) that may stimulate the induction of ferroptosis
Frontiers in Oncology | www.frontiersin.org 493
was identified by drug screening. In this context, the iFSP does
not fit within any class of FINs (I-IV) because it does not target
GPX4 or iron metabolism. Thus, we suggest that FINs that do
not target GPX4 or iron metabolism but, as their mechanism
A

B

FIGURE 2 | System x−c dependence in cancer cells. Under physiological conditions, the nonessential amino acid cysteine is present as cystine due to the extracellular
oxidative environment. To maintain a stable intracellular cysteine level, the presence of the cystine/glutamate antiporter (system x−c ) is necessary. Interestingly, genetic
deletion of system x−c does not produce any damage in animals, suggesting that normal cells do not depend on this antiporter to maintain the intracellular cysteine level.
In line with this idea, compensatory mechanisms, such as the transsulfuration pathway, may exist for the recovery of the intracellular cysteine level (A). Conversely, it has
been widely described that tumor cells have a high dependence on system x−c for the cellular uptake of cysteine (B). Pharmacological inhibition of this antiporter results in
the depletion of intracellular cysteine, inducing an abrupt decrease in the GSH level, which ultimately triggers inactivation of GPX4, the main hydroperoxidase in the cell.
Inactivation of GPX4 due to inhibition of system x−c results in an overwhelming overload of lipid ROS that ultimately induces tumor death by ferroptosis (B). Interestingly,
it has been determined that inhibition of system x−c can induce tumor death both in vitro and in vivo, identifying this antiporter as a potential therapeutic target for cancer.
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involves CoQ10, can be classified into class V (Figure 4). Because
FIN56 depletes GPX4 and CoQ10 (52), this compound has a
dual classification and should also be reclassified into class V.
Despite the existence of various ferroptosis inducers, not all of
them have therapeutic potential in vivo (40). However, it has
been shown that the use of class IV inducers could have potential
therapeutic effects in vivo to treat high-risk neuroblastomas (17).
INDUCTION OF CELL DEATH IN
NERVOUS TISSUE

Normal adult neurons are equipped to survive because they
express low levels of proapoptotic proteins and high levels of
antiapoptotic proteins (57, 58). Furthermore, it has been shown
Frontiers in Oncology | www.frontiersin.org 594
that as neurons mature, they lose chemosensitivity to
staurosporine and doxorubicin (58). This evidence suggests
that brain tumors would be highly resistant to conventional
antineoplastic agents, given the preconditioning of this type of
cell to efficiently evade apoptosis. At the same time, it has been
shown that tumor cells of astroglial origin (T98G, U251 and
A172) efficiently evade necroptosis induced by chemotherapeutic
agents because they do not express RIPK3 due to epigenetic
modifications (10, 11).

Thus, the development of new therapies for the treatment of
brain tumors that do not involve the induction of apoptosis or
necroptosis as the main strategy is urgently needed. In this sense,
in recent years, the induction of ferroptosis has gained great
relevance as a possible therapeutic approach to induce cell death
in brain tumors (17, 50, 59, 60). Considering this concept in the
FIGURE 3 | GPX4 as a target for ferroptosis induction. Unlike class I FINs, which indirectly inactivate GPX4, class II FINs such as RSL-3 directly inhibit GPX4,
triggering ferroptosis independent of the GSH level. Direct inhibition of GPX4 results in rapid induction of ferroptosis, which can be inhibited by RTA or iron chelators.
However, cell death is not inhibited by the recovery of cysteine uptake.
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following sections, we focus on the induction of ferroptosis in
neuroblastoma (NB) and glioblastoma multiforme (GBM).

Neuroblastoma
NB is the most common pediatric extracranial tumor,
accounting for more than 15% of all cancer deaths in children
(61). NB is classified as low-, intermediate- and high-risk (62).
While low-risk and intermediate-risk NBs generally have a good
prognosis given that they develop into benign ganglioneuromas
or enter remission due to surgical or pharmacological treatment,
high-risk NBs have few treatment options (17, 62, 63). The main
diagnostic characteristics of high-risk NB are that it appears after
18 months of age, has MYCN amplification, or exhibits
activation of telomere maintenance mechanisms (62, 63). In
line with this observation, current therapies against the NB
include treatment with cycles of cisplatin, etoposide,
vincristine, doxorubicin, and cyclophosphamide (64), which
Frontiers in Oncology | www.frontiersin.org 695
are preferential inducers of apoptosis. However, this type of
pharmacological treatment generates multidrug-resistant clones,
which greatly hinders the eradication of this type of tumor and
favors its relapse (64).

Classical Pharmacological Induction of
Ferroptosis in Neuroblastoma
Considering that classical NB eradication therapies generally fail,
it has been proposed that the induction of ferroptosis could be a
feasible therapeutic approach. In this context, when the
sensitivity of NB cell lines to classic ferroptosis inducers such
as erastin or RSL-3 was studied (Figures 2B, 3), it was
determined that most of the models (SHSY-5Y, SK-N-SH,
NB69, SK-N -DZ, NLF, and CHP-134 cells, among others) are
highly insensitive to SLC7A11 or GPX4 inhibition (17, 65, 66).
At the same time, there is very little information on the potential
use of iFSP1 as a possible strategy against NB, since this
FIGURE 4 | Degradation of GPX4/CoQ10 or inhibition of FSP1 induces ferroptosis in cancer cells. Class III FINs are molecules that act independently of system x−c
activity, the GSH level and direct inhibition of GPX4. These molecules, including FIN56, induce degradation of GPX4, which leads to ferroptosis induction. In addition
to degrading GPX4, FIN56 also induces degradation of coenzyme Q10 (ubiquinone) by altering the mevalonate pathway. The importance of coenzyme Q10 degradation
in the execution of ferroptosis is assumed because the function of a protein called FSP1 (a class V FIN) was recently described (33, 34). In this scenario, FSP1 converts
extramitochondrial ubiquinone (the oxidized form of coenzyme Q10) to extramitochondrial ubiquinol (the reduced form of coenzyme Q10), and ubiquinol acts as an
endogenous RTA that inhibits ferroptosis independent of the presence of GPX4. In this context, by inducing coenzyme Q10 degradation, FIN56 can inhibit the effects
of FSP1 to confer resistance to ferroptosis. On the other hand, the inhibitor of FSP1 (iFSP1) controls ferroptosis without degrading CoQ10.
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compound has only been tested in the IMR-5/75 cell line without
major effects on viability (54). Based on this background, the
scientific community has focused on the search for new strategies
for ferroptosis induction in NB, not through the classical targets
but instead through the use of combined therapies or
noncanonical inducers of ferroptosis, as potential treatments
for high-risk NB (17, 67).
Frontiers in Oncology | www.frontiersin.org 796
TYPICAL AND ATYPICAL PATHWAYS TO
INDUCE FERROPTOSIS IN
NEUROBLASTOMA

Because NB generally presents resistance to Erastin and RSL-3, it
is necessary to search for new ferroptosis inducers. To this end, it
was recently determined that treatment with the natural
FIGURE 5 | Iron overload or peroxidation induces ferroptosis in tumor cells. Class IV FINs are ferroptosis inducers that directly involve metabolism and iron levels in
the cell. On the one hand, we have found synthetic molecules, such as FINO2, that alter the metabolism of iron, favoring its intracellular oxidation. In addition to promoting
the oxidation of iron, FINO2 indirectly inhibits the activity of GPX4. On the other hand, when the labile iron pool (LIP) is increased by exogenous treatment with iron or iron
nanoparticles, an overload of this metal is generated, which induces lipid peroxidation without the need for GPX4 inhibition. Class IV FINs are fairly attractive agents for the
induction of ferroptosis because tumor cells are addicted to iron due to their low ferroportin (FPN) expression and high levels of transferrin receptor (TfR) expression, which
favors an increase in the LIP. In this context, treatment with exogenous iron (e.g., FeCl2) in combination with FINO2 would eventually be a potent inducer of ferroptosis in
tumor cells. Unfortunately, the development of FINO2 analogs for in vivo use is necessary to test whether the increases LIP and iron peroxidation are synergistic to
specifically kill tumor cells.
TABLE 1 | Principal Ferroptosis Inducers.

FIN Class Target Example

I System x−c Erastin, Sulfasalazine, Glutamate (14); IKE (19);
II Inhibition of GPX4 RSL-3 (15); ML210, ML162 (51)
III Depletion of GPX4 FIN56 (52), Statins (51), withaferin A (17)
IV Oxidation/Overload of Iron FINO2 (53); (NH4)2Fe(SO4)2 (17); FeCl2 (48)
V Inhibition FSP1/Depletion CoQ10 iFSP1 (54); FIN56 (52)
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compound withaferin A (WA) can eradicate high-risk NB (17)
by inducing ferroptosis through the canonical pathway, this
means with GPX4 as a direct target. On the other hand, via a
noncanonical pathway, where keap1 is the target, thus favoring
an increase in labile iron pool (LIP) (17). This dual behavior of
WA, similar to that of a mixture of FIN56 and FINO2 (Figures 4, 5)
(52, 53) (compounds that have not been tested in NB models),
seems to render it a promising drug therapy for NB, since to date, it
is unknown whether in vivo application of FINO2 is possible (40).
Fortunately, WA has been shown to be effective in promoting the
eradication of NB in vivo (17, 50). Interestingly, even though WA
has been shown to induce iron-dependent lipid peroxidation and
GPX4 depletion, Fer-1 treatment does not completely rescue NB
cells from cell death (17). This suggests two alternatives; the first is
that WA induces other types of ferroptosis-independent death in
NB. However, WA induces lipid peroxidation, which is completely
inhibited by treatment with DFO and partially inhibited by Fer-1,
suggesting a strong iron dependence (17).

In this context, as a second alternative, the authors suggest
that WA could eventually favor an overload of lipid ROS of
various origins that may not necessarily be inhibited by Fer-1,
such as lipid ROS generated by H2O2 (17). It is important to note
that Fer-1 does not inhibit death induced by H2O2 treatment
(14) or by extracellular H2O2 production mediated by
pharmacological doses of ascorbic acid (68), because these
treatments preferentially induce conventional necrosis.
However, it has recently been determined that NADPH-
cytochrome P450 reductase (POR) favors the induction of
ferroptosis due to the cytoplasmic production of H2O2 (69),
which is inhibited by Fer-1 or by the intracellular expression of
catalase (69) but thus far, this finding is limited to cervical cancer
cells (HeLa).

In this context, and considering the particularities of NB cells,
it is likely that it is possible to classify the cell death induced in
this type of tumor (or others) as ferroptosis, even when it is not
inhibited by Fer-1, if it has other hallmarks, such as lipid
peroxidation and iron dependence. Indeed, it has recently been
determined that inhibition of lipid peroxidation mediated by
liproxstatin-1 treatment is not sufficient to rescue SLC7A11 KO
melanoma cells from death (70). Furthermore, it has also been
shown that there is strong induction of lipid peroxidation during
the activation of noncanonical pyroptosis that is not necessarily
related to the direct execution of this death pathway (71). This
evidence could limit lipid peroxidation as an exclusive hallmark
of ferroptosis, driving the definition of ferroptosis toward a type
of death dependent on lipid peroxidation (72).
DOES TARGETING SLC7A11-GSH AXIS IN
NEUROBLASTOMA INDUCE
FERROPTOSIS?

In another context and emphasizing that MYCN is a protein
overexpressed in NB, recent advances have been achieved to
determine that MYCN favors an increase in intracellular iron per
se, which could favor the pharmacological sensitization of NB to
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ferroptosis induction (66, 67). Thus, the authors determined that
inhibition of SLC7A11 with sulfasalazine (14) or inhibition of
GSH synthesis with Buthionine sulfoximine (BSO) favors the
induction of ferroptosis in models of NB with MYCN
amplification (67). This in vitro evidence from patient samples
is closely related to an eventual clinical application, since the
toxicity of BSO has been evaluated in a phase I clinical trial, as a
possible treatment for NB in conjunction with other drugs (73).
Despite being relatively well tolerated, the treated patients
presented vomiting/nausea as adverse effects (73). However,
there is also evidence indicating that the administration of
BSO can trigger kidney failure in animal models (74) and
patients (75). Thus, special precautions must be taken when
trying to directly extrapolate in vitro findings to in vivo models
or patients.

Curiously, some of the NB cell lines used in this study show
partial resistance to death induced by the SLC7A11 inhibitor and
GSH depletor erastin (17), which leads to an intriguing question:
why are some NB cell lines resistant to erastin but sensitive to
inhibition of GSH synthesis or inhibition of SLC7A11 mediated
by sulfasalazine? In this scenario, it is important to highlight that
in lung adenocarcinoma cells, it was recently determined that the
SLC7A11 inhibitor HG106 preferentially induces GSH depletion
and cell death by apoptosis, which is inhibited by the recovery of
cysteine uptake, but without eventual induction of ferroptosis,
since DFO treatment does not prevent cell death (76). This
evidence suggests that although HG106 has the same target as
erastin (SLC7A11), there are other off-targets that favor the
induction of one type of death over another (apoptosis or
ferroptosis) or the production of particular ROS that
trigger differential cellular responses (22). Despite these
pharmacological dichotomies, which induce different types of
death even when the target is the same, or which have differential
action mechanisms in response to treatment with SAS, erastin
(IKE) or HG106, the message that remains the same: SLC7A11 is
a potent therapeutic target for cancer (Figure 2B).
IRON OVERLOAD AS A POSSIBLE
TREATMENT FOR NEUROBLASTOMA

It was shown that NB cells with MYCN amplification are
particularly sensitive to the induction of death mediated by
treatment with auranofin (a rheumatoid arthritis drug) (67).
Although the authors attribute the effect of auranofin to the
induction of ferroptosis, treatment with Fer-1 only partially
rescues cells from cell death, even when there is an increase in
lipid peroxidation, and treatment with DFO effectively prevents
cell death and ROS production (67). Again, this finding leads us
to conclude that apparently in NBs, the lipid ROS generated are
specific to this tumor type or there are parallel mechanisms of
cell death, since Fer-1 is not capable of completely inhibiting cell
death, even when the evidence points to iron and lipid ROS
dependency. Accumulating evidence, the literature indicates that
iron accumulation and increased LIP are strong candidates for
exploiting the pharmacological sensitivity of high-risk NB to
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ferroptosis induction (Figure 5) (17, 50, 66, 67, 77). Thus, the use
of compounds that promote the mobilization or uptake of iron in
this type of tumor, in combination with ferroptosis inducers,
could exploit the vulnerabilities of this tumor to favor its
eradication. However, further studies are still needed to
determine the potential lethal effects on nervous tissue and to
assess whether these types of therapeutic agents can penetrate the
blood–brain barrier.
GLIOBLASTOMA

Overview of Glioblastoma Treatment
Malignant gliomas are one of the most devastating and
frequently diagnosed brain tumors in adults and are associated
with a short life expectancy of only 12 to 15 months (78). The
WHO classifies this type of tumor as grade I to IV, the latter
being called glioblastoma multiforme (GBM), which corresponds
to the most advanced stage and has a shorter life expectancy (78–
80). The current incidence of GBM in the USA is approximately
7 per 100,000 inhabitants (79). Currently, therapy for GBM is
based on surgery accompanied by radiation therapy and
chemotherapy, since GBM cannot be completely removed
surgically due to its infiltrative nature (78). Although
radiotherapy increases the life expectancy of patients, 90% of
GBMs exhibit recurrence at the original tumor site after therapy
(81). Thus, all hopes for the treatment of this type of tumor are
placed on the development of new agents or pharmacological
strategies for successful chemotherapy. To date, the main
pharmacological approaches for the treatment of GBM include
the use of antiangiogenic therapies (bevacizumab, sunitinib,
vandetanib), immunotherapy (anti-PD-1/PD-L1 antibodies)
and various other molecular approaches, such as inhibitors of
mTOR, EGFR, HSP90, and PI3K (78, 82). Unfortunately, GBMs
acquire resistance to these types of treatment (78, 82). In this
scenario, as a therapeutic strategy, one of the most commonly
used compounds is temozolomide (TMZ), an oral alkylating
agent (80, 83, 84) that targets the DNA repair enzyme O6-
methylguanine DNA methyltransferase (MGMT), which has
been shown to prolong the life expectancy of patients when
used in conjunction with radiotherapy (84–86). Unfortunately,
most GBMs recur after 2 years with cell populations resistant to
this type of therapy due to stem cell properties (87–89). Based on
accumulating evidence and the strong resistance of GBM to
multiple therapies, the development of new drugs for the
treatment of these devastating tumors is urgently needed.

Pharmacological Ferroptosis Induction: A
Therapy Against Glioblastoma?
Based on the above premise, pharmacological induction of
ferroptosis could exploit the vulnerabilities of GBM cells and
sensitize them to death when used in combination with other
antineoplastic compounds. In line with this idea, the evidence
suggests that combined treatment with ferroptosis inducers plus
other antineoplastic therapies (e.g., TMZ or radiation) could lead
to sensitization to this type of death in GBM cells (60, 90). This is
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because most GBM cells are resistant to either SLC7A11
inhibition (erastin treatment) or GPX4 inhibition (RSL-3
treatment) (54, 91, 92), although they express ACSL4 (93).

In line with this observation, high levels of SLC7A11
expression are considered to predict poor survival in patients
with malignant glioma (94). At the same time, high expression of
SLC7A11 is associated with epileptic seizures, stem cell
properties, increased migration and invasion, neurosphere
formation and increased expression of Nanog, Sox-2 and
Nestin, among other proteins (95, 96). Thus, the expression of
this transporter is considered a possible biomarker for the
diagnosis of GBM. In this scenario, it is tempting to speculate
that SLC7A11 blockade could be an excellent therapy for GBM,
since its high expression level indicates a strong dependence on
its function.

However, current evidence has shown that GBM cells, such
as U87, U251, and U373 cells, are highly insensitive to
treatment with SAS or erastin (72, 97), a phenotype that
could be related to resistance mechanisms mediated by ATF4
and Nrf-2 that favor overexpression of SLC7A11 (21, 97, 98).
Furthermore, the use of SAS in a clinical trial against glioma did
not show a response, and various adverse effects were observed
(99), which greatly complicates its future use as a ferroptosis-
inducing drug in patients. It is important to note that various
studies have suggested that GBM cells (and cells of other
lineages) have unique sensitivity to death (theoretically
ferroptotic) mediated by sorafenib treatment (97, 100).
However, recently, it was shown that sorafenib failed to
induce ferroptosis in a wide panel of tumor cell lines
(including GBM cell lines) (72), which leads us to take special
care in the interpretation and specificity of sorafenib in
triggering ferroptosis.

Molecular Pathways That Confer
Resistance to Ferroptosis in Glioblastoma
In this scenario, where GBM cells show great resistance to
inhibition of system x−c , it is possible to speculate that they
obtain cysteine intracellularly from another source that implies
mechanisms independent of the function of SLC7A11, which
would explain the resistance to treatment with erastin or SAS.
The main metabolic pathway that supplies cysteine
intracellularly in tumor cells independent of the transport
activity of SLC7A11 is the transsulfuration pathway (101). The
transsulfuration pathway allows methionine to be used as a
substrate for cysteine biosynthesis through various enzymatic
reactions (101). At the same time, it has been shown that
inhibition of this pathway in tumor cells makes it possible to
recover sensitivity to erastin in certain cell lines other than GBM
cell lines (102). Unfortunately, inhibition of the expression of
cystathionine b-synthase (CBS), a key protein in the
transsulfuration pathway, has been shown to promote GBM
progression (103), while in other tumor models, CBS inhibition
effectively causes cell death (104), which suggests that GBM cells
could be resistant to ferroptosis induction, including that
mediated through inhibit ion of system x−c and the
transsulfuration pathway.
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On the other hand, one possible explanation for the strong
resistance of GBM cells to the induction of ferroptosis is the
protective effect exhibited by FSP1 in this type of tumor
(Figure 4), since most GBM cells express high levels of this
protein, and cotreatment with iFSP1 and RSL-3 strongly
sensitizes them to ferroptosis (54, 72). However, cotreatment
with erastin or SAS + iFSP1 fails to induce death in GBM cells
(72). This evidence corroborates the findings that FSP1 acts
independently of the GSH level (54, 55) and that it apparently
can only have synergistic effects with direct GPX4 inhibitors such
as RSL-3 or ML162.

Interestingly, the GPX4 depletor FIN56 (Figure 4) was
recently shown to induce ferroptosis in in vitro and in vivo
GBMmodels (105); this was the first study to use this compound
in vivo. However, the trial was not carried out with tumors in
nervous tissue but rather in nude mice with subcutaneous
tumors, which makes it difficult to extrapolate the possible
eventual effects of FIN56 on the brain, and it is not known
whether this compound can cross the blood–brain barrier to be
considered a potential therapy in the future.

Based on accumulating evidence and given the limitations of
the use of direct GPX4 inhibitors for the treatment of tumors in
vivo, the best therapeutic approach seems to be inhibition of
SLC7A11. Along these lines, it has been demonstrated that
cotreatment with IKE and radiation favors ROS production
and induces cell death in GBM models (60). Concurrently,
cotreatment with erastin and TMZ has been found to sensitize
GBM cells to death (90). This eventual therapeutic strategy
offered by treatment with SLC7A11 inhibitors should be
exploited in the future in the search for compounds with
synergistic activity that exploit the vulnerabilities of GBM cells.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Although there are several inducers of ferroptosis, the potential
use of these drugs as cancer treatments is limited because they
have little bioavailability for action in vivo. However, with the
development of IKE, an avenue was opened for ferroptosis
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induction as an in vivo treatment by targeting system x−c (19).
To date, evidence suggests that inhibition of system x−c could be a
safe therapeutic approach as a tumor suppressor. Unfortunately,
several types of tumors, including NB and GBM, are resistant to
system x−c inhibition for ferroptosis induction (13, 17, 92). Thus,
combination therapies of other antineoplastic drugs with IKE
may represent an option for the treatment of cancers highly
resistant to cell death. However, ferroptosis dogma dictates that
GPX4 is the key protein (15, 106); thus, all efforts have been
focused on the development of new drugs for its inhibition.
Although there are direct GPX4 inhibitors, such as RSL3 (15),
they have little application in vivo (40), and GPX4 deletion in
some types of cancer is not lethal (51), suggesting that there may
be other mechanisms in addition to GPX4 inhibition to suppress
lethal lipid peroxidation. FSP1, GCH1 and BH4/BH2 are
proteins with the ability to inhibit ferroptosis independently of
GPX4 and GSH levels (54, 55, 65), and FSP1 is a druggable
protein (54). In line with this idea, a new avenue has been opened
for the development of drugs that include SLC7A11, GPX4 and
FSP1 inhibitors with potential in vivo application as a
cancer treatment.
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Glioma is the most common intracranial malignant tumor in adults and the 5-year survival rate
of glioma patients is extremely poor, even in patients who received Stupp treatment after
diagnosis and this forces us to explore more efficient clinical strategies. At this time,
immunotherapy shows great potential in a variety of tumor clinical treatments, however, its
clinical effect in glioma is limited because of tumor immune privilege which was induced by the
glioma immunosuppressive microenvironment, so remodeling the immunosuppressive
microenvironment is a practical way to eliminate glioma immunotherapy resistance.
Recently, increasing studies have confirmed that ferroptosis, a new form of cell death,
plays an important role in tumor progression and immunemicroenvironment and the crosstalk
between ferroptosis and tumor immune microenvironment attracts much attention. This work
summarizes the progress studies of ferroptosis in the glioma immune microenvironment.

Keywords: glioma, ferroptosis, immune microenvironment, immunotherapy, GPX4
INTRODUCTION

Glioma is a threateningprimarymalignancy tumor in the central nervous system (1, 2),which is divided
into grades I-IVaccording toWHOstandardwith glioblastoma (WHOgrade IV) as themostmalignant
and common subtype (3).The standard therapy for gliomapatients is the Stuppprotocol, which consists
of maximal safe surgical resection or a diagnostic biopsy, followed by concurrent chemoradiotherapy
and then maintenance chemotherapy, where chemotherapy is comprised of temozolomide (4).
Although glioblastoma (WHO IV) patients receive the most effective treatment/surgery with
radiotherapy and chemotherapy after diagnosis (5, 6), the median survival time is only about 18
months (7), and that is mainly the result of a glioma infiltration boundary and/or the resistance of
chemotherapy. Consequently, new therapeutic approaches for glioma are urgently needed (8).

Recently, immunotherapy represented by PD-1/PD-L1 and CTLA-4 has shown excellent clinical
effects on numerous tumors such as melanoma and non-small cell lung cancer (9, 10), which have
rekindled researchers’ faith in glioma treatment. Unfortunately, its effect is extremely limited in
glioma and relevant clinical data show that it works on less than 10% of glioblastoma patients (11)
An increasing number of studies have confirmed that it is a result of the glioma immunosuppressive
June 2022 | Volume 12 | Article 9176341103
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microenvironment (12), therefore, the distruption of the
immunosuppressive microenvironment and revision of the
glioma from a ‘cold tumor’ to a ‘hot tumor’ is practical to
relieve the glioma immunotherapy resistance (8).

The glioma immune microenvironment is composed of
glioma cells, immune cells, cytokines and so on (12). Glioma
cells can recruit numerous kinds of cell including immune cells
that move to the niche by secreting cytokines (like TGF-b, GM-
CSF) (13, 14) and then revise these cells into ‘tumor-friendly’
phenotypes (15). In this case, the recruited cells may serve as a
physical barrier to prevent later immune cells from approaching
and attacking the tumor cells Also, the recruited immune cells
can also secrete cytokines (such as IL1-b, TGF-b) that continue
to assimilate later recruited immune cells as ‘tumor-friendly’
phenotypes (16, 17). Under this “snowball” interaction, coupled
with the unique central nervous system microenvironment, such
as the blood-brain barrier (18) and hypoxia (19, 20), acidic
tumor microenvironment (2, 21), tumor cells can escape
immune surveillance (22) and eventually set the glioma
immunosuppressive microenvironment (23, 24).

Ferroptosis is a form of regulated cell death driven by lipid
peroxidation, a consequence of imbalance between cell
metabolism and redox homeostasis (25). It is different from
other cell death such as apoptosis, pyroptosis in morphology,
biochemistry and gene (26). Its key process is phospholipids with
polyunsaturated fatty acyl tails (PUFAs) are oxidized in an iron-
or oxidoreductase- dependant way and ultimately induce cell
death (27). Recently, researchers found that activating ferroptosis
could improve temozolomide treatment effectiveness in GBM-
bearing mice (28), and lonizing radiation could induce cell
ferroptosis. The above means that ferroptosis is vital for glioma
chemotherapy and radiotherapy (29).
OVERVIEW OF FERROPTOSIS AND
POTENTIAL SINGLING PATHWAY
IN GLIOMA

The main characteristics of ferroptosis include: cell morphology
(mitochondria crista, volume reduction, and increase of membrane
density); cellular composition [cellular ROS is elevated and lipid
peroxidation is significantly increased (27)]. Meanwhile, the
intracellular pool of antioxidant executor (GSH or/and glutathione
peroxidase 4) was shrunk, and phospholipid peroxide (PLOOH) is
the executive driver of ferroptosis (26, 27). With step by step studies,
researchers found that ferroptosis could be regulated by a variety of
ways including redox homeostasis (30), iron metabolism (31),
mitochondrial activity (32), metabolism of amino acids, lipids, and
glucose (33). Ferroptosis pathways can be broadly divided into
glutathione peroxidase 4 (GPX4) -dependent and -independent
pathways (25, 26) (Figure 1).

GPX4 Dependent Ferroptosis Pathway
Glutathione peroxidase 4 (GPX4), also known as phospholipid
hydrogen peroxide glutathione peroxidase (PHGPx), is a
Frontiers in Oncology | www.frontiersin.org 2104
selenoprotein required for peroxidized phospholipids (34).
Cystine/glutamic acid reverse transporter (system x−c ) is an
upstream regulator (25, 35) and its dysfunction can increase
glutamic acid levels and reduce cystine levels (36), which in turn
leads to the exhaustion of the intracellular pool of glutathione
(GSH), the main reducing substance of human body (37).
Subsequently, this causes GPX4 reduction (27), then induces
more PUFAs to turn to PLOOH and eventually induces
ferroptosis (25). Besides, lonizing radiation also could regulate
GPX4 activity directly and then shape ferroptosis (38).

System x−c plays an important role in GPX4 relative pathway,
whether the system x−c dysfunction could result in the pool of GSH
and GPX4 shrinking (35), and then gives birth to intracellular
PLOOH explode and ultimately induces ferroptosis (26, 33). The
monitors regulating system x−c are SLC7A11 (39), SLC3A2 (40),
NRF2 (41) and so on (42). Stephanie demonstrated that SLC7A11
expression is associated with seizures and predicts poor survival in
patients with malignant glioma (43) Ju et al. proved that NRF2 is a
potential prognostic biomarker and is correlated with immune
infiltration in the brain’s lower grade glioma (44). Long et al. found
that dysregulation of system x−c enhances Treg function that
promotes VEGF blockade resistance in glioblastoma (45). The
above indicates that system x−c should be a key hub between
ferroptosis and the glioma immune-microenvironment.

Cystine metabolism is a vital segment in the GPX4-dependent
ferroptosis pathway and the main factors affecting cystine
metabolism include the transsulfuration pathway and/or the
methionine cycle (46). As a vital brick for GSH synthesis, cystine
plays a key role in glioma progression, Liu et al. confirmed that
methionineandcystinedouble deprivation stress suppresses glioma
proliferation by inducing reactive oxygen species (ROS) and
autophagy (47), Wang et al. demonstrated that methionine
deprivation can reset numerous immune pathways such as
macrophages, T cell activation pathways in glioma (48), as cystine
andmethionineare all inmethionine cycle (49), and there shouldbe
cystine/methionine-ferroptosis-immunity related pathways.
Simultaneously, glioma cells can selectively uptake methionine,
cysteine, and serine (47, 50, 51), so other cells will uptake or store
less of these amino acids than glioma cells, which limits the
production of cysteine and GSH. It remains to be determined
whether it would induce other cells to include immune cells more
sensitive to ferroptosis than glioma cells and whether DNA/RNA
methylation is vital for glioma escape ferroptosis, as methionine is
themajormethyl donor (52, 53).Unfortunately, the researchers did
not conduct this corresponding work.

In addition, the mevalonate pathway also participated in
GPX4 activity regulation and isopentenyl pyrophosphate was
the core factor regulating the transcription efficiency of GPX4
(54). E. Cimini et al. has confirmed that zoledronic acid, an
aminobisphosphonate drug, can inhibit glioma cell proliferation
by interfering with mevalonate pathway of Vg2 T-cells (55).
Deven found that LXRb knockdown decreased cell cycle
progression, cell survival, and decreased feedback repression of
the mevalonate pathway in densely-plated glioma cells. LXRb
regulates the expression of immune response gene sets and lipids
known to be involved in immune modulation (56) and these
June 2022 | Volume 12 | Article 917634
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works imply that targeting the mevalonate pathway could disturb
ferroptosis and immunity in glioma.

Currently, researchers have demonstrated that lonizing
radiation could consume GSH, inhibit GPX4 activity, and
induce ferroptosis (25, 54), and they denote that ferroptosis
should be essential for glioma treatment because radiotherapy
is an important part of Stupp strategy (8). Zhang et al. revealed
that inhibition of TAZ contributes to radiation-induced
senescence and growth arrest in glioma, and immune-related
genes are specifically affected as the long-term effect (57).
However, we did not know whether ferroptosis cells would act
as or release cytokines that induce glioma cells to adapt to
radiotherapy resistance.

GPX4 Independent Ferroptosis Pathway
Although GPX4 is the core molecule of ferroptosis, we have now
found other pathways that influence PLOOH synthesis and
ferroptosis (25, 26).

The first is the ferroptosis inhibition protein 1(FSP1) (58–60),
which can reduce the mevalonate pathway produced ubiquinone
translate to ubiquinol, suppress production of PLOOH, and
eventually inhibit ferroptosis (58). Furthermore, FSP1 could also
be activated by the MDM2/MDMX-PPARa axis (25, 61), and in
addition to activating FSP1 functions, PPARa also regulates the
Frontiers in Oncology | www.frontiersin.org 3105
conversion of PL-MUFA to PLOOH by ACSL3-mediated MUFA
way. It has been reported that FSP1 can protect cells from
ferroptosis which is induced by GPX4 inhibition/knockout (26).
Zou et al. demonstrated that TGF−b1 increases FSP1 expression
in human bronchial epithelial cells (62), as TGF−b1 is an
important cytokine that can be secreted by glioma or/and
immune cell (17, 63, 64), and it means that FSP1 could be a
nexus between glioma or/and immune cell ferroptosis.

A critical factor in inducing ferroptosis is the imbalance of
intracellular iron metabolism which could cause iron overload.
Through the specific receptor TFR1 (transferrin receptor 1),
circulating iron (Fe3+) can be imported into the cell and stored
mostly within ferritin (Fe3+), changing to cytoplasmic iron (65).
A small pool of cytoplasmic free Fe2+ could directly catalyze the
formation of free radical formation via the Fenton Reaction
where changes of ferritin expression levels affect the homeostasis
of iron metabolism by altering the intracellular free and redox
active iron pool. Researchers have reported that the
overexpression of NCOA4 reinforces the degradation of
ferritin, which releases excessive cytoplasmic free Fe2+ and
subsequently, promotes ferroptosis (66).

As a “double-edged sword”, autophagy is crucial in glioma
progress (67, 68) due to the unbridled proliferation tumor cells
that require a large amount of nutrients. Also, an appropriate
FIGURE 1 | The snapshot of ferroptosis pathways. TfR1, transferrin receptor 1; GLS, glutaminase; GCS, glutamylcysteine synthetase; GSS, glutathione synthetase;
GSH/GSSH, glutathione; GSR, glutathione S-reductase; GPX4, glutathione peroxidase 4; MDM2, mouse double minute 2; MDMX, mouse double minute 4; PPARa,
peroxisome proliferator activated receptor alpha; FSP1, ferroptosis suppressor protein 1; GCH1, GTP cyclohydrolase 1; BH4, tetrahydrobiopterin; PL, phospholipid;
MUFA, monounsaturated fatty acid.
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level of autophagy is conducive to ensure necessary cellular
function, as their own bricks, could be reused but excessive
levels of autophagy will induce cell ‘self-digestion’ and eventually
induce glioma death (69). Recent studies have proven that
autophagy can participate in ferroptosis and the main progress
is called ferritinophagy (25), and the key interaction hub of these
two pathways is NCOA4 and FTH1. Zhang et al. confirmed that
COPZ1 is the key molecule that mediates autophagy-dependent
ferroptosis in glioma (70). Meanwhile, autophagy is essential for
immune cell proliferation and function, and Enyong confirmed
that autophagy-dependent ferroptosis drives tumor-associated
macrophage polarization via the release and uptake of the
oncogenic KRAS protein (71). Sun et al. confirmed that
autophagy-dependent ferroptosis-related signature is closely
associated with the prognosis and tumor immune escape of
patients with glioma (72). Therefore, we recognize autophagy
should be one of the hubs between ferroptosis and immunity
in glioma.

Moreover, researchers have also confirmed that GTP
cyclohydrase 1 (GCH1) inhibits the production of PLOOH
through its metabolite BH2/4. Meanwhile, BH4 could also reduce
PLOOH pool by regulating the production of Ubiquinol (26). Anh
proved that the GCH1 knockdown with short hairpin RNA led to
GBMcell growth inhibition and reduced self-renewal in association
with decreased CD44 expression (73). Yan et al. showed that
blocking CD44 inhibited glioma cell proliferation by regulating
autophagy (67) and this means GCH1 could induce glioma cell
ferroptosis and influence immunity by autophagy.

Furthermore, AMPK associated energy stress and Hippo
pathways are all associated with ferroptosis by regulating the
PLOOH pool (25, 26), and these factors are also vital for the
glioma immunosuppressive microenvironment (GIME) and
glioma proliferation (24).
FERROPTOSIS AND IMMUNE
MICROENVIRONMENT

Inducing tumor cell death is one of the effective methods to treat
cancer, so inducing cancer cell ferroptosis is a feasible way for
glioma treatment (34). Dead cells can release a series of “find me”
and “eat me” signals for immune cells to locate, migrate, and clean
dead cells which is confirmed by the phenomenon that ferroptosis
tumor cells can be effectively engulfed bymacrophages in vitro (74).
The calreticulin (CRT), a solubleER-associated chaperone, is one of
the ferroptosis-mediated proteins which regulate the tumor
microenvironment. Ferroptosis facilitates the translocation of
CRT to expose it on the surface of tumor cells, where CRT could
serve as a potent “eat-me” signal and induce a robust antitumor
immune response (75). However, the signal communication
between ferroptosis glioma cells and surrounding immune cells is
not clear (76) (Figure 2).

The potential signal is the arachidonic acid (AA) oxidation
product released by ferroptosis cells therefore, it has been
hypothesized that lipoxygenases (LOXs) can not only induce the
PUFAs production but also promote ferroptosis cells to release
immune signals and regulate tumor immunity (26). A study has
Frontiers in Oncology | www.frontiersin.org 4106
shown that ferroptosis cells can release eicosanoids (5-HETE, 11-
HETE, 15-HETE, etc.) when GPX4 was suppressed. Contrarily,
ferroptosis cells reduce the production of pro-inflammatory lipids
when GPX4 activity was increasing, afterwards inhibiting the
production of TNF and IL-1 b by the NF-kB pathway (77). A
liposome analysis offerroptosis cells found that the accumulationof
oxygenated AA-containing phosphatidylethanolamine species was
associated with ALOX15 (78), which can shape adaptive immune
response by inhibiting dendritic cell maturation and T cell helper
cell 17 (TH17) differentiation via activating transcription factor
NRF2 (79).

Prostaglandin E2 (PGE2) is considered to be one of the
important immunosuppressive factors and it can be released
after most death cells (26, 80) and then disturb immune cells
mainly in the following ways: 1. directly inhibit NK, cytotoxic
T cell clean function (81, 82), 2. inhibit the infiltration of
Conventional Type 1 dendritic cell (cDC1) into tumor niche
via inhibiting the secretion of CCL5 and XCL1 by NK cells (83),
and 3. inhibit cDC1-dependent CD8+ T cell-mediated immune
response (84). Yoshiteru proved that inhibition of macrophagic
PGE2 synthesis is an effective treatment for the induction of anti-
glioma immune response (85).

Recent studies have confirmed that GPX4 activity is
associated with chronic inflammation (26), and current studies
have confirmed that glioma progression is related to chronic
inflammation (86). Moreover, Xu et al. demonstrated that GPX4
is crucial for protecting activated Treg cells from lipid
peroxidation and ferroptosis and offered a potential therapeutic
strategy to improve cancer treatment (87). All of the above has to
remind us that GPX4 may be a hub to connect ferroptosis and
inflammation/immune in glioma.

In addition to releasing lipid mediators, ferroptosis cells can
also release HMGB1 in an autophagy-dependent manner (88).
HMGB1 belongs to DAMPs and is one of the key elements for
tumor cell immunogenicity, as it will bind to its receptor and
activate the immune system once it is released outside of cell
(89). Wen et al. confirmed that RAGE is essential for HMGB1
mediated TNF releasing in macrophage when they respond to
ferroptosis cells (90). Lowenstein et al. considered that HMGB1-
activated dendritic cells, loaded with glioma antigens, migrate to
cervical lymph nodes to stimulate a systemic CD8+ T cells
cytotoxic immune response against glioma and induce
immunological memory (91).

In addition to the above cytokines, there are other cytokines
worth exploring (76). Although researchers believe that the
cytokines are critical for the “crosstalk” between ferroptosis
cells and immune cells, the mechanism remains unclear.
Additionally, attention should also be paid to off-target effects
of ferroptosis induction (92).
CHALLENGES OF FERROPTOSIS IN GIME

The glioma immunosuppressive microenvironment (GIME) is the
main reason for poor efficacy of immunotherapy in glioma (8, 22,
23). The rapid proliferation of glioma causes an arduous
microenvironment such as acidity, limited of nutrients, and
June 2022 | Volume 12 | Article 917634
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oxygen (47, 93, 94). In this circumstance, immune cells will betray,
retreat, or die as they cannot adapt (95, 96) but glioma can adapt to
this harsh microenvironment due to their own tremendous
plasticity (97, 98). The blood-brain barrier can also hinder
immune cells from migrating to the tumor (99, 100). Also, many
of the inhibitory cytokines secreted by glioma (101) and inhibitory
immune cells suppress the antitumor effect of immune cells (21,
102). In addition, glioma cells can also secrete numerous cytokines
to trap immune cells as they present ‘non-tumor cells’markers (95,
103) and then these “tricked” cells secrete cytokines and continue to
later recruit immune cells (104). In this circumstance, glioma cells
escape immune surveillance (22, 105)and we should take the above
into account when considering glioma immunotherapy (106).
Meanwhile, immunotherapy combination regimens (22),
administration mode, and timing (107) can also influence the
therapeutic efficacy. Currently, accruing studies demonstrate that
ferroptosis is crucial for tumorprogressionand targeting ferroptosis
maybe a latent way to remodel the tumor immune
microenvironment (26, 27, 34). While we have already done a
brief description above, we should also recognize the challenges.

Although ferroptosis does play a crucial role various tumor
immune microenvironments, its own mechanism is still unclear
Frontiers in Oncology | www.frontiersin.org 5107
(25, 26), which is reflected on the following aspects: 1. The
exactly mechanism of PLOOH in ferroptosis is unclear. At
present, although it is clear that PLOOH is the ultimate
executor of ferroptosis, the exact mechanism of PLOOH
inducing ferroptosis is unknown (26); 2. Ferroptosis studies
lack a ‘gold standard’. Although we have made great progress in
ferroptosis study (26), we have not yet found a relative “gold
standard” like LC3, and P62 in autophagy (108) and researchers
usually select one or more targets such as GPX4, P53, FTH1
(109–111) in a paper, even worse the targets just like scraped
together, which has troubled the following researchers. 3.
Ferroptosis shows a ‘double-edged sword’ role in diseases. It
is easy to understand that ferroptosis plays different roles in
different diseases such as the beneficial outcome of inducing
ferroptosis in tumor cells is for disease (112), but inhibiting
ferroptosis in stroke is beneficial to the prognosis (113). We
hypothesize that ferroptosis may also play different roles in one
disease, for example, and there may be tumor cells that choose
to sacrifice themselves. Then, the secreted cytokines can make
the surrounding tumor cells in a stress state and finally avoid
ferroptosis (26). 4. What and how ferroptosis cells release
signals after death and what are the functions of these signals
FIGURE 2 | Possible ferroptotic signals in glioma immune-microenvironment. AA, arachidonic acid; PE, phosphatidylethanolamine; GPX4, glutathione peroxidase 4; LOXs,
lipoxygenases; ALOX15, arachidonate lipoxygenase 15; DAMPs, damage-associated molecular patterns; HMGB1, high mobility group box-1; PGE2, prostaglandin E2; HETE,
hydroxy eicosatetraenoic acid; AdA, adrenic acid; IL1, interleukin-1; TGF, transforming growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; NK, natural
killer; cDC1, conventional type 1 dendritic cell; TAM, tumor- associated macrophage; CAF, cancer-associated fibroblast; T reg cell, regulatory T cell.
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(33, 71). 5. The crosstalk between ferroptosis and other forms of
death is not clear (26, 27, 33). For cells that may suffer from
different kinds of death at the same time (114), it is unknown
how can they communicate with each other or whether
ferroptosis works more or less in cell death. This is because
we found cells suffer ferroptosis but cells still died after we used
ferroptosis inhibitors in a proper dose. This means that
ferroptosis can induce other kinds of cell death, and/or it
plays a minor effect in cell death, or we use inhibitors after
the ‘reversible point’ and once this threshold is exceeded,
ferroptosis will be irreversible

Recently, we also found that ferroptosis is vital for tumor
immunity such as macrophage phagocytosis (71) and T cell
killing (115) but the “crosstalk” between ferroptosis and the
glioma immunosuppressive microenvironment is not clear.
Additional issues to be addressed are: 1. The signal interaction
between ferroptosis cells and surrounding immune cells is not
clear which is mainly manifested in the specific cytokines of ‘find
me’ and ‘eat me’ released by ferroptosis cells (26). 2. Will the
cytokines released by ferroptosis cells help other glioma cells
escape immune surveillance by seducing or misleading immune
cells (34, 88, 103)? 3. Whether GPX4-induced chronic
inflammation engaged in glioma progression or outcome (116).
4. What is the role of ferroptosis in glioma immunotherapy
tolerance? (95, 103).
CONCLUSION

The clinicians and researchers are always trying to find new
treatments for tumors and it is comforting that treatment
methods such as immunotherapy and oncolytic virus have
Frontiers in Oncology | www.frontiersin.org 6108
been found. Unfortunately, immunotherapy, which has shed
light on numerous tumor treatments, does not always work
regarding glioma. Increasing research demonstrates that this is
result of the glioma immunosuppressive microenvironment, so
researchers are searching for an antidote for remodeling GIME.
Ferroptosis, a new form of cell death, plays an important role in
glioma cell and immune cell. The exactl mechanism is unclear
and multipley works demonstrate that it is deserved to explore its
role in GIME and how to regulate ferroptosis for glioma therapy.
Although there are still many obstacles in the cognition of
crosstalk between ferroptosis and GIME, we believe we will
address this with further studies and new technologies, such
single cell sequencing and spatial transcriptomics. This will not
only improve our understanding of ferroptosis and GIME but
also provide a new solution for glioma immunotherapy
resistance, a new breakthrough point for glioma treatment.
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Glioma, one of the most common malignant tumors in the nervous system,

is characterized by limited treatment, high mortal i ty and poor

prognosis. Numerous studies have shown that lncRNAs play an important

role in the onset and progression of glioma by acting on various classical

signaling pathways of tumors through signaling, trapping, guiding, scaffolding

and other functions. LncRNAs contribute to the malignant progression of

glioma via proliferation, apoptosis, epithelial-mesenchymal transformation,

chemotherapy resistance, ferroptosis and other biological traits. In this paper,

relevant lncRNA signaling pathways involved in glioma progression were

systematically evaluated, with emphasis placed on the specific molecular

mechanism of lncRNAs in the process of ferroptosis, in order to provide a

theoretical basis for the application of lncRNAs in the anticancer treatment

of glioma.

KEYWORDS

lncRNAs, glioma, phenotypes, ferroptosis, mechanism
Introduction

Human glioma, histologically originates from the neuroectoderm and is recognized

as the most prevalent and lethal intracranial tumor, accounting for more than 50% of

cerebral tumors (1, 2). Based on the malignancy characteristics, glioma can be classified

as WHO grade I-IV. In addition, the latest version of the WHO classification divides
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glioma into more biologically and molecularly defined

pathological subtypes (3). Currently, glioma is still difficult to

treat. Although the current therapeutic schemes have advanced

in operation, radiotherapy and chemotherapy, the prognosis of

glioma patients still remains pessimistic due to the high rates of

relapse and inevitable metastasis (4). Thus, it is critical to

determine the exact molecular mechanisms leading to glioma

onset and progression.

Long non-coding RNAs (lncRNAs) are the molecules that

are more than 200 nucleotides in length and have no/little

protein-coding functions/potentials and/or lack open reading

frames. LncRNAs can modulate gene expression at the

transcriptional or post-transcriptional levels (5), and several

lines of evidence have shown that lncRNAs have been

associated with the occurence and development of many

human tumors, including glioma. More specifically, lncRNAs

are involved in modulating the development of malignant

glioma cells by altering cellular proliferation, apoptosis, drug

resistance and ferroptosis (6). LncRNAs have been associated

with the onset and development of many human malignant

tumors, including glioma.

Ferroptosis is a cell death pathway characterized by iron

dependency and excessive lipid peroxidation, making it unique

in comparison to other cell death process such as apoptosis,

necrosis and pyroptosis. According to the recent 2018 consensus

derived from the nomenclature committee on cell death,

ferroptotic cell death is a type of regulated cell death (RCD),

in contrast to accidental cell death (ACD) which is caused by

physical, chemical or other factors (7). Ferroptosis is a double-

edged sword that plays a dual role in tumors via damage-

associated molecular patterns (DAMPs) (8, 9). In this review,
Frontiers in Oncology 02
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we summarized the functions and mechanisms of lncRNAs in

the genesis and malignant development of glioma. We conclude

that lncRNAs play a crucial role in glioma ferroptosis,

contributing to deeply understand glioma pathogenesis and

provide future directions for others.
Classification and molecular
mechanism of lncRNAs

According to their position in the reference genome,

lncRNAs can be classified into the following five categories:

sense, antisense, bidirectional, intronic and intergenic (10).

According to their mechanism of action, lncRNAs can be

divided into five functional types, and each lncRNA can

coexist with multiple functions (Figure 1). 1) Molecular

guide. LncRNAs act as molecular guides of ribonucleoprotein

complexes to specific sites on chromatin (11) . 2)

Scaffolds. LncRNAs bind different effector molecules as

binding scaffolders of protein complexes, and combine with

these effector proteins to jointly regulate gene transcription in

time and space (12). 3) Signals. LncRNAs stimulate a variety of

signaling molecules to regulate their downstream signaling

pathways during cell transcription (13). 4) Competitive

endogenous RNAs (ceRNAs).

LncRNAs can be used as miRNA sponges that contain

miRNA binding sites where miRNAs are sequestered,

inhibiting miRNA target genes (14). 5) Molecular decoys.

LncRNAs can act as molecular decoys via allosteric binding to

specific proteins to inhibiting the function of downstream

proteins (15).
FIGURE 1

The mechanisms of lncRNAs. ① Molecular guide; ② Scaffolds; ③ Signals; ④ CeRNAs; ⑤ Molecular decoys.
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LncRNAs regulate the malignant
progression of glioma

Abnormal expression of lncRNAs in glioma has been

revealed to be interrelated tightly with the prognosis of glioma

patients including overall survival (OS) and survival quality. For

instance, lncRNA ROR1-AS1 was up-regulated in glioma and

indicated a poor clinical outcome. Kaplan–Meier curves

indicated that the 5-year survival rate of glioma patients was

obviously higher in patients with lower ROR1-AS1 expression

(16). Moreover, LINC01494 was over-expressed in glioma and

was associated with a poor prognosis in glioma patients

(17).Chen et al. analyzed the relationship between the

expression of lncRNA CPS1-IT1 and the pathological

characteristics of glioma, and found that low expression of

lncRNA CPS1-IT1 led to elevated WHO grade and poor

prognosis (18). In addition, the expression of lncRNA CASC7

was related to glioma progression and WHO stage, and was

positively correlated with patient prognosis (19).
LncRNAs and the proliferation of glioma

As one of the most important biological characteristics of

tumor cells, cellular proliferation determines the occurrence and

development of tumors. Previous studies have shown that

lncRNAs ultimately affect the proliferation of glioma cells

through a series of downstream pathways (Table 1).

P21, as a cyclin-dependent kinase inhibitor encoded by the

CDKN1A gene, inhibits the formation of the CDK2-CDK1

complex and mediates the G1 phase arrest of p53- dependent

cell cycle. Numerous studies have shown that lncRNAs regulated

the cell cycle by affecting the expression of p21 protein, leading

to the proliferation of glioma cells. For example, a study (20)

comparing 108 glioma to control tissue samples found that

lncRNA SNHG20 was highly expressed in glioma tissue and
Frontiers in Oncology 03
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negatively correlated with patient prognosis. Further study of the

specific mechanism showed that lncRNA SNHG20 accelerated

the G0/G1 cycle by reducing p21 transcription, ultimately

leading to the glioma cell proliferation. LncRNA SNHG3 was

also highly expressed in glioma tissues and promoted the

proliferation of glioma cells. It recruited EZH2 to the

promoters of KLF2 and p21, and epigenetically inhibited KLF2

and p21 (21).

Moreover, lncRNA SNHG6 and SNHG16 promoted the

proliferation of glioma cells via reducing p21 mRNA levels

(22, 23). In addition to small nucleolar RNA host gene

(SNHG), lncRNA RP11-732M18.3 induced the degradation of

p21 and increased the proliferation of glioma cells. It recruited

14-3-3b/a to UBE2E1, and the binding of 14-3-3b/a to UBE2E1

enhanced the degradation activity of UBE2E1 on p21 via

ubiquitination (24).

Another important molecular pathway activated during the

development of human cancers, including glioma, is the Wnt/b-
catenin signaling pathway (31, 32). LncRNA ADAMTS9-AS1

was confirmed to be involved in the positive regulation of Wnt/

b-catenin signaling pathway in glioma, leading to glioma cell

proliferation (25). Zhou et al. showed that lncRNA H19, as a

ceRNA, directly bound to miR-342 and inhibited its expression.

Knockdown of miR-342 in turn promoted Wnt5a and b-catenin
expression to positively regulated the Wnt5a/b-catenin signaling

axis and glioma cell proliferation (26). Similarly, lncRNA

CTBP1-AS2 also functioned as a ceRNA and specifically

bound miR-370-3p to inhibit its expression. Sequestration of

miR-370-3p by CTBP1-AS2 prevented miR-370-3p 3’UTR

binding and disinhibition of Wnt7a, and miR-370-3p

knockdown activated Wnt7a/b-catenin signaling. Both actions

accelerated the proliferation of glioma cells (27).

Several investigations have demonstrated that inhibition of

the PI3K/AKT signaling pathway blocked cellular proliferation

and played an anti-tumor role by inhibiting the cell cycle and

inducing apoptosis (33, 34). For instance, lncRNA SNHG20
TABLE 1 Representative lncRNAs and related signaling pathways in glioma proliferation.

LncRNA Expression Downstream Targets Proliferation References

SNHG20 upregulated P21, CCNA1 promote (20)

SNHG3 upregulated EZH2, KLF2, P21 promote (21)

SNHG6 upregulated P21 promote (22)

SNHG16 upregulated P21, caspase 3/9, cyclinD1/B1 promote (23)

RP11-732M18.3 upregulated 14-3-3b/a, UBE2E, P21 promote (24)

ADAMTS9-AS1 upregulated Wnt/b-catenin pathway promote (25)

H19 upregulated miR-342, Wnt5a/b-catenin pathway promote (26)

CTBP1-AS2 upregulated miR-370-3p, Wnt7a/b-catenin pathway promote (27)

SNHG20 upregulated PTEN/PI3K/AKT pathway promote (28)

XIST upregulated miR-126, IRS1/PI3K/Akt pathway promote (29)

LBX2-AS1 upregulated PI3K-Akt-GSK3b pathway promote (30)
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promoted the activation of the PI3K/AKT signaling pathway and

accelerated the proliferation of glioma cells by inhibiting PTEN

(28). LncRNA XIST, a molecular sponge of miR-126, promoted

glucose metabolism and led to the glioma cell proliferation

through regulation of the IRS1/PI3K/Akt pathway (29).

LncRNA LBX2-AS1 knockdown caused a significant decrease

in both GSK3b and Akt phosphorylation, suggesting that it

promoted cell proliferation by activating the PI3K-Akt-GSK3b
pathway (30).
LncRNAs and apoptosis in glioma

Apoptosis, or programmed cell death, is strictly regulated at

the genetic level, resulting in the orderly and efficient elimination

of damaged cells (35). As an important biological process of cell

metabolism, apoptosis is affected by many factors and is involved

in the activation, expression and regulation of a series of genes.

Dysfunctional apoptosis is closely related to tumorigenesis.

At present, lncRNAs have been confirmed to activate or

inhibit the apoptosis of glioma cells through downstream

molecules (Table 2).

Traditionally, p53-induced apoptosis was considered a main

mechanism that inhibited tumor development by regulating

downstream target genes. At present, numerous P53 target

genes are involved in apoptosis regulation, which can be

mainly divided into two categories: death receptor family and

the bcl-2 family. Numerous studies have shown that lncRNAs

regulated the expression and degradation of p53 through a

variety of downstream molecules, thus affecting the glioma cell

apoptosis. LncRNA FOXD2-AS1 was significantly upregulated

in glioma tissues and mainly distributed in the nucleus. By

binding to EZH2, FOXD2-AS1 weakened the recruitment ability

of p53, thus inhibiting glioma cell apoptosis and promoting

malignant progression of glioma (36). LncRNA SNHG20

increased MDM2 level by binding miR-4486, which enhanced

the degradation of P53 protein and ultimately inhibited the

apoptosis of glioma cells (37). In addition, studies have
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confirmed that p53 binds to the lncRNA ST7-AS1 promoter to

increase its transcription. Subsequently, lncRNA ST7-AS1

regulated p53 expression by binding to PTBP1, and forming a

positive feedback loop to inhibit the progression of invasive

glioma (38).

Apoptosis is regulated by many genes, among which the bcl-

2 and caspase families are the most important. Bcl-2 and bax

genes are important regulatory apoptotic genes that act

antagonistically to each other in apoptosis regulation, and

caspase-3 is a critical apoptotic execution protease. Numerous

studies have proved that lncRNAs regulate the apoptosis of

glioma cells by acting on them. Specifically, LncRNA ANCR

regulated PTEN expression via binding and interacting with

EZH2, thus inhibiting the apoptosis of glioma cells. Moreover,

high expression of lncRNA ANCR reduced bax expression and

promoted bcl-2 expression to produce an anti-apoptotic effect

(39). Similarly, lncRNA LOC101928963 inhibited PMAIP1

expression, which also induced bcl-2 and reduced bax

expression, and ultimately inhibited the apoptosis of glioma

(40). Furthermore, lncRNA GAS5 increased Caspase-3/7 activity

and promoted apoptosis via regulating GSTM3 (41). LncRNA

PCED1B-AS1, on the other hand, inhibited caspase-3 activity

via miR-19-5p/PCED1B axis, thereby activating glioma

proliferation and limiting apoptosis (42).

A large amount of evidence has confirmed the strong

correlation between P53 and lncRNAs, and these lncRNAs

regulate tumor apoptosis as regulatory factors or effectors of P53.

In addition, Liu et al. reported multiple lncRNAs expression levels

under various antitumor drugs. By detecting the expression changes

of lncRNAs in doxorubicin and resveratrol treated glioma cells,

MIR155HG was up-regulated in response to resveratrol-induced

apoptosis, GAS5 was up-regulated during doxorubicin-induced

apoptosis, and MEG3 and ST7OT1 were up-regulated under

apoptosis induced by both agents (43). These results indicate that

lncRNAs can be used as targets of multiple chemotherapy drugs to

promote glioma cell apoptosis, and a more complete lncRNAs

action network is conducive to the development of more

therapeutic targets and new chemotherapy drugs.
TABLE 2 Representative lncRNAs and related signaling pathways in glioma apoptosis.

LncRNA Expression Downstream Targets Apoptosis References

FOXD2-AS1 upregulated EZH2, P53 pathway inhibit (36)

SNHG20 upregulated miR-4486, MDM2-P53 pathway inhibit (37)

ST7-AS1 downregulated PTBP1, Wnt/b-catenin pathway promote (38)

ANCR upregulated PTEN, EZH2, Bax, Bcl-2 inhibit (39)

LOC101928963 upregulated PMAIP1 inhibit (40)

GAS5 downregulated GSTM3, Caspase 3/7 promote (41)

PCED1B-AS1 upregulated miR-19-5p, PCED1B inhibit (42)
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LncRNAs and the EMT process in glioma

Epithelial-mesenchymal transformation (EMT) refers to the

transformation of epithelial-to-mesenchymal cells and is

recognized as an integral part of glioma invasion and

migration. EMT is characterized by the loss of cell adhesion,

changes in cytoskeletal components and the acquisition of

migration and invasion characteristics (44). In addition to the

invasion process, apoptosis, chemotherapy and immunotherapy

resistance during glioma progression are also involved in EMT

(45). EMT regulation is a complex network that includes

multiple signaling pathways involving the TGFb family, Wnts,

Notch, EGF, HGF, FGF and HIF. Numerous studies have

confirmed that lncRNAs regulated the EMT process of glioma

cells through downstream pathways (Table 3).

Zinc-finger E-box-binding homeobox 1 (ZEB1) is an

important regulator of EMT. LncRNA was known to function

as a ceRNA to regulate ZEB1 viamultiple pathways in regulation

of EMT process of glioma cells (46). LncRNA linc00645, for

instance, played a key role in TGF-b-triggered glioma cell EMT

through competing with miR-205-3p and promoting the

expression of downstream molecule ZEB1 (47). LncRNA

UCA1 partially rescued the inhibitory effect of miR-204-5p on

ZEB1 via binding and inhibiting miR-204-5p, which promoted

the EMT process of glioma cells (48). Hypoxia-induced glioma

cells upregulated lncRNA HOTTIP and sponge inhaled

endogenous miR-101, resulting in increased ZEB1 expression

and promoting EMT process (49). LncRNA HOXC-AS2 formed

a positive feedback loop with ZEB1 through miR-876-5p to

regulate the EMT in glioma, providing a potential therapeutic

target for glioma prevention (50).

The Wnt signaling pathway also plays an important

biological role in EMT in glioma. In this sense, lncRNA

CTBP1-AS2 regulated the Wnt7a-mediated EMT by binding

miR-370-3p (27), whereas lncRNA H19 inhibited EMT Wnt/b
-catenin pathway (51).

In conclusion, a variety of lncRNAs can regulate the EMT

process of glioma through ZEB1, which is closely related to

tumor metastasis and drug resistance. ZEB1, a zinc-finger

transcription factor induces EMT by regulating E-cadherin

and vimentin. In-depth understanding of the molecular
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mechanism of lncRNAs control of EMT can not only reveal

the process of metastatic drug resistance of tumor cells, but also

provide new therapeutic targets and treatment options for

effective cancer treatment.
LncRNAs and TMZ resistance in glioma

Chemotherapy is a common postoperative treatment

strategy for glioma treatment (52). Temozolomide (TMZ) is a

second-generation oral alkylating agent that can easily cross the

blood-brain barrier, therefore it is the standard first-line

chemotherapy agent in the clinical treatment of glioma (53,

54). TMZ exerts its antitumor effects mainly through inducing

base mismatch, DNA repair aberration, DNA chain break and

cell death (55). However, TMZ can only slightly improve the

survival of patients with glioma, because many patients develop

resistance to TMZ, resulting in poor or no response to it (56).

At present, a string of studies have described the mechanism

of glioma drug resistance to chemotherapy, and these

mechanisms may involve lncRNAs (Table 4) and the b-
catenin signaling pathway. LncRNA RMRP modulated TMZ

resistance in glioma by regulating ZNRF3 levels and the Wnt/b-
catenin signaling pathway to form a positive feedback loop (57).

LncRNA MIR155HG was highly expressed in glioma tissues and

promoted glioma resistance to TMZ by binding PTBP1 to

regulate the Wnt/b-catenin pathway (58). It was found that

lncRNA SOX2OT reduced the methylation level of SOX2 by

interacting with ALKBH5, thus improving the SOX2 expression

and activating the Wnt5a/b-catenin signaling pathway to

promote TMZ resistance in glioma cells (59). In addition,

lncRNA SNHG15 also activated the b-catenin signaling

pathway by promoting SOX2 expression (60).

TMZ resistance in glioma cells may be epigenetically

regulated by lncRNAs. For example, one report showed that

lncRNA SNHG12 was activated by DNA methylation in the

promoter region CpG island, and lncRNA SNHG12 regulated

the MAPK/ERK signaling pathway and G1/S cell cycle transition

through competitive binding of miR-129-5p. Thus, DNA

methylation of lncRNA SNHG12 ultimately regulated TMZ

resistance in glioma cells (61).
TABLE 3 Representative lncRNAs and related signaling pathways of EMT process in glioma.

LncRNA Expression Downstream Targets EMT References

linc00645 upregulated miR-205-3p, ZEB1 promote (46)

UCA1 upregulated miR-204-5p, ZEB1 promote (47)

HOTTIP upregulated miR-101, ZEB1 promote (48)

HOXC-AS2 upregulated miR-876-5p, ZEB1 promote (49)

CTBP1-AS2 upregulated miR-370-3p, Wnt7a/b-catenin pathway promote (27)

H19 upregulated Vimentin, ZEB1, Wnt/b-Catenin pathway promote (50)
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Postoperative temozolomide chemotherapy has become the

standard treatment for glioma. However, acquired TMZ

resistance limits the treatment of patients with glioma,

especially relapsing glioma. As mentioned above, some

lncRNAs are associated with glioma drug resistance, which

involves not only intracellular processes but also factors in the

gliomamicroenvironment. Elucidate the molecular mechanism of

TMZ resistance, which is helpful to rationally design the

combined treatment plan to block TMZ chemotherapy resistance.
LncRNAs and ferroptosis in glioma

As a matter of fact, iron is an essential nutrient and

microelement for cell growth, no exception for cancer cells.

Moreover, iron-dependent ferroptosis induces inflammation

reaction to promote the initiation and advancement of cancers

in early stages. On the other hand, cancer can be restrained by

anti-cancer immune response triggered by ferroptosis and the

release of damage-associated molecular pattern (DAMPs). Up to

now, lncRNAs owing to diversities and complex functions is

thought to be closely related to ferroptosis of various diseases

based on explosive growing studies. Zhang et al. found that (62)

curcumenol could hinder the progression of lung cancer by

slowing down the multiplication and accelerating cell death as

an effectual component of Wenyujin. Finally, they verified that

lncRNA H19 could enhance the transcription activity of ferritin

heavy chain1 (FTH1), a biomarker of ferroptosis, by interacting

with miR-19b-3p as a competent endogenous RNA. Shi et al.

found that (63) lncRNA AAB expressed highly and increased Fe2+

level to exert antitumor effect in cardiac microvascular endothelial

cells (CMECs). Furthermore, they demonstrated that lncRNA

AAB caused the disturbance between MMP9 and TIMP1 balance

by sponging miR-30b-5p in CMECs. They even constructed a

nanocomplex delivering si-lncRNA AAB into CMECs to provide

a potential treatment method for cardiac hypertrophy patients.

Besides, Luo et al. found that (64) lncRNA RP11-89 heightened

the migration and expansion of bladder cancer via the miR-129-

5p/PROM2 axis. It is acknowledged that prominin2 (PROM2) is

the key molecule to inhibit ferroptosis. Evidence showed PROM2

executed a crucial role in the traffic of iron mediated by transferrin

and altered the sensitive of cancer cells to ferroptosis.
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The metabolism of iron

Iron is one of the most indispensable metals for humans.

Biological iron participates in various metabolic processes,

including cellular proliferation and death, especially ferroptotic

cell death. Intracellular iron exists in two oxidative states, Fe2+

and Fe3+, which can be randomly converted into different forms.

Iron can be transported by binding to serum transferrin (TF) or

lactotransferrin as Fe3+. Endocytosis occurs when serum TF

binds to transferrin receptor (TFRC), allowing Fe3+ to be

released into the cell. In contrast, lactotransferrin can directly

shift iron into the cytoplasm (65). TFRC is an important

component for iron uptake in the membrane, which can

govern the labile iron pool (LIP) by conveying Fe3+ into the

cytoplasm to promote various biological activities. Fe3+ is

reduced into Fe2+ by STEAP3 once it enters the cytoplasm,

and Fe2+ is stored in the LIP. Fe2+ is important for metabolic and

biochemical processes, such as energy metabolism in the

mitochondria. TFRC actions alter intracellular iron content,

Fe2+ levels and reactive oxygen species (ROS) levels. Ye et al.

found that (66) TFRC rescued the reduction in iron, Fe2+ and

ROS concentrations caused by YTHDF1 knockdown in

hypopharyngeal squamous cell carcinoma (HPSCC) cells. The

study also showed that (67) TFRC might also intervene in

glutathione peroxidase 4 (GPX4)-dependent ferroptosis. GPX4

is a key molecule that modulates ferroptosis. In 2021, Ma et al.

found that (68) lncRNA RP1-86C11.7 could interact with hsa-

miR-144-3p to increase the expression level of TFRC. RP1-

86C11.7 enhanced proliferation, migration and progression in

glioma. Consequently, accumulation of unstable LIP leads to the

overproduction of lipid peroxidation, which is another vital

process of ferroptosis in addition to iron metabolism.
Lipid peroxidation

Lipid peroxidation is a characteristic of ferroptosis that is

driven by free radicals, including ROS and reactive nitron species

(RNS) (69). During lipid peroxidation, oxidants attack lipids,

such as polyunsaturated fatty acids (PUFAs), to produce lipid

hydroperoxides (LOOHs) and reactive aldehydes that rely on the

catalysis of the ALOX family (70). ROS consist of superoxide
TABLE 4 Representative lncRNAs and related signaling pathways of TMZ resistance.

LncRNA Expression Downstream Targets TMZ resistance References

RMRP upregulated ZNRF3, Wnt/b-catenin pathway promote (56)

MIR155HG upregulated PTBP1, Wnt/b-catenin pathway promote (57)

SOX2OT upregulated SOX2, Wnt5a/b-catenin pathway promote (58)

SNHG15 upregulated miR-627-5p, CDK6, SOX-2 promote (59)

SNHG12 upregulated miR-129-5p, MAPK1, E2F7 promote (60)
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anion (O2·-), hydroxyl radicals (HO·), hydrogen peroxide

(H2O2) and singlet oxygen (O2), which are generated by

insufficient reduction of oxygen during hypoxia or in response

to other physical and chemical reactions. There are two

pathways that produce ROS. One is the NADPH oxidase

(NOX) pathway. Another is the Fenton reaction, in which Fe2

+ interacts with H2O2 to produce Fe3+, HO·and OH-. In return,

O2·- interacts with Fe3+ to produce Fe2+. The entire process is

called the Haber-Weiss cycle (70). These free radicals contribute

to oxidative stress and damage proteins and nucleic acids, a

process closely related to the carcinogenic potential in malignant

diseases. Bountali et al. demonstrated that (70) lncRNA MIAT

knockdown promoted the accumulation of ROS and enhanced

cell apoptosis to further influence other cancer-related genes in

glioma. It was highly possible that MIAT exerted its effectiveness

on ferroptosis by changing ROS levels in glioma. Ahmadov et al.

found that (71) N-acetyl cysteine (NAC), a ROS scavenger, could

reverse the phenotype caused by the decline of ROS level due to

lncRNA HOTAIRM1 knockdown in glioma cells. What’s more,

they elucidated that intracellular ROS decrease mediated by

HOTAIRM1 contributed to the radiation resistance in glioma.

Lulli et al. found that (72) miR-370-3P weakened the

proliferation and invasion by directly inhibiting lncRNA

NEAT1 in glioma. NEAT1 encouraged the activation of HIF1-

a and HMGA1, which were both connected to oxidative stress in

glioma. Currently, lncRNA NEAT1 is commonly an oncogene in

cancers. Zhen et al. found that (73) lncRNA NEAT1 could be a

tumor-enhancer by regulating miR-449b-5p/c-Met axis in

glioma. Collectively, these data suggest that the lncRNA

NEAT1 may affect ferroptosis by controlling molecules related

to oxidative stress in glioma. However, the specific mechanisms

by which these lncRNAs affect ferroptosis remain unexplored. In

fact, there are many regulators or pathways that modulate

intracellular ROS content, such as lipophagy, ferritinophagy,

GPX4 and NOXs, and that may be altered by lncRNAs.
Other potential molecular mechanisms
in ferroptosis

The mechanisms of ferroptosis are complicated and obscure.

Many molecules, in addition to those mentioned above, are

involved in this important biological process (8, 70, 74).. As we

all known, glutathione peroxidase 4 (GPX4) is considered as the

gatekeeper and hub molecule in ferroptosis. GPX4 belongs to

Glutathione peroxidases (GPXs) family, which currently

contains GPX1-GPX8. In general, GPXs are involved in the

reduction reactions of H2O2 and small hydroperoxides via

glutathione (GSH) as reductant. Besides, only GPX4 can

catalyze the reduction of hydroperoxides in the complicate

lipids, even located in the biomembranes or lipoproteins. Rich
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evidences (75), have demonstrated GPX4 plays a crucial role in

the process of ferroptosis. GSH, comprised of cystenie, glutamate

and glycine, is required for GPx4 to execute its functions.

Cystine is transported into cells through the protein complex

systmeXc- in plasma membrane which consists of SLC7A11/

xCT (solute carrier family 7 member 11) and SLC3A2 (solute

carrier family 3 member 2). Cystine will be transformed into

cysteine to form GSH once it enters into cells. On the other

hand, GPX4 can catalyze phospholipid hydroperoxides

(PLOOH) to produce phospholipid alcohols (PLOH) and

decrease the stock of lipid peroxidants (69, 70). However, to

inhibit any one step above will suppress the function of GPX4

directly or indirectly to cause the accumulation of PLOOH to

promote ferroptosis. In addition, the stability of SLC7A11 can

also influence the occurrence of ferroptosis. Zhao et al. found

that (76) OTUB1, an ovarian tumor (OTU) family member

deubiquitinase positively regulated the stability of SLC7A11 to

support ferroptosis in glioma. Moreover, Liu et al. found that

(77) CD44, the biomarker of cancer stem cells directed the

process of ferroptosis by promoting the interaction between

OUTB1 and SLC7A11, which suggested that CD44 might be

involved in the progression of ferroptosis. Chen et al. (78) found

that differential expression of lncRNA TMEM161B-AS1

regulated the two ferroptosis-related genes (FANCD2 and

CD44) separately by sponging hsa-miR-27a-3p. They also

confirmed that depletion of FANCD2 and CD44 caused the

accumulation of iron and lipid ROS, suggesting that low

expression of lncRNA TMEM161B-AS1 could promote cell

apoptosis and ferroptosis in glioma. What’s more, Zhang et al.

found that (79) lncRNA OIP5-AS1 inhibited ferroptosis in

prostate cancer with long-term cadmium exposure through

miR-128-3p/SLC7A11 signaling. Obviously, SLC7A11 played a

crucial role in ferroptosis by regulating the transportation of

cystine. As mentioned before, oxidative stress involved

molecules could cause irreversible or lethal damage to cells.

Particularly, NOXs, controlled positively by DPP4/CD26 and

other kinases, constitute part of the membrane-bound enzyme

complexes that transport electrons necessary for the production

of free radicals, including ROS, that promote lipid peroxidation

in ferroptosis (69). Another study also reported that (70) DPP4

was involved in the reduction reaction of O2 to O2·- in a NOXs-

dependent manner.

It is clear that numerous molecules are involved in the

complex process of ferroptosis, yet only a few molecules have

been declared to influence ferroptosis by interacting with

lncRNAs in glioma (Figure 2). Ferroptosis is a newly defined

process of cell death that plays an important role in the

progression of many diseases, especially tumors. Therefore, it

is worth exploring the specific and profound mechanisms

whereby lncRNAs contribute to glioma to provide new

potential targets for therapy.
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Conclusion and prospectives

Glioma is the most prevalent and dangerous CNS tumor

with a very poor prognosis. It is noteworthy that GBM patients

still remain hopeless prognosis even though they were

performed complex treatment scheme combining operation

with radio- and chemo- therapy. More depressingly,

chemotherapy drugs can’t be easily targeted to GBM due to

special location comparing to other non-intra tumors.

Therefore, to find some specific targeted molecules for GBM is

of vital and urgent. To clarify the pathological molecular

mechanisms of GBM is of vital and helps other scientists

further explore corresponding target therapy to some extent.

And we noticed noncoding RNAs, including miRNAs, circRNAs

and lncRNAs play critical and significant roles in suppressing or

provoking the initiation and progression of glioma. In particular,

lncRNAs which is under the spotlight, impact various aspects of

glioma, such as proliferation, invasion, migration, EMT, cell

death, stemness of glioma stem cells and resistance to

radiotherapy and chemotherapy, by interacting with proteins,

mRNAs, enzymes and other noncoding RNAs and interfering

countless signal pathways. Thus, it can be seen lncRNAs indeed

involves in the development and progression of glioma.

However, the specific and precise mechanisms of lncRNAs still

need to be further probed in future. For example, whether

lncRNAs involves in the ferroptosis of glioma or not? And can

lncRNAs put an effect on the ferroptosis progress by some

molecules or similar pathways involved in the proliferation,

EMT, apoptosis and TMZ of glioma?
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Recently, ferroptosis, a novel class of cell death, has attracted

much attention in various diseases. However, few articles have

discussed the mutual interaction between lncRNAs and ferroptosis

in glioma compared with other diseases. Similar relationships

between lncRNAs and ferroptosis found in other diseases may also

be present in glioma. For instance, Mao et al. (80) reported that

lncRNA P53RAA promotes ferroptosis by accumulating iron and

lipid ROS and displacing p53 from the G3BP1-p53 complex.

Simultaneously, P53RAA can decrease the expression of the

metabolic molecule SLC7A11, a regulator of iron concentration.

It is well-known that p53 is a classical tumor suppressor.

Therefore, the following question arises: can p53-related lncRNA

induce ferroptosis in glioma (81)? Besides, He et al. (82) and Shi

et al. (83) built a novel ferroptosis-related lncRNAs panel which

provides some assertive evidence for delving into the relationship

between lncRNAs and ferroptosis in glioma. Meantime, they

released some implications and values for the potential therapy

plan related to immunotherapy for glioma patients.

Glioma is different from other tumors due to its heterogenity

and has a special tumor microenvironment (TME) consisted of

cancer cells and immune cells, including macrophages, nature

killing cells, dendritic cells and et al. The growth of glioma cells is

dependent on the iron element comparing with other non-

malignant cells (84). Moreover, glioma mostly occurred in the

brain and iron is usually transported mediated by TFR into the

brain, which indicated that we can induce the ferroptosis to

consume the iron to prevent the growth of malignant cells.

However, how to achieve it? As mentioned above, lncRNAs can

act various role in the progress of ferroptosis in glioma. If lncRNA
FIGURE 2

The molecular mechanism and some lncRNAs regulation of ferroptosis.
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X (which means any suitable lncRNA), high tissue-specificity,

were found to induce ferroptosis by increasing the iron

concentration or TFR in brain, we can focus on to synthesize a

kind of drug to change the expression of lncRNA X to induce

ferroptosis to obstruct the proliferation of glioma cells. Besides, we

can monitor the change of lncRNA X level in tissue to hint us to

take precautions against the glioma. Furthermore, human brain,

enriched in lipid, is the most susceptible to the progress of

oxidative stress reaction which also are very meaningful to

ferroptosis (85). It is possible for others to develop some related

and helpful therapy plans targeting lncRNAs involved in

ferroptosis followed the same mind above accordingly. Several

works have showed that the links between immune cells within

TME and ferroptosis implicated that some immune therapy

targeting ferroptosis might can be explored (86, 87). More

promisingly, it has been verified that CD4, CD8 and CD36 T

cell within TME can induce the ferroptosis by accumulating the

lipid ROS (88), which suggest we can mainly concentrate on some

immune-related lncRNAs involved in the ferroptosis to scout the

links and the potential therapy. In addition, the induction of

ferroptosis can prevent the formation of acquired drug-resistance

which is significant and meaningful clinically.

Ferroptosis is a complex process and a newly discovered

modality of cell death. The interactions between ferroptosis and

other processes of cell death have been explored, as the

mechanisms of ferroptosis have become increasingly clearer.

Wang et al. (89) found that LINC00618 knockdown reduced

early apoptosis. In addition, LINC00618 can inhibit GPX4, a key

regulator of ferroptosis, and increase the concentration of

intracellular iron and lipid ROS. Ultimately, they suggested

that LINC00618 can increase ferroptosis in a manner

dependent on cell apoptosis. Therefore, we suggest that

lncRNAs might act as bridge molecules between ferroptosis and

apoptosis, including cellular and necrotic apoptosis.

Moreover, this evidence highlights the potential crosstalk or

interrelationship amongst cell apoptosis, necrosis, autophagy

and ferroptosis that may occur in or to contribute to many

diseases and should be the focus of future studies.

In conclusion, lncRNAs play a crucial role in the occurrence

and development of glioma. Targeting these lncRNAs may help

glioma patients to obtain potential treatment benefits. In

addition, the identifications of lncRNAs may contribute to the

early detection and diagnosis of glioma. However, in order to

fully understand the function of lncRNAs in the neoplastic

process of glioma, several key issues must be solved. For
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example, since lncRNAs have various functions and can

regulate a variety of cellular processes, it is necessary to analyze

the specific molecular mechanisms of it. In addition, whether the

participation of lncRNAs in clinical application has sufficient

reliability and sensitivity or not remains to be verified.We believe

that the use of robust sequencing techniques can shed light on

the roles of lncRNAs in glioma development and could accelerate

the clinical application of lncRNAs in diagnosis, treatment, and

prognostic evaluation of glioma.
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Ferroptosis is one of the programmed modes of cell death that has attracted

widespread attention recently and is capable of influencing the developmental

course and prognosis of many tumors. Glioma is one of the most common

primary tumors of the central nervous system, but effective treatment options

are very limited. Ferroptosis plays a critical role in the glioma progression,

affecting tumor cell proliferation, angiogenesis, tumor necrosis, and shaping

the immune-resistant tumor microenvironment. Inducing ferroptosis has

emerged as an attractive strategy for glioma. In this paper, we review

ferroptosis-related researches on glioma progression and treatment.

KEYWORDS

ferroptosis, molecular mechanism, role, glioma progression, combination therapy
Introduction

Ferroptosis is an iron-dependent form of programmed cell death, is more

immunogenic than apoptosis. During ferroptosis, the level of reactive oxygen species

(ROS) increases and induces lipid peroxidation (LPO) (1, 2). Ferroptosis is widely present

in the development of many cancers, such as liver cancer, gastric cancer, lung cancer,

colorectal cancer, ovarian cancer, breast cancer, glioma, and hematologic tumors (3).

Ferroptosis has attracted increasing attention since its naming in 2012 (4).

The process of ferroptosis involves multiple signaling pathways and regulatory

mechanisms that interact with other cell death modalities in the development of

glioma (3, 5–7). It has been shown that increased ROS during ferroptosis can initiate

LPO by interacting with polyunsaturated fatty acids in lipid membranes, thereby

mediating chemoresistance in gliomas (8). A deeper understanding of the mechanism
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of ferroptosis in glioma progression is of great significance for

the research and improving the existing therapies for glioma.

Taking into account the histopathological manifestations and

alterations in genes, molecules and signaling pathways, in 2021,

WHO proposed the fifth edition of the CNS tumor classification,

which comprehensively introduced the latest classification criteria

for gliomas, using the terms “diffuse” and “restrictive” to define

different types of gliomas, replacing the original Roman numeral

grading method of grade I-IV. The latest published classification

shows that diffuse gliomas occurring mainly in adults and mainly

in children have some molecular differences and should be

classified as adult and pediatric types; moreover, adult diffuse

gliomas that occur as angiodysplasia and necrosis should be

diagnosed as glioblastoma (9).

The damage-associated molecular pattern (DAMP) of

ferroptosis is more specific than the other forms of cell death

(Figure 1, Universal mechanisms of DAMP release) (10). On the

one hand, ferroptosis can recruit and activate numerous immune

cells at the tumor site and drive dendritic cell maturation in vitro

(11, 12), and ferroptosis inducers can function as sensitizers for

anti-tumor immunotherapy (13–15). Studies have shown that

ferroptosis combined with radiotherapy and chemotherapy can

partially overcome drug resistance, limit glioma growth and

prolong survival (14, 16, 17). Alternatively, ferroptosis is a

unique form of autophagy (18), and results in iron

accumulation, which is not only associated with iron uptake and

new blood vessels formation during tumor growth (19), but also

serves as an important factor involved in the construction of an

immunosuppressive glioma microenvironment, such as the

regulation of proliferation of B cells , T cells and

immunophenotypic differentiation of tumor-associated

macrophages (20). In conclusion, ferroptosis is involved in
Frontiers in Oncology 02
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multiple aspects of the glioma progression, thus, targeting

ferroptosis may be a potential strategy for glioma therapy.
Molecular mechanism of ferroptosis

In 2012, a new type of iron-dependent programmed cell

death has been described and named ferroptosis by Professor

Stockwell et al. (4). The process of ferroptosis can be briefly

described as the activation of lipoxygenase by free ferrous ions

through the Fenton reaction, leading to peroxidation of

polyunsaturated fatty acids (PUFAs) on cell membranes, and

the increased level of LPO causes loss of cell permeability and

eventually cellular ferroptosis (21). Ferroptosis is regulated by a

combination of iron metabolism, LPO and antioxidant systems,

impairing the homeostasis of any of these processes may trigger

ferroptosis (22). There are diverse cellular defense systems in

response to LPO in cells, including the classical pathway

mediated by GPX4, the non-classical pathway mediated by

FSP1 independently of GPX4, as well as a third pathway in

which dihydroorotate dehydrogenase (DHODH) interacts with

GPX4 to block ferroptosis in the inner mitochondrial membrane

by reducing ubiquinone to form ubiquinol (23). The ferroptosis

related mechanism will be discussed in detail below (Figure 2,

Molecular mechanism of ferroptosis) (24).
The involvement of important molecules
in the process of ferroptosis

Glutathione peroxidase 4(GPX4), is a crucial regulator of

endogenous ferroptosis. GPX4 can convert glutathione (GSH) to
FIGURE 1

Universal mechanisms of DAMP release.
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oxidized glutathione and reduce cytotoxic lipid peroxides to the

corresponding alcohols. By inhibiting the formation of lipid

peroxides, GPX4 prevents the production of LPO reaction

products, reduces cell membrane damage, and thus alleviates

cellular ferroptosis (25). Down-regulation of GPX4 expression

can make cells more sensitive to ferroptosis, and knockdown of

GPX4 induces ferroptosis. Whereas studies show that GPX4

expression was significantly increased in human glioma patients

compared to brain tissue of healthy patients (26).

The Xc-system, a heterodimer composed of subunits SLC7A11

and SLC3A2, is an important component of the cellular

antioxidant system and is closely associated with exogenous

ferroptosis processes. It is widely distributed in the phospholipid

bilayer and is involved in intracellular cystine uptake and GSH

synthesis (27). The inhibition activity of the Xc-system will result

in reduced GPX4 activity, ROS accumulation, and lipid oxidative

stress, causing cellular ferroptosis. SLC7A11 was reported to be

expressed at higher levels in GBM patient biopsies or glioma cell

lines than in normal brain tissue (28).

ACSL4, acyl-CoA long-chain synthase 4, expressed in the

endoplasmic reticulum and mitochondrial outer membrane, is

an essential molecule in lipid metabolism. This molecule is

mainly responsible for catalyzing the formation of acetyl

coenzyme A from lipids. It is closely related to the production

of ROS and the process of ferroptosis, and thus has potential to

be an indicator of ferroptosis sensitivity (29). ACSL4 down-

regulates glioma cell proliferation and mediates up-regulation of

ferroptosis levels in gliomas. Studies have shown that ACSL4

expression is down-regulated after glioma occurs (30).

Additionally, it was reported that GPX4 knockdown leads to

ferroptosis, while double knockdown of GPX4 and ACSL4 genes

can reverse GPX4 knockdown-induced ferroptosis (31).

FSP1 (ferroptosis-suppressor-protein1), is a ubiquinone

oxidoreductase, it was initially described as a pro-apoptotic gene

called apoptosis-inducing factor 2(AIFM2) in mitochondria and is

now considered as a glutathione-independent ferroptosis resistance

molecule. FSP1 can act in parallel with the GPX4 pathway, thus

preventing glutathione deficiency-induced ferroptosis (32).

Moreover, FSP1 can use NADPH to catalyze the reduction of

the lipophilic radical scavenger ubiquinone (CoQ10), and the

FSP1-CoQ10-NADPH pathway can synergistically inhibit ROS

elevation with the GPX4 system to prevent ferroptosis caused by

oxidative damage (33).

DHODH, an iron-containing flavin-dependent enzyme, is

an important molecule in nucleotide metabolism, which inhibits

mitochondrial ferroptosis via regulating the production of the

antioxidant ubiquinol(CoQH2) in the inner mitochondrial

membrane (34). It was shown that inhibition of DHODH

promotes ferroptosis as it increases LPO in mitochondria, and

DHODH can act synergistically with GPX4 to inhibit ferroptosis

in the mitochondrial inner membrane (35).

TP53, a widely studied oncogene, can repress the expression of

SLC7A11, a component of the Xc-system, at the transcriptional
Frontiers in Oncology 04
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level, in turn targeting the diamine acetyltransferase SAT1 and the

mitochondrial glutaminase GLS2, which are involved in the

regulation of glutamine metabolism, to enhance cellular

ferroptosis (36).

Furthermore, p53 can inhibit ferroptosis by directly

inhibiting dipeptidyl peptidase 4 (DPP4) activity or by

inducing cell cycle protein-dependent kinase inhibitor 1A

(CDKN1A/p21) expression (36). Recent studies have shown

that the regulation of ferroptosis by p53 contributes to its

tumor suppressive function (37). In addition, p53 plays a dual

role in mediating ferroptosis in glioma (38).

Nrf2, a transcription factor that regulates redox metabolism,

contains a basic leucine zipper DNA-binding domain at the C-

terminus and plays a key role in the cellular response to

oxidative stress. Many enzymes and proteins involved in LPO

are target genes of NRF2, such as glutamate-cysteine ligase and

glutathione peroxidase (GPX). Through interactions with p53,

GPX4, Xc-system, etc., Nrf2 affects ferroptosis (39).
The role of ferroptosis in
glioma progression

The relevance of ferroptosis and glioma has been widely

recognized for influencing various vital processes in the

development of glioma. It is not only involved in the

construction of an acidic, hypoxic, immunosuppressive glioma

microenvironment, but is also closely related to glioma cell

proliferation, angiogenesis, tumor necrosis, and invasive growth.

Induced ferroptosis can mediate altered oxidative

metabolism in glioma cells, trigger changes toward of

macrophage polarization in the glioma microenvironment, and

interfere with the proliferation and function of immune cells.
Ferroptosis influence glioma
cell proliferation

Ferroptosis has been proposed to play an important role in

glioma cell proliferation (40, 41). Inhibition of ferroptosis

accelerates glioma proliferation and metastasis and promotes

angiogenesis and malignant transformation of gliomas.

Ferroptosis attenuates the viability of glioma cells, and activation

of ferroptosis inhibits glioma cell proliferation. It was revealed that

reduced ferroptosis in human glioma tissue and glioma cells might

be associated with ACSL4, an important molecule in the

emergence of ferroptosis (30). This study found ACSL4

expression was decreased in glioma cells and reduced expression

of ACSL4 compared to the normal human brain. Furthermore,

their speculates confirmed that ACSL4 plays an essential role in

regulating ferroptosis and proliferation in glioma cells and

knocking down the gene significantly improved the viability of

glioma cells (30). Another investigation on non-coding RNA
frontiersin.org
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MicroRNA-670-3p again demonstrated that targeting the

inhibition of ACSL4 and thus ferroptosis in human glioblastoma

cells has a pro-tumor effect (42).

It was noted in studies on drugs that dihydrotanshinone I, a

natural antitumor drug commonly used in clinical practice, can

significantly proliferate human glioma cells and promote human

glioma cell death (43). After treatment of human glioma cells with

dihydrotanshinone I, GPX4 expression decreased while ACSL4

expression increased, inducing ferroptosis in human glioma cells.

Then, the inhibitory effect of dihydrotanshinone I on the

proliferation of glioma cells was blocked after the application of

ferroptosis inhibitors (43). It can be concluded that the effect of

dihydrotanshinone I on the proliferation of glioma cells is derived

from ferroptosis. Additionally, elevated expression levels of Nrf2, a

ferroptosis-related molecule, in glioma patient samples exhibited

pro-tumor proliferative utility by regulating the Xc-system-

mediated reduction in ferroptosis (44).
Ferroptosis promotes the progression of
glioma necrosis

Tumor necrosis is a prevalent phenomenon in gliomas,

especially high-grade glioblastomas, which is strongly associated

with the highly aggressive growth of the tumor. Necrosis progresses

alongside tumor progression, causing inflammation and cytokine

storms resulting in multi-organ disorders, poor prognosis and

death; the degree of tumor necrosis is negatively correlated with

survival in glioma patients (45). There is a general consensus that

tumor necrosis is caused by a hypoxic tumor microenvironment

and rapidly proliferating tumor cells that exceed the capacity of the

vascular supply (46). Moreover, it is proposed that necrosis is

caused by iron-dependent oxidative stress and may partially follow

the ferroptosis pattern (47). Glioma tissue that undergoes necrosis

recruits immune cells by releasing its corresponding DAMP.

Findings show that neutrophils extensively infiltrate the tumor

necrosis area and increase with tumor progression, and that the

degree of infiltration of glioma tumor-associated neutrophils

positively correlates with the degree of tumor necrosis (47).

Furthermore, studies suggest that neutrophils are

participating in the process of promoting tumor necrosis and

that process is achieved by triggering ferroptosis in tumor cells.

Besides, elevated glutamate levels in areas of glioma necrosis can

cause increased tumor necrosis by inhibiting the Xc-system in

ferroptosis, thereby inducing ferroptosis (47).
Ferroptosis has an impact on
glioma angiogenesis

Aberrant vascular network formation with high permeability is

another important feature and critical event in the glioma process.

The formation of new blood vessels effectively promotes the
Frontiers in Oncology 05
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infiltrative spread of gliomas, highly aggressive growth and leads

to a therapeutic resistance. Augmented microvessels are mostly

observed in areas of tumor infiltration and necrosis, and the density

correlates positively with the malignancy of the glioma. It is believed

that glioblastoma is one of the most vascularized human tumors

(48). Glioma-associatedmacrophages, which play an invaluable role

in iron metabolism and ferroptosis, are the most abundant immune

cells in the glioma microenvironment and are engaged in all phases

of angiogenesis, ranging from angiogenesis early sprouting to late

neovascularization and the stabilization of neovascularization (49).

It was reported that the number of macrophages around

proliferating micro-vessels in glioblastoma was significantly

increased. The release of angiogenic factors was promoted by

stimulation of macrophages, while macrophages in gliomas

promoted neovascularization through cyclooxygenase 2-mediated

secretion of cyclooxygenase 2(COX2) and IL-6. Studies revealed

that ferroptosis recruits glioma-associated macrophages and

indirectly acts on macrophage-mediated neointima formation

(50). The other evidence that ferroptosis influences glioma

angiogenesis has been derived from studies of the transcriptional

activator ATF4. It is an integral molecule in cellular oxidative

metabolism and is highly expressed in gliomas, promoting cell

migration and anchorage-independent cell growth, allowing tumor

cells to adapt to the glioma microenvironment, thus, ATF4 plays a

role in promoting proliferation and angiogenesis in gliomas (19).

Furthermore, ATF4 acts in an Xc-system-dependent manner,

mediated by the SCL7A11 molecule. Findings show that the

ferroptosis inducers erastin and RSL3 reduce ATF4-induced

tumor angiogenesis (19).
Ferroptosis raises immune resistance
to glioma

Resistance to treatment in glioma is mainly due to the

immunosuppressed glioma microenvironment, which is a major

obstacle to glioma treatment. Ferroptosis has dual aspects in the

glioma progression. On the one hand, ferroptosis is the main form

of programmed cell death in the glioma process, causing tumor cell

death; On the other hand, ferroptosis is engaged in shaping the

immunosuppressive glioma microenvironment, contributing to a

decrease in the host’s anti-tumor immunity and promoting tumor

propagation (51). Bioinformatics data analysis revealed that the

expression of ferroptosis-related genes was associated with

immunosuppression in gliomas, and studies showed that the

severity of ferroptosis was significantly associated with the clinical

prognosis of gliomas (41). There is a large number of immune cells

infiltrating the ferroptosis-enriched glioma. However, most of these

immune cells are immunomodulatory cells, such as Treg,

neutrophils, and glioma-associated macrophages. A subset of

glioma-associated macrophages can be divided into two subtypes,

M1 and M2, representing two different forms of effects that inhibit

and promote tumor progression (52, 53). A study of 1750 patients
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showed that a higher proportion of tumor-promoting M2-type

macrophages was demonstrated in the immunosuppressed glioma

microenvironment. Furthermore, ferroptosis in gliomas promotes

macrophage infiltration and induces M2-type polarization of

macrophages (46). Being present in the vascular niches in close

contact with brain endothelial cells, glioma stem cells have tumor

initiation properties and self-renewal ability that contribute to the

immunosuppressive microenvironment of glioma. These findings

show that ferroptosis is involved in the stemness regulation of

glioma stem cells. As an example, OTUB1, a deubiquitinating

enzyme overexpressed in gliomas, regulates SLC7A11, a critical

inhibitory molecule in the ferroptosis Xc-system, directly through

the ubiquitinase-proteasome degradation system, forming the

OTUB1/SLC7A11 axis and thus promoting the stemness of

glioma cells (54).
Ferroptosis involvement in
glioma treatment

A standard therapy for glioma treatment is a combination of

surgery, radiotherapy, and chemotherapy, but the effectiveness

of these therapies is limited due to the inherent treatment

resistance of glioma. Being one of the important forms of cell

death, ferroptosis can suppress the development of glioma.

Studies have shown that molecules causing ferroptosis can

play an aggressive role in the treatment of glioma (6, 55), and

as such, ferroptosis can be used as a combination therapy in the

treatment of glioma, improving the sensitivity of radiotherapy

and chemotherapy. In conclusion, targeting ferroptosis-related

genes might have potential value in the treatment of glioma.
Inducing ferroptosis promotes sensitivity
to glioma therapy

Radiotherapy (RT), an important component of standard

therapy for glioma, uses X-rays to destroy tumor tissue and can

directly trigger multiple types of DNA damage, such as base

damage, single-strand breaks (SSB), double-strand breaks

(DSB), thereby inducing cycle arrest, senescence, and multiple

forms of death in highly proliferative tumor cells with some

therapeutic effect. However, due to the heterogeneity of glioma,

radiation therapy’s effect is inadequate (56). Studies suggest that

the combination of ferroptosis inducer sorafenib and

radiotherapy play a collaborative role in killing glioma cells

(17). Alternatively, ferroptosis inducers 2-nitroimidazole,

doranidazole and misonidazole can mediate altered oxidative

stress metabolism in glioma stem cells, such as elevated levels of

metal reductase steap3 and NADH by doranidazole, which can

act as a sensitizer to counteract resistance to radiotherapy and

produce cytotoxicity to limit glioma growth and significantly

prolong survival (13) (more details see Table 1).
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Oral alkylating agent TMZ is the first-line chemotherapeutic

agent in the treatment of glioma. With the advantages of easy

penetration of the blood-brain barrier, stable acidic environment

and no superimposed toxicity with other drugs, it can prolong

the survival time of glioma patients to some extent, but only

partial patients can benefit from TMZ chemotherapy due to drug

resistance (57). Several studies have found that the use of

ferroptosis-inducing agents can increase TMZ sensitivity. The

combined use of the ferroptosis inducer erastin and TMZ was

reported to enhance TMZ sensitivity through multiple pathways

(14); in vitro use of hydroxychloroquine (HCQ) and its

derivative quinacrine(QN), which traverses the blood-brain

barrier and impairs TMZ-induced autophagy, can induce

ferroptosis and thus increase TMZ sensitivity (6) (more details

see Table 1).
Ferroptosis-related drugs in the
treatment of glioma

Many drugs can work in glioma treatment by affecting the

process of ferroptosis. Dihydroartemisinin (DHA) has been

shown to exert anticancer activity by enhancing ferroptosis

through the production of ROS and inhibition of GPX4

initiation (58). Amentoflavone (AF), a polyphenol widely

found in cypress, has anti-inflammatory and anti-tumor

effects. Findings show that AF can trigger glioma ferroptosis in

an autophagy-dependent manner to exert anti-tumor effects

(59). The accumulation of reactive oxygen species and LPO

can be observed in glioma cells treated with the curcumin

analogue ALZ003.In vitro and animal studies have shown that

ALZ003 can inhibit the growth of TMZ-resistant gliomas by

acting on GPX4, a crucial molecule in the ferroptosis pathway,

while having no cytotoxic effect on normal astrocytes (15) (more

details see Table 1).

Furthermore, due to the tight relationship between

ferroptosis and lipid metabolism, many glioma therapeutic

agents can exert therapeutic effects by mediating cellular

ferroptosis through LPO. Brucine, an indole alkaloid extracted

from the seeds of strychnine, promotes LPO, causing ferroptosis

in glioma cells eventually inhibiting glioma cell growth in vitro

and in vivo (60). The non-steroidal anti-inflammatory drug

(NSAID) ibuprofen induces ferroptosis of glioma cells, and its

effects are coupled with an abnormal increase in intracellular

LPO (61).
Ferroptosis-based combination therapy
in glioma

It was shown that NFKB activating protein(NKAP), an

important regulator of mitosis, can positively regulate

SLC7A11, a key molecule of ferroptosis, and knockdown of
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NKAP gene can increase the level of LPO and cause oxidative

damage, which in turn induces glioma ferroptosis and

suppresses glioma progression (62). Furthermore, the

knockdown of NKAP gene resulted in glioma cell lines that

were more sensitive to ferroptosis inducers. Based on this, we

think that NKAP knockdown combined with ferroptosis

induction therapy has the potential to be used in the treatment

of glioma.

A homologous protein mouse double minute (MDM2) and

murine double minute X (MDMX) form a complex that

promotes ferroptosis sensitivity in glioma cells (63). The study

revealed this complex inhibits cellular antioxidant defense by

modulating the activity of the major lipid regulator PPARa,
which influences cellular lipid metabolism and promotes
Frontiers in Oncology 07
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oxidative damage, leading to LPO-mediated cellular ferroptosis

(63). There is a potential to design combined ferroptosis-

inducing therapy with MDM2 and MDMX agonists for

application in the treatment of glioma.

It is believed that the increase in intracellular iron ions,

which contributes to the increase in the unstable iron pool,

promotes the Fenton reaction and the generation of toxic

phospholipid hydrides can induce glioma ferroptosis. Study

reveals that gallic acid (GA) can effectively reduce Fe3+ to Fe2+

and is able to induce ferroptosis in GBM cells as a substrate for

the sustained Fenton reaction (64, 65). Zhang et al. designed a

GA-based targeted nanomedicine that combines ferroptosis and

photothermal therapy for glioma treatment (65) (more details

see Table 2).
TABLE 1 This table lists compounds currently known to induce or promote ferroptosis as sensitizers in the treatment of glioma.

Classification Compound Mechanism

Class I ferroptosis inducers Erastin Inhibit SLC7A11 activity

PE Inhibit SLC7A11 activity

IKE Inhibit SLC7A11 activity

SAS Inhibit SLC7A11 activity

Sorafenib Inhibit SLC7A11 activity

Glutamate Inhibit SLC7A11 activity

BSO GSH depletion

DPI2 GSH depletion

Cisplatin GSH depletion

Class II ferroptosis inducers 1S,3R-RSL3 Inhibit GPX4 activity

ML162 Inhibit GPX4 activity

ML210 Inhibit GPX4 activity

Altretamine Inhibit GPX4 activity

Withaferin A Inactivate/deplete GPX4

Class III ferroptosis inducers FIN56 Degrade GPX4, activate SQS and deplete CoQ10

Statins
(fluvastatin, simvas-tatin, lovastatin acid)

Inhibit HMG-CoA reductase (inhibit CoQ10 synthesis, reduce GPX4 expression)

Class IV ferroptosis inducers Ferric ammonium citrate/sulfate Iron loading

FeCl2 Iron loading

Hemoglobin Iron loading

Hemin Iron loading

Nonthermal plasma Promote the release of Fe2+ from ferritin

Lapatinib + siramesine Upregulate TfR1 and downregulate FPN1

Salinomycin Inhibit iron translocation and deplete ferritin

Artesunate, DHA Endogenous Fe2+ causes the cleavage of endoperoxide bridge

FINO2 Inhibit GPX4 activity, Oxidize ferrous iron and lipidome

Other ferroptosis inducers
and
promoters

BAY 87–2243 Inhibit mitochondrial complex I

BAY 11–7085 Upregulate HMOX1

Auranofin/Ferroptocide Inhibit thioredoxin

iFSP1 Inhibit FSP1

4-CBA CoQ10 depletion

DAHP Inhibit GCH1

Methotrexate Inhibit DHFR

MF-438/CAY10566 Inhibit SCD1

JQ-1 Promote ferritinophagy
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Conclusion and outlook

Glioma is the most common primary brain tumor in the

central nervous system. The current standard treatment for

glioma improves slightly the survival of patients, and all the

treatments have shown some limitations and drug resistance.

Ferroptosis is a newly defined form of cell death that plays an

important role in the progression of glioma, affecting glioma cell

proliferation, invasion, tumor necrosis, angiogenesis, and

participating in the construction of an immunosuppressive

glioma microenvironment. Moreover, ferroptosis can interfere

with other modes of cell death. Thus, the induction of ferroptosis

in gliomas has the potential to be a new option beyond standard

therapies. Existing clinical reports and drug studies have shown

that ferroptosis inducers used in combination with radiotherapy

or TMZ can improve glioma treatment resistance, many drugs

based on ferroptosis can play an aggressive role in glioma

treatment, and targeting ferroptosis can contribute to the

improvement of glioma treatment outcome. In order to apply

ferroptosis in glioma treatment further, we need to perform a

more in-depth study of the mechanisms involved in ferroptosis,

to identify the population for which ferroptosis therapy is
Frontiers in Oncology 08
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suitable; the toxicity of ferroptosis-inducing drugs, and drug

delivery issues, we need to answer how to cross the blood-brain

barrier effectively while avoiding off-target effects.
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Glioma is the most common malignant tumor of the central nervous system

and resistance is easily developed to chemotherapy drugs during the treatment

process, resulting in high mortality and short survival in glioma patients. Novel

therapeutic approaches are urgently needed to improve the therapeutic

efficacy of chemotherapeutic drugs and to improve the prognosis of patients

with glioma. Ferroptosis is a novel regulatory cell death mechanism that plays a

key role in cancer, neurodegenerative diseases, and other diseases. Studies

have found that ferroptosis-related regulators are closely related to the survival

of patients with glioma, and induction of ferroptosis can improve glioma

resistance to chemotherapy drugs. Therefore, induction of tumor cell

ferroptosis may be an effective therapeutic strategy for glioma. This review

summarizes the relevant mechanisms of ferroptosis, systematically

summarizes the key role of ferroptosis in the treatment of glioma and

outlines the relationship between ferroptosis-related ncRNAs and the

progression of glioma.

KEYWORDS

ferroptosis, glioma, GPx4, system xc-, ncRNA
Introduction

Malignant tumors of the central nervous system are one of the most common types of

cancer in humans and the incidence in the population is increasing year by year (1).

Glioma is the most common primary malignant tumor of the adult central nervous

system (2), accounting for 80% of all tumors (1). According to the latest WHO

classification criteria (3), the pathological types of gliomas are divided into low-grade

gliomas (LGG, grades 1–2) and high-grade gliomas (HGG, grades 3–4). WHO grade 4

glioblastoma (GBM) has the worst prognosis (4), with a median overall survival (OS) of

only 12–17 months (5). At present, the treatment of glioma involves surgery,

supplemented by radiotherapy, or a combination of radiotherapy and chemotherapy.

LGG uses adjuvant chemotherapy with procarbazine, lomustine, and vincristine (6), and
frontiersin.org01
133

https://www.frontiersin.org/articles/10.3389/fonc.2022.947530/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.947530/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.947530/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.947530&domain=pdf&date_stamp=2022-09-15
mailto:2662898158@qq.com
https://doi.org/10.3389/fonc.2022.947530
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.947530
https://www.frontiersin.org/journals/oncology


Zhang et al. 10.3389/fonc.2022.947530
the survival time is significantly prolonged (7). Although high-

grade gliomas are usually treated with temozolomide (TMZ)

after surgery, the STUPP radiotherapy and chemotherapy

regimen has prolonged the survival of patients to some extent

(8), but the prognosis of some patients is still poor (9). This may

be due to the limitations of glioma surgery methods, which do

not allow complete separation of lesions from normal brain

tissue, and insufficient tumor vascularization due to the

existence of the blood-brain barrier and rapid proliferation of

tumor cells (10). It is difficult to reach the tumor through blood

circulation and achieve sufficient concentration to achieve

localized function. Furthermore, HGG cells, especially GBM

cells, exhibit extreme invasiveness (11) and heterogeneity (12).

Therefore, treatment with a single chemotherapeutic agent can

make glioma cells resistant (13), further complicating their

heterogeneity and leading to glioma recurrence (14).

Ferroptosis is a novel iron-dependent regulatory cell death

(RCD) method proposed by Dixon et al. (15). A large number of

studies have shown that the role of ferroptosis in tumor therapy

is particularly important (16–20). By inducing ferroptosis, tumor

cell growth, migration, and invasion can be inhibited, achieving

the purpose of tumor therapy (17). Drug resistance of tumor

cells during chemotherapy can be reversed by inducing

ferroptosis (18). After induction of ferroptosis, it can spread

among surrounding cells, increasing the antitumor effect of

chemotherapeutic drugs (19) and the sensitivity of tumor cells

to chemoradiotherapy drugs (20). These findings provide new

insight into the treatment of drug-resistant tumors. Recent

studies have found that noncoding RNAs (ncRNAs) also play

a key role in the ferroptosis of tumor cells (21, 22). ncRNAs such

as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular

RNAs (circRNAs) are widely involved in iron metabolism, ROS

metabolism, and ferroptosis-related amino acid metabolism in

tumor cells (22). Glioma cells have extensive heterogeneity and

are prone to drug resistance to chemotherapeutic drugs,

resulting in an unsatisfactory patient prognosis (23). A study

has found that the ferroptosis inducer erastin can enhance the

sensitivity of GBM cells to TMZ (24). Therefore, this new

strategy to induce ferroptosis in tumor cells may have great

potential in the treatment of glioma. Current research focuses on

how to reduce drug resistance in glioma chemotherapy and

deepens the mechanism of classical ferroptosis-inducing

pathways such as GPX4 in glioma. Ferroptosis-related ncRNAs

and nanoparticle therapy targeting ferroptosis in gliomas have

received increasing attention. This review summarizes the

mechanism of ferroptosis in tumors and the research progress

of ferroptosis in the treatment of glioma, as well as the key role of

ferroptosis-related ncRNAs, and ultimately the potential clinical

value of ferroptosis in personalized treatment regimens

for glioma.
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Mechanisms of ferroptosis in tumors

Ferroptosis is fundamentally different from apoptosis,

pyroptosis, autophagy, and other cell death methods, and

shares no similarities in terms of morphology, biochemistry, or

genetics (25). Ferroptosis is characterized by the availability of

redox-active iron (26) the loss of lipid peroxide repair capacity

by the phospholipid hydroperoxidase GPX4 (27), and oxidation

of polyunsaturated fatty acid (PUFA)-containing phospholipids

(28). Ferroptosis is triggered in tumor cells by cysteine (Cys)

depletion or by inhibition of glutathione peroxidase 4 (GPX4)

(29). Subcellular structural changes are manifested by the

reduction or disappearance of mitochondrial cristae in tumor

cells and the destruction of the inner and outer mitochondrial

membranes (30). Below we provide an overview of its

mechanism around important features of ferroptosis in

tumor cells.
Disruption of iron homeostasis

Iron is the basis of tumor cell proliferation, metabolism,

invasion, and disruption of the intracellular environment and

cytoplasmic iron homeostasis is a key regulator that induces

ferroptosis (31). Tumor cells are more proliferative than normal

cells and have a greater need for iron (32). The excess free iron

produced by the Fenton reaction (33) or iron-containing

lipoxygenase (34) oxidizes PUFA on the cell membrane to

increase the formation of lipid ROS. Hydroxyl free radicals are

the most active substances in ROS, which can trigger the

production of PUFAs in membrane lipids. peroxidation,

leading to ferroptosis in cells (35). Therefore, an increase in

Fe2+ content in cells increases the sensitivity of cells to

ferroptosis, and iron chelators such as deferoxamine can

inhibit ferroptosis by chelating Fe2+ in cells to interfere with

the production of oxidized lipids (27). Transferrin (Tf) usually

binds to the transferrin receptor (TfR1) to transport iron from

the intracellular environment into cells in the form of iron-

transferrin complexes, a process that is important in ovarian

cancer (36), sarcoma (37), and other tumors were significantly

up-regulated. TfR1-mediated downregulation of the iron-

transferrin complex reduces cellular iron uptake, thus

inhibiting ferroptosis (38). Furthermore, heat shock protein

HSPB1 and phosphorylated HSPB1 also reduce iron uptake in

cells from the internal environment (39), reducing the sensitivity

of cells to ferroptosis. Endogenous iron is released into the

cytoplasm by lysosomes under the influence of acidic conditions,

and this process depends on the phagocytosis of ferritin by

nuclear receptor coactivator 4 (NCOA4) (40). Knockdown of
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NCOA4 inhibits ferritin degradation, reduces cytoplasmic iron,

and up-regulates ferritin heavy chain (FTH1) expression, thus

inhibiting erastin-induced ferroptosis (41). Furthermore, the

pentaspanin membrane glycoprotein prominin-2 promotes the

formation of exosomes and transports cytoplasmic iron out of

the cell (42). CDGSH iron-sulfur cluster domain 1 (CISD1) (43)

and the iron-sulfur cluster biosynthesis enzyme (NFS1) (44)

reduce cell susceptibility to ferroptosis by uptake of

cytoplasmic iron.
Lipid peroxidation

Human cell membranes are rich in PUFA-acylated

glycerophospholipids and have a wide variability (45) and the

scavenging of peroxidized PUFAs can inhibit ferroptosis (46).

PUFAs are very sensitive to free radical or enzyme-mediated

oxidation (47), and peroxidized PUFAs bind to the

glycerophospholipids of the cell membrane and participate in

tumor cell ferroptosis and cause cell membrane destruction (48).

Excess GSH accumulation due to down-regulation of GPX4 is a

molecular mechanism leading to lipid peroxidation (49). GPX4

can reduce lipid hydroperoxides to lipid alcohols to avoid lipid

peroxidation (50). Rapamycin complex 1 (mTORC1)

upregulates GPX4 expression and inhibits membrane lipid

peroxidation (51). The ferroptosis activator RSL3 can induce

ferroptosis in tumor cells by silencing or inhibiting GPX4

expression (26). System Xc- inhibition is another molecular

mechanism leading to lipid peroxidation (49). System Xc- is a

glutamate (Glu)/cystine antiporter composed of the solute

carrier family 3 member 2 (SLC3A2) and the solute carrier

family 7 member 11 (SLC7A11). The ferroptosis activator

erastin inhibits system Xc- blocking the entry of cystine into

cells, and the lack of intracellular Cys leads to a decrease in GSH

and a decrease in GPX4 activity (52). The tumor suppressor

protein BRCA1-associated protein 1 (BAP1) inhibits SLC7A11

expression in a deubiquitinating-dependent manner and induces

lipid peroxidation to promote ferroptosis (53). Membrane-

associated progesterone receptor component 1 (PGRMC1)

inhibits SLC7A11 through autophagic degradation of lipids

and induces ferroptosis in paclitaxel-resistant tumor cells (54).

NADPH oxidase (NOX) and the tumor suppressor gene p53

(especially the acetylation-deficient mutant p53-3KR) also

inhibit SLC7A11 (55). A recent study found that the

homology of m6A reader YT521-B containing 2 (YTHDC2)

can induce ferroptosis in lung adenocarcinoma cells by

inhibiting SLC7A11 (56). Moreover, YTHDC2 suppressed

SLC3A2 by inhibiting Homeobox A13 (HOXA13) indirectly

(57) and was also found to affect system Xc- function in lung

adenocarcinoma cells.
Frontiers in Oncology 03
135
Accumulation of reactive oxygen species

Reactive oxygen species (ROS) are closely related to the

proliferation and death of tumor cells. A certain amount of ROS

can promote tumor signal transduction and promote tumor cell

proliferation, growth, and adaptation to hypoxia. However,

excessive ROS accumulation promotes antitumor signaling,

triggers oxidative stress, and induces cell death (58). The

content of ROS in tumor cells is higher than in normal cells,

and the neuronal redox sensing channel TRPA1 can improve the

defense ability of tumor cells against ROS (59). The continuous

accumulation of ROS in tumor cells eventually leads to the

disappearance of mitochondrial ridges and the destruction of

mitochondrial membranes, leading to ferroptosis (60). GPX4

(61), vitamin E (a-tocopherol), and coenzyme Q 10 (CoQ 10)

can reduce membrane lipid ROS (62). The Fenton reaction,

NADPH-dependent lipid peroxidation, GSH depletion, and

decreased GPX4 activity can all promote ROS accumulation in

tumor cells (63), which induces ferroptosis in tumor cells.

These studies revealed the complex regulatory mechanism of

ferroptosis in tumor cells, which can promote or inhibit

ferroptosis by regulating key regulators of ferroptosis. We list

the key regulators related to ferroptosis in glioma and their

regulatory mechanisms and further explore the application of

ferroptosis in the treatment of glioma.
Mechanisms of ferroptosis in glioma

Glioma cells undergo marked metabolic reprogramming

(such as the Warburg effect) and GBM cell membrane lipid

species are highly cell-type specific, with lipid metabolism

involved in the occurrence and progression of GBM (64). The

reprogramming of lipid metabolism is affected by the efficiency

of acetyl-CoA (65) and isocitrate dehydrogenase (IDH) (66). In

particular, the IDH mutation is particularly important for the

prognosis of glioma. The IDH mutation inhibits the function of

the wild-type IDH product a-ketoglutarate by abnormally

producing 2-hydroxyglutarate (2-HG), thus affecting the lipid

metabolism of glioma cells (67). Ivanov et al. (68) fed glioma-

transplanted rats with a prolonged diet including iron-

containing water and found that it promoted the growth of

gliomas in rats and improved the effects of radiotherapy, which

disappeared after the injection of deferoxamine. Another study

(69) suggested that iron and iron metabolism could affect the

prognosis of patients with glioma, and the study also found that

key regulators of ferroptosis were also important in neuronal

function. Alim (70) found that selenium could inhibit GPX4-

dependent ferroptosis in neuronal cells. GPX4 depletion leads to
frontiersin.org

https://doi.org/10.3389/fonc.2022.947530
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.947530
neurodegeneration in vivo and in vitro (71). Below, we focus on

the key regulators of ferroptosis and elaborate on the

mechanisms of ferroptosis in glioma (Figure 1).
GPX4

GPX4 is a selenoprotein that belongs to the glutathione

peroxidase family (GPX1-8) and is a key regulator in ferroptosis

(72). Normally active GPX4 can reduce lipid peroxide (LPO) to

alcohol or reduce intracellular H2O2 to water to avoid or reduce

cell membrane lipid peroxidation. Reduced or inactivated GPX4

activity leads to an excessive accumulation of ROS on membrane

lipids that leads to ferroptosis (73). Fragile X-related protein-1

RNA binding protein (FXR1) in glioma cells can bind to GPX4

mRNA and up-regulate GPX4 expression (74). Nrf2 can also

inhibit ferroptosis by up-regulating GPX4 expression in glioma

cells (75). Conversely, activation of the p38 and ERK pathways in

GBM decreased the levels of GPX4 protein (76). Helena Kram

et al. (77) performed immunohistochemistry on sample pairs of

primary and relapse GBM of 24 patients who had received

standard adjuvant treatment with radiochemotherapy. They

found that the expression of GPX4 decreased significantly

during tumor relapse. this study shows that recurrent tumors

have a higher vulnerability to ferroptosis.
System Xc-

System Xc- consists of two parts, SLC7A11 and SLC3A2, and

its main function is to transport extracellular cystine into cells
Frontiers in Oncology 04
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and reverse glutamate (Glu) transport. A study has found that

SLC7A11 is up regulated in a variety of tumor cells, promotes

glutathione (GSH) synthesis to inhibit damage from oxidative

stress to tumor cells, and is negatively correlated with the median

OS of patients (78). System Xc- also plays a significant role in

ferroptosis in gliomas. The proper functioning of System Xc-

function is critical for neuronal signaling (79). Activating

transcription factor 4 (ATF4) can increase neovascularization

within gliomas and shape neovascularization in a SLC7A11-

dependent manner (80). The expression of p53 is deregulated in

GBM, and studies have found that the expression of p53 and

SLC7A11 is negatively correlated in glioma cells (81) and that

p53 inhibits the expression of the SLC7A11 gene (82).

Furthermore, p62 binds to p53 and inhibits p53 ubiquitination

in GBM. The canonical p62-mediated Nrf2 activation pathway

plays an important role in the regulation of ferroptosis in wild-

type GBM p53 and inhibits ferroptosis by upregulating the

expression of SLC7A11.

In GBM p53 mutants, the strong interaction of p62 with

mutant p53/Nrf2 enhances the inhibitory effect of mutant p53

on Nrf2, thus reversing the classical p62-mediated Nrf2

activation pathway (83). However, one study found that the

tumor stem cell marker CD44 inhibited ferroptosis in tumor

cells in a manner dependent on the deubiquitinase OTUB1, and

overexpression of CD44 improved the stability of the SLC7A11

protein by promoting the interaction between SLC7A11 and

OTUB1 (84). High expression of OTUB1 was also found in

clinical samples of glioma and was positively correlated with

SLC7A11 expression (85). Furthermore, the NF-kB pathway

activator protein of the NF-B pathway promotes the splicing and

maturation of SLC7A11 mRNA by binding to m6A, thus
FIGURE 1

Molecular pattern diagram of ferroptosis in glioma. GPX4, Glutathione Peroxidase 4; SLC7A11, Solute carrier family 7 membrane 11; SLC3A2,
Solute carrier family 3 membrane 2; GSH, Glutathione; GSSG, Glutathione disulphide; ACSL4, Acyl-CoA synthetase long-chain family member 4;
ROS, Reactive oxygen species; DMT1, Divalent metal transporter 1; LPCAT3, Lysophosphatidylcholine acyltransferase 3; STEAP3, Six-
transmembrane epithelial antigen of the prostate 3; TFR1, Transferrin receptor 1; TF, Transferrin; ALOX15, Arachidonate 15-lipoxygenase.
frontiersin.org

https://doi.org/10.3389/fonc.2022.947530
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.947530
upregulating the expression of SLC7A11 and inhibiting

ferroptosis in GBM cells (86).
Other regulators

MDM2 and MDMX are negative regulators of p53, and

inhibition of MDM2 or MDMX increases ferroptosis

suppressing protein 1 (FSP1) expression in glioma cells. The

MDM2-MDMX complex regulates lipid peroxidation and

promotes ferroptosis in glioma cells by altering the activity of

PPARa (87). Knockdown of COPZ1 in GBM cells leads to

increased expression of nuclear receptor coactivator 4 (NCOA4),

and inhibition of FTH1 leads to ferritin degradation, resulting in

excessive accumulation of intracellular Fe2+, leading to

ferroptosis (88). Inhibition of the expression of the matrix

remodeling-related protein MXRA8 can also up-regulate

NCOA4 and down-regulate FTH1 expression, and MXRA8 is

positively correlated with the macrophage marker CSF1R. One

study co-cultured glioma cell with M2 macrophages and found

that MXRA8 knockdown in glioma cells attenuated the

infiltration of M2 macrophages, while the addition of Fer-1

restored the infiltration of M2 macrophages (89). The deletion of

NCOA4 can inhibit the reduction in the level of the FTH1

protein caused by cystine deprivation, and cystine deprivation

simultaneously induces the accumulation of light chain 3 (LC3)-

II protein associated with microtubules, enhances ferritin

phagocytosis, and then promotes ferroptosis in GBM cells

(90). The study (91) has also found that phosphorylation of

heat shock protein 27 (HSP27) in GBM cells can resist erastin-

induced ferroptosis, while down-regulation of HSP27 promotes

erastin-induced ferroptosis and can function as a negative

regulator of ferroptosis.

The above studies confirmed the feasibility of treating glioma

with classical ferroptosis regulators and mechanisms such as GPX4,

SLC7A11, and FSP1. Below, we focus on the key regulators of

ferroptosis in the above-mentioned gliomas and describe current

ferroptosis-related glioma treatment strategies.
Ferroptosis in glioma treatment

Regulation of GPX4

Studies have found that ibuprofen can induce ferroptosis in

glioma cells by down-regulating GPX4 expression in Nrf2-

regulated cells (75). GPX4 is a key regulator for dual

artemisinin (DHA)-induced ferroptosis in GBM cells (92).

DHA induces endoplasmic reticulum (ER) stress in glioma
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cells, leading to upregulation of ATF4 and protein kinase R-

like ER kinase (PERK). ATF4 induces the overexpression of heat

shock protein family A (Hsp70) member 5 (HSPA5) and

increases GPX4 expression and activity. GPX4 neutralized

DHA induces lipid peroxidation, thus protecting glioma cells

from ferroptosis (93). Curcumin analogs induce androgen

receptor (AR) ubiquitination to inhibit GPX4 activity, thus

promoting ferroptosis and reducing resistance to TMZ in

GBM cells (94). Studies have found that FXR1 expression is

increased in TMZ-resistant glioma cells, and targeted inhibition

of FXR1-GPX4 can reduce the drug resistance of TMZ-resistant

glioma cells (74). Dihydrotanshinone I (DHI) increases ACSL4

expression in glioma cells and down-regulates GPX4 to inhibit

glioma cell proliferation (95). The anti-malaria drug artesunate

(ART) induces ferroptosis in GBM cells by regulating the p38

MAPK and ERK signaling pathways and reducing the level of

GPX4 protein (76). Although gastrodin reduces the level of

malondialdehyde (MDA) in rat glioma cells, which in turn

increases GPX4 activity and inhibited ferroptosis in rat glioma

cells (96), plumbagin induces GPX4 degradation in glioma cells

via the lysosomal pathway and leads to GPX4-dependent cell

death (97).

RSL3, a small molecule compound that can target GPX4,

induces glycolytic dysfunction and autophagy-dependent

ferroptosis in glioma cells (98). While down regulating GPX4,

RSL3 also activates the nuclear factor kappa-B (NF-kB) pathway
to induce ferroptosis in GBM cells. However, the study found

that knockdown of GPX4 alone did not effectively induce

ferroptosis in glioma cells. NF-kB pathway activation

combined with GPX4 silencing induces ferroptosis and

inhibits glioma growth and recurrence (99). Ferroptosis

activators can inhibit GPX4 expression and synergize with

radiotherapy, inducing ferroptosis in glioma cells without

increasing DNA damage (100). Local chemotherapy is also a

new direction in the treatment of glioma, increasing local

chemotherapy drugs while minimizing the impact on normal

cells, to inhibit tumor growth and recurrence. The study has

reported on the use of gene therapy-based iron oxide

nanoparticles (IONP) to deliver GPX4 small interfering RNA

(siRNA) and cisplatin (Pt). Nanoparticles activate NADPH

oxidase (NOX) to increase H2O2 levels while releasing si-

GPX4 to inhibit GPX4 expression, causing excessive ROS

accumulation and triggering ferroptosis in glioma cells (101).

In one study, paclitaxel-loaded iron oxide nanoparticles

(IONP@PTX) enhanced the expression of autophagy-related

proteins Beclin1 and LC3II, inhibited the expression of p62

protein, and GPX4, and induced ferroptosis in GBM cells (102).

Tumor immunity-related studies have found that certain tumor

lesions that occur during early tumor progression (i.e., ischemia)

recruit neutrophils to sites of tissue damage. However,

neutrophils can induce ferroptosis in GBM cells by regulating
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GPX4, creating a positive feedback loop that exacerbates the

development of internal GBM necrosis (103).
Regulation of SLC7A11

Studies have found that ibuprofen affects GPX4

expression in glioma cells by downregulating Nrf2 and at

the same time inhibits the activity of SLC7A11 (75).

Activation of the Nrf2-Keap1 pathway up-regulates

SLC7A11 to release a large amount of Glu out of glioma

cells, thereby affecting the tumor microenvironment, which

may be related to the decreased survival rate of patients with

glioma with high expression of SLC7A11 (104). Like

ibuprofen, in addition to downregulating GPX4, plumbagin

can significantly down-regulate SLC7A11 mRNA and protein

levels in glioma cells and induce ferroptosis in glioma cells

(97). As a first-line drug for chemotherapy with GBM in

clinical practice, TMZ can affect GPX4 and reduces the

activity of SLC7A11. Studies have found that gliomas with

high expression of SLC7A11 are more sensitive to erastin-

TMZ combination therapy and have better therapeutic effects

(105). ATF4 is a key regulator in cellular metabolism and

maintenance of oxidative homeostasis, and upregulation of

SLC7A11 expression by ATF4 improves the resistance of

gliomas to chemotherapeutic drugs such as TMZ (106).

However, the latest study found that down-regulation of

ATF4 in GBM cells inhibited CHAC1 expression and

blocked sevoflurane (Sev)-induced ferroptosis (107).

Activating transcription factor 3 (ATF3) in glioma can

promote ferroptosis of glioma cells by upregulating NOX4

and SOD1 to produce H2O2 and promote the strychnine-

induced accumulation of H2O2, and by downregulating

SLC7A11 to prevent degradat ion of H2O2 (108) .

Pseudolaric acid B (PAB) increases the intracellular iron

content in the glioma by upregulating the transferrin

receptor, activating NOX4, and producing excess H2O2 and

LPO. PAB blocks cystine supply through the p53-mediated

SLC7A11 pathway, depleting intracellular GSH and further

exacerbating H2O2 and LPO accumulation (109). RSL3 is a

GPX4 inhibitor, and recent studies have found that RSL3 can

down-regulate SLC7A11 expression by activating the NF-kB
pathway (99).
Regulation of other key regulators
of ferroptosis

Differences in transferrin receptor (TfR) in normal human

astrocytes (NHA) and GBM cell lines may be the key to DHA
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selective killing of tumor cells to induce ferroptosis (92). A team

designed cRGD/Pt + DOX@GFNPs (RPDGs) nanoparticles to

promote the simultaneous occurrence of apoptosis and

ferroptosis by disrupting redox homeostasis in mouse GBM-

resistant cells. Using the Fenton reaction of gallic acid (GA)/Fe2+

to catalyze nanoparticles in the intracellular environment, Pt

(IV) depletes intracellular GSH and increases the accumulation

of reactive oxygen species (ROS), thus inducing ferroptosis in

GBM-resistant cells (110). Fe3O4-siPD-L1@M-BV2 increased Fe2

+ accumulation in mouse GBM-resistant cells and significantly

decreases the expression of programmed death-ligand 1 (PD-

L1). Fe3O4-siPD-L1@M-BV2 also increases the ratio of effector T

cells to regulatory T cells in drug-resistant GBM (111).

Amentoflavone (AF) can not only induce autophagy in glioma

cells by regulating the AMPK/mTOR pathway but is also

associated with ferroptosis in gliomas. Knockdown of

autophagy-related protein 7 (ATG7) was found to increase

ferritin heavy chain 1 (FTH1) expression and inhibits AF-

induced ferroptosis. It demonstrates that AF triggered

ferroptosis in an autophagy-dependent manner, thereby

suppressing glioma growth and recurrence (112). Another

study found that siramesin combined with lapatinib mediates

ferroptosis in glioma cells through iron release in lysosomes and

protease degradation of HO-1 (113). Doranidazole and

misonidazole can induce ferroptosis by blocking metabolic

alterations in mitochondrial complex I and II of hypoxic

glioma stem cells (GSC) that trigger responses to oxidative

stress (114).

The above studies demonstrate the mechanism by which

different drugs treat glioma by modulating key regulators of

ferroptosis (Table 1). In addition, ferroptosis-related ncRNAs

also have a certain influence on the treatment of glioma. Next,

we will elaborate on ferroptosis-related ncRNAs.
Ferroptosis-related ncRNAs in
glioma treatment

Ferroptosis and ncRNAs are closely related to tumors

(115). Among ncRNAs, miRNAs, lncRNAs, and circRNAs are

all involved in the potential regulatory mechanisms of tumor

ferroptosis (116). ncRNAs can regulate the protein levels of

ferroptosis-related genes (117), influence the expression of

mRNA of ferroptosis-related genes (118), lead to modification

of m6A (117), and control epigenetic activity (119). ncRNAs

induce ferroptosis by regulating cellular iron metabolism,

ROS metabolism, and lipid metabolism. Recent studies have

found that ncRNAs also play a key role in glioma ferroptosis

(Figure 2). GPX7 is a member of the glutathione peroxidase
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family (GPX), and miR-29b can inhibit GPX7 expression,

thus improving the sensitivity of glioma cells to erastin-

induced ferroptosis (120). miR-670-3p inhibited GBM cell

ferroptosis by downregulating ACSL4 expression, while the
Frontiers in Oncology 07
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miR-670-3p inhibitor increased the antitumor effect of TMZ

(121). miR-18a inhibited ferroptosis related to p53-SLC7A11

in GBM cells by down-regulating the expression of ALOXE3

(122). The lncRNA TMEM161B-AS1 increases FANCD2 and
FIGURE 2

Regulation of ferroptosis by ncRNAs in glioma. GPX4, Glutathione Peroxidase 4; SLC7A11, Solute carrier family 7 membrane 11; SLC3A2, Solute
carrier family 3 membrane 2; GPX7, Glutathione Peroxidase 7; ACSL4, Acyl-CoA synthetase long-chain family member 4; ALOXE3, Arachidonate
lipoxygenase 3; PDGFRA, Platelet-derived growth factor receptor; FANCD2, FA Complementation Group D2; CD44, Cluster of differentiation 44;
NFE2L2, Nuclear factor erythroid 2-like 2; ITGB8, Integrin subunit beta 8.
TABLE 1 Summary of ferroptosis-associated agents.

Ferroptosis-associated
agents

Mechanism Function Study

Ibuprofen down-regulates GPX4 expression and inhibits the activity of SLC7A11 Induces
ferroptosis

(75)

Dual artemisinin up-regulates ATF4 induces the overexpression of HSPA5 and increases GPX4 expression and activity Inhibits
ferroptosis

(93)

Curcumin analog induces AR ubiquitination to inhibit GPX4 activity Induces
ferroptosis

(94)

Dihydrotanshinone I increases ACSL4 expression and down-regulates GPX4 Induces
ferroptosis

(95)

Artesunate down-regulates GPX4 Induces
ferroptosis

(76)

Plumbagin induces GPX4 degradation via the lysosomal pathway and down-regulates SLC7A11 mRNA and protein
expression

Induces
ferroptosis

(97)

RSL3 inhibits GPX4 and down-regulates SLC7A11 expression by activating the NF-kB pathway Induces
ferroptosis

(99)

IONP activates NOX to increase H2O2 levels while releasing si-GPX4 to inhibit GPX4 expression Induces
ferroptosis

(101)

IONP@PTX up-regulates the expression of autophagy-related proteins Beclin1 and LC3II, and inhibits the expression
of p62 and GPX4

Induces
ferroptosis

(102)

Temozolomide down-regulates GPX4 and reduces the activity of SLC7A11 Induces
ferroptosis

(105)

Amentoflavone induces autophagy by regulating the AMPK/mTOR pathway, and down-regulates FTH1 expression Induces
ferroptosis

(112)

Siramesin and lapatinib Via iron release in lysosomes and protease degradation of HO-1 Induces
ferroptosis

(113)
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CD44 expression by adsorbing hsa-miR-27a-3p, inhibits

apoptosis and ferroptosis, but reduces the resistance to

TMZ in GBM cells (123). LINC01564 has the opposite

effect, inhibiting ferroptosis by upregulating NFE2L2

expression and enhancing glioma cell resistance to TMZ

(124). Circular RNA CDK14 upregulates the expression of

the PDGFRA oncogene in GBM cells by adsorbing miR-3938

and reducing the sensitivity of GBM to erastin-induced

ferroptosis (125). The circRNAs TTBK2 and ITGB8 are

highly expressed in glioma tissues and cells, and TTBK2 can

inhibit ferroptosis in glioma cells by up-regulating ITGB8 by

adsorbing miR-761 (126). Table 2 summarizes the findings

from recent studies as these results suggest that ncRNAs play

a key role in ferroptosis in gliomas and may become new

therapeutic targets for gliomas.
Conclusions and future prospects

The heterogeneity of glioma cells alters the sensitivity of gliomas

to different chemotherapeutic drugs. The use of a certain

chemotherapeutic drug alone in the treatment process cannot

achieve the expected desired effect, and new treatment methods

are needed to supplement it. The induction of ferroptosis in tumor

cells has attracted increasing attention as a new strategy for the
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treatment of glioma. Previous studies have preliminarily explored the

mechanism of ferroptosis in glioma and found that improved iron

metabolism and resistance to lipid peroxidation are prevalent in

glioma cells. However, recurrent GBM showed high sensitivity to

ferroptosis. These studies demonstrate ferroptosis as a new option

for glioma treatment in the face of tumor resistance and recurrence.

Protein molecules such as GPX4 and System Xc- and ferroptosis-

related ncRNAs have become important targets for glioma therapy.

Current studies have demonstrated the value and potential of

treating glioma through the canonical pathway and factors of

ferroptosis. However, GPX4 is an essential gene in mammals, and

whether drugs that inhibit GPX4 to treat tumors will bring

unbearable side effects to glioma patients remains to be further

studied. Therefore, it is particularly important to explore non-

canonical pathways of ferroptosis in the treatment of glioma, such

as the treatment of glioma through the HO-1 pathway. In addition,

the current study does not involve the treatment of recurrent glioma,

and ferroptosis-related ncRNA research and molecular therapy are

also in their infancy. Therefore, it is particularly important to study

ferroptosis-related mechanisms in greater detail in glioma and to

explore ferroptosis-related ncRNAs, nanoparticles, and exosomes.

Currently, the clinical trials investigating ferroptosis applied to the

treatment of glioma are still incomplete. Inducing ferroptosis to

destroy tumor cells and reducing damage to normal cells of the

central nervous system is the key to promoting the clinical
TABLE 2 The regulatory role of ferroptosis-related ncRNAs in glioma progression.

NcRNA Cell
Lines

Mechanism Function Study

miR-29b U87
T98G
LN229
A172

Target GPX7 Induces ferroptosis and enhances glioma cell sensitivity to
erastin-induced ferroptosis

(120)

miR-670-3p U87MG
A172

Target ACSL4 Inhibits ferroptosis (121)

miR-18a U87MG
U251

Target ALOXE3 Inhibits ferroptosis and promote migration (122)

lncRNA
TMEM161B-AS1

U87MG
U251

Sponge with mir-27a-3p and upregulate the expression of
FANCD2 and CD44

Inhibits ferroptosis (123)

LINC01564 LN229/
TMZ
U251/
TMZ

Upregulate the expression of NFE2L2 Inhibits ferroptosis and promote TMZ resistance (124)

circ CDK14 HBE
SF126
U251
U87

Sponge with mir-3938 and upregulate the expression of
PDGFRA

Inhibits ferroptosis (125)

circ TTBK2 LN229
U251
NHA

Sponge with mir-761 and upregulate the expression of
ITGB8

Inhibits ferroptosis (126)
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translation of research findings. In conclusion, as a complement to

current therapeutic approaches, ferroptosis has immense potential in

the treatment and prognosis of glioma.

Author contributions

GZ and YF participated in the conception and designed this

review. ZZ provided administrative support. GZ wrote the

manuscript. YF and XL revised the manuscript. All authors

contributed to this article and approved the submitted version.

Funding

This research was supported by the National Natural Science

Foundation of China (No.81471809; No.81971639).
Frontiers in Oncology 09
141
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS
statistical report: Primary brain and other central nervous system tumors
diagnosed in the united states in 2014-2018. Neuro Oncol (2021) 23(12 Suppl 2):
iii1–105. doi: 10.1093/neuonc/noab200

2. Ostrom QT, Gittleman H, Kruchko C, Louis DN, Brat DJ, Gilbert MR, et al.
Completeness of required site-specific factors for brain and CNS tumors in the
surveillance, epidemiology and end results (SEER) 18 database (2004-2012,
varying). J Neurooncol (2016) 130:31–42. doi: 10.1007/s11060-016-2217-7

3. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D,
Cavenee WK, et al. The 2016 world health organization classification of tumors of
the central nervous system: a summary. Acta Neuropathol (2016) 131:803–20.
doi: 10.1007/s00401-016-1545-1

4. Smoll NR, Schaller K, Gautschi OP. Long-term survival of patients with
glioblastoma multiforme (GBM). J Clin Neurosci (2013) 20:670–5. doi: 10.1016/
j.jocn.2012.05.040

5. Thumma SR, Fairbanks RK, LamoreauxWT, Mackay AR, Demakas JJ, Cooke
BS, et al. Effect of pretreatment clinical factors on overall survival in glioblastoma
multiforme: a surveillance epidemiology and end results (SEER) population
analysis. World J Surg Oncol (2012) 10:75. doi: 10.1186/1477-7819-10-75

6. McDuff SGR, Dietrich J, Atkins KM, Oh KS, Loeffler JS, Shih HA. Radiation
and chemotherapy for high-risk lower grade gliomas: Choosing between
temozolomide and PCV. Cancer Med (2020) 9:3–11. doi: 10.1002/cam4.2686

7. Hottinger AF, Hegi ME, Baumert BG. Current management of low-grade
g l i oma s . Cur r Op i n N eu r o l ( 2 0 1 6 ) 2 9 : 7 8 2– 8 . d o i : 1 0 . 1 0 9 7 /
WCO.0000000000000390

8. Liu J, Li C, Wang Y, Ji P, Guo S, Zhai Y, et al. Prognostic and predictive
factors in elderly patients with glioblastoma: A single-center retrospective study.
Front Aging Neurosci (2022) 13:777962. doi: 10.3389/fnagi.2021.777962

9. Lwin Z, MacFadden D, Al-Zahrani A, Atenafu E, Miller BA, Sahgal A, et al.
Glioblastoma management in the temozolomide era: have we improved outcome? J
Neurooncol (2013) 115:303–10. doi: 10.1007/s11060-013-1230-3

10. Paun L, Moiraghi A, Jannelli G, Nouri A, DiMeco F, Pallud J, et al. From
focused ultrasound tumor ablation to brain blood barrier opening for high grade
glioma: A systematic review. Cancers (Basel) (2021) 13:5614. doi: 10.3390/
cancers13225614

11. Gu X, Wan G, Chen N, Li J, Chen B, Tang Y, et al. DGKz plays crucial roles
in the proliferation and tumorigenicity of human glioblastoma. Int J Biol Sci (2019)
15:1872–81. doi: 10.7150/ijbs.35193

12. Yap TA, Gerlinger M, Futreal PA, Pusztai L, Swanton C. Intratumor
heterogeneity: seeing the wood for the trees. Sci Transl Med (2012) 4
(127):127ps10. doi: 10.1126/scitranslmed.3003854

13. Yin J, Ge X, Shi Z, Yu C, Lu C, Wei Y, et al. Extracellular vesicles derived
from hypoxic glioma stem-like cells confer temozolomide resistance on
glioblastoma by delivering miR-30b-3p. Theranostics (2021) 11:1763–79.
doi: 10.7150/thno.47057
14. Marusyk A, Janiszewska M, Polyak K. Intratumor heterogeneity: The
Rosetta stone of therapy resistance. Cancer Cell (2020) 37:471–84. doi: 10.1016/
j.ccell.2020.03.007

15. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE,
et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell (2012)
149:1060–72. doi: 10.1016/j.cell.2012.03.042

16. Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F.
Ferroptosis and cancer: Mitochondria meet the "Iron maiden" cell death. Cells
(2020) 9:1505. doi: 10.3390/cells9061505

17. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and
function. Cell Death Differ (2016) 23:369–79. doi: 10.1038/cdd.2015.158

18. Zhao S, Zheng W, Yu C, Xu G, Zhang X, Pan C, et al. The role of ferroptosis
in the treatment and drug resistance of hepatocellular carcinoma. Front Cell Dev
Biol (2022) 10:845232. doi: 10.3389/fcell.2022.845232

19. Riegman M, Bradbury MS, Overholtzer M. Population dynamics in cell
death: mechanisms of propagation. Trends Cancer (2019) 5:558–68. doi: 10.1016/
j.trecan.2019.07.008

20. Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to
iron out cancer. Cancer Cell (2019) 35:830–49. doi: 10.1016/j.ccell.2019.04.002

21. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new
form of cell death: opportunities and challenges in cancer. J Hematol Oncol (2019)
12:34. doi: 10.1186/s13045-019-0720-y

22. Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis.
Free Radic Biol Med (2019) 133:130–43. doi: 10.1016/j.freeradbiomed.2018.09.043

23. Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, et al. Ferroptosis and its
role in diverse brain diseases. Mol Neurobiol (2019) 56:4880–93. doi: 10.1007/
s12035-018-1403-3

24. Polewski MD, Reveron-Thornton RF, Cherryholmes GA, Marinov GK,
Cassady K, Aboody KS. Increased expression of system xc- in glioblastoma confers
an altered metabolic state and temozolomide resistance. Mol Cancer Res (2016)
14:1229–42. doi: 10.1158/1541-7786.MCR-16-0028

25. Wang H, Cheng Y, Mao C, Liu S, Xiao D, Huang J, et al. Emerging
mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther (2021)
29:2185–208. doi: 10.1016/j.ymthe.2021.03.022

26. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ,
et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology,
and disease. Cell (2017) 171:273–85. doi: 10.1016/j.cell.2017.09.021

27. Yang WS, Stockwell BR. Ferroptosis: Death by lipid peroxidation. Trends
Cell Biol (2016) 26:165–76. doi: 10.1016/j.tcb.2015.10.014

28. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR.
Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.
Proc Natl Acad Sci U.S.A. (2016) 113:E4966–75. doi: 10.1073/pnas.1603244113

29. Dixon SJ. Ferroptosis: bug or feature? Immunol Rev (2017) 277:150–7.
doi: 10.1111/imr.12533
frontiersin.org

https://doi.org/10.1093/neuonc/noab200
https://doi.org/10.1007/s11060-016-2217-7
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1016/j.jocn.2012.05.040
https://doi.org/10.1016/j.jocn.2012.05.040
https://doi.org/10.1186/1477-7819-10-75
https://doi.org/10.1002/cam4.2686
https://doi.org/10.1097/WCO.0000000000000390
https://doi.org/10.1097/WCO.0000000000000390
https://doi.org/10.3389/fnagi.2021.777962
https://doi.org/10.1007/s11060-013-1230-3
https://doi.org/10.3390/cancers13225614
https://doi.org/10.3390/cancers13225614
https://doi.org/10.7150/ijbs.35193
https://doi.org/10.1126/scitranslmed.3003854
https://doi.org/10.7150/thno.47057
https://doi.org/10.1016/j.ccell.2020.03.007
https://doi.org/10.1016/j.ccell.2020.03.007
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.3390/cells9061505
https://doi.org/10.1038/cdd.2015.158
https://doi.org/10.3389/fcell.2022.845232
https://doi.org/10.1016/j.trecan.2019.07.008
https://doi.org/10.1016/j.trecan.2019.07.008
https://doi.org/10.1016/j.ccell.2019.04.002
https://doi.org/10.1186/s13045-019-0720-y
https://doi.org/10.1016/j.freeradbiomed.2018.09.043
https://doi.org/10.1007/s12035-018-1403-3
https://doi.org/10.1007/s12035-018-1403-3
https://doi.org/10.1158/1541-7786.MCR-16-0028
https://doi.org/10.1016/j.ymthe.2021.03.022
https://doi.org/10.1016/j.cell.2017.09.021
https://doi.org/10.1016/j.tcb.2015.10.014
https://doi.org/10.1073/pnas.1603244113
https://doi.org/10.1111/imr.12533
https://doi.org/10.3389/fonc.2022.947530
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.947530
30. Lemasters JJ. Evolution of voltage-dependent anion channel function: from
molecular sieve to governator to actuator of ferroptosis. Front Oncol (2017) 7:303.
doi: 10.3389/fonc.2017.00303

31. Pandrangi SL, Chittineedi P, Chalumuri SS, Meena AS, Neira Mosquera JA,
Sánchez Llaguno SN. Role of intracellular iron in switching apoptosis to ferroptosis
to target therapy-resistant cancer stem cells. Molecules (2022) 27(9):3011.
doi: 10.3390/molecules27093011

32. Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM. Iron and
cancer. Annu Rev Nutr (2018) 38:97–125. doi: 10.1146/annurev-nutr-082117-
051732

33. Fenton HJH. LXXIII.–oxidation of tartaric acid in presence of iron. J Chem
Soc Trans (1894) 65:899–910. doi: 10.1039/CT8946500899

34. Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways:
biochemistry, biology, and roles in disease. Chem Rev (2011) 111:5866–98.
doi: 10.1021/cr200246d

35. Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Front Cell
Dev Biol (2020) 8:590226. doi: 10.3389/fcell.2020.590226

36. Basuli D, Tesfay L, Deng Z, Paul B, Yamamoto Y, Ning G, et al. Iron
addiction: a novel therapeutic target in ovarian cancer. Oncogene (2017) 36
(29):4089–99. doi: 10.1038/onc.2017.11

37. Guan Z, Liu S, Luo L, Wu Z, Lu S, Guan Z, et al. Identification of ferroptosis-
related genes as biomarkers for sarcoma. Front Cell Dev Biol (2022) 10:847513.
doi: 10.3389/fcell.2022.847513

38. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and
transferrin regulate ferroptosis. Mol Cell (2015) 59:298–308. doi: 10.1016/
j.molcel.2015.06.011

39. Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, et al. HSPB1 as a novel regulator
of ferroptotic cancer cell death. Oncogene (2015) 34:5617–25. doi: 10.1038/
onc.2015.32

40. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative
proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy.
Nature (2014) 509:105–9. doi: 10.1038/nature13148

41. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an
autophagic cell death process. Cell Res (2016) 26:1021–32. doi: 10.1038/cr.2016.95

42. Belavgeni A, Bornstein SR, Linkermann A. Prominin-2 suppresses
ferroptosis sensitivity. Dev Cell (2019) 51:548–9. doi: 10.1016/j.devcel.2019.11.004

43. Yuan H, Li X, Zhang X, Kang R, Tang D. CISD1 inhibits ferroptosis by
protection against mitochondrial lipid peroxidation. Biochem Biophys Res
Commun (2016) 478:838–44. doi: 10.1016/j.bbrc.2016.08.034

44. Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL,
Adams S, et al. NFS1 undergoes positive selection in lung tumours and protects
cells from ferroptosis. Nature (2017) 551:639–43. doi: 10.1038/nature24637

45. Magtanong L, Ko PJ, Dixon SJ. Emerging roles for lipids in non-apoptotic
cell death. Cell Death Differ (2016) 23:1099–109. doi: 10.1038/cdd.2016.25

46. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al.
ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat
Chem Biol (2017) 13:91–8. doi: 10.1038/nchembio.2239

47. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR.
Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.
Proc Natl Acad Sci U.S.A. (2016) 113:E4966–75. doi: 10.1073/pnas.1603244113

48. Agmon E, Solon J, Bassereau P, Stockwell BR. Modeling the effects of lipid
peroxidation during ferroptosis on membrane properties. Sci Rep (2018) 8:5155.
doi: 10.1038/s41598-018-23408-0

49. Lee N, Carlisle AE, Peppers A, Park SJ, Doshi MB, Spears ME, et al. xCT-
driven expression of GPX4 determines sensitivity of breast cancer cells to
ferroptosis inducers. Antioxidants (Basel) (2021) 10:317. doi: 10.3390/
antiox10020317

50. Trenz TS, Delaix CL, Turchetto-Zolet AC, Zamocky M, Lazzarotto F,
Margis-Pinheiro M. Going forward and back: The complex evolutionary history
of the GPx. Biol (Basel) (2021) 10:1165. doi: 10.3390/biology10111165

51. Zhang Y, Swanda RV, Nie L, Liu X, Wang C, Lee H, et al. mTORC1 couples
cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat
Commun (2021) 12:1589. doi: 10.1038/s41467-021-21841-w

52. Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH
and GPx4. Free Radic Biol Med (2020) 152:175–85. doi: 10.1016/
j.freeradbiomed.2020.02.027

53. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, et al. BAP1 links
metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol (2018)
20:1181–92. doi: 10.1038/s41556-018-0178-0

54. You JH, Lee J, Roh JL. PGRMC1-dependent lipophagy promotes ferroptosis
in paclitaxel-tolerant persister cancer cells. J Exp Clin Cancer Res (2021) 40:350.
doi: 10.1186/s13046-021-02168-2
Frontiers in Oncology 10
142
55. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and
function. Cell Death Differ (2016) 23:369–79. doi: 10.1038/cdd.2015.158

56. Ma L, Chen T, Zhang X, Miao Y, Tian X, Yu K, et al. The m6A reader
YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-
dependent antioxidant function. Redox Biol (2021) 38:101801. doi: 10.1016/
j.redox.2020.101801

57. Ma L, Zhang X, Yu K, Xu X, Chen T, Shi Y, et al. Targeting SLC3A2 subunit
of system XC- is essential for m6A reader YTHDC2 to be an endogenous
ferroptosis inducer in lung adenocarcinoma. Free Radic Biol Med (2021) 168:25–
43. doi: 10.1016/j.freeradbiomed.2021.03.023

58. Reczek CR, Chandel NS. The two faces of reactive oxygen species in cancer.
Annu Rev Cancer Biol (2017) 1:79–98. doi: 10.1146/annurev-cancerbio-041916-
065808

59. Takahashi N, Chen HY, Harris IS, Stover DG, Selfors LM, Bronson RT, et al.
Cancer cells co-opt the neuronal redox-sensing channel TRPA1 to promote
oxidative-stress tolerance. Cancer Cell (2018) 33:985–1003.e7. doi: 10.1016/
j.ccell.2018.05.001

60. Okon IS, Zou MH. Mitochondrial ROS and cancer drug resistance:
Implications for therapy. Pharmacol Res (2015) 100:170–4. doi: 10.1016/
j.phrs.2015.06.013

61. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al.
Selenium utilization by GPX4 is required to prevent hydroperoxide-induced
ferroptosis. Cell (2018) 172:409–422.e21. doi: 10.1016/j.cell.2017.11.048

62. Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-
Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid
peroxidase pathway. Nature (2017) 547(7664):453–7. doi: 10.1038/nature23007

63. Sharma A, Flora SJS. Positive and negative regulation of ferroptosis and its
role in maintaining metabolic and redox homeostasis. Oxid Med Cell Longev (2021)
2021:9074206. doi: 10.1155/2021/9074206
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drug applications

Yuhang Zhou1,2†, Chaoyou Fang3†, Houshi Xu3†, Ling Yuan3,
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Ferroptosis is a regulatory form of iron-dependent cell death caused by the

accumulation of lipid-based reactive oxygen species (ROS) and differs from

apoptosis, pyroptosis, and necrosis. Especially in neoplastic diseases, the

susceptibility of tumor cells to ferroptosis affects prognosis and is associated

with complex effects. Gliomas are the most common primary intracranial

tumors, accounting for disease in 81% of patients with malignant brain

tumors. An increasing number of studies have revealed the particular

characteristics of iron metabolism in glioma cells. Therefore, agents that

target a wide range of molecules involved in ferroptosis may regulate this

process and enhance glioma treatment. Here, we review the underlying

mechanisms of ferroptosis and summarize the potential therapeutic options

for targeting ferroptosis in glioma.

KEYWORDS

glioma, ferroptosis, targeting treatment, reactive oxygen species, iron metabolism
Introduction

Glioma is the most common malignancy of the central nervous system (CNS) and

manifests with highly invasive growth, neovascularization, and resistance to various

combination therapies (1). Despite advanced therapeutic strategies, including aggressive

surgery, radiotherapy, and chemotherapy, glioblastoma (GBM) patients still show poor

prognosis and a median overall survival of less than 16 months (2). Despite aggressive

treatment measures, including maximal safe surgical resection followed by external

irradiation therapy accompanied with adjuvant temozolomide (TMZ) treatment,

approximately 90% of grade WHO IV gliomas recur locally within 2 years (3). Gross
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total resection (GTR), defined as complete radiectomy of the

contrast-enhanced region of high-grade glioma (HGG) and T2-

weighted/fluid attenuated inversion recovery (T2/FLAIR) MRI-

indicated hyperintensive nonenhancing lesions, almost always

fails to completely remove all microscopic residual tumor cells

(4). Similar to other malignancies, GBM exhibits a distinct anti-

DNA-damage phenotype, which leads to chemoresistance (5).

Hence, therapies targeted to gliomas have not been

considered sufficiently effective (6). However, ferroptosis has

recently attracted considerable interest, especially because the

mechanism involves downregulation and silencing of genes

involved in the initiation and execution of cancer necroptosis

(7). Ferroptosis is a unique iron-dependent form of

nonapoptotic cell death in which the affected cells are

morphologically, biochemically, and genetically distinct from

apoptotic, necrotic, and autophagic cells (8). Ferroptosis is

driven by the lost lipid repair enzymatic activity of glutathione

peroxidase 4 (GPX4) and subsequent accumulation of lipid-

based reactive oxygen species (ROS), particularly lipid

hydroperoxides (9). As a common recognition feature,

ferroptotic cells appear as clear and transparent round cells

under the microscope, mainly composed of empty cytosol,

which is called the “ballooning phenotype”. In addition,

ferroptotic cells also have ultrastructural changes in

mitochondria such as volume decreased, bilayer membrane

density increased, outer mitochondrial membrane (OMM)

destroyed, and mitochondrial cristae disappeared.

To promote tumor growth, cancer cells exhibit a higher iron

demand than normal cells. This iron dependence makes cancer

cells more susceptible to ferroptosis (10). Therefore, induced

ferroptosis induction may offer the unique possibility of

effectively eradicating certain tumor cells, especially those in a

highly mesenchymal state (11) and those that evade drug

treatment (12). Furthermore, ferroptosis plays a pivotal role in

suppressing tumorigenesis by eliminating cells in environments

that lack key nutrients or produce cellular stress or that are

infected with pathogens (13). The ferroptotic sensitivity of

cancer cells may be related to the activation of Ras-mitogen-

activated protein kinase (MEK) (14), which contributes to the

upregulation of transferrin receptor 1 and increased intracellular

iron levels, as well as to the additional formation of ROS via

inhibited cystine-based reactions (15). Many other molecules in

different pathways have been found to be involved in ferroptosis

in glioma (16), and the related content is summarized in

this review.
Focused overview of
ferroptosis pathways

An overview of ferroptosis pathways is shown in Figure 1.
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Iron metabolism in ferroptosis

The regulatory mechanism that coordinates intracellular

iron homeostasis is centered on iron regulatory proteins

(IRPs), which exerts effects by binding to iron-responsive

elements (IREs) (17, 18). Under physiological conditions,

cellular iron absorption is controlled mainly by the plasma

membrane protein transferrin receptor 1 (TFR1), and

therefore, knocking down TFR1 expression can block

transferrin-bound iron entry into a cell (19, 20), preventing

ferroptosis caused by erastin or cystine deprivation (21).

Diminishing ferritin expression (22) or FPN1 or ceruloplasmin

depletion increases the cell sensitivity to ferroptosis (23, 24). In

addition, reduced IRP2 activity, increased expression of

transferrin (Tf) and the transferrin receptor (TFR) (19), and

recognition of FTH1 by a specific cargo receptor (nuclear

coactivator 4, NCOA4), which leads to formation of a complex

that fuses with lysosomes (25), cause an abnormal increase in

unstable intracellular iron stores, a critical factor in ferroptosis.

Other iron metabolism-related proteins also affect cell sensitivity

to ferroptosis (26), and certain genes exert the same effects.

Recently, the critical role played by STEAP3 in cancer has been

extensively investigated, and STEAP3 has thus been found to be

a key regulator of ferroptosis by mediating iron metabolism (27,

28). Overexpression of STEAP3 contributes to iron uptake and

maintains iron stores (29), supporting the proliferation of

multiple types of cancer cells (30–32). Hence, dysregulation of

iron metabolism is an important contributing factor

to ferroptosis.
Lipid peroxidation in ferroptosis

Lipids are critical for maintaining the membrane integrity of

a cell, and extensive peroxidation of lipids changes the assembly,

composition, structure, and dynamics of lipid membranes (33).

Polyunsaturated fatty acids (PUFAs) containing phospholipids

(PLs; PUFA PLs) are substrates for lipid peroxidation (34). ROS

are free radicals and/or oxygen derivatives, including superoxide

anions, hydrogen peroxide, hydroxyl radicals, lipid

hydroperoxides, peroxy radicals, and peroxynitrite (35).

Membranes containing high levels of PUFAs are extremely

sensitive to ROS effects and highly vulnerable to lipid

peroxidation (36, 37). Lipid undergo peroxidation through two

routes: nonenzymatic autoxidation and enzymatic PL

peroxidation; the former pathway is known as “nonenzymatic

PL autoxidation”.

Nonenzymatic peroxidation of lipids is mediated by carbon-

and oxygen-based radicals and can be divided into three discrete

stages: initiation, proliferation, and termination (33). The initial

phase involves a series of reactions collectively known as “Fenton
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chemistry” in which labile iron reacts with endogenous

hydrogen peroxide or superoxide to form oxygen-based

radicals (38). Radical compounds produce new radicals, which

are markers of the proliferative phase. The hydroxyl and

peroxide radicals produced through a Fenton reaction can

form a resonant stable carbon-based radical by extracting

hydrogen from the bis allylic methylene of a membrane

PUFA, which can react with molecular oxygen in solution to

form the lipid peroxide radical ROO−, which can remove a

hydrogen from a different bis allylic methylene to generate

peroxidized lipid (ROOH) and another carbon-based radical

that can react with oxygen (33, 39, 40). Finally, antioxidants

terminate radical propagation (41).

Enzymatic PL peroxidation is mainly mediated by

cyclooxygenases (COXs), cytochrome p450 species (CYPs),

NADPH oxidase (NOX), and, especially, lipoxygenases

(LOXs) (42). Arachidonic acid (C20:4) and linoleic acid

(LA; C18:2) are substrates for LOX (43), and ferric iron is a

cofactor of LOX (44, 45). In contrast to 5-lipoxygenases, 12-

and 15-lipoxygenases exhibit incomplete regional selectivity

in producing lipid peroxides (46) and are thought to respond

to intact phospholipids and do not promote hydrolysis for

peroxidation (47, 48). Lipid hydroperoxides (LOOHs) and

the autoxidation products of PUFAs are currently markers of

ferroptosis (49, 50).
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Antioxidant systems in ferroptosis

In addition to lipid peroxidation, the cellular antioxidant

system contributes to ferroptosis by decomposing ROS. GPX4 is

a central factor in anti-ferroptosis reactions (51). This protein is

expressed as several isoenzymes with different subcellular

locations and distinct tissue-specific expression patterns (52, 53).

GSH is a cofactor of GPX4, and GSH synthesis is maintained by

the amino acid antiporter SLC7A11/xCT/system (54). Some

small-molecule compounds can regulate the activity of

glutamate-cysteine ligase (GCL) and xCT (8) and thus affect

GSH synthesis, eventually leading to ferroptosis. Several other

small-molecule compounds can directly inhibit GPX4 activity or

cause GPX4 protein degradation (55, 56). Nonoxidized dopamine

and activated heat shock protein family A member 5 (HSPA5)

prevent GPX4 degradation (57, 58), whereas heat shock protein 90

(HSP90)-dependent chaperone-mediated autophagy promotes

erastin-induced GPX4 degradation (59). Furthermore, GPX4-

independent ferroptosis pathways have been identified.

Ferroptosis inhibitory protein (FSP1) and CoQ10 facilitate a

shuttle of reducing equivalents derived from NAD(P)H to the

lipid bilayer (60). In addition, POR is involved in ML210-induced

ferroptosis (61), and P53 can affect ferroptosis without GPX4

inhibition (62). The main regulatory factors are described in detail

in the next section.
FIGURE 1

The overview of ferroptosis pathways. (A): the iron metabolism pathway; (B): the lipid peroxidation pathway; (C): the antioxidant systems
pathway; (D): the GPX4-mediated pathway. The green line means the substance acts across pathways.
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Critical factors of ferroptosis
in glioma

Ferroptosis follows multiple pathways and involves pivotal

factors that are regulated by many different regulators. Certain

regulators exert valuable regulatory effects and metabolic

changes in glioma cells. In this section, the regulators best

characterized to date are described, and additional regulators

are presented in Table 1.
GPX4

GPX4, a core factor in the antioxidant system, regulates

certain LOX activities by controlling cellular peroxide formation

(82). LOX binds to molecular oxygen when iron is oxidized into

trivalent iron and adds this molecular oxygen to a PUFA after

proton extraction from the bis-allylic positions of the PUFA,

leading to the enzymatic peroxidation of the PUFA (43). The

GPX4-mediated antioxidant system can reduce the peroxide

concentration, which may affect LOX activity, reducing the

peroxidation rate of PUFAs and ultimately inhibiting

ferroptosis (63). Studies have pointed out that 15-LOX and its

linoleic acid (LA)-derived metabolites exerted protumorigenic

effects on GBM cells in vitro (83). This report may imply that

GPX4 affects ferroptosis by regulating LOX activity and can be

exploited for glioma treatment.
Frontiers in Oncology 04
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GSH is a reducing substrate for GPX4, and its interaction

with SCL7A11 plays a crucial regulatory role in ferroptosis.

However, both GSH and SCLA11 activities are intricately

regulated by p53 and NRF2, among other proteins., as

described in detail in a subsequent section (64).

Western blot and immunohistochemistry (IHC) analyses

showed relatively high expression levels of Gpx4 in glioma

tissues and cell lines, and its expression was found to be

augmented as the glioma grade increased. In addition,

experiments showed that knocking down GPX4 expression

inhibited the proliferation and migration of glioma cells (84).

Previously, inhibition of GPX4 activity was thought to induce

apoptosis (85), and combined with the aforementioned findings,

it can be concluded that GPX4 inhibition can also induce

ferroptosis, which may become a new research target.
Nrf2

Under normoxic conditions, Nrf2, a transcription factor,

binds to Kelch-like ECH-associated protein 1 (Keap1) and is

inactivated by proteasome degradation after ubiquitination (86).

After cells contact a large number of electrophiles or cytotoxic

agents or enter into an oxidative stress state, Nrf2 dissociates

from Keap1 and rapidly transfers to the nucleus where interacts

with antioxidant response elements (AREs) to ultimately

maintain intracellular redox homeostasis (65). Nrf2 regulates
TABLE 1 Critical factors of ferroptosis in glioma.

Factors Targets Mechanism Reference

GPX4 peroxide↓ affect LOX activity, reducing to peroxidation of PUFAs, inhibit ferroptosis Seibt et al. (63)

GSH reduce LOOH, inhibit LPO, inhibit ferroptosis Ursini et al. (64)

Nrf2 Keap1 dissociates from Keap1, interacts with ARE, maintain intracellular redox homeostasis Zhang et al. (65)

MRP1↑ prevents GSH efflux from the cells, strongly restrains ferroptosis Cao et al. (66)

xCT↑ reduced ROS formation, prevents ferroptosis Fan et al. (67)

P53 xCT↓ combination with response elements in the xCT promoter region, inhibit its expression Jiang et al. (68)

USP7 promotes nuclear translocation of USP7, removes H2Bub1, reduces the expression of xCT Wang et al. (69)

SAT1 induces elevated ALOX15 levels, causes ferroptosis via oxidation of PUFA Ou et al. (70)

BAP1 xCT↓ decrease H2Aub occupancy on the promoter and gene body of xCT Zhang et al. (71)

OTUB1 p53 regulate the p53 pathway by regulating the activities of Mdm2 and Mdmx Sun et al. (72)

Chen et al. (73)

xCT Inactivation of OTUB1 lead to a substantial reduction in xCT levels Liu et al. (74)

ATF4 xCT ATF4 knockout will reduced xCT transporter activity Dixon et al. (75)

Chen et al. (76)

ROS ATF4 deficiency increases ROS levels Angeli et al. (77)

NCOA4 iron homeostasis iron-bound NCOA4 interacts with the ubiquitin E3 ligase HERC2, reduce the ferritinophagy Mancias et al. (78)

FTH1↓ decreased FTH1 levels would cause cells to respond to several ferroptosis-inducing agents Hayashima et al. (79)

YAP/TAZ Nuclear translocation YAP/TAZ be phosphorylated by MOB1 Masliantsev et al. (80)

autophagy↑ activated YAP/TAZ promotes autophagy, affects ferroptosis Sun et al. (81)
The symbol ↓ means target factor level reduced, the symbol ↑ means target factor level rises.
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ferroptosis by regulating the expression of genes related to GSH

regulation (genes that encode proteins involved in

GSH synthesis and, supply cysteine mediated by xCT, GSH

reductase, GPX4), iron regulation (including export and storage

of iron, heme synthesis, and catabolism), and NADPH

regeneration (87–89). Considering recent research, we

speculated that Nrf2 partially targets xCT to regulate GPX4

synthesis and function, thus regulating ferroptosis. When Keap1

activity is inhibited, Nrf2 activity increases, leading to the

upregulated expression of the ATP-binding cassette (ABC)-

family transporter multidrug resistance protein 1 (MRP1),

which prevents GSH efflux from the cells and profoundly

inhibits ferroptosis (66). The expression of Nrf2 was increased

3-fold in human GBM compared to that in normal brain tissue

(67). Both the low expression of Keap1 and the overexpression of

Nrf2 led to a significant increase in xCT mRNA levels (up to a 5-

fold increase), which subsequently reduced ROS formation. In

contrast, both the overexpression of Keap1 and the low

expression of Nrf2 eventually led to a substantial increase in

ROS levels (67). Thus, the levels of NRF2 are directly related to

ferroptosis sensitivity, as increased NRF2 expression prevents

ferroptosis, and decreased NRF2 expression enhances the

sensitivity of cancer cells to ferroptosis (67, 90).
P53

The tumor suppressor p53 is a transcription factor that

regulates various cellular responses through selective

transcriptional regulation of various target genes or interaction

with other proteins. Studies have shown that xCT is a target of

p53 and that p53 sensitizes cells to ferroptosis through

transcriptional inhibition of xCT expression (68). The

combination of p53 with response elements in the xCT

promoter region inhibited xCT expression and increased the

sensitivity of cancer cells to ferroptosis inducers such as erastin;

however, p533RK failed to induce cell cycle arrest, senescence, or

modulation and inhibited xCT expression, ultimately promoting

the response to stress induced by ROS (68). However, another

acetylation-defective mutant of p53, p534KR98 (with a lysine

K98 substitution), showed no ability to reduce xCT expression

(91). As recently reported, p53 sensitized cells to erastin-induced

ferroptosis through a comprehensive pathway. P53 promotes

nuclear translocation of USP7 (a deubiquitinase) that removes

the H2Bub1 mark (monoubiquitinated histone H2B on lysine

120) from the regulatory region of the xCT gene. Loss of the

H2Bub1 mark inhibited the expression of xCT, leading to

ferroptosis (69).

Low-molecular-weight polyamines such as putrescine,

spermidine, and spermine are amino acid-derived polycationic

alkylamines involved in the regulation of cell growth,

proliferation, and differentiation (92). Spermidine/spermine

N1-acetyltransferase 1 (SAT1) is a rate-limiting enzyme that
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controls polyamine catabolism in cells by acetylating spermidine

and spermine mediated through acetyl-coenzyme A (93).

Overexpression of SAT1 causes a rapid depletion of

spermidine and spermidine levels and an increase in

putrescine abundance, which causes significant cellular growth

inhibition and mitochondrial pathway apoptosis (94). SAT1 has

been confirmed to be a transcriptional target of p53, and only the

ferroptosis inhibitor ferrostatin-1 was able to inhibit ROS-

induced cell death in SAT1-overexpressing cells. In contrast to

its effect on conventional pathways, SAT1 exerted no effect on

xCT or GPX4 expression or activity but induced an increase in

ALOX15 level, which in turn led to ferroptosis mediated via the

oxidation of PUFAs (70).

Glutamine metabolism affects ferroptosis and exerts a

particularly high effect on serum-dependent pathways after

amino acid deficiency (19). GSL2 (glutaminase 2) in

mitochondria is a transcriptional target of p53 and is the core

glutaminase in the glutamine-to-glutamate metabolic pathway

(95). the GSL2 is transcribed by p53 and mediates the generation

of GSH in LN-2024 cells (a human glioblastoma cell line) to

enhance their antioxidant capacity (96).

In addition to the aforementioned effects, p53 inhibited

ferroptosis in some tumor cells. For example, studies showed

that binding of p53 to dipeptidyl peptidase-4 (DPP4) inhibited

ferroptosis in colorectal cancer cells, and certain DPP4 inhibitors

completely blocked erastin-induced cell death in p53-deficient

colorectal cancer cells (97). These studies suggest that the

inhibition of p53 activity is specific to ferroptosis inducers

(98). The tumor suppressor CDKN1A/p21 induces cell cycle

arrest and senescence (99, 100). Although the cell cycle arrest

mediated by CDKN1A is insufficient to inhibit ferroptosis (101),

the induction of p53 increases GSH synthesis and thus inhibits

ferroptosis (102).

According to The Cancer Genome Atlas (TCGA) data, 78%

of GBM cases present with mutations in the p53 pathway (103),

including direct mutations in the p53 gene (in secondary GBM)

and a loss of the INK4A/ARF (CDKN2A) gene locus, PTEN

mutations and EGFR amplification/loss (in primary GBM)

(104). Since p53 is involved in various cellular responses

involving the cell cycle or leading to apoptosis, differentiation

and DNA damage, the regulatory effect of p53 on ferroptosis

needs to be assessed on the basis of the situation, and further

research is required (105).
BAP1

BRCA1-associated protein 1 (BAP1) is a tumor suppressor

with functions such as tumor suppression, cell cycle control,

DNA damage repair, and differentiation (106–109) that is widely

recognized as a deubiquitinating enzyme (DUB) (110). Study

results have suggested that wild-type (WT) BAP1 significantly

decreased H2Aub occupancy on the promoter and gene body of
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xCT, but the C91A mutant did not exert this effect (71). Because

WT BAP1 exhibited DUB activity and BAP1 C91A did not in

this experiment, WT BAP1 was the clear cause of inhibited xCT

expression (71). Therefore, BAP1 may be recruited by other

proteins in the PR-DUB complex, such as ASXL1, which also

strongly bind to the xCT promoter (111). BAP1 has been

frequently shown to inactivate the expression of genes with

mutations or deletions in tumor cells (77), but its behavior in

glioma is abnormal. For example, although BAP1 is generally

considered to be a chromatin-associated protein and thus to

reside within the nucleus (112), recent studies have found it in

both the nucleus and cytoplasm of glioma cells, suggesting BAP1

protein is differentially distributed in glioma cells (113, 114).

Notably, high cytoplasmic abundance of BAP1 was significantly

associated with low overall survival, and nuclear abundance of

BAP1 cells was not correlated with overall survival (114). Since

BAP1 shows aberrant cytosolic abundance in glioma and

because the BAP1-related pathway inhibiting ferroptosis is

located in the nucleus, the abnormal distribution of BAP1 in

glioma cells, compared to that in other cancer cells, and the

BAP1 regulatory pathway in the nucleus can be new

research targets.
OTUB1

The ubiquitin hydrolase OTUB1 was previously thought to

regulate the p53 pathway by regulating the activities of Mdm2

and Mdmx (72, 73), but OTUB1 has been found to interact

directly with xCT to regulate xCT independent of p53 (74). The

expression of OTUB1 in glioma compared to adjacent tissues

and its expression level was correlated with the low survival of

glioma patients (115). Coimmunoprecipitation assays showed

that the endogenous OTUB1 protein was coprecipitated with an

anti-xCT-specific antibody, and endogenous xCT was

coprecipitated with an anti-OTUB1-specific antibody. In vitro

GST pull-down assays confirmed that OTUB1 is a binding

partner of xCT (74). Inactivation of OTUB1 directly led to a

substantial reduction in the xCT level, and this effect was

confirmed to sensitize cells to erastin and the ferroptosis

inhibitor ferrostatin-1 (8, 74). However, the sensitization effect

caused by OTUB1 knockdown, which affected both cysteine and

glutathione levels in glioma, was rescued by the overexpression

of xCT (115). Notably, the ectopic overexpression of xCT is

evident occurs in many cancers (68, 116–118). Hence, xCT levels

may be stabilized by the absence of OTUB1, promoting

ferroptosis and ultimately inhibiting tumor growth (74).
ATF4

Activating transcription factor 4 (ATF4) is another key

transcriptional regulator and mediator of metabolism and
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oxidative homeostasis (76, 119) that can be activated by

several stress signals, such as those triggered by anoxia,

hypoxia, endoplasmic reticulum (ER) stress, oxidative stress

and amino acid deprivation (120). ATF4 expression is

s ignificant ly higher in mal ignant g l iomas than in

untransformed human brain tissue; moreover, ATF4 can

promote the proliferation and migration of glioma cells, and

patients with high ATF4 expression exhibit a relatively short

overall survival time (76). ATF4 expression resulted in a

significant increase in xCT mRNA levels in human glioma

specimens compared to that in normal brain tissue (a 5-fold

increase in gliomas with a WHO° II classification and 19-fold in

gliomas with a WHO° IV classification), and xCT protein levels

were increased with AFT4 levels. xCT antiporter activity is

determined on the basis of extracellular glutamate levels, and

ATF4 knockout significantly reduced glutamate release and

cystine uptake, which in turn significantly reduced xCT

transporter activity (75, 76). These data suggest that ATF4

deficiency increases ROS levels in cells, but the accumulation

of ROS has been shown to prevented by chelation of the iron

internalized by cells, and the effects produced by ATF4

overexpression can be inhibited by sorafenib and erastin (76,

77). In addition, the growth-promoting effect of ATF4 on cells is

mediated by xCT.

Pa tho log i ca l v e s s e l s cons t i tu t e a the spec ific

microenvironmental niche in primary brain tumors (121, 122).

The expression level of ATF4 affected the growth of tumor

vessels; specifically, ATF4 overexpression increased the number

and length of tumor vessels, and ATF4 knockdown led to the

opposite effect (76). The effects of ATF4 activity on tumor vessels

were regulated by ferroptosis; moreover, erastin and RSL3

inhibited angiogenesis in glioma, and this inhibitory effect was

attenuated with increased expression of ATF4 expression,

although the outcome was not notable (76). ATF4 is thought

to interact with components associated with ER stress (123) and

to prevent cellular resistance to partial ferroptosis inducers, such

as TMZ and dihydroartemisinin (124). Therefore, ATF4 is

involved in multiple pathways and thus presents possibilities

for ferroptosis regulation, which may lead to new

research prospects.
NCOA4

Nuclear receptor coactivator 4 (NCOA4) is a selective cargo

receptor for autophagic turnover that binds to ferritin to mediate

its delivery to autophagosomes and subsequently to the

lysosome for ferritin degradation and concomitant iron release

(78, 125, 126). When the cellular iron content is high, iron-

bound NCOA4 interacts with the ubiquitin E3 ligase HERC2 to

target NCOA4 for proteasomal degradation, which subsequently

reduces ferritinophagy. However, when the cellular iron content

is low, this interaction is inhibited, stabilizing NCOA4, which in
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turn increases ferritinophagic flux and iron release in lysosomes

(78). This mechanism enables NCOA4 to regulate cellular iron

homeostasis, determine the ferritin energy flux, and affect the

sensitivity of ferroptosis-inducing agents (127–129).

Previous studies reported that NCOA4 activity led to

inhibited FTH1 activity levels and that decreased FTH1 levels

caused cells to respond to several ferroptosis-inducing agents,

such as erastin (79, 130). Cystine deprivation led to ferroptosis,

which decreased FTH1 protein levels in control glioblastoma

cells (carrying NCOA4 T98G). In NCOA4-deficient GBM cells

(NCOA4-knockout [KO] cells), cystine deprivation exerted little

effect on the FTH1 level, and therefore, cystine removal did not

cause cell death (79). Furthermore, cystine deprivation caused

increases in the amount of microtubule-associated protein light

chain 3 (LC3)-II (which is related to autophagosome formation)

in NCOA4 T98G-mutant cells (79, 131, 132). This finding

suggests that cystine deprivation induces NCOA4-mediated

ferritin iron release, which in turn leads to the ferroptosis of

GBM cells (79).
YAP/TAZ

Yes-associated protein 1 (YAP) and transcriptional

coactivator with PDZ-binding motif (TAZ) are two dominant

effectors of the Hippo pathway. The Hippo pathway is a potent

tumor suppression pathway, and its core kinases include

mammalian STE20-like protein kinase 1/2 (MST1/2) and large

tumor suppressor ½ (LATS1/2), which inhibit proliferation by

inhibiting YAP and TAZ (133, 134). After receiving an

activation signal, MST1/2 associates with Salvador 1 (SAV1) to

activate the Hippo pathway and to phosphorylate LATS1/2 and

its coenzyme factor MOB1. The latter then phosphorylates the

transcription cofactor YAP/TAZ, and phosphorylated YAP/

TAZ is isolated in the cytoplasm and not translocated to the

nucleus (80) . Moreover , ce l l dens i ty and cel lu lar

communications can influence the regulation of ferroptosis

induced by YAP/TAZ (81). For example, Yang et al. showed

that TAZ, but not YAP, was abundantly expressed in several

cancer cell lines and underwent density-dependent nuclear

translocation (135, 136). TAZ depletion led to cell resistance

to various ferroptosis inducers, while overexpression of the

constitutively active form of TAZ, TAZS89A, sensitized cells to

ferroptosis (137).

Additionally, YAP/TAZ regulates autophagy, and

overexpression of MST1/2 or contact inhibition caused by

high cell density inactivates YAP/TAZ activity, suppressing the

transport of autophagosome components mediated by actin-

myosin complexes and reducing LC3 levels (134). In contrast,

knocking down LATS1/2 activities promotes YAP/TAZ activity

and autophagy, which in turn induces ferroptosis (81).

Compared to that of TAZ knockdown, the inhibitory effect of

YAP knockdown on ferroptosis inducers (erastin, etc.) was more
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significant, and the knockdown of both YAP and TAZ induced

the most significant inhibitory effect (138). The expression of

both YAP and TAZ was elevated in multiple tumor types,

including glioma cells, and was associated with the grade of

malignancy, which was highest in GBM patients (139). YAP is

also regarded as an independent prognostic factor for low-grade

gliomas, and studies have shown that YAP/TAZ can control

GBM cell plasticity (140), which may indicate a high value for

YAP and TAZ in glioma and ferroptosis research.
Therapeutic drugs for glioma based
on targeting ferroptosis

Compared with widely used ferroptosis drugs, particularly

the few drugs used to treat glioma, many drugs are used to treat

other malignancies, but these drugs induce drug resistance and

fail to cross the blood–brain barrier, making them ineffective

g l ioma t rea tments (150) . TMZ is a wide ly used

chemotherapeutic drug, but the resistance it causes is a very

serious problem. Recently, research has been focused on

weakening the resistance of malignant tumor cells to TMZ,

and to this end, combinations of drugs and molecular

hybridizat ion are being tested (151). In addit ion,

photodynamic therapies for ferroptosis may be used to

overcome the blood–brain barrier in glioma treatment (152).

Some newly tested drugs, such as dihydroartemisinin (DHA)

and sulfasalazine (SAS), have shown obvious ferroptosis-

inducing effects on glioma cells, and most of these drugs have

been previously used to treat other malignancies. In this section,

we provide an overview of the dominant therapeutic drugs used

for glioma treatment that target ferroptosis. A list of these drugs

is also provided in Table 2.
Dihydroartemisinin (DHA)

Artemisinin (ART) is the active component extracted from

Artemisia annua, and DHA, its main active derivative, has been

shown to exert desired cytotoxic effects on various human

malignancies (153–156).

Studies showed that the DHA-activiated pathway consumed

the reduced form of glutathione (GSH) and that the oxidized

form (GSSG) accumulated in glioma cells, leading to increasing

levels of lipid ROS and malondialdehyde (MDA, the end product

of lipid peroxidation) in glioma cells (124). In addition,

transmission electron microscopy showed that the size of

mitochondria was decreased, the number of mitochondrial

ridges was decreased, and the bilayer membrane density was

increased in DHA-treated cells, which was consistent with the

ultramorphological features of cells undergoing ferroptosis (63,

157, 158). These observations also prove that DHA induced
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ferroptosis in glioma cells (159). To determine the targets of

regulated by DHA in ferroptosis, the expression of GPX4, xCT

and ACSL-4 was determined. GPX4 expression was

downregulated and decreased with increasing DHA

concentrations in DHA-treated groups compared to controls,

while the levels of xCT and ACSL-4 were unchanged (159).

The effect of DHA on the induction of ferroptosis depended

on multiple factors. Inhibition of the PERK/ATF4 signaling

pathway enhanced the ferroptosis rate in DHA-induced

glioma cells, and ATF4-induced HSPA5 expression was

induced by increasing the GPX4 level in glioma cells

undergoing DHA-induced ferroptosis (124). Thus, HSPA5

inhibitors synergistically enhanced the antitumor effects of

DHA. Both the iron chelator deferoxamine (DFO) and lipid

peroxidation were shown to inhibit ferrostatin-1 (Fer-1) activity,

and liproxstatin-1 (Lip-1) inhibited the DHA-induced

production of ROS, lipid ROS and MDA (159). Thus, both

Fer-1 and Lip-1 reversed DHA-induced ferroptosis. Because

DHA affects many high-impact targets and since these effects

are regulated by multiple factors, studies into its selective killing

effect on glioma cells are promising research directions.
Temozolomide (TMZ)

TMZ is widely used as the first-line treatment of malignant

gliomas, but its antitumor effects have not been clearly identified.

Ferroptosis is considered one of the pathways targeted by TMZ,

and TMZ affects ferroptosis in glioma cells in several ways. The
Frontiers in Oncology 08
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efficacy of TMZ in human glioma depends on xCT expression,

and xCT expression in cells is increased after TMZ treatment

(141). TMZ induced toxicity in both xCT-silenced and xCT-

overexpressing glioma cells, and the toxicity increased with

increasing TMZ concentration. Significantly fewer TMZ-

treated cells were found to be in the G1 or prolonged G2

phase, and xCT-silenced cells were more sensitive to TMZ

than xCT-overexpressing cells (141). Astrocytes and neurons

were less susceptible than glioma cells to TMZ, suggesting

special implications for TMZ treatment of glioma. Moreover,

the effect of TMZ was enhanced when it was combined with

erastin or sorafenib (141).

TMZ induces ferroptosis through the divalent metal

transporter DMT1, which regulates iron levels and maintains

iron homeostasis (8, 142). Both DMT1 mRNA and protein

expression levels were significantly increased in glioma cells

treated with TMZ (143). When DMT1 activity was inhibited,

GPX4, Nrf2, and HO-1 activity was also inhibited, and the ability

of TMZ to reduce cell viability was diminished (143). These

results suggest that TMZ induces the ferroptosis of glioma cells

and that this effect was associated with xCT and

DMT1 expression.
Sulfasalazine (SAS)

SAS has been shown to scavenge ROS (144), induce cancer

apoptosis (160), and attenuate glioma-induced epilepsy (161,

162). Recent studies showed that SAS significantly increased
TABLE 2 Therapeutic Drugs towards Glioma Treatment by targeting Ferroptosis.

Drugs Targets Mechanism Reference

DHA GSH↓ consumes the reduced form GSH, oxidized GSSG accumulates, increases lipid ROS and MDA,
inactivates GPX4 indirectly

Chen et al.
(124)

TMZ xCT↑ significantly reduced G1 phase and prolonged G2 phase Sehm et al.
(141)

DMT1↑ broke iron homeostasis Xue et al. (142)

synergistically mediate the inhibition of cell activity with GPX4, Nrf2, and HO-1 Song et al. (143)

SAS ROS↓ scavenge ROS Aruoma et al.
(144)

ATF4↑ increase ATF4 expression, induce ER stress, decreased cell viability Sehm et al.
(145)

xCT↓ inhibited the xCT antiporter activity hallmarked Sehm et al.
(145)

Pseudolaric acid B
(PAB)

NOX4↑ activated Nox4 contributed to intracellular H2O2 and lipid peroxide and glioma cell death Wang et al.
(146)

p53 induce GSH depletion, result in xCT inhibition Wang et al.
(146)

Ibuprofen Nrf2↓ inhibit system xCT, inactivate GPX4 indirectly Gao et al. (147)

Amentoflavone (AF) FTH↓ block intracellular iron trafficking and storage to break iron homeostasis via modulating FTH Chen et al.
(148)

ALZ003(a curcumin
analog)

AR(Androgen
receptor)

induces FBXL2-mediated AR ubiquitination, leading to AR degradation then degrade GPX4 Chen et al.
(149)
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ATF4 expression in glioma cells and induced ER stress,

decreasing cell viability (145). Cell death was prevented by

treatment with iron chelators and ferroptosis inhibitors, and

high concentrations of SAS specifically inhibited the expression

of an xCT antiporter activity marker (145), confirming that high

concentrations of SAS inhibited xCT activity and induced

ferroptosis in glioma cells. In experiments with a rat model,

SAS significantly reduced glioma cell proliferation, exerted no

significant toxic effects on normal neurons (163) and mild

toxicity on astrocytes, and did not affect brain cell viability

(145). However, due to low brain penetration, SAS showed poor

efficacy in newly diagnosed and recurrent malignant glioma

(150, 164). This problem is expected to be improved by

convection-enhanced delivery (CED) (163).

In addition, SAS is likely to be used in several drug

combinations. For example, molecular hybridization product

of SAS and DHA, called AC254, showed significantly higher

effects on glioma cells than either drug administered separately

or in other drug combinations (165). AC254 led to changes in

glioma cell shape and activity and terminated cell division,

which were significantly better outcomes than those induced

by the parent drugs and their mixture with other drugs (165).

SAS enhanced the ability of TMZ to reduce human GBM cell

activity (151), which may solve the problem of TMZ resistance.
Conclusions and perspectives

As a recently discovered form of cell death, ferroptosis shows

many potential applications to glioma treatment. Recent studies

have revealed three major pathways of ferroptosis, namely, iron

metabolism, lipid peroxidation, and antioxidant system

pathways (26). Ferroptosis is primarily regulated by the

inhibition of xCT, accumulation of ROS, inhibition of GPX

and GSH, which are mediators of many secondary regulatory

pathways. In addition to these findings, increasing evidence links

ferroptosis with autophagy, which has led to multiple research

directions (166). The regulatory pathways of ferroptosis and the

relationship of these pathways between ferroptosis and other

forms of cell death remain to be further investigated.

Glioma cells show sensitivity to multiple types of specific

ferroptosis inducers. Several critical factors inducing ferroptosis

show different degrees of abnormal manifestation in glioma cells;

for example, GPX4, Nrf2 and ATF4 show high expression

compared with normal cells, and p53 shows complex regulatory

effects. These findings provide therapeutic targets for glioma.

However, few studies have focused on the specific activities of

ferroptosis-related factors in glioma, and to identify more factors

and their complex roles, more experiments need to be conducted.
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Ferroptosis provides potential targets for further glioma

treatment. Due to the complex regulatory mechanism of

ferroptosis, many drugs show completely different effects in

vivo than in vitro or show varying degrees of antagonistic

effects in different pathways. In summary, the specific

mechanism of ferroptosis remains unclear, and the indicators

of ferroptosis are not obvious. Therefore, research on

ferroptosis-related drugs needs to be conducted based on

information obtained through additional detailed studies.
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Temporal radiographic and
histological study of necrosis
development in a mouse
glioblastoma model
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Medicine, Hershey, PA, United States, 5Penn State Cancer Institute, Penn State College of Medicine,
Hershey, PA, United States, 6Department of Neurology, Penn State College of Medicine, Hershey,
PA, United States, 7Department of Medicine, Penn State College of Medicine, Hershey,
PA, United States, 8Department of Biochemistry and Molecular Biology, Penn State College of
Medicine, Hershey, PA, United States
Tumor necrosis is a poor prognostic marker in glioblastoma (GBM) and a variety

of other solid cancers. Accumulating evidence supports that necrosis could

facilitate tumor progression and resistance to therapeutics. GBM necrosis is

typically first detected by magnetic resonance imaging (MRI), after prominent

necrosis has already formed. Therefore, radiological appearances of early

necrosis formation and the temporal-spatial development of necrosis

alongside tumor progression remain poorly understood. This knowledge gap

leads to a lack of reliable radiographic diagnostic/prognostic markers in early

GBM progression to detect necrosis. Recently, we reported an orthotopic

xenograft GBM murine model driven by hyperactivation of the Hippo pathway

transcriptional coactivator with PDZ-binding motif (TAZ) which recapitulates

the extent of GBM necrosis seen among patients. In this study, we utilized this

model to perform a temporal radiographic and histological study of necrosis

development. We observed tumor tissue actively undergoing necrosis first

appears more brightly enhancing in the early stages of progression in

comparison to the rest of the tumor tissue. Later stages of tumor

progression lead to loss of enhancement and unenhancing signals in the

necrotic central portion of tumors on T1-weighted post-contrast MRI. This

central unenhancing portion coincides with the radiographic and clinical

definition of necrosis among GBM patients. Moreover, as necrosis evolves,

two relatively more contrast-enhancing rims are observed in relationship to the

solid enhancing tumor surrounding the central necrosis in the later stages. The

outer more prominently enhancing rim at the tumor border probably

represents the infiltrating tumor edge, and the inner enhancing rim at the

peri-necrotic region may represent locally infiltrating immune cells. The

associated inflammation at the peri-necrotic region was further confirmed by

immunohistochemical study of the temporal development of tumor necrosis.
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Neutrophils appear to be the predominant immune cell population in this

region as necrosis evolves. This study shows central, brightly enhancing areas

associated with inflammation in the tumor microenvironment may represent

an early indication of necrosis development in GBM.
KEYWORDS

Glioblastoma, tumor necrosis, magnetic resonance imaging, MRI, mouse model, TAZ
Introduction

Glioblastoma (GBM) is the most common and aggressive

primary brain tumor in adults. GBM is almost always first

captured on brain CT and/or MRI, with MRI as the current

gold-standard radiologic diagnostic modality that assists with pre-

operative planning. Earlier studies reported that MRI findings

closely correlated with histological grade of diffuse astrocytic

tumors, including high grade gliomas (1, 2). Moreover, certain

MRI features, such as contrast enhancement, necrosis, edema,

mass effect, and intra-tumoral hemorrhage, have been shown to

correlate with poor prognosis and clinical outcomes (3–5). Yet,

unless identified incidentally on brain imaging obtained for other

purposes, most GBMs remain undetected and undiagnosed until

the tumors have progressed to the extent that they cause

symptoms, edema, and brain compression as demonstrated by

mass effect (6). By that time, rapid tumor expansion may have

irreversibly damaged the surrounding normal brain parenchyma.

Microscopic infiltration is usually so extensive at the time of

diagnosis that tumors are incompletely resectable, so even

maximal surgical resection is non-curative (6). Furthermore,

genotoxic stress exerted by the hypoxic/ischemic tumor

microenvironment promotes tumor evolution and molecular

heterogeneity, rendering therapeutics ineffective. It has been

well-established that early surgical resection results in improved

overall survival among patients with both low-grade and

malignant gliomas (7, 8). Under the assumption that early

tumor detection can lead to early surgical resection, which in

turn improves the overall survival, it is imperative to identify

diagnostic markers to detect malignant tumor progression in the

early and asymptomatic stages (4, 6). One histopathological

feature associated with GBM progression is the formation of a

necrotic core, caused by large-scale cell/tissue death. Tumor

necrosis is a poor prognostic marker in GBM and a variety of

other solid cancers (9–11). Accumulating evidence suggests that a

necrotic core may facilitate tumor progression and evolution, thus

promoting acquisition of resistance and negatively impacting

patients’ responses to therapeutics (12).

Clinically, GBM necrosis has been long used as a

radiographic diagnostic criterion to differentiate glioblastoma
02
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from other, lower-grade gliomas (13), and it is typically first

detected by MRI. However, since most patients do not undergo

brain imaging until the later, symptomatic stages of tumor

progression, prominent necrosis has already formed by the

time tumors are detected on imaging and confirmed by

histopathology (2, 13). Therefore, radiological appearances of

early necrosis formation and the temporal-spatial development

of necrosis alongside tumor progression remain poorly

understood. This knowledge gap leads to a lack of reliable

radiographic diagnostic/prognostic markers in early GBM

progression to detect necrosis.

It is commonly thought that necrosis is due to chronic

ischemia-linked oxygen and nutrient deprivation in cancers and

that the resulting metabolic stress is the cause of cell death. At the

cellular level, although necrosis was previously thought to be a

catastrophic and disordered cell death process (14), studies in a

variety of pathological situations have found that necrosis can

occur in a regulated fashion and includes several cell death

mechanisms (15, 16). Whether necrosis in cancers is regulated

through similar mechanisms remains unclear. Recent studies in

glioblastoma suggested that immune components, such as

neutrophils, can lead to oxidative stress-induced tumor cell

death, such as ferroptosis, thereby amplifying tumor necrosis

(17). Increased expression of ferroptosis-promoting genes was

detected in the GBM necrotic area (17). Ferroptosis-related genes

were also linked to immunosuppressive microenvironment and

poor prognosis of GBM (18–22). These studies suggested that

ferroptosis is involved in the development of a necrotic core

in GBM.

Recently, we reported a xenograft GBM murine model in

which ectopic expression of an active Hippo pathway

transcriptional coactivator with PDZ-binding motif (TAZ)

mutant (TAZ4SA) in the LN229 human GBM cell line can lead

to orthotopic tumors which recapitulate the extent of GBM

necrosis seen among patients (17). In this study, we utilized this

model to perform a temporal radiographic and histological study

of necrosis development. Our study indicated that more

prominently enhancing areas associated with inflammation in

the tumor microenvironment may represent an early indication

of necrosis development in GBM.
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Materials and methods

Real-time brain MRI imaging on GBM
tumor-bearing mice

MRI was conducted on a 7T MRI scanner (Bruker BIOSPEC

70/20 USR) with a 4-channel mouse brain surface array coil.

Under anesthesia with 1.5-4% isoflurane, each animal was

positioned prone on a 37°C heating pad with body

temperature and respiratory rate monitored. The animal’s

whole brain was imaged coronally in a spatial resolution of

133 mm × 133 mm × 500 mm using a T1-weighted spin-echo

sequence (repetition time (TR)/echo time (TE)/flip angle (FA) =

500 ms/9.5 ms/90°), a T2-weighted rapid acquisition with

relaxation enhancement sequence (TR/TE/FA = 2066 ms/36

ms/180°), and an 8-echo gradient-echo sequence for T2*

mapping (TR/TE/FA = 1733 ms/4.5 ms/50°, echo spacing 5.5

ms). T1-weighted MRI was repeated about 15 minutes after a

bolus injection of 0.2 mmol/kg gadolinium (Gadavist, Bayer

Schering Pharma) through the lateral tail vein. The thickness for

the mouse MRI images was 0.5 mm/slice. Heatmaps of MRI

signal intensities at each timepoint indicated in Figures 1B, 2B,

3B were generated via ImageJ using the “Interactive 3D Surface

Plot” function after manually outlining the brain area.
Radiographic analysis of GBM necrosis
via MRI

Subjects were retrospectively selected from a cohort of

patients seen in Penn State Hershey Neuro-Oncology clinic

between December 2018 and March 2019, and only patients

with histopathologically confirmed WHO grade 4 malignant

gliomas (i.e., GBMs) were included in this study (n=75). Pre-

surgical, post-contrast axial T1-weighted fat saturated (T1 FS)

MRI images with a slice thickness of 5 mm from patients with

histologically-confirmed GBMs were retrospectively analyzed.

MRI images were acquired via standard multi-contrast

sequences including postcontrast fat saturated T1 TSE

sequence using either 1.5T or 3.0T magnet (Siemens

Healthcare) after injection of 0.1mmol/kg of gadolinium

(Gadavist, Bayer Schering Pharma). Central necrosis was

defined as non-enhancing areas within enhancing tumor with

irregular inner margins on post-contrast T1-weighted images.

Only pre-existing data were obtained via review of electronic

medical records (EMR) and imaging studies (MRI), and

therefore no further data collection or subject recruitment

were conducted for this study. The study procedures and data

collection were approved by the Institutional Review Board

(IRB) of Penn State Hershey Medical Center. Per the Penn

State IRB, human subject research presented in Figure 4 was

exempt from informed consent requirements. Heatmaps of
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signal intensities as in Figure 4B were generated via ImageJ

using the “Interactive 3D Surface Plot” function after manually

outlining the brain area.
Mice and orthotopic xenograft
tumor models

Six-to-eight-week-old female athymic nude mice (Nu(NCr)-

Foxn1nu Strain Code: 490, Charles River) were used for the

GBM orthotopic xenograft mouse models. For tumorigenesis

experiments, human GBM cells were first transduced with a

retroviral vector expressing firefly luciferase. These cells were

then transduced with retroviral vectors expressing the indicated

cDNAs. For each mouse, 3 × 105 cells were injected into the right

hemisphere at coordinates (+1, +2, -3). For tumor sample

preparation and histology, whole brain tissue from tumor-

bearing animals was fixed with 4% neutral-buffered formalin,

embedded in paraffin, and submitted to the Penn State College of

Medicine comparative medicine histology core, cut into sections

5 mm thick, and stained with hematoxylin and eosin (H&E).

Areas of tumor and central necrosis were manually traced. All

experiments described in this study were carried out with the

approval of the Penn State University Institutional Animal Care

and Use Committee and in accordance with its guidelines.
Cells

Human GBM cell line, LN229 (CRL-2611), purchased from

ATCC, was cultured in Dulbecco’s modified Eagle’s medium

(DMEM; 10-013-CV, Corning) supplemented with 10% fetal

bovine serum (FBS; Gibco, 10437028) and 1% Antibiotic–

Antimycotic Solution (30-004-CI, Corning) at 37 °C with 5%

CO2. The cell line was not authenticated in this study. The cell

line was confirmed as Mycoplasma negative before experiments.

Unless otherwise indicated, cells were grown to 50% confluence.
Time course radiographic and histologic
quantification of areas of interest (e.g.,
necrotic, peri-necrotic, cellular tumor,
and total tumor)

For quantification as in Figures 1, 2, T1 post-gadolinium

images were acquired as above. Quantification was performed

using images containing tumors with the largest cross-sections.

Each specific area of interest (e.g., yellow arrow and green

arrowhead as in Figure 1) was manually traced using the

freehand tool and measured using the “Analyze” function in

ImageJ. Data for tumor areas were normalized to corresponding

whole brain area, whereas other areas of interest (i.e., necrotic,
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enhanced, and less enhanced areas) were normalized to

corresponding tumor size. For quantification shown in

Figure 5, paraffin-embedded, H&E-stained sections collected at

each indicated timepoint prepared as above were used for
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quantification. Necrosis (N) is defined as acellular regions

(appearing pale pink) within tumors as identified by H&E

stain, and a cellular tumor (CT) region is defined as a

hypercellular region. Quantification was performed using
A

B
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FIGURE 1

Temporal radiographic characterization of tumor necrosis development during early tumor progression via MR imaging. (A) Temporal development of
GBM tumor necrosis during early, asymptomatic stages of tumor progression via representative serial T1-weighted post-gadolinium MRI scans of one
LN229TAZ(4SA) tumor-bearing mouse. Orange asterisk: Normal brain parenchyma in the non-tumor containing hemisphere; red asterisk: Enhancing
areas in the tumor-containing hemisphere; blue asterisk: The center of the tumor becomes less enhancing from day 14 onward, likely representing
densely packed tumor cells; green arrowheads: Prominently enhancing foci within the less enhancing tumor stroma, likely representing active
development of necrosis, which starts appearing from day 16. Yellow arrows: Peripheral enhancing interface between the less enhancing tumor tissue,
as marked by blue asterisks, and the normal brain parenchyma. (B) Heatmaps of signal intensities generated using T1 post-contrast MRI images as in
panel (A). (C) Quantification of tumor area (outlined by the peripheral enhancing interface indicated by yellow arrows) normalized to whole brain area at
each timepoint indicated above in panel (A). pANOVA=0.003. Results of post hoc test for each continuous time point are indicated. (D) Quantification of
necrotic areas—labeled by green arrowheads in panel (A)—normalized to corresponding tumor at each timepoint indicated above. pANOVA=0.0009.
Results of post hoc test for each continuous time point were indicated. (E) Quantification of less-enhancing areas—labeled by blue asterisks in panel (A)
—normalized to corresponding tumor at each timepoint indicated above. pANOVA=0.012. Results of post hoc test for each continuous time point are
indicated. (F) Quantification of the outer enhanced areas—labeled by red asterisks in panel (A)—normalized to corresponding tumor at each timepoint
indicated above. pANOVA=0.0011. Results of post hoc test for each continuous time point are indicated. Three mice were imaged as replicates with
consistent observations; each datapoint shown in the bar graphs represents an animal (n=3). RM one-way ANOVA. Sidak’s multiple comparisons test
was used in the post hoc test. All center values shown are mean values, and all error bars represent standard errors of the means (s.e.m). N.S.,p > 0.05.
*,p < 0.05; **,p <0.01.
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sections with the largest cross-sections. Regions of interest were

manually traced using the freehand tool and measured using the

“Analyze” function in ImageJ. All statistical calculations and

plotting were performed using GraphPad Prism 9.
Immunofluorescent staining and analyses

Immunofluorescent staining was performed as previously

described (23). For histological samples, paraffin-embedded 5-

mm sections were deparaffinized and rehydrated in successive

baths of xylene and ethanol (100%, 95%, 70%, and 50%),

followed by heat-induced (95 °C) epitope retrieval in 10 mM

sodium citrate buffer (pH = 6.0). After one-hour block with 5%

BSA/PBS at room temperature, samples were incubated

overnight at 4°C with primary antibodies diluted in 2.5% BSA/

0.05% Triton X-100/PBS. The next day, sections were washed
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three times with 0.1% Triton X100/PBS prior to incubation with

secondary antibody diluted in 2.5% BSA/0.05% Triton X-100/

PBS for 60-90 minutes at room temperature. Then, sections were

again washed three times with 0.1% Triton X-100/PBS, labeled

with 4,6-diamidino-2-phenylindole (DAPI) for nuclear

visualization, rinsed with PBS, and mounted in ProLong Gold

Antifade Mountant (P10144, Invitrogen). Primary antibodies,

ultra-LEAF purified rat anti-mouse Ly-6G (1A8, 127620,

Biolegend) and rabbit anti-mouse/human CD11b (ab133357,

Abcam), were diluted at a 1-to-100 concentration. Secondary

antibodies, Alexa Fluor 488 donkey anti-rat IgG (712-545-150,

Jackson ImmunoResearch) and Alexa Fluor 594 donkey anti-

rabbit IgG (711-585-152, Jackson ImmunoResearch), were

diluted at 1-to-200 concentration. For analysis of percentage of

CD11b+ and Ly6G+ doubly-positive cells in tumors collected at

various time points as in Figure 6, images were acquired within

1–3 days following immunofluorescent staining as above using
A B

DC

FIGURE 2

Temporal radiographic characterization of tumor necrosis development during late tumor progression via MR imaging. (A) Temporal
development of GBM tumor necrosis during late tumor progression after onset of overt tumor-associated symptoms in tumor-bearing mice via
representative serial T1-weighted post-gadolinium MRI scans of one LN229TAZ(4SA) tumor-bearing mouse (different from the animal used in
Figure 1). Yellow asterisks: Brain parenchyma in the normal hemisphere; yellow arrows: More prominently enhancing rim at the outer edge of
the tumor boundary, representing the tumor-infiltrating front; red asterisks: More prominently enhancing (but later unenhancing from day 29
onward) foci within the tumor stroma, representing active development of necrosis; green arrows: Prominently enhancing rim at the necrosis-
cellular tumor (N-CT) interface, representing areas of active inflammation. (B) Heatmaps of signal intensities generated using T1 post-contrast
MRI images as in panel (A). (C) Quantification of tumor area (outlined by the peripheral enhancing interface indicated by yellow arrows)
normalized to whole brain area at each timepoint indicated above. p=0.3684. (D) Quantification of necrotic areas—labeled by red asterisks as in
panel (A)—normalized to corresponding tumor area at each indicated timepoint as above. p=0.1164. Three mice were imaged as replicates until
reached the terminal stage (one at day 28, the other two at day 32; n=2-3); each datapoint shown in the bar graphs represents an animal. All
center values shown are mean values, and all error bars represent standard errors of the means (s.e.m). Mixed-effects analysis.
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an Olympus CX41 microscope PLCN 40x objective. All images

were taken within the tumor adjacent to the central necrosis, in

so-called peri-necrotic regions, where infiltrating immune cells

were most abundant. All images were first converted to 8-bit

grayscale images, followed by background subtraction,

thresholding, and quantification using the Analyze Particles

function in ImageJ. Quantifications of double-positive and

triple-positive cells were performed by using the same

approach as above on images generated by Image Calculator

using the “AND” function in ImageJ. Corresponding DAPI

images were obtained for visualization of cellular nuclei and

for normalization of percentage of positive signals per cell. Data

were plotted as percentage of CD11b+ (singly-positive)

normalized to all DAPI+ cells within one high-power 40X

field, or percentage of CD11b+–Ly6G+ (doubly-positive) cells

normalized to all CD11b+ cells within one high-power 40X field.

For analysis of CD11b+ and Ly6G+ cells in tumors or tumor

borders as in Figure 6D, images were acquired within 1–3 days

following immunofluorescent staining as above using a Leica

SP8 inverted confocal laser scanning microscope with 63x

objective. Images were then stacked with maximal intensity

using the “Z project” function and merged using ImageJ.
Results

Temporal radiographic characterization
of tumor necrosis development via
MR imaging

Clinically, GBM tumor necrosis is typically first identified

radiographically via T1-weighted MRI with contrast prior to

surgery, as histopathological examination cannot be performed

until the tumor specimen has been removed. To study the

development of tumor necrosis in GBM, we carried out a

longitudinal radiographic imaging study on LN229TAZ

(4SA) tumor-bearing mice, in which tumor necrosis

progressively forms during tumor development (17).

LN229TAZ(4SA) tumor-bearing mice were imaged every other

day in the early tumor progression stages (starting 10-12 days

after tumor implantation) before the onset of any overt tumor-

associated symptoms (around 24 days after tumor

implantation). During early tumor progression, neoplastic

tissue can be readily distinguished from the normal brain

tissue by its enhanced contrast signals (Figures 1A, B, day- 12

and 14 scans, red asterisks). The contrast enhancement is likely

the result of leaky vasculature and the lack of a blood-brain

barrier. In addition to neoplastic tissues with leaky vessels,

tissues undergoing active inflammation can demonstrate

enhancement due to infiltration of immune cells with resultant

edema. We noticed the centers of tumors started showing less

enhancement on day 14 (Figure 1A, blue asterisk; and

Figure 1B). This likely represents proliferating tumor cells
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becoming more compact in the tumor center compared to the

periphery. H&E staining of tissue sections at this stage

confirmed this notion (Figure 5, day-10 scan). The decreased

enhancement of solid tumor components between the contrast-

enhancing rims may be related to the dense packing of tumor

cells in that region, leaving little extracellular space and therefore

resulting in reduced contrast enhancement. Changes in MRI

appearance for necrosis were first detected on day-16 scan, in

which the center of the tumor contained heterogeneous and

brighter-enhancing signals on post-contrast T1 spin echo

sequence (Figure 1A, day-16 scan, green arrowhead; and

Figure 1B, day-16 scan), likely representing actively developing

central necrosis, and a contrast-enhancing rim surrounding the

tumor, likely representing tumor-infiltrating fronts (Figure 1A,

day-16 scan, yellow arrow; and Figure 1B, day-16 scan). The

relatively less-enhancing core (Figure 1A, day 16-24 scans, blue

asterisks) of the tumor surrounding the brightly enhancing

central necrosis (Figure 1A, day 16-24 scans, green

arrowheads) was in turn surrounded by a relatively more

enhancing peripheral rim (Figure 1A, day 16-24 scans, yellow

arrows). Quantification of these radiological features showed

that tumor and necrotic areas, which are the areas enclosed by

the outer contrast-enhancing rim (Figure 1A, day 16-24 scans,

yellow arrows) and the intratumoral contrast-enhancing foci

(Figure 1A, day 16-24 scans, green arrowheads), respectively,

both gradually enlarged with tumor growth (Figures 1C, D). In

contrast, the relatively less-enhancing areas (Figure 1A, day 14-

24 scans, blue asterisks) did not expand along with tumors after

they appeared around day 14 (Figure 1E), while the peripherally-

enhancing rims (Figure 1A, day- 12 and 14 scans, red asterisks)

became thinner (Figure 1F).

In the second imaging study, MRI scans were acquired more

frequently after the LN229TAZ(4SA) tumor-bearing mice

developed overt tumor-associated symptoms (i.e., starting 24

days after tumor implantation). At this time, the relatively more

prominent contrast-enhancing rim on the outer edge of the

tumor boundaries remained visible throughout the course of

imaging (Figures 2A, B, yellow arrows). Using this contrast-

enhancing rim as the border of the expanding tumor front, we

found that tumors continue expanding (Figure 1C), although the

expansion is slower when compared to earlier stages, between

days 11-24 (comparing Figure 2C to 1C). Notably, the regions

representing central tumor necrosis, which initially

demonstrated more prominent enhancement than other solid

tumor areas (Figures 2A, B, day- 26, 28 and 29 scans, red

asterisks vs. yellow asterisks), became gradually less contrast-

enhancing from day 31 onward (Figures 2A, B, red asterisk on

day-31 scan vs. red asterisks on day- 28 and 29 scans). The loss

of contrast signal in the central areas reflects the occurrence of

extensive tumor tissue death (Figure 5A, day-30 scan). We also

observed another more brightly contrast-enhancing rim at the

interface of solid tumor and central tumor necrosis (i.e., N-CT

interfaces) (Figure 2A, green arrows) from day 29 onward after
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the implantation. This second rim of enhancement likely

represented the active area undergoing inflammation flooded

with infiltrating immune cells (e.g., tumor-associated

neutrophils, TANs, and tumor-associated macrophages and

microglia, TAMs) and interstitial fluid. Using this second

contrast-enhancing rim as the outline of the necrotic area, we

found that necrotic cores continue expanding at this stage

(Figure 1D), although more slowly when compared to stages

between days 11-24 (comparing Figure 2D to 1D). Together,

these temporal studies suggested hyperactivated TAZ-driven

GBM tumor necrosis positively correlated with tumor and

symptomatic progression, consistent with what has been

reported in clinical human GBM studies. The solid portions of

tumors between these two prominently enhancing rims were

relatively less-enhancing (Figures 2A, B, day 26-32 scans) as

observed in Figure 1 (day 14-24 scans).
Comparison of different MRI sequences
for the temporal visualization of tumors
and tumor necrosis

Tumor necrosis in GBM patients is typically first identified

radiographically via T1-weighted MRI performed with a

gadolinium contrast-enhancing agent. T1-weighted pre- and

post-gadolinium images are especially useful in investigating

breakdown of the blood-brain barrier (e.g., tumors, abscesses,

brain inflammation, or viral encephalitis.) (24). In the imaging of

GBM, T2-weighted sequences are almost always obtained

concurrently given their capacity to detect tumor infiltration

with edema. (T2*) or susceptibility weighted images are

commonly utilized when attempting to detect structural

changes related to intracranial hemorrhage (e.g., arteriovenous

malformation, cavernoma, hemorrhage within a tumor,

punctate hemorrhages in diffuse axonal injury, thrombosed

aneurysm, or some forms of calcification.) (24, 25). To

compare and contrast these different MRI modalities for the

visualization of tumors and tumor necrosis in our GBM mouse

model, we conducted a temporal radiographic imaging study on

LN229TAZ(4SA) tumor-bearing mice using different MRI

modalities. When T1-weighted post-gadolinium imaging was

utilized, temporal tumor growth and formation of the prominent

necrotic core was visualized (Figures 3A, B, T1-post, arrows).

Contrarily, in non-contrast T1 imaging, tumors were barely

detectable (Figures 3A, B, T1-pre). While early-stage tumors

were readily visible with enhanced signals in the T2 setting (day

13-17), they gradually lost their enhanced T2 signals and became

almost isointense to the surrounding parenchyma in later stages

(Figures 3A, B, T2, arrows). On T2* gradient echo images—

specifically used for the detection of blood products or

microhemorrhages in tumors (24, 25)– the tumors in the

mouse model did not show enhanced signals (Figures 3A, B,

T2*). To ensure the clinical translatability of observations from
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our GBM mouse model, we also obtained images acquired with

different MRI sequences from GBM patients in the clinical

setting. Similar to the above observation in our mouse model,

tumor necrosis was best visualized in T1-weighted post-contrast

images as less-enhancing areas with irregular inner margins near

the enhancing edges (Figures 4A, B, T1-post, arrows). These

results indicated that T1-weighted post-contrast MRI represents

the best imaging modality for visualization and characterization

of tumor necrosis both in pre-clinical and clinical GBM models,

especially in advanced stages.
Histological characterization of the
temporal development of GBM
tumor necrosis

While MRI studies provided real-time information about

necrosis development with high clinical translatability, the

resolution of biological/physiological occurrence provided by

MRI scans is somewhat limited to the large-scale tissue level. To

allow finer examination of necrosis development at the cellular

level in the hyperactivated TAZ-driven mouse GBM model, we

performed temporal histological studies by collecting brain

tissue from the LN229TAZ(4SA) tumor-bearing mice at different

stages throughout tumor progression, from asymptomatic stages

(i.e., on days 10, 16, and 20 after tumor implantation), to the

symptomatic stage (i.e., from day 24 following implantation and

onward), and eventually at the endpoint (i.e., day 30 after

implantation). We saw that on day 10 after tumor

implantation, tumor tissue was readily visible and could be

distinguished from the normal brain parenchyma by its purple

stain on H&E sections. At this time, tumors appeared relatively

small and homogeneous, although tumor cells are more compact

in the tumor center compared to the periphery (Figure 5A, day-

10 sections, red-outlined vs. green-outlined areas). Consistent

with above MRI studies, tumor sections collected from day 16

and onward after tumor implantation appeared more

heterogeneous, with a small central eosinophilic, pale-pink

appearing, acellular region of necrosis (Figure 5A, day-16

sections). At this stage, the tumor can be subdivided into three

areas, including periphery (less dense, Figure 5A, day-16, green-

outlined area), cellular tumor zone (dense, Figure 5A, day-16

sections, blue-outlined area), and necrotic area (Figure 5, day-16

sections, red-outlined area). These three areas correspond to the

relatively more enhancing peripheral rim (Figure 1A, day 16-24

sections, yellow arrows), the relatively less enhancing core

(Figure 1A, day 16-24 sections, blue asterisks) of the tumor,

and the brightly enhancing central necrosis (Figure 1A, day 16-

24 sections, green arrowheads), respectively, that were observed

in the MRI scans. The histologically-distinct areas, including

cellular tumor zone and necrotic area, can be similarly observed

in the H&E sections obtained from a GBM patient (Figure 5B).

Furthermore, in concordance with results from the above MRI
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studies, the size of tumor necrosis positively correlated with the

size of LN229TAZ(4SA) tumors and symptomatic progression in

mice (Figures 5C, D). Interestingly, we consistently observed

small round cells with dense, dark purple nuclei (yellow

arrowheads), characteristic of mouse immune cells and

morphologically distinct from human tumor cells with diffuse,

light-purple nuclei (red arrowheads) in the peri-necrotic regions

starting on day 16 after tumor implantation (Figure 5A),

indicating that prominent infiltration of mouse immune cells

began around this time. Morphologically-similar cells were also

seen in the peri-necrotic zone (PNZ) and necrotic area of the

samples from GBM patients (Figure 5B, arrowheads).
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Immunohistochemical characterization
of the temporal development of GBM
tumor necrosis

To validate our MRI results and to further examine the

correlation between immune cells and tumor necrosis at

various stages of tumor development, we performed

immunohistochemistry using a commonly used myeloid cell

marker, CD11b. Because neutrophils (i.e., tumor-associated

neutrophils, TANs) have been reported to be enriched in the

necrotic region (17), we also used Ly6G, a murine neutrophil

marker, to monitor TANs. Brain tumors were visible on
A

B

FIGURE 3

Comparison of different MRI modalities for temporal visualization of tumors and tumor necrosis using a murine GBM model. (A) Images
acquired from various frequently utilized MR imaging modality for diagnostics and pre-operative planning in the clinical setting on the GBM
tumor-bearing mouse devised by our lab. Starting from 10 days post tumor cell implantation, the mouse underwent serial brain MRI. Time
points were pre-determined based on our previous histological studies on days 10, 13, 15, 17, 20, 22, 24, and 28, which is the end point of this
GBM tumor-bearing mouse. (B) Heatmaps of signal intensities generated using MRI images as in panel (A). Arrows: Enhancing areas likely
representing tumors. One mouse was imaged.
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hematoxylin and eosin (H&E) staining at day 10 after tumor

cell implantation, but there was no detectable tumor necrosis

(Figure 5A, day-10 sections). In these tumors, CD11b+ cells

could be detected, whereas few Ly6G+ cells were seen

(Figure 6A, day-10 sections; Figures 6B, C). At day 16 after

tumor cell implantation, the derived tumors contained a few

necrotic foci that were infiltrated with cells labeled by both

CD11b and Ly6G (Figure 6A, day-16 sections; Figures 6B, C).

As tumors further progressed and the necrotic areas further

expanded, CD11b+ cells were more frequently observed in the

PNZ than in the tumor border, where few CD11b+ cells were

found in the brain parenchyma (Figure 6D). As the CD11b+

cell population increased in the PNZ, the abundance of

CD11b+Ly6G+ double-posi t ive cel l s a lso increased

(Figures 6B, C). These results indicated that CD11b+Ly6G+

cells spatially and temporally coincided with tumor necrosis

and tumor progression in LN229TAZ(4SA) tumors, consistent

with what has been previously described (17). Overall,

these results confirmed the above MRI observations that

immune cells and tumor necrosis are temporally and

spatially correlated.
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Discussion

While necrosis is common in solid malignancies at advanced

stages, especially GBMs, the nature and mechanisms driving its

development and evolution remain obscure, particularly in the

early stages of tumor progression. Clinically, brain MRI plays a

pivotal role and remains the primary follow-up modality in

assessing therapeutic response and prognosis in GBM patients

once the histopathological diagnosis has been confirmed. GBM

patients typically undergo brain MRI once every 2-3 months

following the initial tumor resection. While tumor necrosis is

typically first detected via brain MRI among GBM patients, the

radiological appearance and temporal evolution of early necrosis

formation alongside tumor progression remains poorly

understood, resulting in the lack of reliable radiographic

diagnostic and prognostic markers in early GBM progression.

This is unsurprising given that unless the lesion is identified

incidentally, most GBM patients do not undergo brain imaging

until they progress to the later, symptomatic stages when

symptoms result from extensive tumor expansion and

perilesional edema which compress normal brain parenchyma,
A

B

FIGURE 4

Tumor and necrosis visualized in a glioblastoma patient using standard MRI sequences. (A) A panel of representative images comparing T1
weighted pre-contrast (T1-pre), T1 weighted post-contrast (T1-post), and T2 sequences, which are routinely utilized in diagnostics and pre-
operative planning for glioblastoma patient, are comparable to the images acquired using the murine GBM model which we devised. It is
evident that T1-weighted post-gadolinium image remains by far the best sequence for the visualization of GBM tumor necrosis. (B) Heatmaps of
signal intensities generated using MRI images as in panel (A). Arrows: Less enhancing foci representing the central necrotic areas with irregular
inner margins near the enhancing edges.
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FIGURE 5

Histological characterization of the temporal development of GBM tumor necrosis. (A) Temporal development of GBM tumor necrosis from early to late
tumor progression using representative time-course H&E-stained formaldehyde-fixed paraffin embedded sections of LN229TAZ(4SA) brain tumor-bearing
mice. Each column represents images acquired from the same animal at a certain tumor progression stage. In each section, the tumor stroma has been
traced out using a dashed line. Areas marked by red rectangles were further magnified in the images in the bottom of each column. For day 10 and 16
tumors, the areas marked by green (tumor border) or blue (cellular tumor) rectangles were also magnified and shown in the bottom of the correspondent
columns. Yellow arrowheads: small, round, dark purple nuclei, likely representing mouse immune cells; red arrowheads: large, light purple nuclei,
representing LN229 human tumor cells. (B) Representative image of a H&E-stained formaldehyde-fixed paraffin-embedded human GBM brain section
showing cellular and necrotic tumor areas. The areas marked by green (peri-necrotic zone, PNZ), blue (cellular tumor, CT), or red (necrotic area, N)
rectangles were magnified and shown on right. Arrowheads: small, round, dark purple nuclei, likely representing immune cells. Specimens from three
different patients (n=3) were examined independently with similar observations. (C) Quantification of tumor area normalized to whole brain area at each
timepoint indicated in panel (A). pANOVA< 0.0001. Results of post hoc test for each continuous time point are indicated. (D) Quantification of necrotic areas,
appearing as pale pink, acellular regions, normalized to corresponding tumor area at each timepoint indicated above pANOVA< 0.0001. Results of post hoc
test for each continuous time point are indicated. Tumors from three to five tumor-bearing mice were sectioned and imaged in parallel as replicates with
consistent observations (n=3-5); each datapoint shown in the bar graphs represents an animal. Scale bar is in µm. Ordinary one-way ANOVA. Sidak’s
multiple comparisons test was used in the post hoc test. All center values shown are mean values, and all error bars represent standard errors of the mean
(s.e.m). N.S., p > 0.05. *,p < 0.05; **,p < 0.01.
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FIGURE 6

Immunohistochemical characterization of the temporal development of GBM tumor necrosis. (A) Temporal development of GBM tumor
necrosis from the early to the late tumor progression using representative time-course CD11b, Ly6G, and DAPI immunofluorescence staining on
brain sections collected from LN229TAZ(4SA) brain tumor-bearing mice. (same cohort of animals as in Figure 5). For day 10, an area of cellular
tumor was imaged. For day 16-30, an area of peri-necrotic zone at the interface between cellular and necrotic tumor was imaged for each
sample. Images in each column were acquired from the same animal. (B) Percentage of CD11b+ cells normalized to all DAPI+ cells in one high-
power 40X field collected at each timepoint indicated in panel (A). pANOVA<0.0001. Results of post hoc test for each continuous time point are
indicated. (C) Percentage of Ly6G+ cells normalized to all CD11b+ cells in one high-power 40X field collected at each timepoint indicated in
panel (A). pANOVA<0.0001. Results of post hoc test for each continuous time point are indicated. Each datapoint shown in the bar graphs
represents an animal. Ordinary one-way ANOVA. Sidak’s multiple comparisons test was used in the post hoc test. All center values shown are
mean values, and all error bars represent standard errors of the means (s.e.m). N.S., p > 0.05. *,p < 0.05; ***,p < 0.001; ****,p < 0.0001. (D)
Comparison of immunofluorescent images as above acquired from a terminal-stage (i.e., day 30) section between the peri-necrotic zone,
denoted by PNZ, and from the tumor border; dashed line outlines the tumor (T) and normal parenchyma (P) border. Tumors from three tumor-
bearing mice were sectioned and imaged in parallel as replicates with consistent observations (n=3). Scale bar is in µm.
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distort vascular supply, and reconfigure the neurotransmitter

environment. By such a time, prominent central tumor necrosis

is already well established and easily detected on imaging.

In this study, we utilized an orthotopic xenograft GBM

murine model which recapitulates the extent of GBM necrosis

seen among patients (17) to fill the above gap in understanding

via temporal radiographic and histological characterization of

necrosis evolution, hoping to identify possible radiographic

diagnostic/prognostic markers in early GBM progression.

Overall, images acquired via T1- and T2- weighted (including

T2*) MRIs on our murine model were comparable to those from

GBM patients. Nevertheless, unlike intra-lesional blood

products including microhemorrhages commonly reported in

MRI images of GBM, we did not observe much susceptibility

signals in our murine GBM tumor-bearing animals on T2* MRI,

suggesting lack of intra-lesional blood products or

microhemorrhages in our GBM murine model. This was

unsurprising, given that we did not observe extensive intra-

tumoral microvascular prol i ferat ion or subsequent

hemorrhaging on histological studies with our murine GBM

model. Additionally, the development of radiographically

visualized necrosis positively correlates with the tumor size as

well as symptomatic progression. Necrosis at later stages of

tumor progression appears as a non-enhancing central-tumoral

region on post-contrast T1-weighted images, probably due to

extensive tumoral tissue death resulting in the loss of contrast

enhancement. Such lack of central enhancement coincides with

the radiographic and clinical definition of necrosis among GBM

patients. Interestingly, while necrosis eventually loses

enhancement and appears unenhancing on T1-weighted post-

contrast MRI when compared to normal parenchyma, tissue

actively undergoing necrosis first appears more prominently

enhancing in the early stages of tumor progression. This

feature probably coincides with active inflammation with

resulting loss of the blood-brain barrier and extravasation of

contrast. Moreover, as necrosis evolves, two contrast-enhancing

rims are observed at later stages. The outer rim at the tumor

border likely represents the infiltrating tumor edge, and the

inner rim at the peri-necrotic region may represent locally

infiltrating immune cells which facilitate the development of

tumor necrosis, as reported in previous studies (17). These

radiographic findings associated with early stages of GBM

tumor progression and necrosis evolution, to our knowledge,

have not yet been reported in literature.

There are several limitations to this study. First, findings

reported in this study are limited to one type of murine

xenograft model; whether these findings can be reproduced

using other types of GBM murine xenograft models—in

particular, GBM patient-derived xenograft murine models—

and other non-xenograft models awaits future study. Second,

the resolution of biological and physiological processes provided

by MRI imaging is somewhat limited to the large-scale tissue
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level, and it would be clinically inappropriate to generate

diagnoses or prognostic information regarding malignancy

based solely on radiographic changes without verification from

histological or molecular studies. This may be addressed in

future murine studies by incorporating MRI compatible

cellular contrast dye specific for tumor tissue as well as other

tumor-associated immune cells (e.g., TANs or TAMs) as

technology and tools in cellular and cell-tracking MRI evolve

and become available (26–28).

It is well-established that both chemotherapy and radiation

result in tumor tissue death, and therefore necrosis may be a

useful predictor of tumor response to treatments. If we have a

better understanding of the temporal evolution of intratumoral

necrosis, and if we are able to accurately measure it, this may

serve as a potential biomarker for monitoring treatment

responses of individual tumors and allow tailoring of

treatment in real time. Radiographically, the combination of

chemotherapy and radiation often provokes contrast

enhancement and seeming enlargement of the residual tumor,

mimicking tumor progression in so-called pseudoprogression

(29). It has long been a challenge to distinguish treatment-

related necrosis and its resultant radiographic changes from true

disease progression, especially among patients with treatment-

resistant tumors. This poses a major hurdle in the follow-up and

surveillance of patients with high-grade gliomas, including

GBM, as additional surgical biopsy or multi-modal imaging

studies, such as perfusion MRI or MR spectroscopy, are

necessary for a conclusive diagnosis, which risks delaying

treatment of true disease progression. Conventional grading of

gliomas does not predict therapeutic response of individual

tumors even with same histological grade, and as a result,

contrast-enhanced MRI has been the most widely utilized

clinical tool to guide diagnosis, surgical navigation, and

radiation treatment planning. Additionally, it is the most

common objective assessment with which to monitor

treatment responses to standard adjuvant chemotherapy and

radiation. Moreover, for patients with gliomas that are non-

resectable due to being in eloquent locations, MRI remains the

gold standard for routine surveillance of these patients and

monitoring of potential malignant transformation from low-

to high-grade tumors. In some circumstances, MRI may be the

only assessment used for diagnosis and for differentiation of low-

grade tumors from high-grade ones.

Therefore, knowledge gained from our study may provide

neuroradiologists with new insights to more accurately interpret

post-treatment radiographic changes among GBM patients,

allowing recognition of radiographic changes of necrosis and

low-to-high grade malignant transformation at earlier stages,

which could in turn facilitate and guide treatment planning

among a multi-disciplinary neuro-oncology team to minimize

delays and improve success. These potential implications remain

to be further explored in future studies.
frontiersin.org

https://doi.org/10.3389/fonc.2022.993649
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yee et al. 10.3389/fonc.2022.993649
Data availability statement

The original contributions presented in the study are

included in the article/supplementary material. Further

inquiries can be directed to the corresponding author.
Ethics statement

The studies involving human participants were reviewed and

approved by Penn State University Institutional Review Board.

Written informed consent for participation was not required for

this study in accordance with the national legislation and the

institutional requirements. The animal study was reviewed and

approved by Penn State University Institutional Animal Care

and Use Committee.
Author contributions

PY and WL conceived the project and designed the

experiments. PY and WL performed stereotaxic intracranial

surgeries in mice. PY performed histological studies of mouse

brain tumor specimens with assistance from SC and WL. JW

performed mouse MRI. PY performed mouse and human

radiographical analyses under the supervision of KT and WL.

DA, MG, BZ, and KT provided MRI results from GBM patients

seen at the Neurooncology clinic at Penn State Hershey Medical

Center. PY and WL wrote an original manuscript. All authors

provided intellectual input and edited the manuscript. WL

supervised all aspects of the work.
Funding

We acknowledge support from the National Institutes of

Neurological Disorders and Stroke (R01 NS109147 and
Frontiers in Oncology 13
170
NS119547 to WL), Penn State College of Medicine Medical

Scientist Training Program (5T32GM118294 to PY through

PSU), and the Four Diamonds (to PSU).
Acknowledgments

We would like to thank Dr. Kun-liang Guan for reagents,

members of the Li Laboratory for helpful discussions, Ms.

Gretchen Snavely and Ms. Erin Mattern from the Comparative

Medicine Histopathology Core, Ms. Jessica Wingate from the

Comparative Medicine Diagnostic Laboratory, and Dr. Nataliya

Smith, Ms. Kristin Shuler and Mr. John Graybeal from the

Department of Neurosurgery’s Neuroscience Research Institute

Biorepository for assistance with sample handling and IRB

submissions. We are also thankful to the MRI Core Facility

staff, Jeffrey Vesek and Patti Miller, for the support on

study protocol development/data acquisition/data processing/

data analysis in this study and the Microscopy Imaging Core

(Leica SP8 Confocal: 1S10OD010756-01A1 CB).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Graif M, Bydder GM, Steiner RE, Niendorf P, Thomas DG, Young IR.
Contrast-enhanced MR imaging of malignant brain tumors. AJNR Am J
Neuroradiol (1985) 6:855–62.

2. Watanabe M, Tanaka R, Takeda N. Magnetic resonance imaging and
histopathology of cerebral gliomas. Neuroradiology (1992) 34:463–9. doi:
10.1007/BF00598951

3. Iwama T, YamadaH, Sakai N, Andoh T, Nakashima T, Hirata T, et al. Correlation
between magnetic resonance imaging and histopathology of intracranial glioma. Neurol
Res (1991) 13:48–54. doi: 10.1080/01616412.1991.11739964

4. Munir S, Khan SA, Hanif H, Khan M. Diagnostic accuracy of magnetic
resonance imaging in detection of intra-axial gliomas. Pak J Med Sci (2021)
37:125–30. doi: 10.12669/pjms.37.1.2489
5. Pierallini A, Bonamini M, Bozzao A, Pantano P, Stefano DD, Ferone E, et al.
Supratentorial diffuse astrocytic tumours: proposal of an MRI classification. Eur
Radiol (1997) 7:395–9. doi: 10.1007/s003300050173

6. Neugut AI, Sackstein P, Hillyer GC, Jacobson JS, Bruce J, Lassman AB, et al.
Magnetic resonance imaging-based screening for asymptomatic brain tumors: A
review. Oncologist (2019) 24:375–84. doi: 10.1634/theoncologist.2018-0177

7. McGirt MJ, Chaichana KL, Attenello FJ, Weingart JD, Than K, Burger PC,
et al. Extent of surgical resection is independently associated with survival in
patients with hemispheric infiltrating low-grade gliomas. Neurosurgery (2008)
63:700–707; author reply 707-708. doi: 10.1227/01.NEU.0000325729.41085.73

8. McGirt MJ, Goldstein IM, Chaichana KL, Tobias ME, Kothbauer KF, Jallo
GI. Extent of surgical resection of malignant astrocytomas of the spinal cord:
frontiersin.org

https://doi.org/10.1007/BF00598951
https://doi.org/10.1080/01616412.1991.11739964
https://doi.org/10.12669/pjms.37.1.2489
https://doi.org/10.1007/s003300050173
https://doi.org/10.1634/theoncologist.2018-0177
https://doi.org/10.1227/01.NEU.0000325729.41085.73
https://doi.org/10.3389/fonc.2022.993649
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yee et al. 10.3389/fonc.2022.993649
Outcome analysis of 35 patients. Neurosurgery (2008) 63:55–60; discussion 60-51.
doi: 10.1227/01.NEU.0000319635.16797.1A

9. Barker FG, Davis RL, Chang SM, Prados MD. Necrosis as a prognostic factor
in glioblastoma multiforme. Cancer (1996) 77:1161–6. doi: 10.1002/(SICI)1097-
0142(19960315)77:6<1161::AID-CNCR24>3.0.CO;2-Z

10. Hammoud MA, Sawaya R, Shi W, Thall PF, Leeds NE. Prognostic
significance of preoperative MRI scans in glioblastoma multiforme. J Neurooncol
(1996) 27:65–73. doi: 10.1007/BF00146086

11. Pierallini A, Bonamini M, Pantano P, Palmeggiani F, Raguso M, Osti MF,
et al. Radiological assessment of necrosis in glioblastoma: Variability and
prognostic value. Neuroradiology (1998) 40:150–3. doi: 10.1007/s002340050556

12. Yee PP, LiW. Tumor necrosis: A synergistic consequence of metabolic stress
and inflammation. Bioessays (2021) 43:e2100029. doi: 10.1002/bies.202100029

13. Asari S, Makabe T, Katayama S, Itoh T, Tsuchida S, Ohmoto T. Assessment
of the pathological grade of astrocytic gliomas using an MRI score. Neuroradiology
(1994) 36:308–10. doi: 10.1007/BF00593267

14. Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev (2006)
20:1–15. doi: 10.1101/gad.1376506

15. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H,
Vandenabeele P. Regulated necrosis: The expanding network of non-apoptotic
cell death pathways. Nat Rev Mol Cell Biol (2014) 15:135–47. doi: 10.1038/nrm3737

16. Tonnus W, Linkermann A. The in vivo evidence for regulated necrosis.
Immunol Rev (2017) 277:128–49. doi: 10.1111/imr.12551

17. Yee PP, Wei Y, Kim SY, Lu T, Chih SY, Lawson C, et al. Neutrophil-induced
ferroptosis promotes tumor necrosis in glioblastoma progression. Nat Commun
(2020) 11:5424. doi: 10.1038/s41467-020-19193-y

18. Dong J, Zhao H, Wang F, Jin J, Ji H, Yan X, et al. Ferroptosis-related gene
contributes to immunity, stemness and predicts prognosis in glioblastoma
multiforme. Front Neurol (2022) 13:829926. doi: 10.3389/fneur.2022.829926

19. Liu T, Zhu C, Chen X, Guan G, Zou C, Shen S, et al. Ferroptosis, as the most
enriched programmed cell death process in glioma, induces immunosuppression
and immunotherapy resistance. Neuro Oncol (2022) 24:1113–25.. doi: 10.1093/
neuonc/noac033
Frontiers in Oncology 14
171
20. Wang Z, Dai Z, Zheng L, Xu B, Zhang H, Fan F, et al. Ferroptosis activation
scoring model assists in chemotherapeutic agents’ selection and mediates cross-talk
with immunocytes in malignant glioblastoma. Front Immunol (2021) 12:747408.
doi: 10.3389/fimmu.2021.747408

21. Xiao D, Zhou Y, Wang X, Zhao H, Nie C, Jiang X. A ferroptosis-related
prognostic risk score model to predict clinical significance and immunogenic
characteristics in glioblastoma multiforme. Oxid Med Cell Longevity (2021)
2021:9107857. doi: 10.1155/2021/9107857

22. Zhu X, Zhou Y, Ou Y, Cheng Z, Han D, Chu Z, et al. Characterization of
ferroptosis signature to evaluate the predict prognosis and immunotherapy in
glioblastoma. Aging (Albany NY) (2021) 13:17655–72. doi: 10.18632/aging.203257

23. Liu Z, Wei Y, Zhang L, Yee PP, Johnson M, Zhang X, et al. Induction of
store-operated calcium entry (SOCE) suppresses glioblastoma growth by inhibiting
the hippo pathway transcriptional coactivators YAP/TAZ. Oncogene (2019)
38:120–39. doi: 10.1038/s41388-018-0425-7

24. Mabray MC, Barajas RFJr., Cha S. Modern brain tumor imaging. Brain
Tumor Res Treat (2015) 3:8–23. doi: 10.14791/btrt.2015.3.1.8

25. Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, et al.
Glial neoplasms: Dynamic contrast-enhanced T2*-weighted MR imaging.
Radiology (1999) 211:791–8. doi: 10.1148/radiology.211.3.r99jn46791

26. Karimian-Jazi K, Munch P, Alexander A, Fischer M, Pfleiderer K,
Piechutta M, et al. Monitoring innate immune cell dynamics in the glioma
microenvironment by magnetic resonance imaging and multiphoton
microscopy (MR-MPM). Theranostics (2020) 10:1873–83. doi: 10.7150/
thno.38659

27. Rivera-Rodriguez A, Hoang-Minh LB, Chiu-Lam A, Sarna N, Marrero-
Morales L, Mitchell DA, et al. Tracking adoptive T cell immunotherapy using
magnetic particle imaging. Nanotheranostics (2021) 5:431–44. doi: 10.7150/
ntno.55165

28. Wankhede M, Bouras A, Kaluzova M, Hadjipanayis CG. Magnetic
nanoparticles: An emerging technology for malignant brain tumor imaging and
therapy. Expert Rev Clin Pharmacol (2012) 5:173–86. doi: 10.1586/ecp.12.1

29. Thust SC, van den Bent MJ, Smits M. Pseudoprogression of brain tumors. J
Magn Reson Imaging (2018) 48:571–89. doi: 10.1002/jmri.26171
frontiersin.org

https://doi.org/10.1227/01.NEU.0000319635.16797.1A
https://doi.org/10.1002/(SICI)1097-0142(19960315)77:6%3C1161::AID-CNCR24%3E3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1097-0142(19960315)77:6%3C1161::AID-CNCR24%3E3.0.CO;2-Z
https://doi.org/10.1007/BF00146086
https://doi.org/10.1007/s002340050556
https://doi.org/10.1002/bies.202100029
https://doi.org/10.1007/BF00593267
https://doi.org/10.1101/gad.1376506
https://doi.org/10.1038/nrm3737
https://doi.org/10.1111/imr.12551
https://doi.org/10.1038/s41467-020-19193-y
https://doi.org/10.3389/fneur.2022.829926
https://doi.org/10.1093/neuonc/noac033
https://doi.org/10.1093/neuonc/noac033
https://doi.org/10.3389/fimmu.2021.747408
https://doi.org/10.1155/2021/9107857
https://doi.org/10.18632/aging.203257
https://doi.org/10.1038/s41388-018-0425-7
https://doi.org/10.14791/btrt.2015.3.1.8
https://doi.org/10.1148/radiology.211.3.r99jn46791
https://doi.org/10.7150/thno.38659
https://doi.org/10.7150/thno.38659
https://doi.org/10.7150/ntno.55165
https://doi.org/10.7150/ntno.55165
https://doi.org/10.1586/ecp.12.1
https://doi.org/10.1002/jmri.26171
https://doi.org/10.3389/fonc.2022.993649
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Eduard Yakubov,
Paracelsus Medical Private University,
Germany

REVIEWED BY

Marc Dahlmanns,
Institute for Physiology and
Pathophysiology, Germany
Or Kakhlon,
Hadassah Medical Center, Israel

*CORRESPONDENCE

Yangchun Xie

xieyangchun88@csu.edu.cn

Daolin Tang

daolin.tang@utsouthwestern.edu

SPECIALTY SECTION

This article was submitted to
Neuro-Oncology and
Neurosurgical Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 06 November 2022

ACCEPTED 30 January 2023
PUBLISHED 10 February 2023

CITATION

Xie Y, Hou T, Liu J, Zhang H, Liu X, Kang R
and Tang D (2023) Autophagy-dependent
ferroptosis as a potential treatment for
glioblastoma.
Front. Oncol. 13:1091118.
doi: 10.3389/fonc.2023.1091118

COPYRIGHT

© 2023 Xie, Hou, Liu, Zhang, Liu, Kang and
Tang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 10 February 2023

DOI 10.3389/fonc.2023.1091118
Autophagy-dependent
ferroptosis as a potential
treatment for glioblastoma

Yangchun Xie1*, Tao Hou1, Jinyou Liu1, Haixia Zhang1,
Xianling Liu1, Rui Kang2 and Daolin Tang2*

1Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China,
2Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
Glioblastoma (GBM) is the most common malignant primary brain tumor with a

poor 5-year survival rate. Autophagy is a conserved intracellular degradation

system that plays a dual role in GBM pathogenesis and therapy. On one hand,

stress can lead to unlimited autophagy to promote GBM cell death. On the other

hand, elevated autophagy promotes the survival of glioblastoma stem cells against

chemotherapy and radiation therapy. Ferroptosis is a type of lipid peroxidation-

mediated regulated necrosis that initially differs from autophagy and other types of

cell death in terms of cell morphology, biochemical characteristics, and the gene

regulators involved. However, recent studies have challenged this view and

demonstrated that the occurrence of ferroptosis is dependent on autophagy,

and that many regulators of ferroptosis are involved in the control of autophagy

machinery. Functionally, autophagy-dependent ferroptosis plays a unique role in

tumorigenesis and therapeutic sensitivity. This mini-review will focus on the

mechanisms and principles of autophagy-dependent ferroptosis and its

emerging implications in GBM.

KEYWORDS

autophagy, ferroptosis, glioblasoma, glioblastom stem cells, therapeutics
Introduction

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults,

with an annual incidence of about 3.23 cases per 100,000 people and a median survival

(regardless of treatment) of approximately 8 months, with a one-, five- and ten-year survival

rates of 42.8, 7.2 and 4.7%, respectively, based on recent statistical analysis of the Central

Brain Tumor Registry of the United States (CBTRUS) (1, 2). Temozolomide is one of the

first-line chemotherapeutics for the treatment of GBM due to its DNA alkylating activity and

its ability to cross the blood-brain barrier (3). However, GMB patients often develop

temozolomide resistance after one year of treatment. One reason for this clinical challenge

is that glioblastoma stem cells (GSC) can survive after surgical resection and are highly

resistant to chemotherapy and radiotherapy (4). Specifically, autophagy is a cellular recycling

mechanism that confers robust chemoresistance and radiation resistance to GSC, resulting in
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GBM regeneration and the inability to kill them by standard therapies

(5). Therefore, understanding the process and function of autophagy

is important for developing effective anticancer approaches in GBM.

Autophagy is a catabolic process that promotes the recycling

of cellular components under stress conditions (such as

nutrient deficiency or microbial infection), thereby restoring cell

homeostasis (6). It can be divided into macroautophagy,

microautophagy and chaperon-mediated autophagy (CMA) (7).

Macroautophagy involves the formation of autophagosomes that

encapsulate senescent proteins or damaged organelles into

lysosomes for degradation and recycling (8). The macroautophagy

process is dynamically mediated by autophagy-related (ATG) family

proteins through the formation of distinct protein complexes under

the control of post-translational modifications (9). Microautophagy is

driven by direct engulfment of cytoplasmic cargo to lysosomes under

infectious conditions (10). In CMA, heat-shocked homologous 70

kDa (HSC70) proteins recognize KFERQmotifs in target proteins and

facilitate their transfer to lysosomes through the lysosome-associated

membrane protein 2A (LAMP2A) receptor (11). This review will

focus on macroautophagy, simply referred to as autophagy from

now on.

Autophagy is involved in the regulation of various cell death

modalities, thereby determining cell fate (12). In addition to

promoting cell survival, excessive autophagy can also trigger cell

death, especially the iron-dependent form of nonapoptotic

ferroptosis. Notably, ferroptosis was originally described as an

autophagy-dependent cell death (13). Growing evidence from

independent groups highlights that autophagy promotes iron

accumulation and lipid peroxidation, key metabolic hallmarks of

ferroptosis (14, 15). Consequently, genetic or pharmacological

inhibition of the autophagy machinery can suppress ferroptosis

sensitivity in various disease models. Moreover, pharmacological

induction of autophagy-dependent ferroptosis may be a game-

changing antitumor strategy compared to traditional inhibition of

autophagy to limit tumor growth (16).

In this review, we summarize the current understanding of the

process and basis of autophagy-dependent ferroptosis. We also

discuss the implications of induction of autophagy-dependent

ferroptosis for the treatment of GBM.
Molecular mechanism of autophagy-
dependent ferroptosis

The activation of autophagy machinery is significantly increased

within cells treated with classical ferroptosis inducers, such as small-

molecule compounds erastin and RSL3. Compared to wide-type cells,

autophagy deficient cells (e.g., ATG5-/- and ATG7-/-) exhibit higher

survival rate during ferroptosis (17). In vitro studies further show that

ferroptosis is dependent on autophagy machinery (18, 19). Indeed,

excessive formation of autophagosomes or abnormal increase of

lysosomal activity will cause the accumulation of intracellular iron

and lipid peroxides by selectively degrading proteins regulating iron

and redox homeostasis (e.g., ferritin, GPX4, ARNTL, and lipid

droplets), promoting the occurrence of ferroptosis (Figure 1). The

selective role of autophagy in promoting ferroptosis is discussed from

the following six aspects.
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Degradation of iron regulatory protein

Excessive ferrous iron can promote the generation of reactive

oxygen species (ROS) through Fenton reaction, thus causing toxic

effects on cells (20). Under normal physiological conditions,
FIGURE 1

Mechanism and significance of autophagy-dependent ferroptosis.
Autophagy promotes ferroptosis by selectively degrading anti-
ferroptosis proteins or organelles through multiple autophagy
receptors. DAMP release from ferroptotic cells can trigger
inflammatory and immune responses in macrophages by activating
the AGER pathway. AGER, advanced glycosylation end-product
specific receptor; BMAL1, brain and muscle ARNT-like 1; CDH2,
cadherin 2; DCN, proteoglycan; FTH1, ferritin heavy chain 1; GPX4,
glutathione peroxidase 4; HPCAL1, hippocalcin like 1; HMGB1, high
mobility group box 1; IL, interleukin; MHC, major histocompatibility
complex; NCOA4, nuclear receptor coactivator 4; RAB7A, member
RAS oncogene family; SLC40A1, solute carrier family 40 member 1;
SQSTM1, sequestosome 1; TLR, toll-like receptor; TNF, tumor necrosis
factor; VEGF, vascular endothelial growth factor.
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intracellular ferrous iron is absorbed by the ferritin heavy chain 1

(FTH1, also known as FTH). Ferrous iron is then oxidized to ferric

iron and stored in ferritin. In addition, excess ferrous iron is

transported out of the cell via iron exporter solute carrier family 40

member 1 (SLC40A1, also known as ferroportin-1 or FPN1) on the

cell membrane (21). Ferroptosis can be induced by increasing iron

absorption and decreasing iron storage or preventing iron release. At

least two mechanisms mediate iron accumulation and subsequent

ferroptosis by promoting autophagic degradation of ferritin or

SLC40A1 (Figure 1). The degradation of ferritin is mediated by

nuclear receptor coactivator 4 (NCOA4)-dependent ferritinophagy

in erastin-treated mouse embryonic fibroblasts and human pancreatic

cancer cells (17). In contrast, the autophagy receptor sequestosome 1

(SQSTM1, best known as p62) is required for the elimination of

SLC40A1 to promote iron-dependent ferroptosis in cancer cells in

vitro and in vivo (22). Although these studies highlight that autophagy

increases toxic iron accumulation to induce ferroptosis, whether

autophagy selectively affects iron accumulation in different

subcellular organelles remains unknown.
Degradation of lipid droplet

Lipid droplets are highly dynamic organelles that not only store

lipids but also release them under stressful conditions. The process of

lipid droplet degradation through autophagy is called lipophagy (23).

The free fatty acids generated by lipophagy promote adenosine 5′-
triphosphate generation through b oxidation in mitochondria. Unlike

lipid droplets known to play a role in preventing lipotoxicity

by storing fatty acids, lipid droplet degradation mediated by

RAB7A lipophagy (Figure 1) can promote RSL3-induced lipid

peroxidation and ferroptosis in human liver cancer cells (24). In

contrast, the overexpression of tumor protein D52 (TPD52)

effectively inhibits RSL3-induced lipid peroxidation and ferroptosis

by promoting lipid storage or inhibiting lipophagy (24). These

findings suggest that lipophagy provides a lipid supply for

subsequent lipid peroxidation during ferroptosis. In addition to

RAB7A, further identification of lipid droplet-specific autophagy

receptors is important for the development of inhibitors targeting

lipophagy-dependent ferroptosis.
Degradation of circadian regulator

The circadian clock is endogenous and controls numerous cellular

physiological processes, including iron metabolism, oxidative stress,

and cell death, by regulating circadian switches (25). Clockophagy is a

type of selective autophagy that degrades circadian rhythm-regulating

proteins during ferroptotic cancer cell death (26). The clockophagic

degradation of basic helix-loop-helix ARNT like 1 (BMAL1, also

known as ARNTL1), the core protein of circadian clock, promotes

lipid peroxidation and ferroptosis by increasing lipid storage in

droplets through the Egl-9 family hypoxia inducible factor 2

(EGLN2, also known as PHD1)-mediated hypoxia inducible factor

1 subunit alpha (HIF1A) degradation (27). Moreover, SQSTM1 is

required for clockophagy-mediated BMAL1 degradation (27)
Frontiers in Oncology 03174
(Figure 1), supporting that SQSTM1 is a multisubstrate autophagy

receptor for ferroptosis.
Degradation of GPX4

Glutathione peroxidase 4 (GPX4), formerly known as

phospholipid hydrogen peroxide glutathione peroxidase (PHGPx),

is one of the core regulators and targets of ferroptosis (28). GPX4 is

the fourth member of the selenium-containing GPX family with a

unique ability to scavenge membrane lipid hydroperoxide products to

alcohols (29). In 2014, a targeted metabolomics study showed that the

overexpression or knockdown of GPX4 can regulate the cytotoxicity

of 12 ferroptosis inducers (28). Mechanistically, GPX4 uses its

catalytic activity to weaken lipid peroxide toxicity and maintain

membrane lipid bilayer homeostasis. RSL3, an inhibitor of GPX4,

covalently binds to GPX4 and inactivates GPX4, leading to the

accumulation of intracellular peroxides and triggering ferroptosis

(28). As a cofactor of GPX4, glutathione (GSH) deficiency

inactivates GPX4 and triggers ferroptosis. Therefore, the inhibition

of GPX4 activity and the decrease of GPX4 expression can destroy the

balance of cellular redox system, causing the accumulation of lipid

ROS and ferroptosis. Both erastin and RSL3 induce autophagy flux

and affect GPX4 levels through SQSTM1-mediated GPX4 protein

degradation in multiple cancer cells (22) (Figure 1). Moreover,

pharmacological inhibition of mammalian target of rapamycin

complex 1 (mTORC1) by rapamycin also reduces GPX4 protein

levels, while vice versa RSL3 inhibits mTORC1, supporting a

relationship between autophagy and ferroptosis (30). FIN56,

another ferroptosis inducer, also promotes GPX4 protein

degradation and lipid peroxidation in an autophagy-dependent

manner (31). Since CMA also mediates ferroptosis machinery

protein degradation, such as GPX4 and acyl-CoA synthetase long-

chain family member 4 (ACSL4) (32, 33), the receptors of which are

heat shock proteins, it is necessary to further elucidate the roles of

different types of autophagy in promoting ferroptosis.
Degradation of CDH2

Historically, hippocalcin like 1 (HPCAL1) is a neuron-specific

Ca2+-binding protein that control central nervous system responses

(34). In terms of tumor formation and development, HPCAL1

exhibits tumor-promoting activity in GBM by the activation of the

embryonic developmental signals, especially the WNT-CTNNB1/b-
catenin pathway (35). Recently, HPCAL1 was identified by

quantitative proteomic approach as a novel autophagy receptor that

triggers autophagy-dependent ferroptosis by selectively degrading

cadherin 2 (CDH2) (Figure 1) (36). Mechanistically, the

degradation of CDH2 is initiated by protein kinase C theta

(PRKCQ)-mediated HPCAL1 phosphorylation on Ter149. Notably,

starvation-induced autophagy does not require HPCAL1, which

establishes the first autophagy receptor to induce ferroptosis.

Furthermore, transmembrane protein 164 (TMEM164) acts as a

specific promoter of ferroptosis-related autophagosome formation,

but not ATG9A-dependent and starvation-induced autophagosome
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formation (37). These studies provide important insights into the

upstream signaling and downstream mediators of autophagy-

dependent ferroptosis.
Organelle-specific initiation of autophagy-
dependent ferroptosis

In addition to lipid droplets, other organelles play context-

dependent roles in mediating autophagy-dependent ferroptosis (38).

For example, the lysosomal cysteine protease cathepsin B (CTSB)

promotes autophagy-dependent ferroptosis via translocation from

lysosome into nucleus to cause DNA damage signals and to activate

stimulator of interferon response cGAMP interactor 1 (STING1, also

known as STING or TMEM173)-dependent DNA sensor pathways

(39) (Figure 2). In addition, the MAPK-STAT3-CTSB pathway is

required for erastin-induced ferroptosis in pancreatic cancer cells

(40). The inhibition of STAT3 through small molecules (e.g.,

cryptotanshinone and S31-201) or siRNA as well as blockade of

CTSB activity (using CA-074Me) or vacuolar type H+-ATPase (using

bafilomycin A1) limits ferroptosis (40). These findings suggest that
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there is organelle communication between the lysosome and the

nucleus to initiate autophagy-dependent ferroptosis.

Mitochondria play an important role in the process of ferroptosis,

including participating in mitochondrial DNA biosynthesis, ROS

metabolism and mitochondrial iron storage and transport (41, 42).

The DNA sensor hub STING1 links mitochondrial DNA damage,

autophagy, and ferroptosis. Specifically, anti-HIV drug zalcitabine-

induced mtDNA depletion and oxidative DNA damage activates the

cGAS-STING1 pathway, thereby triggering STING1-dependent

autophagy and subsequent autophagy-mediated ferroptosis (43)

(Figure 2). Mitochondria associating with lipid droplets in fat-

oxidizing tissues are recently identified as peidroplets mitochondria,

which have unique ATP synthesis and pyruvate oxidation capacities

(44), potentially suggesting a functional role in autophagy-dependent

ferroptosis through lipophagy. Furthermore, the iron-binding nuclear

protein pirin (PIR) can hijack HMGB1 in the nucleus, thereby

inhibiting the translocation of HMGB1 to the cytoplasm and

subsequent activation of beclin 1 (BECN1)-dependent autophagy

and ferroptosis in pancreatic cancer cells (45, 46). These findings

explain the persistent activation of DNA damage, DAMP release, and

autophagy flux during ferroptotic death.
FIGURE 2

Organelle-specific initiation of autophagy-dependent ferroptosis. There is crosstalk between lysosomes, nucleus and mitochondria. Oxidative damage to
nuclear or mitochondrial DNA triggered by iron-dependent CTSB translocation or anti-HIV drug zalcitabine can activate STING-dependent autophagy
and ferroptosis. BECN1, beclin 1; cGAS, cyclic GMP-AMP synthase; CTSB, cathepsin B; HMGB1, high mobility group box 1; PIR, pirin; STING1, stimulator
of interferon response cGAMP interactor 1.
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Targeting autophagy-dependent
ferroptosis signaling network in GBM

GBM cells promote autophagy under adverse conditions (e.g.,

nutrient deficiency, oxidative or hypoxic stress) to maintain their

survival and evade responses to cancer therapy (47–49). The

progression of GBM is associated with decreased autophagy

capacity (50). In a KRAS-driven mouse model of GBM, inhibition

of ATG significantly reduced tumor growth and oncogenic

progression, suggesting that autophagy is critical for GBM initiation

and growth (51). While temozolomide induces autophagy to kill

GBM, GSCs exert self-protection by activating autophagy (52). The

current study aims to find new therapeutic targets to improve patient

outcomes. Recent studies have shown that ferroptosis exists in GBM

tumor cells, and recurrent tumors are more prone to ferroptosis

treatment (53). These results confirm that exploiting the ferroptosis

process may be a possible new therapeutic strategy, especially in the

setting of recurrent GBM.

There is also evidence that GBMs have significantly increased iron

requirements compared to normal tissues, and GSCs uptake twice as

much iron as non-stem tumor cells (54). Thus, GBM cells have a

strong iron reliance. Targeting iron-related proteins or increasing

intracellular iron levels are considered as feasible methods for GBM

treatment (Table 1). Amentoflavone induces ferroptosis in glioma

cells though ATG7-mediated autophagy to break iron homeostasis

(55). Interestingly, both coatomer protein complex subunit zeta 1

(COPZ1) and tripartite motif containing 7 (TRIM7) are associated

with ferroptosis by regulating intracellular iron metabolism in GBM

(57, 59). Genetic inhibition of COPZ1 or TRIM7 suppresses tumor

growth in vitro and in vivo, mechanistically by inducing NCOA4

expression and promoting ferritinophagy, followed by increased

intracellular levels of ferrous iron and ultimately ferroptosis

(57, 59). More recently, multifunctional nanomaterials (including

ultrasmall iron oxide nanoparticles and iron oxide nanoparticles

loaded with paclitaxel) have the effects of increasing the

intracellular iron level, catalyzing fenton reaction, generating ROS

and lipid peroxidation, ultimately inducing ferroptosis via a BECN1-

dependent autophagy pathway (56, 58).

In addition to iron addiction, GBM has a strong capacity of lipid

synthesis, which is related to its malignant degree. Breaking lipid

metabolism balance in GBM can induce ferroptosis to inhibit tumor
Frontiers in Oncology 05176
growth. Therefore, exploiting this metabolic alteration in GBM to

induce ferroptosis may be another effective therapeutic direction.

The damage-associated molecular patterns (DAMPs) released by

dead, dying, or stressed cells act as alarm signals to trigger innate and

adaptive immune responses (60). The early release of high mobility

group box 1 (HMGB1), proteoglycan core proteoglycan (DCN), or

mutated KRAS-G12D protein during ferroptosis is an active process

involving secretory autophagy, lysosomal exocytosis, and exosome

secretion (61–63) (Figures 1, 2). Once released by ferroptotic cells,

these extracellular DAMPs bind to the receptor advanced

glycosylation end-product specific receptor (AGER) on

macrophages and trigger either proinflammatory cytokine

production in a nuclear factor-kB (NF-kB)-dependent manner or

macrophage polarization-associated tumor progression (Figure1).

Hypoxic glioma-derived exosomes promote M2-like macrophage

polarization by enhancing autophagy induction (64). Taken

together, pharmacological or genetic inhibition of the DAMP-

AGER axis can limit the ability of ferroptotic cancer cells to induce

tumor-protective immune responses.
Conclusion and outlook

Autophagy is a degradation process controlled by a cascade of

ATG protein complexes, each of which regulates different stages of

initiation and formation of autophagic membrane structures.

Compared with autophagy to promote cell survival, the molecular

mechanism by which autophagy promotes cell death is poorly

understood (65, 66). The discovery of ferroptosis as an autophagy-

dependent cell death provides an opportunity to suppress cancers

with excessive autophagy (67). Selective autophagic degradation of

anti-ferroptosis proteins or organelles promotes iron-dependent

oxidative damage and cell death. For GBMs, induction of

autophagy-dependent ferroptosis facilitates clearance of drug-

resistant cancer stem cells. Although several experimental

ferroptosis activators are available, there is still a shortage of related

drugs that can be used in clinical trials. In the future, we need more

in-depth work to determine the specific mechanism of autophagy-

dependent ferroptosis (68), identify circulating biomarkers to

monitor the activity of this pathway (69), and design the next

generation of ferroptosis-related drugs (70).
TABLE 1 In vivo or in vitro studies targeting autophagy-dependent ferroptosis in GBM.

Compounds/methods Targets of autophagy-
dependent ferroptosis

In vitro models In vivo models Refs.

Amentoflavone ATG7-dependent autophagy Human GBM cell
lines U251 and U373

BALB/c nude mice bearing subcutaneous xenograft (55)

Ultrasmall iron oxide
nanoparticles (USIONPs)

Beclin1/ATG5-dependent
autophagy

Human GBM cell line
U251

NA. (56)

Silencing COPZ1 NCOA4 mediated autophagy Human GBM cell line
U87MG and U251

Nude mice bearing intracranial xenograft tumors (57)

Iron oxide nanoparticles loaded
with paclitaxel (IONP@PTX)

Degradation of GPX4 Human GBM cell line
U251

BALB/c-nu mice bearing GBM xenografts (58)

Silencing TRIM7 NCOA4-mediated
ferritinophagy

Human GBM cell line
A172 and U87MG

Non-obese diabetic-severe combined immunodeficient NOD-SCID
mice bearing subcutaneous and intracranial tumor xenograft

(59)
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The brain tumor is a kind of malignant tumor with brutal treatment, high

recurrence rate, and poor prognosis, and the incidence and death rate is

increasing yearly. Surgery is often used to remove the primary tumor,

supplemented by radiotherapy and chemotherapy, which have highly toxic

side effects. Therefore, there is an urgent need to explore new strategies,

methods, and technologies that can genuinely improve the treatment of brain

tumors. Ferroptosis differs from traditional apoptosis’s morphological and

biochemical characterist ics, and ferroptosis possesses its unique

characteristics and mechanisms, opening up a new field of ferroptosis

treatment for cancer. It has been found that there is a close relationship

between ferroptosis and brain tumors, and a novel nano-drug delivery system

based on ferroptosis has been used for the ferroptosis treatment of brain tumors

with remarkable effects. This review firstly analyzes the characteristics of

ferroptosis, summarizes the mechanism of its occurrence and some factors

that can be involved in the regulation of ferroptosis, introduces the potential link

between ferroptosis and brain tumors, and clarifies the feasibility of ferroptosis in

the treatment of brain tumors. It then presents the ferroptosis nano drug delivery

systems developed under different metabolic pathways for ferroptosis treatment

of brain tumors. Finally, it summarizes the current problems and solutions of

ferroptosis nano drugs for brain tumor treatment, aiming to provide a reference

for developing ferroptosis nano drugs against brain tumors.
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1 Introduction

Brain tumors are different types in the brain’s central nervous

system (CNS) and are mainly divided into primary and secondary

(1). Due to the specificity of the site of occurrence, brain tumors

have become one of the essential tumors that endanger human life

and health, and the disease burden is increasing year by year. In

2018, the estimated number of new cases of brain tumors worldwide

was close to 300,000, accounting for about 1.6% of all new cases of

malignant tumors and ranking 17th in the incidence of malignant

tumors (2). Therefore, the treatment of brain tumors has been a

global problem. The factors causing brain tumors are partly

exogenous factors, including bad habits in life, environmental

pollution, radioactive elements, etc. In contrast, endogenous

factors involve hereditary genetic factors, congenital or acquired

immune defects, etc (3). After the brain tumor grows unrestrainedly

in the skull to a certain extent, it will compress the local tissues or

nerves and increase the intracranial pressure, which will cause

paralysis and mental disorder and seriously endanger the life and

health of the patient. Surgery is the best treatment option for

patients with advanced brain tumors, which can be supplemented

with radiotherapy or chemotherapy to achieve the best treatment

effect (4). However, for some advanced brain tumors, due to the

extensive infiltrative growth of malignant tumor cells into the skull,

it is difficult to distinguish them from normal cells, which increases

the difficulty of tumor cell resection, and the higher the grade of

malignant brain tumor, the higher the malignancy and the worse

the prognosis (5).

The traditional cell death modalities are apoptosis, autophagy,

and necrosis (6). Ferroptosis is a newly discovered mode of cell

death in recent years, which differs from traditional cell death in

terms of morphology, mechanism of onset, and biochemical

characteristics (7). Ferroptosis is an iron-dependent, concomitant

lipid peroxide accumulation mode of death (8). Many studies at this

stage have shown that many malignancies, including brain tumors,

exhibit sensitivity to ferroptosis (9, 10). Iron is an essential element

in living organisms, especially for malignant tumor cells that require

it more to maintain their vital activities such as proliferation,

differentiation, and migration (11). Ferroptosis has attracted

much attention in the anti-tumor field, and many ferroptosis-

based drugs have been gradually applied in clinical treatment

with specific effects (12, 13). However, due to the high complexity

of the human brain, the high invasiveness of tumor cells, tumor

heterogeneity, and the existence of the blood-brain barrier (BBB),

many factors hinder the effective delivery of therapeutic drugs to

tumors, resulting in insufficient drug accumulation or even acquired

tumor resistance. These limitations significantly reduce the

effectiveness of ferroptosis therapy (14, 15). Therefore, there is an

urgent need to develop ferroptosis drug delivery systems that can

efficiently cross the BBB and target tumor cells at brain lesion sites.

Booming nanomaterials offer a promising platform for the safe

and efficient treatment of tumors (16). Nanomaterials can deliver

drugs directly to the focal area to improve efficacy and can be

transported by the bloodstream (17). Its effect is exerted in the focal

area rather than the whole body, enhancing anti-tumor efficiency

while reducing damage to normal body tissues (18). Nanomedicine
Frontiers in Oncology 02180
refers to the use of nanotechnology and formulation science to carry

an API (or active molecule) in a nano-sized (1-1000 nm) drug

carrier, also known as a nanocapsule (19). In recent years, the

successful development of nanomaterials and technologies has

provided a promising platform for the safe and efficient treatment

of brain tumor nano drugs (20). The properties of nanomedicines

are manifested as 1) effective increase in drug solubility, 2) adequate

protection of unstable drugs against premature degradation, 3)

tumor targeting through passive or active targeting mechanisms,

and 4) multiple drugs can be delivered by one nanocarrier to exert

synergistic effects (21, 22). Ferroptosis nano drugs designed for the

unique environment of brain tumors can protect the loading

components, target brain tumors, cross the blood-brain barrier

more efficiently, reduce the damage to normal cells, improve drug

accumulation and intratumoral penetration in brain tumor tissues,

reduce toxic side effects on normal tissues, etc., and show excellent

application value and development prospects in brain tumor

therapy (23, 24). This review systematically reviewed the

ferroptosis nano drug delivery systems designed by different

metabolic pathways, the current status of clinical applications,

challenges, and opportunities based on the metabolic pathways

of ferroptosis.
2 Overview of ferroptosis

2.1 Basic concepts and characteristics

The definition of ferroptosis was first described in 2012 when

Dixon et al. studying human fibrosarcoma cells, found a significant

increase in intracellular lipid reactive oxygen species (ROS) after

treatment with the anti-tumor drug elastin and the concomitant

appearance of cell separation and death (25). However, the number

of cell deaths was reversely reduced with an iron chelator, so they

speculated that the concentration of iron ions and lipid ROS

influenced this mode of cell death. They formally named this

mode of death ferroptosis.

Ferroptosis is a newly discovered form of programmed cell

death (PCD) that distinguishes itself from traditional cell death

modalities such as apoptosis, cell necrosis, and cell autophagy (26).

Ferroptosis is mainly caused by the imbalance between the

production and degradation of intracellular lipid reactive oxygen

species. When the cellular antioxidant capacity is reduced and lipid

reactive oxygen species accumulate, it can cause cellular ferroptosis

(27). Ferroptosis is iron-dependent and is characterized by a lipid

peroxide-aggregated cell death pattern that differs significantly from

traditional cell death modalities such as apoptosis, autophagy, and

necrosis at the cell morphology, biochemical characteristics, and

genetic level (28, 29). Morphological aspects of ferroptosis are

manifested by smaller mitochondria, increased density of

mitochondrial membranes, progressive contraction of

mitochondria and reduction or disappearance of cristae, breakage

of the outer mitochondrial membrane, and an increase in lipid

reactive oxygen radicals, which maintain the cell membrane without

rupture while chromosomes are not condensed (30). The

biochemical features of ferroptosis include the aggregation of iron
frontiersin.org
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ions, glutathione (GSH) depletion, and lipid peroxide aggregation

(31). Gene-level changes in ferroptosis are manifested by the tight

regulation of ferroptosis by intracellular signaling pathways,

including the regulatory pathway of iron homeostasis, the RAS/

Raf/MAPK pathway, and the cystine transport pathway. The

immunological profile of ferroptosis is characterized by the release

of proinflammatory mediators (e.g., HMGB1) by damage-

associated molecular patterns (DAMPs). Susceptibility to

ferroptosis is closely linked to many biological processes,

including amino acid, polyunsaturated fatty acid metabolism, and

the biosynthesis of GSH, phospholipids, NADPH, and coenzyme

Q10 (32).
2.2 Mechanism of ferroptosis occurrence

2.2.1 Disorders of iron metabolism
Iron, an essential trace element for the human body, is also a

critical factor in the occurrence of ferroptosis (33). The main

component ingested by the human body through food is Fe3+,

which is reduced to Fe2+ by the action of intestinal epithelial cell

reductase. After binding to transferrin, part of it is smoothly

released into the cell into the unstable iron pool (LIP) with the

assistance of transferrin receptors 1 and 2. In contrast, the

remaining part will form ferritin. Ferritin is composed of ferritin

heavy chain (FTH1) and light chain (FTL) together, which stores

and regulates ferric ions (34). Iron autophagy is a process in which

ferritin undergoes autophagic degradation guided by Nuclear

receptor coactivator 4 (NCOA4), producing Fe2+ (35). Due to the

high reactivity and instability of Fe2+, the body’s iron homeostasis is

imbalanced once the Fe2+ in the body is overloaded. Metabolism is
Frontiers in Oncology 03181
disturbed, making it prone to Fenton’s reaction, in which the

overloaded Fe2+ reacts to form hydroxyl radicals, promoting the

formation of lipid ROS and causing ferroptosis in cells (Figure 1A).

2.2.2 Imbalance of amino acid metabolism
GSH, a tripeptide amino acid, is central to the metabolism of

ferroptosis amino acids. It is synthesized in two steps by cysteine,

glycine, and glutamate catalyzed by GSH synthase and glutamate-

cysteine ligase (36). GSH has a significant effect as an antioxidant in

reducing lipid peroxidation reactions and antioxidant stress by

scavenging peroxides present in cells, and its regulators include

glutathione peroxidase 4 (GPX4) and cystine/glutamate reverse

transporter (system Xc-) (Figure 1B). GPX4 is a defensive

antioxidant enzyme belonging to a selenoprotein essential for

mammalian development. It can specifically catalyze the

conversion of GSH to oxidized glutathione (GSSG), which

reduces toxic lipid peroxides in the membrane environment to

non-toxic lipid alcohols, thereby mitigating the damage caused by

oxidative stress (37). Inactivating GPX4 leads to the unavailability

of GSH, imbalance of amino acid metabolism in vivo, lipid peroxide

pooling, increased damage caused by oxidation, and induction

of ferroptosis.

The cystine/glutamate reverse transporter (system Xc-) serves as

an amino acid-specific shipping protein that controls the entry and

exit of amino acids into and out of cells. It is essentially a membrane

Na+-dependent cystine/glutamate reverse transporter, mainly

found in the phospholipid bilayer of biological cell membranes,

formed by the glycosylated light chain subunit SLC3A2 and the

non-glycosylated heavy chain subunit SLC7A11 linked by disulfide

bonds, a heterodimer (38). The system Xc- can transfer intracellular

glutamate out of the cell while transferring extracellular cystine into
FIGURE 1

Diagram of the different mechanisms by which ferroptosis occurs. (A) iron metabolism; (B) amino acid metabolism; (C) lipid peroxide aggregation.
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the cell, which promotes the formation of GSH. By inhibiting the

formation of system Xc-, sufficient GSH cannot be synthesized,

leading to an imbalance in amino acid metabolism and ferroptosis.

In addition to the above inhibition of GSH by interfering with

GPX4 and system Xc-, some specific compounds can be used to

inhibit GSH. e.g., buthionine imine (BSO), a small molecule

inhibitor that targets and inhibits GSH during GSH synthesis.

APR-246 (PRIMA-1) is a toxic compound that binds GSH and

depletes intracellular GSH content (39). Thus, by interfering with

GPX4 expression, inhibiting system Xc-, or directly acting on GSH

to deplete or under-synthesize it, it can imbalance amino acid

metabolism in vivo, contributing to the accumulation of lipid ROS

in vivo and causing ferroptosis.
2.2.3 Lipid peroxide aggregation
The central aspect of ferroptosis is the iron-dependent

dysregulation of lipid oxidation metabolism, and polyunsaturated

fatty acids (PUFAs) are vital substances in the accumulation of lipid

peroxides in ferroptosis (40). Under normal conditions, PUFAs are

essential substrates for lipid peroxidation reactions and contain

diallyl hydrogen atoms. PUFAs are the most fragile of lipids, and

their structurally unsaturated double bonds, ester bonds between

glycerol and fatty acids, are highly susceptible to lipid peroxidation

by enzymes and free radicals (ROS). The process of accumulation of

peroxides through the action of PUFAs consists of two main parts:

the Fenton reaction and the enzymatic reaction pathway. The

Fenton reaction, which is the formation of an unstable iron pool

by the high activity of Fe2+ in the cell, generates a large amount of

free radical material that can separate the hydrogen atoms in the

diallyl carbon through the Fenton reaction (41), allowing the

accumulation of large amounts of peroxides (Figure 1C).

The enzymatic process involved in the reaction is mainly

lipoxygenase but also requires the participation of acetyl coenzyme

A synthase long-chain family 4 (ACSL4) and lysophosphatidyl

choline acyltransferase 3 (LPCAT3), which is associated with lipid

remodelling (42). The reaction uses free PUFAs arachidonic acid as

the primary phospholipid substrate, which is finally oxidized by

lipoxygenase to form lipid peroxides after two-step esterification by

ACSL4 and LPCAT3 (43). When the synthesis of the above three

enzymes is inhibited, the oxidation of PUFAs to form lipid peroxides

is also affected. On the contrary, excessive activation of the three

enzymes or exogenous supplementation of PUFAs leads to

increased oxidation, accumulation of lipid peroxides, and massive

catabolism to produce toxic aldehydes such as malondialdehyde

(Malondialdehyde) or 4-hydroxy-2-nonenal (4-Hydroxynonenah’yl,

4-HNE) combined with a continuous intracellular oxidation reaction

that renders the organism essential proteins inactive, which triggers

ferroptosis (44).
2.3 Mechanisms regulating ferroptosis

According to the above preliminary summary and analysis of

the mechanism of ferroptosis, the trigger of ferroptosis mainly

involves the disorder of iron metabolism due to the imbalance of
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iron ion concentration, the disorder of amino acid metabolism due

to the inactivation and depletion of GSH, and the lipid peroxidation

aggregation driven by polyunsaturated fatty acids. Therefore,

various compounds, genes, and pathways associated with iron

metabolism, amino acid metabolism, and lipid metabolism can be

involved in the regulation of ferroptosis, and active regulation can

trigger ferroptosis and destroy tumor cells (Table 1). Some of the

potential regulatory mechanisms are described below.

2.3.1 Iron metabolism
Dixon et al. found a reversal in the number of cell deaths after

adding iron chelators during ferroptosis studies, suggesting the

possibility of iron metabolism on the regulation of ferroptosis.

Later, Gao et al. found the effect of ferritin carrier transferrin (TF)

on ferroptosis, further confirming the critical role of iron metabolic

processes on ferroptosis (61). The iron metabolic process involves

iron ions’ storage, transport, export, and degradation processes and

contains various proteins and genes. Transferrin and transferrin

receptor (TFRC) are essential regulators of iron ion transport.

Cysteine desulfurase (NFS1), an iron-sulfur cluster biosynthetic

enzyme, decreases ferritin expression and stimulates transferrin

expression, thereby increasing the risk of ferroptosis in tumor cells

(45). Heme is a Fe2+-containing protein catalyzed by heme

oxygenase-1 to produce Fe2+. The Fe2+ generated from the

degradation of large amounts of heme increases the level of iron

ions in the intracellular unstable iron pool, inducing ferroptosis.
TABLE 1 Major regulatory mechanisms of ferroptosis.

Types of regulatory path-
ways

Regulatory
factors

References

Iron metabolism pathway

NFS1 (45)

Heme oxygenase-1 (46)

SLC40A1 (46)

PCBPs (47)

GPX4 pathway

SMG9 (48)

CREB (49)

ZEB1 (50)

RSL3 (51)

system Xc- pathway

ATF3 (52)

INFg (53)

Erastin (54)

p53 (55)

Lipid peroxide pathway

Vitamin E (56)

Carbon-deuterium
bond

(56)

MOFs (57)

Other pathways

VDAC (58)

CL (59)

FtMt (60)
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Iron ions are transported into the cell by transferrin and stored in

the unstable iron pool or ferritin. SLC40A1 is an iron ion transport

carrier mainly responsible for the export of Fe2+. SLC40A1 can be

regulated by heparin antimicrobial peptide, which can degrade

SLC40A1 in the lysosome to reduce iron export. The

accumulation of large amounts of iron ions in tumor cells causes

ion metabolism to be disturbed, triggering ferroptosis (46).

Polycomb binding proteins (PCBPs), an iron molecular

chaperone, can participate in iron metabolic processes, on the one

hand interacting with ferritin to promote the oxidation of Fe2+ to

Fe3+ for storage, and on the other hand, being essential regulators of

the unstable iron pool, regulating the storage and export utilization

of iron ions within the iron pool (47). For example, Fe2+ was used to

regulate the activity of cofactor iron-containing enzymes. The

occurrence of ferroptosis can be controlled by regulating

polycomb binding protein expression.

2.3.2 GPX4
GPX4 reduces toxic lipid peroxides and is an essential effector of

ferroptosis. By regulating the expression of GPX4, the accumulation

of peroxides in tumor cells can be controlled, and ferroptosis can be

regulated. Han et al. demonstrated the interaction between SMG9

and GPX4 after a small-scale screening of RNAi, i.e., SMG9 is a

GPX4 binding protein that promotes the degradation of GPX4

protein, thereby inhibiting GPX4 activity (48). Knockdown or

depletion of SMG9 content in vivo significantly increased GPX4

protein content and enhanced activity. CREB is a ubiquitous

transcription factor that inhibits lipid peroxidation and prevents

ferroptosis by binding to the promoter region of GPX4 and

stimulating cell viability. Moreover, binding the protein P300

(EP300) to CREB exerts even stronger facilitation (49). ZEB1, a

transcription factor, acts oppositely to CREB by repressing GPX4.

ZEB1 inhibits GPX4 promoter transcriptional activity by binding to

the GPX4 promoter region motif and decreases GPX4 expression

(50). The advent of nano-drug vectors has also opened up more

possibilities for GPX4 regulation. For example, RSL3 was originally

a ferroptosis inducer that targets GPX4 and reduces GPX4 activity.

Amphiphilic polymeric micelles linked to nitroimidazole-coupled

peptides via an azobenzene linker were used to load RSL3, enabling

the rapid and precise release of RSL3, which was able to significantly

reduce GPX4 expression, with a twofold increase in anti-tumor

efficiency compared to RSL3 (51).

2.3.3 System Xc-

GSH prevents the accumulation of lipid peroxides and resists

oxidative stress, while system Xc- plays a vital role in synthesizing

GSH, which becomes an essential regulator of ferroptosis.

Therefore, the regulation of ferroptosis can be achieved by

regulating system Xc- levels. ATF3 is a transcription factor, and

SLC7A11 is a critical component of system Xc-. ATF3 binds tightly

with the promoter of SLC7A11 to regulate the transcription of

SLC7A11 to achieve the repression of system Xc- and reduce the

synthesis of GSH. In addition, ATF3 has a facilitative effect on the

reduction of GPX4 activity-induced ferroptosis by RSL because

ATF3 enhances the sensitivity of RSL3 to act on GPX4, and the
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activity is more easily reduced (52). The glycosylation protein INFg
can target system Xc- and reduce the expression levels of mRNA

and protein of both SLC7A11 and SLC3A2 subunits, resulting in

reduced system Xc- activity and inhibition of GSH synthesis. Also,

INFg can be used with ferroptosis inducers such as RSL3 to reduce

system Xc- activity even more effectively, cells are blocked from G1

to S cycle, and cells die (53). Erastin is a typical ferroptosis inducer.

It also achieves its effect mainly by inhibiting system Xc-. Still, it was

also found to be counterproductive if activation of system Xc-

subunit SLC7A11 expression could attenuate the effect of Erastin

(54). Co-loading Erastin and rapamycin constructed the nano-

programmed drug delivery system through the nano-

emulsification method; Erastin acts on system Xc- and rapamycin

acts on GPX4, which can synergistically reduce GSH synthesis and

utilization and accumulation of lipid peroxides, resulting in

ferroptosis of tumor cells (54). p53 is a tumor suppressor in cell

proliferation, apoptosis, and other metabolic processes (62). It was

also found to decrease the expression of SLC7A11 and thus inhibit

system Xc-, increasing the susceptibility of tumor cells to

ferroptosis. In addition, Erastin can upregulate the expression of

p53, which further enhances the inhibitory effect and reduces the

synthesis of GSH, improving the induction of ferroptosis (55).

2.3.4 Lipid peroxide regulation
The accumulation of lipid peroxides is a significant cause and

driver of ferroptosis. Inhibition of lipid peroxide formation can

effectively stop ferroptosis from occurring, and common ways of

inhibition include preventing peroxide formation and scavenging

already-formed peroxides. Vitamin E is a relatively ideal

antioxidant to provide electrons to peroxyl radicals, scavenging

the free radicals attacking PUFAs and terminating the formation of

peroxides. Another method is to label the part of PUFAs susceptible

to oxidation on the diallyl with carbon-deuterium bonds because

deuterium atoms are not easily replaced by oxidation. This method

applies to both Fenton and enzymatic reaction pathways and has a

wide range of applications to inhibit lipid peroxide formation

effectively (56). Metal-organic backbones (MOFs) are crystalline

materials with a periodic network structure formed by molecular

self-assembly of metal ions or ionic clusters with organic ligands.

Hao et al. devised a strategy for peroxisome accumulation based on

catalytic MOFs for ferroptosis therapy. Bimetallic MOFs were

synthesized using iron porphyrins as linkers and copper ions as

metal nodes. In the tumor microenvironment, the exfoliated MOFs

acted as inducers of the Fenton reaction, generating a large number

of hydroxyl radicals to accumulate lipid peroxide, effectively

inhibiting tumor growth in living mice and providing a new

opportunity to treat tumors insensitive to apoptosis (57).

2.3.5 Other regulation methods
The study of ferroptosis found that some mitochondria-related

pathways also have an essential role in regulating ferroptosis.

Voltage-dependent anion channel (VDAC), a mitochondrial pore

protein, has a role in promoting ferroptosis. Under normal

conditions, mitochondria exchange standard ions and molecules

with the cytoplasmic matrix through the VDAC. When a globin
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microtubulin inhibits this process on the VDAC, mitochondrial

metabolism is affected, leading to hyperpolarization and massive

production of lipid peroxides (58). In addition, some ferroptosis

inducers also affect VDAC, such as the increased permeability of the

outer mitochondrial membrane, the opening of membrane ion

channels, and the imbalance of intracellular homeostasis after the

action of Erastin on VDAC, leading to dysfunctional mitochondrial

metabolism and oxidation, increased ROS production, and

enhanced lipid peroxidation, which in turn cause the

development of cellular iron necrosis (63, 64). Cardiolipin (CL) is

part of phospholipids in mitochondria, which has a promotional

effect on ferroptosis, and it can form a complex with cytochrome C

(59). Cytochrome C plays a role in the mitochondrial respiratory

chain to transfer electrons, which will be destroyed when CL is

peroxidized, and cytochrome C will be released to participate in the

respiratory chain as an electron carrier, producing large amounts of

lipid peroxides and contributing to ferroptosis in tumor cells.

Mitochondrial ferritin (FtMt) is an iron storage protein found in

mitochondria and can regulate iron metabolism. Wang et al. found

that when FtMt was overexpressed, it had an inhibitory effect on

Erastin-induced lipid peroxide production and iron ion level in the

iron pool, and reasonable regulation of FtMt expression level could

promote ferroptosis in tumor cells (60).
3 Brain tumors and ferroptosis

The two central elements that induce ferroptosis in tumor cells

have been identified through the study of ferroptosis are the

accumulation of iron levels or lipid peroxides within the tumor

cells (65). Ferroptosis plays a vital role in anticancer research. The

ferroptosis mechanism has been applied to kill relevant tumor cells

(e.g., breast, gastric, and lung cancer). Recent studies have also

highlighted the importance of ferroptosis in brain tumors. This

article describes the progress that has been made in the means of

ferroptosis in brain tumors.
3.1 Glioma

Glioma is an intracranial tumor that originates from glial cells

of the nervous system and has a high incidence among brain

tumors. It is a malignant tumor that is aggressive, drug-resistant,

and has a poor prognosis (66). Traditional cancer treatment

strategies (such as radiotherapy and chemotherapy) mainly target

relevant genes and proteins that can induce apoptosis, e.g. Caspase-

3 is one of the targets of cancer therapy, and activation of Caspase-3

plays a role in inhibiting tumor cells, but cancer cells gradually

become resistant to apoptosis, which makes it difficult for

traditional treatment regimens to be efficient. Ferroptosis may

become an excellent alternative to solve this bottleneck.

Ferroptosis as an ideal strategy for glioma treatment has the

following main features: (1) glioma exhibits cell necrosis, and

mesangial cells play an important role in this process. Mesangial

cells accumulate on tumor cells in the early stage of glioma and

activated mature mesangial cells release characteristic particles to
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induce lipid peroxidation in tumor cells and promote ROS

production, leading to ferroptosis of tumor cells (67). It was

found that gliomas have a strong capacity for lipid synthesis, and

the high content of PUFAs in gliomas compared to normal cells

contributes to the induction of ferroptosis in gliomas through

positive regulatory mechanisms, such as increased expression of

lipoxygenase or ACSL4 (68). (2) Glioma can alter the expression

capacity of enzymes and proteins related to iron metabolism and

accumulate iron content in tumor cells to maintain normal

proliferation and metastasis processes (69). Glioma stem cells in

gliomas can proliferate indefinitely and require large amounts of

nutrients and metal elements for indefinite proliferation, so they

also exhibit a high demand for iron. Transferrin receptors are

overexpressed on glioma stem cells, and extracellular transferrin

carrying large amounts of iron, which is generally mediated into

cells through transferrin receptors, can overcome the standard

blood-brain barrier mechanism, causing glioma stem cells to take

up more iron from extracellular sources and disrupting iron

metabolism in the brain. Therefore, reducing intracellular iron

content by inhibiting iron uptake by glioma stem cells is a

potential anticancer strategy (70). Zhang et al. found that

coatomer protein complex subunit zeta 1 (COPZ1) was not only

associated with increased tumor grade and poor prognosis in

glioma patients but was also strongly associated with ferroptosis.

Inhibition of COPZ1 expression induces ferritin phagocytosis and

activates ferroptosis. elevated Fe2+ levels trigger the Fenton reaction,

which promotes ROS production and leads to ferroptosis (71). (3) It

was found that the expression of GPX4 was significantly higher in

glioma tissues than in normal brain tissues. The expression of GPX4

was progressively enhanced with increasing WHO glioma grading

(72). Induction of GPX4 inactivation increases intracellular lipid

peroxidation leading to ferroptosis. Therefore, an effective

treatment strategy is an induction of GPX4 inactivation by GSH

depletion or GPX4 inhibitors (e.g., RSL3). It was also found that

system Xc- could assist in transporting glutamate and cystine inside

and outside the cell, maintaining amino acid homeostasis,

promoting GSH formation, and reducing the risk of ferroptosis.

In glioma cells, when the availability of intracellular glucose

decreases, glioma cells exhibit a high dependence on glutamine,

and by inhibiting the formation of system Xc-, GSH cannot be

adequately synthesized and amino acid metabolism is imbalanced,

leading to ferroptosis can be achieved in the treatment of glioma.

Lyuzosulfapyridine is an oral anti-inflammatory drug with an

inhibitory effect on system Xc-, and it has been clinically used in

treating glioma patients. However, there is a lack of safety, and is

prone to potential neurological risks in patients with malignant

glioma. Temozolomide is an alkylating anti-tumor agent that can

cross the blood-cerebrospinal fluid barrier and is clinically used in

the first-line treatment of brain tumors. However, some patients

with glioma have a natural resistance to temozolomide and are also

susceptible to temozolomide resistance during chemotherapy.

Glioma cells become resistant to temozolomide by enhancing the

expression of system Xc- (73). Combining radiotherapy,

immunotherapy, and chemotherapy with temozolomide in

postoperative patients with high-grade glioma can improve

efficacy, reduce drug resistance, reduce immunosuppression,
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improve patients’ quality of life, and prolong overall survival time.

System Xc- in ferroptosis will continue to be a major potential target

for current and future regimens such as radiotherapy and

chemotherapy. Through system Xc-, ferroptosis plays an

important role in modulating the response of Glioma to

radiotherapy, immunotherapy, and TMZ, addressing the problem

of poor safety and low utilization of traditional therapeutic agents

that are not available, Ferroptosis offers additional advantages. Both

artemisinin and its derivatives (e.g., dihydroartemisinin and

artesunate), the active ingredients extracted from the Chinese

medicine Artemisia annua, can induce ferroptosis in tumor cells

by enhancing heme oxygenase-1 expression and intracellular pools

of unstable iron (74). Dihydroartemisinin can act as an inhibitor of

GPX4 and system Xc-, increasing the accumulation of lipid

peroxides in glioblastoma cells and inducing ferroptosis (75).

However, its clinical application is limited because of its

deficiencies, such as poor stability and poor solubility in

water. The emergence of nano drug delivery carriers provides

direction for anti-glioblastoma of dihydroartemisinin, such as

polymeric nanoparticles and inorganic nanoparticles can be

loaded with dihydroartemisinin, which improves its solubility,

biocompatibility, and targeting in water and provides a new

technology for ferroptosis treatment of brain tumors (74).
3.2 Neuroblastoma

Neuroblastoma (NB) is the most common extracranial tumor in

children and the most common tumor in infants and children and is

also known as the king of childhood cancers (76). Neuroblastoma is

clinically widely heterogeneous, mainly exhibiting malignant tumor

features such as high metastasis and susceptibility to recurrence. At

the same time, a few can regress to benign tumors without

treatment or even disappear entirely (77). It has been found that

neural tumor cells evade ferroptosis through dopamine produced in

the brain. Dopamine drives overexpression of ferritin, which

redistributes iron ions that should otherwise enter the unstable

iron pool of the cell into the mitochondria, resulting in a reduction

of intracellular lipid ROS produced by the Fenton reaction and

inhibiting ferroptosis (60). The neuroblastoma oncogenic

transcription factor MYCN can also escape the risk of ferroptosis

by promoting the expression of system Xc- and some system Xc-

inhibitors (ATF3, INFg) might increase the chance of ferroptosis in

tumor cells by reducing the effect of MYCN (78). Neuroblastoma is

a typical MYC-driven cancer, and patients with neuroblastoma

usually present with massive amplification of the N-MYC gene

(MYCN), which leads to uncontrolled cancer cells. MYCN-

amplified neuroblastoma is highly cysteine-dependent and

sensitive to ferroptosis. Hamed et al. performed single amino acid

deprivation assays on MYCN-high-expressing neuroblastoma cells

and MYCN-low-expressing neuroblastoma cells. They found that

MYCN-high-expressing neuroblastoma cells were strongly

dependent on cysteine, an amino acid, and that deprivation of

cysteine resulted in massive death of MYCN-high-expressing

cancer cells (79). This study demonstrates that when cysteine

intake is restricted, cysteine is heavily used for protein synthesis,
Frontiers in Oncology 07185
which triggers ferroptosis and can significantly inhibit terminal

neuroblastoma, suggesting that the high dependence of MYCN-

driven brain tumor cells on cysteine is a novel therapeutic avenue

that can be exploited to induce ferroptosis in cancer cells.
3.3 Meningioma

Meningioma is the most common central nervous system

tumor, accounting for approximately one-third of all primary

brain tumors. It mainly affects the elderly, with an increased

incidence over 65 years of age, more in women than men, and

less frequently in children. It usually follows a benign course with a

pretty good outcome, and surgery and/or radiation therapy remain

the standard of care (80, 81). According to the 2016 World Health

Organization classification (4th edition), meningiomas are classified

into three histological grades. The prognosis remains excellent for

grade I meningiomas, with an overall 10-year survival rate greater

than 90%. However, while most meningiomas, especially grade I

meningiomas, can be cured by surgery alone, they become clinically

challenging for grade II and III recurrent meningiomas because

there are no clear standard treatment options after re-excision or re-

radiation. Grade III meningiomas have an inferior prognosis, with

an overall 10-year survival rate of 33%. Many chemotherapeutic

agents and hormonal therapies have been tried with only modest

benefits (82). NF2 is a mutated gene in brain tumors, and deletion of

NF2 predisposes meningiomas to ferroptosis, and E-cadherin is

negatively associated with ferroptosis. The transcription factor

MEF2C positively regulates the transcription of all their genes.

Activation of MEF2C promotes the expression of NF2 and E-

cadherin in meningiomas and causes ferroptosis in tumor

cells.MEF2C may be a potential therapeutic target for ferroptosis

in meningiomas (83).
4 Nanodelivery system mediating
ferroptosis in brain tumors

Some protective mechanisms exist within the brain cells to

inhibit the occurrence of ferroptosis, Nrf2 is a stress-induced

transcription factor that can be involved in iron metabolic

processes, and GSH synthesis and metabolism-related enzymes

are also under its control (84). Nrf2 can also bind to Kelch-like

ECH-associated protein 1 (Keap1) and be present in the cell in an

inactivated state; keap1 is the control Nrf2 produces a switch for its

action. When cells encounter oxidative stress or cytotoxic drugs, the

two become separated, and Nrf2 is activated. Its activation

promotes iron storage, limiting ROS production and increasing

the antioxidant capacity of tumor cells, making them less

susceptible to ferroptosis (Figure 2). In addition, the blood-brain

barrier (BBB) formed by the tight junctions between capillary

endothelial cells in the brain, surrounded by a layer of stellate

cells outside the basement membrane, prevents almost all drugs

from entering the brain lesion site to exerting therapeutic effects,

which is the main obstacle facing the development of drugs for the

treatment of brain tumors (85). Therefore, there is an urgent need
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to develop drug delivery systems that can efficiently cross the BBB

and target tumor cells at the focal site.

Most of the clinically used chemotherapeutic agents are

apoptosis-inducing drugs, such as DOX, cisplatin, and paclitaxel.

Due to their prolonged use, problems such as drug resistance,

metastasis, relapse, and adverse effects have emerged (86, 87). In

recent years, researchers around brain tumors have worked to

develop antitumor drugs with low toxicity, high efficiency, low

side effects, and high bioavailability. For example, Kar et al. found

that Concanavalin A (Con A), a carbohydrate-binding protein of

the cohesin family, is an ideal therapeutic agent for gliomas, and

high doses of Con A inhibit the growth of glioma by disrupting the

thiol/disulfide balance of tumor cells and causing oxidative stress, as

well as inducing inflammatory factors and programmed apoptosis

(88). In addition, Hacioglu et al. found an inhibitory effect of

capsaicin on glioma (89). Kar et al. found an inhibitory effect of

the trace element boron on glioma (90). Capsaicin and boron can

interfere with the signaling pathways of the regulatory factors

ACSL4 and GPX4 and induce ferroptosis. Although all three

newly discovered chemotherapeutic agents mentioned above have

the potential to treat glioma, they are all dose-dependent and

require a certain precise range of dose concentrations to achieve a

better inhibitory effect, such as high doses of Con A (250 and 500

µg/ml) to achieve the effect; the inhibitory effect of boron on glioma

tumor cells is proportional to its dose concentration. The inhibitory

effect of capsaicin on glioma started only when the concentration

exceeded 50 µM. It is not difficult to find that the search for the

optimal dose will inevitably prolong the drug development process,
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and dose dependence may become an important factor limiting the

better anti-cancer effect of these chemotherapeutic drugs. In

addition, the potentially toxic effects of these chemotherapeutic

drugs need to be further studied, for example, the toxicity of

capsaicin to normal cells is unknown, and the toxicity to organs

also needs to be further studied. Therefore, there is still a long way

to go before the actual clinical application.

Compared with ordinary chemotherapeutic drugs, high-end

formulation nanomedicines have greater clinical application value

and advantages. Specifically, (1) nanomedicines modified by

targeting groups can achieve targeted drug delivery, which can

reduce the dose of drugs and does not require high doses to bring

the desired therapeutic effect and reduce its side effects as some

chemotherapeutic drugs (e.g. Con A) do. (2) Chemotherapeutic

drugs have short in vivo half-life and low bioavailability, which

require frequent dosing and long treatment cycles for patients.

Nanomedicine can solve this problem, and nanocarriers can extend

the elimination half-life of drugs, increase the effective blood

concentration-time, reduce the frequency of drug administration,

and reduce the pain caused by treatment. (3) Nanomedicines can

efficiently cross the BBB and specifically target the drug delivery

system of tumor cells at the focal site, dramatically increasing their

efficacy (85). (4) Nanodrugs can enter capillaries through blood

circulation and also cross the endothelial cell gap to achieve targeted

drug delivery and improve the bioavailability of drugs.

Chemotherapeutic drugs kill tumor cells and normal tissue cells,

especially the cells of blood and lymphatic tissues, which are

growing vigorously in the human body and have strong killing

power, which is harmful and the bioavailability of drugs is low.

Nanotherapies in the context of ferroptosis have gradually

become a hot research topic. As the research on ferroptosis

modulators and nanomedicine technology has steadily advanced,

people have started to combine some ferroptosis modulating

inducers with nanomedicine technology to construct novel

ferroptosis nanomedicine delivery systems for brain tumor

treatment, which not only substantially improves the targeting of

the drug and makes it easier to cross the blood-brain barrier but also

reduces the adverse effects and improves the bioavailability of the

drug in vivo. Compared to other types of anticancer nano drugs,

ferroptosis-based nano drugs have excellent physicochemical

properties such as superparamagnetic properties, good

biocompatibility, and low-cost advantages. The combination of

multiple therapies is more advantageous than single therapeutic

strategies in clinical cancer treatment, such as efficient synergistic

therapeutic effects and reduction of toxic side effects by a single

dose. Iron-dead nano drugs also have more combination

therapeutic modalities than other types of nano drugs, such as

magnetic iron-based nanotherapeutics that simultaneously enable

the precise diagnosis of tumors through magnetic resonance

imaging (MRI) (91). It can characterize different tissues of the

same density and chemical structures of the same tissue by imaging

display. This facilitates the differentiation of gray matter from white

matter in the brain and has great superiority in the early diagnostic

effect of brain tumors. The application of ferroptosis nano delivery

lines based on different metabolic pathways in brain tumors is

summarized in the following section (Table 2).
FIGURE 2

Upon oxidative stress or cytotoxic drug stimulation, Keap1 is
separated from Nrf2, and Nrf2 is activated. Together with the sMaf
protein in the nucleus, it binds to the antioxidant response element
(ARE) and drives the expression of antioxidant protein genes to
protect cells.
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4.1 Iron metabolism strategy

Ferroptosis is iron-dependent cell death, and iron metabolism is

pivotal in the overall ferroptosis process. Iron metabolism involves

numerous reactive processes of iron ions, during which many

regulatory proteins and genes (ferritin, transferrin) are involved.

Its highly complex process, mediated by any pathway, affects the

intracellular iron ion content and impacts iron metabolism. Many

ferroptosis nano drug delivery systems are designed based on iron

metabolism pathways. They are primari ly iron-based

nanomaterials, which act on specific reaction sites of tumor cells

through their high iron content and participate in the Fenton

reaction process, increasing the formation of lipid ROS and

causing ferroptosis of tumor cells.

Shen et al. designed a FeGd-HN@LF/RGD2 nanoparticle, a

hybridized nanoparticle formed by coupling lactoferrin, RGD

dimer, and cisplatin loaded with Fe3O4/Gd2O3. The nanoparticles

can release Fe3+ and Fe2+ to participate in the Fenton reaction and

promote lipid ROS production in brain tumor cells. At the same

time, the cisplatin fraction can stimulate the production of

hydrogen peroxide (H2O2), another substrate of the Fenton

reaction, jointly accelerating the Fenton reaction and inducing

ferroptosis in brain tumor cells (92). GOD-Fe3O4@DMSNs are

ferroptosis nanocatalysts with excellent biodegradability and

compatibility made from natural glucose oxidase (GOD) and

ultra-small Fe3O4 nanoparticles integrated into large pore size

and degradable dendritic silica nanoparticles. This ferroptosis

nanocatalyst was found to release natural glucose oxidase in vivo,

consume glucose from brain tumor cells, and produce hydrogen

peroxide to promote the Fenton reaction, which can trigger

ferroptosis and effectively inhibit the activity of glioma cells,

providing a promising ferroptosis treatment strategy for glioma
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patients (93). Zhang et al. extracted gallic acid from gallus

compounded it with Fe2+ into a nanocarrier (GFNP), and co-

loaded the precursor drug inert Pt and chemotherapeutic

drug adriamycin to construct cRGD/Pt + DOX@GFNPs

nanoformulations. In vivo evaluation showed that GFNPs could

induce ferroptosis by generating Fe2+ to promote the Fenton

reaction and produce lipid ROS. In addition, Pt and adriamycin

could induce apoptosis in brain tumor cells, ultimately obtaining

ferroptosis synergistic with apoptosis to inhibit glioma efficiently

(94). Alexandra et al. prepared a hybrid nano preparation

(MIONzyme-GOx) based on nano preparation by coupling a

natural enzyme (GOx) with an iron oxide-based nano preparation

(MIONzyme) and wrapping i t with a biocompatible

carboxymethylcellulose as a shell was prepared (95). The results

of in vitro experiments on brain tumor cells showed that the GOx

released from this preparation could generate H2O2 with glucose,

which was then catalyzed by iron oxide nanoparticles to promote

the Fenton reaction and generate lipid ROS, which further induced

ferroptosis and successfully inhibited brain tumor cell proliferation.
4.2 Amino acid metabolic strategy

Amino acid metabolism involves the antioxidant GSH, which

effectively avoids intracellular peroxide production. GPX4 and

system Xc-, which are involved in the utilization and synthesis of

GSH, respectively, and also play essential roles in the stabilization of

amino acid metabolism, have also been described previously, both

belonging to the critical regulators of ferroptosis. This paragraph

reviews nano drugs that inhibit system Xc- or the GPX4 pathway to

interfere with normal amino acid metabolism and thus

induce ferroptosis.
TABLE 2 Ferroptosis nano-delivery system based on different metabolic pathways.

Metabolic pathways Nanomedicine Type of study Model used Applications Reference

Iron metabolism

FeGd-HN@LF/RGD2
In vivo
In vitro

U-87MG GBM (92)

GOD-Fe3O4@DMSNs
In vivo
In vitro

U-87MG GBM (93)

cRGD/Pt + DOX@GFNPs
In vivo
In vitro

U-87MG GBM (94)

MIONzyme-GOx In vitro U-87MG,U-118MG GBM (95)

Amino acid metabolism

FA/Pt-si-GPX4@IONPs
In vivo
In vitro

U-87MG,P3#GBM and NHAs GBM (96)

WA
In vivo
In vitro

IMR-32 and SK-N-SH NB (97)

35GB In vitro U-87MG GBM (98)

MNP@BQR@ANG-EXO-siGPX4
In vivo
In vitro

Ln229 GBM (66)

Other

IO-LAHP NPs
In vivo
In vitro

U-87MG GBM (99)

IONP@PTX
In vivo
In vitro

U251 and HMC3 GBM (100)
f
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Zhang et al. constructed a nano drug (FA/Pt-si-GPX4@IONPs)

based on the specific pathophysiological characteristics of

glioblastoma (GBM), which is based on porous iron oxide

nanoparticles (IONPs) that carry cisplatin (Pt) and small

interfering RNA (si-GPX4) inside, and the surface of the drug-

carrying IONPs is modified with Folic acid, which can bind to the

highly expressed folate receptor on the surface of glioma (96). In

vitro, cytological experiments showed that FA/Pt-si-GPX4@IONPs

produced significant killing effects on GBM cells but not on normal

human astrocytes (NHA). During the intracellular degradation of

nano drugs, IONPs significantly increased iron and ferrous ions

(Fe2+ and Fe3+) levels in GBM cells (96). They generated strongly

cytotoxic hydroxyl radicals by the Fenton reaction between them

and H2O2, which oxidized unsaturated fatty acids and triggered

ferroptosis. At the same time, the piggybacked si-GPX4 inhibited

the expression of GPX4, synergistically improving the effect of

induced ferroptosis. The therapeutic approach achieved

significant results both in vitro and in vivo, and FA/Pt-si-GPX4@

IONPs nano drugs are expected to be applied in treating GBM.

Hassannia et al. identified withaferin A (WA), a natural ferritin

inducer in neuroblastoma, to inhibit neuroblastoma cell

appreciation as well as inhibit the growth and recurrence of

murine neuroblastoma heterogeneous tumors by inhibiting GPX4

or targeting Keap1 to increase the unstable iron pool, which in turn

suggested a new therapeutic strategy by iron induction to kill cancer

cells effectively. The use of multifunctional nanocarriers with

targeting, degradability, and pH sensitivity to wrap WA for the

preparation of nanomedicines can solve the drawbacks of poor

solubility and many side effects of systemic administration of WA,

improve the targeted accumulation at tumor sites, and enhance the

inhibitory effect on neuroblastoma (97). As a natural biological

vesicle has become an essential vehicle for treating many diseases, Li

et al. designed and developed an engineered exosome with

endogenously modified brain tumor targeting peptide and bound

to magnetic nanoparticles by antibody complexation. A

multifunctional nano drug (MNP@BQR@ANG-EXO-siGPX4)

was subsequently constructed by loading small interfering RNA

(siGPX4), a vital protein of the ferroptosis pathway GPX4, and

Brequinar (BQR), an inhibitor of DHODH, onto the surface of

exosomes and mesoporous silica, respectively (66). The nano drug

can be enriched in the brain under local magnetic localization. The

engineered exosomes modified with angiopep-2 (Ang) peptide can

trigger transcytosis, allowing the particles to cross the BBB and

target GBM cells by recognizing the LRP-1 receptor. The synergistic

ferroptosis treatment of GBM is achieved by the triple action of

catabolism of dihydrolactate dehydrogenase and glutathione

peroxidase four ferritin defense axis, combined with Fe3O4

nanoparticle-mediated Fe2+ release. The results of this study

suggest that this nano drug provides a new idea for enhanced

ferroptosis for the synergistic treatment of GBM (66). Protein

disulfide isomerase (PDI) has the hazard of interfering with

nascent proteins to worsen glioma disease. PID is generally

overexpressed in glioma cells, maintaining redox stability in

tumor cells. Glioma cells also show a significant dependence on

PID. Kyani et al. described a PDI nanomolecular inhibitor, 35GB,

and showed that 35GB was able to upregulate the expression level of
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system Xc- subunit SLC7A11 and inhibit the exchange function of

system Xc-, resulting in decreased GSH synthesis and lipid peroxide

pooling. 35GB also affects the expression of gene HMOX1, and

overexpression of heme oxygenase-1, a source of supplied iron,

disrupts iron metabolism in the organism and induces ferroptosis.

35GB can cross the blood-brain barrier and is expected to be a novel

nano-inducer of ferroptosis in glioblastoma (98).
4.3 Other

Lipid peroxidation pooling is a significant feature of ferroptosis,

and to induce ferroptosis in brain tumor cells via lipid metabolic

pathways, free PUFAs must be activated (101). PUFAs are

susceptible to oxidative free radical attack and lipid peroxidation.

Supplementing PUFAs levels by exogenous or increasing

intracellular levels of oxidized free radicals is extremely important

for the induction of ferroptosis. There is a strong link between the

level of PUFAs and ferroptosis in cancer cells, with the most vital

ability to induce ferroptosis effect by linolenic acid in PUFAs (102).

Zhou et al. developed an iron oxide particle (IO-LAHP) that

replenishes PUFAs in the body by modifying linoleic acid

hydroperoxides (LAHP) and hydrophilic oligomers on the surface

of iron oxide nanoparticles (IO NPs) (99). Under acidic conditions,

a Fenton-like reaction between Fe2+ ions released from iron oxide

particles (IO-LAHP NPs) and linoleic acid hydroperoxides (LAHP)

on the nanoparticle surface resulted in the formation of specific

single-threaded oxygen (1O2) enabling tumor-specific therapy

based on ROS-mediated mechanisms. In vitro cellular

experiments demonstrated that IO-LAHP NPs could effectively

increase intracellular ROS levels in glioma cells (U87MG), which

induced ferroptosis in cancer cells. In vivo mouse tumor model

experiments further confirmed their significant inhibitory effect on

tumor growth. This also suggests that exogenous supplementation

of in vivo PUFAs levels is feasible. The potential exists for this novel

nanoparticle for the treatment of brain tumors. The relationship

between lipid metabolism and ferroptosis is complex. There is not

only an inducing relationship but also a possible inhibiting

relationship, e.g., exogenous monounsaturated fatty acids

(MUFAs), which can reduce the oxidative sensitivity of cells and

inhibit the occurrence of ferroptosis (103). Therefore, the correct

use of the relationship of lipid metabolism can have the most

significant effect on eradicating brain tumor cells. Chen et al. used

iron oxide nanoparticles loaded with paclitaxel to construct a nano

drug (IONP@PTX). Using U251 and HMC3 as cell models, in vitro

studies revealed that IONP@PTX inhibited cell migration and

invasion ability, increased the levels of iron ions, ROS, and lipid

peroxidation, enhanced the expression of autophagy-related

proteins Beclin1 and LC3II, and inhibited the expression of p62

and ferroptosis-related protein GPX4 in vitro (104). In vivo,

pharmacodynamic studies revealed that IONP@PTX significantly

inhibited tumor volume in GBM xenografts and decreased the

expression level of GPX4 protein in tumor tissues. Thus, IONP@

PTX may inhibit GBM growth by enhancing the autophagy-

dependent ferroptosis pathway and may be a potential ferroptosis

inducer for ferroptosis-based tumor therapy (100).
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5 Prospect and conclusion

Currently, the treatment and late convalescence of malignant

brain tumors are clinically tricky, both to reduce the disruption of

normal brain tissue cells during treatment and to protect essential

central nervous functions of the brain. Ferroptosis, as a specific

form of programmed cell death, is characterized by the

accumulation of lipid peroxides. Its main mechanisms of

occurrence and regulatory signals are still complex, involving the

Fenton reaction, GPX4, and system Xc-, among others. Ferroptosis

is essential in tumorigenesis and progression and is expected to be

developed as a new cancer treatment strategy. The study of nano

drug delivery systems has become a quality option in brain tumor

treatment, overcoming some of the drawbacks of direct drug

administration, prolonging the duration of drug action, and

having great potential in improving drug efficacy. Intracellular

iron is the basis of ferroptosis, and with the development of

nanotechnology, various iron-based nanomaterials, such as iron

oxide nanoparticles, amorphous iron nanoparticles, and organic

iron frameworks, have shown attractive therapeutic advantages due

to their ability to deliver exogenous iron to activate tumors (105).

However, reliance on hydrogen peroxide for peroxide production is

inefficient when brain tumor cells are under weakly acidic

conditions, and excessive use of exogenous metals may cause

potential adverse effects on human health, including acute and

chronic damage (105, 106). Therefore, there is an urgent need to

develop some non-iron-based nano drugs to induce ferroptosis.

Many studies have shown that combining multiple therapies is

more advantageous than a single treatment strategy in clinical

cancer treatment, such as efficient synergistic effects and reduced

adverse effects with a single dose. Photodynamic therapy has been

developed in the last century and licensed by the relevant regulatory

authorities for cancer treatment. Similar to ferroptosis, they both

produce ROS in cells. Photodynamic therapy has certain advantages

in treating brain tumors. It can treat minimally invasive areas and

protect other areas of the brain as much as possible, reducing the

risk of treatment. By combining ferroptosis with photodynamic

therapy, the anti-tumor effect is significantly enhanced. The tumor

suppression rate is increased dramatically while reducing the

possible adverse toxicity associated with ferroptosis treatment.

The combination of ferroptosis with photodynamic therapy for

combined anti-tumor therapy has been extensively studied, e.g.,

breast cancer, liver cancer, and lung cancer (106–108). However,

there are fewer studies on brain tumors, which is a crucial direction

for future research.

Tumor immunotherapy recognizes and kills tumor cells by

stimulating the intrinsic immune system with minor damage to

normal tissues. However, immunotherapy still has some problems

in tumor treatment, such as immune response being only effective

for a small proportion of patients and low efficiency due to

insufficient immunogenicity. Immunotherapy combined with

ferroptosis has emerged as a promising and effective combination

of cancer treatment. In terms of the combination mechanism, there

is a potential relationship between immunotherapy itself and
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ferroptosis, as interferon g released from immunotherapy-

activated CD8+ T cells down-regulates the expression levels of

mRNA and protein of two subunits of system Xc-, SLC7A11 and

SLC3A2, inhibiting tumor cells of cystine uptake, thus promoting

lipid peroxidation and ferroptosis of tumor cells; ferroptosis of

tumor cells occurs along with the release of immunogenic antigens

that induce immunogenic cell death of tumor cells, thus

contributing to the anti-tumor efficacy of immunotherapy (109–

111). Zhang et al. designed a bionic magnetic vesicle with leukocyte

membranes containing the transforming factor-b inhibitor Ti,

membranes wrapped with Fe3O4 magnetic nanoparticles, and

programmed cell death antibody 1 (Pa) immobilized on the

surface. In tumor cells, Ti and Pa can create an immunogenic

microenvironment that increases intracellular hydrogen peroxide

levels and promotes the Fenton reaction causing ferroptosis (112).

Nanotherapy combining ferroptosis with immunotherapy is still a

promising therapeutic option for tumors. It is expected to be

applied to the treatment of brain tumors through further studies

in the future.

The ferroptosis-based nano drug delivery system has provided

many opportunities to treat brain tumors. However, it is still not

entirely in the mature stage, and the biological safety of nano drugs

is still a concern. Most of the research experiments are conducted

on animals, and the practical application in the clinic is yet to be

developed. Future research is expected to break through the

bottlenecks and grow truly efficient and non-toxic anti-

tumor nanomedicines.
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Opportunities and challenges
related to ferroptosis in glioma
and neuroblastoma

Huizhong Chi1,2†, Boyan Li1,2†, Qingtong Wang1,2, Zijie Gao1,2,
Bowen Feng1,2, Hao Xue1,2* and Gang Li1,2*

1Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and
Brain-Inspired Science, Shandong University, Jinan, Shandong, China, 2Shandong Key Laboratory of
Brain Function Remodeling, Jinan, Shandong, China
A newly identified form of cell death known as ferroptosis is characterized by the

peroxidation of lipids in response to iron. Rapid progress in research on

ferroptosis in glioma and neuroblastoma has promoted the exploitation of

ferroptosis in related therapy. This manuscript provides a review of the findings

on ferroptosis-related therapy in glioblastoma and neuroblastoma and outlines

the mechanisms involved in ferroptosis in glioma and neuroblastoma. We

summarize some recent data on traditional drugs, natural compounds and

nanomedicines used as ferroptosis inducers in glioma and neuroblastoma, as

well as some bioinformatic analyses of genes involved in ferroptosis. Moreover,

we summarize some data on the associations of ferroptosis with the tumor

immunotherapy and TMZ drug resistance. Finally, we discuss future directions for

ferroptosis research in gl ioma and neuroblastoma and currently

unresolved issues.

KEYWORDS

ferroptosis, neuroblastoma, glioblastoma, GPX4, immune
Introduction

Despite their small percentage (approximately 1%) among all invasive cancer cases,

malignant central nervous system (CNS) tumors are representative tumor types in children

and adolescents as well as the major cause of death related to cancer in males younger than

40 and females younger than 20. As a result, malignant CNS tumors are the third and

fourth leading cause of cancer-related death among individuals in the age ranges of 0-14

and over 40 years old, respectively (1, 2). Common malignant CNS tumors include glioma

and neuroblastoma (NB). Gliomas account for 24.5% of all primary CNS tumors, while

malignant tumors account for 80.9%. Gliomas usually have a poor prognosis. Glioblastoma

(GBM) is a representative malignant CNS tumor (49.1% of all malignancies) with the

shortest observed median patient survival. Although advanced therapeutic methods,

including temozolomide (TMZ) therapy and tumor-treating fields (TTFields), are

applied in the clinic, treated patients have a median survival time of only approximately
frontiersin.org01193
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15 months. GBM has a poor prognosis, and only 5.8% of patients

survive for five years (1–3). NB is another malignant tumor with a

sympathetic nervous system origin and accounts for approximately

7-8% of childhood malignant tumor cases and approximately 15%

of cancer-related deaths. Patients suffering from high-risk NB have

a 5-year survival rate of less than 50% (4).

Ferroptosis is associated with iron and reactive oxygen species

(ROS) and primarily results in cytological changes, including

oxidative stress. As a result of strong membrane lipid

peroxidation and oxidative stress, mitochondrial cristae are

reduced or absent, the outer mitochondrial membrane is

ruptured, and the mitochondrial membranes are condensed,

resulting in weaker plasma membrane selective permeability and

increased oxidative stress. At least three cytoprotective systems

against ferroptosis with distinct subcellular localizations have

been identified in recent studies: glutathione peroxidase 4 (GPX4)

located in the cytoplasm and mitochondria; ferroptosis suppressor

protein 1 (FSP1) located at the plasma membrane, which promotes

ubiquinone regeneration; and dihydroorotate dehydrogenase

(DHODH) located in the mitochondria. GPX4 can remarkably

prevent ferroptosis by decreasing the levels of phospholipid

hydroperoxides and thereby inhibiting lipid peroxidation

mediated by lipoxygenase. FSP1, which promotes ubiquinone

regeneration at the plasma membrane, uses NAD(P)H to catalyze

the regeneration of nonmitochondrial coenzyme Q10 (CoQ10),

which blocks ferroptosis by inhibiting lipid peroxide propagation.

In parallel with mitochondrial GPX4, DHODH reduces ubiquinone

(CoQ) to ubiquinol (CoQH2), an antioxidant capable of resisting

ferroptotic activity, which inhibits ferroptosis within the inner

mitochondrial membrane (independent of cytosolic GPX4 or

FSP1) (5–7).

The prognosis of glioma and neuroblastoma is not particularly

satisfactory. Currently, it is necessary to develop effective

therapeutic approaches for glioma and neuroblastoma. A valid

way to circumvent therapeutic resistance in cancer cells is

targeting the ferroptotic pathway because of the high level of iron

accumulation and the accompanying increase in ROS production.

However, ferroptosis-related therapy application in glioma and

neuroblastoma is still challenging because several aspects of the

mechanisms of ferroptosis are still unclear. In this article, we present

the progress in ferroptosis research in glioma and neuroblastoma

and relevant future perspectives.
Ferroptosis

Ferroptosis is a form of nonapoptotic cell death that results

from the accumulation of intracellular iron and increased toxic lipid

peroxide reactive oxygen species. In the prevention of ferroptosis,

antioxidant systems can help decrease oxidative stress. Inhibition of

an antioxidant system can contribute to the induction of ferroptosis

in tumor cells. As a result, antioxidant systems are capable of

remarkably regulating ferroptosis in cells and are also one of the

major areas of research on ferroptosis at present.

The Xc system is also referred to as the cystine/glutamate

reverse transporter protein. GPX4 essentially constitutes the
Frontiers in Oncology 02194
selenoprotein family and mainly mediates the reduction of

peroxides to the corresponding alcohol. This antioxidant system

prevents ferroptosis by transporting cysteine through the Xc system

for the synthesis of glutathione (GSH), which in turn helps GPX4

reduce peroxides. As a major antioxidant component, GSH

participates in a wide range of redox reactions in the body to

maintain physiological homeostasis. GPX4 can critically regulate

ferroptosis and is known to determine cell fate. Upregulating or

inhibiting these antioxidant systems to regulate ferroptosis can

impact the development of various diseases. Moreover, studies

have identified various drugs and molecules as inducers of

ferroptosis that act by restricting Xc system activity (8, 9).

There is increasing evidence that inhibiting GPX4 activity does

not necessarily lead to ferroptosis in cells. FSP1 on the plasma

membrane reduces ubiquinone with NADPH as a cofactor, thereby

preventing the peroxidation of lipids. GSH is not required as a

cofactor for this process, nor does this process depend on GPX4. As

a result, in contrast to GPX4, FSP1 may be regarded as a ferroptosis

inhibitor, and the expression of FSP1 confirms the sensitivity of

cells to ferroptosis (8, 10, 11).

DHODH, located in the inner mitochondrial membrane, is the

enzyme involved in the 4th rate-limiting step in pyrimidine

biosynthesis and is capable of catalyzing dihydroorotic acid

(DHO) to be oxidized to orotate (OA) and CoQ (ubiquitin) for

further reduction to CoQH2 (ubiquinone), which is associated with

the respiratory complex and affects electron transfer in the oxidative

respiratory chain. Further studies have shown that inhibition of

DHODH results in ferroptosis in cells with low GPX4 expression

and increases the sensitivity of cells with high GPX4 expression to

ferroptosis. DHODH can act synergistically with GPX4 to inhibit

mitochondria-related ferroptosis without dependence on FSP1

(5, 12).

As one of the most important mechanisms regulating ferroptosis,

antioxidant systems have always been important. With in-depth

research, an increasing number of relevant molecules have been

discovered, creating directions for further research and application

of ferroptosis in glioma and neuroblastoma.
Ferroptosis in glioma

Glioma is a representative malignant CNS tumor. Currently,

surgery, radiotherapy, chemotherapy, and tumor treatment fields

(TTFields) are the most common treatments for clinical glioma, but

they have a poor prognosis in patients, particularly those who suffer

from high-grade gliomas, including GBM. The exploration of new

therapeutic methods and therapeutic targets for glioma remains a

hot spot. Targeting the ferroptotic pathway can serve as an effective

treatment for glioma (Figure 1).
Ferroptosis-related gene network in glioma

The Xc-GSH-GPX4 network serves as the primary antioxidant

barrier against ferroptosis. As a direct target gene, recombinant

solute carrier family 7, member 11 (SLC7A11) is repressed by p53.
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It is a key component of the cystine-glutamate antagonist system

(xCT system), which mediates the uptake of extracellular cystine in

exchange for glutamate within the cell. The direct interaction

between ubiquitin hydrolase ovarian tumor domain protease

domain, ubiquitin aldehyde binding protein 1 (OTUB1) and

SLC7A11 stabilizes the SLC7A11 protein, and OTUB1

knockdown triggers SLC7A11 expression-dependent ferroptosis

(13). Moreover, exogenous overexpression of NF-kB activating

protein (NKAP) positively regulates SLC7A11 to promote cellular

resistance to ferroptosis inducers (14).

Current research indicates that glutathione peroxidase 4 plays a

critical role in ferroptosis. It has been demonstrated that a number

of molecules affect the expression of GPX4 in gliomas to regulate

ferroptosis. RSL3 (a GPX4 inhibitor) inactivates GPX4 and induces

glycolytic dysfunction in glioma cells with reduced ATP and

pyruvate content as well as HKII, PFKP, and PKM2 protein

levels, which in turn induces ferroptosis (15). Knockdown of

RNA-binding fragile X mental retardation syndrome-related

protein 1 (FXR1) promotes TMZ-induced ferroptosis, thereby

overcoming TMZ resistance. FXR1 has been proven to bind to

the GPX4 mRNA transcript and exert a positive regulatory effect on

GPX4 expression (16). g-Glutamyltransferase 1 (GGT1) is an

enzyme that cleaves extracellular glutathione. In GBM cells with

GGT1 expression, drug inhibition or GGT1 deletion was shown to

inhibit the increase in the intracellular glutathione levels induced by

the cellular density and the cell viability affected by cystine

deprivation. In addition, cystine deprivation led to glutathione

depletion and ferroptosis in GBM cells deficient in GGT1

independent of a high cellular density. Exogenous expression of

GGT1 in GBM cells deficient in GGT1 suppressed glutathione

depletion and ferroptosis induced by cystine deprivation at a high

density (17). Even more exciting, GPX4 expression is obviously

reduced during tumor recurrence, whereas acyl-CoA synthetase

long chain family member 4 (ACSL4) expression exhibits an

obvious increase. Moreover, aldehyde dehydrogenase family 1,

subfamily A3 (ALDH1A3) and FSP1 expression levels are also

increased during recurrence, with the increase in ALDH1A3

expression being significant. It appears that exploiting the

ferroptotic process may be a new therapeutic option, especially in

patients with recurrent GBM (18). These findings provide new

insights into the treatment of recurrent GBM and may contribute to

the development of a basis for treating gliomas by targeting

ferroptosis in an effective manner.

TP53 encodes p53 promoting cell cycle arrest, senescence, and

apoptosis, which are three canonical functions of p53 involved in

tumor suppression. This gene is the most frequently mutated tumor

suppressor gene in all human cancers. The TP53 gene has been

found to be activated under various conditions and to play an

important role in the control of ferritin by regulating lipid, energy,

and iron metabolism (19, 20). SLC7A11 is a key inhibitor of

ferroptosis enhanced by p53. P62 (a stress-induced adaptor

protein) inhibits ubiquitination, promotes ferroylation, and

suppresses the expression of SLC7A11 in p53-mutant (MT)

GBM, whereas it weakens ferroylation and increases SLC7A11

expression in p53-wild-type (WT) GBM (21). There is evidence

that Rho family GTPase 1 (RND1) interacts with p53, leading to the
Frontiers in Oncology 03195
deubiquitination of p53. In addition, overexpression of RND1

promotes the activity of the p53-SLC7A11 signaling pathway and

triggers lipid peroxidation and siderosis in GBM cells (22). Reduced

cystine uptake inhibits downstream GSH biosynthesis, impairing

the ability of GPX4 to inhibit siderosis. In addition to

downregulating SLC7A11 and impairing GSH biogenesis, p53

promotes ferroptosis through the regulation of other metabolic

pathways. The rate-limiting enzyme in polyamine breakdown is

arginine/arginine N1-acetyltransferase 1 (SAT1). In recent studies,

we found that p53 could induce SAT1 expression, slowing the

growth of xenograft tumors. As a result of SAT1 induction,

arachidonate 15-lipoxygenase (ALOX15) was upregulated. The

p53/SAT1/ALOX15 axis is therefore partially responsible for p53-

mediated ferroptosis and tumor suppression (19, 23, 24). In

addition, arachidonate 12-lipoxygenase (ALOX12) plays an

important role in these functions. p53 promotes the activity of

ALOX12. ALOX12 is bound by SLC7A11 and thus sequestered

from its substrate, polyunsaturated fatty acids (PUFAs), including

those esterified in membranes. ALOX12 is released when p53

downregulates SLC7A11, oxidizing membrane PUFAs and

initiating ferroptosis (25, 26). Therefore, the p53/SLC7A11/

ALOX12 axis is independent of the decrease in GSH biogenesis

and GPX4 activity and is therefore a separate pathway from the

p53/SLC7A11/GPX4 pathway. p53 inhibits the expression of

SLC7A11 in the antiferroptosis system, and it can also inhibit the

serine synthesis pathway as well as the transsulfuration pathway by

inhibiting phosphoglycerate dehydrogenase and cystine synthase

(CBS), respectively, thus limiting the expression of GSH (19, 27).

Mouse double minute 2 homolog (MDM2) is the major E3

ubiquitin-protein ligase that degrades p53, but it is also a p53

target gene. MDM2 and its homolog MDMX can negatively

regulate the tumor suppressor p53. Inhibition of MDM2 and

MDMX leads to an increased FSP1 protein level, which in turn

increases the coenzyme Q10 level. In addition, the MDM2-MDMX

complex can alter peroxisome proliferator-activated receptor a
(PPARa) activity to regulate lipid metabolism (28). In summary,

several studies have been conducted on p53 and ferroptosis to date,

and most support a role for p53 in ferroptosis (19, 29). Ferroptosis is

promoted by the multiple roles of p53 in regulating cellular

metabolism, particularly lipid, iron, ROS, and amino acid

metabolism. It remains to be seen whether other metabolic target

genes of p53 or metabolic processes modulated by p53 (including

autophagy) contribute to p53’s ferroptosis-regulating role.

In recent years, ACSL4 was found to partially activate long-

chain fatty acid metabolism and immune signal transduction,

indicating that it might be a regulator of ferroptosis (30). ACSL4

overexpression was found to decrease GPX4 overexpression and

increase ferroptosis marker levels, such as 5-hydroxyeicosatetraene

(5-HETE), 12-HETE and 15-HETE, in glioma cells (31). miR-670-

3p inhibits ferroptosis in glioblastoma cells by inhibiting ACSL4. As

a result, inhibition of miR-670-3p could be an alternative strategy

for the treatment of glioblastoma (32). Heat shock protein 90

(Hsp90) and dynamin-related protein 1 (Drp1) actively regulate

and stabilize ACSL4 expression during ferroptosis in glioma

triggered by erastin. Hsp90 overexpression and Drp1

dephosphorylation change the mitochondrial morphology and
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increase lipid peroxidation mediated by ACSL4 to promote

ferroptosis (33).

GPX7 is another member of the glutathione peroxidase family

(GPX) and participates in oxidative stress and tumorigenesis. GPX7

silencing enhances oxidative stress associated with ferroptosis in

glioma cells, while GXP7 deletion sensitizes gliomas to ferroptosis

induced by erastin. In addition, miR-29b was found to repress

GPX7 expression directly after transcription (34).

Recent studies have confirmed that tetrahydrobiopterin (BH4),

a significant cofactor for multiple enzymes, can remarkably inhibit

ferroptosis. The GTP cyclohydrolase 1 (GCH1)-BH4 axis controls

BH4 synthesis and reduces intracellular CoQ and ROS

accumulation, thereby leading to ferroptosis inhibition. In

addition, GCH1/BH4 exerts a selective inhibitory impact on

nuclear receptor coactivator 4 (NCOA4)-mediated ferritin

autophagy and affects iron metabolism (8, 35). This provides a

new direction for ferroptosis research in glioma. Coatomer protein

complex subunit zeta 1 (COPZ1) negatively regulates NCOA4

activity, and COPZ1 knockdown induces NCOA4-mediated

ferritin phagocytosis (36). Downregulation of matrix-remodeling-

associated protein 8 (MXRA8) increases the intracellular levels of

lipid peroxidation in glioma cells, leads to NCOA4 upregulation

and inhibits ferritin heavy chain 1 (FTH1). MXRA8 is significantly

associated with various infiltrating immune cells, such as NK cells,

macrophages, and neutrophils. MXRA8 knockdown in glioma cells

attenuates M2 macrophage infiltration. Accordingly, MXRA8

facilitates glioma progression and critically affects glioma

ferroptosis and the immune microenvironment (37).

The transcription factor nuclear factor erythroid 2-related

factor 2 (Nrf2) controls the expression of genes associated with

oxidative stress and can reliably maintain redox stability and

resistance to oxidative stress. High levels of NRF2 lead to

sensitivity in glioblastoma dependent on the expression of its

proferroptotic target ATP binding cassette subfamily C member 1

(ABCC1), resulting in GSH depletion upon blockade of the Xc

system by erastin (38).

With ongoing research progress, the mechanisms regulating

ferroptosis are becoming increasingly clear. Further research on the

ferroptosis-related gene network will provide new ideas and broad

opportunities for the treatment of glioma, not only primary high-

grade gliomas such as GBM but also recurrent gliomas. However,

there are a few issues that require further exploration. For example,

we must determine how to more effectively and precisely induce

ferroptosis in glioma cells and improve the efficacy and safety of

this treatment.
Ferroptosis-related compounds in glioma

Chemotherapy is one of the basic therapeutic strategies for

glioma. TMZ is currently one of the first-line chemotherapeutic

drugs for glioma, especially high-grade glioma. However, with the

widespread use of TMZ, the median survival time of GBM patients

has improved by only approximately 2.6 months. Frustratingly, as

GBM patients receive long-term TMZ therapy, resistance inevitably

develops, resulting in treatment efficacy dropping significantly or
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even disappearing. New replacement drug regimens remain to be

developed (39). In the Table 1, we list the recent advances in drug-

induced glioma ferroptosis for the treatment of glioma (40–51).

From the Table 1, we can see that many drugs used in the past

also have a good effect on ferroptosis and that they inhibit the

growth of glioma cells by targeting different ferroptotic pathways

and target genes. This suggests that it is possible to find new uses for

these drugs related to treatment targeting ferroptosis.
Ferroptosis-inducing nanoparticles

The use of rationally designed nanomaterials for the treatment

of cancer is an emerging field that has led to tremendous medical

success . The adminis t ra t ion of ferroptos i s - inducing

nanoformulations with accurately tuned physicochemical

properties is as an extended and feasible therapeutic strategy for

tumors. We compiled recent research advances related to the

induction of ferroptosis in glioma cells by nanomaterials.

(Table 2) (52–56).

These different nanodrugs offer a new direction for ferroptosis-

based therapy for gliomas. The different designs are very interesting.

It is beneficial to generate nanoparticles encapsulated with Fe3O4

and Ce6 acoustic sensitizers, and external loading of C6 cell

membranes is performed to achieve tumor cell enrichment of the

material. Transient opening of the blood−brain barrier can be

achieved with focused ultrasound (US). This sonodynamic

therapy (SDT) combines targeting of ferroptosis in glioma cells

with SDT (53). However, noninvasive destruction of the blood

−brain barrier (BBB) by focused ultrasound may lead to the entry

and/or exit of some harmful substances at the same time. In

addition, the combination of ferroptosis-targeting therapy and

immunotherapy is also a good treatment strategy (54). A

membrane-modified drug delivery system was constructed by

loading small interfering RNA targeting programmed cell death 1

ligand 1 (PD-L1) on Fe3O4 and externally on the BV2 cell

membrane. This system promoted synergy between ferroptosis

induction and immunotherapy by reducing the expression of PD-

L1 in situ in drug-resistant GBM tissues, which was combined with

the effect of ferroptosis induction by Fe2+ in Fe3O4. Some studies

have also been conducted on the combination of chemotherapeutic

drugs with nanomaterials (55). Gallic iron nanoparticles combined

with the chemotherapeutic agent cisplatin produce a dual killing

effect. The material’s photothermal responsiveness and ability to be

imaged by MRI provide a new way to treat GBM. Recent studies

have also combined exosomes with nanomaterials to create a

composite ferroptosis platform (56). A study engineered

exosomes by modifying the ANG-targeting peptide on the surface

of the exosomes, giving them a greater ability to cross the blood

−brain barrier. Next, they constructed a nanomaterial with an

Fe3O4 core, a mesoporous silicon shell and a modified anti-CD63

antibody on the surface of the mesoporous silicon shell for

branching exosomes. Ultimately, the ferroptosis-related

therapeutic effect of the system was achieved by encapsulating a

drug or small interfering RNA targeting a critical ferroptotic

pathway in the mesoporous silicon shell and exosomes.
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TABLE 2 Ferroptosis-inducing nanoparticles in GBM.

Nanoparticle name Target Cell line and
Animals

Impact on Ferroptosis Ref.

(FA)/Pt-si-GPX4@IONPs GPX4 U87MG, P3#GBM and
NHA

• Increase iron (Fe2+ and Fe3+) levels; increase H2O2 levels through the
activation of lower NOX
• Inhibit GPX4 expression

(52)

PIOC@CM NPs GPX4 C6 • Increase the ROS level and deplete GSH upon ultrasonic irradiation
• Inhibit GPX4 expression

(53)

Fe3O4-siPD-L1@M-BV2 GPX4 and PD-
L1

GL261, HT-22 and BV2 • Induce the maturation of DCs and decrease the protein expression of PD-L1
• Inhibit GPX4 expression

(54)

cRGD/Pt + DOX@GFNPs
(RPDGs)

N/A U87 and NHA • Deplete GSH and elevate the ROS level (55)

Fe3O4@mSiO2 NPs DHODH and
GPX4

LN229 and A172 • Inhibit GPX4 and DHODH expression
• Deplete GSH and elevate the ROS level

(56)
F
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TABLE 1 Ferroptosis-inducing drugs in GBM.

Drug name Target Cell line and
Animals

Pathway Impact on Ferroptosis Ref.

Dihydroartemisinin
(DHA)

GPX4 U251, U373 and HT22 PERK/ATF4/HSPA5 pathway • Increase GPX4 expression and activity
• Upregulate ATF4

(40)

Brucine ATF3 U118, U87, U251 and
A172

Trigger ATF3 upregulation and
translocation into the nucleus through

activation of ER stress

• Promote H2O2 accumulation through
upregulation of NOX4 and SOD1
• Downregulate catalase and xCT

(41)

Pseudolaric acid B
(PAB)

Transferrin
receptor

Rat C6 and human
SHG-44, U87 and U251

glioma cells

Upregulate transferrin receptor; p53-
mediated xCT pathway

• Upregulate transferrin receptor
• Promote H2O2 and lipid peroxide generation
• Deplete intracellular GSH via the xCT
pathway mediated by p53

(42)

Amentoflavone (AF) Autophagy-
dependent
ferroptosis

U251 and U373 glioma
cells

AMPK/mTOR pathway • Decrease the GSH level in tumor tissue
• Increase the expression of LC3B, Beclin1,
ATG5, and ATG7

(43)

RSL3 GPX4 U87 and U251 NF-kB pathway • Increase the concentration of lipid ROS and
downregulate proteins related to ferroptosis
(GPX4, ATF4, and SLC7A11)
• Activate the NF-kB pathway

(44)

Dihydrotanshinone
I

GPX4 and
ACSL4

U87 and U251 GPX4 and ACSL4 pathway • Decrease the GPX4 level and increase the
ACSL4 level
• Reduce the GSH/GSSG ratio

(45)

Apatinib Nrf2 U87 and U251 VEGFR2/Nrf2/Keap1 pathway • Decrease Nrf2 and p-VEGFR2 expression (46)

Sevoflurane GPX4 and
ATF4

U87 and U251 ATF4-CHAC1 pathway • Increase ROS levels and the Fe2+

concentration
• Downregulate GPX4, upregulate transferrin
and activate ATF4

(47)

Plumbagin xCT and
GPX4

U87, U251, C6 and
GL261

NQO1/GPX4 pathway • Downregulate xCT and GPX4
• Increase NQO1 activity

(48)

Curcumin analog
(ALZ003)

FBXL2 U87 and A172 GPX4 pathway • Decrease GPX4 expression
• Induce lipid peroxidation and ROS
accumulation

(49)

Capsaicin ACSL4 and
GPX4

U87 and U251 GPX4 and ACSL4 pathway • Increase ACSL4, 5-HETE, MDA and TOS
levels and decrease GPX4, GSH and TAS levels

(50)

Boric acid (BA) ACSL4 and
GPX4

GBM C6 cells ACSL4/GPx4SEMA3F/NP2 pathways • Increase ACSL4 levels and decrease GPX4
levels
• Upregulate SEMA3F/NP2

(51)
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In general, the different designs are interesting and well designed. In

conclusion, to achieve ferroptosis-targeted therapy with nanomaterials,

the following steps must be achieved: blood−brain barrier penetration,

tumor targeting, and ferroptosis induction. Nanomaterials with

properties that enable these events may be new agents for glioma

therapy in the future. However, the design of different nanomaterials is

relatively complicated, such as the camouflage achieved with different cell

membranes and the encapsulation of different drugs, and further

improvements and validation in industrial production and human

experimental safety are still needed. However, we believe that with the

continuous progress of medical-industrial crossover technology, an

increasing number of nanoagents will start to capture attention and

provide new insights for the treatment of glioma in combination with

ferroptosis-inducing agents.
Ferroptosis and TMZ resistance

TMZ is still a most effective drugs for glioma chemotherapy.

Ferroptosis can considerably affect TMZ resistance in glioma, and

ferroptosis resistance may serve as a mechanism of TMZ resistance

in glioma. TMZ increases LDH, MDA and iron levels and decreases

GSH levels in glioma cells to induce ferroptosis. In addition, ROS

levels and DMT1 expression are elevated, and GPX4 expression is

decreased in cells treated with temozolomide; these events are under

the regulation of the Nrf2/HO-1 pathway (57).
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In addition to ferroptosis inducers and xCT inhibitors,

quinacrine (a compound capable of crossing the blood−brain

barrier) has been found to impair autophagy but increase the

sensitivity of glioblastoma stem cells (GSCs) to TMZ and trigger

ferroptosis in GSCs (58). A long non-coding RNA LINC01564

promotes glioma cell resistance to TMZ by upregulating Nrf2

expression, which counteracts the effects of MAPK8 ablation on

glioma cell apoptosis and ferroptosis to inhibit ferroptosis (59).

Further study of the ferroptosis mechanism in glioma TMZ

resistance will contribute to new insights into the clinical reversal of

glioma TMZ chemoresistance. However, details are still needed for

clinical application.
Ferroptosis and immunotherapy

One of the most effective ways to treat cancer is to induce tumor

cell death. Immunotherapy is considered a milestone in precision

medicine. It elicits significant therapeutic responses in patients who

have developed resistance to other conventional therapies (60).

However, immunotherapy is not particularly effective in glioma,

especially in GBM. A growing body of research suggests that the

glioma immunosuppressive microenvironment (GIME) contributes

to the poor efficacy of glioma immunotherapy (61–63). The rapid

proliferation of gliomas creates a harsh microenvironment that is

acidic with nutrient scarcity and hypoxia (64–66). As a result,
FIGURE 1

Snapshot of ferroptotic pathways. Ferroptosis in GBM is triggered by four main regulatory pathways: iron metabolism, the GPX4 pathway, the FSP1
pathway and lipid metabolism. In iron metabolism, Fe3+ is transported into the cell by TfR1 (transferrin receptor) and subsequently reduced to Fe2+,
and some nanoparticles are involved in iron metabolism. The GPX4 pathway is the classic ferroptotic pathway, and the Xc- system plays an
important regulatory role in this pathway. p53 is closely related to this pathway. The MDM2-MDMX complex regulates lipid metabolism by altering
PPARa activity and ultimately interacts with the FSP1 protein. In lipid metabolism, AA (as well as other PUFAs) is metabolized by ACSL4 and
eventually participates in lipid peroxidation. (Created with BioRender).
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immune cells become immunosuppressive or inactive or die (67,

68), whereas glioma cells may be able to adapt to this harsh

microenvironment due to their substantial plasticity (69, 70).

Additionally, the blood−brain barrier prevents immune cells from

migrating to tumors (71, 72). Furthermore, many suppressive

cytokines secreted by gliomas (73) and suppressive immune cells

suppress the antitumor activity of immune cells (74, 75).

Furthermore, glioma cells can secrete a large number of cytokines

to capture immune cells. Glioma cells are able to escape immune

surveillance in this case (62, 76). To treat glioma successfully, it is

therefore essential to remodel the immune microenvironment.

This is of great importance for improving traditional drug

resistance, as ferroptosis is closely related to antitumor immunity

and the immune microenvironment. Calreticulin (CRT), a soluble

chaperone associated with the endoplasmic reticulum (ER), is one of

the proteins that regulates the tumor microenvironment. As a result of

ferroptosis, CRT is translocated onto tumor cells, where it can induce a

robust immune response against the tumor (77). Neutrophils have

been reported participate in apoptosis by accumulating iron-dependent

lipid peroxide, which results in iron atrophy in GBMs. Intratumoral

depletion of ACSL4 or overexpression of GPX4 reduces tumor necrosis

and aggressiveness (78). By harnessing the cytotoxic potential of the

immune system, notably that of tumor-specific cytotoxic T cells,

immunotherapy is a promising strategy to treat malignancies. As a

result of their antitumor effects, CD8+ T cells are a crucial component

of the tumor microenvironment; they also play a key role during every

stage of tumor development. Ferroptosis is a metabolic vulnerability of

tumor-specific CD8+ T cells, whereas GPX4-deficient T cells display a

high sensitivity to ferroptosis and are thus incapable of exerting

antitumor effects. Overexpression of GPX4 inhibits ferroptosis in

CD8+ T cells and simultaneously restores the production of

cytotoxic cytokines in vitro or increases the number of tumor-

infiltrating CD8+ T cells in vivo, thereby enhancing tumor control

(79–81). In contrast, increased ferroptosis facilitates immune cell

activation and infiltration but attenuates the killing of tumor cells

through cytotoxic activity (82). Moreover, enhanced ferroptosis

contributes to the recruitment of tumor-associated macrophages

(TAMs) and M2 polarization (83). These factors contribute to the

creation of an immunosuppressive immune microenvironment, which

may lead to immune escape. Further studies are needed to balance the

dual effects in the future.

Interestingly, ferroptosis exhibits immunogenicity in vitro and

in vivo, triggering a vaccination-like effect in immunocompetent

mice, in which ATP and high mobility group box 1 (HMGB1), the

most typical injury-related molecular patterns associated with

immunogenic cell death, can be passively released and act as

immunogenic signals that affect the immunogenicity of early

ferroptotic cancer cells (84). Thus, this novel discovery provides a

new direction for vaccine therapy.

Clinical trials of immune checkpoint inhibitors (ICIs) have

demonstrated a broad clinical impact and early success. Some but

not all cases of ICI response have been associated with the

expression of immune checkpoint molecules, including PD-1

ligand (PD-L1) (85). Some patients with PD-L1-positive tumors
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do not respond to treatment, while some patients with PD-L1-

negative tumors may benefit from ICI therapy due to tumor

heterogeneity (86, 87). TYRO3 inhibits anti-PD-1/PD-L1-induced

ferrogenesis in tumor cells by suppressing the AKT/NRF2 axis and

amplifies a favorable tumor microenvironment by reducing the

ratio of M1/M2 macrophages, thus contributing to the efficacy of

anti-PD-1/PD-L1 therapy (88). More effective immune checkpoints

or more valid regulatory pathways need to be explored to overcome

resistance in glioma patients.

Although ICI immunotherapy has been shown to have

significant positive effects in some cancer patients, there is still

evidence of drug resistance in many tumors, including GBM, due to

tumor heterogeneity, low tumor-infiltrating T-cell (TIL) levels, loss

of target antigens and off-target toxicity (89, 90). Chimeric antigen

receptor T (CAR-T) cell immunotherapy targeting neoantigens that

are derived from somatic mutations and expressed on only tumor

cells has led to a new approach in cancer immunotherapy. CAR-T

cell therapy has achieved certain success in both basic research and

small-scale clinical research (91). B7-H3 (CD276) is expressed on

CNS tumors, and B7-H3-specific CAR-T cells were designed for

therapy in diffuse intrinsic pontine glioma (DIPG), producing

exciting results (92). Frustratingly, there are no cases of relevant

CAR-T cells designed to induce ferroptosis in gliomas. In addition,

taking advantage of CAR-T cells to transform the immune

microenvironment and enhance ferroptosis in tumor cells is a

novel direction to be explored.

In conclusion, with increasing research, immunotherapy is becoming

more specific and individualized, which provides opportunities for therapy

in glioma. The effects of ferroptosis and immunotherapy are bidirectional,

i.e., ferroptosis can further influence the effect of immunotherapy by

affecting the immunemicroenvironment, and the effect of immunotherapy

can be further enhanced by enhancing ferroptosis. However, there are still

some details and limits that need to be further researched for

glioma therapy.
Potential Biomarkers of Ferroptosis

With the development of sequencing technology and the

creation of databases, bioinformatic analysis now plays an

important role in identifying potential targets and drug effects

and predicting prognosis. We compiled the recently published

literature on biogenic analysis to provide potential new ideas for

future research (Supplement 1) (93–105). As shown in the table,

different studies identified different targets, and some of the studies

explored several targets.

Although a large number of bioinformatic analysis studies

currently provide us with ferroptosis-related targets in low-grade

glioma (LGG) and GBM, they still have many limitations and points

of controversy due to the lack of rigorous experimental support.

Many of the studies relied on only computer technology.

Bioinformatic analysis may be a future direction, but the validity

and clinical significance of the molecules identified with this

approach need to be further explored.
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Ferroptosis in neuroblastoma

Neuroblastoma is one of the most prevalent extracranial tumors

in children, accounting for the majority of childhood cancer-related

deaths, especially in high-risk cases. High-risk NB is characterized

by the appearance of this disease after the age of 18 months, the

amplification of MYCN (MYCN Proto-Oncogene, BHLH

Transcription Factor), or the activation of mechanisms for

telomere maintenance (106, 107). The scientific community is

committed to finding new strategies related to ferroptosis based

on the characteristics of high-risk NB as a potential therapy for

high-risk NB (108, 109).
The ferroptosis-related gene network
in neuroblastoma

The characteristics of NB are significantly different from those of

glioma, and the focus is also different. Genomic amplification of the

oncogene MYCN acts as an essential oncogenic event in high-risk

NB, occurring in approximately 50% of high-risk cases, and MYCN

amplification is strongly related to a poor NB prognosis (OS < 50%).

MYCN-amplified NB shows a system-dependent increase in the level

of the Xc-cystine/glutamate reverse transporter protein for ROS

detoxification mediated by increased transcription of this receptor

(108). As a result, MYCN amplification may be a potent target in NB,

and much research has focused on this aspect. MYCN induces

massive lipid peroxidation when consuming cysteine, the rate-

limiting amino acid in the biosynthesis of GSH, which sensitizes

cells to ferroptosis. When the uptake of cysteine in MYCN-amplified

pediatric NB is restricted, the use of cysteine in protein synthesis can

inevitably cause GSH-induced ferroptosis and spontaneous tumor

regression of low-risk NB (110). In addition, NB cells with amplified

MYCN can easily undergo ferroptosis due to the upregulation of

TFRC-encoded transferrin receptor 1, which reprograms cellular iron

metabolism through the upregulation of TFRC (Transferrin

Receptor) expression. TFRC-encoded transferrin receptor 1 is a

pivotal iron transporter protein on the cell membrane, and elevated

iron uptake facilitates the accumulation of unstable iron pools,

resulting in elevated lipid peroxide production. TFRC

overexpression in NB cells is also capable of inducing selective

sensitivity to ferroptosis inhibition by GPX4 (111, 112).

Ferroportin (Fpn) is the only iron export protein that partially

regulates the intracellular iron concentration. Fpn knockdown has

been shown to increase the accumulation of iron-dependent lipid

ROS to accelerate erastin-induced ferroptosis, and Fpn may be an

appropriate target for NB treatment (113). Mitochondrial ferritin

(FtMt), a kind of iron storage protein in the mitochondria, also

exerts a protective effect during erastin-induced ferroptosis (114).

Recent mechanistic studies have shown that downregulation of

CDC27 results in obviously reduced expression of ornithine

decarboxylase 1 (ODC1), a recognized direct target of MYCN.

ODC1 inhibition markedly undermines the promotive effects of

CDC27 on NB cells in terms of proliferation, metastasis and the

sphere-forming capacity (115).
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Ferroptosis-related compounds
in neuroblastoma

There are currently several drugs for NB treatment, including

c i sp l a t in , e topos ide , v inc r i s t i n e , doxorub i c in , and

cyclophosphamide. These drugs are the most effective inducers of

apoptosis. However, this type of drug therapy creates multidrug-

resistant clones, which makes eradicating this type of tumor much

harder and favors tumor recurrence (116). The induction of

ferroptosis through the use of drugs and agents in NB can be

used to achieve better therapeutic outcomes, and this is also another

hot topic in current research. Inducing ferroptosis has great

potential as an anticancer therapeutic strategy in various NB

tumor types, particularly in tumors with RAS mutations. The

ferroptosis inducers erastin and RSL3 reduce RAS mutation-rich

N2A cell (mouse neuroblastoma N2A cells) viability by increasing

ROS levels and inducing cell death. In contrast, ferroptosis

inhibitors lower the high ROS levels and reduce viability defects

in erastin- or RSL3-treated cells. Ferritin (Fth) heavy chain 1, a

ferrous oxidase that converts redox-active Fe2+ into redox-inactive

Fe3+, may control the N2A-induced hypersensitivity response to

ferroptosis. Overexpression of Fth reduces ROS levels and cell death

and induces GPX4 expression. Additionally, NB cell lines present

remarkably lower Fth expression than other cancer cell lines (117).

In addition, withaferin A (WA), a natural ferroptosis inducer in

NB, activates Kelch-like ECH-associated protein 1 to activate the

nuclear factor-like 2 pathway and produces increased intracellular

unstable Fe(II) levels after heme oxygenase-1 is excessively

activated, inducing ferroptosis or inactivating GPX4 (109).

Chlorido[N,N’-disalicylidene-1,2-phenylenediamine]iron(III)

complexes in NB cell lines produce lipid-based ROS and induce

ferroptosis with greater efficacy than the therapeutic drug

cisplatin (118).
Conclusion

Despite advances in multimodal treatment, midbody treatment

and the prognosis of gliomas and neuroblastoma are discouraging.

Ferroptosis is a newly identified form of programmed cell death

(PCD) dependent on iron that differs from apoptosis, cell necrosis,

and autophagy. It plays a very important role in GBM and NB. This

article summarizes the mechanisms involved in the roles of

ferroptosis in GBM and NB. To summarize, we report that (1)

the GPX4 pathway remarkably affects GBM and NB and that direct

or indirect inhibition of GPX4 disrupts lipid peroxidation. (2)

MYCN amplification may be a potent target in NB. (3)

Nanodrugs may be new therapeutic agents for treating glioma

and neuroblastoma. (4) The complexity of the tumor immune

microenvironment and regulatory mechanisms need to be

further explored.

Therefore, future research directions should include an in-

depth study of ferroptosis, identification of key targets in the

ferroptotic pathway and validation of their relationships in glioma

and neuroblastoma, application of ferroptosis biomarkers in clinical
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prevention and monitoring, exploration of a new generation of

ferroptosis-targeting systems, and finally, validation of the

relationship between immunity and ferroptosis in glioma

and neuroblastoma.
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Glossary

CNS Central nervous system

NB Neuroblastoma

GBM Glioblastoma

TMZ Temozolomide

TTFields Tumor-treating fields

ROS Reactive oxygen species

GPX4 Glutathione peroxidase 4

FSP1 Ferroptosis suppressor protein 1

DHODH Dihydroorotate dehydrogenase

NADPH Nicotinamide adenine dinucleotide
phosphate

GSH Glutathione

SLC7A11 Recombinant solute carrier family 7,
member 11

OTUB1 OTU domain, ubiquitin aldehyde binding
protein 1

OTU Ovarian tumor domain protease

NKAP NF-kB activating protein

FXR1 Fragile X mental retardation syndrome-
related protein 1

NKAP NF-kB activating protein

RND1 Rho family GTPase 1

HD , High cell density

ALDH1A3 Aldehyde
dehydrogenase family 1

subfamily A3

ACSL4 Acyl-CoA synthetase long chain family 4

ALOX15 Arachidonate 15-lipoxygenase

PUFAs Polyunsaturated fatty acids

PPARa Peroxisome proliferator-activated receptor
a

Hsp90 Heat shock protein 90

Drp1 Dynamin-related protein 1

PPAR Peroxisome proliferator-activated receptor

BH4 Tetrahydrobiopterin

GCH1 GTP Cyclohydrolase1

NCOA4 Nuclear receptor coactivator 4

COPZ1 Coatomer protein complex subunit zeta 1

MXRA8 Matrix remodeling-associated protein 8

FTH1 Ferritin Heavy Chain 1

Nrf2 Nuclear factor erythroid 2-related factor 2

ATF4 Activating transcription factor 4

(Continued)
F
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Continued

NOX4 NADPH oxidase 4

SOD1 Superoxide dismutase 1

PAB Pseudolaric acid B

SOD1 Superoxide dismutase 1

ATG5 Autophagy related 5

VEGFR Vascular endothelial growth factor
receptor

NQO1 NAD(P)H quinone dehydrogenase 1

MDA malondialdehyde

SDT Sonodynamic therapy

BBB Blood‒brain barrier

GIME Glioma immunosuppressive
microenvironment

TAM Tumor-associated macrophages

ICIs Immune checkpoint inhibitors

TILs Tumor-infiltrating T cells

CAR-T Chimeric antigen receptor T

DIPG Diffuse intrinsic pontine glioma

AF Amentoflavone

NOX NADPH oxidase

PFI Progression-free interval

LGG Low-grade glioma

OS Overall survival

Fpn Ferroportin

FtMt Mitochondrial ferritin

WA Withaferin A

PCD Programmed cell death
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Ferroptosis and PPAR-gamma
in the limelight of brain
tumors and edema
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Daishi Chen4, Jana Katharina Dahlmanns5, Ivana Mitrovic6,
Luka Zurabashvili 7, Nicolai Savaskan8,9, Hans-Herbert Steiner1

and Marc Dahlmanns5

1Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany, 2Department of
Trauma, Orthopaedics, Plastic and Hand Surgery, University Hospital Augsburg, Augsburg, Germany,
3Center for Spine and Scoliosis Therapy, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany,
4Department of Otorhinolaryngology, Shenzhen People's Hospital, Jinan University, Shenzhen, China,
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Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany, 9Department of Public Health
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Human malignant brain tumors such as gliomas are devastating due to the

induction of cerebral edema and neurodegeneration. A major contributor to

glioma-induced neurodegeneration has been identified as glutamate. Glutamate

promotes cell growth and proliferation in variety of tumor types. Intriguently,

glutamate is also an excitatory neurotransmitter and evokes neuronal cell death

at high concentrations. Even though glutamate signaling at the receptor and its

downstream effectors has been extensively investigated at the molecular level,

there has been little insight into how glutamate enters the tumor

microenvironment and impacts on metabolic equilibration until recently.

Surprisingly, the 12 transmembrane spanning tranporter xCT (SLC7A11)

appeared to be a major player in this process, mediating glutamate secretion

and ferroptosis. Also, PPARg is associated with ferroptosis in neurodegeneration,

thereby destroying neurons and causing brain swelling. Although these data are

intriguing, tumor-associated edema has so far been quoted as of vasogenic

origin. Hence, glutamate and PPARg biology in the process of glioma-induced

brain swelling is conceptually challenging. By inhibiting xCT transporter or AMPA

receptors in vivo, brain swelling and peritumoral alterations can be mitigated.

This review sheds light on the role of glutamate in brain tumors presenting the

conceptual challenge that xCT disruption causes ferroptosis activation in

malignant brain tumors. Thus, interfering with glutamate takes center stage in

forming the basis of a metabolic equilibration approach.

KEYWORDS

glioblastoma, glutamate, peritumoral edema, SLC7A11, ferroptosis
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Introduction

Malignant primary brain tumors account for approximately

30% of all primary brain tumors diagnosed annually in the United

States (1). Gliomas are the most common of these and represent one

of the leading causes of morbidity and mortality in neurological

practice (2). Glioblastomas (also referred to CNS WHO grade 4

glioma) with their median survival time of less than 15 months are

considered to be the most malignant brain tumor entity (3). To

date, conventional treatment includes surgical resection of the bulk

tumor mass, followed by radiotherapy and alkylating agent-based

chemotherapy. Even with these advanced therapies developed over

the last two decades, survival times have only been extended a few

months, and a cure remains elusive. In addition, certain biological

properties of glioma make complete surgical resection nearly

impossible and radiochemotherapy less effective or ineffective in

treating residual glioma cells (4–6). At the cellular level, treatment

resistance can be explained by the intra- and intertumoral

heterogeneity observed in glioblastomas. Based on genomic and

transcriptomic analyses of bulk tumors, glioblastomas can be

categorized into four molecular subtypes, namely proneural,

neural, classical, and mesenchymal (7, 8). However, a follow-up

study revealed that all molecular subtypes coexist within a brain

tumor heterogeneously (5). The clinical prognosis remained

unaffected except for individuals belonging to the proneural

subtype. In glioblastomas with high proportions of alternative

subtypes, patients with dominant proneural subtype had poorer

survival outcomes. In addition, the existence of glioblastoma stem

cells (GSC) also contributes to resistance to adjuvant therapy and

promote tumor recurrence (9).

Untreated cases of glioblastoma are commonly associated with

perifocal edema resulting from blood-brain barrier disruption.

These events can lead to devastating neurological sequelae, such

as hemiparesis or cognitive decline (10). Whether the tumor-related

edema zone should be resected presents a controversial issue until

now, but according to a recent study, surgical resection of the

peritumoral edema zone has been found not to carry a greater risk

of postoperative complications. It even delayed tumor recurrence

than simply removing the contrast-enhancing tumor alone (11).

There has been an association between glioblastoma-induced

edema and alterations of tumor-associated genes inside the edema

region, in terms of upregulations of e.g. c-myc, ERK, or AKT, and

downregulation of tumor-suppressors such as p53 (11). Additional

bioinformatic analysis of ‘The Cancer Genome Atlas’ (TCGA) data

revealed that occurrence of tumor-related brain edema affects

inflammatory gene expression, e.g. by increasing IL-10 levels (12),

which in turn was shown to promote glioma cell invasion (13, 14).

As a result, the threshold for T cell activation can be raised, and

their antitumor activity can be directly suppressed (15). Aside from

that, HMOX1-positive myeloid cells are also capable of secreting IL-

10, causing T cell dysfunction and immune evasion (16). These

recent data strongly suggest that these edema-enriched genes are

crucial for gliomagenesis and tumor angiogenesis. The presence of

these gene alterations in the edema region is in line with the
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observation that this area represents the biologically active part of

the glioma microenvironment (6).

Brain tissues in the peritumoral area show evidence of oxidative

stress, manifested through increased production of reactive oxygen

species (ROS) and decreased antioxidant-enzyme defenses such as

catalase, glutathione peroxidase, and superoxide dismutase (17, 18).

The oxidative stress in the glioma microenvironment is closely

related to iron homeostasis, since the balanced amount of

intracellular iron governs the oxidation state of phospolipids (19,

20) (Figure 1). An iron overload induces lipid peroxidation and

subsequent cell death (21). In a recent study, it was found that GSC

can absorb iron from the glioma microenvironment more

effectively by upregulating their expression levels of ferritin and

transferrin receptor (TfR) 1 (22). The proliferation of glioma cells is

facilitated by such TfR overexpression-mediated oxidant

accumulation, which inactivates cell cycle regulators and

promotes S-phase entry (23).

In addition to the direct iron-related mechanism of tumor

progression, another relevant upstream mechanism for the

development of edema or glutamate-induced excitotoxicity is

represented by the glutamate-cystine antiporter system xc
− (24,

25) (Figure 1). In glioblastoma cells, increasing cystine import

through system xc
− drives the production of antioxidant

glutathione, whereas the inhibition of cystine import, e.g. by

application of system xc
− inhibitors, decreases the antioxidative

capabilities of (brain) tumor cells (26). Several molecular aspects

modulate these antioxidative properties, including the expression of

mitoferrin-1, Nrf2, and catalase, among others (27–29). Thus, the

tumor itself expresses a variety of molecules that serve to decrease

the oxidative stress in its tissue, promoting growth. Interestingly,

blocking system xc
− allows oxidative agents to accumulate

intracellularly, which leads to cell death in the form of ferroptosis

(30) (Figure 1). Ferroptosis inhibits malignant brain tumors and

tumor-related edema by inducing oxidative stress in tumor cells and

through antagonism of the treatment resistance that is strongly

displayed by malignant gliomas (31).

In recent years, different pathways have been identified that

promote an understanding of the biological actions of malignant

tumors and their related cerebral edema. The benefits of current

treatment options are still modest, so the investigation of newly

identified, tumor- and edema-specific targets could translate

quickly into clinical applications, ultimately improving survival

rates and quality of life for patients. In this review, we outline

recent advances in the treatment of tumor-associated cerebral

edema and discuss the overlap between ferroptosis induction in

the tumor and the role of ferroptosis adjacent to the edema site.
Origins and relevance of tumor-
induced cerebral edema

Aside from rapid growth and diffuse brain infiltration,

peritumoral cerebral edema represents a feared hallmark of high-

grade gliomas (HGGs, CNS WHO grades 3 and 4) (6, 32). This
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process involves an increase in fluid content in the surrounding

parenchyma. As a result, the volume and, correspondingly, the

clinical reflection of the mass-effect of the space-occupying

intracranial process rises significantly (33, 34). According to their

cause, there are four known types of cerebral edema, namely

vasogenic, cytotoxic, interstitial, and osmotic edema (6, 32, 35–

37). It cannot be denied that the vasogenic component is the major

player in the progression of HGGs. In most cases, disruption of the

blood-brain barrier and increased vascular permeability are

responsible for the described fluid accumulation (38). This results

in impaired oxygen transport, which increases the symptoms

elicited by the edema (39). The disturbed fluid discharge increases

intracranial pressure (40). This can be compensated in the first line

by reduction of the intracerebral volume of blood and liquor (41),

but soon this reserve is exhausted and the intracranial pressure

rapidly rises. In the final stage, the swelling brain compresses

essential brain areas as well as the venous outflow from the brain

and thus results in an episode of ischemia that consequently leads to

brain death. In fact, the malignancy of primary brain tumors

correlates highly with the development of peritumoral edema (6,

17). The modified tumor microenvironment, known as perifocal or

perilesional brain swelling, has been traditionally believed to

originate primarily from vasogenic mechanisms and is also

associated with the region of tumor-related angiogenesis (6, 42).

Morphologically, tumor vessels show characteristic features such as

altered capillary endothelial with fenestration of hyperplasia

(glomeruloid tufts), irregular basal membranes and extravascular

spaces, and also convoluted and sinusoidal abnormalities (43). As a

consequence of this altered vascular architecture, gliomas

accumulate extracellular water in the peritumoral zone while

losing blood-brain barrier integrity and permeability selectivity
Frontiers in Oncology 03207
(44). A crucial cellular component found within the tumor

microenvironment is the astrocytic glial cell. Astroglial changes

such as altered cytoskeletal arrangements, cytoplasmatic processes

and filopodia, and altered expression of water channels (i.e.

aquaporin-4) were indentified in perifocal areas (45, 46). These

astroglial transformations may reflect a desperate attempt to restore

the extracellular balance of fluids. In addition to astrocytes,

microglia are also present in the tumor microenvironment and

may influence the survival of patients (47). Recently, tumor-

associated microglia/macrophages have been found to hold an

important role in shaping the tumor microenvironment in mice

(48). These data are particularly interesting because up to 50% of

microglia/macrophages are estimated to constitute the tumor (49).

Furthermore, beyond the bulk tumor mass, an analysis of the

peritumoral zone has shown that activated microglia accumulate

at the tumor and therby constitute a major component of the

perifocal area that contributes to tumor-related edema (45). In total,

the mechanisms of this perilesional edema and the cellular and

molecular composition of the microenvironment are only partially

understood, and further studies are required to assess how a cell-

type specific intervention may elevate patients’ symptoms.

Based on the mostly vasogenic nature of peritumoral edema

(44), it is relevant to identify the various angiogenic factors secreted

by HGGs. The most prominent candidates associated with tumor

angiogenesis are vascular endothelial growth factor (VEGF) and

angiopoietin, as both can stimulate endothelial and perivascular

progenitor cell growth as well as tube formation (50). Several

mechanisms in which VEGF is involved, lead to an increase in

the membrane permeability and thus are responsible for edema

formation. Secretion of nitrogen oxide and phosphorylation of

occludin are mainly driven by VEGF and result in relaxation of
FIGURE 1

Schematic model for the mechanism of ferroptosis in glioblastoma. The figure shows the related molecules and pathways of ferroptosis. Ferroptosis
is induced by inhibition of system xc

− or glutathione peroxidase 4 (GPX4), or accumulation of iron (Fe2+) ions. The catabolic enzyme acyl-CoA
synthetase long-chain family member 4 (ACSL4) must be expressed.
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tight junctions (51). Another factor is the hydrostatic edema. This

type of edema induces a shift in the liquor drainage due to the bulk

tumor mass, creating a subsequent hydrostatic pressure gradient

between the ventricle and brain parenchyma. As a result, fluid is

forced into the brain tissue (52–54).
Possibilities to broaden the
therapeutic toolbox to treat
perifocal edema

In clinical settings, the first choice remains the administration

of synthetic glucocorticoids (i. e. dexamethasone) and, in rare cases,

osmotically active compounds like mannitol (55). These clinical

procedures usually reduce the edema rapidly. The underlying

mechanisms consist of blocking nitrogen oxide synthase (NOS),

accelerating the depletion of bradykinin, and reducing expression of

VEGF by tumor cells (56, 57). These procedures stabilize the tight

junctions and therefore reduce the efflux of capillary fluid into the

brain parenchyma. However, there is also evidence that

glucocorticoids may even accelerate the process of tumor

progression (58). For instance, glucocorticoids have strong

glycolytic effects and enhance fructose 2,6-bisphosphate

production - the most potent stimulator of phosphofructokinase 1

- as well as lactate secretion, which may counteract the further

action of anticancer drugs (59). Furthermore, frequent adverse

reactions become increasingly relevant in long-term treatment

with glucocorticoids, and can cause immuno-suppression,

reduction in quality of life, and limiting treatment modalities (60).

With this wide variety of undesirable side effects, alternative

treatment targets need to be indentified and utilized. Since it has

been found that glutamate influx may contribute to cell-swelling

(61, 62), therapeutic targeting of glutamate homeostastis-related

proteins as system xc
- and EAAT1/2 may be potentially beneficial in

treatment of tumor-related cerebral edema. In glioma, the decrease

in EAAT2 (also known as solute carrier family 1 member 2

(SLC1A2) or glutamate transporter 1 (GLT-1)) correlates with

tumor malignancy (63), making the potential involvement of

EAAT in tumor-associated diseases much more relevant. For

breast and colon cancers beneficial effects of EAAT2 upregulation

have already been reported, and the antineoplastic effects have

already been well studied (64, 65). Contrary to the system xc
-,

EAAT2 is poorly expressed by glioblastoma cells (66, 67). It

regulates the entry of glutamate into these cells (Figure 1),

ultimately decreasing extracellular clearance. Under normal

conditions, EAAT2 is predominantly expressed in astrocytes,

although detection is also possible in oligodendrocytes and

neurons (68, 69). EAATs, in general, are membrane-bound

pumps. Up to 90% of extracellular glutamate uptake can be

accounted for by these transporters (70, 71), making them the

single most important mechanism for a glutamate equilibrium.

Upregulation of these receptors, in turn, leads to a substantial shift

of extracellular to intracellular glutamate. Their expression can be

modified by multiple substances and levels, including signaling
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pathways through PI3K and NF-kB, as well as EGF, PPARg and

pituitary adenylate cyclase-activating polypeptide (67, 71, 72).

When EAATs get activated, the sodium ion-driven uptake of

glutamate also leads to the uptake of water, which may contribute to

cytotoxic edema (54). However, observations from liver failure-

induced cerebral edema suggest a decrease of EAAT2 accompanied

by a concurrent increase in AQP4 expression (73, 74). These actions

can elevate extracellular glutamate levels, until reaching neurotoxic

amounts of glutamate leading to the activation of NMDA receptors

associated with neurotoxicity (75, 76). Mechanistically, in terms of

tumor-related edema, its formation can result from a rise in

glutamate, as well as leukotrienes and vascular endothelial growth

factors, which increase the permeability of the brain vessels

surrounding the tumor, that leads to the influx of protein-rich

influx in the brains’ white matter (77). In cases of the other forms of

edema such as cellular or interstitial edema, the pathophysiological

mechanism differs and may involve other consequences, e.g.

increased sodium influx.

When AMPA receptor involvement in cerebral edema, tumor

unrelated and evoked e.g. by traumatic brain injury, was assessed, it

was found that blocking AMPA receptor activity attenuates edema

(78–80). Interestingly, in studies using rodent ischemic models,

AMPA-R and NMDA-R antagonistic actions have demonstrated

promising results. However, despite these positive preclinical

findings, clinical trials using AMPA receptor and NMDA receptor

antagonists have been unsuccessful (81, 82). Nonetheless, the

neuronal microenvironment near the tumor plays an important

role for the tumor progression. In breast and prostate carcinoma

cells, it was shown that tumor behavior is responsive to modulation

of neurotransmitter activity (83), indicating the importance of

chemical released by neuronal tissue. In the specific case of brain

cancer, it is important to understand how malignant tumor cells

and the neuronal cells in the brain communicate with each other in

a reciprocal manner. Previous efforts have been made to address

these questions. A soluble form of neuroligin-3, a synaptic protein,

was able to activate PI3K-mTOR in high-grade glioma, and

increased neuroligin-3 expression was negatively associated with

patient survival (84). In addition to the dependency on such

molecules, it was shown that glioma membrane depolarization

drove tumor proliferation (85). In the same study, it was found

that glioma provide electrical feedback to neurons in the circuit,

thereby regulating their own, activity-driven growth. These data

strongly illustrate how the neuronal compartment in the brain in

the near vicinity of the tumor is involved in the tumor’s progression.
xCT, microenvironment and tumor-
associated cytotoxicity

As another glutamate level-regulating protein, the amino acid

transporter xCT (system xc
-, SLC7A11) is expressed in various

cancers including high-grade gliomas (HGGs). Its specific

modulation of tumor microenvironment is revealed to be a

hallmark of primary malignant brain tumors. In particular, this
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modulation influences the tumor-induced neurotoxicity and

perifocal edema (32). De- and methylation processes as well as

imbalances between the histone deacetylases and acetylases play a

critical role in tumor development, whereas the link between these

epigenetic regulatory mechanisms and the malignant glioma

progression is the transporter system (86).

The inhibition of the cystine/glutamate antiporter xCT leads to

a decrease in neurodegeneration, perifocal edema and prolonged

survival in vivo. Furthermore, this supports the hypothesis that the

formation of edema is, to some extent, influenced by the death of

peritumoral cells (24) (Figure 1). Inhibition of xCT primarily

disrupts its neurodegenerative and microenvironment-toxifying

activity (87). A decrease in glioma cell proliferation was

associated with higher concentrations of xCT inhibitors in an L-

cystine-dependent manner (24, 88, 89). Glioblastoma cells derived

from human patients have been shown to be susceptible to the

cytotoxic effects of xCT-inhibitors (90). Additionally, cytotoxic

effects of substances such as temozolomide are augmented during

sulfasalazine-mediated xCT inhibition (91), and in another study it

was found that the glioma-toxic effect of sulfasalazine alone was

detectable at concentrations above 200 µM (89). HGGs use xCT to

increase glutamate levels and manipulate neuronal glutamate

signaling for their own growth advantage, leading to

chemotherapeutic resistance and a toxic tumor microenvironment

for neurons. Reactive oxygen species (ROS) activate transient

receptor potential (TRP) channels with the result of a potentiated

glutamate release via the TRP-channels. The system xc
- modulates

the tumor microenvironment with impact on host cells and the

cancer stem cells (92).

Glioma-associated microglia/macrophages (GAMs) are an

important cell population component of glioblastoma

microenvironment. The increasing glutamate levels cause

transcriptional changes in GAMs. These cells respond to extracellular

glutamate excess in the glioblastoma microenvironment with

increasing expressions of genes related to glutamate transport and

metabolism such as GRIA2 (GluA2 or AMPA receptor 2), SLC1A2

(EAAT2), SLC1A3 (EAAT1), decreasing expression of xCT and

increasing expression of GLUL (glutamine synthetase) (93).

Regarding the modulation of chemotherapeutic therapy of

HGGs, many promising inhibitors and activators of xCT have

been detected so far. The key problem of a specific modulation of

xCT in gliomas is the ubiquitous expression of xCT also in vital

tissue cells which makes it difficult to specifically target expression

of xCT in tumor cells, especially because of its essential role in

physiology of the CNS (94, 95).

The main cytotoxic tool in countering HGGs is the autophagy-

inducing standard chemotherapeutic agent temozolomide.

Interestingly, silencing xCT expression in human glioma cells is

associated with a higher vulnerability towards temozolomide.

However, gliomas with a high xCT expression are more

vulnerable towards combinatorial treatment with temozolomide

and erastin, a ferroptosis inducing agent (87).

The HDAC-inhibitor SAHA achieves equilibrium with the xCT

transporter and is specific to malignant brain tumors, while leaving

physiological xCT levels in healthy brain parenchyma unaffected.

Consequently, the reduction of extracellular glutamate levels leads
Frontiers in Oncology 05209
to a decrease in neuronal cell death and normalization of the tumor

microenvironment. Reducing neurodegeneration results in less

damage to the surrounding healthy brain parenchyma (94).

Activating transcription factor 4 (ATF4) is a critical oxido-

metabolic regulator that contributes to the malignancy of HGGs by

promoting cell proliferation, migration and tumor angiogenesis

through the modification of the microenvironment in a

potentially harmful way. ATF4 activation is associated with an

elevation of xCT levels. The ATF4-induced proliferation is

extenuated by xCT inhibition and ferroptosis inducers such as

sorafenib and erastin. Moreover, erastin is able to reduce the ATF4-

induced angiogenesis. ATF4 and xCT are tightly connected via a

xCT-dependent configuring of the vascular architecture (31).

Interestingly, ATF4 suppression comes along with an increased

temozolomide susceptibility and autophagy in HGGs leading to a

migratory stop after temozolomide application. ATF4 activation

comes along with a xCT elevation resulting in an elevated

temozolomide resistance. Thus, ATF4 can be regarded as a

chemo-resistance gene in gliomas being determined by its

transcriptional target xCT. Inactivation of ATF4 might be a key

strategy to eliminate chemo-resistance in human gliomas (96).

These findings open the door to new stra teg ie s o f

pharmacological interventions on tumor-associated genes by

epigenetic priming (86).
Involvment of ferroptosis in brain
tumor treatment and the implications
for associated edema

Ferroptosis is a recently discovered mechanism for cell death,

characterized by the accumulation of iron ions and lipid

peroxidation during cell death (30, 97) (Figure 1). This can

ultimately be caused by ROS accumulation through inhibition of

glutathione (GSH) or GSH-dependent selenoprotein glutathione

peroxidase 4 (GPx4) (6, 30), with the latter being expressed most

abundantly in testes and brains (98). This accumulation of iron ions

can then lead to a continuous cycle of lipid oxidation and further

iron accumulation. Interestingly, inhibitors of apoptosis, necrosis

and autophagy cannot reverse this type of cell death (30).

Blocking system xc
-, which displays a strong expression in

malignant tumors such as glioblastoma, induces ferroptosis in the

tumor cells. As this poses the question if system xc
- may be a

potential target during chemotherapeutic intervention, it also of

particular interest to examine whether ferroptosis is involved in the

tumor-associated edema. Recently, it was found that the standard

treatment for edema, dexamethasone, sensitizes cells to ferroptosis

(99), which would allow to target the tumor and its edema

simulatenously by potential medication regimens. In vivo

treatment with the ferroptosis inducer sulfasalazine in mice with

glioma also reduces the tumor-associated edema (89). In line with

this finding, system xc
- inhibition by RNA-mediated silencing

improves tumor associated-edema in glioma (24). In contrast to

this improvement, rats after subarachnoid hemorrhage developed

edema that improved after the inhibition of ferroptosis (100),
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instead of its induction. Thus, the underlying pathology that leads

to edema seems to be important for the interventions to be taken in

edema, and it may be possible that tumor-related edema appear to

be more reliant on the ferroptosis status at the tumor site.

Therefore, it would be valuable to assess other ferroptosis-

inducing drugs regarding their ability to modify tumor-related

edema. At the moment, four distinct classes of ferroptosis-

inducing drugs play a major role. Most important in treatment

are class 1 and class 2 inducers (95, 101). However, class 3 (GSH

depletion compounds, e. g. acetaminophen) and class 4 (lipid

peroxidation inducers, e. g. FINO2) also play significant roles.

Class 1 inducers, such as erastin, primarily target the

aforementioned transporter system xc
-, ultimately depleting the

cells of cystine and glutathione. Interestingly, it has been

reported, that especially some glioma cells, that were therapy-

resistent to current treatments, are characterized by increased

synthesis of polyunsaturated fats (102) – a dependency that can

be readily exploited by GPx4 inhibitors (103).

Class 2 inducers, such as Ras-selective lethal 3 (RSL3) and

ferroptosis inducer 56 (FIN56), directly target and inhibit GPx4

through/via downstream process (101). This presents another

therapeutic angle, as some trials with knockout human cancer

cells have shown a partial resistance to erastin, but not RSL3 (104).

However, serious side effects have been reported involving the

induction of ferroptosis in cardiomyocytes (105, 106). A probable

explanation for this could be the counteraction of the vital,

protective, and antioxidant role that GPx4 plays in many cell

types (17, 107). Therefore, therapeutic use should be exercised

with caution.

As a side note, a number of compounds can protect against

ferroptosis-induced tissue damage. These include thiazolidinediones

(TZDs), which are a class of PPARg agonists (108, 109), as well as
LOX-inhibitors, DPP4-mediated lipid peroxidation suppression and

iron chelators (97).

Ultimately, ferroptosis-inducing agents such as erastin and

RSL3 could potentially serve as extension to standard treatments,

especially in cancers that seem resistant to current drug regiments.

Potential side effects, however, should be taken into consideration.
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Role of PPARg in brain tumors and
cerebral edema
Glioma cells are represented by various cellular and molecular

alterations that may contribute to their pathological effects and may

also represent therapeutical targets. Amongst those altered signaling

pathways, glioma cells express lower endogenous levels of

peroxisome proliferator-activated receptor gamma (PPARg)
compared to healthy brain tissue (67, 110). PPARg is a ligand-

activated transcription factor that plays an important role in

differentiation at a cellular level, as well as glucose and lipid

homeostasis. It has been shown to inhibit cellular proliferation

and angiogenesis, while promoting differentiation and inducing

apoptosis through multiple pathways (111). One of the main

obstacles for drugs designated for intracranial effect is the

crossing of the blood-brain barrier. This can be easily overcome

by PPARg agonists, as demonstrated for pioglitazone in human

glioma xenograft model (112). As shown in Table 1, a wide variety

of antineoplastic efficacy could be seen with PPARg agonists.
While some effects in cerebral neoplasms and edema have been

reported, the exact relation is not yet fully understood. To illustrate,

rosiglitazone has been shown to cause G2/M arrest and apoptosis in

certain glioblastoma cell lines (113), furthermore a delay in the age of

onset of seizures has been demonstrated in genetically susceptible

mice, when utilizing pioglitazone (114). In a clinical trial, an extended

median survival of 19 months has also been reported for diabetic

patients with glioblastoma who received additional treatment with

PPARg agonists, compared to 6 months of extended survival for

patients receiving the standard treatment (115). However, it should

be noted that the observed result indicating longer survival for the

PPARg agonist group was not considered statistically significant due

to the small sample size used in the study. Currently, classic PPARg
agonists such as pioglitazone are FDA approved primarily as oral

antidiabetics but the possibility of generating tissue-specific drugs has

been validated (116). At the moment, treatment with first-generation

TZDs poses many obstacles, as they hold a wide variety of side effects,

limiting their use.
TABLE 1 Assessment of PPAR gamma agonists for their oncological value.

Author Year Agonist Cells Mechanism induced Mechanism hindered

Grommes et al. 2013 Pioglitazone LN-229 Tumor volume

Pestereva et al. 2012 Ciglitazone T98G neurospheres, primary GSC NANOG SOX2

Wang et al. 2012 Rosiglitazone U87MG, U251 MG TGF-ß, P-SMAD3, SMAD3/SMAD4 complex

Wan et al. 2011 Pioglitazone U87MG, U251 MG, T98G ß-catenin

Lee et al. 2011 Pioglitazone T98G AKT, MMP

Charawe et al. 2008 Ciglitazone U87, T98G neurospheres EGF, Tyk2-STAT3

Coras et al. 2007 Troglitazone SMA-560, U87MG, F98 TGF-ß, migration (organotopic model)

Spagnolo et al. 2007 Pioglitazone GL261 Superoxide in glioma cells

Grommes et al. 2006 Pioglitazone C6, A172, U87MG Ki67, tumour volume

Grommes et al. 2005 GW7845 C6, A172, U87MG Ki67, tumour migration
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Recent studies have linked PPARg to ferroptosis. For instance,

dendritic cells in the immune system were shown to require PPARg
to undergo ferroptosis in response to RSL3, a finding that has an

impact on antitumor immunity (117). The impact of PPARg is not
limited to cancer, since also other pathologies such as diabetic

retinopathy were shown to be influenced in their ferroptotic

behavior by PPARg (118). In neuronal tissue, PPARg-mediated

ferroptosis was found to be relevant in the context of traumatic

brain injury (119) and in intracerebral hemorrhage (120).

In addition to PPARg’s role in tumor tissue and ferroptosis that

ocurrs within, its importance also expands to edema. For example,

in the context of traumatic brain injury PPARg-modulating

substances like pioglitazone and rosiglitazone led to decreases in

edema in rodent models (121). Their use is, however, associated

with peripheral edema (122). Though rosiglitazone, for example,

has been shown to decrease edema following a hemorrhagic event

(123), further studies are required to investigate PPARg specifically
in the context of cerebral edema as a result of an adjacent glioma.

According to studies in glioma cell lines and glioma stem cells,

PPARg agonist pioglitazone enhances the functional expression of

EAAT2 (124). It suggests that glioblastoma cells at the peritumoral

zone may be able to improve glutamate transport, which may lead

to alleviation of tumor-related edema. PPARg agonists have

additional effects associated with lipid metabolism and ferroptosis

(Figure 1). Polyunsaturated fatty acids (PUFAs) play a crucial role

in the process of ferroptosis. To induce lipid peroxidation, the

PUFA catabolic enzyme acyl-CoA synthetase long-chain family

member 4 (ACSL4) must be expressed (109). This enzyme is

essential for ferroptosis and responsible for esterifying CoA into

PUFAs such as arachidonic acid (AA) and adrenic acid (AdA). By

forming Acyl-CoA, PUFAs are activated for fatty acid oxidation.

Ut i l i z ing pharmaceut i ca l inh ib i t ion of ACSL4 wi th

thiazolidinedione ligands, a class of PPARg agonists such as

pioglitazone and rosiglitazone, has demonstrated that PPARg
agonists can suppress ferroptosis sensitivity (109). Based on our

current understanding, there is a notable absence of comprehensive

and in-depth studies exploring the molecular mechanisms

underlying the regulation of PPARg and ferroptosis in

glioblastoma. Further investigations on the role of PPARg in

glioma microenvironment and ferroptosis are required.
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Conclusion

In this review, we propose a fresh view on metabolic

homeostasis in context of glioma-induced neurodegeneration and

peritumoral edema. We discussed the glutamate signaling cascade

and glutamate-EAAT-xCT axis with a special focus on ferroptosis.

Brain tumors display a deranged microenvironment with metabolic

changes. We discussed xCT and PPARg as therapeutic targets

addressing brain swelling and metabolic homeostasis. We provide

supporting evidence for the conceptual challenge that xCT

disruption causes ferroptosis activation in malignant brain

tumors. We raised the potential involvement of PPARg agonists

in the context of glioblastoma and tumor-related edema.
Author contributions

EY and MD designed the concept, structure and content of the

review. EY and MD wrote the manuscript with input from SS, AH,

DC, JKD, IM, LZ, H-HS, and NS. EY, SS and MD prepared all tables

and figures. All authors listed provided critical revisions to the

article. All authors contributed to the article and agreed to submit

the manuscript in its current state.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS
statistical report: primary brain and other central nervous system tumors diagnosed
in the united states in 2014-2018. Neuro Oncol (2021) 23:iii1–iii105. doi: 10.1093/
neuonc/noab200

2. Deangelis LM. Brain tumors. N Engl J Med (2001) 344:114–23. doi: 10.1056/
NEJM200101113440207

3. Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al.
Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J
Med (2005) 352:987–96. doi: 10.1056/NEJMoa043330

4. Szerlip NJ, Pedraza A, Chakravarty D, Azim M, Mcguire J, Fang Y, et al.
Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA
amplification in glioblastoma defines subpopulations with distinct growth factor
response. Proc Natl Acad Sci U.S.A. (2012) 109:3041–6. doi: 10.1073/pnas.1114033109
5. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al.
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.
Science (2014) 344:1396–401. doi: 10.1126/science.1254257

6. Yakubov E, Eibl T, Hammer A, Holtmannspotter M, Savaskan N, Steiner HH.
Therapeutic potential of selenium in glioblastoma. Front Neurosci (2021) 15:666679.
doi: 10.3389/fnins.2021.666679

7. Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, et al.
Glioblastoma subclasses can be defined by activity among signal transduction pathways and
associated genomic alterations. PloS One (2009) 4:e7752. doi: 10.1371/journal.pone.0007752

8. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al.
Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma
characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell
(2010) 17:98–110. doi: 10.1016/j.ccr.2009.12.020
frontiersin.org

https://doi.org/10.1093/neuonc/noab200
https://doi.org/10.1093/neuonc/noab200
https://doi.org/10.1056/NEJM200101113440207
https://doi.org/10.1056/NEJM200101113440207
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1073/pnas.1114033109
https://doi.org/10.1126/science.1254257
https://doi.org/10.3389/fnins.2021.666679
https://doi.org/10.1371/journal.pone.0007752
https://doi.org/10.1016/j.ccr.2009.12.020
https://doi.org/10.3389/fonc.2023.1176038
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yakubov et al. 10.3389/fonc.2023.1176038
9. Prager BC, Bhargava S, Mahadev V, Hubert CG, Rich JN. Glioblastoma stem cells:
driving resilience through chaos. Trends Cancer (2020) 6:223–35. doi: 10.1016/
j.trecan.2020.01.009

10. Esquenazi Y, Lo VP, Lee K. Critical care management of cerebral edema in brain
tumors. J Intensive Care Med (2017) 32:15–24. doi: 10.1177/0885066615619618

11. Qin X, Liu R, Akter F, Qin L, Xie Q, Li Y, et al. Peri-tumoral brain edema
associated with glioblastoma correlates with tumor recurrence. J Cancer (2021)
12:2073–82. doi: 10.7150/jca.53198

12. Wu Y, Peng Z, Wang H, Xiang W. Identifying the hub genes of glioma
peritumoral brain edema using bioinformatical methods. Brain Sci (2022) 12:805.
doi: 10.3390/brainsci12060805

13. Ghoochani A, Schwarz MA, Yakubov E, Engelhorn T, Doerfler A, Buchfelder M,
et al. MIF-CD74 signaling impedes microglial M1 polarization and facilitates brain
tumorigenesis. Oncogene (2016) 35:6246–61. doi: 10.1038/onc.2016.160

14. Zhang Z, Huang X, Li J, Fan H, Yang F, Zhang R, et al. Interleukin 10 promotes
growth and invasion of glioma cells by up-regulating KPNA 2 in vitro. J Cancer Res
Ther (2019) 15:927–32. doi: 10.4103/jcrt.JCRT_284_19

15. Perng P, Lim M. Immunosuppressive mechanisms of malignant gliomas:
parallels at non-CNS sites. Front Oncol (2015) 5:153. doi: 10.3389/fonc.2015.00153

16. Ravi VM, Neidert N, Will P, Joseph K, Maier JP, Kuckelhaus J, et al. T-Cell
dysfunction in the glioblastoma microenvironment is mediated by myeloid cells
releasing interleukin-10. Nat Commun (2022) 13:925. doi: 10.1038/s41467-022-
28523-1

17. Yakubov E. Der einfluss des zerebralen selenspiegels auf die progression maligner
hirntumoren. (2019) (Dissertation. Erlangen: Friedrich-Alexander University of
Erlangen-Nürnberg).

18. Obukhova L, Kopytova T, Murach E, Shchelchkova N, Kontorshchikova C,
Medyanik I, et al. Glutathione and its metabolic enzymes in gliomal tumor tissue and
the peritumoral zone at different degrees of anaplasia. Curr Issues Mol Biol (2022)
44:6439–49. doi: 10.3390/cimb44120439

19. Liu S, Dong L, Shi W, Zheng Z, Liu Z, Meng L, et al. Potential targets and
treatments affect oxidative stress in gliomas: an overview of molecular mechanisms.
Front Pharmacol (2022) 13:921070. doi: 10.3389/fphar.2022.921070

20. Zhao J, Wang Y, Tao L, Chen L. Iron transporters and ferroptosis in malignant
brain tumors. Front Oncol (2022) 12. doi: 10.3389/fonc.2022.861834

21. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and
function. Cell Death Differ (2016) 23:369–79. doi: 10.1038/cdd.2015.158

22. Schonberg DL, Miller TE, Wu Q, Flavahan WA, Das NK, Hale JS, et al.
Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell
(2015) 28:441–55. doi: 10.1016/j.ccell.2015.09.002

23. Chirasani SR, Markovic DS, Synowitz M, Eichler SA,Wisniewski P, Kaminska B,
et al. Transferrin-receptor-mediated iron accumulation controls proliferation and
glutamate release in glioma cells. J Mol Med (Berl) (2009) 87:153–67. doi: 10.1007/
s00109-008-0414-3

24. Savaskan NE, Heckel A, Hahnen E, Engelhorn T, Doerfler A, Ganslandt O, et al.
Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration
and alleviates brain edema. Nat Med (2008) 14:629–32. doi: 10.1038/nm1772

25. Dahlmanns M, Dahlmanns JK, Savaskan N, Steiner HH, Yakubov E. Glial
glutamate transporter-mediated plasticity: system xc–/xCT/SLC7A11 and EAAT1/2 in
brain diseases. Front Biosci (Landmark Ed) (2023) 28(3):57. doi: 10.31083/j.fbl2803057

26. Jyotsana N, Ta KT, Delgiorno KE. The role of Cystine/Glutamate antiporter
SLC7A11/xCT in the pathophysiology of cancer. Front Oncol (2022) 12. doi: 10.3389/
fonc.2022.858462

27. Flor S, Oliva CR, Ali MY, Coleman KL, Greenlee JD, Jones KA, et al. Catalase
overexpression drives an aggressive phenotype in glioblastoma. Antioxidants (Basel)
(2021) 10:1988. doi: 10.3390/antiox10121988

28. Awuah WA, Toufik AR, Yarlagadda R, Mikhailova T, Mehta A, Huang H, et al.
Exploring the role of Nrf2 signaling in glioblastoma multiforme. Discovery Oncol
(2022) 13:94. doi: 10.1007/s12672-022-00556-4

29. Ali MY, Griguer CE, Flor S, Oliva CR. Mitoferrin-1 promotes proliferation and
abrogates protein oxidation via the glutathione pathway in glioblastoma. Antioxidants
(Basel) (2023) 12:349. doi: 10.3390/antiox12020349

30. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE,
et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell (2012)
149:1060–72. doi: 10.1016/j.cell.2012.03.042

31. Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan N. ATF4
promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-
dependent manner. Oncogene (2017) 36:5593–608. doi: 10.1038/onc.2017.146

32. Savaskan NE, Eyupoglu IY. xCT modulation in gliomas: relevance to energy
metabolism and tumor microenvironment normalization. Ann Anat (2010) 192:309–
13. doi: 10.1016/j.aanat.2010.07.003

33. Silbergeld DL, Rostomily RC, Alvord ECJr. The cause of death in patients with
glioblastoma is multifactorial: clinical factors and autopsy findings in 117 cases of
supratentorial glioblastoma in adults. J Neurooncol (1991) 10:179–85. doi: 10.1007/
BF00146880

34. Roth P, Pace A, Le Rhun E, Weller M, Ay C, Cohen-Jonathan Moyal E, et al.
Neurological and vascular complications of primary and secondary brain tumours:
Frontiers in Oncology 08212
EANO-ESMO clinical practice guidelines for prophylaxis, diagnosis, treatment and
follow-up. Ann Oncol (2021) 32:171–82. Office@Eano.Eu, E.E.B.E.A., and
Clinicalguidelines@Esmo.Org, E.G.C.E.A. doi: 10.1016/j.annonc.2020.11.003

35. Papadopoulos MC, Saadoun S, Binder DK, Manley GT, Krishna S, Verkman AS.
Molecular mechanisms of brain tumor edema. Neuroscience (2004) 129:1011–20. doi:
10.1016/j.neuroscience.2004.05.044

36. Lawrence SE, Cummings EA, Gaboury I, Daneman D. Population-based study
of incidence and risk factors for cerebral edema in pediatric diabetic ketoacidosis. J
Pediatr (2005) 146:688–92. doi: 10.1016/j.jpeds.2004.12.041

37. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E,
et al. Updated response assessment criteria for high-grade gliomas: response assessment
in neuro-oncology working group. J Clin Oncol (2010) 28:1963–72. doi: 10.1200/
JCO.2009.26.3541

38. Kaal EC, Vecht CJ. The management of brain edema in brain tumors. Curr Opin
Oncol (2004) 16:593–600. doi: 10.1097/01.cco.0000142076.52721.b3

39. Seano G, Nia HT, Emblem KE, Datta M, Ren J, Krishnan S, et al. Solid stress in
brain tumours causes neuronal loss and neurological dysfunction and can be reversed
by lithium. Nat BioMed Eng (2019) 3:230–45. doi: 10.1038/s41551-018-0334-7

40. Liotta EM. Management of cerebral edema, brain compression, and intracranial
pressure. Continuum (Minneap Minn) (2021) 27:1172–200. doi: 10.1212/
CON.0000000000000988

41. Marmarou A, Takagi H, Shulman K. Biomechanics of brain edema and effects
on local cerebral blood flow. Adv Neurol (1980) 28:345–58.

42. Fan Z, Sehm T, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan NE.
Dexamethasone alleviates tumor-associated brain damage and angiogenesis. PloS
One (2014) 9:e93264. doi: 10.1371/journal.pone.0093264

43. Stummer W. Mechanisms of tumor-related brain edema. Neurosurg Focus
(2007) 22:E8. doi: 10.3171/foc.2007.22.5.9

44. Cenciarini M, Valentino M, Belia S, Sforna L, Rosa P, Ronchetti S, et al.
Dexamethasone in glioblastoma multiforme therapy: mechanisms and controversies.
Front Mol Neurosci (2019) 12. doi: 10.3389/fnmol.2019.00065

45. Engelhorn T, Savaskan NE, Schwarz MA, Kreutzer J, Meyer EP, Hahnen E, et al.
Cellular characterization of the peritumoral edema zone in malignant brain tumors.
Cancer Sci (2009) 100:1856–62. doi: 10.1111/j.1349-7006.2009.01259.x

46. Lan YL, Wang X, Lou JC, Ma XC, Zhang B. The potential roles of aquaporin 4 in
malignant gliomas. Oncotarget (2017) 8:32345–55. doi: 10.18632/oncotarget.16017

47. Dai X, Ye L, Li H, Dong X, Tian H, Gao P, et al. Crosstalk between microglia and
neural stem cells influences the relapse of glioblastoma in GBM immunological
microenvironment. Clin Immunol (2023) 251:109333. doi: 10.1016/j.clim.2023.109333

48. Chipman ME, Wang Z, Sun D, Pedraza AM, Bale TA, Parada LF. Tumor
progression is independent of tumor-associated macrophages in cell lineage-based
mouse models of glioblastoma. Proc Natl Acad Sci U.S.A. (2023) 120:e2222084120. doi:
10.1073/pnas.2222084120

49. Arrieta VA, Najem H, Petrosyan E, Lee-Chang C, Chen P, Sonabend AM, et al.
The eclectic nature of glioma-infiltrating macrophages and microglia. Int J Mol Sci
(2021) 22:13382. doi: 10.3390/ijms222413382

50. Takakura N, Kidoya H. Maturation of blood vessels by haematopoietic stem cells
and progenitor cells: involvement of apelin/APJ and angiopoietin/Tie2 interactions in
vessel caliber size regulation. Thromb Haemost (2009) 101:999–1005. doi: 10.1160/
TH08-06-0358

51. Abdul-Muneer PM, Chandra N, Haorah J. Interactions of oxidative stress and
neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol
Neurobiol (2015) 51:966–79. doi: 10.1007/s12035-014-8752-3

52. Fishman RA. Brain edema. N Engl J Med (1975) 293:706–11. doi: 10.1056/
NEJM197510022931407

53. Filippidis AS, Carozza RB, Rekate HL. Aquaporins in brain edema and
neuropathological conditions. Int J Mol Sci (2016) 18:647–666. doi: 10.3390/
ijms18010055

54. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral
edema. J Cereb Blood Flow Metab (2016) 36:513–38. doi: 10.1177/0271678X15617172

55. Cook AM, Morgan Jones G, Hawryluk GWJ, Mailloux P, Mclaughlin D,
Papangelou A, et al. Guidelines for the acute treatment of cerebral edema in
neurocritical care patients. Neurocrit Care (2020) 32:647–66. doi: 10.1007/s12028-
020-00959-7

56. Murayi R, Chittiboina P. Glucocorticoids in the management of peritumoral
brain edema: a review of molecular mechanisms. Childs Nerv Syst (2016) 32:2293–302.
doi: 10.1007/s00381-016-3240-x

57. Naro GR, Noverati N, Craig T. The role of C1-esterase inhibitors in the
management of vasogenic edema in glioblastoma. Case Rep Med (2020)
2020:7981609. doi: 10.1155/2020/7981609

58. Kostopoulou ON, Mohammad AA, Bartek JJr., Winter J, Jung M, Stragliotto G,
et al. Glucocorticoids promote a glioma stem cell-like phenotype and resistance to
chemotherapy in human glioblastoma primary cells: biological and prognostic
significance. Int J Cancer (2018) 142:1266–76. doi: 10.1002/ijc.31132

59. Bartrons R, Simon-Molas H, Rodrıǵuez-Garcıá A, Castaño E, Navarro-Sabaté
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