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Editorial on the Research Topic 


Systemic immune dysregulation in malignant disease: Insights, monitoring and therapeutic exploitation


Each tumor does not only trigger immune responses aiming to control its growth, but also causes profound immune dysregulation in the host: chronic antigen stimulation, contact-dependent effects through invariant receptors, and paracrine or systemic release of mediators induce alterations on virtually every immune cell type in the body. Precise characterization of these changes has key importance for the development of novel immunomodulatory strategies alone or in combination with standard modalities, such as radio- and chemotherapy (1, 2). Aim of this Research Topic was to provide a broad and comprehensive overview about recent discoveries in the field of cancer-associated systemic immune dysregulation, explore pathophysiologic links between the genetic contexture and immunologic tumor microenvironment (TME), analyze the potential prognostic and predictive value of immunologic biomarkers, and highlight opportunities for direct therapeutic exploitation using novel drugs or in the context of cell therapies.

A main subject was the potential clinical utility of blood-based and other biomarkers to guide patient management under immunotherapy (IO, Table 1). Using cytometric bead arrays for multiplex quantification of serum proteins, Schindler et al. demonstrated that blood cytokines can serve as predictors of efficacy and toxicity for PD-(L)1-treated non-small-cell lung cancer patients (NSCLC), but are not suitable for disease monitoring, since serial measurements cannot capture disease progression. This resembles the properties of simple blood-based biomarkers, like the neutrophil-to-lymphocyte ratio and advanced lung inflammation index (ALI) (17, 18), but is in contrast to circulating tumor DNA (ctDNA) assays, which have recently demonstrated superiority compared to radiologic imaging for the longitudinal monitoring of lung and other cancers under immunotherapy or targeted drugs (19, 20). Besides, Zhou et al. (4) demonstrated how machine learning methods can be leveraged in order to improve the predictive power of single blood-based biomarkers, like the C-reactive protein (CRP) and platelet-to-lymphocyte ratio (PLR), in order create complex, more accurate predictors for the immune-related adverse events (irAE) of cancer immunotherapy. Complementary immune cell-based matrices obtained from the peripheral blood of cancer patients might succeed to predict therapy responses more easily and accurately in the future (21).


Table 1 | Articles published as part of the current research topic.



Derangement of T-cell immunity also plays an essential role in the pathogenesis of cancer and treatment-related complications (Figure 1). One prominent example is cerebral pseudoprogression, which is caused by immune cell influx rather than tumor growth, may affect approximately 5% of patients receiving PD-(L)1 inhibitors, and requires meticulous radiologic criteria for accurate diagnosis in order to avoid therapeutic mistakes, as Urban et al.  demonstrated. Alterations of cellular immunity are particularly prominent in case of tumors caused by chronic infection. This was well illustrated by the study of Meng et al. who analyzed head-and-neck squamous cell carcinoma (HNSCC) and revealed a lower degree of cancer cell stemness, heavier CD8+ cell infiltration, stronger expression of immune checkpoint molecules of T-cells, and elevated CCL4 in HPV-positive compared to HPV-negative tumor cells, as assessed by bulk and single-cell RNAseq data from various patient cohorts and cell lines. These data provide a mechanistic basis for the higher IO-sensitivity and more favorable prognosis of HPV-positive compared to HPV-negative HNSCC. Similar observations were reported by Huang et al. in soft-tissue sarcoma (STS), where a lower degree of stemness, more pronounced immune cell infiltrates, better sensitivity to chemotherapy and immunotherapy, as well as longer survival were observed in tumors with less N6-methyladenosine (m6A) RNA methylation. Besides, γδ T cells are important for the control of another virally induced pathology, i.e. HTLV-1-associated adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis (TSP), as highlighted by Ruggieri et al.: cytotoxic Vγ9δ2 lymphocytes can eliminate eukaryotic cells expressing the HTLV-1 proteins HBZ or Tax, while progression from asymptomatic HTLV-1 infection to clinically overt ATLL/TSP is accompanied by depletion of the protective effectors in vivo. Instrumental for these insights was fine-granular analysis of T-cell receptor (TCR) repertoire in HTLV-1 infected patients and healthy donors using a custom spectratyping protocol that could differentiate between very similar transcripts belonging to various human Vγ and Vδ families (22). This is proof-of-principle for the potential clinical utility of comprehensive TCR profiling to elucidate pathogenesis and refine patient stratification in various cancers, as also suggested by earlier pivotal studies in melanoma, large-cell neuroendocrine lung carcinoma and indolent B-cell lymphoma (B-NHL) (23–26).




Figure 1 | The interplay of systemic immune dysregulation and the tumor microenvironment (TME) of cancer as basis for clinical exploitation. Articles of the current research topic are shown in parentheses numbered according to Table 1.



Another important principle nicely demonstrated by the study of Ruggieri et al. is that systemic immune dysregulation and lymphocyte aberrations worsen with further disease progression in advanced cancer. Similar findings have also been described in many other hematologic and solid tumors, for example B-NHL and NSCLC Hao et al. (27, 28). Therefore, studies focusing on early–stage disease are of key importance to deconvolute the complex pathogenetic chains. Using multiparametric flow cytometry to analyze longitudinal blood samples from NSCLC patients, Hao et al. could demonstrate that significant depletion of multiple T–cell subsets alongside systemic immune activation are present already in patients with localized disease and aggravated after radical surgery, for example CD4+ cell counts and the CD4/CD8–cell ratio significantly decreased, but NKT increased in many patients after tumor resection. Thus, quantification of peripheral immune cell subsets could be used alongside TCR–based and ctDNA–based liquid biopsies in the future to improve monitoring of lung and other cancers (29, 30), as well as guide application of consolidative immunotherapies (31, 32). These tools could pave the way for personalized strategies of perioperative immunotherapy, which will become a main objective of translational research in the next few years, after the recent approval of the first adjuvant and neoadjuvant PD–(L)1 inhibitor treatments in thoracic oncology based on the Impower010 and Checkmate–816 trials, respectively (33, 34).

Accumulating evidence suggests that alterations of blood lymphocytes in lung and other cancers originate in the TME, which is hijacked by the growing tumor and transformed in an immunosuppressive niche (1). For example, using multispectral flow cytometry with hierarchical clustering to analyze samples from diverse murine lung cancer models, Olesch et al. could demonstrate alterations of CD324+ epithelial cells, alveolar macrophages, dendritic cells (DCs) and endothelial cells in animals with primary tumors, while fibroblasts, vascular smooth muscle cells, monocytes (Ly6C+ and Ly6C–) and neutrophils were elevated in metastatic models. On the other hand, Bazzi et al. could identify alterations of mast cells and DCs as predominant prognostic markers in early colorectal cancer (CRC) by comparative CIBERSORT analysis vs. the adjacent normal tissue. These changes are facilitated by deregulation of several important biological axes in human cancers, whose precise characterization could reveal specific therapeutic vulnerabilities. For example, expression of the calprotectin–receptor CD147 on penile cancer cells was associated with increased counts of S100A8+/S100A9+ neutrophil–derived suppressor cells in the TME and an elevated risk of metastasis (Mohr et al.). Furthermore, lower expression of IGF regulators in renal cell cancer (RCC) was linked to reduced infiltration by CD8+, Th1, and plasmacytoid DCs, activation of multiple metabolic pathways that fuel cancer progression, and lower sensitivity to antiangiogenics and immunotherapy, despite a higher tumor mutational burden (Jiang et al.). A third example are heat–shock proteins (HSP), which support tumor development by both intracellular and paracrine effects by regulating a wide array of biological processes, including unfolded protein responses, mitochondrial bioenergetics, apoptosis, autophagy, necroptosis, lipid metabolism, angiogenesis, cancer cell stemness, epithelial–mesenchymal transition and tumor immunity (Albakova and Mangasarova). At the same time, they can also serve as danger signal, for example by delivering antigens to DCs, or by direct activation of NK cells (35). The predictive value of serum Hsp70 is currently under investigation (36). Many recent insights into TME processes have relied on global transcriptomic profiling of tumor biopsies to dissect the TME at the functional level, but this method is still too resource–intensive for routine application. An attractive alternative is Nanostring–based targeted RNA profiling, a hybridization method suitable for formalin–fixed paraffin–embedded (FFPE) tissue specimens that requires very small amounts of input material, can be incorporated into the routine molecular workup, and may provide useful prognostic information for newly diagnosed with lung and other cancers (37–40). On the other hand, purely genetic markers, like the tumor mutational burden (TMB), pose technical challenges and have failed to meet expectations (41). Considering the significant variability among patients and cancer entities, wide adoption of practicable TME analysis methods will be crucial for personalized insights and tailored immunotherapeutic approaches. That being said, there are also important similarities across tumors, like the blood lymphopenia, which is a common feature and key adverse prognostic factor of carcinomas, sarcomas, and lymphomas (42). The sole exception to this rule appear to be thymic epithelial tumors, which uniquely cause an accumulation of hyporesponsive CD247–deficient naive T–cells in the periphery due to the unique thymic role in T–cell maturation (43, 44).

From a clinical standpoint, of utmost importance is the therapeutic exploitation of tumor–related immunologic changes. Up until a few years ago, the most effective immunotherapy for malignant disease has been allogeneic hematopoietic stem cell transplantation (HSCT), which represented the only curative option for patients with refractory hematologic cancers, like relapsed acute myeloid leukemia (AML) (45). However, this therapy was notoriously toxic, as the preceding conditioning regimens and subsequent graft–versus–host disease (GvHD) caused significant morbidity and mortality. One rare and exceptionally mild complication is secondary sarcoidosis, which occurs with a very low frequency <1% following HSCT, particularly in the presence of specific HLA–haplotypes, and usually resolves under standard glucocorticoid treatment without long–term sequelae, as observed by Wurm-Kuczera et al.. A newer cell–based cancer therapeutic are chimeric antigen receptor (CAR)–T cells, which have revolutionized the treatment of hematologic malignancies, but face two major challenges in application against lung and other solid tumors: the paucity of suitable dispensable extracellular target antigens, and an immunosuppressive TME that hinders penetration and activation of effector cells, as described by Kandra et al.. Very promising in this regard is the development of transgenic TCR–T cell therapies, which can be directed against the much larger pool of intracellular antigens and further augmented by genetic engineering in order to “heat–up” cold tumors for increased efficacy (46). Another innovative strategy with huge momentum currently are multi–specific antibodies, which can recruit endogenous T– or NK–cells against tumor cells bearing specific surface or even intracellular antigens (47). Important advantages of antibody– vs. cell–based strategies are immediate, off–the–shelf availability and better tolerability, since no previous conditioning is needed, so that these therapies can be started faster and combined with any other modality, like radiotherapy, chemotherapy or other immunotherapies for synergistic effects (48–50).

Since the advent of PD–(L)1 inhibitors, modern cancer medicine has been increasingly focused on the better unraveling, monitoring and reversal of the cancer–associated immune dysregulation for further therapeutic progress. Recent developments in these fields offer a justified hope for cure of several cancers in the near future, a snapshot of which the current Research Topic aspired to capture.
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Purpose

Extrinsic factors and genetic predisposition contribute to the etiology of sarcoidosis, converging in a phenotype of altered immune response associated with multisystemic inflammatory granulomatous tissue infiltration. Immunological reconstitution after hematopoietic stem cell transplantation (HSCT) may represent a unique window for the pathogenesis of the disease. We describe the incidence, clinicopathological features, and HLA associations of sarcoidosis after HSCT in a single-center cohort of patients, together with data from previously published cases.



Methods

We retrospectively analyzed clinical characteristics and HLA haplotypes from allogeneic (allo) or autologous (auto) HSCT patients from January 2001 through May 2021 at the University Medicine Goettingen (UMG), and data from previously published cases.



Results

A total number of 19 patients was identified. These included 4 patients from our center (3 allo HSCT and 1 auto HSCT) and 15 patients from the literature review. Thirteen patients had received an allo HSCT, and six patients had received an auto HSCT. Sarcoidosis occurred after a median interval of 20 (after allo HSCT) and 7 (after auto HSCT) months, respectively. The predominant HLA allele associated with sarcoidosis was HLA DRB1*03:01. Sarcoidosis involved the respiratory tract in 15 patients (three unknown, one without pulmonary involvement), and it was associated with graft-versus-host disease in 7 of 13 patients receiving allo HSCT. None of the donors or patients had a history of sarcoidosis before transplantation. Disease manifestations resolved with standard glucocorticoid treatment without long-term sequelae.



Conclusion

Sarcoidosis may occur at low frequency during reconstitution of the immune system after HSCT. HLA allele associations reflect the associations observed in the general population, particularly with DRB1*03:01. Further insights into the interplay between Tcell reconstitution and the development of sarcoidosis could also provide novel approaches to an improved understanding of the pathogenesis in sarcoidosis.
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Introduction

Sarcoidosis is a multisystemic inflammatory disease characterized by noncaseating granulomas, consisting of CD4+ T cells and macrophages surrounded by CD8+ T cells (1). It frequently affects lungs and lymph nodes but may involve any organ (2). Aberrant interactions of T cells, monocytes, and macrophages after exposure to triggering factors, e.g., (in)organic particles or antigens from infectious agents may contribute to the pathogenic process (2, 3). Genetic susceptibility for sarcoidosis was found associated with distinct human leukocyte antigen (HLA) types, as detected by genome-wide association studies (4, 5). In particular, genetic variants in HLA-DRB1 located in the MHC class II region and the HLA class I antigens A1 and B8 have been associated with an increased risk of disease (6–8).

While DRB1 alleles, such as *03:01 and *03:02, can confer protection against chronic disease (8, 9), HLA DRB1*14 and DRB1*15 are associated with chronic sarcoidosis (2). HLA types implicated in the development of sarcoidosis depending on ethnicity are, among others, HLA-B51 (10), DQB1*02:01 (11), DRB1*03:01 (12, 13), DRB1 *11:01 (13, 14), and DRB1*15:01 (12, 14). An association between sarcoidosis and hematologic malignancies has been observed, documenting sarcoidosis occurring before, during, or after the diagnosis of lymphoma (15–17). Sarcoidosis in the context of hematopoietic stem cell transplantation (HSCT) has been reported rarely (18).

In this study, we determined the incidence and characteristics of sarcoidosis following allogeneic (allo) and autologous (auto) HSCT in a cohort of consecutive patients in the context of findings with previously reported patient data, aiming at a comprehensive clinicopathological view at this rare condition.



Methods


Patient Population and Setting

We retrospectively searched our database for sarcoidosis following HSCT in all patients who underwent HSCT between January 2001 and May 2021, with a particular interest in the patients’ and donors’ HLA status and disease manifestations, chemotherapeutic regimens, sarcoidosis manifestations, and overall outcome. The diagnosis of sarcoidosis was assumed based on non-caseating epithelioid granulomas on histologic examination and exclusion of other causes of granulomas. Data retrieved from the literature were reported as stated in the original publications.



Review of the Literature

Case reports and case series describing sarcoidosis following HSCT were searched using the MeSH terms “stem cell transplantation” and “sarcoidosis” in Medline/Pubmed. Gender, ethnicity, hematologic disease, prior history of sarcoidosis in the donor, remission status before HSCT, donor type, HLA status, conditioning regimen, interval to the onset of sarcoidosis after HSCT, imaging findings, pulmonary function tests (PFTs), involvement of non-pulmonary organs, evidence of graft-versus-host disease (GvHD), and response to glucocorticoids (GC) were extracted from the identified case reports or case series, when available.



HLA Genotyping

Phenotypes and genotypes are reported as recommended by the WHO Nomenclature Committee for Factors of the HLA System, using four digits in the UMG cohort. HLA phenotypes and genotypes of patients previously reported in the literature are reported as stated in the original publication. Specifically, high-resolution HLA typing was performed by sequence-based typing (SeCore SBT sequencing kits, One Lambda, West Hills, CA, USA) according to the standards for histocompatibility and immunogenetics testing of the European Federation for Immunogenetics (EFI) at our center (19). All 10 HLA loci relevant for transplantation were characterized in the UMG cohort (HLA-A, -B, -C, -DRB1, and -DQB1). Furthermore, HLA-DPB1 was characterized in two out of three UMG patients receiving a matched unrelated donor (MUD) transplantation.



Statistical Analysis

Data collection and analysis were performed employing Microsoft Excel® (Version 16.48, Microsoft Corporation, Redmond, WA, USA) and GraphPad Prism® Version 9.1 (GraphPad Software, San Diego, CA, USA). Contingency tables and Fisher’s exact test as well as unpaired, two-tailed Student’s t-test were used for data analysis, as appropriate. p-values <0.05 were considered significant, and p-values <0.15 indicate trends worth reporting. Time to onset of disease (cumulative incidence) was calculated using Kaplan–Meier analysis (Log-rank test). The cutoff for age as criterion for the onset of sarcoidosis was calculated using the software X-tile (X-tile, New Haven, Connecticut, USA). Allele frequencies of HLA alleles were calculated via direct counting (number of observations for a given allele divided by the number of haplotypes (2 n, where n = sample size) and the HLA allele frequencies in Germany and Europe (Population 3,6,8) were stated as found in the classical allele frequency search (20).




Results

Of a total number of 2,022 patients who underwent HSCT from 2001 to 2021 at our center, 4 patients who developed sarcoidosis after HSCT were analyzed. An additional 15 patients identified in the literature were included for further analysis. The patient flow is depicted in Figure 1.




Figure 1 | STROBE flowchart of patient disposition.




Sarcoidosis Following HSCT in Four Patients

Case #1: A 35-year-old male patient without a history of sarcoidosis diagnosed with primary mediastinal B-cell lymphoma received an allo HSCT from a MUD (also without a history of sarcoidosis), leading to a complete remission (CR) without evidence of GvHD. Thirty months later, enlarged pulmonary lymph nodes (LN) and ground glass opacities were noted on chest computed tomography (CT). A LN biopsy showed non-necrotizing granulomas, consistent with a diagnosis of sarcoidosis. Pulmonary function tests showed a reduced diffusion capacity for carbon monoxide (DLCO/SB) and forced vital capacity (FVC), compatible with a restrictive pattern. As the patient remained asymptomatic, no specific treatment was initiated. A subsequent CT showed spontaneous regression of the pulmonary changes after six months.

Case #2: A 65-year-old male patient diagnosed with angioimmunoblastic T-cell lymphoma (AITL) received an allo HSCT from a MUD with no known history of sarcoidosis leading to a CR without evidence of GvHD. Eighteen months after HSCT, the patient reported dyspnea and had a restrictive pattern on PFT. A chest CT showed basal consolidations and enlarged mediastinal LN. A bronchoalveolar lavage (BAL) showed non-specific inflammation without findings suggestive of sarcoidosis. Two months later, non-caseating granulomas consistent with sarcoidosis were histologically diagnosed after biopsy of a pulmonary lesion, and the patient was started on GC therapy with a tapering regimen, eliciting a good clinical response.

Case #3: A 56-year-old male patient diagnosed with acute myelogenous leukemia (M5) received an allo HSCT from a matched related donor (MRD) without a history of sarcoidosis. Subsequently, the patient suffered from cutaneous, hepatic, and intestinal GvHD. Twenty-four months after allo HSCT, the patient complained of acute abdominal and thoracic pain, which was interpreted as post-herpetic neuralgia and side effects of gastrointestinal GvHD. A chest and abdominal CT showed bilateral hilar lymphadenopathy, intrapulmonary nodules, and prominent abdominal lymph nodes. Sarcoidosis was diagnosed following biopsy of a hilar LN, and, as the patient was asymptomatic, a watch-and-wait strategy was employed. However, in the following months, the patient complained of arthralgias with shoulder pain, morning stiffness in the fingers and elbows, as well as shortness of breath following moderate physical exertion. Therefore, a GC regimen with concomitant non-steroidal antirheumatic drugs was initiated with good clinical regression of symptoms.

Case #4: A 56-year-old male patient was diagnosed with AITL. Standard chemotherapy was consolidated with auto HSCT. Five months after transplantation, enlarged pulmonary LN were noted on routine chest CT, and histopathologic examination showed granulomas consistent with pulmonary sarcoidosis. Oral GC therapy was initiated leading to a remission of pulmonary nodules and LN. After tapering of GC, an increase in size of mediastinal and infradiaphragmal LN was noted, and a repeat biopsy was performed leading to the diagnosis of a relapse of the AITL. An allo HSCT from a MRD with no known history of sarcoidosis was performed. Post allo HSCT, the patient suffered from GC-sensitive cutaneous and intestinal GvHD; no relapse of sarcoidosis was noted.



Patient Characteristics

Overall, we observed symptomatic sarcoidosis in a total of 4 out of 1,065 and 957 patients, who had received allogeneic and autologous stem cell transplantations in the UMG transplantation program, respectively. The disease emerged within a median follow-up observation period of 22 months, resulting in an estimated incidence of 156/100,000 and 58/100,000 for patients at risk after allo and auto HSCT, respectively.

An additional 15 cases of sarcoidosis following HSCT have been reported in the literature, with 5 patients having received an auto HSCT (18, 21, 22), while 10 had received an allo HSCT (18, 23–30). Together with our patients, this translates into a total number of 19 reported cases. Although the total populations of the previously published case reports are unknown, the overall low incidences in the allogeneic transplantation group appear consistent between our cohort and the published data. The patient characteristics are shown in Tables 1 and 2. At our center, we also identified 11 patients with a previous history of clinically apparent sarcoidosis prior to HSCT. None of these patients developed histologically proven symptomatic sarcoidosis following HSCT. Of note, only four patients with sarcoidosis prior to HSCT could be observed beyond the median time of disease emergence of 22 months, with a median post-transplantation observation period of 52 months.


Table 1 | Summary of sarcoidosis patient characteristics after allogenous HSCT.




Table 2 | Summary of sarcoidosis patient characteristics after autologous HSCT.





Underlying Disease in 19 Patients Who Developed Sarcoidosis After Stem Cell Transplantation

The most frequently reported underlying disease leading to treatment with allo HSCT was lymphoma (n = 7) followed by leukemia (n = 4) and myelodysplastic syndrome (MDS)/myelofibrosis (MF) (n = 3). The reported underlying diseases leading to auto HSCT were breast or testicular cancer (n = 4), as well as polyneuropathy, organomegaly, endocrinopathy, monoclonal protein, skin changes (POEMS) syndrome in one patient.



Donor Status

Of the 13 patients who received an allo HSCT, 6 patients were transplanted from a MUD, 6 from a MRD, and in 1 case, the donor status was not reported. Five patients received peripheral blood stem cell donations, five received bone marrow transplant donations, and in three patients, the mode of transplantation was not specified. None of the three donors of our cohort had a history of sarcoidosis, while this was the case in 3 of 10 donors in the cohort of published case studies (23–25).



Types of Chemotherapy

The most frequently applied chemotherapeutic agents in the allo HSCT cohort were busulfan (BU) (n = 8), fludarabine (FLU) (n = 7), and cyclophosphamide (CYC) (n = 5). Two patients each also received alemtuzumab (ALM) or antithymocyte globulin (ATG) as part of the conditioning regimen, respectively. In five patients, chemotherapy had been combined with total body irradiation (TBI). In the autologous cohort carboplatin, etoposide, BEAM, and melphalan were the most frequently applied cytostatic drugs.



Clinical Characteristics

All patients had pulmonary sarcoidosis. Most patients showed changes on CT/chest radiographs (15/19; n = 3 unknown [UKN], n = 1 no changes). Involvement of extrapulmonary organs was present in 11/19 patients; the most common organ manifestation was skin followed by liver. Seven of the 13 allo HSCT also had evidence of GvHD; in two patients, the GvHD status was not reported. A response to GC was noted in all patients where they were given (12/19; 2 UKN, 4 asymptomatic, 1 resolution of symptoms after donor lymphocyte infusion [DLI]). No additional immunosuppressive therapies were used. The characteristics of the patients in both groups (allo vs. auto HSCT) are summarized in Table 3.


Table 3 | Comparison of general patient characteristics in the allogeneic and autologous transplantation group.





HLA Genotypes in Association With Sarcoidosis and HSCT

The HLA status was reported in eight cases. Four of these patients expressed the DRB1*03:01 HLA allele, already known for a strong association with sarcoidosis. Similarly, all other patients also exhibited HLA types known to be associated with sarcoidosis (Tables 1 and 2). Specifically, the allele frequencies of DRB1*03:01 and DQB1*02:01 were higher in our cohort compared to the respective allele frequency in the cohort of all reported patients with sarcoidosis following HSCT (our cohort and published case reports). The allele frequencies for the respective genotypes in this cohort were, in turn, higher than the allele frequency reported in a German and European reference population (20) (Figure 2).




Figure 2 | Allele frequency of HLA types in HSCT patients with sarcoidosis compared to German and European normal population cohorts. Box plots of HLA allele frequencies in Europe shown where available (20). The calculation of allele frequency in our cohort and published case report cohorts were obtained via direct counting (number of observations for a given allele divided by the number of haplotypes [2 n, where n = sample size]). UMG, University Medical Center Göttingen.





Cumulative Incidence of Post-HSCT Sarcoidosis

The median age of patients with sarcoidosis after HSCT was 50 years (range 25 to 69 years). The median time to onset of sarcoidosis post HSCT overall was 17 months (range 3 to 120 months), with patients developing sarcoidosis after allo HSCT at a median time of 20 months (range 3 to 30 months) and 7 months (range 3 to 120 months) after auto HSCT (p = 0.5422) (Figure 3A). In patients over 50 years of age, the median time to sarcoidosis after HSCT was 12 months, while it was 21 months in patients younger than 50 years (p = 0.1438) (Figure 3B). Overall, patients were more often female (11 vs. 8) and of Caucasian ethnicity. There were no statistically significant differences between groups. Furthermore, we analyzed the cumulative incidence of sarcoidosis depending on gender, donor status (MRD/MUD), solid vs. hematological neoplasia, and lymphoma vs. leukemia/MDS/MF (Figures 4A–E). Due to the low overall numbers, no statistically significant differences were detected.




Figure 3 | (A) Cumulative incidence of sarcoidosis over time in the whole cohort. (B) Cumulative incidence of sarcoidosis in allogenous HSCT versus autologous HSCT. The median time to onset of sarcoidosis post HSCT overall was 17 months (range 3 to 120 months), with patients developing sarcoidosis after allo HSCT at a median time of 20 months (range 3 to 30 months) and 7 months (range 3 to 120 months) after auto HSCT. No statistically significant difference between the groups could be detected (p = 0.5422).






Figure 4 | (A–E) Cumulative incidence of sarcoidosis over time. (A) Comparison of MRD versus MUD donor status. (B) Male versus female patients. (C) Leukemia versus lymphoma/MDS/MF. (D) Comparison of patients aged older than 50 years versus younger than 50 years. (E) Comparison of hematological versus solid malignancies. No statistically significant differences could be detected. MDS, myelodysplastic syndrome; MF, myelofibrosis; MRD, matched related donor; MUD, matched unrelated donor.






Discussion

Symptomatic sarcoidosis after HSCT represents a rare condition, and we here provide an estimate of incidences in the autologous and allogeneic transplantation setting and its clinical characteristics. Sarcoidosis post HSCT occurred in patients receiving both allogeneic and autologous stem cell transplantations at a ratio of 3:1, both in the UMG and the previously published patients. The increased frequency of sarcoidosis after allogeneic transplantation is compatible with the strong activation of the immune system upon engraftment in these patients. This observation suggests that a preformed immunological reaction may occur with increasing immunological competence of the Tcell repertoire and/or antigen-presenting cells (APCs). This notion is further supported by the HLA allele associations observed for sarcoidosis post HSCT, which reiterates the associations described for sporadic sarcoidosis (2, 8–14) (Table 1). While the antigen(s) triggering sarcoidosis remain elusive, our observations were best compatible with a minor self-antigen or a preexisting viral antigen, which is presented to the newly engrafted immune system in an HLA allele associated efficacy to elicit the sarcoidosis-type reaction in the post transplantation period (median time of 17 months, 20 months after allo HSCT, and 7 months after auto HSCT).

Seven of 13 patients with sarcoidosis post allogeneic HSCT also developed acute or chronic GvHD in the post-transplantation follow-up. Dependent on the precise transplantation setting, approximately 60% of patients develop GvHD after allo HSCT. Thus, our data do not support an association of sarcoidosis and GvHD, albeit this is limited by the small patient numbers.

Immunologically, granuloma formation is initiated by an interaction between CD4+ T cells and APCs, such as macrophages or dendritic cells via HLA class II antigen–peptide complex leading to T-cell activation, differentiation into Th1 cells, secretion of interleukin (IL)-2 and interferon (IFN)-g, and augmented macrophage tumor necrosis factor (TNF)-a production, resulting in immune response amplification (31–33). After granuloma formation, there are two possible outcomes: Granuloma formation can either resolve, if the peptide antigens are presented by HLA-DR3 molecules on dendritic cells or macrophages and subsequently recognized by T cells leading to the release of a range of cytokines, or persistent granulomatous inflammation with subsequent tissue damage requiring immunosuppressive therapy (32). The latter is thought to occur if the antigen recognition is inefficient and can be due to peptides displayed by molecules other than HLA-DRB1*03 (HLA-DR3) or T cells that are not capable of generating efficient T-cell clones (34).

Two agents that interfere with both Tcell and- dendritic cell (DC)-mediated immunity, which is necessary for the resolution of sarcoid granulomas, are ATG and ALM. Two of our allo HSCT patients received ATG, while it was not reported in any of the case reports. ATG, a polyclonal antibody, is used to prevent GvHD and suppress allograft rejection. Owing to its polyclonality, there are diverse effects of ATG on the immune system, among them Tcell depletion, modulation of leukocyte/endothelial interactions, apoptosis in B cells, interference with DC function and the induction of regulatory T and natural killer (NK) T cells (35). So far there have been no reported cases linking sarcoidosis to ATG treatment.

Alemtuzumab, however, has been associated with the development of sarcoidosis and there are several case reports describing the occurrence of sarcoidosis post ALM treatment in multiple sclerosis patients (36–38). While the exact mechanism by which ALM triggers sarcoidosis is not yet known, a dysregulation in the Th1/Tc1 cell/IFN-γ network and the development of autoantibodies by dysregulated B cells has been postulated (39). The immune dysregulatory effects of ATG and ALM could play a role in the development of sarcoidosis in the post HSCT setting; however, taking into account the heterogenous usage of ATG and ALM in the reported patients, no clear causal link can be inferred.

Different hypotheses have been proposed, aiming to explain the pathogenesis of sarcoidosis after malignancy: Firstly, it has been postulated that sarcoidosis develops as a reaction to the immunosuppressive effect of chemotherapies or to a specific chemotherapy agent, such as bleomycin, known to achieve high concentrations in LN, skin, and lung tissue (40).

Secondly, Brincker et al. hypothesized that the appearance of sarcoidosis post malignancy may be driven by antigens derived from tumor cells leading to immunological events resulting in granuloma formation (41). Thirdly, Kornacker et al. suggested that underlying immunologic disturbances associated with the primary malignancy may lead to the formation of epithelioid granulomas (42).

In three patients the occurrence of sarcoidosis has been reported after possible transmission from the donor (23–25). The data from our patient cohort do not support an increased risk of transmission, as none of our patients was transplanted from a donor with a previous history of sarcoidosis, and vice versa, none of the patients with sarcoidosis in their pre-transplant medical history experienced sarcoidosis recurrence.

The immunological environment post HSCT, similar to that present in sarcoidosis pathogenesis outside of the context of HSCT, could promote the development of sarcoidosis, especially in a genetically susceptible individual with a specific HLA allele. The reported disease pathogenesis and potentially triggering factors are summarized in Figure 5: Before HSCT, the conditioning regimen as well as underlying disease damage of host tissues induce pro-inflammatory cytokines such as TNF-a, chemokines, and costimulatory molecules on host APCs. Following HSCT, donor T cells proliferate and differentiate in response to activated host APCs, then expressing IFN-g, IL-2, and TNF-a, leading to T-cell expansion and differentiation into Th1 vs. Th2 subtypes (43, 44). This is followed by an increase in the number of suppressor/cytotoxic lymphocytes and then of helper–inducer phenotype T cells, thereby inverting CD4+/CD8+ ratios. A normalization of CD4+/CD8+ T cell ratios takes place approximately 1 to 2 years after HSCT (45, 46) with a longer time span in older patients, whose thymic function is less pronounced.




Figure 5 | Granuloma formation in sarcoidosis with possible triggers in the context of hematopoietic stem cell transplantation (HSCT). Infectious, organic, and inorganic agents are possible triggers for sarcoidosis against the background of genetic and environmental factors. Furthermore, specific sarcoidosis triggers in HSCT could be the HSCT conditioning regimen and disease damage of host tissues. Antigen-presenting cells (APC) produce high levels of TNF α, interleukins (IL)-12, -15, and -18, macrophage inflammatory protein 1 (MIP-1), monocyte chemotactic protein 1 (MCP-1), and granulocyte macrophage colony-stimulating factor (GM-CSF). CD4+ T cells initiate differentiation into Th1 helper cells that secrete predominantly interleukin-2 and interferon gamma IFN-γ as well as Th2 helper cells that secrete IL-4, -5, -6, and -10 stimulate fibroblast proliferation and collagen production leading to the formation of granuloma and possible fibrosis. In the context of HSCT, granuloma formation could be enhanced by graft versus host disease (GvHD), immune reconstitution, and donor transmission.



During immune reconstitution, higher levels of cytokines such as MCP-1, CCR1, CCR2, IL-8, and Rantes are present, leading to a tissue environment promoting the formation of non-necrotizing epithelioid granulomas (47–49).

All allogenously transplanted patients reported previously, including those in our cohort, developed sarcoidosis after complete donor engraftment of their bone marrow, suggesting that the development of sarcoidosis in these circumstances was initiated by the donor immune system. Interestingly, it has been shown that individuals with a HLA-B8/DR3 phenotype produce higher amounts of TNF-a compared to their IFN-g generation potential (50), making them susceptible to humoral hyperreactivity and anergy under an environmental stress. Overall, the time course of sarcoidosis development in the described patients within this report (ranging from three to 120 months after HSCT) is consistent with what would be expected from the current hypothesized mechanisms of granuloma formation, which usually take months rather days or weeks to form (51).

The older age and shorter time to the onset of sarcoidosis post HSCT of the analyzed patients compared to the normal population might be explained with the progressive involution of thymic tissue during aging with a decline in T-cell output and T-cell senescence with restricted T-cell receptor repertoire diversity, leading to a slower immune reconstitution and impaired immune responses following transplantation (46). However, a bias that patients with malignancies, especially lymphomas, are generally older must be considered.

The occurrence of extrapulmonary manifestations of sarcoidosis in patients with leukemia, MDS, and MF compared to lymphoma patients has been linked to malignant antigens as a sarcoidosis trigger in leukemic diseases (41). While the remission status prior to HSCT of most reported patients in the literature is unknown, sarcoidosis in our cohort patients occurred exclusively in patients with complete disease remissions, rendering a malignant antigenic trigger for sarcoidosis unlikely. Specific chemotherapeutic agents, such as bleomycin, have been hypothesized to trigger sarcoidosis. Interestingly, the majority of the allo HSCT patients received a regimen including BU, FLU, and CYC. There have been no reports implicating FLU and BU in the formation of sarcoidosis, CYC has been used previously in the treatment of severe cardiac or neurosarcoidosis (52). TBI is known to lead to a delayed immune reconstitution (46).

Our study has several limitations. First, sarcoidosis post HSCT is a rarely reported event, although based on observations by Bhagat et al. (18) and the prevalence in our cohort of HSCT patients, the occurrence in HSCT might be higher than previously estimated. Also, the number of patients with accesible data for analysis was limited and the small number of cases may influence trends we observed in sub-groups during data analysis. Furthermore, multicentric analyses in additional cohorts may gain more granular insights into the prevalence, potential triggers, and the pathogenesis of sarcoidosis post HSCT. Lastly, it has to be noted that the diagnosis of sarcoidosis can never be ascertained based on granulomas alone, but, at least in our patients, we are confident to have excluded alternative reasons for granulomatous reaction. For the patients in the literature, we had to rely on the reported data. Nevertheless, our report has several strengths: To our knowledge, this report represents the most comprehensive analysis from a single center in conjunction with previously published data. The strong HLA association reported and corroborated by our data suggest that sarcoidosis occurrence in this vulnerable population is influenced by a genetic predisposition requiring additional immunological events in the context of HSCT.



Conclusions

Based on the 2022 HSCT patients that have been treated at our institution over a 20-year span and four cases of sarcoidosis occurring therein, we estimate the incidence at 156 and 58 cases per 100,000 for allo and auto HSCT, respectively, which is higher than reported by Bhagat et al. (18) and higher than reported in the general German population (53). Based on the low number of incident cases, this is, however, only a rough estimate. Overall, sarcoidosis after allo or auto HSCT is a rare event, frequently affects the lungs and skin, but usually responds to GC treatment. Further insights into the interplay between T cell reconstitution and the formation of sarcoidosis may also provide insight into the overall pathogenesis of sarcoidosis.
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Heat shock proteins are molecular chaperones which support tumor development by regulating various cellular processes including unfolded protein response, mitochondrial bioenergetics, apoptosis, autophagy, necroptosis, lipid metabolism, angiogenesis, cancer cell stemness, epithelial-mesenchymal transition and tumor immunity. Apart from their intracellular activities, HSPs have also distinct extracellular functions. However, the role that HSP chaperones play in the regulation of immune responses inside and outside the cell is not yet clear. Herein, we explore the intracellular and extracellular immunologic functions of HSPs in cancer. A broader understanding of how HSPs modulate immune responses may provide critical insights for the development of effective immunotherapies.
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Introduction

Heat shock proteins (HSPs) are molecular chaperones classified into several families such as HSP70, HSP90, HSP110, HSPB, HSP40 and chaperonins (1). HSPs are induced upon various cellular stresses including heat, radiation, infectious agents, heavy metal toxicity and hypoxia (2). Recent data have emerged suggesting that HSP functions are not only dependent on the stimuli triggering their expression, but also the compartment in which they are present (3–9). HSPs have been implicated in the regulation of apoptosis, necroptosis, autophagy, cancer cell stemness, epithelial to mesenchymal transition, lipid metabolism, angiogenesis and tumor immunity, supporting tumor growth and development (10–14). Originally described as intracellular chaperones, HSPs have also been found in extracellular milieu. In extracellular environment, presence of HSPs associates with tumor aggressiveness, resistance to therapy and poor clinical outcome (15–17). Various HSPs have been detected in liquid biopsies of cancer patients, stimulating the research towards the discovery of HSP-based specific biomarker of cancer [reviewed in (18)] (19–32).

Increasing evidence has shown that extracellular HSPs are capable of triggering immune responses, which was further translated into the development of various HSP-based immunotherapies (33–39). Furthermore, several studies reported that different populations of immune cells including natural killer (NK) cells, T cells, monocyte-derived dendritic cells (mDCs), platelets and neutrophils may release HSPs in extracellular vesicles [reviewed in (18)] (40–46). This review will focus on immunologic functions of HSPs in tumor immunity. Further elucidating the role of HSPs in tumor immunology, may provide the basis for future discoveries of novel and effective HSP-based immunotherapies.



Immune Functions of HSPs in Cancer

HSPs are localized in various cellular compartments including cytosol, endoplasmic reticulum (ER) and mitochondria, where they play compartment-specific cellular functions. For example, ER-resident HSP90 chaperone glucose-regulated protein 94 (GRP94, also known as Gp96) plays critical role in unfolded protein response (UPR) while mitochondria-resident HSP90 chaperone tumor necrosis factor receptor-associated protein 1 (TRAP1) is involved in mitochondrial bioenergetics, contributing to apoptosis resistance, cancer cell stemness and Warburg phenotype (47–50). Apart from their compartment-specific role, HSPs play an important role in the regulation of immune responses. Bae and colleagues reported that HSP90 inhibition reduces surface expression of CD3, CD4, CD8, CD28, CD40L, CD25 and αβ on T cells and activating receptors such as CD2, CD11a, CD94, NKp30, NKp44, NKp46, KARp50.3 on the surface of NK cells (51). HSP90 inhibition reduces NK and T cell proliferation, NK cell cytotoxic activity and IFN-γ production by T and NK cells (51, 52). By contrast, ER HSP90 member GRP94 does not affect cytolytic activity of NK cells towards tumors but rather acts indirectly via antigen presenting cells (APC) selectively enhancing cytokine production (53). Earlier studies showed that HSPs carry tumor-derived peptides that may induce T- cell mediated response while HSPs may stimulate NK cells in the absence of antigenic peptide (45, 46). In this regard, Multhoff and colleagues reported that pre-treatment of NK cells with stress-inducible HSP70 or HSP70-derived TKD peptide in combination with IL-2 or IL-15 induces NK cell proliferation and cytolytic activity (54, 55). NK cells pre-stimulated with IL-2 and TKD in combination with anti-PD-1 antibody improves cytolytic activity of NK cells against tumor cells and inhibits tumor growth in vivo (56). Notably, adoptive therapy with autologous NK cells ex vivo stimulated with TKD and IL-2 increased the number of activated NK cells in the blood of patients with membrane-positive HSP70 non-small cell lung carcinoma after radiochemotherapy in phase II clinical trial (36). Taken together, HSPs regulate the expression of critical antigens and co-stimulatory molecules on T cells and key activating receptors on NK cells while HSPs inhibition impairs proliferation and cytotoxic activity of T and NK cells, suggesting that HSPs are critical for the regulation of the phenotype and functional activity of T and NK cells.

HSP70s may also act as damage-associated molecular patterns (DAMPs) and elicit anti-tumor response which with long-term exposure results in immune tolerance (11, 57–59). Acting as a DAMP, HSP70 negatively regulates multimeric cytosolic protein complex - the Nod-like receptor protein 3 (NLRP3) inflammasome (60). NLRP3 is an intracellular sensor that detects endogenous danger signals, leading to the assembly of NLRP3 inflammasome, which further activates the caspase-1- dependent release of pro-inflammatory cytokines such as IL-1β and IL-18 (61). In this regard, HSP70 deficiency leads to the activation of caspase-1 and subsequent production of IL-1β by bone marrow-derived macrophages (60). Conversely, HSP90 downregulation inhibits priming and activation of NLRP3 inflammasome (62). HSP90 inhibition in macrophages showed to affect an inflammatory response to lipopolysaccharide and IFNγ, resulting in reduced secretion of IL-6, TNFα and nitric oxide (NO) (63). Since HSP90 stabilizes IKK complex, the expression of IKK was also diminished, leading to inactivation of NF-kB pathway (63–65). Therefore, the overexpression of HSP70 and HSP90 in the cytosol will either inhibit or activate NLRP3 inflammasome, respectively, suggesting that functions of immune cells that express NLPR3 inflammasome (e.g. macrophages, monocytes and CD4+T cells) may be affected by HSPs up- or down-regulation. For example, inflammasome activation in CD4+T cells leads to increased IFNγ secretion and T helper (Th)1 differentiation, and, therefore, various HSP90 and HSP70 inhibitors may differently affect Th1 response, however, this warrants further investigation (66).

HSPs such as stress-inducible cytosolic HSP90 family member HSP90α (HSP90AA1) and constitutive cytosolic HSP90 member HSP90β (HSP90AB1) also play an important role in antigen presentation. Ichiyanagi and co-workers demonstrated that heat shock factor -1 (HSF-1)-deficient DCs are less efficient in cross-presentation of antigens (67). Furthermore, HSP90α-deficient DCs showed reduction in cytosolic translocation of antigens (65, 68). Along this line, Kunisawa and colleagues reported that, in contrast to HSP90β, specific inactivation of HSP90α leads to a loss of proteolytic intermediates and reduced presentation of the final peptide on the cell surface of MHC I molecule (69). Besides MHC class I antigen presentation, HSP90 inhibition also downregulates MHC II-mediated presentation of endogenous and exogenous peptides by APC (70). Additionally, constitutive HSP70 family member HSC70 is also involved in MHC class II antigen presentation pathway (71, 72). HSC70 interacts with MHC II for delivering clients to lysosomes (73). Cumulatively, these studies suggest a major role of HSPs in MHC I and MHC II antigen presentation, suggesting that HSP inhibition may affect immune responses in various treatment scenarios.

HSPs are also implicated in the regulation of immune checkpoints. Song and colleagues reported that HSP90α inhibition sensitizes tumor cells to anti-PD-1 blockade (74). In a recent study, Zavareh and co-workers (2021) demonstrated that HSP90 inhibition by ganetespib reduces surface expression of PD-L1 on MC-38 tumor cells and human monocyte-derived macrophages (75). Mechanistically, HSP90 inhibition downregulates c-MYC and signal transducer and activator of transcription 3 (STAT3), leading to the reduction of PD-L1 surface expression (75). In this regard, Marzec and colleagues demonstrated that HSP90 client protein nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) induced PD-L1 surface expression via the activation of STAT3 in T cell lymphoma (76). Since c-MYC and NPM/ALK are HSP90 client proteins, it appears that HSP90 inhibition downregulates PD-L1 surface expression via the degradation of HSP90 client proteins (c-MYC and NPM/ALK). Notably, anti-PD-L1 in combination with HSP90 inhibitor ganetespib showed higher anti-tumor activity than anti-PD-L1 alone in syngeneic mouse models (77). Furthemore, ganetespib in combination with anti-PD-L1 showed to increase the number of activated CD8+ T cells (75). Earlier, Mbofung and colleagues (2017) demonstrated that mice treated with ganetespib and anti-CTLA4 increased the number of CD8+T cells while decreasing the number of T regulatory cells (78).Furthermore, ganetespib upregulated interferon response genes, sensitizing human melanoma cells to T-cell mediated killing (78). D’Arrigo and colleagues reported that downregulation of the spliced form of HSP90 cochaperone FKBP51 (sFKBP51) reduces PD-L1 expression in glioma cells (79). In another study, HSP70 ER member glucose-regulated protein 78 (GRP78) downregulation decreased PD-L1 expression in breast cancer cells (80). Taken together, HSPs regulate the expression of multiple immune checkpoints including PD-L1 and PD-L2 while combination of anti-PD-L1, anti-PD-1, anti-CTLA4 with HSP90 inhibitor showed promising results in mouse models, suggesting that HSP inhibitors may further improve immunotherapy.



Extracellular HSPs and Tumor Immunity

In extracellular environment HSPs exist in several forms either secreted or membrane-bound. In this regard, Multhoff and colleagues demonstrated that surface expression of HSP70 on tumors does not involve classical ER-Golgi transport pathway for its membrane localization (81). Mambula and Calderwood reported that HSP70 can be released via lysosomal endosomes (82, 83). Authors also showed that HSP70 release involves the entry of HSP70 into endolysosomes via ATP-binding cassette (ABC) transporters (82, 83). HSP70 may also interact with either globotriaoslyceramide or phosphatidylserine for the anchorage of HSP70 in the plasma membranes of tumors (84, 85). Another mechanism by which HSPs are secreted into extracellular milieu involves the release of exosomes derived from multivesicular bodies (86–89). In this regard, several studies reported that HSPs on the surface of tumor-derived exosomes promote tumor growth by suppressing immune responses (90, 91).


Extracellular HSP90

Ullrich and co-workers (1986) reported the expression of tumor-specific transplantation antigen on the surface of tumor cells which they identified as HSP90 (92). Immunization of mice with this antigen inhibited tumor growth, suggesting that extracellular HSP90 (eHSP90) contributes to anti-tumor immunity (92, 93). Hostile tumor microenvironment leads to chronic ER stress, resulting in the elevation of extracellular HSPs. In this regard, Tramentozzi and colleagues observed high expression of extracellular GRP94-IgG complexes in the plasma of cancer patients (94). GRP94 alone or bound to IgG promotes angiogenesis, MMP-9 expression and extracellular release of HSP90α and HSP70 in human umbilical vein endothelial cells (HUVECs) (94–96). Authors showed that GRP94 alone may promote angiogenic transformation via stimulation of ERK1/ERK2 pathway (96). eGRP94 also induces maturation of mDCs, increasing surface expression of CD86 and CD83 (97). GRP94-treated mDCs strongly induces T cell proliferation (97). Interaction of CD91 with GRP94 leads to increased secretion of several inflammatory cytokines such as IL-1β, IL-6 and TNF-α by RAW264.7 cells (98). Dai and colleagues reported that GRP94 on the surface of tumor cells also induces CD4+ and CD8+ T cell memory response (99). eGRP94 facilitates cross-presentation of MHC class I and elicits CD8+ T cell response (100). Even though GRP94 facilitates the presentation of MHC class II-restricted peptides, CD4+T cells are not capable of secreting Th1 and Th2 effector cytokines (100).Immunization with autologous tumor-derived GRP94 of mice bearing methylcholanthrene-induced fibrosarcomas effectively induced anti-tumor response on day 7 after tumor challenge and was less effective when the treatment was started on day 9 after tumor challenge (101). DCs primed with lung cancer-derived GRP94 also elicited anti-tumor response in cytotoxic T lymphocytes (CTL) and NK cells (102). On DCs, GRP94 interacts with TLR-2 and TLR-4, leading to increased expression of CD86 and secretion of IL-12 and TNF-α (103, 104). Intriguingly, eGRP94 also promotes the expression of Foxp3, IL-10 and TGF-β1 in T regulatory cells (T regs) via TLR2/TLR4- mediated NF-kB signaling pathway activation (105). GRP94-peptide complex interaction with TLRs appears to be critical for the stimulation of cytotoxic T cell response (106). Additionally, GRP94 also activates NLRP3 inflammasome in APCs, leading to the IL-1β secretion (107). Taken together, eGRP94 possesses both pro- and anti-tumor functions. On the one hand, eGRP94 promotes angiogenesis and supports T reg suppressive function and, on the other hand, eGRP94 induces DC maturation and enhances CTL response.

Intriguingly, Chen and colleagues demonstrated that expression of stress-inducible HSP90α on the surface of tumor-cell released autophagosomes (TRAPs) promotes IL-6 production by CD4+ T cells via TLR2-Myeloid differentiation primary response protein 88 (MyD88)- NF-kB signalling pathway (108). Autocrine IL-6 further enhanced IL-10 and IL-21 production by CD4+T cells via STAT3, supporting tumor growth and metastasis (108). In another study, eHSP90, IL-6 and IL-8 secreted by macrophages activated JAK2-STAT3 in pancreatic ductal epithelial cells, leading to malignant transformation of these cells (109). Recent data have emerged showing that monoclonal antibodies specifically targeting eHSP90α inhibited tumor formation via blocking the interaction of eHSP90 with matrix metalloproteinase 2 (MMP2) and MMP9 (110, 111). Since eHSP90α has a profound immunosuppressive effects, it may be further speculated that specific blocking of eHSP90α by monoclonal antibodies will dampen IL-6-dependent inhibitory effects on CD4+T and CD8+T cell function while also blocking IL-10 production by T and B cells, however, this warrants further investigation (108).



Extracellular HSP70

eHSP70s have a dual role in the regulation of immune responses, where HSP70 can act as immune suppressor and immune activator (Figure 1). Such equivocal function of eHSP70 largely depends on the type of immune cell on which eHSP70 exerts its action. Multhoff and colleagues demonstrated that surface form of cytosolic stress-inducible HSP70 member acts as recognition structure for NK cells (119). Pre-treatment of NK cells with human recombinant HSP70 enhanced NK cell proliferation and IFN-γ production (54). Gastpar and co-workers have shown that CD94+NK cells migrate towards HSP70-surface positive tumors (112). Later, same research team demonstrated that the expression of HSP70 and co-chaperone BCL2-associated athanogene 4 (BAG4) on tumor-derived exosomes enhances migration and cytolytic activity of NK cells (113, 118). The expression of BAG6 on the surface of DCs-derived exosomes also activates NKp30 receptor (120). Following treatment with various chemotherapeutic agents, HSP-bearing exosomes released by hepatocellular carcinoma cells stimulates NK cell cytotoxicity and granzyme B production (121).




Figure 1 | Extracellular HSP70 immune network in cancer. eHSP70s enhance NK cytotoxicity, DC maturation, induce strong CD4+ and CD8+ T cell responses and cytokine secretion by monocytes and enhance immunosuppressive activity of MDSCs and T regs (54, 112–118). MDSCs, myeloid-derived suppressor cells; T reg, T regulatory cell; GzmB, granzyme B; DC, dendritic cells; IFNγ, interferon γ; BAG, BCL2-associated athanogene; IL-6, interleukin-6; TNF-α, tumor necrosis factor α; VEGF, vascular endothelial growth factor; TGF-β, transforming growth factor β; PI3K/AKT, phosphatidylinositol 3-kinase (PI3K)-serine/threonine protein kinase (AKT), JNK, c-Jun N-terminal kinase; STAT3, signal transducer and activator of transcription.



The ability of exosomal HSP70 to stimulate anti-tumor responses has been demonstrated with the use of engineered myeloma J558HSP cell line (115). Cells were manipulated to endogenously express P1A tumor antigen and membrane-bound HSP70 (115, 122). J558HSP –derived exosomes (EXOHSP) upregulated the expression of CD40 and CD80 and increased the section of IL-1β, IL-12, IFN-γ and TNF-α by DCs (115). Furthermore, immunization of BALB/c mice with EXOHSP induced CD4+T cell response and secretion of IL-2 and IFN-γ, suggesting that EXOHSP induces type 1 T helper response (115). EXOHSP could also effectively elicit P1A-specific CD8+T cell response (115). In another study, stimulation of T cells with soluble HSP70 (sHSP70) increased IFN-γ, IL-6 and IL-8 production by CD4+ and IFN-γ and IL-8 by CD8+ cells (114). Notably, pre-stimulation with both HSP70 in combination with IL-2 increased granzyme B secretion by CD4+ and CD8+ T cells (114). Earlier, Blachere and colleagues demonstrated that GRP94/gp96-peptide complexes and HSP70-peptide complexes induce CD8+ T cell response (45).

eHSP70 also regulates immunosuppressive activity of myeloid-derived suppressor cells (MDSCs) and T regulatory cells (T regs) (116, 117). Exosomal HSP70 induces STAT3 phosphorylation and increases secretion of IL-6 and vascular endothelial growth factor (VEGF) in MDSCs, thus promoting tumor growth (116). Wachstein and co-workers demonstrated that pre-treatment of T regs with HSP70 upregulated the secretion of IL-10, transforming growth factor β (TGF-β) and resulted in phosphorylation of phosphatidylinositol 3-kinase (PI3K)-serine/threonine protein kinase (AKT), c-Jun N-terminal kinase (JNK) and p38 (117).

HSP70 ER homolog GRP78/BiP has also been observed on the surface of tumor cells (123). High GRP78 expression has also been observed on the surface of PBMC subpopulations including CD4+ and CD8+T cells and CD56+ NK cells, following chemotherapy in breast cancer patients (124). Interestingly, eGRP78 increases CD19+ surface expression, upregulates PD-L1 and FasL expression and IL-10 secretion in B cells (125). Notably, CD19+ cells pre-treated with GRP78 and anti-CD40 inhibited the proliferation of CD3/CD28- activated T cells, indicating that GRP78 may induce B regulatory cells (125). In another study, Corrigall and colleagues have reported that eGRP78 increased IL-10 secretion by PBMCs and reduced expression of HLA-DR and CD86 on monocytes (126). Later, same research team showed that mDCs treated with GRP78 increases intracellular indoleamine 2,3- dioxygenase (IDO) level and surface expression of leukocyte immunoglobulin-like receptor subfamily B member 1 and downregulates HLA-DR and CD86 expression, while retaining CD14 expression (127). T cells treated with such mDCs upregulated the expression of CD4+CD25highCD27high and cytotoxic T-lymphocyte antigen (CTLA-4), while no increase in the expression of forkhead box P3 (FOXP3) was observed (127). Therapeutic targeting of surface GRP78 by human IgM monoclonal antibody PAT-SM6 resulted in induction of apoptosis and complement-dependent cytotoxicity in de novo and relapsed multiple myeloma (38, 128). Along this line, murine IgG antibody C107 targeting GRP78 carboxyl-terminal domain induced apoptosis in vitro and inhibited melanoma growth in vivo (123, 129). In another study, Liu and co-workers reported that monoclonal antibody Mab159 binds to the surface GRP78 and triggers GRP78 endocytosis, leading to apoptosis in breast and colon cancer cell lines via inhibiting phosphoinositide 3-kinase (PI3K) activity (130).

Pilzer and co-workers demonstrated that mitochondrial HSP70 mortalin interacts with complement C9 (131, 132). Sub-lytic complement attack causes C9 and mortalin release in extracellular vesicles (131). Mechanistically, formation of the complete C5b-C9 membrane-attack complex (MAC) induced the release of mortalin whereas targeting mortalin with antibodies showed to increase cell lysis (131). Thus, authors concluded that mortalin protects cells from complement-dependent cytotoxicity (CDC) by removing MAC from the cell surface (131). Later, same research team showed that blocking mortalin sensitizes tumor cells to CDC (133).

eHSP70 may also bind to the surface of human monocytes, leading to intracellular calcium flux, activation of nuclear factor (NF)-kB and increased production of IL-1β, TNF-α and IL-6 via NF-kB pathway (134).Taken together, extracellular HSP70s promote proliferation and cytolytic activity of NK cells, DC maturation, CD4+ and CD8+ T cell responses, protect cancer cell from CDC as well as enhances induction of tolerogenic DCs, immunosuppressive activity of MDSCs and generation of T regulatory cells. Therefore, future discoveries of therapies targeting extracellular form of HSP70 should take into account equivocal effect of HSP70 family members on different components of immune system.



Extracellular HSP110 and GRP170

HSP110 represents a family of chaperones that is distantly related to HSP70 family (1). Recent studies have emphasized the role of extracellular HSP110 and its ER member GRP170 in the regulation of immune responses. In this regard, Berthenet and colleagues reported that eHSP110 promotes macrophage polarization towards M2 phenotype via TLR4 pathway while HSP110 inhibition reverses this effect (135). In the extracellular space, GRP170 secreted by B16 melanoma cells acts as a danger signal, inducing the production of IL-1β and TNFα by DCs and eliciting antigen-specific CTL response by cross-priming (136–138). Along this line, immunization of mice with tumor-derived GRP170 induces potent CD8+T cell response (139).



Extracellular HSP60

HSP60 plays critical role in the regulation of innate and adaptive immune responses (Figure 2) (141). In response to HSP60, macrophages and DCs secrete inflammatory cytokines such as IFNα, TNF-α, IL-12, IL-15, IL-6, IL-1β and NO (Figure 2A) (141, 142). eHSP60 induces the maturation of bone marrow-derived dendritic cells (BMDCs) via TLR4 and activation of allogeneic T cells, resulting in the production of Th1-promoting cytokines (140). Feng and colleagues demonstrated that the expression of HSP60 on the surface of apoptotic tumor cells activates DCs and induces cytotoxic T cell response, suggesting that the HSP60 on tumor cells may promote potent anti-tumor T cell response mediated by APC (2, 146). By contrast, T cells pre-treated with HSP60 downregulate Th1-associated transcription factors such as T-bet, NFATp and NF-kB, inhibiting the secretion of IFN-γ and TNF-β, and upregulate GATA-3, leading to increased secretion of Th2-associates cytokines such as IL-10, IL-4 and IL-13 (Figure 2B) (143). eHSP60 also increases the expression of suppressor of cytokine signalling 3 (SOCS3) via TLR2 and STAT3, thus inhibiting T cell chemotaxis towards stromal cell-derived factor-1α (SDF-1α) (147). Activated T cells can also present HSP60 by MHC molecules to anti-ergotypic T regulatory cells, resulting in the secretion of IFN-γ and TGFβ1 by anti-ergotypic T cells (Figure 2B) (144). Of note, co-stimulation in the form of CD80, CD86 and CD28 is required for the activation of anti-ergotypic T cells (144). Additionally, anti-ergotypic T regulatory cells decrease the secretion of IFNγ by effector T cells in vitro (141, 144). eHSP60 also stimulates the secretion of IL-10, IL-6, IgG3 and upregulates the expression of MHC class II, CD69, CD86 and CD40 in B cells (145). Interaction of eHSP60-treated B cell with T cells leads to the IFNγ and IL-10 production by T cells (Figure 2C) (145).




Figure 2 | Extracellular HSP60 immune network. (A) HSP60 induces DC maturation and secretion of inflammatory cytokines (140–142). (B) eHSP60 downregulates Th1-associated transcription factors (T-bet, NF-kB, NFATp) and upregulates GATA3, leading to decreased secretion of TNF-α and IFN-γ and increased secretion of IL-10, IL-4, IL-13 (143). Activated T cells can present HSP60 via MHC molecules to anti-ergotypic T cells, leading to the production of IFNγ and TGFβ1 by anti-ergotypic T regulatory cells (144). (C) HSP60 activates B cells via TLR4-MyD88 signaling pathway, leading to the production of IL-10, IL-6 and IgG3 (145). TLR4, Toll-like receptor 4; NO, nitric oxide, CD40L; CD40 ligand; TCR, T cell receptor; MHC II, major histocompatibility complex; IgG3, Immunoglobulin G3; Nf-kB; nuclear factor kappa B; NFAT, nuclear factor of activated T cells.



In the extracellular milieu, HSP60 released by B16 melanoma cells promotes the secretion of immunosuppressive cytokines and chemokines including IL-6, IL-10, IL-13, TGF-β1, CCL-2 and CCR8 via TLR2 and STAT3 activation (2, 148). Highly metastatic B16 cells released higher levels of HSP60 resulting in persistent TLR2 and STAT3 activation compared to poorly metastatic B16-F1 cells (148). These results provide a mechanistic explanation to the role that extracellular HSP60s play in promoting immunosuppressive tumor microenvironment (2).



Extracellular HSP27

HSP27 (HSPB1) is a member of small HSP family aberrant expression of which correlates with poor prognosis and resistance to chemotherapy in different types of cancer (1, 149). eHSP27 induces the secretion of immunosuppressive factors including IL-6, IL-10, prostaglandin E2 and proangiogenic cytokines such as IL-8, VEGF-A, IL-1β and TNF-α by human monocytes (150). eHSP27 also induces high level of monocyte chemotactic protein-1 (MCP-1), a chemokine responsible for monocyte recruitment at the tumor sites (150). Moreover, eHSP27 promotes the differentiation of monocytes into macrophages with TAM-like phenotype (150). HSP27-differentiated macrophages have reduced expression of MHC class II, CD86 and increased expression of PD-L1, Ig-like transcript 2 (ILT2) and ILT4 (150). Autologous T cell co-cultured with HSP27-differentiated macrophages inhibits T cell proliferation and significantly reduces the secretion of IFN-γ and IL-13 by T cells, suggesting that HSP27-differentiated macrophages induce T cell anergy (150).




Conclusion and Perspectives

Heat shock proteins are molecular chaperones which have shown to be implicated in various hallmarks of cancer such as apoptosis resistance, angiogenesis, invasion, metastasis, cancer cell stemness and immune tolerance. Apart from their intracellular functions, HSP can also be secreted in extracellular space, where HSPs interact with various components of the immune system. Even though considerable progress has been made in deciphering the role of HSPs in tumor immunity, there is still a lot to be understood. For example, the role of distinct HSP members in the regulation of innate and adaptive immune responses inside and outside the cell in the context of cancer is not clear. Furthermore, the effects of various HSP-based immunotherapies on the release of HSPs in tumor microenvironment and their subsequent effects on immune responses are not yet fully understood. Taking into account that inside the cell HSPs may translocate from their primary locations and acquire different functions, it is also important to understand the effect of HSP-based immunotherapies on intracellular HSPs. Elucidating the role of HSP in the modulation of immune responses may improve current treatment strategies and open new perspectives for the discovery of novel HSP-based immunotherapy approaches.
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N6-methyladenosine (m6A) RNA methylation has been shown to have prognostic value in cancer. Nonetheless, its potential role regarding immunity, metabolism, and stemness in soft tissue sarcoma (STS) remains unknown. We comprehensively estimated the m6A modification patterns and corresponding immunity, metabolism, and stemness characteristics based on 568 STS samples and 21 m6A regulators. The m6Ascore was constructed to quantify m6A modification patterns in individuals using machine learning algorithms. Two distinct m6A modification patterns among the STS patients were identified, which exhibited differences in prognosis, immune cell infiltration, metabolic pathways, stemness, somatic mutation, and copy number variation. Thereafter, immunity-, metabolism-, and stemness phenotype-related genes associated with m6A modification were identified. Furthermore, patients with lower m6Ascores had increased antitumor immune responses, survival benefit under immunotherapy, tumor mutation burden, immunogenicity, and response to anti-PD-1/L1 immunotherapy. Immunotherapy sensitivity was validated using the IMvigor210 dataset. STS patients with lower m6Ascore might be more sensitive to docetaxel and gemcitabine. Finally, pan-cancer analysis illustrated the significant correlations of m6Ascore with clinical outcomes, immune cell infiltration, metabolism, and stemness. This study revealed that m6A modification plays an important role in immunity, metabolism, and stemness in STS. Evaluating the m6A modification pattern and development of m6Ascore may help to guide more effective immunotherapy and chemotherapy strategies.
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Introduction

Soft tissue sarcoma (STS) is a type of malignant tumor that originates from mesenchymal tissues. Compared to other cancers (such as tumors of the respiratory or digestive system), STS has a lower incidence rate and higher heterogeneity (1). Despite recent advances in diagnosis, molecular characterization and combination chemotherapy regimens, there are still great challenges in STS management, especially regarding improving the clinical outcomes, due to STS’s complexity and heterogeneity (2). In recent years, given the growing evidence that the immune system plays an important role in cancer progression and the encouraging results of immunotherapy in some types of cancers, such as non-small cell lung cancer (NSCLC) (3) and melanoma (4), it was thought to extend immunotherapy to sarcomas (5). Although immunotherapy is a promising cancer treatment, its response rate remains low (5). This is especially the case in STS, due to its extensive heterogeneity and unclear characterization of the tumor microenvironment (TME) in the molecular subtypes. Therefore, in-depth research on the role of these subtypes in predicting responses to immunotherapy in STS is needed.

N6-methyladenosine (m6A) has a key role in current tumor research (6). m6A methylation research may provide new insights to improve cancer treatment, and m6A methylation is also a significant prognostic biomarker (7, 8). m6A methylation is an important RNA modification and a common post-transcriptional modification of mRNA (9). The regulation of m6A methylation is mediated by methyltransferases (writers), demethylases (erasers), and m6A‐binding proteins (readers), which can contribute to the post‐transcriptional regulation of gene expression at the RNA level without altering base sequences (10). Some studies have revealed that m6A regulators are related to typical carcinogenic pathways. The m6A writer METTL3 promotes bladder cancer cell proliferation in an m6A-dependent manner by promoting the maturation of pre-miR221/222 (11). The m6A eraser ALKBH5 prevents pancreatic cancer progression by transcriptional activation of PER1 in an m6A-YTHDF2-dependent manner (12). As an oncogene, the m6A eraser FTO promotes IDH mutations through the FTO/MYC/CEBPA signaling pathway, which leads to tumorigenesis (13). Recent studies also revealed that immunotherapy is affected by m6A modification via changes in the TME and CD8+ T cell recruitment (14, 15). Research has highlighted that m6A modification plays an important role in cancer biology and tumor stemness (16). From this perspective, analysis of m6A modification could broaden the understanding of the mechanisms underlying STS occurrence and progression, while providing new insights into the clinical use of immunotherapy.

In this study, multiomics and clinical data of 568 STS samples were used to comprehensively identify distinct m6A modification patterns, and three important tumor characteristics (immunity, metabolism, and stemness) were assessed. In addition, the m6Ascore was developed using machine learning algorithms to quantify individual differences among different STS subtypes. m6Ascore was shown to predict responses to immunotherapy and chemotherapy. Finally, a pan-cancer analysis illustrated significant correlations of m6Ascore with prognosis, immune cell infiltration, metabolism, and stemness in other cancers, which indicated that it may help to guide the use of immunotherapy and chemotherapy in other cancers.



Methods

The method details are described in the Supplementary Methods.



Results


Landscape of m6A Regulators in STS

The detailed workflow for m6A patterns and subsequent analyses are shown in Figure S1A. 21 m6A methylation regulators (“writers”: CBLL1, KIAA1429, METTL14, METTL3, RBM15, RBM15B, WTAP, ZC3H13; “readers”: ELAVL1, FMR1, HNRNPA2B1, HNRNPC, IGF2BP1, LRPPRC, YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3; and “erasers”: ALKBH5 and FTO) were analyzed in STS. Gene Ontology (GO) enrichment analyses of these regulators were conducted, and the significantly enriched biological processes are summarized in Figure 1A. The locations across the chromosomes of the copy number variation (CNV) of the regulators are shown in Figure 1B. CNV was very common and mostly involved amplification, though FMR1, ZC3H13, RBM15, FTO, LRPPRC, and RBM15B had a high frequency of deletion (Figure 1C). The interaction patterns among the 21 m6A regulators were also analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database (Figure 1D). Among the 237 STS samples in the The Cancer Genome Atlas Program (TCGA) cohort, 10 mutations were identified, mutation frequency of the 21 m6A regulators was 4.22%. IGF2BP1 had the highest mutation frequency, followed by RBM15 and YTHDC2 (Figure 1E).




Figure 1 | Landscape of m6A regulators in STS. (A) GO enrichment plot showing seven important terms related with m6A regulators. (B) The location of CNV alteration of m6A regulators on 23 chromosomes in TCGA-SARC cohorts. (C) The CNV variation frequency of m6A regulators in TCGA-SARC corhort. The height of the column represented the alteration frequency. Green dot and red dot represented the deletion frequency and the amplification frequency, respectively. (D) The protein-protein interactions between 21 m6A regulators. (E) The mutation frequencies of m6A regulators in TCGA-STS cohort. Each column represented an individual sample. The upper barplot showed tumor mutation load and the number on the right indicated the mutation frequency in each regulator. (F) The expression of 21 m6A regulators between normal tissues from Genotype-Tissue Expression samples and STS tissue from TCGA-SARC cohort. The statistical difference was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001.



Next, we investigated the difference in the expression of the 21 m6A regulators between the normal and tumor tissues. Fat and muscle tissue samples from the The Genotype-Tissue Expression (GTEx) database were used as adjacent normal tissue samples. Of the 21 regulators, 20 showed significant differences between STS and normal tissues, while ZC3H13 did not (Figure 1F). Kaplan–Meier (KM) survival analysis showed significant differences in overall survival between patients with high or low expression of the 21 regulators (Figure S1B). The above findings suggested that changes in the expression of m6A regulators may play a crucial role in occurrence and progression of STS.



Identification of m6A Methylation Modification Patterns

The crosstalk among the 21 m6A regulators and their prognostic value in STS is comprehensively illustrated in the m6A regulator network (Figure 2A). All 21 m6A regulators were positively correlated with each other. Next, consensus clustering was performed using the “ConsensusClusterPlus” R package both TCGA and Gene Expression Omnibus (GEO) cohorts. K = 2 was selected based on the empirical cumulative distribution function (CDF) plots (Figures 2B, C). Thus, two m6A modification patterns, designated m6Acluster-A (n=284) and m6Acluster-B (n=284), were identified. STS samples with distinct m6A modification could be completely distinguished (Figure 2D). Kaplan–Meier (K-M) survival analysis of the two patterns revealed the clear survival advantage in m6Acluster-A, both TCGA-SARC and GSE21050 cohorts (Figure 2E). The expression of the 21 regulators was significantly different between the two patterns (Figure 2F). To verify the large difference in survival, the TCGA and GEO cohorts (as the validation dataset) respectively were employed to compare the survival between the two patterns (Figure S2A). Importantly, similar results were observed, indicating support for the two patterns identified by the clustering algorithm. Additionally, in the TCGA and GEO cohorts, there were significant differences in the expression of m6A regulators between the two patterns (Figure S2B).




Figure 2 | Identification of m6A methylation modification patterns. (A) The interaction among m6A regulators in STS. The circle size represented the significance level of P values calculated by Log-rank test, p < 0.001, p < 0.01, p < 0.05 and P < 1, respectively. Favorable factors for overall survival are indicated in green, and risk factors indicated in purple. The lines connecting represent m6A regulators interactions estimated by Spearman correlation analysis. Positive correlation is indicated in pink and negative correlation in blue. (B) The clustering heatmap corresponding to the consensus matrix for k=2 obtained by consensus clustering. (C) Relative change in area under consensus CDF curve for k=2 to 9. (D) Principal component analysis for the transcriptome profiles of two m6A modification subtypes, showing a remarkable difference between different modification patterns. (E) Survival analyses for the two m6A modification patterns based on TCGA-SARC and GSE21050 STS cohort including 284 cases in m6Acluster-A, 284 cases in m6Acluster-B. Kaplan-Meier curves with Log-rank p value <0.001 showed a significant survival difference between two m6A modification patterns. (F) The expression of 21 m6A regulators between the m6Acluster-A and m6Acluster-B groups and corresponded clinical information also displays in heatmap. (G) Heatmap for immune responses based on CIBERSORT, MCPcounter, xCell, EPIC, TIMER, q uanTIseq and iPS algorithms between two m6Aclusters. (H) The Immune score and Stromal score from ESTIMATE algorithms of two m6Aclusters were analyzed and plotted. (I) The enrichment differences of immune signatures and typical biological processes between the m6Acluster-A and m6Acluster-B groups. The statistical difference was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001. ns, no significant.



Compared to m6Acluster-B, m6Acluster-A had increased enrichment of immune cells (using CIBERSORT, MCP-counter, xCell, EPIC, TIMER, quanTIseq and IPS algorithms), especially regarding anti-tumor immune cells, in the TCGA and GEO cohorts (Figure 2G). The ImmuneScore and StromalScore (evaluated by the ESTIMATE method) were compared between the two patterns (Figure 2H). The differences in immune cell infiltration between the two patterns were also respectively validated in the TCGA and GEO cohorts, and similar results were observed (Figure S2C).

To further explore the biological behaviors in the two patterns, Gene Set Variation Analysis (GSVA) and the “limma” package were used, which led to the identification of 84 differential pathways (Figure S2D). Typical biological pathways and immune signatures were compared between the two patterns to explore the potential mechanisms. Pathways related to immunity, metabolism, and stemness (cell cycle, DNA damage repair, DNA replication, and mismatch repair) showed significant differences between the two patterns. In particular, the epithelial-to-mesenchymal transition (EMT) and pan-fibroblast TGF-β response signaling pathways were significantly upregulated in m6Acluster-A, which had strong enrichment of CD8+ T cells, effector antigen processing machinery, and immune checkpoints (Figure 2I). DNA damage repair, DNA replication, and Wnt signaling pathways were significantly upregulated in m6Acluster-B. These results demonstrated that m6Acluster-A predominantly featured immune and stromal activation, and m6Acluster-B mainly featured DNA repair. Based on above results, we revealed two m6A modification patterns with distinct characteristics of immunity, metabolism, and stemness, which suggested that m6A modification might regulate immune microenvironment, metabolism processes, and tumor cell stemness to contribute to different behaviors of STS.



Correlations of the 21 m6A Regulators With Immunity, Metabolic Pathways, and Stemness

To further explore the potential significance of each of the 21 regulators, their correlations with immunity, metabolic pathways, and stemness was analyzed. Regarding immunity, we analyzed the correlations between the expression of the 21 m6A regulators and the infiltration of 28 immune cells (Figure S3A).

Regarding metabolic pathways, 40 differential metabolic pathways were identified by the “limma” R package. Subsequently, 18 prognosis-related metabolic pathways were selected by univariate Cox analysis and the randomSurvivalForest algorithm (Table S2). The relationship between the error rate and the number of classification trees is shown in Figure S3B. After ranking these metabolic pathways by importance according to the out-of-bag error, five metabolic pathways with relative importance >0.5 were considered in the subsequent analysis (Figure S3C). Most metabolic pathways were negatively correlated with the 21 m6A regulators (Figure S3D).

Regarding stemness, there were significant correlations between the expression of the 21 regulators and the six stemness indices (Figure S3E). The highest correlation coefficient was between RBM15 and mRNAsi. Additionally, HNRNPC, YTHDF2, and HNRNPA2B1 were significantly positively correlated with mDNAsi and mRNAsi. K-M survival analysis for the six stemness indices showed a survival advantage in the lower level of stemness index group (Figure S3F). Significant correlations between the expression of the 21 regulators with immune microenvironment, metabolic pathways, and stemness levels indicated that these regulators might play important roles in regulation of m6A modification in terms of immunity, metabolism, and stemness for STS.



Identification of Hub Genes and Immunity/Metabolism/Stemness Subtypes by Co-Expression Network Analysis (WGCNA)

To identify immune/metabolism/stemness phenotype-related genes related to the m6A modification patterns, WGCNA was used to identify biologically meaningful modules corresponding to phenotype-related genes. The 12 phenotypes investigated were ImmuneScore (calculated using the ESTIMATE method), five metabolic pathways (selected in the random survival forest analysis), and the six stemness indices.

First, by comparing the two m6A modification patterns, 2183 differentially expressed genes (DEGs) (|log2FC|>0.5 and FDR<0.05) were identified to be used in WGCNA (Table S3). In the subsequent WGCNA, there were five modules (merged dynamic) (Figure 3A). Of the 12 phenotypes, the three that were most correlated with module genes were selected for further analysis. A heatmap revealed the three key modules (MEblue, MEbrown, and MEyellow for ImmuneScore, Retinoic Acid metabolism pathway, and mRNAsi, respectively) (Figure 3B). We further analyzed the correlations of the hub genes in the three modules (Figure S4A). Ultimately, we identified 579 immune phenotype (ImmuneScore)-related genes, 326 metabolism phenotype-related (retinoic acid metabolism) genes, and 286 stemness phenotype (mRNAsi)-related genes (Table S4).




Figure 3 | Identification of hub genes and immunity/metabolism/stemness subtypes by WGCNA.(A) Hierarchical clustering dendrograms of identified co-expressed genes in modules. The branches of the cluster dendrogram correspond to the different gene modules. Each leaf on the cluster dendrogram corresponds to a gene. Each colored row represents a color-coded module which contains a group of highly connected genes. (B) Correlations between the gene modules and clinical traits. The correlation coefficient in each cell represented the correlation between the gene module and the clinical traits. The corresponding P-value and Correlation value are annotated. (C) Heatmap corresponding to the consensus matrix for k=4 (left), 3 (middle), 3 (right) obtained by consensus clustering. (D) Kaplan–Meier curves using the Log-rank test for immunity (left), metabolism (middle) and stemness (right) clusters respectively. (E) The expression of 21 m6A regulators between four immunity (left), metabolism (middle) and stemness (right) clusters. The statistical difference of clusters was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001.



Three unsupervised consensus clustering analyses were performed based on the immunity/metabolism/stemness phenotype-related genes in the three modules, with the optimal number of clusters being selected based on the corresponding CDF curve (Figure S4B). As a result, Immunity groups A–D, Metabolism groups A–C, and Stemness groups A–C, respectively, were defined (Figure 3C). Regarding immunity, the K-M survival analysis showed that STS patients in the Immunity A and D groups had better prognoses than those in the Immunity B and C groups (Figure 3D). The Immunity A and D groups had massive infiltration of anti-tumor immune cells (CD8+ T cells, macrophages, cytotoxic cells, dendritic cells, and Th1 cells) (Figure S4C) and lower expression of m6A regulators (Figure 3E). Regarding metabolism, the K-M survival analysis showed that the Metabolism A group had a better prognosis than the Metabolism B and C groups (Figure 3D). The three subgroups exhibited different metabolism processes (Figure S4C). The Metabolism A group had lower expression of the m6A regulators than the other two groups (Figure 3E). Regarding stemness, the K-M survival analysis showed that the Stemness B group had a better prognosis than the Stemness A and C groups (Figure 3D). Nevertheless, 15 typical tumor stemness-related biological processes in the three subgroups were comparable (Figure S4C). The Stemness B group had lower expression of the m6A regulators than the other two groups (Figure 3E).



Identification of DNA Methylation Subtypes

Using the TCGA-SARC cohort, 531 CpG sites in the 21 m6A regulator genes were identified (Table S5). Subsequently, 41 prognosis-related CpG sites were identified by univariate Cox regression. These sites were used to identify DNA methylation subgroups. K = 2 was selected as the most suitable choice based on the consistency of each cluster and the CDF curve (Figure S5A). Thus, the DNA methylation site clustering analysis identified two distinct subgroups, designated DNAmethy-Cluster-A and -B (Figure S5B). The heatmap shows the differences in the methylation sites in each subgroup (Figure S5C), with higher DNA methylation levels in DNAmethy-Cluster-A. The annotated distribution of clinical traits in the heatmap shows that the two subgroups had unique characteristics. K-M survival analysis showed that DNAmethy-Cluster-A had a higher survival rate (Figure S5D). Furthermore, six of the m6A regulators (RBM15B, KIAA1429, YTHDF2, HNRNPA2B1, HNRNPC, and ELAVL1) exhibited lower expression in DNAmethy-Cluster-A (Figure S5E).

We further explored the differences in immune cell infiltration, metabolic pathways, and stemness between the two DNA methylation subgroups. As expected, DNAmethy-Cluster-A had an immune-activated phenotype characterized by abundant immune cell infiltration (Figure S5F). This subgroup was significantly enriched in metabolic pathways, including phenylalanine metabolism, tryptophan metabolism, and nicotinate and nicotinamide metabolic pathways (Figure S5G). Furthermore, this group had lower DNA-related stemness index, as shown in the boxplot in Figure S5H. These results indicated the key roles of the m6A modification in DNA methylation.



Identification of m6A Modification Pattern-Related DEGs and Construction of the m6Ascore

STS patients were classified into two m6A modification patterns by consensus clustering based on the expression of 21 m6A regulators. We then examined the potential m6A modification pattern-related gene expression changes between the two patterns, identifying 204 DEGs (log2FC>1 and FDR<0.05) (Table S6). GO enrichment analysis of these DEGs revealed significant enrichment of T cell mediated immunity, negative regulation of immune response, and positive regulation of cell cycle (Figure S6A). The results further demonstrated that the DEGs were characterized by m6A modification, immunity, metabolism pathways, and stemness. The results also confirmed that m6A modification played a key role in the TME. Among the 204 m6A modification pattern-related DEGs, 141 prognosis-related genes were identified by univariate Cox regression (Table S7). Subsequently, these 141 genes were subjected to unsupervised consensus clustering analysis and two stable phenotypes were obtained (Figures S6B, C). Ultimately, the samples were divided into two distinct m6A gene signature subgroups, designated geneCluster-A and geneCluster-B (Figure S6D). The geneCluster-A was associated with better prognosis (Figure S6E). There were significant differences in the expression of the 19 m6A regulators between the two subgroups (Figure S6F).

Considering the individual heterogeneity and complexity of m6A modification, we quantified the m6A modification pattern of individual STS patients using principal component analysis based on the 141 abovementioned genes. Thus, m6Ascore was defined for each STS patient. We visualized the changes in the attributes of individual patients in different clusters using an alluvial diagram (Figure S6G). To assess the prognostic value of m6Ascore, samples were divided into high- and low-m6Ascore using the optimal cutoff (1.46) determined by the “survminer” R package. Survival was higher in the low-m6Ascore group (Figure S6H), as verified in the TCGA and GEO cohorts (Figure S6I), and the expression levels of the 17 regulators were also significantly different between the two subgroups (Figure S6J). Both m6ACluster-A and geneCluster-A had a lower m6Ascore (Figure S6K). These results indicate m6Ascore could be used to predict prognosis in STS.



Correlation Between m6Ascore and Clinicopathological Type

The histological subtypes of STS in the TCGA-SARC and GSE21050 cohorts mainly included undifferentiated pleomorphic sarcoma (UPS; 35.48%), dedifferentiated liposarcoma (DDLPS; 20.11%), desmoid tumor (DT; 0.4%), leiomyosarcoma (LMS; 35.67%), myxofibrosarcoma (MFS; 4.74%), malignant peripheral nerve sheath tumors (MPNST; 1.7%), and synovial sarcoma (SS; 1.9%). K-M survival analysis of these seven subtypes showed that UPS (with a lower m6Ascore) had improved survival, while LMS (with a higher m6Ascore) had poorer survival (Figure S7A). The stacked column chart shows the distribution of the histological subtypes in the high- and low-m6Ascore groups (Figure S7B). UPS, DDLPS, and MFS patients were mainly in the low-m6Ascore group, while LMS patients were mainly in the high-m6Ascore group (Figure S7C). K-M survival analysis of high- and low-m6Ascore subgroups in each histological subtype showed that low-m6Ascore subgroups had a better prognosis, but the difference was only significant for UPS (Figure S7D).



Multiomics Analysis of the Role of m6Ascore

Based on the aforementioned strong associations of the m6A regulators with immunity, metabolism, and stemness in STS patients, we further investigated the correlations of m6Ascore with immunity, metabolism, and stemness. As expected, m6Ascore was significantly correlated with the ImmuneScore and immune cells, including anti-tumor cells (CD8+ T cells, macrophages, Th1 cells, natural killer cells, dendritic cells, and TH17 cells) and pro-tumor immune cells (Th2 cells) (Figure 4A). The heatmap of immune cell infiltration (based on CIBERSORT, MCP-counter, xCell, EPIC, TIMER, quanTIseq and IPS algorithms) indicated that the low-m6Ascore group had higher immune cell infiltration, especially regarding anti-tumor-related cells (CD8+ T, dendritic, natural killer, and Th1 cells) (Figure 4B). The low-m6Ascore group also had a higher ImmuneScore and StromalScore (calculated using the ESTIMATE method) (Figure 4C).




Figure 4 | Multiomics analysis of the role of m6Ascore. (A) Correlations between m6Ascore and immune cells, metabolic pathways and stemness index, respectively. (B) Heatmap for immune responses based on CIBERSORT, MCPcounter, xCell, EPIC, TIMER, quanTIseq and iPS algorithms the low- or high-m6Ascore groups. (C) Differences in immuneScore and stromalScore from ESTIMATE algorithms between low- or high-m6Ascore group in the TCGA-SARC and GSE21050 cohort using Kruskal–Wallis test. (D, E) GSVA enrichment analysis showing the activation states of metabolic (D) and stemness-related (E) pathways between high and low m6Ascore groups. The heatmap was used to visualize these pathways, and red represented activated pathways and blue represented inhibited pathways. (F) The waterfall plot showing tumor somatic mutation established by those with high m6Ascore (left) and low m6Ascore (right). Each column represented individual patients. The upper barplot showed TMB, the number on the right indicated the mutation frequency in each gene. (G) Scatter plots depicting the negative correlation by Spearman correlation analysis between m6Ascore and TMB, neoantigen burden, DNA damage including homologous recombination deficiency (HRD), loss of heterozygosity (LOH; number of segments with LOH events, and fraction of bases with LOH events), intratumor heterogeneity (ITH), and aneuploidy score.



Next, we used the GSVA and “limma” R package to analyze the differences in 114 metabolic pathways between the high- and low-m6Ascore groups, which identified 37 metabolic pathways (Figure 4D). Compared to the low-m6Ascore group, the high-m6Ascore group was significantly enriched in the Propanoate metabolism, Lysine degradation, and Glycogen degradation pathways. In addition, there were differences in stemness-related pathways between the two groups (Figure 4E).

We compared the somatic mutations in the TCGA-SARC cohort and found that low-m6Ascore group had a higher tumor mutation rate than the high-m6Ascore group (68.61% versus 65.31%) (Figure 4F). Differentially mutated genes between the two groups are displayed as a forest plot (Figure S7E). The low m6Ascore group had a markedly higher TMB (Figure 4G). Higher TMB was associated with increased survival (Figure 5A), and low-m6Ascore combined with higher TMB was also associated with better survival (Figure 5B). In addition to TMB, we further studied other immunogenic biomarkers and found that intratumor heterogeneity (LOH), DNA damage including homologous recombination deficiency (HRD), tumor neoantigen burden (TNB), intratumor heterogeneity (ITH), and aneuploidy were significantly negatively correlated with m6Ascore (Figure 4G). In summary, the differences in tumor immunogenicity between the high- and low-m6Ascore groups were significant (Figure 5C).




Figure 5 | Multiomics analysis of the role of m6Ascore. (A) Kaplan-Meier curves depicting survival analyses for low (184 cases) and high (51 cases) TMB patient groups in the TCGA-SARC cohort using Log-rank test. (B) Kaplan-Meier curves depicting survival analyses for subgroup patients stratified by both m6Ascore and TMB levels using Log-rank test. (C) Differences in the m6Ascore between TMB, neoantigen burden, DNA damage including homologous recombination deficiency (HRD), loss of heterozygosity (LOH; number of segments with LOH events, and fraction of bases with LOH events), intratumor heterogeneity (ITH), and aneuploidy score in the TCGA-SARC cohort. The upper and lower ends of the boxes represented an interquartile range of values. The lines in the boxes represented the median value, and the dots showed outliers. (D) Distribution of and focal and broad (arm-level) copy number alterations in the low or high m6Ascore groups. The statistical significance of pairwise comparisons is annotated with symbols in which ns and * represent not significant (P > 0.05) and P ≤ 0.05, respectively. (E) Copy number profiles for the low or high m6Ascore groups, with gains in red and losses in blue. Gene segments are placed according to their location on chromosomes, ranging from chromosome 1 to chromosome 22. (F) Detailed cytoband with focal amplification (left) and focal deletion (right) in the low-m6Ascore group generated with GISTIC_2.0 software. The q value of each locus is plotted horizontally. (G) GSEA plots showing the activated and suppressed gene sets between the high and low m6Ascore groups. Each run was performed with 1,000 permutations. ns, no significant.



We further explored CNV between the two m6Ascore groups. The low-m6Ascore group had a higher focal-level gain (p<0.01) and loss (p=0.02) burden and a higher arm-level gain burden (p=0.04) compared to the high-m6Ascore group (Figure 5D). Figure 5E shows the distribution of the G-score (based on the frequency and amplitude of the gains and losses) across all chromosomes in the high- and low-m6Ascore groups. Focal amplifications and deletions in various chromosomal regions were detected in both the low- and high-m6Ascore groups (Figures 5F and S7F). These results show that the low-m6Ascore group had relatively high immunogenicity, while the high-m6Ascore group had relatively low immunogenicity. Moreover, Gene Set Enrichment Analysis (GSEA) showed that the Hedgehog signaling, Myogenesis, and Spermatogenesis pathways were substantially enriched in the high-m6Ascore group, while the Hypoxia, IL6-JAK-STAT3 signaling, Inflammatory response, KRAS signaling, and P53 pathways were enriched in the low-m6Ascore group (Figure 5G).



m6Ascore Predicts Responses to Immunotherapy

We further assessed the ability of m6Ascore to predict the clinical benefit of immunotherapy. The low-m6Ascore group had higher expression of immune checkpoint-related genes (especially regarding PDCD1, PD1, and CTLA4) than the high-m6Ascore group (Figure 6A). This suggested that patients with different m6Ascores may have different responses to immune checkpoint inhibitors.




Figure 6 | m6Ascore predicts responses to immunotherapy and chemotherapy. (A) Differences in the expression of immune checkpoint genes between the low and high m6Ascore groups in the TCGA-SARC and GSE21050 cohort. The statistical difference of clusters was compared through the Kruskal–Wallis test. *P < 0.05; ***P < 0.001. ns, no significant. (B) Differences in the TIDE scores between the low and high m6Ascore groups in the TCGA-SARC and GSE21050 cohort. The thick line represents the median value. (C) Scatter plots depicting the positive correlation between TIDEscore and m6Ascore in the TCGA-SARC and GSE21050 cohort by the Spearman correlation analysis. The dotted color indicates the low (blue) and high (red) m6Ascore groups. (D) Submap analysis manifested that low-m6Ascore groups could be more sensitive to the programmed cell death protein 1 inhibitor (Bonferroni-corrected P = 0.008). (E) Kaplan-Meier curves for high and low m6Ascore patient groups in the IMvigor210 cohort. (F) The proportion of patients in the IMvigor210 cohort with clinical response in low or highm6Ascore groups. (G) Violin plot showing differences in the m6Ascore among patients with different clinical responses in the IMvigor210 cohort using Kruskal–Wallis test. The statistical difference of clusters was compared through the Kruskal–Wallis test. *P < 0.05. (H) The box plot of the estimated IC50 for Docetaxel, Docetaxel and Gemcitabine are shown between the low and high m6Ascore groups.



We then used the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to predict the likelihood of response to immunotherapy, and it demonstrated that the low-m6Ascore group had a lower TIDE score and may therefore be more likely to respond to immunotherapy than the high-m6Ascore group (p<0.01) (Figure 6B). m6Ascore was significantly positively correlated with TIDE score (cor=0.24, p<0.01) (Figure 6C). We also used Subclass Mapping (SubMap) algorithm to compare the expression profile of the two m6Ascore groups with an independent cohort of 47 melanoma patients treated with immunotherapy. The low-m6Ascore group was more likely to respond to anti–PD-1 antibody treatment (nominal p<0.01, Bonferroni-corrected p<0.01) (Figure 6D).

We next explored the prognostic value of the m6Ascore in immune checkpoint inhibitor therapy by classifying patients receiving immune checkpoint inhibitor therapy in the TCGA-SKCM cohort to high or low m6Ascore groups. Patients with high m6Ascores had significantly worse survival than those with lower m6Ascores in TCGA-SKCM cohort (p=0.03) (Figure S7G). However, response event outcomes were missing in the clinical information from the TCGA-SKCM cohort, so we further validated the predictive performance of m6Ascore in immunotherapy using an external cohort. The IMvigor210 cohort of 348 anti–PD-L1 antibody (atezolizumab)-treated muscle-invasive bladder cancer patients was used to further validate the value of m6Ascore for predicting the clinical benefit of immunotherapy. Based on our scoring strategy, the m6Ascore of each patient in the IMvigor210 cohort was calculated. The low-m6Ascore group had a significant survival advantage, implying that the m6Ascore reflects sensitivity to immunotherapy (Figure 6E). The low-m6Ascore group also mainly included patients who responded to immunotherapy (Figure 6F). In addition, the m6Ascore was significantly lower in the complete/partial immunotherapy response group than the non-response group (stable/progressive disease) (Figure 6G).



m6Ascore Could Predict the Sensitivity of Two Chemotherapy Drugs

Chemotherapy regimens generally involve a combination of several anti-cancer drugs. We assessed the response of the low and high-m6Ascore groups to three common chemotherapeutic drugs for STS: docetaxel, doxorubicin, and gemcitabine. We trained a predictive model on a GDSC cell line dataset using ridge regression, with a satisfactory predictive accuracy evaluated by 10-fold cross-validation. The low-m6Ascore group was predicted to be more sensitive to docetaxel (P <0.01) and gemcitabine (P <0.01) (Figure 6H).



Utility of m6Ascore in Pan-Cancer Analysis

To further determine the performance of the m6Ascoring system in various cancer types. The m6Ascores of 10327 samples of 32 cancer types was calculated. Univariate Cox regression indicated that m6Ascore was a favorable factor in ACC, PRAD, MESO, LAML, SKCM, and STAD, and a risk factor in LUAD, PAAD, LGG, KICH, and KIRP (Figure S8A). The K-M survival analyses showed that there was a significant difference in overall survival between the high and low m6Ascore groups in the 32 cancer types (p<0.05) (Figure S9). Lower m6Ascore improved prognosis in ESCA, COAD, KIRP, BLCA, READ, PAAD, THYM, UCEC, BRCA, KIRC, LUAD, LGG, KICH, CESC, LIHC, and UVM.

The pan-cancer analysis showed that all 32 cancers exhibited a significant correlation between m6Ascore and ImmuneScore (calculated using the ESTIMATE method) (Figure S8B). Next, the correlations between m6Ascore and the proportions of 28 immune cells (calculated using the xCell method) were analyzed in the 32 cancer types. The correlation trends in 32 cancer types differed (Figure S8C). The proportions of regulatory T cells, M2 macrophages, and Th2 cells (which are all pro-tumor, immunity-suppressing cells) were correlated with m6Ascore in TGCT, PRAD, OV, ACC, GBM, KIRP, LAML, LUAD and LUSC. The proportions of CD8+ T, dendritic, natural killer, and Th1 cells were correlated with m6Ascore in ACC, CESC, LUAD, TGCT and THYM. We further investigated the correlations between m6Ascore and five important metabolic pathways (selected in the random survival forest analysis) in the 32 cancer types and found that 21 cancers were significantly associated with the Retinoic acid metabolism pathway (Figure S8D). Additionally, 31 cancers (all except OV) exhibited significant associations between m6Ascore and the six stemness indices (Figure S8E), with negative correlations in DLBC and GBM and positive correlations in BRCA, CESC, ESCA, STAD, and LUSC.

TMB, microsatellite instability (MSI), and expression levels of immune checkpoint-related genes can be used to predict the response to immune checkpoint blockade immunotherapy. Of the 32 cancer types, 18 exhibited a significant correlation between m6Ascore and TMB, as shown in radar charts (Figure S8F), 13 exhibited a significant correlation between m6Ascore and MSI (Figure S8G), and nine (ACC, LIHC, LUAD, LUSC, MESO, OV, PAAD, STAD, and TGCT) exhibited significant correlations between m6Ascores and both TMB and MSI. We further investigated the correlations between m6Ascore and 15 immune checkpoint-related genes in the 32 cancer types, and there was a significant correlation between PD-L1 (CD274) expression and m6Ascore in 29 cancer types (Figure S8H), which again confirmed the ability of m6Ascore to predict the clinical benefit of immunotherapy.




Discussion

In this study, multiomics data and machine learning algorithms were utilized to analyze m6A modification, and we revealed that m6A regulators were involved in the regulation of immunity, metabolism, and stemness in STS, which provides further insights for clinical management, including immunotherapy, chemotherapy and metabolism therapy.

To explore the biological effects of m6A modification in STS, 21 m6A regulators were analyzed based on expression, mutation, and CNV. The high heterogeneity of expression and genomic alterations revealed the pivotal roles of the m6A regulators in STS, which necessitated subsequent analyses. Thereafter, unsupervised clustering was used to identify two m6A modification patterns (m6Acluster-A and -B) with distinct prognoses, distinct characteristics of immunity, metabolism, and stemness in STS. m6Acluster-A had better survival and enrichment of immune-stimulating cells, promoting type I immunity-mediated anti-tumor effects (17, 18). Inversely, elevated Th2 cells reduce type I immunity and facilitate tissue repair (19). Higher B (20), CD8+ T, natural killer, and dendritic cell infiltration and lower Th2 cell infiltration suggested immune activation and contributed to the better prognosis in m6Acluster-A, which was designated the immune-activated phenotype. In contrast, m6Acluster-B, the immune-desert phenotype, had worse prognosis because of the lower immune cell infiltration. Hence, as found in previous studies (21, 22), m6A modification may affect prognosis by regulating the immune microenvironment in STS.

To further investigate the functions of these m6A regulators, we performed GSVA involving typical biological pathways, and we found that the cell cycle, mismatch repair, VEGF signaling, immune-related pathways, metabolic-related pathways, and EMT (23) differed between m6Acluster-A and -B. Higher enrichment scores for the cell cycle and mismatch repair suggested increased cell proliferation in m6Acluster-B, worsening prognosis. Accordingly, we speculated that the m6A regulators also played vital roles in metabolism and stemness in STS, in addition to their roles in immunity. To verify this speculation, the relationships between the m6A regulators and immune cell infiltration, metabolic pathways, and stemness were further explored. In addition to the significant differences of immune cell infiltration between the two m6A modification patterns, the expression levels of the m6A regulators were also correlated with the infiltration of various immune cells. Specifically, most m6A regulators were negatively correlated with dendritic, CD8+ T, and B cells, concurring with the finding that low expression of most m6A regulators was associated with better prognosis. Although the loss of YTHDF1 promotes antigen presentation in DCs (24), YTHDF2 (although not YTHDF1) was negatively correlated with dendritic cell infiltration in STS. Further studies are required to elaborate on the specific mechanisms of each m6A regulator in the immune microenvironment.

Several studies have reported that m6A modification may regulate glycolysis (25, 26), but this was not seen in STS in this study. To investigate the impact of m6A regulators on metabolism in STS, we used the random survival forest algorithm to systematically search for key m6A modification-related prognostic metabolic pathways, and five pathways were identified. Retinoic acid metabolism, drug metabolism by cytochrome P450, and histidine metabolism have been previously reported in STS (27–29). Mounting evidence indicates that metabolism and immunity are closely related to cancer development and progression (30, 31). The significant correlations between m6A regulators and the metabolic pathways suggested that m6A regulators may influence tumor immunity by regulating metabolism, but this requires verification. Consistently, increasing evidence shows that m6A regulators promote cancer stem cell phenotype, EMT, and metastasis in cancers (32, 33). Regarding tumor stemness, in this study, YTHDF2, HNRNPA2B1, HNRNPC, IGF2BP1, and KIAA1429 were positively correlated with tumor stemness, while FTO was negatively correlated with tumor stemness. In addition, our speculation regarding m6A regulators regulating immunity, metabolism, and stemness was supported by GO enrichment analysis of the DEGs between the two m6A modification patterns. Thus, m6A regulators are promising for use as therapeutic targets to influence immunity, metabolism, and stemness, potentially facilitating treatment of STS.

To further investigate genes regulated by m6A modification, the immune/metabolism/stemness phenotype-related genes associated with m6A modification were explored using WGCNA. The three subsequent unsupervised consensus clustering analyses demonstrated that the immune phenotype (ImmuneScore)-, metabolism phenotype (retinoic acid metabolism)-, and stemness phenotype (mRNAsi)-related genes clustered into four, three, and three phenotype clusters, respectively. Each phenotype cluster had unique immunity/metabolism/stemness features and different expression of m6A regulators, contributing to different prognoses. In addition, the immune, metabolism and stemness phenotype-related genes could provide reference for subsequent studies on m6A modification involved in immune, metabolism and stemness in STS. On the other hand, DNA methylation, as a form of epigenetic regulation, can lead to abnormal gene expression, thereby driving oncogenesis (34). Our previous research demonstrated the effect of DNA methylation on the prognosis of STS (35). Therefore, we investigated the regulatory action of DNA methylation on the expression of m6A regulators, with unsupervised clustering leading to the identification of two DNA methylation phenotypes. The improved survival in the higher DNA methylation group could be explained by lower expression of six m6A regulators (RBM15B, KIAA1429, YTHDF2, HNRNPA2B1, HNRNPC, and ELAVL1). Furthermore, the two DNA methylation phenotypes differed in terms of immunity, metabolism, and stemness features. In conclusion, DNA methylation may regulate m6A modification-mediated differences in immunity, metabolism, and stemness.

m6Acluster-A subtype had higher expression of immune checkpoint-related genes than m6Acluster-B, and therefore might be sensitive to immune checkpoint inhibitors. However, the individual-level heterogeneity and complexity of m6A modification cannot be ignored; quantification of m6A modification patterns to distinguish individual differences could guide immunotherapy use in STS. Therefore, we constructed an m6A scoring system designated m6Ascore to quantify the m6A modification patterns in individuals. As expected, m6Ascore had many profound clinical implications. First, it was an outstanding indicator of m6A modification patterns. Second, it overcame the shortcoming of STS histological type, which is a high-performing prognostic factor as indicated by an analysis of 10000 cases (36) but it is often difficult to distinguish different histological types. More specifically, lower m6Ascore was associated with better prognosis in STS among the various histological types, which may be explained by the enriched anti-tumor immune cell infiltration and immune-related pathways in the low m6Ascore group. Third, m6Ascore could help distinguish immunity, metabolism and stemness phenotypes. Fourth, m6Ascore could also predict patient response to immunotherapy and chemotherapy. Patients with higher TMB [an emerging biomarker of immunotherapy responses (37)] in the low m6Ascore group (which had higher sensitivity to immunotherapy) had improved survival. Additionally, immunogenic biomarkers, LOH, HRD, TNB, ITH, and aneuploidy were also significantly negatively correlated with m6Ascore. The key role of m6A modification mediated regulators in modulating DNA repair and genome stability has gradually attracted attention (38). Some m6A methyltransferases can modify and regulate the levels of RNAs involved in DNA damage and repair, which in turn affect genomic instability (39). For example, the m6A methyltransferase METTL3 is activated by ATM-mediated phosphorylation and localized to DNA damage sites, where it promotes HRD repair (40). Previous studies have also shown elevating m6A regulator METTL3 levels could increase the RNA modification of ZBTB4 and decrease levels of ZBTB4 mRNA (41), which in turn increase aneuploidy and genome instability across many frequent human cancers (42). The m6A modification can cause genome instability, which can affect tumor adaptation along with neoantigen production and sensitive to immunotherapy (43, 44). Our study showed the lower m6Ascore and the corresponding higher immunogenicity could contribute to the beneficial effects of immunotherapy, as indicated by a series of machine learning algorithms TIDE (45), SubMap (46), and pairwise comparison analyses (47, 48). Our results indicated that m6A modification, in addition to regulating immunity, metabolism, and stemness, may also be accompanied by changes in immunogenicity. CNV is frequently observed in all kinds of RNA regulatory genes (such as those related to m6A, m5C, m1A, m3C, and m7G), it was reported that CNV of m6A regulator genes is correlated with immune cell infiltration in STS patients (49). Our genome analysis results showed that the low-m6Ascore group, as immune activation group, had more gene mutations and CNV loading burden (including focal and arm-level) than the high-m6Ascore group. The prognostic significance of m6Ascore was also illustrated in other cancer types, and m6Ascore had key roles in immunity, metabolism, and stemness in a pan-cancer analysis in other cancers. Additionally, there were significant correlations between m6Ascore and almost all immune checkpoint-related genes assessed in pan-cancer analysis, further implying that m6A methylation affects immunotherapy sensitivity. The discoveries regarding m6Ascore in the large range of other cancer types are worthy of further study.

This study has several limitations. First, the heterogeneity of samples from the TCGA database combined with the GEO database was disregarded, although the batch-effect correction algorithm was used. Second, there were few STS samples due to the low incidence of STS, and the samples tended to be UPS or DDLPS. Third, there was a lack of clinical cohorts to validate the findings regarding the correlations between m6A modification and the tumor immune landscape and the prognostic value of m6Ascore in STS.
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Supplementary Figure S1 | (A) Overview of study design. (B) Survival analyses for the gene expression level of 21 m6A regulators in STS cohort.

Supplementary Figure S2 | Different prognosis, infiltration of immune cells and biological processes between two m6A methylation patterns. (A) Survival analyses for the two m6A modification patterns in TCGA-SARC (left) and GSE21050 (right) cohort, respectively. Kaplan-Meier curves with Log-rank p value <0.05 showed a significant survival difference between two m6A modification patterns. (B) The expression of 21 m6A regulators between m6Acluster-A and m6Acluster-B groups and corresponded clinical information also displays in heatmaps. TCGA-SARC cohort (left) and GSE21050 cohort (right). (C) The enrichment differences of 28 immune cell form Xcell algorithm between the m6Acluster-A and m6Acluster-B groups in TCGA-SARC cohort (left) and GSE21050 cohort (right), respectively. The statistical difference of clusters was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001. (D) GSVA enrichment analysis showing the activation states of biological pathways for distinct m6A modification patterns in TCGA-SARC and GSE21050 cohorts. The heatmap was used to visualize these biological processes, and red represented activated pathways and blue represented inhibited pathways.

Supplementary Figure S3 | Correlations of the 21 m6A regulators with immunity, metabolic pathways, and stemness. (A) The correlations between 28 immune cell and the expression of each m6A regulator by Pearson analyses. A negative correlation was marked with blue and positive correlation with red. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). (B) Error rate for the data as a function of the classification tree by Random Survival Forest (RSF) algorithm. (C) Out-of-bag importance values for the metabolic pathways, the top five metabolic pathways were displayed based on importance value. (D) The correlations between 18 metabolic pathways selected by univariate Cox and RSF analyses and the expression of each m6A regulator using Spearman analyses. A negative correlation was marked with blue and positive correlation with red. (E) The correlations between six stemness indices and the expression of each m6A regulator using Pearson analyses. A negative correlation was marked with blue and positive correlation with red. (F) Kaplan–Meier curves for each type of six stemness indices using the Log-rank test. The high or low level of stemness indices was defined by optimal cut-off using “survminer” R package.

Supplementary Figure S4 | Identification of hub genes and immunity/metabolism/stemness subtypes by WGCNA. (A) A scatter plot of correlation between blue module eigengene and immunity phenotype (left). A scatter plot of correlation between brown module eigengene and Retinoic Acid metabolism phenotype (middle). A scatter plot of correlation between yellow module eigengene and mRNAsi stemness indices (right). Correlation coefficient and p-value is indicated in the plot. (B) Relative change in area under consensus CDF curve for k=2 to 9 in Immunity clustering (left), Metabolism clustering (middle), Stemness clustering (right). (C) The abundance of 28 immune cell among Immunity cluster-A, -B, -C, -D groups and corresponded clinical information also displays in heatmap (left). The difference of metabolic pathways among Metabolism cluster-A, -B, -C groups and corresponded clinical information also displays in heatmap (middle). The difference of Stemness pathways among Stemness cluster-A, -B, -C groups and corresponded clinical information also displays in heatmap (right).

Supplementary Figure S5 | Identification of distinct DNA methylation subtypes. (A) Relative change in area under CDF curve for k=2 to k=9. (B) Heatmap corresponding to the consensus matrix for k=2 obtained by using consensus clustering. (C) Heatmap of DNA methylation location sites clusters with clinical and molecular pathological parameters. (D) Survival analyses for the two DNAmethyclusters based on TCGA-SARC cohort including 258 cases in 147 cases DNAmethycluster-A, 111 cases in DNAmethycluster-B. Kaplan-Meier curves with Log-rank p value 0.001 showed a significant survival difference between two DNA methylation patterns. (E) The expression of 21 m6A regulators between DNAmethycluster-A and DNAmethycluster-B. The statistical difference of clusters was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001. (F) Abundance differences in 28 types of immune cells between DNAmethycluster-A and DNAmethycluster-B in the TCGA-SARC cohort. The statistical difference of clusters was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001. (G) GSVA enrichment analysis showing the activation states of biological pathways in two distinct DNAmethylationclusters. The heatmap was used to visualize these biological processes, and red represented activated pathways and blue represented inhibited pathways. (H) Box plot showing differences in mDNAsi and EREG mDNAsi stemness indices between DNAmethycluster-A and DNAmethycluster-B. The thick line represents the median value. The statistical difference of four groups was compared through the Kruskal–Wallis test.

Supplementary Figure S6 | Identification of m6A modification pattern-related DEGs and construction of the m6Ascore. (A) GO enrichment analysis of DEGs identified from two m6A modification patterns. The x axis indicates the number of genes within each GO term. (B) The cumulative distribution function (CDF) curve is the integral of probability density function using consensus clustering approach. CDF curves of consensus scores based on different subtype number (k = 2 to 9) and the corresponding color are represented. (C) The consensus matrix of TCGA-SARC and GSE21050 cohorts using consensus clustering based when k = 2. (D) Gene expression heatmap analysis of 141 prognosis-related DEGs between geneCluster-A and geneCluster-B. Heatmap indicates relative gene expression value, with red for high expression and blue for low expression. (E) Survival analysis of the two gene cluster subtypes. Kaplan-Meier curves showing the distinct outcomes of STS patients. The P-value was calculated using the log-rank test, by comparing geneCluster-A and geneCluster-B. (F) The expression of 21 m6A regulators between geneCluster-A and geneCluster-B. The statistical difference of clusters was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001. (G) Alluvial diagram showing the changes of m6Acluster, gene cluster, m6Ascore level and survival outcomes. (H) Survival analysis of high- and low- m6Ascore groups in TCGA-SARC and GSE21050 cohorts including 568 cases. Kaplan-Meier curves showing the distinct outcomes of STS patients in high- and low- m6Ascore groups. The P-value was calculated using the log-rank test. (I) Survival analysis of high- and low- m6Ascore groups in TCGA-SARC cohort including 259 cases (left), GSE21050 cohort including 309 cases (right), respectively. Kaplan-Meier curves showing the distinct outcomes of STS patients in high- and low- m6Ascore groups. The P-value was calculated using the log-rank test. (J) The expression of 21 m6A regulators between the high- and low- m6Ascore groups. The statistical difference of clusters was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001. (K) Differences in m6Ascore between m6Aclusters and geneClusters in TCGA and GSE21050 cohort. (left) The Kruskal-Wallis test was used to compare the statistical m6Ascore difference between m6Acluster-A and m6Acluster-B (P < 0.01). (right) Differences in m6Ascore between geneCluster-A and geneCluster-B using Kruskal-Wallis test.

Supplementary Figure S7 | Correlation between m6Ascore and clinicopathological type. (A) Survival analyses for patients with each clinical histopathological phenotype in the TCGA-SARC and GSE21050 cohort using Kaplan–Meier method and Log-rank test. (B) The proportion of patients with clinical histopathological type in TCGA and GSE21050 cohorts. (C) Box plot showing differences in m6AScore among clinical histopathological type in the TCGA-SARC and GSE21050 cohorts. The statistical difference of clusters was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001. (D) Survival analyses for each histology type including in the TCGA and GEO cohort using Kaplan–Meier method and Log-rank test. R package “survminer” was used to determine the optimal cutpoint for the levels of m6Ascore. (E) Forest plot of the differentially mutated genes between high and low m6Ascore subgroups. The statistical difference of the two groups was compared through the Fisher exact test. *P < 0.05; **P < 0.01; ***P < 0.001. (F) Detailed cytoband with focal amplification (left) and focal deletion (right) in the high-m6Ascore group generated with GISTIC_2.0 software. The q value of each locus is plotted horizontally. (G) Kaplan–Meier curves of overall survival of patients treated with lpilimumab in TCGA-SKCM cohort.

Supplementary Figure S8 | The utility of m6Ascore in pan-cancer. (A) The overall survival analyses for the m6Ascore in TCGA cancer types using a univariate Cox regression model. Hazard ratio > 1 represented risk factors for survival and hazard ratio < 1 represented protective factors for survival. (B) Radar chart of the correlation between m6Ascore and immune score from ESTIMATE. The dots in the radar chart represent the R-value of correlation: R > 0, positive correlation; and R < 0, negative correlation. (C) Correlations between the m6Ascore and immune cell for each cancer type (Pearson test). The upper part of each grid showed the P-value, and the bottom part showed the correlation coefficient. The asterisks represented the statistical P-value. (Pearson test, *P < 0.05; **P < 0.01; ***P < 0.001). (D) Correlations between the m6Ascore and metabolic pathways for each cancer type (Pearson test). The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). (E) Correlation between the m6Ascore and six stemness indices for each cancer type (Pearson test). The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). (F–G) Radar chart of the correlation between m6Ascore and tumor mutation burden (F), microsatellite instability (G). (H) Correlation between the m6Ascore and immune checkpoint–related genes for each cancer type. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001).

Supplementary Figure S9 | Survival analyses for the level of m6Ascore in 32 cancer types from TCGA cohorts.

Supplementary Table S1 | The numbers of samples and the clinical baseline and endpoint data of each STS sample in TCGA-SARC and GSE21050 cohorts.

Supplementary Table S2 | Prognosis-related metabolic pathways selected by univariate Cox analysis, multivariate Cox analysis and the randomSurvivalForest algorithm.

Supplementary Table S3 | 2183 DEGs (|log2FC|>0.5 and FDR<0.05) by comparing the two m6A modification patterns.

Supplementary Table S4 | 579 immune phenotype (ImmuneScore)-related genes, 326 metabolism phenotype-related (retinoic acid metabolism) genes, and 286 stemness phenotype (mRNAsi)-related genes.

Supplementary Table S5 | The results of univariate and multivariate Cox analysis for 531 CpG sites in the 21 m6A regulator genes.

Supplementary Table S6 | 204 DEGs (log2FC>1 and FDR<0.05) by comparing the two m6A modification patterns.

Supplementary Table S7 | Identification of prognosis-related genes were identified by univariate and multivariate Cox regression.
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Background

The inclusion of immune checkpoint inhibitors (ICIs) in therapeutic algorithms has led to significant survival benefits in patients with various metastatic cancers. Concurrently, an increasing number of neurological immune related adverse events (IRAE) has been observed. In this retrospective analysis, we examine the ICI-induced incidence of cerebral pseudoprogression and propose a classification system.



Methods

We screened our hospital information system to identify patients with any in-house ICI treatment for any tumor disease during the years 2007-2019. All patients with cerebral MR imaging (cMRI) of sufficient diagnostic quality were included. cMRIs were retrospectively analyzed according to immunotherapy response assessment for neuro-oncology (iRANO) criteria.



Results

We identified 12 cases of cerebral pseudoprogression in 123 patients treated with ICIs and sufficient MRI. These patients were receiving ICI therapy for lung cancer (n=5), malignant melanoma (n=4), glioblastoma (n=1), hepatocellular carcinoma (n=1) or lymphoma (n=1) when cerebral pseudoprogression was detected. Median time from the start of ICI treatment to pseudoprogression was 5 months. All but one patient developed neurological symptoms. Three different patterns of cerebral pseudoprogression could be distinguished: new or increasing contrast-enhancing lesions, new or increasing T2 predominant lesions and cerebral vasculitis type pattern.



Conclusion

Cerebral pseudoprogression followed three distinct patterns and was detectable in 3.2% of all patients during ICI treatment and in 9.75% of the patients with sufficient brain imaging follow up. The fact that all but one of the affected patients developed neurological symptoms, which would be classified as progressive disease according to iRANO criteria, mandates vigilance in the diagnosis and treatment of ICI-induced cerebral lesions.





Keywords: immune checkpoint inhibitors (ICI), immunotherapy, cerebral pseudoprogression, immune related adverse events (irAE), brain metastases, neurological side effects, neurological complication



Introduction

Cancer cells can suppress immune system activation by hijacking inhibitory pathways of T cell activation. Major elements of these inhibitory checkpoints are cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell-death protein 1 (PD-1) and its ligand PD-L1. Immune-checkpoint inhibitors (ICIs) potently suppress these inhibitory pathways, thereby disinhibiting antitumor immune responses. The efficacy of ICIs has been demonstrated across several cancers including advanced malignant melanoma (1, 2) and non-small cell lung cancer (NSCLC) (3).

Target lesion pseudoprogression associated with ICIs is a well-established phenomenon for NSCLC and melanoma and is caused by an infiltration of immune cells and inflammation prior to tumor shrinkage (4). An extracranial pseudoprogression rate of 7% has been reported in the KEYNOTE-001 trial of pembrolizumab (PD-1 inhibitor) for advanced melanoma (5). The efficacy of ICIs has been demonstrated for treating cerebral metastases as well, both as monotherapy and in combination with radiation therapy (6, 7). In these patients, it is of major importance to detect immune-related adverse events (IRAE), which can only be differentiated from progressive disease by specific additional examinations (8). Until now, only single case reports or case series of cerebral pseudoprogression have been published and the incidence of cerebral pseudoprogression after ICI treatment is unknown. Imaging patterns of cerebral pseudoprogression reported so far are diverse and include an increase in MRI contrast enhancement in metastatic lesions with an increase of adjacent edema (9–11), small dotted cerebral bleedings (12) and new FLAIR hyperintense lesions (13) distant from cerebral metastases. The FLAIR hyperintense lesions have been interpreted as inflammatory central nervous system (CNS) demyelination in one case (14) and as immune-mediated cerebellitis in another case (15).

A systematic evaluation of frequency and patterns of cerebral pseudoprogression in a larger cohort has not yet been reported. Also, it is unclear whether the onset of pseudoprogression is influenced by co-factors such as prior radiation therapy or the presence of brain metastases. Given that immune therapy with chimeric-antigen-receptor T-cells (CAR-T) can cause severe cerebral neurotoxicity (immune effector cell-associated neurotoxicity syndrome; ICANS), cerebral pseudoprogression independent of brain metastases or primary brain cancer seems possible (16). To address these issues, we performed a retrospective analysis of all patients with available cerebral MRI who received ICI treatment at our hospital regardless of tumor histology and presence or absence of cerebral metastatic disease.



Materials and Methods

We performed a retrospective analysis of patients treated in our hospital between the years 2007 and 2019 to identify patients with any in-house ICI treatment (pembrolizumab, ipilimumab, nivolumab, atezolizumab, avelumab) for any tumor disease (Figure 1). Since cerebral metastasis had been a contraindication for ICIs in the initial pivotal studies, all identified patients had received a cCT or cMRI scan before starting treatment (17). Further MRI controls had either been scheduled at intervals of 3 to 6 months or were only performed when neurological symptoms occurred. Requirement for inclusion was the availability of a follow-up cMRI at least 3 months after initiation of checkpoint inhibitor therapy. Patients without MRI scan or with only CT scans in the follow-up were excluded. All MRIs were performed on 1.5 or 3 T scanners acquiring at least T1-weighted sequences with and without contrast agent, T2-weighted sequences [T2-turbo spin echo (T2-TSE) and fluid-attenuated inversion recovery (FLAIR)]. The MRIs were analyzed for progression by an experienced, board-certified neuroradiologist (ES, EH) (18). Patients with confirmed tumor progression in the next follow-up or other defined diseases causing the change in MRI, i.e. ischemic stroke or viral encephalitis, were then excluded based on immunotherapy response assessment in neuro-oncology (iRANO) (19). Only the image findings were used for the first screening. The iRANO criterion of significant clinical decline was not taken into account during this phase of data collection.




Figure 1 | Consort Flow-diagram.



Microsoft Excel and GraphPad Prism 8.0.2 were used for data management and statistical analysis. Corel Draw 2019 was used to create figures.

Ethics approval for this retrospective data collection was obtained from the ethics committee of the University Hospital Frankfurt; Goethe University, Germany (Protocol-Number: SNO-13-2019).



Results


Patient Characteristics Prior to Diagnosis of Cerebral Pseudoprogression

We identified 12 patients with cerebral pseudoprogression in a cohort of 372 patients with ICI treatment (123 with sufficient brain imaging; 9.8% rate of cerebral pseudoprogression of the patients with sufficient imaging during the treatment) (Figure 1: Consort diagram). Mean age was 61 years (range 44 – 76 years), with a male predominance (75%). Primary tumor disease included lung cancer (n=5, NSCLC=4, SCLC=1), malignant melanoma (n=4), glioblastoma (n=1), hepatocellular carcinoma (n=1) and lymphoma (n=1). At the time of diagnosis of pseudoprogression, 10 patients had already been diagnosed with brain metastases or, in the one case of glioblastoma, primary cancer of the brain. 11 of 12 patients showed abnormal findings in the neurological examination upon diagnosis of pseudoprogression. In 6 of 12 patients, pseudoprogression manifested as a first occurrence of epileptic seizure or as a worsening of a known structural epilepsy. Details on EEG findings and treatment with antiseizure medication have previously been published (20). Three patients showed a paresis of arms or legs. Two patients presented with personality changes. Two patients had symptoms of increased intracranial pressure. One patient developed hypoacusis, one developed facial nerve palsy. In one patient, pseudoprogression was an incidental finding during a routine MRI and initially, no neurological deficit was present.

Notably, half of the patients with cerebral pseudoprogression had already experienced another type of IRAE during ICI treatment. Two patients had already suffered from autoimmune hepatitis before the onset of cerebral pseudoprogression. In one of these 2 patients, therapy was changed from ipilimumab/nivolumab to pembrolizumab. Additionally, 2 other patients had previously developed autoimmune-related hypophysitis, one patient had suffered from pneumonitis and one from dermatitis. All six patients had received prednisolone to treat these adverse drug reactions.

All patients were still under active ICI treatment upon diagnosis of cerebral pseudoprogression. Six patients were treated with pembrolizumab, 4 patients received a combination of nivolumab and ipilimumab, one patient was treated with atezolizumab and one with nivolumab. All treatments were administered in the respective standard ICI doses. Median time from the start of ICI therapy to diagnosis of cerebral pseudoprogression was 5 months (range 1-19 months). Seven patients had been treated exclusively with first-line nivolumab/ipilimumab or pembrolizumab. One patient had previously received a tumor specific immunotherapy by vaccination. The remaining 4 patients had received various pre-treatments with non-immune therapies (Table 1).


Table 1 | Patient characteristics.



Nine patients had been treated with radiation therapy directly after the diagnosis of brain metastasis (4 with fractionated radiotherapy and 5 with radiosurgery) and before diagnosis of cerebral pseudoprogression. None had been treated with whole brain radiation therapy. Three patients (with lymphoma, hepatocellular carcinoma and melanoma) had not received any cerebral radiation as part of their treatment. Median time between the end of radiotherapy and the diagnosis of pseudoprogression was 6 months (range 1 – 24 months)



Increases in Contrast-Enhancing Lesions as a Type of ICI-Mediated Pseudoprogression

Three distinct patterns of cerebral pseudoprogression were detected in our patient collective. Six patients had an increase in contrast enhancement of preexisting lesions or presented with new contrast-enhancing lesions in the T1-weighted sequences after intravenous administration of contrast agent.

Progressive contrast enhancement could also present as an intraparenchymal lesion adjacent to the previous tumor manifestation within the irradiation field (1 patient) or distant to the initial tumor manifestation and outside the irradiation field (3 patients). In 2 of the 3 patients in whose pseudoprogression occurred outside the prior irradiation field, contrast enhancement of the cranial nerves was present.

As an example, in one NSCLC patient a cerebellar metastasis had been treated with stereotactic radiation (3x9 Gy) in addition to treatment with pembrolizumab. The MRI showed an excellent response of the known cerebellar metastasis to the radiation therapy, but also showed a new, distant contrast enhancement in the left frontal lobe that did not correspond to a typical image of brain metastasis (Figure 2). The cerebrospinal fluid (CSF) showed no significant findings (leukocytes 4/nl; erythrocytes 0/nl; lactate 1.8 mmol/l; glucose 86 mg/dl). A patient with recurrent Hodgkin’s lymphoma had been treated with pembrolizumab and had not received any cerebral radiation therapy in the past. The patient was admitted with dizziness and nausea. MRI showed small nodular, sulcal contrast enhancement as well as small bleedings in the susceptibility-weighted imaging (SWI; Figure 3). CSF (leukocytes 2/nl; erythrocytes 0/nl; lactate 1.98 mmol/l; glucose 52.6 mg/dl) and cerebral biopsy were not indicative of cerebral lymphoma or bacterial/viral encephalitis. The patient had been treated with high-dose methylprednisolone and a tapering dose of prednisolone in combination with everolimus, which led to an improvement of symptoms with regressive contrast enhancement in the follow-up scans. 8 months later, the patients had systemic progression and died shortly afterwards. In another melanoma patient with contrast enhancement of the cranial nerves with pembrolizumab therapy, repetitive CSF analyses were again neither indicative for meningeosis carcinomatosa nor bacterial/viral encephalitis. The enhancement disappeared during treatment with prednisolone (Figure 4), so the patient was diagnosed with pseudoprogression. However, in the 6-month follow-up, meningeosis carcinomatosa was diagnosed with leptomeningeal enhancement in the MRI and malignant cells in the CSF cytology (Figure 4). ICI treatment might therefore have “unmasked” early meningeosis by causing inflammation and subsequent disruption of the blood-brain-barrier with contrast agent enhancement (12).




Figure 2 | Cranial MRI scans of a 54-year-old patient with single, cerebellar metastasis of non-small-cell lung carcinoma. The MRI scan shows an excellent response of the cerebellar metastasis to the radiation therapy [(A): T1-weighted, contrast enhanced images]. At the same time, new tubular contrast enhancements with adjacent edema and diffusion restrictions have appeared in the left frontal lobe distant to the irradiated cerebellar metastasis [(B): T1-weighted, contrast enhanced images, (C): Fluid-attenuated inversion recovery (FLAIR), (D): Diffusion-weighted images (DWI, b1000)].






Figure 3 | Cranial MRI scans of a 61-year-old patient with Hodgkin’s lymphoma in the thoracic and abdominal lymph nodes. Recurrent lymphoma had been treated with pembrolizumab since 12/2018. Initial CT scan of the brain as part of a whole body FDG-PET scan had shown no cerebral manifestations of the lymphoma (not shown). The patient had no neurological symptoms at the start of ICI therapy. The patient was admitted in 05/2019 with dizziness and nausea. First MRI (upper row) showed small nodular, cortical contrast enhancement (A) with corresponding hyperintense signal in fluid-attenuated inversion recovery (FLAIR) imaging (B) and diffusion-weighted imaging (DWI, b1000) (Arrows mark the biopsy site), (C) as well as small bleedings in susceptibility-weighted imaging (SWI) (D). Cerebrospinal fluid was not indicative for cerebral lymphoma or bacterial or viral encephalitis. Histological evaluation of biopsy samples (E–G) revealed neither cerebral lymphoma nor JC-virus, but reactive CNS alterations with astrogliosis [(E)+(G), arrows: astrocytes with reactive changes] and macrophage clearance (F). First follow-up MRI after the discontinuation of pembrolizumab (middle row) showed a further progression of the lesion. Treatment with high-dose methylprednisolone and tapering dose of prednisolone in combination with everolimus was administered. First control under the immunosuppressive treatment (lower row) showed an improvement with regressive contrast enhancement.






Figure 4 | Cranial MRI scans of a 76-year-old patient with melanoma of the vulva. The patient had been treated with nivolumab and ipilimumab, which had been discontinued due to autoimmune hepatitis and switched to pembrolizumab in 03/2018. Routine staging revealed a new, contrast-enhancing tumor next to the right posterior cerebral artery (second column, red arrow). Repetitive cerebrospinal fluid analysis did not show meningeal carcinomatosis. Treatment with oral prednisolone was started in 12/2018 (third column) and the next MRI one month later showed shrinkage of the tumor, which was retrospectively diagnosed as pseudoprogression (fourth column). In 05/2019 the patient showed a meningeosis carcinomatosa in before normal appearing localizations.





T2 Predominant ICI Therapy-Mediated Cerebral Pseudoprogression

In our collective, a pronounced increase in hyperintense lesions in T2-weighted images without contrast enhancement was observed in 5 patients during ICI therapy. In 3 cases, the T2-changes occurred next to an existing metastasis, in the other 2 cases there was no evidence of tumor infiltration in the MRI. In these 2 cases, however, the T2-weighted changes were in the former radiation field and developed rapidly after the start of checkpoint therapy (Figure 5). At this point, immunotherapy might significantly accelerate and amplify the phenomenon of edema due to radiogenic vascular damage or nervous demyelination through the inflammatory response.




Figure 5 | Cranial MRI scans of a 64-years-old with a metastasis malignant melanoma. The patient had been treated with radiosurgery of one metastasis (second row with contrast agent) and nivolumab after the radiation. After clinical deterioration within 4 weeks of starting checkpoint therapy, the patient showed a marked increase in T2 changes outside the radiation field.





Vasculitis-Like Pattern of Immunotherapy-Mediated Cerebral Pseudoprogression and Discrimination From Vasculitis

In 2 of the patients a vasculitis-like pattern was found. In one patient with brain metastases caused by NSCLC, we observed a diffuse perivascular/vascular contrast enhancement in the basal ganglia accompanied by diffusion restrictions in the same areas. The first patient showed no neurological symptoms. An increased cell count in the CSF was found 2 months after the start of therapy with pembrolizumab, but CSF showed no malignant cells or elevated lactate (leukocytes 8/nl; erythrocytes 0/nl; lactate 2.14 mmol/l; glucose 58.4 mg/dl). On the one hand, these MRI findings could be explained by tumor progression in the form of a diffuse leptomeningeal metastatic spread. However, due to the absence of brain metastasis in the further course, as well as due to the absence of cancer cells in the CSF, this explanation seems unlikely. On the other hand, autoimmune small vessel vasculitis was considered due to the simultaneous diffusion restrictions. As expected, the basal large cerebral arteries were normal in the time-of-flight MR angiography TOF, and flow rate in color duplex sonography was not increased (Figures 6A–C).




Figure 6 | Cranial MRI of a 44-year-old female patient with NSCLC and pembrolizumab therapy. (A) Shows vascular imaging with no evidence of vasculitis-type changes in the large cerebral vessels. (B) Transversal gadolinium enhanced T1 weighted MRI with the remains of the occipitally located brain metastasis, as well as periventricular contrast medium accumulations suspicious for vasculitis (arrow). (C) A frontal gadolinium enhanced T1 weighted MR of the same patient. Again, the arrow indicates suspicious contrast agent accumulations. (D–F) Cranial MRI Scans and vertebral column MRI of a 72-year-old patient with melanoma. The Patient had been treated with nivolumab for 15 months. The patient then developed a headache and paraparesis. Cerebral angiography showed caliber changes of the left middle cerebral artery and the basilar artery. Due to vasculitis, the patient developed prolonged bleeding with siderosis-associated myelopathy. (D) Cerebral angiography with caliber changes of the cerebral vessels. (E) Cranial MRI of the lower spinal cord with bleeding in the caudal region. (F) Cranial MRI with bleeding of the metastasis and blood in the liquor system.



The second patient with brain metastases from malignant melanoma presented with headache and decreased vigilance. The cMRI showed new small cerebral DWI spots in the short-term course of a week. In contrast to the previous case, cerebral angiography and MR angiography showed a segmental narrowing of the cerebral vessels and no improvement with initial prednisolone therapy. Therefore, we assumed the development of acute cerebral vasculitis in this patient. In addition, the patient developed cerebral hemorrhage from a metastatic vessel. The hemorrhage was connected to the subarachnoid space and resulted in spinal siderosis with 4364300/nl erythrocytes in the CSF analysis (leukocytes 4572/nl; erythrocytes 4364300/nl; lactate 7.4 mmol/l; glucose 30.9 mg/dl) and consecutive paraparesis. Thus, angiography is essential in the presence of vasculitis-suspect lesions in the brain under checkpoint therapy to differentiate between the vasculitis-like pattern of immunotherapy-mediated cerebral pseudoprogression and actual vasculitis (Figures 6D–F).



Therapy and Outcome

Upon diagnosis of pseudoprogression, ICI treatment was discontinued in all cases with neurological symptoms and additional steroid treatment was initiated. Six patients received dexamethasone with an initial dose of 12 mg/d and subsequent slow tapering. 3 patients received a monotherapy with 60-100 mg prednisolone for 4 days or 250-1000 mg methylprednisolone for 3 days. In addition to prednisolone, 1 patient received an immunosuppressive therapy with the anti-TNFα antibody infliximab and another patient received additional therapy with everolimus. Although more than 80% of the patients showed a decrease in neurological symptoms afterwards, the median survival after initial diagnosis of pseudoprogression was limited to only 4 months (range 0-13 months). A single patient dropped out of follow-up and 2 patients are still alive at the date of submission (Table 2).


Table 2 | Outcome.






Discussion

Immune-checkpoint inhibitors (ICI) are one of the most important clinical advances for a wide range of malignancies, including melanoma and lung cancer - diseases that frequently metastasize to the brain. Although treatment with ICIs is common in patients with brain metastases, there are no systematic evaluations of cerebral pseudoprogression, and the incidence of this phenomenon is still unknown (10, 21). The screening of all patients treated with ICIs who received sufficient brain MRIs in our institution showed an incidence for cerebral pseudoprogression of approximately 9.8% during treatment.

The phenomenon of pseudoprogression during immuno-therapy was recognized in trials for melanoma patients first and led to the update of the RANO criteria (18). The iRANO criteria (2016) assist to differentiate between pseudoprogression and progressive disease on cMRI scans (19). The iRANO criteria propose that immunotherapy can be continued despite progressive disease in MRI when (1) the new lesion or progression of a known lesion manifests within six months of immunotherapy initiation and (2) there are no new or significantly worsened resulting neurological deficits. Strict adherence to the second criterion would mandate classification of all but one of our cases (Table 1) as progressive disease. However, it can be assumed that regardless of the underlying pathophysiology, any brain lesion is suitable to cause clinical deficits. Therefore, we believe that the severity of clinical symptoms should be taken into account when deciding to either continue an (otherwise) effective ICI treatment or to discontinue ICI treatment and start immunosuppressive therapy. However, to discontinue the treatment would leave the tumor untreated or at least potentially undertreated. We propose a classification containing two criteria to stratify the clinical significance of cerebral pseudoprogression (Table 3).


Table 3 | Pseudoprogression classification.



The first criterion pertains to the localization of the suspicious lesion (category 1). The pseudoprogression can be on target, which means the change in MRI can be an asymptomatic (1a) or symptomatic (1b) epiphenomenon of the desired immune response to the tumor. An existing tumor can expand in diameter and develop increased edema as immune cells invade the tumor body and cause inflammation. In the literature, the biopsy of a pseudoprogression of melanoma brain metastasis after treatment with pembrolizumab showed hemorrhage, reactive astrocytosis, microglial cells and only a few CD8+ T cells (10). It may also be possible that a cerebral metastasis was already present before the start of ICI therapy, but too small to become apparent in the MRI. Administration of immunotherapy might then lead to local inflammatory reaction with increased permeability of the blood-brain barrier, making it possible for the lesion to be detected. Similar effects of an increase in vascular permeability through immunotherapies have already been observed in other diseases, such as amyloid-related imaging abnormalities (ARIA) in Alzheimer’s dementia (22). The pre-existing tumor manifestation could be “unmasked” by the immune reaction as proposed in the patient displayed in Figure 4 (12). In this scenario, the pseudoprogression would be an indicator for a desired response to the ICI treatment.

Secondly, the suspicious lesion could be caused by an autoimmune inflammation of the brain without the presence of cerebral tumor cells (category 2). We suspect this mechanism in the patient shown in Figures 2 and 3, since biopsy of the lesion did not reveal any signs of lymphoma cells. The sole autoimmune nature of the cerebral lesions in such cases is in accordance with the mechanism of checkpoint inhibitor-mediated hepatitis, where acute inflammatory reactions are present without evidence of tumor cells or toxic necrosis (23).

The second criterion is the severity of clinical deterioration with regard to the need for discontinuation of ICI and/or administration of immunosuppressive therapy. An asymptomatic on-target increase of contrast enhancement (category 1a) is indicative of an effective ICI therapy that should be continued. Symptomatic on-target pseudoprogression (category 1b) requires careful evaluation of whether discontinuation of ICIs is necessary. If possible, symptomatic treatments for adverse events CTCAE grade 1-2 should be optimized first. Off-target asymptomatic pseudoprogression by autoimmune mimicry (category 2a) is an adverse event and should be monitored closely when the tumor is otherwise responding to therapy (24). Symptomatic off-target pseudoprogression (category 2b), especially CTCAE grade 3-4, should be treated decisively.

In contrast to several previous case reports which describe pseudoprogression as an indicator of a good response to immunotherapy, the majority of our patients showed severe clinical symptoms and treatment had to be terminated in 11 out of 12 cases, with 6 patients dying shortly after the diagnosis of cerebral pseudoprogression (Table 2). This overall high morbidity is based on 2 different mechanisms. On the one hand, a recurrence of tumor after the necessity to end immunotherapy which could be observed in 2 patients. A much larger proportion of patients died before progression could occur (only a few days to weeks after the onset of neurological symptoms). In these patients (n=6), it can be assumed that the severe neurological symptoms and their subsequent effects led to death.

The pattern described in this article is morphologically similar to the reaction to radiotherapy as seen on MRI. This reaction, which is also termed as radionecrosis (25), could be exaggerated by combination with ICIs, because radiotherapy disrupts the blood-brain barrier and allows immune cells to migrate into the central nervous system in a higher number (26). Radiotherapy also increases the release of tumor antigens in the extracellular space, therefore possibly further triggering an immune response (27). This desired synergistic effect might also lead to a higher rate of pseudoprogression. In metastasized melanoma to the brain, it was shown that a combination of radiotherapy and ICIs results in a higher rate of pseudoprogression than a combination of radiotherapy and targeted therapies (28).



Limitations

One major limitation is the retrospective character of the study. Another limitation is the low rate of biopsy-confirmed pseudoprogression. Specimens for histology could only be obtained in 2 cases mainly due to the poor condition of the other patients and/or rejection of the biopsy by the patient or their legal guardians. Nevertheless, the imaging course of the lesions as well as supporting diagnostic measures (including repetitive CSF analysis or PET scans) confirm that the lesions were indeed likely to have been caused by pseudoprogression (29).



Conclusion

In summary, ICI-mediated cerebral pseudoprogression is a diagnostic and therapeutic challenge for clinicians, and is likely to increase in frequency in the coming years as use of ICIs grows more common. In this work, we propose a system for categorization and specific handling procedures that will support informed decision making when deciding between discontinuation of an otherwise effective immunotherapy and (risk of) patient morbidity. The low incidence of asymptomatic pseudoprogression might be underestimated because cancer patients without neurological symptoms frequently do not receive MRI staging of the brain.
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Background

Systemic immune dysregulation correlates with cancer progression. However, the clinical implications of systemic immune dysregulation in early non-small cell lung cancer (NSCLC) remain unclear.



Methods

Using a panel of 9 markers to identify 12 parameters in the peripheral blood of 326 patients (34 in the discovery group and 292 in the validation group), we investigated systemic immune dysregulation in early NSCLC. Then, we analyzed the impact of surgery on the systemic immune state of these patients. Finally, we analyzed correlations between systemic immune dysregulation and the clinical features of early NSCLC.



Results

We found striking systemic immune dysregulation in the peripheral blood of early NSCLC patients. This dysregulation was characterized by a significant decrease in total lymphocytes, T cells, quiescent T cells, CD4+ T cells, and NKT cells. We also observed increased proportions of activated lymphocytes and activated T cells. Systemic immune dysregulation was increased after surgery. Furthermore, systemic immune dysregulation was correlated with multiple clinical features, such as sex, age, smoking history, pathological type, tumor stage, surgical approach, tumor differentiation, and epidermal growth factor receptor (EGFR) mutation. Finally, we observed that systemic immune dysregulation was correlated with complications and systemic inflammatory response syndrome (SIRS) in early NSCLC patients.



Conclusions

Our results reveal systemic immune dysregulation occurring in early NSCLC and demonstrate the correlation between these dysregulations and clinical features. Our findings suggest that systemic immune dysregulation is involved in cancer development and may be a promising candidate for high-risk screening and treatment strategies for early NSCLC.
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Introduction

Non-small cell lung cancer (NSCLC) is a common cancer type that leads to morbidity and mortality worldwide (1). In China, the incidence and fatality rate of NSCLC are at the top of the list and show increasing prevalence in recent years (2). Despite advancements in NSCLC treatment that have been achieved over the past two decades, the overall survival (OS) rates for NSCLC remain low (3). Emerging findings suggest that functional recovery of preexisting dysfunctional immune cells in tumors and the peripheral blood (PB) is key for successful immunotherapy (4). Therefore, further studies aiming to increase our understanding of the immune changes in human NSCLC are needed.

A recent study showed that resident immune cells in pre-invasive lesions became dysfunctional in the early stages of human lung squamous carcinogenesis (5). Another single-cell study showed that the tumor-infiltrating myeloid cell subsets change during the early stages of human lung adenocarcinoma (LUAD) (6). Single-cell RNA sequencing demonstrated that tumor-infiltrating lymphocytes (TILs) have a dysfunctional phenotype in early human NSCLC (7, 8). Another study found that most dysfunctional TILs show resident immune cell features (9, 10). These findings suggest an unexpected phenomenon in which local immune perturbation in the tumor microenvironment occurs as early as during the initiation stage of human NSCLC (11). Whether any immune perturbation arises at the systemic level in NSCLC remains unclear.

Lymphocytes in the PB, which are mainly composed of T, B, NK, and NKT cells, play a crucial role in systemic immune homeostasis. A previous study showed that altered DNA methylation occurs in peripheral leukocytes of patients with small cell lung cancer (SCLC) (12). Further studies showed that DNA methylation changes in pre-diagnostic PB samples were associated with smoking and lung cancer risk (13). Another study showed that telomere dysfunction occurs in the PB leukocytes of NSCLC patients and correlates with cancer risk (14). An enhanced lymphocyte-to-monocyte ratio (LMR) is correlated with better survival of NSCLC patients (15). A prognostic nomogram incorporating clinical data and PB markers, including the pretreatment neutrophil-to-lymphocyte ratio (LMR), shows good accuracy in predicting the OS of SCLC (16, 17). Expression of TNFR2 by regulatory T cells in PB correlates with the clinical pathology of lung cancer patients (18). The PB T-cell receptor (TCR) repertoire correlates with disease development and prognosis in advanced lung cancer (19). These studies suggest that systemic immune dysregulation emerges in the PB of patients with advanced NSCLC and that these dysregulations correlate with the outcome. However, whether systemic immune dysregulation also exists in the PB of early NSCLC remains unknown.

Here, we used a panel of nine markers to profile 12 parameters in the PB of 326 patients with early NSCLC. Then, we investigated systemic immune perturbations in the discovery group and validation group. Our study found an observable change in the immune state of early NSCLC patients with respect to systemic immune dysregulation, which correlated with clinical features such as gender, age, and tumor stage.



Materials and Methods


Patients and Healthy Donors

Fresh PB was obtained from NSCLC patients without previous treatment who underwent surgical resection at the Second Affiliated Hospital, Zhejiang University School of Medicine. Control PB samples were obtained from 34 healthy donors, all of whom were negative for antibodies against hepatitis C virus, hepatitis B virus, HIV, and syphilis. A total of 34 patients with non-advanced NSCLC were included in the discovery group, and 292 patients with non-advanced NSCLC were included in the validation group. The main characteristics of the subjects are summarized in Supplementary Table 1. All samples were anonymously coded in accordance with local ethical guidelines (as stipulated by the Declaration of Helsinki). Written informed consent was obtained from all study participants. The study protocol was approved by the Review Board of the Second Affiliated Hospital of Zhejiang University School of Medicine.



Cell Preparations and Flow Cytometry

Antibodies against CD45 (HI30), CD3 (UCHT1), CD4 (RPA-T4), CD8a (RPA-T8), CD38 (HB-7), CD16 (3G8), CD56 (HCD56), and HLA-DR (L243) were purchased from BioLegend. PB lymphocytes were collected after lysing red blood cells with lysing solution (BD Pharm Lyse). To block non-specific binding and to stain with combinations of fluorochrome-coupled antibodies at 4°C for 15 min, we preincubated peripheral blood mononuclear cells (PBMCs) (1 × 106/ml) in phosphate-buffered saline (PBS), 2% fetal bovine serum, and 0.1% (w/v) sodium azide with FcgIII/IIR-specific antibody. Flow cytometry data were collected using a FACSCanto II system and FACSFortessa system (BD Biosciences) and were analyzed using FlowJo software (Tree Star).



The Definition of Lymphocyte Subsets

The lymphocyte subsets in our study were defined as total lymphocytes (CD45+ SSC-low), activated lymphocytes (CD38+ CD45+), T lymphocytes (CD3+ CD45+), B lymphocytes (CD19+ CD45+), NK cells (CD16+ CD56+ CD3− CD45+), NKT cells (CD16+ CD56+ CD3+ CD45+), T helper cells (CD4+ CD3+ CD45+), T cytotoxic cells (CD8+ CD3+ CD45+), activated T lymphocytes (HLA-DR+ CD3+ CD45+), resting T lymphocytes (HLA-DR− CD3+ CD45+ lymphocytes), and activated T cytotoxic cells (HLA-DR+ CD8+ CD45+) (20). A summary of the immunophenotyping analysis for cancer patients and normal subjects is shown in Supplementary Table 2.



Statistical Analysis

All results are expressed as the mean ± standard error of the mean (SEM). Statistical analysis between healthy people and NSCLC patients was performed using the Mann–Whitney U test. Pairwise comparisons between pre- and post-surgical data were analyzed using the Wilcoxon matched-pairs signed-rank test. Multiple groups were compared using ordinary one-way ANOVA and Tukey’s multiple comparisons test if the data were normally distributed and had uniform variance. Otherwise, the Kruskal–Wallis tests and Dunn’s multiple comparisons tests were used. Correlations were analyzed using Spearman’s rank correlation coefficient. Statistical analyses were performed using GraphPad Prism software version 6.1. Statistical significance was set at p < 0.05.




Results


Systemic Immune State Is Dramatically Changed in Early Non-Small Cell Lung Cancer

To establish an approach to profile leukocyte subsets in the PB of patients with early NSCLC, we used a panel of nine markers to define 11 leukocyte subsets, similar to previous studies (21). The detailed gate strategy is shown in Figure 1A. We first profiled the leukocyte subsets in the PB of 34 healthy donors and 34 preoperative patients with early NSCLC who were subsequently pathologically confirmed. The age distribution between patients and controls was statistically similar. Our results showed that the total leukocyte percentages and absolute counts in the PB of preoperative patients with early NSCLC were significantly lower than those in healthy donors (Figure 1B and Supplementary Figure 1A). In contrast, the percentage of CD38+ CD45+ leukocytes in the PB of preoperative patients was higher than that in healthy donors (Figure 1C). However, the absolute counts of CD38+ CD45+ leukocytes showed a decreasing trend in NSCLC, which may be due to the decrease in total leukocytes (Supplementary Figure 1B). Furthermore, the number of CD3+ T cells and NKT cells in preoperative patients decreased (Figures 1D, E and Supplementary Figures 1C, D). Further analysis showed a decreasing trend of HLA-DR− CD3+ T cells and CD4+ T cells in preoperative patients with early NSCLC (Figures 1F, G and Supplementary Figures 1E, F). However, the percentage of HLA-DR+ CD3+ T cells in preoperative patients with early NSCLC was higher than that in healthy donors (Figure 1G). These systemic immune changes were validated using paired samples of patients postoperatively (Supplementary Figure 2). These findings demonstrate that systemic immune dysregulation occurs in the PB of patients with early NSCLC.




Figure 1 | Systemic immune dysregulation in early non-small cell lung cancer (NSCLC). Systemic immune dysregulation was assessed by flow cytometry on single-cell suspensions prepared from the peripheral blood of NSCLC patients and healthy donors. (A) Representative flow cytometric analysis of peripheral lymphocyte cells and the gating strategy used in this study. (B–G) Representative flow cytometric analysis of total lymphocytes (B), activated lymphocytes (C), CD3+ T cells (D), NKT cells (E), CD4+ T cells (F), and quiescent and activated CD3+ T cells (G) in the peripheral blood of NSCLC patients and healthy donors (left). Bar plots summarizing the percentage of total lymphocytes (B), activated lymphocytes (C), CD3+ T cells (D), NKT cells (E), CD4+ T cells (F), and quiescent and activated CD3+ T cells (G) in the peripheral blood of NSCLC patients and healthy donors (right). Data are shown as mean ± SEM; NSCLC patients, n = 34; healthy donors, n = 34. *p < 0.05; **p < 0.01; ****p < 0.0001.





Surgery Impacts the Systemic Immune State of Patients

Next, to investigate whether the systemic immune dysregulation in patients with early NSCLC is impacted by surgery, we profiled leukocyte subsets in paired PB samples acquired pre- and postoperatively from 29 patients in the discovery group. We found that after surgery, the trend changed in the same direction as that in the preoperation samples. We found that the total leukocyte and CD3+ T cell percentage and absolute numbers in the postoperative PB of patients were further decreased (Figures 2A, B and Supplementary Figures 3A, B). CD38+ CD45+ leukocytes showed decreased in postoperative patients. However, the CD38+ CD45+ leukocyte percentage increased due to a total decrease in lymphocytes (Figure 2C and Supplementary Figure 3C). Further analysis of the T cell subsets showed that the CD4+ T cells and of CD4+/CD8+ T cell ratio significantly decreased in postoperative patients (Figures 2D, E and Supplementary Figures 3D, E). The percentage of NKT cells and HLA-DR+ CD3+ T cells in postoperative patients significantly increased (Figures 2F, G), but this increase was not present in the absolute counts (Supplementary Figures 3F, G). Consistently, the percentage and absolute number of HLA-DR− CD3+ T cells significantly decreased in postoperative patients (Figure 2G and Supplementary Figure 3G). Furthermore, we observed an increase in the percentage of B cells and HLA-DR+ CD8+ T cells (Figures 2H, I), which was opposite from the decrease in absolute value due to the decrease of total lymphocytes (Supplementary Figures 3H, I). Regarding the surgical procedure, we observed slight differences in systemic immune dysregulation between patients receiving sub-lobectomy and lobectomy (Supplementary Figure 4). Together, these findings suggest that the systemic immune state of early NSCLC is further impacted by surgery.




Figure 2 | The impact of surgery on systemic immune dysregulation in early non-small cell lung cancer (NSCLC). Systemic immune dysregulation was assessed by flow cytometry on single-cell suspensions prepared from paired pre- and postoperative peripheral blood samples from NSCLC patients. (A–D) Representative flow cytometric analysis of total lymphocytes (A), CD3+ T cells (B), activated lymphocytes (C), and CD4+ T cells (D) in the paired pre- and postoperative peripheral blood samples from NSCLC patients (left). Bar diagram summarizing the percentage of total lymphocytes (A), CD3+ T cells (B), activated lymphocytes (C), and CD4+ T cells (D) before and after surgery (right). Pre-O, preoperative; Post-O, postoperation. Data are shown as mean ± SEM; n = 29; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (E) Bar diagram summarizing the ratio of CD4+ T cell/CD8+ T cells in the peripheral blood of NSCLC patients pre- and postoperatively. Pre-O, preoperative; Post-O, postoperation Data are shown as mean ± SEM; n = 29; ****p < 0.0001. (F–I) Representative flow cytometric analysis of NKT cells (F), quiescent and activated CD3+ T cells (G), B cells (H), and activated CD8+ T cells (I) in the paired pre- and postoperative peripheral blood samples from NSCLC patients (left). Bar plot summarizing the percentage of NKT cells (F), quiescent and activated CD3+ T cells (G), B cells (H), and activated CD8+ T cells (I) before and after surgery (right). Pre-O, preoperative; Post-O, postoperation. Data are shown as mean ± SEM; n = 29; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.





Systemic Immune Dysregulation Correlates With the Clinical Features of Non-Small Cell Lung Cancer

The clinical features of NSCLC are correlated with treatment and patient outcomes (3). However, the correlation between clinical features and the systemic immune state in NSCLC remains unclear. We analyzed the correlation between clinical features and peripheral leukocyte subsets in another cohort of 292 early NSCLC patients to validate systemic immune dysregulation and to investigate potential correlations with clinical features of NSCLC. All findings in the discovery group were verified in the validation group (Supplementary Figure 5).

We observed a higher proportion of B cells in female NSCLC patients than in male patients (Figure 3A). Furthermore, we found that the percentage of CD38+ CD45+ leukocytes and CD3+ T cells was higher in NSCLC patients under 65 years of age than in patients above 65 years of age (Figures 3B, C). But the percentage of NK cells was higher in patients above 65 years(Figure 3D). The percentage of B cells was higher in non-smokers, while the percentage of CD4+ T cells was higher in smokers (Figures 3E, F). Interestingly, the percentage of B cells in the PB of patients was higher in lung adenocarcinoma  (LUAD) than in lung squamous cell carcinoma (LUSC) (Figure 3G). These results demonstrate that systemic immune dysregulation is correlated with the clinical features of NSCLC.




Figure 3 | The correlation between systemic immune dysregulation and baseline patient characteristics. Systemic immune dysregulation in the validation group was analyzed to investigate the correlation between systemic immune dysregulation and baseline patient characteristics. (A) Bar diagram summarizing the percentage of B cells in the peripheral blood samples from non-small cell lung cancer (NSCLC) patients according to sex. Male, n = 131; female, n = 150. (B–D) Bar diagram summarizing the percentage of activated lymphocytes (B), CD3+ T cells (C), and NK cells (D) in the peripheral blood of NSCLC patients according to age. 65+, above 65 years old; 65−, under 65 years old. 65+, n = 65; 65−, n = 217. (E, F) Bar diagram summarizing the percentage of B cells (E) and CD4+ T cells (F) in the peripheral blood of NSCLC patients according to smoking history. Smokers, n = 103; non-smokers, n = 179. (G) Bar diagram summarizing the percentage of B cells in the peripheral blood of NSCLC patients according to cancer type. Data are shown as mean ± SEM; LUSC, lung squamous cell carcinoma, n = 39; LUAD, lung adenocarcinoma, n = 228. *p < 0.05; **p < 0.01; ****p < 0.0001.





Systemic Immune Dysregulation Correlates With the Non-Small Cell Lung Cancer Stage

Next, we investigated the correlation between systemic immune dysregulation and T stage in NSCLC. The p-values for trend test between TNM stage and lymphocytes are summarized in Supplementary Table 3. The percentage of B cells was significantly higher in patients in the T1 stage than in the T2 stage (Figure 4A). Subsequently, we investigated the correlation between systemic immune dysregulation and N stage in NSCLC. The percentages of CD38+ CD45+ leukocytes (p = 0.0604) tended to be higher in the PB of patients without lymphatic metastasis (Figure 4B). Similarly, the percentage of CD4+ T cells (p = 0.0596) and NK cells tended to higher in patients with lymphatic metastasis (Figures 4C, D). We observed that the percentage of B cells (p = 0.0716) showed a downward trend in patients in the advanced TNM stage (Figure 4E).




Figure 4 | The correlation between systemic immune dysregulation and cancer stage. Systemic immune dysregulation in the validation group was analyzed to investigate the correlation between systemic immune dysregulation and the non-small cell lung cancer (NSCLC) stage. The TNM stage is based on the International Association for the Study of Lung Cancer (IASLC) cancer staging manual (8th version). (A) Bar diagram summarizing the percentage of B cells in the peripheral blood of NSCLC patients according to T stage. T1, n = 207; T2, n = 36; T3, n = 18; T4, n = 15. (B–D) Bar diagram summarizing the percentage of activated lymphocytes (B), CD4+ T cells (C), and NK cells (D) cells in the peripheral blood of NSCLC patients according to lymphatic metastasis. N+, lymphatic metastasis positive, n = 46; N−, lymphatic metastasis-negative, n = 235. (E) Bar diagram summarizing the percentage of B cells in the peripheral blood of NSCLC patients according to TNM stage. Early, TNM I+II stage, n = 242; Advanced, TNM III +IV stage, n = 38. (F, G) Bar diagram summarizing the percentage of CD3+ T cells (F) and CD4+ T cells (G) in the peripheral blood of lung squamous cell carcinoma (LUSC) patients according to lymphatic metastasis. N+, lymphatic metastasis positive, n = 16; N−, lymphatic metastasis-negative, n = 27. (H, I) Bar plot showing the percentage of CD4+ T cells (H) and NK cells (I) in the peripheral blood of LUSC patients according to TNM stage. Early, TNM I+II stage, n = 32; Advanced, TNM III +IV stage, n = 11. (J, K) Bar plot summarizing the percentage of CD3+ T cells (J) and resting T lymphocytes (K) in the peripheral blood of LUAD patients according to T stage. T1, n = 187; T2, n = 16; T3, n = 12; T4, n = 8. (L) Bar diagram summarizing the percentage of B cells in the peripheral blood of LUAD patients according to lymphatic metastasis. Data are shown as mean ± SEM; N+, lymphatic metastasis positive, n = 25; N−, lymphatic metastasis-negative, n = 198. NS, not statistically significant; *P < 0.05, **P < 0.01.



We further analyzed the correlation between systemic immune dysregulation and the NSCLC TNM stage grouped by pathological subtype. First, we investigated the correlation between systemic immune dysregulation and the TNM stage of LUSC. The percentages of CD3+ and CD4+ T cells were significantly higher in LUSC patients with lymphatic metastasis (Figures 4F, G). Consistently, the percentages of CD4+ T cells were significantly higher in advanced-stage LUSC patients (Figure 4H). In contrast, the NK cell percentage was significantly lower in patients with advanced LUSC (Figure 4I). Next, we investigated the correlation between the systemic immune state and TNM stage of LUAD. The percentage of CD3+ T cells was significantly higher in patients with LUAD in the T3 stage than in the other stages (Figure 4J). Interestingly, the percentages of HLA-DR− CD3+ T cells were significantly higher in patients with LUAD at T3 than at T1 (Figure 4K). Regarding the N stage, we observed that the percentage of B cells was significantly lower in LUAD patients with lymphatic metastasis (Figure 4L). Together, these results demonstrate that systemic immune dysregulation is correlated with the NSCLC clinical stage.



Systemic Immune Dysregulation Correlates With the Pathological Characteristics of Human Non-Small Cell Lung Cancer

Pathological characteristics are closely associated with NSCLC treatment and prognosis (22). However, the correlation between pathological characteristics and systemic immune state in early human NSCLC remains unclear. Thus, we investigated the correlation between cancer cell differentiation and systemic immune state in NSCLC. We found that the percentages of HLA-DR+ CD3+ T cells and CD8+ T cells were significantly higher in NSCLC patients with poor cancer cell differentiation (Figures 5A, B). However, the CD4+ T cells/CD8+ T cell ratio was significantly lower in the PB of NSCLC patients with poor cancer cell differentiation (Figure 5C). Next, we analyzed the correlation between systemic immune state and histological classification of LUAD. We found that the adherent type had a lower percentage of HLA-DR+ CD3+ T cells and HLA-DR+ CD8+ T cells than the mini-papillary and acinar types, respectively (Figures 5D, E). We also observed significantly higher percentages of HLA-DR− CD3+ T cells in epidermal growth factor receptor (EGFR)+ LUAD patients (Figure 5F). These findings demonstrate that systemic immune dysregulation in patients is correlated with pathological NSCLC characteristics.




Figure 5 | The correlation between systemic immune dysregulation and pathological characteristics or surgical procedure. Systemic immune dysregulation in the validation group was analyzed to investigate the correlation between systemic immune dysregulation and pathological characteristics or surgical procedures in non-small cell lung cancer (NSCLC) patients. (A–C) Bar diagram summarizing the percentage of HLA-DR+ CD3+ T cells (A), CD8+ T cells (B), and the CD4+ T cell/CD8+ T-cell ratio (C) in the peripheral blood of NSCLC patients according to tumor differentiation. Well differentiated, n = 40; moderately differentiated, n = 50; poorly differentiated, n = 47. (D, E) Bar diagram summarizing the percentage of HLA-DR+ CD3+ T cells (D) and HLA-DR+ CD8+ T cells (E) in the peripheral blood of LUAD patients according to histological classification. Adherent type, n = 81; acinar type, n = 44; papillary type, n = 29; mini-papillary type, n = 17. (F) Bar diagram summarizing the percentage of HLA-DR− CD3+ T cells in the peripheral blood of LUAD patients according to EGFR expression. EGFR+, n = 19; EGFR−, n = 262. (G–J) Bar diagram summarizing the percentage of B cells (G), CD3+ T cells (H), activated lymphocytes (I), and HLA-DR+ CD3+ T cells (J) in the peripheral blood of NSCLC patients according to surgical excision extension. Sub-lobectomy, n = 22; lobectomy, n = 248; pneumonectomy, n = 10. (K) Bar diagram summarizing the percentage of total lymphocytes in the peripheral blood of NSCLC patients according to surgical procedure. Data are presented as mean ± SEM; open, n = 232; lobectomy, n = 49. NS, not statistically significant; *P < 0.05, **P < 0.01.





Systemic Immune State Correlates With Surgical Procedures in Non-Small Cell Lung Cancer

Radical surgery is the most important treatment for early NSCLC. However, how the surgical procedure influences the systemic immune state of NSCLC is unknown. First, we investigated the correlation between surgical excision extension and systemic immune state for NSCLC. We found that the percentage of B cells in the PB of NSCLC patients was lower in the pneumonectomy group than in the lobectomy group (Figure 5G). In contrast, the percentages of multiple cell subsets, such as CD3+ T cells, CD38+ CD45+ lymphocytes, and HLA-DR+ CD3+ T cells, in the PB of NSCLC patients were higher in the pneumonectomy group than in the lobectomy or sub-lobectomy groups (Figures 5H–J). Next, we investigated the impact of minimally invasive surgery on the systemic immune state of NSCLC without regard to excision extension. The percentage of total lymphocytes in NSCLC patients was higher in the video-assisted thoracic surgery (VATS) group than in the open group (Figure 5K). These findings suggest that extended trauma induced by large surgical excision extension may aggravate systemic immune dysregulation in patients with locally progressive NSCLC.



Systemic Immune Dysregulation Correlates With Complications and Systemic Inflammatory Response Syndrome

Complications and systemic inflammatory response syndrome (SIRS) are important risk factors that cause perioperative death in NSCLC patients undergoing surgery. NSCLC patients with complications had lower percentages of CD3+ T cells, CD8+ T cells, and NKT cells than patients without complications (Figures 6A–C). Specifically, NSCLC patients with diabetes had lower percentages of CD38+ CD45+ lymphocytes than patients without diabetes (Figure 6D). The percentage of total lymphocytes in NSCLC patients with positive bacterial sputum cultures was higher than that of patients with negative cultures (Figure 6E). Additionally, the CD3+ T cell percentages in patients with hypertension were lower than in patients without hypertension (Figure 6F). These findings demonstrate that systemic immune dysregulation is correlated with NSCLC complications. Next, we investigated the correlation between the perioperative systemic immune state of NSCLC and SIRS using the previously reported definition of SIRS (23). We found that the percentages of CD8+ T cells and NK cells in the PB of NSCLC patients with SIRS were significantly lower than those in patients without SIRS (Figures 6G, H). There was also a tendency for lower percentages of CD3+ T cells (p = 0.0585) and CD38+ CD45+ lymphocytes (p = 0.0604) (Figures 6I, J). Using the data from routine blood tests of NSCLC patients, we found that neutrophils and hemoglobin levels of NSCLC patients were also correlated with SIRS (Figures 6K, L). These findings demonstrate that systemic immune dysregulation in NSCLC patients is correlated with the risk of perioperative SIRS.




Figure 6 | Correlation between systemic immune dysregulation and surgical complication or perioperative systemic inflammatory response syndrome (SIRS). Systemic immune dysregulation in the validation group was analyzed to investigate the correlation between systemic immune dysregulation and surgical complications or perioperative SIRS in non-small cell lung cancer (NSCLC) patients. Perioperative SIRS was defined as a SIRS score of >2. (A–C) The percentage of CD3+ T cells (A), CD8+ T cells (B), and NKT cells (C) in the peripheral blood of NSCLC patients according to surgical complication. With complications, n = 125; without complications, n = 103. (D) Percentage of activated lymphocytes in the peripheral blood of NSCLC patients according to complications of diabetes. Diabetes, n = 17; without diabetes, n = 263. (E) Percentage of total lymphocytes in the peripheral blood of NSCLC patients with pulmonary infection. Sputum culture positive, n = 51; sputum culture negative, n = 231. (F) Percentage of CD3+ T cells in the peripheral blood of NSCLC patients with hypertension. Hypertension, n = 76; non-hypertension, n = 206; *p < 0.05. (G–J) Percentage of CD8+ T cells (G), NK cells (H), CD3+ T cells (I), and activated lymphocytes (J) in the peripheral blood of NSCLC patients according to SIRS score. SIRS score >2, n = 46; SIRS score ≤2, n = 235. (K) Neutrophil count in the peripheral blood of NSCLC patients according to SIRS score. SIRS score >2, n = 47; SIRS score ≤2, n = 245. (L) Hemoglobin quantity in the peripheral blood of NSCLC patients according to the SIRS score. Data are shown as mean ± SEM; SIRS score >2, n = 47; SIRS score ≤2, n = 237. *P < 0.05, **P < 0.01.






Discussion

Immune surveillance plays a crucial role in the development of lung cancer (3). Unfortunately, with the development of lung cancer, cancer cell immunogenicity can be lost, resulting in immune escape and cancer progression (24). Targeting the immune escape of cancer using novel immunotherapies, such as immune checkpoint blockade, is encouraging in treating advanced NSCLC stages (25). However, the survival benefits obtained from immune checkpoint blockade are still not satisfactory (26). Accumulating evidence shows a higher response ratio of immune checkpoint blockade in resectable NSCLC, suggesting that a better therapeutic effect may be acquired in relatively early NSCLC stages (27). However, the details of local and systematic immune perturbations in human NSCLC are unclear.

A recent study showed that immune perturbation in the tumor microenvironment occurs in the initial phase of human lung squamous cancer (5). Analogously, an innate immune perturbation in the tumor microenvironment was also observed in early human LUAD (6). However, whether systematic immune perturbations occur in early NSCLC remains unknown. To uncover the systemic immune state of early NSCLC and its potential correlations with clinical features, we used a panel of nine markers to profile 11 leukocyte subsets in the PB in a large cohort of 326 early NSCLC patients.

Our results revealed remarkable systemic immune dysregulation in early NSCLC characterized by a reduction in total lymphocytes, CD3+ T cells, HLA-DR− CD3+ T cells, CD4+ T cells, and NKT cells. However, several lymphocyte subsets such as CD38+ lymphocytes and HLA-DR+ CD3+ T cells were increased. Since radical surgery is among the most important treatments for early NSCLC, we profiled the leukocyte subsets in paired PB of 29 patients with early NSCLC and found that surgery further decreased the percentage of total lymphocytes, CD3+ T cells, HLA-DR− CD3+ T cells, and CD4+ T cells in the PB of postsurgery patients. However, CD38+ lymphocyte cells, B cells, and HLA-DR+ CD8+ T cells increased after surgery. We found that the percentage and absolute counts of CD45+ lymphocytes decreased. Many studies demonstrated that non-responding patients show more PD-1+ CD38+ CD8+ cells in tumors and blood than responders for PD-1 targeted therapy (28). CD38low T cells exhibit enhanced oxidative phosphorylation and significantly improved tumor control (29, 30). Decreased total lymphocytes and high CD38 expression in the PB of early NSCLC patients may represent a state of immunosuppression. Consistent with a previous study, our findings further uncover the details of systemic immune dysregulation in early NSCLC (21).

Accumulating evidence shows a correlation between peripheral leukocyte subsets and the outcome of advanced NSCLC (15–17, 19). However, there are few studies on the correlation between peripheral regulatory T cells and the clinical features of early NSCLC (18). An increasing number of studies show that peripheral leukocyte subsets are correlated with therapeutic effects and toxicity of immune checkpoint inhibitors in advanced NSCLC (31–36). A recent study reported that a decrease in peripheral CD4+ T cell clones is correlated with disease progression in advanced NSCLC patients treated with PD-1 inhibitors (37). These findings suggest that the systemic immune state of NSCLC plays a crucial role in cancer development and treatment. As mentioned before, a higher pathological response rate in neoadjuvant therapy also underlines the significance of the systemic immune state of patients treated with immune checkpoint blockade of early NSCLC (27, 38). In our current study, we found that the systemic immune state of NSCLC patients is correlated with clinical features such as age, sex, smoking history, body weight, and pathological types. These features also correlate with immune checkpoint blockade in early NSCLC (27). We also observed a correlation between the systemic immune state of patients and tumor stage, differentiation, pathological characteristics, surgical procedures, complications, and perioperative SIRS, which are closely linked to NSCLC treatment and prognosis (3).

Our study has some limitations. Due to the limited clinical samples, we could not conduct large cohort studies on NSCLC patients. In addition, we cannot completely rule out that the systemic immune dysregulation was not a product of surgically induced inflammation. A larger cohort study is necessary to further confirm these results.

In conclusion, our study uncovered several dramatic systemic immune dysregulation in early NSCLC. Moreover, we observed that systemic immune dysregulation in NSCLC patients correlates with clinical features that are closely related to NSCLC treatment and prognosis. Therefore, detecting systemic immune dysregulation in the PB of patients is a promising predictive biomarker for the prognosis and treatment of early NSCLC. Further investigation of the underlying mechanisms of systemic immune dysregulation will help to develop new therapeutic strategies for early NSCLC.
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Supplementary Figure 1 | Systemic immune disturbances in early NSCLC. Systemic immune disturbances were assessed by flow cytometry on single cell suspensions prepared from the peripheral blood of NSCLC patients and healthy donors. Data are shown as mean ± SEM; NSCLC patients, n=34; healthy donors, n=34; NS, not statistically significant; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.A-F. Bar plots summarizing the absolute counts of total lymphocytes (A), activated lymphocytes (B), CD3+ T cells (C), NKT cells (D), quiescent CD3+ T cells (E), CD4+T cells (F) in the peripheral blood of NSCLC patients and healthy donors.

Supplementary Figure 2 | Systemic immune disturbances of postsurgical NSCLC patients in the discovery group. Systemic immune disturbances were assessed by flow cytometry on single cell suspensions prepared from the peripheral blood of post-operative NSCLC patients and healthy donors. Data are shown as mean ± SEM; NSCLC patients, n=29; healthy donors, n=34; NS, not statistically significant; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. A-K. Bar plots summarizing the percentage of total lymphocytes (A), activated lymphocyte s (B), CD3+ T cells (C), NKT cells (D), CD4+ T cells (E), NK cells (F), B cells (G), HLA-DR+CD3+T cells (H), HLA-DR-CD3+T cells (I), CD8+ T cells (J), and HLA-DR+CD8+T cells (K) in the peripheral blood of NSCLC patients and healthy donors. L. Bar plot summarizing the CD4+ T cell/CD8+ T cell ratio in the peripheral blood of NSCLC patients and healthy donors.

Supplementary Figure 3 | Impact of surgery on systemic immune disturbances of early NSCLC. Systemic immune disturbances were assessed by flow cytometry on single cell suspensions prepared from peripheral blood of paired samples from NSCLC patients pre- and post-operatively. Data are shown as mean ± SEM; preoperative patients n=29; post-operation patients n=29; NS: not statistically significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. A-I. Bar plots summarizing the absolute counts of total lymphocytes (A), CD3+ T cells (B), activated lymphocytes (C), CD4+T cells (D), CD4/CD8+ T cells (E), NKT cells (F), quiescent and activated CD3+ T cells (G), B cells (H), and HLA-DR+CD8+T cells (I) in the peripheral blood of NSCLC patients pre- and post-surgery.

Supplementary Figure 4 | The correlation between systemic immune disturbances and surgical procedure in the discovery group. Systemic immune disturbances in the discovery group were analyzed to investigate the correlation between systemic immune disturbances and surgical procedures in NSCLC patients. Data are shown as mean ± SEM; sublobectomy, n=24; lobectomy, n=5; NS, not statistically significant. A-K. Bar plots summarizing the percentage of total lymphocytes (A), activated lymphocytes (B), CD3+ T cells (C), NKT cells (D), CD4+ T cells (E), NK cells (F), B cells (G), HLA-DR+CD3+T cells (H), HLA-DR-CD3+T cells (I), CD8+ T cells (J), and HLA-DR+CD8+T cells (K) in the peripheral blood of NSCLC patients with surgical excision extension. L. Bar plot summarizing the CD4+ T cells/CD8+ T cell ratio in the peripheral blood of NSCLC patients with surgical excision extension.

Supplementary Figure 5 | Systemic immune disturbances of post-operation NSCLC patients in the validation group. Systemic immune disturbances were assessed by flow cytometry on single cell suspensions prepared from the peripheral blood of post-operation NSCLC patients and healthy donors. Data are shown as mean ± SEM; NSCLC patients n=292; healthy donors n=34; NS: not statistically significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. A-K. Bar plots summarizing the percentage of total lymphocytes (A), activated lymphocytes (B), CD3+ T cells (C), NKT cells (D), CD4+ T cells (E), NK cells (F), B cells (G), HLA-DR+CD3+T cells (H), HLA-DR-CD3+T cells (I), CD8+ T cells (J), and HLA-DR+CD8+T cells (K) in the peripheral blood of NSCLC patients and healthy donors. L. Bar plot summarizing the CD4+ T cell/CD8+ T cell ratio in the peripheral blood of NSCLC patients and healthy donors.



References

1. Bray, F, Ferlay, J, Soerjomataram, I, Siegel, RL, and Torre LA and Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68(6):394–424. doi: 10.3322/caac.21492

2. Cao, M, and Chen, W. Epidemiology of Lung Cancer in China. Thorac Cancer (2019) 10(1):3–7. doi: 10.1111/1759-7714.12916

3. Herbst, RS, Morgensztern, D, and Boshoff, C. The Biology and Management of Non-Small Cell Lung Cancer. Nature (2018) 553(7689):446–54. doi: 10.1038/nature25183

4. Huang, AC, Postow, MA, Orlowski, RJ, Mick, R, Bengsch, B, Manne, S, et al. T-Cell Invigoration to Tumour Burden Ratio Associated With Anti-PD-1 Response. Nature (2017) 545(7652):60–5. doi: 10.1038/nature22079

5. Mascaux, C, Angelova, M, Vasaturo, A, Beane, J, Hijazi, K, Anthoine, G, et al. Immune Evasion Before Tumour Invasion in Early Lung Squamous Carcinogenesis. Nature (2019) 571(7766):570–5. doi: 10.1038/s41586-019-1330-0

6. Lavin, Y, Kobayashi, S, Leader, A, Amir, ED, Elefant, N, Bigenwald, C, et al. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell (2017) 169(4):750–65.e17. doi: 10.1016/j.cell.2017.04.014

7. Guo, X, Zhang, Y, Zheng, L, Zheng, C, Song, J, Zhang, Q, et al. Global Characterization of T Cells in Non-Small-Cell Lung Cancer by Single-Cell Sequencing. Nat Med (2018) 24(7):978–85. doi: 10.1038/s41591-018-0045-3

8. Thommen, DS, Koelzer, VH, Herzig, P, Roller, A, Trefny, M, Dimeloe, S, et al. A Transcriptionally and Functionally Distinct PD-1(+) CD8(+) T Cell Pool With Predictive Potential in Non-Small-Cell Lung Cancer Treated With PD-1 Blockade. Nat Med (2018):24:994–1004. doi: 10.1038/s41591-018-0057-z

9. Clarke, J, Panwar, B, Madrigal, A, Singh, D, Gujar, R, Wood, O, et al. Single-Cell Transcriptomic Analysis of Tissue-Resident Memory T Cells in Human Lung Cancer. J Exp Med (2019) 216(9):2128–49. doi: 10.1084/jem.20190249

10. O’Brien, SM, Klampatsa, A, Thompson, JC, Martinez, MC, Hwang, WT, Rao, AS, et al. Function of Human Tumor-Infiltrating Lymphocytes in Early-Stage Non-Small Cell Lung Cancer. Cancer Immunol Res (2019) 7(6):896–909. doi: 10.1158/2326-6066.CIR-18-0713

11. van der Leun, AM, Thommen, DS, and Schumacher, TN. CD8(+) T Cell States in Human Cancer: Insights From Single-Cell Analysis. Nat Rev Cancer (2020) 20(4):218–32. doi: 10.1038/s41568-019-0235-4

12. Wang, L, Aakre, JA, Jiang, R, Marks, RS, Wu, Y, Chen, J, et al. Methylation Markers for Small Cell Lung Cancer in Peripheral Blood Leukocyte DNA. J Thorac Oncol (2010) 5(6):778–85. doi: 10.1097/JTO.0b013e3181d6e0b3

13. Baglietto, L, Ponzi, E, Haycock, P, Hodge, A, Bianca Assumma, M, Jung, CH, et al. DNA Methylation Changes Measured in Pre-Diagnostic Peripheral Blood Samples are Associated With Smoking and Lung Cancer Risk. Int J Cancer (2017) 140(1):50–61. doi: 10.1002/ijc.30431

14. Sanchez-Espiridion, B, Chen, M, Chang, JY, Lu, C, Chang, DW, Roth, JA, et al. Telomere Length in Peripheral Blood Leukocytes and Lung Cancer Risk: A Large Case-Control Study in Caucasians. Cancer Res (2014) 74(9):2476–86. doi: 10.1158/0008-5472.can-13-2968

15. Teng, JJ, Zhang, J, Zhang, TY, and Zhang S and Li, BS. Prognostic Value of Peripheral Blood Lymphocyte-to-Monocyte Ratio in Patients With Solid Tumors: A Meta-Analysis. Onco Targets Ther (2016) 9:37–47. doi: 10.2147/ott.s94458

16. Xie, D, Marks, R, Zhang, M, Jiang, G, Jatoi, A, Garces, YI, et al. Nomograms Predict Overall Survival for Patients With Small-Cell Lung Cancer Incorporating Pretreatment Peripheral Blood Markers. J Thorac Oncol (2015) 10(8):1213–20. doi: 10.1097/jto.0000000000000585

17. Xie, D, Allen, MS, Marks, R, Jiang, G, Sun, Z, Nichols, F, et al. Nomogram Prediction of Overall Survival for Patients With Non-Small-Cell Lung Cancer Incorporating Pretreatment Peripheral Blood Markers. Eur J Cardiothorac Surg (2018) 53(6):1214–22. doi: 10.1093/ejcts/ezx462

18. Yan, F, Du, R, Wei, F, Zhao, H, Yu, J, Wang, C, et al. Expression of TNFR2 by Regulatory T Cells in Peripheral Blood is Correlated With Clinical Pathology of Lung Cancer Patients. Cancer Immunol Immunother (2015) 64(11):1475–85. doi: 10.1007/s00262-015-1751-z

19. Liu, YY, Yang, QF, Yang, JS, Cao, RB, Liang, JY, Liu, YT, et al. Characteristics and Prognostic Significance of Profiling the Peripheral Blood T-Cell Receptor Repertoire in Patients With Advanced Lung Cancer. Int J Cancer (2019) 145(5):1423–31. doi: 10.1002/ijc.32145

20. Maecker, HT, McCoy, JP, and Nussenblatt, R. Standardizing Immunophenotyping for the Human Immunology Project. Nat Rev Immunol (2012) 12(3):191–200. doi: 10.1038/nri3158

21. Caras, I, Grigorescu, A, Stavaru, C, Radu, DL, Mogos, I, Szegli, G, et al. Evidence for Immune Defects in Breast and Lung Cancer Patients. Cancer Immunol Immunother (2004) 53(12):1146–52. doi: 10.1007/s00262-004-0556-2

22. Warth, A, Muley, T, Meister, M, Stenzinger, A, Thomas, M, Schirmacher, P, et al. The Novel Histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society Classification System of Lung Adenocarcinoma is a Stage-Independent Predictor of Survival. J Clin Oncol (2012) 30(13):1438–46. doi: 10.1200/JCO.2011.37.2185

23. Alazawi, W, Pirmadjid, N, Lahiri, R, and Bhattacharya, S. Inflammatory and Immune Responses to Surgery and Their Clinical Impact. Ann Surg (2016) 264(1):73–80. doi: 10.1097/SLA.0000000000001691

24. McGranahan, N, Rosenthal, R, Hiley, CT, Rowan, AJ, Watkins, TBK, Wilson, GA, et al. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell (2017) 171(6):1259–71.e11. doi: 10.1016/j.cell.2017.10.001

25. Havel, JJ, Chowell, D, and Chan, TA. The Evolving Landscape of Biomarkers for Checkpoint Inhibitor Immunotherapy. Nat Rev Cancer (2019) 19(3):133–50. doi: 10.1038/s41568-019-0116-x

26. Wei, SC, Duffy, CR, and Allison, JP. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov (2018) 8(9):1069–86. doi: 10.1158/2159-8290.CD-18-0367

27. Topalian, SL, Taube, JM, and Pardoll, DM. Neoadjuvant Checkpoint Blockade for Cancer Immunotherapy. Science (2020) 367(6477):525–35. doi: 10.1126/science.aax0182

28. Kamphorst, AO, Pillai, RN, Yang, S, Nasti, TH, Akondy, RS, Wieland, A, et al. Proliferation of PD-1+ CD8 T Cells in Peripheral Blood After PD-1-Targeted Therapy in Lung Cancer Patients. Proc Natl Acad Sci USA (2017) 114(19):4993–8. doi: 10.1073/pnas.1705327114

29. Li, Y, Yang, R, Chen, L, and Wu, S. CD38 as an Immunomodulator in Cancer. Future Oncol (2020) 16(34):2853–61. doi: 10.2217/fon-2020-0401

30. Chen, PY, Wu, CY, Fang, JH, Chen, HC, Feng, LY, Huang, CY, et al. Functional Change of Effector Tumor-Infiltrating CCR5(+)CD38(+)HLA-DR(+)CD8(+) T Cells in Glioma Microenvironment. Front Immunol (2019) 10:2395. doi: 10.3389/fimmu.2019.02395

31. Peng, L, Wang, Y, Liu, F, Qiu, X, Zhang, X, Fang, C, et al. Peripheral Blood Markers Predictive of Outcome and Immune-Related Adverse Events in Advanced Non-Small Cell Lung Cancer Treated With PD-1 Inhibitors. Cancer Immunol Immunother (2020) 69(9):1813–22. doi: 10.1007/s00262-020-02585-w

32. Ottonello, S, Genova, C, Cossu, I, Fontana, V, Rijavec, E, Rossi, G, et al. Association Between Response to Nivolumab Treatment and Peripheral Blood Lymphocyte Subsets in Patients With Non-Small Cell Lung Cancer. Front Immunol (2020) 11:125. doi: 10.3389/fimmu.2020.00125

33. Jiang, M, Peng, W, Pu, X, Chen, B, Li, J, Xu, F, et al. Peripheral Blood Biomarkers Associated With Outcome in Non-Small Cell Lung Cancer Patients Treated With Nivolumab and Durvalumab Monotherapy. Front Oncol (2020) 10:913. doi: 10.3389/fonc.2020.00913

34. Soyano, AE, Dholaria, B, Marin-Acevedo, JA, Diehl, N, Hodge, D, Luo, Y, et al. Peripheral Blood Biomarkers Correlate With Outcomes in Advanced Non-Small Cell Lung Cancer Patients Treated With Anti-PD-1 Antibodies. J Immunother Cancer (2018) 6(1):129. doi: 10.1186/s40425-018-0447-2

35. Tanizaki, J, Haratani, K, Hayashi, H, Chiba, Y, Nakamura, Y, Yonesaka, K, et al. Peripheral Blood Biomarkers Associated With Clinical Outcome in Non-Small Cell Lung Cancer Patients Treated With Nivolumab. J Thorac Oncol (2018) 13(1):97–105. doi: 10.1016/j.jtho.2017.10.030

36. Pavan, A, Calvetti, L, Dal Maso, A, Attili, I, Del Bianco, P, Pasello, G, et al. Peripheral Blood Markers Identify Risk of Immune-Related Toxicity in Advanced Non-Small Cell Lung Cancer Treated With Immune-Checkpoint Inhibitors. Oncologist (2019) 24(8):1128–36. doi: 10.1634/theoncologist.2018-0563

37. Zhang, F, Bai, H, Gao, R, Fei, K, Duan, J, Zhang, Z, et al. Dynamics of Peripheral T Cell Clones During PD-1 Blockade in Non-Small Cell Lung Cancer. Cancer Immunol Immunother (2020) 69(12):2599–611. doi: 10.1007/s00262-020-02642-4

38. Forde, PM, Chaft, JE, Smith, KN, Anagnostou, V, Cottrell, TR, Hellmann, MD, et al. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. N Engl J Med (2018) 378(21):1976–86. doi: 10.1056/NEJMoa1716078




Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Hao, Lin, Du, Xin, Wu, Yu, Wu, Zhu, Li, Chen, Chen, Chai, Jin and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 25 January 2022

doi: 10.3389/fimmu.2022.827719

[image: image2]


Picturing of the Lung Tumor Cellular Composition by Multispectral Flow Cytometry


Catherine Olesch 1, David Brunn 2, Öznur Aktay-Cetin 2, Evelyn Sirait-Fischer 1, Soni Savai Pullamsetti 2,3, Friedrich Grimminger 3,4, Werner Seeger 2,3,4, Bernhard Brüne 1,5,6, Andreas Weigert 1,5,6*† and Rajkumar Savai 2,3,4,5*†


1 Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany, 2 Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany, 3 Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany, 4 Department of Internal Medicine, Justus Liebig University Giessen, Member of the DZL, Member of CPI, Giessen, Germany, 5 Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany, 6 German Cancer Consortium (DKTK), Frankfurt, Germany




Edited by: 

Petros Christopoulos, Heidelberg University Hospital, Germany

Reviewed by: 

Pingping Chen, University of Miami, United States

Marie Follo, University of Freiburg Medical Center, Germany

*Correspondence: 

Andreas Weigert
 weigert@biochem.uni-frankfurt.de 

Rajkumar Savai
 rajkumar.savai@mpi-bn.mpg.de 
 savai.rajkumar@innere.med.uni-giessen.de

†These authors have contributed equally to this work

Specialty section: 
 This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology


Received: 02 December 2021

Accepted: 05 January 2022

Published: 25 January 2022

Citation:
Olesch C, Brunn D, Aktay-Cetin &, Sirait-Fischer E, Pullamsetti SS, Grimminger F, Seeger W, Brüne B, Weigert A and Savai R (2022) Picturing of the Lung Tumor Cellular Composition by Multispectral Flow Cytometry. Front. Immunol. 13:827719. doi: 10.3389/fimmu.2022.827719



The lung tumor microenvironment plays a critical role in the tumorigenesis and metastasis of lung cancer, resulting from the crosstalk between cancer cells and microenvironmental cells. Therefore, comprehensive identification and characterization of cell populations in the complex lung structure is crucial for development of novel targeted anti-cancer therapies. Here, a hierarchical clustering approach with multispectral flow cytometry was established to delineate the cellular landscape of murine lungs under steady-state and cancer conditions. Fluorochromes were used multiple times to be able to measure 24 cell surface markers with only 13 detectors, yielding a broad picture for whole-lung phenotyping. Primary and metastatic murine lung tumor models were included to detect major cell populations in the lung, and to identify alterations to the distribution patterns in these models. In the primary tumor models, major altered populations included CD324+ epithelial cells, alveolar macrophages, dendritic cells, and blood and lymph endothelial cells. The number of fibroblasts, vascular smooth muscle cells, monocytes (Ly6C+ and Ly6C–) and neutrophils were elevated in metastatic models of lung cancer. Thus, the proposed clustering approach is a promising method to resolve cell populations from complex organs in detail even with basic flow cytometers.
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Introduction

Lung cancer continues to be a leading cause of cancer-associated mortality worldwide, accounting for about 1.8 million deaths in 2020 (1). Current therapies aim to target the components of the lung tumor microenvironment (TME) to interfere with cancer progression. Since the TME plays a crucial role in tumor progression and metastasis, precise identification of the cell populations in the TME can contribute to the development of effective novel targeted therapies (2). The crosstalk between cancer cells and stromal cells sustains the oncogenic microenvironment, thus the quantity and distribution of cells in the TME are likely associated with the pathogenesis of lung cancer. For instance, tumor-associated macrophages (TAMs) are among the most abundant cell types in the lung TME, and TAM infiltration is reportedly correlated to the stage and metastasis potential of lung cancer (3, 4). Since the involvement of microenvironmental cells in disease progression is multifaceted, profiling the TME is critical to elucidate cellular activity, interactions and functions to establish more specific targeted approaches to inhibit lung tumorigenesis. There are currently various techniques available to unravel the cellular composition of the TME such as basic immunohistochemistry, multiplex staining, flow cytometry, mass cytometry, transcriptomic and bioinformatics approaches.

Polychromatic flow cytometry has been extensively used for characterization of cell populations in lymphoid and non-lymphoid tissues of different species (5–7). Therefore, the focus is usually on immune cells based on the relative ease of isolation from tissues and the availability of established high-quality antibodies targeting immune cell surface markers. When paired with the use of a counting standard, flow cytometry can yield reliable information not only on the activation status and absolute number of immune cells in tissues. Current multispectral flow cytometry approaches usually do not integrate the analysis of different types of tissues from an organ, i.e. combining the analysis of immune cells with other stromal and/or epithelial cells from distinct tissues of a particular organ, largely due to differences in protocols for creating single cell suspensions, and the limited number of available fluorescence channels. However, such integrated analyses may be required to elucidate complex biological phenotypes, especially since the amount of available tissue from mouse models is relatively limited. For instance, a reduced immune infiltrate can result from altered chemokine production or perturbed formation of the vasculature which can reduce immune cell infiltration (8). Understanding the relative contribution of immune cells in general and immune cell subsets, in particular, the tissue architecture is key to clarifying the relative contribution to an observed phenotype. We are not aware of available flow cytometry panels for detailed analysis of tissue complexity beyond the number and type of immune cells.

In-depth characterization of immune cell phenotypes including activation states via flow cytometry is limited, similar to analysis of tissue complexity. Hence, mass cytometry was developed to overcome the limitation of available parameters for single cell analysis by flow cytometry. Mass cytometry currently allows for high-throughput screening of up to 50 parameters of single cells from large numbers of cells of an experimental sample, with similar accuracy and reproducibility as conventional flow cytometry (9–11). The advantages of mass cytometry as compared to flow cytometry include the lack of spill-over and therefore a relative ease of panel design, as well as the absence of autofluorescence, which can influence the reliability of flow cytometry (12). However, there are several disadvantages to mass cytometry including the destruction of cells for analysis, making it impossible to use analyzed cells in downstream assays, lower throughput, and signal loss (only ~ 25% of all cells and 0.05% of ions are recorded), which impacts the discovery of rare cell subsets in small tissue samples, and low efficacy of filtering out debris and doublets. In addition, the procurement and running costs of a mass cytometry are unaffordable for many laboratories around the world. Due to these limitations, there is still a need to develop approaches to increase the dimensionality of conventional flow cytometry.

Here, we describe a procedure to isolate and analyze not only immune cells but also a number of stromal and epithelial cell populations from mouse lungs under steady-state conditions and in response to metastatic cancer. A hierarchical clustering method that allows utilization of a number of fluorochromes coupled to more than one antibody was employed with 13 detectors. Combined with physical parameters and a live/dead dye, this flow cytometry panel can analyze 27 parameters in murine tissue to simultaneously enumerate major leukocyte populations, as well as cells of the vascular system, fibroblasts, and epithelial cells. Combined with next-generation flow cytometers, this approach allows greater dimensionality than mass cytometry.



Results


FACS Analysis of Lung Tumor Heterogeneity

To determine whether flow cytometry can detect major cell subsets in control lungs, a multispectral antibody panel (Table 1) was designed that employed hierarchical clustering and individual fluorochromes that will allow more than one marker for one particular cell subset that was previously separated by other broad markers of cell subsets (Supplementary Figure S1). For instance, fluorescein isothiocyanate (FITC) or AlexaFluor 488, measured in the same channel, were assigned to antibodies recognizing melanoma cell adhesion molecule (MCAM or CD146), sialic acid binding Ig-like lectin H (Siglec-H), and glucocorticoid-induced tumor necrosis factor receptor (GITR). CD146 is expressed by blood endothelial cells (BECs) and vascular smooth muscle cells (VSMCs), which can be separated by differences in the expression patterns of platelet endothelial cell adhesion molecule (PECAM-1 or CD31), which is highly expressed on the surfaces of endothelial cells, while Siglec-H is expressed exclusively by plasmacytoid DCs (pDCs) and GITR is expressed at particularly high levels by regulatory T cells (Tregs). Both pDCs and Tregs, can be separated from ECs and VSMCs by staining for CD45 expression and pDCs can be distinguished from Tregs by CD3 expression in the latter. Allophycocyanin (APC) was assigned to epithelial cadherin (E-cadherin or CD324), major histocompatibility complex II (MHC II) and the γδ T cell receptor (γδ TCR). Epithelial cells express CD324 but not MHC II or the γδ TCR. MHC II is expressed on the surface of a variety of cells, but not on mouse T cells, which are differentiated by CD3 expression. Thus, MHC II is not co-expressed with the γδ TCR or CD324. Nevertheless, in some instances, different markers were intentionally labeled with the same fluorochrome, as in the case of the Fc-gamma receptor 1 (FcγRI or CD64) and Mer tyrosine kinase (MerTK), which are both highly expressed on the macrophage surface. Here, co-expression was used to separate cell populations. Markers that are common to different cell populations, such as lymphocyte antigen 6 complex locus C (Ly6C), which is expressed on a subset of monocytes, granulocytes, lymphocytes, fibroblasts and vascular endothelial cells or that separate a larger cell subset from other cells such as CD45 (all immune cells) or CD3 (all T cells), were assigned to a fluorochrome that was only used once (Table 1).


Table 1 | Multispectral antibody panel.



The use of a single fluorochrome for multiple markers is hampered by a number of practical difficulties, including differences in marker expression levels, leading to potential off-scale expression. For instance, potent antibodies are available against CD31, which is highly expressed on endothelial cells. CD31 was labeled with PE-Cy7, as were potential macrophage markers during panel testing. Adjusting photomultiplier tube voltages to accommodate CD31 expression led to vanishing of the background expression of single macrophage markers, which was the reason for using the same fluorochrome for two macrophage markers simultaneously. Another difficulty is the use of compensation beads that non-specifically recognize antibodies. Differences in the affinity of antibodies labeled with the same fluorochrome will lead to difficulties during compensation due to issues with selecting a proper positive population. Therefore, antibodies labeled with the same fluorochrome must have comparable affinities to the compensation beads. Finally, florescence minus one (FMO) controls were essential to validate the approach and to ensure proper identification of immune cell populations (Figures 1–3).




Figure 1 | Gating strategy for lung vascular, epithelial and stromal cells. First, FSC, SSC, and 7-AAD gating was conducted to remove debris, dead cells, and cell clumps. Next, vascular cells were separated from other lung cells by CD31 and CD45 gating. CD31+ cells are vascular endothelial cells, which can be separated into BECs (CD146+ Ly6C+) and LECs (CD90+ CD146-). CD45+ cells are immune cells (see Figure 2). The CD31–/CD45– population included fibroblasts (CD140+/CD324–) and epithelial cells (CD324+/CD140–). The CD324–/CD140– population included CD146+ VSMCs. 7-AAD, 7-aminoactinomycin D; BECs, blood endothelial cells; FMO, fluorescent minus one; FSC-A, forward scatter area; FSC-W, forward scatter width; LECs, lymphatic endothelial cells; SSC, side scatter; VSMCs, vascular smooth muscle cells.






Figure 2 | Gating strategy for lung myeloid cells. The CD45+ population included alveolar macrophages (CD44+/CD11b–/CD11c+) were identified. CD11b expression was used to distinguish myeloid from lymphoid cells. The CD11b+ population included neutrophils (CD11b+/Ly6G+), eosinophils (CD11b+/SiglecF+), monocytes (MHCII–/Ly6C+ and MHCII–/Ly6C–), cDCs (MHCII+/CD24+) and interstitial macrophages (MHCII+/CD24–/CD64/MerTK+) were identified. cDCs, conventional dendritic cells; FMO, fluorescent minus one; Mono, monocytes; MФ, macrophage.






Figure 3 | Gating strategy for lung lymphoid cells. CD11b– lymphocytes were first separated based on CD24 and NK1.1 expression to identify B cells (CD24+/MHCII+) and NK1.1 single positive cell (CD24–/NK1.1+). NK1.1+ population contained CD3– NK cells and CD3+/CD90+ NKT cells. CD24–/NK1.1– population included CD3+ T cell subsets (CD4+ T cells, CD8+ T cells, Treg cells (CD4+/GITR–) and γδ T cells (γδ TCR+/CD4–/CD8–). Within CD3– cells pDCs (CD11c+/MHCII+ SiglecH+) were identified. NK, natural killer; NKT cell, natural killer T cell; pDC, plasmacytoid dendritic cell.



The technique outlined above was used to identify 20 discrete cell populations in healthy mouse lungs. First, living single cells were identified by removing debris via forward side (FSC)-A versus side scatter (SSC)-A gating, followed by removal of dead cells positive for 7-aminoactinomycin D (7-AAD) cells and by gating out doublets via FSC-A versus FSC-W gating (Figure 1). Next, the vascular compartment cells were separated from other cell types by comparing CD31 and CD45, since immune cells also express CD31, albeit at considerably lower levels than endothelial cells. FMO controls clearly demonstrated the presence of a CD31+/CD45– population. The vascular compartment of the lung contains vascular and lymphatic ECs. Vascular ECs, according to single cell RNA-seq databases such as the Immgen database (13), express high levels of CD146, Ly6C and CD24, in contrast to lymphatic endothelial cells, which express high levels of CD90. Corresponding populations were identified in the vascular fraction, with the majority of this cell fraction consisting of vascular endothelium, in agreement with previously published single cell RNA-seq data (14). Next, CD45– cells were separated from CD45+ for further analysis (Figure 1). CD45– cells were first divided into CD140+ fibroblasts, CD326+ epithelial cells and CD140–/CD326– cells. Within the latter, CD146+/CD24– cells were designated as VSMCs. There was also a distinct CD24+ subset in the CD146– stromal compartment, although this population was not further characterized (Figure 1). In the epithelial fraction, a number of different subpopulations based on the expression patterns of epithelial cell adhesion molecule (EpCAM or CD326), CD24 and tyrosine-protein kinase KIT (CD117), were observed that may correspond to type I versus type II alveolar and bronchial epithelial cells as well as associated progenitor cells, although these cells were not completely characterized.

Next, subsets of CD45+ immune cells were identified (Figures 2 and 3). Alveolar macrophages were identified by high expression of the hyaluronan receptor CD44, low expression of CD11b, and high expression of CD11c (Figure 2). It was essential to remove these highly autofluorescent cells first, to avoid the production of autofluorescence artifacts in order to identify granulocyte subsets. Neutrophils were positive for CD11b and lymphocyte antigen 6 complex locus G6D+ (Ly6G+), while eosinophils were positive for CD11b and SiglecF (Figure 2). The remaining myeloid cells in the CD11b+/Ly6G–/SiglecF– compartment were also analyzed. Ly6C+ cells which did not express MHCII were designated as Ly6C+ monocytes, and Ly6C–/MHCII– cells as Ly6C– monocytes. The MHCII+ population was further subdivided into MHCIIhigh/CD24+/CD64/MerTK– conventional dendritic cells (cDCs) and CD24–/CD64/MerTK+ interstitial macrophages (Figure 2). The remaining MHCII+ cells and potential myeloid cells within the Ly6C– monocyte populations (due to the lack of a positive marker for this population) may contain basophils or CD11b+ natural killer (NK) cells. The CD11b negative compartment mainly consisted of lymphocytes, but no pDCs (Figure 3). CD11b– cells were first separated into CD24+ and NK1.1+ subsets as well as CD24–/NK1.1– cells. CD24+ cells were MHCII+ B cells and the NK1.1+ cell subset consisted mainly of CD3+/CD90+ natural killer T (NKT) cells and CD3–/CD90– NK cells (Figure 3). The CD24–/NK1.1– subset contained CD3+/CD90+ T cells, which were further separated into CD4+, CD8+ and CD4–/CD8– T cell subsets. The CD4+ T cell population also included GITR+/CD44+ regulatory T cells, while the CD4–/CD8– T cell population contained a large proportion of γδ T cells (Figure 3). The CD11b– cell population likely contained a number of other cell populations. Of these, cells expressing CD4 and/or CD11c, as well as intermediate levels of MHCII and Siglec-H, were therefore designated as pDCs (Figure 3). Thus, through the proposed antibody panel and the hierarchical approach including FMO controls, we were able to identified 20 distinct lung cell populations with relative ease, while further populations, such as the epithelial cell compartment, also emerged.



Increased Interstitial Macrophages, DCs and Tregs in Different Lung Cancer Models

Next, the usefulness of the panel to characterize alterations in lung cell composition in different pathological settings was explored using four different but widely used lung cancer models. Therefore, we took account of four primary and metastatic lung tumor models as follows: (i) transgenic KRasLA4 model, (ii) intratracheal instillation model, (iii) intravenous injection model and (iv) tumor relapse model (Figure 4A).




Figure 4 | Cell composition in different murine lung cancer models. (A) Schematic representation of primary and metastatic lung tumor models in mice (upper panel). Histological analysis of lung tumors from given models (lower panel). H&E staining of lung tissue sections to reveal tumor formation (scale bar=250µm). (B) t-SNE plots show distribution of pulmonary cell compositions of different lung cancer models. (C) Strategies to identify LLC1 cells, which lack conventional epithelial markers in tumor models are depicted. Control means healthy lung. i.t., intratracheal injection; i.v., intravenous injection; t.r., tumor relapse model; WT, wild type; H&E, hematoxylin and eosin; DC, dendritic cells; pDCs, plasmacytoid dendritic cells; NK, natural killer; NKT cells, natural killer T cells, Treg, regulatory T cells; t-SNE, T-distributed stochastic neighbor embedding.



Flow cytometry standard files were concatenated and subjected to T-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction to visualize population changes upon the development/injection of primary and metastatic lung cancer (Figure 4B). These data as well as quantitative data calculated using a counting standard (Figure 5 and Supplementary Figure S2) revealed similarities but also clear discrepancies among the four models. Importantly, a new population of FSC high cells negative for CD45, CD324 and CD326, as well as other major lineage markers such as CD90 and CD31, (not shown), was observed in all models containing LLC1 cells, including the metastasis model. A comparison with LLC1 cells from cell culture revealed that these cells indeed were LLC1 cells (Figure 4C).




Figure 5 | Quantitative distribution of pulmonary cells in different lung tumor models. Cell numbers (per 1 mg of tissue) determined by FACS analysis in healthy control lung and cancerous lungs from four different models are shown. Control means healthy lung.  i.t., intratracheal injection; i.v., intravenous injection; t.r., tumor relapse model; Macs, macrophages; Mono, monocytes; DCs, dendritic cells; pDCs, plasmacytoid dendritic cells; NK cells, natural killer cells; NKT cells, natural killer T cells; Treg, regulatory T cells; BECs, blood endothelial cells; LEC, lymphatic endothelial cells; VSMCs, vascular smooth muscle cells. Numbers of mice by group: control n=5, for i.t. model n=6, for KRas model n=9, for tumor relapse model n=9, for i.v. model n=3. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 compared with control.



The proportions of these cells were significantly elevated as compared to control lungs with the transgenic KRasLA2, intravenous injection, and tumor relapse models, but not the intratracheal instillation model (Figure 4B). In contrast, the KRasLA2 model showed a significant increase in the number of CD324+ epithelial cells. Additionally, the populations of alveolar macrophages, DCs, BECs and LECs were significantly upregulated in only the KRasLA2 model as compared to control lungs. With the exception of intratracheal instillation tumors, the numbers of Tregs were significantly elevated in three of the tested models. Besides Ly6C+ and Ly6C– monocytes, pDCs and neutrophils, the number of fibroblasts was also significantly enhanced in the tumor relapse model. Interestingly, the number of pDCs tended to increase in the tumor relapse and intravenous injection models. NKT cell numbers were significantly augmented in all of the tested primary and metastatic models with the exception of the transgenic KRasLA2 model. The only significant increase in the number of VSMCs was observed with the intravenous injection lung tumor model (Figure 5).




Discussion

The lung tumor microenvironment is a complex structure and it plays an active role in the later stages of tumorigenesis and metastasis. The major contributor of this malignant transformation is the dynamic crosstalk between cancer cells and stromal cells, in which the abundance and localization of cells are correlated to disease progression (3, 4). The lung architecture is a habitat for around 40 different cell types including residential cells of the respiratory tract and pulmonary arteries (15). Therefore, precise profiling of lung cellular composition in health and disease is crucial for the development of efficient targeted therapies.

In the present work, a multispectral FACS panel was established using hierarchical clustering to identify distinct cell populations of healthy and tumor lungs. The proposed multispectral panel uses fluorochromes that coupled to more than one antibody to examine a total of 24 parameters with 13 detectors. Testing with four different lung tumor models we found that cell populations differed between the primary and metastatic lung cancer models. For example, the numbers of CD324+ epithelial cells, alveolar macrophages, BECs and LECs were significantly increased in primary tumors of the transgenic KRasLA2 model. Moreover, the proportion of cDCs was also significantly increased. However, quantities of pDCs were found in metastatic models only. A study with human primary lung carcinoma biopsy samples revealed high numbers of CD11c+ DCs but not pDCs (16), which supports our findings regarding DC subtypes. Elevated Treg numbers in primary tumors, especially in the KRasLA2 model, was not surprising since high Treg levels were previously detected in the KRasG12D model (17). Additionally, a previous study reported that the number of Tregs was relatively high in primary lung adenocarcinoma (18). In the current study, stromal cells were abundant in the metastatic tumor models. For instance, fibroblasts were only significantly elevated in the tumor relapse model, whereas VSMC numbers were significantly increased only in the intravenous injection model. As a possible explanation for this result, metastatic cells localize in the lungs (19). A previous in vivo study showed that activation of cancer-associated fibroblasts contributes to a pre-metastatic environment in the lung and enhances metastasis of salivary adenoid cystic carcinoma to the lungs (20). Moreover, it was also reported that lung metastasis of breast cancer increased the number of fibroblasts in the lungs during colonization (21). These examples help to explain the high quantity of fibroblasts in the metastasis models. There were notable increases in the numbers of monocytes (Ly6C+ and Ly6C–) and neutrophils in the metastasis models. A recent study showed that the number of Ym1+/Ly6Chi monocytes was increased in the peripheral blood of mice with early stages of lung metastasis, suggesting that the proportion of monocytes can be used as a biomarker of metastasis (22). Another study reported that injection of LLC1 cells to mice with Ifnar1 promoted the development of lung metastasis together with the accumulation of neutrophils in the lung, indicating the involvement of neutrophils in metastasis (23). Additionally, as compared to controls, primary lung tumors had greater proportions of CD45+ cells as determined with the metastatic tumor relapse model. Interestingly, the proportion of type 1 NKT cells expressing NK1.1 was increased in three of four tested models but not in the KRasLA2 model. The anti-metastatic function of NKT cells might have been associated with the elevated cell numbers in the metastatic models. For instance, type 1 NKT cells had an anti-metastatic effect on the mouse liver and lungs (24). Moreover, type 1 NKT cells, have also been detected in primary human lung tumor tissue (25). However, in mouse strains expressing NK1.1, NK1.1+ T cells, including type I NKT cells, as well as activated CD8+ T cells and γδ T cells were activated (26, 27). Thus, further studies are needed to clearly delineate the function of these cells in models of tumor metastasis.

Analysis of other T cell subpopulations (CD4+, CD8+ and γδ T cells), interstitial macrophages, eosinophils, B cells and NK cells revealed no significant change in primary versus metastatic tumors. A lack of alteration in T cell subsets is supported by previous transcriptomic analysis of stromal cells of KRas-driven mouse tumors, which found no change in the number of CD4+ and CD8+ T cell numbers between tumor and control tissue of the lungs (28).

Quantification of cell populations in the lung TME should be precise because single cell subsets in lung tumors may, to some degree, be crucial for the development of targeted therapies. Flow cytometry is the method of choice to reliably quantify cells within tissues once a suitable method to create a single cell suspension is available. Methods such as immunohistochemistry (IHC) and immunofluorescence analyses require staining of large numbers of serial sections to achieve similar accuracy of quantification. However, spatial information of cell distribution throughout the tumor is retained by these methods, but is lost during the generation of single cell for flow cytometry.

Transcriptomic approaches have been employed for more in-depth identification and characterization of cell populations (29, 30), but lack of the accurate quantification and low cell input number may result in overlooking small, but important populations. Thus, each technique to interrogate tissue heterogeneity has both advantages and limitations to sample throughput, sample preparation, analysis, time and cost, and need to be performed in combination to produce meaningful results.

With current technology, up to 50 parameters can theoretically be analyzed by flow cytometry, although a sufficiently diverse palette of fluorochromes is still lacking. Our strategy may serve to overcome these limitations and allow laboratories with smaller budgets to perform high-dimensional analyses as well. The panel described herein can of course be improved and extended. For instance, epithelial cells can be further segregated based on the expression patterns of other markers, such as EpCAM (type II+, type I–) (31). It is also possible to develop new markers of stromal cells and epithelial cells by labeling with fluorochromes, similar to those used for the immune cell compartment such as BV650 or BV510 for multicolor flow cytometry. For compensation of channels in which fluorochromes were used more than once, antibodies coupled to fluorochromes measured in one channel were pooled. When these antibodies were conjugated with the same fluorochrome, preferentially by the same provider, single signal peaks were detected during acquiring compensation controls. Using compensation beads was instrumental for this approach. When two peaks were observed (only applied to the APC-eFluor780/APC-Cy7 channel), these were close in intensity. However, upon visual inspection, focusing compensation on the peak with the higher intensity proved to be superior. To avoid issues with tandem degradation, antibodies were strictly kept at 4°C and light exposure was reduced to the absolute minimum. Moreover, when changing antibody lot numbers, compensation matrices were adjusted by acquiring compensation controls for the changed lots individually in pre-existing compensation setups. This was made possible by daily calibration of the instrument using Cytometer Setup and Tracking. In addition, advanced bioinformatics approaches may be needed to analyze data generated by the proposed technique at sufficient depth and speed. Such developments are, however, currently underway as suggested by a report of a machine learning approach to assess flow cytometry data to characterize the distribution of immune inflammatory cells in the lungs of a bleomycin mouse model (32).

The proposed panel is not only useful or screening of cancers but also other pulmonary diseases that progress via all resident cells and recruited immune cells contribute to the progression of pulmonary diseases, such as lung fibrosis and pulmonary hypertension (33). It can also be envisioned for use in other tissues as well. Indeed, a reduced version has already been applied for screening of skin specimens (34). Additionally, the panel can be adapted for use in human lung cancer, i.e. due to similarities between human and mouse macrophages (35), although adjustments will be needed to account for species differences, such as MHCII expression among subsets of human T cells.

In conclusion, a hierarchical method was applied to assess alterations in lung cell populations among the four different murine lung tumor models. The cellular distribution of microenvironmental cells also varied between the primary and metastatic models of lung cancer, which can yield additional information regarding tumor progression. Picturing the cellular landscape of the lung in states of both health and disease is critical to improve the effectiveness of targeted therapies. Therefore, future studies are warranted for the design of precise panels for the identification of cells in complex organs and systems will guide us to decode the cellular crosstalk in diseases, especially in cancer.



Materials and Methods


Cell Culture

Murine Lewis lung carcinoma (LLC1) cells were obtained from American Type Culture Collection (ATCC; CRL-1642, Manassas, VA, USA) and cultured in Roswell Park Memorial Institute 1640 (RPMI; Gibco, 11879-020, Gibco, Carlsbad, CA, USA), supplemented with 10% fetal calf serum (FCS) and 1 U/ml penicillin-streptomycin under an atmosphere of 5% CO2/95% air at 37°C and 5% CO2 in an incubator (Heracell 240i, Thermo Fisher Scientific, Waltham, MA, USA) for 2-3 days. and medium was replaced by fresh medium regularly every two to three days. At 70% - 80% confluence, the cells were washed with 1X phosphate buffered saline pH 7.4 (PBS; Gibco, 10010056) and then treated with 0.05% Trypsin-EDTA (Gibco, 25300-054) at 37°C.



Animal Experiments

Mice were kept under specific pathogen-free conditions in individual ventilated cages (IVC). C57BL/6 mice were purchased from Charles River Laboratories (Sulzfeld, Germany). KRasLA2 mice were purchased from Jackson Laboratory (Sulzfeld, Germany) and bred in-house with C57BL/6 mice. In this study, four different lung tumor models were used: (i) KRasLA2 model: the KRasLA2 mutation leads to an amino acid exchange of glycine to aspartic acid at codon 12. Mice homozygous for the KRasLA2 mutation die during embryogenesis, whereas heterozygous mice have no congenital abnormalities. KRasLA2 mice produce active KRas, which leads to lung tumors. KRasLA2 mouse lungs were harvested at the end point (26 weeks) for single cell suspension preparation and histology analysis; (ii) intratracheal (i.t.) injection model: 1x106 LLC1 cells were resuspended in a final volume of 100 µl of 0.9% NaCl and injected into the trachea of C57BL/6 mice. On day 20, the lungs were harvested for FACS and histological analysis, (iii) intravenous (i.v.) tumor model: LLC1 cells (1x106) were injected into the tail vein. On day 18, the mice were sacrificed, and the lungs were harvested for FACS and histological analysis. (iv) tumor relapse model: primary tumor growth was initiated by subcutaneous injection of LLC1 cells (1x106). Tumor resection of anesthetized mice was performed on day 8. Lung metastasis was observed for 30 days after tumor resection prior to harvesting the lungs for further examinations.



Generation of Single Cell Suspensions

To prepare lung tumors for flow cytometric analysis, the extracted lungs were weighed, placed in 35 mm × 10 mm petri dishes (Greiner Bio-One, Kremsmünster, Austria), and cut into small cubes (< 1 mm3) with a scalpel. Single cell suspensions were created using the Tumor and Lamina Propria dissociation kit (Miltenyi Biotec, Bergisch Gladbach, Germany) and the GentleMACS isolator (Miltenyi Biotec) according to manufacturer’s protocol. The resulting pellet was washed with PBS and passed through a 40-mm cell strainer (BD Biosciences, San Jose, CA, USA) before FACS analysis of single cell suspensions.



Flow Cytometry

Samples were acquired with a LSRII/Fortessa flow cytometer (BD Biosciences) and data analysis was performed using FlowJo software v10 (Tree Star, Inc., Ashland, OR, USA). All antibodies and secondary reagents were titrated to determine optimal concentrations. The excitation wavelengths in laser configuration were 405 nm, 488 nm, 546 nm and 633 nm. CompBeads (BD Biosciences) were used for single-color compensation to create multi-color compensation matrices. For gating, FMO controls were used. The instrument calibrated was controlled daily using Cytometer Setup and Tracking beads (BD Biosciences). Data were analyzed using FlowJo software v10.6.1 including the t-SNE plug-in.



Hematoxylin and Eosin Staining (H&E Staining)

Paraformaldehyde-fixed mouse lung sections were deparaffinized, rehydrated with a series of xylol-ethanol-isopropanol solutions, washed with deionized water, incubated with Mayer’s hematoxylin solution (AP254766.1610; AppliChem GmbH, Darmstadt, Germany) for 10 min at room temperature, washed under running water for 5 min, and then incubated with eosin Y (AP253999.1210; AppliChem GmbH) for 2 min at room temperature followed by a short washing step with deionized water. After treatment with a series of ethanol-xylol solutions, the slides were mounted with Pertex mounting medium (CellPath Ltd., Newtownh, UK) and analyzed using a NanoZoomer digital slide scanner (Hamamatsu Photonics, Hamamatsu City, Japan).



Statistics

Data were presented as as means ± SEM. Statistically significant differences between groups were identified using the one-way analysis with Dunnett’s test. Statistical analysis was performed with GraphPad Prism v8. Differences were considered significant if *, p ≤ 0.05, **, p ≤ 0.01, ***, p ≤ 0.001, ****, p ≤ 0.0001.
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Supplementary Figure S1 | Gating tree for multispectral flow cytometry analysis of murine lung. Hierarchical analysis approach for pulmonary cell subsets showing the gating strategy with a multispectral antibody panel. BEC, blood endothelial cells; cDCs, conventional dendritic cells; LEC, lymphatic endothelial cells; MФ, macrophage; NK, natural killer cells; NKT, natural killer T cells; pDCs, plasmacytoid dendritic cell; Treg, regulatory T cell; VSMC, vascular smooth muscle cell.

Supplementary Figure S2 | Quantification of cell subsets derived from CD45+ cells in different lung tumor models. Relative abundance of immune cell populations within the CD45+ cell compartment is shown. Control means healthy lung. i.t., intratracheal injection; i.v., intravenous injection; t.r., tumor relapse model; Macs, macrophages; Mono, monocytes; DCs, dendritic cells; pDCs, plasmacytoid dendritic cells; NK cells, natural killer cells; NKT cells, natural killer T cells; Treg, regulatory T cells. Animal numbers for control n=5, for i.t. model n=6, for KRas model n=9, for tumor relapse model n=9, for i.v. model n=3. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 compared with control.



References

1. Siegel, RL, Miller, KD, Fuchs, HE, and Jemal, A. Cancer Statistics, 2021. CA Cancer J Clin (2021) 71:7–33. doi: 10.3322/caac.21654

2. Schmall, A, Al-Tamari, HM, Herold, S, Kampschulte, M, Weigert, A, Wietelmann, A, et al. Macrophage and Cancer Cell Cross-Talk via CCR2 and CX3CR1 Is a Fundamental Mechanism Driving Lung Cancer. Am J Respir Crit Care Med (2015) 191:437–47. doi: 10.1164/rccm.201406-1137OC

3. Banat, GA, Tretyn, A, Pullamsetti, SS, Wilhelm, J, Weigert, A, Olesch, C, et al. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma. PloS One (2015) 10:e0139073. doi: 10.1371/journal.pone.0139073

4. Zheng, X, Weigert, A, Reu, S, Guenther, S, Mansouri, S, Bassaly, B, et al. Spatial Density and Distribution of Tumor-Associated Macrophages Predict Survival in Non-Small Cell Lung Carcinoma. Cancer Res (2020) 80:4414–25. doi: 10.1158/0008-5472.CAN-20-0069

5. Yu, YR, O'Koren, EG, Hotten, DF, Kan, MJ, Kopin, D, Nelson, ER, et al. A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid Tissues. PloS One (2016) 11:e0150606. doi: 10.1371/journal.pone.0150606

6. Rajab, A, Axler, O, Leung, J, Wozniak, M, and Porwit, A. Ten-Color 15-Antibody Flow Cytometry Panel for Immunophenotyping of Lymphocyte Population. Int J Lab Hematol (2017) 39 Suppl:1, 76–85. doi: 10.1111/ijlh.12678

7. Maecker, HT, McCoy, JP, and Nussenblatt, R. Standardizing Immunophenotyping for the Human Immunology Project. Nat Rev Immunol (2012) 12:191–200. doi: 10.1038/nri3158

8. Fink, AF, Ciliberti, G, Popp, R, Sirait-Fischer, E, Frank, AC, Fleming, I, et al. IL27Ralpha Deficiency Alters Endothelial Cell Function and Subverts Tumor Angiogenesis in Mammary Carcinoma. Front Oncol (2019) 9:1022. doi: 10.3389/fonc.2019.01022

9. Spitzer, MH, and Nolan, GP. Mass Cytometry: Single Cells, Many Features. Cell (2016) 165:780–91. doi: 10.1016/j.cell.2016.04.019

10. Gadalla, R, Noamani, B, MacLeod, BL, Dickson, RJ, Guo, M, Xu, W, et al. Validation of CyTOF Against Flow Cytometry for Immunological Studies and Monitoring of Human Cancer Clinical Trials. Front Oncol (2019) 9:415. doi: 10.3389/fonc.2019.00415

11. Hartmann, FJ, and Bendall, SC. Immune Monitoring Using Mass Cytometry and Related High-Dimensional Imaging Approaches. Nat Rev Rheumatol (2020) 16:87–99. doi: 10.1038/s41584-019-0338-z

12. Roederer, M, and Murphy, RF. Cell-By-Cell Autofluorescence Correction for Low Signal-to-Noise Systems: Application to Epidermal Growth Factor Endocytosis by 3T3 Fibroblasts. Cytometry (1986) 7:558–65. doi: 10.1002/cyto.990070610

13. Gene Skyline. The Immunological Genome Project (ImmGen), USA. (2021). Available at: rstats.immgen.org/Skyline.

14. Angelidis, I, Simon, LM, Fernandez, IE, Strunz, M, Mayr, CH, Greiffo, FR, et al. An Atlas of the Aging Lung Mapped by Single Cell Transcriptomics and Deep Tissue Proteomics. Nat Commun (2019) 10:963. doi: 10.1038/s41467-019-08831-9

15. Franks, TJ, Colby, TV, Travis, WD, Tuder, RM, Reynolds, HY, Brody, AR, et al. Resident Cellular Components of the Human Lung: Current Knowledge and Goals for Research on Cell Phenotyping and Function. Proc Am Thorac Soc (2008) 5:763–6. doi: 10.1513/pats.200803-025HR

16. Bergeron, A, El-Hage, F, Kambouchner, M, Lecossier, D, and Tazi, A. Characterisation of Dendritic Cell Subsets in Lung Cancer Micro-Environments. Eur Respir J (2006) 28:1170–7. doi: 10.1183/09031936.06.00114205

17. Chang, SH, Mirabolfathinejad, SG, Katta, H, Cumpian, AM, Gong, L, Caetano, MS, et al. T Helper 17 Cells Play a Critical Pathogenic Role in Lung Cancer. Proc Natl Acad Sci USA (2014) 111:5664–9. doi: 10.1073/pnas.1319051111

18. Kim, N, Kim, HK, Lee, K, Hong, Y, Cho, JH, Choi, JW, et al. Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma. Nat Commun (2020) 11:2285. doi: 10.1038/s41467-020-16164-1

19. Duda, DG, Duyverman, AMMJ, Kohno, M, Snuderl, M, Steller, EJA, Fukumura, D, et al. Malignant Cells Facilitate Lung Metastasis by Bringing Their Own Soil. Proc Natl Acad Sci USA (2010) 107:21677–82. doi: 10.1073/pnas.1016234107

20. Kong, J, Tian, H, Zhang, F, Zhang, Z, Li, J, Liu, X, et al. Extracellular Vesicles of Carcinoma-Associated Fibroblasts Creates a Pre-Metastatic Niche in the Lung Through Activating Fibroblasts. Mol Cancer (2019) 18:175. doi: 10.1186/s12943-019-1101-4

21. Pein, M, Insua-Rodríguez, J, Hongu, T, Riedel, A, Meier, J, Wiedmann, L, et al. Metastasis-Initiating Cells Induce and Exploit a Fibroblast Niche to Fuel Malignant Colonization of the Lungs. Nat Commun (2020) 11:1494. doi: 10.1038/s41467-020-15188-x

22. Shibuya, T, Kamiyama, A, Sawada, H, Kikuchi, K, Maruyama, M, Sawado, R, et al. Immunoregulatory Monocyte Subset Promotes Metastasis Associated With Therapeutic Intervention for Primary Tumor. Front Immunol (2021) 12:663115. doi: 10.3389/fimmu.2021.663115

23. Wu, CF, Andzinski, L, Kasnitz, N, Kröger, A, Klawonn, F, Lienenklaus, S, et al. The Lack of Type I Interferon Induces Neutrophil-Mediated Pre-Metastatic Niche Formation in the Mouse Lung. Int J Cancer (2015) 137:837–47. doi: 10.1002/ijc.29444

24. Cui, J, Shin, T, Kawano, T, Sato, H, Kondo, E, Toura, I, et al. Requirement for Valpha14 NKT Cells in IL-12-Mediated Rejection of Tumors. Science (1997) 278:1623–6. doi: 10.1126/science.278.5343.1623

25. Motohashi, S, Kobayashi, S, Ito, T, Magara, KK, Mikuni, O, Kamada, N, et al. Preserved IFN-Alpha Production of Circulating Valpha24 NKT Cells in Primary Lung Cancer Patients. Int J Cancer (2002) 102:159–65. doi: 10.1002/ijc.10678

26. Assarsson, E, Kambayashi, T, Sandberg, JK, Hong, S, Taniguchi, M, Kaer, LV, et al. CD8+ T Cells Rapidly Acquire NK1.1 and NK Cell-Associated Molecules Upon Stimulation In Vitro and In Vivo. J Immunol (2000) 165:3673–9. doi: 10.4049/jimmunol.165.7.3673

27. Haas, JD, González, FHM, Schmitz, S, Chennupati, V, Föhse, L, Kremmer, E, et al. CCR6 and NK1.1 Distinguish Between IL-17A and IFN-Gamma-Producing Gammadelta Effector T Cells. Eur J Immunol (2009) 39:3488–97. doi: 10.1002/eji.200939922

28. Choi, H, Sheng, J, Gao, D, Li, F, Durrans, A, Ryu, S, et al. Transcriptome Analysis of Individual Stromal Cell Populations Identifies Stroma-Tumor Crosstalk in Mouse Lung Cancer Model. Cell Rep (2015) 10:1187–201. doi: 10.1016/j.celrep.2015.01.040

29. Lambrechts, D, Wauters, E, Boeckx, B, Aibar, S, Nittner, D, Burton, O, et al. Phenotype Molding of Stromal Cells in the Lung Tumor Microenvironment. Nat Med (2018) 24:1277–89. doi: 10.1038/s41591-018-0096-5

30. Jimenez-Sanchez, A, Cast, O, and Miller, ML. Comprehensive Benchmarking and Integration of Tumor Microenvironment Cell Estimation Methods. Cancer Res (2019) 79:6238–46. doi: 10.1158/0008-5472.CAN-18-3560

31. Hasegawa, K, Sato, A, Tanimura, K, Uemasu, K, Hamakawa, Y, Fuseya, Y, et al. Fraction of MHCII and EpCAM Expression Characterizes Distal Lung Epithelial Cells for Alveolar Type 2 Cell Isolation. Respir Res (2017) 18:150. doi: 10.1186/s12931-017-0635-5

32. Bordag, N, Biasin, V, Schnoegl, D, Valzano, F, Jandl, K, Nagy, BM, et al. Machine Learning Analysis of the Bleomycin Mouse Model Reveals the Compartmental and Temporal Inflammatory Pulmonary Fingerprint. iScience (2020) 23:101819. doi: 10.1016/j.isci.2020.101819

33. Pullamsetti, SS, Kojonazarov, B, Storn, S, Gall, H, Salazar, Y, Wolf, J, et al. Lung Cancer-Associated Pulmonary Hypertension: Role of Microenvironmental Inflammation Based on Tumor Cell-Immune Cell Cross-Talk. Sci Transl Med (2017) 9(416):eaai9048. doi: 10.1126/scitranslmed.aai9048

34. Han, Y, Mora, J, Huard, A, da Silva, P, Wiechmann, S, Putyrski, M, et al. IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production From Gammadelta T Cells. Cell Rep (2019) 27:835–46.e835. doi: 10.1016/j.celrep.2019.03.082

35. Bharat, A, Bhorade, SM, Morales-Nebreda, L, McQuattie-Pimentel, AC, Soberanes, S, Ridge, K, et al. Flow Cytometry Reveals Similarities Between Lung Macrophages in Humans and Mice. Am J Respir Cell Mol Biol (2016) 54:147–9. doi: 10.1165/rcmb.2015-0147LE




Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Olesch, Brunn, Aktay-Cetin, Sirait-Fischer, Pullamsetti, Grimminger, Seeger, Brüne, Weigert and Savai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




REVIEW

published: 02 June 2022

doi: 10.3389/fimmu.2022.903562

[image: image2]


Utility and Drawbacks of Chimeric Antigen Receptor T Cell (CAR-T) Therapy in Lung Cancer


Prameela Kandra 1†, Rajender Nandigama 2†, Bastian Eul 3, Magdalena Huber 4, Sebastian Kobold 5,6, Werner Seeger 2,3,7, Friedrich Grimminger 3,7 and Rajkumar Savai 2,3,7*


1 Department of Biotechnology, Gandhi Institute of Technology and Management (GITAM) Institute of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to be University, Visakhapatnam, India, 2 Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany, 3 Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany, 4 Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany, 5 Division of Clinical Pharmacology, Department of Medicine IV, Member of the Deutsches Zentrum für Lungenforschung (DZL), University Hospital Munich, Munich, Germany, 6 German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner site Munich, Munich, Germany, 7 Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany




Edited by: 

Petros Christopoulos, Heidelberg University Hospital, Germany

Reviewed by: 

Naoki Hosen, Osaka University, Japan

Hermann Einsele, Julius Maximilian University of Würzburg, Germany

Wenshe Ray Liu, Texas A&M University, United States

*Correspondence: 

Rajkumar Savai
 rajkumar.savai@mpi-bn.mpg.de
 savai.rajkumar@innere.med.uni-giessen.de

†These authors have contributed equally to this work

Specialty section: 
 This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology


Received: 24 March 2022

Accepted: 06 May 2022

Published: 02 June 2022

Citation:
Kandra P, Nandigama R, Eul B, Huber M, Kobold S, Seeger W, Grimminger F and Savai R (2022) Utility and Drawbacks of Chimeric Antigen Receptor T Cell (CAR-T) Therapy in Lung Cancer. Front. Immunol. 13:903562. doi: 10.3389/fimmu.2022.903562



The present treatments for lung cancer include surgical resection, radiation, chemotherapy, targeted therapy, and immunotherapy. Despite advances in therapies, the prognosis of lung cancer has not been substantially improved in recent years. Chimeric antigen receptor (CAR)-T cell immunotherapy has attracted growing interest in the treatment of various malignancies. Despite CAR-T cell therapy emerging as a novel potential therapeutic option with promising results in refractory and relapsed leukemia, many challenges limit its therapeutic efficacy in solid tumors including lung cancer. In this landscape, studies have identified several obstacles to the effective use of CAR-T cell therapy including antigen heterogeneity, the immunosuppressive tumor microenvironment, and tumor penetration by CAR-T cells. Here, we review CAR-T cell design; present the results of CAR-T cell therapies in preclinical and clinical studies in lung cancer; describe existing challenges and toxicities; and discuss strategies to improve therapeutic efficacy of CAR-T cells.
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Introduction

Lung cancer is one of the most common and deadly cancer types globally (1). Lung cancer is a highly complex, heterogeneous disease with a poor prognosis. The poor survival rate of patients with lung cancer (5-year survival rate: 10%–20%) is a consequence of advanced stage at presentation (2, 3). Histologically, lung cancer is classified as non-small cell lung carcinoma (NSCLC, approximately 85% of cases) or small cell lung carcinoma (approximately 15% of cases). NSCLC, causing a major proportion of lung cancer-related deaths, is classified as adenocarcinoma, squamous cell carcinoma, or large cell carcinoma (4). Furthermore, genomic profiling studies have uncovered driver mutations in lung cancer that support tumor growth and proliferation. The most frequently found driver mutations in lung cancer are Kirsten rat sarcoma viral (KRAS) oncogene homolog and epidermal growth factor receptor (EGFR) mutations (5).

The present main treatment strategies for lung cancer include surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy (6, 7). Although lung cancer is curable when diagnosed at an early stage, it even then remains a challenge due to relapse, and poor survival in >70% of patients (8). Over the past two decades, cytotoxic chemotherapies used to treat lung cancer have evolved to platinum-based chemotherapy, cisplatin-based combination therapies, neoadjuvant therapy, and adjuvant therapy (9). In addition, targeted therapies have also been developed to treat patients with lung cancer harboring EGFR or anaplastic lymphoma kinase mutations (10). Recently, immunotherapy has complemented this arsenal with the discovery and targeting of immune checkpoint inhibitors such as anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and anti-programmed cell death-1 (PD-1) therapies (7). Despite the development of various therapeutic regimens for lung cancer, such therapies only provide durable responses and efficacy in a subset of patients. Variable responses observed under treatment in different tumors might be attributable to disease heterogeneity or tumor heterogeneity across patients. Therefore, it is necessary to explore novel therapies to improve clinical outcomes for more patients. In this setting, next-generation immunotherapeutics, such as immunomodulators and adoptive T-cell therapies including classical T-cell receptor (TCR) and chimeric antigen receptor (CAR)-T-cell therapies, bear promise for treating cancers including lung cancer (11–13).

CAR-T cell therapy has emerged as an innovative cancer immunotherapy for lung cancer treatment (13–16). Although CAR-T cell therapy produced remarkable clinical responses in hematological malignancies (17), this therapy has displayed limited anti-tumor activity in solid tumors including lung cancer. Despite targeting a variety of antigens and tumor types, clinical data for CAR-T cell therapy in solid tumors are disappointing (18). While CAR-T cell therapy has shown clinical success in hematological malignancies, severe toxicities such as cytokine release syndrome (CRS), neurotoxicity, on-target/off-tumor toxicity, tumor lysis syndrome (TLS), and anaphylaxis have also been reported in CAR-T therapy (19). Also, some concerns must be addressed including limited efficacy of CAR-T cell therapies in solid tumors, limited persistence, antigen escape, CAR-T cell trafficking, tumor infiltration, and the immunosuppressive microenvironment (20, 21). Recently, several studies proposed strategies to ameliorate efficacy of CAR-T cell therapy and limit its toxicities (22–24). In this review, we focus on CAR-T cell design, present existing preclinical and clinical studies in lung cancer treatment; highlight existing challenges and toxicities; and also discussed strategies to improve the therapeutic efficacy of CAR-T cells in solid tumors.



The Design and Structure of CAR-T Cells

T cells genetically engineered to carry synthetic CAR bind specifically targeted tumor antigens and kill these targeted tumor cells. CAR are synthetic receptors composed of an antigen-binding domain/hinge motif, transmembrane domain, and intracellular signaling domain. The extracellular antigen-binding domain, composed of a single-chain variable fragment (scFv), recognizes targeted tumor-associated antigens (TAAs) and triggers downstream signaling. The hinge/spacer region provides flexibility to allow the antigen-binding domain to access the targeted antigen. The hinge/spacer region can be adjusted to its optimal length to provide a sufficient distance between CAR-T cells and targeted tumor cells. The transmembrane domain facilitates the distribution of CARs to the T cell membrane, influencing CAR expression, function, and stability. The intracellular domain or endodomain is composed of combinations of signaling domains such as the T-cell activation complex transducer CD3ζ and several costimulatory molecules (25) (Figures 1A, B). The design and structure of CAR have been extensively reviewed elsewhere (26, 27).




Figure 1 | Schematic representation of basic principle of CAR structure (A), mechanism of CAR engineered T-cells action on tumor cells (B), and progressive evolution of CAR-T cells with modifications from 1st generation to 5th generation (C) (Figure generated using Bio Render).



To improve the efficacy and safety of CAR-T cell therapy, CAR-T cells have undergone several progressive changes by modifying the CAR structure based on its intracellular signaling domains (Figure 1C). The first generation of CAR, containing the antigen recognition extracellular scFv and CD3ζ signaling endodomain, displayed less efficient T cell activation and a short survival time in vivo (28–30). To improve the persistence and efficacy of CAR-T cells, second-generation CARs contain an additional costimulatory molecule (e.g., CD28, 41BB, ICOS) that enhances T cell proliferation, prolongs T cell survival time, and improves clinical outcomes (31–33). The design of third generation of CAR included CD3ζ and two costimulatory molecules that further enhance CAR-T cell function. The most commonly used third generation costimulatory molecules are CD27, CD28, 41BB, ICOS, and OX-40 (34, 35). The design of fourth-generation CAR-T cells introduced T cells redirected for universal cytokine-mediated killing containing nuclear factor of activated T cells. These fourth-generation CAR-T cells can produce pro-inflammatory cytokines (interleukin [IL]-12, IL-13, and GM-CSF) upon activation and enhance the penetration ability of T cells to overcome the immunosuppressive effect of the hostile tumor microenvironment (TME) (36). The fifth generation of CAR includes an IL-2Rβ fragment that induces JAK production and activates signal transducer and activator of transcription 3/5 (37).



CAR-T Cell Therapy Applications and Tumor-Associated Target Antigens in Lung Cancer

CAR-T cell therapy is an individualized cell-based therapy that involves the modification of a patient’s own T cells to express CAR. The generation of CAR-T cells involves a complex engineering process featuring several steps starting with the collection of T cells from the patients, engineering cells to express tumor-specific antigen-targeted CAR on their surface, CAR-T cell expansion, and purification, and the infusion of CAR-T cells back into the patient with therapeutic intention (Figure 2).




Figure 2 | Schematic representation of CAR-T cells production and application in lung cancer treatment (Figure generated using Bio Render).



CAR-T cell adaptive cancer immunotherapy has emerged as a promising strategy for the treatment of solid tumors including lung cancer. Synthetic CAR-T cells are independent of major histocompatibility (MHC) complex targeted for TAAs on cancer cells to establish tumor immunity. Similarly, for successful CAR-T therapy in solid tumors, it is important to identify specific TAAs that are highly and selectively expressed in solid tumors but weakly expressed or absent in normal tissue. Several TAAs have been proposed in CAR-T cell research in solid tumors including lung cancer. TAAs currently being investigated in clinical trials of CAR-T cells include carcinoembryonic antigen (CEA), EGFR, human epidermal growth factor receptor 2 (HER2), mesothelin (MSLN), prostate stem cell antigen (PSCA), mucin 1 (MUC1), tyrosine kinase-like orphan receptor 1 (ROR1), programmed death ligand 1 (PD-L1), and CD80/CD86 (Table 1).


Table 1 | Potential TAAs in CAR-T cell therapy clinical tails for lung cancer (ClinicalTrials.gov).



CEA is a fetal antigen that is expressed during fetal development but is minimally expressed or absent in adult tissues. CEA is overexpressed in various cancers, including 70% of NSCLC (38). Therefore, CEA has proven useful as a tumor marker and for monitoring the response to CEA-targeted CAR-T therapy. Furthermore, preclinical studies also showed the relevance of serum CEA concentrations as an indicator of brain metastases in patients with advanced NSCLC (39). This led to the establishment of CEA-targeted CAR-T cells in phase I clinical trials to evaluate the efficacy, safety, and maximum tolerated dose of this therapy in various solid tumors including lung cancer (NCT02349724, NCT04348643). In addition, in vivo established human lung cancer model in immune-compromised mice showed treatment with inducible IL8 (iIL8) and CEA-targeted CAR-T cells completely eliminated advanced stage of lung cancer (40).

EGFR, expressed in both epithelial cells and epithelium-derived malignancies, is a transmembrane glycoprotein belonging to the tyrosine kinase receptor family. In addition to EGFR overexpression in solid tumors including NSCLC, it has also been reported that more than 60% of EGFR mutations are associated in NSCLC patients (41). Therefore, EGFR has become a possible therapeutic target in CAR-T cell therapy for NSCLC. In vitro studies revealed that EGFR-targeted CAR-T cells exhibit specific cytolytic activity and produce high levels of cytokine (IL-2, IL-4, IL-10, TNF-α, and interferon-γ [IFN-γ]) against EGFR-positive tumor cells (42). There are two ongoing phase I clinical trials in lung cancer of C-X-C chemokine receptor type 5 modified EGFR-targeted CAR-T cells (NCT04153799, NCT05060796). Furthermore, phase I/II clinical studies in patients with advanced NSCLC revealed no severe toxicity after 3–5 days of EGFR-targeted CAR-T cell perfusion (NCT01869166). These studies indicate the promise of EGFR-targeted CAR-T cells in treating NSCLC.

HER2, a member of the tyrosine kinase erythroblastic leukemia viral oncogene homolog (ERBB) family, is also a potential CAR target antigen in lung cancer (43). Studies using an in vivo A549 NSCLC xenograft model and in vitro NSCLC cell lines (A549 and H1650) revealed anti-tumor effects of HER2-targeted CAR-T cells, including decreased tumor growth but not complete tumor elimination (44, 45). In addition, two phase I/II clinical studies of HER2-targeted CAR-T cells in treating NSCLC have been launched (NCT01935843, NCT02713984). However, clinical data have not yet been reported for HER2-targeted CAR-T cell therapy in NSCLC.

MSLN, a cell surfaced glycoprotein, is overexpressed in the majority of cancer types including lung cancer, mesothelioma, pancreatic cancer, and ovarian cancer (46, 47). High expression of MSLN occurs in approximately 69% of lung adenocarcinomas, and it carries an increased risk of recurrence with reduced overall survival in NSCLC (48, 49); therefore, it could be a potential target in CAR-T cell therapy. This prompted the development of MSLN-targeted CAR-T cells, and research using in vivo subcutaneous mouse lung cancer models and ex vivo models revealed a slower tumor growth rate and inhibitory effects on cell proliferation (46, 50). However, phase I/II clinical trials of MSLN-targeted CAR-T cells in MSLN-positive metastatic lung cancer were terminated because of poor accrual (NCT01583686). Furthermore, the intravenous application of mRNA-engineered T-cells expressing MSLN-targeted CARs did not exert effects on metastatic tumors in patients with NSCLC (NCT01355965).

MUC1 is another potential candidate that is aberrantly overexpressed in NSCLC and other cancer types (51). MUC1 is an abnormally glycosylated extracellular transmembrane glycoprotein that is correlated with poor survival and tumor progression (52). Ongoing phase I clinical trial studies are examining Tn glycoform of MUC1-targeted CAR-T cells for the treatment in MUC-1 positive advanced cancers, including NSCLC (NCT04025216). Additionally, phase I/II clinical studies in various solid tumors including lung cancer using MUC-1–targeted CAR-T cells have been launched (NCT03525782, NCT02587689). Meanwhile, an early stage clinical trial is using P-MUC1-ALLO1–targeted CAR-T cells in solid tumors including lung cancer is ongoing (NCT05239143). In contrast, studies using MUC-1–targeted CAR-T cells in patient xenograft model did not reveal significant suppression of NSCLC tumor growth (51).

PSCA is a glycophosphatidylinositol-anchored cell surface protein that is aberrantly overexpressed in NSCLC (51). Using in vivo PDX subcutaneous mouse models and in vitro models, the combination of CAR-T cells targeting MUC-1 and PSCA substantially inhibited tumor growth and PSCA- and MUC-1–expressing NSCLC cell proliferation (51). Meanwhile, an ongoing phase I study is testing safety, efficacy, and tolerance of a combination of CAR-T cells targeting MUC-1 and PSCA in lung cancer (NCT03198052).

ROR1, a tyrosine kinase-like orphan receptor, is highly expressed in NSCLC, breast cancer, and other solid tumors (53, 54). Because of the toxicity of ROR1-targeted CAR-T cells attributable to ROR1 expression in normal tissues, CAR-T cells have been engineered with synthetic Notch receptors EpCAM and B7-H3 to improve selectivity, specificity, and tumor regression in ROR1-expressing tumor cells with less toxicity (55). A phase I clinical study was designed to assess the safety and anti-tumor effects of ROR1-targeted CAR-T cells in ROR-positive NSCLC (NCT02706392). In addition, animal models examining ROR1-targeted CAR-T cells revealed effective elimination of ROR1-positive NSCLC cells (53).

Treatments targeting the PD-1-PD-L1 complex, which blocks the cytotoxic T-cell activity, have made substantial progress in NSCLC and other cancer types (56, 57). In vitro and in vivo studies using PD-L1–targeted CAR-T cells revealed cytotoxic effects and tumor growth inhibition in NSCLC cells (58, 59). However, phase-1 clinical trials of PD-L1 targeted CAR-T cells in advanced lung cancer patients were terminated because of serious adverse effects (NCT03330834). Also, another phase I clinical trial has been ongoing with PD-L1-MSLN targeted CAR-T cells to determine safety and efficacy in PD-L1–positive NSCLC patients (NCT04489862).

The expression of CD80/CD86, costimulatory molecules of the immune system, has been detected in NSCLC (60). CD80 and CD86 bind to CTLA-4 and downregulate T-cell function, making them preferred targets for immune intervention (61). Phase I clinical trial study is ongoing to assess safety and tolerance of PD-L1 and CD80/CD86 targeting CAR-T cells in the treatment of recurrent or refractory NSCLC patients (NCT03060343). In addition, CD80/CD86-targeted CAR-T cell treatment controlled tumors including NSCLC tumors by reversing inhibitory CTLA-4–CD80/CD86 signals (62).

Fibroblast activator protein (FAP), highly expressed in cancer-associated fibroblasts (CAFs), can modulate the tumor microenvironment by ECM remodeling. FAP overexpression on CAFs is associated with poor prognosis in many solid tumors including lung cancer. Targeting FAP is also being evaluated for CAR-T cell therapy in NSCLC. In vitro studies in A549 cells using FAP targeted CAR-T cells showed significant reduction of tumor growth (63, 64). Furthermore, mouse model studies using FAP-targeted CAR-T cells showed 35-50% reduction of tumor growth after treatment (63, 64).

Preclinical CAR-T cell therapy studies in lung cancer by targeting several potential targets, like erythropoietin-producing hepatocellular carcinoma A2 (EphA2), lung-specific X protein (LUNX), variant domain 6 of CD44 gene (CD44V6), melanoma-associated antigen (MAGE)-A1, exhibited significant suppression of tumor growth (65–68). Furthermore, potential targets like MAGE-A1 (NCT03198052 and NCT03356808), AMT-253 (NCT05117138), CD276 [(B7-H3): NCT04864821, NCT05190185), and GPC3-transforming growth factor beta (TGF-β; NCT03198546), are under evaluation for CAR-T cell therapy application in NSCLC in clinical trials.



Current Challenges and Toxicities in CAR-T Cell Therapy

Although there has been continuous improvement of CAR-T cell therapies and their great promise in the treatment of lung cancer and other solid tumors has been revealed, many challenges and hurdles exist. T cell intrinsic as well as tumor-driven mechanisms and treatment-related toxicities in CAR-T cell limit efficacy and safety in solid tumors including lung cancer.


Challenges in Applying CAR-T Cell Therapy in Lung Cancer

Following administration, CAR-T cells encounter considerable challenges in treating lung cancer, such as tumor antigen escape, TME heterogeneity, immune suppression, CAR-T cell trafficking and infiltration into the tumor, and CAR-T cell exhaustion (Figure 3). In this section, we further elaborated explaining main current challenges in CAR-T cell therapies in lung cancer and other solid tumors.




Figure 3 | Major challenges in applying CAR-T cell therapy in lung cancer (Figure generated using Bio Render).



The challenges associated with CAR-T cell therapy in solid tumors such as lung cancer include tumor antigen escape and the emergence of multiple resistance mechanisms. Although CAR-T cell therapy can produce high initial response rate in some patients or diseases by overcoming HLA restriction and MHC I downregulation, many patients subsequently experience disease relapse because of antigen escape by cancer cells, resulting in the partial or complete loss of target antigen expression. CD19-targeted CAR-T cell therapy in ALL patients and BMCA-targeted CAR-T cell treatment in patients with multiple myeloma resulted in disease recurrence with the development of resistance and reduced target antigen expression in cancer cells after treatment (69, 70). Similarly, treatment with IL-13Ra2–targeted CAR-T cells in glioblastoma resulted in relapse because of reduced IL-13Ra2 expression in tumors (71). Therefore, it is important to optimize target antigen selection to prevent antigen escape mechanisms, thereby improving anti-tumoral effects of CAR-T cells and preventing disease relapse.

Another significant limiting factor in CAR-T cell therapy in solid tumors including lung cancer is tumor heterogeneity. Overall, tumor heterogeneity is a major factor in cancer treatment efficacy, resistance, and failure (71, 72). Spatial distribution studies in patients with NSCLC revealed high spatial heterogeneity of the intratumoral microenvironment in lung tumors for immune and stromal cells and their impact on survival in lung cancer (73). For example, the heterogeneity of PD-L1 expression in the TME influences the prognosis of lung cancer and significantly affects immunotherapy outcomes (74). It is important to optimize the selection of tumor-specific antigens that are specifically expressed in tumor cells to increase anti-tumor activity and safety of CAR-T cells (75). However, it is highly challenging to identify specific target antigens that are expressed homogenously and stably on tumor cells but not healthy cells.

Similarly, as other solid tumors, CAR-T cells in lung cancer suffer the immunosuppressive effect of the TME, which hinders their effector function and impedes clinical efficacy of CAR-T cells (75, 76).

Many infiltrating cell types contribute to an immunosuppressive TME, including myeloid-derived suppressor cells, CAFs, tumor-associated macrophages, and regulatory T cells, which secrete factors such as TGF-β, IL-10, ARG-1, inducible nitric oxide synthase (iNOS), COX2, PGE2, FAP, and PD-L1 (77, 78). These factors regulate metabolism, cytokine networks, and immune checkpoints in the TME and generate an immunosuppressive microenvironment, thereby leading to reduction or loss of CAR-T cell function.

Unlike observations in hematological malignancies, hurdles including effective trafficking and infiltration of CAR-T cells into the tumor site limit efficacy of CAR-T cell therapy in solid tumors such as lung cancer. T cell infiltration into lung tumors is mainly influenced by chemokines, chemokine receptors, adhesion molecules, the irregular and extensive leakage of the tumor vasculature, and a hypoxic and immunosuppressive TME (79–82). Furthermore, CAFs and extracellular matrix (ECM) establish a physical barrier that causes therapeutic resistance and blocks the penetration of drugs into solid tumors. In lung cancer, the dense fibrotic environment generated by abnormally dense collagen, ECM deposition, and CAF activation impedes immune cell infiltration and the efficacy of immunotherapy (83, 84). Several of these factors and physical barriers in the TME in solid tumors including lung tumors represent the first obstacles encountered by CAR-T cells after administration, thereby impeding trafficking and tumor penetration.

The success of CAR-T cell therapy is also hampered by the development of a dysfunctional state called CAR-T cell exhaustion. CAR-T cell exhaustion is one factor limiting the efficacy of CAR-T cell therapy in solid tumors including lung cancer. T cell exhaustion develops in the TME by persistent antigen stimulation, increase in expression of inhibitory receptors, and the presence of inhibitory immune cells and cytokines (79). In solid tumors, the NR4A transcription factor family plays an important role in T-cell exhaustion, which limits CAR-T cell function in solid tumors (85).



CAR-T Cell Treatment Related Toxicities

A major hurdle to CAR-T cell therapy is severe toxicities. The most common toxicities following infusion of CAR-T cells are CRS, neurologic toxicity, tumor lysis syndrome (TLS), on-target-off-tumor effects, anaphylaxis, and hematologic toxicities (19, 86, 87) (Figure 4). However, these toxicities are mainly based on clinical observations in hematological malignancies, and the toxic effects and risks of CAR-T cell therapies in lung cancer and other solid tumors must be carefully weighed to expand their clinical use.




Figure 4 | Toxicity hurdles in CAR-T cell therapy (Figure generated using Bio Render).



CRS is the most prevalent adverse effect after CAR-T cell therapy. Fever is the most common symptom of CRS after CAR-T cell infusion can be accompanied by nausea, fatigue, hypotension, and cardiac dysfunction (88). After CAR-T cell therapy, high IL-6 levels in patient serum are strongly correlated with CRS severity (89). The pathophysiology of CRS related to CAR-T cell therapy is associated with the activation and proliferation of CAR-T cells and release of high levels of several cytokines and chemokines including IFN-γ, IL-6, IL-8, IL-10, granulocyte macrophage colony-stimulating factor, and iNOS which in turn activate endogeneous myeloid cells (90–92).

Neurologic toxicity is the second major side effect reported in patients after CD19-specific CAR-T cell infusion (93). More recently, a CAR-T cell-related encephalopathy syndrome termed immune effector cell-associated neurotoxicity syndrome (ICANS) has been reported (94). The clinical features of ICANS associated with CAR-T cell therapy include encephalopathy, memory loss, seizures, impaired speech, tremor, headache, language disturbance, and motor weakness (95, 96). Although the pathogenesis of ICANS is less clear than that of CRS in CAR-T cell therapy studies, high levels of C-reactive protein, IL-6, IL-15, IFN-γ, TNF-α, granzyme B, granulocyte macrophage colony-stimulating factor, IL-2, and IL-8 are associated with severe ICANS (95, 97, 98). Recently, several studies suggested that blood–brain barrier dysfunction is the main factor in the pathogenesis of neurotoxicity after CAR-T cell therapy (95).

Another potential adverse effect of CAR-T cell therapy is TLS. TLS describes a group of metabolic abnormalities that may occur because of the CAR-T cell-mediated lysis of malignant cells (99). TLS can lead to organ damage, life-threatening arrhythmias, and renal failure.

Further treatment-related side effects may occur if target antigens selected for CAR T cell therapy are not specific and shared healthy tissue and healthy cells. Recent single cell analysis and other studies in healthy tissues studies revealed expression of several TAAs in various non-cancerous tissues, supporting the concern for on-target – off tumor mediated side effects (100–102) (Table 2). On-target-off-tumor toxicity through damage in noncancerous normal tissues lead to life-threatening effects (103). Carbonic anhydrase IX-specific CAR-T cell therapy in renal carcinoma resulted in on-target-off-tumor toxicity in the bile duct epithelium and cholestasis because of the expression of the same antigen (29, 104).. Furthermore, CAR-T cell therapy using HER2/neu-specific CAR-T cells resulted in on-target-off-tumor toxicity, leading to respiratory failure, multi-organ dysfunction, and subsequent death because of antigen recognition on pulmonary tissue (105). Dramatic effects have been noted in genetically modified TCRs against melanoma through lethal cardiac toxicity attributable to off-target reactivity (106). CAR-T cell therapy in metastatic colon cancer induced adverse effects within 15 min as a consequence of respiratory dysfunction (105).


Table 2 | Expression of TAAs in healthy tissues.



As the majority of currently utilized CAR-T cells carry an antigen recognition domain derived from murine monoclonal antibodies (103), infusion may provoke humoral and cellular immune responses culminating in anaphylactic reactions (28, 107). A clinical trial identified cardiorespiratory failure after a third infusion of MSLN-targeted CAR-T cells as a consequence of such species mismatch. Furthermore, this study reported an IgE-mediated anaphylactic event caused by the presence of human anti-mouse antibodies and elevated trypsin antibodies in patient serum (108). These adverse effects might be related to isotype switching to IgE; inappropriate timing of treatment, and improper treatment intervals.




Future Strategies to Improve CAR-T Cell Therapy

Despite the success of CAR-T cell therapy against hematologic malignancies, the effects of CAR-T cell therapies on solid tumors such as lung cancer are unsatisfactory because of antigen heterogeneity, an immunosuppressive microenvironment, and insufficient trafficking to tumor tissue. Furthermore, CAR-T therapy in the treatment of solid tumors may result in adverse cytotoxicity in healthy cells because of the presence of targeted TAA on healthy cells. Therefore, it is utmost important to develop strategies to improve safety and efficacy of CAR-T cell therapies in lung cancer and other solid tumors. To overcome these hurdles, several studies adapted genetic engineering approaches to modulate CAR-T cells to enhance their efficacy, functional activity in the immunosuppressive TME, and efficient infiltration into the tumor site.


Modulating CAR Activity

Recently, several scientists attempted to improve the efficacy and feasibility of CAR-T cell therapy in solid tumors and avoid off-tumor toxicity. To overcome antigen heterogeneity in solid tumors, several approaches have been adopted to target multiple antigens with a single CAR-T cell population. The combination of biotinylated antibodies and avidin-conjugated CAR has been used to control CAR-T cell activity and target multiple antigens (109, 110). Other CAR that can potentially target multiple antigens include split universal and programmable (SUPRA) CAR and leucine-zipper motif CAR (ZipCAR) with free scFv motifs (ZipFv). SUPRA CAR reduce CAR-T cell hyperactivity, overcome tumor immune escape, and enhance the activation of T-cells with high sensitivity for various tumor antigens (111). SUPRA CAR also regulate various signaling pathways in T-cells and other cells and prevent CRS. ZipCAR with different types of ZipFv motifs can be designed to recognize various tumor antigens and attenuate the unspecific activation of CAR-T cells. Further strategies using tandem CAR-T cells and dual CAR-T cells that prevent on-target/off-tumor toxicity by targeting two different tumor surface antigens and enhance anti-tumor activity have been reported (112, 113). Modular CAR approaches have been extensively reviewed elsewhere (114).



Small Molecules-Based or Chemogenitic-Based Switchable CAR-T Cells

To mitigate CAR-T cells posed challenges and complications, further approaches such as small molecules-based or chemogenitic-based switchable CAR-T cells have been developed to regulate CAR activity. A variety of small molecules such as FITC-conjugated antibodies, rapamycin, folate, rimiducid, proteolysis-targeting chimera (PROTAC), and dastinib have been employed to develop safety switches for CAR-T cells (115) Switchable CAR-Ts approach in breast cancer treatment using Her2-targeted antibody drug combination with a T cell-redirected bsAb, and a FITC-modified antibody capable of redirecting anti-FITC CAR-T (switchable CAR-T; sCAR-T) cells showed improved activity against cancer cells (116). In vitro and in vivo studies using chemically programmed antibody fragment (ca-Fab)/CAR-system based on/off switch targeting folate binding proteins showed specific elimination of folate receptor expressing cancer cells (117). In addition, recent study developed chemogenitic-based switchable CAR-T cells targeting CD19 positive cancer cells in in vitro and in vivo using anti-CD 19 hepatitis C virus NS3 protease (HSV-NS3) between the single-chain variable fragment (scFV) demonstrated control of CAR-T activity in the presence and absence of HCV-NS3 inhibitor asunaprevir in eliminating CD19 positive tumor cells (118).



Enhancing CAR-T Cell Therapy to Overcome an Immunosuppressive TME

To improve efficacy of CAR -T-cell therapy, several strategies modified CAR-T cells to secrete pro-inflammatory cytokines such as IL-12 (119) or transgenically express cytokines such as IL-23, IL-12, and IL-15 to protect CAR-T cells in the inhibitory TME and thereby improve their anti-tumor activity (120–124). To reduce cytokine secretion in CAR-T cell therapy, internal ribosome entry site-based approaches can be used in CAR-T cell construction when a cytokine gene is placed 3’ prime of internal ribosome entry site (125). Another study suggested that constructing a constitutive signaling of cytokine receptor C7R, which potentially triggers IL7 stimulation, increase CAR-T cell persistence and antitumor activity (126). Another approach to target PD-1-PD-L1 interaction is programming CAR-T cells to secrete blocking agents for checkpoint inhibitor PD-1. CAR-T cells secreting scFv targeting PD-1 provided a better outcome in PD-L1–positive xenograft mouse models (127). Also, to overcome an immunosuppressive TME, several studies suggested that the combination of monoclonal antibodies inhibiting immune checkpoints such as PD-1 or CTLA-4 and CAR-T cell therapy might result in improved anti-tumor activity (128, 129). In addition, several other approaches developed CRISPR/Cas9-mediated PD1-disrupted CAR-T cells and CTLA-4–specific CAR-T cells to improve effector function of CAR-T cells and enhance their anti-tumor activity (130). In addition to CRISPR/Cas9, several gene-editing tools including zinc finger nucleases, mega nucleases, and transcription activator-like effector nucleases have been applied to engineer CAR-T cells (131, 132).



Enhancement of Infiltration of CAR-T Cells Into Solid Tumors

To enhance the penetration of CAR-T cells into solid tumors by overcoming physical barriers in the TME, different approaches have been explored to design CAR-T cells targeting the tumor-associated stromal fibroblast protease FAP or ECM-modifying enzymes or to use distinct chemokine gradients to recruit CAR-T cells to solid tumor tissues. Several studies also reported that solid tumor-associated chemokine release characteristics can be utilized to enhance the trafficking of therapeutic T-cells using chemokine receptors (133–135). One study of FAP-targeted CARs in immunocompetent models reported bone toxicity in FAP-positive stromal cells in bone marrow, whereas another study observed reduced tumor growth without toxicities (136). Thus, FAP-targeted CAR-T cell strategies require further deep investigation to explore their efficacy and toxicity. Another approach to enable the expression of heparanase in ECM is targeting heparin sulfate proteoglycans by combining this enzyme with anti-GD2 CAR-T cells. This approach resulted in the increased infiltration of CAR-T cells and prolonged survival in a mouse xenograft tumor model (137). However, these approaches require further research because of the complicated and unpredictable effects of ECM-modifying enzymes.



Improving Metabolic Functions of CAR-T Cells in TME

Nutrient depletion, hypoxia and toxic metabolites in TME affects biological properties of infiltrating immune cells in solid tumors. These toxic metabolites harbors reactive oxygen species in TME and thereby impairs T cell function (138–140). The efficacy of CAR-T therapy is closely associated with T cell metabolism fitness. Several strategies have been explored to modulate metabolic function of adoptively transferred CAR-T cells including manipulating ROS levels balance, relieving unfavorable metabolic TME, and blocking inhibitory effects of toxic metabolites. To protect CAR-T cell from ROS damage, investigators developed genetically modified T cells which secrete ROS scavenger catalase (141). In order to improve arginine re-synthesis in adoptively transferred T cells, several studies developed either ex vivo loading of CAR-T cells with arginine (142) or genetic manipulation of CAR-T cells with arginine synthesizing enzymes to re-synthesize arginine (143). In addition, several other approaches also explored to manipulate glutamine metabolism in the TME to increase T cell effector function (144, 145). Potential strategies to modulate metabolic properties of CAR-T cells have been extensively reviewed elsewhere (146).



Combinatorial Therapy Approaches

In order to enhance effector function of CAR-T cells, numerous studies are approaching CAR-T cell therapy by combining other therapeutic methods to improve outcomes. These CAR-T cell combinatorial therapies which are being pursued include chemotherapy, radiotherapy, cytokine therapies, checkpoint blockades, and oncolytic viruses (147–150). Combining checkpoint blockade and CAR-T cell therapy may produce a synergic effect and provide infiltration of immune cells into tumors (151).




Conclusion

Over the last decade, CAR-T cell therapy has revolutionized the treatment of hematological malignancies. The clinical application of CAR-T cell therapy and the identification of novel potential target antigens in lung cancer are the subjects of ongoing research. However, the successful use of CAR-T cell therapy against solid tumors including lung cancer is hampered by several hurdles including antigen targeting, tumor heterogeneity, the immunosuppressive TME, CAR-T cell trafficking, associated toxicities, and on-target-off-tumor effects. Several new strategies are being developed to overcome these obstacles and improve the efficacy and scope of CAR-T cell therapies to permit their more widespread use in cancer treatment. In summary, novel strategies of CAR-T cell design with reduced toxicity that efficiently direct CAR-T cells to tumors may provide a path for their safer and more effective use against different cancer types including lung cancer.
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Background

Development of severe immune-related adverse events (irAEs) is a major predicament to stop treatment with immune checkpoint inhibitors, even though tumor progression is suppressed. However, no effective early phase biomarker has been established to predict irAE until now.



Method

This study retrospectively used the data of four international, multi-center clinical trials to investigate the application of blood test biomarkers to predict irAEs in atezolizumab-treated advanced non-small cell lung cancer (NSCLC) patients. Seven machine learning methods were exploited to dissect the importance score of 21 blood test biomarkers after 1,000 simulations by the training cohort consisting of 80%, 70%, and 60% of the combined cohort with 1,320 eligible patients.



Results

XGBoost and LASSO exhibited the best performance in this study with relatively higher consistency between the training and test cohorts. The best area under the curve (AUC) was obtained by a 10-biomarker panel using the XGBoost method for the 8:2 training:test cohort ratio (training cohort AUC = 0.692, test cohort AUC = 0.681). This panel could be further narrowed down to a three-biomarker panel consisting of C-reactive protein (CRP), platelet-to-lymphocyte ratio (PLR), and thyroid-stimulating hormone (TSH) with a small median AUC difference using the XGBoost method [for the 8:2 training:test cohort ratio, training cohort AUC difference = −0.035 (p < 0.0001), and test cohort AUC difference = 0.001 (p=0.965)].



Conclusion

Blood test biomarkers currently do not have sufficient predictive power to predict irAE development in atezolizumab-treated advanced NSCLC patients. Nevertheless, biomarkers related to adaptive immunity and liver or thyroid dysfunction warrant further investigation.





Keywords: blood test, irAE prediction, NSCLC, atezolizumab, machine learning



Background

Immune checkpoint inhibitor (ICI) therapy has become a widely used first-line therapy for unresectable non-small cell lung cancer (NSCLC) patients. ICIs were developed against programmed cell death ligand 1 (PD-L1) on cancer cells, and the immune suppressive receptors programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) on cytotoxic T cells (1). Although ICI therapy can be effective, 5–10% of patients experience immune-related adverse events (irAEs), such as rashes and peripheral neuropathy, as soon as the next day after treatment starts (2–4). Over the course of treatment, some patients may develop more severe symptoms such as pneumonitis, pancreatitis, and vitiligo, which sometimes lead to death. Hence, prediction of severe irAEs before or during early treatment becomes indispensable. In this regard, several studies have been conducted to investigate the correlation between liquid biopsy biomarkers and irAEs (5–7). However, the concurrence of low incidence rate and limited cohort size in many studies restricts the extent of analysis to achieve statistical significance.

The real challenge of irAE prediction is finding the right biomarkers to indicate the immune landscape in a spatial and temporal manner (8). In contrast to therapies with known biological mechanisms or specificity towards certain organs or tissue, targeting of the immune system by ICIs seems to have more unpredictable AEs, particularly irAEs that could potentially affect any part of the body. Nevertheless, research on intrinsic and extrinsic irAE mediators are taking place (8). As such, we reasoned that the prediction of irAEs involves two parallel options: (1) monitoring of immune activity and (2) malfunction detection in vulnerable organs or tissue.

Blood test is regularly conducted before and during treatment and is feasible in almost any hospital. The regular blood test consists of two operations: the blood cell count test (BCT) and the blood biochemistry test (BBT). BCT provides a direct overview of the immune landscape based on the prevalence of immune cell populations. Our previous study established a BCTscore model as a valid predictive and prognostic biomarker for the early prediction of atezolizumab treatment outcomes (9). Because treatment outcome is often correlated to the onset of irAEs (10–12), and pretreatment blood cell count is reported to be associated with pembrolizumab-induced irAEs in patients with advanced NSCLC (13), we hypothesize that BCT biomarkers may also predict irAEs of atezolizumab-treated NSCLC patients. On the other hand, a comprehensive BBT provides a functional overview of various organs. Hence, we investigated the application of blood test parameters to predict irAEs in atezolizumab-treated NSCLC patients using data acquired from the four international, multicenter cohorts of FIR, BIRCH, POPLAR, and OAK.



Methods


Study Cohort

Pseudonymized individual participant data from the single-arm phase II studies FIR (NCT01846416) (14) and BIRCH (NCT02031458) (15) and the two-arm randomized controlled trials (RCTs) POPLAR phase II study (NCT01903993) (16) and OAK phase III study (NCT02008227) (17) were provided by Genentech Inc. and accessed through the secure Vivli online platform. Raw data were extracted and compared with the available published data to ensure accuracy. Secondary analysis of the trial data was deemed to be of negligible risk and was approved by the Institutional Review Board of the Second Affiliated Hospital of Zunyi Medical University [No. YXLL (KY-R)-2021-010]. Deidentified data were accessed according to Roche’s policy and process for Vivli. Data analyses were conducted from April 27 to November 30, 2021.



Definition of irAEs

irAEs are summarized using the National Cancer Institute (NCI) Common Terminology Criteria for Adverse Event (CTCAE) version 4.0 (18) by clinical study. The irAE data were confirmed from the Adverse Events of Special Interest (AESI) dataset according to the Council for International Organisations of Medical Sciences (CIOMS) form. The variable “AEGRP01F = Y” was selected to ensure that the irAE was associated with PD-L1 checkpoint blockade, as already defined by Khan and colleagues (3). Specifically, the CTCAE defines what symptoms constitute AEs and specifically, irAEs. On the other hand, the AESI was compiled by the Vivli platform from which our data were obtained. Incidences of irAE in all four cohorts were obtained under the header “AEGRP01F,” and “Y” stands for “Yes” in the patient records provided by the Vivli platform. We combined the four cohorts into one big cohort comprising 1,320 eligible atezolizumab-treated advanced NSCLC patients with irAE and pretreatment blood test records. After that, we summarized the number of patients with any grade irAE. Because our cohort was assembled from four cohorts, the numbers do not match those which are reported in each individual cohort. This strategy identified a collection of adverse events that had a putative immune-related etiology.



Machine Learning Methods

Because of the complexity of different parameters obtained from BCT and BBT, machine learning was used instead of conventional Cox regression model. Here, we applied seven machine learning methods (Supplementary Figure S1). The methods used in this study include the following: (1, 2) the Lasso (LASSO) or Elastic-Net Regularized Generalized Linear Model (GLM) (R package glmnet v.4.1.3) (19), (3) the Support Vector Machines model (SVM; R package e1071 v.1.7.9) (20), (4) the Recursive Partitioning and Regression Trees model, also known as Decision Tree model (DT; R package rpart v. 4.1.15) (21), (5) the Random Forest model (RF; R package randomForest v. 4.6.14) (22), (6) the eXtreme Gradient Boosting model (XGB; R package xgboost v. 0.4.2) (23), and (7) the Generalized Boosted Regression Models (GBMs; R package gbm v.2.1.8) (24). The function createDataPartition of caret (Classification and Regression Training) package v.6.0.89 (25) was used to create balanced splits of the data as training and test cohorts.



Analytic Procedures

The paradigm of this study is illustrated in Figure 1. First, all four cohorts containing 2,316 advanced NSCLC patients were combined, of which 1,537 were eligible atezolizumab-treated advanced NSCLC patients with irAE. A total of 1,320 eligible atezolizumab-treated advanced NSCLC patients with irAE and their pretreatment blood test records were randomly separated into training and test cohorts under the criterion that each sample population contained 5% patients displaying any form of irAE. Next, blood test parameters with >10% missing values in the sample population were removed from analysis. Consequently, a total of 21 blood test parameters were fed into the machine learning models as primary classifiers. Binary outcomes of any irAE was applied to the prediction models. The sample populations for the training and test cohorts were randomly selected at the ratios of 6:4, 7:3, and 8:2 from the combined population of the four clinical trials for 1,000 times simulation. The blood test parameters were evaluated by the importance score generated by each method after each simulation for their performance. Model performance was evaluated by the area under curve (AUC) and corresponding 95% confidence interval (CI) of the receiver operating characteristic (ROC) curve. Analysis of variance (ANOVA) and Tukey honestly significant difference (Tukey HSD) tests were performed by R base package. Sensitivity, specificity, accuracy, and the Kappa statistic were calculated by ROCR package (v.1.0-11) (26) and interpreted as previously described (27).




Figure 1 | Study overview. A total of 1,320 eligible NSCLC patients undergoing atezolizumab single-agent treatment is obtained from four international, multicenter clinical trials for this study.






Results


Blood Test Biomarkers That Indicate Adaptive Immunity and Liver Function Are Useful for irAE Prediction in Atezolizumab-Treated Advanced NSCLC Patients

Initially, we compared the median performance of all 21 blood test biomarkers after 1,000 simulations on the training cohorts by the seven machine learning methods (Supplementary Figure S2). We selected the top 10 biomarkers that stably displayed above median performance in all simulations (Figure 2). Among these biomarkers were the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR). NLR and PLR indicate the host’s immune landscape and had been selected for our previous BCTscore model to predict survival benefit (9). Alternatively, red blood cell count (RBC), hematocrit (HCT), hemoglobin (HGB), albumin (ALB), and alkaline phosphatase (ALP) that indicate liver function also demonstrated good performance in irAE prediction. On the other hand, the BBT biomarkers of lactate dehydrogenase (LDH) and C-reactive protein (CRP) that indicate tissue damage and infection performed well in our first biomarker screening. Additionally, the BBT biomarker of thyroid-stimulating hormone (TSH) that indirectly suggest infection and cancer also demonstrated good performance in irAE prediction. Among the 10 biomarkers, the top 3 blood test biomarkers were PLR, CRP, and TSH (Supplementary Figure S3). Results showed that the 10-biomarker panel is most optimal for irAE prediction, where the AUC of the test cohort differed insignificantly from the training cohort at all three cohort ratios. However, the three-biomarker panel consisting of PLR, CRP, and TSH is sufficient, with small AUC difference from the 10-biomarker panel [for 8:2 training:test cohort ratio, the mean difference in AUC of the 10-biomarker panel vs. 3-biomarker panel of LASSO: training = −0.044 (p<0.0001), test = −0.026 (p<0.0001); and XGB: training = −0.035 (p<0.0001), test = 0.001 (p=0.965)] (Supplementary Table S2).




Figure 2 | Performance of the 10-biomarker panel evaluated by the seven machine learning methods of (A) DT, (B) GBM, (C) GLM, (D) LASSO, (E) RF, (F) SVM, and (G) XGB. Performance scores were computed by each machine learning method for 1,000 simulations of the training and test datasets at 8:2, 7:3, and 6:4 cohort ratios randomly selected from the combined cohort comprising 1,320 atezolizumab-treated and whisker plot shows the median (thick black line in the middle of the box), the interquartile range between 75% and 25% (upper and lower end of the box), and 1.5 multiplied by upper or lower interquartile range (whiskers), respectively. ns is P ≥ 0.05, *P < 0.05, **P < 0.01, *** P < 0.001, ****P < 0.0001.



Taken together, we conclude that blood test biomarkers indicating adaptive immunity and liver or thyroid dysfunction are useful for irAE prediction in atezolizumab-treated advanced NSCLC patients.



LASSO and XGB Exhibited the Best Performance in irAE Prediction in This Study

Because the seven machine learning methods are vastly different in terms of mathematical modeling and application, we tested which method is optimal for irAE prediction in atezolizumab-treated advanced NSCLC patients. Therefore, we compared the AUC distribution of our retrospective cohorts using the 21-, 10-, and 3-biomarker panels, respectively (Supplementary Figure S4). Furthermore, the combined cohort was randomly separated into training and test cohorts at different ratios to evaluate the consistency of irAE prediction in a retrospective manner. Results showed that increasing the training:test cohort ratio improves the predictive power of all seven machine learning methods. Furthermore, the 21-biomarker panel generally yields higher median AUC as compared to the 10- and 3-biomarker panels. Nevertheless, the seven machine learning methods displayed fundamental differences in irAE prediction performance. For instance, although RF consistently demonstrated median AUC >0.8 in the 1,000 simulations of the training cohorts comprising of 80%, 70%, and 60% of the combined cohort, its performance on the test cohort did not significantly differ from the other machine learning methods; the median AUC of all seven machine learning methods lay in the range of 0.517–0.581 throughout the 1,000 simulations of the test cohorts. Similarly, the DT and SVM models suffered from discrepancy between the training and test cohort prediction like the RF method. In contrast, the unsupervised, linear GLM and GBM models displayed consistent predictive power between training and test cohorts and yielded comparative median AUC to LASSO. However, the bigger variance in AUC distribution is less favorable for their application in real-life, prospective predictions.

Hence, LASSO and XGB showed the highest potential as optimal irAE prediction methods. These two methods gave the best AUC for the 10-biomarker panel (for 8:2 training:test cohort ratio, the mean AUC of the 10-biomarkers panel calculated by LASSO: training = 0.604, test = 0.642; and XGB: training = 0.692, test = 0.681) (Figure 3). Other reasons for choosing these two methods include the following: (1) LASSO and XGB depicted good predictive power in both training and test cohorts at all three cohort ratios (Supplementary Figure S4); (2) they were minimally affected by reducing the number of biomarkers (Table 1) as compared to the other methods (Supplementary Table S1); and (3) these two methods are fundamentally different—LASSO uses a supervised, linear algorithm, whereas XGB uses a supervised, non-linear algorithm.




Figure 3 | Best ROC curves of the 10-biomarker panel evaluated by the LASSO and XGB methods. The best ROC curves were obtained at 8:2 cohort ratio of the training and test datasets by the LASSO and XGB methods.




Table 1 | Median AUC distribution of the three blood test biomarker panels.



Figure 3 displays the best AUC obtained from LASSO and XGB among 1,000 simulations for the training and test cohorts, whereas in Table 1 and Supplementary Figure S4, the AUC distribution of the 1,000 simulations are summarized. One can therefore conclude that the AUC is still unsatisfactory for real-life application. This conclusion is reinforced by the observed Kappa statistic (Supplementary Table S3). The low Kappa statistic suggested that the accuracy of prediction is unacceptable for all three blood test biomarker panels. Hence, we concluded that blood test biomarkers do not have sufficient predictive power to predict irAE development in atezolizumab-treated advanced NSCLC patients.




Discussion

In this study, we analyzed 21 blood test biomarkers with comparison of the seven machine learning methods to identify the optimal biomarker panel and machine learning methods for irAE prediction in a combined cohort from four retrospective, multi-center clinical trials, involving advanced NSCLC patients treated with the anti-PD-L1 atezolizumab. Results showed that blood test biomarkers do not have sufficient predictive power to predict irAE development in atezolizumab-treated advanced NSCLC patients.

Better biomarkers are urgently needed. A literature review of the biological mechanisms of the best-performing biomarkers showed that the liver is critical for adaptive immunity (28–30) and is the primary synthetic site for CRP (31). Hence, although none of the biomarkers related to liver function made to the top three-biomarker panel, the inclusion of these biomarkers in the 10-biomarker panel increased median AUC of irAE prediction from that of the three-biomarker panel, with small but significant difference in the training cohort.

In the three-biomarker panel, PLR indisputably correlates with survival outcomes during ICI therapy (32). However, CRP and TSH are less studied. CRP has long been used as a universal biomarker for infection-induced inflammation (33). However, it has only been recently reported that different isoforms of CRP harness different biological pathways to trigger inflammation (31), while our clinical blood tests merely detect naive CRP. Nonetheless, the CRP/albumin ratio has been reported to be positively correlated with PLR and could serve as an independent risk factor for overall survival (OS) in advanced NSCLC patients (34, 35). Hence, although the biological mechanism remains elusive, CRP depicted good performance for irAE prediction in NSCLC, in consistence to previous findings in melanoma patients (36). On the other hand, even though the mechanism of TSH is also unclear, thyroid dysfunction is a prevalent irAE in NSCLC patients treated with the anti-PD1 antibody nivolumab (37) and thus is not surprising to perform well in this study.

Khan and colleagues found that genetic variation that is associated with thyroid autoimmunity interacts with biological pathways driving the systemic immune response to ICI (2). Another study demonstrated that activated CD4 memory T-cell abundance and TCR diversity are associated with severe irAE development regardless of the organ system involvement (38). Collectively, we deduce that biomarkers related to adaptive immunity and liver or thyroid dysfunction warrants further investigation.

Notably, there was insignificant difference in irAE prediction in the test cohorts for all seven machine learning methods, no matter how well these methods performed in the training cohorts. This observation suggested that shuffling patients or adjusting the training:test cohort ratios did not improve the irAE prediction model’s performance. Hence, the machine learning methods of RF, DT, and SVM were likely overfittings during training, thus performing poorly in the test cohorts because all patients differed between the training and test cohorts, except the fact that both cohorts contained 5% patients exhibiting any form of irAE. Additionally, 1,000 simulations of random selection of 1,320 patients into the training and test cohorts at different ratios ruled out the possibility of sample bias. Avoiding sample bias is particularly important because of the different patient eligibility criteria of the four clinical trials: specifically, except that the BIRCH and FIR trials contained a fraction of PD-L1-positive (PD-L1 ≥ 5%) advanced NSCLC patients with no prior chemotherapy, all trials recruited advanced NSCLC patients who underwent platinum-based therapy. Therefore, the failure of certain methods to predict irAE could not stem from accidental sample bias during simulation. Furthermore, it is noteworthy that the difference in median AUC predicted by the seven machine learning methods using the top 3-biomarker panel (Supplementary Figure S3) narrowed as compared to the 10- and 21-biomarker panels (Supplementary Figure S2). Considering that these methods exploit disparate mathematical algorithms, it became explicit that the nature of algorithm did not affect the conclusion. Nevertheless, as pointed out earlier, overfitting seemed to be more prevalent in some algorithms than others. Moreover, some biomarkers with widely variable absolute detected range among individual patients may show inconsistent performance in some methods. For example, RBC showed a wide range of performance in the linear models of LASSO and GLM (Supplementary Figure S2). However, the fact that RBC performance was more consistent in the other linear models of SVM, DT, and GBM suggested that the divergence was method specific. In contrast, PLR is also inherently divergent like RBC, but its performance was much more consistent in all methods. Hence, even though blood test biomarkers may exhibit variable detected ranges, their irAE prediction performance is relatively stable. Therefore, caution should be taken when assessing the performance variance of certain biomarkers as a criterion for biomarker selection. In-depth analysis of the common detectable range and biological mechanism of each biomarker is highly recommended during panel construction.



Conclusion

Blood test biomarkers do not have sufficient predictive power to predict irAE development in atezolizumab-treated advanced NSCLC patients. Biomarkers related to adaptive immunity and liver or thyroid dysfunction warrant further investigation.
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Supplementary Figure 1 | Graphical comparison of the 7 machine learning methods used in this study.

Supplementary Figure 2 | Performance of the 21-biomarkers panel evaluated by the 7 ML methods. Performance scores were computed by each machine learning method for 1,000 simulations of the training and test datasets at 8:2, 7:3 and 6:4 cohort ratios randomly selected from the combined cohort comprising 1,320 atezolizumab-treated NSCLC patients. The box and whisker plot shows the median (thick black line in the middle of the box), the interquantile range between 75% and 25% (upper and lower end of the box), and 1.5 * upper or lower interquantile range (whiskers), respectively.

Supplementary Figure 3 | Performance of the 3-biomarkers panel evaluated by 7 ML methods. Performance scores were computed by each machine learning method for 1,000 simulations of the training and test datasets at 8:2, 7:3 and 6:4 cohort ratios randomly selected from the combined cohort comprising 1,320 atezolizumab-treated NSCLC patients. The box and whisker plot shows the median (thick black line in the middle of the box), the interquantile range between 75% and 25% (upper and lower end of the box), and 1.5 * upper or lower interquantile range (whiskers), respectively.

Supplementary Figure 4 | AUC distribution of the 3 biomarker panels of this study. AUC was calculated by 7 machine learning methods from 1,000 simulations of the training and test datasets at 8:2, 7:3 and 6:4 cohort ratios randomly selected from the combined cohort comprising 1,320 atezolizumab-treated NSCLC patients. The box and whisker plot shows the median (thick black line in the middle of the box), the interquantile range between 75% and 25% (upper and lower end of the box), and 1.5 * upper or lower interquantile range (whiskers), respectively.

Supplementary Table 1 | Summary of AUC distribution. AUC was calculated by 7 machine learning methods from 1,000 simulations of the training and test datasets at 8:2, 7:3 and 6:4 cohort ratios randomly selected from the combined cohort comprising 1,320 atezolizumab-treated NSCLC patients.

Supplementary Table 2 | Summary of ANOVA and Tukey HSD tests of the 3 biomarker panels of this study. ANOVA and Tukey HSD tests were performed on the AUC calculated by 7 machine learning methods from 1,000 simulations of the training and test datasets at 8:2, 7:3 and 6:4 cohort ratios randomly selected from the combined cohort comprising 1,320 atezolizumab-treated NSCLC patients.

Supplementary Table 3 | Summary of assay performance. Sensitivity, specificity, accuracy, and the kappa statistic were computed for the 7 machine learning methods from 1,000 simulations of the training and test datasets at 8:2, 7:3 and 6:4 cohort ratios randomly selected from the combined cohort comprising 1,320 atezolizumab-treated NSCLC patients.
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Rationale

The recent research found that IGF regulator genes played a pivotal role in multiple biological processes, which may be developed for cancer treatment. However, the characteristics and implication of IGF regulators in cancers, especially in clear cell renal cell carcinoma (ccRCC), remain elusive.



Methods

We systematically analyzed the expression, prognostic valuation, genome variation, and functional implication at pan-cancer level from The Cancer Genome Atlas. According to expression levels of IGF regulator genes, ccRCC could be divided into three different subtypes via unsupervised cluster algorithm: IGF pattern cancer type1 (IPCS1), type2 (IPCS2), and type3 (IPCS3). The immune microenvironment, immunotherapy response, metabolic pattern, and tumor progression signature among the three subgroups were investigated. The clinical characteristics, genomic mutations, and potential drug sensitivity were further analyzed. IGF pattern–related risk model was constructed to predict RCC patients’ outcome. Finally, SHC1, a potential IGF axis target, was comprehensively investigated in ccRCC.



Results

We found that IGF regulator genes were specifically upregulated in various cancer tissues, which were correlated with copy number variations and dysregulated pathways. IPCS1, IPCS2, and IPCS3 exhibited different clinical profiles and biological characteristics in ccRCC. IPCS3 subtype indicated a higher clinical stage and a worse survival. IPSC3 ccRCC displayed activated metabolic signatures to fuel the cancer progression. IPCS3 subgroup holds a higher tumor mutation burden and lower immune activities, which resulted in a low ICI therapy response and tumor immunity dysfunction state. The genome copy numbers of IPCS2/3, including arm gain and arm loss, were significantly higher than IPCS1. Besides, the drug sensitivity profiles were different among the three subgroups. The prognostic risk model based on subtype’s biomarker exerted a promising performance both in training and validation cohorts. Finally, upregulated expression of SHC1 partly induced poorer immunotherapy response and shorter survival of ccRCC patients.



Conclusion

Targeting IGF regulators may be functioned as a treatment approach among multi-cancers. IGF regulator–related signature could reshape the tumor immune microenvironment via activating multi-step immune programs. The inhibition of SHC1 may enhance the efficacy of immunotherapy, and SHC1 could be a suitable target for ccRCC therapy.





Keywords: clear cell renal cell carcinoma, IGF, molecular subtypes, tumor immunity, multi-omics, SHC1



Introduction

Renal cell carcinoma (RCC) is one of the most common malignant cancers of the urinary system. It is estimated that there are more than 431,000 new cases of RCC in the whole world, of which approximately 180,000 deaths are documented (1). Clear cell RCC (ccRCC) is the most common type of RCC, consisting of approximately 75% cases of RCC. Early-stage RCC often indicates no obvious symptoms. Approximately 30% of RCC patients have metastasized at the time of initial diagnosis, and nearly one-third of patients would eventually suffer recurrence and metastasis after resection of primary tumor (2, 3). Since metastatic renal cancer is not sensitive to radiotherapy and chemotherapy, there are limited drugs for clinical treatment of RCC. The prognosis of metastatic RCC is extremely poor with the 5-year survival rate of less than 5% (4). The targeted therapy and immunotherapy brought some hope for RCC patients; however, only some patients gain drug responsiveness, and most of them would develop treatment resistance. Derosa et al. reported that gut bacteria composition may affect drug responsiveness of immunotherapy in RCC. Homeostasis of the gut microbiota enhanced the efficacy of immunotherapy (5). In clinical practice, TNM classification and Fuhrman grade are the most widely used models for renal cancer risk classification and prognosis prediction. Due to the existence of tumor heterogeneity, patients with the same stage and grade may have significantly different prognosis (6). The models based on molecular subtypes may be able to better predict the prognosis of RCC patients. Thus, it is compelling to develop new molecular subtypes to predict prognosis and guide treatment for ccRCC patients.

Insulin-like growth factor (IGF) axis regulator, as an important metabolic factor, has been found to be closely related to cancer onset and progression in a variety of human malignancies (7). Dysregulation of IGF axis strongly induced invasive clinical features of tumors. The activation of PI3K-AKT-MAPK pathways plays an important role in mediating IGF function in tumor, and it is often correlated to dysregulation of transcription factors. Epithelial-Mesenchymal transition (EMT), another oncogenic pathway, could be driven by IGF1-induced activation of the transcription factors. IGF-IR signaling is part of network of receptor tyrosine kinase (RTK)–initiated pathways. IGF-IR could cross-talk with several crucial RTKs, including EGFR, FGFR, PDGFR, HER-2, and androgen receptor. In addition, IGF axis could enhance immunosuppression to promote cancer expansion. For instance, IGF-IR activation was correlated with macrophage polarization and pro-tumorigenic M2 phenotype (8). Correspondingly, dual IGF1R/IR inhibitors have been developed and indicated efficacy in several cancers (9). The combination of immunotherapy and IGF-targeting drugs may improve the efficacy of immunotherapy in solid cancers. However, the function of IGF axis regulator in the tumorigenesis and progression of ccRCC remains largely unknown.

In this study, we performed an IGF axis–related gene signature study by pan-cancer analysis and stratified analysis of ccRCC patients by integrating multi-omics data, including molecular features, biological function, immune infiltration, and drug sensitivity analysis. A reliable risk model, named RCIP4, was also constructed to verify the crucial role of IGF regulators in the prognosis prediction of ccRCC patients. In addition, we identified a promising IGF regulator target SHC1, which could function as a new therapy target for ccRCC.



Materials and Method


Data Collection and Processing

The workflow of this study was depicted in Figure S1. Pan-cancer normalized expression profiling data, DNA methylation data, tumor mutation burden (TMB), microsatellite instability (MSI), copy number variation (CNV) and somatic mutation data, and clinical characteristics were downloaded from UCSC XENA dataset (http://xena.ucsc.edu/), including the ccRCC-KIRC cohort (10). The Cancer Genome Atlas contains more than 10,000 patient samples for 33 cancers, which facilitated the pan-cancer study. The external ccRCC cohort, E-MTAB-3267, which included expression profile and prognostic information, was downloaded from ArayExpress database (https://www.ebi.ac.uk/arrayexpress/), and different stage single-cell sequence data of ccRCC patients was collected from GEO (ID PRJNA705464; https://www.ncbi.nlm.nih.gov/geo/). This study also facilitated with several public cancer databases, including UALCAN (http://ualcan.path.uab.edu/index.html), TIMER (https://cistrome.shinyapps.io/timer/), Tumor Immune Dysfunction and Exclusion (TIDE; http://tide.dfci.harvard.edu/), and MEXPRESS (https://mexpress.be/). Ethical Review Committee approval and informed consents were not required for datasets downloaded from public datasets. Patients without prognostic information or expression profiles were excluded from the study.



Identification of Distinct IGF Axis Subgroups in ccRCC

We collected all IGF regulator genes according to prior researches and reviews (Table S1). R package “corrplot” was used to assess the correlation among these RNA modification regulators via Spearman’s and Pearson’s rank correlation algorithm. Consensus clustering was performed according to the expression matrix of RNA modification regulators via R package “ConsensusClusterPlus” (detailed parameters turn to reps = 100, pItem = 0.8, clusterAlg = “km”, and distance = “euclidean”). The subtype number k = 2 was determined as the best classification number, and the two subgroups were named as RMCS1 and RMCS2 subtypes, respectively.



Enrichment Analysis Between Subgroups

R package “DEseq2” was used to identify differentially expressed genes (DEGs) between subgroups, and thresholds were set at adjusted p < 0.01 and the abstract log fold change >2. After calculating the DEGs, R package “ClusterProfiler” was used to perform Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA), aiming to explain the biological function and molecular mechanism between RMCS1 and RMCS2. All gmt files used for enrichment analysis were downloaded from the MSigDB (11) (https://www.gsea-msigdb.org/gsea/index.jsp) and ConsensusPathDB (12) (http://cpdb.molgen.mpg.de/) databases.



Differences in Immune Infiltration Signatures and Therapy Response

We utilized multiple immune cell infiltration algorithms including TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC to calculate cellular components or immune cell enrichment scores in ccRCC tissues to compare tumor microenvironment (TME) components between subgroups. In addition, single-sample GSEA (ssGSVA) was introduced to further validate differences of immune cell infiltration between RMCS1 and RMCS2 (13–16). R package “ESTIMATE” was used to evaluate the stromal and immune scores based on ccRCC tissues’ expression profiling. The TIDE (http://tide.dfci.harvard.edu/) algorithm (17) was used to compare immunotherapy responses between subgroups.



Mutation Spectrum Characteristics Among Subpopulations

Somatic data were analyzed and visualized via R package “maftools“ to compare mutational patterns among subgroups (18). With the aid of correlation functions in R package “maftools”, the tumor mutation panorama, base transitions and transversions, single-nucleotide variants, mutation rates of alleles, copy number mutations, mutually exclusive or coexisting mutations, and gene mutation survival rates were calculated as previously reported (19). Through the transformation analysis function module, the drug and gene interactions and the differences in oncogenic signaling pathways of different subsets were also analyzed. Analysis of recurrent extensive and focal somatic copy number alterations (SCNA) was performed by the GISTIC 2.0 (20) (https://cloud.genepattern.org/gp/pages/index.jsf) algorithm based on Euclidean distance of threshold copy number (21).



Drug Susceptibility Prediction

Each patient was assessed for their susceptibility to molecular drugs using the Genomics of Cancer Drug Sensitivity (GDSC; https://www.cancerrxgene.org/) database. R package “pRRophetic” was used to estimate the half-maximal inhibitory concentration (IC50) and cross-validated. In addition, the CellMiner (22) (https://discover.nci.nih.gov/cellminer/home.do) and CCLE (23) (https://sites.broadinstitute.org/ccle) databases were also introduced to compare the different sensitivities between ccRCC cell lines. Spearman’s correlation coefficient was used to identify whether gene expression was associated with drug sensitivity. A positive correlation means that high expression of the gene indicates resistance to the drug, and low expression of the gene indicates sensitivity to the drug.



Construction of Risk Prediction Model Related to IGF Regulator Genes

Firstly, using subgroup-related biomarkers and overall prognostic information from the TCGA-KIRC cohort, univariate Cox regression analysis was performed to select survival-related signatures. Then, the random survival forest variable hunting (RSFVH) algorithm was further performed to select crucial signatures. Finally, a risk scoring model was constructed using the best combination of prognostic genes to screen. The JAPAN-ccRCC cohort was used to validate our risk scoring model, and patients in both datasets were divided into high- and low-risk groups based on median risk scores.



Statistical Analysis

All data processing, statistical analysis, and plotting were performed via R software (version 4.0.4). Differences between subgroups were compared by Kruskal–Wallis test and Wilcoxon test. Differences in clinical characteristics and inhibitor response between subgroups were compared by the chi-square test. Differences in prognosis, including overall survival (OS) and progression-free survival (PFS), were compared by the Kaplan–Meier method and Log-rank test. Hazard ratio (HR) differences were calculated by univariate Cox regression and multiple Cox regression analyses. Two-way p-values were taken and P < 0.05 was considered statistically significant. P-value was adjusted by the Benjamini–Hochberg (BH) multiple testing method.




Results


Dysregulation and Mutation of IGF Regulators in Cancers and Their Correlations With Patient Outcomes

The study flow was shown in Supplementary Figure 1. To comprehensively explore the regulation pattern of IGF axis in multi cancers, we investigated the expression pattern of IGF regulators in pan-cancer. We found that the vast majority of IGF regulators were upregulated in various cancers, such as HRAS and YWHAZ in lung squamous cell carcinoma (LUSC), SHC1 in kidney cancer, PRKCZ in bladder cancer (BLCA) and in breast cancer (BRCA), and NCK2 in cholangiocarcinoma (CHOL) (Figure 1A). Survival analysis showed that most of these IGF regulators predicted poor prognosis of cancer patients (Figure 1B), indicating that the disturbed expression of IGF regulators played an important role in cancer development. Of interest, all of investigated regulators were protective factors for ccRCC.




Figure 1 | Dysregulation and genome alteration of IGF regulator genes in cancers. (A) The gene expressions of IGF regulator genes between multi cancers tissues and normal tissues. (B) The association between expression of IGF regulator genes and patient survival. (C) The correlation analysis of CNV with gene expression of IGF regulator genes. (D) Heterozygous amplification or deletion of IGF regulator genes in multi cancers. (E) The genome locations of IGF regulator genes on 23 chromosomes. (F) Mutation frequency and type of IGF regulator genes in multi cancers.



To further understand the rationale of IGF regulators perturbation, we verified the CNV and single-nucleotide variation (SNV) of them in pan-cancer. As shown in Figure 1C, the significant correlations were observed between CNV and gene expression, especially RAF1 and GRB2 expressions were positively correlated with CNV. Heterozygous amplifications frequently presented in YWHAZ, PTPN1, PTK2, PIK3CA, and GRB10, whereas heterozygous deletions often appeared in YWHAE, RAF1, PRKCZ, PRKCD, and CRK (Figure 1D). Conversely, homozygous amplification and deletion rarely occurred (Supplementary Figure 2A). In ccRCC, we found CNV gain for PIK3CA, SHC1, and PTK2, whereas RAF1, PRKCD, and IRS1 were dominantly CNV loss (Figure S2B). The location of CNV alteration of IGF regulators on chromosomes was shown in Figure 1E. We also analyzed the SNV frequency of IGF regulator genes. The mutation frequency of IGF regulator genes was 84.62% (n = 2,079) in all tested samples (Figure 1F). The higher mutated genes included PIK3CA, PIK3R1, PRKD1, SOS1, and IGF1R. The SNV rate of CDKN2A was even close to 50%. Cancers with higher SNVs contained UCEC, BRCA, COAD, BLCA, and HNSC (Supplementary Figure 2C). Therefore, both transcriptional regulation and genome alteration together contributed to dysregulation of IGF regulators in multi-cancers.



Identification of Three clusters by Clustering Analysis of IGF Regulators in ccRCC

As we suggested above, IGF regulators were protective factors for ccRCC, which was significantly different from other cancers. Thus, we further explored the characteristics of IGF regulator genes in ccRCC. According to expression levels of IGF regulator genes, TCGA-ccRCC samples were classified into different molecular subtypes using an unsupervised clustering method. We identified the optimal cluster number using the “Consensus Cluster Plus” R package and evaluated the subtyping reliability by a PAC algorithm. Consequently, TCGA ccRCC dataset was significantly divided into three clusters, namely, IGF pattern cancer type1 (IPCS1), type2 (IPCS2), and type3 (IPCS3) (Figures 2A–C). The patients’ clinical characteristics of three subtypes were compared and shown in Supplementary Table 2. Compared with IPCS1, IPCS2 and IPCS3 patients encompassed higher T stage and shorter OS and PFS (Figure 2D). In addition, we analyzed the expression of IGF regulator genes among three ccRCC subtypes and normal tissues. IPCS3 was regarded as desert of IGF axis, which expressed the lowest IGF regulator genes than other types (Figure 2F). Of interest, IRS1/2, SHC1, PXN, and YWHAZ expressed high levels in IPCS2. Conversely, HRAS and BAD showed a higher level expression in IPCS3. The desert of IGF regulator genes in IPCS3 leads to the inhibition of IGF axis, which trained IPCS3 to an aggressive clinical subgroup.




Figure 2 | Screen of three clusters for IGF regulator genes in ccRCC. (A) Consensus matrix of samples in TCGA-ccRCC for k = 2, 3, or 4. (B) The cluster numbers are determined by the lowest proportion of ambiguous clustering. (C) The principal component plot is based on IGF regulator genes. (D, E) Survival analysis for overall survival (OS) and progression-free survival (PFS) among the three subtypes of TCGA-ccRCC. (F) The expression profiles of IGF regulator genes among the three subtypes and normal tissues. ****p < 0.0001.





Functional Enrichment Analysis of ccRCC Subtypes

Since the different clinical characteristics among each group, we next identified the different genes expression profiles among IPCS1, IPCS2, and IPCS3. The dysregulated genes were collected to perform functional enrichment analysis. Go analysis indicated that the upregulated genes were enriched in single fertilization and neuroactive ligand−receptor interaction for IPCS2 and ATP synthesis, oxidative phosphorylation, respiratory electron transport chain, and mitochondrial electron transport NADH to ubiquinone for IPCS3 (Supplementary Figure 3A). Collectively, the downregulated genes were dominant in positive regulation of urine volume, response to hepatocyte growth factor, and steroid hormone–mediated signaling pathway in IPCS1; cornification, keratinization, keratinocyte differentiation, and secretory granule localization in IPCS2; sperm egg recognition and negative regulation of execution phase of apoptosis in IPCS3 (Supplementary Figure 3B).

We then performed GSEA pathway analysis for metabolism-associated signatures. We observed partly repressive metabolic status in IPCS1, since some metabolic signatures including retinoic acid metabolism, taurine and hypotaurine metabolism, arachidonic acid metabolism, aldosterone biosynthesis, and valine leucine and isoleucine biosynthesis were significantly suppressed in IPCS1. On the contrary, most of these signatures were obviously activated in IPCS3, indicating its metabolic activation state (Figure 3A). Consistently, GSVA analysis showed that the hypoxia signature was activated in IPCS3 (Figure 3B). Hypoxic stress was an important feature of tumor metabolism and prompted resistance to immunotherapy in cancers (24, 25). Thus, targeted hypoxia pathway may re-sensitize IPCS3 to immunotherapy. Besides, m6A signature was significantly suppressed in IPCS3, revealing a potential link between m6A and IGF signaling (Figure 3B).




Figure 3 | Functional enrichment analysis of ccRCC subtypes. The GSEA pathway analysis indicating heatmap of tumor metabolism–related pathways (A) and tumor microenvironment–related pathways (B) among the three subtypes. (C) Transcriptional factors that involved in the regulation among the three subtypes.



To further illustrate the transcriptome differences, iRegulon analysis was performed to analyzed transcriptional regulons for IGF axis using renal cancer–associated transcription factors. The difference of transcription factors rendered strong support to the biological classification, because the regulon activity was correlated with IGF-related subtypes (Figure 3C). We found that ZEB2 and EPAS1 exhibited the lowest activity in IPCS3, indicating the suppression of EMT and susceptibility of hypoxia in this subgroup. Zhu et al. reported that ZEB2 was considered as an immune-associated gene and associated with macrophage infiltration in cancer (26). Therefore, metabolic environment and transcriptional regulatory network together induced the formation of IGF-related subtypes, which functioned in regulating biological functions.



Comparison of Immune Infiltration Landscape Among the Three Subtypes

Immunotherapy gradually becomes a dominant treatment way for ccRCC in recent years. To depict the immune characteristics, we analyzed immune infiltration environment across the subgroups using GSVA analysis. We found the difference of immune-related gene expression among three subgroups. IPCS3 subtype expressed a lower level of CXCL12, CCR1, CCR4, TGFBR1, CD274, IL6R, CD80, and IL2RA (Figure 4A). The compositions of TME infiltrating cell types were examined, and the results indicated that IPCS3 and IPCS2 displayed reduced immune cell infiltration compared to IPCS1 (Figure 4B). Thus, IPCS2/3 could be categorized as immune-desert subgroups, marked by the status of immune suppression. As discussed above, IPCS2/3 indicated matched poor prognosis comparing to IPCS1. We then observe an anti-cancer immune response, which was consist of a series of immune events. IPCS2/3 subgroups lacked plasmacytoid dendritic cells (DCs) and CD274 (PD-L1), which impeded immune cells to identify tumor cells (Figures 5A,B). IPCS3 subtype, lacking DNA damage repairing ability, was significantly correlated with CD8 T effector and immune checkpoint, which indicated the potential response to immunotherapy (Figure 5C). We observed lower activities of many steps in IPCS2/3, including release of cancer cell antigens (step1), cancer antigen presentation (step2), and CD8 T cell and TH1 cell recruiting (step4) (Figure 5D). Besides, the estimate algorithm suggested that IPCS3 subtype obtained the highest stromal score and the lowest immune score (Figure 5E). Immune function score analysis indicated that IPCS3 subtype gained higher MSI score, dysfunction score, and TIDE score (Figure 5F), which again verified the immunocompromised state of IPCS3. These results demonstrated that distinct immune functions were correlated with IGF axis signaling.




Figure 4 | Investigations of immune profiling. (A) Heatmap of immune-related genes among IPCS1, IPCS2, and IPCS3. (B) Heatmap of tumor-related infiltrating immune cells based on TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms among IPCS1, IPCS2, and IPCS3.






Figure 5 | Landscapes of specific immune components and immune function scores. (A-D) The immune antigens, immune cells, immune pathways, and anti-cancer steps among the three subtypes. (E) ESTIMATE scores of two subtypes. (F) The immune function scores among the three subtypes. ns>0.05, p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, no significance.





Comparison of Tumor Somatic Mutations and CNVs Among the Three Subtypes

In addition to the influence of the immune infiltration on therapy, genome mutations partly accounted for drug effectiveness. IPCS3 subtype presented the highest mutation frequencies than IPCS1 and IPCS2 (Figure 6A). The waterfall charts depicted the top 20 mutant genes among the subtypes. IPCS3 subtype contained several higher frequently mutated genes, including BAP1, KDM5C, MUC16, CHD4, and DST. According to the mutation data, we used DGIdb database and drug interactions in maftools package to identify potential targets for each subgroup. Druggable genes in three different IGF axis patterns were classified into 16, 17, and 17 categories, respectively, including druggable genome, clinically actionable, histone modification, and tumor suppressor. (Figure 6B). We further investigated the somatic mutations in oncogenic pathways, such as RTK-RAS, NOTCH, WNT, Hippo, and PI3K using R package maftools. TP53 and Hippo were the most affected pathways in IPCS1, whereas NRF2 and TP53 were easily affected in IPCS2. In IPCS3, PI3K and RTK-RAS were the most altered oncogenic pathways (Figure 6C). The somatic interaction analysis indicated that co-mutation of VHL and RYR2 induced cell death in IPCS3, which provided a potential approach for subgroup treatment (Supplementary Figure 4A). Regarding mutations of IGF regulator genes, compared to IPCS1 and IPCS3, IPCS2 subtype reserved the highest mutation frequency, in which SOS1 was the gene with the highest mutation rate (Supplementary Figure 4B).




Figure 6 | Profiles of somatic mutations and potential targets among the three subtypes. (A) Waterfall plot showing the mutation patterns of the top 20 most frequently mutated genes. (B) Potential druggable gene categories from mutation dataset among IPCS1, IPCS2, and IPCS3. (C) The fraction of pathways or samples of oncogenic signaling pathways among IPCS1, IPCS2, and IPCS3.



CNVs were also compared among the three subgroups. IPCS2 displayed the highest CNV rate, followed by IPCS3 and IPCS1 (Figures 7A,B). The amplification and deletion regions on chromosomes were identified and decoded using GISTIC 2.0 (Supplementary Table 3). The gain/loss percentage and GISTIC score indicated similar patterns (Figures 7B, C). The recurrent CNVs of IPCS3 included the amplification of 5q35.3 (CANX) and 5q15 (LIX1) and also the deletion of 9p21.3 (CDKN2A) and 9p23 (PTPRD). The specific CNVs of IPCS2 were the amplification of 1p31.3 (UBE2U) and 1q32.1 (ATP2B4) and also the deletion of 9p23 (PTPRD) and 9p21.3 (CDKN2A). Differences in genome mutations may lead to the formation of the three subtypes.




Figure 7 | Landscapes of copy number variations among the three subtypes. (A) The amplification or deletion frequency in chromosomes among IPCS1, IPCS2 and IPCS3. (B) Barplot of genomic fractions altered among the three subtypes. (C) The GISTIC score and percentage of copy number profiles in ccRCC.





Drug Sensitivity Analysis of Different IGF Subtypes

To explore potential drugs, the drug response data were collected from the GDSC database. We observed that most drugs were less effective against IPCS3 subgroup, which was consistent with the poor prognosis of IPCS3 (Figure 8A). IPCS3 was only predicted to be sensitive to linsitinib and gefitinib. In contrast, IPCS1 subtype was more sensitive to pazopanib, imatinib, crizotinib, temsirolimus, and sunitinib (Figure 8A and Supplementary Figure 4C), whereas IPCS2 subtype had better drug responsiveness to saracatinib, erlotinib, dasatinib, and afatinib (Figure 8A and Supplementary Figure 4C). We further analyzed drug responsiveness of different subtypes to 138 small molecular inhibitors (Supplementary Table 4). Figure 8B showed the top 10 drugs with a better drug response. IPCS1 subtype indicated sensitivity to PAC.1, embelin, vinorelbine, BAY.61.3606, and epothione B, whereas IPCS3 had a better response to metformin, SL.0101.1, nutlin 3a, bortezomib, and PD.0325901. Conceivably, metformin and SL.0101.1, the direct inhibitors of IGF and RTK-RAS pathway, may be utilized to develop effective targets for IPCS3 subtype.




Figure 8 | Drug sensitivity analysis of three subtypes. (A) Estimated IC50 of the indicated molecular-targeted drugs among the three subtypes. (B) Estimated IC50 of the potential molecular inhibitors in IPCS1, IPCS2, and IPCS3.





Verification of Robustness of the Classification Model Using External Dataset

To further confirm the reliability of the classification model, we conducted verification using the GDSC renal cancer database and JAPAN-KIRC cohort. The significant difference for ccRCC cell line was found among the three subtypes (Figure 9A). Consistent with TCGA cohort results, many IGF regulator genes were significantly downregulated in IPCS3 subgroup. We investigated the area under the curve (AUC) of drug sensitivity among the subgroups, and IPCS3 subtype had the highest AUC of all drugs. IPCS2 subtype was sensitive to palbociclib, tipifarnib, and dacinostat, whereas IPCS1 presented more sensitivity to pilaralisib (Figure 9B). Applying the nearest template prediction (NTP) algorithm, the subtype-specific hallmarks identified from TCGA-ccRCC could divide JAPAN-KIRC cohort into three distinct groups (Figure 9C). The IPCS3 group indicated poorer survival than the IPCS1 group, which was consistent with previous data (Figure 9D). These results verified the reliability and stabilization of the molecular subtyping model.




Figure 9 | Verification of subtyping model in external dataset. (A) Heatmap of the expression profiles of IGF regulator–related genes among the three subtypes of GDSC renal cancer cells. (B) Drug sensitivity analysis in the form of normalized AUC using GDSC renal cancer cell database. (C) Heatmap of NTP in JAPAN-KIRC cohort using subtype-specific altered biomarkers identified from TCGA-ccRCC cohort. (D) Survival analysis of the three predicted subtypes of ccRCC in JAPAN-KIRC cohort.





Construction and Verification of a Four IGF-Related Genes Risk Model

Since the three subtypes displayed different clinicopathological signatures and molecular heterogeneity in biological function and immune profile, we identified genes affected patients’ OS using univariate Cox regression analysis and constructed an IGF-related genes risk model based on subtype’s signatures (Figure 10A). Subsequently, 10 most relevant genes were identified using the random forest supervised classification algorithm (Figure 10B). To construct the best risk assessment model, we used the Kaplan–Meier (KM) analysis and measure p-value of all risk models (Figure 10C). Consequently, the risk assessment model composed of four genes (CUBN, BARX1, SCX, and HP) was screened out and called RCIP4. The risk score of each patient was calculated as follows: RCIP4 = −5.048360* CUBN + 6.693172* BARX1 + 6.027303* SCX + 4.804082* HP. To validate the effectiveness of RCIP4, both TCGA-ccRCC and JAPAN-KIRC cohort patients were categorized as the high score and low score groups by a median cutoff score (Figure 10 D and Supplementary Figure 5A). Survival analysis indicated that patients with high score had poorer prognosis than with low score in the two cohorts (Figures 10E,F and Supplementary Figure 5B). The AUC curve was used to evaluate the sensitivity and specificity of the RCIP4 risk model. The AUC score for TCGA-ccRCC cohort was 0.677, 0.7207, 0.7197, 0.7274, and 0.7346 at 0.5, 1, 2, 3, and 5 years, respectively (Figure 10G). The predictive value of the RCIP4 model was also determined in JAPAN-KIRC cohort (Supplementary Figure 5C). The above results demonstrated that the RCIP4 model was effective and applicable for prognostic evaluation of ccRCC.




Figure 10 | Establishment of a four IGF genes risk model. (A) Volcano plot indicating the significantly altered biomarkers among the three subtypes by univariable Cox regression analysis. (B) Random survival forest analysis screening 10 genes. (C) Based on various combination analyses, the top 20 signatures are listed according to p-values. (D) Risk score analysis in TCGA-ccRCC cohort. (E-F) Survival analysis for OS (E) and PFS (F) of the two risk groups in TCGA-ccRCC cohort. (G) The time-dependent ROC curves for the two risk groups in TCGA-ccRCC cohort.





The Core Role of SHC1 in ccRCC

Given the regulation of IGF-related genes in ccRCC, we analyzed which gene shared the most proportion of importance. We observed that SHC1 may play the core role in IGF axis signaling (Figure 11A). SHC1 mutation was correlated with immune infiltration levels of B cell, CD4+ T cell, CD8+ T cell, macrophage, neutrophil, and DC (Figure 11B). We found that SHC1 was associated with abundant signaling pathways in pan-cancer, such as TNFA-NFKB, inflammatory response, IL6-JAK-STAT3, hypoxia, EMT, apical junction, and angiogenesis (Supplementary Figure 5D). As previously discussed, SHC1 protein expression was also upregulated in renal cancer, and the magnitude of regulation increased with the grades and stages in CPTAC-ccRCC samples (Figure 11C). We also evaluated the phosphorylation level of SHC1 in cancer and normal tissues, which indicated an increased level of phosphorylated SHC1 in ccRCC. Besides, the phosphorylation level of SHC1 increased with the progress of the tumor stage and grade in CPTAC-ccRCC samples (Figure 11D). We also compared the immunotherapy response in high or low SHC1 expression groups. The high SHC1 expression group showed poorer immunotherapy response and shorter survival than the low SHC1 group (Figure 11E). Therefore, it makes sense to prompt immunotherapy response by inhibiting SHC1 expression.




Figure 11 | The hub role of SHC1 in ccRCC. (A) Number of trees showing the importance proportion of IGF regulator genes. (B) The association between SHC1 mutation and immune cell infiltration in ccRCC. (C) Protein levels of SHC1 in ccRCC samples, classified by tumor grade, and histological pathological stage using the UALCAN database. (D) Phosphorylation level of SHC1 in ccRCC samples, classified by tumor grade, and histological pathological stage. (E) The relationship between SHC1 expression and immunotherapy response.






Discussion

ccRCC is characterized by tumor heterogeneity and immunogenicity (27). It is compelling to predict patients’ survival and enhance immunotherapy response. There was emerging evidence indicated that IGF axis signaling was involved in tumor onset, progression, and drug resistance in several cancers. However, an IGF axis study of ccRCC was not as abundant as that of other cancers. Most of related studies focused on signal regulatory molecule, and the global features induced by IGF axis signaling have not been fully understood. Nonetheless, IGF-based molecular subtyping in tumor pools has hardly been explored.

In this study, we analyzed IGF regulator genes in more than 10,000 samples of 33 cancers by mining multi-omics data. We observed that IGF regulator genes were significantly upregulated in various cancer tissues compared with adjacent normal tissues, which were related to genome mutation and epigenetic modification. Based on the expression of IGF regulator genes, ccRCC patients could be grouped into three distinct IGF regulation subtypes (IPCS1, IPCS2, and IPCS3). Most of those IGF regulator genes indicated poor survival in cancers, except ccRCC. IPCS3 subtype retains higher TMB, activated metabolic signatures, and immune suppression status, along with poor survival than other subtypes. Moreover, the prognostic risk model constructed based on subgroups hallmarks obtained promising results both in training and validation cohorts. Finally, SHC1, as the hub gene of IGF axis, could be utilized as a reliable target for ccRCC.

Immunotherapy, based on immune checkpoint inhibitor, has become the first-line treatment choice for ccRCC. However, only some patients respond well to immunotherapy, and drug resistance is inevitable. A possible solution is combination therapy, in which IGF regulator target may collaborate with immunotherapy. The compelling evidence showed that IGF axis signaling enhanced immunosuppressive response in TME. We found that IPCS3 subtype expressed lower level of immune components and immune cell infiltration, marked by the status of immune suppression. Consistent with our finding, a recent study suggested that IGF-I negatively regulated DC activation, impeded antigen-presenting process, and stimulated the proliferation of immunosuppressive regulatory T cells (Treg) (28, 29). Antigen presentation is a critical step for immune cells to eliminate tumors. We observed lower activities of many pivotal steps in IPCS2/3, such as antigen presentation and CD8 T-cell recruiting. Huang et al. found that IGFs inhibited DC-mediated anti-tumor immunity through regulating ERK1/2 phosphorylation and p38 dephosphorylation, and IGF inhibitor NVP-AEW541 restored DC-mediated antigen presentation process (30). Moreover, the inhibitor NT157 that targeted both the IGF-IR and STAT3 suppressed the expression of pro-tumorigenic cytokines, chemokines, and growth factors, including IL-6, CCL2, and TGF (31). Wu et al. found that IGF1 receptor inhibitor amplified the effects of cancer drugs by autophagy and immune-dependent mechanisms (32). IGF axis as a contributor for pro-tumorigenic TME could potentiate escape mechanisms from immune-mediated tumor cell eradication. Our results demonstrated that IPCS3, as a drug refractory subtype, was significantly correlated with CD8 T effector and immune checkpoint, which indicated the potential response to immunotherapy. Combined inhibition of IGF and immune checkpoints may reshape ccRCC microenvironment and promote drug effects via restoring immune homeostasis.

In addition to immune infiltration, IGF regulator was involved in many signaling pathways dysregulation in cancers. Our results found that IPCS1 was associated with normal renal function, whereas IPCS3 subtype was correlated with ATP synthesis, oxidative phosphorylation, respiratory electron transport chain, and mitochondrial electron transport NADH to ubiquinone. These activated energy supply pathways fuel cancer cells to expansion. Most of metabolism-associated signatures were obviously activated in IPCS3, indicating its metabolic activation state. Oxidative phosphorylation happens in mitochondria to generate ATP for cell energy. Oxidative phosphorylation was flexible and different in distinct tumors, such as leukemias and pancreatic ductal adenocarcinoma (33). Obesity is a multifaceted disease associated with an increased risk of cancer, including RCC. Obesity itself is a metabolic disease in which the IGF signaling axis plays a key role. There is growing evidence that both obesity and diabetes are potential literature factors for kidney cancer. A multi-institutional analysis of 2,597 patients with ccRCC showed that diabetes was an independent prognostic factor in terms of recurrence-free and OS (34). Our team also found that the thermogenic activity of adjacent adipocytes fueled the progression of ccRCC and compromised drug efficacy of tyrosine kinase inhibitors (35). IPCS3 was activated for the hypoxia signature, which shaped aggressiveness and metastatic potential and treatment resistance of solid cancers. HIF-1α cross-talk with HIF-2α maintains a balanced state of tumor cells’ demand for hypoxic factors (36). Hu et al. reported that hypoxia-induced lncHILAR promoted cancer cells metastasis via ceRNA for the miR-613/206/1-1-3p/Jagged-1/Notch/CXCR4 signaling pathway in RCC (37). Scharping et al. found that metformin, a widely used diabetes drug, inhibited oxygen consumption in tumor cells, resulting in decreased intratumoral hypoxia (24). The combination of metformin with PD-1 blockade leads to improved intratumoral T-cell function and tumor clearance.

ccRCC is one of the tumors with a high tumor mutational burden. The biological function of IGF regulator genes was correlated with genome mutations. IPCS3 subtype presented the highest mutation frequencies than IPCS1 and IPCS2. IPCS3 subtype reserved several higher frequently mutated genes, including BAP1, KDM5C, and CHD4. BAP1 was a critical tumor suppressor gene in ccRCC, prompting tumor development when mutated in the somatically (38). Loss of BAP1 promoted mesenchymal–epithelial transition process in renal cancer (39). The mutation of KDM5C enhanced ccRCC tumorigenicity by reshaping glycogen metabolism and inhibiting ferroptosis (40). Wang et al. reported that CHD4 promoted breast cancer progression through interaction with HIF (41). PI3K and RTK-RAS were the most altered oncogenic pathways in IPCS3. Both of these pathways were classical oncogene mutation pathways and played an important role in renal cancer progression. For CNVs, IPCS2 displayed the highest CNV rate, followed by IPCS3 and IPCS1. Fernandes et al. reported that most significant copy number alterations of ccRCC were loss of 3p (87.3%), 14q (35.8%), and 6q (29.3%) and also gains of 5q (59.7%), 7p (29.3%), and 16q (20.6%). Genes mapping to CNA significant regions included SETD2, BAP1, FLT4, PTEN, FGFR4, and NSD1 (42), which was consistent with our findings. Therefore, IGF regulators were involved in tumor heterogeneity through cross-talk with genome mutations.

As previously reported, IGF regulators affected the efficacy of anti-tumor drugs. ccRCC patients in different subtypes displayed distinct sensitivities to drugs, which could provide certain clinical guidance for treatment. We identified several potential molecular inhibitors for drug refractory IPCS3 subtype. Metformin and SL.0101.1, the direct inhibitors of IGF and RTK-RAS pathway, achieved good efficacy for the treatment of IPCS3. Notably, we constructed a risk model (RCIP4) to predict RCC patients’ survival. The four most relevant genes were included, i.e., CUBN, BARX1, SCX, and HP. Niinivirta et al. found that the combined expression of PKLR and CUBN could more accurately predict drug the responsiveness of sunitinib and sorafenib (43). Sun et al. indicated that transcription factor BARX1 contributed to the progression of ccRCC via promoting proliferation and epithelial–mesenchymal transition (44). A recent report found that SCX regulated Twist1 and Snai1 expression in the epithelial-to-mesenchymal transition (45). HP was regarding as a molecular biomarker in non–small cell lung cancer and glioblastoma (46, 47). We also verified the high accuracy of the RCIP4 risk model both in the TCGA-ccRCC and JAPAN-KIRC database. Of interest, we found that SHC1 may play the core role in IGF axis signaling. SHC1 was related to that activation of multiple oncogenic pathways. Recent reports indicated that SHC1 was a key driver of breast cancer initiation, and the SHC1 adaptor simultaneously balanced Stat1 and Stat3 activity to promote breast cancer immune suppression (48, 49). Lai et al. also found that DEPDC1B was a tumor promotor in development of bladder cancer through targeting SHC1 (50). The phosphorylation level of SHC1 increased with the progress of the tumor stage and grade in ccRCC samples. The higher SHC1 expression predicted poorer immunotherapy responsiveness, which suggested the rationale for enhancing the efficacy of immunotherapy by inhibiting SHC1.

Although our study characterized distinct IGF regulator signatures of ccRCC, some certain limitations are needed to be considered. Most of our findings were based on comprehensive bioinformatics analyses, and further experiment validations, such as the specific mechanism of IGF regulator function, were still necessary. Besides, the prognostic model may be affected by some confounding factors, such as race and area; thus, more independent datasets are needed to validate our risk model.

In summary, to our knowledge, this is the first study to comprehensively explore the function of IGF regulator genes in multi-cancers and to determine three molecular subtypes of ccRCC. Under certain conditions, inhibition of IGF regulators may become a suitable approach for cancer treatment. Such a signature could reshape the tumor immune microenvironment via impeding immune escape of cancer cells. Targeting SHC1 may have a synergistic effect with immunotherapy to eradicate tumor cells. Our study contributes to a better understanding of the relationship between IGFs and ccRCC, which can provide clinical guidance for ccRCC treatment.
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The human T-cell leukemia virus type 1 (HTLV-1) is the cause of serious malignant and inflammatory diseases, including adult T-cell leukemia and lymphoma and tropical spastic paraparesis. The potential protective role of γδ T cells in HTLV-1 infection remains unclear. Here, demonstrate that there is a decrease in the amount of Vγ9Vδ2 T cells in patients with HTLV-1, especially in those with HTLV-1 associated pathologies. This suggests that γδ T cells could be involved in controlling the virus. Indeed, we found that Vγ9Vδ2 T cells, expanded from non-infected individuals, can kill cells expressing the viral proteins HBZ and Tax and this phenotype is reversed in the presence of mevastatin. Cytotoxicity by Vγ9Vδ2 T cells was not associated with an increase of INF-γ production. In sharp contrast, killing by NK cells was reduced by Tax expression. Thus, our study provides initial evidence for a potential protective role of Vγ9Vδ2 T cells against HTLV-1 infection. Therapeutic exploitation of these insights is feasible with current technologies of T-cell therapies and could provide novel tools to prevent and treat HTLV-1-associated malignancies and neurologic complications.
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Introduction

The human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that infects at least 10 million people worldwide (1). HTLV-1 is the etiologic agent of two main diseases: a malignant neoplastic disease named adult T-cell leukemia/lymphoma (ATLL) and an inflammatory disorder, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Individuals with a higher proviral load (PVL) are at greater risk of developing either ATL or HAM/TSP (2). Nonetheless, about 2-5% of HTLV-1 infected individuals develop ATLL or HAM/TSP, suggesting a role of host genetic risk factors (3, 4).

Of all known proteins encoded by HTLV-1, the most studied ones are Tax and HTLV-1 basic leucine zipper factor (HBZ). Both participate in viral replication, proliferation of infected cells, propagation of the virus and have pleiotropic functions implicated in viral pathogenesis. Tax is important for initiating lymphocyte immortalization, whereas HBZ is essential for maintaining the immortalized phenotype. Both proteins change the transcription of the host cells and play a critical role in HTLV-1 infection and pathogenesis (5–7).

The main target of HTLV-1 are CD4 T cells. After infection, the virus induces an important immune dysregulation by changing the CD4 T cell immunophenotype to effector/memory T cells (8, 9). Furthermore, the infection introduces significant dysregulation of the host’s immune system at the cytokine and chemokine levels (10, 11). Additionally, the virus has also been found in other cell types, including CD8 T cells, B lymphocytes, dendritic cells, monocytes, and endothelial cells (12).

The efficacy of the immune response against HTLV-1, which involves antibody secretion and CD8 cytotoxic T cell (CTL) activation, is a fundamental factor in the outcome of diseases associated with HTLV-1 and these host components have been extensively studied (13, 14). In addition to CD8 CTLs, there are other cell populations that have cytolytic activity against virus-infected cells, such as natural killer (NK) cells and γδ T cells; however, there is little information about their specific role in HTLV-1 infection.

NK cells participate in the immune innate response against viruses and tumors, in which they exert cytolytic activity and produce various proinflammatory cytokines and chemokines (15, 16). In HTLV-1 infection, a dysregulation of NK cells is also observed. The frequency of NK cells is decreased in HAM/TSP patients and an inverse correlation was described between the PVL and the frequency of NK cells in HTLV-1 carriers (17). Nonetheless, other studies suggested that NK cells could reduce HTLV-1 PVL (18).

γδ T cells bridge the innate and adaptive immune responses. They are an important unconventional T cell subset, as they have the ability to recognize a broad range of antigens without the presence of major histocompatibility complex (MHC) molecules. γδ T cell responses are mainly induced upon the recognition of stress antigens by their γδ T cell receptors (TCRs) (19).

There are two major subsets of human γδ T cells identified by their Vδ chain. Vδ1 T cells are predominant in mucosa and epithelium, while Vδ2 T cells constitute the majority of blood γδ T cells. A third population is formed by Vδ3 T cells, which are infrequent in the peripheral blood but rich in the liver. Finally, there are human γδ T cells expressing Vδ4, Vδ5 and Vδ6, from which little is known (20, 21). The different TCRδ chains and TCRγ chains combine to form different γδ TCRs and subsequently different cell types. For example, Vδ2 mainly associates with the Vγ9 chain in cells referred to as Vγ9Vδ2 T cells representing the majority of γδ T cells in peripheral blood (22, 23). Vγ9Vδ2 TCRs react to phosphoantigens (pAgs), which are intermediates in the biosynthesis of isoprenoids and present in all host cells, albeit at low levels. Vγ9Vδ2 T cells show roughly 1000-fold higher sensitivity for microbial pAgs, such as 4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), than for vertebrate pAgs, like isopentenyl pyrophosphate (IPP). In tumor cells pAgs are often upregulated, thus also becoming targets for Vγ9Vδ2 T cells. Butyrophilin (BTN) proteins (3A1 and 2A1) are the key mediators of pAgs sensing by human Vγ9Vδ2 T cells, although the exact molecular mechanism of this recognition remains elusive (24).

Certain infections can cause immune alterations by modify the proportion of the different γδ T cells subsets. For example, a decrease of Vδ2 and an increase in Vδ1 cells has been shown in HIV-infected patients, compared to non-infected (NI) individuals, resulting in the inversion of the normal ratio of Vδ2 to Vδ1 T cells. Antiretroviral therapy failed to correct this inversion of the ratio (25). Finally, there are many reports showing that γδ T cells are involved in the control of HIV infection as well as Epstein–Barr Virus, Hepatitis B Virus and Hepatitis C Virus (26). However, little is known about the role of γδ T cells during HTLV-1 infection.

For these reasons, our main goal was to study γδ T cells to contribute to the understanding of immune dysregulations in the pathogenesis of HTLV-1 infection.



Results


Vγ9Vδ2 T cells are reduced in HTLV-1 patients

We investigated whether HTLV-1 infection, HAM/TSP or ATLL disease would induce changes in the frequency of γδ T cells in peripheral blood T cells. We studied 24 samples corresponding to 14 NI individuals and 10 HTLV‐1‐infected samples (6 asymptomatic carriers (AC), 3 HAM/TSP and 1 ATLL samples) by flow cytometry (Supplemental Table 1 and Figures 1A, B). Figure 1A shows the gating strategy used to analyze γδ T cell populations in peripheral blood.




Figure 1 | Flow cytometry analysis of γδ T cell populations in HTLV-1 patients and PVL correlation in HTLV-1 patients. (A) Gating strategy example. PBMCs of a non-infected individual were stained with Fixable Near-IR Dead Cell Stain, anti-CD3, anti-TCR Vγ9, anti-TCR Vδ2, anti-TCRγδ and anti-TCR Vδ1 and measured by flow cytometry. (B) Percentages of the γδ subsets present in NI individuals (n=14) (empty circle) and HTLV‐1‐infected patient samples clasified as AC (n=8) (black circle), HAM/TSP (n=3) (yellow triangle) and ATLL (n=1) (orange square). p-values were determined by Two-tailed, Mann Whitney test analysis. (C) Correlation of γδ, Vδ1, Vδ2 and Vγ9 cells with proviral load (PVL) from 4 AC (black), 3 HAM/TSP (yellow) and 1 ATLL (orange) samples was analyzed Pearson’s rank correlation coefficient by two tails.



We observed a tendency for the reduction in the proportion of the Vδ2 and Vγ9 subset cells in HTLV-1-infected individuals compared to NI (p=0.076 and p=0.073, respectively) (Figure 1B). This tendency was confirmed by spectrotyping with a statistical significance of p<0.005 for the analysis shown in Figure 2 and p<0.01 for the analysis in Supplemental Table 3. Moreover, HAM/TSP infected individuals showed a significantly lower proportion of Vδ2 and Vγ9 T cells compared to NI individuals (p=0.041 and p=0.039 respectively). We were unable to statistically assess the relevance of ATLL disease over the proportion of γδ T cells, but we could observe that the only patient included presented a very low proportion of both Vδ2 and Vγ9 T cells (Figure 1B, orange square). γδ and Vδ1 T cell pro-portions were similar between HTLV-1 infected and NI individuals, and HAM/TSP and ATLL individuals showed a tendency of lower γδ and Vδ1 proportions. Finally, considering only the AC samples, the p values for Vδ2 and Vγ9 are non-significant but a clear diminishing of these subsets can be observed compared to NI individuals (Figure 1B).




Figure 2 | Spectratyping of γδ TCR chains. TCRγ and TCRδ spectratyping was performed with cDNA from PBMCs of 7 NI individuals, 11 AC patient samples and 8 samples with pathologies (5 HAM/TSP and 3 ATLL). The bars represent the total amonut of samples analysed, clasified as NI (black), AC (pink) and HTLV-1 infected (AC and pathologies) (light blue). Each bar contains the samples that could be amplified (square patterned bars) and the ones that could not (plain bars). The particular V regions amplified were VγI subgroup (genes Vγ1-8) (panTRGVI) and its individual functional genes Vγ3 (TRGV3), Vγ4 (TRGV5), Vγ5 (TRGV3V5), Vγ8 (TRGV8) and the single gene of the VγII subgroup Vγ9 (TRVG9), as well as the Vδ1-6 (TRDV1-6). All data was generated in 8 independent experiments. **: p<0.005; ***: p<0.001. p-values were determined by two-sided Chi-square test.



The PVL values of 4 AC, 3 HAM/TSP and 1 ATLL samples were compared with the γδ T cell frequencies, including each analyzed subset. At higher PVL, there is a tendency that the percentages of Vδ2 and Vγ9 positive cells is lower (Figure 1C). This effect is more pronounced in samples corresponding to the pathologies of HAM/TSP and ATLL. The decrease in total γδ T cells and in the Vδ1 subset is less pronounced, but also emphasized with the pathologies (Figure 1C).

The flow cytometry technique is limited by the fact that antibodies against the less frequently expressed V regions are not commercially available. Therefore, we employed TCRγδ spectratyping using a previously validated primer set that covers all expressed Vγ and Vδ genes. The spectratypes of individual patients are shown in the Supplemental Figure 1. A description of the clinical status is given in Supplemental Table 2.

We analyzed the amplification results using two different procedures. Figure 2 shows the number of samples with detectable amplification of the different Vγ and Vδ chains. In samples of patients infected with HTLV-1 (AC and with pathologies), several Vγ and Vδ chains were less often detected compared to NI individuals. In particular, while 100% of the samples (7/7) from NI individuals showed detectable amplification of Vδ2 chains, amplification was only detected in 74% (14/19) of patients infected with HTLV-1 (AC and with pathologies)and in 90% (10/11) of the asymptomatic carriers. On the other hand, Vγ9 amplification was detectable in 86% (6/7) NI samples, but only in 18% (2/11) of the asymptomatic carriers and in 21% (4/19) of patients infected with HTLV-1 (AC and with pathologies). A chi square test showed a significant difference in the amplification of Vδ3 when comparing NI and HTLV-1 infected samples (p=0.005) and in Vγ9 when comparing NI with AC (p=0.0005) or NI with HTLV-1 infected (including pathologies) (p=0.0007).

Taken together, the results from flow cytometry and spectratyping suggest that HTLV-1 infection induces changes in the γδ T cell repertoire in peripheral blood, such as less Vγ9. In addition, Vδ3 T cells might also be reduced.

Sectratyping is a semiquantitative method that allows for the detection of clonal expansions along with diversity, denoted by the number of peaks in each family. We also used the area under each spectratyping curve as a proxy for the relative abundance of the respective γδ T cell subsets in all samples (20). The computational analysis on these data was performed based on the samples being derived from 4 categories: NI (7), AC (12), HAM/TSP (4) and ATLL (3). Except for Vδ1 and Vδ6, all γδ subsets seemed to be impaired in HTLV-1 samples concerning diversity (number of peaks in each family), number of detectable clonal expansions and relative abundance (Supplemental Table 3).

These findings corroborate the flow cytometry results, that symptomatic HTLV-1 patients have less γδ T cells, such as less Vγ9Vδ2 cells.



Cells expressing HBZ and Tax proteins are more susceptible to cytolysis by Vγ9Vδ2 clones

Since γδ T cells play a role in immune reactions against virus infection, we wanted to test whether Vγ9Vδ2 cells can killing cells expressing HTLV-1 proteins, HBZ or Tax. Clones of the Vγ9Vδ2 effector cells were expanded from human peripheral blood of healthy donors. As target cells we selected the human γδ T cell line Peer and the melanoma cell line β2M FO-1 and lentivirally transduced them with an empty vector encoding for GFP (Ig) or vectors encoding for HBZ and GFP, or Tax and GFP, or both and GFP (H-T) (Figure 3A). After transduction, cells were sorted by GFP and mRNA expression of the β2M FO-1 transductants was confirmed by RT-PCR (Figure 3B). Protein expression was confirmed by Western blot (Figures 3C). Peer transductants were successfully done for Tax and H-T (Supplemental Figure 2), the HBZ transductant did not express HBZ.




Figure 3 | Generation of the HBZ- and Tax-expressing β2M FO-1 transductants. (A) Schematic diagram of the retroviral vector pMXs-IRES-GFP (Ig). HBZ (green) and Tax (red) genes or a combination of both (H-T) (blue) were introduced into the multiple cloning site (MCS). The vector contains the ampicillin-resistance gene (Ampr), moloney murine leukemia virus (MMLV) long terminal repeat (LTR) regions (5’LTR MMLV and 3’LTR MMLV), viral package signal (Ψ), enhanced green florescent protein (EGFP) and the internal ribosome entry site (IRES). (B) RT-PCR of the β2M FO-1 transductants to confirm the mRNA expresion of HBZ and Tax. Actin was used as a control. (C) Western blot of the β2M FO-1 transductnats to analyse the protein expression levels of HBZ and Tax in these cells. Actin was used as a loading control.



Next, a killing assay based on Cr51 release by the target cells was carried out by co-culturing of the effector Vγ9Vδ2 T clones with the target cells (Figure 4). Peer cytolysis by all five Vγ9Vδ2 T clones from three different donors was in-creased when Peer co-expressed HBZ and Tax (H-T). No difference was observed when Tax was expressed alone com-pared to control (Ig). β2M FO-1 cells expressing HBZ, Tax or H-T underwent higher cytolysis upon incubation with four Vγ9Vδ2 clones from three different donors compared to the control (Figure 4A).




Figure 4 | Vγ9Vδ2 clones kill Tax- and HBZ-expressing target cells. (A) Cytolysis of Peer cells transduced with Ig (empty vector, black), Tax (red) or H-T (blue) by five Vγ9Vδ2 T clones from three different donors (KL, FR, PH) and cytolysis of β2M FO-1 cells transduced with Ig (control), HBZ, Tax and H-T by four Vγ9Vδ2 T clones from three different donors (MA, FR, LU) was determined with the Cr51 release assay. The statistical analysis was performed for each clone individually, based on the technical triplicates. The p-values were determined by Two-way ANOVA, with Bonferroni post-test and significance is indicated when p<0.001. (B, C) Percentage of increased cytolysis in a dilution 1/20 effector to target cells (Peer and β2M FO-1), for all Vγ9Vδ2 clones used in one experiment (A) (n=5 and n=4, respectively). (D) Percentage of increased cytolysis in a dilution 1/10 effector to target cells, for all Vγ9Vδ2 clones used in (A) (β2M FO-1) plus clones MK (2, 6, 7) (n=7); two independent experiments. φ: p<0.05; φ φ: p<0.01; p-values were determined by Kruskal-Wallis test, with Dunns post-test.



Pooling all Vγ9Vδ2 clones for a statistical analysis indicated a significant increase in susceptibility of Peer and β2M FO-1 cells simultaneously expressing HBZ and Tax (H-T, Figures 4B, C). In addition, the expression of HBZ alone significantly increased the cytolysis of β2M FO-1 cells by the Vγ9Vδ2 clones and a tendency of the same effect is observed for Tax (Figures 4C, D). These results were reproduced in an independent experiment using three Vγ9Vδ2 T cell clones from the same donor (MK) (Supplemental Figure 3).

These outcomes suggest that expression of HBZ and Tax proteins enhance the cytolysis of the target cells by Vγ9Vδ2 cells.



γδ T cells expanded by Zoledronate or Concanavalin A can kill HBZ- and tax-expressing cells

Finding the most intriguing results on the transduced β2M FO-1 cells, we next aimed to determine whether the enhanced cytotoxicity of Vγ9Vδ2 clones could be reproduced with expanded human polyclonal γδ cells. To this end, polyclonal γδ cells from a healthy donor were expanded using Zoledronate (Figures 5A, B) or Concanavalin A (Figure 5C) following published protocols (27). In support to our previous results using γδ T cell clones, the cytotoxicity of human polyclonal γδ T cells was statistically higher when the target cells expressed HBZ and Tax together and a tendency of the same effect is observed when HBZ and Tax are expressed alone (Figures 5A, B). Cytotoxicity by γδ T cell expanded with Concanavalin A showed significant increase when HBZ and Tax were expressed (Figure 5C).




Figure 5 | Expanded polyclonal γδ cells can kill HBZ- and H-T-expressing target cells. Cytolysis of β2M FO-1 Ig (control), HBZ, Tax or H-T transductants by expanded polyclonal γδ cells from one donor (CC) using the Cr51 release assay. Vγ9Vδ2 T cells were expanded with Zoledronate (A, B) or Concanavalin A (C). For (A, C) difference with Ig with *: p<0.001. p-values were determined by Two-way ANOVA, with Bonferroni post-test. (B) Percentage of increased cytolysis of γδ cells in a dilution 1/10 effector to target, for two independent experiments using the same donor. φ: p<0.01; p-values were determined by Kruskal-Wallis test, with Dunns post-test.





IFN-γ release does not correlate with the cytotoxicity when HBZ and tax are expressed

Given the range of results obtained during the cytolysis experiments, we measured interferon γ (IFN-γ) levels by ELISA to corroborate the recognition of the Peer and β2M FO-1 transductants by the γδ T cells.

Figure 6 shows that Vγ9Vδ2 clones can release IFN-γ in contact with Daudi cells. Nonetheless, there was no significant difference in IFN-γ release between the β2M FO-1 cells transduced with H-T, control (Ig) or the clones alone (Figure 6B). This effect can be observed for each particular clone (Figures 6A, C, D) as well as for all the clones together (Figure 6B). On the contrary, there was an increase in cytotoxicity when Vγ9Vδ2 clones were in contact with β2M FO-1 H-T cells compared to the control (Ig) (Supplemental Figure 4). Hence, from those experiments, we observed no correlation between IFN-γ release and cytotoxicity.




Figure 6 | IFN-γ release by Vγ9Vδ2 clones in contact with the β2M FO-1 transduced cells. Assay made with (A) three Vγ9Vδ2 T clones. (B) pulled valuves from (A, C, D) IFN-γ release assay using two Vγ9Vδ2 T clones from one donor (FR) (C) in absence or (D) presence of mevastatin; φ: p<0.01. ns: not significant. p-values were determined by One-way ANOVA, with Bonferroni post-test.



To further understand the interaction between the Vγ9Vδ2 clones and β2M FO-1 transductants we repeated the cytolysis and IFN-γ release experiments blocking recognition by the Vγ9Vδ2 TCR. The Vγ9Vδ2 TCR binds to BTN2A1 and BTN3A1 in the presence of pAgs. One endogenous pAg is isopentenyl pyrophosphate (IPP), an intermediate in the mevalonate pathway. Mevastatin is a compound that blocks the mevalonate pathway by inhibiting HMG-CoA reductase, reducing IPP synthesis. Without IPP bound to BTN, Vγ9Vδ2 cells cannot longer recognize and kill the target cells (24).

Vγ9Vδ2 clones FR 18 and FR 20 were co-cultured with the transduced β2M FO-1 cells in the absence (Figure 6C) or presence of mevastatin (Figure 6D). Vγ9Vδ2 clones did not show differences in IFN-γ release when in contact with β2M FO-1 Ig, HBZ, Tax or H-T, compared to the same clones in the absence of target cells. Notwithstanding, Vγ9Vδ2 clones could release IFN-γ in contact with Daudi and, as expected, mevastatin reduced the production of IFN-γ.



Tax reduces cytolysis of β2M FO-1 cells by NK clones

NK cells and γδ T cell share several membrane receptors such as NKG2D, NKp30, NKp44 and NKp46. In γδ T cells NKp30 and NKp44 have been shown to mediate granzyme B production and cytotoxicity in a TCR-independent manner (28). We hypothesized that if the cytotoxicity of NK cells and γδ T cells was similar, then the recognition and killing might be mediated by shared receptors; while if the cytotoxicity of NK cells and γδ T cells was different, the responsible receptors for the recognition and killing might differ.

Four different NK clones recognized and killed β2M FO-1 cells neither expressing Tax nor HBZ (Figures 7A, B). When HBZ was expressed, there was no difference to the control. When Tax was expressed, β2M FO-1 cells were partially protected from NK cytolysis.




Figure 7 | Tax expression reduces killing by NK clones. (A) Cytolysis of β2M FO-1 transduced cells with Ig (control, black), HBZ (green), Tax (red) and H-T (blue) by four NK clones from one donor (NI). Difference with Ig with *: p<0.001. p-values were determined by Two-way ANOVA, with Bonferroni post-test. (B) Normalized values from A to average Ig for each clone. φ φ: p<0.001 (C) Cytolysis of NK clones from one donor (AG), co-cultured with β2M FO-1 cells transduced with Ig (black) or H-T (blue) in the absence of an anti-NKG2D antibody; or Ig NKG2D (grey) or H-T NKG2D (purple) in the presence of a blocking anti- NKG2D antibody. (D) Normalized values from C to average Ig for each clone. φ: p<0.05 and φφ: p<0.01 represents a difference with Ig; p-values were determined by One-way ANOVA, with Dunn’s post-test.



With the aim of inhibiting the NK killing capacity, we blocked NKG2D, an activating receptor of NK cells (19). The addition of anti-NKG2D antibodies to the killing assay reduced cytolysis of the β2M FO-1 cells (Figures 7C, D).

In conclusion, Tax protects β2M FO-1 cells from NK cytolysis (Figure 7) but promotes cytolysis by γδ T cells (Figures 4, 5). Thus, recognition of the target cells by NK and γδ T cells could differ.



Cytolysis by Vγ9Vδ2 cells is most likely mediated through the TCR

A possible explanation for the increased killing of β2M FO-1 cells expressing HTLV-1-derived proteins by Vγ9Vδ2 cells might be an increase in the expression of BTN3A1. BTN3A1 is a crucial protein that binds pAgs and allows the recognition by the Vγ9Vδ2 TCR. To identify if the transduction with HBZ, Tax or H-T might influence the expression of BTN3A1 in β2M FO-1 cells, we stained the transductants with an anti-BTN3A1 antibody an analyzed them by flow cytometry. We could not observe differences regarding the expression of BTN3A (Figure 8A).




Figure 8 | BTN expression and Cr51 release assay to investigate the cause of γδ cells killing response triggered by transduced β2M FO-1 cells. (A) Expression of BTN3A1 was measured on β2M FO-1 cells transduced with Ig, HBZ, Tax or H-T in four independet experiments by staining with an anti-BTN3A1 antibody and quantification by flow cytometry. The mean fluorescence intensity (MFI) is given. (B, C) Cr51 release assay using two Vγ9Vδ2 clones as effectors from one donor (KG) and β2M FO-1 cells transduced with H-T as target was done. (B) β2M FO-1 H-T cells in the absence (blue) or presence (purple) of anti-NKG2D. (C) β2M FO-1 Ig cells in the presence of mevastatin (black) and β2M FO-1 H-T cells in absence (blue) or presence (light blue) of mevastatin. *: p<0.01 and represents a difference with H-T; p-values were determined by Two-way ANOVA, with Bonferroni post-test.



Another explanation for the increased killing might be due to NKG2D. This receptor is also present in γδ T cells and may enhance their response (29). With the aim of testing whether this would occur in our system, we included the blocking anti-NKG2D antibody in the cytotoxicity experiment using β2M FO-1 H-T cells as target and two Vγ9Vδ2 clones as effector cells. We did not observe an effect of blocking NKG2D on the cytotoxicity by Vγ9Vδ2 clones (Figure 8B).

Finally, in β2M FO-1 H-T cells, the cytotoxicity by Vγ9Vδ2 clones was reduced in the presence of mevastatin (Figure 8C), and mevastatin did not have an effect in BTN3A1 expression (Supplemental Figure 5). These findings suggest that the mevalonate pathway could be involved in the recognition of HBZ and Tax double-expressing cells.




Discussion

The main goal of this study was to contribute to the knowledge of γδ T cells in HTLV-1 infection. We show that the frequency of γδ T cells in HTLV-1 patients is altered compared to NI individuals, and that γδ T cells show cytotoxic activity towards target cells expressing the HTLV-1 proteins HBZ and Tax. Of note, there was no correlation between the killing activity of γδ T cells and their IFN-γ release.

Here, we document that the γδ T cell repertoire, Vγ9Vδ2 T cells in particular, is altered in HTLV-1 infected patients by two different techniques: flow cytometry and spectratyping. Vγ9-positive γδ T cells were reduced in HTLV-1 patients and this was more pronounced in the individuals with pathologies. Considering that Vγ9 pairs in 95% of the cases with Vδ2 (30), our data showed that Vγ9Vδ2 T cells are reduced in HTLV-1 infected patients. This alteration is in line with data presented at a meeting of the International Society for Neurovirology by Sato et al. (31), and with a report that also found diminished Vγ9Vδ2 T cells in HAM/TSP patients (32). Contrarily, another publication did not report an alteration of the Vγ9Vδ2 T cells in HTLV-1 infected patients but described changes in the phenotype and function of γδ T cells (33). This discrepancy could be due to the fact that in our study, patients with autoimmune or inflammatory diseases or other co-infections were excluded as they could also alter the percentage of different T cell populations as is the case for lymphomatic malignancies (34). For example, one NI patient was excluded, since the patient was HIV positive. In this particular sample we observed an inverted Vδ2/Vδ1 ratio (δ2 = 1.2% and δ1 = 2,0%), as it has been reported for HIV-infected persons (25). Thus, one limitation of the selection method used (excluding patients with other diseases) is that our sample group is small, therefore more research would be useful to reinforce these findings.

Patients with HTLV-1 pathologies show a high PVL and this clearly correlated with a significant decrease of the Vγ9Vδ2 cells. A similar decrease was reported of other cytotoxic cells. NK cells were decreased in HAM/TSP patients and a significant inverse correlation between the PVL and the frequency of NK cells in HTLV-1-infected individuals was found (17). Tax-specific CD8+ CTLs in ATLL patients were present at lower frequencies (35). In addition, an inverse correlation between the PVL and the frequency of perforin+ CD8+ T cells has been observed in all HTLV-1 infected individuals. Thus, the CTL response plays a critical role in limiting HTLV-1 and the risk of the inflammatory disease such as HAM/TSP (36). In the same way as NK and CTL cells, we hypothesize that less γδ T cells could cause an insufficient cytotoxic response. Reduction in γδ T cells, especially the Vγ9Vδ2 subset could be driven by HTLV-1 infection directly or indirectly. Although infection of γδ T cells by HTLV-1 in vitro is possible (37), there is no evidence that this infection could occur in vivo. A possible indirect mechanism for the reduction of γδ T cells could be γδ T cell exhaustion. CTL exhaustion has been reported in HTLV-1 infected individuals (38). The γδ T cells could face the same fate, containing the virus spread until exhaustion and getting lost from the system by clonal attrition, leading to the disease progression. Such reactive changes in the periphery contrast the acquired immunodeficiency in thymoma patients, which is characterized by polyclonal, cytotoxically inert γδ T-cell populations of central origin (39, 40). Thus, modulating the viral strategy that induces a balance between promotion and limitation of infected T cell expansions could be the key to control HTLV-1 associated diseases.

In conclusion, the correlation between a high PVL and low amount of Vγ9Vδ2 T cells, especially in those patients with HTLV-1 associated pathologies, suggests that γδ T cells could control the spreading of the virus. Thus, the second part of our study focused on testing whether γδ T cells could have a role in containing the infection. To this end we generated cell lines expressing the HTLV-1 proteins HBZ and Tax, allowing us to dissect the impact of each protein individually on the activity of γδ cells.

Here we show that Vδ2Vγ9 T cell clones are able to kill β2M FO-1 cells when expressing HBZ alone and also kill Peer and β2M FO-1 cells when co-expressing HBZ and Tax. Additionally, polyclonal γδ T cells expanded with Zoledronate or Concanavalin A have the same effect on β2M FO-1 cells co-expressing HBZ and Tax. Zoledronate expands Vγ9Vδ2 T cells, while Concanavalin A expands Vδ1 and Vδ2 T cells (41). Thus, the cytotoxicity of the latter might have been due to the Vγ9Vδ2 T cells. The expanded Vδ1 T cells could be responsible for the increased cytolysis of β2M FO-1 Ig cells by Concanavalin A, compared to Zoledronate-expanded γδ T cells. The killing of Peer cells expressing Tax alone by Vγ9Vδ2 T cells was not increased compared to the control Peer cells, but the killing of Peer cells expressing HBZ and Tax simultaneously was increased. We propose that the expression of both HBZ and Tax is necessary to increase the levels of phospho-antigens by Peer cells.

We also compared the cytolysis of HBZ- and Tax-expressing target cells by NK and γδ T cells. We hypothesized that if the cytotoxicity of NK cells and γδ T cells was different, the responsible molecule for the recognition could be the TCR present only on γδ T cells. β2M FO-1 Ig control cells were killed by NK but not by γδ T cells. The expression of HBZ and Tax made them susceptible to γδ T cell killing, but expression of Tax protected them from NK cell killing, suggesting that the cytotoxicity is triggered by different mechanisms. We think that the protective role of Tax towards NK cell killing is given either by upregulation of inhibitory NK ligands or downregulation of NK cell activating ligands (42). Indeed, NKG2D receptors were involved in NK but not in γδ T cell cytotoxicity. These results concur with previous reports showing that NKG2D is one of the main receptors that leads to activation of NK cells but only as an “assistant” receptor that potentiates TCR-mediated responses in γδ T cells (29). In the case of β2M FO-1, the expression of one protein (Tax or HBZ) increased the cytotoxicity by Vγ9Vδ2 T cells, and was inhibited by mevastatin, a drug that reduces phospho-antigen levels, suggesting that these proteins act on the mevalonate pathway. Indeed, HBZ and Tax did not increase BTN3A1 expression.

Enhanced cytotoxicity by Vγ9Vδ2 T towards cells expressing HBZ and/or Tax might be triggered by dysregulation of the mevalonate pathway. This is in line with the fact that these HTLV-1 proteins alter transcription of the host cells (5–7). In accordance with our results, an inhibitor of the mevalonate pathway (namely incadronate) prevents cell growth of HTLV-1-infected T cell lines and primary ATLL cells, but not of NI T cell lines or normal PBMCs (43). Furthermore, HTLV-1 alters the lipid profiles (44), which indicates that this alteration could be caused by a deregulation in the metabolism of the infected cell. Together our data suggest that recognition by γδ T cells is triggered because HBZ and Tax dysregulate the mevalonate pathway, resulting in an increase of the phospho-antigen IPP which can be recognized by Vγ9δV2 TCR. Thus, the TCR would not recognize Tax or HBZ directly. However, we have not directly measured the phospho-antigen levels in those cells. As reported earlier, killing by Vγ9Vδ2 T cells recognizing phospho-antigens might be done by secreting perforin, granzyme B, and granulysin (26).

An unexpected result was the discrepancy between γδ T cell-driven cytotoxicity and INF-γ production, since it is generally accepted that IFN-γ is a good surrogate marker for cytotoxicity (45). However, recent evidence suggests that this might not be the case; for example, the increased IFN-γ production by γδ T-cells due to PD-1 blockade was not accompanied by an increase in specific cell dependent cytotoxicity against leukemia (46). Our data shows that an increased cytotoxicity does not necessarily correlate with an increase of IFN-γ release. One possibility is that IFN-γ it is indeed produced but cannot be released. This scenario has been already described for CD8+ tumor-infiltrating lymphocytes, since it was shown that those cells produce normal amounts of intracellular cytokines, but fail to secrete them, because of defective actin rearrangements at the synapse (47). Alternatively, IFN-γ production and cytotoxicity of γδ T cells might be regulated independently from each other.

In this study we focus on the ability of γδ T cells to recognize β2M FO-1 (myeloma cell line) and Peer (γδ T cell line) cells expressing HBZ and Tax. However, the natural target of HTLV-1 are CD4+ T cells. Thus, it would be good to repeat the experiments expressing HBZ and Tax in CD4+ T cells and testing them for the susceptibility to be killed by Vγ9Vδ2 T cells. Since β2M FO-1 and Peer cells were both better killed in the presence of HBZ and Tax, we expect to observe the same enhancement of killing in the case of CD4+ T cells.

In conclusion, our results indicate that HTLV-1 infection induces changes in the numbers of γδ T cells with a reduction of Vγ9Vδ2 T cells when the HTLV-1 pathologies, HAM/TSP and ATLL, are developed. In addition, we show that Vγ9Vδ2 T cells can recognize and kill cells expressing HBZ and Tax, opening the possibility that Vγ9Vδ2 cells contribute to HTLV-1 containment. We show that HTLV-1 associated disease progression and deregulation of γδ T cells are closely related. We also consider that enhancing an immunological equilibrium of long-term functional cytotoxic T cells, including γδ T cells, could be a therapeutic strategy for preventing the onset of HTLV-1-associated diseases. Nonetheless, a verification that HTLV-1 do not infect γδ T cells is indispensable to use these cells as therapeutic strategy. Overall, our findings provide valuable insights into the systemic immune dysregulation associated with HTLV-1 malignancies and could guide future research to use γδ T cell as effective immunotherapy for HTLV-1 related pathologies.



Materials and methods


Subjects

This study enrolled 2 ATLL, 5 HAM/TSP patients and 16 HTLV-1 AC and 21 NI individuals, which were included as controls (Supplemental Tables 1, 2) attending the Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS) UBA – CONICET, Argentina. Samples from the same HTLV‐1‐infected patient were taken on different days. The diagnosis of ATLL and HAM/TSP was based on the World Health Organization criteria. The study protocol was approved by the Institutional Review Board as well as by the External Ethical Committee (NEXO AC IRB#0005349, protocol #1563). A written informed consent was obtained from all individuals before blood collection. In addition, patients were interviewed, and epidemiological and clinical data was obtained. Patients with autoimmune or inflammatory diseases or other co-infections were excluded from the study.



HTLV-1 confirmation

Plasma samples were screened for the presence of anti-HTLV-1/2 antibodies (ELISA HTLV IandII Ab, ULTRA version, Diapro). For molecular confirmation, DNA was extracted from peripheral blood mononuclear cells (PBMCs) by column extraction (ADN PuriPrep-S kit, Highway, Inbio) and analyzed by nested polymerase chain reaction (n-PCR) for HTLV-1/2 following W Heneine et al. protocol (48).



Proviral load quantification

DNA was extracted from peripheral blood mononuclear cells (PBMCs) by column extraction (ADN PuriPrep-S kit, Highway®, Inbio, Tandil, Argentina). Absolute quantitation of PVL was performed by real-time SYBR Green PCR, using an ABI Prism 7500Prism System (Applied Biosystems, Foster City, CA, USA) as previously described (49).



PBMCs isolation and flow cytometry analysis

Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood by standard Ficoll-Hypaque (GE Healthcare) density gradient centrifugation. Dead cells were excluded using fixable viability dye Fixable Near-IR Dead Cell Stain Kit (Invitrogen; dilution 1:10). For surface marker staining, cells were incubated with antibodies at 4°C for 30 min and then washed and fixed. The following fluorescence antibodies were applied: anti-TCR Vγ9 (BioLegend; clone B3), anti-CR Vδ2 (BioLegend; clone B6), anti-TCRγδ (BD; clone B1), anti-TCR Vδ1, human (Miltenyi; clone REA 173), and anti-CD3 (Biolegend, clone UCHT1). All samples were acquired with a BD FACS CANTO A (BD Biosciences) and analyzed with FlowJo software.



Subject’s RNA isolation and cDNA synthesis

Total RNA was isolated from PBMCs by using TRIzol (Invitrogen). All samples (Supplemental Table 2) were treated with RQ1 RNase-Free DNase (Promega) and 1 μg of total RNA was submitted to RT-PCR in order to obtain the complementary DNA by using a MMLV (Promega) according to the manufacturer׳s instructions. The cDNA was quantified using a Nanodrop 2000C (Thermo Scientific) and stored at -20°C.



Spectratyping

The samples included belong to 7 non-infected (NI) (n=7), 10 AC (n=11), 4 HAM/TSP (n=5) and 2 ATLL individuals (n=3) (Supplemental Table 2). Primer sequences and procedures can be found in Christopoulos P. et al. (20).



Plasmids and sequence

Tax and HBZ sequences and pMXs-IRES-GFP (Ig) plasmid were donated by Junichiro Yasunaga, M.D., Ph.D. (Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Japan). Ig retroviral expression vector was used together with the Platinum-GP cell line to generate viral particles, which were later used to deliver the genetic material into Peer and β2mFO-1 cells. The cloning of Tax and HBZ into Ig was done using the restriction enzymes BamH1, XhoI and EcoR1.



Cell culture


Cell lines

Cell lines K562, Raji, Peer and β2mFO-1 were cultured in RMPI 1640, supplemented with 2 MM L-glutamine, 100 IU/ml penicillin, 100 Ag/ml streptomycin (all Thermo Fisher), and 10% (or 20% for Peer) of fetal bovine serum (FBS) (HyClone). Daudi cells were maintained in IMEM 2 MM L-glutamine, 100 IU/ml penicillin, 100 Ag/ml streptomycin (all Thermo Fisher) containing 10% FBS (HyClone). Platinum-GP (Plat-GP) retroviral packaging cell line (Cell Biolabs, Inc.) were maintained in DMEM 2 MM L-glutamine, 100 IU/ml penicillin, 100 Ag/ml streptomycin (all Thermo Fisher) containing 10% FBS (HyClone). Mycoplasma contamination was excluded.



Virus production

Virus production was accomplished following LipofectamineTM3000 Reagent (ThermoFisher) protocol instruction. Plating 1*106 Plat GP cells into a six well plate and adding 250 µl of Opti-MEM (ThermoFisher); 3.75 µl lipofectamin reagent; 2.5 µg of plasmid and 10 µl of P3000 reagent. After two days, the medium was collected and used to infect the target cell lines. Infection was confirmed by GFP expression and or RT-PCR.




RT-PCR to confirm tax and HBZ presence


Cell line RNA isolation and cDNA synthesis

Total RNA was isolated by using column RNA kit (Qiagen) and RNase A DNase and protease-free (ThermoFisher). Af-ter extraction, 1 μg of total RNA was used for RT-PCR by using First-strand cDNA Synthesis Kit (GE Healthcare) ac-cording to the manufacturer׳s instructions. The cDNA was quantified using a Nanodrop 2000C (Thermo Scientific) and stored at -20°C.



PCR amplification

The PCR amplification was performed in a 25 μl reaction volume containing PCR Buffer 1x, Q solution 1x, MgCl2 2,5 mM, dNTPs 0,2 mM, Primers 0,3 mM, Taq polymerase 0,5 units (Qiagen, Hilden, Germany) and 2 μl of cDNA (50 ng/μl). Primers were chosen based on their location within the prototype HTLV-1 genomic sequence available in the GenBank J02029.1, considering conserved sequences, and designed to avoid complementary sequences and strong internal sec-ondary structures. Tax primers Fw (5´ CCGTTGTCTGCATGTACCTCTAC 3´) and Rv (5´ CGTTTTGCCAGGCTGTTAG 3´). HBZ primers Fw (5´ CGCGGATCCCGCGGATCCCGATTATG 3´) and Rv (5´ CTTCTCCTCAGCCCGTCGCTGC 3´) were selected.



Western blot

5 × 106 cells were lysed in 100 µl lysis buffer containing 20 mM Tris-HCl pH8, 137 mM NaCl, 2 mM EDTA, 10% glycerol, 1x protease inhibitor cocktail, 1 mM PMSF, 5 mM iodoacetamide, 0.5 mM sodium orthovanadate, 1 mM NaF, and 0.5% Brij96 for 30 min at 4 °C followed by 15 min centrifugation to pellet the nuclei and insoluble material. The supernatants (cell lysates) were separated by 12% reducing SDS-PAGE. The separated proteins were transferred to PVDF membranes by semi-dry transfer. After blocking with 5% milk in PBS containing 0.1% Tween-20 the membranes were incubated with antibodies against HBZ (1:2000) provided by Greta Forlani (50), Tax (1:1000) (Covalab, clone 1A3), β-Actin (1:1000) (Santa Cruz, clone C4) in PBS with Tween followed by incubation with HRPO-conjugated secondary antibodies (1:10000). Western blot signals were recorded using an Image Quant LAS 4000 Mini from GE Healthcare Life Sciences.




γδ and NK clones

PBMCs were isolated by Ficoll-Hypaque sedimentation of heparinized blood samples from healthy donors attending the Uniklink Freiburg. Cells were positively selected by FACS Aria Fusion using anti-γδ antibody (BD; clone B1, 1:100) for γδ cells and antibody anti-CD56 Pacific Blue (Biolegend 1:200) and anti-CD3 PE (Beckman Coulter 1:200) (negative selec-tion) for NK cells. The sorted cells were cloned by limiting dilution at one cell per well. The culture medium was DMEM, supplemented with 2 MM L-glutamine, 100 IU/ml penicillin, 100 Ag/ml streptomycin (all Thermo Fisher), and 10% heat inactivated human serum (PAN Biotech).

The plated cells were stimulated with 500 U/ml IL-2 (Proleukin, Novartis), 0.25 μg/ml PHA (Remel Europe Ltd.) and a mixture of irradiated allogeneic or autologous feeder cells (2x104 PBMC and 1x104 721 or 221 cell line) as described by R J van de Griend et al. (51, 52). The clones were expanded by re-plating at weekly intervals with feeder cells, fresh medium, IL-2 and PHA.



γδ cells expanded with Zoledronate or Concanavalin A

Human peripheral blood mononuclear cells (PBMCs) were isolated from one healthy donor on a Ficoll-Hypague gradi-ent using a density centrifugation. Cells were adjusted to 106 cells/ml in RPMI 1640 medium supplemented with 10% Fetal Bovine Serum (FBS), 10 mM HEPES buffer solution, 100 U/ml % penicillin/streptomycin, 1 mM sodium pyruvat, Non-essential AS (1X).

For the expansion of Vγ9Vδ2T cells were stimulated with recombinant IL-2 (rIL-2) (50 IU/ml) and Zoledronate (2.5 μM). The purity of expanded primary human γδ T cells was analyzed by flow cytometry on day 12 in culture and the purity was > 96%.

For the expansion of Vδ1 and Vδ2 T cells, PBMCs were stimulated with Concanavalin A (1 μg/ml), rIL-2 (100 IU/ml) and IL-4 (10 ng/ml). To separate γδ T cells from T cells a negative magnetic cell separation was performed on day 14 in cul-ture using the TCR γδ T Cell Isolation Kit from Milenty Biotec. The purity of expanded primary human γδ T cells was analyzed by flow cytometry on day 20 in culture and purity was > 95%.



Cell line and clone’s phenotypic characterization

For direct and indirect fluorescence, cells were incubated with specific antibodies diluted in PBS 1% FBS at 4°C for 30 min. Cells were washed then, if necessary, a second antibody was used. In each experiment, nonspecific binding was subtracted using appropriate isotype controls. Cells were analyzed by flow cytometry (BD LSR II, BD Biosciences). The data was analyzed by Flow Jo software (Tree Star).

Vγ9Vδ2 clones were confirmed using APC anti-TCR Vγ9 (BioLegend; clone B3 1:200) and PE anti-TCR Vδ2 (BioLegend; clone B6 1:200) antibodies. Vγ9Vδ2 and NK clones were tested against Daudi, K562 and/or Raji to determine their cyto-toxic response.

BTN3A1 was measured using anti-BTN antibody BT3-103.2 (10 μg/mL) provided by Daniel Olive, M.D., Ph.D. (Institute Paoli Calmettes) and BV421 anti-mouse IgG secondary antibody (BioLegend; clone Goat Polyclonal IgG, 1:200).



Cell-mediated lysis assay

γδ and NK clones were used as effector cells in chromium release assays as previously described in Fisch et al., (53). Briefly, clones were serially diluted in round bottom 96-well plates (Falcon) to define E:T ratios in triplicates. Then, 5,000 targets/well, labeled for 1 h with 250 μCi/well Na251CrO4 (PerkinElmer) were used. Following 4 or 6 hs incubation (37°C, 7% CO2), the plates were centrifuged and the supernatant (50 μl) was transferred to Luma plates (PerkinElmer), which were air-dried and measured on a TopCount microplate scintillation counter (PerkinElmer). Percent specific lysis was calculated as 100 × [(counts per minute released with effectors − counts per minute released alone)/(counts per minute released by detergent) − (counts per minute released alone)]. Anti-Butyirophiylin antibody BT3-103.2 (10 μg/mL) provided by Daniel Olive, (Institute Paoli Calmettes)(see “Phenotypic characterization”) was used to inhibit butyrophil-in activation. Anti-NKG2D antibody (Beckman Coulter, clone ON72, 1:100) was used to block NKG2D activation. Mevastatin (5 μM) was used to inhibit the mevalonate pathway.



IFN release assay

The concentrations of IFNγ were measured by standard enzyme linked immunosorbent assay (ELISA) (BD Biosciences) using the 24 hs culture supernatants of 30,000 effector 50,000 target cells. The readout was done using a Tecan Spark plate reader.



Spectratype statistical analysis

Numerical data were analyzed with the Student’s t-test, and for correlation between numerical and categorical data, the Spearman’s coefficient was computed. The comparison of spectratyping results (i.e. area under each curve as a proxy for the abundance of the respective γδ T-cell subset, number of spectratyping peaks as a proxy for the diversity of the re-spective γδ T-cell subset, and number of clonal expansions as a proxy for the number of reactive clones) were compared across volunteer groups with the NI group as a reference, using a mixed linear model with volunteer group as a fixed effect, and Vγδ family as a random effect, in SPSS version 24 (IBM, Armonk, NY, USA). For each spectratype, a clonal expansion was defined as a peak with an area larger than the average area + 2 standard deviations of all other peaks in the same spectratype.
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Currently, no established biomarkers are recommended for the routine diagnosis of penile carcinoma (PeCa). The rising incidence of this human papillomavirus (HPV)–related cancer entity highlights the need for promising candidates. The Calprotectin subunits S100A8 and S100A9 mark myeloid-derived suppressor cells in other HPV-related entities while their receptor CD147 was discussed to identify patients with PeCa at a higher risk for poor prognoses and treatment failure. We thus examined their expression using immunohistochemistry staining of PeCa specimens from 74 patients on tissue microarrays of the tumor center, the invasion front, and lymph node metastases. Notably, whereas the tumor center was significantly more intensively stained than the invasion front, lymph node metastases were thoroughly positive for both S100 subunits. An HPV-positive status combined with an S100A8+S100A9+ profile was related with an elevated risk for metastases. We observed several PeCa specimens with S100A8+S100A9+-infiltrating immune cells overlapping with CD15 marking neutrophils. The S100A8+S100A9+CD15+ profile was associated with dedifferentiated and metastasizing PeCa, predominantly of HPV-associated subtype. These data suggest a contribution of neutrophil-derived suppressor cells to the progression of HPV-driven penile carcinogenesis. CD147 was elevated, expressed in PeCa specimens, prominently at the tumor center and in HPV-positive PeCa cell lines. CD147+HPV+ PeCa specimens were with the higher-frequency metastasizing cancers. Moreover, an elevated expression of CD147 of HPV-positive PeCa cell lines correlated negatively with the susceptibility to IgA-based neutrophil-mediated tumor cell killing. Finally, stratifying patients regarding their HPV/S100A8/S100A9/CD15/CD147 profile may help identify patients with progressing cancer and tailor immunotherapeutic treatment strategies.
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Introduction

The tumor microenvironment (TME) displays a critical and fate-deciding compartment of neoplasia (1). It has the potential to drive a cancer-related inflammation that unremittingly recruits innate immune cells, such as macrophages and neutrophils (1–3). Once trapped inside the tumor, the TME reprograms myeloid cells to tumor-associated macrophages, tumor-associated neutrophils (TANs), or myeloid-derived suppressor cells (MDSCs) (1–3). These contribute to tumor progression at all steps of carcinogenesis, from initiation over the progression of precursor lesions to invasive growing cancers, the dissemination of cancer cells, metastatic outbreaks, and preparation of a pre-metastatic niche to facilitate the seeding at distant anatomical sites (1, 4, 5). An elevated infiltration with unfavorable neutrophils counts to the most negative risk factors for the most dismal prognosis for patients with cancer (6, 7). Moreover, by expressing immune checkpoints, TANs and MDSCs can provoke resistance to immunotherapeutic approaches, especially regarding T-cell–based strategies (1, 8, 9). Thus, markers for these myeloid cells have the potential to identify patients at high risk for worse prognosis and may have a decision-making impact on subsequent therapeutic interventions.

Penile carcinoma (PeCa) displays a rare disease with notable regional differences regarding the incidence rates (10–12). Patients with PeCa present with histological and pathogenic heterogeneous cancers, with penile squamous cell carcinoma (PSCC) as the most common histological subtype. Penile carcinogenesis is frequently linked to chronic infections with human papillomavirus (HPV) as a prominent etiologic agent (13). A recent meta-analysis on global data calculated an overall HPV prevalence of 50.8% with HPV16 as the predominant HPV type in PeCa (14). Although the subtype classification seems to have prognostic potential, this is controversially discussed for HPV (14, 15). Currently, especially advanced or metastatic PeCa still has a poor prognosis and is a therapeutic challenge with limited options. This further highlights the need for new markers identifying patients with PeCa subtypes that display a high risk for advanced and metastasizing cancers, allowing a more precise stratification for more aggressive or de-escalated treatment regimes.

We recently described CD15, a surface protein of neutrophils, as a promising candidate and identified an HPVactivep63highCXCL8high axis as a possible underlying mechanism that drives neutrophil infiltration (16). Subsequent inclusion of clinic-pathological data revealed that especially HPV+p63+CD15+ PeCa was characterized by dedifferentiation, invasion, and metastases. Earlier data pointed to a role for the Calprotectin subunits S100A8 and S100A9 in the chemotaxis of neutrophils in the HPV-associated malignant transformation of the skin (17, 18). Although viral oncoproteins of cutaneous and mucosal HPV types may cause, in part, similar but not the same molecular alterations (18, 19), we hypothesized that the Calprotectin subunits S100A8 and S100A9 play a role in the mucosal high-risk (HR) HPV–driven malignant transformation as well. The current literature provides initial evidence for the Calprotectin subunits driving progression and chemoresistance of HPV-associated cancers of other anatomical sites (20–22) and to contribute already to early events in HPV-driven carcinogenesis (23). Moreover, S100A8 and S100A9 mark MDSCs critically involved in the mobilization of further neutrophils in the pre-metastatic niche, facilitating the arrival and survival of metastatic cells (1–3). The infiltration of immunosuppressive myeloid cells has been demonstrated in a mouse model for penile cancer, mimicking HPV-driven carcinogenesis (24). Targeting MDSCs and TME-related myeloid cell reprogramming significantly increased the efficacy of the immune checkpoint antibody-based therapy in this mouse model.

The S100A8/S100A9 heterodimer Calprotectin can bind to Emmprin, alias CD147 or Basigin, with the S100A9 subunit having a higher affinity than S100A8 (21, 25, 26). CD147 can serve as a receptor for Calprotectin on tumor cells, neutrophils, and fibroblasts. Its activation leads to activated mitogen-activated protein (MAP) kinase and Nuclear factor kappa B (NFkB) pathways, resulting in the upregulation of genes involved in cell survival, proliferation, extracellular matrix remodeling, and inflammation (27, 28). CD147 acts on fibroblasts by stimulating the release of matrix metalloproteases (MMPs), thereby creating a positive feedback loop fueling the growth, angiogenesis, and dissemination of tumor cells (29–31). CD147 as membranous and soluble version and with its potential of cis-, trans-, and homotypic interactions displays a central player in tumor progression and predicts a high risk for malignant progression and chemotherapy resistance (32). Thus, there is a strong rationale to decipher the expression and relevance of the S100A8/S100A9-CD147 axis in PeCa.

Current epidemiologic data on PSCC imply a rising incidence of this HPV-associated malignant disease (33–35). These data further underline the need for promising markers, especially of MDSCs, because our recently published data already suggested the involvement of myeloid cells during HPV-driven penile carcinogenesis (16, 36). Tissue microarrays (TMAs) with a high number of clinical PeCa specimens with matching clinic-pathological data were used to identify a promising candidate marker profile of patients at a higher risk for lymph node involvement. A set of unique HPV-positive PeCa cell lines was used to investigate the expression of CD147 and detected a reciprocal pattern compared to the susceptibility of these tumor cells for IgA antibody-dependent neutrophil-mediated tumor cell killing.



Materials and methods


Ethical statement, cohort and study design, and material identifiers

The local Ethics Committee of the Saarland (Ärztekammer des Saarlandes, Saarbrücken, Germany) in accordance with the Declaration of Helsinki approved the experiments with human material used in this study, and a written consent form was provided by the study participants. The TMA cohort consists of patients derived from Russia and Germany between 1992 and 2015. Data on clinical outcome and HPV status were published previously (15, 16). Briefly, DNA was isolated from formalin-fixed paraffin-embedded (FFPE) tissue sections by the QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol, and the HPV PCR was conducted using the GP5+/6+ primers as described previously (15, 16). HPV status was further determined by p16INK4A immunohistochemistry (IHC), a surrogate marker for active HPV oncoprotein–driven transformation, using a published protocol (15, 16). HPV status was considered as positive in case of positive PCR and IHC with subsequent genotyping using INNO-LiPA genotyping extra II (Fujirebio Germany GmbH, Hannover, Germany), revealing HPV16, HPV18, and HPV59 in 27 (93.1%), one (3.45%), and one (3.45%) of the 29 cases, respectively. Sections of all cases were reviewed by two experienced uropathologists, and histological subtypes and tumor grade were defined according to the 2016 WHO classification and the eighth editions of TNM classification of malignant tumors. Specimens were stratified as non-invasive (pTis and pT1a) and invasive (pT1b, pT2, pT3, and pT4), not metastasizing (cN0 and pN0) and metastasizing (pN1, pN2, and pN3). Basic cohort description and patient/disease characteristics are listed in Supplementary Table 1. Of the 74 patients in total, respective tissue was punched for the individual TMA reflecting tumor center (TMA TC), invasion front (IF), lymph node metastases (TMA LM), and adjacent normal tissue (TMA NO) as duplicates (TMA TC, IF, and NO) and triplicates (TMA LM) with the total number of evaluable specimens indicated for each staining.



Cell lines and culture conditions

Three HPV-positive PeCa cell lines were generated previously from a primary carcinoma and lymph node metastases, including the particularly rare case of one primarius-derived (named P2) and one metastasis-derived (named L2) cell line originating from the same patient and one further metastasis-derived cell line of an additional patient (named L3). The cell lines were authenticated by Multiplexion in 2018 using the originating biopsies obtained from patients that underwent penectomy and metachronous radical inguinal lymph node dissection for metastatic squamous cell carcinoma of the penis at the University Hospital Schleswig-Holstein, thus representing a validated cell culture system (37). The HPV status of the cell lines was investigated recently (16). Cells were cultivated in PeCa medium {1:1 mixture of keratinocyte growth medium 2 (KGM2) containing all supplements [C-20011, bovine pituitary extract at 0.004 ml/ml, epidermal growth factor (EGF) at 0.125 ng/ml, insulin at 5 µg/ml, hydrocortisone at 0.33 µg/ml, epinephrine at 0.39 µg/ml, transferrin at 10 µg/ml, calcium chloride at 0.06 M; PromoCell, Heidelberg, Germany] and RPMI 1640 containing 10% heat-inactivated fetal bovine serum (FCS), 1% sodium pyruvate, and 1% penicillin and streptomycin (R10+/+, Merck, Schnelldorf, Germany)}. Normal foreskin keratinocytes (NFKs) and human foreskin fibroblasts (HFFs) were isolated from foreskin tissue (Saarland University Medical Center), tested negative for HPV using PCR, and expanded in KGM2 (C-20011, PromoCell) and Dulbecco's Modified Eagle's Medium (DMEM) with 10% heat-inactivated FCS, 1% sodium pyruvate, and 1% penicillin and streptomycin (D10+/+), respectively. NFKs were cultured in PeCa medium for experiments. We conducted mycoplasma-specific PCRs on a regularly basis of once per month. The human vulva carcinoma cell line A431 (DSMZ, Braunschweig, Germany, ACC-91, obtained 2018, RRID : CVCL_0037) was cultured in R10+/+. Cell lines were used below passage 20, NFKs up to passage 4, and HFFs up to passage 7. Organotypic three-dimensional (3D) cultures were generated using HFF (5 × 105 cells, passages 3–5) embedded in 1 ml of rat collagen [as described previously (16)] in 24-well plate in D10+/+. The day after, medium was exchanged to PeCa medium for 1 h before 7 × 105 PeCa cells were seeded on top of the collagen-fibroblast matrix. The next day, the cultures were transferred onto a metal grid in six-well plates to allow multilayered growth at the air-liquid interface. Fourteen days later, supernatants were harvested, and organotypic 3D cultures were fixed in 4% paraformaldehyde (Merck) and embedded in paraffin.



Antibodies

The engineered 225-IgA2m(1)-N166G-P221R-C331S-N337T-I338L-T339S-dC471-dY472 further named 225-IgA2.0 was produced using the variable regions of the m225 antibody and the engineered IgA2m(1) constant region as previously described (38). ChromPure human Serum IgA purchased from the Jackson ImmunoResearch Labs (#009-000-011, RRID : AB_2337047) served as IgA isotype control.



Calcein assay

Target cells (2 × 104) per well were labeled for 30 min at 37°C with 10 μM Calcein-AM (Fisher Scientific, C3099) in suspension. Effector cells were isolated as previously described (39). After washing three times, isolated effector cells were added with an effector-to-target cell ratio (E:T ratio) of 40:1. Antibodies were added to the microtiter plates in triplicates as indicated. For maximum release, labeled target cells were treated with 1% Triton X-100 (Sigma-Aldrich) or left untreated for basal release. After 3 h of incubation at 37°C, plates were centrifuged; supernatants were transferred into black 96-well plates with clear flat bottom (Sigma-Aldrich), and fluorescence was measured in the Victor II plate reader (PerkinElmer, Waltham, MA, USA). Percentage of cellular cytotoxicity was calculated using the equation: % specific lysis = (experimental release − basal release)/(maximal release − basal release). Antibody-independent cytotoxicity (effectors without target antibodies) or effector-independent cytotoxicity (target antibodies without effectors) was not observed.



Flow cytometry, ELISA

For CD147 surface expression analysis, cells were seeded and grown to 80% confluence, trypsinized, and stained with mouse anti-human CD147-specific antibody (50 µg/ml; #306202, RRID : AB_314586, BioLegend, Amsterdam, Netherlands) per 150,000 cells for 30 min on ice. After washing, bound antibody was stained with mouse-immunoglobulin G kappa chain (IgGκ) phycoerythrin (PE)-conjugated binding protein (sc-516141, Santa Cruz, Dallas, TX, USA) and measured with a FACS Canto II (BD Biosciences). Relative fluorescence intensity (RFI) was calculated using the following equation: mean fluorescence intensity specific Ab/mean fluorescence intensity control Ab. Soluble CD147 was quantified in 3D culture supernatants using Human CD147/EMMPRIN ELISA (#ELH-CD147-1, RayBiotech, Peachtree Corners, USA) according to the manufacturer’s instructions.



Immunohistochemistry

formalin-fixed paraffin-embedded (FFPE) tissue (TMA) slides were stained by IHC. Antigen retrieval was performed by heating the sections in 1 mM citrate buffer (pH 6.0) at 95˚C for 10 min, and endogenous peroxidase activity was blocked with 3% H2O2/tris buffered saline (TBS) for 10 min [for 3,3`-Diaminobenzidine (DAB) staining]. formalin-fixed paraffin-embedded (FFPE) sections were incubated with the S100A8-specific (#NBP1-42076, rabbit anti-human S100A8, RRID : AB_2184111, Novus Biologicals, Cambridge, UK), S100A9-specific (#sc-20173, rabbit-anti-human S100A9, RRID : AB_2184420, Santa Cruz, Heidelberg, Germany), or CD147/Emmprin-specific (BioLegend, Cat# 306202, RRID : AB_314586) antibodies overnight followed by Alkaline phosphatase/horseradish peroxidase (AP/HRP-conjugated anti-rabbit/mouse antibody incubation and developed with 3,3`-Diaminobenzidine (DAB) or HRP substrates [ImmPRESS HRP/Peroxidase Reagent Kit and VECTOR Red Alkaline Phosphatase Substrate Kit (Alkaline Phosphatase Anti-Rabbit/Mouse IgG), both Vector, Burlingame, CA, USA]. After counterstaining with Hematoxylin Nuclear Counterstain (Gill’s Formula) (Vector), the slides were covered with Vectamount and documented. Staining was documented using a Leica DMI6000 (RRID : SCR_018713) with LAS X software (RRID : SCR_013673).



Data processing and statistical analyses

Graphical, correlation, and statistical analyses were performed using GraphPad Prism 9.02 (GraphPad Software, San Diego, CA, USA, RRID : SCR_002798). The annual percentage change (HRPC) was calculated using the following formula: HRPC = {Exp(slope) − 1} × 100. Group data are reported as mean ± SEM. Data of multiple experiments were illustrated as a box and whisker plot showing individual results with minimum and maximum values. Significance was determined by two-way or one-way ANOVA repeated measures test with Tukey’s correction or Fisher’s exact test as indicated, and odds ratios were calculated using the Baptista-Pike method. Significance was accepted when p-values were ≤ 0.05.




Results


S100A8 and S100A9 mark tumor centers and lymph node metastasis

The expression of both Calprotectin subunits S100A8 and S100A9 was examined in clinical PeCa specimens using three TMAs reflecting the tumor center (TMA TC, n = 63), the invasion front (TMA IF, n = 57), and the corresponding lymph node metastases (TMA LM, n = 22). The HPV+ status was defined as positive for GP PCR and p16INK4A IHC (15). Slides were stained by IHC and immune reactive scores (IRSs) were determined according to Remmele and Stegner (Figures 1A, B). Tumor nests and infiltrating immune cells were intensively stained, whereas, in some cases, the tumor margin was spared (Supplementary Figures 1, 2). Staining for both subunits was limited to suprabasal rather superficial layers in the squamous epithelium of non-malignant tissue (Supplementary Figures 1, 2). Specimens with a throughout S100A8+/S100A9+-positive epithelium or PeCa tissue were identified for each TMA. The majority of PeCa specimens were positive for S100A8 and S100A9 regarding TMA TC (S100A8, 92.1%; S100A9, 91.5%), TMA IF (S100A8, 91.2%; S100A9, 65.5%), and especially of the TMA LM (S100A8, 100.0%; S100A9, 100.0%) (Figures 1C, D). Notably, the majority of S100A8+S100A9+ specimens were HPV− for the TMA TC (S100A8, 63.5%; S100A9, 62.7%) and IF (S100A8, 61.4%; S100A9, 61.8%), which flips regarding TMA LM (S100A8, 70.0%; S100A9, 80.0%). There was a remarkable and significant increase of positive IRS regarding the tumor center compared to the invasion front for both HPV+ (p = 0.0093) and HPV− (p = 0.0013) PeCa for the Calprotectin subunit S100A9 but not for S100A8 (Figures 1E, F). The expression of both Calprotectin subunits suggests a TME actively recruiting myeloid cells that once trapped polarizes them into MDSCs (1–3). Of those, especially neutrophil-MDSCs have been repeatedly reported as a negative prognostic marker for patients with dismal prognoses (2, 7, 40–43).




Figure 1 | Scoring of PeCa specimens stained using IHC for S100A8/A9: TMAs containing PeCa specimens were stained for S100A8 (A) and S100A9 (B). According to Remmele and Stegner, IRSs were defined according to staining intensity and the number of stained cells per specimen. IRSs ≥ 3 were considered positive and below 3 as negative for S100A8/S100A9. Cases per IRS were counted for HPV− and HPV+ PeCa specimens on the TC, IF, and LM TMA regarding S100A8 (C) and S100A9 (D). Counts of specimens with positive and negative IRS for S100A8 (E) and S100A9 (F) for HPV+ and HPV− specimens comparing the invasion front (IF) and tumor center (TC). Significant differences are indicated with asterisk for p ≤ 0.01 (**0.0093) as calculated by the Fisher’s exact test.





HPV-positive PeCa specimens are characterized by S100A8+S100A9+CD15+ immune cells

We previously identified a CXCL8-dependent mechanism of neutrophil chemotaxis with HPV+CD15+ characterizing PeCa with a higher staging regarding invasion and metastasis (16). Here, a remarkable amount of PeCa specimens with infiltrating cells intensively stained for S100A8 and S100A9 was observed (Figure 2A). While, in the adjacent normal foreskin, only occasionally S100A8+S100A9+ immune cells were observed, this dramatically changes in PeCa specimens. Specimens with partially high numbers of intensively stained infiltrating and tumor-intersecting immune cells were identified at the invasion front, at the tumor center, and lymph node metastasis (Figure 2A). Reconciling previously published data, a mechanism of elevated expression levels of HPV16 oncoproteins that cause a p63-dependent upregulation of CXCL8, a well-known chemokine for neutrophils, was described (16). This mechanism provided a possible explanation for the infiltration of neutrophils observed in PeCa specimens. For this purpose, the same TMAs as used here were stained for p63 and CD15, with the latter being a marker for neutrophils (16). As described previously (16), we detected a high number of CD15+ infiltrating and tumor-intersecting cells in PeCa specimens but not in adjacent normal foreskin (Figure 2B) with an overlap of S100A8+S100A9+ and CD15+ immune cells (Supplementary Figure 3). Triple-positive (S100A8+S100A9+CD15+) PeCa specimens were with higher-frequency HPV− for the TMA TC and IF, whereas the majority of LM were positive for all four parameters (S100A8+S100A9+CD15+HPV+) (Figure 2C). S100A8+S100A9+CD15+ PeCa specimens were in tendency rather invasive growing cancers (TMA TC odds ratio = 2.872, TMA IF odds ratio = 3.048) and significantly enriched in the HPV+ group of metastasizing PeCa (odds ratio = 8.444, p = 0.0232) (Figures 2D, E). Thus, in line with the previous reports (15, 16), our data provide further evidence that patients with PeCa presenting with HPV-related histological subtypes and tumors infiltrated with neutrophils are at a higher risk for the prognosis of more aggressively dedifferentiated growing cancer (Supplementary Figure 4) and of lymph node involvement (Supplementary Figure 5). Predominantly, three histological subtypes—usual SCC (1), warty-basaloid (11), and basaloid (13)—followed by papillary-basaloid (10) and clear cell carcinoma (14) were characterized by a high amount of S100A8+S100A9+CD15+ cases, particularly if HPV+ (Supplementary Figure 6), and with lymph node involvement (pN1-3; Supplementary Figure 5). Because both S100 subunits mark MDSCs frequently associated with disease progression and treatment failure, these data suggest that the marker profile HPV+S100A8+S100A9+CD15+ characterizes patients with PeCa at a higher risk for a worse prognosis.




Figure 2 | S100A8/A9 is associated with HPV-positive, invasive, metastasizing PeCa with infiltrating neutrophils. (A) IHC for S100A8 and S100A9 of normal tissue (NO), and PeCa specimens of the invasion front (IF), tumor center (TC), and lymph node metastases (LM), illustrating S100A8+S100A9+-infiltrating immune cells. (B) IHC for CD15 and p63 to illustrate infiltration of neutrophils in PeCa specimens (16). (C) Specimens positive for S100A8, S100A9, and CD15 were counted for each TMA and the percentage of HPV+ and HPV− illustrated. S100A8+S100A9+CD15+ PeCa specimens with positive tumor staging for invasive growth (pT1b-4) (D) and metastases (pN1-3) (E) depending on their HPV status. As calculated by Fisher's exact test, significant differences are indicated with p ≤ 0.05 (*).





Elevated expression CD147 in PeCa is associated with metastasizing cancer

Because both S100 subunits were notably higher expressed in PeCa specimens, particularly at the tumor center, we questioned if the same might be true for the Calprotectin receptor CD147, especially because the previous data already indicated an increased expression in PeCa (44). Slides of the individual TMA reflecting the tumor center (TMA TC, n = 73), the invasion front (TMA IF, n = 69), and corresponding lymph node metastases (TMA LM, n = 22) and adjacent normal tissue (TMA NO, n = 24) were stained for CD147 expression using IHC, and IRSs were determined (Figure 3A). Specimens of the PeCa TMA (TC, IF, and LM) displayed a significantly more intense staining (Figure 3B) and a higher scoring than that of the TMA NO (TC vs. NO, p < 0.0001; IF vs. NO, p = 0.0043; LM vs. NO, p = 0.0414) (Figure 3C). IRSs of the PeCa specimens of the TMA TC were significantly higher than IRSs of normal tissue in the HPV+ and HPV− groups (TC HPV+ vs. NO HPV+, p = 0.0138; TC HPC− vs. NO HPV−, p < 0.0001) and of the TMA IF compared to NO in the HPV− group (p = 0.0122) (Figure 3D). CD147+ PeCa specimens were significantly enriched in the HPV+ group at the TC compared to NO (Figure 3E) and IF (Figure 3F), as well as for the LM compared to the NO (Figure 3G) and IF (Figure 3H). All HPV+ LMs were positive for CD147 (Figures 3E, F). Specimens of the TMA TC, IF, and from the adjacent NO that were positive for CD147+ had with a higher-frequency metastases in case of an HPV+ than HPV− status (N classification pN1-3) (Figures 3I–K). Notably, all HPV+ LM specimens were positive for S100A8/A9, CD15, and CD147. These results suggest that CD147+ marks HPV+ PeCa specimens with a higher risk for lymph node metastases. Finally, our data provide evidence that the Calprotectin-CD147-neutrophil axis plays an important role in disease progression particularly in the event of an HPV+ status.




Figure 3 | CD147 expression enhanced in PeCa with dissemination potential. (A) PeCa specimens were stained using IHC for CD147. According to Remmele and Stegner, IRSs were defined according to staining intensity and the number of stained cells per specimen. (B) IHC staining of normal tissue (NO) compared to tumor center (TC), invasion front (IF), and lymph node metastases (LM). (C) CD147 IRS for PeCa specimens on the NO, TC, IF, and LM TMA. (D) CD147 IRS for HPV− and HPV+ PeCa specimens on the NO, TC, IF, and LM TMA. Counts of specimens with positive and negative IRS for CD147 for HPV+ specimens comparing the TMA TC vs. NO (E), TC vs. IF (F), LM vs. NO (G), and IF vs. LM (H). Tumor staging of specimens positive for CD147 of HPV+ and HPV− PeCa specimens regarding metastasis for the TMA NO (I), TC (J), and IF (K). Significant differences are indicated with p ≤ 0.05 (*), p ≤ 0.001 (**), and p ≤ 0.0001 (****), respectively, as calculated by the Brown-Forsythe and Welch ANOVA test in (C) and (D), and the Fisher’s exact test in (E–K).





CD147 expression on cancer cell lines correlates negative with ADCC susceptibility

Next, we evaluated the expression of CD147 by HPV-positive PeCa cell lines using organotypic 3D raft cultures. These composite of HFF embedded in extracellular matrix with keratinocytes or tumor cells seeded on top at the air-liquid interface that allows them to grow to a multilayered epithelium. This cell culture model creates an environment that mirrors inter-cellular regulatory networks, thus enabling studies of the expression of CD147 in a more physiological context. IHC staining for CD147 on formalin-fixed paraffin-embedded (FFPE) slides of these 3D cultures revealed a more intense staining of HPV-positive PeCa cell lines than that of NFK (Figure 4A). Because this approach does not differentiate between the soluble and membranous form of CD147, we tested the conditioned media from these 3D cultures for the release of soluble CD147 (sCD147). We recently identified sCD147 as upregulated in the same HPV-positive PeCa cell lines using a cytokine array and conditioned media from monolayer culture (16). In line with this, media conditioned by 3D cultures of PeCa cell lines contained notable higher amounts of sCD147 than those of NFK (P2 vs. NFK, p = 0.0210; L3 vs. NFK, p = 0.0005; Figure 4B). Next, we tested for the expression of surface membranous CD147 (mCD147) expression using indirect immunofluorescence and flow cytometry (Figures 4C, D). All three HPV-positive PeCa cell lines expressed higher surface levels of mCD147 than the cell line A431, which was used as HPV-negative control tumor cell line, particularly P2 and L2 (P2 vs. A431, p = 0.0199; L2 vs. A431, p = 0.0002). Notably, the PeCa cell line L2 expressed higher amounts than the cell lines P2 and L3 (L3 vs. L2, p = 0.0019). We described previously that the PeCa cell lines display a different susceptibility to IgA-dependent neutrophil-mediated tumor cell killing (16) and thus questioned whether the amount of mCD147 would be predictive for this. We investigated the capacity of the EGF receptor (EGFR)–directed engineered IgA2 antibody 225-IgA2.0 to engage freshly isolated neutrophils for antibody-dependent cell-mediated cytotoxicity (ADCC) of the PeCa cell lines and A431 cells [Figure 4E; re-evaluated from (16)]. The IgA-dependent neutrophil-mediated killing was most effective using the A431 cells, followed by PeCa cell lines P2 (A431 vs. P2, p = 0.0223) and L3 (A431 vs. L3, p = 0.0065) as target cells, whereas the cell line L2 (A431 vs. L2, p = 0.0001) was not lysed. There was a significant difference to the isotype control in case of A431, P2, and L3 (p < 0.0001) but not for L2 (Figure 4E). The specific lysis rates for P2 and L3 were significantly higher than for the PeCa cell line L2 (P2 vs. L2, p = 0.0047; L3 vs. L2, p = 0.0156). Thus, mCD147 expression displayed a contrary pattern to the specific lysis rate and correlated negatively with the efficacy of the 225-IgA2.0 to engage neutrophils for tumor cell killing (Pearson, r = −0.9093, p = 0.0454), whereas the soluble variant did not (Pearson, r = −0.6387, p = 0.3613) (Figure 4F). Our results suggest that HPV-positive PeCa cell lines expressed higher amounts of CD147 than HPV-negative cells and that CD147 could display a critical factor for neutrophil-centered immunotherapeutic approaches.




Figure 4 | CD147 surface expression correlates negatively with ADCC susceptibility. (A) Expression of CD147 was investigated by IHC on FFPE slides of 3D cultures from PeCa cell lines P2, L2, L3, and NFK on a matrix of rat collagen with embedded HFF using mouse anti-human CD147–specific antibody and the Vector goat-anti-rabbit-ImmPRESS DAB Kit. Pictures were recorded with a Leica DMI6000 and ×10 magnification. (B) Expression of sCD147 in conditioned media from (A) was determined by ELISA. (C) Surface expression of mCD147 was investigated by indirect immunofluorescence and flow cytometry using a mouse anti-human CD147–specific antibody and a PE-labeled mIgG-binding protein of the PeCa cell lines P2, L2, L3, and A431. Representative histograms of four independent experiments are shown. (D) Relative fluorescence intensity (RFI) of four independent experiments in (C) was summarized. (E) The capacity of EGFR-directed IgA antibodies (IgA isotype control, 225-IgA2.0, 10 µg/ml) to mediate ADCC of tumor cell lines within 3 h was tested by Calcein release assay using freshly isolated neutrophils (E:T ratio 40:1). A431 served as positive control (30). Calcein-loaded target cells in suspension were simultaneously treated with antibodies and neutrophils for 3 h and fluorescence measured in the supernatant. (F) Pearson correlation of mCD147 surface expression on tumor cells in C and specific lysis of the tumor cells in (D). Data are presented as box and whisker plot showing all data points and min and max as “CD147 in [pg/ml]” in (B), as “RFI” in (D), as “specific lysis %” as mean ± SEM in (E) of three independent experiment runs in triplicates. Significant differences are indicated by asterisks for p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), and p ≤ 0.0001 (****) as calculated by one-way ANOVA, in (E) with two-way ANOVA with Tukey’s multiple comparison test. NFK, normal foreskin keratinocytes; HFF, human foreskin fibroblasts.






Discussion

PSCC is a malignant disease of the male urogenital tract with rising incidence rates. High age-standardized incidence rates (ASRs) were calculated for countries of South America and Africa, with a Brazilian hot spot in Maranhão with an ASR of, meanwhile, 6.15 per 100,000 (Supplementary Figure 7A) (10, 12). With an increasing prevalence of HR-HPV infections at mucosal sites, such as penile, vulva, cervix uteri, anus, and tonsils, the annual incidence rates for HPV-related cancers and, thus, for PeCa will rise. Current data from a countrywide cancer registry underline this hypothesis (Supplementary Figure 7B) and show similar trends as data from other anatomical sites (45, 46). An extrapolation of the increment in the ASR until 2030 using a linear regression model suggests that the ASR will increase above 2.0 within the next ten years (Supplementary Figure 7C) with a calculated HRPC of 3.2%. Thus, with annually rising case numbers for PeCa, there is a particular need for promising markers to stratify patients according to their risk for invasive and disseminating cancer.

Here, we describe novel and potential markers for the stratification of patients with PeCa regarding their risk for lymph node metastases. The Calprotectin subunits S100A8 and S100A9 as well as the receptor CD147 were elevated expressed in PeCa compared to non-malignant tissue, with a markedly higher expression at the tumor core and lymph node metastases. Overexpression of S100A8/A9 has been reported in precursor lesions at other mucosal anatomical sites susceptible to HPV-driven transformation and may display an early event of the oncoprotein-driven carcinogenesis (20, 23, 47–49). The elevated expression of S100 proteins in cutaneous HPV-related lesions and SCC has been confirmed recently as well (17, 50). Together, there is an emerging evidence that an elevated expression of S100A8 and S100A9 could display a pan-HPV type-specific mechanism during the carcinogenesis at different anatomical sites.

In addition to the expression of S100A8 and S100A9 by the tumor cells themselves, a remarkable influx of S100A8+S100A9+ immune cells was detected. The TME instructed by cancer and stromal cells, in HPV-negative and HPV-positive cancers, provides soluble factors that recruit myeloid cells including both S100 proteins (1, 2, 16, 45, 51, 52) (Figure 5). Once trapped into the TME, myeloid cells can polarize into MDSCs that mediate immunosuppression, support tumor growth, and release angiogenic factors. MDSCs especially at the tumor core and positive for LOX1, a marker for neutrophil-derived MDSCs, have a notable T-cell suppressing activity associated with poor prognosis (41) (Figure 5). Neutrophil-derived MDSCs, in turn, release S100A8 and S100A9 to sustain tumor angiogenesis and to create a pre-metastatic niche by facilitating the extravasation and growth of metastasis-initiating cells (1) (Figure 5). In conclusion, both S100 proteins drive the carcinogenesis by compromising the myeloid cell compartment with above together with previous data (16), pointing to similar mechanisms during the penile carcinogenesis, particularly during the HPV-driven malignant transformation (Figure 5).




Figure 5 | Current model of the CXCL8-Calprotectin-CD147-neutrophil axis in penile tumor progression. (1) PeCa cells release CXCL8 and Calprotectin that promote chemotaxis and infiltration of neutrophils. (2) Infiltrating Calprotectin-positive TME-reprogrammed neutrophil-MDSCs supports tumor growth by releasing growth factors and matrix remodeling enzymes. (3) MDSCs synthesize Calprotectin, supporting an autocrine feedback loop that causes further accumulation of MDSCs. (4) Neutrophil-derived MDSCs have a notable T-cell suppressing activity associated with poor prognosis. (5) The expression of mCD147 impairs ADCC and, thus, the efficacy of immunotherapeutic approaches. (6) The Calprotectin-CD147 axis causes intracellular signaling that enhances the expression of pro-tumorigenic genes and thus promotes proliferation and dissemination of cancer cells. (7) ADAM proteases cleave mCD147 releasing sCD147 that fuels epithelial-to-mesenchymal transition of cancer cells, further boosting invasion and metastasis of cancer cells, and causes a positive feedback loop of sustained CD147-MMP production in fibroblasts. (8) These transform into cancer-associated fibroblasts that, in turn, further promote tumorigenesis by releasing MMP, recruiting further MDSCs and causing an immunosuppressive gene signature in myeloid cells. (9) Tumor-derived factors such as TNF-α, VEGF, and TGF-β induced Calprotectin in distal organs initiating (10) the formation of Calprotectin-CD147-neutrophil MDSC-primed pre-metastatic niches that facilitate the colonization by tumor cells [modified by (53)].



However, the role of S100 proteins during HPV-driven carcinogenesis is still not fully understood. There is an increasing evidence for distinct functions of S100A8 and S100A9 if expressed as intracellular and extracellular by tumor or immune cells (1, 2, 20, 53). Intracellular S100A8/A9 controls epithelial differentiation and cleavage of the EGFR (1, 2, 20). Silencing S100A8/A9 in HNSCC cells led to elevated EGFR levels, and a reduced intracellular expression of both S100 proteins was associated with improved survival in HNSCC (20, 23). We observed intracellular expression of S100A8 and S100A9 in HPV-negative and HPV-positive PeCa (Supplementary Figures 2, 3). On the other side, extracellular S100A8/A9 can fuel carcinogenesis by recruiting MDSCs and may play a pivotal role during the amplification of an inflammatory loop in the TME (1, 53) (Figure 5). Although these results together with previous data on CXCL8 released by HPV-positive PeCa cell lines point to an increment of neutrophil-MDSC recruitment during (HPV-driven) penile carcinogenesis (Figure 5), there might be a distinct role for intracellular expressed S100A8/A9. Respective expression analyses in HPV-positive PeCa cell lines revealed that HPV-positive cell lines were negative for both subunits (Supplementary Figure 8). We may hypothesize that our in vitro 3D cell culture conditions do not imitate the physiologic conditions completely and that TME-related factors contribute to the in situ expression of S100A8/A9 that have not been identified and are not reflected by our culture conditions so far. Several soluble mediators were described to induce S100A8/A9 protein expression including Lipopolysaccharide (LPS), Tumor necrosis factor-alpha (TNF-α), interleukin-1a (IL-1α), interleukin-1b (IL-1β), interleukin-10 (IL-10), interleukin-22 (IL-22), Vascular endothelial growth factor-A (VEGF-A), and Tumor growth factor beta (TGF-β) with LPS indicating a bacterial involvement together with a suggested activation of NFκB and Signal transducer and activator of transcription 3 (STAT3)-based signaling pathways (53). More recent investigations targeting the role of neutrophil subsets during carcinogenesis suggested that distinct subsets, of naturally occurring and TME-induced subsets, could display an increased capacity to support cancer progression and to upregulate S100A8/A9 expression (1, 8). More detailed analyses on the modes of action of S100A8/A9, the putative role of p63 in this context, and how a chronically inflammatory TME supports the penile carcinogenesis may result in the discovery of new therapeutic targets.

The receptor for S100A9 and Calprotectin, CD147, was elevated, as expressed in PeCa specimens. Similar to both S100 subunits, CD147 displayed an elevated expression especially at the tumor core and marked with a higher-frequency disseminating cancer. An elevated expression of CD147 in HPV-related cancers as well as a correlation with Ki-67–positive proliferating cancer cells, T stage, and worse overall survival has been reported previously (31, 32, 44, 54–56) but with limited sample size and high uncertainty in the results for PeCa. CD147 expression is elevated expressed in cells expressing HPV16 oncoproteins, suggesting that viral oncoproteins may act as a direct or indirect inductor of CD147. Elevated expression of CD147 predicts poor prognosis and resistance to radiotherapy and chemo-radiotherapy (31, 32, 54, 55). In a recent large-scale study on multiple cancer types, the expression of CD147 was significantly elevated expressed in 24 of the 31 cancer types, related to immune infiltration, poor outcome regarding overall and disease-free survival, as well as predictive for (immuno-) therapeutic response (56). The study confirmed the elevated expression of CD147 in PeCa using multiplex immunofluorescence staining on TMA. Moreover, the authors identified a high level of CD147+ M2 macrophages in cervical cancer, another highly HPV-related entity, suggesting that monocyte- and neutrophil-derived MDSCs can express CD147. Although the infiltration of MDSCs expressing S100A8 and S100A9 has been closely related to tumor stage, lymph node metastases, and poor prognosis (57), there is a rising evidence that CD147+ myeloid cells are key players in HPV-driven cancers. However, the underlined technique did not differentiate between the membranous and soluble version of CD147. Shedding of CD147 from the surface is mediated by MMP and ADAM proteases with the soluble version associated with tumor growth, metastasis, and chemoresistance (58–61) (Figure 5). Although our results, so far, do not support a critical role of sCD147 for the susceptibility of cancer cells to neutrophil-mediated ADCC, the soluble isoform converts quiescent fibroblasts into cancer-associated fibroblasts and promotes the epithelial-to-mesenchymal transition of cancer cells, further boosting invasion and metastasis of cancer cells (30) (Figure 5). Evaluating the detailed molecular mechanisms of the CD147-fueled and HPV-driven tumorigenesis by future studies deciphering the individual contribution of membranous and soluble CD147 will provide enormous benefits in developing new treatments for HPV-associated entities, such as PeCa.

Faced with a continuous majorly HPV-related increment in incidence rates, markers for improved patient stratification are highly needed. Parameters describing the dissemination potential of the primary tumor may help to identify patients at a higher risk for more aggressive cancers and lymph node metastasis. Here, we described novel markers—S100A8, S100A9, and CD147—which in combination with our recent data on CD15 (16), point to a prominent role of the Calprotectin-CD147-neutrophil axis in the progression of penile cancer that may have additional implications for immunotherapeutic approaches, requiring neutrophils for their efficacy. Respectively, therapeutic strategies may improve the outcome of cancer treatments by interfering with these carcinogenesis accelerating regulatory cascades.
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Introduction

PD-(L)1 inhibitors (IO) have improved the prognosis of non-small-cell lung cancer (NSCLC), but more reliable predictors of efficacy and immune-related adverse events (irAE) are urgently needed. Cytokines are important effector molecules of the immune system, whose potential clinical utility as biomarkers remains unclear.



Methods

Serum samples from patients with advanced NSCLC receiving IO either alone in the first (1L, n=46) and subsequent lines (n=50), or combined with chemotherapy (ICT, n=108) were analyzed along with age-matched healthy controls (n=15) at baseline, after 1 and 4 therapy cycles, and at disease progression (PD). Patients were stratified in rapid progressors (RP, progression-free survival [PFS] <120 days), and long-term responders (LR, PFS >200 days). Cytometric bead arrays were used for high-throughput quantification of 20 cytokines and other promising serum markers based on extensive search of the current literature.



Results

Untreated NSCLC patients had increased levels of various cytokines and chemokines, like IL-6, IL-8, IL-10, CCL5, G-CSF, ICAM-1, TNF-RI and VEGF (fold change [FC]=1.4-261, p=0.026-9x10-7) compared to age-matched controls, many of which fell under ICT (FC=0.2-0.6, p=0.014-0.002), but not under IO monotherapy. Lower baseline levels of TNF-RI were associated with longer PFS (hazard ratio [HR]= 0.42-0.54; p=0.014-0.009) and overall survival (HR=0.28-0.34, p=0.004-0.001) after both ICT and IO monotherapy. Development of irAE was associated with higher baseline levels of several cytokines, in particular of IL-1β and angiogenin (FC=7-9, p=0.009-0.0002). In contrast, changes under treatment were very subtle, there were no serum correlates of radiologic PD, and no association between dynamic changes in cytokine concentrations and clinical outcome. No relationship was noted between the patients’ serologic CMV status and serum cytokine levels.



Conclusions

Untreated NSCLC is characterized by increased blood levels of several pro-inflammatory and angiogenic effectors, which decrease under ICT. Baseline serum cytokine levels could be exploited for improved prediction of subsequent IO benefit (in particular TNF-RI) and development of irAE (e.g. IL-1β or angiogenin), but they are not suitable for longitudinal disease monitoring. The potential utility of IL-1/IL-1β inhibitors in the management and/or prevention of irAE in NSCLC warrants investigation.
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Introduction

Non-small-cell lung cancer (NSCLC) is the deadliest malignancy with an estimated 1.8 million deaths worldwide in 2021 (1). Most patients are diagnosed with advanced, incurable disease and a median life expectancy below two years (2). Immunotherapy (IO) with programmed death-(ligand) 1 [PD-(L)1] inhibitors, like pembrolizumab, atezolizumab and nivolumab, was a major step forward in the management of stage IV disease, facilitating long-term disease control and 5-year overall survival (OS) rates of 20-30% (3, 4). However up to 1/3 of patients do not respond, while potentially life-threatening grade III-IV immune-related adverse events (irAE) occur in approximately 10% of cases (5–7). One major unmet need is finding more reliable predictors of efficacy and toxicity to improve guidance of patient management. Tumor PD-L1 is the only currently approved biomarker (8, 9), and has also demonstrated association with the development of oligoprogression under IO (10), as well as irAE (5), but these associations are weak and complicated by considerable spatial heterogeneity of PD-L1 expression (11). Besides, the tumor mutational burden (TMB) is a pure genetic biomarker less prone to sampling errors, whose implementation has nevertheless been hampered by insufficient predictive potential and considerable technical variability (12–14). Immunologic parameters of the tumor tissue, like the emerging association of B cells and tertiary lymphoid structures with long-term IO benefit (15, 16), are an attractive alternative that directly reflects immunobiologic processes (17), but their use is limited by the scant material obtainable through small biopsies and the high procedural risk of repeated assessments. Therefore, there is increasing interest in soluble blood biomarkers that could be used to stratify patients and monitor treatment in a non-invasive manner (18). While rudimentary parameters based on routine laboratory tests, like the neutrophil-to-lymphocyte ratio (NLR, from the differential hemogram), and the advanced lung inflammation index (ALI, also incorporating the body-mass-index and serum albumin), have demonstrated predictive and prognostic utility for IO-treated NSCLC (19), a more detailed analysis of immunologic effector molecules in the blood would be expected to provide refined information and thus improve accuracy (17). Aim of this study was to systematically investigate the potential clinical utility of serum cytokines for the management of NSCLC patients treated with PD-(L)1 inhibitors.



Materials and methods


Patients and samples

This study included all patients with metastatic NSCLC and available serum samples, who received immunotherapy in the Thoraxklinik Heidelberg between 2012-2020, with a data cut-off on October 12th 2021. PD-(L)1 inhibitors were administered either alone in the first (1L-IO) or subsequent lines (2+L-IO, after preceding chemotherapy), or in the 1L combined with chemotherapy (ICT). Serum samples were collected prospectively at baseline before treatment start, and longitudinally after 1 (1C) and 4 cycles (4C) of therapy, as well as at the time of disease progression (PD) (20). In order to capture more clear signals of efficacy, the focus was placed on cases with either rapid progression (RP), i.e. progression-free survival (PFS) < 120 days, or long-time response (LR), i.e. PFS > 200 days, while patients with intermediate PFS (120-200 days) were excluded from analysis. A group of age-matched healthy subjects without NSCLC was analyzed as controls.

Histological diagnosis and molecular profiling of NSCLC using combined DNA/RNA next-generation sequencing (NGS) were performed in the Institute of Pathology Heidelberg, as published (21). Patients with routinely treatable genetic alterations, like EGFR and BRAF-V600 mutations, or ALK/ROS1/RET/NTRK fusions, received tyrosine kinase inhibitors and were excluded from this study. The only two cases with mutations of these genes were one patient with BRAF p.G466E, for which no targeted therapy has been approved yet by the EMA or FDA, and one case with MET exon 14 skipping, for which MET inhibitors had not been approved yet at the time of the patient’s treatment, both of which received first-line chemoimmunotherapy. Clinicopathological parameters were collected from the patients’ records. The following parameters were extracted: demographics, baseline clinical and tumor characteristics including the Eastern Cooperative Oncology Group performance status (ECOG PS) and smoking status, PD-L1 tumor proportion score (TPS), results of differential blood counts, irAE characteristics, systemic anticancer treatments, date of progression, date of the last follow-up, and date of death. PD-L1 TPS was assessed using the clone SP263 (Ventana/Roche, Mannheim, Germany) and trichotomized for analysis as <1, 1–49, and ≥50%. IgG and IgM against human cytomegalovirus (CMV) was quantified using ELISA according to the manufacturer’s instructions (Euroimmun, Lübeck, Germany), and presence of either antibody class was considered to reflect positive serologic status.

PFS was defined as the time from immunotherapy start to death or progression. Overall survival (OS) was defined as the time from immunotherapy start to death or last follow-up. The progression date under immunotherapy was verified by the investigators with review of radiologic images, i.e. chest/abdomen CT and brain MRI-based restaging every 6–12 weeks, without formal RECIST reevaluation, as several studies have demonstrated very good agreement between real-world and RECIST-based assessments (22, 23). Diagnosis of irAE was based on standard clinicolaboratory criteria (24). This study was approved by the ethics committee of Heidelberg University (S-579/2019), and all participants gave informed consent.



Selection of target cytokines

The cytokines in the panel were selected based on a search for original articles in PubMed on serum markers potentially associated with PD-(L)1 inhibitor efficacy in NSCLC or the development of irAE. Search terms were ((predictive biomarker[Title/Abstract]) AND ((NSCLC[Title/Abstract]) OR (lung cancer[Title/Abstract]))) with 624 results. Review articles, publications about treatments other than immunotherapy, about other tumor entities (e.g. SCLC), or about non-soluble biomarkers were excluded. After compilation of the first database, 10 additional papers were found through manual search focused on already identified potential markers. According to the published evidence and technical feasibility of multiplex measurements, the following 20 markers were selected for the current analysis: interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17F, interferon gamma (IFN-γ), tumor necrosis factor (TNF), intercellular adhesion molecule 1 (ICAM-1), interferon-gamma induced protein 10 (IP-10), vascular endothelial growth factor (VEGF), angiogenin, soluble CD40 ligand (sCD40L), granulocyte-colony stimulating factor (G-CSF), CC motif chemokine ligand 5 (CCL5), granzyme a, and soluble TNF-receptor I (TNF-RI). The results of the literature search and the rationale for selection of analyzed markers are shown in Supplementary Table 1.



Sample processing and cytokine testing

Blood was collected in lithium-heparin tubes, centrifuged at 2000 g for 10 minutes within 1 h from venipuncture, followed by removal, aliquoting and storage of serum at -80°C. For the quantification of cytokines, aliquots were thawed on ice and measured using cytometric bead arrays (CBA) according to the manufacturer’s instructions (Beckton Dickinson, Heidelberg, Germany) with standard (S) or enhanced (E) sensitivity kits, as appropriate. The limit of detection and range of assays used in this study is shown in Supplementary Table 2. In brief, each sample was centrifuged at 12000 g for 2 min at 4°C, and the supernatant transferred into a new tube and diluted 1:3 (S) or 1:4 (E) to a total volume of 50 µl. Capture beads were diluted 1:20 (for E kits, followed by a single wash step using 1 ml of wash buffer at 200g for 5 minutes) or 1:50 (for S kits), added to the samples (E: 20 µl; S: 50 µl), and incubated at room temperature (E: 2 h; S: 1 h). Next, the phycoerythrin (PE) detection reagent was added (E: 20 µl diluted 1:20; E: 50 µl diluted 1:50), samples were incubated for 2 h at room temperature in the dark, for E kits the second component of the detection diluent 1:10 diluted was added, and all samples underwent a final washing step with resuspension in 200 μl of wash buffer for measurement. Standard curves were generated by processing the lyophilized standards provided with the kits in a similar way as the patients’ samples. For sample acquisition, an LSR-Fortessa Flow Cytometer (Beckton Dickinson, Heidelberg, Germany) was used. Cytokine concentrations were calculated from the raw CBA data using the Fcap Array™ version 3.0 software (Soft Flow, Pecs, Hungary).



Statistical analysis

Statistical comparisons between patient groups (e.g. RP vs. LR) were performed using Wilcoxon tests, while paired Wilcoxon tests were used to analyze different time-points of the same patients (e.g. baseline vs. 4C). Fold change (FC) was calculated trough division of mean values. Survival was analyzed according to Kaplan-Meier and compared between groups using log-rank tests, after determining the optimal cut-off based on ROC and Youden-index analysis. The association with various parameters with survival was explored using Cox regression. The correlation between clinicopathological variables and serum markers was analyzed according to Spearman, while correlations classified as very weak (|r|<0.2), weak (|r|=0.2-0.3), moderate (|r|=0.3-0.5), and strong (|r|=0.5-0.7). Multiple testing correction was performed according to Benjamini- Hochberg. Statistical calculations were performed with SPSS version 28 (IBM Corp., Armonk, NY, USA) and R version 4.2.1 (www.R-project.org). Two-tailed p-values lower than 0.05 and with false discovery rate (FDR) lower 0.1 were considered significant.




Results


Patient characteristics

A total of 204 patients with metastatic NSCLC who received PD-(L)1 inhibitors in the first or subsequent lines could be included in the study (Figure 1). An overview of characteristics for study patients is given in Table 1, while more details about treatment type and stratification based on IO efficacy are provided in Supplementary Table 3. Mean age was 65 years (range 37-87) for first-line patients (n=154), 63 years (range 48-78) for patients in subsequent lines (n=50, Table 1), and 66 years (range 58-81) for age-matched healthy donors (n=15).




Figure 1 | Flowchart of study patients. A total of 894 patients with metastatic NSCLC from 2012-2020 was treated with immunotherapy (IO), i.e. either PD-(L)1 inhibitors alone or in combination with chemotherapy (ICT), of which serum samples were available for 253. This study focused on patients with either rapid progression (RP, i.e. within 120 days from immunotherapy start), or long-term benefit (LR, i.e. progression-free survival > 200 days), as explained in the Materials and Methods. Treatment was either in the first (1L) or in the second and subsequent lines (2+L IO). Samples were collected at baseline, after 1 cycle of treatment (1C), after 4 cycles of treatment (4C), or at the time of disease progression (PD), as possible. Some patients developed immune-related adverse-events (irAE), which were analyzed separately.




Table 1 | Patient characteristics.





Serum cytokine profile of advanced NSCLC at baseline

Several cytokines were significantly increased in the serum of untreated patients compared to age-matched healthy controls, i.e. IL-6, IL-8, IL-10, CCL5, G-CSF, ICAM-1, TNF-RI and VEGF (fold-change [FC]=1.4-261, p=0.026-9x10-7, Table 2 and Figure 2). Besides, chemotherapy-pretreated 2+L patients before start of immunotherapy in later lines showed similar changes, with significantly increased serum concentrations of IL-6, IL-8, IL-10, IP-10, CCL5, ICAM-1, TNF-RI and VEGF compared to the controls (FC= 1.7-2839; p=0.017–7x10-8), but mixed changes compared to untreated, newly diagnosed patients: IL-6, IP-10, CCL5 and ICAM-1 were significantly increased (FC= 1.4-11; p=0.011–0.0007), while IL-2 and G-CSF were decreased (FC= 0.2-0.3; p=0.005–0.008, Table 2 and Figure 2). Of note, the baseline NLR was increased in all patient subgroups compared to controls, but decreased in 2+L compared to untreated patients (Table 2).


Table 2 | Profile of blood markers in study patients and healthy controls.






Figure 2 | Cytokine levels before immunotherapy start in newly diagnosed and chemotherapy-pretreated NSCLC compared to age-matched healthy control donors. Shown is the mean concentration of each cytokine in first-line patients at baseline, as well as in age-matched healthy controls. An overview of significant results and the explanation of abbreviations is shown in Table 2. In newly diagnosed patients IL-6 (FC=31, p=0.0002), IL-8 (FC=25, p=4x10-8), IL-10 (FC=11, p=0.0002), CCL5 (FC=1.4, p=0.026), G-CSF (FC=5, p=0.004), ICAM-1 (FC=261, p=9x10-7), TNF-RI (FC=1.6, p=0.021), VEGF (FC=2, p=0.007) and NLR (FC=5, p=10-9) were elevated. In pretreated patients IL-6 (FC=49, p=5x10-6), IL-8 (FC=34, p=7x10-8), IL-10 (FC=9 p=4x10-6), IP-10 (FC=2, p=0.006), CCL5 (FC=1.9, p=0.001), ICAM-1 (FC=2839, p=9x10-7), TNF-RI (FC=1.7, p=0.001), VEGF (FC=2, p=0.017) and NLR (FC=4, p=4x10-7) were elevated as well; *=p<0.05; **=p<0.01; ***=p<0.001.





Serum cytokine changes under treatment with PD-(L)1 inhibitors

In contrast to prominent aberrations at the time of immunotherapy start, serum cytokine changes under treatment with PD-(L)1 inhibitors were subtle (Figures 3A, B). Most consistent was a decrease in angiogenin after 1 cycle in the first line (FC=0.6-0.7, p=0.014-0.006) or after 4 cycles in later lines (FC=0.3, p=10-5). Other changes were either inconsistent, i.e. ICAM-1 dropped under IO-monotherapy in the first line, but increased under treatment in later lines; sCD40L was lower under treatment in the first, but not in subsequent lines; CCL5 was decreased under treatment in subsequent, but not in the first line; or concerned chemoimmunotherapy only, but not PD-(L)1 monotherapy, i.e. decreases of IL-6, IL-8, IL-12p70, and increases in IP-10 and G-CSF (Figures 3A, B). The NLR also decreased under treatment, but only in patients receiving ICT (Figures 3A, B). No significant changes were observed at the time of disease progression compared to the levels after 4 treatment cycles (Figures 3A, B).




Figure 3 | Changes of serum cytokines levels under immunotherapy in NSCLC patients compared to baseline values. (A) for patients receiving first-line immunochemotherapy (ICT): baseline (BL), after 1 cycle of treatment (C1), after 4 cycles of treatment (C4), at the time of disease progression (PD). (B) for patients receiving first-line PD-(L)1 monotherapy (1L-IO): baseline (BL), after 1 cycle of treatment (C1), after 4 cycles of treatment (C4), at the time of disease progression (PD). Shown is the mean concentration of each cytokine in the respective patients. An overview of significant results and the explanation of abbreviations is shown in Table 2; *=p<0.05; **=p<0.01; ***=p<0.001.





Serum cytokine changes associated with survival

For both first-line PD-(L)1 inhibitor monotherapy and ICT cohorts, LR patients had significantly lower TNF-RI levels at baseline compared to RP patients (FC=0.5-0.8, p=0.006-0.003, Table 2). The respective TNF-RI cut-off was 2139.7 pg/ml, as determined by receiver operating characteristic (ROC) curve and Youden index analysis (Supplementary Figure 1). Patients with low TNF-RI baseline levels receiving PD-(L)1 monotherapy showed longer PFS (442 vs. 80 days in median, hazard ratio [HR] = 0.42, p=0.014) and OS (not reached vs. 229 days, HR = 0.28, p=0.004) compared to patients with high TNF-RI levels, Figures 4A, B). Besides, patients with low TNF-RI baseline levels receiving ICT showed longer PFS (409 vs. 212 days in median, hazard ratio [HR] = 0.53, p=0.009) and OS (not reached vs. 493 days, HR = 0.34, p=0.001) compared to patients with high TNF-RI levels, Figures 4C, D). Additionally, lower IL-6 levels were also significantly linked with IO efficacy for patients receiving ICT (Table 2), but other associations did not exceed the FDR<0.1 threshold (Supplementary Table 4). Patients with lower IL-6 levels at baseline receiving ICT showed longer PFS (436 vs. 212 days in median, HR = 0.50, p=0.003) and OS (not reached vs. 514 days in median, HR = 0.29, p=0.0003) than patients with higher IL-6 levels. No differences in cytokine levels under treatment and during disease progression were observed between LR and RP after correction for multiple testing (Table 2 and Supplementary Table 4). The NLR at baseline and after 4 cycles of treatment was associated with LR in patients receiving PD-(L)1 monotherapy, but not in patients receiving ICT (Table 2).




Figure 4 | Serum cytokines associated with immunotherapy efficacy and toxicity in NSCLC. (A) The median progression-free survival (PFS) under PD-(L)1 monotherapy for patients with low TNF-RI at diagnosis (<2139.7 pg/ml, please see Supplementary Figure 1) was 442 days vs. 80 days for patients with high TNF-RI. (B) The median overall survival (OS) under PD-(L)1 monotherapy for patients with low TNF-RI at diagnosis (<2139.7 pg/ml) was not reached vs. 229 days for patients with high TNF-RI. (C) The median PFS under immunochemotherapy (ICT) for patients with low TNF-RI at diagnosis (<2139.73 pg/ml, please see Supplementary Figure 1) was 409 days vs. 212 days for patients with high TNF-RI. (D) The median OS under ICT for patients with low TNF-RI at diagnosis (<2139.73 pg/ml) was not reached vs. 493 days for patients with high TNF-RI. (E) The mean baseline serum IL-1β concentration for patients with metastatic NSCLC receiving first-line ICT who subsequently developed irAE was 1472 fg/ml vs. 206 fg/ml for patients without irAE; **=p<0.01. Error bars indicated standard error of the mean. (F) The mean baseline serum angiogenin concentration for patients with metastatic NSCLC receiving first-line ICT who subsequently developed irAE was 903,463 pg/ml vs. 100,254 pg/ml for patients without irAE; ***=p<0.001. Error bars indicated standard error of the mean.





Baseline serum cytokines levels associated with the development of irAE

Several cytokine abnormalities were evident in baseline samples of patients receiving ICT, who subsequently developed irAE (Figures 4E, F), i.e. in order of decreasing degree of association: elevated baseline levels of angiogenin (FC=9, p=0.0002), IL-1β (FC=7, p=0.009), IL-5 (FC=4, p=0.011), IL-12p70 (FC=4, p=0.019), IL-10 (FC=3, p=0.004), and IL-8 (FC=1.6, p=0.0285), as well as reduced baseline levels of G-CSF (FC=0.7, p=0.007). In addition, patients developing irAE under PD-(L)1 monotherapy in later lines showed higher baseline levels of IL-5 (FC=17, p=0.003), IL-12p70 (FC=9, p=0.014), and granzyme A (FC=1.3, p=0.003, Table 2). The characteristics of irAE are shown in Supplementary Table 5. No significant changes of the aforementioned cytokines were noted according to the severity or irAE (grade 1/2 vs. 3/4) or the use of steroids or not (data not shown).



Serum cytokine levels associated with clinical characteristics

Several cytokines were associated with each other, most notably IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, ICAM-1, TNF and angiogenin formed a cluster with multiple (>1) moderate (r>0.3) significant correlations with each other (Table 3). Notable was also a weak, but significant (r=0.28, p=5x10-9) correlation between TNF-RI and IL-6, the two cytokines more prominently linked to immunotherapy efficacy, as described in the previous section Serum cytokine changes associated with survival.


Table 3 | Overview of the associations between blood cytokine levels and patient characteristics.



Furthermore, the correlations between baseline serum cytokine levels and clinical characteristics are summarized in Table 4. IL-6 levels were higher in men (FC=4, p=0.003), while IP-10 showed a moderate positive correlation with age (r=0.323, p=4x10-5). All other associations noted were either non-significant or weak (|r|<0.3). In particular, no association was found between the serologic CMV status of patients and serum cytokine levels.


Table 4 | Associations between blood cytokine levels and patient characteristics.






Discussion

Main objective of this study was to characterize the potential clinical utility of serum cytokine concentrations in IO-treated NSCLC. One prominent finding was the profoundly altered cytokine profile of newly diagnosed NSCLC patients compared to age-matched healthy controls (Table 2 and Figure 2). Several interrelated (Table 4) mediators were significantly elevated, including the proinflammatory cytokines IL-6, IL-8, G-CSF and the proinflammatory chemokine CCL5 (25), the proinflammatory adhesion glycoprotein ICAM-1, soluble TNF-RI, which is increased in inflammatory states to curb the bioactivity of TNF (26, 27), the anti-inflammatory IL-10 (28), as well as the proangiogenic VEGF (29). These results illustrate the systemic inflammation and immune dysregulation present in metastatic NSCLC, which explains several disease manifestations and offers specific therapeutic vulnerabilities. For example, the increased NLR in the blood of these patients is facilitated by elevated levels of various interleukins and G-CSF, which stimulate granulopoiesis (30), ICAM-1 expression is induced by inflammation and associated with worse prognosis in NSCLC and other cancers likely by facilitating the metastatic cascade (31), while the therapeutic relevance of elevated VEGF in the circulation is reflected by the success of bevacizumab and other angiogenesis inhibitors in the treatment of metastatic NSCLC (32). Of note, association of blood cytokine levels with the tumor PD-L1 expression were generally absent or very weak (Table 4), so that these parameters capture different aspects of NSCLC immunobiology. For example, alterations of the lung and gut microbiome were associated with increased levels of several inflammatory serum cytokines, including IL-6 and TNF-α, in preclinical models of lung cancer, which could in part be remedied by the administration of probiotics (33, 34). At the same time, the association of IP-10 and CCL-5 with PD-L1 TPS (Table 3) probably explain why these were elevated only in 1L-IO (with higher PD-L1 expression ≥ 50%) or ICT patients (with lower average PD-L1 expression), respectively (Table 2).

In contrast, serum cytokine changes under treatment were subtle. Consistent was only a decrease in angiogenin, also known as ribonuclease 5, a small, 123 amino acid protein that stimulates angiogenesis alongside several other pleotropic effects (35). Recently it has been reported, that increased serum angiogenin correlated with dynamic contrast-enhanced MR-PET parameters in NSCLC patients, which were improved under anti-angiogenic therapy and linked with OS (36). However, in our study the change in angiogenin under immunotherapy was neither accompanied by a decrease in circulating VEGF nor associated with OS (Table 2), therefore its significance remains unclear. From a clinical perspective, an important conclusion from the results of this study is that serial serum cytokine measurements are not suitable for disease monitoring, since there were minimal changes under treatment in our cohort (Figures 3A, B). This is in contrast to longitudinal ctDNA assays, which have demonstrated potential clinical utility in the context of both immunotherapy-treated (37) and oncogene-driven disease (38), based on the strong association of higher tumor mutation levels in the blood under therapy with refractory disease and shorter PFS (39). In particular, serum cytokines are obviously not suitable for early detection of treatment failure, since no consistent changes accompanied PD in our patients, contrary to ctDNA-based liquid biopsies, which can reveal emergence of novel mutations of increases in allelic frequencies of preexisting variants as a sensitive marker of PD several months earlier than radiologic tumor growth according to recent pivotal studies (40). Moreover, dynamic changes of cytokine levels after 1 and 4 treatment cycles were not associated with immunotherapeutic efficacy (LR vs. RP, Table 2), while dynamic changes of the NLR after 4 cycles (12 weeks) correlated with clinical outcome, as has also been observed by other investigators (41). Besides low sensitivity, as demonstrated by the current study, another problem of disease monitoring using serum cytokines would be susceptibility to external influences by factors unrelated to the tumor remission status, like use of steroids and concomitant infection (42, 43). The lack of association between serum cytokine concentrations in NSCLC and the serologic CMV status (Table 4), itself linked to mild chronic immune activation and immunosenescence (44), also reflects the inability of cytokines to capture subtle systemic changes of the adaptive immunity, as those expected to occur longitudinally under PD-(L)1 blockade.

Another important question is whether baseline cytokine levels could be used for improved prediction of immunotherapy benefit. In general, few differences in the blood levels of analyzed cytokines between patients with LR vs. RP were noted, collectively suggesting an association between lower levels of inflammatory markers, such as IL-6, IL-8, IP-10, TNF-RI and the NRL, with better immunotherapy outcome (Table 2). Similar observations have recently been reported by other investigators, as well, for example lower IL-6 and IL-8 levels at baseline as well as after 1 cycle of treatment were strongly linked to longer survival under immunotherapy in patients with lung cancer and melanoma from a prospective multicenter study in Italy (45). Based on the results of the current study, low levels of TNF-RI appear to be a particularly promising marker for several reasons: first, for patients receiving PD-(L)1 inhibitor monotherapy, the TNF-RI differences between LR vs. RP were more pronounced than those observed for the established marker NLR (FC=0.5 with p=0.003 vs. FC=0.8 with p=0.024, Table 2) (46); second, TNF-RI retained prognostic utility also for patients treated with ICT (FC=0.8 with p=0.006, Table 2 and Figure 4), which is a major unmet need, because the NLR, ALI, PD-L1 and other biomarkers of PD-(L)1 monotherapy become useless, when additional chemotherapy is administered (19); third, blood TNF-RI levels showed no correlation with tissue PD-L1 expression (Table 4), which means that it represents an independent biomarker; finally, the signal of TNF-RI observed in this study appears to be stronger than that of several other inflammatory biomarkers described in the literature, like the blood levels of IL-6 (47), IL-8 (48), IP-10 (49), ICAM-1 (50) and VEGF (51). Actually, all these molecules showed significantly increased levels at baseline in our patients, similar to TNF-RI, but lower levels of TNF-RI could much better discriminate LR vs. RP patients (Table 2 and Supplementary Table 4).

Remarkable was also the association of several serum cytokines, in particular increased angiogenin and IL-1β, but also IL-5, IL-8, IL-10, IL-12p70, and granzyme A, or decreased G-CSF at baseline, with the subsequent development of irAE (Figures 4E, F). Higher baseline IL-1β, IL-10 and IL-12p70 serum concentrations in NSCLC patients who later developed rheumatic irAE have been independently confirmed in a different patient cohort (personal communication with KB and MMSC). Such an association between preexisting systemic inflammation and autoimmunity has also been observed in other tumor types, like indolent B-cell lymphomas (52) and malignant thymoma (53). These results corroborate previous reports of a higher propensity for the development of irAE in IO-treated cancer patients with higher blood IL-10 (54) and other inflammatory mediators (55). Of note, irAE-related cytokines did not include TNF-RI and IL-6, whose lower levels were associated with longer survival in this study (Table 2), so that a complex protein panel may be able to independently predict both IO efficacy and IO toxicity. The association of baseline IL-1β levels with irAE is particularly interesting, because it had not been reported in NSCLC patients before, and because the IL-1β inhibitor canakinumab and other IL-1 drugs are widely, in part off-label, used to treat a variety of mainly autoinflammatory disorders in rheumatology (56). There is also evidence suggesting anticancer activity of canakinumab, for example its use was associated with a reduced incidence of lung cancer in the phase 3 CANTOS study (57), so that phase 3 trials of this drug in combination with chemotherapy for the treatment of NSCLC in various stages are ongoing (58). The findings of this study suggest that these drugs could potentially be useful in the treatment or even prevention of irAE, as well.

Main advantages of this work are the relatively large number of cytokines based on a preceding systematic literature review, the relatively large number of patients in several dedicated cohorts, i.e. first-line PD-(L)1 monotherapy, ICT, or PD-(L)1 monotherapy in subsequent lines, the prospective longitudinal sample collection at defined uniform time-points, the simultaneous consideration of IO efficacy and toxicity, and the rigorous statistical testing including correction for multiple comparisons and multivariable testing. Main limitations are the smaller number of available samples under treatment and at disease progression, as well as the inability to exclude potential confounders. Therefore, the results will need to be validated in future studies, which might pave the way for building a complex score based on several cytokines and data mining analysis (59). Other emerging approaches to refine patient stratification are measurement of circulating tumor cells, ctDNA, miRNA, blood exosomes, gene expression profiling, or analysis of the T-cell receptor (TCR) repertoire (18, 37, 60–64).



Conclusion

In conclusion, this study could demonstrate that several altered serum cytokines in patients with advanced NSCLC could be exploited in order to predict efficacy and toxicity of PD-(L)1 monotherapy or ICT more accurately, but they are not suitable for longitudinal disease monitoring and early detection of tumor escape.
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Head and neck squamous cell carcinoma (HNSCC) usually has a poor prognosis and is associated with a high mortality rate. Its etiology is mainly the result from long-term exposure to either alcohol, tobacco or human papillomavirus (HPV) infection or a combination of these insults. However, HNSCC patients with HPV have been found to show a survival advantage over those without the virus, but the mechanism that confers this advantage is unclear. Due to the large number of HPV-independent HNSCC cases, there is a possibility that the difference in prognosis between HPV-positive (HPV+) and negative (HPV-) patients is due to different carcinogens. To clarify this, we used scRNA data and viral tracking methods in order to identify HPV+ and HPV- cells in the tumour tissues of patients infected with HPV. By comparing HPV+ and HPV- malignant cells, we found a higher level of tumour stemness in HPV- tumour cells. Using tumour stemness-related genes, we established a six-gene prognostic signature that was used to divide the patients into low- and high-risk groups. It was found that HPV patients who were at low-risk of contracting HNSCC had a higher number of CD8+ T-cells as well as a higher expression of immune checkpoint molecules. Correspondingly, we found that HPV+ tumour cells expressed higher levels of CCL4, and these were highly correlated with CD8+ T cells infiltration and immune checkpoint molecules. These data suggest that the stemness features of tumour cells are not only associated with the prognostic risk, but that it could also affect the immune cell interactions and associated signalling pathways.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) refers to cancers of the oral cavity, oropharynx and larynx and is the sixth most common cancer worldwide. HNSCC arises mainly as a result of exposure to carcinogens (e.g. alcohol and/or tobacco) or through malignant transformation due to human papillomavirus (HPV) infection. As most cases are locally advanced disease, HNSCC is associated with a poor prognosis, leading to high mortality rates. However, HPV-associated HNSCC appears to exhibit several unique biologically and clinically relevant features, with the presence of HPV conferring a survival advantage compared to its absence. A specific tumour-infiltrating immune population of CD8+ T cells was identified in HPV+ HNSCC patients, and this consisted of a greater proportion of dysfunctional cells (1).

HPV+ patients also appear to have a higher response rate to the programmed death 1 (PD-1) receptor and PD-1 ligand (PD-L1) ratio when compared to HPV- patients (2). PD-1 and PD-L1 belong to a family of immune checkpoint proteins that act as co-inhibitory factors that can minimize the development of the T cell response. The receptor/ligand interactions ensure that the immune system is activated at the appropriate time in order to reduce the risk of chronic autoimmune inflammation (3). Blocking these immune checkpoint proteins by using monoclonal antibodies have been shown to aid the immune system to overcome a cancer’s ability to resist the immune response and stimulate the defence mechanisms against the cancer (4, 5). However, the underlying mechanisms and potential associations between the HPV status of a patient with HNSCC and the tumour immune environment remain unclear and needs to be further investigated.

Single-cell RNA sequencing (scRNA-seq) is an emerging technology that allows judgements to be made about individual cells and facilitates the study of highly heterogeneous cell populations (6). In virology, scRNA-seq studies not only allow the identification of different cell types, which interact with various pathogens, but also allow the accurate detection of virally expressed RNA at the single cell level, thus detecting pathogen-infected cells and distinguishing them from neighbouring bystander cells (1, 6).

In this study, we analysed the clinical data of HPV+ HNSCC patients and their scRNA-seq profiles. This allowed the comparison of HPV+ tumour cells with bystander tumour cells in order to investigate the relationships of HPV and the progression of HNSCC. We found that HPV- tumour cells had a higher level of tumour stemness, which was closely associated with the poor prognosis of patients with HPV- HNSCC. More importantly, we found that the enhanced tumour stemness scoring was correlated with a reduced number of infiltrated CD8 T cells in these HPV- HNSCC patients. Our data also showed a significantly decreased CCL4 directed interaction of the immune cells in HPV– HNSCC patients compared to those who were HPV+. This might account for the degree of immune infiltration of cells and the efficiency of checkpoint therapy in HPV+ HNSCC patients.



Materials and methods


Cell culture

HPV+ (UM-SCC-47, UM-SCC-104) and HPV- HNSCC (UM-SCC-6, UM-SCC-17A, UM-SCC-1) cell lines were purchased from Sigma. UPCI : SCC090 were from ATCC. Cells were incubated in DMEM medium supplemented with 1% L−glutamine, 10% FBS and 100 U/mL penicillin/streptomycin for 24h in an atmosphere of 5% CO2:95% air. The glioma cells in the co-culture system were collected and RNA was extracted by using Trizol. Transcriptome sequencing was performed by Novogene and differential gene expression analyses were performed by using the R software package, DESeq2, according to the manufacturer’s instructions.



HNSCC RNAseq dataset

The bulk RNA sequencing and the clinical data were obtained from the HNSCC dataset of TCGA database, which consisted of 487 samples (https://portal.gdc.carcinoma.gov/). Each probe ID received an annotation with respect to the gene from the corresponding platform annotation profile of the GDC website and the raw matrix data received the quantile normalization and log2 conversion. As smoking is the independent risk factor for HNSCC, we excluded the patients who smoked. HPV groupings for HNSCC patients were based on the HPV condition which provided by the Pan-Cancer Microbiome (cBioportal.org). 72 of the 249 remaining patients were HPV+ and 177 were HPV-. The raw gene expression datasets were processed. Samples with missing data were excluded from this study.



Correlation between HPV and survival of HNSCC patients

The information for the presence of HPV originated from the pan cancer dataset. These data were registered to the clinical data from TCGA accordingly (7). Correlations between the presence of HPV and the survival of HNSCC patients were studied as described in the following methods.



ScRNA-seq analysis

The scRNA-seq data of patients with HNSCC were obtained from the GEO database (GSE164690) (8). The data were integrated using the SCTransform method of R software Seurat package and analysed using mutual principal component analysis (PCA). Clustering was performed in a resolution of the FindClusters that set to 0.1 and visualized with the uniform manifold approximation and projection (UMAP). Unique molecular modifier (UMI) counts of less than 500, doublets and cells with >5% of their mitochondrial genes were filtered out.

Viral mapping was performed as previously described (7). Raw scRNA fastq data were processed with UMI-tools (https://github.com/CGATOxford/UMI-tools).Virus infected cells were defined with the Viral-Track approach (6). In brief, the sequencing data containing the single cell index were mapped to the virus genome reference database and the status of the single cell was added to the expression matrix so as to correlate with the presence of HPV infection and the corresponding transcriptome.



Tumour stemess analyses

For the cell line, we calculated mRNA expression-based stemness indices (mRNAsi) using one-class logistic regression machine-learning algorithm (OCLR). For the scRNA data, we employed the trajectory analysis using Monocle 2 package.



Functional assay

GO ontology and KEGG pathway analyses were performed using the WebGestalt webserver. Cell- communication analyses was performed using the CellphoneDB R package (9). The Monocle2 R package was used for the trajectory analysis (10).



HPV PCR

Primers were used to amplify the HPV 16 E6 region as follows: E6 forward primer, 5’-TCAGGACCCACAGGAGCG-3′, reverse primer, 5’-CCTCTCACGTCGCAGTAACTGTTG-3′. β-actin, which was used as housekeeping gene, was amplified by using forward primer 5’-TCACCCACACTGTGCCCATCTACGA-3′, reverse primer, 5’-CAGCGGAACCGCTCATTGCCAATGG-3′. HPV+ refers to the mean fluorescence intensity values above 1.5-fold negative control tissues.



Immunohistochemistry

Immunofluorescence staining was performed as described previously (11). In brief, after embedding with a frozen section compound (Leica, #3801480), biopsies were sectioned into 4-μm on a microtome (Leica CM1950). For immunofluorescent staining, the sections were fixed in pre-cooled methanol (-20°C) for 5 minutes, after washing twice with PBS. The sections were then blocked with PBS/5%BSA/Fcγ blocker at 4°C for 1 hour. Primary antibodies were incubated with sections at 4°C overnight. After washing twice with PBS, the sections were incubated with fluorescent-coupled secondary antibodies for 1 hour at room temperature. After two further washes, the sections were mounted and imaged on an immunofluorescence microscope (Leica DMI3000B).

Antibodies used for staining included: Mouse-anti-human CD3 monoclonal antibody (Invitrogen, # MA1-21454), Rabbit-anti-human CTLA4 polyclonal antibody (Invitrogen, # PA5-115060), Rabbit-anti-human PD1 polyclonal antibody (Invitrogen, # PA5-20350), Rabbit-anti-human CCL4 polyclonal antibody (Invitrogen, #PA5-114961), Rabbit-anti-human FGFR2 polyclonal antibody (Invitrogen, #PA5-14651), A594 goat-anti-rabbit IgG (Affinity, #S0006), A488 donkey-anti-mouse IgG (Invitrogen, #A-21202) and DAPI (Invitrogen, #D21490).



Statistical methods

Statistical studies were performed with the R software. Kaplan-Meier (KM) and receiver operating characteristic (ROC) tests were carried out as previously described (12–14), which was done with the “survivor” and “survROC” packages (15). The ‘survminer’ package (16) was used to calculate the optimal cut-off data points. We assessed the prognostic correlates of potentially interesting genes with univariate and multivariate Cox regression correlations. For prognostic correlates, we used the hazard ratios and 95% confidence intervals. Differences between groups were analysed using GraphPad Prism 8.0 software. Comparisons between the two groups were made using the Student’s t-test and P<0.05 was considered to be statistically significant.




Results


HPV infection correlates with low-risk HNSCC patients

HPV groupings for HNSCC patients were based on the HPV condition which provided by the Pan-Cancer Microbiome (cBioportal.org). Kaplan-Meier curves showed shorter survival times for the HPV- patients when compared to those who were HPV+ (Figure 1A). As smoking is the independent risk factor for HNSCC, the patients who smoked were excluded so that 72 HPV+ and 177 HPV- cases remained. The survival time was shorter in the HPV- group compared to HPV+ patients after the smokers were excluded (Figure 1B). In order to be able to study the effect of HPV on HNSCC tumour cells, the scRNA-seq data were used to study HPV infection in vivo. During data mining, the HNSCC cells were divided into nine clusters, of which clusters 0 and 2 were tumour cells (Figure 1C, sFigures 1A, B). Approximately half of the cells in cluster 2 tumour cells were found to be infected with HPV, while more than 75% of cluster 0 tumour cells were infected (Figure 1D).




Figure 1 | Virus analysis of the prognosis of high and low-risk groups of HNSCC patients. (A) Kaplan-Meier survival analysis of the HPV+ group in HNSCC patients. (B) Kaplan-Meier survival analysis of the HPV+ group in HNSCC patients who did not smoke. (C) UMAP diagrams showing HPV+ and HPV- cells. (D) The bar graph quantifies and compares the proportion of HPV+ and HPV- cells in the main cell types. (E) A bubble plot showing the enriched gene ontology of GSEA KEGG analysis of the DEGs in the HPV+ cluster 0 cells. (F) A dot plot showing the PCA analysis of the 3 HPV+ or HPV- cell lines. (G) A Venn diagram showing the overlapping number of DEGs from the HPV+ tumour cells and HPV- cell lines. (H) A heatmap showing the expression of the overlapped DEGs in the HPV+ and HPV- cell lines.



Differentially expressed genes (DEGs) in HPV+ and HPV- tumour cells and GSEA functional analysis of these genes clearly indicated that HPV- tumour cells upregulated the genes associated with the IL17 signalling pathway (Figure 1E, sFigure 1B). This correlates with increasing evidence that supports the pro-tumourigenic mechanisms of IL17 signalling in the immunosuppressive endogenous microenvironment within the growing tumour (17). To further investigate the intrinsic effects of HPV on tumour cells, three different types of HPV+ or HPV- tumour cells were cultured. Transcriptomic analyses were performed on HPV+ and HPV- tumour cells obtained from these experiments. PCA analysis revealed significant differences between HPV+ and HPV- tumour cells (Figure 1F). Gene expression analysis identified 1341 DEGs between HPV+ and HPV- tumour cells and 90 of these overlapped with the DEGs found between HPV+ and HPV- cells in vivo (Figure 1G). A heatmap using these genes with a log fold change of more than 1 was constructed (Figure 1H). Although the presence of HPV in cells can lead to significant differences in gene expression, the data obtained from the cell lines and in vivo also show significant variations, suggesting the importance of the tumour microenvironment.



Stemness of HPV-infected tumour cells

The stemness of tumour cells is closely related to the malignancy and recurrence of tumours (18). In the transcriptomic data from cell lines, we found a high level of stemness in HPV- tumour cells, despite the lack of significance in the data due to the small sample size (Figure 2A). We therefore studied the level of stemness of tumour cells using scRNA data, in which we can identify genes that are in a transitional state between two different cell fates. Trajectory analysis was performed on HPV+ and HPV- tumour cells, and we identified nine trajectory states in HNSCC tumour cells, with states 1 and 9 pointing to early stages of pseudo-time and therefore correlating with stemness of the tumour (Figures 2B, C). HPV- tumour cells showed a high proportion of cancer stem cells (state1) compared to HPV+ cells (Figure 2D). While the expression seen in cluster 2 of both HPV+ and HPV- tumour cells was upregulated in the later states, a higher proportion of HPV+ cells in the cluster 0 displayed a developed manner compared to the HPV- cells (Figure 2E). This indicated an enhanced level of stemness in HPV- tumour cells. DEGs of the early state (state1) showed a reduction in cytokine and chemokine signalling pathways (Figures 2F, G), while the HPV+ state 1 tumour cells showed a reduced level of IL17 signalling. This was similar to the DEGs of HPV+ cluster 0 cells (Figure 1E, sFigures 2A, B).




Figure 2 | Stemness of HPV-infected tumour cells. (A) Boxplots to show the mRNAsi in the HPV+ or HPV- cell lines (n=3). (B) Pseudotime of HPV+ and HPV- tumour cells. (C) Trajectory analysis of HPV+ and HPV - tumour cells after identification of 9 states. (D) The bar chart indicates the ratio of HPV+ and HPV- tumour cells in different trajectory states. (E) Ridge plots showing the distribution of HPV+ and HPV- tumour cells on the pseudo-time. (F) A volcano plot showing the DEGs of state 1 tumour cells and their related functions. (G) A bubble plot showing the DEGs of state 1 tumour cells and their related functions. (H) A Venn diagram showing the overlapping number of DEGs from the state 1 tumour cells and the HPV+ cell lines. (I) A heatmap showing the expression of the overlapped DEGs in the HPV+ and HPV- cell lines.



To further investigate the genes associated with stemness in the tumour cell lines, we compared the stemness-related genes that were differentially expressed in the HPV+ tumour cell lines cultured in vitro and found that 134 of them overlapped with the state 1 stemness genes (Figure 2H). A heatmap was constructed using the genes with a fold change of more than 1, in which we found that many DEGs in either HPV+ or HPV- tumour cells remained in the same category (Figure 2I). Both in vitro and in vivo data implied a tendency of high stemness in the HPV- tumour cells.



The gene signature associated with stemness

As mentioned, we studied the level of stemness of HNSCC tumour cells using both cell lines and scRNA data. We filtered then the DEGs of the low stemness cells using the TCGA bulk-seq data. 34 risk negatively-related stemness genes were filtered for a univariate Cox regression study and these were found to significantly correlate with a reduced risk of HNSCC (p < 0.05; Figure 3A). By using the random survival forest algorithm, which is a powerful non-parametric method that can construct predictive models with time-to-event outcome, the top significant 6 genes were screened. These were ATP1A1, KMT2E, RAD23A, TRR, WASF2 and DNAJC9 (Figure 3B). The HNSCC patients in the TCGA dataset were then divided into groups with high- or low-risk, based on the expression levels of the gene signature. Kaplan–Meier curves showed that patients in the high-risk group had longer survival times than those in the low-risk group (Figure 3C). ROC curves obtained from the cases of HNSCC were plotted by estimating the predictive power of the genetic characteristics, and AUCs of 0.913 and 0.984 were obtained for 3- and 5-year survival rates, respectively (Figure 3D). The expression of the 6 signature genes were at a low level in state 1, but at a high level in the HPV+ group (Figures 3E, F). This was observed for both the scRNA and TCGA data (Figures 3F, G). Up to this point, we defined the stemness-based low and high risk TCGA samples using signature genes and compared the level of these signature genes in the HPV+ tumour cells and TCGA HNSCC cohort. Both data showed that the HPV situation is associated with the level of stemness-based signature genes.




Figure 3 | A gene signature based on the scoring of the level of stemness. (A) A volcano plot showing the stemness-related genes obtained from Cox regression analysis of survival-related HPV+ HNSCC patients. (B) Forest plot lines of the stemness-related top genes screened by using random survival forest analysis of HPV+ HNSCC patients. (C) Kaplan-Meier analysis of the risk groups that were defined with six gene tags associated with cell stemness in the TCGA dataset for HPV+ HNSCC. (D) Three- and five-year ROC survival curves of the risk groups from the TCGA dataset for HPV+ HNSCC. (E) Dot plots indicating the expression of the six signature genes in the nine states that were identified by trajectory analysis of HPV+ and HPV- tumour cells. (F) Violin plots indicating the expression of the six signature genes in the HPV+ and HPV- tumour cells. (G) Boxplots showing the the expression levels of the signature genes in the TCGA HPV+ and HPV- patients. p=0 refers to p<0.0001.



We also performed a similar analysis on the positively-related stemness genes and found that the majority were correlated with an increased risk of HNSCC (sFigures 3A, C). 3 of these (ALDOA, CTNNA1 and TMBIM6) were significantly different, although the AUCs for the 3- and 5-year survival rates were only 0.705 and 0.76, respectively (sFigures 3B, D). These genes were highly expressed in state 1 but were similar in both the HPV+ and HPV – groups (sFigures 3E, F).



The relationship between different HNSCC risk groups and immune checkpoint genes

In agreement with the previous studies, CIBERSORT estimated that the infiltration of immune cell subsets showed a greater proportion of CD8+ T cells in the HPV+ HNSCC patients when compared to those who were HPV- (Figure 4A). Also, the immune checkpoint genes, including CTLA4, LAG3, PDCD1, HAVCR2, PDCD1LG2 and TIGIT, were found to be higher in the HPV+ HNSCC patients (Figure 4B). Similar results were also observed with the scRNA data (sFigures 4A, B). To confirm the checkpoint protein expression, we performed immunostaining on the surgical sections from the HPV+ and HPV- HNSCC patients (Figure 4C). We observed significantly higher levels of CTLA4 and PD1 in the HPV+ HNSCC samples and a higher proportion of dysfunctional CD8+ T cells were found in HPV+ HNSCC patients (Figure 4C). Risk scores of HNSCC data and subtypes were evaluated according to the 6-gene signature that was established to be stemness-related genes. CIBERSORT estimated infiltration showed that the low-risk group of HNSCC patients had a higher proportion of CD8+ T cells (Figure 4D). In addition, the gene profiles showed that the immune checkpoint genes, CTLA4, LAG3, PDCD1 and TIGIT, were significantly increased in these patients (Figure 4E), suggesting a correlation between the stemness-related genes and the immune microenvironment.




Figure 4 | Tumour infiltrated immune cells in HPV+ and HPV- HNSCC patients. (A) A bar graph showing the CIBERSORT estimated infiltration of immune cell subsets of samples from HPV+ and HPV- HNSCC patients. (B) The relationship between HPV groups and immune checkpoint genes. Boxplots showing the gene expression levels of CTLA4, LAG3, PDCD1, PDCD1LG2, TIGIT and HAVCR2 in the HPV+ and HPV- HNSCC patients. p=0 refers to p<0.0001. (C) Representative immuno-stained photomicrographs of CTLA4 and PD1 in surgical sections obtained from patients with HNSCC. The CD3 stain shows the tumour infiltrated T cells. The data are means ± SD of 7 experiments and were analysed using Student’s t test; *P<0.05. (D) A bar graph showing the CIBERSORT estimated infiltration of immune cell subsets in the high- and low-risk groups of HPV+ HNSCC patients. (E) Boxplots showing the gene expression levels of CTLA4, LAG3, PDCD1, PDCD1LG2, TIGIT and HAVCR2 in the high- and low-risk groups of HPV+ HNSCC patients.





Cell communication between immune and HPV-infected tumour cells

To investigate the effect of HPV+ or HPV- tumour cells on immune cells, we constructed an intercellular communication network and analysed the interactions between tumour cells and immune cells (Figure 5A). HPV+ tumour cells displayed 25 extra cell-cell interactions when compared to HPV- cells, and of these BMPR1A showed the most promise as a favorable gene for the prognosis of HPV+ HNSCC patients. However, this was not the case for the HPV- HNSCC patients (Figures 5B, C). When the B cells, T cells and macrophages interacted with tumour cells, it was found that interactions with the FGFR2 gene were upregulated, which was not detected in the endothelial cell-tumour interactions (Figures 5D, E, sFigures 5A-C). The FGFR2 gene could also be used as a possible candidate for the prognosis of HPV+ HNSCC (Figure 5F). To confirm the FGFR2 expression, we performed immunostaining on the surgical sections from the HPV+ and HPV- HNSCC patients and observed a significantly higher level of FGFR2 in the samples of those who were positive (Figure 5G).




Figure 5 | Cell communication between immune cells and HPV+ tumour cells. (A) A network of interactions between immune and either HPV+ or HPV- tumour cells. The lines represent the pointing relationships. (B) A Venn diagram showing the shared and unique cell-cell interactions of immune cells with HPV+ or HPV- tumour cells. (C) Kaplan-Meier survival analysis of BMPR1A in the HPV+ and HPV- HNSCC patients. (D) Dot plots showing the most significant interactions of B cells with either HPV+ or HPV- tumour cells and the significance of their relationships. The horizontal coordinates are cell-type interactions and the vertical coordinates are protein interactions, with the larger dots indicating smaller p-values and the colours representing the average expression. (E) Boxplots showing the gene expression of FGFR2 in the HPV+ and HPV- HNSCC patients. p=0 refers to p<0.0001. (F) Kaplan-Meier survival analysis of FGFR2 in the HPV+ and HPV- HNSCC patients. (G) Representative immuno-stained photomicrographs of FGFR2 in surgical sections obtained from patients with HPV+ and HPV- HNSCC. The data are means ± SD of 7 experiments and were analysed using Student’s t test; **P<0.01.



More importantly, in this study, HPV+ tumour cells appeared to have a significantly higher level of cellular communication with CD8+ T cells, which correlated with the high proportion of tumour infiltrated CD8+ T cells in HPV+ HNSCC patients (sFigure 5C). The chemokine, CCL4, and the T cells activator, CD83, were also found to be upregulated in the HPV+ tumour-T cell interactions (Figure 6A). These were also genes that were upregulated in the HPV+ group and were significantly associated with a favorable prognosis in the HPV+ HNSCC patients (Figures 6B, C). Gene correlation assays showed that both CCL4 and CD83 not only correlated with the amount of recruited T cells, but also had a substantial correlation with the immune checkpoint genes such as CTLA4, LAG3, PDCD1, HAVCR2 and TIGIT (Figure 6D). Furthermore, the expression of CCL4 was validated and quantified using immunostaining, and this showed a significantly higher level of CCL4 in the HPV+ HNSCC samples (Figure 6E, F). The data indicated an important role of the interactions between HPV+ tumour cells and infiltrated T cells, which might account for the different prognoses observed in HPV+ and HPV- HNSCC patients.




Figure 6 | Cell communication between T cells and HPV+ tumour cells. (A) Boxplots showing the gene expression of CCL4, CD83 and FGFR2 in the HPV+ and HPV- HNSCC patients. p=0 refers to p<0.0001. (B) Kaplan-Meier survival analysis of CCL4 in the HPV+ and HPV- HNSCC patients. (C) Kaplan-Meier survival analysis of CD83 in the HPV+ and HPV- HNSCC patients. (D) A correlation plot showing the correlations between the expression levels of CCL4 and CD83 with those of the checkpoint related genes. (E) Representative immuno-stained photomicrographs of CCL4 in surgical sections obtained from patients with HPV+ and HPV- HNSCC. (F) Dot plot showing the quantification of immunostainings. The data are means ± SD of 7 experiments and were analysed using Student’s t test; *P<0.05.






Discussion

HNSCC is a type of cancer that undergoes malignant transformation as a result of exposure to carcinogens (e.g. alcohol and/or tobacco) or as a result of HPV infection. HPV-associated HNSCC has been found to exhibit unique biologically and clinically relevant features, and patients with the virus show a survival advantage when compared to those without. However, due to the large number of HPV-independent HNSCC, there is the possibility that the prognostic differences seen between HPV+ and HPV- cases are due to their different etiologies as well as the pathogenesis of the disease. In order to clarify this, we used scRNA data and viral tracking methods to identify HPV+ and HPV- cells in tumour tissues obtained from HPV-infected patients with HNSCC. A tumour stemness analysis for HPV-associated DEGs was performed and it was found that HPV- tumour cells had a higher level of tumour stemness (Figure 7).




Figure 7 | Workflow of our study.



In this study, we are only exploring the reasons why patients with HPV+ tumours have a better prognosis compared to HPV- patients. The association of HPV with a better prognosis does not necessarily mean that HPV is not involved in the development of cancer. It is possible that negative cases were infected at an earlier time point before cancer diagnosis, and the fact that HPV negativity is usually associated with advanced tumours, suggests that these viruses may become undetectable at a later stage of the carcinogenic process (19). Our data revealed a high proportion of tumour cells contain HPV, and we therefore hypothesized that HPV-containing cells in tumour tissue are likely to lose their internal mutational control during the oncogenic process. This would allow these cells to subsequently acquire the potential for gene expression and cancer cell recurrence that are associated with malignant mutations. In contrast, in the case of HPV posivity, tumour cells may be better controlled by the immune system due to the expression of viral proteins, leading to a relatively more promising prognosis for these patients.

As mentioned, we studied the level of stemness of HNSCC tumour cells using scRNA data. We filtered then the DEGs of the low stemness cells using the TCGA bulk-seq data. These top significant 6 genes, including ATP1A1, KMT2E, RAD23A, TRR, WASF2 and DNAJC9, were screened from the 34 negatively-related stemness genes, using the random survival forest algorithm. ATP1A1, KMT2E and WASF2 were known as the hallmarker of cancers and overexpression of these genes promote the survival of cancer cells (20–22), while RAD23A acts as a negative regulator of anti-virus response and might correlate directly with the HPV infection (23). TPR is a nucleoporin which prevents DNA damage (24) and DNAJC9 is a dual histone chaperone and heat shock cochaperone, which recruits HSP70 enzymes to guard histone structural integrity (25). Both TPR and DNAJC9 might have dual function in term of tumour biology. Although it is hard to understand how the gene signature was constructed based on the known function of each gene, the signature genes are very specific for the HPV+ group in term of both the expression and the prognostic risk.

Our data here reveals that HPV+ patients at low risk of HNSCC had higher numbers of CD8+ T cells and a higher expression level of immune checkpoint genes. We found that HPV+ tumour cells expressed higher levels of CCL4 by analysis of their cell-to-cell interactions and that this expression was highly correlated with CD8+ T cells and immune checkpoint molecules. CCL4 is known to enable the active recruitment of CD8+ cytotoxic T lymphocytes (26), which in turn leads to the diffusion of the chemokines, CCL3 and CCL4, and accelerate the recruitment of distant T cells through long-distance homotypic signalling (27). Our data here re-emphasises the importance of CCL4 in the regulation of the immune microenvironment of HPV+ HNSCC.

In the current study, clinical and scRNA-seq data from HNSCC patients were analysed to explore the relationship and mechanisms of high-risk HPV and the progression of HNSCC. This led us to determine the degree of immune infiltration, and the signalling pathways associated with HPV infection, with a view to revealing potential therapeutic targets associated with HNSCC. Our data suggested that HPV- HNSCC cells contained more properties associated with cancer stemness, both in terms of analysis and experimental validation of the gene expression profiles in tumour cell lines incubated in vitro. The level of stemness is not only associated with prognostic risk of tumours, but it can also affect the immune cell interactions and some signalling pathways associated with HPV+ HNSCC. Our study here revealed several novel potential targets for therapeutic options for patients with HNSCC. In addition, it may provide a potential mechanism for the development of a specific therapy regimen to combat both HPV+ and HPV- HNSCC. The limitation of current work is the limited number of patients that included in the scRNA analyes. Also, the multi-scaling method that integrates the bulk-seq data and scRNA might lead to certain bias due to the different number of factors involved.

The treatment of recurrent or metastatic HNSCC has long been similar. Recent advances in immunotherapy have given patients and physicians the option of omitting chemotherapy. In a small percentage of patients, immunotherapy has induced durable disease control. However, it remains unclear which patients can be prioritised for immunotherapy. Our current research has the potential to help HNSCC take one more step towards more personalised medicines.
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Supplementary Figure 1 | ScRNA analysis of the HPV+ and HPV- HNSCC-infiltrated cells. (A) Violin plots indicating the expression and distribution of marker genes. cluster 1 and 2 refer to tumor cells; cluster 1 T cells; cluster 3 plasma cells; cluster 4 and 8 B cells; cluster 5 endothelial cells; cluster 6 stroma cells; cluster 7 macrophages. (B) UMAP diagrams showing the clusters of the HNSCC-infiltrated cells. (C) Volcano plots demonstrating the expression patterns and levels of the genes in HPV+ HNSCC tumour cells.

Supplementary Figure 2 | Stemness of HPV-infected tumour cells. A volcano plot (A) and bubble plot (B) showing the DEGs of the HPV-infected state 1 tumour cells.

Supplementary Figure 3 | Gene signatures based on the stemness scoring of cells. (A) A volcano plot showing the stemness-related genes obtained from Cox regression analysis of survival-related HPV- HNSCC patients. (B) Forest plot lines of the stemness-related three top genes screened by using random survival forest analysis of HPV- HNSCC patients. (C) Kaplan-Meier analysis of the risk groups that were defined with three gene tags in the TCGA dataset for HPV- HNSCC patients. (D) Three- and five-year ROC survival curves of the risk groups from the TCGA dataset for HPV- HNSCC patients. (E) Dot plots indicating the expression of three signature genes in the nine states that were identified by trajectory analysis of HPV+ and HPV- tumour cells. (F) Violin plots indicating the expression of three signature genes in the HPV+ and HPV- tumour cells.

Supplementary Figure 4 | Tumour-infiltrated immune cells in HPV+ and HPV- HNSCC tumour cells. (A) A bar graph showing the immune cell subsets obtained from the scRNA data from HPV+ and HPV- HNSCC patients. (B) Violin plots showing the expression levels of CTLA4, LAG3, PDCD1, PDCD1LG2, TIGIT and HAVCR2 in the T cells.

Supplementary Figure 5 | Cell-cell communication between immune cells and HPV-infected tumour cells. Dot plots showing the most significant interactions (mean>1) of (A) endothelial cells, (B) macrophages and (C) T cells with either HPV+ or HPV- tumour cells and the significance of their relationships. The horizontal coordinates are cell-type interactions and the vertical coordinates are protein interactions, with the larger dots indicating smaller p-values and the colours representing the average expression.
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Introduction

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths globally. Tumour-infiltrating leukocytes play an important role in cancers, including CRC. We therefore sought to characterize the impact of tumour-infiltrating leukocytes on CRC prognosis.



Methods

To determine whether the immune cell profile within CRC tissue could influence prognosis, we employed three computational methodologies (CIBERSORT, xCell and MCPcounter) to predict abundance of immune cell types, based on gene expression. This was done using two patient cohorts, TCGA and BC Cancer Personalized OncoGenomics (POG).



Results

We observed significant differences in immune cell composition between CRC and normal adjacent colon tissue, as well as differences in based on method of analysis. Evaluation of survival based on immune cell types revealed dendritic cells as a positive prognostic marker, consistently across methodologies. Mast cells were also found to be a positive prognostic marker, but in a stage-dependent manner. Unsupervised cluster analysis demonstrated that significant differences in immune cell composition has a more pronounced effect on prognosis in early-stage CRC, compared to late-stage CRC. This analysis revealed a distinct group of individuals with early-stage CRC which have an immune infiltration signature that indicates better survival probability.



Conclusions

Taken together, characterization of the immune landscape in CRC has provided a powerful tool to assess prognosis. We anticipate that further characterization of the immune landscape will facilitate use of immunotherapies in CRC.
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Background

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide (1). While screening strategies and therapeutics have improved outcomes for colorectal cancer over the past few decades, prognosis for advanced stages remains very poor (2). CRC is conventionally classified by clinicopathological characteristics, such as TNM stage and histology (3, 4). Unfortunately, these features are often ambiguous in predicting clinical outcomes and response to therapeutics. In an attempt to circumvent this, CRC is often further characterized by genomic factors such as microsatellite instability status, as well as BRAF and KRAS mutational status (4, 5). While these factors are collectively better able to predict prognosis and drug response, they are limited and heterogeneity in clinical outcome remains problematic. Therefore, there is an urgent need for further identification of genomic and phenotypic features for the development of more effective prognostics and therapeutics for CRC.

Recent studies have sought to understand the complex relationship between the immune system and cancer. Importantly, studies have demonstrated that tumour progression and prognosis are influenced by immune cell infiltration in tumours and their surrounding tissues. Specifically, lymphocytic infiltration has been associated with good prognosis in breast, lung, prostate, ovarian and CRC (6–9). Due to this correlation, it has become evident that exploiting the immune system is not only a viable therapeutic strategy, but also may prove to be effective for prognostic purposes.

Several studies have identified tumour-infiltrating lymphocytes in CRC (9–11). These studies have shown that lymphocytic infiltration of CRC is associated with more favourable prognosis. Furthermore, a study by Galon et al. demonstrated that immunological infiltration of CRC is a better prognostic indicator than conventional histopathological staining (12). Additionally, infiltration of CRC with memory T cells was shown to be inversely correlated with signs of early metastatic invasion (13, 14). Collectively, these factors identify CRC as a promising target for immunotherapy. However, while immunotherapy is approved for a number of cancer types (14–16), clinical trials in unselected patients with CRC have not yielded promising clinical outcomes (17, 18). Currently, approval of checkpoint inhibition immunotherapy for CRC is limited to a subset of patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) tumours (19). While MSI-H or dMMR CRC, response to checkpoint inhibitor immunotherapy is encouraging, these subtypes only account for approximately 15% of CRC cases (20). It is therefore evident that further studies are necessary to identify additional factors that influence response to immunotherapy treatment in CRC.

Traditional methods used to identify infiltrated immune cells include immunohistochemistry and flow cytometry. Unfortunately, both of these methods are limited in their ability to accurately identify subsets of immune cells within a bulk tumour (14, 21). Several novel methods have been employed using gene expression profiles to predict abundance of specific immune cells within a bulk tumour. Microenvironment Cell Populations-counter (MCP-counter), is a method use to quantify the absolute abundance of eight immune and two stromal cell types (22). MCP-counter uses gene expression data to generate an abundance score for B lymphocytes, cytotoxic lymphocytes, CD3+ T cells, CD8+ T cells, monocytic lineage cells, myeloid dendritic cells, neutrophils, NK cells, endothelial cells and fibroblasts (22).

CIBERSORT is a deconvolution method used to identify subsets of infiltrated immune cells within a tumour and determine correlations to clinical outcomes (14, 21, 23). CIBERSORT uses relative gene expression of 547 genes that distinguishes 22 human hematopoietic cell types (referred to as a leukocyte gene signature matrix, LM22). LM22 is specifically able to phenotypically distinguish B cells, dendritic cells, eosinophils, macrophages, mast cells, monocytes, neutrophils, natural killer cells, plasma cells and T cells. xCell is a gene-signature based method, which uses a combination of gene set enrichment with deconvolution to analyze microarray and RNA-seq expression profiles (24). This method is able to predict abundance of 64 cell types, including immune cells, hematopoietic cells, and epithelial cells. Specifically, xCell can also generate abundance scores for adaptive and innate immune cells, including T cells, B cells, macrophages, monocytes, neutrophils, dendritic cells and natural killer cells (24). In this study, we employ MCP-counter, CIBERSORT and xCell to assess the immune cell composition in CRC and identify an immune profile associated with improved outcomes in survival.



Materials and methods


Data Mining

For the exploration datasets, publicly available expression data were downloaded from The Cancer Genome Atlas (TCGA) up to June 31, 2018 with the Genomic Data Commons (GDC) application. The data, which consist of RNA-sequencing data of 644 tumours and 51 adjacent normal tissues from CRC patients, were generated using the Illumina HiSeq platform. Clinical data from these patients were also retrieved from TCGA. To compare primary tumours with metastatic tumours, expression data and clinical data were retrieved from BC Cancer Personalized OncoGenomics (POG) Program on September 10, 2018, which consisted of RNA-sequencing data of 73 tumours from metastatic CRC patients.



Determination of tumour-infiltrating immune profile

The R-script for the CIBERSORT algorithm was downloaded from https://cibersort.stanford.edu/ and run under R version 3.4.1 environment (21, 23). Immune profiles of 22 types of infiltrating immune cells were determined with CIBERSORT using the default signature matrix (designated as “LM22” by the authors) at 1000 permutations. Quantile normalization was turned off for the exploration TCGA dataset consisting of RNA-sequencing data (21). The default signature matrix containing 547 immune marker genes was used to characterize immune cell composition of 22 immune cell types. The gene annotation was examined to ensure nomenclature consistency between TCGA and CIBERSORT. Eleven genes were renamed with the most recent gene ID published on HUGO Gene Nomenclature Committee (HGNC, https://www.genenames.org/); five genes or ncRNAs (GSTT1, LILRA3, LINC00597, LOC100130100, LOC126987) were removed from the matrix due to their retirement in the latest human genome annotation (hg38) which was used for the TCGA expression data. As a summary, CIBERSORT provides a P-value for each sample using Monte Carlo sampling, indicating its significance level in the results (21).

Deconvolution to identify immune cell subsets was also performed using xCell and MCPcounter (22, 24). xCell uses an ssGSEA approach to quantify the enrichment of gene signatures for 64 immune and stromal cell subsets, while MCPcounter quantifies the abundance of 8 immune and 2 non-immune stromal populations in heterogeneous tissue samples. All downstream analyses were performed using CIBERSORT, xCell and MCPcounter deconvolution results.



Comparative Analyses of TCGA data

RNA-sequencing data from a total of 644 tumour samples and 51 adjacent normal samples were run through the CIBERSORT algorithm. A subset of 308 out of 644 (~48%) tumour samples and 40 out of 51 (~78%) adjacent normal samples, passed CIBERSORT analysis with P-value <0.05 and were used for downtown analyses. Comparative analyses for relative percentage of immune cells, total number of infiltrating immune cells as well as individual gene expression level were done with Wilcoxon signed-rank test (between two groups) for normal vs. CRC groups. Five levels of significance were used in comparative analyses (and subsequently used in figures), determined by P-values: “ns” (not significant) “*” for p < 0.05, “**” for p < 0.01, “***” for p < 0.001 and “****” for p < 0.0001.



Survival analyses of TCGA data

Survival curves were generated and plotted with R package “Survminer” (version 0.4.3) (25). For comparative survival analyses, the threshold for high and low cell fractions or expression levels were determined with ROC curve, as previously described (26), and the log-rank test was applied to analyze differences among groups. Statistics such as hazard ratio, mean survival and confident intervals were extracted from the survival objects constructed with R package “survival” (version 2.42-6) (27).



Analyses of POG data

The POG dataset (metastatic cohort), which consisted of expression and clinical data from 73 metastatic CRC samples, were re-formatted to match the format of the TCGA expression and clinical data, which was then used as input for the bioinformatic pipeline that was used for the TCGA exploration dataset. The same filtering step for CIBERSORT, xCell and MCP analyses were used and 58 samples that passed the p<0.05 in CIBERSORT analysis were used for downstream expression, survival and other comparative analyses, as described previously for the TCGA dataset. As no p-value is provided with xCell and MCPcounter, all results were used for downstream analyses using these deconvolution methods.



Clustering of CRC samples based on immune profile

To identify subtypes of CRC tumours based on immune profiles, unsupervised k-means clustering analysis was completed utilizing all CRC tumour samples. This heuristic algorithm uses the centroid principle, which is used on a geometric centre of a cluster and will minimize the distance between a point and a centroid to assign this point to a cluster (28). First, we computed the optimal number of clusters (the k value) that would be best attributed to the TCGA data; a silhouette analysis was carried out to determine the inter-cluster distances, which informs the relative distances of each cluster to the others. A simulation silhouette analysis for several k values (k = 1, k = 2… k = 10) was conducted (29), and the most significant value corresponded to k = 2 for an average silhouette score of 0.09. Once all CRC tumour samples (N = 308) were attributed to two clusters, the relative number of immune cells were compared between the two clusters (Cluster 1 with 142 samples; Cluster 2 with 166 samples). Supervised clustering was then performed using immune cells that significantly differed between the two clusters that emerged from the unsupervised clustering. These cell types were used as attributors, which refined the two clusters with minimal number of tumour samples in the overlapping region between the two clusters (Cluster 1 with 141 samples; Cluster 2 with 167 samples).

Differential gene expression analysis was performed on the clusters identified in the TCGA and POG data using DESeq2 in R (v.1.28.1) (30). Functional annotation of the resulting gene sets was performed using clusterProfiler in R (v.3.16.1) (31). Significance was determined using an adjusted p-value cutoff of 0.1 for both methods.



Univariate and multivariate survival analyses and statistics

To identify genes important for prognosis of CRC patients based on immune profiles, univariate and multivariate survival analyses were performed using significantly differentially expressed genes identified in the previous section. In addition to the log-rank test described previously, the univariate random forests analysis was also used to determine if a gene could play a role in the survival of CRC patients. The R package, ranger, implemented a high performance random forest method based on survival analyses (version 0.10.) (32). Statistical significances for the output (the variable: importance score) was measured based on the empirical null distribution as described previously (33). For the multivariate counterpart of survival analysis, the multivariate Cox-model was used to compare relative contributions of different factors, such as immune cell types or candidate genes. Hazard ratio, mean survival time and confidence interval values based on the log-rank test and Cox-model were extracted from the survival objects constructed in the R environment during univariate and multivariate survival analyses with the packages described above.



Comparison of immune profiling between early- and late-stage CRC

The clinical data on tumour stage was obtained from the TCGA CRC clinical database. The early-stage CRC cohort contained 169 (~55% of the total 308 samples) samples from stage I and II tumours; and the late-stage CRC cohort contained 127 (~41%) samples from stage III and IV tumours. The remaining 12 samples (~4%) did not have their tumour stage specified and were excluded from the early- vs. late-stage CRC analyses. Immune profiles, cluster, expression and survival analyses were subsequently repeated for the early- and late-stage CRC cohorts, following the same methods that were used for the entire CRC dataset, as described previously. The results for each analysis were compared among the entire CRC dataset, the early-stage CRC and the late-stage CRC cohorts.




Results


Immune cell composition in CRC

CIBERSORT, xCell and MCP-counter revealed that the immune cell landscape in CRC is distinctly different from normal tissues (Figure 1).




Figure 1 | Analysis of immune cell composition of CRC samples using CIBERSORT, xCell and MCP-counter. (A) Immune cell abundance in CRC tissue compared to normal adjacent colon tissue, based on CIBERSORT analysis. (B) Immune cell abundance in CRC tissue compared to normal adjacent colon tissue, based on MCP-counter analysis. (C) Immune cell abundance in CRC tissue compared to normal adjacent colon tissue, based on xCell analysis. CRC was compared to normal tissue using the Wilcoxon test. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, n.s. non-significant.



CIBERSORT, used to estimate cell fractions of 22 immune cell types in CRC and normal adjacent colon tissue, demonstrated differences in relative immune cell composition in CRC, compared to adjacent normal tissue, (Figure 1A). Cell abundance is a quantitative measure of the cell composition, based on the gene expression. Specifically, there was an abundance of M2 macrophages, resting dendritic cells, resting mast cells, monocytes, eosinophils, activated natural killer cells, CD8+ T cells, regulatory T cells, CD4+ memory resting T cells and plasma cells in adjacent normal colon tissue, compared to CRC (p < 0.0001), (Figure 1A). In contrast, an abundance of M0 macrophages, M1 macrophages, resting natural killer cells, activated mast cells, and CD4+ memory activated T cells was observed in CRC (p < 0.0001), compared to adjacent normal colon tissue (Figure 1A).

MCP-counter was used to quantify abundance of 8 immune cell types in CRC and adjacent normal colon tissue. B cells, cytotoxic lymphocytes, natural killer cells and T cells were significantly more abundant in adjacent normal colon compared to CRC (p < 0.0001) (Figure 1B). xCell examined the abundance of 64 cell types, of which 35 were characterized as immune cells. Significant differences were observed in the immune cell composition in CRC vs. adjacent normal colon tissue. Specifically, abundance of B cells, memory B cells, plasma cells, neutrophils and M1 macrophages were significantly higher in adjacent normal colon tissue vs. CRC (p < 0.0001) (Figure 1C). Additionally, abundance of several types of dendritic cells including activated, conventional, plasmacytoid, and immature dendritic cells were significantly higher in adjacent normal colon vs. CRC (p < 0.0001) (Figure 1C). Furthermore, common lymphoid progenitor cells (CLP) were significantly higher in CRC vs. adjacent normal colon tissue (p < 0.0001) (Figure 1C).

Unlike MCP-counter, CIBERSORT and xCell both generate total immune cell infiltration scores, based on the abundance of immune cells within each sample. Specifically, the absolute leukocyte abundance from the CIBERSORT analysis, and the Immunoscore from xCell are both values representing the total immune cell infiltration within a patient sample. As shown in Figure 2A, the absolute leukocyte abundance for normal colon was significantly higher compared to CRC (p < 0.0001). Similarly, the Immunoscore for normal colon was significantly higher compared to CRC (p < 0.0001), as shown in Figure 2C.




Figure 2 | Analysis of immune cell composition and survival of CRC using CIBERSORT and xCell. (A) Relative leukocyte fractions of 22 cell types were determined using CIBERSORT for 308 CRC tumours and 40 normal adjacent colon tissue samples. Absolute leukocyte abundance was determined by the sum of all immune cell infiltration, based on CIBERSORT, for CRC tissue and normal adjacent colon tissue. Each dot represents one patient. (B) Relative leukocyte fractions are depicted for CRC tissue and normal adjacent colon tissue, as predicted by CIBERSORT. (C) The Immunoscore, as determined by xCell, for CRC tissue and normal adjacent colon tissue. (D) Relative leukocyte fractions are depicted for CRC tissue and normal adjacent colon tissue, as predicted by xCell. (E) Kaplan-Meier curves for overall five-year survival based on the CIBERSORT absolute leukocyte abundance for all TCGA patients, patients with early-stage CRC, late-stage CRC and (F) metastatic CRC. (G) Kaplan-Meier curves for overall five-year survival based on the xCell Immunoscore for all TCGA patients, patients with early-stage CRC, late-stage CRC and (H) metastatic CRC. CRC was compared to normal tissue using the Wilcoxon test. ****p < 0.0001. Groups with high and low cell numbers were compared with log-rank test.





Overall survival based on total immune cell infiltration of individuals with CRC

Based on the CIBERSORT analysis, we found that the absolute leukocyte abundance was significantly correlated with lower 5-year survival (HR = 2.0224, p = 0.01408), as shown in Figure 2E. Furthermore, we examined the effect of total immune cell infiltration on tumour stage at diagnosis. The 5-year survival of patients with early-stage CRC (TCGA, stages I and II) was inversely correlated with lower immune cell infiltration (HR = 3.2091, p = 0.01228), and this effect was no longer observed with late-stage CRC (TCGA, stages III and IV) (HR = 1.3363, p = 0.4539) (Figure 2E) or metastatic (POG cohort) (HR = 0.5691, p = 0.1445) (Figure 2E).

We next examined the correlation between the “Immunoscore” observed from the xCell analysis, and found that the survival did not correlated with overall 5-year survival in all patients with CRC (HR = 1.5425, p = 0.1820, Figure 2F). Examination of the effect of the Immunoscore on overall 5-year survival did not reveal any significant correlations based on tumour stage. Specifically, in early-stage CRC, high Immunoscore was non-significantly associated with poor overall 5-year survival (HR = 5.2825, p = 0.0705, Figure 2F). In late-stage and metastatic CRC no significant associations in overall 5-year survival were observed, based on Immunoscore (Figure 2F).



Overall survival based on immune cell infiltration of individuals with CRC

We next performed random forest modeling to show an association between overall survival and immune cell infiltration (Figure 3). We identified two cell types, in the CIBERSORT analysis, that were significantly associated with overall survival (Figure 3A).




Figure 3 | Immune cell infiltration and survival analysis of CRC. (A) Analysis of prognostic impact of immune cell infiltration in all patients, patients with early-stage CRC and late-stage CRC, based on the CIBERSORT analysis. (B) Analysis of prognostic impact of immune cell infiltration in all patients, patients with early-stage CRC and late-stage CRC, based on the MCP-counter analysis. (C) Analysis of prognostic impact of immune cell infiltration in all patients, patients with early-stage CRC and late-stage CRC, based on the xCell analysis.



In CRC, regardless of stage, CIBERSORT, activated dendritic cells (HR = 0.2013 [0.1064-0.3809], p = 0.002714) and follicular helper T cells (HR = 1.7281 [1.0136-2.9460], p = 0.04923) were associated with overall survival in all CRC patients (Figure 3A). MCP-counter found cytotoxic lymphocytes (HR = 0.5825 [0.3285-1.0329], p = 0.0456), myeloid dendritic cells (HR = 0.4457 [0.2457-0.8085], p = 0.0023) and T cells (HR = 2.3514 [1.1431-4.8367], p = 0.0026) were associated with improved 5-year survival, while xCell analysis linked activated dendritic cells (HR = 1.9021 [1.1144-3.2467], p = 0.0255), common lymphoid progenitors (CLP) (HR = 0.5132 [0.3010-0.8749], p = 0.0185), neutrophils (HR = 0.5437 [0.3016-0.9802], p = 0.0244), natural killer (NK) cells (HR = 0.3684 [0.1995-0.6801], p = 0.0162), and type-2 helper T (Th2) cells (HR = 0.4034 [0.2289-0.7109], p = 0.0100), with better prognosis (Figure 3C).

In order to determine if specific immune cell types differ in early vs. late stage CRC, we used the 3 algorithms to assess the immune landscape in early (stage I + II) vs. late (stage III + IV). Large fractions of resting natural killer cells (HR = 5.5870, p = 0.00068) and memory activated CD4+ T cells (HR = 3.7234, p = 0.01352) were associated with poor overall survival in patients, using CIBERSORT analysis (Figure 3B). Similarly, using MCP-counter, patients with early-stage CRC, poor overall survival was found in individuals with, natural killer cells (HR = 8.0681, p = 0.01572), and T cells (HR = 3.2172, p = 0.01207) (Figure 3B). MCP-counter analysis also showed large fractions of monocytic lineage cells (HR = 7.2005, p = 0.02490) to be associated with poor overall survival in patients with early-stage CRC. Interestingly, xCell analysis revealed similar results: monocytes (HR = 3.3891, p = 0.04125), M1 macrophages (HR = 2.8569, p = 0.0389), M2 macrophages (HR = 3.3126, p = 0.0457) and plasma cells (HR = 3.4186, p = 0.03968). (Figure 3C). Similarly, were indicative of poor overall survival in individuals with early-stage CRC, based on xCell analysis (Figure 3C).

In late stage CRC, high resting mast cells (HR = 0.02812 [0.1302-0.6075], p = 0.02481) was associated with better overall survival, based on CIBERSORT analysis (Figure 3C), and as well xCellmast cells (HR = 0.4052, p = 0.01610). Using MCP-counter, patients with late-stage CRC, large fractions of cytotoxic lymphocytes (HR = 0.4500, p = 0.01849), and neutrophils (HR = 0.3349, p = 0.0011) were also associated with better overall survival (Figure 3B). xCell analysis also identified neutrophils (HR = 0.3614, p = 0.0021) and natural killer cells (HR = 0.2575, p = 0.01542), and Th2 cells (HR = 0.2335, p = 0.00864) were found to be significantly correlated with better overall survival (Figure 3C).

In patients with metastatic CRC, M2 macrophages (HR = 2.6132, p = 0.0059) and neutrophils (HR = 2.3441, p = 0.01769) were associated with poor prognosis, based on CIBERSORT analysis (Figure 3A). Plasma cells were found to be correlated with poor overall survival in both CIBERSORT (HR = 2.1173, p = 0.04919) and xCell analysis (HR = 2.0555, p = 0.0058). Additionally, in patients with metastatic CRC, large fractions of helper T cells (HR = 0.2013, p = 0.002714), and activated mast cells (HR = 0.2013, p = 0.002714) were associated with better overall survival (Figure 3A), using CIBERSORT analysis, however mast cells (HR = 2.7450, p = 0.01318) and Th2 cells (HR = 2.6543, p = 0.0058) were found to be inversely correlated with overall survival, using xCell analysis (Figure 3C).



Overall survival based on dendritic cell infiltration in individuals with CRC

As previously mentioned, dendritic cells appeared to influence prognosis, using all 3 platforms, CIBERSORT, xCell and MCP-counter. We therefore examined the effects of low levels of dendritic cell infiltration on overall survival based in early, late stage, and metastatic CRC. Higher levels of dendritic cells in CRC were associated with improved 5-year survival in all CRC patients, based on CIBERSORT (HR = 0.2013 [0.1064-0.3809], p = 0.002714) and MCP-counter (HR = 0.4457 [0.2457-0.8085], p = 0.0023), but the opposite was observed when analyzed by xCell (HR = 1.9021 [1.1144-3.2467], p = 0.0255) (Figure 5). This effect was mostly due to the level of dendritic cell infiltration in late-stage CRC. We observed significant differences in the dendritic cells associated with overall survival in patients with early-stage CRC compared to patients with late-stage CRC and metastatic CRC. We also observed differences in overall survival based on the 3 prediction analyses that were used. Using CIBERSORT analysis, examination of activated dendritic cells in early-stage CRC and late-stage CRC demonstrated associations with non-significant favourable outcomes (HR = 0.1946 [0.0643-0.5895], p = 0.0764) and (HR = 0.2727 [0.1151-0.6465], p = 0.0558), respectively, as shown in Figure 4A. Furthermore, activated dendritic cell abundance predicted by CIBERSORT analysis in metastatic CRC did not reveal an association with overall survival (HR = 0.8836 [0.2276-3.4309], p = 0.8653), as shown in Figure 4A.




Figure 4 | Immune cell infiltration and survival analysis of CRC based on activated dendritic cells. (A) Kaplan-Meier curve for overall five-year survival based on relative cell fractions of activated dendritic cells, based on CIBERSORT analysis for all patients, patients with early-stage CRC, late-stage CRC and metastatic CRC. (B) Kaplan-Meier curve for overall five-year survival based on relative cell fractions of activated dendritic cells, based on MCP-counter analysis for all patients, patients with early-stage CRC, late-stage CRC and metastatic CRC. (C) Kaplan-Meier curve for overall five-year survival based on relative cell fractions of activated dendritic cells, based on xCell analysis for all patients, patients with early-stage CRC, late-stage CRC and metastatic CRC. Groups with high and low cell numbers were compared with log-rank test.



Furthermore, using myeloid dendritic cell abundance generated by MCP-counter, we assessed the overall survival based on tumour stage. Contrary to results obtained from CIBERSORT, no association was observed between myeloid dendritic cells and overall survival in early-stage CRC (HR = 0.6705 [0.2122-2.1189], p = 0.4495), as shown in Figure 4B. Additionally, myeloid dendritic cells were significantly associated with better overall survival in late-stage CRC (HR = 0.4173 [0.2058-0.8460], p = 0.0089), and metastatic CRC (HR = 0.4382 [0.2154-0.8916], p = 0.0171), as shown in Figure 4B.

Next, overall survival based on tumour stage was examined using activated dendritic cell abundance generated by the xCell analysis. Conflicting with results obtained from CIBERSORT and MCP-counter, high levels of activated dendritic cells were associated with poor overall survival in early-stage CRC (HR = 3.7114 [1.4254-9.6636], p = 0.02686), as shown in Figure 4C. Additionally, similar to results from MCP-counter, high levels of activated dendritic cells were associated with better overall survival in metastatic CRC (HR = 0.4429 [0.2203-0.9795], p = 0.0181) (Figure 4C). No significant impact on prognosis was observed when comparing high and low levels of activated dendritic cells in late-stage CRC, as shown in Figure 4C.



Overall survival based on CD8+ T cell infiltration in individuals with CRC

CD8+ T cells have been widely demonstrated to be predictive of prognosis in cancers, including CRC (34). We decided to assess if CD8+ T cells in CRC tissue was associated with prognosis. Interestingly, in our study, CD8+ T cells did not emerge as a cell type significantly associated with 5-year survival in CRC patients in the TCGA cohort, irrespective of stage (Figure 5), in all 3 platforms (CIBERSORT, xCell and MCP-counter). However, given the significance of this cell type in literature, we further examined the significance of CD8+ T cells on prognosis, based on tumour stage. The 5-year survival in patients with early-stage CRC revealed better prognosis for individuals with lower fractions of CD8+ T cells (HR = 3.8167, 95% CI [1.4706-9.9072], p = 0.0116), based on CIBERSORT analysis (Figure 5A). Furthermore, we did not observe any significant differences in overall survival when comparing levels of CD8+ T cell in late-stage CRC (HR = 1.1063, 95% CI [0.5128-2.0140], p = 0.9631) and metastatic CRC (HR = 1.7461, 95% CI [0.5936-5.1366], p = 0.2114), as shown in Figure 5A.




Figure 5 | Immune cell infiltration and survival analysis of CRC based on CD8+ T cells. (A) Kaplan-Meier curve for overall five-year survival based on relative cell fractions of CD8+ T cells, based on CIBERSORT analysis for all patients, patients with early-stage CRC, late-stage CRC and metastatic CRC. (B) Kaplan-Meier curve for overall five-year survival based on relative cell fractions of CD8+ T cells, based on xCell analysis for all patients, patients with early-stage CRC, late-stage CRC and metastatic CRC, based on MCP-counter analysis. (C) Kaplan-Meier curve for overall five-year survival based on relative cell fractions of CD8+ T cells, based on xCell analysis for all patients, patients with early-stage CRC, late-stage CRC and metastatic CRC, based on MCP-counter analysis. Groups with high and low cell numbers were compared with log-rank test.



Next, we used xCell to assess the effects of CD8+ T cells on overall survival, based on tumour stage. Similar to results with CIBERSORT, high levels of CD8+ T cells early-stage CRC were associated with significantly poor outcome in individuals with early-stage CRC (HR = 5.0638, 95% CI [1.9554-13.1134], p = 0.0045), as shown in Figure 5B. Additionally, as shown in Figure 5B, we did not observe a significant association when comparing levels of CD8+ T cell in late-stage CRC (HR = 0.6775, 95% CI [0.3459-1.5271], p = 0.2606). Contradictory to results with CIBERSORT, higher levels of CD8+ T cells were associated with better overall survival in individuals with metastatic CRC (HR = 0.4870, 95% CI [0.2188-1.0840], p = 0.0401), Figure 5B. Furthermore, analysis with MCP-counter did not reveal any significant associations with CD8+ T cells in early-stage CRC, late-stage CRC or metastatic CRC and prognosis (Figure 5C).



Unsupervised clustering of patients based on immune cell infiltration

An unsupervised clustering algorithm was used to cluster the 308 samples based on immune cell composition generated by CIBERSORT, xCell and MCP-counter. Additionally, unsupervised clustering was used to cluster early-stage CRC, late-stage CRC and metastatic CRC. For each analysis, two distinct groups emerged from the clustering algorithm and 5-yearsurvival was examined for each cluster.

The unsupervised clustering analysis, using CIBERSORT, yielded two distinct clusters for all patients and patients with early-, late-stage, and metastatic CRC (Supplementary Figure 1; Figure 6A). While these clusters differed in their immune cell landscape (Supplementary Figure 1; Figure 6B), we did not observe a significant difference in overall survival when clustering all patients (HR = 0.6762, 95% CI [0.3961-1.1543], p = 0.1621) (Supplementary Figure 1C) and patients with late-stage CRC (HR = 0.9975, 95% CI [0.4935-2.0160], p = 0.9944) (Supplementary Figure 1I). However, as shown in Figure 6C, we did observe a significant difference in overall 5-year survival in patients in cluster 1 vs. cluster 2, in early-stage CRC (HR = 3.0906, 95% CI [1.1940-7.9996], p = 0.03745). As shown in Figure 6D, these two clusters significantly differed in abundance of macrophages (M0 and M1), resting and activated mast cells, resting dendritic cells, plasma cells, follicular helper T cells, CD4+ activated memory T cells, CD8+ T cells, naïve B cells, monocytes, neutrophils, activated and resting NK cells and gamma delta T cell types. Specifically, patients in cluster 1 had significantly larger fractions of M0 macrophages, activated mast cells, neutrophils and resting NK cells. These patients also had significantly smaller fractions of M1 macrophages, resting mast cells, resting dendritic cells, plasma cells, follicular helper T cells, CD4+ memory T cells, CD8+ T cells, naïve B cells, monocytes, activated NK cells and gamma delta T cells.




Figure 6 | Unsupervised clustering of patients with CRC, based on immune cell infiltration, using CIBERSORT analysis. (A) Unsupervised clustering of early-stage CRC patients, based on immune cell infiltration, using CIBERSORT analysis. (B) Heatmap of immune cell infiltration, of patients in cluster 1 and 2, based on CIBERSORT analysis. (C) Kaplan-Meier curve for overall five-year survival for clusters 1 and 2, resulting from unsupervised clustering for early-stage CRC patients, based on CIBERSORT analysis. (D) Pathway analysis of genes down-regulated in cluster 2 vs. cluster 1, based on unsupervised clustering of patients with early-stage CRC. (E) Pathway analysis of genes up-regulated in cluster 2 vs. cluster 1, based on unsupervised clustering of patients with early-stage CRC. Groups with high and low cell numbers were compared with log-rank test.



Furthermore, using the immune cell compositions generated by MCP-counter, we also performed unsupervised clustering analysis on all patients and patient with early-, late-stage and metastatic CRC, independently. All of the clusters differed in their immune cell landscape (Supplementary Figure 2), however we did not observe a significant difference in overall survival when clustering all patients (HR = 0.9017, 95% CI [0.5265-1.6791], p = 0.7105) and patients with late-stage CRC (HR = 0.9887, 95% CI [0.5043-1.9384], p = 0.9737) (Supplementary Figure 2C, I). We observed non-significant difference in overall 5-year survival in patients in cluster 1 vs. cluster 2, in early-stage CRC (HR = 0.3475, 95% CI [0.1341-0.9008], p = 0.0528) (Supplementary Figure 2F). As shown in Supplementary Figure 2E, these two clusters significantly differed in abundance of B cells, CD8+ T cells, cytotoxic lymphocytes, endothelial cells, fibroblasts, monocytes, myeloid dendritic cells, neutrophils, NK cells and T cell types with patients in cluster 1 showing a higher level of infiltration of each cell type when compared to those in cluster 2.

Furthermore, using immune cell compositions based on the xCell analysis, we performed unsupervised clustering analysis on all patients, and patients with early- and late-stage CRC, independently. Each cluster differed in immune cell composition (Supplementary Figures 3B, E, H), however no significant associations were observed in survival of all individuals (HR = 1.0564, 95% CI [0.5710-1.9544], p = 0.8631), early-stage CRC (HR = 0, 95% CI (0–0), p = 0.4601) and late-stage CRC (HR = 0.7174, 95% CI [0.3065-1.6791], p = 0.4905), as shown in Supplementary Figures 3C, F, I. This is likely because the unsupervised cluster analysis was performed on all 64 cell types.



Differential gene expression analysis of unsupervised clusters

The CIBERSORT unsupervised cluster analysis for patients with early-stage CRC resulted in clusters with significantly different survival. Therefore, we sought to determine what genes were differentially expressed between the clusters. Pathway analysis, based on the differentially expressed genes revealed distinct up-regulation and down-regulation of pathways in each cluster. Specifically, shown in Figure 6D, pathways involved in extracellular matrix organization, and cell adhesion were significantly up-regulated in cluster 2, compared to cluster 1. Additionally, pathways involved in immune response, including B cell activation, were significantly down-regulated in cluster 2, compared to cluster 1 (Figure 6E).




Discussion

There is growing evidence of a dynamic interaction between cancer cells and immune cells within the tumour microenvironment, and how this plays a crucial role in disease progression (35). The composition of immune cells within the tumour has a profound impact on tumour behaviour and can affect therapeutic responses (36). We therefore sought to elucidate the distribution of leukocytes within the colorectal tumour microenvironment, as this may represent an active engagement of the immune system in this cancer.

This study used three transcriptome-based computational approaches, CIBERSORT, xCell, and MCP-counter, to quantify the abundance of immune cells within the CRC tumour microenvironment. CIBERSORT utilizes a deconvolution algorithm that relies on a reference matrix to estimate fractions of 22 immune cell types (21). xCell is a method that utilizes gene signatures and deconvolution to quantify the abundance of 64 immune cell types (24). MCP-counter utilizes transcriptomic markers expressed in a cell population to quantify the abundance of 10 cell types within a sample (22). These methods use arbitrary units to score cell type abundance within a bulk tumour (37). Our study demonstrates similarities in analysis of immune cell composition when comparing each method. Comparing immune cell abundance in CRC tissue vs. normal adjacent tissue, we found similar trends with respect to abundance of B cell lineage across computational methodologies. This is consistent with Sturm et al., who previously reported a high correlation of B cell estimates using these methods (37). Our results also show high correlation in dendritic cell abundance predicted by CIBERSORT and xCell, but not MCP-counter.

All three methodologies indicate that the immune cell landscape within CRC tissue differs significantly from normal adjacent colon tissue. The majority of immune cell types are present in lower abundance in the tumour microenvironment compared to normal colon tissue, reinforcing the existence of immune “cold” tumours. Our cluster analysis revealed stark differences in immune cell composition, which is especially observed in the unsupervised cluster analysis based on MCP-counter, clearly outlining a population of “cold” tumours. However, these drastic distinctions do not translate to significant differences in overall survival. The unsupervised clustering based on CIBERSORT does, however, suggest that a more comprehensive analysis of the immune cell composition may reveal a distinct population with a survival advantage. Specifically, our results indicate that a subpopulation of individuals with early-stage CRC have significantly better prognosis, if their tumours have a higher abundance of immune cell infiltration. Although the overall abundance of immune cell composition does not correlate to survival benefit with late-stage CRC or metastatic CRC, we did find specific immune cell types (dendritic cells) that provided a survival advantage.

Tumour infiltrating leukocytes have been characterized as both pro-tumourigenic and anti-tumourigenic (38). In general, studies have demonstrated that immune infiltration is correlated with better prognosis in cancers, including CRC (12, 39). Importantly, our results indicate an inverse correlation between overall survival and absolute leukocyte abundance, as measured by CIBERSORT (Figure 2). It is noteworthy that the Immunoscore derived from the xCell analysis was not correlated to overall survival. While the total immune landscape should be considered, it is apparent that infiltration of specific cell types has a more profound influence on overall survival and prognosis. For example, total infiltration of CD3+ and CD8+ T cells have been used as measure of prognosis in CRC (39). This method is determined by scoring densities of CD3+ and CD8+ staining in colorectal tumours and their invasive margins. Furthermore, Diederichsen et al. demonstrated that a low ratio of CD4+/CD8+ cells was associated with better prognosis in patients with CRC (34). Collectively, these studies used immunohistochemical staining to identify lymphocyte infiltration. Consistent with these studies, CD8+ T cells were correlated with better overall survival in metastatic CRC, based on xCell. However, inconsistent with previous studies, our study identified CD8+ T cells as negative predictors of prognosis in patients with early-stage CRC, based on both CIBERSORT and xCell analysis. Additionally, we demonstrated that the prognostic impacts of plasma cells and mast cells were also dependent on tumour stage. The dependence on tumour stage may indicate that disease progression, resulting in metastatic lesions, yields contributions of the metastatic tumour microenvironment that are not accounted for in the studies of the primary tumour. Interestingly, the majority of studies have demonstrated that mast cells promote tumour angiogenesis in various cancers by secreting pro-angiogenic factors such as VEGF, bFGF and IL-8 (40). Additional studies have suggested that mast cells can act as both pro- and anti-tumourigenic (41). Importantly, in our study mast cells emerged as a positive prognostic marker in late-stage CRC, (predicted by both CIBERSORT and xCell). This is in keeping with a study in prostate cancer which demonstrates that the role of mast cells is dynamic and dependent on tumour stage (42). Further research is warranted to address the stage-dependent role of mast cells in CRC.

In our study, dendritic cells were found to consistently have a significant impact on prognosis in all patients and across methodologies. Dendritic cells are antigen-presenting cells and are functionally important for the induction of a coordinated immune response, which results in the activation and expansion of cytotoxic T cells (43). While activated dendritic cells are shown to have a positive impact on prognosis, immature dendritic cells were also found to be associated with better overall survival, specifically in metastatic CRC. This is intriguing as immature dendritic cells are shown as immunosuppressive and accumulation of these cells suggests inhibition of dendritic cell maturation by chemokines present in the tumour microenvironment, including vascular endothelial growth factor and interleukins such as IL-6 and IL-10 (44, 45). Studies of other cancers have shown that tumour-associated dendritic cells are impaired in antigen up-take and presentation, demonstrating that the role of immature dendritic cells differs from their activated counterparts.

Importantly, chemotherapies and immunotherapies have been shown to influence and change the immune cell landscape in colorectal cancer. Specifically, 5-fluorouracil depletes myeloid-derived suppressor cells, resulting in an antitumor response (46). Intriguingly, Cetuximab has been shown to increase CD8+ T cells and promote cytotoxic activity in colorectal cancer (47). Additionally, oxaliplatin treatment significantly increased CD8+ T cell infiltration in a murine colon cancer model (48). These findings suggest that stage-related differences observed in immune cell composition, may be influenced by specific therapies used to treat each patient. Therefore, the impact of chemotherapy and immunotherapy treatments on immune cell infiltration in colorectal cancer should be further explored.

Collectively, using gene expression analysis, we have evaluated the prognostic value of the immune cell landscape in CRC, utilizing three computational methods. We have demonstrated that differences in the immune cell infiltration of CRC infer prognostic value. We also demonstrated that influences on prognosis by specific cell types are dependent on tumour stage. Further research is warranted to assess whether these cell types can be used to implement an immunoscore that can be used in clinical practice. Further research is also warranted to understand whether the presence or absence of these cell types can predict response to immunotherapies and other treatments at different stages of cancer progression. We anticipate that this research offers potential targets for immunotherapy, to aid the therapeutic process and improve overall survival of CRC patients.
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