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THROUGH SUBTLE NUCLEOTIDE VARIATION

Two SAR11 oligotypes with more than 99% sequence identity at the 16S ribosomal RNA gene-level 
fluctuates throughout the year as a function of water temperature at Cape Cod, MA, USA.
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The 16S ribosomal RNA gene commonly serves as a molecular marker for investigating microbial 
community composition and structure. Vast amounts of 16S rRNA amplicon data generated 
from environmental samples thanks to the recent advances in sequencing technologies allowed 
microbial ecologists to explore microbial community dynamics over temporal and spatial scales 
deeper than ever before. However, widely used methods for the analysis of bacterial commu-
nities generally ignore subtle nucleotide variations among high-throughput sequencing reads 
and often fail to resolve ecologically meaningful differences between closely related organisms 
in complex microbial datasets. Lack of proper partitioning of the sequencing data into relevant 
units often masks important ecological patterns.
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Our research topic contains articles that use oligotyping to demonstrate the importantance of 
high-resolution analyses of marker gene data, and providides further evidence why microbial 
ecologists should open the "black box" of OTUs identified through arbitrary sequence similarity 
thresholds. 
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The Editorial on the Research Topic

New Insights into Microbial Ecology through Subtle Nucleotide Variation

Characterizing the community structure of naturally occurring microbes through marker gene
amplicons has gained widespread acceptance for profiling microbial populations. The 16S
ribosomal RNA (rRNA) gene provides a suitable target for most studies since (1) it meets the
criteria for robust markers of evolution, e.g., both conserved and rapidly evolving regions that
do not undergo horizontal gene transfer, (2) microbial ecologists have identified widely adopted
primers and protocols for generating amplicons for sequencing, (3) analyses of both cultivars
and environmental DNA have generated well-curated databases for taxonomic profiling, and (4)
bioinformaticians and computational biologists have published comprehensive software tools for
interpreting the data and generating publication-ready figures. Since the initial descriptions of
high-throughput sequencing of 16S rRNA gene amplicons to survey microbial diversity, we have
witnessed an explosion of association-based inferences of interactions between microbes and their
environment.

Despite these advances, the field of microbial ecology faces numerous technical challenges.
Sampling and storage strategies, DNA extraction protocols, limitations of the so called “universal”
PCR primers, random sequencing errors, and the identification of ecologically relevant units can
bias interpretations of observations based on 16S rRNA gene data. Although microbiologists
comprehend most of these challenges, the need for handling large number of sequences, and to
partition these complex data into appropriate proxies for environmental genomes caught almost
everyone off-guard.

De novo clustering of short reads into operational taxonomic units (OTUs) based on “pairwise
sequence similarities” quickly became the primary way to partition sequencing data into ecological
units as this approach significantly out-performed analyses that relied strictly upon taxonomy. On
the other hand, as random sequencing errors can dramatically increase the number of mismatches
between two aligned reads, the underlying principle of most de novo clustering algorithms that
rely on the edit distance was prone to inflating the diversity estimations. The use of 97% sequence
similarity threshold emerged as a de facto standard, and has successfully reduced the impact of
erroneous OTUs on diversity estimations. However, the computational convenience this arbitrary
threshold offers has been at the expense of accurate ecological inference, as 3% OTUs are often
phylogenetically mixed, and inconsistent (Koeppel and Wu, 2013; Eren et al., 2014; Nguyen et al.,
2016).

Oligotyping (Eren et al., 2013) proposes an alternative way to decompose marker gene
amplicons. It first considers the entire sequencing data to identify variable nucleotide positions,
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and then utilizes only those positions that show significant
variation to partition reads into oligotypes. The identification
of variable nucleotide positions in the oligotyping workflow
relies on Shannon entropy (Shannon, 1948), which is a
measure of information uncertainty (Jost, 2006). The association
between the measured entropy and the diversity of nucleotides
at a given nucleotide position in a dataset of sequences
allows the identification of nucleotide positions that likely
carry phylogenetically important signal. The departure from
pairwise sequence alignments, and the use of entropy-based
decomposition strategy, makes it possible to resolve closely
related but distinct taxa that differ by as little as one nucleotide
at the sequenced region.

Our research topic contains original research and method
papers that employs oligotyping of microbial community data
to investigate ecological questions in divergent environments
including the human oral cavity (MarkWelch et al.), mammalian
guts (Menke et al.), deep-sea sediments (Buttigieg and Ramette),
as well as freshwater (Newton and McLellan), sewage (Fisher
et al.), marine (Delmont et al.), and soil (Turlapati et al.)
ecosystems. In a study that cuts across multiple environments,
Schmidt et al. uses oligotyping to investigate the Vibrio ecology
in environmental, as well as host- and substrate-associated
habitats. Ramette and Buttigieg implements an R package for
entropy-based decomposition procedures, and their software
library contains additional approaches, such as the “broken
stick model” procedure to identify low-abundance oligotypes
that could be generated by chance alone, and a “one-pass
entropy profiling” approach to efficiently identify those OTUs
whose decomposition into oligotypes would most likely explain
concealed diversity (Ramette and Buttigieg). Finally, Utter et al.
reconcile the individuality, stability, and variability of the oral
microbial communities in the context of “spatial structure”
of microbes in dental plaque by combining high-resolution
depiction of microbial community data with high-resolution
imaging of multi-taxa microbial consortia in the human oral
cavity (Mark Welch et al., 2016).

Most articles in this collection demonstrate the importance
of high-resolution analyses, and provide further evidence that
reveals the need to open the “black box” of OTUs in microbial
ecology. Doing so not only allows finer representation of the
microbial diversity in a wide range of ecosystems, but also

improves the ecological signal for downstream analyses that aim
to infer correlations (McLellan and Eren, 2014; Reveillaud et al.,
2014; Eren et al., 2015; Kleindienst et al., 2015).

While oligotyping demonstrates the efficacy of an entropy-
based concept to partition closely related taxa, the algorithm
minimum entropy decomposition suggests that the use of
information theory can be generalized to analyze entire
sets of marker gene data (Eren et al., 2014; Ramette and
Buttigieg). The ideal result of a properly partitioned marker
gene dataset will have the minimum number of units that
contains minimum entropy (i.e., none of the nucleotide
positions in final units will have entropy that exceeds the
expected error rate of the sequencing device), which in fact
can be achieved through multiple ways. Indeed, the search
for algorithms that can provide single-nucleotide resolution

without relying on arbitrary percent similarity thresholds is not
limited to entropy-based approaches: studies that aim to address
the same issue include distribution-based clustering (Preheim
et al., 2013), cluster-free filtering (Tikhonov et al., 2015),
Swarm (Mahé et al., 2015), and recently introduced DADA2
(Callahan et al., 2016).

Potential new directions for a more accurate depiction of
microbial communities through marker gene amplicons come
with new questions. What should microbial ecologists do with
all the data they have generated, and plan to generate during
the years to come? What are the computational and ecological
issues that will need to be addressed for new methods to be more
accessible in the field? Although our collection does not promise
answers to these questions, we hope it will further stimulate the
community of microbial ecologists and the developers of widely
used software platforms to move beyond the use of OTUs that
require arbitrary percent similarity cut-offs.
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Individuality, Stability, and Variability
of the Plaque Microbiome
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Dental plaque is a bacterial biofilm composed of a characteristic set of organisms.

Relatively little information from cultivation-independent, high-throughput analyses has

been published on the temporal dynamics of the dental plaque microbiome. We used

Minimum Entropy Decomposition, an information theory-based approach similar to

oligotyping that provides single-nucleotide resolution, to analyze a previously published

time series data set and investigate the dynamics of the plaque microbiome at various

analytic and taxonomic levels. At both the genus and 97% Operational Taxonomic Unit

(OTU) levels of resolution, the range of variation within each individual overlapped that

of other individuals in the data set. When analyzed at the oligotype level, however,

the overlap largely disappeared, showing that single-nucleotide resolution enables

differentiation of individuals from one another without ambiguity. The overwhelming

majority of the plaque community in all samples was made up of bacteria from

a moderate number of plaque-typical genera, indicating that the overall community

framework is shared among individuals. Each of these genera fluctuated in abundance

around a stable mean that varied between individuals, with some genera having higher

inter-individual variability than others. Thus, at the genus level, differences between

individuals lay not in the identity of the major genera but in consistently differing

proportions of these genera from mouth to mouth. However, at the oligotype level, we

detected oligotype “fingerprints,” a highly individual-specific set of persistently abundant

oligotypes fluctuating around a stable mean over time. For example, within the genus

Corynebacterium, more than a dozen oligotypes were detectable in each individual,

of which a different subset reached high abundance in any given person. This pattern

suggests that each mouth contains a subtly different community of organisms. We also

compared the Chinese plaque community characterized here to previously characterized

Western plaque communities, as represented by analyses of data emerging from the

Human Microbiome Project, and found no major differences between Chinese and

Western supragingival plaque. In conclusion, we found the plaque microbiome to be

highly individualized at the oligotype level and characterized by stability of community

membership, with variability in the relative abundance of community members between

individuals and over time.

Keywords: human microbiome, 16S rRNA, community dynamics, oral microbiota, community ecology
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INTRODUCTION

Understanding the baseline stability or variability of the human
microbiota is important for evaluating the health significance
of perturbations from baseline that may occur during disease,
dietary change or antibiotic treatment. A major research effort,
theHumanMicrobiome Project (HMP, http://hmpdacc.org/) was
established to provide an integrated overview of the microbial
communities that share our bodies. This and other 16S rRNA
gene-based studies used high throughput, large-scale cross-
sectional sampling and documented a tremendous range of
compositional variability between individuals and even between
oral sites (Nasidze et al., 2009; Zaura et al., 2009; Segata et al.,
2012; Eren et al., 2014; Xu et al., 2014). Recent studies have
emphasized both that the normal human microbiota, once
established, can remain stable for months or even years (Faith
et al., 2013; David et al., 2014) and that the microbiota can
be highly variable over short time scales (Gajer et al., 2012;
Flores et al., 2014). Thus, a full understanding of the meaning of
stability or variability requires connecting themeasure of stability
both to commonly used community analysis metrics and to a
more complete analysis of the organismal composition of the
community.

Most studies of stability have drawn primarily upon summary
community metrics, typically involving diversity metrics and/or
distance metrics to quantify and relate communities over time.
One popular analytic tool, UniFrac, provides a phylogeny-based
distance metric for comparison of community composition
(Lozupone and Knight, 2005). Although the metric is general
in nature, it is typically used with taxonomic assignments based
on Ribosomal Database Project (RDP, http://rdp.cme.msu.edu/)
classification at the genus level or phylotypes defined at the
operational taxonomic unit (OTU) level of >97% sequence
identity. These analyses provide a useful overview and allow
comparison of complex data sets, but do not address the stability
or variability of microbial communities at lower taxonomic
levels, even when there is signal in the sequenced region of the
marker gene to distinguish closely related but distinct members.

The oral cavity provides an excellent test bed for exploring
questions of microbiome stability because of its accessibility
and the existence of a well-curated and annotated Human Oral
Microbiome Database (HOMD, http://homd.org). The HMP,
in addition to gut, skin and vaginal sites, included sampling
of 9 different sites in the oral cavity. Initial analysis at the
genus level characterized some of the similarities and differences
among the oral microbial communities (Segata et al., 2012).
However, relatively few studies have investigated oral microbial
dynamics and, in general, they have been analyses of community
composition via summarymetrics at the genus or 97%OTU level.

Several studies have emphasized the stability of microbial
communities. Costello et al. (2009) analyzed oral samples, saliva
and tongue dorsum, on two successive days 3 months apart and
showed that variation was less within individuals than between
individuals, suggesting stability, and was less over 24 h than
over 3 months. Stahringer et al. (2012) analyzed saliva from
82 individuals, found no systematic change in beta diversity
over 5- and 10-year intervals, and concluded that the salivary

microbiome showed long-term stability. David et al. (2014)
analyzed the saliva of a single individual daily for a year and
found community stability over periods of months. Cameron
et al. (2015) analyzed the saliva of 10 subjects at 2-month intervals
for a year, found no significant community differences over the
year and, therefore, concluded stability.

In contrast, other studies have emphasized the variability of
microbial communities over their stability. Ding and Schloss
(2014) analyzed oral HMP data at 2 or 3 time points between
30 days and 1 year. They analyzed a range of body sites and
found gut and vagina to be most stable whereas the oral cavity
was reported to be least stable. A study of the tongue dorsum
community from two individuals with daily sampling over a
year emphasized the temporal variability in the tongue dorsum
community, documenting drastic shifts in relative abundance of
community members at daily time scales (Caporaso et al., 2011).
A detailed study by Flores et al. (2014) analyzed multiple body
sites, including the tongue dorsum, of 85 subjects weekly over
3 months. Their results pointed to variability of the microbial
communities and that individuals differed in the degree to
which their microbiomes were variable. Thus, oral microbial
dynamics have been characterized paradoxically by the seemingly
contradictory qualities of stability and variability.

In an effort to deepen understanding of the oral microbiome
beyond summary measures of community membership, we have
evaluated microbiome composition and temporal dynamics at
the species or sub-species level, using high-resolution analysis of
sequence data. Recently, we used an information theory-based
approach called oligotyping (Eren et al., 2013) to re-analyze the
HMP 16S rRNA gene sequence data of the entire oralmicrobiome
at the single-nucleotide level. We compared the observed
sequences to the curated HOMD (Dewhirst et al., 2010) and
found that most sequences were exact or near-exact matches to
known oral taxa. Some oral microbes differed from one another
by only a few nucleotides in the sequenced region of the 16S
rRNA gene, but the single-nucleotide resolution of oligotyping
made it possible to distinguish them from one another. Some
of these closely related sequences matched the same reference
taxon in HOMD but were abundant at different oral sites. We
interpret these distinctive distributions as demonstrating a level
of ecological and functional diversity not previously recognized
(Eren et al., 2014). We then applied oligotyping to the tongue
dorsum by re-analyzing the Caporaso et al. (2011) data set.
We identified a persistent core tongue dorsum microbiome but
with rapidly (daily) fluctuating proportions of the characteristic
taxa (Mark Welch et al., 2014): Some oligotypes were stable for
months but underwent abrupt transitions to alternate oligotypes
within days. However, it remained an open question whether
this finding was specific to the tongue dorsum community, and
the closely related salivary microbiome, or whether other oral
communities exhibited similar community dynamics.

Recently, Jiang et al. (2015) published a high-quality data set
of the plaque microbiome of eight different Chinese individuals
over a period of 3 months. Their objective was to define a
“dynamic core microbiome,” the set of taxa present at all time
points in all individuals. Consequently, they pooled the data from
all eight individuals at each time point. However, the same data,
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when kept un-pooled, provides an opportunity to investigate
questions of stability and variability of the plaque microbiome
within individuals, as well as to compare these samples to those
of the HumanMicrobiome Project, collected in the United States.
Here we re-analyze this high-quality plaque time series data with
single-nucleotide resolution. Our results provide evidence for a
unique community “fingerprint” in the plaque of each individual,
consisting of a set of organisms and their relative abundances that
fluctuate around a stable mean within each individual over the
months-long sampling period.

METHODS

Sample Collection and Sequence
Acquisition
This is a re-analysis of existing sequence data; procedures for
informed consent, institutional approval, and sample collection
and sequencing are described in the original publication (Jiang
et al., 2015). Briefly, Jiang et al. collected supragingival plaque
samples from eight healthy, 25- to 28-year-old Chinese subjects
at eight time points: Day 0, Day 1, Day 3, Week 1, Week 2,
Week 3, Month 1, and Month 3 for a total of 64 samples. In
their study, the V4-V5 hypervariable region of the 16S rRNA
gene was sequenced using Roche 454 GS-FLX pyrosequencing;
sequence data was stored in the NCBI sequence read archive
(SRA) under SRA accession number SRP049987 (http://www.
ncbi.nlm.nih.gov/Traces/study/?acc=SRP049987; Jiang et al.,
2015). The total data available from NCBI consisted of 359,565
reads, with an average of 5618 sequences per sample (SD =

923.8). To eliminate the artificial length variation among reads
introduced by the original quality trimming, we re-trimmed
each read to 336 nucleotides and removed the reads that were
shorter, which reduced the size of the data set by less than
10%. These reads were then aligned against the GreenGenes
reference alignment (McDonald et al., 2011; greengenes.lbl.
gov/Download/OTUs/gg_otus_6oct2010/rep_set/gg_97_otus_6
oct2010_aligned.fasta) using PyNAST version 0.1 (biocore.
github.io/pynast/) (Caporaso et al., 2010), and we removed
positions from the resulting alignment that consisted only of gap
characters. The final data set contained a total of 301,657 reads.

We also downloaded data from Eren et al. (2014), which
was part of an oligotyping re-analysis of data from The Human
Microbiome Project Consortium (2012). The downloaded data
consisted of supplemental data sets, Dataset_S01 (V1-V3
oligotypes) and Dataset_S02 (V3-V5 oligotypes). No re-analysis
was done on this data; it was only collapsed to the genus level
and reformatted for comparison to both the original Jiang et al.
(2015) work and our re-analysis of it.

Minimum Entropy Decomposition and
Taxon Assignment
Minimum Entropy Decomposition (MED; Eren et al., 2015)
is an automated data analysis algorithm that operates on
the same principle as oligotyping (Eren et al., 2013). MED
uses high-entropy nucleotide positions to iteratively partition
a given collection of reads into de novo bins we will refer
to as oligotypes. We used the MED pipeline, version 2.0,

(Eren et al., 2015) to decompose the data set. The “minimum
substantive abundance” criterion (−M) was set to 60, and the
“maximum variation allowed” criterion (−V) was set to 3.
Minimum entropy decomposition of 301,657 reads generated
333 oligotypes, retaining a total of 227,991 sequences. Of the
73,666 reads removed, 58,591 reads were removed due to the
minimum substantive abundance criterion and 15,075 reads were
removed due to the maximum variation allowed criterion. A
visual breakdown of the taxonomy of reads lost in each step
of the process, from alignment to final output, is presented in
Supplementary Image 1. Taxonomy was then assigned to each
of the 333 oligotypes by querying the representative sequence of
each oligotype against the Human Oral Microbiome Database
(HOMD) RefSeq v.13.2 (www.homd.org, Dewhirst et al., 2010)
using the Global Alignment Search Tool (GAST; Huse et al.,
2008). Taxonomic data and abundance by oligotype are presented
in Supplementary Data Sheet 1.

Data Processing and Figure Creation
We used R (version 3.2.2; R Core Team, 2015) for all post-
MED data analysis. We used the metaMDS function in the
vegan package (Oksanen et al., 2013) to generate the MDS
analysis shown in Figures 2, 3. All figures were created with the
ggplot function in the ggplot2 package (Wickham, 2009). After
generation in R, figures were cleaned and processed for final
publication with Inkscape (version 0.91, http://inkscape.org/).

RESULTS

Analysis of Plaque 16S rRNA Gene
Sequencing Data with Single-Nucleotide
Resolution
We used Minimum Entropy Decomposition (MED; Eren et al.,
2015) to re-analyze the time series data generated from the
supragingival plaque samples of eight individuals at eight time
points over 3 months (Jiang et al., 2015). This data set was
of interest because it presented an opportunity to analyze
the temporal dynamics of the plaque microbiome at single-
nucleotide resolution.

However, before pursuing the question of microbiome
dynamics, we had to address a striking difference between the
genus-level results of Jiang et al. (2015) and those emerging
from the Human Microbiome Project. Jiang and co-authors
reported a high percentage of an unusual taxon, Parascardovia,
and a low percentage of Actinomyces in contrast to the
Human Microbiome data as re-analyzed by Eren et al. (2014),
which showed no Parascardovia and substantial amounts of
Actinomyces (Figure 1). Otherwise, the two studies were in
general agreement. We asked whether the disparity could
have arisen from genetic, cultural, or environmental differences
between the two populations or from technical causes such as
method of informatics analysis or sequencing strategy. The HMP
data was collected and analyzed over two different regions of the
16S RNA gene, V1-V3 and V3-V5. Although these two regions
give slightly different abundance values for plaque genera, their
results were similar and neither contained Parascardovia. The
Jiang et al. study sequenced the V4-V5 region, which overlaps
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FIGURE 1 | Abundant genera in Chinese and Western plaque. Mean

relative abundances of the most abundant 15 taxa in HMP and Jiang et al.

data. (A) *Eren et al. (2014) re-analysis of Human Microbiome Project V1-V3

supragingival plaque data; (B) *Eren et al. (2014) re-analysis of HMP V3-V5

data; (C) †data from supplemental table S2 of Jiang et al. (2015); (D) our

re-analysis of Jiang et al. data. ‡Sequences in table S2 of Jiang et al. (2015)

that were labeled to the family level only.

the V3-V5 region of the HMP study. Therefore, the location of
the sequenced region was not a sufficient explanation for the
disparity.

When we re-analyzed the Jiang et al. sequence data with
the MED pipeline and then categorized the resulting oligotypes
into genera, the disparity disappeared (Figure 1). In our re-
analysis of the Jiang et al. data, no sequences were identified
as Parascardovia and the abundance of Actinomyces was within
the range of variation of the HMP data. Consequently, we
conclude that the disparity between the two data sets is likely
to be methodological and does not reflect any genetic, cultural,
or environmental difference between the two populations. The
genera Parascardovia and Actinomyces are in the same phylum,

Actinobacteria, and it is possible that sequences representing
Actinomyces were misclassified as Parascardovia in Jiang et al.’s
original analysis. We evaluated possible mechanisms of error in
classification (Supplementary Data Sheet 2) but were unable to
identify the exact source of the misclassification. Nevertheless,
the salient point for this study is that when the sequence data was
processed through the MED pipeline, the disparity between the
Jiang et al. and the HMP results disappeared.

Composition of Chinese and Western
Supragingival Plaque is Broadly Similar at
the Genus Level
Next, we wanted to understand how Chinese plaque composition
compared toWestern plaque, as represented by theHMP data. As
a basis for comparison of the Chinese and the two HMP data sets,
we used the relative abundances of the 40 genera shared between
all three data sets. These shared genera made up the vast majority
of all the sequence reads: non-shared taxa comprised only 3.2%
of the V1-V3 and 2.2% of the V3-V5 re-analyzed HMP data
(Eren et al., 2014), and 0.9% of the re-analyzed Jiang et al. data.
Differential presence or absence of low-abundance, non-shared
genera may result from technical differences in experimental
design and we reasoned that eliminating them from the analysis
would allow for a more parsimonious comparison across studies.
Supplementary Data Sheet 3 provides a breakdown of mean
relative abundances by genus in each data set.

Comparing the re-analyzed data from Jiang et al. to our
analysis of the HMP data revealed that Chinese and American
plaque have a similar overall composition when viewed at the
genus level (Figure 2). On a multi-dimensional scaling (MDS)
plot of Bray-Curtis distances, covariance ellipses representing the
HMP data from the V1-V3 (blue) and the V3-V5 (cyan) regions
of the 16S rRNA gene overlap but do not entirely coincide,
showing that similar but not identical communities are recovered
when the same DNA sample is analyzed using two different
regions of the marker gene. The re-analyzed Jiang et al. data in
Figure 2 (red) also overlaps substantially with the HMP data,
showing that within the range of experimental variation there is
no detectable difference at the genus level between Chinese and
Western plaque.

Intra-Individual Plaque Variability is Less
than Inter-Individual Variability
The time series information provided by the Jiang et al. data
set provides an unusual opportunity to analyze intra-individual
variation in plaque over time relative to inter-individual variation
within the same study. However, to evaluate intra-individual
temporal dynamics, we needed to establish a level of analytic
resolution sufficient to clearly distinguish the plaque microbiota
of individuals. Figure 3 shows multidimensional scaling (MDS)
plots at various levels of analytic resolution. Analyses for all
samples were carried out based on relative abundances of all
taxa. At the phylum level (Figure 3A), the plots for individuals
largely overlapped one another. Not surprisingly, the overlap was
greatly reduced at the genus level (Figure 3B). Close inspection
of Figure 3B shows that samples from most of the individuals
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FIGURE 2 | Compositional similarity between Chinese and Western

plaque. Multidimensional scaling plot showing the relatedness among the

re-analyzed *(Eren et al., 2014) HMP V1-V3 (dark blue), and HMP V3-V5 data

sets (light blue), and our re-analysis of the Jiang et al. (2015) data (red). Each

dot represents an individual sample. Sample distances were calculated by the

Bray-Curtis dissimilarity index using the relative abundances of the 40 genera

shared between all three data sets. Ellipses bound the covariance of each data

set and are centered on the mean of that set.

overlapped with those from only two or three neighbors, and
samples from one individual (E, colored orange) were distinct
from all the other individuals. Similar results were obtained at the
operational taxonomic unit (OTU) level of 97% sequence identity
(Figure 3C). Thus, at both the genus and 97%-OTU levels of
resolution, individuals showed variation in plaque composition
from sample to sample, with the variation for each individual, in
most cases, ranging over a relatively small fraction of the total
range of variability of the population. However, overlap among
individuals still occurred.

Increasing the resolution beyond the genus or 97%-
OTU level revealed far more dramatic distinctions between
individuals. When the same data was plotted at the oligotype
level (Figure 3D), the covariance overlap between individuals
diminished drastically and individuals occupied largely non-
overlapping regions of the plot. The stress function of the MDS
plot in Figure 3D has a relatively high value of 0.2, but the
topology was consistent in 49 out of 50 trials (Supplementary
Image 3). This result shows that the single-nucleotide-level
resolution of oligotyping reveals individual-level differences
that are less apparent at the genus or 97%-OTU level. Taken
together, our analysis demonstrates that the level of similarity
observed within and between individuals is dependent on the
taxonomic resolution at which the data is analyzed and that
single-nucleotide resolution enables differentiation of individuals
from one another without ambiguity.

Moving from Summary Metrics to
Understanding Community Composition
Summary metrics such as MDS plots based on the Bray-Curtis
dissimilarity index provide a measure of the degree of overall

difference between microbial communities. However, like any
summary metric, they inevitably obscure underlying key
information. For example, the plots per se do not distinguish
between differences arising from the presence of the same taxa
in differing proportions or from the presence of different taxa.
This distinction is of biological importance because it reflects
upon the fundamental membership of microbial communities.
Understanding the nature of the differences in the plaque
community between individuals therefore requires moving from
summary metrics to a more detailed analysis of the data itself,
specifically the community composition of individual samples.

Deconstructing each sample by analyzing the relative
abundance of taxa revealed that most of the plaque community
was made up of bacteria from a moderate number of plaque-
typical genera. A set of 17 genera was present in every individual
at almost every time point and collectively made up between 80
and 99% of each plaque sample (Figure 4A). Thus, at the genus
level of taxonomic resolution, the bulk of the plaque community
was composed of a consistent set of taxa in all individuals,
supporting the view of a core temporal plaque microbiome at the
genus level.

To assess the stability of taxonomic composition and its
consistency across individuals, we used the straightforward
metrics of mean, standard deviation, and coefficient of variation.
For the 8 samples from each individual, we calculated the
mean abundance and its standard deviation for each genus;
deviations from the mean are plotted in Figure 4B for the 10
genera with the highest mean relative abundances. For most
taxa, the fluctuations were within 2 standard deviations from
the mean, as expected because the mean and standard deviation
are themselves calculated from the eight data points. More
interestingly, the mean relative abundance for these major genera
was stable over 3 months within each individual. Taxa exhibited
shifts in relative abundance over time within an individual,
but the shifts were generally fluctuations around an individual
mean rather than displaying an increasing or decreasing trend
(Figure 4B). Further, the mean was relatively constant across
individuals for some genera, but in other genera differed
substantially from individual to individual. This distinction can
be observed visually in Figure 4B, as illustrated by the even
distribution of Fusobacterium (shown in bright green) in contrast
to the variability of Prevotella (maroon) andNeisseria (dark blue).
The distinction is also evident in the coefficient of variation.
Five relatively constant genera, Streptococcus, Corynebacterium,
Capnocytophaga, Fusobacterium, and Actinomyces, each had a
coefficient of variation between 58 and 68% over all 64 samples
(Table 1) and between 40 and 66% on average within the 8
samples from a single individual (Table 1). The more variable
genera, such as Neisseria and Prevotella, had higher coefficients
of variation, 126 and 155% respectively across all 64 samples, and
90 and 97% on average within each individual. Some fluctuations
were large as a fraction of the overall community, such as the shift
of Prevotella in individual E from 25 to 4% and back to 21% of
the community in consecutive samples, or the shift in Neisseria
in individual D from 3 to 19% and back to 4% (Figure 4A).
Interestingly, the two individuals in whom the aerobic Neisseria
was most abundant, individuals J and K, were also the individuals
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A B

C D

FIGURE 3 | Apparent similarity of samples depends on taxonomic resolution. Multidimensional scaling (MDS) plots of relatedness of samples from different

individuals. Bray-Curtis dissimilarity index was calculated based on relative abundances in each individual of all (A) phyla, (B) genera, (C) OTUs at 97% identity and (D)

oligotypes. For (C), 97% OTUs were created by clustering the oligotype representative sequences using the centroid clustering method according to the Bray-Curtis

distances. From this clustered matrix we binned together all oligotypes that were at least 97% similar to any oligotype in the same bin but were not already included in

another bin. The ellipses mark the covariance of each individual data set; they are centered on the mean of each individual and colored by individual.

with the lowest fraction of the facultatively aerobic Streptococcus
(Figure 4A). In summary, differences between individuals, as
assayed at the genus level, lay not in the identity of the major
genera but in consistently differing proportions of these genera
from mouth to mouth.

Analysis with single-nucleotide resolution, however, revealed
that within certain genera, each individual carried a distinctive
set of organisms, as revealed by a distinctive pattern of oligotypes
distinguishable by at least one nucleotide in the sequenced
portion of their 16S rRNA gene. To illustrate this point,
we decomposed Corynebacterium, the most abundant genus,
into its 24 distinct oligotypes (Figure 5A). Between 4 and 19
Corynebacterium oligotypes were detectable in a single time point
and between 15 and 24 unique oligotypes were detectable in
each individual. However, only a handful of these oligotypes
reached high abundance in each individual, and these oligotypes
tended to maintain that high abundance within the individual
over time. Unlike the genus-level analysis, visual comparison
of individuals at the oligotype level (e.g., individuals A and
H; Figure 5A) showed that individuals had strikingly different

oligotype profiles, defining “profiles” as the combination of
community membership and relative abundance. Figure 5B

displays the anomaly from the mean for eight Corynebacterium
oligotypes that were of high relative abundance (mean >10%
of the Corynebacterium) in any individual. As in the genus-
level analysis, the abundance of taxa fluctuated about a mean
that was stable for each individual. A stable mean within
an individual, but sharp differences between individuals, was
confirmed by examination of the coefficient of variation: for the
8 Corynebacterium oligotypes of high relative abundance, the
mean within-mouth coefficient of variation was 45% in mouths
in which that oligotype was >10% of the Corynebacterium but
was much higher, 173%, across all samples from all individuals,
reflecting the consistent abundance of these oligotypes in some
mouths and their near-absence in others (Table 2).

Similar individual-characteristic results were obtained
for most other genera (Supplementary Image 4). Oligotype
abundance was highly dynamic, but as with Corynebacterium,
the oligotypes fluctuated around a stable mean (Supplementary
Images 4, 5). However, a few oligotypes, for example oligotypes
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A

B

FIGURE 4 | Stable differences between individuals at the genus level. (A) Relative abundances for each individual at each time point, for all 17 genera with

greater than 1% mean relative abundance over all 64 samples. Together these genera compose 93.8% of the data set. (B) Anomaly from the mean relative

abundance for each sample from each individual. The mean relative abundance for an individual is marked by the dark line, and one and two standard deviations by

the dark and light gray fields, respectively. Columns represent individuals, and rows represent genera, with colors as in (A).
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TABLE 1 | Temporal stability varies between genera.

A B D E H J K R Overall

M CV M CV M CV M CV M CV M CV M CV M CV M CV Mean CV

Cor 17.4 48 13.9 56 20.4 34 7.8 70 14.3 35 7.7 41 6.1 58 17.2 50 13.1 60 49

Nei 9.5 54 1.3 169 6.8 80 1.2 190 8.8 46 30.2 36 24.2 78 0.8 71 10.3 126 90

Rot 1.9 85 9.4 65 18.8 60 14.4 77 5.9 35 5.8 46 10.4 71 11.8 48 9.8 84 61

Cap 20.9 25 11.3 25 7.7 52 2.9 64 9.1 37 11.8 36 6.8 40 6.4 68 9.6 64 43

Act 7.7 49 11.1 26 10.9 54 8.2 30 6 58 4.8 87 3.9 57 19.8 32 9 68 49

Str 7.7 38 13 51 8.5 63 8.3 22 8.8 35 3.5 25 6.1 57 15.3 30 8.9 58 40

Fus 7.4 57 9.1 101 6.6 76 8.1 56 9.6 34 4.9 66 8.9 63 6.1 75 7.6 68 66

Vei 3.3 120 7.9 51 2.5 62 7.6 94 5.2 44 0.7 118 3.6 87 10.7 39 5.2 92 77

Pre 1.4 66 2.5 94 0.4 120 19.9 38 2.8 82 0.6 167 8.4 88 1.6 120 4.7 155 97

Lep 8.5 46 2.6 39 5.2 78 6.7 66 4.9 36 6.8 66 1.9 75 0.9 133 4.7 83 67

For each genus (row) the mean relative abundance (M) and coefficient of variation (CV) are shown. The CV is presented as a percentage. In columns A, B, D, E, H, J, K, and R, mean

and CV are calculated across the 8 samples from the respective volunteer. The mean and CV columns under the heading “Overall” were calculated from all 64 samples. The Mean

CV column is the mean of all the CVs calculated from the individuals, i.e., the mean of [CV(A) ... CV(R)]. Genus abbreviations: Cor, Corynebacterium; Nei, Neisseria; Rot, Rothia; Cap,

Capnocytophaga; Act, Actinomyces; Str, Streptococcus; Fus, Fusobacterium; Vei, Veillonella; Pre, Prevotella; Lep, Leptotrichia.

TABLE 2 | Oligotypes are stably abundant within an individual but not between individuals.

A B D E H J K R Overall

M CV M CV M CV M CV M CV M CV M CV M CV M CV

Cor_01 1.4 42 52.7 15 52.2 25 35.1 46 78.6 8 15.3 56 28.7 49 52.2 21 39.5 64

Cor_02 41.5 34 0.4 138 1.1 70 0.6 124 0.2 124 35.4 33 0.5 98 0 283 9.9 178

Cor_03 2.6 68 2.8 64 6.2 59 24.6 47 1.2 120 27.4 63 39 59 11.3 58 14.4 119

Cor_04 29.2 55 8.6 67 0.4 173 4.6 107 0.3 264 18.2 40 7.7 157

Cor_05 0.3 194 20.8 40 11.8 104 4.4 158 5.1 81 1.1 141 3.8 74 6 45 6.7 129

Cor_06 0 186 0.1 200 10.8 32 11.1 34 0.5 108 0.2 186 1.1 102 0.2 119 3 166

Cor_10 0 283 3.7 130 13.4 72 0.1 283 2.2 266

Cor_12 0 283 0.1 217 19.4 56 0.1 200 2.4 303

Mean of “Overall CV” 173

Mean of abundant CVs 45

Mean relative abundance (M) and coefficient of variation (CV) are shown for each Corynebacterium oligotype that comprises a mean of at least 10% of the total Corynebacterium reads

in any individual. Mean and CV values are left blank when the oligotype was not detected in any of the 8 samples in that individual. The CV is presented as a percentage. Bolded values

indicate CVs for oligotypes with a mean relative abundance of at least ≥10% of the total Corynebacterium reads in that individual. Table headings A, B, D, E, H, J, K, R represent the

individual whom the statistics below represent. The mean and CV columns under the heading entitled “Overall” were calculated based the oligotype relative abundances from all 64

samples.

of Streptococcus in individuals J and R, Rothia in individual B,
and Neisseria in individual J, broke this generality by showing
a transition from low abundance to high abundance, or vice
versa (Supplementary Image 5). We may nevertheless conclude
that the oligotype-level composition of the microbiota of
plaque is distinctive to individuals. When viewed together,
oligotype profiles across all genera provided a unique oligotype
“fingerprint” for each individual.

Since species designations are the accepted standard within
the oral microbiome community, it is important to relate
the oligotype patterns to a species-level analysis. Of the
24 Corynebacterium oligotypes, 21 represent the species C.
matruchotii and the remaining 3 oligotypes represent C. durum
(Figure 5C). When individuals were analyzed at species level, all
individuals in the data set showed the same two Corynebacterium

species. For example, comparison of individuals A and H, who
have completely distinct Corynebacterium compositions at the
oligotype level, as shown in Figure 5A, showed indistinguishable
compositions at the species level with C. matruchotii the
dominant species and C. durum a minor species (Figure 5C,
Supplementary Data Sheet 1). Thus, some of the distinctions
in microbiota between individuals that were so visible at the
oligotype level were obscured even at the species level.

The degree to which oligotypes of the 16S ribosomal
RNA gene provided better-than-species-level resolution was
dependent on the genus. The genus Capnocytophaga resembled
Corynebacterium in having an abundance of oligotypes resulting
in a highly distinctive oligotype fingerprint for each individual,
even for individuals whose species-level composition was similar
(Supplementary Image 4). Within Streptococcus, by contrast, the
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A

B

C

FIGURE 5 | Stable differences between individuals are clear at the oligotype level. (A) Relative abundances of the 24 Corynebacterium oligotypes. The

smaller, black stackbar shows the Corynebacterium abundance relative to all taxa in the sample, while the larger, colored stackbar shows the abundance of each

Corynebacterium oligotype relative to the total abundance of Corynebacterium in each sample. (B) Anomaly from the mean relative abundance for each sample from

(Continued)
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FIGURE 5 | Continued

each individual. The mean relative abundance for an individual is marked by the dark line, and one and two standard deviations by the dark and light gray fields,

respectively. Columns represent individuals and rows represent oligotypes, colored as in (A). (C) Exactly the same data and organization as (A), but colored by

species instead of by oligotype. C. matruchotii oligotypes are colored blue; C. durum, green.

major species groups distinguishable by the V4-V5 region were
each represented primarily by a single oligotype. In summary,
some oligotypes were markers for groups of organisms analogous
to species or species groups, whereas other oligotypes provided
sub-species level information.

DISCUSSION

Individualized Oligotype Profiles within a
Common Framework in Plaque
Our analysis with single-nucleotide resolution of the high-quality
Jiang et al. time-series data set showed a common framework
of plaque-typical genera and species in each individual, but
individual-specific microbiota within this framework. At the
oligotype level, individuals were almost entirely distinct from one
another, despite the fluctuations within each individual over time.
Although the species-level composition of the plaque microbiota
is very different from the microbiota inhabiting tongue and saliva
(Aas et al., 2005; Eren et al., 2014), nonetheless our time-series
results with plaque are in broad agreement with previous high-
throughput time-series studies of these other oral sites. Our
finding that individuals are more similar to themselves over time
than they are to other individuals agrees with the conclusions of
Costello et al. (2009), Caporaso et al. (2011), Stahringer et al.
(2012) and Cameron et al. (2015) for saliva and tongue. Our
demonstration of variability within an individual agrees with
the findings of Caporaso et al. (2011), David et al. (2014), Ding
and Schloss (2014) and Flores et al. (2014). Thus, our results on
plaque are broadly consistent with results on microbial dynamics
at other sites in that qualities of both stability and variability
are displayed. However, how are these apparently paradoxical
qualities to be reconciled?

Looking at the community composition underlying the
summary distance metrics, our results showed an oligotype-level
“fingerprint” characteristic of each individual, consisting of a set
of persistently abundant oligotypes with abundance fluctuating
around a stable mean over time. The fluctuation around a stable
mean resembles the “stationary dynamics” described by David
et al. (2014) for the gut and salivary microbiota of two individuals
sampled daily over the course of a year. The drivers of the
fluctuations remain unexplained, as does the basis for individual
distinctiveness of the overall oligotype composition of plaque.

Clues to the physiological or ecological reasons for both
similarity and distinctiveness, however, may be found by
considering these time series results in the context of the
spatial structure of dental plaque. Recently, we demonstrated
the consistent presence in plaque of a “hedgehog” structure,
a multi-genus microbial consortium that forms around
filamentous corynebacteria (Mark Welch et al., 2016).
Interestingly, the taxa that we report here to have relatively

constant abundance both within and between individuals—
Corynebacterium, Capnocytophaga, Fusobacterium, Actinomyces,
and Streptococcus—are among the major participants in this
consortium. Corynebacterium forms bush-like (or spiny,
hedgehog-like) clusters of filaments, providing the structural
framework for the consortium. Streptococcus binds in abundance
to the distal ends of these filaments, forming an outer shell
of “corncob” structures. We hypothesize that this shell of
Streptococcus alters the local biochemical environment by
consuming oxygen and secreting lactate, acetate, carbon dioxide,
and peroxide (Ramsey et al., 2011; Zhu and Kreth, 2012).
Carbon dioxide-loving taxa such as Capnocytophaga and
anaerobes or micro-aerophiles such as Fusobacterium (Diaz
et al., 2000) thrive in positions within the structure that match
their metabolic requirements, while Actinomyces is frequently
found adjacent to the hedgehog structure or intermingled with
the Corynebacterium filaments at its base. The relatively constant
abundance of these taxa in the time series data reported here
suggests that there is a limit to the individuality of plaque, in that
the consortium taxa are consistently present across individuals.

By contrast, the taxa that were among the more variable
in the time series data—Neisseria and Prevotella—are sporadic
participants in the hedgehog structure or are absent from it.
Members of the family Neisseriaceae were detected sporadically
in the hedgehog structure, in or near the aerobic outer shell,
while Prevotella was generally absent from the hedgehog (Mark
Welch et al., 2016). The inter-individual variability of these
taxa shown here suggests either functional interchangeability of
taxa or different biology of plaque in different individuals. For
example, the low abundance of Streptococcus in the individuals
with unusually high Neisseria suggests that in these individuals
Neisseria, an aerobe, may fill a functional role generally
carried out by the facultatively aerobic Streptococcus. The wide
variation in abundance of the obligate anaerobe Prevotella, by
contrast, may suggest a difference in plaque physiology between
individuals with high-Prevotella or low-Prevotella communities.
Whether such differences might result from host-specific factors
(Flores et al., 2014) or chance historical events perpetuated within
each host by priority effects is an important topic for further
investigation.

Significance of Plaque Microbiota
Fingerprints
The physiological or ecological meaning of distinct oligotypes
and the overall microbiota fingerprint is likewise an important
topic for future study. In our analysis, a 336-nucleotide stretch of
the rRNA gene, analyzed with single-nucleotide resolution, acted
as a tag for the underlying organism. In the absence of detailed
knowledge of the organisms under study, it is difficult to assess
how much ecological meaning to assign to these different tags.
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However, evidence accumulated over several decades indicates
that for some groups of organisms, very small differences in the
rRNA sequence represent significant evolutionary distances and
divergent ecology. Among the enterobacteria, for example, E. coli
and several species of Shigella and Salmonella have 16S rRNA
gene sequences that are more than 99% identical (Cilia et al.,
1996; Fukushima et al., 2002). The same is true of a number of
species within the genus Bacillus (Ash et al., 1991; Fox et al., 1992)
and, within the oral microbiome, the same is true of the abundant
commensal Streptococcus mitis and the highly pathogenic S.
pneumoniae (Denapaite et al., 2010; Kilian et al., 2014). Indeed,
enormously important differences in biology and pathogenicity
can also occur between strains that are considered members of
the same species and have identical or nearly-identical 16S rRNA
gene sequences (Böddinghaus et al., 1990; Perna et al., 2001; Jin
et al., 2002). These findings suggest that even a single nucleotide
difference in the 16S rRNA gene can indicate the presence of
significant underlying differences in the genomes and functional
roles of organisms.

Alternatively, it is also possible that the different versions of
the 16S rRNA gene sequence simply represent population-level
variation at a neutral site, and that the organisms possessing
one or another of these variants are not physiologically different.
The data we present here argue against this possibility. If the
organisms represented by these sequences were functionally
equivalent, they would be expected to vary in relative abundance
in a random walk. The pool of available oligotypes is widely
shared; most oligotypes in this analysis were detectable, albeit in
low abundance, in most individuals. Yet, in most cases, a random
walk did not occur; instead, different oligotypes dominated
consistently in different individuals. Thus, the stable oligotype
profile within each individual suggests that plaque oligotypes
indicate the presence not of neutral variants but of evolutionarily
selected, ecologically distinct organisms.

The relationship of oligotypes to species-level groupings is not
straightforward. Species-level taxonomy itself is not static, but is
continually subject to refinement. Corynebacterium matruchotii,
for example, is thought to contain cryptic species (Barrett
et al., 2001). Nonetheless, species groupings represent current
knowledge of the biology of the organisms and can provide
meaningful insight. Our analysis revealed some cases in which
oligotypes apparently correspond to species-level groups or
small clusters of described species, such as within the genus
Streptococcus. If distinct strains were present with differing gene
content and physiology but identical 16S rRNA gene sequences,
they were, naturally, indistinguishable by this analysis. In other
genera, however, the resolving power of the sequenced region of
the 16S rRNA gene is greater (or the scrutiny of the genus by
microbiologists has been lesser) and oligotypes identified sub-
species-level groups, such as within the genera Corynebacterium
and Capnocytophaga.

Cross-Cultural and Genus-Level
Consistency with Individual Variations
Our comparison of plaque 16S rRNA gene sequencing data
from China and the United States showed that the plaque

microbial community contains the same major genera and
spans a similar range of variation in individuals from both
cultures. Our results suggest that any systematic differences
between Chinese and Western plaque, should they exist, lie in
shifts of species composition within abundant genera, or in
the presence and abundance of rare genera. In contrast to the
lack of ethnic differences we found in the supragingival plaque
community, previous studies have reported ethnic distinctions
in other oral microbiomes. Mason et al. (2013) studied the
saliva and supra- and sub-gingival plaque from four ethnic
groups living in America (Chinese, Latino, non-Hispanic whites,
and non-Hispanic African Americans) and found significant
clustering by ethnicity in sub-gingival and saliva samples but
not in supra-gingival plaque. Li et al. (2014) sampled saliva
from Africans, Germans, and native Alaskans and found that the
African samples differed from the Alaskan and Germans ones
by a number of measures, including a high abundance of the
genus Enterobacter. Takeshita et al. (2014) compared the salivary
microbiomes of Koreans and Japanese and found Neisseria
to be significantly more abundant in Koreans and Prevotella,
Fusobacterium, and Veillonella more abundant in Japanese. A
study of the oral mucosa of uncontacted Amerindians showed
similar overall diversity to the oral microbiomes of developed
Americans, but higher proportions of certain taxa including
Prevotella, Fusobacterium, and Gemella (Clemente et al., 2015).
Park et al. (2015) reported an unusual taxon, the halophilic
gamma proteobacterium Halomonas hamiltonii, to be abundant
in subgingival plaque from healthy Korean volunteers. It may
be that the presence of ethnic or cultural signatures varies by
oral site with certain locations such as saliva and subgingival
plaque being more sensitive to ethnic differences than others.
Any such signatures, however, were undetectable in this study of
the healthy supragingival plaque community.

Regardless of the question of ethnic signatures, our
application of oligotype analysis to supragingival plaque
highlights the importance of single-nucleotide analysis of
microbial communities. Understanding of the individuality,
stability and variability, the habitat and community
dynamics, and the physiological or ecological meaning
of microbial communities all would be deepened by
analysis of sequence data at the highest level of resolution
possible.
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A unique assemblage of
cosmopolitan freshwater bacteria
and higher community diversity
differentiate an urbanized estuary
from oligotrophic Lake Michigan
Ryan J. Newton* and Sandra L. McLellan

School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA

Water quality is impacted significantly by urbanization. The delivery of increased nutrient

loads to waterways is a primary characteristic of this land use change. Despite the

recognized effects of nutrient loading on aquatic systems, the influence of urbanization

on the bacterial community composition of these systems is not understood. We

used massively-parallel sequencing of bacterial 16S rRNA genes to examine the

bacterial assemblages in transect samples spanning the heavily urbanized estuary

of Milwaukee, WI to the relatively un-impacted waters of Lake Michigan. With this

approach, we found that genera and lineages common to freshwater lake epilimnia

were common and abundant in both the high nutrient, urban-impacted waterways,

and the low nutrient Lake Michigan. Although the two environments harbored many

taxa in common, we identified a significant change in the community assemblage

across the urban-influence gradient, and three distinct community features drove this

change. First, we found the urban-influenced waterways harbored significantly greater

bacterial richness and diversity than Lake Michigan (i.e., taxa augmentation). Second, we

identified a shift in the relative abundance among common freshwater lineages, where

acI, acTH1, Algoriphagus and LD12, had decreased representation and Limnohabitans,

Polynucleobacter, and Rhodobacter had increased representation in the urban estuary.

Third, by oligotyping 18 common freshwater genera/lineages, we found that oligotypes

(highly resolved sequence clusters) within many of these genera/lineages had opposite

preferences for the two environments. With these data, we suggest many of the defined

cosmopolitan freshwater genera/lineages contain both oligotroph and more copiotroph

species or populations, promoting the idea that within-genus lifestyle specialization,

in addition to shifts in the dominance among core taxa and taxa augmentation, drive

bacterial community change in urbanized waters.

Keywords: bacterial community, freshwater, urban ecology, Lake Michigan, oligotyping, bacterioplankton
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Introduction

As a result of continued urbanization worldwide and its
contribution to deteriorating ecosystem services (Corvalan
et al., 2005), the relationship between urban development,
biodiversity patterns, and ecosystem dynamics has been the focus
of increasing research attention and theoretical development
(Grimm et al., 2000; Alberti, 2005; Pickett et al., 2011). In aquatic
ecosystems, urbanization alters watershed ecosystem functioning
through the movement, magnitude, and content of surface water
runoff (Allan, 2004; Alberti et al., 2007; Hale et al., 2015). As
a major component of aquatic biological communities, bacteria
are critical drivers of energy flow and nutrient recycling (Cotner
and Biddanda, 2002), yet we know relatively little about bacterial
biodiversity patterns in urban-influenced waterways, whether
there are important differences in the bacterial assemblages
between urbanized and non-urbanized systems, or whether
urban-influenced aquatic environments promote the persistence
of organisms that impact human health or well-being (Paerl et al.,
2003; Newton et al., 2013; King, 2014).

The effects of urban landscape modification can account for
much of the water quality deterioration in urbanized waterways
(Brabec et al., 2002), which characteristically have high solute
(Booth and Jackson, 1997; Kaushal and Belt, 2012) and nutrient
(Carpenter et al., 1998; Wollheim et al., 2005; Hale et al.,
2015) loads and high productivity (Correll, 1998). Both the total
productivity and the heterogeneity in nutrient resources play a
prominent role in structuring species co-existence patterns across
all scales of life (Mittelbach et al., 2001; Chase and Leibold,
2002; Jankowski et al., 2014). However, the mechanisms driving
these compositional changes in response to increased ecosystem
productivity are complex and at minimum depend upon the total
resource pool, the balance of resources within this pool, and the
richness of competing species for specific resources (Cardinale
et al., 2009). Since urbanization results in increased delivery of
nutrients to surface waters (Carpenter et al., 1998; Paul and
Meyer, 2001), high nutrient concentration is likely one driver
of changes in the bacterial assemblage in these systems. For this
reason, the patterns of bacterial community assembly across an
urbanization gradient may in large part mirror those observed
across trophy or primary productivity gradients.

Increased productivity or nutrient load has been shown to
relate to changes in the diversity and composition of bacterial
communities in freshwater ecosystems (Horner-Devine et al.,
2003; Yannarell and Triplett, 2004; Longmuir et al., 2007; Smith,
2007; Kolmonen et al., 2011; Jankowski et al., 2014). Yet a
clear relationship between productivity and bacterial diversity
or community change has not been identified consistently. For
example, bacterial richness was uncoupled to total phosphorus
concentration in 100 lakes in Finland (Korhonen et al., 2011)
and productivity related variables were not strong predictors
of community composition across 30 lakes in Wisconsin,
USA when geographic and landscape related variables were
considered (Yannarell and Triplett, 2005). Also, several processes
have been implicated in driving bacterial community change
across aquatic environmental gradients, including: complete
community displacement or turnover (Bell et al., 2010), changes

in the relative abundance of a few core taxa (Shade et al., 2010),
and an increase in the presence of rare or novel taxa that augment
a core community (Jankowski et al., 2014; Shade et al., 2014).
These varied and sometimes contradictory findings suggest that
the relationship between microbial community structure and
ecosystem productivity are complex and still poorly defined.

Few studies that examined explicitly the relationship of system
productivity and bacterial community change also identified the
bacterial types causing the observed change. In one such study,
an increased representation of rare and/or novel taxa in more
eutrophic conditions were implicated as being responsible for
much of the observed community change, but the taxonomic
affiliation of these taxa were not considered (Jankowski et al.,
2014). Studies involving the distribution and growth traits of
common lake taxa have provided some insight into which taxa
would be expected to drive changes across productivity/trophy
gradients. Specifically, members of the genus Limnohabitans
and Flavobacterium exhibited high maximum growth rates and
abundance correlations to high nutrient conditions in lakes
(Šimek et al., 2006; Newton et al., 2011a; Neuenschwander et al.,
2015), while the freshwater lineages LD12 and acI have slower
growth rates and traits indicating a more oligotrophic lifestyle
(Šimek et al., 2006; Newton et al., 2011a; Salcher et al., 2011b;
Ghylin et al., 2014).

Using an analysis of bacterial community composition along
sample transects from the highly urbanized waterways in the
Milwaukee estuary to the relatively low urban-impacted waters
of Lake Michigan, we assess how the bacterial assemblage
differs between these two connected environments. Specifically
we evaluate whether processes identified as driving microbial
community change in aquatic systems, such as complete
community turnover, shifts in the community contribution of
common taxa, or taxa augmentation also drive changes in the
richness and composition of bacteria across an urbanization
gradient. With these data we also identify the taxa responsible
for differences in the community assemblages across the
urban-influence gradient and evaluate whether there are
differential distribution patterns for narrowly-defined sequence-
based groups (oligotypes) within several ubiquitous freshwater
genera/lineages.

Materials and Methods

Sample Collection and Site Characteristics
All samples analyzed for bacterial community composition were
collected from surface waters (0–0.5m depth) during the ice-
off season (April to October) in the waterways of Milwaukee,
WI or in Lake Michigan. Each final sample consisted of
three surface water samples that were combined, mixed, and
subsampled into 1- to 4-l bottles. The samples were collected
on 15 separate expeditions spanning the years 2008–2012. See
Figure 1 for a sample map of the collection locations and
Supplementary Table 1 for sample metadata. Samples collected
in 2008–2010 were described previously (Newton et al., 2013).
Sample processing and filteringmethods are described inNewton
et al. (2011b).
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FIGURE 1 | Map of Milwaukee, WI, USA urban estuary and nearshore

Lake Michigan. Sampling locations included in this study are indicated with

site names.

We characterized the average or “typical” chemical and
physical conditions of the waterways using data from
the Milwaukee Metropolitan Sewerage District Water
Quality Monitoring program housed via the WATERBase
database at the University of Wisconsin-Milwaukee
(www.waterbase.glwi.uwm.edu/). From these data, we retrieved
surface water sample measurements collected on 19 occasions
for Lake Michigan and on 31 occasions for the rivers and inner
harbor. These samples were limited to the months of June
through October for the years 2008–2010, which represents
a similar seasonal period and most of the years during which
the bacterial community water samples were obtained. Three
sample sites (2 mile, Linwood, and Doctors Out) were used to
represent Lake Michigan and one sample site each was used to
represent each of the rivers and the inner harbor (see Figure 1

for sample locations). Data was obtained for water temperature,
pH, conductivity, suspended solids, total phosphorus, Total
Kjeldahl Nitrogen, nitrate/nitrite, and chlorophyll a according
to the standard protocols listed in the Standard Methods for the
Examination of Water and Wastewater (20th ed., 1998)1. The

1Standard Methods for the Examination of Water andWastewater 20 th ed., 1998.

American Public Health Association (APHA), 1015 15th Street, NW,Washington,

DC 20005.

median and range for each environmental parameter at each
sample site are listed in Table 1.

Based on the environmental parameters representing each
area and the connection between each waterway to the urban
landscape, we grouped the sample locations into two categories:
(1) urban-impacted and (2) Lake Michigan, respectively
representing high and low impact from urban discharge. The
urban-impacted category includes the three rivers and inner
harbor samples and the Lake Michigan category includes all
samples outside of the harbor break walls (see Figure 1 for
sample locations).

16S rRNA Gene Sequencing and Processing
DNA extraction procedures for all filtered water samples are
detailed in Newton et al. (2013). Extracted DNA was used to
construct amplicon libraries for high-throughput 16S rRNA gene
sequencing targeting either the V6 or V4 to V6 regions (amplified
in the reverse direction V6 to V4). Amplicon libraries were
sequenced using either the 454 Life Sciences or the illumina R©

platform. Details for amplicon library construction, sequencing
procedures, and post-sequencing quality control methods for the
V6 454 platform are described in McLellan et al. (2010), for the
V6V4 454 platform inNewton et al. (2013), and for the illumina R©

V6 platform in Eren et al. (2013b). Sequencing methods for each
sample are listed in Supplementary Table 1.

The National Center for Biotechnology Information Sequence
Read Archive has archived the raw data under SRA Projects
SRP018584 (V6 454), SRP059202 (V6V4 454), and SRP056973
(V6 illumina). Trimmed and quality filtered sequence data
are publicly available from the Visualization and Analysis of
Microbial Population Structures website (VAMPS; http://vamps.
mbl.edu; Huse et al., 2014) under project names SLM_SWG_Bv6,
SLM_NIH_Bv6v4, and SLM_NIH2_Bv6.

Dataset Construction
We used the algorithm Global Alignment for Sequence
Taxonomy (GAST; Huse et al., 2008) to assign taxonomy to
all sequences. A dataset consisting of sequences binned by
the most resolved taxonomic assignment down to genus was
used in whole community composition comparisons among
samples. Analyses using this dataset are termed “taxon-based.”
We also constructed a second, higher resolution dataset based
on closed-reference clustering, where reads are searched against
the curated SILVA database (Pruesse et al., 2007) as part of the
Visualization and Analysis of Microbial Population Structures
(VAMPS; http://vamps.mbl.edu) database (Huse et al., 2014) and
then clustered as defined by the best database match for each
read (see Huse et al., 2008 for more details). Since reference
sequence matches are not identical across sequence regions
(V6 vs. V6V4 data), but reference-based clustering provides
more narrowly-defined groupings than taxon-based assignments,
and therefore a more accurate representation of total bacterial
diversity, this dataset was used only for richness and diversity
comparisons. Analyses using this dataset are termed “reference-
based.”

We constructed a third, high-resolution dataset to explore
distribution patterns within and among common freshwater
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TABLE 1 | Chemical and physical properties of sampled environmentsa,b,c.

Urban estuary Lake Michigan

Junction MKE MN KK 2 mile Linwood Doctors park out

Temperature (◦C) 19.4 (11.8–24.6) 21.6 (7.5–26.8) 22.1 (12.7–29.1) 19.3 (12.3–25.0) 17.0 (10.4–21.7) 17.5 (8.6–21.5) 16.4 (6.9–22.9)

pH 8.0 (7.5–8.5) 8.2 (7.7–8.6) 7.8 (7.4–8.3) 8.0 (7.6–8.4) 8.4 (8.0–8.7) 8.4 (8.2–8.6) 8.4 (8.2–8.6)

Conductivity (µS/cm) 587 (257–799) 807 (210–896) 700 (336–997) 615 (315–899) 294 (279–341) 285 (274–305) 285 (275–292)

Susp. solids (mg l−1) 6 (4–80) 12 (4–100) 8 (3–170) 10 (6–140) bd (bd–bd) bd (bd–bd) bd (bd–bd)

Total P (µgl−1) 68 (bd–230) 115 (44–290) 100 (bd–280) 82 (42–260) bd (bd–72) bd (bd–bd) bd (bd–25)

TKN (mg l−1) 0.60 (bd–1.10) 0.72 (bd–1.60) 0.68 (bd–1.60) 0.62 (bd–1.40) bd (bd–0.62) bd (bd–0.83) bd (bd–0.84)

NO3/NO2 (mg l−1) 0.71 (0.38–1.10) 0.90 (0.24–1.40) 0.58 (0.27–1.10) 0.71 (0.35–1.20) 0.27 (bd–0.44) 0.26 (bd–0.30) 0.29 (bd–0.31)

Chlorophyll a (µgl−1) 6.0 (0.9–17.8) 6.4 (3.3–34.8) 6.7 (2.1–52.9) 6.0 (1.8–27) 1.2 (0.3–7.2) 0.8 (bd–7.5) 0.4 (0.2–1.8)

aThe Median (Range) are listed for each water chemical/physical property measurement.
bAbbreviations: Susp. Solids, Suspended Solids; Total P, Total Phosphorus; TKN, Total Kjeldahl Nitrogen; bd, below detection.
cThe detection limits are as follows: Suspended Solids 1mg l−1, Total Phosphorus 20µg l−1, Total Kjeldahl Nitrogen 0.36mg l−1, Nitrate/Nitrite 0.20mg l−1, Chlorophyll a 0.11µg l−1.

genera/lineages. This dataset consisted only of amplicons
assigned by GAST to the Actinobacteria family Sporichthyaceae
and genus Aquiluna, the Bacteroidetes genera Algoriphagus,
Arcicella, Flavobacterium, Fluviicola, and Sediminibacterium,
the Proteobacteria lineage SAR11 and genera Hydrogenophaga,
Polynucleobacter, Rhodobacter, Rhodoferax, Sphingopyxis, and
the Verrucomicrobia genus Luteolibacter. All amplicons assigned
to these 14 common freshwater groups were aligned (within-
group alignments) using the align.seqs command in mothur
(Schloss et al., 2009). After alignment, the non-overlapping
sequence from the V6V4 amplicons was trimmed from the 14
alignments using the filter.seqs command in mothur (Schloss
et al., 2009). We then conducted a high-resolution oligotyping
analysis on the trimmed alignments as described previously
(Eren et al., 2013a; oligotyping.org). Oligotyping is a supervised
computational method that uses Shannon entropy calculations
to identify nucleotide variation in alignments. The entropy
calculations are used to select highly variable positions in
the alignment, which are then used to parse the data into
groups having identical sequences at the defined positions. These
highly-resolved groups are known as oligotypes (Eren et al.,
2013a). We set the minimum substantive abundance criterion
(M) to the lesser of 0.01% of all sequences assigned to each
group or 10 and the minimum sample prevalence (s) to 2 for
all 14 oligotyping analyses. Oligotypes were deemed to have
converged when entropy values within each oligotype were
below 0.2 according to the procedures described in Eren et al.
(2013a).

For the family Sporicthyaceae, reference sequences from each
oligotype were compared against the freshwater database from
Newton et al. (2011a) to assign a more refined freshwater
naming structure. Sporichthyaceae oligotypes were resolved to
the lineages acI-A, acI-B, acI-C, acSTL, and acTH1 when
the representative sequence was identical to or contained a
single mismatch to sequences representing only one of the
lineages. After splitting the Sporichthyaceae into five distinct
lineages, our final oligotyping dataset consisted of 18 unique
lineages that were used in subsequent analyses. For Rhodoferax,
reference sequences for each oligotype were also compared

against the Newton et al. (2011a) freshwater database and only
those sequences identical to or with a single mismatch to
sequences representing the Limnohabitans lineage were retained.
The SAR11 GAST assigned sequences, throughout are referred
to as LD12, the freshwater lineage to which these sequences
belong.

Data on the distribution of freshwater taxa generated
from clone library sequence data as reported in Newton et al.
(2011a) were used in a community composition comparative
analysis. These data include the relative abundance of common
freshwater genera and lineages from the epilimnion of 47
lakes located primarily in North America and Europe,
but also including Antarctica, Africa, and China. This
database included only studies with data generated from
universal bacterial primers and random clone selection
for sequencing and for which more than 40 sequences
were present (see Newton et al., 2011a for further dataset
details).

Statistical Analyses
We conducted all data analyses in the R statistical language (R
Core Team, 2013). We used the community analysis package
vegan (Oksanen et al., 2013) and the Bray-Curtis dissimilarity
metric for all community composition comparisons. Non-metric
multidimensional scaling (NMDS) and hierarchical clustering
were based on Bray-Curtis dissimilarities using the relative
abundance of taxon- or reference-based groups, calculated as
the sequence count for a group divided by the total sequence
counts for a sample (whole community) or the sequence counts
for a subset of taxa/lineages from a sample (e.g., common
freshwater genera/lineages only). To identify the number of
dimensions to include in NMDS analyses, a scree plot was used
to identify dimensional convergence for ordination stress and
a low dimension analysis (k = 2) was compared to a higher
dimensionality analysis (k = 10) for significant ordination
correlation using a Procrustes rotation via the protest function.
Analysis of Similarity (ANOSIM) statistics (999 permutations)
were carried out with the anosim function (Oksanen et al.,
2013) and were used to test the significance of a priori assigned
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sample group differentiation.We used theMann-WhitneyU-test
to examine whether the distribution of measurements for two
groups differed significantly (Mann and Whitney, 1947). For
most data visualization we used the ggplot2 R package (Wickham,
2009) or base graphics in R. We constructed heatmaps with
the heatmap.2 function in the gplots R package (Warnes et al.,
2013).

We used two measures of diversity, inverse Simpson index
(Lande, 1996) and the tail statistic (Li et al., 2012) to compare
among sample groups. These twometrics differ in their weighting
of abundant vs. rare members in a sample. The inverse Simpson
metric places more emphasis on the diversity of the most
abundant taxa/groups among samples, while the tail statistic
places more emphasis on the diversity of more rare community
members (Li et al., 2012). We carried out inverse Simpson
diversity calculations using the diversity function in the vegan
package (Oksanen et al., 2013) and the tail statistic according to
the equation developed by Li et al. (2012).

For all richness and diversity calculations and data
comparisons using oligotypes of the common freshwater
genera/lineages, we used a subsampled dataset to reduce the
artifacts of disproportionate sequencing depth when using
non-relativized data. We subsampled randomly once all samples
having >30,000 quality-filtered sequences to 30,000 sequences
using the R package plyr (Wickham, 2011; see Supplementary
Table 1 for sequence read counts after subsampling).

To compare the magnitude of a “habitat preference”
between the urban estuary waters and Lake Michigan for
common freshwater genera/lineages, we used the ratio of the
mean relative abundance of each genus/lineage among the
urban estuary samples vs. its mean relative abundance in the
Lake Michigan samples. To minimize the effect caused by
differences in the proportion that these common freshwater
bacteria make up in each sample, each genus/lineage relative
abundance was calculated as the proportion of sequences
in the high-resolution dataset of 18 common freshwater
genera/lineages. To minimize the impact of temporal
abundance variability for an individual genus/lineage, the
relative abundance of each genus/lineage was normalized to the
sample with the highest relative abundance within each sample
transect.

To identify individual oligotypes that preferentially associated
with either the urban-influenced waterways or Lake Michigan,
we performed a multinomial species classification using the
CLAM test (Chazdon et al., 2011) in the vegan R package
(Oksanen et al., 2013). This model allowed us to divide
oligotypes into the following four categories based on their
distribution among samples: oligotypes preferential to urban-
influenced waterways, oligotypes preferential to Lake Michigan,
oligotypes showing no preferential distribution (generalists),
and oligotypes that were too rare to classify with confidence.
The CLAM test was performed on the subsampled dataset
using an alpha value of 0.01 divided by the total number
of oligotypes (n = 351), a coverage limit of 30, and a
specialization threshold of 0.75. A specialization threshold=0.67
(a supermajority) is considered conservative (Chazdon et al.,
2011).

FIGURE 2 | Heatmap indicating the relative abundance of all bacterial

families with a mean relative abundance of ≥1% among either all

Urban Estuary or all Lake Michigan samples. Common freshwater

lineages as described in Newton et al. (2011a) are indicated with their

respective family assignments. A previously compiled freshwater dataset is

also depicted (FW Database) and consists of bacterial group distributions

inferred from whole community 16S rRNA gene amplification and clone library

construction across 47 lakes as described in Newton et al. (2011a).

Results

The Lake Michigan Bacterial Community
Resembles Other Freshwater Lakes but Differs
from Milwaukee’s Urban-impacted Waterways
The surface water community in relatively nearshore (<10 km
from shore) Lake Michigan is dominated by many of the
freshwater bacterial genera and lineages that are common to
the surface waters of smaller freshwater lakes (Figure 2). On
average, the bacterial families in Lake Michigan with the highest
number of assigned sequence reads were Sporichthyaceae, (28%;
freshwater lineages acI, acTH1, and acSTL), Comamonadaceae,
(13%; freshwater genera Limnohabitans and Rhodoferax),
Flavobacteriaceae (8%; freshwater genera Flavobacterium),
SAR11 (7%; freshwater lineage LD12), and Verrucomicrobiaceae
(5%). The families Sporichthyaceae, Comamonadaceae, and
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FIGURE 3 | Non-metric multidimensional scaling plot indicating the

community composition relationships (Bray-Curtis similarity) between

the Urban Estuary (green) and Lake Michigan (blue) samples.

Community composition is based on the grouping of sequences by taxonomic

assignment to genus and compiled as the relative contribution of each taxon

to the community.

Flavobacteriaceae were the only bacterial families that averaged
≥5% of the reads in samples from the urban-impacted
waterways. In addition to these common freshwater lineages,
the urban impacted waterways also harbored other bacterial
families at relatively high abundances (each at ≥2% of the
community) that were not common in Lake Michigan, namely,
Oxalobacteraceae (freshwater lineage betVII), Rhodocyclaceae,
and Rhodobacteraceae (freshwater genera Rhodobacter).

NMDS analysis of sequence data binned by taxonomic
assignment to genus (taxon-based) indicated the urban-impacted
water (rivers and inner harbor) communities were distinct
from the bacterial communities of Lake Michigan (Figure 3;
urban-impacted vs. Lake Michigan; ANOISM R = 0.80
p = 0.001). Since three different sequencing region/platform
combinations were used to create these data, we examined
whether this community composition pattern was influenced
by the sequencing procedures used (see Supplementary Table
1 for sample details). We found there was a significant, but
small proportion of the community variation explained by
sequencing procedure (ANOSIM R = 0.15, p = 0.009), and this
variation was distinct from and much smaller than the variation
separating the urban-water and Lake Michigan communities
(Supplementary Figure 1). Two dimensions were used in the final
NMDS ordination calculation, as ordination stress was relatively
low (0.11) and additional dimensions did not alter the sample
relationship patterns observed (Procrustes test for ordination
similarity between k = 2 and k = 10; r = 0.801, p =

0.001).

Taxa Augmentation in Urban Waterways
The microbial communities present in the urban waters had
higher taxonomic (taxon-based, binned by genus assignment)
and reference-based (binned by reference sequence) richness
than the communities from Lake Michigan (Table 2). The urban
water communities also contained higher alpha-diversity levels
than the Lake Michigan communities, and this diversity increase
was observed with both the inverse Simpson index (reference-
based analysis) and the tail statistic (taxon- and reference-based;
Table 2). Only the taxon-based diversity comparison, using the
inverse Simpson test, showed no significant difference between
the urban-impacted water communities and Lake Michigan
(p > 0.01; Table 2).

Most of the identified taxa in Lake Michigan were also
detected in the urban-impacted waters. For example, of the
1458 taxa identified in at least two samples, only one was
present solely in Lake Michigan, while 397 were present solely
in the urban-impacted waterway samples. However, these 397
urban-water associated taxa did not typically comprise a large
part of the community, contributing on average only 0.14% of
the sequence reads in the urban-waterway samples. Together
these data indicate an increased distinction between the urban
waterways and Lake Michigan as the grouping method used
to identify organisms becomes more narrow (from taxon- to
reference-based) and as the diversity index puts more weight on
more rare organisms (from inverse Simpson to Tail), suggesting
a higher number of more closely related (within-genus), but
relatively rare organisms in the urban waterways.

Common Freshwater Taxa Exhibit Differential
Preference for Urban-impacted vs. Lake
Michigan Waters
After examining the whole bacterial community composition
differences between the urban-impacted and Lake Michigan
waters, we further examined the distribution of 18 common
freshwater genera/lineages across four sampling transects. The
18 genera/lineages included: acI-A, acI-B, acI-C, acTH1, acSTL,
Aquiluna, Algoriphagus, Arcicella, Flavobacterium, Fluviicola,
Sediminibacterium, LD12, Sphingopyxis, Hydrogenophaga,
Limnnohabitans, Polynucleobacter, Rhodobacter, and
Luteolibacter. All genera/lineages were present in all samples
(n = 23) except for LD12 (22/23) and acI-C (21/23). These
18 genera/lineages comprised on average 44.9 ± 6.9% of the
sequence reads in the urban water communities and on average
69.3± 2.6% of the Lake Michigan communities.

The relative abundance of the 18 common freshwater lake
bacteria genera/lineages (calculated as relative to each other)
indicated differential distributions in the urban-impacted waters
vs. Lake Michigan (ANOSIM R = 0.65 p < 0.001), suggesting
some common lineages were favored over the others by the
conditions present in each environment. We explored whether
individual genera/lineages exhibited a “preference,” defined as
an increased average relative abundance vs. the other common
genera/lineages, for either the urban impacted or non-impacted
Lake Michigan waters. We found that some genera/lineages
were favored by the conditions present in the urban waterways,
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TABLE 2 | Diversity comparison between Urban estuary and Lake Michigan samplesa.

Taxon—Whole community Reference sequence—Whole community

Sample environment Richness Inverse simpson Tail Richness Inverse simpson Tail

Urban estuary 432 ± 104 7 ± 6 49 ± 23 2680 ± 1232 68 ± 40 584 ± 463

Lake Michigan 185 ± 25 5 ± 2 16 ± 3 1015 ± 440 37 ± 14 145 ± 85

Mann-Whitney U 400** 277* 400** 379** 325** 370**

aMean and standard deviation are reported.

**Indicates significance at p < 0.01.

*Indicates significance at p < 0.05.

while others were favored by the conditions in Lake Michigan
(Figure 4). The organisms affiliated with the Actinobacteria
lineages acI-B, acI-C, and acTH1 the Alphaproteobacteria lineage
LD12, and the Cytophagia genus Algoriphagus had a strong
preference for the conditions in Lake Michigan, while the
Betaproteobacteria genera Rhodobacter, Polynucleobacter, and
Limnohabitans had a strong preference for the urban-impacted
waters (Figure 4).

Oligotyping Reveals Unique Environmental
Distribution Patterns within Common Freshwater
Lake Taxa
We used oligotyping to provide a refined sequence-based analysis
for each the 18 common freshwater lake genera/lineages (see
Materials and Methods for details). The 18 genera/lineages
were represented by 351 oligotypes. In contrast to the
whole community, the common freshwater lake genera/lineages
did not exhibit significant richness or diversity differences
(p > 0.01) between the urban-impacted and Lake Michigan
waters (Table 3). These data in conjunction with the whole
community diversity differences indicate that a similar level
of diversity for common lake bacteria is present across both
environments, but in the urban-impacted waterways these
common lake community members are augmented with a
large number of microorganisms that are uncommon in lake
surface waters.

Although the common freshwater genera/lineages oligotype
richness and diversity did not differ significantly between
the urban-impacted and Lake Michigan samples, there was
a significant difference in the distribution of these oligotypes
between the two environments (Figure 5; ANOSIM R = 0.90,
p < 0.001). A CLAM statistical approach using stringent
conditions for environmental specialist determination (see
Materials and Methods) indicated 80 of the 351 oligotypes
exhibited significantly differentiated distributions between the
two environments (51 associated with urban waters and 29 with
Lake Michigan; Figure 6). The Actinobacteria lineages (acIA,
acIB, acIC, acTH1) and the genus Fluviicola harbored the
majority of LakeMichigan favored oligotypes (20; Supplementary
Table 2), while the genera Flavobacterium, Hydrogenophaga,
Limnohabitans, and Rhodobacter harbored a large number
of the urban-water favored oligotypes (36; Supplementary
Table 2). In several cases, oligotype pairs with one or two
nucleotide differences (>97 or >96% identity, respectively) had

opposite preferences for the urban waters vs. Lake Michigan
(Supplementary Table 2).

Discussion

We observed a strong division between the bacterial community
composition in the urban-impacted waterways of the Milwaukee
estuary and of those in greater Lake Michigan. This result
was not surprising given the numerous differences in the
chemical and physical conditions of these two distinct but
connected systems. In particular, higher nutrient and particle
loads, water temperature, and lower residence time differentiate
the sampled urban estuary waters and the waters of oligotrophic
Lake Michigan. Nutrient and particle load, residence time,
and temperature are all parameters that have been shown to
impact the bacterial community makeup of freshwater systems
(Lindström et al., 2005; Allgaier and Grossart, 2006; Newton
et al., 2011a). Here we did not attempt to distinguish among these
parameters as a driving force for community differentiation.
Instead, we sought to further our understanding of urban
influences on aquatic bacterial communities by identifying how
the bacterial assemblages of urbanized waterways differed from
those of a connected, but oligotrophic low urban-impacted
system. Our study shows that a core pelagic bacterial community
is present across this urban-eutrophic to oligotrophic gradient,
as at all levels of classification: (1) taxon—genus, 2) sequence—
reference-based, and (3) oligotype, the majority of sequence types
in the lake were also recovered from the urban estuary. However,
large changes in the bacterial assemblages were also present,
notably a loss of diversity among taxa/lineages not considered
common to lakes during the transition from the estuary to the
open lake and a significant composition change both among
cosmopolitan freshwater taxa/lineages and for oligotypes within
these taxa/lineages.

Taxa Augmentation in Urban-influenced Waters
Our results showed that bacterial richness was higher in
the urban waterways, supporting what had been reported in
several studies examining bacterial community trends across
lake productivity/trophy gradients (Kolmonen et al., 2011; Logue
et al., 2012; Jankowski et al., 2014). The bacterial diversity
estimates that emphasized more rare community members
resulted in a larger diversity disparity between the urban estuary
and Lake Michigan habitats, indicating the presence of a much
larger pool of rare community members in the urban-influenced
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FIGURE 4 | Magnitude of habitat preference between the Urban Estuary waters and Lake Michigan for common freshwater genera/lineages. Habitat

preference is determined by the ratio of the mean relative abundance of each genus/lineage among the urban estuary samples vs. its mean relative abundance in the

Lake Michigan samples. Bars plotting to the left indicate an urban estuary preference while bars plotting to the right indicate a Lake Michigan preference. A significant

association (Mann-Whitney U-test, p ≤ 0.01) with either environment is indicated by an asterisk. Bar color indicates bacterial phylum where yellow, Actinobacteria;

green, Bacteroidetes; orange, Alphaproteobacteria; blue, Betaproteobacteria; and purple, Verrucomicrobia.

TABLE 3 | Oligotype diversity comparisons for common freshwater

genera/lineagesa.

Sample environment Oligotype—Core freshwater

Richness Inverse simpson Tail

Urban estuary 144 ± 20 14 ± 4 19 ± 4

Lake Michigan 127 ± 18 14 ± 4 16 ± 2

Mann-Whitney U 92 64 96*

aMean and standard deviation are reported.

*Indicates significance at p < 0.05.

waterways. Our diversity estimates also indicated this rare pool
of organisms was not derived from genotypic variation within
the most common freshwater genera/lineages as at our finest
scale of organism resolution, the oligotype, there were not on
average differences in the richness and diversity between the two
environments. Instead, we suggest a typical pelagic freshwater
community in the urban estuary was being augmented by a large
number of more rare freshwater organisms and/or organisms not
found in pelagic lake communities.

In a lake productivity gradient study, Jankowski and coauthors
suggested that increased habitat heterogeneity, which is typically
associated with higher nutrient lake systems, provides additional
resources that allow rare or absent taxa in oligotrophic systems
to flourish in more eutrophic waters (Jankowski et al., 2014).
Although we did not examine habitat heterogeneity explicitly
here, it is likely a contributing factor to the increased diversity
in the urban-influenced waterways. In our system, the variation,
which is one measure of habitat heterogeneity, in the chemical
and physical characteristics of the urban-influenced waters was

much higher than that in greater Lake Michigan (Table 1). In
support of the relationship between high habitat heterogeneity
and recruitment of otherwise rare freshwater taxa, all but one
taxon (categorized to genus) present in Lake Michigan was also
present in at least one urban estuary sample, but nearly 400 taxa
were detected only in the urban estuary samples. Also the larger
number of oligotypes (51 vs. 29) from the common freshwater
genera/lineages that were classified as being “urban-water” vs.
“Lake Michigan” specialists may be a reflection of the increased
resource diversity in the urban estuary.

It is also likely that surface runoff and stormwater discharge
contributed significantly to the increased diversity observed
in the urban-impacted waters. Impervious surfaces decrease
water infiltration and increase surface runoff, and storm sewers
redirect normal water flow. Together, these urban constructions
dramatically alter the flow of water into urban surface waters
(Brabec et al., 2002; Kaushal and Belt, 2012). In previous work,
we estimated that under typical weather conditions, 2–11% of
the 16S rRNA genes recovered in Milwaukee estuary samples
had an urban environment origin (Fisher et al., 2015). We
also found that some of these organisms, including organisms
indicating human fecal pollution, were present consistently in
the estuary over several years of sampling (Newton et al., 2011b;
Fisher et al., 2014). At this time, it is not clear whether these
organisms persist because dispersal is frequent enough from the
urban environment to overcome local environmental dynamics
(i.e., mass effects) or whether the conditions in these urban
waterways allow these organisms to have prolonged survival
and/or grow (i.e., species sorting; Lindström and Langenheder,
2012). If pathogenic organisms are maintained or proliferate
in urban water systems, then these waterways may present a
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FIGURE 5 | Oligotype composition within each freshwater bacterial

genus/lineage among samples is indicated in stacked bar plots. The

relationship of the oligotype composition in each sample is depicted with a

cluster dendrogram based on Bray-Curtis dissimilarity among samples. Fully

black bars indicate no sequences were recovered from that genus/lineage in

that sample. Samples were clustered via an unweighted pair group method

with arithmetic mean calculation. Samples collected from the urban estuary

are labeled with a green circle while those collected from Lake Michigan are

labeled with a blue circle.

greater human health risk than previously recognized (Fisher
et al., 2014). Our data certainly suggest that the delivery
of a large number of foreign, “urban-derived” bacteria may
be common in urbanized waterways. This potentially massive
immigration combined with the increased habitat heterogeneity
in more eutrophic systems, appears to create a significantly more
diverse bacterial assemblage in urbanized systems. We also note
these data further support the idea that bacterial community
assemblage patterns across productivity gradients contrast those
for other organisms like fish and zooplankton, which typically
exhibit decreased diversity in high productivity systems (Dodson
et al., 2000; Barnett and Beisner, 2007; Jankowski et al., 2014).

FIGURE 6 | Classification results for oligotype distributions between

the urban estuary and Lake Michigan samples. Specialization was set

with a threshold of K = 0.75, a coverage limit = 30, and P = 0.01/351.

Classification status is indicated by point color and shape. The specialist and

rarity thresholds are indicated by dotted lines.

Core Freshwater Community Shifts
Although we observed differences in the bacterial community
composition between the urban estuary and Lake Michigan
environments, the whole community analysis approach was
not sufficient to identify whether these differences were the
result of increased diversity in the urban-influenced waterways
or stemmed from a combination of changes among rare and
common organisms. Previous work across lake trophic gradients
suggests that some bacterial groups are widespread (Jezbera
et al., 2011, 2013; Kolmonen et al., 2011; Newton et al., 2011a;
Jankowski et al., 2014), which could indicate most of the changes
in eutrophic communities result from the increased abundance of
rare or absent organisms in oligotrophic systems. Indeed changes
in the so-called “conditionally rare taxa” can be a dominant
driver of community change across environmental gradients
(Shade et al., 2014). However, shifts in the dominant or common
communitymembers also frequently drive change in the bacterial
community composition across environmental gradients (e.g.,
Gobet et al., 2010; Shade et al., 2010).

We used 18 ubiquitous freshwater lake genera/lineages
to compare change in the composition among dominant
freshwater taxa. Although these genera/lineages comprised a
large proportion of the community in both environments,
they differed in their distribution and generated sample
similarity patterns similar to those represented by the whole
community. The genera/lineages favored in either the eutrophic
or oligotrophic waterways generally matched what is known
about the lifestyles of these organisms. The urban estuary
favored Betaproteobacteria genera including Limnohabitans, a
genus defined by its fast-growth rates and copiotrophic lifestyle
(Šimek et al., 2006; Jezbera et al., 2011), and Rhodobacter, a genus
frequently abundant in near-shore eutrophic conditions, but less
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common in the pelagic low-nutrient freshwater environment
(Imhoff, 2006; Newton et al., 2011a). In contrast, the lineages
acI and LD12 were favored in oligotrophic Lake Michigan.
Both of these lineages are characterized by slower-growth,
small cell sizes, and predation avoidance or oligotroph life
strategies (Newton et al., 2011a; Salcher et al., 2011b; Ghylin
et al., 2014). These results suggest that even at fairly broad
taxonomic characterization such as genus or phylogenetic lineage
there may be conserved characteristics within some freshwater
groups, which contribute to community assembly patterns across
urban/trophic gradients.

Within Genus/Lineage Composition Change
Recently, several studies have identified within-genus and
with-species organism distribution patterns related to the
biological and environmental properties of freshwater habitats.
For example, it is now known that the ubiquitous freshwater
bacterium Polynucleobacter necessarius subspecies asymbioticus,
members of the genus Limnohabitans, and Flavobacterium
each contain dozens of ribosomal gene sequence variants
differentiated in their spatial and temporal distributions by
lake characteristics such as pH, conductivity, and dissolved
organic matter (Jezbera et al., 2011, 2013; Neuenschwander
et al., 2015). Here we used an oligotyping approach to
provide both high discriminatory power among closely related
sequences (as low as one nucleotide) and to reduce the effects
of sequencing errors (Eren et al., 2013a), so that we could
better resolve distribution patterns within some of the most
common freshwater bacterial genera/lineages. Despite the near
ubiquity of the 18 examined freshwater genera/lineages, we
observed the greatest community distinction between the urban
estuary and Lake Michigan samples when using the higher
organism discrimination provided by oligotyping. We also
found that 8 of the 18 examined freshwater genera/lineages
harbored both oligotypes that were favored in the urban estuary
and oligotypes favored in Lake Michigan, including several
instances where these opposite distribution patterns occurred
among oligotypes with one or two nucleotide differences. It
appears diversification is high within many of the ubiquitous
freshwater bacterial genera and often includes organisms with
distinct advantages over other closely related organisms in either
eutrophic or oligotrophic waters. Together these results indicate
that in addition to taxa augmentation, and common freshwater
genus/lineage life strategy differences, a third mechanism,
within-genus diversification, is driving community assemblage
differences between the urban-influenced and Lake Michigan
waters.

The combination of oligotyping and a habitat classification
statistical approach also revealed a number of interesting
trends among the common freshwater genera/lineages. The
Bacteroidetes phylum, especially the genera Flavobacterium,
Fluviicola, and Sediminibacterium had especially high oligotype
richness, suggesting either the diversity of freshwater organisms
associated with these genera is high or that a large number
of urban-associated organisms belonging to these genera are
delivered via city surface runoff and stormwater. Flavobacterium
and Sediminibacterium had a large number of rare oligotypes,

which supports the idea that many of these organisms
are immigrants from the urban-environment. However, the
Flavobacterium genus also contained a large number of
oligotypes classified as urban-water specialists. The described
diversity within this genus is immense and includes a
number of fast-growing, opportunisitic species-like phylotypes
(Neuenschwander et al., 2015) that are common in lotic systems
(Read et al., 2015), which suggests these organisms should be
common in many urban-influenced systems. Interestingly, the
most abundant Flavobacterium oligotype was a Lake Michigan
specialist and the only one of the 16 Flavobacterium oligotype
specialists that was not urban-water associated.

A number of other genera/lineages were dominated by
oligotypes assigned primarily to one of the environmental
specialist categories. The commonly noted oligotroph clades acI-
A, acI-B, and LD12 (Newton et al., 2011a) contained only Lake
Michigan specialists. The genus Fluviicola, also contained a large
number of Lake Michigan specialist oligotypes, but at this time
relatively little is known about this genus (Salcher et al., 2011a).
It is unlikely we over-classified oligotypes as specialists, as we
chose a conservative criterion for classification (specialization
K = 3/4; Chazdon et al., 2011). We also found some groups had
a high number of oligotypes classified as generalists (e.g., acI-A,
Fluviicola). It may be that some common freshwater organisms
are true euryoecious organisms, resulting in broadly abundant
distributions. It is also likely many generalist classifications are
the result of our inability to distinguish among organisms with
short-read 16S rRNA gene technologies. Recent studies have
shown that the 16S-23S internal transcribed spacer (ITS) region,
a less conserved bacterial genomic region, was able to identify
organism distribution patterns among lakes that were otherwise
obscured when examining 16S rRNA gene data (Jezbera et al.,
2013; Hahn et al., 2015). The combined results of this study
and the previous studies using ITS-based sequence groupings,
indicate that more narrowly-defined organismal approaches are
necessary to further our understanding of the biogeography and
ecology of the ubiquitous freshwater pelagic bacteria.

Technical Considerations
The data in our sequence-based analyses were derived from three
different sequencing platforms: 454V6, 454V6V4, and illumina
V6. The choice of gene amplification conditions and sequencing
platform are known to influence the composition of the resultant
sequence data (e.g., Wu et al., 2010; Schloss et al., 2011). We
also observed an influence of sequencing conditions on our
bacterial community composition data (see Supplementary
Figure 1 and associated Results Section); however, this influence
on the overall community composition and diversity was small
in comparison to the influence of the primary environmental
gradient examined. Also, in all cases, the dominant freshwater
oligotypes were present across all three sequencing platforms
(see Figure 5 for example), which suggested that although our
analyses were influenced by the platform used, the differences
did not manifest in the loss/gain of dominant freshwater groups.
We agree with previous work that the use of a single sequencing
platform gives the most robust cross-sample comparisons, but
in the case of some meta-analyses, including this one, these data
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may not exist. Our data suggest that cross-platform comparisons
of 16S rRNA gene data are feasible and can give meaningful
results especially when care is taken to quality-control sequence
output and strong environmental gradients are examined. We
suspect that if a single sequencing platform had been used
here, the within-habitat diversity estimates and community
composition variation in our data would have decreased and
therefore furthered the distinction between the communities
in urban-influenced waterways and oligotrophic Lake
Michigan.

Conclusions

In our study system, water flows from the urban-impacted
Milwaukee estuary into oligotrophic Lake Michigan, and with
it, the estuary bacterial assemblage is continuously dispersed
into the lake. Despite this direct connection, our examination
of the bacterial communities across this environmental gradient
revealed quite distinct assemblages. We found Lake Michigan
harbors lower bacterial diversity than the urban-impacted
estuary, shifts the dominance among common freshwater
genera/lineages, and selects for what are likely unique species
or populations within many of the common freshwater bacterial
lineages. These data support the idea that the oligotrophic lake
represents a strong selective force favoring a particular set of
cosmopolitan freshwater taxa and largely prevents the successful
dispersal of bacteria from the urban environment. It remains to
be seen whether smaller but heavily urban-influenced lakes are
more likely to contain persistent bacterial populations of urban
origin. Either way, it is clear the environmental conditions in
these urbanwaterways impact heavily the composition of the core
freshwater community and increase the prevalence of bacteria
that are not common to pelagic freshwaters.

The fact that many of the common freshwater genera/lineages
harbored both “urban-estuary” and “Lake Michigan” specialists,
further suggests the ubiquity of many common freshwater
bacteria is a result of large-scale diversification within these
groups (e.g., Jezbera et al., 2011; Hahn et al., 2015). Given

the “island-like” nature of lakes across the globe and an
ongoing desire to understand microbial diversification in natural
systems, the study of within-genus or within-species genetic
diversification of lake bacteria warrants further exploration.
Whether or not urban waterways alter significantly the ecological
function of these bacterial communities, select for genetic
compositions or functional traits that are distinct from un-
impacted surface waters, or contribute to themaintenance and/or
proliferation of microorganisms that impact human health or
well-being is yet to be determined. Further integration of the
microbial components of urban landscapes is needed in the
ongoing development of an ecological understanding and theory
for urban areas.
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Rising temperatures and changing winds drive the expansion of the highly productive
polynyas (open water areas surrounded by sea ice) abutting the Antarctic continent.
Phytoplankton blooms in polynyas are often dominated by the haptophyte Phaeocystis
antarctica, and they generate the organic carbon that enters the resident microbial food
web. Yet, little is known about how Phaeocystis blooms shape bacterial community
structures and carbon fluxes in these systems. We identified the bacterial communities
that accompanied a Phaeocystis bloom in the Amundsen Sea polynya during the austral
summers of 2007–2008 and 2010–2011. These communities are distinct from those
determined for the Antarctic Circumpolar Current (ACC) and off the Palmer Peninsula.
Diversity patterns for most microbial taxa in the Amundsen Sea depended on location
(e.g., waters abutting the pack ice near the shelf break and at the edge of the Dotson
glacier) and depth, reflecting different niche adaptations within the confines of this
isolated ecosystem. Inside the polynya, P. antarctica coexisted with the bacterial taxa
Polaribacter sensu lato, a cryptic Oceanospirillum, SAR92 and Pelagibacter. These taxa
were dominated by a single oligotype (genotypes partitioned by Shannon entropy analysis)
and together contributed up to 73% of the bacterial community. Size fractionation
of the bacterial community [<3 µm (free-living bacteria) vs. >3 µm (particle-associated
bacteria)] identified several taxa (especially SAR92) that were preferentially associated
with Phaeocystis colonies, indicative of a distinct role in Phaeocystis bloom ecology.
In contrast, particle-associated bacteria at 250 m depth were enriched in Colwellia and
members of the Cryomorphaceae suggesting that they play important roles in the decay
of Phaeocystis blooms.

Keywords: Amundsen Sea polynya, phytoplankton bloom, Phaeocystis antarctica, microbial community structure,

mutualism

INTRODUCTION
Phytoplankton blooms account for a significant fraction of
marine primary production. Such blooms occur in the open
ocean [e.g., by the cyanobacterium Trichodesmium (Capone
et al., 1997, 2005) or the diatoms Hemiaulus and Rhizoselenia
(Subramaniam et al., 2008)] as well as in the coastal ocean (e.g.,
Karenia, Pseudonitzschia), where they can be a nuisance for aqua-
culture and fisheries. Bloom events continue to intrigue ocean
researchers as the physiological underpinnings of their develop-
ment, duration and demise remain unresolved (Behrenfeld and
Boss, 2014). Species like Trichodesmium create short-lived (10–20
days) blooms of the rise-and-crash type, whereas blooms of other
species may be sustained over considerably longer periods (1–3
months). The haptophyte Phaeocystis is a ubiquitous marine phy-
toplankter that causes blooms in coastal seas. Species contained in
this genus have typical geographic distributions with P. pouchetii
dominating in the Arctic Ocean, P. globosa in temperate coastal
seas and P. antarctica occupying diverse niches in the Southern
Ocean, respectively (Schoemann et al., 2005). Phaeocystis blooms

significantly impact local carbon, nutrient and sulfur cycles (Van
Boekel and Stefels, 1993; Yager et al., 2012) and can disturb
ecosystems (Chen et al., 1999).

Extensive phytoplankton blooms occur in Antarctic waters
(Arrigo and Van Dijken, 2003). In explored Antarctic polynyas
(large open water expanses in sea ice), blooms are often dom-
inated by P. antarctica (Arrigo et al., 1999; Smith et al., 2000;
Yager et al., 2012; Kim et al., 2013). These populations are gen-
erally limited by light and iron availability (Martin et al., 1990;
Bertrand et al., 2011a; Alderkamp et al., 2012) and bloom for-
mation occurs when environmental conditions become favorable
(Zingone et al., 1999; Smith et al., 2003; Vogt et al., 2012). The
duration and scale of these favorable conditions are enhanced by
rising temperatures and winds (Arrigo et al., 1998; Turner et al.,
2005; Yager et al., 2012). Phaeocystis blooms occur in the sur-
face mixed layer and they can span much of the austral summer
(Arrigo et al., 1999; Wolf et al., 2013). Their populations rapidly
draw down CO2 concentrations to <100 ppm (Arrigo and Van
Dijken, 2003; Yager et al., 2012). Thus, Phaeocystis blooms supply
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organic carbon and nutrients to the food web inside polynyas
(Rousseau et al., 2000; Kirchman et al., 2001a; Ducklow, 2003)
and provide ecological niches for microbial heterotrophs (e.g.,
those capable of degrading particle organic carbon). The require-
ment for a continued supply of essential nutrients and growth
factors like vitamins (Bertrand et al., 2011b), along with the
removal of metabolites and exudates that negatively affect algal
growth, likely influence bloom intensity and duration in most
water bodies. The mechanisms by which Phaeocystis blooms sus-
tain their activity over time are not well understood and possibly
involve important functional interactions with their surrounding
microbial community.

Bacteria entertain a wide range of interactions with phyto-
plankton (Cole, 1982; Doucette, 1995; Croft et al., 2005; Sher
et al., 2011), and these interactions in turn may determine the
composition of the bacterial community. A succession of bac-
terial taxa was observed during a phytoplankton bloom in the
North Sea and their occurrence patterns were linked to their abil-
ity to degrade algal-derived organic matter (Teeling et al., 2012).
The final phase of the bloom was shown to favor Ulvibacter
and Formosa dominance during early and mid-stages of the
decline, and to Polaribacter in the final stages. Polaribacter abun-
dances correlate positively with chlorophyll a concentrations in
the Southern Ocean and they play an active role in remineraliz-
ing organic matter generated from primary production during
bloom events (Wilkins et al., 2013b; Williams et al., 2013). Not
only is the free-living bacterial community affected by phyto-
plankton blooms, the bacterial epibionts that reside on algal cells
or colonies alter their community structure as a phytoplank-
ton bloom progresses. For example, Trichodesmium colonies have
an epibiotic bacterial flora that is distinct from the free-living
bacterial community (Hmelo et al., 2012). These changes in com-
munity structure are in part driven by chemotactic responses of
bacterial taxa to phytoplankton exudates like dimethylsulfonio-
propionate (Stocker et al., 2008; Seymour et al., 2010; Stocker
and Seymour, 2012). Quorum sensing by associated bacteria was
shown to enhance phosphate scavenging by Trichodesmium (Van
Mooy et al., 2011).

P. antarctica blooms consist mostly of colonies that reach a
diameter of a few millimeters and can be identified by the naked
eye (Carlson et al., 1998; Smith et al., 1998). They form an
important interface between the primary producers and their
environment. The mucilaginous colony matrix that encapsu-
lates the Phaeocystis cells forms a barrier for the exchange of
dissolved compounds but it may also provide a habitat for bac-
terial species. Previous studies suggest that P. antarctica blooms
affect microbial community structure in their immediate sur-
roundings. An iron-induced phytoplankton bloom study in the
Southern Ocean (West et al., 2008) showed that Roseobacter,
SAR92 and Bacteroidetes dominated the bacterial community
inside the bloom, whereas outside the bloom SAR11, Polaribacter
and different Roseobacter types were more prevalent. A metage-
nomic study of coastal waters near the Antarctic Peninsula
showed that bacterial communities were dominated by geno-
types capable of chemotrophic, photoheterotrophic and aer-
obic anoxygenic photosynthetic metabolism (Grzymski et al.,
2012). These communities were rich in SAR11-like genotypes,

but poor in Bacteroidetes and Gammaproteobacteria (Grzymski
et al., 2012). The Amundsen Sea polynya (ASP) is domi-
nated by Polaribacter spp. (Bacteroidetes) and Oceanospirillales
(Gammaproteobacteria) members (Ghiglione et al., 2012; Kim
et al., 2013; Richert et al., submitted). These studies also reported
different bacterial communities in areas with ice cover as com-
pared to open water samples. Likewise, iceberg melt affects bac-
terial communities with Gammaproteobacteria dominating deep
waters near icebergs and Bacteroidetes dominating elsewhere
(Dinasquet et al., submitted). In accordance with findings else-
where (Piquet et al., 2011), bacterial abundances in the ASP were
highly correlated with Phaeocystis and diatoms suggesting a close
coupling between the phytoplankton and bacterial communities
(Kim et al., 2013). Bacterial productivity is not only higher in
the open polynya as compared to adjacent water bodies, the bulk
of bacterial exoenzyme activity, respiration and production was
associated with the size fraction that contains Phaeocystis parti-
cles (Williams et al., submitted). However, so far no efforts have
been made to assess whether members of the bacterial commu-
nity interact directly with Phaeocystis. We hypothesized that the
bacterial community is not limited to the biomineralization of
organic carbon and nutrients but that specialized members of this
community may also entertain interactions with Phaeocystis that
stimulate bloom formation or act to enhance and perpetuate such
blooms.

In an attempt to investigate the occurrence of such interac-
tions we sampled two P. antarctica bloom events (2007–2008 and
2010–2011) from the highly productive ASP in west Antarctica
(Arrigo and Van Dijken, 2003; Alderkamp et al., 2012; Mills et al.,
2012). We targeted the V6 hypervariable region of the 16S rRNA
gene with primers that target bacterial and eukaryotic organelle
templates. We used this approach to generate large V6 sequence
datasets (105–106 reads per sample) for various locations at the
shelf break, inside the polynya and near the Dotson glacier. We
coupled the depth and quality of paired-end Illumina sequenc-
ing to oligotyping, a sensitive bioinformatics tools to partition
conserved genotype clusters within key microbial taxa, revealing
an extended diversity. Using different sampling strategies, we dis-
covered a number of bacterial taxa that preferentially associate
with P. antarctica and their abundance correlated with that of
Phaeocystis. We also identified different bacterial taxa that may
play a specific role in bloom demise and the degradation of
Phaeocystis biomass at depth.

MATERIALS AND METHODS
Water samples were collected at various sites across the ASP dur-
ing the austral summers of 2007–2008 (aboard the icebreaker
R/V “Oden”; depth profiles) and 2010–2011 (ASPIRE cruise
aboard the R/V “Nathaniel B Palmer,” horizontal grid of sur-
face samples) (Figure 1, Table S1). Cruise track, sampling sites
and an overview of geochemical and biological properties have
been detailed elsewhere (Yager et al., 2012). Additional informa-
tion can be found in the BCO-DMO database (http://osprey.
bco-dmo.org/project.cfm?id=146&flag=view) and in Table S2.
For the 2010–2011 cruise, water samples (3–10 L) for microbial
community sequence analyses were passed over a 20 µm mesh
and collected onto 0.2 µm Sterivex membrane filter cartridges by
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FIGURE 1 | Map of sampling sites across the Amundsen Sea

polynya that were visited during the Oden Southern Ocean

(OSO) cruise in 2007–2008 (red dot) and the ASPIRE cruise in

2010–2011 (blue dots). Samples were grouped into three major
regions: the Continental Shelf Break, the open waters of the polynya
and waters abutting the Dotson Glacier. Insert: A map of chlorophyll

a concentrations (red: high; purple: low) in polynyas abutting the
Antarctic continent as estimated by remote sensing (courtesy of Dr.
Kevin R. Arrigo, Stanford University). Note that sample numbers are
only informative of the station number tracked during the ASPIRE
cruise. The corresponding samples are presented in the supplemental
material.

pressure filtration (Whatman Masterflex L/S series). Since high
biomass caused rapid clogging of the filters, the sampling volumes
varied between stations. Two distinct plankton size classes (0.2–
3 µm and 3–200 µm) were fractionated for samples collected
during the 2007–2008 cruise. This sampling effort (10–20 L) was
done along a depth profile that spanned the full water column
(Figure 1, Table S1) and the microbial community analysis was
part of the International Consensus for Marine Microbes project.
Filters were quickly frozen in the headspace of a LN2 Dewar
and stored at −80◦C prior to DNA extraction. We note that
the 2007–2008 data were determined on samples from a single
depth profile inside the ASP. It was decided to incorporate these
data in order to derive first hints regarding the reproducibility of
bacterial community compositions that accompany Phaeocystis
blooms in the ASP and to gain early insights into the bacterial
taxa that may associate with Phaeocystis colonies and other par-
ticles. Metadata of the various samples are presented in Table S1
and in the supplemental material. DNA extraction was performed
using the Puregene kit (Gentra®) after disruption of the cells
with lytic enzyme coupled to proteinase K (Sinigalliano et al.,
2007). DNA concentrations were quantified using a Nanodrop
2000 instrument (Thermo Fisher Scientific, Wilmington, DE).

The V6 hypervariable region of the 16S rRNA gene (typically
60–65 bp in length) was amplified (25 cycles using HiFi buffer 1X,
MgSO4 2 mM, dNTPs 0.2 mM, combined primers 0.2 mM and
four units of platinum HiFi) in triplicate PCR reaction from 10 ng
of environmental DNA templates with reverse primer (1046R)
“CGACRRCCATGCANCACCT” and the forward primer mix
(967F) “CTAACCGANGAACCTYACC,” “ATACGCGARGAACC
TTACC,” “CNACGCGAAGAACCTTANC,” and “CAACGCGM
ARAACCTTACC.” PCR cycle conditions were defined as follow:
30 s at 94◦C followed by 45 s at 60◦C and 1 min at 72◦C. The PCR
started with 3 min at 94◦C and ended with 2 min at 72◦C followed

by a rapid stepdown to 4◦C. Negative controls (no template DNA)
were run for each of the index primer combinations in the PCR
reactions. V6 amplicon sequences from samples collected during
the 2007–2008 R/V “Oden” cruise (n = 12) were obtained on a
GS-FLX pyrosequencing platform. Sequence reads were subse-
quently trimmed for low-quality sequences (Huse et al., 2007).
For samples collected on the ASPIRE cruise during the 2010–
2011 austral summer (n = 23), a paired-end sequencing strategy
for Illumina Hiseq platform was employed with custom fusion
primers described previously (Eren et al., 2013b) targeting the V6
hypervariable region of the 16S rRNA gene. The library design
provided a complete overlap of the V6 region, and high-quality
V6 reads were generated by requiring a complete match between
the two reads of each pair (Eren et al., 2013b). Read sizes of the
trimmed datasets are presented in Table S1.

Quality-filtered datasets were subsequently annotated using
the Global Assignment of Sequence Taxonomy (GAST) pipeline
(Huse et al., 2008) using the SILVA 111 database for reference
(Quast et al., 2013). The datasets are publically accessible through
the VAMPS website (http://vamps.mbl.edu/) under the project
names ICM_ASA_Bv6 (2007–2008) and AFP_ASPIR_Bv6 (2011–
2012). In order to assess within taxon diversity, reads affiliated
to a given genus with GAST were submitted to oligotyping, a
computational method for taxonomical partitioning based on
Shannon entropy decomposition (Eren et al., 2013a). By utiliz-
ing only the nucleotide positions that show high variation, and
disregarding the redundant sites with low entropy, oligotyping
analysis employs only a fraction of the nucleotide positions across
the read length, hence reduces the impact of random sequencing
errors while maintaining high sensitivity to discriminate closely
related but distinct taxa. STAMP software (Parks and Beiko, 2010)
was used to observe taxonomical structure variations inferred
from 16S rRNA gene amplicon datasets. Furthermore, principal
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component and correspondence analyses were performed using
the “R” and Ade4TkGUI software packages (Thioulouse et al.,
1997). Box plots were generated using R. A Pearson statistical test
was used to study the correlation of specific microbial taxa among
the datasets. Finally, One-Way ANOVA tests were used to access
the significance of community structure shifts observed between
groups of samples.

RESULTS
DISTANT LOCALES IN THE SOUTHERN OCEAN HAVE DISTINCT
MICROBIAL COMMUNITIES
During the 2010–2011 austral summer, surface water samples
were collected at 18 sites (plus 5 near-bottom water samples
for a total of 23 samples) across the ASP (Figure 1): 3 sites
along the Dotson glacier, 2 sites covered by pack ice at the
outer fringe of the polynya near the shelf break and 13 sites
across a bloom of Phaeocystis antarctica (>10 µg Chl a.L−1, O2-
saturation at >400%, pCO2 100–250 ppm) in the open waters of
the polynya. Bacterial community structures (0.2–20 µm) were
determined by deep sequencing of 16S rRNA amplicons [60–
65 nucleotides of the V6 hypervariable region, >105 reads per
sample (Table S1)]. Even though our primer sets amplified some
Archaea V6 (and thus provided an approximation of their diver-
sity) we did not include these data here. The diversity and low
abundance of Archaea in the ASP center (Archaea/Bacteria ratio
of about 1/500) was part of a separate study (Kim et al., 2013).
Our observations on the microbial community structures focused
on the diversity, relative abundance and distribution of bacterial
and eukaryotic taxa.

In a first approach we compared the bacterial communities
of four randomly selected ASP surface samples [Ant11, Ant13,
Ant14, Ant15 (Table S1)] with those determined for four surface
water samples from the Antarctic Circumpolar Current (ACC)
and four samples near the Antarctic Peninsula (Sul et al., 2013).
Figure S1 shows a heat map comparison of these different sites.
It is immediately apparent that the microbial community struc-
tures had a high degree of similarity within datasets for each of
the three locales in the Southern Ocean, but substantial dissim-
ilarity was noted between datasets. The bacterial communities
in the ASP were most dissimilar from those at the two other
locales. The Bray-Curtis dissimilarity index for samples inside
the ASP was only 0.27 ± 0.13. However, the dissimilarity index
increased substantially when comparing different locales: 0.54 ±
0.06 between ASP and ACC; 0.64 ± 0.04 between ASP and waters
off the Antarctic Peninsula.

A more detailed visualization of the difference among the bac-
terial communities from the three locales is presented in Figure 2.
Whereas the deep samples (most diverse) populated the left two
quadrants of both the Principal Component Analysis (PCA) and
Correspondence Analyses plots, surface samples (less diverse)
organized along the central axis with the exception of the sam-
ples that represent the surface waters in the center of the polynya
where the P. antarctica bloom occurred (Figure 2, Figure S2). The
latter samples all grouped together in a cluster distant from the
other samples. The axes in the PCA plot account for about 48%
of the total variance. These differences were mainly driven by a
dominant contribution of Pelagibacter (>10% of total), SAR86,

members of the Gamma-Proteobacteria and Rhodobacteraceae
(each at 1–10%) in the ACC samples. In contrast, bacterial com-
munities in surface waters of the central polynya were dominated
by a large group of Flavobacteria, Oceanospirillales, SAR92 and
Ulvibacter (>1% total) with a minor but significant contribu-
tion (<1%) made by Lutibacter, Crocinotimix, Roseobacter and
members of the Cryomorphaceae. The microbial community that
accompanied the P. antarctica bloom was different from those
near the Dotson glacier or at the outer fringes of the polynya near
the shelf break.

MICROBIAL COMMUNITY STRUCTURE INSIDE THE AMUNDSEN SEA
POLYNYA
To better understand differences in microbial communities at dif-
ferent locations in the Amundsen Sea we analyzed the taxonomic
composition of Eukarya and Bacteria across the polynya. On aver-
age, 1.58 ± 0.72 and 0.015 ± 0.009 µg L−1 of DNA were extracted
from surface and deep samples, respectively. DNA yields were two
orders of magnitude lower in the deeper samples, reflecting the
lower biomass levels of this size fraction at depth (Figure 3A).
Eukarya (>99% phytoplankton taxa) were an important fraction
in surface waters (Figure 3B), most prominent near the Dotson
glacier (62 ± 5.8%). Bacteria made up the bulk of the commu-
nity in deep samples (94 ± 1.8%) where the number of detected
species (576 ± 131) significantly increased (p < 0.001) in com-
parison to surface samples (361 ± 51) (Figure S3). Among the
Eukarya, haptophyte (>99% Phaeocystis antarctica) genotypes
dominated the phytoplankton bloom in the ASP (72 ± 7.8%)
while diatoms (Bacillariophyta) were more abundant near the
Shelf break and the Dotson glacier (70 ± 12%, see Figure 3C).
Note that 16S rRNA gene copy number can vary widely between
alga species depending on the number of chloroplasts per cell.
Therefore, the ratio of Bacteria/Eukarya and haptophyte/diatoms
in each dataset are not necessary representative of the plank-
ton community structure. On the other hand, ratio differences
observed for the same populations between samples are more
likely to reflect shifts in community structure. In particular, we
observed a clear shift from a Proteobacteria dominated bacte-
rial community (73 ± 11.2% vs. 50 ± 8.3%, p < 0.001) outside
the P. antarctica bloom to a Bacteroidetes dominated commu-
nity (47 ± 8% vs. 18 ± 13.1%, p < 0.001) inside the bloom.
The abundant Phaeocystis populations in central waters of the
polynya were accompanied by a bacterial community domi-
nated by Flavobacteria (99 ± 0.8% of total Bacteroidetes), and
Proteobacteria. Together they contributed >95% of the V6 reads
in each of the polynya samples (Figure 3D). Inside the polynya
the Proteobacteria were dominated by Gammaproteobacteria
(73 ± 6.2%, mostly Oceanospirillum-like and SAR92) and
Alphaproteobacteria (24 ± 6.2%, mostly Pelagibacter) with lesser
contributions made by Betaproteobacteria (1.2 ± 1.1%, mostly
Methylophilaceae), Deltaproteobacteria (0.7 ± 0.4%) and few
Epsilonproteobacteria (0.0006 ± 0.004%). We also explored a
dataset from another bloom event (R/V Oden cruise, 2007–2008)
that was sampled along a single depth profile (Table S1) and we
compared their microbial communities. Four samples that origi-
nated from the upper 100 m of the water column and that had Chl
a concentrations of >8 µg L−1 all revealed microbial community
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FIGURE 2 | Principal component analysis (euclidean distance) of the

relative distribution of the 36 most abundant bacterial taxa across high

throughput sequencing datasets from the Southern Ocean (Antarctic

Circumpolar Current) and the Amundsen Sea (shelf break, Dotson

glacier and polynya). The latter includes surface and deep bacterial
communities sampled at the outer rim of the polynya, near the Dotson

Glacier and in the open waters of the polynya. Pyrosequencing datasets of
the Amundsen Sea polynya representing the 0.2–3 µm size fraction sampled
during the 2007–2008 bloom event (4 surface and 3 deep samples; see
Table S1) were included in the analysis. Orange labels denote taxa that
contribute >10% of the bacterial community; green denotes 1–10%; Blue
is <1%.

structures that were highly similar to those of the 2010/2011
bloom (see Figure 2).

In contrast to the surface samples the bacterial communities
in deep samples (Figure 3D) were characterized by an increased
contribution of Proteobacteria (80 ± 6.1%) and decreasing
Bacteroidetes abundances (8.3 ± 2.9%). Both the increase in the
prevalence of Proteobacteria and the decrease in Bacteroidetes
abundance were significant (p < 0.01) in One-Way ANOVA
tests. Verrucomicrobia (3.0 ± 1.4%) and Actinobacteria (4.7 ±
1.8%), typically found in deep marine waters (Sogin et al.,
2006; Quaiser et al., 2008; Freitas et al., 2012), were significantly
more abundant in deep samples (Figure 3D). The Proteobacteria
were dominated by Gammaproteobacteria (47 ± 14.6%, mostly
Pseudoalteromonas and Oceanospirillales), Alphaproteobacteria
(33 ± 15.6%, mostly Pelagibacter and SAR11 related taxa) and
Deltaproteobacteria (19 ± 5.7%, mostly SAR324 and Nitrospina)
with a minor contributions made by Betaproteobacteria (0.4 ±
0.3%) and Epsilonproteobacteria (0.2 ± 0.1%) classes. The Delta
and Epsilon classes were therefore drastically more represented
in deep samples. Three samples from 250 to 785 m depth within
the polynya water column and collected during the 2007–2008
bloom event provide similar trends (these samples are part of
the “Polynya deep” group in Figure 2), with a dominance of

Pelagibacter, Oceanospirillales and SAR324 genotypes. Altogether,
our findings indicate that the surface and deep microbial commu-
nity structures of the Amundsen Sea polynya were highly similar
across the spatial dimensions of the bloom. They were also main-
tained across temporal scales that exceed bacterial generation
times by far. We note that these highly similar bacterial com-
munities were maintained over a 18 day period (19/12/2010 to
05/01/2011), close to the climax of the ∼90 day bloom duration
estimated from remote sensing images (Arrigo and Van Dijken,
2003).

OLIGOTYPE DIVERSITY OF BACTERIAL AND EUKARYOTIC TAXA
In order to analyze the bacterial communities in more detail we
studied the diversity of selected taxa across the polynya during the
2010–2011 bloom event (Figures 4–6). Shannon entropy decom-
position or oligotyping (Eren et al., 2013a) was used to track
subtle, conserved sequence variations and differentiate genotypes
that make up each taxon but differ by as few as 1–7 nucleotides.
Among the chloroplast V6 reads, those identified as Phaeocystis
antarctica were dominated by a single oligotype (>90%) at all
locations and depths inside the polynya (Figure 4). A few dif-
ferent oligotypes were distinct in surface waters near the shelf
break, suggesting the existence of sub-populations of P. antarctica
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FIGURE 3 | Microbial community structures determined by Illumina

sequencing (>105 reads per sample) of 16S-V6 rRNA amplicons obtained

from surface and deep samples at sites with dense ice cover at the shelf

break (Shelf), inside the Amundsen Sea polynya and in open waters

adjacent to the Dotson glacier (Dotson) during a Phaeocystis antarctica

bloom in 2010–2011. (A) (top) denotes the concentration of extracted DNA
for each sample as a proxy for microbial biomass; the “�” symbols denote
deep (>350 m) samples. The relative contribution of Bacteria vs. Eukaryota
(chloroplast 16S) is presented in (B). (C,D) present the phytoplankton and
bacterioplankton community composition at the phylum level.

FIGURE 4 | Phytoplankton oligotype diversity of 16S-V6 rRNA

amplicon sequences obtained for Phaeocystis (left graph) and

diatoms (right graph). Surface and deep samples were obtained at
sites with dense ice cover at the shelf break (Shelf), inside the
Amundsen Sea polynya and in open waters adjacent to the Dotson

glacier (Dotson) during a Phaeocystis antarctica bloom in 2010–2011.
Panels at top of the graphs denote the relative contribution of a taxon
within each dataset; the “�” symbols denote deep (>350 m) samples.
Oligotypes detected at low abundance (n < 200) in the dataset were
removed from the analysis.

that do not contribute to bloom formation. Diatom popula-
tions were more diverse (Figure 4). Among the bacterial V6
reads, the major taxa in surface layers of the polynya were dom-
inated by a single oligotype for SAR92 (97 ± 1.8% of total),

Oceanospirillum-like bacteria (95 ± 1.4%), Pelagibacter (80 ±
7.3%, data not shown) and members of the Flavobacteriaceae
(75 ± 14.1%) a family for which V6 sequence do not allow tax-
onomy assignment below the rank of family (Figure 5). These
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taxa showed different oligotype diversity patterns in deep sam-
ples with the exception of the Oceanospirillum-like oligotype
diversity that remained strikingly similar despite the strong vari-
ation in their relative abundance (0.9–33.9% of the bacterial
community) across the datasets. The dominant oligotype related
to Flavobacteriaceae could not be resolved taxonomically due
to a perfect match between V6 sequences of Polaribacter and
other members of the Flavobacteriaceae. This oligotype was there-
fore denoted as Polaribacter sensu lato. On the other hand,
taxa such as SAR86, Nitrospina and Verrucomicrobia that were
detected in higher abundance outside the bloom (especially in

deep samples) were more diverse and lacked a single domi-
nant representative oligotype for either of the niches (Figure 5).
For SAR86, one oligotype dominated the deep samples while
another oligotype was more abundant in the surface waters
at the shelf break. The two oligotypes represent bacteria that
have so far evaded successful cultivation. Nitrospina was equally
diverse in all samples except at the shelf break where we
observed a few distinct oligotypes. Finally, the diversity among
Verrucomicrobia genotypes appeared to be relatively uniform
across all datasets with minor variations observed between
different locales.

FIGURE 5 | Bacterial oligotype diversity of 16S-V6 rRNA amplicon

sequences obtained for taxa that dominated inside (left graphs) and

outside (right graph) the Phaeocystis surface bloom. Surface and deep
samples were obtained at sites with dense ice cover at the shelf break
(Shelf), inside the Amundsen Sea polynya and in open waters adjacent to the

Dotson glacier (Dotson) during a Phaeocystis antarctica bloom in 2010–2011.
Panels at top of each graph denote the relative contribution of a taxon within
each dataset; the “�” symbols denote deep (>350 m) samples. Oligotypes
detected at low abundance (n < 200) in the dataset were removed from the
analysis.
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FREE LIVING vs. PARTICLE ASSOCIATED BACTERIAL TAXA
During the 2007/2008 bloom event in the Amundsen polynya
samples from the surface (above 100 m depth, n = 4) and at
250 m depth (n = 1) were size fractionated. The size fractionation
differentiated between bacteria in the 0.2–3 µm (<3-µm) and 3–
200 µm (>3-µm) fractions. The <3-µm fraction was thought
to be enriched with V6 reads from free-living bacteria, whereas
V6 reads in the >3-µm fraction were derived from particle-
associated bacteria. The most common particles were Phaeocystis
solitary cells and colonies along with diatom species that together
gave rise to the intense phytoplankton bloom. We observed a sub-
stantial increase of P. antarctica (from 25 ± 17.1 to 51.2 ± 24.3%
of total V6 reads) and a much less pronounced increase in diatom
V6 reads (from 1.7 ± 0.8 to 9.5 ± 4%) in the >3-µm fraction
of the polynya surface. Presumably, P. antarctica was present as
single cells in the <3-µm fraction and as small-medium sized
colonies in the >3-µm fraction. A taxon-by-taxon comparison
of bacterial genotypes between the two size fractions in the sur-
face mixed layer of the polynya identified several taxa that showed
a higher relative abundance in either <3-µm or >3-µm fractions
(Figures 6A–C). For each taxon we calculated the relative enrich-
ment as the ratio of their abundance in the two size fractions using
the following equation:

(
2X ( > 3 µm fraction)

< 3 µm fraction + >3 µm fraction
− 1

)
(1)

A PCA showed that a large majority of dominant taxa
were enriched in the small fraction (Figure S4). SAR92
reads were abundant in each fraction but this genus was
significantly enriched in the >3-µm fraction. Whereas they con-
tributed ∼13% of the V6 reads in the <3-µm fraction their con-
tribution rose to >35% in the >3-µm fraction (Figures 6A,B).
Thus, the enrichment ratio of SAR92 (Gammaproteobacteria)
was close to 0.5 (Figure 6C). Similarly, Oceanospirillum-like
(Gammaproteobacteria) genotypes were abundant in both
the <3-µm and >3-µm fractions, but their enrichment was
less pronounced (Figure 6C). Several low abundance taxa –
a single Firmicute, Tepidanaerobacter, and Bacteroidetes geno-
types identified as Haliscomenobacter, Lutibacter, Ulvibacter,
and Cryomorphaceae showed the same trend as was observed
for SAR92 and they were enriched in the >3-µm fraction
(Figure 6C). In contrast, different Flavobacteria, Oceanospirillales,
and Piscirickettsiaceae (Gammaproteobacteria), and Pelagibacter
(Alphaproteobacteria) together with the low abundance taxa
Acetivibrio (Firmicutes) and SAR324 (Deltaproteobacteria), dom-
inated in the <3-µm fraction and they were presumably present
mostly as free-living cells (Figures 6A–C).

A similar picture of an association of certain bacterial taxa
with Phaeocystis particles emerged from a further analysis of the
2010/2011 bloom event in the ASP. We observed a significant cor-
relation (R2 = 0.75, p = 9.5e-8) between the relative abundances
of P. antarctica and those of SAR92 across 23 datasets (Figure 6D).
Note that relative abundances of SAR92 were normalized to the

FIGURE 6 | Relative abundance of 13 bacterial taxa in the <3 µm (A)

and >3 µm (B) size fractions and preferential enrichment (C) of these

taxa in either fraction among Phaeocystis bloom samples from

surface waters in the Amundsen Sea polynya in 2007–2008. ANOVA
test was performed using STAMP software to test the significance of their
enrichment in the two size fractions. For each taxa, a black “�” symbol

was added when p-value score was lower than 0.05 (>95% confidence
level). This symbol displayed in red indicates a p < 0.01 (>99% confidence
level). Correlation between Phaeocystis genotypes (percentage of the
whole community) and SAR92 (D) or Pelagibacter (E) (percentage of the
bacterial community) are displayed across all datasets during the
Phaeocystis bloom of 2010–2011.
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number of bacterial reads in each sample whereas relative abun-
dances of Phaeocystis were normalized to total reads (bacteria +
chloroplast reads). Assuming a single 16S rRNA gene copy per
SAR92 genome (as detected in SAR92 HTCC2207) and the pres-
ence of two chloroplasts per alga cell (Moisan et al., 2006), each
with two single 16S rRNA gene copy (as detected in the chloro-
plast genome of P. antarctica strain CCMP1374) we estimate an
approximate 2:1 occurrence of SAR92 per Phaeocystis cell. On the
other hand, Pelagibacter V6 reads, which were more abundant
in the <3-µm fraction (Figure 6C), showed a trend of decrease
(while not significant) with increasing abundance of Phaeocystis
(Figure 6E), thereby independently confirming the observations
made for the 2007/2008 bloom event.

In contrast to their relative abundances in the surface samples,
diatoms were more enriched in the >3-µm fraction of the deep
sample taken during the 2007/2008 bloom (from 0.8 to 56.6%
of the total V6) than P. antarctica (from 7 to 21.8%) (data not
shown). V6 reads for taxa such as Pelagibacter, Oceanospirillales
and Piscirickettsiaceae were still more abundant in the <3-
µm fraction. However, strong shifts in taxonomic make-up of
the >3-µm fraction as compared to the <3-µm fraction occurred
(Figure 7). SAR92 V6 reads were not enriched in the >3-µm
fraction of the sample taken from below the surface mixed
layer. Although by no means significant, its relative abundance
was slightly higher in the <3-µm fraction (+3.2% of the bac-
terial community). However, in addition to the omnipresent
Cryomorphaceae and Ulvibacter other taxa became more enriched
in the >3 µm fraction. In particular we identified Colwellia,
Pseudoalteromonas and Cerasicoccus genotypes that were associ-
ated with decaying Phaeocystis and/or diatoms, the dominant type
of particles in samples below the surface mixed layer. The relative
enrichment of these taxa in the >3-µm fraction [as compared
to the <3-µm fraction, see Equation (1)] was by a ratio of 0.96

(Colwellia), 0.90 (Pseudoalteromonas) and 0.98 (Cerasicoccus).
These relative enrichments were much less pronounced in surface
samples with ratios of 0 (±0.09), 0.24 (±0.35), and 0.12 (±0.38)
respectively.

DISCUSSION
Whereas persistent blooms of Phaeocystis antarctica have been
reported for multiple Antarctic polynyas (Arrigo et al., 1999;
Smith et al., 2000; Arrigo and Van Dijken, 2003; Alderkamp
et al., 2012; Yager et al., 2012) and even in the ACC proper
(Alderkamp and van Dijken, pers. comm.), we do not under-
stand all the factors that drive bloom formation and/or support
bloom longevity. Previous studies have focused on Fe-limitation
of such blooms (Mills et al., 2012) and the role of Fe-supply
from glacier melts to polynya surface waters (Alderkamp et al.,
2012). Other studies addressed the role of Phaeocystis colony for-
mation and control of colony size by grazer populations (Tang
et al., 2008). Here we studied the potential for the bacterial flora
to play a role in the bloom biology of P. antarctica. We have
obtained the deepest sequencing of the ASP to date: 105–106

paired-end (100% overlap) reads for the V6 hypervariable region
of 16S rRNA per sample as compared to other studies that report
103–104 reads for V1 and V3–V4 obtained by pyrosequencing
(Kim et al., 2013; Dinasquet et al., submitted; Richert et al.,
submitted). The complete overlapping sequencing strategy per-
formed here enhanced sequence quality for each V6 read, and so
provided highly reliable signatures for the detection of low abun-
dance bacterial populations. Also, using oligotyping we avoided
the commonly-used 97% similarity cut-off and partitioned our
dataset into homogeneous genotypic units that entail minimal
phylogenetic mixture. The single-nucleotide resolution oligotyp-
ing achieves allowed us to determine various geographic patterns
of bacterial and algal community structure within the confines

FIGURE 7 | The relative distribution in percentage of genera

(based on GAST classification and using STAMP software) in

the <3 µm and >3 µm size fractions in samples from surface

layers (n = 8) and from 250 m depth (n = 2) during the

Phaeocystis bloom in 2007–2008. The coloring of circles reflects
the enrichment of the taxa (closed circles when more abundant in
the >3 µm size fraction, open circles when more abundant in the
<3 µm size fraction).
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of this isolated ecosystem. These patterns suggest different niche
adaptations. As commonly observed along vertical profiles, depth
played a major role in the partitioning of microbial taxa. E.g.,
diversity of Nitrospina genotypes was distinctly different in the
deep samples of the shelf break area than elsewhere in the ASP.
Oligotyping was also instrumental in identifying partitioning
genotype diversity along horizontal gradients, e.g., in determin-
ing the diversity of diatom populations (Figure 4). These patterns
suggest an abundance of niche adaptations for which selective
forces and ecological implications are yet to be determined. The
main observations from this study are: (1) P. antarctica blooms
are accompanied by a unique and stable community of free-living
bacteria over extended time scales and (2) Phaeocystis cells and
colonies associate with selected bacterial taxa. We have identi-
fied taxa (e.g., SAR92) that accompany productive Phaeocystis
populations in surface water and different taxa (e.g., Colwellia)
that are associated with—supposedly decaying—populations of
Phaeocystis cells at depth, below the illuminated, surface mixed
layer.

Antarctic phytoplankton populations under non-bloom con-
ditions typically include P. antarctica as one of the dominant
species (Yager et al., 2012). Such populations in the ACC, or
in coastal waters near the Antarctic Peninsula are accompanied
by bacterial populations that are dominated by Proteobacteria,
mostly Pelagibacter and SAR11-like genotypes (West et al., 2008;
Brown et al., 2012; Wilkins et al., 2013a, this study). During
bloom events P. antarctica often becomes the dominant phy-
toplankter, most notably in the ASP where such blooms recur
annually (Arrigo et al., 1999; Smith et al., 2000; Arrigo and Van
Dijken, 2003; Alderkamp et al., 2012; Yager et al., 2012; Kim et al.,
2013; Dinasquet et al., submitted). Based on different proxies it
has been estimated that the P. antarctica blooms contribute >99%
of chlorophyll a, biomass or cell count. We found that >78% of
the V6 reads for chloroplasts (a proxy for relative abundance of
Phaeocystis cells) were contributed by P. antarctica in the <20-
µm fraction of polynya samples. Based on chloroplast 16S-V6
we found that the bloom was dominated by a single oligotype.
In adjacent waters we discovered a shift in oligotype abundances
suggesting that several Phaeocystis genotypes did not contribute
to the bloom formation in the ASP but had a distinct presence in
the waters abutting the polynya.

Since the bulk of the P. antarctica bloom was contained in
colonies >20-µm this percentage is expected to exceed 78% of
the whole phytoplankton community. Whether it is by food web
interactions, decay of dead Phaeocystis cells, viral lysis, or sim-
ple secretion of dissolved organic compounds, Phaeocystis blooms
can have a large impact on heterotrophic activities and hence
shape bacterial communities. We found that members of the
Bacteroidetes were most abundant in Phaeocystis dominated sam-
ples. These observations are in agreement with investigations
performed in other locations of the Southern Ocean (Wilkins
et al., 2013a; Williams et al., 2013) and support the general
standing of this phylum in the specialization of high molecu-
lar weight organic matter degradation (Thomas et al., 2011).
Members of the Bacteroidetes and Proteobacteria made up 95–
97% of the microbial community in the ASP bloom samples.
SAR92, Oceanospirillum-like, and Pelagibacter (Proteobateria),

along with Polaribacter sensu lato (Bacteroidetes) combined were
73.1% (±5.7) of the bacterial community during the 3 weeks
covered by the 2010–2011 cruise. The relative abundances of
these taxa are similar to those reported by Kim et al. (2013) for
the later stages of the ASP Phaeocystis bloom (January–February
2010). In addition, these same taxa dominated the Phaeocystis
bloom at our sampling site during the summer of 2007–2008.
Based on the findings above we suggest that P. antarctica blooms
are accompanied by stable and distinct microbial communities.
Within this community we detected a single, dominant oligo-
type (>80% of the V6 reads) for each of the dominant taxa (e.g.,
SAR92, Oceanospirillum-like), in contrast with the multiplicity
of oligotypes for taxa known from other niches (e.g., SAR86,
Nitrospina). This observation suggests that specialized ecotypes
with conserved genotype signatures co-exist (and possibly inter-
act) with P. antarctica. Different phytoplankton species produce
different DOM compounds, but closely related species have very
similar DOM spectra (Becker et al., 2014). Consistent with this
result, blooms of different Phaeocystis species have very similar
bacterial communities associated with them (Alderkamp et al.,
2007) and these bacteria readily degrade labile, presumably low
molecular weight carbohydrates produced by these algae (Osinga
et al., 1997; Smith et al., 1998; Janse et al., 1999). In addition,
polymers excreted by Phaeocystis blooms provide a nitrogen rich
substrate for heterotrophic bacteria (Solomon et al., 2003) and
are expected to induce shifts in microbial community structure.
In our study we observed that SAR86 oligotypes (Figure 5) asso-
ciated with Phaeocystis blooms were distinct from other SAR86
in adjacent waters with diverse diatom populations as well as in
the underlying deep waters. Controlled experimental manipula-
tions and genomic analyses of bacterial metabolisms are needed
to better understand the interactions between alga and bacteria
and their effects on bacterial community structure.

Biomass produced by Phaeocystis blooms is rapidly exported
to deeper waters, where cells and colonies become senescent
(Ditullio et al., 2000). During the bloom in the ASP in 2010
we detected Phaeocystis biomass trapped beneath the surface
mixed layer that provides a substrate for microbial degrada-
tion. This senescent part of the population was accompanied
by a very different microbial community. Contributions by
SAR92, Flavobacteriaceae and Oceanospirillum-like genotypes
were diminished whereas the Gammaproteobacterium SAR86,
Nitrospina and diverse members of the Verrucomicrobia had
become the dominant taxa. The shift in microbial community
composition toward Verrucomicrobia and Gammaproteobacteria
has been reported for senescent Phaeocystis populations
(Alderkamp et al., 2007). The increased contribution of
Nitrospina at depth is likely a result of its role in nitrate formation
from ammonium (Luecker et al., 2013) released during the
decomposition of senescent Phaeocystis populations.

During bloom situations Phaeocystis is mostly found as
large colonies protected by a semi-permeable membrane (see
Schoemann et al., 2005, for a review). In early studies these
colonies were thought of as cells within a mucopolysaccharide
matrix, but this has been revised to a model where an outer mem-
brane encloses Phaeocystis cells within a liquid matrix (Hamm
et al., 1999). Indeed, microscopic inspection of P. antarctica
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colonies showed free-moving and rapidly swimming ciliates
within the colony matrix (Delmont, unpublished data). Because
of its virtually monotypic blooms and the large cells/colony size
P. antarctica can be readily enriched by size fractionation. We
showed that >3-µm fractions are significantly enriched with the
Gammaproteobacteria SAR92. A preliminary estimate indicates
that SAR92 and P. antarctica cells in surface bloom samples occur
in approximately a 2:1 ratio. SAR92 is typically limited by carbon
availability and despite carrying proteorhodopsin it does have a
photoheterotrophic lifestyle (Stingl et al., 2007). A close associa-
tion of SAR92 and P. antarctica (with SAR92 possibly contained
within the colony liquid matrix) could thus be of mutual benefit.
Preliminary findings from a metagenome analysis of the 2010-
2011 ASP bloom event indicates that SAR92 and other Phaeocystis
associated bacterial taxa may play a role in sulfur metabolism
and iron acquisition via ferrochelatase and siderophore produc-
tion (Delmont et al., in prep.). SAR92 was abundantly present in
phytoplankton bloom samples following a natural occurrence of
iron-enrichment in the Southern Ocean (West et al., 2008). This
would be especially beneficial if P. antarctica would harbor SAR92
within its colony matrix. The fact that this matrix resembles an
enclosed aqueous environment allows for rapid diffusion of these
secreted compounds and hence efficient usage.

We propose that a mutualistic relationship between Phaeocystis
and associated bacteria underpins the intensity and longevity
of its blooms and thereby sequester substantial amounts of
atmospheric carbon dioxide in high-latitude oceans (Smith
et al., 1991). Determining the genomic content and activity
of associated bacteria will help understanding these mecha-
nisms. Conversely, we determined that a bacterial community
dominated by members of the genus Colwellia was associ-
ated with supposedly senescent Phaeocystis cells at depth. Such
Colwellia are known for the production of extracellular polysac-
charides/enzyme complexes involved in the breakdown of high-
molecular-weight organic compounds (Methé et al., 2005).
Therefore, Colwellia and related taxa may play an important
role in the recycling of carbon, sulfur and nitrogen by rapidly
degrading bloom biomass before their complete sedimentation,
a process that can last for more than 8 months (Kirchman et al.,
2001b).
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Table S1 | Sample designations, metadata and parameters relating to the

16S-V6 sequence datasets used in the analysis underlying Figure 2.

Sequence data originated from three different projects and they are

publically available on the VAMPS website (http://vamps.mbl.edu/).

Table S2 | Sample designations and environmental metadata relating to

the ASPIRE cruise (2010-2011 bloom event).

Figure S1 | Heat map (Bray-Curtis distance) based on the relative

distribution of bacterial taxa (based on GAST classification at the genus

level) in 3 × 4 samples collected from the Antarctic Circumpolar Current,

off the Antarctica peninsula and inside the Amundsen Sea polynya.

Dissimilarity between samples is reflected by a color gradient ranging

from red (high dissimilarity) to blue (low dissimilarity).

Figure S2 | Correspondence analysis (COA, euclidean distance) of the

relative distribution of major bacterial taxa across high throughput

sequencing datasets from the Antarctic Circumpolar Current, off the

Antarctic Peninsula and the Amundsen Sea polynya. The latter includes

surface and deep bacterial communities sampled at the outer rim of the

polynya, near the Dotson Glacier and in the open waters of the polynya.

Note that the “polynya deep” label is partly covering the “Dotson Glacier

deep” label. Pyrosequencing datasets of the Amundsen Sea polynya

representing the 0.2–3 µm size fraction sampled during the 2007–2008

bloom event (4 surface and 3 deep samples; see Table S1) were included

in the analysis.

Figure S3 | (A) represents the number of bacterial species identified in

each V6 data from the 2010–2011 bloom event using the Global

Assignment of Sequence Taxonomy (GAST) pipeline (Huse et al., 2008)

and the SILVA 111 database for reference (Quast et al., 2013). (B)

represents the number of reads generated for each data set. Datasets

represent surface (n = 18) and deep samples (n = 5).

Figure S4 | Principal component analysis (PCA) of the relative abundance

of major bacterial taxa (based on GAST classification) in the <3 µm (A)

and >3 µm (B) size fractions of surface and deep samples of the

Amundsen polynya during a Phaeocystis bloom in 2007–2008 by

comparing free living bacteria (0.2–3-µm size fraction, n = 4) and

alga/particulate associated bacteria (>3-µm size fraction, n = 4).
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Marine bacteria colonizing deep-sea sediments beneath the Arctic ocean, a rapidly
changing ecosystem, have been shown to exhibit significant biogeographic patterns along
transects spanning tens of kilometers and across water depths of several thousand
meters (Jacob et al., 2013). Jacob et al. (2013) adopted what has become a classical
view of microbial diversity – based on operational taxonomic units clustered at the 97%
sequence identity level of the 16S rRNA gene – and observed a very large microbial
community replacement at the HAUSGARTEN Long Term Ecological Research station
(Eastern Fram Strait). Here, we revisited these data using the oligotyping approach and
aimed to obtain new insight into ecological and biogeographic patterns associated with
bacterial microdiversity in marine sediments. We also assessed the level of concordance
of these insights with previously obtained results. Variation in oligotype dispersal range,
relative abundance, co-occurrence, and taxonomic identity were related to environmental
parameters such as water depth, biomass, and sedimentary pigment concentration. This
study assesses ecological implications of the new microdiversity-based technique using a
well-characterized dataset of high relevance for global change biology.

Keywords: HAUSGARTEN, oligotyping, deep sea sediments, Arctic LTER, taxonomic resolution

INTRODUCTION
Ecological analyses are typically concerned with gauging the
response of a collection of organisms, grouped into coherent
units such as species, to the biotic and abiotic factors affect-
ing them. Establishing meaningful units of bacterial diversity is
an ongoing challenge in the microbial sciences (Cohan, 2001,
2002; Kopac and Cohan, 2011; McDonald et al., 2013; Mende
et al., 2013) and the nature of these units has been shown to
strongly influence the outcomes of ecological analyses (see e.g.,
Koeppel and Wu, 2014). An approach that has become a stan-
dard in microbial ecology relies on the classification of organisms
into units based on the level of sequence identity between their
16S rRNA genes. At the more granular end of this classifica-
tion, organisms that have 16S rRNA gene sequences that are at
least 97–98% identical are grouped into operational taxonomic
units (OTUs) which are treated as approximations of bacterial
‘species’ in further analyses. However, it has been shown that
the organisms grouped into a single OTU, at times with iden-
tical 16S sequences, can show ecologically meaningful genetic
and physiological differences, allowing them to colonize dis-
tinct niches (e.g., Moore et al., 1998; Hahn and Pöckl, 2005;
Coleman et al., 2006).

While alternative differentiae must be sought for organ-
isms with identical 16S genes, the entropy-based method
of “oligotyping” (Eren et al., 2013; not to be confused with
oligotyping sensu Tiercy et al., 1990) offers an approachable means

to detect whether position-specific, subtle sequence variation at
up to single-nucleotide resolution can reveal coherent, sub-OTU
groupings with differential occurrence across samples or responses
to environmental factors. This technique has been applied in
investigations of human-associated microbes, such as those that
compose the oral (Eren et al., 2014a) and gut (Eren et al., 2014b)
microbiomes, as well as of aquatic (Eren et al., 2013) and wastew-
ater environments (McLellan et al., 2013), and in the assessment
of Gardnerella vaginalis diversity (Eren et al., 2011). Such studies
have revealed that subtle nucleotide variations can, reproducibly,
be associated with distinct environments, hosts, or epidemio-
logical states and encourage the exploration of oligotype-based
microdiversity in similar sequenced-based datasets.

Here, we employed oligotyping to reanalyze data from a previ-
ous investigation (Jacob et al., 2013) which assessed biogeographic
patterns of deep-sea, benthic bacterial diversity at the Long Term
Ecological Research (LTER) station, HAUSGARTEN in the East-
ern Fram strait (Soltwedel et al., 2005). This LTER comprises
two transects, one bathymetric (water depths between ∼1000
and ∼5500 m) and one latitudinal (at a depth of ∼2500 m),
intersecting at a central site. At this station, heat- and nutrient-
laden Atlantic waters carried by the West Spitsbergen Current flow
northward into the Arctic, separated from the cold Eastern Green-
land Current by the East Greenland Polar Front. When present, sea
ice attenuates light input and, hence, under-ice primary produc-
tivity; however, phytoplankton blooms and phytodetritus pulses
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occur along melting ice-edges where primary producer commu-
nities in the ice are released into the irradiated and meltwater-
stabilized water column (Schewe and Soltwedel, 2003; Leu et al.,
2011; Boetius et al., 2013). The organic and inorganic detritus sup-
plied to the benthos is of varying composition, either produced
in the photic zone of the water column or transported by physi-
cal processes such as advection or sea ice rafting (Hebbeln, 2000;
Bauerfeind et al., 2009). Due to remineralization processes in the
water column, phytodetritus availability decreases with increasing
water depth, producing a depth-related gradient in this key com-
ponent of benthic food supply. Within this system, prokaryotic
communities are responsible for over 90% of the respiration per-
formed in a food web sensitive to changes in labile detritus input
(van Oevelen et al., 2011). In recent years, notable changes in the
system’s oceanography, biogeochemistry, and biology have been
reported. For example, anomalously warm Atlantic inflows from
2005 to 2007 impacted the composition of the detritus exported
to the benthos: reduced export of particulate carbon, zooplank-
ton fecal pellet carbon, and biogenic silica suggested a shift in
the composition of phytoplankton communities to favor small,
non-siliceous organisms (Piechura and Walczowski, 2009; Lalande
et al., 2013). Additionally, changes in Arctic ice dynamics and the
loss of multi-year ice – along with its resident, ice-associated com-
munities – are expected to impact biological input to this system,
reducing benthic–pelagic coupling (Hop et al., 2006) as observed
in other regions of the Arctic (Grebmeier et al., 2006).

Within this context, Jacob et al. (2013) sampled undisturbed
sediments along the HAUSGARTEN bathymetric transect (HGI-
HGVI; with a depth range of 1284–3535 m along 54 km) and
latitudinal transect (N1–N4, HGIV, and S1–S3; 78.608–79.717 N,
at a depth of ∼2500 m along 123 km) during July 2009. The authors
examined bacterial communities present in the oxic, upper cen-
timeter of the sediment surface. The authors clustered sequences of
the 16S rRNA gene’s V4–V6 region into OTUs at the conventional
sequence identity threshold of 97%. They then derived matri-
ces of OTU relative abundances at each site. Jacob et al. (2013)
investigated the response of bacterial diversity, community struc-
ture, and spatial turnover across taxonomic levels and found water
depth to be a central explanatory parameter, in line with findings
on a global scale (Zinger et al., 2011) and in other regions of the
Arctic (Bienhold et al., 2012). To assess if subtle nucleotide varia-
tion can reveal finer-grained variation in this data, we oligotyped
several, abundant OTUs detected in the Jacob et al. (2013) study
and (1) examined the degree of separation and/or aggregation of
intra-OTU oligotypes across sites, (2) assessed the influence of
environmental and spatial variables on oligotype variation, and
(3) examined the composition and structure of oligotype associ-
ation networks, inferred by co-occurrence across both transects.
Through these analyses, we aimed to explore oligotyping’s poten-
tial as a means to enhance the characterization of bacterial diversity
at HAUSGARTEN.

MATERIALS AND METHODS
SEQUENCE DATA PROCESSING AND OLIGOTYPING
Sequences obtained by 454 pyrosequencing of the 16S rRNA
gene’s V4–V6 region (n = 145,938) were previously trimmed
and denoised by Jacob et al. (2013) using mothur (Schloss et al.,

2009). We submitted these trimmed and denoised sequences
to the SILVAngs pipeline (v1.0; Quast et al., 2013) using the
pipeline’s default parameters – save for an OTU clustering thresh-
old of 97% sequence identity – and quality filtering measures.
As pyrosequencing-derived reads of varying length were used in
this study, alignments were performed by the SILVA incremen-
tal aligner (SINA v1.2.10 for ARB SVN [revision 21008]; Pruesse
et al., 2012) and OTU classification was performed against the
SILVA SSU Ref dataset (release 115). Alignments were examined
and terminal regions with poor coverage trimmed in the ARB
environment (Ludwig et al., 2004); however, some positions with
incomplete but good coverage over all alignment positions were
retained. In doing so, we reasoned that if the alignment was to be
split among oligotypes in such a way that only valid sequence data
was present at a globally incomplete but well-covered position,
that position would be a valid target for oligotyping. However, if a
resulting oligotype was derived from an incomplete alignment, it
was removed from further analysis. The resulting alignments were
exported for oligotyping.

Reads belonging to OTUs with total read counts greater than
100 were oligotyped (Eren et al., 2013) to convergence by recur-
sively selecting the alignment position(s) with the greatest entropy
for each round of oligotyping. At each step, a round of oligotyp-
ing was only performed on alignments which featured at least 21
sequences and included a position with entropy greater than 0.6
(see Table 1 and Discussion). The oligotyping output was not
restricted by any of the software’s command line parameters such
as the minimum percent, actual, or substantive abundance. Out-
put from the oligotyping software and SILVAngs pipeline were
and then imported into the R environment (R Development Core
Team, 2014) for further processing and analysis.

DATA PREPARATION
Geographic coordinates were converted from Global Position-
ing System (GPS) coordinates to Universal Transverse Mercator
(UTM) coordinates (i.e., Easting and Northing in m) using the

Table 1 | Entropy in terms of the proportion of deviations from the

expected character in a character sequence and the percentage of the

dominant character in that sequence.

Entropy Proportion of alternate

characters relative to the

dominant character present at

an alignment position

Percent occurrence of the

dominant character present

at an alignment position

0.65 1:5 83.3

0.60 1:6 85.7

0.44 1:10 90.9

0.28 1:20 95.2

0.21 1:30 96.8

0.14 1:50 98.0

0.08 1:100 99.0

0.02 1:500 99.8

0.01 1:1000 99.9
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sp (Pebesma and Bivand, 2005) and rgdal (Bivand et al., 2013) R
packages. Further, all count data were Hellinger transformed prior
to applying redundancy analysis (RDA). Environmental variables,
comprising pigment, protein, and phospholipid concentrations as
well as spatial variables (Easting, Northing, and water depth) were
z-scored (i.e., set to zero mean and unit variance).

GENERAL EXPLORATIONS
Simple diagnostic plots were created to (1) illustrate each sam-
pling location’s percent contribution of reads to this analysis and
illustrate the per location percentage of reads retained (relative to
the reads present in all OTUs at that location) following removal
of those reads belonging to oligotypes with incomplete alignments
(Figure 1A), (2) compare the number of reads clustered in a
given OTU to the number of unique oligotypes derived from it
(Figure 1B), and (3) visualize the proportion of oligotypes derived
from OTUs across specific higher-order taxa (Figure 2).

DETECTING ‘RESOLVING’ OLIGOTYPES
For each OTU selected for analysis, we calculated the mean
“checkerboard” (C) and “togetherness” (T) scores (Stone and
Roberts, 1992) of its oligotypes using the R package bipartite (Dor-
mann et al., 2009). High C scores indicate that pairs of oligotypes
occur in checkered patterns across samples. That is, one oligo-
type’s presence and absence is repeatedly mirrored by another’s in
two-by-two units, resembling a similarly sized unit of a checker-
board. High T scores indicate that pairs of oligotypes tend to
occur in aggregates across samples, being simultaneously present
or absent. Both C and T scores can be high (relative to those
calculated from a random distribution of presences and absences)
should groups of aggregated oligotypes, the existence of which will
increase the average T score of a matrix, form checkered patterns

with other groups, increasing the average C score. Based on
these distributions, we selected oligotypes with average checker-
board and togetherness scores greater than the third quartile of all
scores measured for further investigation. These oligotypes were
treated as candidate ‘resolving’ oligotypes. A resolving oligotype
would thus be heterogeneously distributed across sites, but would
cluster with other, similarly distributed oligotypes. Hellinger-
transformed abundance matrices were visualized as heatmaps with
oligotypes grouped by hierarchical cluster analysis (using average
linkage) of the corresponding Bray–Curtis dissimilarity matrices.

DETECTING ENVIRONMENTALLY STRUCTURED OLIGOTYPES
We applied RDA as implemented in the R package vegan (Oksa-
nen et al., 2013) to Hellinger-transformed oligotype abundance
matrices derived from each oligotyped OTU. Forward selec-
tion, as described by Blanchet et al. (2008), was used to select
explanatory variables across all RDA solutions calculated. The
full model’s explanatory matrix comprised the following vari-
ables: particulate protein concentration, pigment concentration
(CPE), Easting, Northing, and water depth. Models associated
with a percentage of constrained variation greater than 50% and
P-values less than 0.05 were investigated further. All P-values
were corrected for multiple testing using the base R function,
p.adjust, employing the method of Benjamini and Hochberg
(1995). Variance inflation factors (estimated with vegan’s vif.cca
function) were verified to be <10 to ensure constraints were not
multicollinear.

EXPLORING OLIGOTYPE ASSOCIATIONS
Associations between oligotypes were explored using graph the-
oretic approaches. Only those oligotypes with a total relative
abundance greater than one were considered. A graph was created

FIGURE 1 | (A) Bubble plot approximating the location of each sampling site
(bubble coordinates), the per site, percentage contribution of reads used in
this study (bubble size), and the sample-specific ratio of the number of reads
that were present in an oligotype to the number of reads in the OTU it was

derived from (fill intensity). Numeric values on isobaths indicate the depth of
the seafloor in meters below the water surface. (B) The total number of reads
clustered in a given OTU plotted against the number of oligotypes derived
from that OTU (Pearson’s R2 = 0.39, P <<0.01).
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FIGURE 2 |The oligotype:OTU ratio for each (A) Phylum (B) Class and (C) Order analyzed.

with oligotypes as nodes, and edges defined by the value of Whit-
taker’s index of association (IA), as described by Somerfield and
Clarke (2013), calculated for each pair of oligotypes. This index
is similar to the one-complement of the well-known, asymmet-
ric Bray–Curtis dissimilarity; however, variable (i.e., oligotype)
proportions are scaled such that they sum to 100. Consequently,
oligotypes with identical percentage abundances across samples
have an IA of 100, while those that with no overlapping occur-
rence across samples have an IA of zero. Significance was assessed
by independently permuting (n = 200) the sample order in each
oligotype abundance vector of the original dataset and recalcu-
lating a matrix of IA values. The probabilities of the observed
IA values given the permuted values were corrected for multiple
testing using the method of Benjamini and Hochberg (1995).

Oligotypes with an IA greater than 85 and an FDR-corrected
P-value less than 0.05 were linked by an edge and the corre-
sponding IA value was used as an edge weight. The Cytoscape
suite (v 3.1.1; Smoot et al., 2011) was used to visualize and
analyze the graph object. Node size was scaled by the total abun-
dance of each oligotype (minimum = 2, maximum = 330)
and edge width by the value of its weight. The Markov clus-
ter (MCL) algorithm (Enright et al., 2002), as implemented in
the clusterMaker 2 (Morris et al., 2011) Cytoscape ‘app,’ was
used with its default granularity parameter value of 2.5 to
identify clusters. As recommended by van Dongen and Abreu-
Goodger (2012), the edge weight interval was adjusted from
0.85–1 to 0.001–0.15 to allow better performance of the MCL
algorithm.

RESULTS
A total of 19,283 OTUs were generated by the SILVAngs pipeline,
of which 95.86% were taxonomically classified. Of these, 217
were represented by at least 100 reads, passed our thresholds
for oligotyping, and were used in further analysis. Despite this
study targeting bacterial organisms, eight OTUs classified as Thau-
marchaeota (Marine Group I) were included in further analyses.

Following the oligotyping procedure described above, 1,694 oligo-
types were identified, 290 of which were singletons. The minimum,
median, and maximum numbers of oligotypes per OTU were 2, 6,
and 31, respectively. The oligotyped OTUs represented 14 Phyla,
23 Classes, and 29 Orders (Figure 2).

WITHIN-OTU OLIGOTYPE ABUNDANCES SHOW VARIATION ACROSS
SAMPLES
Oligotype matrices derived from a total of 25 OTUs possessed
average C and T scores above the third quartile of these measures
as distributed across all 217 oligotype matrices calculated (i.e.,
>3.60 and >6.17, respectively; Table 2). These scores showed no
notable correlation (Pearson’s R2 =∼0.25, P = 0.22). The majority
of these OTUs were classified as Acidobacteria or Proteobacteria;
however, the highest average C scores belonged to oligotypes of
reads assigned to the phyla Gemmatimonadetes and Bacteroidetes,
as well as the Candidate division WS3. The highest T scores were
observed for reads assigned to the Acidobacteria, Proteobacteria,
and Gemmatimonadetes. To illustrate the patterns associated with
these average measures, several Hellinger-transformed oligotype
abundances were visualized as heatmaps in Figure 3.

ASSESSING ENVIRONMENTAL AND SPATIAL EFFECTS ON OLIGOTYPE
ABUNDANCES
After performing RDA combined with forward selection, we iden-
tified seven OTU-specific oligotype abundance matrices which
had greater than 50% of their variation constrained by one or
more explanatory variables (Table 3). All but one (AHWYC, of
the Gammaproteobacteria) featured water depth as an explana-
tory variable, while porosity, CPE, and a spatial variable were each
featured in two models. The triplots of these models, as well as
corresponding heatmaps of their Hellinger-transformed oligotype
abundances, are displayed in Figure 4. Oligotypes, ordinated as
bold, red text, show differing responses to the selected explana-
tory variables. For example, the TGT oligotype of OTU BJCLU
(Figure 4A) appears in higher relative abundances at shallower
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Table 2 | Average checkerboard and togetherness scores for oligotype occurrence matrices generated from selected OTUs, cf. to Figure 3.

OTU ID Phylum Class n oligotypes Mean C

score

MeanT

score

A83S4 Acidobacteria Acidobacteria 17 5.16 7.63

DF5XB Acidobacteria Acidobacteria 15 4.70 7.01

AS91F Acidobacteria Acidobacteria 10 4.60 6.29

EDBYN Acidobacteria Subgroup 22 7 5.95 7.19

BTL2B Acidobacteria Subgroup 22 9 3.89 9.31

CEL9R Actinobacteria Acidimicrobiia 8 4.11 6.18

BRUV2 Actinobacteria Acidimicrobiia 11 5.98 6.36

DD9DS Actinobacteria Acidimicrobiia 6 4.73 9.00

C60MC Bacteroidetes Flavobacteria 7 7.05 7.00

DON2B Candidate division WS3 – 3 7.00 6.33

B177D Gemmatimonadetes Gemmatimonadetes 12 8.76 9.39

A5C8S Planctomycetes Planctomycetacia 8 4.71 7.21

EMCAY Proteobacteria Alphaproteobacteria 6 5.67 7.13

EAFF9 Proteobacteria Alphaproteobacteria 10 3.71 7.00

BQX8G Proteobacteria Deltaproteobacteria 12 6.06 8.02

CMQFL Proteobacteria Deltaproteobacteria 15 3.90 6.29

DS0T4 Proteobacteria Deltaproteobacteria 12 6.30 8.44

DSTJG Proteobacteria Deltaproteobacteria 7 5.00 6.76

CA3XY Proteobacteria Gammaproteobacteria 7 3.71 7.19

EUGQ5 Proteobacteria Gammaproteobacteria 8 5.57 9.39

AESJT Proteobacteria Gammaproteobacteria 14 6.36 7.65

BQD17 Proteobacteria Gammaproteobacteria 10 4.60 6.62

AJ3H1 Proteobacteria Gammaproteobacteria 18 5.90 6.24

EBMBR Proteobacteria Gammaproteobacteria 15 5.47 6.49

E00H7 Verrucomicrobia Verrucomicrobiae 9 4.72 6.64

Average ∼10 5.34 7.31

sites with higher CPE concentrations while the A oligotype of OTU
DTNEI (Figure 4E) tends to increase in abundance at increased
depth.

EVALUATING OLIGOTYPE-TO-OLIGOTYPE ASSOCIATION
We constructed a network derived from a filtered similarity matrix
calculated using Whittaker’s IA (see Materials and Methods) which
contained 318 nodes (oligotypes) and 1,308 edges (associations;
Figure 5). A total of 32 connected components (CCs) of varying
taxonomic composition were present; however, the network was
dominated by a single CC with 225 nodes, while other CCs had
between 22 and 2 nodes each. The network had a clustering coef-
ficient of ∼0.28, a density value of ∼0.03, a heterogeneity value
of ∼1.33, a centralization value of ∼0.16. Nodes had, on average,
∼8.23 neighbors. Within the largest CC, these values were approx-
imately 0.39, 0.05, 1.07, 0.21, and 11.08, respectively. Additionally
the largest CC had scale-free properties with a degree-distribution
following a power law: y = 72.6 × x−1.1. Node degree (i.e., the
number of edges associated with a given node) ranged from 57 to

1. Of the 10 nodes with the highest degrees (between 39 and 57),
five were classified in the Order Gammaproteobacteria (Family:
Xanthomonadales), three as Cytophagia, and the remaining two
were classified as a Deltaproteobacterium and an Acidobacterium
with read abundances between 2 and 68.

The MCL algorithm generated 76 clusters of nodes which
included oligotypes belonging to an assortment of taxa and with
varying degrees of read abundance (Figure 6 and Table 4). This
algorithm resolved the largest CC into several clusters, the largest
of which included 72 nodes.

DISCUSSION
In this study, we applied oligotyping to extant sequence data
obtained from a unique and dynamic Arctic, deep-sea LTER. While
our analyses were primarily exploratory, they indicate that subtle
nucleotide variation does indeed provide a new perspective on
bacterial diversity at HAUSGARTEN that is not redundant with
that derived from OTU-based diversity data. Further, in observing
that several of the oligotype abundance matrices derived from
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FIGURE 3 | Heatmaps illustrating examples of abundance matrices

subject to checkerboard and togetherness score screening. Rows
(oligotypes) have been Hellinger transformed and ordered by
hierarchical cluster analysis using average linkage and Bray–Curtis
dissimilarities. Darker shades indicate higher relative abundance of
reads. In the following text, the maximum, untransformed number of

oligotype reads in each OTU-derived relative abundance matrix is noted
in brackets. The oligotypes for OTUs (A) EUGQ5 [8], which had the
joint-highest average T score observed; (B) B177D [5], which had both
the highest average C and T scores observed; (C) C60MC [12]; and
(D) DON2B [9] which both had high average C and T scores are
displayed (cf. Table 2). AGCT: nucleotides; -: gap.

specific OTUs appear to be structured by environmental or spa-
tial variables (Table 3 and Figure 4), we are encouraged that
further application of this technique – particularly in the con-
text of ‘omic-centered,’ long-term research (see e.g., Davies et al.,
2014) – will enhance the likelihood of identifying ecologically
meaningful divergence at up to single-base resolution. This, in
turn, may aid in the detection of ecotypes (e.g., Moore et al.,
1998; Garczarek et al., 2007; Ivars-Martinez et al., 2008) and the
concomitant deepening of knowledge surrounding the ecosys-
tems they inhabit. Naturally, the success of such a strategy is
directly determined by the selection of an appropriate genetic
element, as the 16S gene may, in some cases, have poor resolv-
ing power (e.g., Jaspers and Overmann, 2004) and other markers
may offer more scope (Lerat et al., 2003; Yilmaz et al., 2011;
Mende et al., 2013).

THRESHOLDS FOR OLIGOTYPE DETECTION
In the present case, we limited our analysis to OTUs with high
read abundance in order to operate on relatively large alignments
which could undergo several rounds of oligotyping. Under this
constraint, we noted that the abundance of reads belonging to an
OTU does not meaningfully correlate with the number of olig-
otypes it will be resolved into (Figure 1B), which reinforces the
notion that understanding nucleotide variation is likely to require

specific knowledge of the organisms, evolutionary characteris-
tics, and ecology involved in the diversification processes at work
(McDonald et al., 2013). We acknowledge that limiting our anal-
ysis to these abundant OTUs precludes the observation of many,
potentially important oligotypes; however, we find it prudent to
reserve more thorough analysis until a greater body of longitudinal
sequence data is amassed at HAUSGARTEN. Repeated observation
of oligotypes over time and the evaluation of their variation in the
face of environmental variation will provide a far better basis for
interpretation.

In addition to focusing solely on abundant OTUs, we only per-
formed a round of oligotyping if an alignment with at least 21
sequences was available and entropy analysis revealed positions
with entropy values greater than or equal to 0.6. We acknowl-
edge that our choice of entropy and sequence count thresholds is,
ultimately, arbitrary. Table 1 partly clarifies the nature of our selec-
tion: with an entropy value of 0.6, one can expect 85.7% of aligned
characters in a given position to be identical, or an alternative char-
acter for every six instances of the dominant character. Selecting
lower entropies increases the risk of identifying sequencing errors
as oligotypes while higher entropy thresholds would decrease the
sensitivity of the method. We propose that applying a statisti-
cal method to determine a suitable threshold for each execution
of the oligotyping procedure may provide a more robust and less
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Table 3 | Results of RDA on oligotype abundance matrices derived from selected OTUs.

OTU ID Class Order n

oligotypes

Model Constrained

variation (%)

BJCLU Deltaproteobacteria Bdellovibrionales 5 Y ∼ Easting + CPE + Depth 69

AV4R2 Gammaproteobacteria Incertae Sedis 4 Y ∼ Depth + Porosity 52

BGP4M Cytophagia Cytophagales 3 Y ∼ Depth 70

D3V9F Gammaproteobacteria Xanthomonadales 7 Y ∼ Depth 69

DTNEI Cytophagia Cytophagales 3 Y ∼ Depth 65

AHWYC Gammaproteobacteria Xanthomonadales 5 Y ∼ Porosity + CPE 65

ANOZB Cytophagia Cytophagales 4 Y ∼ Depth + Northing 60

Explanatory variables were chosen through forward selection. All models had FDR-corrected P-values of, at most, 0.0098. Y: the response matrix of oligotype relative
abundances; CPE: Pigment concentration; Depth: Water depth.

subjective threshold criterion. The broken stick model, commonly
used to predict the relative sizes of a randomly fragmented whole,
may offer such a solution (Ramette and Buttigieg, 2014).

DETECTING ‘RESOLVING’ OLIGOTYPES
We attempted to estimate the degree to which reads in an OTU
have been distributed across oligotypes such that they may be
used to differentiate between sites (i.e., ‘resolve’ sites based on
their distributions) by calculating the average checkerboard (C)
and togetherness (T) scores of each OTU-specific oligotype abun-
dance matrix. We used C and T scores as they allowed us to
screen for oligotypes with strong, presence-absence-based par-
titioning and aggregation among sites. This partitioning may be
indicative of ecotype partitioning (i.e., competitive exclusion) as
observed for other marine bacteria (e.g., Garczarek et al., 2007)
and, if observed in repeated studies, may motivate taxon-targeted
investigations to determine whether ecotype-level dynamics are
in effect. Oligotypes which tend to co-occur at certain sites
(e.g., Figure 3A, oligotypes TGT and -C at sites HGI–HGIII)
may be indicative of subpopulations with similar levels of fit-
ness in those locations. As an example, this screening approach
revealed that oligotypes of OTU B177D, from the poorly char-
acterized phylum Gemmatimonadetes, were associated with the
highest average C and T scores (Table 2 and Figure 3B). The
Gemmatimonadetes have been observed in diverse environments,
including soils and aquatic sediments, suggesting a diverse range
of metabolic capacities in this phylum (DeBruyn et al., 2011).
While confirmation is required, it is not unfounded to hypothesize
that such metabolic plasticity may have translated into oligotype-
level subpopulations colonizing HAUSGARTEN. Other oligotype
matrices with high C and T scores include that of OTU C60MC
(Figure 3C), classified as a representative of the Bacteroidetes.
Apparent depth-related community composition changes within
the Bacteroidetes have been observed in the Mediterranean (Díez-
Vives et al., 2014), a trend somewhat echoed in our results where
several oligotypes (CG, CA, and A-) were absent from shallower
sites where others occurred (AT, AC, T, and G). One possible
drawback of this approach is that C and T scores are binary
measures and are not sensitive to differential abundance in olig-
otypes that are present in the same site. Thus this approach will

not detect patterns which would, for example, indicate that one
of a set of oligotypes appears to have greater fitness than oth-
ers without leading to exclusion. To address this, the application
of techniques dealing with abundance-based checkerboard and
togetherness measures (Ulrich and Gotelli, 2010) may provide
more informative results.

While outside the scope of this OTU-focused study, these results
provide motivation to examine the higher-order taxa contain-
ing resolving oligotypes – alongside others found to have high
C and T scores such as the Acidobacteria, Gamma-, Alpha-,
and Deltaproteobacteria – through oligotyping. This will become
an especially interesting undertaking as more next-generation
sequencing datasets become available from the HAUSGARTEN
LTER, enabling the detection of persistent oligotypes in the sys-
tem and providing motivation for their further study. The natural
consequence of confirming recurrent, site-resolving oligotypes is
the formulation of hypotheses regarding the drivers of their dif-
ferentiation in an effort to describe the microbial ecology at this
scale.

ENVIRONMENTALLY AND SPATIALLY STRUCTURED OLIGOTYPES
To complement the presence-absence-based checkerboard and
togetherness analyses, we employed RDA – a multivariate form
of multiple linear regression – to detect linear, abundance-based
responses to environmental and spatial explanatory variables. Fol-
lowing our application of RDA and forward variable selection,
we observed only seven of the 217 OTUs selected for analysis
produced oligotype abundance matrices with greater than 50%
explained variation. Indeed, a total of 55 models included at least
one explanatory term in the model, while 162 models were triv-
ial (i.e., ‘intercept-only’ models, featuring no explanatory terms).
This result suggests that much of the oligotype-based microdi-
versity is not structured by the environmental or spatial factors
measured; however, it may also imply that variables which are
able to account for these responses have been overlooked. Addi-
tionally, we accept that our threshold for constrained variation is
likely to be harsh for an ecological investigation: due to the sheer
complexity of most ecosystems, it is not unusual to explain only a
small fraction of the total variation in a response matrix (Cottenie,
2005). Nonetheless, we choose to err on the side of caution and
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FIGURE 4 | Heatmaps and RDA triplots (type 2 scaling) derived from

Hellinger-standardized, OTU-specific oligotype relative abundance

matrices. The seven models shown had at least 50% constrained
variance and were significant at a P -value threshold of 0.05
(FDR-corrected) cf. Table 3. The depth and latitudinal gradients sampled
are reflected in the sample order (HGI shallowest, HGVI deepest, N4
northernmost, S3 southernmost) and elaborated upon in the bottom right
of the figure where the depth and latitudinal gradients are highlighted
with red and blue boxes, respectively. Site HGIV, the central site of the
intersecting transects, belongs to both transects. See Figure 1A and
Jacob et al. (2013) for greater detail. When other explanatory variables
were featured in the model, an additional heatmap of these variables’
z-scored values is included in the panel. Across heatmaps, darker shades
indicate higher, Hellinger-transformed relative abundance of reads or
higher values of a given explanatory variable. The panels reference

oligotype abundance matrices derived from the following OTUs (the
maximum, untransformed read abundance across oligotypes in each
matrix is noted in brackets): (A) BJCLU [18] (B) AV4R2 [14] (C) BGP4M
[16] (D) D3V9F [62] (E) DTNEI [19] (F) AHWYC [39] and (G) ANOZB [9].
Explanatory variables are represented by gray text and arrows pointing in
their direction of increase, these comprise Porosity (range: 51.8–72.3%
volume), CPE (18.86–44.26 μg cm−3), Northing (8727035–8850377 m),
Easting (512100–565125 m), and Depth (1284–3535 m). Oligotypes
(response variables) are ordinated as bold, red text. Relative to each plot’s
origin, the position of an oligotype’s ordination indicates its direction of
increase. Angles between variables indicate their linear correlation, with
an angle of 0◦ indicating perfect positive correlation, 180◦ indicating
perfect negative correlation, and 90◦ indicating orthogonality. Samples are
ordinated as black text. Transparency effects are used to improve visibility
in congested regions of the triplots and have no meaning.

report on oligotype matrices strongly structured by our explana-
tory variables. These results do show, however, that oligotype-level
variation reveals patterns that are not evident at the OTU-level and
that are related to environmental parameters.

In line with previous findings, water depth prominently fea-
tured in the models selected by our methods (Table 3). Several
OTU-specific oligotypes appear to increase with depth (e.g.,
oligotype A of OTU D3V9F and oligotype A of OTU DTNEI;
Figures 4D,E respectively) while others seem to have higher abun-
dances in shallower regions (e.g., oligotype TC of OTU D3V9F;
Figure 4D) or little response to varying depth (e.g., oligotype G
of OTU ANOZB; Figure 4G). In several cases, oligotypes within

a given OTU appear to show differential responses to depth (e.g.,
oligotypes A and C of OTU BGP4M and oligotypes TC and A
of OTU D3V9F; Figures 4C,D, respectively). As discussed above
and by Jacob et al. (2013), water depth is likely to act as a proxy
variable for numerous depth-related parameters such as pressure
or ecosystem composition (e.g., the community composition of
larger organisms). Indeed, the negative correlation of depth with
benthic phytodetritus concentrations (in our analysis, approxi-
mated by CPE concentrations) is reflected in the ordination of
oligotypes derived from OTU BJCLU (Figure 4A). In this ordi-
nation, oligotype TGT appears at shallower sites with higher CPE
concentrations, whereas other oligotypes appear to favor deeper
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FIGURE 5 | Force-directed, spring-embedded network displaying

oligotypes (nodes) with Whittaker’s index of association (IA) values

greater than 85 (FDR-corrected P -values as determined by 200

permutations <0.05), represented as edges. Nodes are color-coded
by taxonomic Class. See text for a summary of this network’s general
statistics.

sites with lower CPE concentrations. Thus, the prominence of
depth as an explanatory variable in the RDA models above is
unsurprising, but its exact relevance to the oligotypes derived
from each OTU analyzed is more difficult to interpret. This pro-
vides motivation to design future sampling procedures that would
capture a broader suite of depth-related contextual variables in aid

of more precise characterization of bacterial community responses
across taxonomic scales. Sampling during a natural perturbation
which would decouple environmental factors that co-vary with
depth (and are thus likely to confound one another in subsequent
analyses) may also offer a particularly valuable opportunity to
isolate their effects. Additional factors such as porosity, which has
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FIGURE 6 | Results of Markov clustering of the graph displayed in

Figure 5, with a granularity parameter value of 2.5. Nodes are
color-coded by taxonomic Class (see Figure 5 for key) and their size is
proportional to the total relative abundance of the corresponding oligotype.
Edge thickness is proportional to the value of the IA between oligotypes.
The leftmost cluster of each row is numbered along the left margin.

been observed to co-vary with benthic community structure in
other Arctic sediments (Hamdan et al., 2013), and pigment con-
centration (partially indicative of energy availability in this system
and likely associated with the presence of sea ice) are also linked to
a bathymetric gradient; however, were not observed to be highly
collinear with water depth. Thus, models such as that of OTU
AHWYC (Table 3 and Figure 4F) are important inasmuch as they
are likely to reflect alternate ecological dynamics, worthy of pur-
suing in subsequent sampling designs. It is tempting to speculate
that oligotypes with differential responses to variables such as
depth and CPE concentration represent potential ecotypes. For
example, based on their occurrence profiles and ordination by
RDA, it may be hypothesized that organisms represented by the
TGT oligotype of OTU BJCLU (Figure 4A) favor conditions where

labile food sources are available (i.e., higher CPE concentrations),
while those represented by oligotypes TCC and A are adapted to
feeding on more recalcitrant compounds. A similar assertion may
be made for oligotypes GG and A derived from OTU AHWYC
(Figure 4F).

OLIGOTYPE–OLIGOTYPE ASSOCIATIONS
Our network analysis of oligotype associations based on Whit-
taker’s IA revealed a large CC with scale-free properties, a trait that
is frequently observed in biological and ecological networks, and
several much smaller components (Figure 5). The variety of taxa
and abundance classes which shared associations in the network
and the MCL clusters derived from it (Figure 6) is a simple, but
informative, result: oligotype associations cross taxonomic bound-
aries and abundance classes. This implies that oligotype-level vari-
ation reveals heretofore uninvestigated sub-OTU co-occurrence
patterns that represent, for example, candidate bacterial guilds.
Should these associations be validated with independent data (e.g.,
repeated sampling and sequencing of these HAUSGARTEN sites),
they would provide motivation for targeted studies investigat-
ing specific sub-OTU microbial interactions. Additionally, the
variation of consistently observed, closely associated oligotypes
provides a reference against which one is able to identify which
contextual parameters are of relevance to the microbial ecology of
this rapidly changing ecosystem.

As a final note, we observed several nodes with high degree
(≥25), but which corresponded to oligotypes with low abundance
(≤5 reads). While true association cannot be ruled out, caution
must be exercised in interpreting the associations of ‘rare’ olig-
otypes. While we did choose to remove absolute singletons (i.e.,
oligotypes which only had one read in the entire dataset), we did
not use the oligotyping software’s parameters to restrict output
based on the various abundance measures offered. While this may
result in oligotypes generated from sequencing errors contami-
nating our results, it also prevents false negatives. As stated above,
we suggest that the validation of oligotype occurrence through
repeated sampling is a more tenable solution to this issue than
arguments for or against a given, arbitrary threshold, which may
have unpredictable effects on the analysis of count data (as shown
in e.g., Gobet et al., 2010).

CONCLUSION
This study adds both to the characterization of the bacterial
benthos present at the HAUSGARTEN LTER and to the explo-
ration of oligotyping as a methodology to detect heretofore

Table 4 | Selected characteristics of the five largest MC clusters with reference to the IA network cf. Figure 6.

Cluster No. of

oligotypes

Average and range of

oligotype abundance

No. of phyla

represented

No. of classes

represented

1 72 36.2, 327 8 14

2 22 53.6, 250 6 11

3 10 23.7, 102 3 5

4 8 38.38, 111 4 5

5 8 10.5, 23 3 4
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undescribed bacterial microdiversity and ecology. Our results
largely confirm previous observations linking responses in micro-
bial community structure to water depth; however, they reveal a
finer-grained response that can be both a source and target for
new ecological hypotheses. Indeed, oligotypes from within a sin-
gle OTU were observed to show differential occurrence across
sites, respond differently to the explanatory variables analyzed,
and associate with oligotypes derived from other OTUs. While
work remains to be done in refining this approach and standardiz-
ing its application, oligotyping offers a readily applicable means to
explore patterns in microbial microdiversity. Sequencing-enabled
LTERs and Genomic Observatories (Davies et al., 2012, 2014) are
uniquely positioned to evaluate oligotyping and similar methods
through repeated sampling and validation and, in the process,
have the opportunity to identify distinct microbial subpopula-
tions and ecotypes central to their study site. The value of this
capability is especially pronounced in regions undergoing rapid
change, where a grasp of microbial responses at fine granularity is
desirable.
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Arcobacter species are highly abundant in sewage where they often comprise
approximately 5–11% of the bacterial community. Oligotyping of sequences amplified
from the V4V5 region of the 16S rRNA gene revealed Arcobacter populations from
different cities were similar and dominated by 1–3 members, with extremely high
microdiversity in the minor members. Overall, nine subgroups within the Arcobacter
genus accounted for >80% of the total Arcobacter sequences in all samples analyzed. The
distribution of oligotypes varied by both sample site and temperature, with samples from
the same site generally being more similar to each other than other sites. Seven oligotypes
matched with 100% identity to characterized Arcobacter species, but the remaining 19
abundant oligotypes appear to be unknown species. Sequences representing the two
most abundant oligotypes matched exactly to the reference strains for A. cryaerophilus
group 1B (CCUG 17802) and group 1A (CCUG 17801T), respectively. Oligotype 1 showed
generally lower relative abundance in colder samples and higher relative abundance
in warmer samples; the converse was true for Oligotype 2. Ten other oligotypes
had significant positive or negative correlations between temperature and proportion
in samples as well. The oligotype that corresponded to A. butzleri, the Arcobacter
species most commonly isolated by culturing in sewage studies, was only the eleventh
most abundant oligotype. This work suggests that Arcobacter populations within sewer
infrastructure are modulated by temperature. Furthermore, current culturing methods
used for identification of Arcobacter fail to identify some abundant members of the
community and may underestimate the presence of species with affinities for growth
at lower temperatures. Understanding the ecological factors that affect the survival and
growth of Arcobacter spp. in sewer infrastructure may better inform the risks associated
with these emerging pathogens.

Keywords: oligotyping, Arcobacter , sewage, population dynamics, V4V5, Illumina MiSeq

INTRODUCTION
The genus Arcobacter, described by Vandamme et al. (1992),
belongs to the family Campylobacteraceae within the epsilon-
Proteobacteria. Arcobacter spp. were originally grouped within
genus Campylobacter, but differ from campylobacters in their
ability to grow under aerobic conditions and lower temperatures.
The genus Arcobacter currently contains 18 species (Levican et al.,
2013a; Sasi Jyothsna et al., 2013) isolated from diverse environ-
ments (water, plant roots, food) and hosts (humans, poultry, pigs,
shellfish) (Collado and Figueras, 2011). Many Arcobacter species
have been isolated from multiple locations, suggesting that these
organisms are metabolically flexible and can survive under an
array of environmental conditions.

Three Arcobacter species, A. butzleri, A. cryaerophilus, and
A. skirrowii, have emerged in recent years as potential human
pathogens (Collado and Figueras, 2011). Strains of A. butzleri
and A. cryaerophilus in particular have been isolated from human
stool and blood samples, and pathogenicity can range from diar-
rhea to bacteremia (Figueras et al., 2014). Some A. butzleri isolates

contain a suite of virulence genes (cadF, ciaB, cj1349, hecA, hecB,
irgA, mviN, pldA, and tlyA) (Douidah et al., 2012; Levican et al.,
2013a) and can adhere to and invade Caco-2 cells (a gut epithelial
cell line) in vitro (Levican et al., 2013a). The development of new
DNA-based screening methods for clinical samples shows that
arcobacters can often be mistaken for Campylobacter spp., and
therefore, the potential human pathogenicity of these microbes
is likely underestimated as is their role in water- and food-borne
disease (Collado and Figueras, 2011; Figueras et al., 2014).

Studies of sewage and sewage-contaminated environmental
waters reveal that Arcobacter spp. are often found in associa-
tion with raw (untreated) sewage and even treated effluent water
(Stampi et al., 1993; Collado et al., 2008, 2010; Cai et al., 2014).
The species A. butzleri and A. cryaerophilus are the most com-
monly found in isolation studies, and appear to have high genetic
diversity within species (Collado et al., 2008, 2010). The species
A. defluvii and A. cloacae have been recently discovered in sewage
samples (Collado et al., 2011; Levican et al., 2013b) as well. A
culture-independent analysis of sewage using 454 pyrosequencing
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showed that Arcobacter populations accounted for approximately
4% of sewage bacterial communities, but had low diversity based
on V6 pyrotag amplification (Vandewalle et al., 2012). The domi-
nant V6 pyrotag also could not be mapped to a specific species,
as this region has relatively low diversity among eight named
arcobacters. So while Arcobacter appears to be an important com-
ponent of sewage communities, relatively little is known about
the diversity of these organisms or the ecological niche they may
occupy in sewer infrastructure.

Here we provide an in-depth, DNA-based analysis of the
Arcobacter community from 37 sewage samples collected in the
US and Spain. The oligotyping approach sorted over 400,000
sequences into ecologically meaningful subgroups and allowed us
to track changes in the Arcobacter populations across seasons and
geography. Our findings reveal potential new species yet to be cul-
tivated and temperature-based trends in the dominant organisms
found in sewage.

MATERIALS AND METHODS
SAMPLE COLLECTION AND PROCESSING
We selected a subset of sewage samples from a larger study that
contained a complete set of metadata in order to better assess
the ecological factors that contribute to the distribution of total
Arcobacter and also individual species within and among sewage
samples (Tables S1, S2). All sewage samples represent a single
replicate taken from municipal wastewater treatment facilities:
36 primary influent (untreated) samples collected from 12 facil-
ities in the US on three occasions (August 2012, January 2013,
and April 2013) and one sample collected from Reus, Spain in
September 2012 (Table S1). These samples represent a range
of geographic location, regional climate, and seasonal variation
(Table S2).

Technicians at the US sewage treatment plants shipped sam-
ples on ice within 24 h of collection to our laboratory in
Milwaukee, WI, USA, for processing. A volume of 25 mL of
sewage was filtered (0.22 µm, 47 mm S-Pak® Millipore® filters)
for each sample and filters were stored at −80◦C. The sample
from Reus (Spain) was a composite sample collected overnight
from 8:00 p.m. to 8:00 a.m. from the inflow of the WWTP of
this city. This sample was immediately taken to the laboratory
at the Medical School in Reus where it was filtered. DNA was
extracted following the protocol described below provided by the
Milwaukee laboratory. The DNA was shipped on ice the same day
to Milwaukee.

DNA EXTRACTION, AMPLICON SEQUENCING, AND BIOINFORMATIC
PROCESSING
We extracted DNA as previously described (Newton et al., 2013).
Briefly, the FastSpin Soil DNA kit (MP Biomedicals, Santa Ana,
CA) was employed according to the manufacturer’s instructions
using the material contained in the crushed filters. The DNA
purity and concentration was assessed using the NanoDrop®
spectrophotometer (Thermo Scientific, Waltham, MA) and by
performing an electrophoresis in 1% TAE agarose gel.

The Josephine Bay Paul Center at the Marine Biological
Laboratories in Woods Hole, MA, provided Illumina amplicon
sequencing. Primers amplified the V4V5 region of the bacterial
16S rRNA gene, and the Illumina MiSeq platform produced the

sequence reads. Primers, sequencing protocols, quality control
measures, and bioinformatic trimming procedures for Illumina
MiSeq are described in detail elsewhere (Morrison et al., 2013).
The Global Alignment for Sequence Taxonomy (GAST) software
(Huse et al., 2008) assigned taxonomy to our high-quality reads;
this study uses only the sequences that mapped to the genus
Arcobacter. The sequences obtained in this study are available in
the National Center for Biotechnology Information (NCBI) Short
Read Archive under accession number SRP047513.

OLIGOTYPING
GAST taxonomic classification of sequence reads (Huse et al.,
2008) to the genus Arcobacter resulted in 408,878 sequences
for oligotyping. We implemented the oligotyping pipeline (Eren
et al., 2013) to determine ecologically relevant sequence group-
ings. Gap characters added to the ends of shorter sequences
produced sequences of equal length that are required by the
analysis pipeline. The “entropy-analysis” script in the oligotyp-
ing pipeline calculated the Shannon entropy at each nucleotide
along the length of the sequences. The Shannon entropy pro-
vides a measure of nucleotide variation at a given position;
sites that have A, G, C, and T present in approximately equal
proportions among sequences have the highest entropy values,
whereas highly conserved sites have a minimum entropy value
near zero. Starting with the highest entropy positions along the
length of the sequence, we selected 31 positions (4, 41, 54, 55,
56, 57, 58, 65, 70, 78, 85, 105, 112, 114, 115, 118, 120, 128,
130, 133, 159, 203, 212, 226, 250, 287, 301, 308, 332, 335, 343)
over a read length of 375 nucleotides until entropy peaks were
eliminated in individual oligotypes. We required each oligotype
to have a minimum substantive abundance (−M, the abun-
dance of the dominant sequence representing the oligotype) of
408 in order to reduce noise in the dataset and to focus our
analysis on the more abundant oligotypes. Oligotyping with
no noise filtering produced over 3800 oligotypes; elimination
of oligotypes with a minimum substantive abundance of less
than 408 reads (equivalent to 0.1% of the total abundance of
Arcobacter sequence reads in the dataset) resulted in 26 oligo-
types. Over 90% of sequences (372,028) were retained in the
final analysis; discarded sequences were distributed evenly across
samples.

STATISTICAL ANALYSES
We used the vegan (Oksanen et al., 2013) and stats packages
in R (R Development Core Team, 2012) for statistical analy-
ses. Hierarchical clustering and non-metric multi-dimensional
scaling (NMDS) analyses were based on Bray-Curtis dissimilar-
ities, using oligotype matrix-count data as input. We determined
the influence of environmental parameters on clusters produced
by NMDS using permutation analysis of variance (ADONIS in
the vegan package) with 999 permutations. The non-parametric
Spearman rho correlation coefficients and corresponding p val-
ues (cor.test in the stats package) were used to determine the
relationships between temperature and oligotype proportion.

PHYLOGENETIC ANALYSES
ClustalW in the MEGA5 package (Tamura et al., 2011) aligned
DNA sequences. The 16S rRNA sequences of Arcobacter reference
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strains represented cultivated species (Levican et al., 2013b; Sasi
Jyothsna et al., 2013). We aligned the oligotype representa-
tive sequences (375 bp in length) to nearly full-length reference
sequences, then trimmed to 375 bases for phylogenetic analy-
sis. The V4V5 amplicons overlap the reference sequences from
nucleotides 544–928 based on E. coli numbering. The Jukes-
Cantor method estimated evolutionary distances, and we gener-
ated 1000 replicate trees using the Neighbor-Joining algorithm.
Campylobacter jejuni served as an outgroup.

RESULTS
SAMPLE ENVIRONMENTAL FACTORS AND DISTRIBUTION OF
OLIGOTYPES AMONG SAMPLES
The percentage of the total bacterial community that mapped
to the genus Arcobacter ranged between 0.8 and 19.6% for most
samples, and 27/37 samples had more than 5% Arcobacter. Two
outlier samples contained 73 and 85% Arcobacter (Figure 1A).
Over 40,000 unique sequences were present in the set of 408,878
total Arcobacter sequences. Alignments of the nearly complete
(>1400 bp) 16S rRNA gene of Arcobacter reference strains (Figure
S1) allowed the calculation of the Shannon entropy within the
V4V5 region compared to the other variable regions; entropy
within the V4V5 amplicon sequences is shown as well. The
V4V5 region of Arcobacter reference sequences contains many
high entropy nucleotide positions, although fewer than in the

V2 region. Amplicons have similar high entropy nucleotide
positions, but very low entropy also occurs uniformly across the
length of the amplicon sequences as well. Resolution of high
entropy positions produced 26 relatively abundant oligotypes
(Figure 1B), while the low entropy nucleotide positions represent
the high number of unique sequences that derive from micro-
diversity within the genus but also from sequencing noise. All
26 oligotypes in the noise-filtered analysis had a significant rel-
ative proportion (>0.9%) in at least one sample and appeared
across different treatment plants and from different collection
dates (Figure 1B). Oligotypes are numbered based on their total
abundance rank within the dataset (i.e., Oligotype 1 had the high-
est overall abundance). The sewage Arcobacter communities from
different sites were dominated by 1–3 oligotypes, with extremely
high microdiversity in the minor members (represented by the
noise-filtered sequences). Overall, the nine most abundant olig-
otypes within the Arcobacter genus accounted for >80% of the
total Arcobacter sequences in all samples analyzed. The US sam-
ples, which were all untreated sewage, contained ∼20 oligotypes
(19.8 average, 19.5 median), but the Spain sample had only
11 oligotypes, all of which were also found in US samples. In
Figure 1B, the oligotype distribution within samples is shown
with samples grouped by average site temperature and by sample
date within each site. Overall, oligotype distribution showed more
similar patterns within sites (ADONIS r2 = 0.712, p < 0.001),

FIGURE 1 | (A) Proportion of sequence reads in each sewage sample that
mapped to the genus Arcobacter. Samples are color coded by the dates they
were sampled: red = August 2012 (September 2012 for the Reus sample),
blue = January 2013, green = April 2013. Two samples were outliers with
significantly higher Arcobacter percentages than the rest of the samples;
their values are shown as text next to the bars. (B) Proportions of 26

abundant oligotypes generated from sequence reads that mapped to the
genus Arcobacter using the oligotyping pipeline. Samples are grouped by
site, ordered from coldest to warmest average site temperature, then by
sample collection date within sites. The legend shows the colors that
represent each oligotype in (B); oligotypes are numbered based on the rank
of their abundance summed over the whole dataset.
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but also appeared to have trends that corresponded to sample
temperatures.

TEMPERATURE DYNAMICS OF ARCOBACTER OLIGOTYPES
Figure 2A shows a hierarchical clustering analysis based on Bray
Curtis dissimilarities of Arcobacter population compositions as
described by oligotypes. Arcobacter populations divided on the
basis of the sample temperature, with the division occurring at
temperatures higher or lower than 20◦C. Samples of similar tem-
peratures taken from the same site also tended to group together.
Sample temperatures in the “warm” cluster ranged from 20 to
29.5◦C, with two outliers that were 17◦C (Figure 2B). The “cool”
cluster sample temperatures ranged from 9.8 to 19.8◦C, with one
outlier at 21.2◦C.

Oligotype proportion in samples was significantly correlated
to temperature for 12 of the 26 oligotypes. Eight of these tended to
have a higher proportion with higher temperature (positively cor-
related), and 4 negatively correlated with higher temperature. The
Spearman correlation coefficients and p values for all oligotypes
are shown in Table S3. No other metadata (total suspended solids,
biochemical oxygen demand, total nitrogen, total phosphorus,
population size, or average daily flow) had a significant correla-
tion to the proportion of a given oligotype present in a sample
(data not shown). The two most abundant oligotypes, which are
denoted as “Oligotype 1” and “Oligotype 2” displayed oppos-
ing dynamics that coincided with the temperature of a sample;
i.e., they correlated positively and negatively with temperature,
respectively (Figure 3). While Oligotype 1 had by far the high-
est proportion overall and made up over 50% of almost all the
high temperature samples, its relative abundance was notably
lower in most lower temperature samples. Oligotype 1 accounted
for >80% of the Arcobacter sequences represented by oligotypes
in the two 17◦C samples (Discovery Bay-119 and Yukon-106) that

grouped with the “warm” cluster, while the 21.2◦C sample from
the “cool” cluster (Gloucester-015) had <50% Oligotype 1.

ARCOBACTER SPECIES REPRESENTED BY OLIGOTYPES
Seven of the sequences representing Arcobacter oligotypes shared
100% identity with previously characterized Arcobacter species
based on BLAST comparison of sequences against the NCBI
nucleotide database (Table S4). Oligotype 1 and Oligotype 2

FIGURE 3 | Changes in oligotype proportions with temperature. The
two dominant oligotypes based on their relative abundance across all
samples showed opposing dynamics with changes in temperature. The
proportion of Oligotype (•) increased at temperatures >20◦C, while
Oligotype (◦) proportions decreased above 20◦C. The non-parametric
correlation coefficient (Spearman’s rho) and significance values for the
relationships between oligotype proportion and temperature are shown by
their respective oligotype. Temperature-proportion correlation coefficients
and p values for all 26 oligotypes are given in Table S3.

FIGURE 2 | (A) Hierarchical clustering of sewage samples based on Bray
Curtis dissimilarities of Arcobacter populations. Samples clustered into two
distinct groups that were related to the temperature of the sample. The
clade of samples on the left was composed of lower temperature samples

than the clade on the right. (B) Temperatures of the sewage samples in
(A) are shown below the sample name. Blue dots signify samples with
temperatures below 20◦C (indicated by the dashed line); red dots
represent sample temperatures ≥20◦C.
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matched exactly to A. cryaerophilus subgroups 1B and 1A, whose
16S rRNA genes differ in the V4V5 region by only a single
nucleotide. Other oligotypes with 100% identity to the type
strains of Arcobacter species included Oligotype 4 (A. suis),
Oligotype 11 (A. butzleri), and Oligotype 14 (A. ellisii), and
Oligotype 17 (A. cibarius). Oligotype 23 shared 100% identity
with strains of two different species (A. cloacae and A. defluvii)
that were identical in V4V5 region. The majority of oligotypes
had no exact matches to the type strains or other strains within
cultivated species, although all were at least 98% similar to a
characterized Arcobacter species. Figure 4 shows the phylogenetic
groupings of the sequences representing the 26 oligotypes in rela-
tion to known Arcobacter species. Oligotype 3 formed a distinct
new clade along with Oligotypes 12 and 13, and Oligotypes 5, 10,
16, and 25 also formed a clade that might represent new species.
However, as the phylogenetic analysis was limited to only 375
nucleotides, the groupings of the oligotypes are more illustrative
than definitive; full-length sequences would be needed to confirm
the true phylogenetic relationships.

DISCUSSION
OLIGOTYPING DISCERNS ECOLOGICALLY RELEVANT PATTERNS
WITHIN THE GENUS ARCOBACTER
In our study, different Arcobacter species were present in higher
numbers depending on the sample temperature, similar to a pre-
vious study from estuarine water using conventional culturing
methods and genetic identification of the isolates (Levican et al.,
2014). For instance, Oligotype 11 (A. butzleri) was present in
almost all samples collected during August but only in a few
samples collected during January or April (Figure 1B) and cor-
related positively with higher environmental temperatures (Table
S3). Along the same lines, Levican et al. (2014) observed a sea-
sonal distribution of the species A. butzleri with a significantly
higher recovery during summer. Moreover, in the later study the
species A. cryaerophilus, A. skirrowii, and A. nitrofigilis were only
isolated from environmental samples when water temperatures
were lower (from 7.9◦C to 18.2◦C); however, the low number of
strains recovered did not allow significant correlations to be made
between species and either the water temperature or with the
culturing approach (Levican et al., 2014). Conversely, the larger
dataset used for oligotyping in the present study allowed us to
infer a significant correlation between 12 and 26 oligotypes and
the environmental temperature.

The fact that the proportions of the most abundant oligotypes
varied by site and by temperature suggests that while a set group
of organisms may be adapted to the ecological niche represented
by a locale, changes in the environment within that system may
favor different species at different times. Sewer systems appear to
supply a unique niche where Arcobacter species thrive. Multiple
samples taken from the different WWTPs demonstrate the con-
sistency of community members at each site, but also the seasonal
dynamics within populations that occur (Vandewalle et al., 2012).
Dominant oligotypes were consistently present in samples col-
lected from the same site, which may indicate a kind of ecological
adaptation to general regional conditions such as climate, or
more specifically, to the conditions found in particular sewerage
systems.

ABUNDANT OLIGOTYPES REPRESENT BOTH CHARACTERIZED AND
UNCULTIVATED SPECIES
Oligotyping is often used to compare samples from sites that have
obvious ecological differences and where one might expect differ-
entiation of populations based on environmental influences (Eren
et al., 2013; Reveillaud et al., 2014). We also used oligotyping to
assess the relevant nucleotide signature positions that determine
speciation (Eren et al., 2013). Operational Taxonomic Unit anal-
ysis can group sequences at a fine level (>97–99% similarity), but
the 16S rRNA sequences of known Arcobacter species do not vary
by a fixed percent. By using changes in the evolutionarily relevant
nucleotide positions, we were able to identify significant group-
ings within the Arcobacter genus regardless of the overall degree of
sequence similarity. This analysis showed that there are a limited
number of dominant ecotypes, despite the high microdiversity
within Arcobacter sequences.

In a previous study of sewage samples using 454 pyrose-
quencing of the 60 bp V6 region, a single dominant sequence
comprised >80% of the sewage reads that mapped to Arcobacter
(Vandewalle et al., 2012). The reduced diversity observed in these
samples could either be due to a single dominant strain (as was
observed for Discovery Bay samples), or because the V6 region is
highly conserved among several Arcobacter species. The sequence
of the dominant V6 pyrotag had a 100% match to A. cibarius,
A. cloacae, A. cryaerophilus, A. defluvii, A. skirrowii, A. suis, and
A. venerupis (data not shown). The genetic information contained
within the V4V5 amplicons in this study vs. the V6 region in the
previous study allowed better resolution of these reference strains
from each other, but still failed to resolve some species (e.g.,
A. trophiarum and A. thereius). Amplicon sequencing of the V2
region (which has the highest diversity among named Arcobacter
species) might therefore reveal even greater Arcobacter diversity
in sewage, but more importantly, might better resolve the most
abundant ecotypes and clarify their relation to known species.

Dominant oligotypes in the sewage samples examined here
share 16S rRNA gene sequence identity with named species or
ecotypes as well as yet to be characterized, possible new species.
Several sewage oligotypes map to arcobacters cultivated from
diverse sources: e.g., A. defluvii and A. cloacae were originally iso-
lated from sewage (Collado et al., 2011; Levican et al., 2013b);
A. venerupis, A. suis, and A. ellisii are associated with food prod-
ucts (Figueras et al., 2011; Levican et al., 2012; Hausdorf et al.,
2013); and A. cryaerophilus and A. butzleri are found in diseased
animals including humans (Collado and Figueras, 2011).

At least five different groups, each containing multiple olig-
otypes, appear to represent new uncultivated clades. Eight of
the fifteen most abundant oligotype representative sequences had
no exact match, and two had closest matches to uncharacter-
ized environmental isolates. The third most abundant had only
a 98% match to the closest named species and 100% shared
identity with an environmental (non-sewage) isolate. Public
sequence databases such as NCBI also contain many 16S rRNA
gene sequences of uncultivated and not-yet-described Arcobacter
species, some of which come from activated sludge and sewage
(Collado and Figueras, 2011). Our results demonstrate that olig-
otyping can be used as a highly reproducible alternative to other
sequence grouping methods to elucidate the population diversity
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FIGURE 4 | Neighbor-joining tree of Arcobacter reference strains and

sewage oligotypes. Evolutionary distances were estimated using the
Jukes-Cantor algorithm. This tree represents a composite of one thousand

replicate trees; branches that occurred >50% of the time are noted at the
nodes. The scale bar represents 1% nucleotide substitution. Campylobacter
jejuni served as the outgroup.
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of species within a given genus and may even enable recognition
of new species.

The two most abundant oligotypes in this study, Oligotype
1 and Oligotype 2, corresponded with 100% match to two dif-
ferent subgroups of the species A. cryaerophilus (subgroups 1B
and 1A, respectively). Isolates from subgroup 1B are the sec-
ond most commonly isolated Arcobacter species after A. butzleri
using traditional culturing and molecular identification meth-
ods, but subgroup 1A is rarely recovered in this manner (Collado
and Figueras, 2011). Conversely, A. butzleri, the predominant
species typically recovered from sewage by culturing in other
studies (González et al., 2007; Collado et al., 2008, 2010) was only
represented by the eleventh most abundant oligotype. The pre-
dominance of A. butzleri by culturing could be due to the fact
that most of studies include an enrichment step that favors the
growth of this species; however, this assertion still needs to be
experimentally verified (Levican et al., 2014).

IMPLICATIONS FOR CULTURING AND IDENTIFICATION OF NEW
ARCOBACTER SPECIES
Conventional media and isolation conditions (i.e., incubation
temperature, atmosphere, etc.) for the recovery of Arcobacter are
good for isolating certain species, particularly A. butzleri (Collado
et al., 2010). However, many uncultured strains appear to be
present in sewage as well that are missed by currently used meth-
ods (Collado and Figueras, 2011). Regarding the prevalence of
A. cryaerophilus in different studies, subgroup 1B is much more
prevalent than 1A, while both groups have so far been isolated
simultaneously only from food products and from animal and
human clinical samples (Collado and Figueras, 2011 and refer-
ences therein). The A. cryaerophilus strains isolated from sewage
thus far have all belonged to subgroup 1B. It is not clear whether
this higher prevalence of subgroup 1B is a consequence of the
isolation methods used, or due to specific adaptations of these
species to different ecologic niches as observed in the present
study.

Different culturing methods and incubation conditions can
impact the prevalence and diversity of Arcobacter spp. recovered
from different sources (food, water, sewage, blood) (Houf et al.,
2002; Levican et al., 2014). In fact, the use of direct culturing
in parallel to post enrichment cultivation allowed the discovery
of the species A. defluvii and A. cloacae from sewage samples
(Collado et al., 2011; Levican et al., 2013b). As previously noted,
the large numbers of unclassified sequences indicate that many
more potential new species reside in sewage that have yet to be
isolated (Collado and Figueras, 2011). Knowing which species
or ecotypes grow best at different temperatures may assist in
cultivating underrepresented members of the sewage community.
Future studies examining both the genetic potential (through
genome sequencing) and phenotypic behavior of isolates will help
to better determine how these organisms grow and thrive in the
sewer systems and how they may impact human health. We lack a
full understanding of how the Arcobacter spp. in sewage relate to
the arcobacters known to be pathogenic to humans and animals.
Comparison of sewage oligotypes to the 16S rRNA sequences of
clinical isolates may be a first step in this direction, as identifi-
cation of clinical isolates by sequencing becomes more routine

practice (Prouzet-Mauléon et al., 2006; Collado and Figueras,
2011).

OLIGOTYPING TRACKS ARCOBACTER POPULATION DYNAMICS
Almost all sewage samples grouped by hierarchical cluster-
ing based on Arcobacter community similarity separated at
a breakpoint of 20◦C, which (perhaps not coincidentally) is
the temperature that delineates mesophilic bacteria from psy-
chrophilic bacteria (Willey et al., 2008). Only three samples
(Gloucester-August 2012, Yukon-January 2013, and Discovery
Bay-January 2013) deviated from the group prescribed by their
sample temperatures. In many of the sewage samples, the top
two most abundant oligotypes had opposite temperature dynam-
ics. Additionally, Oligotype 3, which may represent a new
Arcobacter species and Oligotype 4 (corresponding to A. suis)
were nearly absent from the warmest sites. Similar trends in
seasonal/temperature-based variation for Acinetobacter popula-
tions were observed in sewage samples from Milwaukee, WI.
The two most abundant Acinetobacter V6 pyrotags oscillated in
abundance over the course of the year (Vandewalle et al., 2012),
and relative proportions of other genera associated with sewage
infrastructure (as opposed to the fecal component of sewage) also
varied seasonally (Vandewalle et al., 2012).

It is difficult to ascertain how much variation in oligotype
distribution is based strictly on sample temperature, as many
other factors can contribute to population dynamics. However,
observed trends based on both the temperature of the sam-
ple at the time of collection and the average site temperature
(approximated as the mean of collected sample temperatures)
suggest that temperature may contribute significantly to deter-
mining, at the very least, the relative proportions of Arcobacter
species present (D’Sa and Harrison, 2005; Levican et al., 2014).
Knowledge of Arcobacter population dynamics may lead to a bet-
ter understanding of risks associated with environmental releases
of these organisms in the case of combined/sanitary sewerage
overflows (Ashbolt et al., 2010) and provide guidance for bet-
ter management in food preparations (Van Driessche and Houf,
2008; Kjeldgaard et al., 2009).

SELECTIVE GROWTH OF ARCOBACTER SPECIES IN SEWAGE
Arcobacters make up <0.001% of the human gut microbial com-
munity (Gevers et al., 2012; Koskey et al., 2014) but they make
up a significant portion of sewage samples collected from geo-
graphically diverse locations (Shanks et al., 2013; Cai et al., 2014;
Koskey et al., 2014). Since Arcobacter is found in the human
gut, albeit in low proportions, humans may be the source of
Arcobacter to sewerage systems; however, the sewer pipe environ-
ment appears to select for their survival and growth over more
dominant gut bacteria, such as the Lachnospiraceae (McLellan
et al., 2013). Three genera previously recognized to comprise
a significant portion of sewage (Trichococcus, Acinetobacter, and
Aeromonas) (Vandewalle et al., 2012) are also present, but in low
relative abundance, in human feces (Gevers et al., 2012; Koskey
et al., 2014). Thus, the specific ecological conditions present in
sewage infrastructure, generally speaking, provide an ideal niche
for certain organisms, not only to thrive, but also to maintain
diversity within their own populations.
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The factors contributing to the survival and growth of dif-
ferent arcobacters are of interest because some species have
been identified as emerging human pathogens (Prouzet-Mauléon
et al., 2006; Collado and Figueras, 2011; Figueras et al., 2014).
Species sharing genetic similarity to pathogenic strains have also
been isolated from environmental waters impacted by sewage
inputs (Fong et al., 2007; Collado et al., 2010) or detected in
impacted waters by molecular analyses (Collado et al., 2008;
Lee et al., 2012), suggesting that at least some sewage-based
Arcobacter species are viable after sewage releases. These organ-
isms can survive or grow at temperatures found in sewerage
systems, a range of environmental water temperatures (Levican
et al., 2014), and laboratory isolation conditions, which may be
≥30◦C (Stampi et al., 1993; Prouzet-Mauléon et al., 2006; Levican
et al., 2014). Thus, although different Arcobacter species may
have relatively high or low optimum growth temperatures, many
seem to have a wide range of survival temperatures (D’Sa and
Harrison, 2005; Van Driessche and Houf, 2008). If pathogenic
Arcobacter strains also possess this trait, they may pose a threat
even at very low abundance. These findings further stress the
need to better understand the genetic crossovers between human
and animal pathogenic strains, sewage ecotypes, and cultured
isolates in order to ascertain risks associated with Arcobacter
species.

The results of our study can be used as a general strategy
for interpreting sequence data from populations of environ-
mental bacteria, as oligotyping provides high resolution among
species, even without full-length sequences. Here we show an
approach that allows differentiation of known and unknown
species, and also provides information on how environmen-
tal factors can modulate the presence and relative abundance
of different ecotypes. Oligotyping may provide the means to
establish the links between Arcobacter communities from food
production, water sources, sewage, and diseased humans and ani-
mals, in order to better discern patterns of survival, growth, and
infection.
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The genus Vibrio is a metabolically diverse group of facultative anaerobic bacteria,
common in aquatic environments and marine hosts. The genus contains several species
of importance to human health and aquaculture, including the causative agents of human
cholera and fish vibriosis. Vibrios display a wide variety of known life histories, from
opportunistic pathogens to long-standing symbionts with individual host species. Studying
Vibrio ecology has been challenging as individual species often display a wide range of
habitat preferences, and groups of vibrios can act as socially cohesive groups. Although
strong associations with salinity, temperature and other environmental variables have been
established, the degree of habitat or host specificity at both the individual and community
levels is unknown. Here we use oligotyping analyses in combination with a large collection
of existing Vibrio 16S ribosomal RNA (rRNA) gene sequence data to reveal patterns
of Vibrio ecology across a wide range of environmental, host, and abiotic substrate
associated habitats. Our data show that individual taxa often display a wide range of
habitat preferences yet tend to be highly abundant in either substrate-associated or
free-living environments. Our analyses show that Vibrio communities share considerable
overlap between two distinct hosts (i.e., sponge and fish), yet are distinct from the abiotic
plastic substrates. Lastly, evidence for habitat specificity at the community level exists
in some habitats, despite considerable stochasticity in others. In addition to providing
insights into Vibrio ecology across a broad range of habitats, our study shows the utility
of oligotyping as a facile, high-throughput and unbiased method for large-scale analyses
of publically available sequence data repositories and suggests its wide application could
greatly extend the range of possibilities to explore microbial ecology.

Keywords: oligotyping, Vibrio ecology, host-microbe interactions, illumina sequencing, 16S rRNA analysis,

plastisphere, aquaculture pathogens, meta-analysis

INTRODUCTION
Vibrio is a ubiquitous, speciose and commercially important
bacterial genus with both host associated and free-living represen-
tatives. Several species within the genus are pathogenic to humans
and animals. Vibrio cholerae has caused six historic and one ongo-
ing cholera pandemic, and countless epidemics (Mutreja et al.,
2011) including a recent outbreak in Haiti that killed more than
8000 people (Chin et al., 2011). Vibrio pathogens are also impor-
tant to the aquaculture industry, where they inflict costly losses
on farmed fish, mollusks and shrimp (Austin and Austin, 2007),
limiting the development of an industry poised to help bridge
global food gaps and preserve wild fisheries (FAO, 2012). Due to
their importance to human and animal welfare, and the ease with
which they are cultured, vibrios are relatively well studied, with

over 570 publicly available annotated genomes and over 64,000
16S rRNA gene sequences annotated as vibrios in GenBank as
of March 2014. Vibrio therefore represents an ideal candidate
for applying new analytical approaches using pre-existing data to
gain further insights into the ecology of the genus.

Making sense of Vibrio ecology has been a challenge, owing in
part to its complex life history, its capacity to partition resources,
and a strong propensity for lateral gene transfer between closely
related species (Hunt et al., 2008; Cordero et al., 2012). The com-
plexity of the genus is well illustrated by the diversity of its life
histories. On one hand, Vibrio has an average of 11 rRNA gene
copies, allowing for rapid growth rates under good conditions
(Heidelberg et al., 2000), suggestive of r-selected taxa, which can
rapidly multiply given favorable conditions (Andrews and Harris,
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1986). Conversely, bioluminescent vibrios have formed symbiotic
relationships with squid and anglerfish over evolutionary time
scales (Ruby and Nealson, 1976), suggestive of a more stable K-
selected strategy. Some flexibility between r vs. K strategies may
even exist within fine scale taxonomic categories, as environmen-
tal conditions such as pH, concentrations of bile, bicarbonate
and nutrients may trigger rapid growth within a host in a for-
mally dormant environmental bacterium (Skorupski and Taylor,
2013). To further complicate the ecology of individual Vibrio
species, recent experiments indicate that disparate species can
form socially cohesive groups, taking advantage of their propen-
sity for exchanging genetic elements to confer greater antibiotic
resistance among closely related strains, and to likely regulate
virulence (Cordero et al., 2012).

Vibrios also seem to be highly variable in habitat preference.
Traditionally Vibrio life history has been studied in association
with multicellular marine hosts, including fish, mollusks, and a
wide range of zooplankton (Liston, 1956; Aiso et al., 1968), yet
they can also exist in the ambient aquatic environment, associ-
ated with plastic particles (Zettler et al., 2013), or phytoplankton
blooms (Gilbert et al., 2012). Whether individual Vibrio species,
or communities of vibrios, are specific to particular habitats is an
open question, and distinguishing specialized associations from
opportunistic colonization is challenging (Takemura et al., 2014).
Host specificity has been observed in other bacterial genera,
including Blautia (Eren et al., 2014) and Nitrospira (Reveillaud
et al., 2014), but because Vibrio is abundant in both host and envi-
ronmental habitats, distinguishing established host associations
from incidental or ephemeral colonization from surrounding
habitats is difficult.

Because vibrios are diverse in their habitat preferences and
potentially act as socially cohesive units, large-scale analysis of
Vibrio community structure across habitats may provide impor-
tant insights into its ecology. Analyses of this type have historically

involved culturing isolates from target habitats and sequencing
multiple loci in order to gain sufficient taxonomic resolution
within a sample, requiring the use of Vibrio-specific primers
(Preheim et al., 2011a; Szabo et al., 2013), and making-large scale,
non-targeted, multi-habitat analyses challenging and costly. More
recently, oligotyping rRNA gene amplicon sequences affords
extremely high resolution analysis of community structure by
selecting a subset of highly informative nucleotide sites within
single loci of 16S rRNA gene hypervariable regions alone (Eren
et al., 2013a, 2014; Reveillaud et al., 2014). At the same time,
repositories of 16S rRNA gene sequences have grown in size and
scope. The Visualization and Analysis of Microbial Population
Structures (VAMPS) database is one such repository that contains
over 1000 datasets representing hundred of millions of publically
available 16S rRNA gene sequences (Huse et al., 2014).

The aim of the present study was to use oligotyping to explore
the distribution of Vibrio communities in a range of substrate-
associated (both biotic and abiotic) and free-living aquatic envi-
ronments. We used this method to test the hypothesis that distinct
Vibrio communities occur in different habitats, and are char-
acterized by clear distinctions between host habitats and their
surrounding water.

MATERIALS AND METHODS
SEQUENCE COLLECTION
The VAMPS database houses 16S rRNA gene amplicon sequence
data projects from a wide variety of environmental and host-
associated habitats. We identified seven existing projects to tar-
get for analyses of Vibrio diversity, representing free-living and
host (abiotic and biotic) substrate associated habitats (Table 1).
We chose projects with the occurrence of at least three sam-
ples with >300 sequences identified as Vibrio by the Global
Alignment for Sequence Taxonomy (GAST) pipeline (Huse et al.,
2008) in the VAMPS database. In rare cases, a sample was

Table 1 | Overview of projects used from the VAMPS database with their original citation.

VAMPS project Habitat Sample Mean Vibrio Geographic location Salinity Citation or SRA BioProject

number relative abundance accession number

ICM_PML_Bv6 Seawater 3 0.31 (SE 0.13) English Channel Marine Gilbert et al., 2012

LAZ_MHB_Bv6 Seawater 14 0.0017 (SE 0.00021) Northwestern Atlantic Marine SRP049014

LAZ_NMS_Bv6 Saltmarsh 11 0.173 (SE 0.019) New England, USA Mixed SRP059013

SLM_NIH_Bv6 PAH spiked sand 11 0.012 (SE 0.002) Gulf of Mexico Mixed Kappell et al., 2014

LAZ_SEA_Bv6 Seawater - associated
with plastic

32 0.0036 (SE 0.00058) Northwestern Atlantic Marine SRP026054

LAZ_SEA_Bv6 Plastic-associated 27 0.0032 (SE 0.0005) Northwestern Atlantic Marine SRP026054

JCR_SPO_Bv6 Seawater - associated
with sponge

11 0.055 (SE 0.023) Northeastern Atlantic Marine Reveillaud et al., 2014

JCR_SPO_Bv6 Sponge-associated 49 0.09 (SE 0.014) Northeastern Atlantic Marine Reveillaud et al., 2014

VTS_MIC_Bv6 Aquarium water -
associated with fish

31 0.016 (SE 0.0037) MBL, Woods Hole, USA Mixed SRP047374 (but see
Supplementary Data Sheet 1)

VTS_MIC_Bv6 Fish-associated 20 0.3 (SE 0.039) MBL, Woods Hole, USA Mixed SRP047374 (but see
Supplementary Data Sheet 1)

The mean Vibrio relative abundance across all samples in a given project is shown with standard error. For sequences first published by this study the accession

numbers for that project’s NCBI Sequence Read Archive (SRA) BioProject is given.
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included that had less than 300 sequences in order to increase
the number of samples for habitats with low sample num-
bers, or when water associated with a specific substrate was of
interest but possessed low Vibrio sequence representation. All
projects were sequenced at the Marine Biological Laboratory
(MBL) Keck sequencing facility on an Illumina HiSeq 1000, and
employed identical protocols in the generation and sequenc-
ing of 16S rRNA gene sequences, including the same primer
cocktails to target the V6 hypervariable region, as described else-
where (Eren et al., 2013b). Each project also followed the same
standard MBL sequence analysis pipeline, where only perfectly
overlapping paired-ends reads with zero mismatches passed qual-
ity filters (Eren et al., 2013b), and taxonomic assignment was
done using the GAST pipeline (Huse et al., 2008). Both qual-
ity filtering and taxonomic assignments had already been made
for all sequences across all projects as part of standard VAMPS
protocols, and we were therefore able to directly download
sequences using VAMPS’s “data export -> TaxBySeq” feature,
using the query “Bacteria; Proteobacteria; Gammaproteobacteria;
Vibrionales; Vibrionaceae; Vibrio.”

Although sequence generation was identical for all projects,
sample collection varied. Saltmarsh water sample collec-
tion (LAZ_NMS_Bv6, this study) employed automated collec-
tion via the Phytoplankton Sampler (PPS) (McLane Research
Laboratories, Inc., East Falmouth, MA) that filters 500 mL of
water through a 0.65 µm flat filter (EMD Millipore Durapore
PVDP hydrophilic membrane filters) (Billerica, MA) twice a day,
and stores the filter in RNAlater (Qiagen, Valencia, CA) buffer.
As part of a broader project to understand microbial popu-
lations in coastal environments, we deployed PPS samplers in
tidal creeks (Mill and Salt Ponds, Nauset Marsh System, MA)
that receive daily tidal fluxes from the Atlantic Ocean off Cape
Cod, MA. DNA extraction and purification of filters used a
modified salt precipitation method with bead-beating (Gentra
Puregene, Qiagen, Valencia, CA). The Rhode Island Department
of Environmental Management (RIDEM) collected seawater sam-
ples from the northeastern reach of Narragansett Bay called
Mount Hope Bay, MA (LAZ_MHB_Bv6) as part of their monthly
water quality survey for shellfish safety. Samples collected manu-
ally from surface waters in sterile 1 L polyethylene terephthalate
(PET) bottles at 17 stations throughout the 36 km2 bay were sub-
sequently filtered through 0.22 µm polyethersulphone membrane
Sterivex filters (Millipore, Billerica, MA) followed by DNA extrac-
tion as above. Collection details for other samples and metadata
are found in respective publications (Table 1).

Samples from fish and fish tanks (VTS_MIC_Bv6) were col-
lected as part of an experiment to understand the role of salinity
and external microbiota on fish microbiomes (Schmidt et al.,
Submitted) (Supplementary Data Sheet 1). We acclimated ∼1
inch Black Molly fish (Poecilia sphenops) to four salinity levels
(salinities 0, 5, 18, and 30) over 30 days using nanopure water
and Instant Ocean® (Blacksburg, VA) salt mix, then maintained
each fish at target salinity for 12 days. Each salinity treatment
contained four independent tanks, each with two fish. For our
analyses here, we grouped salinities 0 and 5 (FreshwaterFish)
and salinities 18 and 30 (MarineFish). After 12 days we eutha-
nized fish in 1 mg/mL MS-222 and homogenized the entire fish.

We then extracted microbial gDNA from the homogenate using
a modified Gentra Puregene Yeast/Bac (Qiagen, Valencia, CA)
extraction protocol (Supplementary Data Sheet 1). We collected
microbial communities from tank water using sterile 1 L PET bot-
tles, and extracted gDNA according to protocols outlined above
for LAZ_MHB_Bv6 samples.

OLIGOTYPE GENERATION AND ANALYSIS
Oligotyping is a supervised method that allows the identification
of closely related but distinct bacterial taxa in high-throughput
sequencing datasets of marker genes. This novel bioinformatics
approach is capable of uncovering ecological patterns of micro-
bial communities at finer scales than previously possible with
de novo approaches (Eren et al., 2013a). Oligotying exploits the
fact that some positions within a DNA marker sequence are
more ecologically informative than others. The method identifies
highly variable locations using Shannon entropy (that is, “entropy
components”), and uses only these positions to discriminate eco-
logical units, so called oligotypes. This process reduces the impact
of noise caused by sequencing error by relying on only a small
number of nucleotide positions, discarding the redundant parts
of reads for the identification of oligotypes. The open-source
pipeline for oligotyping is available from http://oligotyping.org.
This method has been used previously to identify Gardnerella dis-
tributions in vaginal samples (Eren et al., 2011), Nitrospira speci-
ficity in sponges (Reveillaud et al., 2014), and Blautia specificity
in animal hosts (Eren et al., 2014).

In order to get the best possible insights into Vibrio oligo-
type distributions across habitat types, we grouped samples into
three broad analysis groupings; substrate (host) associated habi-
tats only, substrate habitats along with their surrounding water
samples, and environmental and substrate associated habitats
(Table 2). First, we analyzed only substrate-associated samples
(fish, sponge and our abiotic substrate—plastic marine debris).
We subsampled these datasets to the median Vibrio sequence
count of 30,000 prior to analysis in order to minimize the range
in initial sequencing depth between samples, which can otherwise
reduce the entropy value of discriminating points in datasets with
much lower sequence counts. We then processed them through
the oligotyping pipeline, as described in Eren et al. (2013a).
To establish entropy components that fully decomposed our
sequence data, we started with the strongest two components,
then manually chose the next component that best removed
remaining entropy in the resulting oligotypes, and re-ran the
analysis. This iterative process yielded a final 12 entropy points
that fully decomposed our sequences. We allowed for oligotypes
to occur in only a single sample (-s 1) but discarded them if
they did not represent at least 0.5% of the relative abundance of
that sample (–a 0.5). Not all samples contained 30,000 sequences,
and sequencing depth ranged from 83 to 30,000 after rarefaction
(Table 2).

Global alignment prior to oligotyping for short Illumina reads
is unnecessary, as positional shifts in sequencing reads due to nat-
ural indels will produce entropy peaks at the position of insertion
or deletion (and subsequent positions), and the decomposition
of the dataset based on any of these peaks will eventually result in
the same oligotypes as if they would have been previously aligned.
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Table 2 | Description of samples for each analysis grouping.

Analysis grouping Analysis Number of Subsampled Oligotypes Percentage of reads Components (position

grouping/ samples sequence before (after) represented by top 5% in alignment)

Figure depth range quality filtering (10%) oligotypes

All substrates 1 104 83–30,000 882 (74) 76 (94) 13, 15, 20, 21, 22, 23, 25,
31, 32, 45, 50, 55

Plastics and surrounding
seawater

2C 71 83–13,359 415 (71) 90 (96) 13, 15, 20, 21, 22, 23, 25,
31, 32, 45, 50, 55

Sponges and surrounding
seawater

2B 58 1822–10,000 681 (45) 71 (90) 13, 15, 20, 21, 22, 23, 25,
31, 32, 45, 50, 55

Fish and surrounding
water

2A 51 636–85,000 604 (21) 80 (97) 13, 15, 20, 21, 22, 23, 25,
31, 32, 45, 50, 55

Mixed habitat 4 179 83–20,000 1452 (99) 65 (90) 13, 15, 20, 21, 22, 23, 25,
31, 32, 37, 45, 50, 55

Some samples were included in more than a single grouping.

Furthermore, V6 primers target a hypervariable region with few
insertions or deletions, and Illumina technology does not have
indel error issues. We therefore did not create an alignment prior
to entropy analyses. Instead, we aligned sequences at their 3′ end
and padded any length discrepancies with gaps at the 5′ end prior
to entropy analysis, as detailed in Eren et al. (2013a). We do note
that a single Oligotype, Oligotype 10, was not fully decomposed
(Supplementary Data Sheet 1). We note that this oligotype varies
widely from all other Vibrio sequences in this study, and would
require an additional 4 entropy components to fully decompose.
Furthermore, it occurred in high abundance only in the Sand-
PAH habitat. We make no conclusions about this oligotype across
any habitat.

Next, we examined each substrate or host sample alongside
its respective water sample. For fish and plastics, water sam-
ples were directly associated with the host, and collected at the
same time and place as host material. Sponge and corresponding
seawater were collected simultaneously, although not all sponge
samples have a corresponding water samples (see Reveillaud et al.,
2014). For each analysis, we subsampled Vibrio sequences to the
median sequencing depth. The same 12 entropy components and
oligotyping parameters as above fully decomposed all but one
oligotype, and were therefore used again in this analysis.

We then analyzed oligotype distributions across the broadest
range of samples and projects included in this study in a single
analysis using the same methods and 12 entropy components,
with one additional component added to fully resolve novel oligo-
types from additional samples (13 components total). The added
samples included water samples from saltmarshes (Saltmarsh),
seawater from a large coastal bay (Seawater), open ocean seawa-
ter (Seawater), and sand samples from oiled beaches in the Gulf
of Mexico inoculated with Polycyclic Aromatic Hydrocarbons
(PAHs) (Sand-PAH) (Tables 1, 2). As above, samples were sub-
sampled down to the median value of 20,000. An interactive
html file of the results from this oligotyping analysis grouping
(Mixed Habitat) is included in the Supplementary Material under
“html_files/html.index” (Supplementary Data Sheet 2).

Finally, we grouped the representative sequences from the
10 most abundant oligotypes (30 total) from each analysis

grouping. Since most oligotypes were abundant across multiple
projects, this list collapsed into 17 unique oligotypes across all
three analysis runs. These 17 oligotypes were assigned identifiers
(“Oligotype1” through “Oligotype17”) that remained consistent
across all three runs (Table 3 and Table S1).

VISUALIZATIONS AND STATISTICAL ANALYSES OF OLIGOTYPE
DISTRIBUTIONS
To visualize Vibrio community similarity between samples and
habitats we constructed Nonmetric Multidimensional Scaling
(NMDS) plots as part of our oligotyping pipelines. We included
the covariance ellipsoids calculated as part of the oligotyping
pipeline on these plots to visualize the spread of a given habitat’s
community variance. Importantly, covariance ellipsoids delineate
the total high-dimensional space, not only the two axes shown
in the NMDS plot. Statistical analyses of Vibrio oligotype dis-
tributions between and within habitat types followed a 4-step
analysis using the ecological statistics packages PrimerE v.6 and
the R package Vegan (Oksanen et al., 2012). First, we normal-
ized an oligotype matrix, which consisted of samples across rows
and oligotypes down columns (Supplementary Data Sheet 2),
by percent per sample (i.e., to 100% total for each sample) and
calculated pairwise Bray-Curtis similarities. Second, we assigned
each sample to a habitat “factor” based on where it was col-
lected (e.g., on plastics, sponges or seawater) and tested the null
hypothesis that there were no community differences between
habitat types using Analysis of Similarity (ANOSIM) permuta-
tion tests. This test builds a random distribution of oligotype
abundances using 9999 permutations then assesses the likelihood
that observed oligotype distributions across a priori assigned
habitat factors occurred by chance. We then conducted pair-
wise ANOSIM tests to determine whether significant differences
occurred between individual habitat factors. Third, when statis-
tical groupings did occur (as they did in most cases), we iden-
tified the oligotypes that contributed most to the formation of
these groupings using Similarity Percentages (SIMPER). SIMPER
decomposes average Bray-Curtis similarities between all pair-
wise habitat comparisons into percentage contributions of each
oligotype.
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Table 3 | Summary of the 10 most abundant oligotypes from each of three oligotyping analysis groupings.

MEGABLAST results Percentage of each isolation source

category for MEGABLAST hits

Oligotype ID Number of 100% Top species level hits

(number of hits to that

species)

1 2 3 4 5 No data Habitats with Similarity

Percentage (SIMPER)

results > 10%

hits to nr database

Oligotype 1 22 V. alfacsensis (6)
V. sinaloensis (2)

45.5 9.1 40.9 0.0 0.0 4.5 Sponge/MarineFish/
MarineWater

Oligotype 2 171 V. metschnikovii (3)
V. neptunius (11)

42.9 15.3 12.4 11.2 0.0 18.2 FreshwaterFish/
FreshWater

Oligotype 3 780 V. scophthalmi (4)
V. ichthyoenteri (31)
V. anguillarum (37)

55.7 11.4 6.9 0.1 0.0 25.9 MarineFish/MarineWater/
Seawater/Saltmarsh/
Plastic

Oligotype 4 39 V. cholerae (9)
V. vulnificus (17)
V. mimicus (5)

2.6 0.0 0.0 0.0 30.8 66.7 FreshwaterFish/Fresh
Water/Sponge/MarineFish

Oligotype 5 1000* V. splendidus (52)
V. mediterranei (35)
V. gigantis (39)

45.3 21.4 8.1 0.1 0.0 25.1 Sand-PAH/Seawater/
Saltmarsh/Plastic

Oligotype 6 23 V. ichthyoenteri (1)
V. ordalii (1)

70.8 8.3 0.0 0.0 0.0 20.8 Sponge/MarineFish/
MarineWater

Oligotype 7 46 V. ponticus (12)
V. nigripulchritudo (9)

30.4 8.7 4.3 0.0 0.0 56.5 Seawater

Oligotype 8 221 V. cholerae (184) 1.4 1.4 0.5 3.6 11.8 81.4 FreshwaterFish/
FreshWater

Oligotype 9 1 V. vulnificus (1) 0.0 0.0 0.0 0.0 100 0.0

Oligotype 10 18 V. alginolyticus (1) 11.1 0.0 0.0 89.0 0.0 0.0 Sand-PAH

Oligotype 11 1 None 0.0 0.0 0.0 0.0 0.0 100

Oligotype 12 113 V. coralliilyticus (2) 27.4 39.8 0.0 0.0 0.0 32.7 Seawater/Plastic

Oligotype 13 66 V. azureus (13)
V. harveyi (2)

54.5 6.1 0.0 11.6 5.5 22.7 Plastic

Oligotype 14 0 V. azureus (5)
V. owensii (2)

0.0 0.0 0.0 0.0 0.0 100.0

Oligotype 15 245 V. vulnificus (4)
V. shilonii (3)

94.5 2.4 0.4 0.0 0.0 3.4

Oligotype 16 140 V. kanaloae (3)
V. splendidus (2)

42.1 14.3 11.4 2.1 0.0 30.0

Oligotype 17 6 V. splendidus (3) 84.0 0.0 0.0 0.0 0.0 16.0

Overlap in the most abundant sequences between groupings reduced the total number to 17. Oligotype names were assigned arbitrarily, but are consistent across

all groupings. The species assignments given by reports from 100% MEGABLAST hits, and the number of hits to each species, is shown. The proportion of

MEGABLAST hits isolated from each of the five habitat categories are also shown. Categories are; 1. Marine Host, 2. Seawater, 3. Other Marine, 4. Terrestrial or

Human, and 5. Freshwater (see Materials and Methods). (*) Indicates maximum requested hits.

To gain insight into the taxonomy and ecology of our olig-
otype sequences, we isolated the representative sequence from
the 17 most abundant oligotypes outlined above. We then used
MEGABLAST to query these sequences against National Center
for Biotechnology Information’s (NCBI) nr database in June 2014
(nr = non-redundant amalgamation of GenBank, RefSeq, EMBL,
DDBJ and PDB databases). We kept only 100% matches across
the entire 60 bp query, and extracted the “isolation source” and
“host” feature using Geneious (v. 6.1) annotation tables. We
also extracted the most abundant 2 or 3 taxonomies from per-
fect hits, not including “uncultured bacterium” (Table 3). We

created a PhyML tree of existing full-length Vibrio 16S rRNA
gene sequences downloaded from type strains in the SILVA ARB
v5.1 database and then added our oligotype sequences to this
tree using the Maximum Parsimony feature in ARB across the V6
region only (using a V6 “filter” in ARB).

Our rationale for building this tree was not to reconstruct phy-
logenetic relationships between Vibrio species but rather to make
some inference about the habitats from which closely related
Vibrio 16S rRNA gene sequences have been isolated. To this end,
we binned the isolation source and host annotations of both
our oligotype MEGABLAST hits, and our ARB isolates, into five
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habitat categories. These were “Marine Host,” “Seawater,” “Other
Marine,” “Terrestrial,” and “Freshwater.” Marine host included all
sequences isolated from the skin or innards of a host in seawa-
ter (e.g., tunicates, fish, crustaceans, sponges and sea cucumbers).
“Other Marine” included sediment, biofilms and algae, or other
marine plant associated sources. “Terrestrial” included any sam-
ple taken from the terrestrial environment, or from a terrestrial
host (e.g., humans, birds, and plants), and freshwater included
hits isolated from a freshwater environment, or freshwater host
(e.g., freshwater shrimp). We color-coded the proportion of each
category and displayed them at the terminal nodes of each oligo-
type sequence in our PhyML reference tree. Lastly, to visualize the
isolation source of the ARB isolate reference sequences, we color-
coded the nodes of the tree according to the isolation source of
each reference sequence at the terminal node of that branch. We
used the online software Interactive Tree of Life (iTOL) (Letunic
and Bork, 2011) to visualize the phylogenetic tree. The propor-
tion of NCBI hits for each oligotype that fit into each category
also appear in Table 3.

“WITHIN-HABITAT VARIANCE” OF VIBRIO COMMUNITIES
To determine differences in habitat specificity, we calculated the
median Vibrio community variance across all datasets within the
same habitat (its “within-habitat variance”), and compared that
across habitats. This allowed us to determine if some habitats
contained a specific Vibrio community, or if Vibrio communi-
ties varied widely even within the same habitat. To calculate
the median variance of all datasets in a habitat, we normalized
our oligotype abundance matrixes by the maximum value of
each oligotype, then calculated Bray-Curtis community similarity
between all pairwise comparisons using vegdist{vegan} function
in R (Oksanen et al., 2012). We then calculated each habitat’s mul-
tidimensional “centroid” using the median value of each sample
within a habitat across all principal components. The distance
of each sample to its habitat centroid was calculated across all
principal components. The variance around the median value
of sample-centroid distances was then compared across habitats
in a standard ANOVA, followed by pairwise Tukey’s Honestly
Significant Difference (HSD) tests. This entire process, from
centroid calculation to HSD tests was implemented using the
betadisper{vegan} function in R. To visualize our results, we plot-
ted each sample along their first two principal components, and
plotted the multidimensional centroid. We then drew covariance
ellipsoids around each habitat to illustrate the median distance
for all samples in a habitat around its centroid. Median sample-
centroid distances for each habitat were also plotted to better
visualize the within-habitat variance.

RESULTS
OLIGOTYPE DISTRIBUTION ACROSS BIOTIC AND ABIOTIC
SUBSTRATES
Oligotyping analysis of substrate associated-habitats (fish,
sponges, plastics) yielded 74 unique oligotypes across 104 samples
from 1,543,415 initial sequences. The minimum relative abun-
dance threshold removed 808 rare oligotypes. The most abundant
5 oligotypes represented 76% of the reads, with the top 10 repre-
senting 94% (Table 2). Oligotypes that were abundant in at least

one sample (>1% relative abundance) were always found across
all three substrate types, meaning abundant oligotypes were
ubiquitous across all host-associated habitats. Oligotype rich-
ness varied across host/substrate type. Of the 74 total oligotypes,
24.1 ± SE 2.2 were found in FreshwaterFish, 27.0 ± SE0.71 in
MarineFish, 31 ± SE 0.9 in Sponge and only 18 ± SE1.5 for Plastic
samples.

Pairwise Analysis of Similarity (ANOSIM) tests showed
significant groupings in oligotype communities according
to habitat, except between high salinity fish (MarineFish)
and sponges, whose communities could not be significantly
distinguished. This ANOSIM result is also visible in our
NMDS analyses which shows clear overlap between both
sponges (DeepSponge and ShallowSponge) and high salin-
ity fish (MarineFish), yet separation from plastic and low
salinity fish (FreshwaterFish) habitats (Figure 1). An ANOSIM
test comparing marine biotic substrates (MarineFish and
Sponges pooled together) revealed a significant grouping that
excluded Plastic, an abiotic substrate. Similarity Percentages
(SIMPER) analysis corroborated these results by illustrating
the strong contribution of Oligotypes 1, 4, and 6 to both
MarineFish and Sponge within-habitat similarity, and dis-
tinguished those habitats from FreshwaterFish and Plastics.
Oligotypes 2, 4, and 8 contributed to both within habitat
similarity, and between habitat differences for FreshwaterFish
samples. Plastics were dominated by Oligotype 5, which also dis-
tinguished it from other habitat types, including biotic substrates
(Tables 4A,B).

OLIGOTYPE DISTRIBUTIONS BETWEEN SUBSTRATES AND THEIR
SURROUNDING WATER
Isolating individual biotic (hosts) and abiotic substrates along
with their surrounding water allowed for direct comparisons
of attached vs. free-living Vibrio communities. Fish hosts
(FreshwaterFish and MarineFish) on average showed a nearly
20-fold enrichment of total Vibrio relative abundance compared
to their surrounding water (30% ± SE 2.9 in fish vs. 1.6% ±
SE 0.37 in water, Table 1), but samples from sponges or plas-
tic showed no significant enrichment [although a non-significant
trend of enrichment was evident for Sponge habitats (Table 1)].
Despite this enrichment in fish hosts, we could not differen-
tiate Vibrio community structure in fish microbiome samples
and their surrounding environment with ANOSIM analyses, so
long as comparisons were made within the same salinity category
(Marine and Freshwater).

Interestingly, although Vibrio communities between fish
and their surrounding water at a given salinity were sta-
tistically indistinguishable, communities between fresh and
marine salinity environments showed dramatic differences in
both community structure and relative abundance of total
Vibrio (Figure 2, Middle). Oligotypes 2, 4, and 8 dominated
both FreshwaterFish and FreshWater (cumulative abundance in
FreshwaterFish/FreshWater = 87.2%/71.9%), while Oligotypes 1,
3, and 6 dominated MarineFish and MarineWater (cumulative
abundance in MarineFish/MarineWater = 60%/53% (Figure 3).
Experimental aquaria without fish at low salinity (water only)
showed a strong dominance of Oligotype 2, 4, and 8 (cumulative
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FIGURE 1 | Nonmetric Multidimensional Scaling (NMDS) plot of

host-associated Vibrio communities based on oligotype distributions.

Labels are located at the center of covariance ellipsoids around each host

type. Pairwise ANOSIM permutation tests reveal all host habitats can be
significantly differentiated except MarineFish and Sponge communities
(Table S1).

Table 4 | (A,B) SIMPER analysis output for the “All substrate” analysis grouping.

(A) Within habitat markers

FreshwaterFish Cont (%) MarineFish Cont (%) Sponge Cont (%) Plastic Cont (%)

Oligo2 72.85 Oligo1 32.85 Oligo1 37.45 Oligo5 69.9
Oligo4 11.61 Oligo6 20.49 Oligo6 18.67 Oligo3 11.07
Oligo8 6.85 Oligo3 15.16 Oligo4 15.73 Oligo15 5.53

Oligo4 12.85 Oligo2 6.36
Oligo7 7.31 Oligo8 5.43
Oligo5 4.98 Oligo7 4.54

Oligo3 2.7

(B) Between habitat markers

FreshwaterFish and MarineFish FreshwaterFish and Sponge FreshwaterFish and Plastic

Average dissimilarity = 83.6 Average dissimilarity = 76.16 Average dissimilarity = 90.26

Oligo2 33.64 Oligo2 33.5 Oligo2 30.08
Oligo1 15.51 Oligo1 14.93 Oligo5 24.16
Oligo6 11.57 Oligo8 12.8 Oligo8 8.38
Oligo4 11.1 Oligo4 11.67 Oligo4 8.02
Oligo8 8.72 Oligo6 9.46 Oligo15 5.21
Cumulative 80.54 Cumulative 82.36 Cumulative 75.85

MarineFish and Sponge MarineFish and Plastic Sponge and Plastic

Average dissimilarity = 63.21 Average dissimilarity = 85.02 Average dissimilarity = 89.48

Oligo1 19.77 Oligo5 23.41 Oligo5 23.33
Oligo6 16.14 Oligo1 16.07 Oligo1 13.31
Oligo4 15.01 Oligo6 12 Oligo6 8.46
Oligo8 8.77 Oligo4 9.34 Oligo4 8.18
Oligo2 8.45 Oligo7 7.04 Oligo2 7.64
Cumulative 68.14 Cumulative 67.86 Cumulative 60.92

A: The percent contribution of each oligotype to within-habitat Bray-Curtis similarity is shown (Cont%). B: The percent contribution of each oligotype to Bray-Curtis

dissimilarities between two habitats is shown, along with average Bray-Curtis dissimilarities.
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FIGURE 2 | Samples from the three host-associated studies included in

this meta-analysis separated out into individual NMDS plots alongside

water samples collected as part of the same study. Top: Sponges are
labeled according to species. Water was collected next to Mycale sp. and
Hexadella cf. dedritifera samples only. Middle: Fish water was sampled
directly from aquaria in which fish were housed, in addition to “control”
water that was sampled from aquaria at an identical salinity, but without
any fish. Bottom: Ocean surface water was collected at the same time and
location as corresponding plastics. ANOSIM permutation tests show that
Fish, Sponge and Plastic associated Vibrio communities cannot be
statistically separated out from their surrounding water environment.
Labels for each habitat are within their respective covariance ellipsoid.

abundance = 67%), showing strong similarities to those aquaria
that did house fish. However, marine aquaria without fish showed
a strong dominance of Oligotype 2, inconsistent with marine
aquaria that did contain fish. Interestingly, Oligotype 4 was found

across all salinities, in water, fish and control samples, at greater
than 10% relative abundance.

Sponge associated Vibrio communities were also statisti-
cally indistinguishable from their surrounding water (ANOSIM
P = 0.31), although this may have been in part due to the sample
size difference between sponge and associated seawater samples
(Sponge = 49, Associated seawater = 11), and the high vari-
ability of particular oligotypes in some Sponge samples. Sponges
showed significantly smaller relative abundance of Oligotype 7
and 5, and significantly increased abundance of Oligotypes 8 and
2 (Pairwise T-tests P < 0.01 in all cases). Sponge associated Vibrio
communities also showed no clear groupings according to species
(Figure 2, Top).

Lastly, Vibrio communities from plastic substrates overlapped
completely with seawater communities collected alongside them
(Figure 2, Bottom), and Oligotypes 3, 5, and 12, dominated both
Plastics and associated seawater. We found no oligotype to be
significantly enriched on plastic samples compared to their sur-
rounding water, nor were there significant increases in total Vibrio
on plastic substrates. In several cases, we found a single oligotype
that did not occur in the surrounding water but dominated in
relative abundance on an individual plastic substrate. This pat-
tern was particularly apparent with Oligotypes 13, 2, and 7, which
reached extremely high relative abundances on multiple occasions
(e.g., Oligotype 2 at 91% relative abundance in the “10/09-Plastic”
sample) (Figure 4).

OLIGOTYPE DISTRIBUTIONS ACROSS BROAD HABITAT TYPES
In order to gain as broad a view as possible of Vibrio oligotype dis-
tributions across habitats, we included 179 samples from 7 envi-
ronmental and host-associated habitats spanning a wide range of
environmental and geographical gradients (Figure 5). This analy-
sis yielded 99 oligotypes, of which the top 5 represented 65% of all
reads, while the top 10 represented 90%. We observed the top 10
oligotypes from this analysis at high abundance in previous anal-
yses (as determined by identical representative sequences), except
Oligotype 10, which was novel to Sand-PAH mesocosms and is
a highly divergent oligotype which could not be fully resolved.
Sand-PAH samples were taken from beach sand communities
near the Deepwater Horizon oil spill, and were likely enriched for
PAH-associated species (Kappell et al., 2014).

All oligotypes that were highly abundant in a single sam-
ple (>10% relative Vibrio abundance) occurred across all other
habitat types. Abundant oligotypes were therefore also likely to
be common across a wide variety of habitat types (Figure 6).
Oligotype 5 in particular was found to be both highly abundant
and frequent, occurring in all 179 samples analyzed across all
habitats (Figure 6). Several oligotypes did not follow this gen-
eral pattern, and despite a relative ubiquity, they maintained at
low mean relative abundances across all the samples in which
they occurred (e.g., Oligotypes 1, 2, 13, and 14, Figure 6).
Comparing the mean relative abundance of individual oligotypes
between marine hosts (Sponge, MarineFish) and marine environ-
ments (Seawater, Saltmarsh, Sand-PAH) revealed that 10 of the
top 17 oligotypes (Table 3) were significantly different between
these habitat categories at the bonferroni-corrected alpha level of
0.0029. SIMPER revealed the strong influence of Oligotype 3 and
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FIGURE 3 | Oligotype distribution for FreshwaterFish and MarineFish

tissue (FreshwaterFish: 0-x-i and 5-x-ii, MarineFish: 18-x-i and 18-x-ii),

associated water samples (x-x-W, blue lines), and water samples from

aquaria containing no fish (x-C-W). The relative abundance of each
oligotype within the total Vibrio diversity for each sample is shown in stacked
bar graphs (bottom), and the proportion of the total Vibrio (relative
abundance) within all bacterial diversity for each sample is shown with gray

bars (top, red-dashed lines are median values for each host-habitat). A clear
division between low and high salinity samples is seen, despite considerable
variation within salinities. Significant differences in median total Vibrio relative
abundance exists between FreshwaterFish and MarineFish samples, and
between MarineFish samples and their surrounding water. The Vibrio
community of fish food used during experimental period is also shown
(“FOODX”).

FIGURE 4 | Oligotype distributions for Plastic samples and their

surrounding water. Sample labels indicate the date the samples were
collected and the sample type. Water and plastic samples collected on the
same date are associated with one another. All water was collected at the

surface. Black arrows indicate plastic samples that contain a single oligotype
at greater than 50% relative abundance. “OligotypeNA” represents an
oligotype that was not among the top 10 most abundant oligotypes from any
three of our oligotype groupings.

5 in Saltmarsh and non-host associated Seawater communities,
and Oligotype 5 in Sand-PAH mesocosms. Oligotype 5 was often
extremely abundant in seawater samples, including those from
a Vibrio bloom (from project ICM_PML_Bv6, Table 1), and on
plastic samples (Figure 4). ANOSIM analyses revealed that across
all habitat pairwise comparisons only Sponge and MarineFish,
Seawater and Saltmarsh, Sand-PAH and Plastic, and Sand-PAH
and Seawater could not be significantly differentiated from one
another (Table S1).

Analysis of “within-habitat similarity” (a measure of sam-
ple dispersion within a habitat) showed significant differences
between habitats. Post-hoc Tukeys pairwise tests revealed Sand-
PAH mesocosms (median distance to centroid = 0.047) and
Saltmarsh (median distance to centroid = 0.046) contained sig-
nificantly less variance than Seawater (median distance to cen-
troid = 0.388) and Sponge (median distance to centroid = 0.49)
habitats. We note here however, that these results do not control
for the larger geographic area over which Seawater and Sponge
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FIGURE 5 | NMDS plot with covariance ellipsoids for both

host-associated and environmental samples. Sample names refer to
habitat type and VAMPS project listed in Table 1.

FIGURE 6 | Commonness and abundance plot of all oligotypes that

were part of the mixed habitat sample grouping analysis (Table 2). The
occurrence (presence/absence) of each of the 99 oligotypes across all 179
samples is plotted along the x-axis while its mean relative abundance across
all samples is plotted on the y-axis. Samples that are both common and
abundant are found in the top right, while those that are common, but rare
are in the bottom right. Both rare and uncommon are found in the bottom
left. The top 17 most abundant oligotypes from Table 3 are also labeled.

samples were collected as compared to Sand-PAH and Saltmarsh
samples. All other pairwise comparisons were insignificant at the
0.05 alpha level after multiple comparison adjustments.

PHYLOGENETIC AND METADATA ANALYSIS OF ABUNDANT
OLIGOTYPES
Our phylogenetic analysis of ARB reference sequences revealed no
16S rRNA gene phylogeny-habitat relationship. This is evidenced
by the spread of reference sequences from the same isolation
source across the phylogenetic tree (Figure 7). Our 17 abundant
oligotypes were also not monophyletic according to the habi-
tat in which they were most abundant (e.g., sponges or fish).
For example, oligotype sequences dominant in FreshwaterFish
and Freshwater (Oligotype 2, 4, and 8) were found to branch in
different parts of our phylogenetic tree (Figure 7).

MEGABLAST queries of abundant oligotypes returned on
average 120 perfect matches from the NCBI nr database, although
variance in this number was high (ranging from 0 to 1000). No
oligotype with more than two perfect NCBI hits came from only
one source, and any oligotype with more than 50 perfect NCBI
hits was isolated from at least three different sources. Oligotype
5, which was the most abundant across our habitats (Figure 6),
also had the maximum number of allowable perfect hits (1000).
Which habitat a query sequence came from was an extremely
poor predictor for the isolation source of its NCBI hits, although
Oligotypes 4 and 8, which contributed to FreshwaterFish had pre-
viously been isolated from freshwater environments (Table 3),
and both matched V. cholerae, found in brackish water, while
abundant oligotypes in marine organisms (e.g., 1 and 6), did
not return any previous isolations from freshwater environments.
Surprisingly, Oligotype 2, which contributed most to freshwater
environments, had no perfect hits from freshwater sources. The
majority of isolation sources from all our NCBI hits (76%) were
marine hosts, although we note the potential for database biases.

DISCUSSION
Our results represent the first attempt to use subtle nucleotide
variation at a single, 60 bp gene marker to make sense of com-
munity level patterns across habitats within the genus Vibrio.
Although our results are not the first to explore Vibrio commu-
nity patterns across diverse habitats (Hunt et al., 2008; Preheim
et al., 2011a; Szabo et al., 2013), we use preexisting sequence data
to extend conclusions made by previous authors to a broader
survey of unexplored habitats and provide novel insights into
substrate-associated communities and their surrounding water.

The breadth and scope of our analyses, 211 samples rep-
resenting seven unique habitats, revealed or supported several
interesting patterns suggestive of two broad hypotheses regarding
different aspects of Vibrio ecology and life history. First, Vibrio
contains many generalist taxa, each adapted to a wide range of
animal hosts. Second, our data suggest even these “host-adapted”
vibrios occur as members of free-living communities facilitat-
ing long distance dispersal to disparate hosts. We suggest both
of these characteristics, combined with previous understand-
ing of rapid growth rates (McDonough et al., 2013; Skorupski
and Taylor, 2013) fit the description of an “r-strategist” life
history.

Several patterns within our data support these suggestions.
Fish acclimated to marine salinities share highly similar Vibrio
communities with geographically and phylogenetically distinct
sponges (Figure 1, Table 4). Both marine acclimated fish and
sponge communities were typified by a strong dominance of
Oligotypes 1, 4, and 6, all of which were above 15% mean relative
abundance in both “Sponge” and “MarineFish” samples. These
oligotypes contributed at least 12% of within group Bray-Curtis
similarities for each habitat (Table 4). Furthermore, ANOSIM
analysis at the community level (i.e., using all oligotypes in each
community) found these habitats could not be significantly sep-
arated, a conclusion supported by their overlapping distribution
in 2D projections (Figures 1, 5). Although these communities do
not appear to be host specific, they do appear to be specific to
biotic hosts. Plastic communities, on an abiotic substrate, were
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FIGURE 7 | PhyML phylogeny of full-length 16S rRNA gene sequences

from type strain isolates in the SILVA ARB database, with the 17

most abundant oligotypes found in this study added by Maximum

Parsimony over the 60 bp region. The isolation source for each type

strain is color coded at its terminal node. The proportion of MEGABLAST
hits that fell into each isolation source category is coded for the 17
oligotype sequences added to the tree, and shown in bar graphs at each
oligotype node.

typified by Oligotypes 5, 3, and 12, and while oligotypes that
typified marine fish and sponges sometimes occurred on plas-
tics, they were always in low abundance. Furthermore, pairwise
ANOSIM tests showed that although Sponges and MarineFish
could not be significantly separated both could be separated from
Plastic. We confirmed this result with significant ANOSIM group-
ings of MarineFish and Sponge datasets pooled together, at the
exclusion of Plastic samples (data not shown). We found group-
ings were again characterized by high abundance of Oligotypes
1, 4, and 6 on biotic substrates, and Oligotype 5, 3, and 12

on Plastic. This suggests that vibrios behave differently with
respect to adaptation to and colonization of biotic vs. abiotic
substrates. Furthermore, the finding that Vibrio oligotypes asso-
ciated with plastics overlap with those in the surrounding sea-
water suggests that recruitment may take place far from the
origins of the plastic marine debris itself, typically thought to be
land-based.

Explaining the similarity between Vibrio communities in fish
and sponges is challenging, but overlap in habitat geography
during sampling, or overlap of laboratory sample preparation
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in space or time can be ruled out. Sponges were collected by
SCUBA and Remote Operated Vehicle (ROV) deep-sea dives
from the Northeast Atlantic and Mediterranean Sea (Reveillaud
et al., 2014) from 1981 to 2011, while all fish were col-
lected from experimental aquaria filled with sterilized water and
Instant Ocean® salt mix in a Woods Hole, MA laboratory in
2013 (Schmidt et al., submitted; Supplementary Data Sheet 1).
Furthermore, although sequencing was conducted on the same
Illumina HiSeq instrument, run dates were several months apart,
and sample storage occurred in different freezers, making con-
tamination between projects unlikely. In addition to community
level patterns outlined above, our MEGABLAST analysis of the
representative sequences from oligotypes most representative of
our sponge and fish samples revealed that each was previously
isolated from a variety of marine hosts including crabs, jelly-
fish, sea squirts, corals, fish, clams, and sea cucumbers (Table 3,
Table S2). Lastly, a previous comparison of two phylogenetically
distinct hosts (mussels and crabs) also found significant over-
lap in Vibrio communities (Preheim et al., 2011a), although we
note in this case hosts were not geographically or temporally
distinct.

Such a large degree of host plasticity does not appear to be
a ubiquitous feature among all bacterial taxa, and Vibrio clearly
differs from other taxa at the community level. A previous study
on sponge-microbe associations demonstrated host-specificity
within the genus Nitrospira (Reveillaud et al., 2014). This study
used the same oligotyping pipeline of V6 sequences, from the
same samples analyzed here, and the authors showed strong host
specificity of Nitrospira oligotypes to sponges at the species level
(see Figure 4 in Reveillaud et al., 2014). They found closely related
sponge species had differential enrichment preferences for closely
related Nitrospira phylogenetic lineages across varying bathymet-
ric and geographic areas. Our oligotyping analysis, focusing on
Vibrio, highlighted the lack of sponge-specific patterns within this
genus (Figure 2, Top), and is therefore in stark contrast to the
patterns illustrated for Nitrospira.

Further supporting our suggestion that taxa within the genus
Vibrio are generalist, long distance dispersing, r-strategists is
the commonality of some oligotypes across the broad range of
host associated and environmental habitat types in this study
(Figure 7). Although Vibrio does not form spores (Madigan et al.,
2009), it is known to enter a “viable but uncultivable” state
under stressful or nutrient limiting conditions (Ramaiah et al.,
2002). Research with the squid symbiont Vibrio fischeri found
the bacteria quickly became uncultivable and non-luminescent
in nutrient poor water outside of its host, but retained the abil-
ity to colonize, and luminesce, given re-entry to a suitable host
(Lee and Ruby, 1995). Our results demonstrate that Oligotypes
1, 6, 4, 8, and 9 were all significantly enriched in marine hosts
compared to marine environmental samples, with as much as
a 168-fold enrichment, yet they all occurred at low abundance
in open-ocean, host-independent samples. It is possible the rare
occurrence of these “host-associated” oligotypes in seawater sam-
ples represent taxa that have entered viable but uncultivable states,
giving them the ability to disperse long distances in nutrient
poor waters between opportunistic colonization of a wide vari-
ety of marine hosts. Conversely, Oligotype 5 was found at an

average relative abundance in environmental samples (Seawater,
Saltmarsh) and an abiotic substrate (Plastic) of >40%, while
averaging only 2.8% in hosts. This oligotype was found across
all 179 samples analyzed as part of this study (Figure 6), and
was widely represented in our MEGABLAST results (Table 3).
Analysis of Vibrio sequences recovered from an earlier study of
plastic marine debris samples (Zettler et al., 2013) also detected
Oligotype 5 (data not shown) despite employing a different
sequencing platform. Together, these data suggest a widely dis-
tributed, predominantly “non-host associated” Vibrio found in
hosts only through chance or ephemeral colonization.

SALINITY DRIVES VIBRIO STRUCTURE IN WATER AND HOST
COMMUNITIES
Salinity is a known driver of Vibrio community structure and
most vibrios are thought to occur in brackish or marine envi-
ronments (Takemura et al., 2014). Schmidt et al. (submitted)
(Supplementary Data Sheet 1) experimentally manipulated salt
concentrations in aquaria containing a euryhaline (salt tolerant)
fish, and characterized the resulting bacterial community. They
found that communities in both the fish and water changed
across the salt gradient, but that they did not change concur-
rently, resulting in drastically different communities in fish and
tank water. Interestingly, fish/water differences at high salinities
(18 and 30 ppt) were in part driven by high Vibrio relative abun-
dance in fish, vs. its relative rarity in tank water (Figure 3). Vibrio
also partly drove differences in fish microbiomes across the salin-
ity gradient, with a nearly 10-fold increase in total Vibrio relative
abundance from 0 to 30 ppt acclimated fish. This study did not,
however, resolve bacteria below the genus level, and could not
make conclusions about variation within a genus across salini-
ties. The study therefore did not assess if increases in total Vibrio
relative abundance up the gradient were due to the same taxa
becoming more abundant, or to the addition of novel taxa at
higher salinities. Nor were they able to assess if Vibrio inside fish
were the same as those found in the tank water.

The fine scale resolution provided by our oligotyping anal-
yses allowed us to answer these questions, and we show that
Vibrio community structure between water and fish are broadly
consistent, with both habitats sharing similar occurrence and
relative abundances of particular Vibrio oligotypes (Figure 3),
despite an overall enrichment of Vibrio relative abundance in fish
vs. water. We also show that FreshWater (tank water commu-
nity) and FreshwaterFish (fish microbiome community) cannot
be significantly distinguished with ANOSIM tests, and SIMPER
analyses find the same oligotypes (2, 4, and 8) are represen-
tative of both FreshWater and FreshwaterFish (Table 4). The
same is true for comparisons between high salt acclimated fish
(MarineFish) and their water (MarineWater), which are both
characterized by Oligotypes 1, 6, 3, and 4. This trend for both
salinities is evident from 2D projections of community structure
(Figure 2, Middle), which show overlapping ellipsoids of fish and
water habitats (although some separation is evident). Despite an
overall shift in community structure across the salinity gradi-
ent, Oligotype 4 remains at high abundance in both fresh and
marine samples. Oligotype 4 was highly enriched in all host-
associated samples (Sponges, FreshwaterFish, MarineFish), and
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extremely rare in environmental water samples not associated
with a host collection (i.e., completely independent of hosts).
Furthermore, MEGABLAST results from this oligotype show
its previous isolation from both marine and freshwater hosts,
but never from seawater (Table 4). Together these results are
suggestive of host-associated, potentially salt-tolerant Vibrio taxa.

ADVANTAGES AND LIMITATIONS OF OLIGOTYPING ANALYSIS FOR
VIBRIO
By separating regions of a marker gene that contain biologically
meaningful variation from stochastic error, oligotyping allows
single nucleotide differences across short marker genes to iden-
tify potentially ecologically meaningful patterns with extremely
small amounts of information (Eren et al., 2013a). This tech-
nique provides substantial benefits, avoiding the need for lengthy
and expensive culturing and sequencing protocols, and allows
researchers to tap into massive existing databases to ask novel eco-
logical questions at high-throughput levels across global scales.
We note, however, that some serious limitations do exist for these
type of data. 16S rRNA gene sequences can be nearly identical
across multiple Vibrio species (Gomez-Gil et al., 2004), and even
contain variance between copies of 16S rRNA genes within a sin-
gle genome, making its use as a phylogenetic tool difficult or
impossible. In addition, because our analyses use only 60 bp of
DNA sequence at a single marker gene, our data are insufficient
for any phylogenetic inference, and we cannot deduce relatedness
between individual oligotypes. This provides major limitations in
our ability to address some hypotheses about the evolutionary
history of vibrios adapted to specific habitats. We could not inves-
tigate, for example, if the abundant oligotypes of fish and sponges
(Oligotypes 1, 4, and 6) share common ancestry, which would
suggest speciation within the genus after association with the
host. We also cannot confidently tie our conclusions to previous
observations about particular Vibrio species, such as V. splen-
didus’ potentially recent adaption to particulate adhesion (Hunt
et al., 2008), or V. cholerae’s affinity for freshwater (Skorupski
and Taylor, 2013), since we cannot make taxonomic assignments
to any of our oligotypes. High-resolution taxonomic assignment
of Vibrio has been a significant challenge, necessitating the use
of genomic analyses including DNA-DNA hybridization, multi-
locus sequence analysis (MLSA), and genome sequencing for
species- or strain-level identification (Thompson et al., 2005).
Analyses of multiple loci, or entire genome sequences, are there-
fore required to make any phylogenetic inference (Thompson
et al., 2005; Preheim et al., 2011b). However, this study shows the
utility of oligotyping as an easily adaptable, high-throughput and
unbiased method for large-scale analyses of data from publically
available sequence data repositories, and suggests its wide appli-
cation could greatly extend the range of possibilities to explore
microbial ecology studies of particular genera.

CONCLUSIONS
Our analysis combines a novel bioinformatics technique with
large quantities of Vibrio 16S rRNA gene sequence data to reveal
patterns of Vibrio ecology across a wide range of environmental,
host, and abiotic substrate-associated habitats. Despite the draw-
backs for phylogenetic and taxonomic inference of using a single,

short rRNA gene sequence, our analyses show strong convergence
between host-associated communities, despite wide geographic
and phylogenetic distance between them. We also show a surpris-
ing overlap, and a lack of significant divisions, between Vibrio
communities in hosts and those found in their surrounding
aquatic environments. Our results further support that Vibrio,
as a genus, is largely populated by generalist r-strategist species,
capable of long distance dispersal, a wide breadth of growth
requirements, and rapid growth rates (Szabo et al., 2013).
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The impact of chronic nitrogen amendments on bacterial communities was evaluated
at Harvard Forest, Petersham, MA, USA. Thirty soil samples (3 treatments × 2 soil
horizons × 5 subplots) were collected in 2009 from untreated (control), low nitrogen-
amended (LN; 50 kg NH4NO3 ha−1 yr−1) and high nitrogen-amended (HN; 150 kg NH4NO3
ha−1 yr−1) plots. PCR-amplified partial 16S rRNA gene sequences made from soil DNA
were subjected to pyrosequencing (Turlapati et al., 2013) and analyses using oligotyping.The
parameters M (the minimum count of the most abundant unique sequence in an oligotype)
and s (the minimum number of samples in which an oligotype is expected to be present) had
to be optimized for forest soils because of high diversity and the presence of rare organisms.
Comparative analyses of the pyrosequencing data by oligotyping and operational taxonomic
unit clustering tools indicated that the former yields more refined units of taxonomy with
sequence similarity of ≥99.5%. Sequences affiliated with four new phyla and 73 genera
were identified in the present study as compared to 27 genera reported earlier from the
same data (Turlapati et al., 2013). Significant rearrangements in the bacterial community
structure were observed with N-amendments revealing the presence of additional genera
in N-amended plots with the absence of some that were present in the control plots.
Permutational MANOVA analyses indicated significant variation associated with soil horizon
and N treatment for a majority of the phyla. In most cases soil horizon partitioned more
variation relative to treatment and treatment effects were more evident for the organic (Org)
horizon. Mantel test results for Org soil showed significant positive correlations between
bacterial communities and most soil parameters including NH4 and NO3. In mineral soil,
correlations were seen only with pH, NH4, and NO3. Regardless of the pipeline used, a
major hindrance for such a study remains to be the lack of reference databases for forest
soils.

Keywords: bacterial community, forest soils, microbiome, oligotypes, pyrosequencing, QIIME software, OTUs,

entropy

INTRODUCTION
Soils harbor an immense diversity of bacteria (Torsvik et al.,
2002; Trevors, 2010 and references therein), most of it is hidden
from experimental analyses (Wall et al., 2010). A vast major-
ity of soil microbes are recalcitrant to culture methods thus
increasing the complexity of any study to expose this concealed
diversity (Sait et al., 2002; Nunes da Rocha et al., 2009; Vartoukian
et al., 2010; Lombard et al., 2011). Recently developed molecu-
lar tools have enabled us to analyze the expanse of variation in
bacterial populations using culture-independent methods such
as polymerase chain reaction (PCR) amplification of partial or

Abbreviations: Con, control; LN, low nitrogen; HF, Harvard Forest; HN, high
nitrogen; Min, mineral; Org, organic; CT, confidence threshold.

full-length genes of 16S rRNA, and their in-depth sequencing
(Janssen, 2006; Větrovský and Baldrian, 2013). Next genera-
tion sequencing approaches (e.g., pyrosequencing and Illumina
technology) generate data that are several orders of magnitude
superior than traditional sequencing methods; still they have
limited ability for the assessment of the total microbial diver-
sity in a soil sample, albeit the taxonomic richness (Margulies
et al., 2005; Huse et al., 2009; Gloor et al., 2010). This is primar-
ily due to the lack of reference genome libraries even for the
dominant bacterial species in forest soil ecosystems (Howe et al.,
2014).

In nature, microbes are vital contributors to biogeochem-
ical transformations and hence examining their response to
anthropomorphic activities over long periods is critical for
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understanding ecological processes (Falkowski et al., 2008). Sev-
eral studies have been conducted to reveal the extent of diversity
of the soil bacterial and fungal communities being influenced by
various factors including aboveground plant populations (Car-
ney and Matson, 2006; Uroz et al., 2010; McGuire et al., 2012),
soil type (Roesch et al., 2007; Lauber et al., 2008), soil pH (Fierer
and Jackson, 2006; Lauber et al., 2009; Rousk et al., 2010), and
differences in geographic location (Fulthorpe et al., 2008; Lan-
genfeld et al., 2013; Bischoff et al., 2014). It is evident that soil
microbial communities are influenced by numerous human activ-
ities, particularly land management practices, including long term
nitrogen (N) fertilization of both agricultural and forest soils (Wu
et al., 2008, 2011; Hallin et al., 2009; Ramirez et al., 2010; Fierer
et al., 2012; Sridevi et al., 2012; Coolon et al., 2013; Turlapati et al.,
2013). Wagg et al. (2014) have recently stressed the importance of
changes in soil microbial diversity on nutrient cycling at several
sites.

During the 1990s, N added to the atmosphere through human
activity was much higher (160 Tg Y−1) than through natural bio-
logical fixation processes (110 Tg Y−1) (Gruber and Galloway,
2008). These authors suggested that increased N has multiple
effects on cycling of other elements in the environment includ-
ing carbon (C), leading to global warming. Acidification due to
N saturation causes forest soils to become deficient in important
labile pools of nutrients, particularly Ca2+ and Mg2+ (Currie et al.,
1999). Calcium deficiency in the soil is known to predispose plants
to disease and pathogen infection, thus contributing to decline in
forest productivity as seen in red spruce and sugar maple stands
in the Northeastern US (Shortle and Smith, 1988; Long et al.,
1997; Minocha et al., 2010; Schaberg et al., 2011). These above-
ground changes are often accompanied by belowground changes
in soil chemistry that alter the microbiome, which in turn impacts
the biogeochemical cycling of essential nutrients (N, C, and P).
Recent studies have reported reduced microbial biomass and activ-
ity with N fertilization of forest soils (Treseder, 2008; Janssens et al.,
2010). Other reports have indicated either an increase (Cusack
et al., 2010), or a neutral response (Zhao et al., 2013) in microbial
biomass with N fertilization. The variability of these findings sug-
gests that the effects of N addition on microbial populations may
be site-specific.

At the HF Long-Term Ecological Research site located in Peter-
sham, MA, USA (HF)1, experimental plots were set up in 1989 to
study the long-term effects of N addition on above- and below-
ground communities (Magill et al., 2004). Past studies from this
site have shown negative shifts in the ratio of fungal: bacterial
biomass, microbial biomass C, and substrate-induced respiration
rates in response to N additions (Bowden et al., 2004; Frey et al.,
2004; Wallenstein et al., 2006; Ramirez et al., 2012). Soil from N
treatment plots at HF were reported to accumulate more C due
to a decrease in decomposition rate (Frey et al., 2014). Restric-
tion fragment length polymorphism (RFLP) and PCR profiles for
DNA extracted from N-treated soil samples exhibited altered func-
tional N-cycle gene composition (Compton et al., 2004). Using
pyrosequencing of the PCR-amplified 16S rRNA genes from the
soil DNA, our group showed that N addition caused profound

1http://harvardforest.fas.harvard.edu/research/LTER

rearrangements in the structure of bacterial communities at the
HF site (Turlapati et al., 2013). Major changes were recorded in the
community structure of Acidobacteria, α and β subclasses of Pro-
teobacteria, and Verrucomicrobia were observed. These conclusions
were derived using the UCLUST tool in Quantitative Insights into
Microbial Ecology (QIIME) toolkit using the latest version avail-
able (1.4.0) at that time (Caporaso et al., 2010b; Edgar, 2010) to
cluster the sequences into operational taxonomic units (OTUs) at
97% sequence identity. It was observed that 2% of the total OTUs
in this dataset contained ≥50% of the total sequences; on the other
hand, up to 80% of total OTUs were highly diverse and contained
∼10% of the total sequences.

It has been suggested that there is substantial phylogenetic
diversity in marine and soil environments attributable to the
occurrence of rare bacterial populations (Sogin et al., 2006; Lynch
et al., 2012). Although the diversity of HF soil microbes could be
estimated to some extent in our previous study, it was not possi-
ble to examine the sequence diversity within each abundant OTU
since classification was assigned only to the OTU representative
sequences (Turlapati et al., 2013). This is important because OTU
clustering (often done at 97% sequence identity) is less powerful
in identifying phylogenetically distinct organisms that differ by a
small number of nucleotides (Eren et al., 2013). Oligotyping is a
recently developed computational tool that allows users to choose
entropy components (‘supervised tool’) that have high variability
in order to resolve underlying diversity among sequences within
each OTU or taxonomic group (Eren et al., 2013).

With the aim of analyzing the effects of prolonged N treatment
on individual bacterial groups, and identifying additional gen-
era/families whose presence and/or abundance may be correlated
with alterations in soil factors, we subjected our pyrosequenc-
ing dataset (Turlapati et al., 2013) to the oligotyping pipeline and
taxonomy was assigned using the recently updated RDP database
(Cole et al., 2013). The specific objectives of the study were to: (1)
demonstrate the applicability of the oligotyping pipeline for forest
soil datasets; (2) study the effects of N-amendment on individual
bacterial taxa and compare these with previous findings based on
OTU clustering; and (3) evaluate the effects of soil chemistry on
bacterial communities of Org and Min horizons.

MATERIALS AND METHODS
SITE DESCRIPTION AND SOIL SAMPLE COLLECTION
The study site is a mixed hardwood stand naturally regenerated
after being clear-cut in 1945 and is located on Prospect Hill at
the HF2, Petersham, MA, USA. The stand is comprised of pre-
dominantly red oak (Quercus rubra L) and black oak (Q. vetulina
Lam.), mixed with red maple (Acer rubrum L.), American beech
(Fagus grandifolia Ehrh.) and black birch (Betula lenta L.). Soil
at this site is mostly stony to sandy loam formed from glacial till.
For more details on site description including vegetation, climate,
site topography, and N amendments refer to Aber et al. (1993) and
Magill et al. (2004).

As described in our previous report (Turlapati et al., 2013),
three 30 m × 30 m treatment plots (further subdivided into 36 sub-
plots; each measuring 5 m × 5 m) were used for sample collection.

2http://harvardforest.fas.harvard.edu/
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These plots were established in May 1988 as part of a long-term
study on chronic N effects on ecosystem function. One plot served
as a Con and 2 other plots were treated with NH4NO3; low N (LN;
treated with 50 kg N ha−1 yr−1), and high N (HN; treated with
150 kg N ha−1 yr−1). Ammonium nitrate solution was applied
by a backpack sprayer yearly in six equal doses at 4-week intervals
from May to September. Soil samples were collected from five ran-
domly selected subplots within each treatment plot in September
2009 using a soil corer (7.5 cm diameter). The upper Org layer
(Org, average 8 cm) was separated from the lower Min layer. In a
few cases where the Org horizon was 10–12 cm deep, deeper cor-
ing was needed to get to the Min soil. Thirty samples (5 cores per
plot × 2 horizons × 3 treatments) were collected in polyethylene
bags and brought to the laboratory on ice. Samples were sieved
(2 mm pore size) to remove roots, debris and stones, and then
stored at −20◦C for further use.

SOIL CHEMICAL ANALYSES
Air-dried soil samples (20–40 g) were sent to the Soil Testing Ser-
vice Laboratory at the University of Maine, Orono, ME, USA3 for
analyses. Nitrate and NH4 -N were extracted in potassium chlo-
ride and determined colorimetrically by Ion Analyzer in 2012. The
rest of the analyses were carried out in 2010 as described in Turla-
pati et al. (2013). The methods for the extraction of polyamines
and amino acids were described in our previous publication (Frey
et al., 2014).

DNA ISOLATION, PCR, PYROSEQUENCING, AND DATA QUALITY
FILTERING
As previously described in Turlapati et al. (2013), PowerSoil® DNA
isolation kit (MO-BIO Laboratories, Carlsbad, CA, USA) was used
to isolate genomic DNA from 0.5 g of soil samples. Universal
primers (F968 5′AA CGC GAA GAACCT TAC3′ and R1401-1a
5′CGG TGT GTA CAA GGC CCG GGA ACG3′) as described in
Brons and van Elsas (2008) with 30 barcodes (10 bp, one for each
soil sample) were used for PCR to generate ∼433-bp amplicons
corresponding to the V6–V8 hypervariable region of the bacterial
16S rRNA encoding gene. The PCR amplifications were conducted
in triplicate using Phusion® Taq Master Mix (New England Bio-
labs, Ipswich, MA, USA) with 50 ng of template DNA in a final
volume of 50 μL. The reactions were performed in a PTC-100®
Programmable Thermal Cycler (MJ Research, Inc., Waltham, MA,
USA) with the following conditions: an initial denaturation at
95◦C for 5 min, followed by 20 cycles of denaturation at 95◦C
for 30 s, annealing at 61◦C for 30 s, and extension at 72◦C for
45 s, with a final extension at 72◦C for 10 min. The triplicate
reaction products (amplicons) from each soil sample were pooled
for sequencing. DNA purification kit (Zymo Research, Irvine, CA,
USA) was used to purify the pooled PCR products which were
then subjected to further cleaning via the Agencourt® AMPure®
XP Bead Purification method (Agencourt Bioscience Corporation,
Beverly, MA, USA) to remove fragments <100 bp. The quality of
the PCR products were evaluated in an Agilent 2100 Bioanalyzer
using the DNA 1000 LabChip (Agilent Technologies, Palo Alto,
CA, USA). The 30 bar-coded samples were pooled in equimolar

3http://anlab.umesci.maine.edu

quantities (Margulies et al., 2005) in order to process for sequenc-
ing (Roche 454 GS-FLX Titanium System) at the University of
Illinois, USA4 in a full picotiter plate.

OLIGOTYPING ANALYSIS
The forward primer (549,500 sequences) pyrosequencing data
were quality filtered in QIIME (version 1.4.0) with default set-
tings for most steps as described in Caporaso et al. (2010b).
Chimeric sequences were also removed using Chimera Slayer in
QIIME (Table S1). After removal of low quality and chimeric
sequences, the remaining data were used as an input taxonomic
assignment using the Ribosome Database Project (RDP) classifier
version 2.75. In the first step, IDs of the sequences correspond-
ing to each phylum were extracted individually from the dataset
using CT ≥0.8 with Perl script (Supplementary Material – 1).
The sequences corresponding only to these IDs (selected at CT
≥0.8) were then extracted out by using the command filter.fasta.py
(available in QIIME) and were further processed for oligotyp-
ing analyses. Selected sequences corresponding to a phylum or
a subgroup/class were aligned using PyNAST (Caporaso et al.,
2010a). PyNAST enables the alignment of sequences against a
template database such as Greengenes (McDonald et al., 2012) in
QIIME. Before beginning oligotyping, the uninformative gaps in
the alignment were removed along with 10–15 nucleotides at the
end of each read, which were trimmed to attain reads of similar
lengths.

Oligotyping was conducted individually for each phylum. The
only exceptions were Proteobacteria and Acidobacteria where oligo-
typing had to be conducted individually for each class or subgroup
because among some of the subgroups there were several-fold dif-
ferences in the number of sequences (e.g., within Acidobacteria,
subgroup Gp1 accounted for 151,462 sequences and Gp4 had only
715 sequences); these required different M values (the minimum
substantive abundance of the most abundant unique sequence
in an oligotype) for analyses. To begin with all sequences were
430 bp in size; after alignment and filtering the gaps, the sizes of
the aligned reads were different for different phyla (Figure S1).

Entropy and initial oligotyping analyses were conducted
according to Eren et al. (2013). The oligotyping method utilizes
Shannon (1948) entropy for detecting the amount of diversity
associated with each nucleotide position and provides a way
of identifying positions associated with greater variability. The
entropy peaks for nucleotide positions ranged from 0 to slightly
>2 for most of the datasets under consideration with the excep-
tion of the phylum Nitrospira (Figure S1). We observed that
a higher number of peaks with entropy values ≥1.0 resulted
in greater bacterial diversity. In the first step, oligotypes were
generated by using the first position with the highest entropy
value. To decompose these oligotypes further, supervised oligo-
typing steps (user-defined nucleotide selection for decomposing
entropy) were used. On the average 50 positions were chosen to
decompose entropy for most datasets. Oligotyping was continued
until no peaks were left unresolved that could further decom-
pose the oligotype. Peaks with entropy values of <0.2 often did

4http://www.biotech.illinois.edu/htdna
5http://sourceforge.net/projects/rdp-classifier/
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not yield additional oligotypes and were considered background
noise. Details for the above steps are described in Eren et al.
(2013).

For supervised oligotyping, M values had to be modified for
forest soil samples from those suggested for other ecosystems by
Eren et al. (2013). Since the total number of sequences varied
across different bacterial phyla, the M values varied accordingly
for each analysis as shown in Table S2. This value was usually lower
(2–5) for relatively smaller datasets in the range of 200–5000 reads.
In order to correct for technical errors due to pyrosequencing, the
value for parameter ‘s’ (‘s’ is the minimum number of samples
in which an oligotype is expected to be present) was set to two
with the assumption that any sequence that occurs in two biolog-
ical samples represents an element of a microbiome and is not an
error. Huse et al. (2010) found that even with deep sequencing,
OTUs with one sequence rarely occurred in other replicates and
the chance of a spurious OTU occurring in two environmental
samples is not realistic which supports our assumption. To cap-
ture the rare biosphere in soil samples, no values were assigned to
parameter ‘a’ (the minimum percent abundance of an oligotype in
at least one sample) and parameter ‘A’ (the minimum actual abun-
dance of an oligotype across all samples). Oligotype representative
sequences (the most abundance sequence within an oligotype)
were classified at CT ≥0.8 (a generally accepted threshold of 80%
for assigning taxonomy) using the RDP classifier tool version
2.76. For determining percent alignment scores, the sequences
corresponding to individual oligotypes were extracted from the
oligo-representatives directory and aligned using the ClustalW2
tool7.

In one small comparative study with a subset of data, oligotype
representative sequences were classified at CT ≥0.5 as well as ≥0.8
using the RDP classifier to determine if additional genera could be
identified using a lower CT value.

The oligotype representative sequences have been deposited in
the NCBI short read archive. The accession numbers are presented
in Table S1.

OTU CLUSTERING AND TAXONOMIC ANALYSES
To compare the oligotyping method with OTU clustering, quality-
filtered reads of four phyla (Actinobacteria, Bacteroidetes, Firmi-
cutes, and Proteobacteria) were selected and clustered into OTUs
using UCLUST (Edgar, 2010) set at a 97% identity threshold in
QIIME (version 1.8.0). The OTU representative sequences were
picked in QIIME based on the most abundant sequence in each
OTU. Similarly, the oligotyping method also assumes that the
most abundant unique sequence is the oligotype representative
sequence. For each dataset, sequences were filtered for minimum
abundance (n size) for each OTU using the same value that was
used for M in the corresponding oligotyping analyses. In addition,
in order to match the parameter set for oligotyping (s = 2), OTUs
that were not present in at least two samples were removed from
the OTU table using python scripts (Supplementary Material –

6http://sourceforge.net/projects/rdp-classifier/files/rdp-classifier/rdp_classifier_2.
7.zip/download
7 http://www.ebi.ac.uk/Tools/msa/clustalw2/

2). The OTU representative sequences were classified using RDP
version 2.2 (currently used version) in QIIME.

In order to understand the reason for the difference in the
genera identified by the two methods, we assigned taxonomy to
OTU and oligo representative sequences using RDP in QIIME
pipeline version 2.2 and online RDP classifier version 2.2.

STATISTICAL ANALYSES
SYSTAT (version 10.2, Systat Software, Inc., San Jose, CA, USA)
was used for standard statistical tests, including paired t-tests
and two-way analysis of variance (ANOVA), on the soil NH4 and
NO3 data. Non-metric dimensional scaling (NMS) analyses were
conducted using PC-ORD (version 6.03, MJM Software Design,
Gleneden Beach, OR, USA). To normalize the data, digit one was
added to all data before log10 transformation. Briefly, follow-
ing settings were used for NMS: number of axes = 4, maximum
number of iterations = 500; stability criterion (the standard devi-
ation in stress over the last 10 iterations) = 10−6; number of runs
with real data = 100; and the number of runs with randomized
data = 250. Random numbers were chosen as a source of start-
ing ordinations. The tie handling was done by penalizing unequal
ordination distance (Kruskal’s secondary approach). The follow-
ing were chosen as output options: varimax, randomization test,
plot stress vs. iterations and calculate scores for OTUs by weighted
averages. Dimensionality of solutions was selected for these anal-
yses based on the assessment using a graph of stress as a function
of dimensionality (scree plot). A Monte Carlo test was used to
examine the stress and the strength of NMS results. Two-way
permutational MANOVA was conducted using the Bray-Curtis
distances to evaluate the effect of the horizons and the treatment,
and the interaction between them. Mantel tests were conducted
to evaluate the significance of correlations among Bray-Curtis
distance scores and soil chemistry and soil Org N metabolites.

RESULTS
SOIL CHEMISTRY
While NH4 concentration in the Org soil was significantly higher
than that in the Min soil for all treatments (Table S3), there was
no difference in NO3 levels between the two horizons. Long-term
N treatment did not significantly alter either NH4 or NO3 con-
centrations of either soil horizon (Table S3). Other details on
soil analyses are described in Frey et al. (2004) and Turlapati et al.
(2013).

PARAMETERS OF OLIGOTYPING ANALYSES
Soils are highly diverse and harbor an abundance of rare microbes.
Rare microbes are more prone to primer-PCR amplification and
sequencing biases thus making it harder to identify such individ-
uals. In addition, it is well known that soil replicates have high
microsite variability in chemistry as well as bacterial populations.
This combination of rarity and microsite variability perhaps is
the reason that the same microbes are not present in all repli-
cate samples, and why the guidelines suggested for other biomes
in Eren et al. (2013) did not work with the HF soil samples.
Thus for analysis of these soils, the suggested guidelines had to
be modified (personal communication with Dr. A. Murat Eren,
Marine Biological Laboratories, Woods Hole, MA, USA).
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M is the value that is used to filter out potential noise in a
sample. For this reason it is generally kept at a reasonably high
number. It is likely that with forest soils, sequences representing
rare taxa may be filtered out as noise due to their low abundance
at high M values. In addition, high M values in such cases filtered
out more than 50% of all sequences. The more diverse the phyla
are (in terms of number of entropy components) more are the
sequences that are filtered out with high M values (Table S2, e.g.,
see Bacteroidetes vs. Gp10). With the goal of retaining maximum
sequences and diversity in terms of the number of oligotypes, sev-
eral M values were tested for most phyla before final analyses. We
tested different M values using α- and β-Proteobacteria, two well-
known bacterial classes that are highly diverse and varied in the
size of data for our soil samples with 38,858 and 3,340 sequences,
respectively. The s value was set at two for both analyses. Lowering
M values resulted in the identification of more genera at CT ≥0.8
in both classes (Table 1). For example at CT of ≥0.8, the total
number of genera identified with an M = 75 for α-Proteobacteria
was 5, but with M = 15, 11 genera were identified. Similarly, for
β-Proteobacteria, M = 25 identified only two genera while M = 3
identified eight genera (Table 1) In α-Proteobacteria, genera such
as Labrys and Acidisoma were identified with M = 15; they would
be missed at higher M values. Similar results were obtained within

β-Proteobacteria (Table 1). Therefore, final data analyses in this
study were conducted using an M value that was based on two
criteria, namely, the retention of maximum sequences, and maxi-
mum diversity (in terms of number of oligotypes) with taxonomic
assignment at CT values no less than 0.8. Data presented here
show that using high M values for groups that have low abun-
dance would not identify genera with high confidence limits [e.g.,
at M = 2 Paenibacillus (Firmicutes) at CT = 1 and Mucilaginibacter
(Bacteroidetes) at CT of 0.99–1 were identified].

ALIGNMENT OF SEQUENCES WITHIN OLIGOTYPES
We compared the sequence identities within OTUs clustered at
≥97% similarity (Edgar, 2010) in QIIME with those in oligo-
types that are generated by manually selecting components of
high entropy values. The results show that the sequence identi-
ties within an oligotype ranged between 99.5 and 100%. In order
to reduce variation among sequence identities within an oligo-
type, all peaks with entropy values greater than 0.6 were resolved.
The oligotyping process left very few unresolved peaks of rela-
tively low entropy (<0.2) values within oligotypes that often had
<100 sequences. These low entropy peaks were considered as the
background noise (Table 2). However, even when the oligotyp-
ing analysis appeared not fully resolved, the range of % identities

Table 1 | Effect of varying M values on percent of reads retained, total number of oligotypes, and genera identified at 0.8 CT with RDP database.

Class M value % of reads

retained

Number of

oligotypes

Genera identified at 0.8 CT in RDP Total number

of genera

α-Proteobacteria 75 35 73 Bradyrhizobium, Rhodomicrobium, Rhizomicrobium, Methylocella,

Methylosinus

5

” 50 44 118 Bradyrhizobium, Rhodomicrobium, Rhizomicrobium, Methylocella,

Methylosinus, Hyphomicrobium, Phenylobacterium

7

” 30 55 211 Bradyrhizobium, Rhodomicrobium, Rhizomicrobium, Methylocella,

Methylosinus, Hyphomicrobium, Phenylobacterium, Acidisphaera,

Bauldia

9

” 15*# 67 389 Bradyrhizobium, Rhodomicrobium, Rhizomicrobium, Methylocella,

Methylosinus, Hyphomicrobium, Phenylobacterium, Acidisphaera,

Bauldia, Labrys, Acidisoma

11

β-Proteobacteria 25 64 27 Burkholderia, Herbaspirillum 2

” 20 65 29 Burkholderia, Herbaspirillum 2

” 15 69 37 Burkholderia, Herbaspirillum, Comamonas, Herminiimonas 4

” 10 74 48 Burkholderia, Herbaspirillum, Comamonas, Herminiimonas,

Collimonas

5

” 5$ 81 83 Burkholderia, Herbaspirillum, Comamonas, Herminiimonas,

Collimonas, Nitrosospira, Variovorax

7

” 3*$ 86 123 Burkholderia, Herbaspirillum, Comamonas, Herminiimonas,

Collimonas, Nitrosospira, Variovorax, Aquabacterium

8

” 2 88 157 Burkholderia, Herbaspirillum, Comamonas, Herminiimonas,

Collimonas, Nitrosospira, Variovorax, Aquabacterium

8

The datasets used for illustrating this point are α-Proteobacteria (38,858 sequences) and β-Proteobacteria (3,440 sequences); s value used for these analyses was 2.
*Indicates final M values used for the rest of the analyses. #Indicates that below an M value of 15 a machine generated error was encountered due to exceedingly
large numbers of oligotypes. $Indicates that Nitrosospira, Variovorax, and Aquabacterium were identified at CT of (0.98–1).

www.frontiersin.org February 2015 | Volume 6 | Article 49 | 86

http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Microbiology/archive


Turlapati et al. Oligotyping analyses to study the N amendment effects

was still within 99.76–100%. Table 2 shows two such examples: in
one case there are two peaks with entropy values of <0.25, and in
another case there is only one large peak with an entropy value at
0.65. In such cases, the small peaks were deliberately disregarded
because their further decomposition did not result in additional
oligotypes. The sequence identities within OTUs clustered using
the same dataset ranged from 97 to 100% (results not shown).

TAXONOMIC ASSIGNMENTS USING DIFFERENT TOOLS
Major motivation for examining the use of oligotyping as a tool
was to reveal concealed microbial population diversity that could
not be seen using the OTU clustering approach (Turlapati et al.,
2013) with the additional focus on the effects of N treatment on
the distribution of these taxa. Comparison of taxonomic assign-
ments between OTUs described earlier using QIIME 1.4.2 and
the data presented in this report show more genera were identi-
fied using the oligotyping analysis (Table 3). Although the same
data set was used for both analyses, genus level information for
phyla such as Acidobacteria, Bacteroidetes, and Chloroflexi was
generated in the present study. It should be pointed out that the
use of an updated version (2.7) of RDP also revealed four previ-
ously unidentified phyla (AD3, Cyanobacteria, TM6 and WPS-2;
Table S2).

Whereas OTU clustering resulted in 2% of the OTUs con-
taining ∼50% of the total sequences (Turlapati et al., 2013), for
oligotyping, 2% of the oligotypes contained ∼38% of the total
number of sequences (results not shown). Another major dif-
ference was that 80% of the OTUs contained 10% of sequences
in comparison to 20% sequences in 80% of oligotypes. A com-
parison of two databases (Greengenes used in QIIME vs. RDP
online database) for classifying OTUs as well as oligotypes rep-
resentative sequences resulted in a significantly lower number
of taxa identified from both OTU and oligotype datasets with
Greengenes as compared to RDP (Table 4). More genera were
discernible when CT ≥0.5 was used (vs. ≥0.8) with oligotype
representative sequences, (Table S4). One such example is the
genus Terriglobus (Acidobacteria-Gp1), which was identified only
at CT ≥0.5 (Figure S2).

BACTERIAL DIVERSITY ANALYSES
Details on the various steps of oligotyping analysis and the number
of oligotypes identified for each phylum are given in Table S2. In
general, no direct correlation was observed between the numbers
of sequences and the oligotypes. In all, sequences affiliated with
73 known genera were identified from these soils as compared to
27 genera observed in our previous study (Table 3). Oligotyp-
ing revealed that sequences corresponding to some genera were
present in control but absent in N-treated soils. In other instances,
those present in N-amended plots were not found in control plots.

BACTERIAL COMMUNITIES AND TREATMENT RELATIONSHIPS
Non-metric multidimensional scaling (NMS) followed by permu-
tational MANOVA (Permanova) with ordination scores, i.e., the
Bray-Curtis distance, obtained from normalized total oligotype
data revealed significant differences among bacterial communities
based on treatment and soil horizon (Figure 1; Table S5). In gen-
eral, all five replicate soil samples from within the same treatment
plot clustered together and displayed stronger similarities among
their oligotypes as compared to those from other treatment plots.
For the two largest phyla, Acidobacteria and Proteobacteria, NMS
and Permanova analyses were conducted for individual subgroups
and classes, respectively (Figure S3; Table S5). With the exception
of Bacteroidetes and subgroup Gp10 in Acidobacteria, the bacte-
rial communities of the two horizons were significantly different.
Additionally, within each soil horizon significant treatment effects
on the structure of the bacterial community were observed for all
phyla except for Chloroflexi, Firmicutes, TM7, Bacteroidetes, and
subgroups Gp6 and Gp10 of Acidobacteria (Figure 1 and Table S5;
Figure S3).

The highest variation in partitioning was observed in the phy-
lum Acidobacteria, where horizon explained 49.0% (P ≤ 0.0002) of
the variation among samples, and treatment accounted for about
21% (P ≤ 0.0004) of the variation (Figure 1A; Table S5). Most of
this variation was due to subgroups Gp1, Gp2, and Gp3 (Figure
S3). In the second most diverse phylum, Proteobacteria, horizon
explained 36% (P ≤ 0.0002) of variation among the samples and
the treatment accounted for 16.5% (P ≤ 0.0006) of the variation;

Table 2 | CLUSTALW percent identity alignment scores for the sequences within each oligotype, taxonomic affiliation of the oligotype, total

number of unresolved peaks, and the entropy values associated with the nucleotide components of unresolved peaks.

Oligo ID Taxonomic

affiliation

Number of sequences within

oligotype (number of 100%

identical sequences)

% identity among

the sequences

Number of

unresolved peaks

Entropy associated with the

nucleotide components of

unresolved peaks

00054 Acidobacteria: Gp1 498 (462) 99.53–100 Background noise* <0.10

00009 Acidobacteria: Gp3 469 (436) 99.30–100 Background noise* <0.15

00008 α-Proteobacteria 276 (255) 99.53–100 Background noise* <0.10

00012 β-Proteobacteria 52 100 none –

00028 β-Proteobacteria 23 (22) 99.76–100 2 0.25

00040 β-Proteobacteria 14 (13) 99.76–100 2 0.37

00165 Verrucomicrobia 54 (43) 99.54–100 1 0.65

*Background noise is defined as the situation when the unresolved peaks with entropy values associated with the nucleotide components fall within the range of
0.1–0.2. This often happened with oligotypes having >100 sequences.
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Table 3 | Comparison of genera identified by QIIME (version 1.4.0) UCLUST clustering [method used in our previous study (Turlapati et al., 2013)]

with those identified in the present study using oligotyping.

Phylum/class Genera identified inTurlapati et al. (2013)

using QIIME UCLUST clustering method

Total number Genera identified in

present study using oligotyping

Total

number

Acidobacteria – 0 Acidobacterium, Bryobacter, Edaphobacter,

Granulicella

4

α-Proteo Bradyrhizobium, Methylocella,

Phenylobacterium,

Rhodomicrobium

4 Acidisoma, Acidisphaera, Bauldia, Bradyrhizobium,

Hyphomicrobium, Labrys, Methylocella,

Methylosinus, Phenylobacterium,

Rhizomicrobium, Rhodomicrobium

11

β-Proteo Burkholderia 1 Aquabacterium, Burkholderia, Collimonas,

Comamonas, Herbaspirillum, Herminiimonas,

Nitrosospira, Variovorax

8

δ-Proteo Byssovorax* 1 – 0

γ -Proteo Aquicella, Dyella, Legionella,

Pseudomonas, Serratia,

Stenotrophomonas

6 Aquicella, Coxiella, Dyella, Legionella, Nevskia,

Pseudomonas, Rhodanobacter, Rudaea, Serratia,

Stenotrophomonas, Yersinia

11

Actinobacteria Actinospica, Actinocorallia*, Catenulispora,

Conexibacter, Kitasatospora,

Mycobacterium, Nocardia,

7 Aciditerrimonas, Actinospica, Catenulispora,

Conexibacter, Kitasatospora, Microbacterium,

Mycetocola, Mycobacterium, Nocardia,

Solirubrobacter, Streptacidiphilus

11

Verrucomicrobia Opitutus 1 Alterococcus, Opitutus 2

Chlamydiae Neochlamydia, Parachlamydia,

Rhabdochlamydia

3 Neochlamydia, Parachlamydia, Simkania 3

Chloroflexi – 0 Ktedonobacter, Thermosporothrix 2

Elusimicrobia – 0 Elusimicrobium 1

Firmicutes Bacillus, Paenibacillus 2 Ammoniphilus, Bacillus, Brochothrix, Clostridium

XI, Clostridium sensu stricto, Cohnella,

Lactococcus, Lysinibacillus, Paenibacillus,

Solibacillus, Sporosarcina, Viridibacillus

12

Gemmatimonadetes Gemmatimonas 1 Gemmatimonas 1

Bacteroidetes – 0 Flavobacterium, Mucilaginibacter,

Niabella, Pedobacter, Sphingobacterium,

Terrimonas

6

Nitrospira Nitrospira 1 Nitrospira 1

Total genera 27 73

Genera were identified at CT ≥0.8 using the online RDP classifier. *The genera Byssovorax and Actinocorallia were identified by OTU clustering.

a major part of this variation was seen in α-and γ -Proteobacteria
(Figure S3). Often there was an overlap between the LN- and HN-
amended soil communities. Treatment effects were generally more
pronounced in the Org soil horizon.

SOIL CHARACTERISTICS AND BACTERIAL COMMUNITIES
Mantel test results on soil chemistry and the bacterial com-
munity revealed strong correlations for the Org soil. Pooled
oligotyping data from all phyla found in the Org soil horizon
showed a stronger positive correlation between the entire bac-
terial community and soil pH, Ca, P, K, Zn, Mg, NH4, NO3,

and total C (Table 5) as compared to Min soil. When data for
each phylum were analyzed separately, significant correlations
were observed for Acidobacteria, Proteobacteria, Actinobacteria,
Verrucomicrobia, WPS-2, and AD3. Exceptions included Pro-
teobacteria which showed no correlation with Ca and P, nor
did Chlamydiae with NH4 and total C. The remaining phyla
had correlations with fewer elements, specifics of which varied
(Table 5).

Oligotyping data pooled for all analyzed phyla from the Min
horizon community showed strong positive correlations only with
soil pH, acidity, NH4, and NO3. With few exceptions, this was
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Table 4 |The effect of different databases on classification.

Database and tools comparisons for classification of oligo representatives (ORs) and operating taxonomic units OTUs

Method Oligotyping OTU clustering

CT 0.8 0.8

Tool RDP classifier online RDP in QIIME RDP classifier online RDP in QIIME

Database RDP Greengenes RDP Greengenes

Actinobacteria 11 6 13 6

Bacteroidetes 6 2 3 1

Firmicutes 12 15 14 13

α-Proteo 11 6 14 11

β-Proteo 8 3 6 2

δ-Proteo 0 1 2 1

γ -Proteo 11 8 11 7

Total 59 41 63 41

Oligotyping representative as well as OTU representative sequences were classified using the online RDP classifier version 2.2 (RDP database) and RDP version 2.2
within QIIME version 1.8.0 (Greengenes database). The OTU clustering was performed using UCLUST in QIIME with the identical parameters (s and M) that were set
up for oligotyping. All genera identified at ≥0.8 CT.

true for analyses of each individual phylum. There was a posi-
tive correlation of Al with Acidobacteria and WPS-2, and Ca with
Proteobacteria (Table 5).

CHANGES IN COMMUNITY STRUCTURE OF GENERA ASSOCIATED WITH
SOIL HORIZON AND N-AMENDMENTS
Across all three treatments, oligotypes corresponding to five gen-
era (Ammoniphilus, Clostridium X1, Solibacillus, Sporosarcina,
and Viridibacillus) were found in Min soils but were absent
in Org soils, and one genus (Conexibacter) was identified in
Org soils but not in Min soils (Table 6; Figures 2A,C). Over-
all, oligotypes corresponding to five genera (Aquabacterium,
Nitrosospira, Yersinia, Legionella, and Niabella) appeared exclu-
sively in N-treated soils (in both horizons combined), while
those representing eight genera (Comamonas, Microbacterium,
Mycetocola, Brochothrix, Flavobacterium, Pedobacter, Sphingobac-
terium, and Terrimonas) were present in the control but absent
from the N-treated soils (Table 6; Figures 2B,C). A compari-
son of the presence of oligotypes specific to each genus revealed
that some oligotypes were unique to Org soils while others were
exclusively present in Min soils (Table S6; Figure 2). Addition-
ally some oligotypes were present only in the N-amended soils
and not in the control plots. Although Figures and Tables show
all identified genera, only those that exhibited significant dif-
ferences with treatment or soil horizon are discussed in this
section.

TAXONOMY BY PHYLUM
Acidobacteria, which was the most abundant phylum in the HF
soils, constituted ∼50% of total sequences and 22% of total olig-
otypes (Table S2). Subgroups Gp1, Gp2, and Gp3 accounted for
most of the Acidobacteria sequences and oligotypes. Soil samples
from control plots had three times more sequences affiliated with

Gp1 as compared to Gp3. However, based on the total number of
oligotypes, the Gp3 subgroup was more diverse than Gp1 in both
soil horizons (Figures S4A,B). Gp13 was represented by a large
number of oligotypes each containing small sets of sequences.
Four new genera were identified in the phylum Acidobacteria
since our last report with the same soil samples (Table 3). All
of the genera identified in the Org horizon were represented by
a significantly larger number of sequences as compared to those
identified in the Min soil horizon for all three treatments (Figure
S5A). However, the number of oligotypes did not vary greatly
between soil horizons. Sequences of the genus Edaphobacter were
significantly higher in HN vs. the control while Acidobacterium,
Granulicella, and Bryobacter showed a reverse trend in the Org
horizon (Figure S5A). Oligotypes for Edaphobacter were more
abundant in N treatment plots relative to control in Min soil of
both (Figure 2C).

Proteobacteria was the second most abundant phylum and
was highly diverse in these soils. This phylum comprised ∼20%
of the total sequences and total oligotypes (Table S2). Classes
α-Proteobacteria and γ -Proteobacteria together accounted for
>70% of this phylum’s sequences and oligotypes in each hori-
zon (Figures S6A,B). Regardless of the number of sequences,
oligotyping data revealed that among all other classes and phyla,
α-Proteobacteria were the most diverse in both soil horizons. In
general, LN treatment was positively correlated with sequences and
oligotype numbers. Altogether, 30 genera were found in Proteobac-
teria (Figures S5B–D, Table 3): 11 each in α- and γ -Proteobacteria
(Figures S5B–D), and eight in β-Proteobacteria (Figure S5C).
Fourteen out of these 30 genera were present in relatively high
abundance (sequences ≥50). Shifts in community structure were
observed among most genera in response to N treatments (Figures
S6A,B). An increase in the number of sequences was observed for
several genera in soil treated with LN (Figures S5B,D).
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FIGURE 1 | Non-metric dimensional scaling (NMS) ordination for

oligotypes of 30 soil samples for 12 of the 16 identified bacterial

phyla. Letter symbols refer to the NMS analyses for the following
phyla: (A) Acidobacteria; (B) Proteobacteria; (C) Actinobacteria; (D)

Verrucomicrobia; (E) Chlamydiae; (F) Chloroflexi; (G) Cyanobacteria;
(H) Elusimicrobia; (I) Firmicutes; (J) Gemmatimonadetes; (K) WPS-2;

and (L) AD3. Each soil type is represented by 5 replicates and a
centroid, which is indicated by a single symbol and treatment-soil
horizon name. The number next to the phylum name represents the
total number of oligotypes identified within each phylum. H = % of
variation partitioned by horizon and T = % of variation partitioned by
treatment.

Actinobacteria constituted only 7% of total sequences and 7.6%
of oligotypes (Table S2). Eleven genera were identified from this
phylum relative to the prior findings of seven (by OTU clustering)
for the same data set (Table 3). The absence of certain genera in
N-amended soils was observed in a few cases (Figure S5E).

Verrucomicrobia was the third most abundant phylum with
∼10% of sequences and ∼10% of oligotypes in these soils
(Table S2). Only two genera (Table 3) from this phylum were
identified. Genus Opitutus was present in tenfold higher num-
bers than Alterococcus (Figure S5F). The number of sequences
for Opitutus was lower in N-treated soils than in Control. For
both Actinobacteria and Verrucomicrobia, horizon and treatment
explained 44 and 10–13% of the total variation, respectively
(Figures 1C,D).

Chlamydiae constituted 2.5% of the total sequences and
∼10% of oligotypes (Table S2). Three genera were identified
in this phylum (Table 3); the relative abundance of oligotypes

corresponding to the genus Parachlamydia were highest in N
treatment plots relative to control in Org soil (Figure 2B;
Figure S5G).

Chloroflexi constituted 2.7% of the total sequences and 6.5 %
of oligotypes (Table S2), with only two genera (Ktedonobacter and
Thermosporothrix – Figure S5H; Table 3), which were absent in
the control treatment in the Org horizon but present in the Min
soils (Figure 2A).

Although Firmicutes constituted only about 0.3% of total
sequences, with 3.0% oligotypes, 12 genera were identified in this
phylum (Table S2; Figure S5J). Most of these were present in very
low numbers and were more prevalent in Min soils (e.g., Bacillus
and Paenibacillus); all five of the genera seen in the Min soil hori-
zon were absent in the Org soil horizon (Table 6; Figure 2); there
was little effect of N treatments (Figure 1I; Table 5).

Together the phyla TM7, Gemmatimonadetes, and Nitrospira
comprised ∼1% of the total sequences and 2.4% of oligotypes
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Table 5 | Relationship between soil chemistry and Bray-Curtis (Sorenson) distance measures of the normalized oligotypes data (Mantel test)

conducted using PC-ORD software (version 6).

Soil Chemistry pH Ca P Mn K Zn Mg Acidity Al NH4 NO3 Total C

Organic soil horizon

All Bacteria 0.001* 0.007* 0.007* − 0.004* 0.001 0.001* − − 0.015* 0.002* 0.002*

Acidobacteria 0.011* 0.028* 0.026* − 0.012* 0.003* 0.002* − − 0.021* 0.001* 0.010*

Proteobacteria 0.027* − − − 0.014* 0.001* 0.004* − − 0.041* 0.001* 0.037*

Actinobacteria 0.001* 0.006* 0.024* − − 0.021* − − − 0.008* 0.024* 0.002*

Verrucomicrobia 0.001* 0.002* 0.012* − 0.047* 0.004* 0.014* − − 0.003* 0.002* 0.006*

Chlamydiae − − − − 0.009* 0.011* − − − − 0.001* −
Chloroflexi − − 0.001* 0.019* 0.015* 0.001* 0.006* 0.033* − 0.013* − 0.006*

Cyanobacteria − − − − 0.010* 0.009* 0.014* − − − 0.001* 0.049*

Elusimicrobia − 0.029* − − − − − − − 0.011* 0.001* −
Firmicutes − − − − 0.026* 0.017* − 0.041* − 0.021* − 0.014*

Gemmatimonadetes 0.016* 0.008* − − − − − − − − − −
TM7 − − − − − − − − − − − −
WPS-2 0.001* 0.023* 0.013* − 0.003* 0.001* 0.010* − − 0.005* 0.002* 0.002*

AD3 0.008* 0.037* 0.002* − 0.001* 0.001* 0.001* 0.035* − 0.014* 0.001* 0.003*

Bacteroidetes 0.033* − 0.017* − 0.043* − − 0.016* − − − 0.010*

Mineral soil horizon

All Bacteria 0.047* − − − − − − 0.020* − 0.017* 0.005* −
Acidobacteria 0.005* − − − − − − 0.009* 0.035* 0.037* 0.008* −
Proteobacteria − 0.009* − − − − − − − 0.013* 0.005* −
Actinobacteria − − − − − − − − − 0.013* − −
Verrucomicrobia 0.029* − − − − − − 0.013* − 0.031* 0.032* −
Chlamydiae − − − − − 0.040* − − − 0.032* 0.001* −
Chloroflexi − − − − − − − − − − 0.011* −
Cyanobacteria − − − − − 0.023* − − − − 0.002* −
Elusimicrobia − 0.041* − − − 0.031* − − − 0.050* 0.044* −
Firmicutes − − 0.014* − − 0.024* − − − − − −
Gemmatimonadetes 0.016* − − − − − 0.035* 0.041* − − − −
TM7 − − − − − − − − − − − −
WPS-2 0.003* − − − − − 0.026* 0.005* 0.009* 0.007* 0.010* −
AD3 − − − − − − 0.023* − − − − −
Bacteroidetes NA NA NA NA NA NA NA NA NA NA NA NA

All 15 samples from each soil horizon were pooled for these analyses.The iterations were set to 5000. Asterisks Indicates significant correlations (P ≤ 0.05). −Indicates
non-significance. NA denotes that analyses could not be performed due to insufficient data.

(Table S2). From these three phyla, only two genera were iden-
tified; Gemmatimonas in Gemmatimonadetes and Nitrospira in
Nitrospira (Figures S5L,M). The number of sequences representing
the genus Nitrospira was greater in Min vs. the Org soil hori-
zon and in LN treatment vs. the control and HN treatment.
While both treatment and horizon explained significant vari-
ation found in Gemmatimonadetes (Figure 1J; Table S5) only
horizon-specific effects were seen for TM7 (Figure S3L). NMS
generated a four dimensional solution for TM7 (Table S5).
Because of a small dataset, no further analyses were conducted
on Nitrospira.

The phyla TM6, Cyanobacteria, Elusimicrobia, WPS-2, and AD3
were not identified in our previous report with the same data.
TM6 was represented by only 36 sequences, most of which were
filtered out in the initial oligotyping run and, therefore, were not
analyzed further (Table S2). The other five phyla together con-
stituted a relatively small portion of the total sequences (∼5.2%,
with numbers ranging from 142 to 280) and 17.2% of the total
oligotypes (Table S2). Among these phyla, WPS-2 was the most
affected by treatment as well as by horizon (Figure 1K). Only
the genus Elusimicrobium was identified in Elusimicrobia (Figure
S5I).
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Table 6 | Horizon specific genera (shown with an *) and genera that appeared or disappeared with N-amendments.

Phylum or class Con-Org LN-Org HN-Org Con-Min LN-Min HN-Min

Actinobacteria Conexibacter*

Microbacterium

Mycetocola

− Conexibacter* Microbacterium

Mycetocola

− −

Firmicutes Brochothrix − − Ammoniphilus*

Brochothrix

Clostridium XI*

Sporosarcina*

Ammoniphilus*

Clostridium XI*

Solibacillus*

Viridibacillus*

Clostridium XI*

Viridibacillus*

β-Proteobacteria Comamonas Aquabacterium Aquabacterium

Nitrosospira

Comamonas Aquabacterium Aquabacterium

Nitrosospira

γ -Proteobacteria − Legionella,

Yersinia

Legionella − Yersinia Legionella

Bacteroidetes Flavobacterium

Pedobacter

Sphingobacterium

Terrimonas

Niabella − Flavobacterium

Pedobacter

Sphingobacterium

Terrimonas

Niabella −

Bacteroidetes contained only 259 sequences but 36 oligotypes,
and six distinct genera were identified in this phylum; four
of which were absent from N-amended soils (Table 6; Figure
S5K). NMS analyses yielded only one dimension solution for this
phylum, and thus no figure was generated (Table S5).

DISCUSSION
The primary objective for re-analyses of the pyrosequencing data
from the previous study (Turlapati et al., 2013) was to deter-
mine additional diversity by applying more efficient and reliable
bioinformatics tools. The results enabled us to identify a total of
4534 oligotypes belonging to 15 different bacterial phyla with 73
genera. The same dataset had previously resulted in 6936 OTUs
belonging to 11 different bacterial phyla with only 27 identifi-
able genera. There are two main explanations for this apparent
discrepancy: the first being the updating of tools and databases
used for classification to newer versions since our previous report;
and the second (somewhat obscure) is the difference between the
classifiers and databases currently being used for the two cluster-
ing methods. Whereas the RDP classifier version 2.2 in QIIME
pipeline uses the Greengenes database for OTU- rep classifica-
tion, the RDP online classifier version 2.7 used for oligotyping
has its own built-in RDP database. Although oligotyping and
OTU clustering identify similar numbers of taxa (in a compar-
ative study using four phyla constituting ∼28% of total sequences,
Table 4), the former has greater resolving ability for classifying
nearly identical, closely related organisms provided a good refer-
ence genomic library is available to compare against. Using entropy
analysis, oligotyping simultaneously clusters multiple sequences
based on similarity/identity of each nucleotide along the entire
length of the read for all sequences within a given group. However,
OTU groups sequences at 97% similarity with a representative
sequence. The 3% difference in nucleotides may occur anywhere
along the entire length of the read, and that location can vary from

sequence to sequence within the group. That is to say, 2 sequences
within an OTU can differ from the representative sequence at
different nucleotide positions. Additionally, once a sequence has
been selected and grouped within one OTU it cannot be assigned
to another even if it has greater similarity with the representative
sequence of the second OTU. It is this difference in the way
sequences are clustered by these methods that makes oligotyping
more powerful in grouping closely related organisms. While a rela-
tionship between oligotypes and most soil chemistry parameters
was observed only a few such relationships were observed for OTU
data by the earlier report (Turlapati et al., 2013).

A major limitation of any study involving a soil microbiome
(including the present one) is the lack of reference genomes (even
for dominant taxa; Howe et al., 2014). Metagenomic outputs of
most current high-throughput sequencing technologies (e.g., Illu-
mina) often result in a mixture of multiple genomes most of
which do not cover a complete genome of the organisms of inter-
est since complete reference genomes of known organisms are
lacking (Simon and Daniel, 2011; Teeling and Glöckner, 2012).
Therefore, many studies still rely on universally occurring DNA
sequences (either partial or complete), e.g., the 16S rRNA genes.
Single cell genomics offers a powerful technique for characterizing
the genome of a single organism (Zaremba-Niedzwiedzka et al.,
2013; Macaulay and Voet, 2014); however, this is still an emerging
technology and is difficult to apply to the microbiome of com-
plex systems like forest soils. In the absence of genome-specific
sequence libraries from forest soils, it is difficult to assign the ter-
minal taxonomic identity (e.g., at species level) even to 16S rRNA
genes or any other gene sequences. Thus, amplicon-sequencing
(although known to be biased against rare organisms) remains
a realistic approach to estimate the diversity of large microbial
populations in complex environments.

Oligotyping enables the detection and classification of distinct
subpopulations within a genus, or even within a single species
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FIGURE 2 | Comparison of numbers of oligotypes for the identified

genera in soil samples: (A) control organic vs. mineral soil; (B) control vs.

N-amended organic soil; and (C) control vs. N-amended mineral soil. The

genera presented here were selected based on ≥50% change relative to
control. Asterisk in (B) denotes the presence of >18 oligotypes for con (24),
LN (44), and HN (39) for Parachlamydia.
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as was shown for Gardnerella vaginalis in humans (Eren et al.,
2011). With forest soil microbiomes, although taxonomy at the
species level could not be assigned because of the lack of reference
genome data, oligotyping did enable us to detect subpopulations
within a genus. Furthermore, the distribution of many of these
subpopulations often varied between the soil horizons and among
long-term treatments with N fertilizer (Table S6).

The results presented here demonstrate the applicability of olig-
otyping to complex microbiomes of forest soils. However, some
adjustments may be necessary to the stringency of parameters that
Eren et al. (2013) had suggested. For example, in order to assess the
diversity of closely related bacterial populations in an ecosystem by
oligotyping of 16S rRNA gene sequences, Eren et al. (2013) empha-
sized the importance of at least four critical parameters (namely
‘s,’ ‘a,’ ‘A’ and ‘M’) that minimize the impact of sequencing errors
in determining the outcome of results. They further summarized
that s and M are critical components used to reduce the noise in
such analyses. Soil samples have greater microsite variability, bac-
terial diversity and the occurrence of rare organisms as compared
to other microbiomes (e.g., human body and marine waters). All
of the data in the present study were analyzed using M values
based on two criteria: namely, retaining maximum sequences and
the diversity in terms of the number of oligotypes with an s = 2
(due to high microsite variability among five replicates). In the
present study, high diversity was evident from a large number of
entropy peaks with high values for components for most phy-
lum level datasets (Figure S1). Therefore, oligotyping of these soil
samples required several rounds of supervised (user-defined com-
ponent selection) analyses before all of the entropy peaks could
be decomposed. Lowering the M values from those suggested by
Eren et al. (2013), especially for relatively larger datasets led to
the identification of more genera at CT ≥0.8 (Table 1). This sug-
gests that many organisms are probably present in low abundance
(constituting the rare microbiome) in HF soil. Even with much
smaller datasets, where M values of two or three were used, gen-
era were identified at CT ≥0.8 (e.g., genus Aquabacterium of class
β-Proteobacteria – Table 1). Huse et al. (2010) suggested that if
a sequence occurs in two separate environmental samples (i.e.,
s = 2), then the chance of it being noise or a technical error is
almost zero and thus should be considered as a sequence affili-
ated with a rare organism. Using this same dataset, Turlapati et al.
(2013) earlier reported 4093 singleton OTUs among a total of
11,029 (37%) with s = 1 (default). Therefore, the present classi-
fication with oligotyping with s = 2 should be more reliable as
compared to OTU clustering in eliminating noise.

The primers used in the present study specifically target the
V6–V8 region of 16S rRNA genes and were chosen due to the high
sequence variability associated with this region (Brons and van
Elsas, 2008). The poor ability of RDP to assign taxonomy to V6
reads at CT ≥0.8 as compared to CT ≥0.5 has been reported by
Claesson et al. (2009). Similarly, in this present study, a greater
number of genera were identified at CT ≥0.5 vs. CT ≥0.8 (Table
S5). For example, genus Terriglobus (Acidobacteria, Gp1) could
only be identified at CT ≥0.5; sequences for this genus were found
in all 30 samples and were significantly higher in HN-Org soils as
compared to control. These observations suggest that the standard
CT value of ≥0.8 at the genus level may need to be adjusted when

working with the V6-V8 hypervariable regions of the 16S rRNA
gene especially in ecosystems for which reference genome libraries
are lacking.

Available analytical tools and public databases, such as RDP,
are constantly being updated to meet increasing demand for
taxonomic classification arising from high throughput outputs
created by next generation sequencing platforms (Cole et al., 2009,
2013). Mclean et al. (2013) reported 31 candidate phyla including
recently identified TM6 in the bacterial population of a hospital
sink. In the present study, A total of 16 phyla were identified as
compared to 11 in our previous report which used the same dataset
in the QIIME pipeline (Turlapati et al., 2013). The RDP classifier
assigned phyla names such as AD3, Elusimicrobia, Cyanobacteria,
TM6, WPS-2 to the sequences that were termed unclassified in
our previous study. No genera were identified within these phyla
with the exception of Elusimicrobium. Most importantly, the over-
all unclassified sequences previously constituting 15–20% of the
total were reduced to 0.5% in the current analysis.

Although Acidobacteria constituted >50% of total sequences,
only four genera were identified in this phylum. The availability of
reference genomes would be useful in further classifying this phy-
lum; however, to date only eight genera have been taxonomically
described in this phylum (Männistö et al., 2011 and references
therein). Naether et al. (2012) reported that within Acidobacte-
ria Gp1, Gp2, and Gp3 organisms favor nutrient-limited soils
as compared to other subgroups. The dominance of these three
subgroups of Acidobacteria in both soil horizons at HF suggests
that these soils are perhaps nutrient limited. VanInsberghe et al.
(2013) reported that in comparison with Proteobacteria, Acidobac-
teria are more prevalent in soils with low resource availability;
our results are in agreement with this report and further rein-
force the conclusion that HF soils are nutrient poor. Differences
observed between bacterial communities in the Org and Min soil
are clearly attributable to the differences in the soil chemistry of
the two horizons (Table S3). Although HF soils may be nutrient
limited, bacteria in the Org horizon are perhaps adapted to rel-
atively nutrient-rich environment compared to those in the Min
horizon. Our results demonstrate that with few exceptions, the
Org soil communities were more impacted by N-treatment as
compared to the Min soil communities. Compared to Min soil
horizon, bacteria in the Org soils demonstrated stronger relation-
ships with most of the soil chemistry parameters (Table 5). Fierer
et al. (2012) also reported greater phylogenetic shifts in microbial
communities that prefer a nutrient rich environment following N
fertilization.

Naether et al. (2012) also reported correlations between
edaphic factors such as pH, C, N, C/N ratio, and P with corre-
sponding OTUs (16S clones) and terminal-RFLP (T-RFLP) for
most of the subgroups of Acidobacteria found in soil from 30
forested and 27 grassland sites. They found either positive or neg-
ative correlations of different OTUs or T-RFLPs within respective
subgroups of Acidobacteria over a wide pH and nutrient range.
Another study involving 87 soil types with pH values ranging from
3.5 to 8.5 reported an overall inverse relationship between soil pH
and the relative abundance of Acidobacteria (Jones et al., 2009).
However, a closer look at data shows that within a narrow range of
pH from 3.5 to 4.5, this inverse relationship is not held. The pH of
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HF soil ranged from 3.8 to 4.4 for Org and 4.3 to 4.8 for Min. At
HF, a positive correlation between the subgroups of Acidobacteria
and pH in this narrow range for each soil horizon indicates that for
optimal growth, this group prefers the higher end of this narrow
range at HF (Table S3). Our results are in agreement with those
of Sait et al. (2006) who found that subgroup Gp1 ideally requires
moderately acidic conditions (pH 4.0–5.5).

Despite the existence of significant effects on aboveground
foliar Org N metabolites (polyamines and amino acids; Table
S3), tree physiology and productivity (Minocha et al., 2000; Bauer
et al., 2004; Magill et al., 2004; Frey et al., 2014), and changes in
soil microbial diversity at the HF, the lack of any lasting effects of
N-amendment on soil NH4 and NO3 concentrations is interest-
ing and apparently contradictory. We speculate that this is due to
the combined effects of the fast uptake of the fertilizer (applied
only during the growing season) by the macroflora, its rapid
conversion into other inorganic N and Org N metabolites (e.g.,
polyamines and amino acids), and leaching of a significant amount
of applied N.

Polyamines are present in all living organisms. They are
required for growth and are also involved in stress responses
(Minocha et al., 2014). Polyamines and specific-amino acids
(e.g., glutamine and arginine) are known to be major N stor-
age metabolites in plants, especially under excess N conditions.
Concentrations of these compounds were found to be high in
the foliage of trees growing in the N-treated plots at the HF
(Minocha et al., 2000; Bauer et al., 2004). Changes in concentra-
tions of polyamines and amino acids were observed in the same
soils used for the present study (Frey et al., 2014). These findings
suggest that the effects of N-addition on shifts in bacterial com-
munity structure may have resulted partially through effects of
N-amendments on the growth of the aboveground plant com-
munity and vice versa. Also, it can be hypothesized that changes
observed in the microbiome are due to the preference of certain
microbial taxa for excess N that was present immediately follow-
ing N application. Then, over the longer term of repeated N
applications, they were stabilized and became a major compo-
nent of the microbiome during the phase when soil inorganic N
reverted back to original levels. This argument is supported by
the observation that some of the functionally important genera
(e.g., Nitrosospira of phylum Proteobacteria, which include well-
known NH3 oxidizers/nitrifiers) appeared mostly in N-treated
soils. Using the amplification of a functional N-transformation
gene amoA, He et al. (2007) observed an increased abundance of
Nitrosospira sequences in response to N-treatments at a Chinese
Agricultural Experimental Station. In our study the sequences
and oligotypes corresponding to Nitrospira were higher in LN-
treated Min soil. However, using 16S markers, Wertz et al. (2012)
observed no change in the abundance of sequences for Nitrospira
(another potential nitrifier group within the phylum Nitrospira)
in response to long term N-fertilization at five forested sites in
British Columbia, Canada.

CONCLUSION
A total of 46 previously unidentified genera were recognized by
oligotyping vs. OTU clustering analysis of PCR-amplified par-
tial 16S rDNA sequences from HF soil DNA. Because of the lack

of a reference genome database for forest soils, both clustering
approaches yield limited information at the genus and species
level; however, oligotyping enables reliable classification of closely
related organisms because of the high stringency of this tool. This
analytical approach further revealed strong correlations between
soil chemistry and oligotypes; no such correlations were dis-
cernible with the OTU clustering approach. Based on the fact
that we could identify several genera at CT ≥0.98 using a rela-
tively lower M value, we suggest that lowering M values may be
appropriate for the complex microbiomes such as forest soils that
are comprised of an enormous diversity of bacteria that are often
present in low abundance. As suggested by Mantel test results, bac-
terial communities in the Org soil at HF have high preference for
a nutrient rich environment and the communities found in the
Min soil are better adapted to nutrient poor conditions. Overall,
effects of N-treatment on the microbiome were more evident in
the Org soil than the Min soil horizon, perhaps due to the fact
that N utilization requires an abundance of C, which three times
higher in the Org as compared to Min soil.
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Recent gut microbiome studies in model organisms emphasize the effects of intrinsic
and extrinsic factors on the variation of the bacterial composition and its impact on the
overall health status of the host. Species occurring in the same habitat might share
a similar microbiome, especially if they overlap in ecological and behavioral traits. So
far, the natural variation in microbiomes of free-ranging wildlife species has not been
thoroughly investigated. The few existing studies exploring microbiomes through 16S
rRNA gene reads clustered sequencing reads into operational taxonomic units (OTUs)
based on a similarity threshold (e.g., 97%). This approach, in combination with the low
resolution of target databases, generally limits the level of taxonomic assignments to the
genus level. However, distinguishing natural variation of microbiomes in healthy individuals
from “abnormal” microbial compositions that affect host health requires knowledge
of the “normal” microbial flora at a high taxonomic resolution. This gap can now be
addressed using the recently published oligotyping approach, which can resolve closely
related organisms into distinct oligotypes by utilizing subtle nucleotide variation. Here, we
used Illumina MiSeq to sequence amplicons generated from the V4 region of the 16S
rRNA gene to investigate the gut microbiome of two free-ranging sympatric Namibian
carnivore species, the cheetah (Acinonyx jubatus) and the black-backed jackal (Canis
mesomelas). Bacterial phyla with proportions >0.2% were identical for both species
and included Firmicutes, Fusobacteria, Bacteroidetes, Proteobacteria and Actinobacteria.
At a finer taxonomic resolution, black-backed jackals exhibited 69 bacterial taxa with
proportions ≥0.1%, whereas cheetahs had only 42. Finally, oligotyping revealed that
shared bacterial taxa consisted of distinct oligotype profiles. Thus, in contrast to 3% OTUs,
oligotyping can detect fine-scale taxonomic differences between microbiomes.

Keywords: gut microbiome, bacteria, oligotyping, carnivores, cheetah (Acinonyx jubatus), black-backed jackal

(Canis mesomelas), Namibia

INTRODUCTION
Gut-associated bacterial communities and their mammalian
hosts are highly dependent on each other. Recent investigations
have applied metagenomic approaches to increase our under-
standing of the factors that shape these host-gut bacterial rela-
tionships (Kau et al., 2011; Muegge et al., 2011; Schloissnig et al.,
2012). The interpretation of these results is, however, challeng-
ing because several factors such as host-bacteria co-evolution (Ley
et al., 2008; Ochman et al., 2010; Yeoman et al., 2011), host geno-
type (Benson et al., 2010; Spor et al., 2011; Bolnick et al., 2014),
life history traits and behavior (Ezenwa et al., 2012), social orga-
nization (Koch and Schmid-Hempel, 2011), health status, diet
(Turnbaugh et al., 2009) and the environment itself (Coolon et al.,
2010; Nelson et al., 2013) are simultaneously involved in shaping

the gut microbiome. In contrast, variations in the gut microbiome
affect the host by causing, for example, obesity (Turnbaugh et al.,
2006) and changes in exploratory behavior or anxiety (Bercik
et al., 2011; Bravo et al., 2011), all of which may affect the overall
health status of the host (Sekirov et al., 2010; Hooper et al., 2012).

Previous studies on gut microbiomes have focused largely
on the variation exhibited in humans or laboratory organisms.
Only recently the interest has grown to study host-gut bacterial
associations also in wildlife species (Schwab et al., 2011; Amato
et al., 2013; Nelson et al., 2013; Delsuc et al., 2014). Such stud-
ies are facing many challenges, but offer, when sample sizes are
large, important insight in the “normal” variation of the gut
microbiome of free-ranging species. Only under natural condi-
tions we can also detect how changes in the mentioned factors
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affect bacterial communities and thus host nutrition and health
(McKenna et al., 2008; Amato, 2013). In addition, such data may
provide reference information on habitat quality which has many
implications for species conservation.

Here, we present for the first time a comparison of the gut
microbiomes of two sympatric free-ranging mammalian carniv-
orous species, represented by a felid (cheetah, Acinonyx jubatus)
and a canid (black-backed jackal, Canis mesomelas). We investi-
gated their gut bacterial diversity by applying high-throughput
sequencing to characterize the V4 hyper-variable region of the 16S
rRNA gene. Differences in bacterial composition between feline
and canine species have been shown previously in domestic ani-
mals (Handl et al., 2011), but microbiomes in cheetahs have only
been investigated in a few zoo individuals (Ley et al., 2008; Becker
et al., 2014) and so far no study has investigated microbiomes in
black-backed jackals. Thus, with our study we aim to provide the
microbiomes of free-ranging cheetahs and black-backed jackals
and to investigate hypotheses on bacterial diversity derived from
known species characteristics.

We hypothesized that diet, foraging behavior, social system
and home range size, four species characteristics that differ
between the species, should also lead to differences in their gut-
microbial diversities. The carnivorous diet of cheetahs (Eaton,
1974; Wachter et al., 2006) is likely to be associated with a lower
microbial diversity than the omnivorous diet of black-backed
jackals (Goldenberg et al., 2010), because the digestive require-
ments for a carnivorous species can be expected to be lower
(Ley et al., 2008). Accordingly, cheetahs should harbor a lower
gut-microbial community compared to black-backed jackals.
Moreover, cheetahs feed only on freshly killed prey animals (Caro,
1994), not on carcasses as black-backed jackals occasionally do
(Walton and Joly, 2003). An intake of a more diverse bacterial
community due to scavenging can be expected and accordingly a
lower microbial diversity in cheetahs than in black-backed jackals.
Also, the intraspecific contact rate of mainly solitary cheetahs
(Caro, 1994) is likely to be lower than the one of the group living
black-backed jackals (Walton and Joly, 2003), resulting in a lower
bacterial transmission and therefore an expected lower microbial
diversity in cheetahs than in black-backed jackals. In contrast, the
larger home range sizes of cheetahs (Marker et al., 2008) com-
pared to black-backed jackals (Jenner et al., 2011; Kamler et al.,
2012) are likely to result in cheetahs encountering a larger variety
of environmental bacteria than black-backed jackals and therefore
are expected to exhibit a higher microbial diversity. If the home
range size has the stronger influence in shaping the microbiome of
a host species, we expect the cheetah to exhibit a higher microbial
diversity, but if diet, foraging behavior and social system have the
stronger influence, we expect the black-backed jackal to exhibit a
higher microbial diversity.

The taxonomic resolution of bacterial communities based on
high-throughput sequencing of 16S rRNA gene amplicons is lim-
ited. The short fragment sizes, the single locus approach and the
limitations in resolution and richness of most current databases
hinders a taxonomic assignment of sequencing reads better than
family or genus level. De novo clustering of reads into opera-
tional taxonomic units (OTUs) based on a similarity threshold
(e.g., 97%, Caporaso et al., 2012) aims to increase the resolu-
tion. Nevertheless, multiple 3% OTUs can be assigned to a single

genus and thus still contain unexplained diversity. Differences in
bacterial communities between species, however, are manifested
on a bacterial species or strain level (Suchodolski, 2011) and are
therefore not detectable with the conventional OTU approach.
Recently, this problem was addressed by Eren et al. (2013) who
developed an “oligotyping” approach which reveals differences
between bacterial communities on a low level of taxonomic dis-
crimination by targeting subtle nucleotide variation. First publi-
cations that successfully applied oligotyping showed the potential
of this method by having tracked human fecal Lachnospiraceae in
sewage (McLellan et al., 2013) or having described the diversity
of a single bacterial species in the genitourinary tract of monog-
amous sexual partners (Eren et al., 2011). If a comprehensive
database is available, it is even possible to assign species level
taxonomy to oligotypes (Eren et al., 2014).

In this study, we aim to investigate whether the diversity and
proportion of bacterial taxa differ between the cheetah and the
black-backed jackal and whether oligotype profiles within shared
bacterial taxa are the same or not. To our knowledge, this is the
first study that applies the new oligotyping approach in conjunc-
tion with the common OTU approach to describe the gut micro-
biome of sympatric carnivores using high-throughput sequencing
of the 16S rRNA gene. This study contributes to our understand-
ing on the extent to which host characteristics contribute to the
variability of bacterial communities, from the bacterial phylum
level down to a bacterial species-like level in oligotype profiles of
shared bacterial taxa.

MATERIALS AND METHODS
SAMPLE COLLECTION AND DNA EXTRACTION
We used fecal samples collected in central Namibia by the chee-
tah research project (CRP) and the black-backed jackal project
(BBJP) of the Leibniz Institute for Zoo and Wildlife Research
(IZW) in Berlin, Germany. Amplification of bacterial DNA was
possible in 68 samples of clinically healthy free-ranging cheetahs
and 50 samples of clinically healthy free-ranging black-backed
jackals. Fecal samples from cheetahs were collected from the rec-
tum of immobilized animals during health monitoring, whereas
fecal samples from black-backed jackals were collected from the
rectum of individuals that were dissected after being shot by
local farmers or hunters as problem animals. The CRP and
the BBJP hold research permits from the Namibian Ministry of
Environment and Tourism (MET) and all work has been carried
out in accordance to the relevant regulatory standards. Samples
were kept cool in a car freezer for transport to the research sta-
tion, deep frozen in liquid nitrogen and transported to the IZW,
where they were stored at −80◦C in deep freezers.

We applied a combined approach of mechanic disruption and
enzymatic lysis of bacterial cells. Approximately 200 mg of thawed
feces were filled into a 2 ml lysis tube (Precellys SK-38) to which
1.4 ml buffer ASL (QIAamp Mini Stool Kit) was added. A pre-
cellys homogenizer was used to homogenize individual samples
(2 × 5200 rpm for 20 s with 10 s pause). After the centrifugation
of the fecal suspension, 1.2 ml of the supernatant was used to pro-
ceed with the isolation as recommended by the QIAamp Mini
Stool Kit protocol (Qiagen, Hilden, Germany). This kit contains
an Inhibitex tablet that absorbs PCR inhibitors which often cause
problems when amplifying DNA from fecal isolates. All handling
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material (sterile scraper and plate, gloves etc.) was exchanged after
each single preparation and the workbench was sterilized before
the next extraction.

16S rDNA LIBRARY PREPARATION AND SEQUENCING
16S rDNA libraries for cheetahs and black-backed jackals were
prepared independently but following the same protocol. We
used the approach and the chemistry of Fluidigm (Access
Array™ System for Illumina Sequencing Systems, ©Fluidigm
Corporation) in which PCR and barcoding occur simultane-
ously. The primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′)
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) which target
a 291 bp-fragment of the hypervariable V4 region of the 16S
rRNA gene were used for amplification (Caporaso et al., 2012;
Kuczynski et al., 2012). These primers had to be modified accord-
ing to the Fluidigm protocol and thus were tagged with sequences
(CS1 forward tag and CS2 reverse tag) which were complemen-
tary to the respective forward or reverse access array barcode
primers for Illumina. Final concentrations for the 10 µl target
specific 4-primer amplicon tagging reaction were 10 ng/µl DNA,
1X FastStart PCR grade nucleotide mix buffer without MgCl2
(Roche), 4.5 mM MgCl2 (Roche), 200 µM of each PCR grade
nucleotide (Roche), 0.05 U/µl FastStart high fidelity enzyme
blend (Roche), 1X access array loading reagent (Fluidigm),
400 nM access array barcode primers for Illumina (Fluidigm), 5%
DMSO (Roche), 2.4% PCR certified water and 50 nM target spe-
cific primers (TS-515F and TS-806R). In a standard PCR machine
we ran the samples as described in the manufacture’s protocol
(Access Array®, Fluidigm 2012, San Francisco, USA). All indi-
vidually barcoded samples were subsequently purified using SPRI
Based Size Selection (Beckman Coulter Genomics, Brea, CA) with
a 1:1 ratio of amplicons to beads and quantified with the Quant-
iT™ PicoGreen® kit (Invitrogen/Life Technologies, Green Islands,
NY). We then pooled all samples with an equal amount of 15 ng of
DNA and diluted the pool down to 8 nM in hybridization buffer.
Finally, the libraries were sequenced in two different paired-end
runs on Illumina® MiSeq.

BIOINFORMATICS
We applied the same basic bioinfomatic pipeline to all demul-
tiplexed reads from 68 cheetahs and 50 black-backed jackals.
Initially, paired-end reads were merged using FLASH (Magoè
and Salzberg, 2011) and primers were cut with the software
cutadapt (Martin, 2011). Then, we performed a quality fil-
tering (Q30) and converted fastq-files to fasta-files using the
FASTX-Toolkit (FASTX-Toolkit)1 . Subsequently, all individual
fasta-files were merged into a single file and used as a starting
point for downstream analyses in the “Quantitative Insights Into
Microbial Ecology” (QIIME) software package (Caporaso et al.,
2010b). Reads were checked for chimera using the UCHIME algo-
rithm implemented in USEARCH 6.1. Afterwards, reads were
pre-clustered at 60% identity against the reference data base
using PyNast (Caporaso et al., 2010a). Any reads that failed to
hit were discarded. For designation of OTUs, we followed the

1Available online at: http://hannonlab.cshl.edu/fastx_toolkit/index.html by
Hannon Lab.

generally accepted similarity threshold of 97% (Muegge et al.,
2011; Caporaso et al., 2012; Bermingham et al., 2013) and applied
an open-reference OTU-picking approach using the USEARCH
algorithm (Edgar, 2010; Edgar et al., 2011). Thus, besides
OTUs which consisted of reads that were clustered against the
Greengenes database (version 13.5, http://greengenes.lbl.gov),
the remaining reads were clustered into OTUs de novo because
they did not hit the reference sequence collection. Subsequently,
singletons were removed and taxonomy was assigned using the
ribosomal database project (RDP) classifier with a minimum con-
fidence to record assignment set at 0.8 (Wang et al., 2007). Finally,
reads were cleaned of any non-bacterial ribosomal reads. Alpha
diversity for cheetahs and black-backed jackals was calculated on
sub-samples of 8000 reads per individual to eliminate the differ-
ences in sequencing effort between species and individuals. We
calculated (1) the OTU abundance, (2) the Shannon index, which
is widely used to calculate diversity based on the number of dif-
ferent data categories and their respective abundance in a data
set (Shannon and Weaver, 1949; Spellerberg and Fedor, 2003),
and (3) phylogenetic diversity (PD), which is the sum of the
branch lengths for all taxa that are part of a given sample (Faith,
1992). We compared alpha diversity measures between cheetahs
and black-backed jackals using the Wilcoxon rank sum test. To
estimate to which extent the total alpha diversity of an individ-
ual was sampled, we plotted the accumulation of Shannon index
and PD against sampling effort (number of reads) for each indi-
vidual (Supplementary Figure 1). Because some bacterial taxa
were only present in cheetahs and others only in black-backed
jackals we tested whether the proportions of taxa differed sig-
nificantly between the two species using a Kolmogorov-Smirnov
(K-S) test with 1000 bootstraps to calculate the p-value [“ks.boot”
function in R package “Matching” (Sekhon, 2011)]. The K-S test
only compares the similarity in sample diversity but does not
account for community composition. Therefore, we calculated
beta diversity on a subset (8000 reads) of each cheetah and black-
backed jackal microbiome using the unweighted UniFrac metric
(Lozupone and Knight, 2005; Lozupone et al., 2011) and applied
a PERMANOVA approach (“adonis” in R package “vegan”). We
tested the significance of the differences in community composi-
tion with a permutation test with 1000 permutations. In addition,
we calculated the mean Bray-Curtis distance in cheetahs and
black-backed jackals separately (Bray and Curtis, 1957).

We applied oligotyping on all reads which were
assigned to a bacterial taxon that was shared between
cheetahs and black-backed jackals (Bacteroides, Blautia,
Clostridium, Collinsella, Dorea, Enterococcus, [Eubacterium],
Lactobacillus, Megamonas, Parabacteroides, Peptococcus,
Peptostreptococcus, Phascolarctobacterium, [Prevotella],
Ruminococcus, [Ruminococcus], Slackia, SMB53, Streptococcus,
Sutterella). Because most reads assigned to Enterobacteriaceae
and Fusobacteriaceae were not resolved any better, they were
extracted from the family level. To compare oligotype profiles
between cheetahs and black-backed jackals, we pooled reads
of shared bacterial taxa according to host species for further
analyses. Taxa in squared brackets such as [Ruminococcus] are
recommended groupings by Greengenes database managers
based on whole genome phylogeny. However, they are not
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officially recognized groupings according to Bergey’s manual of
determinative bacteriology (Bergey et al., 1975) based on phys-
iochemical and morphological traits. Reads were aligned against
the Greengenes “core_set_aligned.fasta.imputed” alignment
using PyNAST (Caporaso et al., 2010a). We stripped common
gaps from each alignment and rarefied both samples (cheetah
and black-backed jackal) within each alignment depending on
the maximum shared sequence abundance. Subsequently, we
conducted the entropy analysis which is based on the Shannon
entropy for each base position in the alignment. Oligotyping
(version 0.96; http://oligotyping.org) was performed using as
many highly variable base positions as necessary to resolve all
oligotypes in a bacterial taxon. If a taxon had 200,000–50,000
reads per sample (cheetah and black-backed jackal), an oligotype
was considered true if it occurred in more than 1% of all reads
(a = 1), if the most abundant unique sequence occurred at a
minimum of 50 reads (M = 50) and if the minimum actual
abundance of an oligotype in both samples was more than
500 reads (A = 500). For taxa that had less reads per sample
(50,000-30,000; 30,000-10,000; 10,000-750) we downsized the
M-value (25; 10; 5) and the A-value (250; 50; 10), respectively. In
addition, we applied oligotyping also on the individual level to all
bacterial taxa for which oligotype profiles were ≥75% dissimilar
in the between-species comparison. We excluded Lactobacillus,
Megamonas, and Parabacteroides from this analysis due to the
limited number of host individuals which contributed to this
bacterial taxon. Because sequencing depth differed between
host species and proportions of bacterial taxa differed naturally
between individuals, parameters for oligotyping on the individual
level differed from the between-species comparison. In order to
treat all samples equally, we only applied the minimum percent
abundance parameter (a = 5%, A = 0, M = 0).

We tested whether the number of oligotypes differed signif-
icantly between cheetahs and black-backed jackals by compar-
ing the numbers of oligotypes found for each species and for
each taxon against each other, again using the ks.boot func-
tion (R-package “Matching”; 1000 bootstraps). Furthermore, we
measured the dissimilarity in oligotype profiles as the average
proportion of reads that differed between cheetahs and black-
backed jackals across oligotypes for each bacterial taxon. We then
tested whether these average proportions differed between chee-
tahs and black-backed jackals using a permutation test where
we compared observed average proportions to those obtained by
randomly assigning each sequence to either one or the other car-
nivore species with the same probability (0.5). For visualization
of heatmap, alpha diversity measures and oligotype barplots we
used the packages “phyloseq” (McMurdie and Holmes, 2013) and
“ggPlot2” (Wickham, 2009) in R. The principal coordinate analy-
sis (PCoA) plot was produced in QIIME (Caporaso et al., 2010b).
All statistical analyses were conducted in R 3.0.2 (R Core Team,
2013). Sequencing data is deposited at the Sequence Read Archive
(SRA) under the accession number SRP044660.

RESULTS
Initially, our next generation sequencing approach of the hyper-
variable V4 region of the 16S rRNA gene provided 6,117,462 reads
for 68 cheetahs and 1,757,276 for 50 black-backed jackals. The

number of reads was higher in cheetahs because black-backed
jackals were sequenced together with other projects in one
Illumina MiSeq run which decreased the number of reads per
sample. To account for this bias in number of reads between the
two species, all diversity estimates were calculated based on a sub-
sampling of 8000 reads per individual. After all initial quality
filtering steps were applied to prepare reads for further analyses
in QIIME, we proceeded with 5,339,319 reads (87.3%) for chee-
tahs and 1,344,632 reads (76.5%) for black-backed jackals with an
average read length of 252 bp. The open-reference OTU picking
resulted in 4033 OTUs which consist of reads that were clustered
against the Greengenes database. In addition, 16,271 OTUs were
picked de novo because associated reads did not hit the reference
sequence collection. Rarefaction analyses based on the Shannon
index and PD revealed that the sequencing effort was sufficient to
describe and compare bacterial communities within and between
the two species (Supplementary Figure 1).

Some reads could not be assigned to a phylum and thus
remained on the kingdom level of bacteria (0.5% reads of chee-
tahs and 0.3% reads of black-backed jackals). Basically, cheetahs
and black-backed jackals had the same most abundant (>0.2%)
bacterial phyla (Figure 1). Cyanobacteria and Tenericutes were
only represented in the black-backed jackal with propor-
tions ≥0.1% (0.2 and 0.1%, respectively). Differences in propor-
tions of bacterial phyla were pronounced between the species
for Actinobacteria (15.5% cheetah vs. 3.8% black-backed jack-
als), Bacteroidetes (5.8% cheetah vs. 26.1% black-backed jack-
als) and Firmicutes (56.2% cheetah vs. 40.5% black-backed
jackals). Cheetahs and black-backed jackals had these phyla
in common with domestic cats, dogs, and other carnivores
(Table 1).

Bacterial reads of both species were assigned to 74 taxa with
some being present in either one or both species with a pro-
portion ≥0.1% at the finest resolution (Supplementary Table 1).
Out of these, the black-backed jackal was represented in 68 taxa,
whereas the cheetah was represented in only 42 taxa. Overall, the
two species shared 37 taxonomic assignments (Supplementary
Table 1). On the genus level, Clostridium (24.5%), Collinsella
(12.2%), and Blautia (8.9%) were the taxa with the highest pro-
portions in cheetahs, whereas in black-backed jackals Bacteroides
(15.1%), Clostridium (9.2%), and Fusobacterium (8.4%) had the
highest proportions.

To determine whether cheetahs and black-backed jackals can
be distinguished from each other based on the diversity of their
bacterial communities, we calculated alpha diversity using OTU
abundance, Shannon index and PD (Figure 2). OTU abundance
was higher in black-backed jackals than in cheetahs (Wilcoxon
rank sum test: W = 111.5, p < 0.001), black-backed jackals had
a more diverse bacterial community than cheetahs as revealed
by the Shannon index (W = 141, p < 0.001) and bacterial com-
munities were ecologically more diverse when incorporating
information on bacterial phylogeny (W = 38, p < 0.001). Also,
the proportions of bacterial taxa between cheetahs and black-
backed jackals were significantly different (ks.boot test (1000
permutations): D = 0.35, p < 0.01). Beta diversity calculated
using the UniFrac metric, which also incorporates bacterial
taxonomy, revealed a strong discrimination between the two
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FIGURE 1 | Heatmap of 16S rRNA gene reads assigned to taxonomy on

the bacterial phylum level. The color encodes the abundance of OTUs
(log-scale of base 4) allocated to a specific phylum. Each column represents

data of an individual black-backed jackal (left) or cheetah (right) based on a
sub-sampling of 8000 reads per individual. The two species are similar in
their phylum profiles and share all phyla with proportions above 0.2%.

Table 1 | Proportions (%) of dominant phyla present in domestic cats (cat 1: Tun et al., 2012; cat 2: Handl et al., 2011), free-ranging Iberian lynx

(Lynx pardinus, Alcaide et al., 2012) and captive cheetahs (Becker et al., 2014), domestic dogs (K9BP dog and K9C dog: Swanson et al., 2010;

dog: Handl et al., 2011) and free-ranging wolf (Canis lupus, Zhang and Chen, 2010) and profiles for cheetah (red) and black-backed jackal (red)

of this study.

Phylum Cat 1 Cat 2 Lynx Captive Cheetah K9BP K9C Dog Wolf Black-backed

cheetahs dog dog jackal

Bacteroidetes/chlorobi group 67.54 NA NA NA NA 37.67 36.75 NA NA NA

Firmicutes 12.98 92.10 43.25 94.70 56.20 34.72 30.52 95.36 60.00 40.50

Proteobacteria 5.85 0.00 4.27 0.40 4.20 13.08 15.26 0.00 9.20 6.90

Fusobacteria 0.68 0.04 10.45 0.60 18.10 7.13 8.64 0.30 9.20 21.80

Bacteroidetes 8.68 0.45 39.43 0.00 5.80 3.14 4.47 2.25 16.90 26.10

Actinobacteria 1.16 7.31 1.78 4.30 15.50 1.01 1.00 1.81 4.60 3.80

FIGURE 2 | Alpha diversity measures based on the rarefaction of 8000 reads revealed that black-backed jackals are significantly more diverse than

cheetahs for OTU abundance, Shannon index and phylogenetic diversity (Wilcoxon rank sum test: all p < 0.001).
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FIGURE 3 | Principal coordinate analysis (PCoA) plot of cheetahs (blue)

and black-backed jackals (red) based on unweighted UniFrac metric.

The two host species differ significantly in their bacterial communities
[PERMANOVA: R2 = 0.74, F(1, 116) = 337, 02, p < 0.001].

species [Figure 3; PERMANOVA: R2 = 0.74, F(1, 116) = 337,02,
p < 0.001]. The three axes of the three-dimensional PCoA plot
based on UniFrac distance measures explained more than 30%
of the variation in the data set. The Bray-Curtis distance matrix
revealed that cheetahs were less similar among each other than
black-backed jackals (mean Bray-Curtis similarity indices for
cheetahs = 34, for black-backed jackals = 40).

Oligotyping of bacterial reads extracted from 20 shared gen-
era and two shared families (Figure 4) revealed differences in
representative oligotypes and oligotype diversity between chee-
tahs and black-backed jackals (Table 2, Supplementary Table 2).
Collinsella and Lactobacillus were the genera with the lowest and
highest number of oligotypes, respectively, in both species. In
general, black-backed jackals had a higher number of oligotypes
for 12 out of 22 taxa, particularly in Blautia and Megamonas.
Only in the genera [Eubacterium] and Phascolarctobacterium
cheetahs carried a higher number of oligotypes. In Clostridium,
Enterococcus, Enterobacteriaceae, Fusobacteriaceae, Peptococcus,
Peptostreptococcus, [Ruminococcus], and Sutterella the number of
oligotypes were identical in both species. Within each genus and
within the two families of bacteria the proportions of shared olig-
otypes varied substantially between cheetahs and black-backed
jackals, and some oligotypes were exclusively found in one
species (Supplementary Figure 2). In 60% of cases the oligo-
type with the highest proportion was different for both species
(Supplementary Figure 2). Overall, the distribution of number
of oligotypes per taxon did not differ significantly between chee-
tahs and black-backed jackals [K-S test (1000 permutations):
D = 0.18, p = 0.69]. The observed differences in proportions
of oligotypes between the two species strongly varied between
bacterial taxa (Figure 5). The genus Slackia exhibited the high-
est oligotype differences, whereas the family Enterobacteriaceae

FIGURE 4 | Proportions of bacterial taxa which were present in both

the cheetah and the black-backed jackal with proportions ≥0.1%

(pooled on host species level) at the finest taxonomic resolution.

Oligotyping was performed on all 20 bacterial genera and the two bacterial
families to resolve the within taxon variation of bacteria between host
species on a bacterial species-like level.

only showed a weak differentiation between the host species.
Observed differences differed strongly from a random assign-
ment of oligotypes to cheetah and black-backed jackal within
each bacterial taxon (Figure 5; randomization test: p < 0.001).
When we applied the oligotyping approach on the level of chee-
tah and black-backed jackal individuals, results were in line with
the species-level comparison and individuals exhibited strong
differences in oligotype profiles according to species identity
(Figure 6). Nevertheless, results from oligotyping on the level of
species and individuals are only comparable in a qualitative but
not in a quantitative way due to differences in the data sets and
parameters which were used for oligotyping.

DISCUSSION
Gut-associated microbial communities of two free-ranging
Namibian carnivore species vary increasingly from the bacterial
phylum level down to the bacterial species-like level of oligotypes.
In general, most bacterial phyla to which reads were assigned were
shared among both species, whereas the phyla Cyanobacteria and
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Table 2 | Oligotyping results for the cheetah and the black-backed jackal for shared bacterial genera and families.

Taxon Initial reads/ Reads after filter OT in OT in Number of Base positions required

after filter cheetah/jackal cheetah jackal shared OT to resolve OT

GENUS

Bacteroides 400,000/285,663 154,366/131,297 16 17 16 30

Blautia 99,000/81,059 41,554/39,505 6 17 6 21

Clostridium 246,200/219,461 109,061/110,400 12 12 12 9

Collinsella 75,800/73,271 36,696/36,575 5 6 5 5

Dorea 35,000/29,436 14,862/14,574 10 12 7 15

Enterococcus 3100/2606 1295/1311 10 10 10 16

[Eubacterium] 6000/5418 2755/2663 11 9 7 13

Lactobacillus 12,000/9719 5151/4568 17 19 12 20

Megamonas 1500/1231 633/598 4 10 4 14

Parabacteroides 8600/6539 3363/3176 13 16 12 35

Peptococcus 39,000/36,792 18,237/18,555 9 9 9 5

Peptostreptococcus 13,200/12,508 6233/6275 10 10 10 8

Phascolarctobacterium 74,000/64,533 31,905/32,628 10 8 8 17

[Prevotella] 6300/5157 2682/2475 14 15 14 15

Ruminococcus 10,700/9255 4700/4485 6 9 6 25

[Ruminococcus] 89,400/78,556 40,974/37,582 10 10 10 10

SMB53 3300/2756 1385/1371 11 12 11 14

Slackia 18,000/16,058 8458/7627 9 10 4 15

Streptococcus 5400/5168 2605/2563 7 11 6 7

Sutterella 31,800/29,494 14,810/14,684 8 8 8 9

FAMILY

Enterobacteriaceae 31,859/31,642 24,430/24,264 7 7 7 4

Fusobacteriaceae 581,800/497,644 263,944/233,700 15 15 15 16

Reads were extracted from the respective bacterial taxon to which they were assigned to and sub-sampled according to the maximum number of shared reads.

After filtering, the remaining reads were used for oligotyping with the minimum number of base positions required to resolve all oligotypes (OT) in both samples.

FIGURE 5 | Dissimilarity in oligotype profiles for each bacteria taxon

shared between cheetahs and black-backed jackals. Observed
dissimilarities are ranked from highest (top) to lowest differences (bottom).
The vertical lines in each horizontal bar represent the 95% quantile above
which differences between the observed and randomized dissimilarities
become statistically significant. All observed dissimilarities were higher
than randomized ones (p < 0.001).

Tenericutes were only present in black-backed jackals with pro-
portions ≥0.1%. The phylum Tenericutes, especially the genus
Mollicutes, comprises many parasitic bacteria (e.g., Mycoplasma
canis) which can cause urogenital tract diseases (Chalker, 2005;
Waltzek et al., 2012). Cyanobacteria are present in many terres-
trial habitats but they are also very abundant in aquatic habitats
(Stanier and Bazine, 1977). Thus, black-backed jackals might
carry a higher proportion of Cyanobacteria because they also
feed on amphibians (Walton and Joly, 2003). In addition, the
proportions of shared bacterial genera were different between
the two species. Black-backed jackals had higher proportions
of Bacteroides and [Prevotella] than cheetahs. These two gen-
era are known to be influenced by the diet (David et al., 2013).
Bacteroides is associated with animal protein, several amino acids
and saturated fats, whereas Prevotella is associated with hemicelu-
lose and simple carbohydrates (Wu et al., 2011). Thus, the
omnivorous diet of black-backed jackals requires a higher pro-
portion of Prevotella to digest also plant material. In contrast,
cheetahs would be expected to harbor a higher proportion of
Bacteroides because of their strict carnivorous diet, yet this was
not the case in our study. Furthermore, the proportions of the
genera Blautia, Clostridium, Megamonas, and Peptostreptococcus
increased when hosts fed on a diet with high fat contents com-
pared to a diet with low fat contents (Bermingham et al., 2013).
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FIGURE 6 | Oligotype profiles for each cheetah and black-backed

jackal individual for shared bacterial taxa which were ≥75%

dissimilar in the species level comparison. Lactobacillus,
Megamonas, and Parabacteroides are excluded from this analysis
due to the limited number of host individuals which contributed to

this bacterial taxon. Colors of bars within but not between
bacterial taxa reflect the same oligotype and the respective
proportion present in each individual. Black bars show the
proportions of reads that were assigned to each bacterial taxon
for every individual.

This relationship was reversed for Lactobacillus spp. which are
usually seen as a beneficial group of microbes supporting nutrient
acquisition in herbivores (Famularo et al., 2005). In the present
study, Lactobacillus had a higher proportion in the omnivorous
black-backed jackal, whereas the other mentioned genera had
higher proportions in the cheetah. Thus, our findings suggest that

a strictly carnivorous diet leads to a higher fat intake than an
omnivorous diet.

Microbiomes of cheetahs and black-backed jackals share some
characteristics with microbiomes of domestic cats and dogs
(Swanson et al., 2010; Handl et al., 2011; Tun et al., 2012)
and other mammals (Ley et al., 2008; Zhang and Chen, 2010;
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Alcaide et al., 2012). The microbiomes differ mainly in pro-
portions of phyla rather than differences in diversity (Table 1).
In one of the first studies on gut-microbial communities using
454 next-generation sequencing in domestic cats and dogs, the
phylum with the highest proportions was Firmicutes followed
by Actinobacteria in cats and Bacteroidetes in dogs (Handl
et al., 2011). Black-backed jackals harbor the same taxa in
high proportions as dogs, whereas for cheetahs the second
most abundant phylum was Fusobacteria followed closely by
Actinobacteria. When looking at a higher taxonomic resolution,
cheetahs and black-backed jackals shared the same genera (Slackia
and Collinsella) within the phylum Actinobacteria which was also
true for domestic dogs but not for domestic cats that carried
Eggerthella and Olsenella (Handl et al., 2011). To our knowledge,
only two studies focused on the microbiomes of free-ranging
wildlife species belonging to the feline (Alcaide et al., 2012) and
canine family (Zhang and Chen, 2010). These studies investi-
gated the gut-bacterial communities of free-ranging Iberian lynx
(Lynx pardinus) and free-ranging wolf (Canis lupus), respec-
tively. Cheetahs and Iberian lynx both have high proportions of
the phylum Firmicutes (56.20 vs. 43.25%) and similar propor-
tions for the phylum Proteobacteria (4.20 vs. 4.27%). However,
differences were quite pronounced for Fusobacteria (18.10 vs.
10.45%), Bacteroides (5.80 vs. 39.43%) and Actinobacteria (15.50
vs. 1.78%). Gut-bacterial communities of two captive cheetahs
analyzed with 16S rRNA gene clone libraries (Becker et al., 2014)
were very different from bacterial communities of free-ranging
cheetahs in our study. Captive cheetahs had high proportions
of Firmicutes (94.7 vs. 56.2% in free-ranging cheetahs) and low
proportions of, e.g., Fusobacteria (0.6 vs. 18.1%). In contrast,
black-backed jackals and free-ranging wolves exhibited similar
ranks for bacterial phyla. Nevertheless, proportions also differed
between Firmicutes (40.50 vs. 60.00%), Fusobacteria (21.80 vs.
9.20%) and Bacteroides (26.10 vs. 16.90%). Although these find-
ings might be biased to some extent by the varying extraction and
sequencing methods and differences in samples sizes, they reveal
large variation in bacterial proportions already at the phylum
level.

Comparisons between cheetahs and black-backed jackals using
the alpha diversity measures OTU abundance, Shannon index and
PD revealed that black-backed jackals had higher alpha diversities
for all measures. Also, beta diversity measures based on UniFrac
and Bray-Curtis distance clearly discriminated bacterial diver-
sity according to host species. The microbial community in the
black-backed jackal needs to achieve digestion of prey items from
various sources ranging from meat to plant material, whereas bac-
teria in cheetahs are confronted with a much more restricted diet.
In addition, the social system of black-backed jackals and their
foraging behavior favors the exchange of bacteria via contact with
conspecifics and intake of bacteria from carcasses (Walton and
Joly, 2003; VanderWaal et al., 2013). The fact that cheetahs use
a larger territory promoting microbial intake from a wide range
of habitat types seems to be of minor impact compared to the
factors that drive bacterial diversification in black-backed jackals.
Although evidence exists that individuals exhibit different micro-
biomes in geographically distant habitats, differences have only
been demonstrated for within-species comparisons (Fallani et al.,

2010; Linnenbrink et al., 2013). When looking at between-species
differences, environmental factors are difficult to distinguish from
other factors such as host phylogeny, behavior or diet (Ley et al.,
2008; Phillips et al., 2012).

Assignment of taxonomy to bacterial OTUs is a common
approach to investigate bacterial taxa present in samples of inter-
est. Nevertheless, due to the restrictions in resolution and richness
of bacterial databases, assignments are rarely better than genus
level. To resolve bacteria within the same genus between host
species requires a higher taxonomic resolution. We have achieved
this by oligotyping reads extracted from shared bacterial taxa in
cheetahs and black-backed jackals. Thereby, we revealed a strong
association and differentiation of oligotypes according to host
species which was not explained by the OTU-clustering approach.
Some genera exhibited strong differences in oligotype profiles,
whereas others were similar with changes only in proportions
of oligotypes. These differences in oligotypes might be due to
a co-evolutionary fine-tuning of some genera according to the
digestive requirements of the host (Ley et al., 2008). Alternatively,
they may reflect the bacterial “speciation” in an enclosed host sys-
tem in which almost no genetic exchange exists with the respective
bacteria in another host species. Although oligotypes are differ-
ent between the two carnivores, a functional redundancy might
enable them to possess similar microbial genes and metabolic
pathways (Suchodolski et al., 2009; Muegge et al., 2011). In
most taxa one oligotype accounted for the majority of bacterial
reads, which demonstrates that the diversity of genera might be
more important for the digestive requirements of a host than the
bacterial diversity within a genus.

CONCLUSION
Oligotyping in our study revealed gut microbiome differences
between the cheetah and the black-backed jackal at a high tax-
onomic resolution. As a technique, oligotyping encompasses the
limitation of the OTU approach by decomposing bacterial OTUs
or taxa by minimizing the entropy within a group of reads down
to a single base. Thus, resolved oligotypes act as proxies for
bacterial species and thereby increase the amount of in-depth
information that can be extracted from short sequencing reads of
the 16S rRNA gene. By applying this new approach in conjunction
with the OTU clustering approach we described similarities and
differences between these two carnivore species from the bacte-
rial phylum down to the species-like level of oligotypes. Cheetahs
exhibited a lower bacterial diversity than black-backed jackals
indicating that the size of home ranges is less important in shap-
ing the microbiome of a host than the respective diet, foraging
behavior and social system.

AUTHOR CONTRIBUTIONS
Conceived and designed the experiments: Sebastian Menke,
Simone Sommer. Performed the experiments: Sebastian Menke,
Matthias Meier, Wasimuddin. Field logistic and sample collec-
tion: Sebastian Menke, Matthias Meier, Jörg Melzheimer, Sonja
Heinrich, Susanne Thalwitzer, Bettina Wachter, John K. E. Mfune.
Analyzed the genomic data: Sebastian Menke. Statistical analy-
sis: Sebastian Menke. Wrote the paper: Sebastian Menke drafted
the manuscript, Simone Sommer, Bettina Wachter, Wasimuddin

www.frontiersin.org October 2014 | Volume 5 | Article 526 | 106

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Microbiology/archive


Menke et al. Oligotyping microbiomes of sympatric carnivores

critically reviewed the manuscript. All authors read and approved
the final manuscript.

ACKNOWLEDGMENTS
We would like to thank the German Research Foundation
(DFG; SO 428/10-1), the Messerli Foundation in Switzerland
and the Leibniz Institute for Zoo and Wildlife Research
(IZW) in Germany for funding. Wasimuddin’s visit in
Simone Sommer’s lab was partly supported by the Erasmus
Lifelong Learning Programme and the Czech NextGen Project
(CZ.1.07/2.3./20.0303). We also thank the Namibian Ministry
of Environment and Tourism for permission to conduct the
research (CRP: Permits 525/2002-1689/2012; BBJP: Permits
1618/2011 and 1723/2012), A Schmidt for technical and labo-
ratorial assistance, M Allgaier (Berlin Center for Genomics in
Biodiversity Research, BeGenDiv) for advice on the sequencing
strategy, A Courtiol for statistical assistance, I Heckman for
programming helpful python scripts, O Aschenborn for sharing
his veterinary experience, B Wasiolka for valuable assistance in
the field and M Gillingham for fruitful discussions. We specially
thank the Namibian farmers and predator controllers for their
immense support and collaboration, without them, this project
would not have been possible.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fmicb.
2014.00526/abstract

REFERENCES
Alcaide, M., Messina, E., Richter, M., Bargiela, R., Peplies, J., Huws, S. A., et al.

(2012). Gene sets for utilization of primary and secondary nutrition sup-
plies in the distal gut of endangered Iberian lynx. PLoS ONE 7:e51521. doi:
10.1371/journal.pone.0051521

Amato, K. R. (2013). Co-evolution in context: the importance of studying
gut microbiomes in wild animals. Microbiome Sci. Med. 1, 10–29. doi:
10.2478/micsm-2013-0002

Amato, K. R., Yeoman, C. J., Kent, A., Righini, N., Carbonero, F., Estrada, A.,
et al. (2013). Habitat degradation impacts black howler monkey (Alouatta
pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353. doi: 10.1038/ismej.
2013.16

Becker, A. A., Hesta, M., Hollants, J., Janssens, G. P., and Huys, G. (2014).
Phylogenetic analysis of faecal microbiota from captive cheetahs reveals under-
representation of Bacteroidetes and Bifidobacteriaceae. BMC Microbiol. 14:43.
doi: 10.1186/1471-2180-14-43

Benson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J., Kim, J., et al. (2010).
Individuality in gut microbiota composition is a complex polygenic trait shaped
by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. U.S.A.
107, 18933–18938. doi: 10.1073/pnas.1007028107

Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., et al. (2011).
The intestinal microbiota affect central levels of brain-derived neurotropic
factor and behavior in mice. Gastroenterology 141, 599–609, 609.e1–3. doi:
10.1053/j.gastro.2011.04.052

Bergey, D. H., Buchanan, R. E., and Gibbons, N. E. (1975). Bergey’s Manual of
Determinative Bacteriology. Baltimore, Williams and Wilkins Co.

Bermingham, E. N., Young, W., Kittelmann, S., Kerr, K. R., Swanson, K. S., Roy, N.
C., et al. (2013). Dietary format alters fecal bacterial populations in the domestic
cat (Felis catus). Microbiologyopen 2, 173–181. doi: 10.1002/mbo3.60

Bolnick, D. I., Snowberg, L. K., Hirsch, P. E., Lauber, C. L., Org, E., Parks, B., et al.
(2014). Individual diet has sex-dependent effects on vertebrate gut microbiota.
Nat. Commun. 5, 1–13. doi: 10.1038/ncomms5500

Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan,
T. G., et al. (2011). Ingestion of Lactobacillus strain regulates emotional

behavior and central GABA receptor expression in a mouse via the vagus
nerve. Proc. Natl. Acad. Sci. U.S.A. 108, 16050–16055. doi: 10.1073/pnas.11029
99108

Bray, J. R., and Curtis, J. T. (1957). An ordination of the upland forest communities
of southern Wisconsin. Ecol. Monogr. 27, 325. doi: 10.2307/1942268

Caporaso, J. G., Bittinger, K., Bushman, F. D., DeSantis, T. Z., Andersen, G. L.,
and Knight, R. (2010a). PyNAST: a flexible tool for aligning sequences to a
template alignment. Bioinformatics 26, 266–267. doi: 10.1093/bioinformatics/
btp636

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,
Costello, E. K., et al. (2010b). QIIME allows analysis of high-throughput
community sequencing data. Nat. Methods 7, 335–336. doi: 10.1038/
nmeth.f.303

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J.,
Fierer, N., et al. (2012). Ultra-high-throughput microbial community analy-
sis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. doi:
10.1038/ismej.2012.8

Caro, T. M. (1994). Cheetahs of the Serengeti Plains: Group Living in an Asocial
Species. Chicago: University of Chicago Press.

Chalker, V. J. (2005). Canine mycoplasmas. Res. Vet. Sci. 79, 1–8. doi:
10.1016/j.rvsc.2004.10.002

Coolon, J. D., Jones, K. L., Narayanan, S., and Wisely, S. M. (2010). Microbial
ecological response of the intestinal flora of Peromyscus maniculatus and P. leu-
copus to heavy metal contamination. Mol. Ecol. 19, 67–80. doi: 10.1111/j.1365-
294X.2009.04485.x

David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E.,
Wolfe, B. E., et al. (2013). Diet rapidly and reproducibly alters the human gut
microbiome. Nature 505, 559–563. doi: 10.1038/nature12820

Delsuc, F., Metcalf, J. L., Wegener Parfrey, L., Song, S. J., González, A., and Knight,
R. (2014). Convergence of gut microbiomes in myrmecophagous mammals.
Mol. Ecol. 23, 1301–1317. doi: 10.1111/mec.12501

Eaton, T. L. (1974). The Cheetah—the Biology, Ecology, and Behavior of an
Endangered Species. New York, NY: Van Nostrand Reinhold Company.

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460–2461. doi: 10.1093/bioinformatics/btq461

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011).
UCHIME improves sensitivity and speed of chimera detection. Bioinformatics
27, 2194–2200. doi: 10.1093/bioinformatics/btr381

Eren, A. M., Borisy, G. G., Huse, S. M., and Mark Welch, J. L. (2014). Oligotyping
analysis of the human oral microbiome. Proc. Natl. Acad. Sci. U.S.A. 111,
E2875–E2884. doi: 10.1073/pnas.1409644111

Eren, A. M., Maignien, L., Sul, W. J., Murphy, L. G., Grim, S. L., Morrison, H. G.,
et al. (2013). Oligotyping: differentiating between closely related microbial taxa
using 16S rRNA gene data. Methods Ecol. Evol. 4, 1111–1119. doi: 10.1111/2041-
210X.12114

Eren, A. M., Zozaya, M., Taylor, C. M., Dowd, S. E., Martin, D. H., and Ferris, M.
J. (2011). Exploring the diversity of Gardnerella vaginalis in the genitourinary
tract microbiota of monogamous couples through subtle nucleotide variation.
PLoS ONE 6:e26732. doi: 10.1371/journal.pone.0026732

Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M., and Xavier, J. B.
(2012). Animal behavior and the microbiome. Science 338, 198–199. doi:
10.1126/science.1227412

Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biol.
Conserv. 61, 1–10. doi: 10.1016/0006-3207(92)91201-3

Fallani, M., Young, D., Scott, J., Norin, E., Amarri, S., Adam, R., et al. (2010).
Intestinal microbiota of 6-week-old infants across Europe: geographic influence
beyond delivery mode, breast-feeding, and antibiotics. J. Pediatr. Gastroenterol.
Nutr. 51, 77–84. doi: 10.1097/MPG.0b013e3181d1b11e

Famularo, G., De Simone, C., Pandey, V., Sahu, A. R., and Minisola, G.
(2005). Probiotic lactobacilli: an innovative tool to correct the malab-
sorption syndrome of vegetarians? Med. Hypotheses 65, 1132–1135. doi:
10.1016/j.mehy.2004.09.030

Goldenberg, M., Goldenberg, F., Funk, S. M., Millesi, E., and Henschel, J. (2010).
Diet composition of black-backed jackals, Canis mesomelas in the Namib desert.
Folia Zool. 59, 93–101.

Handl, S., Dowd, S. E., Garcia-Mazcorro, J. F., Steiner, J. M., and Suchodolski,
J. S. (2011). Massive parallel 16S rRNA gene pyrosequencing reveals highly
diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS
Microbiol. Ecol. 76, 301–310. doi: 10.1111/j.1574-6941.2011.01058.x

Frontiers in Microbiology | Systems Microbiology October 2014 | Volume 5 | Article 526 | 107

http://www.frontiersin.org/journal/10.3389/fmicb.2014.00526/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2014.00526/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2014.00526/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2014.00526/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2014.00526/abstract
http://www.frontiersin.org/journal/10.3389/fmicb.2014.00526/abstract
http://www.frontiersin.org/Systems_Microbiology
http://www.frontiersin.org/Systems_Microbiology
http://www.frontiersin.org/Systems_Microbiology/archive


Menke et al. Oligotyping microbiomes of sympatric carnivores

Hooper, L. V., Littman, D. R., and Macpherson, A. J. (2012). Interactions
between the microbiota and the immune system. Science 336, 1268–1273. doi:
10.1126/science.1223490

Jenner, N., Groombridge, J., and Funk, S. (2011). Commuting, territoriality and
variation in group and territory size in a black-backed jackal population reliant
on a clumped, abundant food resource in Namibia. J. Zool. 248, 231–238. doi:
10.1111/j.1469-7998.2011.00811.x

Kamler, J. F., Stenkewitz, U., Klare, U., Jacobsen, N. F., and Macdonald, D.
W. (2012). Resource partitioning among cape foxes, bat-eared foxes, and
black-backed jackals in South Africa. J. Wildl. Manag. 76, 1241–1253. doi:
10.1002/jwmg.354

Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., and Gordon, J. I. (2011).
Human nutrition, the gut microbiome and the immune system. Nature 474,
327–336. doi: 10.1038/nature10213

Koch, H., and Schmid-Hempel, P. (2011). Socially transmitted gut microbiota pro-
tect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. U.S.A. 108,
19288–19292. doi: 10.1073/pnas.1110474108

Kuczynski, J., Lauber, C. L., Walters, W. A., Parfrey, L. W., Clemente, J. C., Gevers,
D., et al. (2012). Experimental and analytical tools for studying the human
microbiome. Nat. Rev. Genet. 13, 47–58. doi: 10.1038/nrg3129

Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J.
S., et al. (2008). Evolution of mammals and their gut microbes. Science 320,
1647–1651. doi: 10.1126/science.1155725

Linnenbrink, M., Wang, J., Hardouin, E. A., Künzel, S., Metzler, D., and Baines,
J. F. (2013). The role of biogeography in shaping diversity of the intestinal
microbiota in house mice. Mol. Ecol. 22, 1904–1916. doi: 10.1111/mec.12206

Lozupone, C., and Knight, R. (2005). UniFrac: a new phylogenetic method for com-
paring microbial communities. Appl. Environ. Microbiol. 71, 8228–8235. doi:
10.1128/AEM.71.12.8228-8235.2005

Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., and Knight, R. (2011).
UniFrac: an effective distance metric for microbial community comparison.
ISME J. 5, 169–172. doi: 10.1038/ismej.2010.133

Magoè, T., and Salzberg, S. L. (2011). FLASH: fast length adjustment of short reads
to improve genome assemblies. Bioinformatics 27, 2957–2963. doi: 10.1093/
bioinformatics/btr507

Marker, L. L., Dickman, A. J., Mills, M. G., Jeo, R. M., and Macdonald, D. W. (2008).
Spatial ecology of cheetahs on north-central Namibian farmlands. J. Zool. 274,
226–238. doi: 10.1111/j.1469-7998.2007.00375.x

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet. J. 17, 10–12. doi: 10.14806/ej.17.1.200

McKenna, P., Hoffmann, C., Minkah, N., Aye, P. P., Lackner, A., Liu, Z., et al.
(2008). The macaque gut microbiome in health, lentiviral infection, and chronic
enterocolitis. PLoS Pathog 4:e20. doi: 10.1371/journal.ppat.0040020

McLellan, S. L., Newton, R. J., Vandewalle, J. L., Shanks, O. C., Huse, S. M.,
Eren, A. M., et al. (2013). Sewage reflects the distribution of human fae-
cal Lachnospiraceae. Environ. Microbiol. 15, 2213–2227. doi: 10.1111/1462-
2920.12092

McMurdie, P. J., and Holmes, S. (2013). Package “phyloseq.” Available online
at: http://bioconductor.fhcrc.org/packages/2.13/bioc/manuals/phyloseq/man/
phyloseq.pdf [Accessed November 26, 2013].

Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., Gonzalez, A., Fontana, L.,
et al. (2011). Diet drives convergence in gut microbiome functions across mam-
malian phylogeny and within humans. Science 332, 970–974. doi: 10.1126/sci-
ence.1198719

Nelson, T. M., Rogers, T. L., Carlini, A. R., and Brown, M. V. (2013). Diet and
phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild
and captive animals. Environ. Microbiol. 15, 1132–1145. doi: 10.1111/1462-
2920.12022

Ochman, H., Worobey, M., Kuo, C.-H., Ndjango, J.-B. N., Peeters, M., Hahn,
B. H., et al. (2010). Evolutionary relationships of wild hominids recapitu-
lated by gut microbial communities. PLoS Biol. 8:e1000546. doi: 10.1371/jour-
nal.pbio.1000546

Phillips, C. D., Phelan, G., Dowd, S. E., McDonough, M. M., Ferguson, A. W.,
Delton Hanson, J., et al. (2012). Microbiome analysis among bats describes
influences of host phylogeny, life history, physiology and geography. Mol. Ecol.
21, 2617–2627. doi: 10.1111/j.1365-294X.2012.05568.x

R Core Team. (2013). R: A Language and Environment for Statistical Computing.
Vienna, Austria: R foundation for statistical computing. Available online at:
http://www.R-project.org

Schloissnig, S., Arumugam, M., Sunagawa, S., Mitreva, M., Tap, J., Zhu, A., et al.
(2012). Genomic variation landscape of the human gut microbiome. Nature
493, 45–50. doi: 10.1038/nature11711

Schwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B., and Gänzle, M.
(2011). Diet and environment shape fecal bacterial microbiota composition and
enteric pathogen load of grizzly bears. PLoS ONE 6:e27905. doi: 10.1371/jour-
nal.pone.0027905

Sekhon, J. S. (2011). Multivariate and propensity score matching software with
automated balance optimization: the matching package for R. J. Stat. Softw.
42, 1–52.

Sekirov, I., Russell, S. L., Antunes, L. C. M., and Finlay, B. B. (2010). Gut
microbiota in health and disease. Physiol. Rev. 90, 859–904. doi: 10.1152/phys-
rev.00045.2009

Shannon, C. E., and Weaver, W. (1949). The Mathematical Theory of
Communication. Urbana: The University of Illinois Press.

Spellerberg, I. F., and Fedor, P. J. (2003). A tribute to Claude Shannon (1916–
2001) and a plea for more rigorous use of species richness, species diversity
and the “Shannon–Wiener” Index. Glob. Ecol. Biogeogr. 12, 177–179. doi:
10.1046/j.1466-822X.2003.00015.x

Spor, A., Koren, O., and Ley, R. (2011). Unravelling the effects of the environment
and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290. doi:
10.1038/nrmicro2540

Stanier, R. Y., and Bazine, G. C. (1977). Phototrophic prokaryotes: the cyanobac-
teria. Annu. Rev. Microbiol. 31, 225–274. doi: 10.1146/annurev.mi.31.100177.
001301

Suchodolski, J. (2011). Intestinal microbiota of dogs and cats: a bigger world
than we thought. Vet. Clin. North Am. Small Anim. Pract. 41, 261–272. doi:
10.1016/j.cvsm.2010.12.006

Suchodolski, J. S., Dowd, S. E., Westermarck, E., Steiner, J. M., Wolcott, R. D.,
Spillmann, T., et al. (2009). The effect of the macrolide antibiotic tylosin on
microbial diversity in the canine small intestine as demonstrated by massive
parallel 16S rRNA gene sequencing. BMC Microbiol. 9:210. doi: 10.1186/1471-
2180-9-210

Swanson, K. S., Dowd, S. E., Suchodolski, J. S., Middelbos, I. S., Vester, B. M., Barry,
K. A., et al. (2010). Phylogenetic and gene-centric metagenomics of the canine
intestinal microbiome reveals similarities with humans and mice. ISME J. 5,
639–649. doi: 10.1038/ismej.2010.162

Tun, H. M., Brar, M. S., Khin, N., Jun, L., Hui, R. K.-H., Dowd, S. E., et al.
(2012). Gene-centric metagenomics analysis of feline intestinal microbiome
using 454 junior pyrosequencing. J. Microbiol. Methods 88, 369–376. doi:
10.1016/j.mimet.2012.01.001

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., and
Gordon, J. I. (2006). An obesity-associated gut microbiome with increased
capacity for energy harvest. Nature 444, 1027–1131. doi: 10.1038/nature
05414

Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., and Gordon,
J. I. (2009). The effect of diet on the human gut microbiome: a metage-
nomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14. doi:
10.1126/scitranslmed.3000322

VanderWaal, K. L., Atwill, E. R., Isbell, L. A., and McCowan, B. (2013). Linking
social and pathogen transmission networks using microbial genetics in giraffe
(Giraffa camelopardalis). J. Anim. Ecol. 83, 406–414. doi: 10.1111/1365-2656.
12137

Wachter, B., Jauernig, O., and Breitenmoser, U. (2006). Determination of prey hair
in faeces of free-ranging Namibian cheetahs with a simple method. Cat. News
44, 8–9.

Walton, L. R., and Joly, D. O. (2003). Canis mesomelas. Mamm. Species 715, 1–9.
doi: 10.1644/715

Waltzek, T. B., Cortés-Hinojosa, G., Wellehan, J. F. X. Jr., and Gray, G. C. (2012).
Marine mammal zoonoses: a review of disease manifestations. Zoonoses Public
Health 59, 521–535. doi: 10.1111/j.1863-2378.2012.01492.x

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian clas-
sifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.
Appl. Environ. Microbiol. 73, 5261–5267. doi: 10.1128/AEM.00062-07

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. New York, NY:
Springer.

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.-Y., Keilbaugh, S. A.,
et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes.
Science 334, 105–108. doi: 10.1126/science.1208344

www.frontiersin.org October 2014 | Volume 5 | Article 526 | 108

http://bioconductor.fhcrc.org/packages/2.13/bioc/manuals/phyloseq/man/phyloseq.pdf
http://bioconductor.fhcrc.org/packages/2.13/bioc/manuals/phyloseq/man/phyloseq.pdf
http://www.R-project.org
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Microbiology/archive


Menke et al. Oligotyping microbiomes of sympatric carnivores

Yeoman, C. J., Chia, N., Yildirim, S., Miller, M. E. B., Kent, A.,
Stumpf, R., et al. (2011). Towards an evolutionary model of animal-
associated microbiomes. Entropy 13, 570–594. doi: 10.3390/e130
30570

Zhang, H., and Chen, L. (2010). Phylogenetic analysis of 16S rRNA gene sequences
reveals distal gut bacterial diversity in wild wolves (Canis lupus). Mol. Biol. Rep.
37, 4013–4022. doi: 10.1007/s11033-010-0060-z

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 10 June 2014; paper pending published: 09 July 2014; accepted: 21 September
2014; published online: 14 October 2014.

Citation: Menke S, Wasimuddin, Meier M, Melzheimer J, Mfune JKE, Heinrich S,
Thalwitzer S, Wachter B and Sommer S (2014) Oligotyping reveals differences between
gut microbiomes of free-ranging sympatric Namibian carnivores (Acinonyx juba-
tus, Canis mesomelas) on a bacterial species-like level. Front. Microbiol. 5:526. doi:
10.3389/fmicb.2014.00526
This article was submitted to Systems Microbiology, a section of the journal Frontiers
in Microbiology.
Copyright © 2014 Menke, Wasimuddin, Meier, Melzheimer, Mfune, Heinrich,
Thalwitzer, Wachter and Sommer. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Microbiology | Systems Microbiology October 2014 | Volume 5 | Article 526 | 109

http://dx.doi.org/10.3389/fmicb.2014.00526
http://dx.doi.org/10.3389/fmicb.2014.00526
http://dx.doi.org/10.3389/fmicb.2014.00526
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Systems_Microbiology
http://www.frontiersin.org/Systems_Microbiology
http://www.frontiersin.org/Systems_Microbiology/archive


ORIGINAL RESEARCH ARTICLE
published: 07 November 2014

doi: 10.3389/fmicb.2014.00568

Dynamics of tongue microbial communities with
single-nucleotide resolution using oligotyping
Jessica L. Mark Welch1,2*, Daniel R. Utter1,2, Blair J. Rossetti2, David B. Mark Welch1, A. Murat Eren1

and Gary G. Borisy1,2

1 Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
2 Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA

Edited by:

Angel Angelov, Technische
Universität München, Germany

Reviewed by:

Peter Bergholz, North Dakota State
University, USA
Thomas Jefferson Sharpton, Oregon
State University, USA

*Correspondence:

Jessica L. Mark Welch, Josephine
Bay Paul Center for Comparative
Molecular Biology and Evolution,
Marine Biological Laboratory, 7 MBL
Street, Woods Hole, MA 02543,
USA
e-mail: jmarkwelch@mbl.edu

The human mouth is an excellent system to study the dynamics of microbial communities
and their interactions with their host. We employed oligotyping to analyze, with
single-nucleotide resolution, oral microbial 16S ribosomal RNA (rRNA) gene sequence
data from a time course sampled from the tongue of two individuals, and we interpret
our results in the context of oligotypes that we previously identified in the oral data
from the Human Microbiome Project. Our previous work established that many of
these oligotypes had dramatically different distributions between individuals and across
oral habitats, suggesting that they represented functionally different organisms. Here
we demonstrate the presence of a consistent tongue microbiome but with rapidly
fluctuating proportions of the characteristic taxa. In some cases closely related oligotypes
representing strains or variants within a single species displayed fluctuating relative
abundances over time, while in other cases an initially dominant oligotype was replaced
by another oligotype of the same species. We use this high temporal and taxonomic
level of resolution to detect correlated changes in oligotype abundance that could indicate
which taxa likely interact synergistically or occupy similar habitats, and which likely interact
antagonistically or prefer distinct habitats. For example, we found a strong correlation
in abundance over time between two oligotypes from different families of Gamma
Proteobacteria, suggesting a close functional or ecological relationship between them.
In summary, the tongue is colonized by a microbial community of moderate complexity
whose proportional abundance fluctuates widely on time scales of days. The drivers and
functional consequences of these community dynamics are not known, but we expect
they will prove tractable to future, targeted studies employing taxonomically resolved
analysis of high-throughput sequencing data sampled at appropriate temporal intervals
and spatial scales.

Keywords: human microbiome, oral microbiota, 16S ribosomal RNA, Haemophilus, Neisseria, Streptococcus,

Veillonella

INTRODUCTION
Understanding microbial community dynamics requires knowl-
edge of the time scale over which microbial communities adapt
and change. Studies using rRNA gene-based approaches to inves-
tigate microbial communities sampled at intervals of weeks to
months found that these communities correlated to environmen-
tal conditions (Fuhrman et al., 2006; Dethlefsen et al., 2008;
Gilbert et al., 2012; Chow et al., 2013). Indications that changes
of interest may occur over shorter time scales led to studies that
sampled at daily intervals in a marine system and in the human
microbiome (Dethlefsen and Relman, 2011; Caporaso et al., 2011;
Koenig et al., 2011; Gajer et al., 2012; Martínez et al., 2013;
Needham et al., 2013; David et al., 2014). These studies estab-
lished that microbial communities are resilient, with episodic
shifts in community composition followed by reversion to pre-
vious states. Remarkably, within that overall stability, dramatic
fluctuations in community composition could occur on time
scales of the order of days.

Our understanding of microbial community dynamics at the
species level has heretofore been hindered by the use of analysis
methods that cluster sequences into operational taxonomic units
(OTUs) based on arbitrary similarity thresholds. Such methods
have the twin drawbacks that they generate heterogeneous group-
ings of limited biological relevance and that they do not make
full use of available sequence information that would allow finer
taxonomic resolution. Many described microbial species differ
by only 1 or 2% in rRNA gene sequence, yet standard analysis
methods lump them together by clustering sequences that are
more than 97% identical. A recently developed computational
method called oligotyping (Eren et al., 2013) removes this hin-
drance. Oligotyping uses a calculation of Shannon entropy to
identify nucleotide positions of high variation (i.e., high infor-
mation content) in a dataset, and employs only these positions
to partition the sequence dataset into groups called oligotypes.
It exploits all available informative data, reduces the effect of
noise, and generates homogeneous groupings in the sense that
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nearly every read assigned to an oligotype, if classified individu-
ally by BLAST, would have the same taxonomic annotation (Eren
et al., 2014). Oligotyping allows the analysis of high-throughput
sequencing datasets with single-nucleotide resolution. A differ-
ent approach that also achieves single-nucleotide resolution has
recently been reported (Tikhonov et al., 2014).

Application of oligotyping to the human oral microbiota
presents an opportunity to analyze a tractable microbial com-
munity with a level of taxonomic resolution that permits dif-
ferentiation among important species and, in favorable cases,
analysis of within-species dynamics. The human mouth is an
excellent test bed for microbiome analysis for several reasons:
it is home to a well-studied microbial community for which
a highly curated Human Oral Microbiome Database (HOMD)
(www.homd.org) has been established (Dewhirst et al., 2010);
a high proportion of the human oral microbiota have been cul-
tured (65%); fully sequenced genomes are available for many
(50%) of the oral microbiota; and, importantly, a foundation for
defining the healthy human oral microbiome has been laid by
the Human Microbiome Project (HMP) (http://commonfund.

nih.gov/hmp/index.aspx) which sampled nine oral sites from
over 200 healthy individuals and generated millions of sequences
(Human Microbiome Project Consortium, 2012).

The oral microbiota may be deconstructed into overlapping
but distinct communities. For example, the human tongue is the
substrate for an abundant microbiota different in composition
from the microbiota on the teeth and on the mucosal surfaces
of the mouth, as first indicated by distinctive distribution of a few
taxa in DNA hybridization and early sequencing studies (Mager
et al., 2003; Aas et al., 2005; Socransky and Haffajee, 2005; Zaura
et al., 2009). Analysis of the HMP data confirmed the finding of
broad differences in the microbiome of the tongue dorsum as
compared to plaque and to the surfaces of the gums, cheek and
hard palate (Segata et al., 2012).

The application of oligotyping to the HMP data for the oral
microbiome (Eren et al., 2014), in combination with habitat
analysis of oligotype distribution across nine oral sites, iden-
tified a level of ecological and functional biodiversity in the
oral microbiome not previously recognized. We identified oral
site-specialists, established correlations between sites within indi-
vidual mouths, and revealed predominance of certain oligotypes
within individuals that would not have been seen with OTU clus-
tering. Some oligotypes differing by a few nucleotides or even
as little as a single nucleotide showed strikingly different distri-
butions across oral sites or among individuals, suggesting that
even single-nucleotide differences in the 16S rRNA gene can
act as markers for underlying, biologically significant differences
elsewhere in the genome.

The HMP data provided an invaluable baseline for assess-
ing variation in the microbiome across a range of individu-
als whose health status was carefully documented. However,
this baseline represents a single “snapshot” in time from each
of the sampled individuals, meaning that the significance of
some distributional patterns of oligotypes remained unclear.
Some very closely related oligotypes, for example representing
different species of Streptococcus, were detected in the tongue
of every individual, but in widely different proportions in

different individuals; were these proportions a stable charac-
teristic of an individual’s microbiota or did they change over
time and over what time scales? Other closely related olig-
otypes apparently represented different strains within a sin-
gle species. For example, in the Neisseria flavescens/subflava
group, one or another of these oligotypes would dominate
the tongue community in an individual, making up 90% or
more of the reads of that taxon. Is one oligotype stably dom-
inant in each individual, or does the dominance relationship
fluctuate?

A time-resolved high-throughput sequencing dataset from the
tongue of two individuals (Caporaso et al., 2011) provided an
ideal opportunity to test the stability of these distributions over
time as well as to generate a more precise and unified descrip-
tion of the characteristic microbiota of the tongue. We carried
out oligotyping on this dataset and compared the resulting olig-
otypes to those detected in HMP data. Oligotyping, similar to
other de novo partitioning approaches, creates units that are
dataset-specific and not inherently comparable across datasets.
We overcame this limitation by making taxonomic assessments
for each oligotype by reference to the HOMD. This associa-
tion of oligotypes from separate datasets allowed us to apply
the insights gained from a large time-series study of two indi-
viduals to the analysis of a large cross-sectional study with
many individuals. It also provided resolution sufficient to dis-
criminate very closely-related taxa, so that for the first time we
can describe with species-level or near-species level precision
the overall composition and temporal dynamics of the tongue
microbial community.

METHODS
SAMPLE COLLECTION
This is a re-analysis of existing sequence data; procedures for
informed consent, institutional review board approval, and sam-
ple collection and sequencing are described in the original pub-
lications (Caporaso et al., 2011; The Human Microbiome Project
Consortium, 2012; Aagaard et al., 2013).

PREPARING THE SEQUENCE DATA
The study by Caporaso et al. (2011) describes in detail the sam-
ple collection, sequencing, and quality filtering of reads used in
this study. Briefly, one male and one female adult were sam-
pled approximately daily over 15 months (male) and 6 months
(female). The V4 region of the 16S rRNA gene was amplified
from tongue samples and amplicons were sequenced using the
Illumina HiSeq platform (Illumina, Inc., San Diego, CA, USA).
We obtained the quality-filtered data from MG-RAST (http://
metagenomics.anl.gov/) using sample accession IDs 4457768.3
through 4459735.3. To eliminate the artificial length variation
among reads introduced by the original quality trimming, we re-
trimmed each read to 130 nucleotides, and removed the reads
that were shorter. For each sample with >20,000 reads we ran-
domly subsampled to 20,000 reads to minimize the sampling bias
in our results. The resulting dataset contained 508 samples and a
total of 7,538,132 sequencing reads. We used GAST (Huse et al.,
2008) to assign taxonomy at the family level to each read in the
dataset.
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OLIGOTYPING
We used oligotyping pipeline version 1.0 available from http://
oligotyping.org (Eren et al., 2013) on each taxonomic fam-
ily separately. For each family, we used the auto component
command (-c) to select the two nucleotide positions with the
highest Shannon entropy, partioning each family into up to eight
groups. Groups were further divided by manually adding addi-
tional nucleotide positions (using the -C parameter) based on the
recalculated Shannon entropy and on the absolute and relative
abundance distribution among samples of the unique sequences
within a grouping. No more than 5 nucleotide positions were
added in a single iteration. The minimum substantive abun-
dance threshold for an oligotype (-M) was set to 500 reads.
Upon completion of the oligotyping analysis for each family,
we concatenated the resulting observation matrices to gener-
ate a single observation matrix reporting counts (i.e. number
of reads assigned to each oligotype in each sample). We also
converted counts to percent abundances within each sample
and used these normalized relative abundances for all analyses
except the cross-correlation analysis which was performed on the
count data. We assigned taxonomic values to each oligotype by
a BLAST search using NCBI executables (--blast-ref-db) against
the HOMD RefSeq v.12.0 obtained from www.homd.org. Each
oligotype was assigned the taxonomy of the closest match(es) in
HOMD except for the one oligotype that had no match within
90% of any sequence in HOMD.

CROSS-CORRELATION AND AUTO-CORRELATION ANALYSIS
We carried out cross-correlation analysis using Matlab R2014a
(version 8.3) using the counts matrix for each oligotype (the
number of reads assigned to each oligotype in each sample) and
using the percent matrix (the counts normalized within each sam-
ple). Results using Pearson cross-correlation are shown (Matlab
function corr); we also carried out the same analysis using
Spearman and Kendall with comparable results. Significance (p-
value) was calculated using the corr function which employs a
Student’s t distribution for a transformation of the correlation.
We used the Bonferroni correction for multiple tests by multi-
plying significance estimates by 3152 ∼= 105. Auto-correlation
analysis was carried out using the Matlab function xcorr on
percent-normalized data for the entire time course for each sub-
ject and for subsets of the male time course, and in each case was
evaluated over a window of plus or minus 21 days. Potential peri-
odicity of oligotype abundance was analyzed with Fourier trans-
forms using the Matlab functions fft and periodogram. For
this analysis, linear interpolation was used to estimate the relative
abundance of oligotypes on days without sequencing data.

ANALYSIS OF V3-V5 READS FROM HMP DATA FOR MULTIPLE TIME
POINTS
We used the HMP 16S sequence data from the V3-V5 region.
Quality filtering and trimming, chimera removal, and taxonomic
assignment of reads were previously performed (The Human
Microbiome Project Consortium, 2012) using mothur (Schloss
et al., 2011) and the reads were uploaded into a MySQL database.
From this data we selected subjects from whom two tongue dor-
sum samples were available with at least 600 reads from each

sample. We counted the number of reads assigned to each genus
in each sample, and clustered this abundance data using the
Morisita-Horn dissimilarity index.

BLAST SEARCHES OF MICROBIAL GENOMES
We conducted BLAST searches at HOMD (www.homd.org)
using blastn against all oral microbial genomic DNAs anno-
tated by HOMD, and at NCBI (www.ncbi.nlm.nih.gov) using
megablast against all completed microbial genomes and against
draft genomes of Haemophilus and Neisseriaceae.

RESULTS
OLIGOTYPING RESULTS
We used oligotyping to re-analyze time series data sampled from
the tongues of two individuals at up to 396 time points (Caporaso
et al., 2011). We oligotyped each of the 17 most abundant bacte-
rial families, selecting sets of sequence reads based on their family-
level taxonomic assignment using GAST (Huse et al., 2008). These
17 families together represented 99% of reads in the combined
tongue data set, and this family-level oligotyping achieved a sim-
ilarly comprehensive result to the phylum-level oligotyping of
HMP data as previously described (Eren et al., 2014) but with
lower complexity in the supervision process. The number of
nucleotides we used to define oligotypes in the time series data
set ranged from 3 (for Actinomycetaceae and Bacillales) to 24 (for
Neisseriaceae). We partitioned the data into 315 oligotypes (Table
S1) and assigned taxonomic identification to each by BLAST
search of the representative sequence for each oligotype against
the Human Oral Microbiome Database (HOMD, Dewhirst et al.,
2010). Oligotyping of 16S rRNA gene tag sequence data from the
tongue dorsum as well as eight other oral sites for 148 individu-
als sequenced in the V3-V5 region, and 77 individuals sequenced
in the V1-V3 region, was previously described (Eren et al., 2014).
Results from that study provide the foundation for the current
study.

PHASE TRANSITION OF A MICROBIAL COMMUNITY
With the single-nucleotide resolution achievable by oligotyp-
ing, strains or variants within a taxon that differ in their rRNA
sequence are in principle detectable and their population dynam-
ics open to analysis. We previously found, for example, a case of
closely-related oligotypes within the genus Neisseria, in which the
Neisseria population on the tongue of each subject was dramati-
cally different from the mean abundance of the oligotypes across
all sampled subjects. Remarkably, the Neisseria population on an
individual tongue was generally dominated by one or another of
these oligotypes (Figure 1 and Eren et al., 2014). To understand
the cause of this distributional pattern, it is important to know
whether the differences between individuals are stable, or whether
populations within individuals change over time.

When only a single sample is analyzed from each of many
individuals, as in Figure 1, it is impossible to assess whether pop-
ulations within an individual are stable or dynamic. Most indi-
viduals possessed a population in which a single oligotype made
up at least 90% of the Neisseria reads, but the oligotype varied
from individual to individual, suggesting the possibility of multi-
ple stable states, each dominated by a single Neisseria oligotype.
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FIGURE 1 | Neisseria oligotypes in the tongue. Human Microbiome Project
data from the tongue, sequenced in the V1-V3 region. The four oligotypes
with at least 0.5% mean abundance across all sampled individuals are shown
with their percent identity to N. flavescens, the closest match in HOMD.
Colored bars represent the relative abundance of these four oligotypes in

samples from an individual tongue; the 64 samples shown are those in which
these Neisseria oligotypes represented a total of at least 10 reads. The bar on
the left represents the relative abundance of each of these four oligotypes
averaged across all 64 tongue samples. The heat map shows the similarity of
each pair of oligotypes. Data are from Eren et al. (2014).

However, some individuals had populations lacking a dominant
oligotype. Did the more mixed populations represent short-lived
transitions between the stable states in individuals who were by
chance sampled during the transition? Alternatively, did certain
individuals stably maintain a mixed Neisseria population?

Oligotyping of a time series from the tongue of two individ-
uals (Figure 2) answered some of these questions and provided
plausible explanations for the observed distributions. Most of the
Neisseria in both subjects consisted of three major oligotypes,
shown in Figure 2 as light blue (Neisseria A), dark blue (Neisseria
B), and green (Neisseria C) with a small amount of a fourth olig-
otype shown as magenta (Neisseria D). The Neisseria population
in both subjects was initially dominated by type C, which was the
only Neisseria oligotype detectable in the first three samples from
the female and two samples from the male. The additional types
A and B then became detectable in both individuals, increasing
rapidly as a proportion of the total Neisseria (Figure 2). In the
female, type A was initially the more abundant of these two, but
rapidly faded in abundance relative to type B, which became the
dominant Neisseria in the female after approximately day 35. In
the male, by contrast, type B increased and then decreased in rel-
ative abundance several times before diminishing in proportion
until its abundance was negligible and the population was dom-
inated by type A after approximately day 100. These dynamics
display two main characteristics which, taken together, may be
termed a phase transition. The major behavior is one of stability.
For most of the time, the oligotype distribution within an individ-
ual was essentially invariant, irrespective of whether the dominant
oligotype in the individual was type A or type B. The second prop-
erty was of abrupt transition to an alternate oligotype. The time
series data showed several instances in which a community ini-
tially dominated by one oligotype became transiently mixed and

then transitioned to a state where one oligotype was dominant.
These properties suggest that the evenly mixed populations of
Neisseria on the tongue found in some individuals in the HMP
data are transient states. Occasional replacement of the dominant
oligotype argues against strong founder effects and priority effects
for this taxon in the tongue microbiota. Throughout these tran-
sitions the fourth oligotype, type D, did not participate in the
apparently competitive or exclusionary dynamics of types A and
B, but persisted in relatively stable proportion in the community,
likely demonstrating a subdivision of functional/ecological roles
even among these very closely related taxa.

DIFFERENCES AMONG INDIVIDUALS ARE COMPARABLE TO
FLUCTUATIONS OVER TIME
The stable dominance of one oligotype of Neisseria in each indi-
vidual, relative to the other Neisseria oligotypes, occurred in a
context of rapid fluctuation in the abundance of Neisseria and
all other taxa as a proportion of the total community. The over-
all behavior of the system was a dynamic equilibrium with rapid
fluctuations in relative abundance but without long-term direc-
tionality, as shown in Figures 3, 4. Figure 3 shows the relative
proportions of the five most abundant Streptococcus oligotypes
over time in each individual. The most abundant Streptococcus
oligotype overall, labeled Streptococcus A in the figure, is identical
to S. mitis, S. oralis, and S. infantis in the V4 region; this olig-
otype ranged in abundance from 9 to 75% of the Streptococcus
in the female subject and from 10 to 92% of the Streptococcus
in the male (Figure 3A). Relative abundance of taxa not only
ranged widely but also changed quickly as seen, for example, in
samples 269 and 270 from the male subject, in which the rel-
ative abundance of S. mitis/oralis/infantis dropped from 78 to
10% of the Streptococcus in the sample over the course of a
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FIGURE 2 | Neisseria oligotypes in time series data from the tongue.

Oligotypes with at least 0.5% mean abundance in at least one of the two
individuals are shown. Colored bars represent the relative abundance of each
of the four oligotypes in a single sample; data shown is for days 0 to 185 and
gray bars represent days for which data is unavailable. The heat map shows
the similarity of each pair of oligotypes. Neisseria A (oligo_001 in Table S1) is

100% identical to the HOMD reference sequence of N. subflava; Neisseria B
(oligo_011) and Neisseria D (oligo_024) are each 99.2% identical to the
N. subflava reference sequence; and Neisseria C (oligo_017) is identical to the
reference sequences for N. mucosa, N. flava, N. pharyngis, N. oralis, and
Neisseria spp. Human Oral Taxon (HOT) 015 and 018. All are within 98%
identity of one another.

single day (Table S1). For comparison, the corresponding olig-
otypes identical to S. mitis, S. oralis, and S. infantis sampled
from the tongue dorsum of multiple individuals from the HMP
together ranged from 1 to approximately 90% of the Streptococcus
genus on the tongue (Figure 3B and Eren et al., 2014). Thus,
a substantial fraction of the range of variability observed
across individuals was also observed within a single individual
over time.

The proportions of Neisseria and Streptococcus can be seen
in the context of other major tongue dorsum oligotypes in
Figure 4. The major oligotypes shown in the figure each ranged
from double-digit abundance to near-absence in samples over the
course of the time series. The wide fluctuations in sample compo-
sition within an individual raised the question of the significance
of differences between individuals compared to the variation
that exists within an individual over time. OTU-level analysis
of the tongue dorsum time course data showed that between-
subject UniFrac distances were greater than within-subject dis-
tances (Caporaso et al., 2011), and likewise OTU-level analysis
of HMP data showed between-subject differences within a body
site greater than within-subject differences (Human Microbiome
Project Consortium, 2012). Such inter-individual differences are
also reflected in our oligotyping analysis, in the form of some-
times widely differential mean abundances of oligotypes between

the two individuals, such as a greater abundance of Neisseria in the
male and a greater abundance of several Streptococcus oligotypes
in the female (Figures 3, 4, and Table S1). These differences are
concrete examples of the underlying taxon composition that leads
to higher community dissimilarity scores between than within
individuals. However, we wondered whether the summary statis-
tic of average community dissimilarity was obscuring the magni-
tude of the shifts in community composition within individuals
over time and giving a misleading impression about the relative
importance of differences between and within individuals.

For a quantitative comparison of variation within and between
subjects in these different studies, standard beta-diversity indices
are not calculable because the studies analyzed different regions
of the 16S rRNA gene and employed different amplification and
sequencing protocols. However, some of the HMP subjects were
sampled on more than one visit, affording the opportunity to
assess the variability over time in these individuals compared to
variation between subjects measured using the same study proto-
col. To make this comparison we identified 104 subjects for whom
tongue dorsum samples from the V3-V5 region were available
from two different visits, which were separated by 30–359 days
(Aagaard et al., 2013). Reads in these samples had previously been
trimmed and classified to genus using standard HMP pipelines
(The Human Microbiome Project Consortium, 2012). Using data
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FIGURE 3 | Streptococcus oligotypes in the tongue. (A) Relative
abundance of Streptococcus oligotypes in time series data from the tongue.
Oligotypes with at least 0.5% mean abundance in at least one of the two
individuals are shown. Colored bars represent the relative abundance of each
of the five oligotypes in a single sample; data shown is for days 0 to 185 and
gray bars represent days for which no data is available. The heat map shows
the similarity of each pair of oligotypes. Streptococcus A (oligo_003 in Table
S1) is identical to the reference sequences for 6 species in HOMD including
S. mitis, S. mitis biovar 2, S. infantis, S. oralis, and Streptococcus spp. HOT
070 and 071; Streptococcus B (oligo_008) is identical to the reference
sequences for 7 species in HOMD including S. parasanguinis I,
S. parasanguinis II, S. australis, and Streptococcus spp. HOT 057, 065, 066,
and 067; Streptococcus C (oligo_012) is identical to the reference sequences
for S. peroris and Streptococcus spp. HOT 068 and 074; Streptococcus D

(oligo_027) is identical to the reference sequences for S. cristatus, S.
gordonii, S. sinensis, S. oligofermentans, and Streptococcus spp. HOT 056
and 069; and Streptococcus E (oligo_006) is identical to the reference
sequences for S. salivarius and S. vestibularis. Streptococcus A, B, C, and D
are all within 97% identity of one another as shown by the heat map. (B)

Relative abundance of Streptococcus oligotypes in HMP data from the
tongue, sequenced in the V1-V3 region. Oligotypes with at least 0.5% mean
abundance across all sampled individuals are shown, and are assigned the
name of the closest match in HOMD; where the closest match is not 100%
identical, the percent identity is shown. In addition to the taxa listed in the
key, the oligotype identified as S. oralis/infantis/mitis biovar 2 is also identical
to Streptococcus spp. HOT 055, 058, 061, and 070 and the oligotype
identified as S. mitis/australis/pneumoniae is also identical to Streptococcus
spp. HOT 070, 071, and 074. Data for (B) are from Eren et al. (2014).
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FIGURE 4 | Time series of abundant oligotypes. The 11 oligotypes shown include the 8 most abundant in each subject; 5 oligotypes are in the top 8 in both
subjects. Colored bars represent the abundance of each oligotype in each sample; gray bars represent days for which no data is available.

on the number of reads classified into each genus for each of these
samples, we carried out a cluster analysis using the Morisita-Horn
dissimilarity index. Figure 5 shows the resulting clusters. For each
of the 104 subjects, the two samples from different time points are
connected by an arc. As can be seen in the figure, for some sub-
jects the two samples from different time points cluster tightly
together (short arcs), but for many subjects the two samples are
located in different clusters (long arcs). These clusters can be
related back to the taxon composition of each sample; for exam-
ple, the cluster colored in light blue consists of samples that are
more than 50% Streptococcus while samples in the cluster shown
in red have a high proportion of Fusobacterium. This analysis
supports the conclusion that many of the apparent microbiome
differences between individuals seen in the HMP data are a
result not of stable differences from person to person, but of
the limited information that results from “snapshot” sampling a
continuously changing system (an individual tongue) at a single
time point.

CORRELATED ABUNDANCE BETWEEN MEMBERS OF DIFFERENT
GENERA
The time series abundance data permit an assessment of the
degree of correlation or anti-correlation in the abundance of indi-
vidual oligotypes. Such an assessment would provide a basis for
inferring significant biological associations of taxa. Remarkably,
the data showed strong correlations between pairs of oligotypes
both within a taxon and across taxa (Figure S1).

The strongest correlation was between two oligotypes that
are among the 10 most abundant in the dataset and whose
best match in HOMD is to the same taxon, Veillonella parvula.
One, oligo_007, is identical to the V. parvula reference sequence
and the other, oligo_009, differs from it by a single nucleotide
(Figure 6A). The strength of their correlation suggests either that
they are in an extraordinarily close symbiosis or that they rep-
resent two distinct rRNA genes present in the same cell. One
advantage of the oral microbiome as a study subject is the pres-
ence of sequenced genomes for a high fraction of oral microbial
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FIGURE 5 | Cluster analysis of individuals sampled by HMP at two visits.

Each dot represents a tongue dorsum sample from one of 104 individuals
sampled at two visits at least 30 days apart. Samples were classified to
genus and clustered using the Morisita-Horn dissimilarity index. Arcs connect

the two samples from each subject. Short arcs indicate subjects whose
community composition was similar at the two visits; long arcs indicate
subjects whose second sample was substantially different in composition
from the first.
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taxa (Dewhirst et al., 2010), allowing a direct test of the possibility
that any two given rRNA genes are present in a single organ-
ism. We carried out a BLAST search of genomic DNA using the
HOMD web site (HOMD.org) and found both V. parvula oligo-
types in the sequenced genome of V. parvula DSM 2008/ATCC
10790. We conclude that the two tightly correlated V. parvula
oligotypes represent two sequences found in the same organism.

In contrast to the V. parvula oligotypes, another strongly-
correlated pair of oligotypes (oligo_024 and oligo_030) represent
species in different taxonomic families: one member of the pair
differs by a single nucleotide from the Haemophilus parainfluen-
zae reference and the other differs by a single nucleotide from
the Neisseria subflava reference (Figure 6B). Partially or com-
pletely sequenced genomes are available for N. subflava as well
as the related taxa N. flavescens and N. mucosa, and for H. parain-
fluenzae as well as the related H. influenzae and H. haemolyticus,
among others. BLAST searches revealed that the H. parainfluen-
zae oligotype oligo_030 is no more than 87% identical to any
region of any sequenced Neisseria genome, while the reverse is
true for the N. subflava oligotype oligo_024: it is no more than
87% identical to any sequenced Haemophilus genome. We con-
clude that these two oligotypes reside in different organisms, and
their strong correlation reflects either a close symbiotic interac-
tion between them, or strong specialization of both organisms to
the same micro-habitat.

The abundance traces of the two pairs of oligotypes shown in
Figures 6A,B are nearly identical to those obtained by other inves-
tigators who analyzed the same dataset using an entirely different
method aimed at identifying biologically meaningful units with
single-nucleotide resolution (Tikhonov et al., 2014). This simi-
larity supports the general validity of both methods. However,
we reach opposite conclusions concerning which of these pairs
is made up of sequences present in the same genome and which
are in different genomes. We conclude based on whole-genome
sequences that the two Veillonella sequences are in the same
genome and that the Haemophilus and Neisseria sequences are
in different cells. Tikhonov et al. confined their analysis to the
sequences per se. Based on autocorrelation coefficients, they con-
cluded that the two sequences which we identify as Veillonella
are at least partially contributed by different cells and that the
sequences we identify as Haemophilus and Neisseria likely origi-
nate from the same cells. We believe our conclusions benefit from
the genome-mining and cross-referencing to HOMD, but future
work is necessary to determine which conclusion is correct.

The most abundant oligotypes in the tongue time series
dataset are not strongly correlated with one another. For exam-
ple, the two most abundant oligotypes in the dataset, which are
identical to the HOMD reference sequences for N. subflava and
H. parainfluenzae, each make up more than 10% of the entire
dataset and have abundance distributions that are weakly cor-
related with each other (Figure 6C and Figure S1). The weak
correlation of these highly abundant oligotypes contrasts with
the tight correlation of their lower-abundance variants discussed
above and suggests differences in the underlying biology of the
high- and low-abundance types. Possibly, the high-abundance
oligotypes represent generalist organisms that do not require spe-
cialized habitat or tight taxon-taxon associations. Alternatively,

the more abundant oligotypes may encompass a heterogeneous
collection of organisms with identical V4 regions of the 16S rRNA
gene but with distinctive habitat requirements.

Additional, moderately positive correlations exist among pairs
of oligotypes from widely different taxa such as Streptococcus,
Haemophilus, and Alloprevotella (Figure S1) and likely result from
a preference for similar habitats or environmental conditions. In
contrast, the fourth and fifth most abundant oligotypes overall,
whose sequences are identical to the Fusobacterium periodonticum
and Prevotella melaninogenica reference sequences, are moder-
ately anticorrelated (Figure 6D); this anticorrelation could result
from an active antagonism between two taxa or from a prefer-
ence for incompatible microhabitats. In sum, correlation analysis
of the time series data provides strong indications of possible
functional or habitat associations among diverse taxa.

ARE THE FLUCTUATIONS IN OLIGOTYPE ABUNDANCE PERIODIC?
Casual inspection of the time series data gives the impression
that the oligotype fluctuations could be periodic. One possible
hypothesis for periodic variation in the composition of the tongue
microbiome is a periodic variation in host activity such as might
occur over weekends as opposed to the workweek. We tested
for reproducible periodicity in the data by carrying out auto-
correlation and Fourier transform analysis for each oligotype.
Auto-correlations were evaluated over a window of plus or minus
21 days. Consistent with the observation of rapid fluctuations,
the auto-correlation signal was strongest for a one-day time lag,
which agrees with the results of Tikhonov et al. (2014). However,
no consistent signal was observed for any of the abundant olig-
otypes either with auto-correlation or with Fourier analysis that
would suggest a weekly or other periodicity. A few minor oligo-
types showed a weak signal corresponding to weekly periodicity
but the signal was not of sufficient magnitude to admit of a strong
conclusion. Proper evaluation of such a possibility will require a
directed investigation.

A CHARACTERISTIC TONGUE MICROBIOTA
Oligotyping three datasets from the tongue (one time course and
two broad samplings of individuals) showed that a limited num-
ber of species-level or near-species-level taxa consistently make up
the majority of the microbiota on the tongue. Detailed taxonomic
comparison of oligotypes across these datasets is not straight-
forward, because different regions of the 16S rRNA gene were
sequenced in each case: V4 for the time course data and V1-V3
and V3-V5 for the HMP data. Nonetheless, taxonomic assess-
ments can be made by comparing each sequence to a curated
reference database, the HOMD, and using the matching reference
sequence(s) as an estimate of the taxonomy of the oligotype.
Twenty such reference sequences, or groups of closely related ref-
erence sequences, collectively account for 91–93% of the reads
from each dataset (Figure 7). Eighteen of these 20 were detected
in every sample or nearly every sample from both individuals in
the time series (Table S1). Thus, while the temporal core micro-
biome in this dataset is composed of only a small fraction of
the taxa that are detectable (Caporaso et al., 2011), this tempo-
ral core nonetheless constitutes the majority of the organisms on
the tongue.
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FIGURE 6 | Time series correlation analysis. The abundance of each
oligotype, measured in reads, is plotted for each sample from day 66
through 420 in the male subject, and the Pearson correlation coefficient
for each pair of oligotypes over this data range is shown above the plot.
(A) Two strongly correlated oligotypes matching the taxon Veillonella
parvula (oligo_007 and oligo_009 in Table S1) (p << 0.0001). (B) Strongly
correlated oligotypes 99.2% identical to Neisseria subflava (oligo_024)

and Haemophilus parainfluenzae (oligo_030) (p << 0.0001). (C) Two
oligotypes identical to Neisseria subflava (oligo_001) and Haemophilus
parainfluenzae (oligo_002) are weakly correlated (Pearson, p = 0.18 after
Bonferroni correction; Spearman, p < 0.01 after Bonferroni correction).
(D) Oligotypes identical to Fusobacterium periodonticum (oligo_004) and
Prevotella melaninongenica (oligo_005), showing moderate anti-correlation
(p << 0.0001).

In contrast to these similarities, there are also differences
among the abundant taxa present in the time series com-
pared to the HMP data. Several taxa are relatively depauper-
ate in the time series data set compared to HMP, including
Actinomyces spp., Leptotrichia spp., and Porphyromonas sp. HOT

279; these differences may reflect true characteristics of the
microbiomes of the sampled individuals, or may result from
primer bias or other technical differences in experimental proce-
dures. The genus Rothia is represented in all three datasets but
the oligotypes representing this genus do not match the same
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FIGURE 7 | The characteristic microbiota of the tongue. Colored
bars represent the mean abundance of the taxa that consistently
occur in the time series and HMP datasets. For each of the taxa
shown, the HOMD reference sequence for the taxon is at least
98.5% identical to one or more oligotypes that make up at least

0.5% of the time series tongue data (Female, Male) and/or the
V3-V5 and V1-V3 tongue dorsum data from the HMP. Exceptions to
the 98.5% identity criterion (Rothia spp. and Oribacterium sp. HOT
108) indicate cases where a precisely matched reference sequence
may not yet be represented in HOMD.

species consistently across datasets. This inconsistency may be
explained by technical or biological differences, but an alter-
native possibility is that sequences from this genus represent
one or a few taxa that are consistently present across datasets
but have 16S rRNA gene sequences divergent from the refer-
ence sequences currently represented in HOMD. For such a
taxon the closest match in the V1-V3 region may be to one
reference sequence; in the V4 region its closest match may be
to a different reference sequence, and these differences in tax-
onomic assignment in the different regions may obscure the
consistency with which the identical taxon is present across
datasets.

DISCUSSION
MICROBIAL COMMUNITY DYNAMICS FOLLOWED USING
OLIGOTYPING
Understanding the forces that shape microbial communities in
the human microbiome requires following dynamic changes in

these communities over time. Rapid decreases in the cost of DNA
sequencing have made it possible to generate the large amounts
of data required for studies of dynamics, but analysis methods
limited to the genus or OTU level have limited the opportuni-
ties for analyzing the dynamics within a single species or between
closely related species. This study provides an example of the
single-nucleotide taxonomic resolution of oligotyping which, in
turn, enables analysis of microbial dynamics and associations
that would otherwise not be possible if taxa were lumped into
heterogeneous groups.

PHASE TRANSITIONS OF OLIGOTYPES
Our observation of changing relative abundance of Neisseria olig-
otypes on the tongues of two different individuals showed that
in these instances, replacement of an initially dominant oligo-
type occurred over a time scale of days, and the newly dominant
type remained dominant for the rest of the months-long sam-
pling period. Thus the period of transition was relatively abrupt
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in comparison to the duration of the subsequent dominant phase.
The causes both of the replacement, and of the stable domi-
nance, remain uncertain. After the first few days of sampling the
two oligotypes that became dominant were different in the two
individuals but were detected in nearly every sample from each
of them. It is possible that these two oligotypes newly invaded
the tongue habitat of these individuals near the beginning of the
time course and, once present, proliferated in what was for them
a favorable environment. Alternatively, it is possible that they
were present but simply below the detection limit for the first
few days, and their sudden proliferation was caused by changes
in the oral environment or the surrounding microbiota, changes
perhaps occasioned by the daily sampling itself. In both individ-
uals the oligotype that was not dominant nevertheless persisted
in low abundance, showing that (unsurprisingly for the oral
environment) dispersal is not the limiting factor regulating the
abundance of these taxa in a given mouth. The dynamics dis-
played by these oligotypes are similar to the behavior of some
closely-related 97% OTUs in a time series of gut and saliva sam-
ples from two individuals (David et al., 2014), in which rapid
transitions are followed by extended periods of stable dominance
of one of the OTUs. A similar pattern was also observed in the
within-species dynamics of Staphylococcus epidermidis in a time
series from the gut microbiome of a premature infant (Sharon
et al., 2013) in which the changes in strain abundance were at
least partially attributable to the dynamics of infecting bacterio-
phage. The extended dominance periods we observe are difficult
to explain as a consequence of phage-driven dynamics, however,
unless one invokes development of host resistance or changes in
phage infectivity (Sharon et al., 2013) or the presence of mul-
tiple strains that have different virus sensitivities and that are
succeeding one another, but which are indistinguishable in 16S
rRNA gene sequence (Fuhrman, 2009) and thus undetectable
with this data.

IMPLICATIONS OF HIGH VARIABILITY IN TAXON RELATIVE
ABUNDANCE OVER TIME
The high variability and rapid change in microbial communi-
ties in the time series data set were noted by Caporaso et al.
(2011) as well as the contribution of blooms of particular genus-
level taxa to the dissimilarity of the overall community over
time. Our oligotyping results extend these findings to the species-
or near-species level, as shown in the example of Streptococcus
in which dramatic changes occur in the relative, as well as the
absolute, abundance of each oligotype as a proportion of the
genus abundance over time. From our analysis of the HMP
data for the Streptococcus community of many individuals at
a single time point, it was evident that a number of major
Streptococcus taxa were present in every individual; however it
was not possible to determine whether their abundances fluc-
tuated over time or whether communities in some individuals
were strongly and continually biased in favor of one or another
taxon. Our results with the time-series data for the tongue dor-
sum suggest that a substantial portion of the variation in taxon
abundance occurring between individuals in the HMP data can
be explained by the temporal variation of abundance within
individuals.

This high variability has implications for the fine-scale spatial
and metabolic structure of the tongue flora. Given our obser-
vation of a consistent, characteristic tongue dorsum microbiota
over time and across individuals, one could hypothesize that these
taxa comprise a tightly integrated community with finely tuned
metabolic interactions with one another and with cells of differ-
ent microbial species intimately intermingled at micron scales in
a relatively constant stoichiometry. The high overall variability
in relative abundance among these taxa, however, argues against
such a hypothesis. Rather, the microbiota likely constitute a num-
ber of distinct assemblages occupying different spatial positions,
preferring different environments, or succeeding one another
over time. Certain subsets of the assemblage that show correlated
distribution, such as the oligotypes identified with H. parain-
fluenzae and members of the N. subflava group, may constitute
a functional unit. Other anti-correlated subsets, however, such as
the oligotypes identified with F. periodonticum and P. melanino-
genica, may reflect that the corresponding taxa interact in an
antagonistic fashion or that they prefer different environmental
conditions.

The reasons underlying the large fluctuations in relative
abundance across taxa are an interesting question for further
study. Disturbances caused by oral hygiene procedures and
ingestion of food or liquids occur with higher frequency than
the observed community fluctuations and are unlikely to be
the sole driver of these fluctuations. For an assemblage resid-
ing on a shedding epithelial surface, the sporadic availabil-
ity of new surfaces for colonization may give a temporary
advantage to taxa that are more effective initial colonizers or
may be, by chance, spatially well-positioned to colonize new
habitat. Alternate explanations include changes in activity of
the host immune system, diurnal physiological changes, the
dynamics of bacteriophage populations, competition, or stochas-
tic variation. Sporadic changes in host behavior may also be
responsible.

THE USE OF HOMD TO CONNECT ORAL OLIGOTYPE DATASETS
Short regions of the rRNA gene have limitations for high-
resolution identification and differentiation of microbes.
Potential confusion arises when taxa of interest are differ-
entiated by only one or a few nucleotides in the sequenced
region, but these limitations can be mitigated by making
use of taxonomic information to relate distinct datasets to
one another.

An example in the data shown here is the time series oligotype
labeled Streptococcus D (Figure 3A). This oligotype is identical in
the V4 region to the HOMD reference sequence for S. gordonii
but is also only a single nucleotide different from the HOMD
reference sequence for Streptococcus parasanguinis. Additional
information about the likely taxonomy of this oligotype comes
from the HMP datasets from V1-V3 and V3-V5; neither of
these datasets shows a significant contribution of S. gordonii to
the tongue microbiota, while both show a substantial contri-
bution of S. parasanguinis (Figure 3B). Evaluation of the time
series data in the context of the HMP data therefore suggests
that Streptococcus D is more accurately identified as a variant
of S. parasanguinis. Similar considerations apply to the Neisseria
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oligotypes (Figure 1). The species N. flavescens, N. subflava, and
N. flava form a phylogenetically distinct group according to
whole-genome sequence data (Bennett et al., 2013) and are shown
by HMP data to be important in the tongue microbiota (Eren
et al., 2014). In the V4 region there are only 1 or 2 nucleotide dif-
ferences between these taxa, leading to ambiguity in identification
of the time series oligotypes in the absence of additional informa-
tion. This information can be found in HMP data: using V1-V3
sequences, the abundant oligotypes of this group are unequiv-
ocally identified as most similar to N. flavescens, which differs
from N. flava and N. subflava by 11 nucleotides in the oligotyped
region of V3. These two examples demonstrate the power of a
well-curated database and applying multiple lines of evidence to
the identification of taxa.

THE CORE TONGUE MICROBIOME
With the species-level description of its consistent core micro-
biome that we present here, the tongue becomes one of only
a small number of habitats for which a numerically abundant
core microbiome has been described at the species level. Our
results support the conclusions of Kraal et al. (2014) who analyzed
whole-genome shotgun samples from the HMP and concluded
that the species Veillonella dispar was abundant in every tongue
microbiome sampled and that three other species (S. parasan-
guinis, S. salivarius, and P. melaninogenica) each were abundant
in at least 87% of tongues sampled. Given the close similarity of
the microbiomes of the tongue and of saliva (Mager et al., 2003;
Eren et al., 2014) it is not surprising that the set of genus-level
taxa detected in all or nearly all saliva samples by Stahringer et al.
(2012) is also concordant with our set of core taxa, as is the set of
genera found in all saliva samples by Lazarevic et al. (2010). The
presence of a consistent core tongue microbiota argues against the
idea that many functions in the overall oral microbial community
can be carried out by any one of a number of interchangeable
taxa, and argues instead for the presence of niche specialists
whose role is not readily filled by alternative taxa (Fuhrman,
2009). The relative simplicity of the core tongue microbiota con-
trasts with the hundreds of taxa that are described from the
mouth as a whole (Dewhirst et al., 2010), many of which are
specialized to a subset of habitats within the mouth (Eren et al.,
2014). It may be a general characteristic of microbial ecosystems
to appear enormously complicated when considered at spatial
scales that lump together disparate habitats, but to resolve into
more tractable communities when the habitat is accurately and
narrowly defined.

MAKING FULL USE OF THE INFORMATION IN HIGH-THROUGHPUT
SEQUENCING DATA SETS
There is a growing recognition that high-throughput sequencing
data contains information that is not fully expressed by partition-
ing the data into conventional OTUs. Some form of partitioning
is necessary because both neutral variation in natural popu-
lations and sequencing errors create a profusion of sequence
variants without underlying biological meaning. However, OTUs
that are defined purely by a threshold of sequence similarity are
phylogenetically and ecologically heterogeneous and inconsistent
(Prosser et al., 2007; Schloss and Westcott, 2011; Koeppel and

Wu, 2013; Schmidt et al., 2014). Alternative approaches make
use of the fact that the noise arising from neutral variation and
sequencing errors is randomly distributed with respect to ecology.
For example, an approach termed “distribution-based clustering”
employs information about the distribution of sequences among
habitats or samples to differentiate noise from meaningful varia-
tion and thus inform the definition of taxonomic units (Preheim
et al., 2013). In a “denoising” approach (Tikhonov et al., 2014),
sequencing error and temporal cross-correlation were analytically
distinct but temporal cross-correlation analysis was used to deter-
mine which unique sequences were “real,” i.e., not attributable to
noise.

Oligotyping is an information theory-based approach that
employs Shannon entropy to identify nucleotide positions of
high variation within a dataset (Eren et al., 2013), thereby dis-
tinguishing meaningful variation from sequencing errors (Huse
et al., 2007; Minoche et al., 2011). Like the cross-correlation
approaches, the Shannon entropy method has the capacity
to discriminate among closely related taxa at the sub-species
level. However, unlike these other approaches, the Shannon
entropy method partitions the data into oligotypes indepen-
dent of cross-sample correlations. This independence means that
habitat or temporal correlation analysis can be employed at a
later stage in data analysis, providing an independent way of
assessing the biological meaning and distinctiveness of sequence
variants.

For the human oral microbiome, the presence of a highly
curated database and a large number of sequenced genomes pro-
vides an additional layer of analytic power. Sequence differences
that rise above the level of noise, as identified by oligotyping
or cross-correlation, can be associated with known taxa via the
HOMD, allowing the comparison of data across datasets even
when different regions of the 16S rRNA gene were employed for
sequencing. Distinguishing whether oligotypes represent differ-
ent 16S rRNA genes within a single organism or are tags for dif-
ferent organisms is enabled by access to full genomes. This cross-
dataset analysis and genome-mining capability greatly expands
the usefulness of datasets. In summary, we have used high-
resolution taxonomic analysis of high-throughput time series
data to provide insight into the microbial population dynam-
ics of the tongue. Our results have revealed phase transitions
of closely related taxa and unanticipated associations of taxa
from different genera. We expect that our approach will permit
future, targeted analyses of specific microbial interactions and
dynamics.
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Oligotyping is a novel, supervised computational method that classifies closely related
sequences into “oligotypes” (OTs) based on subtle nucleotide variation (Eren et al., 2013).
Its application to microbial datasets has helped reveal ecological patterns which are often
hidden by the way sequence data are currently clustered to define operational taxonomic
units (OTUs). Here, we implemented the OT entropy decomposition procedure and its
unsupervised version, Minimal Entropy Decomposition (MED; Eren et al., 2014c), in the
statistical programming language and environment, R. The aim of this implementation
is to facilitate the integration of computational routines, interactive statistical analyses,
and visualization into a single framework. In addition, two complementary approaches
are implemented: (1) An analytical method (the broken stick model) is proposed to help
identify OTs of low abundance that could be generated by chance alone and (2) a one-pass
profiling (OP) method, to efficiently identify those OTUs whose subsequent oligotyping
would be most promising to be undertaken. These enhancements are especially useful
for large datasets, where a manual screening of entropy analysis results and the creation
of a full set of OTs may not be feasible. The package and procedures are illustrated by
several tutorials and examples.

Keywords: oligotyping, minimum entropy decomposition, one-pass decomposition, diversity, next generation

sequencing

INTRODUCTION
Eren et al. (2013) implemented a technique called oligotyping to
help identify highly variable nucleotide positions of 16S rRNA
gene sequences by calculating their Shannon entropy values.
Subtle variations are used to iteratively classify the sequences into
oligotypes (OTs), which may offer an interesting way to resolve
ecologically meaningful differences between closely related organ-
isms. In some cases, especially when processing data generated
from sequencing methods prone to insertions or deletions (e.g.
454 Massively Parallel Tag Sequencing), sequence alignment must
be performed prior to oligotyping to ensure meaningful classi-
fication (see the example below). The oligotyping procedure is
straightforward: Sequences are assigned to the same taxonomic
group or clustered together in one OTU before oligotyping anal-
ysis performs a systematic identification of nucleotide positions
that represent information-rich variations across the group or
OTU. The variation at these positions is then used to bin the
sequences into OTs. If sample information is available for each
sequence originating from one OTU, a sample-by-OT table is
then produced, which can be subjected to traditional multivari-
ate analyses (e.g., Legendre and Legendre, 1998; Ramette, 2007;
Buttigieg and Ramette, in press).

Depending on the degree of variability in a sequenced region,
the identity threshold between different OTs may be as low as
0.2%, i.e., about an order of magnitude lower than the 3%
identity threshold that is currently being used to define OTUs.

Consequently, the marginal diversity space left unexplored by
coarse-grained methods requires attention and its significance
needs to be assessed in its evolutionary and environmental con-
text. Indeed, the subtle nucleotide variation detected by olig-
otyping among 16S ribosomal RNA gene amplicon reads has
revealed ecologically meaningful microdiversity patterns hidden
in sequence datasets. For instance, the technique has successfully
identified subtle nucleotide variations that were associated with
distinct environments, hosts, body location, or epidemiological
states in human oral (Eren et al., 2014a), gut (Eren et al., 2014b),
and bacterial vaginosis (Eren et al., 2011) microbiomes, but also
in wastewater communities (McLellan et al., 2013), or among
spatially structured communities in Arctic deep-sea sediments
(Buttigieg and Ramette, submitted).

In addition to its ecological applications, the procedure is also
computationally interesting because it identifies a relatively small
subset of nucleotide positions in a set of sequences associated with
high entropy values, thus reducing subsequent computational
effort. However, the original oligotyping procedure is supervised:
it relies on user input to decide how many components (i.e.,
positions with high entropy values) and which entropy threshold
to be considered for further rounds of oligotyping. The super-
vised method may work when dealing with a few, well-targeted
OTUs, but if we are to cope with very large datasets, as com-
monly encountered in environmental and clinical microbiology,
a more scalable, automatic procedure is required. Recently, Eren
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and colleagues proposed a computationally efficient procedure
to partition marker gene datasets in an unsupervised fashion,
which they termed Minimum Entropy Decomposition (MED;
http://oligotyping.org/MED/; Eren et al., 2014c). This approach
iteratively partitions large sets of sequences by repeating the oligo-
typing procedure until no more high entropy nucleotide positions
are identified in any of the partitions of those sequences.

With regard to their implementation, the original oligotyping
and MED software scripts are written in Python to efficiently
handle the FASTA sequences, Shannon entropy calculations, and
navigation across numerous directories that are created during
the successive rounds of OT generation. The following Python
modules need to be manually installed: Matplotlib (http://
matplotlib.sourceforge.net/), BioPython (http://biopython.

org/wiki/Biopython), SciPy (http://www.scipy.org/), PyCogent
(http://pycogent.org/), and Django (https://www.djangoproject.
com/), to generate user-friendly HTML outputs. The final
stage of data visualization and further ecological analysis of
sample-by-OT patterns rely on using the R language (R Core
Team, 2014) and its libraries. Several R scripts are used to
reduce the dimensionality of large datasets, calculate dissimilarity
matrices, or to visualize data (e.g., using the functions heatmap
and barplot). The oligotyping and MED scripts also have some
dependencies such as NCBI executable (especially blastn) to
match the most interesting OT sequences directly to their closest
relatives in local or publicly available sequence databases.

Here, the R package otu2ot, which stands for “OTU to OT” is
described and examples as well as tutorials are provided to illus-
trate the library’s installation and functioning. The oligotyping
and MED routines are implemented solely using R scripts in order
to facilitate the integration of computational routines, interactive
statistical analyses, and visualization into one common frame-
work. Additional methods are also presented such as the broken
stick model procedure to help identify OTs of low abundance that
could be generated by chance alone. Further, a one-pass entropy
profiling approach is compared to MED, as a method to efficiently
identify those OTUs whose decomposition into OTs would be
most promising. This latter method is especially useful for large
datasets, where a complete decomposition to OTs may not be
computationally feasible.

METHODS
R IMPLEMENTATION AND DEPENDENCIES
R (http://www.R-project.org/) is a widely used language and
environment for statistical computation and graphics. The core
of R is an interpreted computer language which allows branching
and looping as well as modular programming using functions.
Although most of the user-visible functions in R are written
in the R language itself, procedures written in the C, C++, or
FORTRAN languages, can be easily called to further improve
computational efficiency.

To develop otu2ot, R version 3.1.0 was used within RStudio
(version 0.98.953; http://www.rstudio.com/). Within otu2ot, the
R library seqinR (Charif and Lobry, 2007) is called to efficiently
import FASTA sequences. The optional libraries FactoMineR
(Husson et al., 2014) and vegan (Oksanen et al., 2013) may also be
used to calculate specific coefficients and to perform multivariate

analysis of community data, respectively, but are not mandatory
to perform the oligotyping or MED procedures. The package
can be easily installed as described in the tutorials (Supporting
Information). An active repository is available at: https://github.

com/aramette/otu2ot.

EXPECTED INPUT DATA FORMAT
The otu2ot library expects input FASTA files to have a specific
format, identical to that required by the original oligotyping
pipeline, as described at: http://oligotyping.org/.

All of the (aligned) sequences from an OTU of interest have to
be present in a single multi-FASTA file, and all reads must have
the following format:

>[SampleName]_[ReadId]
GTTGAAAAAGTTAGTGGTGAAATCCCAGA

where “[SampleName]” refers to the name of the sample from
which the sequences originated from and “[ReadId]” refers to a
unique sequence identifier.

DIFFERENCES TO ORIGINAL OLIGOTYPING AND MED
IMPLEMENTATIONS
In its current version (1.4), otu2ot does not implement two
optional features found in the original procedure: (1) the selec-
tion of several components in the MED procedure, and (2) the
subsequent BLAST analysis of the most abundant unique OT
sequences against NCBI’s nr database. This latter option may
be readily integrated using additional R libraries such as BoSSA
(http://cran.r-project.org/web/packages/BoSSA/) at a later stage.
Other features are implemented, however, namely the broken
stick model (BSM) and a one-pass (OP) procedure, as follows.

The BSM is implemented to help identify which OTs have
a read abundance greater than one would expect by chance.
Following the decomposition of an OTU into OTs, only those OTs
which satisfy this condition are further considered for commu-
nity analysis. The original BSM idea originates from niche theory
(MacArthur, 1957), where the sub-division of niche space among
species is thought to be analogous to randomly breaking a stick
into p pieces. When applied to oligotyping data, the procedure is
as follows: The total number of sequences clustered into one OTU
is randomly split into p subsets (i.e., “pieces” of the broken stick)
where p is defined by the number of OTs detected. The pieces are
then sorted by decreasing size. By repeating these two steps many
times and averaging the results over all executions the BSM gener-
ates the OT abundances which would occur by chance alone, that
is, the distribution of OT abundances if there was no structure in
the data. The R script used in our implementation uses a simple
formula that provides the expected abundance values for a given
partition under the BSM (Legendre and Legendre, 1998):

bk = 1

p

p∑
i = k

1

i

where p is the number of pieces (i.e., the number of OTs) and bk

is the expected abundance of the kth OT under the BSM.
One may then choose to limit their analyses to those OTs

whose abundances are larger than those generated by the BSM.
This procedure allows the use of a null abundance model to focus
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on OTs whose abundances are likely to be non-random, instead
of relying on an arbitrary choice of minimum OT abundance or
on external knowledge to allow a given OT to be further con-
sidered for downstream analyses. This approach may thus help
lessen the subjectivity which threatens reproducibility and con-
sistency in defining what a minimum OT abundance should be.
The BSM has been advocated as appropriate to describe the right-
hand side of the rank frequency curve, i.e., the distribution of
the rare species (Frontier, 1985), so it may be useful for OT
abundance distributions, which are conceptually similar. In addi-
tion, the same approach is often applied to the solution of a
principal component analysis in order to suggest the minimum
number of principal axes needed to satisfactorily represent a data
matrix (Legendre and Legendre, 1998). However, when consider-
ing results from oligotyping procedures, it is important to note
that other models of species distribution exist and should also
be evaluated (e.g., the log series, log normal, or neutral model):
it would be hasty to favor the BSM over any alternatives at this
stage. Future research using, for instance, simulated datasets with
known amounts of sequencing error or rare sequences could be
used to validate the application of the BSM approach to OT
abundance modeling.

A one-pass (OP) procedure is also proposed to rapidly assess
the amount of microdiversity present in a set of sequences.
The procedure is similar to oligotyping, but it only performs
one round of entropy calculations. When an entropy profile is
obtained, only the nucleotide positions with Shannon entropy
values greater than a chosen threshold are concatenated, and these
concatenated sequences are then used to classify the sequences
into OTs. Here we determined how OP compares to MED,
in terms of computational speed and in its ability to capture
ecological information such as variance in community com-
position, community patterns, or presence of rare types (e.g.,
singletons). We also evaluated whether OP can be used as a
first screen across a large number of OTUs, before using the
more computationally-demanding MED procedure to analyze
microbial diversity on targeted OTUs.

FUTURE DEVELOPMENTS
The motivation behind the creation of otu2ot is twofold.
First, it provides a more transparent, single-language imple-
mentation of the scripts used for oligotyping and MED,
in order to promote more development of these tools and
approaches. At this stage, less emphasis has been given to the
improvement of computational performance, but this could
be obtained by code optimization and interfacing with C or
C++. This should be addressed when the phase of proto-
typing methods such as oligotyping, MED, or OP is over
and large datasets need to be efficiently analyzed. In that
respect, R is receiving much attention and is being actively
developed to support very efficient parallel computing solu-
tions, large memory data handling, and seamless interfacing
with compiled code (e.g., http://cran.r-project.org/web/views/
HighPerformanceComputing.html). R also has a large and grow-
ing user base among data scientists and ecologists, who con-
tinually submit new packages which can be integrated with
otu2ot, further motivating development in this language. To
improve interactive data exploration and visualization, devel-
opers have contributed R libraries such as shiny (http://shiny.
rstudio.com/), which may readily turn a set of R functions into
interactive web interfaces. Beyond R and interfacing with C
or C++, other high-level languages may also be used to effi-
ciently implement oligotyping, MED, or OP, at least for the
entropy decomposition steps. These may be worth comparing
to this R implementation in the future. For instance, the Julia
language (http://julialang.org/) is a high-performance, dynamic
programming language with a syntax that would be familiar to
R users, and which seems to improve computing speed by sev-
eral orders of magnitude when compared to a range of functions
implemented in R.

EXAMPLE DATASETS
The original data available (e.g., “mock” dataset) on the website
(http://oligotyping.org/) were used to create the R functions and
ensure that results were concordant with those of the original

FIGURE 1 | Entropy profile of file “HGB_0013_GXJPMPL01A3OQX.fasta” and further nucleotide composition of the position of higher Shannon

entropy (position 242).
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implementation. These data are also included in the otu2ot pack-
age. The dataset used in Buttigieg and Ramette’s (submitted)
application of oligotyping was also used here. It corresponds to a
set of sequence-abundant OTUs (abundance greater than or equal
to 100 reads), derived from sequencing of sediment samples from
the Hausgarten Long-Term Ecological Research station (Eastern
Fram Strait, Arctic sea), which were clustered at the 97% sequence
identity level of the 16S rRNA gene. The sequence data were pro-
duced by 454 Massively Parallel Tag Sequencing, and sequence
alignment was performed to account for insertions and deletions.
The analysis of the full OTU dataset from this site was previously
published (Jacob et al., 2013). All relevant datasets are provided
as Supplementary Information.

In the following section, a few plots and results are provided to
illustrate how to use the otu2ot package and its functions. Here,
we compare the results and performance of different methods

and less emphasis is given to the ecological interpretation of the
resulting OT tables, which can be found elsewhere (Buttigieg and
Ramette, submitted). It should be noted that our examples began
at an OTU-level resolution and further explored the extent of OT
microdiversity within OTUs. It is equally interesting to choose a
coarser taxonomic level (e.g., Phylum, Class) where more robust
membership is expected, and then perform oligotyping methods.
This would alleviate issues originating from splitting sequences
into different OTUs as a result of the OTU clustering step.

EXAMPLES OF APPLICATION
MED ANALYSIS OF ONE OTU DATASET
Using one abundant OTU (1175 sequences, 1133
positions) whose sequences are provided in file
HGB_0013_GXJPMPL01A3OQX.fasta, we generated a Shannon
entropy profile of the alignment and a nucleotide composition

FIGURE 2 | MED analysis of HGB_0013_GXJPMPL01A3OQX.fasta. (A) Raw compositional table, (B) filtered by minimum OT abundance of 10, (C)

Comparison of observed OT abundance vs. expected under the BSM, and (D) compositional table filtered by BSM.
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profile of the position with the highest Shannon entropy (posi-
tion 242). Note that alignment gaps (−) are also considered
as informative in these calculations (Figure 1; Tutorial 1). By
using the sample information in each sequence header, a raw

sample-by-OT compositional table was generated (Figure 2A),
which can be filtered by minimum OT abundance in the table
(Figure 2B) or further filtered by applying the broken stick model
(BSM) rule (Figures 2C,D).

FIGURE 3 | One-Pass (OP) analysis of HGB_0013_GXJPMPL01A3OQX.fasta. (A) Shannon entropy profile, (B) nucleotide composition of the 5 high-entropy
positions, (C) Relative abundance of each OT obtained by OP, (D) raw compositional table.

FIGURE 4 | BSM filtering applied to the OT table generated from HGB_0013_GXJPMPL01A3OQX.fasta by OP. (A) broken-stick model evaluation, (B) BSM
filtered compositional table.
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ONE-PASS (OP) APPROACH
OP analysis of the same alignment file indicated 5 positions asso-
ciated with high Shannon entropy values (Figures 3A,B; Tutorial
2). Further concatenation and binning of the sequence data led
to 4 dominant OTs (Figure 3C) out of the 17 OTs generated by
OP. Most of the rarer OTs were, in fact, singletons (Figure 3D).
Subsequent BSM filtering (Figure 4A) led to a compositional
table (Figure 4B) very similar to the one obtained by MED fol-
lowed by BSM filtering (Figure 2D). Despite those similar plots,
a number of differences may be observed which require careful
investigation to fully compare the results produced by OP and
MED (Tutorial 3).

As expected, the OP table has fewer columns (correspond-
ing to 17 OTs) than the MED table (21 OTs). MED splits the
initial number of sequences (1175) to greater extent, but OP
displays more singleton OTs. When OT abundances were corre-
lated across tables, high correlation values were mostly obtained
among abundant OTs (Table 1), particularly for OT abundances
>50 sequences. This may explain why community patterns that

Table 2 | Sample-by-OT tables produced by MED and OP after

applying the BSM procedure.

MED OP

- UC- UU GU-GC GAU-C AUG-U

HGB_0010 0 2 0 0 2 3
HGB_0011 7 4 1 7 5 0
HGB_0012 25 15 2 25 19 18
HGB_0013 22 24 13 22 41 11
HGB_0014 43 30 25 42 66 9
HGB_0015 18 24 18 18 45 7
HGB_0016 28 35 15 28 54 30
HGB_0017 41 29 6 41 43 16
HGB_0018 26 29 21 24 61 16
HGB_0019 35 25 16 34 49 15
HGB_0023 21 10 6 20 24 11
HGB_0024 52 52 24 51 95 22
HGB_0025 37 34 14 36 58 30

are extracted by multivariate techniques, many of which focus on
the most abundant types, were found to be very similar over-
all. Because OP does not decompose the sequence pool to the
same extent as MED, many OTs obtained by MED (11 out of 21),
including some rather abundant ones, did not correlate with any
OTs obtained by OP.

When both OT tables were rarefied according to the BSM,
both were left with only 3 OTs, corresponding to 70.5 and 93.4%
of all sequences for MED and OP, respectively, and which led
to very similar abundance profiles (Table 2). Interestingly, the
total community variance still present in each dataset was very
different with nearly twice as much for OP (953) as for MED
(472) (Table 3). Despite this notable difference, common statisti-
cal procedures based on dissimilarity indices failed to distinguish
between these OT tables (Tutorial 3). Further, correlation coeffi-
cients between the raw tables or between distance matrices, cal-
culated using differential weighting of double absences, led to the
same conclusion: there were highly significant and strong corre-
lations between the results obtained with the two approaches. OP
generated more singleton OTs than MED, which may be observed
when an asymmetric (Bray-Curtis) vs. symmetric (Euclidean)
dissimilarity coefficient is used (Figures 5A,B, respectively). If OP
is to be used to speed up the computation in lieu of MED, the best
strategy would be to always use a filtering of the raw tables to avoid
the increased generation of singleton OTs by OP.

One key parameter for ecological comparison and interpreta-
tion is the direct correlation among compositional tables (e.g.,
Gobet et al., 2010), as this ultimately determines the amount of
change in community composition. Neither the RV coefficient
nor the Mantel test was sensitive enough to capture the fine differ-
ences in the highly comparable compositional tables produced by
each method (Table 3). However, Procrustes correlation analysis
of the correspondence analysis (CA) results was found to be the
most sensitive approach (Tutorial 3).

COMPARISON OF OP AND MED FOR SEVERAL OTU DATASETS
A set of 269 OTU FASTA alignments coming from the same study
as HGB_0013_GXJPMPL01A3OQX.fasta was submitted to both
MED and OP to systematically compare their output (Tutorial
4). MED took about 10 times longer to complete than OP on

Table 3 | Summary of the comparison between 1) OP vs. MED and 2) using the raw compositional table or a compositional table filtered by

applying the BSM procedure.

Type of data Raw abundance BSM

Method OP MED OP MED

Table name in the tutorials TOP0 TM0 TOP_BSM TM_BSM

Total number of OTs 17 21 3 3

Number of singleton OTs (%) 8 (47%) 3 (14%) 0 (0%) 0 (0%)

Total variance 974.2 543.0 953.3 (97.9%)$ 472.1 (86.9%)$

RV Coefficient rv: 0.9848* rv: 0.9824*

Mantel test: Bray-Curtis, Euclidean index r: 0.994*, r: 0.981* r: 0.987*, r: 0.975*

Correlation of CA ordination plots (Procrustes rotation) r: 0.787* r: 0.879*

Number of OTs highly correlated (>0.8) to OTs produced with the other
approach (% of the total number of OTs) (see Table 1)

11 (64.7%) 12 (57.1%) 2 (66.7%) 3 (100%)

* P < 0.01.
$percentage referring to the variance in the corresponding raw abundance table.
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FIGURE 5 | Comparison of sample dissimilarities obtained by MED (y

axis) and of those obtained by OP (x axis) (A) using an asymmetric

(Bray-Curtis) dissimilarity coefficient, (B) using a symmetric (Euclidean)

coefficient. Notice the departure from the 1:1 line due to the inclusion of rare
OTs in (B). The blue and red lines represent confidence (95%) and prediction
lines, respectively, of the linear regression models.

FIGURE 6 | Comparison of variances obtained by MED (y axis) vs. OP (x

axis) across 67 sequence alignments (OTUs), both after BSM filtering.

(A) whole dataset, (B) after rescaling to variances below 400 on each axis,

and (C) after removing the three points that made the y = x line deviate (as
red dots in A and B). The blue and red lines represent linear confidence (95%)
and prediction lines, respectively.

the same data (about 10 min and less than a min, respectively,
on a desktop computer [3.40 GHz, 8 GB RAM, 64-bit Windows
7 OS], when the plotting option was disabled). A total of 217
datasets had Shannon entropy >0.6. The RV coefficients compar-
ing the correlation between the raw OT tables generated by the
two approaches ranged from 0.78 to 1.0 (mean of 0.97) and were
highly significant. Using CA as a finer approach to detect subtle
changes in community composition (see above), 198 OT tables
could be represented by a 2D solution and 19 OT tables produced
a one-dimensional solution. The former were then used to com-
pare ordination of the samples under the two approaches and
76% of them were found to display significantly related ordina-
tion plots, with Procrustes correlation coefficients ranging from
0.54 to 1.0 (mean 0.86).

After applying BSM filtering to MED- and OP-generated
tables, only 79 and 123 datasets still contained OTs, respectively,
with 67 datasets in common to both techniques. The comparison
of the variance in each dataset across the 67 sequence alignments
identified three datasets which were mainly responsible for the
departure from an exact match between the variances obtained by
the two methods for each dataset analyzed (Figure 6). Removing

those three datasets, in which OP identified generally higher vari-
ance than MED (Tutorial 4), led to a near 1:1 correspondence
between the variance obtained by MED and by OP (Figure 6C).

To better explore the nature of this discrepancy, the three out-
lier datasets were further compared to the rest of the datasets in
terms of maximum entropy level and number of components in
the initial sequence alignments; however, these three datasets did
not show any particularly extreme behavior (Figure 7). Likewise,
no obvious relationship could be found between the variance
in an OT table and either the maximum entropy or number of
components found in the initial sequence alignments (Tutorial 4).

The RV coefficients, ranging from 0.79 to 1.0, were very sim-
ilar to those reported for the methodological comparison based
on the raw data. When CA was applied, 25 (48%) out of 57
remaining datasets had a valid 2D representation, from which
19 (i.e., 76%) were significantly correlated across methods with
Procrustes coefficients ranging from 0.57 to 1.0 (mean of 0.77).
Only seven out of 25 had a Procrustes correlation coefficient > 0.8
(Tutorial 4), thus indicating that few datasets had strong agree-
ment between the CA solutions produced by MED and those
produced by OP.
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FIGURE 7 | Comparison of number of components (i.e., high entropy

positions) and maximum entropy level for all datasets, considering

only the initial sequences in each dataset. In red are the 3 outlier
datasets shown in Figure 6. A LOWESS local fitting line (dotted line) was
used to describe the complex shape of the relationship.

CONCLUSIONS
The initial choice of file “HGB_0013_GXJPMPL01A3OQX.fasta,”
which was randomly done, was to some extent unfortunate
because that dataset belongs to one of the outlier datasets
identified above. When all datasets were used to allow for a
more robust methodological comparison, OP seemed to offer
a good approach to first screen a large number of sequence
datasets (i.e., OTUs), which may then be submitted to MED for
more in-depth, and more computationally-demanding, analysis
of the existing microdiversity. As demonstrated here, however,
the OT tables produced by OP and MED might sometimes
not necessarily capture the same ecological information, and
this was particularly notable when investigating the fine cor-
respondences between OT abundance and sample mapping in
ordination space.
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