

[image: image]





Frontiers eBook Copyright Statement

The copyright in the text of individual articles in this eBook is the property of their respective authors or their respective institutions or funders. The copyright in graphics and images within each article may be subject to copyright of other parties. In both cases this is subject to a license granted to Frontiers.

The compilation of articles constituting this eBook is the property of Frontiers.

Each article within this eBook, and the eBook itself, are published under the most recent version of the Creative Commons CC-BY licence. The version current at the date of publication of this eBook is CC-BY 4.0. If the CC-BY licence is updated, the licence granted by Frontiers is automatically updated to the new version.

When exercising any right under the CC-BY licence, Frontiers must be attributed as the original publisher of the article or eBook, as applicable.

Authors have the responsibility of ensuring that any graphics or other materials which are the property of others may be included in the CC-BY licence, but this should be checked before relying on the CC-BY licence to reproduce those materials. Any copyright notices relating to those materials must be complied with.

Copyright and source acknowledgement notices may not be removed and must be displayed in any copy, derivative work or partial copy which includes the elements in question.

All copyright, and all rights therein, are protected by national and international copyright laws. The above represents a summary only. For further information please read Frontiers’ Conditions for Website Use and Copyright Statement, and the applicable CC-BY licence.



ISSN 1664-8714
ISBN 978-2-83250-821-3
DOI 10.3389/978-2-83250-821-3

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering approach to the world of academia, radically improving the way scholarly research is managed. The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share and generate knowledge. Frontiers provides immediate and permanent online open access to all its publications, but this alone is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online journals, promising a paradigm shift from the current review, selection and dissemination processes in academic publishing. All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service to the scholarly community. At the same time, the Frontiers Journal Series operates on a revolutionary invention, the tiered publishing system, initially addressing specific communities of scholars, and gradually climbing up to broader public understanding, thus serving the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interactions between authors and review editors, who include some of the world’s best academicians. Research must be certified by peers before entering a stream of knowledge that may eventually reach the public - and shape society; therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact





DISCOVERY, ANALYSIS, AND MECHANISM OF FUNCTIONAL NON-CODING REGULATORY REGIONS AND RELATED DNAs/PROTEINS IN CANCER

Topic Editors: 

Chunquan Li, University of South China, Hunan, China

Tianzhi Huang, Xiamen University, China

Haitao Luo, University of Jinan, China

Citation: Li, C., Huang, T., Luo, H., eds. (2022). Discovery, Analysis, and Mechanism of Functional Non-Coding Regulatory Regions and Related DNAs/Proteins in Cancer. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-83250-821-3





Table of Contents




Characterization of Cell Cycle-Related Competing Endogenous RNAs Using Robust Rank Aggregation as Prognostic Biomarker in Lung Adenocarcinoma

Yifei Yang, Shiqi Zhang and Li Guo

Pyroptosis-Related LncRNA Signatures Correlate With Lung Adenocarcinoma Prognosis

Hua Huang, Zijian Shi, Yongwen Li, Guangsheng Zhu, Chen Chen, Zihe Zhang, Ruifeng Shi, Lianchun Su, Peijun Cao, Zhenhua Pan, Hongbing Zhang, Minghui Liu, Hongyu Liu and Jun Chen

CRMP4 CpG Hypermethylation Predicts Upgrading to Gleason Score ≥ 8 in Prostate Cancer

Xiao-Ping Qin, Qi-Ji Lu, Cheng-Huizi Yang, Jue Wang, Jian-Fan Chen, Kan Liu, Xin Chen, Jing Zhou, Yu-Hang Pan, Yong-Hong Li, Shan-Cheng Ren, Jiu-Min Liu, Wei-Peng Liu, Hui-Jun Qian, Xian-Lin Yi, Cai-Yong Lai, Li-Jun Qu, Xin Gao, Yu-Sheng Xu, Zheng Chen and Yu-Min Zhuo

Loss of PTEN-Induced Kinase 1 Regulates Oncogenic Ras-Driven Tumor Growth By Inhibiting Mitochondrial Fission

Dantong Zhu, Fengtong Han, Liuke Sun, Sandeep K. Agnihotri, Ying Hu and Hansruedi Büeler

Construction of m6A-Related lncRNA Prognostic Signature Model and Immunomodulatory Effect in Glioblastoma Multiforme

Pan Xie, Han Yan, Ying Gao, Xi Li, Dong-Bo Zhou and Zhao-Qian Liu

Integrated Analysis Revealing the Senescence-Mediated Immune Heterogeneity of HCC and Construction of a Prognostic Model Based on Senescence-Related Non-Coding RNA Network

Yanan Jiang, Kunpeng Luo, Jincheng Xu, Xiuyun Shen, Yang Gao, Wenqi Fu, Xuesong Zhang, Hongguang Wang and Bing Liu

Comprehensive Analysis of Regulatory Networks of m6A Regulators and Reveals Prognosis Biomarkers in Sarcoma

Boran Pang, Dinghao Luo, Bojun Cao, Wen Wu, Lei Wang and Yongqiang Hao

Identification and Validation of Immune-Related Long Non-Coding RNA Signature for Predicting Immunotherapeutic Response and Prognosis in NSCLC Patients Treated With Immunotherapy

Jianli Ma, Minghui Zhang and Jinming Yu

CEMIP Promotes Osteosarcoma Progression and Metastasis Through Activating Notch Signaling Pathway

Jun Cheng, Yan Zhang, Rongjun Wan, Jun Zhou, Xin Wu, Qizhi Fan, Jingpeng He, Wei Tan and Youwen Deng

LncRNA Pair as Candidate Diagnostic Signature for Colorectal Cancer Based on the Within-sample Relative Expression Levels

Ouxi Wang, Di Shi, Yaqi Li, Xiaoyan Zhou, Haidan Yan and Qianlan Yao

Transcriptome Sequencing of Hepatocellular Carcinoma Uncovers Multiple Types of Dysregulated ncRNAs

Li Zhang, Chunmei Wang, Xiaojie Lu, Xiao Xu, Tieliu Shi and Jinlian Chen





ORIGINAL RESEARCH

published: 03 February 2022

doi: 10.3389/fonc.2022.807367

[image: image2]


Characterization of Cell Cycle-Related Competing Endogenous RNAs Using Robust Rank Aggregation as Prognostic Biomarker in Lung Adenocarcinoma


Yifei Yang 1,2, Shiqi Zhang 1,2 and Li Guo 1*


1 Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China, 2 Department of Biology, Brandeis University, Waltham, MA, United States




Edited by: 

Haitao Luo, University of Jinan, China

Reviewed by: 

Lixin Ma, Hubei University, China

Dechao Bu, Institute of Computing Technology, (CAS), China

*Correspondence: 

Li Guo
 lguo@njupt.edu.cn

Specialty section: 
 This article was submitted to Cancer Genetics, a section of the journal Frontiers in Oncology


Received: 02 November 2021

Accepted: 10 January 2022

Published: 03 February 2022

Citation:
Yang Y, Zhang S and Guo L (2022) Characterization of Cell Cycle-Related Competing Endogenous RNAs Using Robust Rank Aggregation as Prognostic Biomarker in Lung Adenocarcinoma. Front. Oncol. 12:807367. doi: 10.3389/fonc.2022.807367



Lung adenocarcinoma (LUAD), one of the most common pathological subtypes in lung cancer, has been of concern because it is the leading cause of cancer-related deaths. Due to its poor prognosis, to identify a prognostic biomarker, this study performed an integrative analysis to screen curial RNAs and discuss their cross-talks. The messenger RNA (mRNA) profiles were primarily screened using robust rank aggregation (RRA) through several datasets, and these deregulated genes showed important roles in multiple biological pathways, especially for cell cycle and oocyte meiosis. Then, 31 candidate genes were obtained via integrating 12 algorithms, and 16 hub genes (containing homologous genes) were further screened according to the potential prognostic values. These hub genes were used to search their regulators and biological-related microRNAs (miRNAs). In this way, 10 miRNAs were identified as candidate small RNAs associated with LUAD, and then miRNA-related long non-coding RNAs (lncRNAs) were further obtained. In-depth analysis showed that 4 hub mRNAs, 2 miRNAs, and 2 lncRNAs were potential crucial RNAs in the occurrence and development of cancer, and a competing endogenous RNA (ceRNA) network was then constructed. Finally, we identified CCNA2/MKI67/KIF11:miR-30a-5p:VPS9D1-AS1 axis-related cell cycle as a prognostic biomarker, which provided RNA cross-talks among mRNAs and non-coding RNAs (ncRNAs), especially at the multiple isomiR levels that further complicated the coding–non-coding RNA regulatory network. Our findings provide insight into complex cross-talks among diverse RNAs particularly involved in isomiRs, which will enrich our understanding of mRNA–ncRNA interactions in coding–non-coding RNA regulatory networks and their roles in tumorigenesis.
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Highlights

	The abnormal mRNA profiles in LUAD were primarily characterized using the RRA algorithm. The 16 potential hub genes were screened via PPI network and survival analysis, and some of them were identified as homologous members in the gene family.

	Related miRNAs were surveyed based on the 16 hub genes, and miRNA-associated lncRNAs were further screened. Then, 4 mRNAs, 2 miRNAs, and 2 lncRNAs were identified as key RNAs to construct a ceRNA network.

	Further in-depth analysis characterized CCNA2/MKI67/KIF11:miR-30a-5p:VPS9D1-AS1 axis-related cell cycle as a prognostic biomarker, and all of these RNAs were cancer-associated crucial genes.





Introduction

Lung cancer, one of the most common fatal cancers, has been the leading cause of cancer-related deaths, with an increasing incidence worldwide (1). This cancer can be categorized into 2 major types, non-small cell lung cancer (NSCLC; ~85%) and small cell lung cancer (SCLC; ~15%). The former is further classified into three major subtypes according to histopathology and clinical features: lung adenocarcinoma (LUAD; ~40%), lung squamous cell carcinoma (LUSC; ~25%–30%), and large cell carcinoma (LCC; ~10%–15%). LUAD and LUSC are the most common pathological subtypes in lung cancer (2–4), and LUAD is specifically the most frequent subtype in never or light smokers (5). LUAD patients are mainly caused by a combination of multiple genetic and environmental factors (6). The prognosis of NSCLC patients is not optimistic, and the 5-year survival rate is less than 1% (7, 8), which is mainly attributed to regional or distant metastasis (9, 10). Patients often have little opportunity of receiving effective treatments because they lack specific clinical symptoms and therefore are diagnosed at a very late stage. Characterization of new cancer-specific diagnostic and prognostic biomarkers is quite necessary, which will greatly assist in timely diagnosis, prognosis, treatment selection, and guiding further clinical treatment.

In recent years, non-coding RNA (ncRNA), mainly including microRNA (miRNA), long ncRNA (lncRNA), and circular RNA (circRNA), has been widely studied as a class of important regulatory molecules, especially for their crucial roles in tumorigenesis (11–13). These ncRNAs have been of interest because of their potential roles as biomarkers for the diagnosis and prognosis of various cancers (14–16). The interactions with messenger RNAs (mRNAs), especially via competing endogenous RNAs (ceRNAs), indicate that ncRNAs and mRNAs can function as ceRNAs by competitively binding with miRNAs through sharing miRNA recognition elements to regulate their expression levels (17). Based on this hypothesis, relevant RNAs have been studied, particularly for their potential prognostic roles in tumorigenesis. For example, the circRNA hsa_circ_0072088, miRNAs (hsa-miR-532-3p and hsa-miR-942-5p), and mRNAs (IGF2BP3, MKI67, CD79A, and ABAT) may serve as prognostic markers in LUAD via a circRNA-mediated ceRNA network (18); LINC00324/miR-9-5p (miR-33b-5p)/GAB3 (IKZF1) may play a pivotal role in regulating TAM risk and prognosis in LUAD patients (19), and some studies focus on cancer-related lncRNAs to search crucial RNA interactions based on ceRNA networks (20, 21). These studies provide potential crucial gene interactions in tumorigenesis, which are quite necessary to reveal the detailed molecular mechanism of diverse cancers. However, it is not enough to present these interactions from these RNA levels, because the small regulatory RNA, miRNA, is not a single sequence but a series of multiple isomiRs (22–26). Do these small flexible isomiRs also contribute to RNA cross-talks and the occurrence and development of cancers? It is urgent to explore these interactions at the isomiR levels, which will help us understand the interesting cross-talks in the RNA world.

In this study, to further understand the potential cross-talks among diverse RNAs in LUAD (Figure 1), we mainly discuss the interactions among ncRNAs and mRNAs, particularly from the isomiR level. Firstly, via an integrative analysis of several datasets, consistent deregulated genes are surveyed using robust rank aggregation (RRA) algorithm, and their functional implications are queried to understand the potential contributions in tumorigenesis. Secondly, protein–protein interaction (PPI) networks are used to screen potential hub genes associated with cancer through integrating multiple algorithms, and these hub genes are further screened by survival analysis. Thirdly, relevant miRNAs of these hub genes are obtained, and then these interacted miRNAs are used to survey related lncRNAs. Finally, based on the potential biological interactions, a ceRNA network is constructed, and involved RNAs are further analyzed to understand their expression correlations and potential roles in tumorigenesis, especially for the analysis at the isomiR level. Our study will provide insight into RNA cross-talks and more references for potential crucial RNAs associated with lung cancer, particularly focusing on coding–non-coding RNA interaction networks at the isomiR level. These findings will contribute to discovering the novel potential anticancer drug target in precision medicine.




Figure 1 | The main flowchart of the study. DE genes, deregulated genes.





Materials and Methods


Data Resource

In order to obtain deregulated mRNAs in LUAD, we obtained 659 samples (tumor, 433; normal, 226) from 9 datasets in the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/, GSE31210, GSE118370, GSE75037, GSE32863, GSE85716, GSE85841, GSE63459, GSE130779, and GSE148036) by GEOquery (27) and 542 (tumor, 483, normal, 59) samples from The Cancer Genome Atlas (TCGA; https://tcga-data.nci.nih.gov/tcga/) using the “TCGAbiolinks” package (http://doi.org/10.1093/nar/gkv1507) (28) (Table S1). High-throughput RNA sequencing data (including mRNA, lncRNA, and miRNA/isomiR) in diverse cancer types were also obtained from TCGA, which were mainly used to detect the detailed pan-cancer expression patterns of screened crucial genes in LUAD.



Screening and Identification of Deregulated RNAs

The limma (29) was used to screen and identify deregulated RNAs in GEO and TCGA datasets using the Bioconductor packages. The common candidate cancer-associated mRNAs were firstly screened using R package RobustRankAggreg (30) in 9 GEO datasets, and candidate mRNAs were further analyzed with deregulated mRNA profiles from TCGA dataset. mRNAs with |log2FC| > 1 and padj < 0.05 were primarily identified as abnormally expressed genes.



Functional Enrichment Analysis of Gene Sets

To understand the detailed functional implication of differentially expressed gene sets or screened specific genes, the Database for Annotation, Visualization and Integrated Discovery (DAVID) version 6.8 (31) and clusterProfiler (32) were used to perform functional analysis. Simultaneously, based on identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, z scores were estimated according to the following formula (33):

 

where the up and down indicate the numbers of upregulated and downregulated genes, respectively, and the count was the total number of involved deregulated genes.

Furthermore, to understand the detailed expression patterns of the screened genes, their expression distributions in KEGG pathways were also queried, and significantly enriched pathways were further presented using Pathview (34, 35). A p-value <0.05 was considered to have statistical significance.



Screening and Identification of Potential Cancer-Associated Hub Genes

To survey the potential hub genes in LUAD, PPI networks were firstly constructed based on deregulated mRNA profiles using the STRING online database with default parameters (36). Networks were constructed using upregulated and downregulated genes. For the PPI network, the candidate key genes were firstly screened based on the potential modules using the CytoHubba plug-in in Cytoscape 3.7.2 (37). Then, we selected the top 10 node genes from 12 algorithms results (including Betweenness, BottleNeck, Closeness, ClusteringCoefficient, Degree, DMNC, EcCentricity, EPC, MCC, MNC, Radiality, and Stress) as candidate genes. Genes with degree scores <10 were excluded, and the remaining genes detected in more than 4 other algorithms were finally selected as candidate hub genes. We here used the PageRank algorithms to explore the hub genes from the significant-difference expression genes. As a method of evaluating the importance of nodes, the PageRank was also a useful algorithm to explore the relative topological importance, and the PageRank had been used to discover the herb’s relative importance and determine the core herbs (38).

For primarily screened hub genes, further analysis was performed to understand the potential role in tumorigenesis, mainly including drug sensitivity and correlations between hub genes and immune infiltrates (http://bioinfo.life.hust.edu.cn/web/GSCALite/) (39). Moreover, gene set variation analysis (GSVA) scores for hub gene sets were also estimated using GSCALite.



Characterization of Potential Prognostic Values of Candidate Genes

It was necessary to query the potential prognostic values of the screened cancer-associated hub genes, which will help us to understand their roles in tumorigenesis. Then, survival analyses were used to estimate the correlations of the candidate genes (also including further screened candidate miRNAs and lncRNAs) with cancer prognoses. The clinical data, mainly including survival status, cancer stage and grade, survival time, and molecular subtype, were obtained from TCGA using the “TCGAbiolinks” package (28). The log-rank test was used to estimate the potential differences, and statistical significance was set at p < 0.05. Simultaneously, in order to obtain the integrated results to ensure the potential prognostic values of screened genes, prognostic results were also obtained from the GEPIA (40, 41) and StarBase (42, 43) databases.



Screening and Identification of Relevant Cancer-Associated Non-Coding RNAs

Candidate hub mRNAs with potential prognostic values were firstly used to screen related miRNAs based on biological interactions because the small ncRNAs have been widely studied as a class of important regulators in gene expression. The miRNA:mRNA interactions were firstly collected from the StarBase database (42, 43), and those miRNAs remained as candidate-related miRNAs if they had opposite expression patterns with target mRNAs and had significant prognostic results. Here, due to the phenomenon of multiple isomiRs in the miRNA locus (22–26), we selected the most dominant isomiR as the classical miRNA to perform the relevant analysis. The detailed isomiR expression patterns were further queried for the final screened cancer-associated crucial miRNAs, because the multiple isomiRs may lead to perturbed coding–non-coding RNA regulatory network (44) that may also perturb the ceRNA network.

Next, based on the screened miRNAs that were crucial intermediate nodes correlating mRNAs and lncRNAs, miRNA-related deregulated lncRNAs were further surveyed from LncBase Predicted v.2 (45), and lncRNAs were identified if they had opposite expression patterns with miRNAs and had potential prognostic values in cancer prognosis.



Construction of Competing Endogenous RNA Network to Screen Cancer-Associated Crucial RNAs

According to screened cancer-associated abnormal RNAs, mainly including hub genes, interacted miRNAs, and associated lncRNAs, a ceRNA network was constructed based on their regulatory relationships using the R package of “networkD3” (https://CRAN.R-project.org/package=networkD3). The primary constructed ceRNA network contained a series of mRNAs and ncRNAs, and then these related mRNA:miRNA and miRNA:lncRNA pairs were further queried for their expression relationships. A correlation analysis was used to estimate their expression correlations, and if the correlation coefficient was less than −0.20, p < 0.05, and the average expression level (log2TPM) was more than 10 (ensure the abundant enrichment level), further analysis of the genes remains to be performed.



In-Depth Analysis for Screened Crucial RNAs

Moreover, although all of the above-screened associated genes were dominantly and abnormally expressed in tumor samples, and they also had significant correlations with cancer prognosis, it is necessary to further understand the expression patterns across diverse cancer types (46) that will help us assess the potential expression and function of genes in different tissues and tumorigenesis. Therefore, a pan-cancer analysis was used to track their expression patterns. Simultaneously, the binding events of diverse RNAs were visualized using DIANA (http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=site%2Findex) (47, 48), which could indicate the interactions among different RNAs in the ceRNA network. Furthermore, the screened crucial mRNAs were queried for the potential roles in immune infiltrates in LUAD (46), which would contribute to understanding the biological role of the hub genes.



Statistical Analysis and Network Visualization

An unpaired t-test and the Wilcoxon rank-sum test were used to estimate differentially expressed genes for the unpaired samples. For interactions between related genes, especially among different RNAs, further network visualization was presented using Cytoscape 3.8.2 (37). A Pearson’s or Spearman’s correlation coefficient was estimated to assess expression relationships among different RNAs. All of these statistical analyses were performed using the R programming language (version 3.4.3), and Venn distributions were performed with a publicly available tool (http://bioinformatics.psb.ugent.be/webtools/Venn/).




Results


Messenger RNA Expression Profile in Lung Adenocarcinoma

According to 9 GEO datasets (Table S1 and Figure 1), the RRA algorithm was used to screen deregulated mRNAs, and a total of 787 abnormally expressed genes were obtained based on distributions of scores in the RRA algorithm (Figures 2A and S1A). Subsequently, 5,476 abnormally expressed genes were obtained from TCGA data (Figure S1A), and 710 genes (including 474 downregulated genes and 236 upregulated genes) with consistent expression patterns were collected as candidate genes to perform further analysis (Figure 2B). Some abnormal genes were reported with important roles in tumorigenesis. For example, upregulated CST1 can promote gastric cancer migration and invasion through activating the Wnt pathway (49), and CST1 also promotes cell proliferation, clone formation, and metastasis in breast cancer cells, indicating that CST1 is a novel potential prognostic biomarker and therapeutic target for breast cancer (50). The screened upregulated and downregulated genes were further queried for their expression patterns, respectively, and we found that both of them showed significant expression differences (Figure 2C, p = 2.20e−16 for the upregulated genes and p = 2.20e−16 for the downregulated genes). Most of them showed abundant expression distributions, indicating that these screened candidate genes were dominantly expressed in LUAD.




Figure 2 | Screening candidate genes and functional analysis via an integrative analysis of multiple datasets. (A) A heatmap of distributions of RRA scores in 9 GEO datasets. (B) Expression distributions for screened 710 common genes via GEO and TCGA datasets. (C) Expression patterns (based on the median values of TPM) for all the screened up-deregulated and downregulated genes, and a p-value based on t-test is also presented. (D) Significant enriched KEGG pathways of screened deregulated genes. (E) GSEA in significant KEGG cell cycle pathways. RRA, robust rank aggregation; GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.



To understand whether these surveyed genes had a potential function, functional enrichment analysis was performed. Both upregulated and downregulated genes showed significant Gene Ontology (GO) terms (Figures S1C, D), indicating that these abnormal genes might contribute to multiple biological processes. These primarily screened genes were also enriched in several KEGG pathways, especially for cell cycle and oocyte meiosis pathways (Figures 2D, E, and S2). In the detailed pathways, many relevant genes were involved in deregulated expression patterns (Figure S3A), which may perturb the relevant pathways.



Screening of the Potential Most Influential Genes in Protein–Protein Interaction Networks

Based on the obtained upregulated and downregulated gene sets, the PPI network was constructed. According to the primarily constructed complex networks, the potential hub genes were further screened using 12 different algorithms. Based on the top 20 genes in the PPI network (Figures 3A, B), some genes were detected with a higher ranking score, such as upregulated genes in the EPC network and downregulated genes in the EcCentricity network (Figures 3A, B). Most genes were filtered if they were not simultaneously detected by Degree and other >4 algorithms, and only 31 genes (including 13 upregulated genes and 18 downregulated genes) were obtained as candidate hub genes associated with LUAD. Many hub genes were detected in multiple algorithms and simultaneously had higher degree scores, and most showed consistent scores in specific algorithms (Figure 3). These implied that candidate hub genes had higher confidence levels and might be the most influential proteins in PPI networks, further indicating that they might be crucial genes in tumorigenesis.




Figure 3 | Potential hub genes via PPI networks based on different algorithms. (A) Examples of PPI networks using different algorithms (each network contains the top 20 upregulated genes). The darker the red background color of the gene, the higher the ranking of the gene. The gene distributions in different algorithms, and score distributions for surveyed genes in diverse algorithms. The score of degree is also presented for screened 13 hub genes. (B) Examples of PPI networks using different algorithms (each network contains the top 20 downregulated genes). The darker the red, the higher the ranking. The gene distributions in different algorithms, and score distributions for surveyed genes in diverse algorithms. The score of degree is also presented for 18 screened hub genes. PPI, protein–protein interaction.



To validate whether these candidate hub genes indeed had crucial roles in tumorigenesis, 31 genes were queried for the potential roles in biological pathways, apoptosis, cell cycle, DNA damage response, etc. These candidate hub genes were found to activate and inhibit some biological pathways (Figures 4A and S3A), implying their roles in relevant pathways that were crucial in the occurrence and development of cancer. Simultaneously, we have performed the analysis of the association between immune cells’ infiltrates and hub genes’ CNV levels. The results showed that CD4+ cells had a higher copy number variation (CNV) level in the hub gene CNV amplificated group than that in the wild-type group, and CD8_native cells had a significant CNV level in hub gene CNV deleted group compared with the wild-type group (Figure 4B). These genes did not show a significant difference between tumor and normal samples (p = 0.1200), but they showed significant differences among different subtypes of LUAD (p = 4.00e−13) and different stages of LUAD (p = 8.32e−4, Figure 4C). These varieties revealed that these screened genes were associated with subtypes and diverse stages. Moreover, these genes had positive or negative correlations with some drugs (Figure S3B). For example, trametinib was positively correlated with CCNA2, KIF11, MKI67, and MAD2L1. In June 2017, the Food and Drug Administration (FDA) approved trametinib plus dabrafenib for the treatment of BRAF V600E mutation-positive metastatic NSCLC patients. These showed the potential associations with anticancer drugs and roles as potential drug targets in future cancer treatment.




Figure 4 | Functional analysis for 31 candidate hub genes and further screening. (A) Interaction map of 31 hub genes and pathways. (B) Potential roles of 31 hub genes in immune infiltrates. (C) Potential roles of 31 hub genes in LUAD, mainly including GSVA scores in tumor and normal samples, subtype, and stages in LUAD. (D) A final 16 genes are identified based on survival analysis, and all of these 16 genes showed abundant expression. The overall survival analysis is also presented. LUAD, lung adenocarcinoma; GSVA, gene set variation analysis. *p < 0.05.





Further Validation of Hub Genes and Relevant Non-Coding RNAs

To further survey and validate the hub genes associated with LUAD, their potential prognostic values were queried as an important index. A total of 16 genes were detected with significant prognostic values (Figure 4D), and all of them showed significantly deregulated expression patterns based on median expression values of tumor and normal samples. The overall survival curve of these genes showed that patients with lower expression had a higher survival probability than those with higher expression levels (Figure 4D). Accordingly, these candidate genes were identified as hub genes associated with LUAD, which were used to survey relevant miRNAs to explore the potential interactions among diverse RNAs, especially among mRNAs and ncRNAs. Interestingly, some of them were homologous genes in a specific gene family, including CCNA2, CCNB1, and CCNB2. Some of them, CCNA2, MKI67, and KIF11, were identified as cell cycle-related factors, implying their roles in the cell cycle pathway.

A series of relevant miRNAs were surveyed based on the potential biological relationships with the 16 hub genes. Based on expression patterns and the significant correlations with cancer prognosis (log-rank p < 0.05), 10 miRNAs were obtained (Figures 5A, B). These miRNAs showed significant abnormal expression in LUAD, including 6 downregulated and 4 upregulated miRNAs, and all of them were detected with abundant enrichment levels. Of these, 3 of them were identified as homologous miRNAs, in let-7 gene family, and these miRNAs also had similar sequence, expression distributions, and biological roles. These miRNAs had opposite expression patterns with their target mRNAs (Figure 5C), implying their potential regulatory roles in the relevant mRNA expression process. Then, the primarily screened miRNAs were used to survey relevant lncRNAs based on their biological relationship. According to expression patterns and prognostic values, 2 lncRNAs as well as 4 mRNAs and 2 miRNAs were finally identified as candidate relevant RNAs, and most paired RNAs showed significant expression correlations (Figures 5D and S3C). These diverse RNAs showed potential regulatory relationships, and these obtained lncRNAs also had significant correlations with cancer prognosis and were detected with abundant enrichment levels (Figure 5E). Among these, both miR-145-5p and miR-30a-5p were identified regulators with 3 mRNAs and 1 lncRNA, respectively. These screened RNAs have been reported with important biological roles.




Figure 5 | Screening the relevant RNAs based on hub genes. (A) A scatter plot shows distributions of log2FC and padj values of surveyed miRNAs, and all of these miRNAs have significant correlations with cancer prognosis. (B) The distributions of log-rank p-values of screened miRNAs (only significant results are presented) and the average expression levels of miRNAs are also presented. All of these involved miRNAs have abundant enrichment levels. (C) miRNA:mRNA interaction network based on their biological relationships. (D) Expression correlations among different RNAs. mRNAs, miRNAs, and lncRNAs are highlighted in different colors. (E) The relevant lncRNAs are further screened based on identified miRNAs, and the interactions networks among diverse RNAs are presented. The average expression of lncRNAs and log-rank p-values are also presented. LUAD, lung adenocarcinoma; GSVA, gene set variation analysis. *p < 0.05, **p < 0.01, ***p < 0.001.





Competing Endogenous RNA Construction and In-Depth Analysis

A total of 8 diverse RNAs were used to construct a ceRNA network based on their expression correlations (Figure 6A), showing their potential interactions across different RNAs, especially among ncRNA and mRNAs. LncRNA may control mRNA expression via binding to the regulator of mRNA and miRNA, and the complex interactions might further complicate the coding–non-coding RNA regulatory network. Based on involving RNAs in the ceRNA network, further analysis was performed to verify their regulatory interaction, mainly including expression level, expression correlation, and survival analysis. Finally, the 5 RNAs, including CCNA2, MKI67, KIF11, miR-30a-5p, and VPS9D1-AS1, were further identified as candidate crucial RNAs associated with cancer. A significant expression correlation could be found between miRNA and its relevant mRNA and lncRNA (Figure 6B), and an in-depth analysis of the three RNAs was performed to verify their potential biological roles.




Figure 6 | Construction of ceRNA network and further analysis for the involved RNAs. (A) Constructed ceRNA network based on obtained RNAs. The line shows the correlation between diverse RNAs, and the abnormal expression patterns are also highlighted using red arrows (upregulated) and blue arrows (downregulated). The red genes are further identified as potential crucial RNAs associated with LUAD. (B) The scatter plots show the negative expression correlation between miR-30a-5p and CCNA2 and VPS9D1-AS1. (C) Expression distributions of CCNA2, MKI67, and KIF11 in tumor and normal samples across diverse cancer types. *p < 0.05, **p < 0.01, ***p < 0.001. (D) Deregulated expression patterns for VPS9D1-AS1 based on log2FC values. * indicates significant abnormal expression (log2FC > 1.2, padj < 0.05). (E) Expression distributions of the multiple isomiRs in miR-30a-5p locus across diverse cancer types, and only the dominantly expressed isomiRs are presented here (the top 6 isomiRs). These isomiRs are presented using the detailed location, and 593–617 indicate hg38:chr6:71403593–71403617:–. ceRNA, competing endogenous RNA; LUAD, lung adenocarcinoma.



To understand the potential roles of surveyed RNAs in other cancer types, a pan-cancer analysis was performed to discuss their expression patterns. Involved genes (CCNA2, MKI67, and KIF11) were found with abundant expression levels in many tissues, and they showed a significantly upregulated expression pattern in many cancer types (Figure 6C). Simultaneously, lncRNA VPS9D1-AS1 also showed a significant overexpression pattern in many cancer types (Figure 6D), and the consistent expression trends implied their competition binding with miR-30a-5p. Moreover, although miR-30a-5p was identified as a crucial miRNA, it is not a single miRNA but a series of multiple isomiRs. Then, based on dominantly expressed isomiRs, 6 abundant isomiR were selected, and they showed diverse expression patterns than mRNAs and lncRNAs (Figure 6E). The dynamic expression of isomiRs implied their flexible regulatory expression, which may contribute to specific biological pathways in different tissues based on their broad-spectrum target RNAs. Further, these 6 dominant isomiRs were found with the consistent 5′ ends and seed sequences (nucleotides 2–8) that were binding sites with target RNAs, and they were only involved differently in the 3′ ends and diverse expression patterns. It is unclear whether the length difference would influence stability or regulation efficiency, but most of them were found with unexpected enrichment levels that ensured their biological function. These isomiRs with the same seed sequences have diverse length and expression levels, which would further complicate the interaction network among coding–non-coding RNA regulatory networks.

Furthermore, the crucial genes, CCNA2, MKI67, and KIF11, were further queried for their roles in immune infiltration in LUAD. In different immune cell types, all of them showed a significant positive correlation with immune infiltration (Figures 7A–C). These results showed that a higher expression level of CCNA2, MKI67, and KIF11 might lead to higher infiltration levels, implying their roles in immune infiltration, a key step in the pathological process of cancer.




Figure 7 | In-depth analysis of screened RNAs. (A) The expression correlation of CCNA2 in Macrophage. (B) The expression correlation of CCNA2 in T cell CD4+ memory activated. (C) The expression correlation of CCNA2 in T cell CD8+. (D) The survival analysis for the three RNAs. (E) Hazard ratio analysis based on forest plot. *p < 0.05,  ***p < 0.001.





Potential Prognostic Marker via RNA Cross-Talk

As cancer-associated crucial RNAs, the 5 screened RNAs showed a significant difference between groups with high and low expression, and patients with higher expression of mRNAs and lncRNA had a poorer prognosis than those with lower expressions (p < 0.0001, p = 0.00014, p < 0.0001, and p = 0.0088, Figure 7D). However, patients with lower expression of miR-30a-5p had a poorer prognosis than those with higher expressions (p = 0.0016). Their prognostic values were also verified by analysis of hazard ratio (the global log-rank p = 1.43e−06, Figure 7E). These results significantly showed that different RNAs, CCNA2/MKI67/KIF11:miR-30a-5p:VPS9D1-AS1 axis-related cell cycle, could be a potential prognostic marker via RNA cross-talk, especially for the cross-talks among ncRNAs and mRNAs (Figure S3D).

Furthermore, CCNA2 and KIF11 were identified as core essential genes according to the common data of Hart et al. (51), Blomen et al. (52), and Wang et al. (53). CCNA2 contributed to the cell cycle pathway, and it also had a role in the hallmarks of cancer in reprogramming energy metabolism. These contributions implied their key role in the occurrence and development of LUAD, even in cancer diagnosis and prognosis. The interactions with CCNA2, MKI67, and KIF11, particularly for the small and long ncRNAs, may have great importance as potential drug targets based on their contributions in multiple biological pathways (Figures S3A, B).




Discussion

Based on the potential interactions or cross-talks among different RNAs, it is quite necessary to perform an integrative analysis to survey the relevant RNAs as a potential prognostic marker. Due to the fact of being the leading cause of cancer-related death, lung cancer has been widely of concern, and it is urgent to obtain prognostic markers with higher sensitivity that will largely contribute to adjusting drugs and cancer treatment, especially in precision medicine.

Herein, based on an integrative analysis of diverse RNAs from different datasets, CCNA2/MKI67/KIF11:miR-30a-5p:VPS9D1-AS1 axis-related cell cycle is identified as a potential prognostic marker via constructing a ceRNA network and in-depth analysis, and all of them are characterized as crucial RNAs in the occurrence and development of LUAD. Of the three mRNAs, CCNA2 has been studied because of its role in cancer, including its prognostic value in breast cancer (54–56), colorectal cancer (57), pancreatic cancer (58), LUAD (59), gastric cancer (60), bladder cancer (61), etc. MKI67, a marker gene in the cell cycle, also has been reported with prognostic value in NSCLC (62) and breast cancer (63). Furthermore, the prognostic value of KIF11 has been reported in oral cancer (64) and colorectal cancer (65).

Our analysis shows that CCNA2 is an important gene in the cell cycle, and it is significantly upregulated in many cancer types. The disorder of CCNA2 contributes to multiple cancers, implying its potential role in cancer diagnosis and prognosis. Tanshinone IIA can significantly downregulate the expression of the CCNA2–CDK2 complex and suppress the progression of LUAD by inducing cell apoptosis and arresting the cell cycle (66). One of its regulators, miR-30a-5p, also has been widely of concern as an important miRNA, especially for its role via cross-talk with other RNAs in some pathways in different cancers (67–69). The overexpression of another ncRNA, lncRNA VPS9D1-AS1, a potential prognostic marker, can be used to predict poor prognosis in NSCLC (70), and its role in cancer has been validated (71, 72). All of these RNAs have been validated with roles in tumorigenesis, and this axis may be a proper marker to predict cancer progression.

Meanwhile, based on the widespread phenomenon of isomiRs occurring in the miRNA locus, the screened crucial miR-30a-5p is also further analyzed at multiple isomiR levels. A series of multiple isomiRs can be detected, and dominantly expressed isomiRs are also unexpectedly enriched, which may ensure their regulatory roles. Although these isomiRs are not involved in causing the differences of 5′ ends and seed shifting events, their expression and length difference still provide a possibility to perturb the original coding–non-coding RNA regulatory network. The main reason may possibly be derived from these isomiRs with expression and sequence heterogeneities, but it is unclear whether these isomiRs may competitively bind to target RNA (mRNA and lncRNA). If the 5′ ends are involved differently, the novel seed sequences will be found, which may lead to some novel targets simultaneously losing some targets. It is quite necessary to perform analysis from the multiple isomiR levels despite many studies only focusing on the traditional/classical miRNAs. The small ncRNAs largely contribute to the complex cross-talks among diverse RNAs, especially in coding–non-coding RNA regulatory network, which is more complex than we thought because of the phenomenon of isomiRs in the miRNA locus.

Taken together, based on the potential cross-talks among diverse RNAs, this study finally screened and identified CCNA2/miR-30a-5p/VPS9D1-AS1 axis as a potential prognostic marker in LUAD. All of the relevant RNAs have been widely studied with roles in the occurrence and development of cancers, indicating their crucial roles in tumorigenesis, especially for association with cell cycle via direct or indirect contribution. Further study should focus on their values as a potential therapeutic target for cancer treatment. Our findings will provide insight into cross-talks among diverse RNAs, especially from the unique perspective of multiple isomiRs from a given miRNA gene locus, which will enrich our understanding of mRNA–ncRNA interactions in coding–non-coding RNA regulatory network in tumorigenesis.



Data Availability Statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.



Author Contributions

YY and LG designed this study. YY, SZ, and LG participated in the data analysis. LG and YY wrote the manuscript. All authors read and accepted the final version.



Funding

This work was supported by the National Natural Science Foundation of China (Nos. 61771251 and 62171236), the key project of social development in Jiangsu Province (No. BE2016773), and the National Natural Science Foundation of Jiangsu (No. BK20171443) and sponsored by NUPTSF (No. NY220041) and the Qinglan Project in Jiangsu Province.



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2022.807367/full#supplementary-material



Abbreviations

ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LIHC, liver hepatocellular carcinoma; LGG, brain Lower grade glioma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, Mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; TSG, tumor suppressor gene; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.



References

1. Siegel, RL, Miller, KD, and Jemal, A. Cancer Statistics, 2020. CA Cancer J Clin (2020) 70:7–30. doi: 10.3322/caac.21590

2. Boyle, P, and Ferlay, J. Cancer Incidence and Mortality in Europe, 2004. Ann Oncol (2005) 16:481–8. doi: 10.1093/annonc/mdi098

3. Ridge, CA, McErlean, AM, and Ginsberg, MS. Epidemiology of Lung Cancer. Semin Intervent Radiol (2013) 30:93–8. doi: 10.1055/s-0033-1342949

4. Pao, W, and Chmielecki, J. Rational, Biologically Based Treatment of EGFR-Mutant non-Small-Cell Lung Cancer. Nat Rev Cancer (2010) 10:760–74. doi: 10.1038/nrc2947

5. Pelosof, L, Ahn, C, Gao, A, Horn, L, Madrigales, A, Cox, J, et al. Proportion of Never-Smoker Non-Small Cell Lung Cancer Patients at Three Diverse Institutions. J Natl Cancer Inst (2017) 109:djw295. doi: 10.1093/jnci/djw295

6. Stampfli, MR, and Anderson, GP. How Cigarette Smoke Skews Immune Responses to Promote Infection, Lung Disease and Cancer. Nat Rev Immunol (2009) 9:377–84. doi: 10.1038/nri2530

7. Socinski, MA, Crowell, R, Hensing, TE, Langer, CJ, Lilenbaum, R, Sandler, AB, et al. Treatment of non-Small Cell Lung Cancer, Stage IV: ACCP Evidence-Based Clinical Practice Guidelines (2nd Edition). Chest (2007) 132:277S–89S. doi: 10.1378/chest.07-1381

8. Felip, E, Gridelli, C, Baas, P, Rosell, R, and Stahel, R. Metastatic non-Small-Cell Lung Cancer: Consensus on Pathology and Molecular Tests, First-Line, Second-Line, and Third-Line Therapy: 1st ESMO Consensus Conference in Lung Cancer; Lugano 2010. Ann Oncol (2011) 22:1507–19. doi: 10.1093/annonc/mdr150

9. van Klaveren, RJ. Lung Cancer Screening. Eur J Cancer (2011) 47:S147–55. doi: 10.1016/S0959-8049(11)70158-7

10. Quail, DF, and Joyce, JA. Microenvironmental Regulation of Tumor Progression and Metastasis. Nat Med (2013) 19:1423–37. doi: 10.1038/nm.3394

11. Wang, J, Zhu, S, Meng, N, He, Y, Lu, R, and Yan, GR. ncRNA-Encoded Peptides or Proteins and Cancer. Mol Ther (2019) 27:1718–25. doi: 10.1016/j.ymthe.2019.09.001

12. Sun, X, and Malhotra, A. Noncoding RNAs (ncRNA) in Hepato Cancer: A Review. J Environ Pathol Toxicol Oncol (2018) 37:15–25. doi: 10.1615/JEnvironPatholToxicolOncol.2018025223

13. Braicu, C, Catana, C, Calin, GA, and Berindan-Neagoe, I. NCRNA Combined Therapy as Future Treatment Option for Cancer. Curr Pharm Des (2014) 20:6565–74. doi: 10.2174/1381612820666140826153529

14. Weng, M, Wu, D, Yang, C, Peng, H, Wang, G, Wang, T, et al. Noncoding RNAs in the Development, Diagnosis, and Prognosis of Colorectal Cancer. Transl Res (2017) 181:108–20. doi: 10.1016/j.trsl.2016.10.001

15. Velazquez-Flores, MA, Rodriguez-Corona, JM, Lopez-Aguilar, JE, Siordia-Reyes, G, Ramirez-Reyes, G, Sanchez-Rodriguez, G, et al. Noncoding RNAs as Potential Biomarkers for DIPG Diagnosis and Prognosis: XIST and XIST-210 Involvement. Clin Transl Oncol (2021) 23:501–13. doi: 10.1007/s12094-020-02443-2

16. Pal, MK, Jaiswar, SP, Dwivedi, VN, Tripathi, AK, Dwivedi, A, and Sankhwar, P. MicroRNA: A New and Promising Potential Biomarker for Diagnosis and Prognosis of Ovarian Cancer. Cancer Biol Med (2015) 12:328–41. doi: 10.7497/j.issn.2095-3941.2015.0024

17. Salmena, L, Poliseno, L, Tay, Y, Kats, L, and Pandolfi, PP. A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell (2011) 146:353–8. doi: 10.1016/j.cell.2011.07.014

18. Wang, Z, Pei, H, Liang, H, Zhang, Q, Wei, L, Shi, D, et al. Construction and Analysis of a circRNA-Mediated ceRNA Network in Lung Adenocarcinoma. Onco Targets Ther (2021) 14:3659–69. doi: 10.2147/OTT.S305030

19. Zhang, L, Zhang, K, Liu, S, Zhang, R, Yang, Y, Wang, Q, et al. Identification of a ceRNA Network in Lung Adenocarcinoma Based on Integration Analysis of Tumor-Associated Macrophage Signature Genes. Front Cell Dev Biol (2021) 9:629941. doi: 10.3389/fcell.2021.629941

20. Dong, S, Wu, C, Song, C, Qi, B, Liu, L, and Xu, Y. Identification of Primary and Metastatic Lung Cancer-Related lncRNAs and Potential Targeted Drugs Based on ceRNA Network. Front Oncol (2020) 10:628930. doi: 10.3389/fonc.2020.628930

21. Zhao, Y, Ma, S, Cui, Z, Li, S, Chen, Y, Yin, Y, et al. The Relationship Between LncRNAs and Lung Adenocarcinoma as Well as Their ceRNA Network. Cancer biomark (2021) 31:165–76. doi: 10.3233/CBM-203078

22. Guo, L, and Liang, T. MicroRNAs and Their Variants in an RNA World: Implications for Complex Interactions and Diverse Roles in an RNA Regulatory Network. Brief Bioinform (2018) 19:245–53. doi: 10.1093/bib/bbw124

23. Cloonan, N, Wani, S, Xu, Q, Gu, J, Lea, K, Heater, S, et al. MicroRNAs and Their isomiRs Function Cooperatively to Target Common Biological Pathways. Genome Biol (2011) 12:R126. doi: 10.1186/gb-2011-12-12-r126

24. Neilsen, CT, Goodall, GJ, and Bracken, CP. IsomiRs–the Overlooked Repertoire in the Dynamic Micrornaome. Trends Genet (2012) 28:544–9. doi: 10.1016/j.tig.2012.07.005

25. Tan, GC, Chan, E, Molnar, A, Sarkar, R, Alexieva, D, Isa, IM, et al. 5’ isomiR Variation is of Functional and Evolutionary Importance. Nucleic Acids Res (2014) 42:9424–35. doi: 10.1093/nar/gku656

26. Telonis, AG, Magee, R, Loher, P, Chervoneva, I, Londin, E, and Rigoutsos, I. Knowledge About the Presence or Absence of miRNA Isoforms (isomiRs) can Successfully Discriminate Amongst 32 TCGA Cancer Types. Nucleic Acids Res (2017) 45:2973–85. doi: 10.1093/nar/gkx082

27. Davis, S, and Meltzer, PS. GEOquery: A Bridge Between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics (2007) 23:1846–7. doi: 10.1093/bioinformatics/btm254

28. Colaprico, A, Silva, TC, Olsen, C, Garofano, L, Cava, C, Garolini, D, et al. TCGAbiolinks: An R/Bioconductor Package for Integrative Analysis of TCGA Data. Nucleic Acids Res (2016) 44:e71. doi: 10.1093/nar/gkv1507

29. Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, et al. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res (2015) 43:e47. doi: 10.1093/nar/gkv007

30. Kolde, R, Laur, S, Adler, P, and Vilo, J. Robust Rank Aggregation for Gene List Integration and Meta-Analysis. Bioinformatics (2012) 28:573–80. doi: 10.1093/bioinformatics/btr709

31. Huang, DW, Sherman, BT, and Lempicki, RA. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat Protoc (2009) 4:44–57. doi: 10.1038/nprot.2008.211

32. Wu, T, Hu, E, Xu, S, Chen, M, Guo, P, Dai, Z, et al. Clusterprofiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation (2021) 2(3):100141. doi: 10.1016/j.xinn.2021.100141

33. Walter, W, Sanchez-Cabo, F, and Ricote, M. GOplot: An R Package for Visually Combining Expression Data With Functional Analysis. Bioinformatics (2015) 31:2912–4. doi: 10.1093/bioinformatics/btv300

34. Luo, W, Pant, G, Bhavnasi, YK, Blanchard, SG Jr, and Brouwer, C. Pathview Web: User Friendly Pathway Visualization and Data Integration. Nucleic Acids Res (2017) 45:W501–W8. doi: 10.1093/nar/gkx372

35. Luo, W, and Brouwer, C. Pathview: An R/Bioconductor Package for Pathway-Based Data Integration and Visualization. Bioinformatics (2013) 29:1830–1. doi: 10.1093/bioinformatics/btt285

36. Szklarczyk, D, Gable, AL, Lyon, D, Junge, A, Wyder, S, Huerta-Cepas, J, et al. STRING V11: Protein-Protein Association Networks With Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res (2019) 47:D607–D13. doi: 10.1093/nar/gky1131

37. Shannon, P, Markiel, A, Ozier, O, Baliga, NS, Wang, JT, Ramage, D, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res (2003) 13:2498–504. doi: 10.1101/gr.1239303

38. Bu, D, Xia, Y, Zhang, J, Cao, W, Huo, P, Wang, Z, et al. FangNet: Mining Herb Hidden Knowledge From TCM Clinical Effective Formulas Using Structure Network Algorithm. Comput Struct Biotechnol J (2021) 19:62–71. doi: 10.1016/j.csbj.2020.11.036

39. Liu, CJ, Hu, FF, Xia, MX, Han, L, Zhang, Q, and Guo, AY. GSCALite: A Web Server for Gene Set Cancer Analysis. Bioinformatics (2018) 34:3771–2. doi: 10.1093/bioinformatics/bty411

40. Li, C, Tang, Z, Zhang, W, Ye, Z, and Liu, F. GEPIA2021: Integrating Multiple Deconvolution-Based Analysis Into GEPIA. Nucleic Acids Res (2021) 49:W242–W6. doi: 10.1093/nar/gkab418

41. Tang, Z, Li, C, Kang, B, Gao, G, and Zhang, Z. GEPIA: A Web Server for Cancer and Normal Gene Expression Profiling and Interactive Analyses. Nucleic Acids Res (2017) 45:W98–W102. doi: 10.1093/nar/gkx247

42. Li, JH, Liu, S, Zhou, H, Qu, LH, and Yang, JH. Starbase V2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and Protein-RNA Interaction Networks From Large-Scale CLIP-Seq Data. Nucleic Acids Res (2014) 42:D92–7. doi: 10.1093/nar/gkt1248

43. Yang, JH, Li, JH, Shao, P, Zhou, H, Chen, YQ, and Qu, LH. Starbase: A Database for Exploring microRNA-mRNA Interaction Maps From Argonaute CLIP-Seq and Degradome-Seq Data. Nucleic Acids Res (2011) 39:D202–9. doi: 10.1093/nar/gkq1056

44. Guo, L, Li, Y, Cirillo, KM, Marick, RA, Su, Z, Yin, X, et al. Mi-IsoNet: Systems-Scale microRNA Landscape Reveals Rampant Isoform-Mediated Gain of Target Interaction Diversity and Signaling Specificity. Brief Bioinform (2021) 22:bbab091. doi: 10.1093/bib/bbab091

45. Paraskevopoulou, MD, Georgakilas, G, Kostoulas, N, Reczko, M, Maragkakis, M, Dalamagas, TM, et al. DIANA-LncBase: Experimentally Verified and Computationally Predicted microRNA Targets on Long non-Coding RNAs. Nucleic Acids Res (2013) 41:D239–45. doi: 10.1093/nar/gks1246

46. Li, T, Fu, J, Zeng, Z, Cohen, D, Li, J, Chen, Q, et al. TIMER2.0 for Analysis of Tumor-Infiltrating Immune Cells. Nucleic Acids Res (2020) 48:W509–W14. doi: 10.1093/nar/gkaa407

47. Karagkouni, D, Paraskevopoulou, MD, Chatzopoulos, S, Vlachos, IS, Tastsoglou, S, Kanellos, I, et al. DIANA-TarBase V8: A Decade-Long Collection of Experimentally Supported miRNA-Gene Interactions. Nucleic Acids Res (2018) 46:D239–D45. doi: 10.1093/nar/gkx1141

48. Paraskevopoulou, MD, Vlachos, IS, Karagkouni, D, Georgakilas, G, Kanellos, I, Vergoulis, T, et al. DIANA-LncBase V2: Indexing microRNA Targets on Non-Coding Transcripts. Nucleic Acids Res (2016) 44:D231–8. doi: 10.1093/nar/gkv1270

49. Chen, S, Liu, Y, Zhang, K, and Chen, L. CST1 Promoted Gastric Cancer Migration and Invasion Through Activating Wnt Pathway. Cancer Manag Res (2021) 13:1901–7. doi: 10.2147/CMAR.S277770

50. Dai, DN, Li, Y, Chen, B, Du, Y, Li, SB, Lu, SX, et al. Elevated Expression of CST1 Promotes Breast Cancer Progression and Predicts a Poor Prognosis. J Mol Med (Berl) (2017) 95:873–86. doi: 10.1007/s00109-017-1537-1

51. Hart, T, Chandrashekhar, M, Aregger, M, Steinhart, Z, Brown, KR, MacLeod, G, et al. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell (2015) 163:1515–26. doi: 10.1016/j.cell.2015.11.015

52. Blomen, VA, Majek, P, Jae, LT, Bigenzahn, JW, Nieuwenhuis, J, Staring, J, et al. Gene Essentiality and Synthetic Lethality in Haploid Human Cells. Science (2015) 350:1092–6. doi: 10.1126/science.aac7557

53. Wang, T, Birsoy, K, Hughes, NW, Krupczak, KM, Post, Y, Wei, JJ, et al. Identification and Characterization of Essential Genes in the Human Genome. Science (2015) 350:1096–101. doi: 10.1126/science.aac7041

54. Xing, Z, Wang, X, Liu, J, Zhang, M, and Feng, K. Expression and Prognostic Value of CDK1, CCNA2, and CCNB1 Gene Clusters in Human Breast Cancer. J Int Med Res (2021) 49:300060520980647. doi: 10.1177/0300060520980647

55. Wang, Y, Zhong, Q, Li, Z, Lin, Z, Chen, H, and Wang, P. Integrated Profiling Identifies CCNA2 as a Potential Biomarker of Immunotherapy in Breast Cancer. Onco Targets Ther (2021) 14:2433–48. doi: 10.2147/OTT.S296373

56. Gao, T, Han, Y, Yu, L, Ao, S, Li, Z, and Ji, J. CCNA2 Is a Prognostic Biomarker for ER+ Breast Cancer and Tamoxifen Resistance. PloS One (2014) 9:e91771. doi: 10.1371/journal.pone.0091771

57. Gan, Y, Li, Y, Li, T, Shu, G, and Yin, G. CCNA2 Acts as a Novel Biomarker in Regulating the Growth and Apoptosis of Colorectal Cancer. Cancer Manag Res (2018) 10:5113–24. doi: 10.2147/CMAR.S176833

58. Chen, Q, Shen, P, Ge, WL, Yang, TY, Wang, WJ, Meng, LD, et al. Roundabout Homolog 1 Inhibits Proliferation via the YY1-ROBO1-CCNA2-CDK2 Axis in Human Pancreatic Cancer. Oncogene (2021) 40:2772–84. doi: 10.1038/s41388-021-01741-5

59. Huang, Y, Zhong, L, Nie, K, Li, L, Song, S, Liu, F, et al. Identification of LINC00665-miR-Let-7b-CCNA2 Competing Endogenous RNA Network Associated With Prognosis of Lung Adenocarcinoma. Sci Rep (2021) 11:4434. doi: 10.1038/s41598-020-80662-x

60. Lee, Y, Lee, CE, Oh, S, Kim, H, Lee, J, Kim, SB, et al. Pharmacogenomic Analysis Reveals CCNA2 as a Predictive Biomarker of Sensitivity to Polo-Like Kinase I Inhibitor in Gastric Cancer. Cancers (Basel) (2020) 12:1418. doi: 10.3390/cancers12061418

61. Li, J, Ying, Y, Xie, H, Jin, K, Yan, H, Wang, S, et al. Dual Regulatory Role of CCNA2 in Modulating CDK6 and MET-Mediated Cell-Cycle Pathway and EMT Progression Is Blocked by miR-381-3p in Bladder Cancer. FASEB J (2019) 33:1374–88. doi: 10.1096/fj.201800667R

62. Ciancio, N, Galasso, MG, Campisi, R, Bivona, L, Migliore, M, and Di Maria, GU. Prognostic Value of P53 and Ki67 Expression in Fiberoptic Bronchial Biopsies of Patients With non Small Cell Lung Cancer. Multidiscip Respir Med (2012) 7:29. doi: 10.4081/mrm.2012.616

63. Niikura, N, Masuda, S, Kumaki, N, Xiaoyan, T, Terada, M, Terao, M, et al. Prognostic Significance of the Ki67 Scoring Categories in Breast Cancer Subgroups. Clin Breast Cancer (2014) 14:323–9 e3. doi: 10.1016/j.clbc.2013.12.013

64. Daigo, K, Takano, A, Thang, PM, Yoshitake, Y, Shinohara, M, Tohnai, I, et al. Characterization of KIF11 as a Novel Prognostic Biomarker and Therapeutic Target for Oral Cancer. Int J Oncol (2018) 52:155–65. doi: 10.3892/ijo.2017.4181

65. Neska-Dlugosz, I, Buchholz, K, Durslewicz, J, Gagat, M, Grzanka, D, Tojek, K, et al. Prognostic Impact and Functional Annotations of KIF11 and KIF14 Expression in Patients With Colorectal Cancer. Int J Mol Sci (2021) 22:155–65. doi: 10.3390/ijms22189732

66. Li, Z, Zhang, Y, Zhou, Y, Wang, F, Yin, C, Ding, L, et al. Tanshinone IIA Suppresses the Progression of Lung Adenocarcinoma Through Regulating CCNA2-CDK2 Complex and AURKA/PLK1 Pathway. Sci Rep (2021) 11:23681. doi: 10.1038/s41598-021-03166-2

67. Tao, K, Liu, J, Liang, J, Xu, X, Xu, L, and Mao, W. Vascular Endothelial Cell-Derived Exosomal miR-30a-5p Inhibits Lung Adenocarcinoma Malignant Progression by Targeting CCNE2. Carcinogenesis (2021) 42:1056–67. doi: 10.1093/carcin/bgab051

68. Yu, D, Liu, H, Qin, J, Huangfu, M, Guan, X, Li, X, et al. Curcumol Inhibits the Viability and Invasion of Colorectal Cancer Cells via miR-30a-5p and Hippo Signaling Pathway. Oncol Lett (2021) 21:299. doi: 10.3892/ol.2021.12560

69. Khanlari, P, Khanehzad, M, Khosravizadeh, Z, Sobhani, A, Barakzai, S, Kazemzadeh, S, et al. Effect of miR-30a-5p on Apoptosis, Colonization, and Oxidative Stress Variables in Frozen-Thawed Neonatal Mice Spermatogonial Stem Cells. Biopreserv Biobank (2021) 19:258–68. doi: 10.1089/bio.2020.0121

70. Tan, J, and Yang, L. Long Noncoding RNA VPS9D1-AS1 Overexpression Predicts a Poor Prognosis in Non-Small Cell Lung Cancer. BioMed Pharmacother (2018) 106:1600–6. doi: 10.1016/j.biopha.2018.07.113

71. Fa, X, Song, P, Fu, Y, Deng, Y, and Liu, K. Long non-Coding RNA VPS9D1-AS1 Facilitates Cell Proliferation, Migration and Stemness in Hepatocellular Carcinoma. Cancer Cell Int (2021) 21:131. doi: 10.1186/s12935-020-01741-7

72. Chen, M, Wu, X, Ma, W, Zhou, Q, Wang, X, Zhang, R, et al. Decreased Expression of lncRNA VPS9D1-AS1 in Gastric Cancer and its Clinical Significance. Cancer biomark (2017) 21:23–8. doi: 10.3233/CBM-170172




Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Yang, Zhang and Guo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 02 March 2022

doi: 10.3389/fonc.2022.850943

[image: image2]


Pyroptosis-Related LncRNA Signatures Correlate With Lung Adenocarcinoma Prognosis


Hua Huang 1†, Zijian Shi 1†, Yongwen Li 2†, Guangsheng Zhu 1, Chen Chen 2, Zihe Zhang 1, Ruifeng Shi 1, Lianchun Su 3, Peijun Cao 1, Zhenhua Pan 2, Hongbing Zhang 1, Minghui Liu 1, Hongyu Liu 2,4* and Jun Chen 1,2,3*


1 Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China, 2 Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China, 3 Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China, 4 Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States




Edited by: 

Haitao Luo, University of Jinan, China

Reviewed by: 

Shuangsang Fang, Beijing University of Chinese Medicine, China

Guowei Che, Sichuan University, China

*Correspondence: 

Hongyu Liu
 liuhongyu123@hotmail.com

Jun Chen
 huntercj2004@qq.com


†These authors have contributed equally to this work and share first authorship


Specialty section: 
 This article was submitted to Cancer Genetics, a section of the journal Frontiers in Oncology








Received: 08 January 2022

Accepted: 09 February 2022

Published: 02 March 2022

Citation:
Huang H, Shi Z, Li Y, Zhu G, Chen C, Zhang Z, Shi R, Su L, Cao P, Pan Z, Zhang H, Liu M, Liu H and Chen J (2022) Pyroptosis-Related LncRNA Signatures Correlate With Lung Adenocarcinoma Prognosis. Front. Oncol. 12:850943. doi: 10.3389/fonc.2022.850943




Background

Pyroptosis is a new type of programmed cell death, accompanied by an intense inflammatory response. Previous studies have shown that pyroptosis can modify long-chain non-coding RNA (lncRNA), thereby affecting the occurrence and progression of tumors. However, the underlying role of pyroptosis-related lncRNA in lung adenocarcinoma (LUAD) remains to be elucidated. Therefore, the purpose of our study was to evaluate the prognostic value of pyrolysis-related lncRNA in patients with LUAD.



Methods

A total of 454 LUAD samples were downloaded from The Cancer Genome Atlas (TCGA) database. Pearson’s correlation coefficient was used to identify the pyroptosis-related lncRNAs. Unsupervised consensus clustering was used to identify the various LUAD molecular subtypes. A least absolute shrinkage and selection operator (LASSO) analysis was conducted to construct a prognostic signature.



Results

An 11-lncRNA prognostic signature out of 19 identified pyroptosis-related prognostic lncRNAs was constructed. The patients with LUAD were divided into low-risk and high-risk groups. Patients in the high-risk group had higher score values and mortality. The immune score, stromal score, and estimate score were lower in the high-risk group. The risk score was an independent predictor for OS in multivariate Cox regression analyses (HR > 1, p < 0.01). BTLA, PD-1, PD-L1, CTLA, and CD47 were lower expressed in the high-risk group.



Conclusions

Our study identified an 11-pyroptosis-related lncRNA signature. These findings could further clarify the role of pyroptosis in LUAD and guide the prognosis and individualized treatment of patients.





Keywords: pyroptosis, lncRNA, prognosis, immune cell infiltrating, immune checkpoint



Introduction

Lung cancer is the leading cause of cancer-related death (1), great progress has recently been made in the treatment of LUAD, which includes immunological therapy and targeted therapy (2, 3). Nevertheless, people with LUAD still have a low overall survival (OS) rate, with an average 5-year survival of less than 20% (4), and LUAD is the most abundant subtype of lung cancer. The current treatment for LUAD is so limited that the development of effective therapies is urgent. Pyroptosis is a caspase-dependent, pro-inflammatory, programmed cell death, accompanied by the release of a large number of inflammatory factors (5). Both apoptosis and pyroptosis are mediated by caspase. Compared with apoptosis, pyroptosis is a necrotic and inflammatory cell death induced by inflammatory caspase. Given that pyroptosis requires the participation of inflammatory caspase, it can be distinguished from another necrotizing and inflammatory form of programmed cell death —necroptosis and its occurrence does not require the participation of caspase (6). When microorganisms infect host cells exogenously or endogenously, the pattern recognition receptor located in the cytoplasm recognizes and binds to the corresponding ligands through pathogen-associated molecular patterns and damage-related molecular patterns. It forms a multi-protein complex in the cytoplasm, activates inflammatory caspase-1 and caspase-4/5/11, and further cleaves the GSDMD protein to perforate the cell membrane and promote the occurrence of cell pyroptosis. Meanwhile, the inflammasome acts on downstream molecules to promote the activation of inflammatory cytokines, interleukin-1β (IL-1β) and IL-18 and adhesion molecules as well as their release to the outside of the cell through the ruptured cell membrane to recruit and activate more inflammatory cells, amplifying the local and systemic inflammatory response (7). Studies have shown that the activation pathway of pyroptosis is divided into the classic pyroptosis pathway, in which caspase-1 is activated by inflammasomes, and the non-classical pyroptosis pathway, in which caspase-4/5/11 is activated by cytoplasmic lipopolysaccharide. Several reports have recently confirmed that many pyroptosis-related molecules have a significant relationship with tumorigenesis, tumor progression, and tumor therapy. For example, GSDMD is a substrate of inflammatory caspase, which causes pyroptosis by forming small holes in the cell membrane after lysis (8). GSDME, which belongs to the same family as GSDMD, can be activated by caspase-3 when stimulated by chemotherapeutic drugs leading to pyroptosis (9, 10). A previous study had confirmed that the expression of GSDMD in non-small cell lung cancer (NSCLC) tissue is significantly higher, and is related to larger tumor size, more advanced stages, and other more aggressive characteristics (11). It was believed that GSDMD is an independent prognostic marker of LUAD. Further studies have found that GSDMD can inhibit the activation of caspase-3 and polyadenosine ribose polymerase, thereby inhibiting NSCLC cell apoptosis and promoting cancer cell proliferation. On the other hand, knocking out GSDMD can inhibit the epidermal growth factor receptor (EGFR)/AKT pathway and inhibit the proliferation of lung cancer cells (11). A study confirmed that under the action of various small molecule inhibitors against KRAS-, EGFR-, or ALK-driven lung cancer, the intrinsic apoptosis pathway in mitochondria is activated, and activated GSDME mediates apoptosis (12). As mentioned earlier, an increasing number of studies have illustrated the relationship between pyroptosis-related molecules and lung cancer. However, there is a mystery as to the function and underlying mechanism of pyroptosis-related lncRNA in LAUD.

As a subtype of RNA, lncRNAs are more than 200 nucleotides in length (13). They can exert their functions in many biological processes, such as tumorigenesis and apoptosis, by combining with DNA, RNA, or specifically, protein (14, 15). Increasing evidence has shown that lncRNAs are critical factors in the regulation of normal or abnormal cell function status and diseases (16). Dysfunction of lncRNAs can lead to aberrant cell function processes, such as the progression, invasion, and apoptosis of tumor cells, which lead to poor prognoses. In breast cancer, for example, HOX transcript antisense RNA, whose expression level is significantly elevated, has been validated to have an association with the poor prognosis and metastasis (17). Other studies have shown that the abnormal expression of colon cancer-associated transcript 1 runs through the entire disease process of colon cancer occurrence and development, including colon adenoma, colon cancer, colon cancer lymphatic metastasis, and liver metastasis (18). Many lncRNAs perform important functions in lung cancer (19, 20). Metastasis associated with lung adenocarcinoma transcript 1 (MALAT1) is abnormally expressed in tumors of the breast, bladder, liver, and prostate, especially in NSCLC (21–24). Many studies have shown that MALAT1 participates in regulating tumor cell migration, and it can regulate metastasis-related genes at the transcription level or post-transcription level to enhance the migration ability of lung cancer cells (25). Another study had confirmed that MALAT1 plays a role in lung cancer metastasis by regulating the expression of related target genes rather than alternative splicing by establishing a MALAT1 gene knockout model (26). However, the expression pattern and function of lncRNA in LUAD has yet to be systematically analyzed.

Based on the TCGA database, our study used bioinformatics methods to analyze the differential expression of pyroptosis-related lncRNAs in LUAD tissues and normal tissues and employed relevant statistical methods to screen candidates and construct a risk model, aiming to explore its potential predictive value and analyze related biological functions. We hope our research will help elucidate the role of pyroptosis-related lncRNA in LUAD.



Materials and Methods


Dataset Acquisition and Processing

The mRNA expression data of LUAD were downloaded from the TCGA database (https://portal.gdc.cancer.gov/repository), and we obtained corresponding clinical data. A total of 454 cases were included in this study, which were randomly separated into a training cohort for pyroptosis-related lncRNA signature construction and a validation cohort for model validation.



Identification of Pyroptosis-Related Prognostic lncRNAs

A total of 52 pyroptosis-related genes were retrieved from previous research and literature; they are shown in Supplementary Table S1. We screened the lncRNAs in the TCGA cohort according to gene annotation and obtained a total of 13,413 lncRNAs. The Pearson correlation coefficient was conducted to evaluate the correlation between 52 pyroptosis-related genes and lncRNAs. The lncRNA with an absolute correlation coefficient >0.5 and a P value < 0.001 was considered as a pyroptosis-related lncRNA, and we screened a total of 1457 pyroptosis-related lncRNAs. Then, a univariate Cox regression analysis of OS was performed to screen pyroptosis-related lncRNAs with prognostic value; P < 0.05 was considered to be related to the prognosis, a total of 19 pyroptosis-related lncRNAs with prognostic value were screened.



Consensus Clustering

An unsupervised consensus clustering algorithm was applied to classify all patients with LUAD into clusters according to the similarities of the pyroptosis-related lncRNA expression levels by using the “ConsensusClusterPlus” R package. A survival analysis was then conducted to explore the prognosis of various clusters. Immune cell infiltration was compared and analyzed by CIBERSORT and ssGSEA methods.



Construction and Evaluation of the Prognostic Model

To minimize the risk of overfitting, a LASSO Cox regression analysis was performed to build a prognostic model in the training cohort (27). The LASSO algorithm was used for variable selection and shrinkage with the “glmnet” R package. The independent variable was the normalized expression matrix of 19 pyroptosis-related lncRNAs with prognostic value, and the response variables were OS and status of patients in the training cohort. Penalty parameter (λ) for the model was determined by tenfold cross-validation following the minimum criteria. The risk score of each patient was calculated based on the standardized expression level of lncRNA and its corresponding regression coefficient. The formula was established as follows: score = esum (each lncRNA expression × corresponding coefficient). We used the median risk score as a cutoff to classify patients with LUAD into low-risk and high-risk groups, and a Kaplan–Meier survival curve was further employed to analyze the difference in survival prognosis employing the “Survival” package. The “survivalROC” package was used to draw the receiver operating characteristic (ROC) curve of the 1-year, 3-year, and 5-year OS rates of LUAD. To validate the predictive power of our model, the same above formula was used for verification in the validation cohort.



Evaluation of Immune Infiltration

The estimate algorithm was utilized to calculate the immune score, stromal score, and estimate score for each patient with LUAD using the “ESTIMATE” package in the R software. The CIBERSORT analytical tool was adopted to identify the abundance of 22 types of immune cells in various LUAD clusters. Moreover, the enrichment scores of 16 immune cells and 13 immune functions for each LUAD sample were calculated by the "gene set variation analysis (GSVA)" package.



Function Enrichment Analysis

To explore the possible enrichment pathways among different risk score groups, gene set enrichment analysis (GSEA) and GSVA analysis were applied to elucidate relevant signaling pathways in various groups, and functional enrichment analyses were performed using the "clusterProfiler" package.



Cell Culture

A human LUAD cell line (A549, NCI-H1975) and a normal lung epithelial cell line (BEAS-2B) were obtained from the American Type Culture Collection (Manassas, VA, USA). All cells were cultured in Roswell Park Memorial Institute-1640 medium supplemented with 10% fetal bovine serum.



Tissue Samples

We collected 5 pairs of LUAD and paracancerous tissues from surgical patients in the Tianjin Medical University General Hospital (TJMUGH). Samples were stored at −80°C until use. The ethics committee of TJMUGH approved this study.



RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction

Following the procedure previously described (28), we extracted total RNA from the samples. We synthesized cDNA using a PrimeScript RT Reagent Kit (TaKaRa). Then, cDNA was subjected to quantitative real-time polymerase chain reaction (RT-qPCR) by the ABI 7900HT platform (Applied Biosystems, USA). We used β-actin mRNA as an internal reference to normalize the 11 lncRNAs by the comparative Ct method. The primer sequence involved in this study is shown in Supplementary Table S2.



Statistical Analysis

The “timeROC” package was used to analyze the ROC curve. Univariate and multivariate Cox regression analyses were performed to determine independent prognostic factors for OS. All the statistical analyses of the data are based on the R platform (Version 4.0.2) and GraphPad Prism 8. If there were no special instructions for the above analysis methods, P < 0.05 was considered statistically significant.




Results


Identification of Pyroptosis-Related lncRNAs in LUAD

The detailed process is shown in Figure 1. A total of 454 patients with LUAD were included in this analysis, and detailed clinical information is shown in Supplementary Table S3. A total of 52 pyroptosis-related genes came from previous research and literature. Employing a Pearson correlation analysis, we identified 1457 pyroptosis-related lncRNAs. Then, a univariate regression analysis was performed to identify 19 pyroptosis-related lncRNAs with prognostic value in LUAD.




Figure 1 | The entire analytical process of the study.





Consensus Clustering Categorized Patients According to Pyroptosis-Related Prognostic lncRNAs

To identify distinct molecular patterns based on the expression of pyroptosis-related lncRNAs with prognostic value, unsupervised consensus clustering was applied to separate patients with LUAD into two clusters, with k=2 found to be optimal clustering stability (Figures S1A–C). As shown in Figure 2A, significant differences were observed in the expression levels of 19 pyroptosis-related lncRNAs, with a prognostic value between cancer and adjacent cancers. The OS rate of patients with LUAD in cluster A was poorer (Figure 2B). Furthermore, t-distributed stochastic neighbor embedding demonstrated that cluster A and cluster B can be completely distinguished (Figure 2C). We further evaluated the differences in the tumor immune microenvironment between different molecular patterns. Figure 2D shows the infiltration abundance of 22 types of immune cells in each cluster by CIBERSORT analysis. Cluster A had a higher abundance of memory-activated CD4 T cells and M2 macrophages, and a lower abundance of T cells follicular helper compared with cluster B. Moreover, the single-sample GSEA showed significant differences in immune infiltrations and immune functions between cluster A and cluster B. Cluster A had a higher abundance of macrophages, Th2 cells, natural killer cells, antigen-presenting cell co-stimulation, and chemokine receptors, and a lower abundance of B cells and mast cells (Figures 3A, B). Comparing the clinicopathological characteristics of various clusters, the expression profiles of pyroptosis-related lncRNAs were significantly different in LUAD (Figure 3C).




Figure 2 | Pyroptosis-related lncRNAs molecular patterns in the TCGA cohort. (A) Difference between normal and tumor tissue of 19 LncRNAs related to the prognosis of LUAD. (B) Kaplan–Meier method was used to plot the OS curve for the cluster A and B. (C) tSNE analysis of cluster A and B. (D) The infiltrating levels of 22 immune cell types in cluster A and cluster B.






Figure 3 | Distinct Clinical characteristics and immune cell infiltrations and function with molecular patterns in LUAD. (A, B) The enrichment scores of 16 immune cells (A) and 13 immune-related functions (B) ;*P < 0.05, **P < 0.01, ***P < 0.001, and nsP > 0.05. (C) Heatmap of correlation of the two clusters with clinicopathologic features.





Construction and Validation of the Pyroptosis-Related lncRNA Signature

Patients were randomly separated into training cohorts and validation cohorts. We conducted a LASSO Cox analysis to construct an 11-lncRNA prognostic signature using the 19 identified pyroptosis-related prognostic lncRNAs in the training cohort. Figures S2A, B show the coefficient and partial likelihood deviance of the prognostic signature. Patients were separated into high-risk and low-risk groups by the median values in the training cohort. The relative expression levels of the 11-lncRNAs were significantly different in the cancer and adjacent tissues (Figure 4A). Patients in the high-risk group had higher score values and mortality (Figures 4B, C). We performed R software to draw the time-dependent ROC curve, the results showed that the area under the curve for 1, 3, and 5 years reached 0.770, 0.743, and 0.770, respectively (Figure 4D). Similar results have also been verified in the validation cohort, suggesting that our model has a strong prognostic value (Figures 5A–D). We also combined the entire TCGA LUAD cohort to verify the stability of this model. The ROC curve further demonstrated that our model has a strong prognostic value (Figures 5E, F).




Figure 4 | Prognostic analysis of 11-lncRNAs model in the TCGA training cohort. (A) Heatmap of 11 pyroptosis-related lncRNAs in the training cohort. (B) Distribution of survival time and risk scores. (C) Survival analysis in the TCGA training cohort. (D) ROCs for 1, 3, and 5 year survival time based on the risk score.






Figure 5 | Prognostic analysis of 11-lncRNAs model in the TCGA validation cohort and entire TCGA cohort. (A) Heatmap of 11 pyroptosis-related lncRNAs in the validation cohort. (B) Distribution of survival time and risk scores. (C) Survival analysis in the TCGA validation cohort. (D) ROCs for 1, 3 and 5 year survival time based on the risk score. (E) Survival analysis in the entire TCGA cohort. (F) ROCs for 1, 3 and 5 year survival time based on the risk score.



Next, to assess whether the model retains its predictive ability in the subgroups of different clinical features, we verified the prognosis of risk score in various groups of patients with LUAD, which found that the high-risk group had a poor prognosis in patients aged >65, aged ≤65 (Figures 6A, B), and by sex subgroup (Figures 6C, D). Moreover, the high-risk group had a poor prognosis in patients with LUAD at the N0 stage, N1-3 stage (Figures 6E, F), stage I/II, stage III/IV (Figures 6G, H), T1-2 stage, and T3-4 stage (Figures 6I, J).




Figure 6 | Survival analysis of clinical stratification of OS in the TCGA cohort. (A, B) age (< = 65 or > 65 years old). (C, D) gender (female or male). (E, F) N (N0 or N1-3). (G, H) tumor stage (I–II or III-IV). (I, J) T (T1-2 or T3-4).





Pathway Enrichment Analysis

To elucidate the potential biological functions of the 11-lncRNA pyroptosis-related signature, GSVA and GSEA were further performed to investigate the key pathways of various risk groups. As shown in Figure 7A, GSVA identified most metabolism-related pathways that were enriched in the high-risk group, including arginine and proline metabolism, the tricarboxylic acid cycle, glycolysis, and gluconeogenesis. The GSEA analysis showed that the high-risk group was significantly enriched in the cell cycle, proteasome, protein processing in the endoplasmic reticulum, DNA replication, and the ribosome (Figure 7B).




Figure 7 | Pathway Enrichment Analysis. (A, B) GSVA and GSEA of biological pathways between the high- and low-risk group.





Evaluation of Immune Infiltration

We investigated the role of pyroptosis-related lncRNAs in the LUAD tumor microenvironment. The CIBERSORT demonstrated that the abundance of M0 macrophages was positively associated with the risk score (Figure 8A). We also calculated the immune score, stromal score, and estimate score for each patient by the ESTIMATE algorithm; the results demonstrated that the immune score, stromal score, and estimate score were lower in the high-risk group (Figure 8B). To further explore the differences in the response to immunotherapy between the two groups, we compared the differences in the expression of immune checkpoints. As shown in Figure 8C, B- and T-lymphocyte attenuator (BTLA), programmed cell death (PD)-1, PD ligand 1 (PD-L1), cytotoxic T lymphocyte-associated antigen (CTLA), and CD47 were all elevated in the low-risk group.




Figure 8 | Immune infiltration discrepancy in different risk groups. (A) The correlation of the risk scores and immune cells infiltration. (B, C) The differences of ESTIMATE scores and expression of five common immune checkpoints in different risk groups ;***P < 0.001.





Independent Prognostic Value of the Risk Score

To determine whether the risk score can be used as an independent factor for predicting OS, we performed a univariate Cox regression analysis on clinical parameters and the risk score. The risk score was significantly associated with OS in both the training and the validation cohort (HR= 3.400, 95% CI = 2.006-5.762, P< 0.001; HR= 1.902, 95% CI = 1.205-3.003, P= 0.006, respectively) (Figures 9A, C) The multivariate Cox regression analysis revealed that the risk score still had a statistically significant impact on survival and prognosis after adjusting for other confounding factors (Training cohort: HR =3.053, 95% CI = 1.789-5.210, P<0.001; Validation cohort: HR=1.789, 95% CI = 1.129-2.835, P = 0.013) (Figures 9B, D).




Figure 9 | Forrest plot of the univariate and multivariate Cox regression analyses regarding OS in the TCGA training cohort (A, B) and the TCGA validation cohort (C, D).





The Expression Levels of the 11 Pyroptosis-Related lncRNAs

We analyzed the differences of 11 lncRNAs in the normal lung epithelial cell line BEAS-2B and two LUAD cell lines (A549, NCI-H1975) by RT-qPCR. As shown in Figure 10A, there were obvious differences in the expression of these lncRNAs, except that the expression levels of AC004704.1 and AC024075.2 were downregulated in the tumor cell lines, whereas the other 9 lncRNAs were upregulated. We further verified the expression level of 11 lncRNAs in 5 pairs of LUAD tissues and adjacent tissues. Due to the small number, however, we did not find any difference between cancer and adjacent cancer (Figures 10B–K).




Figure 10 | (A) Expression levels of 11 pyroptosis-related lncRNAs in the normal lung epithelial cell line BEAS-2B and two LUAD cell lines (A549, NCI-H1975) by RT-qPCR. (B–K) Expression levels of 11 pyroptosis-related lncRNAs in LUAD tissues and corresponding normal tissues by RT-qPCR. Data represent the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001. P values were determined by one-way ANOVA.






Discussion

LUAD is the most common NSCLC subtype among non-smokers. Despite recent progress in cancer treatment, the OS rate of LUAD is still disappointing due to the lack of reliable early prognostic indicators. Therefore, it is urgent to find a biomarker closely related to LUAD to guide individualized treatment and accurately predict patient prognoses. In recent years, pyroptosis has received greater attention, and its related molecules have the potential to become biomarkers.

Pyroptosis has been extensively studied in various cancers, and many molecules related to pyroptosis participate in the tumorigenesis and progression of cancer. For example, the expression level of GSDMB in breast cancer cells is higher than that in normal breast tissue and is related to the high metastasis rate and low patient survival rate (29). In a study on the correlation between GSDME methylation and various clinicopathological parameters, with breast cancer as an example, the GSDME promoter methylation value of lobular adenocarcinoma was significantly higher than that of ductal adenocarcinoma (30). This study also observed a significant correlation between GSDME promoter methylation and tumor stage, with the highest degree of methylation in stage III, and the same degree of methylation in stages I and II (30).

Increasing data show that lncRNA abnormalities, such as overexpression, deletion, or mutation, have a driving effect on the malignant biological behavior of tumors, such as tumor formation, progression, metastasis, and recurrence. For example, MALAT1 can promote tumor metastasis chiefly by regulating epithelial-to-mesenchymal transition in NSCLC. Some scholars used miR-101-3p to knock down MALAT1, thereby inhibiting the growth and metastasis of NSCLC via the PI3K/AKT signaling pathway (31). One study had indicated that miR-142-3p exerts a tumor suppressor effect in NSCLC by inhibiting the MALAT1/β-catenin signaling pathway. In short, lncRNA participates in many important biological processes of LUAD. Nevertheless, pyroptosis-related lncRNAs in LUAD deserve more attention (32).

In this study, a model of 11 pyroptosis-related lncRNAs in LUAD was constructed with a LASSO Cox regression analysis and other bioinformatics analyses. We constructed a model of 11 pyroptosis-related lncRNAs with prognosis value, and it successfully predicted OS (Figure 4). None of the 11 lncRNAs (AC004865.2, AC004704.1, LINC02390, AC0109992, AC024075.2, AP0051372, AC026368.1, AC012085.2, LINC02178, AC026355.2 and AC090559.1) have previously been reported in LUAD and other cancers. They could become potential prognostic markers, and need to be further explored and studied in LUAD.

A similar study established a signature of seven pyroptosis-related lncRNAs to predict the prognosis of patients with LUAD through bioinformatics analysis, which could function as prognostic biomarkers for LUAD (33). The AUCs of the seven pyroptosis-related lncRNAs signature in the training and validation cohorts were respectively 0.757 and 0.728 at 1 year. In contrast, the prediction results of the model in this study at 1 year are 0.770 and 0.747, respectively, indicating that the proposed model is slightly more predictable. In addition, the signature was also more predictive at long-term follow-up, with 5-year AUCs of 0.77 and 0.73 in the training cohort and validation cohort, respectively. (Figures 4D, 5D, F).

We further explored whether the signature we constructed maintained its predictive ability in subgroups with different clinical characteristics. The results show that the model accurately distinguished high- and low-risk groups, regardless of age, sex, and pathological stage (Figure 6).

The results of the GSVA and GSEA identified pathways significantly enriched in high-risk groups, including cell cycle, DNA replication, proteasome, protein processing in the endoplasmic reticulum, and ribosome pathways (Figures 7A, B). Our results were similar to a previous study reporting that the expression of GSDMD was reduced in gastric cancer tissues, and the reduction in GSDMD expression significantly promoted tumor proliferation in vivo and in vitro. GSDMD regulates cell cycle-related proteins in gastric cancer through a series of pathways to accelerate S/G2 cell transformation (34). This result implies that pyroptosis could have a protective effect on NSCLC cells, which could be used as a potential diagnosis and treatment strategy.

To explore the influence of pyroptosis-related lncRNAs on the LUAD tumor microenvironment, the proportion of 22 immune cell types were calculated stromal score, immune score, and estimate score for each patient were obtained (Figure 8). A recent study confirmed that cytotoxic lymphocytes kill tumor cells via pyroptosis. Granzyme A induces pyroptosis by hydrolyzing GSDMB, which results in tumor cell death, indicating that pyroptosis positively affects the tumor immune response process (35). However, the influence of pyroptosis on the tumor microenvironment and immunotherapy is still unclear. The relationship between pyroptosis and immunity needs to be further explored and verified.

We also found that the expression levels of BTLA, PD-1, PD-L1, and CTLA increased in the low-risk group (Figure 8C). The discovery of PD-1 and PD-L1 has made their mechanism involving the occurrence and development of tumors an important research topic. Researchers have explored the expression of PD-1 and PD-L1 in a variety of cancers and related immunotherapies. The results show that the model might provide guidance for future immunotherapy.

Our study has limitations. First, our study methods were not comprehensive. Experiments exploring different aspects of molecular biology are necessary to further analyze the mechanism of pyroptosis-related lncRNAs in the tumorigenesis and development of LUAD. Second, the model was only validated in the TCGA validation cohort; thus, it needs to be further externally validated in larger sample sizes and different LUAD cohorts.

In short, an 11-pyroptosis-related lncRNA prognostic signature was constructed, which could function as an independent prognostic variable for patients with LUAD. We hope this model will be useful as a reference to predict patient survival and guide related treatments for patients with LUAD.
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Background

This study determined the predictive value of CRMP4 promoter methylation in prostate tissues collected by core needle biopsies for a postoperative upgrade of Gleason Score (GS) to ≥8 in patients with low-risk PCa.



Method

A retrospective analysis of the clinical data was conducted from 631 patients diagnosed with low-risk PCa by core needle biopsy at multiple centers and then underwent Radical Prostatectomy (RP) from 2014-2019. Specimens were collected by core needle biopsy to detect CRMP4 promoter methylation. The pathologic factors correlated with the postoperative GS upgrade to ≥8 were analyzed by logistic regression. The cut-off value for CRMP4 promoter methylation in the prostate tissues collected by core needle biopsy was estimated from the ROC curve in patients with a postoperative GS upgrade to ≥8.



Result

Multivariate logistic regression showed that prostate volume, number of positive cores, and CRMP4 promoter methylation were predictive factors for a GS upgrade to ≥8 (OR: 0.94, 95% CI: 0.91-0.98, P=0.003; OR: 3.16, 95% CI: 1.81-5.53, P<0.001; and OR: 1.43, 95% CI: 1.32-1.55, P<0.001, respectively). The positive predictive rate was 85.2%, the negative predictive rate was 99.3%, and the overall predictive rate was 97.9%. When the CRMP4 promoter methylation rate was >18.00%, the low-risk PCa patients were more likely to escalate to high-risk patients. The predictive sensitivity and specificity were 86.9% and 98.8%, respectively. The area under the ROC curve (AUC) was 0.929 (95% CI: 0.883-0.976; P<0.001). The biochemical recurrence (BCR)-free survival, progression-free survival (PFS), and cancer-specific survival (CSS) were worse in patients with CRMP4 methylation >18.0% and postoperative GS upgrade to ≥8 than in patients without an upgrade (P ≤ 0.002).



Conclusion

A CRMP4 promoter methylation rate >18.00% in prostate cancer tissues indicated that patients were more likely to escalate from low-to-high risk after undergoing an RP. We recommend determining CRMP4 promoter methylation before RP for low-risk PCa patients.





Keywords: prostate cancer, gleason score upgrade, CRMP4 promoter methylation, biochemical recurrence, pelvic lymph node dissection



1 Introduction

Prostate cancer (PCa) is one of the most common cancers affecting males, especially in developed countries (1). An accurate diagnosis of PCa can be made based on the prostate-specific antigen (PSA) level, digital rectal examination, radiographic examination, and core needle biopsy of the prostate gland. The Gleason score (GS) provides a reference for developing the treatment regimen and evaluating the prognosis. According to the National Comprehensive Cancer Network (NCCN) guidelines, patients diagnosed with low-risk PCa with the GS ≤6, T1-T2a and PSA<10ng/ml require active surveillance (AS) or radical prostatectomy (RP). Patients diagnosed with high-risk PCa with the GS≥8, ≥T3a or PSA>20ng/ml should undergo RP with pelvic lymph node dissection (PLND) (2). It has been reported (3–9) that 30%-55% of PCa patients developed a GS upgrade based on the postoperative pathologic evaluation; thus, they have already missed the best treatment regimen available. This is particularly the case for those with an escalation from low-to-high risk based on the postoperative pathologic evaluation. Such patients should have undergone RP plus PLND, while they only underwent AS or RP and therefore missed the best treatment regimen. Indeed, the question is whether low-risk PCa patients require core needle biopsies to predict the likelihood of a GS upgrade and optimize the treatment regimen before performing an RP.

Many factors have been proposed for the prediction of a GS upgrade: PSA level; prostate-specific antigen density (PSAD); body mass index (BMI); prostate volume; clinical T stage; the number of biopsies; the number of positive cores; percentage of positive cores; serum testosterone level; neutrophil-to-lymphocyte ratio; and type of biopsy technique (5, 10–14). There have been studies involving the use of biopsies to predict the escalation from low-to-high-risk PCa following an RP. It has only been reported (15) that the PSA level is correlated with a GS upgrade to ≥8. Studies have shown that DNA methylation is closely related to tumor progression (16, 17). The collapsin response mediator protein 4 (CRMP4) is a member of the CRMP family and is a tumor suppressor gene for prostate cancer metastases. Existing studies have demonstrated that CRMP4 promoter methylation leads to downregulation of CRMP4, thus promoting PCa invasion and metastases (18). Improving the diagnostic and treatment accuracy of PCa has become an urgent issue in the age of precision medicine. Herein we discuss the predictive value of CRMP4 promoter methylation in escalation decisions from low-to-high-risk PCa based on core needle biopsies. Other potential risk factors were also evaluated to optimize the treatment regimen before performing an RP.



2 Materials AND METHOD


2.1 Sources of Patients

A retrospective analysis of the clinical data was conducted from 631 patients diagnosed with low-risk PCa by core needle biopsies at multiple centers, then undergoing RP from 2014-2019. 61 and 570 patients with and without a postoperative GS upgrade to ≥8, respectively. The following data were collected from 631 PCa patients: age; PSA level; prostate volume; PSAD; the number of biopsies; the number of positive cores; percentage of positive cores; clinical T stage; pathologic T stage; GS based on core needle biopsy; GS upon postoperative pathologic evaluation; cut-off value for CRMP4 promoter methylation rate based on core needle biopsy; positive resection margins; seminal vesicle invasion; lymph node metastases; biochemical recurrence (BCR) and the time of BCR; clinical progression and the time of progression; and cancer-specific (CS) death and the time of CS death. Definition of GS grade was as follows: GS ≤ 6 (grade group1); GS=3+4(grade group2); GS=4+3 (grade group3); and GS≥8 (grade group4 or 5). An upgrade was considered if the grade group was higher in postoperative pathologic evaluation than preoperative core needle biopsy results (2, 19).



2.2 Follow-Up

The patients were followed once every 3 months in the 1st year after surgery, then every 6 months in the 2nd year. The follow-up was then performed annually. The follow-up evaluations included the following: BCR; clinical progression; and CS death. The definition of BCR was a PSA level ≥ 0.2 ng/ml on 2 consecutive determinations after the RP (20). The definition of clinical progression was a local recurrence or systemic metastases diagnosed by biopsy or radiographic evaluation (21). The definition of a CS death was a death caused by or related to PCa (22).



2.3 CRMP4 Promoter Methylation

Core needle biopsies collected prostate tissues from 631 patients, and paraffin-embedded samples were performed to detect CRMP4 CpG methylation. The paraffin-embedded samples were first used for pathologic evaluation before detecting CRMP4 CpG methylation. Based on the postoperative pathologic evaluation, the pathologist who established the diagnosis selected the cores with the highest GS. A laser microdissection system (Leica 6500; Germany) was used to label and dissect the cancer area (23). DNA was extracted from the tissues, amplified by PCR, and modified by hydrosulphite. Pyrosequencing was performed, and the primers used in the present study are described in our previous report (24, 25). Graphs showing the distribution of CRMP4 methylation are included, see the Supplementary Materials for details.



2.4 Inclusion Criteria

	All patients had a GS ≤ 6, PSA level<10 ng/ml, and clinical T stage ≤T2a based on the preoperative biopsy; the number of biopsies was ≥8;

	All patients underwent an RP, and a postoperative pathologic diagnosis was established;

	All patients had complete clinical data, including preoperative indicators, postoperative pathologic findings, and follow-up evaluation findings;

	All patients had core needle biopsies to collect tissue samples for CRMP4 promoter methylation detection.





2.5 Exclusion Criteria

	(1). GS=7 based on postoperative pathologic evaluation;

	(2). Deaths due to reasons other than PCa.





2.6 Statistical Analysis

Statistical analyses were performed using SPSS 27.0. Continuous data are expressed by ranges, frequencies are expressed by percentages, continuous variables were analyzed using t-tests; and categorical variables were analyzed using chi-square tests. Logistic regression was performed to identify the predictive factors for a postoperative GS upgrade to ≥8. Optimal cut-off values were determined from the ROC curves for potential predictive factors, including CRMP4 promoter methylation, and the more accurate predictive factor was identified. The BCR-free survival, progress-free survival, and CSS were calculated by Kaplan-Meier survival analysis for patients with high CRMP4 methylation and patients with low CRMP4 methylation. A P<0.05 was considered to indicate a statistically significant difference.




3 Result


3.1 General Features of Patients With a Postoperative GS Upgrade to ≥8

The average age of the 61 patients with a postoperative GS upgrade to ≥8 was 67 ± 7.1 years, a PSA level of 7.52 ± 2.26 ng/ml, and a PSAD of 0.25 ± 0.12 ng/ml2. For these patients, the prostate volume was 32.27 ± 11.78 ml, the total number of biopsies was 14 ± 4.8, the number of positive cores was 3 ± 1.2, the percentage of positive cores was 0.22 ± 0.09, and the median follow-up time was 57 ± 35.0 months (Table 1).


Table 1 | General features of patients with a postoperative upgrade in GS to ≥8 and those without such an upgrade.





3.2 Comparison of General Preoperative Features Between Patients With and Without a Postoperative GS Upgrade to ≥8

Compared to patients without a postoperative GS upgrade, patients with a postoperative GS upgrade to ≥8 had a lower PSA level and a smaller prostate volume, but an increase in the number of positive cores, percentage of positive cores, CRMP4 promoter methylation rate, and more advanced clinical T stage. There were 61 and 570 patients with and without a postoperative GS upgrade to ≥8, respectively. There were no significant differences in age, PSAD, number of biopsies, and duration of follow-up between the two groups (P=0.468, P=0.377, P=0.959, and P=0.256, respectively). The mean PSA level was 7.89 ± 1.85 ng/ml in the patients without a GS upgrade compared to 7.15 ± 2.26 ng/ml in patients with a postoperative GS upgrade to ≥8 (P=0.017). The mean prostate volume was 42.50 ± 21.25 ml in patients without a GS upgrade compared to 32.27 ± 11.78 ml in patients with a postoperative GS upgrade ≥8 (P<0.001). The mean number of positive cores was 2 ± 0.9 in patients without a GS upgrade compared to 3 ± 1.2 in patients with a postoperative GS upgrade to ≥8 (P<0.001). The mean percentage of positive cores was 0.15 ± 0.06 in patients without a GS upgrade to 0.22 ± 0.09 compared to patients with a postoperative GS upgrade to ≥8 (P<0.001). The mean CRMP4 promoter methylation rate was 5.54 ± 2.75% in patients without a GS upgrade compared to 24.39 ± 10.34% in patients with a postoperative GS upgrade to ≥8 (P<0.001). The patients staged with cT2a disease accounted for 88.52% and 65.96% of all patients with and without a GS upgrade, respectively (P<0.001; Table 1).



3.3 Risk factors Predicting a Postoperative GS Upgrade to ≥8


3.3.1 Analysis of Risk Factors Predicting a Postoperative GS Upgrade to ≥8 Based on Univariate and Multivariate Logistic Regression

Univariate logistic regression showed that the PSA level, prostate volume, number of positive cores, CRMP4 promoter methylation ra[te, and clinical T stage were factors predicting a postoperative GS upgrade to ≥8 (OR: 0.84, 95% CI: 0.74-0.95, P=0.005; OR: 0.96, 95% CI: 0.95-0.98, P<0.001; OR: 1.95, 95% CI: 1.52-2.49, P<0.001; OR: 1.40, 95% CI: 1.32-1.49, P<0.001; and OR: 3.98, 95% CI: 1.78-8.91, P=0.001, respectively). Multivariate logistic regression showed that prostate volume, number of positive cores, and the CRMP4 promoter methylation rate were all factors predicting a GS upgrade to ≥8. The positive predictive rate was 85.2%, the negative predictive rate was 99.3%, and the overall predictive rate was 97.9%. The smaller the prostate volume, the higher the possibility of a GS upgrade to ≥8 (OR: 0.94, 95% CI: 0.91-0.98, P=0.003). The higher the number of positive cores, the higher the possibility of a GS upgrade to ≥8 (OR: 3.16, 95% CI: 1.81-5.53, P<0.001). The higher the CRMP4 promoter methylation rate, the more likely a GS upgrade to ≥8 (OR: 1.43, 95% CI: 1.32-1.55, P<0.001; Table 2).


Table 2 | Univariate and multivariate logistic regression to identify risk factors predicting a postoperative upgrade in GS to ≥8.





3.3.2 Comparison of the Predictive Performance of Different Pathologic Factors for a Postoperative GS Upgrade to ≥8 Based on ROC Analysis

A comparison of the ROC curves indicated that the CRMP4 promoter methylation rate had the highest accuracy in predicting a GS upgrade to ≥8. The cut-off value for the CRMP4 promoter methylation rate estimated from the ROC curve was 18.00%, above which a GS upgrade to ≥8 was more likely to occur. The sensitivity and specificity of the cut-off value were 86.9% and 98.8%, respectively. The area under the ROC curve was 0.929 (95% CI: 0.883, 0.976; P<0.001). The CRMP4 promoter methylation rate had a higher diagnostic accuracy. The cut-off value for the number of positive cores estimated from the ROC curve was 2, above which a GS upgrade to ≥8 was more likely to occur. The sensitivity and specificity of the cut-off value were 57.4% and 75.1%, respectively. The area under the ROC curve was 0.680 (95% CI: 0.605, 0.756; P<0.001). The number of positive cores had a lower diagnostic accuracy. The cut-off value for the prostate volume estimated from the ROC curve was 32.43 ml, below the value for which a GS upgrade to ≥8 was more likely to occur. The sensitivity and specificity of the cut-off value were 62.3% and 64.7%, respectively. The area under the ROC curve was 0.654 (95% CI: 0.591, 0.718; P<0.001). The prostate volume also had a lower diagnostic accuracy. The sensitivity and specificity for combining the above three factors in predicting a GS upgrade to ≥8 were 90.2% and 96.5%, respectively. The area under the ROC curve was 0.929 (95% CI: 0.943, 0.995; P<0.001). Combining the three factors had the highest diagnostic accuracy (Figure 1).




Figure 1 | ROC curves for predicting a postoperative upgrade in GS to ≥8. V, prostate volume; PC, Positive cores; C4, collapsin response mediator protein 4.






3.4 Comparison of the Postoperative Pathologic Evaluation Between Patients With and Without a Postoperative GS Upgrade to ≥8

The pathologic T stage after surgery was more advanced. The seminal vesicle invasion rate, positive resection margin, pathologic T stage, and positive lymph node rate were higher in patients with a GS upgrade to ≥8 than in patients without an upgrade (P<0.001). The patients with seminal vesicle invasion accounted for 1.58% of all patients without a GS upgrade compared to 27.87% of patients with a GS upgrade to ≥8 (P<0.001). The patients with positive resection margins accounted for 10.88% of all patients without a GS upgrade compared to 40.98% in patients with a GS upgrade to ≥8 (P<0.001). The patients with positive lymph nodes accounted for 5.44% of all patients without a GS upgrade to 22.95% in patients with a GS upgrade to ≥8 (P<0.001; Table 1 and Figure 2).




Figure 2 | Comparison of pathological features between patients with a postoperative upgrade in GS to ≥8 and those without such an upgrade. GS, gleason score; SVI, seminal vesicle invasion; SM, surgical margin; LNI, lymph node invasion.





3.5 Comparison of the Prognosis of Patients With and Without a Postoperative GS Upgrade to ≥8

Kaplan-Meier survival analysis showed that the prognosis was worse in patients with a GS upgrade to ≥8 than patients without a GS upgrade. Patients with a BCR accounted for 15.44% of all patients without a GS upgrade compared to 57.38% of patients with a GS upgrade to ≥8 (P<0.001). The patients with clinical progression accounted for 6.67% of patients without a GS upgrade compared to 36.07% of patients with a GS upgrade to ≥8 (P<0.001). CS deaths accounted for 2.28% of all patients without a GS upgrade compared to 16.39% of patients with a GS upgrade to ≥8 (P<0.001; Table 1). Kaplan-Meier survival analysis showed that the BCR-free survival, progression-free survival, and CSS were worse in patients with CRMP4 methylation >18.0% than in patients with CRMP4 methylation ≤18.0% (P<0.001; P<0.001; P=0.002; Figure 3).




Figure 3 | BCR-free survival in patients with biopsy C4 ≤ 18.0% and biopsy C4>18.0% (A). Clinically progression-free survival in patients with biopsy C4 ≤ 18.0% and biopsy C4>18.0% (B).Cancer specific survival in patients with biopsy C4 ≤ 18.0% and biopsy C4>18.0% (C). C4, collapsin response mediator protein 4 methylation.






4 Discussion

Per NCCN guidelines (2), AS or RP without lymph node dissection is sufficient for low-risk PCa, while high-risk PCa patients may face a higher chance of lymph node metastases. Therefore, an RP with extended pelvic lymph node dissection (ePLND) is recommended to improve PCa prognosis. Our study demonstrated that the BCR-free survival, PFS, and CSS were worse in patients with a postoperative GS upgrade to ≥8 than in patients without an upgrade related to the pathologic features and biological behaviors of PCa; and selection of the surgical regimen. In an earlier study reported that the seminal vesicle invasion and positive lymph node rates are higher among patients with a GS update than in patients without an upgrade (19% vs. 5.4% and 9.6% vs. 2.3%; P = 0.001 and 0.008, respectively) (26). Another research showed the positive resection margin rate was higher in the patients with a GS upgrade than patients without an upgrade (33.0% vs. 11.2%; P<0.001) (27). We also found that the seminal vesicle invasion, positive resection margin, and positive lymph node rates were higher among patients with a GS upgrade than in patients without an upgrade (27.87% vs. 1.58%, 40.98% vs. 10.88%, and 22.95% vs. 5.44%; P <0.001 for each). This indicated that the patients with a GS upgrade to ≥8 had adverse pathologic features. When selecting the surgical regimen, the surgeons should attach greater attention to those factors.

Studies have shown that an increase in the PSA and PSAD levels, number of positive cores, percentage of positive cores, and a decrease in the prostate volume and the number of positive cores predict a higher chance of GS upgrade (10, 11). Santok research.showed that a PSA of 10–20 ng/mL predicted a higher chance of a GS upgrade to ≥8 (15). In contrast, we found that age, PSA level, PSAD, and the number of biopsies did not correlate with a GS upgrade to ≥8 as we only included the low-risk PCa patients. Another possibility is that early screening for PCa is common in China, leading to generally low levels of PSA upon PCa patients. Our study indicated that a prostate volume<32.43 ml and a number of positive cores>2 were closely related to a GS upgrade to ≥8. Based on multivariate regression analysis, Qi reported that the smaller the prostate volume, the higher the possibility of a GS upgrade (P=0.033) (28). Prostate growth and differentiation are closely related to the dihydrotestosterone level. PCa patients with a smaller prostate volume have lower levels of testosterone and dihydrotestosterone and a limited secretion of prostatic growth factors, such as insulin and insulin-like growth factor (29). The low expression of these hormones results in a more adverse microenvironment, where only more invasive tumor cells can grow, and the occurrence of high-grade PCa may be promoted. Based on our results, the prostate volume predicted a GS upgrade and a GS upgrade to ≥8, which expresses great importance for an accurate evaluation of a GS upgrade in PCa. Other researchers have reported that the number of positive cores > 2 is an independent risk factor for a GS upgrade (P=0.045). This finding agrees with our result regarding the predictive performance of the number of positive cores for a GS upgrade to ≥8. The larger number of positive cores may reflect a broader distribution of cancer tissues and an excessive tumor burden. Because of the limitations in the biopsy technique, some cancer tissues with a local high GS may be missed, leading to an underestimation of GS based on biopsy. For this reason, the risk of a GS upgrade to ≥8 deserves extra attention in PCa patients with a larger number of positive cores. If conditions permit, the number of biopsies should be increased to avoid missing the cancer tissues with a local high GS. As noted in our study, the number of positive cores was equally important for accurately evaluating GS. This was the first study to identify the close connections between the prostate volume, the number of positive cores, and a GS upgrade to ≥8.

The CRMP family consists of CRMP1-5 (30–32), some studies have shown that CRMP4 expression is low in PCa. The methylation of CRMP4 promoter leads to a downregulation of CRMP4, which further promotes the invasion and metastasis of PCa and affects the prognosis (18, 24, 33). The next question is how CRMP4 promoter methylation is related to a GS upgrade. Our results showed that the higher the CRMP4 methylation rate, the more likely a GS upgrade to ≥8. Comparison of the ROC curves showed that the AUC for CRMP4 promoter methylation predicting a GS upgrade to ≥8 was 0.929. The sensitivity and the specificity were 86.9% and 98.8%, respectively, which were considerably higher than the prostate volume and number of positive cores. When the CRMP4 promoter methylation rate was >18.00%, the low-risk PCa patients were more likely to have a GS upgrade to ≥8 based on biopsy. According to the NCCN guidelines (2), an RP should be performed concomitantly with PLND for PCa patients with a GS≥8. We recommend RP and PLND for low-risk PCa patients with a preoperative CRMP4 promoter methylation rate > 18.00% based on preoperative biopsy. According to an earlier study, PCa patients with a CRMP4>15% are more likely to develop lymph node metastases, which agreed with our results (34). In addition, the combination of CRMP4 promoter methylation, prostate volume, and the number of positive cores had a much higher predictive accuracy than any other factor. The AUC was 0.969, and the sensitivity and specificity were 90.2% and 96.5%, respectively. Our model had the highest predictive accuracy for a GS upgrade to ≥8. Previously, few predictive models have been proposed for a GS upgrade to ≥8. The model proposed has an AUC of 0.924 by combining age, PSAD, PI-RADS score, and the number of positive cores to predict a GS upgrade (28). Incorporates the PSA level, the maximum percentage of cancerous components in each core, the PI-RADS score, and the number of positive cores,the AUC for predicting a GS upgrade is 0.90 (35). After eliminating the PI-RADS score, the AUC is only 0.64. These two models have higher predictive accuracy for a GS upgrade. Thus, the PI-RADS score is highly valuable in predicting a GS upgrade. A predictive model including the CRMP4 promoter methylation rate has even higher accuracy. Therefore, CRMP4 promoter methylation has an essential role in predicting a GS upgrade and greatly improves the model’s predictive power. Taken together, it is necessary to determine the CRMP4 promoter methylation rate based on a preoperative biopsy. The combination of the CRMP4 promoter methylation, prostate volume, and the number of positive core rates showed a much higher diagnostic accuracy for a GS upgrade and could better guide the clinical work.

We encountered the problem of multifocal tumors while collecting samples from prostate cancer patients. The distribution of prostate tumors presents multifocal incidence, and a variety of primary prostate cancers with different genomes and phenotypes may occur in the same patient, which brings difficulties in the diagnosis and treatment of prostate cancer (36, 37). In this study, the specimens of each enrolled patient were evaluated by professional pathologists for their classification, location and tumor load. In the biopsy tissue, the pathology report details the grade of tumor and the percentage of cancerous tissue at each needle. In the specimens after radical prostate cancer surgery, we selected the tumor tissues with the highest pathological GS grade for detection of CRMP4 methylation. Due to the multifocal nature of prostate cancer, we detected CRMP4 methylation in different parts of tumor tissues, and the results showed that there was no difference in the value of CRMP4 methylation in different parts of tumor in the same patient. By comparing the data of 61 patients upgraded to GS≥8, we found no significant difference in the methylation value of CRMP4 between the biopsy specimens and the postoperative specimens (mean 24.39% vs 24.79%, P=0.108). Our results showed that the methylation of CRMP4 was relatively stable in the same prostate cancer patient. Pathologists diagnose prostate cancer mainly by evaluating the epigenetics of the pathological biopsy section. However, this method has many affected factors, such as the limitations of biopsy, pathologist subjectivity, and the objectivity of prostate cancer pathology characteristics. Thus, many prostate cancer patients have a Gleason score upgrade after radical prostatectomy, which predicts a poor postoperative prognosis (38). In this study, we reported the methylation of CRMP4 predicts prostate cancer’s upgrading and predicts prostate cancer prognosis. However, pathological review in patients with low-grade cancer is mandatory to identify intraductal cancer, perineural invasion or other features that should be considered for adverse prognosis. (39) Overall, the methylation of CRMP4 is more reliable than GS in the diagnosis, treatment and prognosis of prostate cancer.



5 Limitations

This study mainly assessed the predictive value of CRMP4 methylation in predicting GS upgrade to ≥8, the limitations of this study are mainly reflected in two aspects. First, patients with low-risk prostate cancer diagnosed by biopsy are less likely to be upgraded to high-risk after surgery. We retrospectively collected multi-center data for 5 years. Among the 631 enrolled patients, only 61 (9.6%) patients had GS upgrade to ≥8 after surgery, the number of cases is relatively small, and we need to conduct in-depth research in a larger sample size. Secondly, the imaging data of all the enrolled patients were not obtained in this study, and the biopsy tissue of the prostate system only accounted for 0.01% of the total prostate volume. The obtained tumor tissue is probably not the most typical tumor foci, resulting in an underestimation of the biopsy GS score. With the widespread development of multiparametric MRI (40), we believe that MRI-guided targeted biopsy will certainly improve the accuracy of GS scores. CRMP4 methylation reflects a stable methylation frequency in tumor specimens. We believe that CRMP4 methylation detection in tumor specimens obtained by puncture can assist the existing technology to improve the accuracy of prostate cancer diagnosis.



6 Conclusions

Low-risk PCa patients with a CRMP4 promoter methylation rate > 18.00% based on preoperative biopsy were more likely to undergo a GS upgrade to ≥8 based on postoperative pathologic evaluation. The BCR-free survival, progression-free survival, and CSS were worse in patients with CRMP4 methylation >18.0% than in patients with CRMP4 methylation ≤18.0%.
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Mitochondrial metabolism and dynamics (fission and fusion) critically regulate cell survival and proliferation, and abnormalities in these pathways are implicated in both neurodegenerative disorders and cancer. Mitochondrial fission is necessary for the growth of mutant Ras-dependent tumors. Here, we investigated whether loss of PTEN-induced kinase 1 (PINK1) - a mitochondrial kinase linked to recessive familial Parkinsonism - affects the growth of oncogenic Ras-induced tumor growth in vitro and in vivo. We show that RasG12D-transformed embryonic fibroblasts (MEFs) from PINK1-deficient mice display reduced growth in soft agar and in nude mice, as well as increased necrosis and decreased cell cycle progression, compared to RasG12D-transformed MEFs derived from wildtype mice. PINK1 re-expression (overexpression) at least partially rescues these phenotypes. Neither PINK1 deletion nor PINK1 overexpression altered Ras expression levels. Intriguingly, PINK1-deficient Ras-transformed MEFs exhibited elongated mitochondria and altered DRP1 phosphorylation, a key event in regulating mitochondrial fission. Inhibition of DRP1 diminished PINK1-regulated mitochondria morphological changes and tumor growth suggesting that PINK1 deficiency primarily inhibits Ras-driven tumor growth through disturbances in mitochondrial fission and associated cell necrosis and cell cycle defects. Moreover, we substantiate the requirement of PINK1 for optimal growth of Ras-transformed cells by showing that human HCT116 colon carcinoma cells (carrying an endogenous RasG13D mutation) with CRISPR/Cas9-introduced PINK1 gene deletions also show reduced mitochondrial fission and decreased growth. Our results support the importance of mitochondrial function and dynamics in regulating the growth of Ras-dependent tumor cells and provide insight into possible mechanisms underlying the lower incidence of cancers in Parkinson’s disease and other neurodegenerative disorders.




Keywords: PTEN-induced kinase-1 (PINK1), mitochondrial metabolism, mitochondrial dynamics, Ras protein, Ras-induced tumors, dynamin-related protein 1 (DRP1), cell cycle



Introduction

Most types of cancers are less common in patients with Parkinson’s disease (PD), but specific tumors may occur more frequently (1, 2) and are associated with mutations or altered expression of familial PD genes (3–5). Although several PD genes act in pathways that protect cells against oxidative stress and mitochondrial dysfunction, they can affect tumor growth in various ways, likely depending on the specific metabolic and cell signaling requirements of different tumor types. For example, DJ-1 acts similar to an oncogene (6, 7), while Parkin has characteristics of a tumor suppressor (8, 9). PINK1 is a mitochondrial kinase linked to recessive familial PD (10). PINK1 phosphorylates ubiquitin on the outer mitochondrial membrane and together with the E3 ligase Parkin promotes the selective degradation of depolarized mitochondria through mitophagy (11, 12).In addition, PINK1 phosphorylates several mitochondrial proteins to increase mitochondrial respiration and regulate mitochondrial dynamics, transport and cellular oxidative stress resistance (13–16). Several studies have linked PINK1 to cancer but its involvement in carcinogenesis is complex and context-dependent, and both pro- and anti-tumorigenic effects of PINK1 have been reported (17–24). Cancer cells undergo complex metabolic rewiring, and increasing evidence shows that many cancers depend on mitochondrial metabolism, signaling and dynamics to promote cancer progression and metastasis, maintain cancer stem cell survival, and confer drug resistance to tumor cells (25, 26). Mutations in the proto-oncogene RAS are a frequent cause for a broad spectrum of human cancers (27, 28). Mutant Ras affects mitochondrial function and dynamics in complex ways to promote cell transformation and proliferation (29–31). Because of the central role of PINK1 in mitochondrial function and dynamics, and to further explore the function of PINK1 in cancer, we studied the consequences of PINK1 loss on the growth of oncogenic Ras-driven tumors. Using SV40 large T-immortalized, K-RasG12D-transformed embryonic fibroblasts from PINK1-deficient mice and human HCT116 cells (expressing endogenous RasG13D) with CRISPR/Cas9-induced PINK1 gene knockout, we show that PINK1 deficiency reduces the growth of tumors expressing oncogenic Ras.



Results


PINK1 Deficiency Reduces Growth Rates of RasG12D-Transformed Mouse Embryonic Fibroblasts (MEFs)

To generate RasG12D-transformed cell populations of mouse embryonic fibroblasts (MEFs), we first infected primary MEFs from wild type (WT) and PINK1-deficient mice with a retrovirus expressing simian virus-40 large T antigen (SV40LT), which led to the emergence of continuously growing (immortalized) cells. Subsequently, immortalized MEFs were infected twice with a retrovirus expressing human K-RasG12D to generate RasG12D-transformed cells, which were used to derive single clones of RasG12D-transformed MEFs by limiting dilution. We selected two single clones with similar SV40LT expression levels for each genotype (Figure S1A). PINK1 WT clones 1 and 6 and PINK1-deficient clones 2 and 5 expressed comparable levels of Ras protein (Figure 1A). These four RasG12D-transformed clones were therefore selected for growth comparison in soft agar, which showed that the average colony area for PINK1-/- clones was about 5-fold smaller than that of the WT control clones (18.8% of WT). No difference in soft agar growth was observed between WT and PINK1-deficient MEFs that only expressed SV40LT (Figure 1B). We next measured soft agar growth with WT and PINK1-/- RasG12D-transformed cell populations and also generated a cell population (PINK1-/-plus huPINK1) in which human PINK1 was re-expressed in mouse PINK1-deficient RasG12D-transformed cells. Characterization of protein expression showed that Ras protein levels in PINK1-/-, WT and PINK1-/-plus huPINK1 population cells are similar (Figure 1C). We also examined the rate of glucose consumption in WT and PINK1-/- RasG12D-transformed cells, and the results showed that MEFs from PINK1-/- RasG12D-transformed had reduced uptake of glucose (Figure S1C). The average area of PINK1-deficient colonies reached only 13% of that of WT colonies (Figure 1D). Re-expression of human PINK1 after lentiviral infection substantially rescued the growth deficit, increasing the average colony area to 74% of WT (Figure 1D). We did not detect PINK1 by western blot in WT RasG12D-transformed MEFs (Figure 1E), possibly because most of PINK1 is constitutively degraded in normal cells and PINK1 only becomes stabilized upon significant mitochondrial depolarization (11, 32, 33). As expected, PINK1 was absent from PINK1-deficient RasG12D-transformed cells that were derived from MEFs of mice with a null mutation in PARK6 (34). In contrast, both 62 kDa and 52 kDa PINK1 species were readily detected in PINK1-/-plus huPINK1 cells (Figure 1E), suggesting that human PINK1 was imported to the inner mitochondrial membrane and cleaved by PARL, but that lentiviral over-expression of PINK1 may have saturated its mitochondrial import/cleavage and proteasomal degradation (32, 33).




Figure 1 | PINK1 deficiency reduces growth of RasG12D-transformed mouse embryonic fibroblasts (MEFs). (A) Ras protein expression by western blot with lysates of WT tumor clones 1 and 6 and PINK1-/- tumor clones 2 and 5. (B) Image J-measured area of soft agar colonies (mean ± SD, ****p < 0.0001) formed by WT clones 1 and 6, PINK1-/- clones 2 and 5, and immortalized WT and PINK1-/- MEFs that only express SV40LT. Numbers (n) of colonies measured: WT clone 1 = 350; WT clone 6 = 132; PINK1-/- clone 2 = 115; PINK1-/- clone 5 = 292; WT-SV40LT= 106; PINK1-/–SV40LT = 305. (C) Ras expression in RasG12D-transformed cells populations (n=3 independent protein isolations and western blots). (D) Colony area for RasG12D-transformed cells populations (mean ± SD, ****p < 0.0001). Number (n) of analyzed colonies: WT = 128; PINK1-/- = 134; PINK1-/- + huPINK1 = 149). Representative images of colonies are shown. (E) PINK1 expression in RasG12D-transformed cells populations (n = 4 independent protein isolations and western blots. 62 kDa (full-length) PINK1 and the 52 kDa PINK1 isoform (product of cleavage by PARL at the inner mitochondrial membrane) are indicated. 62 kDa PINK1: **p = 0.003; 52 kDa PINK1: *p = 0.01; **p = 0.008. (F) Tumor volume in nude mice (mean ± SEM, n = 7 mice per genotype/cell population) in experiment terminated on day 17 for WT tumors (due to tumor burden) and on day 24 for PINK1-/- tumors. (G) Tumor volume in nude mice (mean ± SEM, n=6-7 mice per genotype/cell population) in experiment terminated on day 19. Stars indicate days with significantly different volumes between WT and PINK1-/- tumors (**p < 0.01, ****p < 0.0001). The # symbol indicates significant different volumes of tumors between PINK1-/- and huPINK1 (p < 0.05). NS, not significant.





PINK1 Deficiency Impairs Tumor Growth of RasG12D-Transformed MEFs in Nude Mice

In nude mice, we injected the same number of MEFs from these two different genotypes (PINK1-/- RasG12D and PINK1+/+ RasG12D). The tumor formation of PINK1-/- cells was significantly reduced when compared with PINK1+/+ cells in nude mice. PINK1-/- tumors showed a trend of slower growth at each measurement, and the WT tumors were on average 4.6-fold larger (range: 3.6-5.6) than the PINK1-/- tumors between days 11-17. On day 17, mice with WT tumors were euthanized due to excessive tumor burden, while PINK1-/- tumors were allowed to grow longer until day 24, when they reached similar volumes as the WT tumors had reached on day 17 (Figure 1F and Figure S1B). In agreement with soft agar results, these experiments show that PINK1 deficiency slows the growth of RasG12D-induced tumors in nude mice. Overexpression of PINK1 in the PINK1-/-plus huPINK1 population increased tumor growth by day 19 compared to PINK1-/- RasG12D-transformed cells (Figure 1G), although the rescue effect was less pronounced than in soft agar (mean tumor volume on day 19: WT = 1413 mm3; PINK1-/-= 700 mm3; PINK1-/-plus huPINK1 = 911 mm3).



PINK1 Deficiency Increases Cell Death and Alters Cell Cycle Progression in RasG12D-Transformed MEFs

We further asked whether the reduced growth of PINK1-deficient tumors is due to increased cell death or decreased cell cycle progression, as both are hallmarks of cancer and involved in Ras-induced tumorigenesis. Cell death was measured with Annexin V/propidium iodide (PI) staining assays in RasG12D-transformed MEFs with different genetic backgrounds. As shown, PINK1 loss increased the percentage of necrotic but not apoptotic cells, which was fully reversed by re-expression of human PINK1 (Figures 2A, B). Consistent with the function of PINK1 in maintaining mitochondrial integrity and its roles in regulating cell death, PINK1-/- cells displayed reduced membrane potential (Δψm) (Figure S2A). There was a positive correlation between Δψm and mean colony area in soft agar (Figure S2B). In addition, total ROS and mitochondrial ROS were reduced in PINK1-/- cells. Recovery PINK1 expression at least partially restored the reduced ROS in PINK1-/- cells (Figures S2D, E). Furthermore, basal mitochondrial respiration was reduced in PINK1-/- RasG12D-transformed MEFs as revealed by Seahorse analysis (Figure S2C). These data suggest that mitochondrial metabolism is changed by PINK1.




Figure 2 | PINK1 deficiency increases cell death and alters cell cycle progression in RasG12D-transformed MEFs. (A, B) Apoptotic (Annexin V-FITC+) and necrotic (Propidium iodide+) cells were analyzed by flow cytometry. (C) Flow cytometry analysis of the cell cycle. Parts-of-whole columns show percentage of cells in different cell cycle phases. For each genotype/population, cells were plated into n = 3 wells, which were separately stained with propidium iodide and analyzed by flow cytometry (**p < 0.01, ANOVA). (D, E) Western blot for P16, P21 and P53 of WT, PINK1-/- and PINK1-/- +huPINK1 cells (n = 3 independent protein isolations, *p < 0.05, **p < 0.01). NS, not significant.



Cell cycle analysis of PI-stained cells by FACS demonstrated that PINK1 deficiency led to an increase of RasG12D-transformed cells in the G2/M phase and decrease of cells in the G0/G1 phase. Overexpression of PINK1 had the opposite effect, reducing the percentage of cells in G2/M and increasing the proportion of cells in G0/G1 (Figure 2C). In line with these results, protein levels of p16 and p21 were increased in PINK1-/- cells by Western blot analysis (Figures 2D, E). In addition, p53 protein expression was increased in PINK1-/- RasG12D-transformed cells (Figures 2D, E). These data suggest that loss of PINK1 promotes cell death and cell cycle arrest.



The Impact of PINK1 on Cell Death and Cell Cycle Progression Is Validated In Vivo in Nude Mice

To study the mechanisms underlying PINK1-regualted tumor growth in vivo, we examined cell proliferation rates in tumor tissues derived from WT, PINK1-/- and PINK1-/-plus huPINK1 cells in nude mice. RasG12D protein levels were comparable in the various tumor populations (Figure 3A). In contrast, expression of the cell proliferation marker Ki67 in PINK1-/- tumors was reduced compared to WT, while expression of Ki67 in PINK1-/-plus huPINK1 tumors that over-expressed huPINK1 was increased, indicating reversible inhibition of tumor cell proliferation in vivo by ablation of PINK1 (Figure 3B). Thus, the reduced growth of PINK1-deficient RasG12D-transformed cells in vitro is validated and supported by reduced proliferation of the corresponding tumor cells in nude mice.




Figure 3 | Impact of PINK1 deletion on cell death and cell cycle progression are validated in vivo in nude mice. (A) Immunohistochemical analysis of WT, PINK1-/- and PINK1-/- +huPINK1 tumor tissue was performed using RasG12D antibody. Image gray value is analyzed by Image J (n = 3 immunohistochemical images of tumor tissue). (B) Immunohistochemical analysis of WT, PINK1-/- and PINK1-/- +huPINK1 tumor tissue with Ki67 antibody. Image gray value is analyzed by Image J (n = 3 immunohistochemical images of tumor tissue, ****p < 0.0001). (C) Detection of apoptosis in WT, PINK1-/- and PINK1-/- +huPINK1 tumor tissue detected by the caspase 3/7 kit. (n = 3 tumor tissues, ***p < 0.001, ****p < 0.0001). (D) Western blot for P16, P21 and P53 of WT, PINK1-/- and PINK1-/- +huPINK1 tumor tissue (n = 3 tumor tissue protein lysates, *p < 0.05). NS, not significant.



Using the caspase 3/7 apoptosis detection kit, we also observed increased apoptosis of PINK1-/- tumor cells in nude mice (Figure 3C). Expression levels of p16, p21 and p53 were significantly increased in PINK1-/- tumor tissues, which was reversed after re-expression of human PINK1. However, unlike in MEFs, p21 was not downregulated significantly after re-expression of human PINK1 (Figure 3D).



PINK1 Deficiency Impairs Mitochondrial Fission in RasG12D-Transformed MEFs

We next explored possible mitochondrial mechanisms underlying the reduced growth of PINK1-deficient RasG12D-transformed cells. As indicated above, PINK1 deletion did not influence Ras expression levels (Figure 1C). Several studies have shown that PINK1 acts as a pro-fission factor (14, 35–38), consistent with mitochondrial fission preceding mitophagy (36, 39) and the enlarged mitochondrial morphology in various cells of PINK1-deficient mice (40). To analyze whether loss of PINK1 altered mitochondrial morphology, we stained mitochondria in MEFs by immunocytochemistry with an antibody against LRP130. LRP130 is a suitable marker because it is exclusively expressed in the mitochondrial matrix where it regulates the assembly and activity of cytochrome c oxidase (complex IV) (41). The mitochondrial network was highly fragmented in the majority (74.5%) of WT RasG12D-transformed cells (Figure 4A). In contrast, only 32% of PINK1-/- RasG12D-transformed cells showed a fragmented mitochondrial network, while 59.4% showed an intermediate network and 8.6% showed an elongated/fused network (Figure 4A). Re-expression of PINK1 restored mitochondrial fragmentation to 69.6% of the cells, similar to that in WT cells (Figure 4A). Thus, loss of PINK1 interfered with mitochondrial dynamics in RasG12D-transformed MEFs, which could be reversed by re-expression of PINK1.




Figure 4 | PINK1 deficiency impacts mitochondrial fission in RasG12D-transformed MEFs. (A) Cells were stained with an antibody against LRP130, which is exclusively expressed in the matrix of mitochondria. Nuclei were visualized with DAPI. Three representative images for each genotype of cells are shown, with magnifications of the mitochondria within white rectangles displayed on the right side. Bottom: Mitochondrial network morphology was analyzed as described in the Methods, and the percentage of cells with fragmented, intermediate, and elongated/fused mitochondrial networks, or no mitochondria, is indicated for WT, PINK1-/- and PINK1-/- +huPINK1 cell populations. Number of cells analyzed: WT = 157, PINK1-/- = 128; PINK1-/- +huPINK1 = 171. (B) Expression and phosphorylation of Drp1 in WT, PINK1-/- and PINK1-/- +huPINK1 cells by western blots (n = 3 cell protein lysates). (C) Expression and phosphorylation of Drp1 in WT, PINK1-/- and PINK1-/- +huPINK1 cells analyzed by flow cytometry (n = 3, mean ± SD, *p < 0.05). (D) Expression and phosphorylation of Drp1 in WT, PINK1-/- and PINK1-/- +huPINK1 tumor tissue analyzed by western blots (n = 3 cell protein lysates). ***p < 0.001.



Because it has been shown that PINK1 promotes mitochondrial fission by phosphorylating Drp1 at Ser616 (42), we studied whether altered mitochondrial dynamics in PINK1-/- RasG12D- MEFs was related to abnormal phosphorylation or expression of Drp1. To this end, the expression of Drp1 and phosphorylated Drp1 was detected by western blotting and flow cytometry. There was no significant difference in Drp1 protein expression. PINK1-/- MEFs showed a significant decrease of phospho-Drp1 (Ser616) levels compared to WT MEFs. Re-expression of huPINK1 in PINK1-/- cells partially rescued the decreased phospho-Drp1 (Ser616) levels (Figures 4B, C). Analysis of the expression of Drp1 and phosphorylated Drp1(Ser616) showed that phosphorylation of DRP1 was also decreased in PINK1-/- tumor tissues (Figure 4D). It has been also shown that ERK can increase Drp1 phosphorylation (43). However, our data did not show a reliable link between ERK phosphorylation (activation) and PINK1 expression (Figure S2G), suggesting that decreased phosphorylation at Drp1 (Ser616) may be due to a direct effect of PINK1 loss. In contrast to the phosphorylation at Drp1(ser616), phosphorylation at Drp1(Ser637) inhibits mitochondria fission and modulate mitophagy (44). Interestingly, PINK1 deficiency did not cause alterations in Drp1(Ser637) phosphorylation (Figure S2F). In line with above data, although PINK1 deficiency increased p62 and LC3-1/II, the recovery of PINK1 expression had no ability to abolish it (Figure S2H), suggesting that the increased p62 and LC3-1/II is not intrinsic effect of PINK1. Therefore, PINK1 deficiency regulate mitochondria morphology mainly by reducing Drp1(Ser616) phosphorylation-mediated mitochondria fission.

Drp1 affects mitochondrial fission, leading to cell cycle arrest and apoptosis (45–47), which prompted us to explore the impact of PINK1 on cell growth in the presence of the mitochondrial fission (Drp1) inhibitor Mdivi-1. Mdivi-1 significantly inhibited the growth of RasG12D-transformed WT cells, while the inhibitory effect of Mdivi-1 was compromised in PINK1-deficient cells. Re-expression of PINK1 in PINK1-/- RasG12D MEFs restored Mdivi-1-mediated growth inhibition (Figure S3A). Therefore, PINK1 loss inhibits tumor growth at least in part through impaired regulation of Drp1. Together with data presented above, these results demonstrate a pro-fission and pro-growth function of the PINK1-Drp1 axis in RasG12D-transformed MEFs.



PINK1 Knockout Reduces the Growth of HCT 116 Human Colon Carcinoma Cells In Vitro

In MEFs, RasG12D was overexpressed after viral transduction. To study whether PINK1 loss similarly affected the growth of authentic human RasG13D-transformed tumor cells in which mutated Ras is expressed at physiological levels, we introduced CRISPR-Cas9-mediated deletions into the PINK1 gene of HCT116 cells that were originally isolated from a primary human colon carcinoma. Several PINK1-deficient HCT116 clones with varying PINK1 deletions were identified by PCR with genomic DNA using primers and DNA sequencing that flanked the two CRISPR target sites (Figures S3B, C). We did not detect PINK1 protein expression by Western blots in WT HCT116 cells, likely due to constitutive degradation in cells without severe mitochondrial depolarization (32). However, in addition to sequencing, we confirmed that the CRISPR/Cas9-generated genomic PINK1 deletions produced null mutations at the mRNA level by PCR amplification of total cellular cDNA with two different primers pairs (Figure S4A). PINK1-knockout clones 45 and 51 produced the expected PCR fragments (deletions), which were unable to encode any functional PINK1 protein. In addition, clones 3, 11 and 50 yielded no bands or only very faint PCR products, suggesting that in these clones the genomic deletions destabilized the resulting PINK1 mRNAs to levels below detection. Collectively, these results show that all CRISPR/Cas9-generated PINK1 deletions produced null mutations.

HCT116 clones lacking PINK1 showed reduced growth in soft agar when compared to the control clones, which were transfected with px458 vector only (Figure 5A). This was not due to altered Ras expression, because PINK1-deficient and control vector-transfected HCT116 clones expressed comparable levels of Ras (Figure 5B). Deletion of PINK1 also did not affect the GTPase activity of Ras (Figure S4B). Like in MEFs, we detected Drp1 and phosphorylated Drp1(Ser616) protein in HCT116 cells by western blotting and flow cytometry and found a decrease in phosphorylated Drp1(Ser616) in PINK1 knockout HCT116 cells (Figures 5C, D). In tissue culture, growth of PINK1 knockout HCT116 cells was significantly slower than that of the control group (Figure 5E). Overall, these results show that in human tumor cells with a common Ras mutation, the loss of PINK1 also causes impaired tumor growth.




Figure 5 | PINK1 knockout reduces the growth of HCT 116 human colon carcinoma cells in vitro. (A) Left: Representative images of soft agar colonies with vector and PINK1-/- genotype. Right: Graph comparing average colony area (mean ± SD) of 4 control vector-transfected HCT116 clones and 6 CRISPR-generated PINK1-knockout HCT116 clones (*p = 0.047). (B) Western blot quantification of Ras expression in the vector and PINK1-/- HCT116 cell clones (n = 3 clones per genotype). (C) Expression and phosphorylation of Drp1 vector-transfected and PINK1-/- cells by western blots. (D) Phosphorylation of Drp1 in vector and PINK1-/- HCT116 clones by flow cytometry (n=3 clones, mean ± SD, ****p < 0.0001). (E) Cell number (growth) of HCT116 control and PINK1-/- cell clones measured in tissue culture with the sulforhodamine B assay (mean ± SD, two-way ANOVA, *p = 0.037 and ****p < 0.0001).





PINK1 Ablation Affects Mitochondrial Fission and Increases Cell Death in HCT-116 Cells

Similar to the results reported in other studies that most of the mitochondria were fragmented in cell lines containing Ras mutations (48), mitochondrial fragmentation was also observed in HCT116 vector-transfected cells. In contrast, HCT116 PINK1 knockout cells showed significantly less fragmentation with a shift to intermediate-size mitochondria. Specifically, PINK1-/- cells contained 29.2% fragmented mitochondria compared with 77.7% in the vector group (Figure 6). It has been reported previously that upon Drp1 deletion, the mitochondrial morphology in HCT116 cells was more intermediate (48–50). In our study, we inhibited Drp1 expression in HCT116 cells by small interfering RNA (siRNA), and the knockdown efficacy was determined by western blot (Figure S4C). Followed by confocal microscopy analysis of mitochondrial morphology. We observed a decrease in intracellular mitochondrial fragmentation after Drp1 knockdown (KD) in the control cells. However, in PINK1-/- HCT116 cells, mitochondrial morphology did not change much and more of it was still in fusion state (Figure 6). This suggests that the effect of PINK1-/- on mitochondrial morphology is similar to that of Drp1 reduction.




Figure 6 | PINK1 knockout affects mitochondrial fission in HCT116 cells. Cells were stained with an antibody against LRP130, which is exclusively expressed in the matrix of mitochondria, and nuclei were visualized with DAPI. Three representative images for each genotype of cells, with magnifications of the mitochondria within white rectangles displayed on the right side. Bottom: Mitochondrial network morphology was analyzed as described in the Methods, and the percentage of cells with fragmented, intermediate, and elongated/fused mitochondrial networks, or no mitochondria, is indicated for vector, vector+siDrp1, PINK1-/-and PINK1-/-+siDrp1. Number of cells analyzed: Vector = 220, Vector+siDrp1 = 87, PINK1-/- = 144, PINK1-/-+siDrp1 = 95. NS, not significant.



It has been shown previously that deletion of Drp1 increases apoptosis (49). Analyzing apoptosis in HCT116 cells, we found that 22.51% of the PINK1-/- cells underwent apoptosis while only 6.95% of the WT cells were apoptotic (Figure 7A). Thus, similar to MEFs, cell death was also increased in PINK1-/- HCT116 cells, although in MEFs increased death was mainly due to increased necrosis rather than apoptosis. In HCT116 cells, we also used PI to study the cell cycle. In contrast to MEFs, we found no difference in the percentage of cells in the G2/M phase in HCT116 cells lacking PINK1(Figure 7B). In agreement with this result, expression of the cell cycle-related checkpoint proteins p16 and p53 was unaltered in PINK1-/- HCT116 cells (Figure 7C).




Figure 7 | PINK1 knockout affects cell death in HCT116 cells. (A) Apoptotic (Annexin V-FITC+) and necrotic (Propidium iodide+) cells of vector and PINK1-/- HCT116 clones were analyzed by flow cytometry (n = 3 clones per genotype, mean ± SD, ****p < 0.0001). (B) Flow cytometry analysis of the cell cycle. Representative cell cycle profiles of vector and PINK1-/- are depicted. Parts-of-whole columns show percentage of cells in different cell cycle phases. For each genotype, cells were separately stained with propidium iodide and analyzed by flow cytometry (n = 3 clones per genotype). (C) Western blot for P16 and P53 expression in vector and PINK1-/- cells (n=3 clones per genotype). NS, not significant.






Discussion

Oncogenic RAS mutations are a frequent cause of many human tumors (estimated 30%), especially cancers of the pancreas, lung and colon (27, 28). Here we show that loss of PINK1 reduces tumor cell growth in two different Ras-driven tumor models: Embryonic fibroblasts (MEFs) from PINK1-/- mice immortalized with SV40 large T and transduced with a RasG12D retrovirus, and patient-derived HCT116 human colon carcinoma cells expressing an endogenous RasG13D mutation with CRISPR-Cas9-introduced PINK1 gene deletions. We cannot entirely exclude that a subtle difference in Ras expression may have contributed to reduced tumor cell growth in the MEF system. However, the fact that two individual PINK1-/- Ras-transformed MEF clones that expressed Ras protein at levels comparable to two WT clones were severely growth-impaired, strongly supports an important role for PINK1 in the growth of Ras-driven tumors. This conclusion is corroborated by the observation that PINK1 ablation also reduced the growth of several RasG13D-transformed human HCT116 tumor cell clones – without decreasing Ras protein expression or Ras GTPase activity. Finally, PINK1 loss failed to reduce the growth of immortalized MEFs that only expressed SV40LT but not RasG12D. Taken together, these results demonstrate that PINK1 ablation does not generally reduce cell growth but that PINK1 expression is required for optimal growth of Ras-transformed cells.

Mitochondrial dynamics supports different stages of tumorigenesis (51). Mitochondrial fission (or fragmentation) is required for Ras-induced carcinogenesis (48, 52, 53). Intriguingly, we found that PINK1 deletion impairs mitochondrial fragmentation in RasG12D-induced MEF cells and HCT116 cells containing an endogenous RasG13D mutation. This suggests that PINK1 may support mutant Ras-mediated tumorigenesis by stimulating fission to facilitate tumor growth. Indeed, PINK1 and Parkin promote fission and/or inhibit fusion (14, 35–38), and we have previously shown that elongated and enlarged mitochondria accumulate in several primary cell types from PINK1-deficient mice (40). Drp1 affects mitochondrial morphology and is critical for mitochondrial fission in mammalian cells (54, 55). We also show that PINK1 deficiency impairs Drp1 phosphorylation in tumor cells, as has been reported previously in other cells (42). Reduced levels of phospho-Drp1 (Ser616) in PINK1-/- tumor cells shown here, and impaired PINK1/Parkin-mediated proteasomal degradation of mitofusin (36, 56–58), may have contributed to increased mitochondrial fusion in PINK1-/- tumor cells. We also show that PINK1 deletion compromised the ability of the Drp1 inhibitor Mdivi-1 to reduce the growth of Ras-transduced cells, supporting that PINK1 acts at least in part by regulating Drp1 to inhibit tumor growth, likely via PINK1-mediated phosphorylation of Drp1. However PINK1 may also support Ras-induced tumorigenesis by Drp1-independent mechanisms.

Mitochondrial dynamics regulates cell cycle progression, and blocking mitochondrial fission interferes with the completion of mitosis (43, 54, 59–61). It was therefore interesting to study cell cycle progression in PINK1-deficient RasG12D-transformed cells with aberrant mitochondrial dynamics. The shift toward increased mitochondrial fusion in PINK1-/- MEF RasG12D-transformed cells may explain the accumulation of these cells in G2/M, as it is observed in tumor cells after Drp1 knockdown (61). In addition, PINK1 phosphorylates Drp1 at Ser616 which stimulates fission (42), and we show here impaired phosphorylation of Ser616 of Drp1 in PINK1-deficient RasG12D-transformed cells. In contrast, PINK1 overexpression decreased the percentage of cells in G2/M and increased the proportion of cells in G0/G1. Because mitochondrial hyper-fusion is necessary for progression from G1 into S phase (60), PINK1-stimulated mitochondrial fission (14, 37) in cells overexpressing PINK1 likely accounts for the accumulation of cells in G0/G1 in the PINK1-/-plus huPINK1 population. Similar cell cycle defects have been described for SV40LT-immortalized mouse embryonic fibroblasts lacking PINK1 (20), showing that mitotic defects due to PINK1 loss are not limited to RasG12D-transformed cells. However, the mechanisms of mitotic arrest may be different in RasG12D expressing cells, because cellular signaling and context not only influences mitochondrial dynamics but also determines the consequences of abnormal mitochondrial dynamics on cell proliferation and death (59). Consistent with the cell cycle defects, p16, p21, and p53 were elevated in PINK1-deficient MEF cells. PINK1 overexpression rescued impaired mitochondrial fission and reversed cell cycle deficits, consistent with the importance of mitochondrial dynamics for cell cycle regulation (31, 43, 54, 59, 60). Taken together, these results suggest that aberrant mitochondrial dynamics due to impaired phosphorylation of Drp1 and associated cell cycle and cell survival defects may be primary mechanisms underlying reduced tumor cell growth in PINK1-/- MEF cells (Figure 8).




Figure 8 | Model of how PINK1 may cause cell death in mutant Ras-transformed tumor cells. In cells with Ras mutations that contain endogenous PINK1, Drp1 S616 is phosphorylated for mitochondrial fission to promote cell survival. When PINK1 was absent, Drp1 S616 was not phosphorylated, more mitochondrial fusion occurred, and cells with Ras mutation died more.



It should be noted that in the human colon cancer cell line HCT116, deletion of PINK1 mainly increased apoptosis of tumor cells but had no effect on G2/M cell cycle arrest. In contrast, PINK1-deficient Ras-transformed MEFs showed increased necrosis, possibly through the aging pathway (62). Because HCT116 is a mature human tumor cell line, various pathways are likely different from those in Ras-transformed engineered MEFs.



Conclusions

Our results corroborate the importance of mitochondrial function and dynamics in promoting the growth of Ras-dependent tumors and provide insights into possible mechanisms underlying the lower incidence of cancers in Parkinson’s disease and other neurodegenerative disorders. Because a single inhibitor or antineoplastic agent against PINK1 has great limitations, future studies are warranted and necessary to determine whether reducing PINK1 expression, especially in combination with chemical anti-tumor agents (63–66), could constitute a viable approach to combat mutant Ras-induced and other types of cancers. In addition, although our work does not place PINK1 in a Ras-dependent transformation pathway, separate projects addressing such a possibility with additional transformed tumor models may be interesting.



Experimental Procedures


Animals

PINK1-/- mice have been described previously (34) and were backcrossed for at least 15 generations onto the pure C57BL/6J background. Male nude mice (BALB/c-nu, 4-6 weeks old) were purchased from Beijing Vital River Laboratory Animal Technology, China. Animal experiments were performed according to the “Guide for the Care and Use of Laboratory Animals”, 8th Edition, 2011 (The National Academic Press, Washington, and D.C.) and approved by the Institutional Animal Care and Use Committee/Animal Experimentation Ethics Committee of the Harbin Institute of Technology (HIT-IACUC).



Oligonucleotides, Antibodies and Tissue Culture Media

Oligonucleotides (Table S1) and antibodies (Table S2) are listed in Supporting Information. We used antibodies at the manufacturer-recommended concentrations, and obtained tissue culture media, trypsin and phosphate-buffered saline (PBS) from Thermo Fisher and fetal bovine serum (FBS) from JYK Biotechnology, China.



Construction and Production of Recombinant Viral Vectors

Retroviral vectors expressing SV40LT, EGFP and human K-RasG12D were based on the vector SFG-MCS, a derivative of the plasmid MFG (67). To generate recombinant retroviruses, we transfected 10 μg viral vector DNA per 6-cm plate into PlatE packaging cells (68) using the calcium phosphate co-precipitation method. To produce lentiviral particles for PINK1 re-expression, we inserted the human PINK1 coding sequence into the lentiviral vector pLVSIN-CMV-Pur (Takara Biotech) and co-transfected 293T cells in 6-cm plates with 5 μg lentiviral vector plasmid, 3.33 μg HIV gag/pol expression plasmid psPAX2 (Addgene #12260) and 1.67 μg VSV-G expression plasmid pMD2.G (Addgene # 12259) (3:2:1 ratio). Viral particles in the medium were collected 24 and 48 hours after transfection, passed through a 0.45 μm filter and stored at -80°C.



Generation of RasG12D-Transformed MEF Tumor Clones and Populations

We isolated mouse embryonic fibroblasts (MEFs) from E14.5 stage embryos of WT and PINK1-/- mice as described (69). For immortalization, we infected MEFs with SFG-SV40LT retrovirus in the presence of 4 μg/ml polybrene (Sigma H9268). The immortalized phenotype was confirmed by unlimited passage ability, in contrast to MEFs infected with SFG-EGFP retrovirus that stopped dividing several passages after infection. For transformation, we infected SV40LT-immortalized MEFs twice separated by 24 hours with SFG-RasG12D retrovirus in presence of 4 μg/ml polybrene to yield a RasG12D-transformed population. Individual RasG12D transformed tumor clones were obtained by limiting dilution in 96-well plates. To express human PINK1 in mouse PINK1-deficient RasG12D-transformed cells, we infected cells with the pLVSIN-PINK1-Pur lentiviral vector and selected stably transduced cells by growth in medium containing 2 μg/ml puromycin (Sigma P8833).



CRISPR/Cas9-Mediated Generation and Characterization of PINK1-Deficient HCT116 Tumor Cells

HCT116 cells were obtained from American Type Culture Collection (ATTC, CCL-247). We used a modified version of the CRISPR-Cas9 plasmid pSpCas9(BB)-2A-GFP (PX458) (Addgene 48138) that was engineered to contain a puromycin expression cassette and BbsI and BsaI cloning sites for insertion of two double-stranded oligonucleotides encoding different sgRNAs. The oligonucleotides encoding sgRNAs targeting two sites in PINK1 exon 1 are shown in Table S1. After transfecting the CRISPR/Cas9 PINK1 targeting vector into HCT116 cells, puromycin-resistant (2 μg/ml) single clones were obtained by limiting dilution. Genomic DNA from clones was PCR-amplified with primers PINK1-KO-screen-fw and PINK1-KO-screen-rev to identify clones that produced a single, shorter PCR product compared to wildtype genomic DNA (Figure S3B). PCR products from such clones were sequenced and the sequences aligned with the human PINK1 gene (gene ID: 65018) to determine the exact PINK1 deletions in different HCT116 PINK1-knockout clones (Figure S3C). The two CRISPR target sites, clone-specific deletions and PCR primers used to identify PINK1-knockout clones are indicated in Table S1. In all clones, the deletions resulted in severely truncated proteins containing only 72 to 113 N-terminal amino acids before running into a premature stop codon, thereby lacking the entire PINK1 kinase domain. To analyze deletions in PINK1 mRNA, cDNA was synthesized from total RNA (Prime Script cDNA kit, Takara Bio) and PCR-amplified with two different primer pairs (fw-1/rev-1 and fw-1/rev2) flanking the deletions (Figure S4A).



Growth of Tumor Cells in Soft Agar and Tissue Culture

Cells were grown in DMEM with 10% FBS. Before the soft agar assay, 1.5x104 cells were resuspended in 0.35% low-melting point agarose (Sigma) in DMEM/10% FBS and plated into triplicate wells of a 6-well plate containing a 2 ml base agarose layer (0.7%). After 8-10 days, images of cells were taken with a Nikon inverted microscope at 200x magnification. Three random images per well were captured at different soft agar depths (9 images total), and the colony areas were measured with Image J software (imagej.nih.gov/ij). To measure the growth of HCT116 tumor clones in tissue culture, we plated 104 cells per clone and well (in triplicate wells) and measured cell numbers with the sulforhodamine B assay (70) over a period of 5 days. The average OD534 from three wells was statistically compared between PINK-1 deficient and control tumor clones using 2-way ANOVA.



Growth of Tumor Cells in Nude Mice

Cells were detached with trypsin, resuspended in DMEM/10% FBS and centrifuged for 5 min at 500 x g. The cell pellet was washed twice in PBS and cells were counted in a hemocytometer (four big squares). Cell density was adjusted to 1.25x107 or 2.5x107 cells/ml, and 200 μl of cell suspension (2.5x106 or 5x106 cells, matched for all genotypes) was injected subcutaneously into mice. Tumor growth was monitored starting at 7 days and dimensions of tumors were measured with a caliper at the days indicated in the figures. Tumor volumes (in mm3) were calculated as length x width2 x 0.5 (width being the smaller dimension) and compared using two-way ANOVA. At the end of the experiment mice were euthanized by CO2 inhalation.



Quantification of SV40LT mRNA With  Real-Time qPCR

Cellular RNA was isolated with Trizol reagent, and first strand cDNA synthesized with the Prime Script RT kit (Takara Inc.) from 500 ng total RNA. Two μl of the resulting cDNA (5-fold dilution) was subjected to real-time PCR using SYBR Premix Ex Taq II (Tli RNase H Plus) master mix (Takara Inc). PCR primers are listed in Table S1. Melting curve analysis was done to confirm single PCR products. We used the 2-ΔCt method (71) to calculate mRNA expression of each gene relative to 18S rRNA.



Quantification of Proteins by Western Blots

Cells were lysed in modified RIPA buffer (50 mM Tris-HCl pH 8.0, 1 % Triton X-100, 0.1 % SDS, 0.14 M NaCl, 1 mM EDTA, and 1 mM EGTA) containing 1% (v/v) protease inhibitor cocktail and - where appropriate - phosphatase inhibitor cocktail (Amresco). 20-30 μg total proteins in the cleared lysates (supernatants of 10 min, 12,000 x g centrifugation) were analyzed by standard Western blot procedures. Secondary antibodies were conjugated to fluorophores or HRP, and protein bands were detected with the Odyssey Infrared Imaging System (Li-COR) or the enhanced chemiluminescence imager. Protein bands were quantified using Image J software (imagej.nih.gov/ij). Three to four independent cell lysates (prepared at different passage numbers) of each genotype (MEF population) and the indicated number of WT and PINK1-deficient cell clones were analyzed and used for statistical evaluation.



Flow Cytometry

To measure expression of total Drp1 and phospho-Drp1 (Ser616) by flow cytometry, 5x105 cells were fixed in 4% PFA for 30 min and centrifuged at 500 x g for 5 min. The cell pellet was gently resuspended and incubated in 100 μl PBS/0.2% Triton X-100 for 10 min, washed with PBS, and the cells were incubated with primary antibody diluted in PBS/0.05% Tween-20 (PBST) for 1 hour at RT (antibody dilutions as recommended by the manufacturer). After washing twice in PBST, the cells were incubated for 30 min with 1:400-diluted Cy3-conjugated secondary antibody, followed by a final wash and re-suspension in PBST before flow cytometry. To determine background fluorescence and set the fluorescence window for positive cells (M1), control cells were incubated with secondary antibody only. N=4 independent antibody incubations/flow cytometry experiments were carried out with each genotype/cell population for statistical analysis. To measure the mitochondrial membrane potential Δψm, cells were incubated with 50 nM TMRE for 30 min at 37°C. Δψm was compared between groups of WT and PINK1-/- cells, where the groups were comprised of individual cell clones and the cell population for each genotype (n=3-4 clones/populations per genotype, each clone and population measured in triplicate). Mitochondrial ROS were measured in WT, PINK1-/- and PINK1-/-plus huPINK1 (human PINK1-overexpressing) cell populations incubated for 30 min at 37°C with 2.5 μM MitoSOX Red (ThermoFisher M36008) (n=3 dye incubations/flow cytometry experiments per genotype/population). Negative control cells were incubated in buffer without TMRE or MitoSOX to determine background fluorescence and set the window for positive cells (M1). Fluorescence (FL2-H) was measured with the BD FACSCalibur using a 585/42 nm band pass emission filter, and the mean fluorescence of the cells in the positive window (M1) was compared between genotypes/cell populations.



Analysis of Mitochondrial Morphology

For analysis of mitochondrial network morphology, cells (4x105/35-mm plate) grown on cover glasses were washed with PBS, fixed in 4% PFA and mitochondria were stained by immunocytochemistry with anti-LRP130 antibody and Cy3-conjugated secondary IgG. LRP130 is exclusively expressed in mitochondria (41). Nuclei were visualized with DAPI. The percentage of cells with various mitochondrial morphologies was analyzed in a blinded manner using 15 random confocal images per genotype (87-243 cells; 5-13 images from 3 cover glasses), taken with 40x objective and digitally enlarged 3x for analysis using Image J software. Cells with mostly (>80-90%) small and spherical (fragmented) mitochondria were classified as having a “fragmented” mitochondrial network, cells with appreciable proportions (>40-50%) of elongated/fused mitochondria that also contained fragmented mitochondria were classified as “intermediate”, and cells with mostly (>80-90%) elongated/fused mitochondria were classified as “elongated/fused".



Cell Cycle Analysis

Cells (105/cm2) were grown for 48 hours before being collected by trypsinization and resuspended in ice-cold 70% ethanol for fixation (1 hour on ice). Fixed cells were centrifuged (400 x g for 5 min), washed once with 2 ml PBS and centrifuged again. The final cell pellet was resuspended in PBS containing 1:10 diluted propidium iodide/RNase A solution (Sungene Biotech, China), and cells were incubated for 30 min at RT and protected from light. Cells were analyzed by flow cytometry (FACSCalibur, Becton Dickinson) and data files were imported into FCS Express 6.0 Plus software (De Novo software, Glendale, CA). For processing and quantification, the main cell population was gated in the FSC vs. SSC plot. Within the main population, cell debris and aggregated cells were excluded by gating on single cells in the FL2-A vs. FL2-W plot. Markers for G0/G1, S and G2/M phases were placed in the FL2-A vs. cell count plot of WT RasG12D-transformed cells, and the same markers were used for all other cell samples.



Immunohistochemical Analysis

Tumor tissues dissected from nude mice fixed with 10% formalin, and embedded in paraffin. The tissue sample was subjected to antigen retrieval by boiling in 0.01 mol/L citrate buffer for 5 min. Slides were then incubated with anti-RasG12D or anti-Ki-67 antibody at 4°C. for the night. Slides were then washed with PBS, fixed with 10% formalin and provided for staining. Detection was carried out by the REAL EnVision detection system (Dako) with diaminobenzidine peroxidase serving as chromogen. Images were collected, and were de-interfered and then quantitatively analyzed for gray values using Image J software.



Caspase 3/7 Activity Apoptosis Assay

The apoptotic rates were evaluated by Caspase-Glo® 3/7 Assay kit (Promega, G8090). Briefly, the tumor tissues were harvested in urea buffer (2M Thiourea, 4% CHAPS, 40mM Tris-Base, 40mM DTT, 2% Pharmalyte) and sonicated to crush DNA. The same amount of tumor tissues protein lysates (500μg) was transfer into the 96-well cell culture plate. Caspase 3/7 activity assay was repeated independently for three times according to its manufacturer’s instructions, which was represented as a fold-increase of fluorescence calculated by comparing to vector groups.



Ras Activation Assay

The small GTPase activity of Ras was measured using the Ras activation assay Biochem kit (cytoskeleton #BK008). Cells were harvested with cell lysis buffer (50 mM Tris pH 7.5, 10 mM MgCl2, 0.5 M NaCl, and 2% Igepal when reconstituted) contains 1×Protease Inhibitor Cocktail on ice. The resulting protein lystates were immediately clarified by centrifugation at 10,000 rpm, for 2 min at 4°C and protein concentrations were determined by Bradford kit. After that, 400ug of protein lysates was incubated with Raf-RBD beads (Cat. # RF02) on a rotator at 4°C for 1h. The Raf-RBD beads were pelleted by centrifugation at 3-5,000 × g for 1 min at 4°C. 90% of the supernatant was carefully removed and the beads were washed once with 500μl Wash Buffer. The Raf-RBD beads were pelleted again by centrifugation at 3,000xg for 3 min at 4°C. The supernatant was carefully removed without disturbing the beads. 20 μl of 2×Laemmli sample buffer was added into each tube and the beads were boiled for 2 min. Then resulting lysates were subjected to the following western blot analysis of Ras.



Quantification of Cell Death (Apoptosis and Necrosis)

Apoptotic and necrotic cells were detected by the Annexin V-FITC apoptosis analysis kit (Tianjin Sungene Biotech, China). Different genotypes of cells density were adjusted to 5 × 106 cells/ml. About 100 μl cell suspension was incubated with 2.5 μl AnnexinV/FITC for 10 min and then 2.5 μl PI for 5 min at room temperature in dark. The rate of apoptosis was measured by flow cytometry (BD Pharmingen).



Statistics

Statistics was performed with Prism 9.0 software (Graph Pad). All data are presented as mean ± SD, except tumor volumes in nude mice, which are shown as mean ± SEM. Two groups were compared by unpaired t-test, and three or more groups were compared by ANOVA and Tukey’s multiple comparisons test. Two-way ANOVA with Sidak’s multiple comparisons test was used to compare tumor growth in nude mice and the growth of WT and PINK1-knockout HCT116 clones in culture. Differences were considered significant at P<0.05.
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Background

Glioblastoma multiforme (GBM), the most prevalent and aggressive of primary malignant central nervous system tumors (grade IV), has a poor clinical prognosis. This study aimed to assess and predict the survival of GBM patients by establishing an m6A-related lncRNA signaling model and to validate its validity, accuracy and applicability.



Methods

RNA sequencing data and clinical data of GBM patients were obtained from TCGA data. First, m6A-associated lncRNAs were screened and lncRNAs associated with overall survival in GBM patients were obtained. Subsequently, the signal model was established using LASSO regression analysis, and its accuracy and validity are further verified. Finally, GO enrichment analysis was performed, and the influence of this signature on the immune regulation response and anticancer drug sensitivity of GBM patients was discussed.



Results

The signature constructed by four lncRNAs AC005229.3, SOX21-AS1, AL133523.1, and AC004847.1 is obtained. Furthermore, the signature proved to be effective and accurate in predicting and assessing the survival of GBM patients and could function independently of other clinical characteristics (Age, Gender and IDH1 mutation). Finally, Immunosuppression-related factors, including APC co-inhibition, T-cell co-inhibition, CCR and Check-point, were found to be significantly up-regulated in GBM patients in the high-risk group. Some chemotherapeutic drugs (Doxorubicin and Methotrexate) and targeted drugs (AZD8055, BI.2536, GW843682X and Vorinostat) were shown to have higher IC50 values in patients in the high-risk group.



Conclusion

We constructed an m6A-associated lncRNA risk model to predict the prognosis of GBM patients and provide new ideas for the treatment of GBM. Further biological experiments can be conducted on this basis to validate the clinical value of the model.
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Introduction

Glioblastoma multiforme (GBM), a grade IV tumor that develops from astrocytoma, is the most prevalent primary brain cancer in adults. This type of tumour is highly aggressive and the average survival time of patients is only about 14 months (1, 2). From an epidemiological point of view, the disease is more common in adults over 45 years of age, with a higher prevalence in males than females (3). Currently, the clinical treatment of GBM is mainly surgery, radiotherapy, chemotherapy, and other comprehensive treatments. In the surgical process, the tumor should be removed as much as possible on the premise of not aggravating neurological dysfunction, resulting in complex therapy, easy recurrence after surgery, and poor prognosis for patients (4). Genetic specificity of GBM (e.g., IDH1 mutation, EGFR mutation/amplification, NF1 mutation/deletion, and PDGFRa amplification) leads to tumor heterogeneity and adaptability, thus mediating the difference in disease prognosis and chemotherapy sensitivity (5, 6). In addition, the tumor microenvironment (TME) and the interactions between different cell populations affect the formation of hypoxia and tumor necrosis areas, stromal and immune cell infiltration, angiogenesis, and ultimately, regulate GBM clinical phenotype and chemotherapy response (7, 8).

N6-methyladenosine (m6A) is the most common form of methylation modification on mRNA and also occurs in circRNA, rRNA, tRNA, and snoRNA (9). m6A modifications are at the forefront and hotspot of epigenetic research, occurring primarily on adenines in the PPACH sequence, whose function is determined by a combination of “Writers”, “Erasers” and “Readers” (10). The role of m6A modification in gene expression regulation mainly includes: affecting the splicing of mRNA precursors, regulating the nuclear output of RNA, and regulating mRNA translation and stability. As such, it has a major role to play in the development and progression of various tumors (11, 12). Reported sequencing data demonstrate that m6A-related proteins WTAP (Writers), RBM15 (Writers), ALKBH5 (Eraser), and YTHDF2 (Reader) are significantly up-regulated in GBM in comparison to lower grade gliomas, While METTL3 (Writers), VIRMA (Writers), ZC3H13 (Writers), FTO (Eraser), YTHDC2 (Reader) and hnRNPC (Reader) were significantly down-regulated (13). In addition, the m6A-related proteins FTO, YTHDC1 and METTL3 are differentially expressed in GBM patients with mutant IDH and wild-type IDH. Differential expression of m6A regulators is closely associated with the expression of oncogenes in GBM (14). All the above evidence indicates that m6A modification plays a critical regulatory role in the occurrence and development of GBM (15).

Long noncoding RNAs (LncRNAs) are RNA molecules with a conserved secondary structure, above 200nt in length, that do not encode proteins (16). LncRNAs can engage with proteins, DNA, and RNA through a variety of molecular biological mechanisms (e.g. gene imprinting, chromatin remodeling, cell cycle regulation, splicing regulation, mRNA degradation and translational regulation) to regulate gene expression levels at different genetic levels (e.g. epigenetic, transcriptional and post-transcriptional regulation) (17). Several types of research have demonstrated that lncRNAs are closely associated with the clinical phenotype and prognosis of GBM and can be used as diagnostic markers and potential drug targets for GBM (18).

According to literature reports, lncRNAs can directly or indirectly regulate m6A modification, which further affects the occurrence and development, metastasis, recurrence, immune invasion, and drug sensitivity of various tumors (19). However, studies on m6A-associated lncRNAs are still blank in GBM, which is meaningful for searching potential diagnostic and therapeutic targets. This study first identified four m6A-associated lncRNAs related to the overall survival of GBM patients and validated their reliability and sensitivity. In addition, we discussed the impact of this signal model on immune regulation and drug sensitivity and performed GO enrichment analysis to further understand the underlying regulatory mechanisms.



Materials and Methods


Data Download and Collection

We obtained the transcriptome sequencing data and clinical data of TCGA-GBM from the GDC database (https://portal.gdc.cancer.gov/). For the former, we use annotation files(ftp://ftp.ensembl.org/pub/current_gtf/homo_sapiens/Homo_sapiens.GRCh38.90.gtf.gz) to convert probe ID into gene symbols and distinguish lncRNAs from mRNAs. For the latter, we retained information on survival time, survival status, age and gender of patients and excluded those with null information above.



Co-Expression Analysis

23 m6A-related genes that have been reported (20–23) were included in the study (Supplementary Table S1). First, m6A-related gene expression data were obtained from TCGA transcriptome data using the “Limma” package (http://bioconductor.org/packages/release/bioc/html/limma.html) in R software (4.1.2) (24). Pearson correlation analysis was performed on the expression data of m6A-associated genes and lncRNAs. The data with absolute values of correlation coefficients greater than 0.4 and P values less than 0.001 were screened. Finally, the lncRNAs associated with the expression of m6A-related genes were obtained (Supplementary Table S2), and Sankey plots were plotted.



Construction of Predictive Models

First of all, the m6A-related lncRNA expression data and clinical survival data were combined, and the merged samples were randomly divided into the training and testing groups. Then, we used the training group to construct the prognosis model and the testing group to verify the model’s accuracy. In the training group, univariate Cox analysis was performed to obtain lncRNAs with a significant correlation between expression value and OS using “survival” package. The Least Absolute Shrinkage and Selection Operator (LASSO) regression was performed on the above data to find the lncRNAs with the minimum error and the risk score (Supplementary Table S3) of each sample through cross-validation (25, 26). The risk score was calculated by coefficient(A) * lncRNA(A) expression + coefficient (B) * lncRNA(B) expression. Samples were divided into a high-risk group and a low-risk group based on the median risk score. If a GBM patient has a risk score above the median, he belongs to the high-risk group, and vice versa in the low-risk group. The difference in survival between the two groups was analyzed, and the area under the ROC curve was calculated.



Risk Differential Analysis

Gene expression data and risk data were read in R software, and only information of intersection samples was retained for the above two groups of data. Then, the data of the high-risk group and low-risk group were extracted for difference analysis, and the mean, logFC, and P values of all genes expression in the two groups were obtained. FDR value is obtained after correction of P value. Finally, genes with the absolute value of logFC greater than one and FDR less than 0.05 were screened, and the table of differential expression was obtained (Supplementary Table S4).



Gene Ontology Enrichment Analysis

First, we installed “Colorspace”, “stringi”, “dplyr”, “GGploT2”, “GGpubr”, and “BiocManager” packages in R Software. Then, the gene names of the risk difference data were converted into gene IDs, the GO enrichment analysis was performed using the command [KK =enrichGO (gene=gene, OrgDb=org.hs.eg. db, pvalue Cutoff=1, qvalue Cutoff=1, ONT=all, readable=T)]. The enrichment results of Molecular Function (MF), Biological Process (BP), and Cellular Component (CC) were obtained, and a histogram was drawn.



Immune Function Analysis

First, we installed “limma”, “GSVA”, “GSEABase”, “heatmap”, and “reshape2” packages in R Software and read the input files: gene expression data, immune function gene set, risk file (27, 28). Next, we performed ssgsea analysis on the above data and corrected the ssGSEA score. Finally, samples of the high and low-risk groups were read for genetic difference analysis, and heat maps were used to visualize the results. Finally, we divided GBM patients into high- and low-risk groups, used TIDE scores (http://tide.dfci.harvard.edu/) to evaluate immune escape and immunotherapy effects, and used Violin Plot to visualise the results (29). The higher the TIDE score, the greater the likelihood of immune escape and the less effective the patient will be in receiving immunotherapy.



Drug Sensitivity Analysis

First, we installed the packages: “GGpubr”, “pRRophetic”, and “ggplot2” in the R software and prepared risk files and expression data files for all samples (30, 31). Subsequently, the expression data of all samples were read, and the results of all drug sensitivity were obtained through cyclic analysis. Finally, the risk file and the drug sensitivity results are combined to obtain overlapping samples. The IC50 values of the high and risk groups were compared, and Box Plots were drawn for the drugs with significant results (P<0.05).



Tumor Mutational Burden Analysis

First, we obtained the mutation data of TCGA-GBM from the GDC database and calculated the TMB values (Supplementary Table S5) and mutation frequencies (Supplementary Table S6) for each sample by Perl script. The GBM samples were divided into low-risk and high-risk groups, and mutation data files were obtained for both groups. The 20 genes with the highest mutation frequencies in the total clinical samples were selected to plot waterfall plots. We further contrasted the difference in TMB between the high and low-risk groups of patients and drew Violin Plot. Finally, the samples were divided into high and low TMB groups based on the tumor mutation burden of GBM patients to observe the impact of TMB on patients’ survival. In addition, we carried out a combined survival analysis of tumor mutation burden and risk score and drew Kaplan-Meier curves.



Statistical Analysis

Perl programming was utilized for data processing. R software (4.1.2) was utilized for statistical analysis. Pearson correlation analysis was performed to assess the association between risk scores and gene expression. Survival analysis was carried out using Kaplan Meier curves and Log-Rank tests. Univariate Cox regression and LASSO regression were utilized to construct predictive models. The student’s t-test was utilized to determine the significance of differences, with P<0.05 being defined as statistically significant.




Results


Identification of m6A-Related lncRNAs in GBM

The flow chart summarized the construction process of the risk signal model related to the prognosis of GBM in this study and the subsequent verification method (Figure 1A). The TCGA transcriptome data of GBM was downloaded from the GDC website, mRNAs and lncRNAs were distinguished, and 14056 lncRNAs were obtained for follow-up analysis. Using Pearson correlation analysis, we screened 634 lncRNAs that were significantly related to the expression of 23 m6A-related genes (|r|>0.4, P<0.001), and the result was visualized by the Sankey diagram (Figure 1B).




Figure 1 | Identification of m6A-related lncRNAs in GBM. (A) Flow chart of this study. (B) Sankey diagram showed the expression correlation between m6A-related genes and m6A-related lncRNAs in GBM (|r|>0.4, P < 0.001).





The Predictive Risk Model Established by LASSO Regression Analysis

Firstly, Univariate Cox regression analysis was used to screen lncRNAs with prognostic value, and 35 m6A-related lncRNAs associated with the overall survival of GBM patients were obtained (P<0.05), and the forest plot was drawn (Figure 2A). Based on the above-mentioned m6A-lncRNA gene expression profile, the prognostic model was further constructed by LASSO Cox regression analysis (Figures 2B, C), and four m6A-related lncRNA were obtained (P<0.05), namely, AC005229.3 (coef=1.478), SOX21-AS1 (coef=-0.781), AL133523.1 (coef=-0.777) and AC004847.1 (coef=0.960). In addition, we analyzed the expression correlation between 4 lncRNAs and 23 m6A-related genes. The results showed that the expressions of AC005229.3, SOX21-AS1, and AL133523.1 were positively correlated with most m6A related genes, while AC005229.3 was opposite (|r|>0.2, P<0.001) (Figure 2D). According to the median risk score, we divided the samples of the training group into a high-risk group and low-risk group and verified them in the testing group. The results showed that in both groups (the training group and the testing group), the OS of GBM patients in the high-risk group was significantly shorter than that in the low-risk group (P<0.001) (Figure 2E).




Figure 2 | The prognostic risk model established by LASSO regression analysis. (A) Forest plot shows m6A-related lncRNAs that influence GBM patients’ OS screened by univariate Cox regression analysis (P < 0.05). (B) The tuning parameters of OS-related proteins to cross-verify the error curve. (C) Perpendicular imaginary lines to calculating the minimum criteria. (D) Heat map of expression correlation between 4 lncRNAs involved in model construction and m6A-related genes. (E) Kaplan-Meier curves showed differences in overall survival of GBM patients with high-risk and low-risk in the training group or the testing group (P < 0.001). *: P<0.05, **: P<0.01, ***: P<0.001.





Verification of the Signal Model in the Training Group and the Testing Group

Based on the median risk score, we classified GBM patients into a high-risk group and low-risk group in the training group, sorted them according to the risk score of each sample, and finally got the risk curve (Figure 3A), survival status map (Figure 3B) and risk heat map (Figure 3C) of the training group. The results showed that the number of dead patients increased with patients’ risk scores. In addition, with the rise in patients’ risk scores, the expression levels of AC005229.3 and AC004847.1 increased, indicating that they were detrimental factors, while SOX21-AS1 and AL133523.1 were, on the contrary, suggesting that they were protective factors. Finally, we verified the signal model in the testing group, and the trend of the result was consistent with that of the training group (Figures 3D–F).




Figure 3 | Verification of the signal model in the training and the testing groups. (A, D) Distribution of the risk score of each patient in the training group (A) and the testing group (D) ranked by risk score from lowest to highest. (B, E) Distribution of the survival status of each patient in the training group (B) and the testing group (E) ranked by risk score from lowest to highest. (C, F) Expression of the four m6A-related lncRNAs in the high-risk and low-risk GBM patients in the training group (C) and the testing group (F) ranked by risk score from lowest to highest.





Independent Prognostic Analysis and Accuracy Verification of the Signal Model

We performed univariate and multivariate independent prognostic analyses to determine whether this model works independently of other clinical traits. The former compared each factor with the survival time individually (Figure 4A), while the latter compared all factors with the survival time at once (Figure 4B). The results of two kinds of the analysis showed that the P values of age [HR of Univariate Cox regression analysis: 1.026(1.012-1.021); HR of Multivariate Cox regression analysis: 1.025(1.011-1.040)] and our model [HR of Univariate Cox regression analysis: 1.082(1.041-1.125); HR of Multivariate Cox regression analysis: 1.077(1.035-1.122)] are less than 0.001, indicating that these two factors can be independent of other clinical traits to play a role as independent prognostic factors. Furthermore, we drew ROC curves to determine the accuracy of this model in predicting patients’ survival. The results showed that the areas under the curve (AUC) of one year, three years, and five years are all more than 0.5 (AUC= 0.699, 0.827, and 0.821, respectively), indicating that the accuracy of the model is high (Figure 4C). Compared with other clinical traits, we found that the AUC of our model is the most significant (Risk model: AUC=0.699, Age: AUC=0.625, Gender: AUC=0.488), indicating that this model to predict the survival of patients will be better than other traits (Figure 4D). Similarly, the result of the C-index curve was consistent with that of ROC curves, which proves that this model is the most accurate in predicting the prognosis of patients (Figure 4E).




Figure 4 | Independent Prognostic Analysis and accuracy verification of the signal model. (A, B) Univariate and multivariate independent prognostic analysis of risk score and clinical variables. (C) Time-dependent ROC curves to evaluate the accuracy of risk scores for predicting 1-year, 3-year, and 5-year survival. (D, E) Time-dependent ROC curves and C-index curves assess the accuracy of risk scores, age, and gender for predicting GBM patients’ survival.



According to known studies, IDH1 mutation is an important factor affecting the prognosis of GBM patients from both biological and clinical perspectives (32). Therefore, we included the presence or absence of IDH1 mutation in the independent predictive analysis. Both Univariate Cox regression analysis [HR: 1.082(1.041-1.125), P<0.001] and Multivariate Cox regression analysis [HR: 1.076(1.033-1.120), P<0.001] showed that the risk model we constructed was able to predict the prognostic status of patients independently of IDH1 mutation as a risk factor. The ROC curve (Risk model: AUC=0.699, IDH1mut: AUC=0.457, Age: AUC=0.625, Gender: AUC=0.512) and C-index curve also showed that after the IDH1 mutation was included in the study, the accuracy of the model was still the highest compared to other clinical traits. (Supplementary Figure S1) Further, after deleting the GBM patients with IDH1 mutation in the high-risk and low-risk groups, we performed the survival analysis again. The results showed that in the training group (P<0.001) and the testing group (P=0.005), compared with the low-risk group, the overall survival is still significantly shortened for high-risk patients (Supplementary Figure S2). The above results show that our signaling model is not affected by IDH1 mutation as a risk factor.



Nomogram and Clinical Grouping Verification of the Signal Model

To quantitatively predict the overall survival of GBM patients, we drew the Nomogram combined with the patients’ risk score, age, and gender (C-index Value=0.638) (Figure 5A). Using the example of the patient in the figure (TCGA-14-0736), this GBM patient is in the high-risk group with an overall score of 181. Based on the score prediction, the survival rate for this patient at one year or more is 0.486, at three years or more, it is 0.00545, and at five years or more is 0.000123. According to the clinical data, this patient has died, and the survival time is 1.26 years, which is consistent with the model’s predicted outcome. In addition, the result of the calibration curve for the overall survival of 1-year, 3-year, and 5-year showed that the distribution of the three curves is very close to the diagonal, indicating that the Nomogram is very accurate in predicting the survival probability (Figure 5B). We also plotted the Nomogram and the calibration curve after including the IDH1 mutation as a risk factor in the study. The results show that the risk model we constructed can still accurately predict patient survival (Supplementary Figure S3).




Figure 5 | Nomogram and clinical grouping verification of the signal model. (A) The risk score, age, and gender were combined to construct a Nomogram to predict the 1-year, 3-year, and 5-year survival probabilities of GBM patients. (B) The calibration curve was used to evaluate the accuracy of the Nomogram. (C) In different clinical groups (age: >65 or ≤65, gender: female or male), the consistency of the model to predict OS was verified. (D) Principal Component Analysis is used to evaluate and compare the discrimination of all genes, m6A-related genes, m6A-related lncRNAs, and model lncRNAs between high-risk and low-risk GBM patients.



Next, we divided the GBM patients into groups according to gender and age (the cut-off point is 65 years old) to observe the model’s applicability in different groups. The results showed that the overall survival of GBM patients with high risk was significantly lower than that of patients with low risk in different clinical groups; that is, the model was suitable for patients with different clinical traits (P<0.01) (Figure 5C). Finally, we conducted principal component analysis (PCA) to evaluate whether the lncRNAs could effectively distinguish between high-risk and low-risk patients. By comparing the PCA patterns of all genes, m6A-related genes, m6A-related lncRNAs, and model lncRNAs, we found that among the four patterns, the one with the highest degree of discrimination was the map of model lncRNAs (Figure 5D).



GO Enrichment Analysis and Immune Regulation of the Signal Model

To explore the specific biological processes affected by this risk signature in more depth, we conducted a risk difference analysis and screened out 190 genes with different expression in the high-risk group and the low-risk group (|logFC|>1, FDR< 0.05). We performed GO enrichment analysis for the above genes to observe which biological functions they are enriched in (Figure 6A). The biological process enrichment analysis data showed these genes are associated with defense response to the bacterium, humoral immune response, membrane invagination, and others. The cellular component enrichment analysis data showed these genes are mainly located on the external side of the plasma membrane and play a role as immunoglobulin complex. The molecular function enrichment analysis data further indicated that most of these genes are linked to antigen binding and immunoglobulin receptor binding.




Figure 6 | GO enrichment analysis and immune regulation of the signal model. (A) GO enrichment analysis of differentially expressed genes in high-risk and low-risk groups. (B) The heat map showed immune function analysis of high and low-risk groups. (C) Violin Plot showed the difference in TIDE scores between the high-risk and low-risk groups. *: P<0.05, **: P<0.01, ***: P<0.001.



Interestingly, considering the above three perspectives, the risk signals we constructed are all related to immune regulation, so we further analyzed the differences in the immune function of patients in the high and low-risk groups (Figure 6B). The results showed that in the high-risk group, most immune-related functions were significantly up-regulated, including Major Histocompatibility Complex (MHC) class I, Type II Interferon (IFN) Response, Antigen Presenting Cell (APC) co-inhibition, Cytolytic activity, T-cell co−inhibition, Check−point, T-cell co−stimulation, Parainflammation, APC co-stimulation, and Chemokine Receptor (CCR) (P<0.05). In addition, we also analysed the Tumor Immune Dysfunction and Escape (TIDE) scores of the high- and low-risk groups to predict the effect of immune checkpoint suppression therapy (P<0.01) (Figure 6C). The higher the TIDE score, the greater the potential for immune escape and the less effective the patient is in receiving immunotherapy. The results prove that the high-risk group is less sensitive to immune checkpoint suppression therapy.



Sensitivity Analysis of Anti-Tumor Drugs Based on the Signal Model

To further explore the significance of this signal model for clinical treatment, we analyzed the sensitivity of GBM patients to all anti-cancer drugs and screened out drugs with significant differences in IC50 values between the high- and low-risk groups (P<0.05). The results showed that among the broad-spectrum anticancer drugs, including Doxorubicin, Elesclomol, Epothilone. B, Methotrexate, and Vinorelbine, the sensitivity of patients in the high-risk group to the drug were significantly reduced (Figure 7A). The same results have also been observed in various targeted anti-tumor molecules (AZ628, AZD8055, BAY.61.3606, BI.2536, GW843682X, MK.2206, Obatoclax. Mesylate, OSl.906, PLX4720, QS11, Thapsigargin, and Vorinostat) (Figure 7B).




Figure 7 | Sensitivity analysis of anti-tumor drugs based on the signal model. (A) Differences in the sensitivity (IC50 value) of broad-spectrum anticancer drugs between GBM patients in the high-risk and low-risk groups. (B) Differences in the sensitivity (IC50 value) of targeted anticancer drugs between GBM patients in the high-risk and low-risk groups.





Gene Mutation Frequency of the Signal Model

In addition, we also compared the tumor mutation burden and gene mutation frequency of the high- and low-risk groups. The Waterfall Plots was used to visualize the mutation frequency and mutation type of the Top-20 genes with the highest gene mutation frequency. The results showed no significant difference between the high-risk and low-risk groups (Figures 8A, B). The results of the Violin Plot also showed that there was no significant difference in tumor mutation burden between the two groups (Figure 8C). Further, we also explored the impact of tumor mutational burden on the overall survival of GBM patients and found that the survival curves of the High-TMB and Low-TMB groups were not significantly different, which means that TMB does not affect the prognosis of patients in GBM (Figure 8D). Combining the risk score and TMB two factors to analyze the impact on OS, the results show that only the risk score will affect the survival of patients (Figure 8E).




Figure 8 | Gene mutation frequency of the signal model. (A, B) Top-20 gene mutation frequency in high (A) and low (B) risk groups. (C) Violin Plot showed the difference in the tumor mutation burden (TMB) between the high-risk and low-risk groups. (D) Survival curves of the high-TMB group and low-TMB group. (E) Survival curves of the high and low-TMB groups and high- and low-risk groups.






Discussion

As the most common methylation modification, m6A modification frequently exists in both mRNAs and lncRNAs. In addition, some m6A modifications may be directly or indirectly regulated by lncRNAs (33). As the frontier and hotspot of epigenetics research, a large number of clinical and preclinical experiments have demonstrated that m6A modification is closely related to prognosis, immune regulation, and drug sensitivity of various tumor types (34). LncRNAs exert functions in a wide range of ways, interact with proteins, DNA and RNA, participate in the regulation of various biological processes, and ultimately affect the outcome of cancer patients. In GBM patients, abnormal expression of certain specific lncRNAs in tumor cells can be used as a diagnostic marker or potential drug target (35). In addition, lncRNAs is readily detectable in serum, saliva, urine, blood or tissue biopsies, which makes lncRNAs more convenient for clinical diagnosis and prognosis prediction (36). At present, both in vivo and in vitro experimental results indicated that m6A-related lncRNAs regulate the occurrence, development, metastasis, and recurrence of tumors in multiple types of cancer (37), including colorectal cancer (38), lung cancer (39), and pancreatic cancer (40). However, the role of m6A-related lncRNAs in GBM is still unclear. In this study, using TCGA data of GBM, a predictive risk model of m6A-related lncRNAs was constructed through the LASSO Cox regression analysis, and multiple verifications were performed, proving the validity accuracy applicability of the signature.

In this study, we first screened out 634 m6A-related lncRNAs by analyzing the Pearson correlation between the expression levels of lncRNAs and m6A-related genes. Subsequently, 35 m6A-related lncRNAs associated with OS were screened by Univariate Cox analysis. Finally, the signal model constructed by four m6A-related lncRNAs was obtained through LASSO regression analysis (AC005229.3, SOX21-AS1, AL133523.1, and AC004847.1). To verify this signal model further, we drew ROC curves, C-index curves, and Nomogram, and conducted Principal Component Analysis. The results showed that the risk score of this model can effectively and accurately predict and assess the OS of GBM patients and can function independently of other clinical signals.

Abnormalities in the immune system are an important factor in the development of many diseases, and immunotherapy is currently the hottest focus of disease treatment (41–43). GBM is a malignant tumor closely related to immunosuppression, and there are few studies on the relationship between m6A-related lncRNAs and immune regulation in GBM. To further explore the clinical value of the signal model we constructed, we further screened out the differentially expressed genes in the high-risk and low-risk groups and performed GO enrichment analysis. The results proved that the above differential genes are closely related to the immune response in the three biological process levels, cellular components, and molecular function. Therefore, we further analyzed the differences in the immune function of GBM patients in the high-risk and low-risk groups and found significant differences in the activity of multiple immune functions between the two groups. In the high-risk group, most immune-related functions were significantly up-regulated, including MHC class I, Type II IFN Response, APC co-inhibition, Cytolytic activity, T-cell co−inhibition, Check−point, T-cell co−stimulation, Parainflammation, APC co-stimulation, and CCR. Among them, APC co-inhibition, T-cell co-inhibition, CCR and Check-point are all important factors leading to suppressed immune function, which may also be an important factor in the poor prognosis of patients in the high-risk group. The difference in TIDE scores also proved that GBM patients in the high-risk group are significantly less sensitive to immune checkpoint inhibitors.

In addition, this model also included all known anti-cancer drugs (including traditional chemotherapy drugs and targeted molecular drugs) in the study. The results showed that in the broad-spectrum anti-tumor drugs (Doxorubicin, Elesclomol, Epothilone. B, Methotrexate, and Vinorelbine) and targeted anti-tumor molecules (AZ628, AZD8055, BAY.61.3606, BI.2536, GW843682X, MK.2206, Obatoclax. Mesylate, OSl.906, PLX4720, QS11, Thapsigargin, and Vorinostat), the IC50 value of GBM patients in the high-risk group was significantly increased, indicating a decrease in drug sensitivity. Among these drugs, some chemotherapeutic drugs (Doxorubicin (44) and Methotrexate (45) and targeted drugs (AZD8055 (46), BI.2536 (47), GW843682X (48) and Vorinostat (49)) have been shown to be effective in treating GBM in animal studies or clinical trials. the IC50 values of these drugs are higher in the high-risk group of patients, which may also contribute to the poor prognosis of patients in the high-risk group. Again, this result confirmed that the risk model has a strong transformative significance from clinical treatment. We also analyzed the differences in the TMB and gene mutation profiles of GBM patients in the high and risk groups and the difference in OS between the high and low TMB groups, but no positive results were obtained.

This study established and verified the prognostic signal model of m6A-related lncRNAs in GBM for the first time and discussed the clinical translational significance of this signal model from the perspectives of immunotherapy and chemotherapy. The research will be beneficial to predict and evaluate the prognosis of patients in GBM and improve the efficiency of clinical treatment. However, the study still has certain limitations. Firstly, the model has only been verified in TCGA data, and more external verification based on the RNA-seq cohort will be needed in the future to evaluate its accuracy further. Secondly, the study utilized RNA-seq data and there was a gap with protein level studies. Some lncRNAs were expressed at very low levels or even not in tumor tissue. Due to the characteristics of the Cox survival analysis, these lncRNAs, which may play an important role in the biological process, were omitted and may have led to some bias in our findings. Furthermore, we should not overlook the fact that there may be mutual interference between different transcriptome modifiers (e.g., m6A related genes) affecting the same transcripts. Finally, the specific mechanism of m6A-related lncRNAs in regulating GBM prognosis and its interaction with the immune response are not yet fully understood. Therefore, more clinical and preclinical experimental studies are needed to confirm the model.



Conclusion

All in all, our study found that four m6A-related lncRNAs can effectively, accurately, and independently of other clinical traits to predict and assess the prognosis of GBM patients, and this signal model can be used as a biomarker to regulate the drug sensitivity of immunotherapy and chemotherapy.
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Background

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. Non-coding RNAs play an important role in HCC. This study aims to identify a senescence-related non-coding RNA network-based prognostic model for individualized therapies for HCC.



Methods

HCC subtypes with senescence status were identified on the basis of the senescence-related genes. Immune status of the subtypes was analyzed by CIBERSORT and ESTIMATE algorithm. The differentially expressed mRNAs, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) were identified between the two HCC subtypes. A senescence-based competing endogenous RNA (ceRNA) co-expression network in HCC was constructed. On the basis of the ceRNA network, Lasso Cox regression was used to construct the senescence-related prognostic model (S score). The prognosis potential of the S score was evaluated in the training dataset and four external validation datasets. Finally, the potential of the prognostic model in predicting immune features and response to immunotherapy was evaluated.



Results

The HCC samples were classified into senescence active and inactivate subtypes. The senescence active group showed an immune suppressive microenvironment compared to the senescence inactive group. A total of 2,902 mRNAs, 19 miRNAs, and 308 lncRNAs were identified between the two subtypes. A ceRNA network was constructed using these differentially expressed genes. On the basis of the ceRNA network, S score was constructed to predict the prognosis of patients with HCC. The S score was correlated with immune features and can predict response to immunotherapy of cancer.



Conclusion

The present study analyzed the biological heterogeneity across senescence-related subtypes and constructed a senescence-related ceRNA-network-based prognostic model for predicting prognosis and immunotherapy responsiveness.





Keywords: hepatocellular carcinoma (HCC), senescence, non-coding RNA (ncRNA), prognosis, regulatory network



Introduction

Liver cancer is a major health problem worldwide, accounting for 4.3% of new cancer cases (905,677 cases) and 8.3% of cancer deaths (830,180 deaths) in 2020 globally (1). Hepatocellular carcinoma (HCC) is the commonest type of liver cancer, comprising 75%–85% of cancer cases. Despite the advances in HCC therapy, the 5-year survival rate of advanced HCC is still extremely low and the recurrence rate is relatively high (2, 3). The immune system plays important role in HCC. An immunosuppressive tumor microenvironment would impair the recognition of HCC cells (4). Immunotherapeutic regimens improved the clinical management of cancer. However, there are still many cases that are not response to immunotherapy (5, 6). Due to the heterogeneity of cancer, one of the major challenges in immunotherapy is the identification of accurate biomarkers in predicting responses to immunotherapy.

Aging and cellular senescence is the deterioration of tissues and cells. The elimination of senescent cells could delay aging and protect against aging-related diseases, such as cancer. Aging is also a risk factor of tumorigenesis. The senescence of stromal cells establishes an immunosuppressive microenvironment that facilitated the initiation of tumor (7). The hallmarks of cancer constitute the complexities of neoplastic diseases. Recently, Douglas Hanahan purposed that senescent cells should be considered as a hallmark of cancer (8). A series of senescence markers or features has been identified (9–11). The senescence-related genes were correlated with immune cell (IC) infiltration in the tumor microenvironment and the prognosis of patients with cancer (12). The resistance of HCC to current therapies was mainly associated with the immune microenvironment heterogeneity (13). Senescence could modify the tumor microenvironment and thus impact the response of tumor to immune system and immunotherapies (14). Therefore, senescence activity may be a potential index for predicting the immunotherapy responsiveness.

Non-coding RNAs play an important role in cancer. Plenty of differentially expressed non-coding RNAs are identified by high-through put techniques in HCC tissues (15, 16). Increasing studies revealed the role of non-coding RNAs in HCC. On the basis of competing endogenous RNA (ceRNA) mechanism, the regulatory network exists among mRNAs, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) (17). For example, MCM3AP-AS1 is an oncogenic lncRNA, which is highly expressed in HCC and positively correlated with poor prognosis of patients with HCC. The knockdown of MCM3AP-AS1 inhibited the progression of HCC by regulating miR-194-5p/FOXA1 axis (18). Similarly, the enhanced expression of lncRNA-PDPK2P was observed in HCC tissues, which is positively correlated with PDPK2P and PDK1. In addition, the expression of lncRNA-PDPK2P was negatively correlated with prognosis of patients with HCC. lncRNA-PDPK2P can promote HCC progression through the PDK1/AKT/Caspase-3 pathway (19). Recently, non-coding RNAs were proved to be involved in the progression of HCC through modulating the process of senescence. Miat was identified as a senescence-associated lncRNA in HCC. LncRNA Miat could increase the expression of Sirt1 by inhibiting miR-22-3p expression. Whereas, knockdown of lncRNA Miat could inhibit HCC progression by promoting cellular senescence (20). In addition, the ceRNA network also associated with the prognosis of cancer (21–23).

The development of high-throughput detection techniques and big data resources provides a method for the explanation of the heterogeneous of cancer and promotes the precise medicine of cancer. In the present study, we identified two subtypes of HCC based on the aging characteristics of tumors. Then, we acquired the differentially expressed mRNAs, lncRNAs, and miRNAs between subtypes and constructed the senescence-mediated HCC regulatory ceRNA network. On the basis of this network, a machine learning–based method was used to construct a prognostic model for HCC. Our results showed that the constructed prognostic model can effectively predict the prognosis of patients with HCC, characteristics of immune microenvironment, and response to immunotherapy.



Material and Methods


Data Acquisition and Processing

For the senescence subtype identification, ceRNA network construction, and prognostic model construction, clinic information and transcriptome data of patients were obtained from TCGA-LIHC cohort that is from The Cancer Genome Atlas (TCGA) (24). Data were acquired based on the R package “TCGAbiolinks” (25). To validate the prognostic model’s efficiency, patients’ clinic information and transcriptome data of validation cohort were obtained from data series from the Gene Expression Omnibus (GSE10143, GSE14520, and GSE76427) and data series LIRI-JP, which is from International Cancer Genome Consortium (https://dcc.icgc.org) (26). To explore the potential of our constructed model in predicting response to immunotherapy of cancer patients, immunotherapy cohort “IMvigor210” was enrolled in the study. The detailed information of cohorts was obtained based on the R package “IMvigor210CoreBiologies” (27). In IMvigor210 cohort, PD-L1 expression on ICs is assessed by SP142 immunohistochemistry assay, and the samples were divided into IC0 (<1%), IC1 (≥1% and <5%), and IC2+ (≥5%). Samples of IMvigor210 cohort have also been classified into three immune microenvironment-related subtypes: immune-deserted, immune-inflamed, and immune-excluded. The immune microenvironment characteristics of the three subtypes are as follows. Immune-inflamed subtype is characterized by the presence of various ICs in the tumor parenchyma, and the ICs are positioned in proximity to the tumor cells. Immune-excluded subtype is characterized by the presence of various ICs, whereas the ICs cannot penetrate the tumor parenchyma. Immune-deserted subtype is characterized by the paucity of T cells. Clinic data in this research are all from publicly available data. Thus, local research ethics committee approval is not applicable.



Identification of Senescence Active and Inactive HCC Subtypes

To identify the senescence active subtype and senescence inactive subtype of HCC, 39 laboratory-validated cancer-associated senescence signatures were acquired from CellAge database (28). Detail information of the signatures is presented in Supplementary Table 1. On the basis of the 39 signatures, we conducted hierarchical clustering analysis to identify the senescence active subtype and senescence inactive subtype of HCC. GSVA was used to analyze the senescence activity of the HCC subtypes and further validate the robustness of the HCC subtype identification (29).



Immune Characteristics Analysis

In this research, CIBERSORT, the deconvolution algorithm, was applied for the calculation of the cell composition of complex tissues to analyze the IC infiltration level in the tumor microenvironment (30). To evaluate the immune activity of cancer, ESTIMATE algorithm was used to calculate the immune score and stromal score of cancer (31).



Acquisition and Functions Analysis of Differential Expression Genes

Differential expressed mRNAs, miRNAs, and lncRNAs were acquired in the threshold of P < 0.05. Processes were conducted by the R package “edgeR” (32). To investigate the biological functions mediated by the differential expression transcriptomes, we conducted the enrichment analysis based on GO database (33) and KEGG database (34). Analysis was conducted and visualized by Metascape (https://metascape.org/).



Construction of the Senescence-Based ceRNA Co-Expression Network in HCC

To explore the potential ceRNA-mediated regulatory role of senescence and identify the potential functional non-coding regulatory region, we constructed the senescence-based ceRNA network of HCC. The correlation between senescence signatures and differentially expressed genes (miRNAs, lncRNAs, and mRNAs) was assessed by Spearman correlation coefficients. Correlations with P < 0.05 and R < 0.2 or R > 0.2 were considered significant and submitted to the network construction. The ceRNA network was constructed by assembling all correlation and visualized by Cytoscape software (35).



Construction of the Senescence ceRNA Network-Based Gene Prognostic Model

First, all senescence-related mRNAs were acquired from the ceRNA network. Univariate Cox regression was applied to identify the one that is correlated with prognosis of patients and submitted to the model construction. Then, the Lasso Cox regression was employed to select the model component genes and calculate their coefficients for the construction of the prognostic model. Finally, the senescence feature-based risk score (S score) was constructed through the integration of mRNA expression level and its coefficients. The detailed information of the selected genes and their coefficients is presented in Supplementary Table 2.



Statistical Analysis

In this research, Wilcoxon rank sum test was used to compare the continuous variables between the two groups. Log-rank test was applied to compare the prognosis of two groups. TimeROC analysis was performed to evaluate prediction efficiency of the S score. The distribution of samples in the two groups was compared by chi-square test. Spearman correlation was used to analyze the correlation of two continuous variables. If not mentioned, P < 0.05 was considered as statistically significant.




Results


Identification of the Senescence Active and Inactive HCC Subtypes

Recent research demonstrated that senescence plays an important role during cancer progression (36). We first identified the senescence active and inactive HCC subtypes based on the senescence signatures (Figure 1A). To validate the accuracy of the subtype identification, we evaluated the senescence activity of the subtypes by GSVA. According to the result, one subtype has shown significantly higher senescence activity, thus named as senescence active subtype, another subtype named as senescence inactive subtype (Figure 1B, P < 0.05). Recent research indicated that senescence is the emerging regulator of the tumor microenvironment alteration (37). Here, we further analyzed the differences of immune features in the two subtypes. ESTIMATE analysis demonstrated that senescence active subtype had the significant lower immune response activity (Figure 1C, Immune Score: P < 0.05; ESTIMATE Score: P < 0.05). Next, we then calculated the immune infiltration level of the two subtypes. Two subtypes showed the different immune infiltration features (Figure 1D).




Figure 1 | Identification of the senescence-related HCC subtypes. (A) Landscape of the senescence-related HCC subtypes. (B) Comparison of the senescence activity of the two HCC subtypes. (C) Comparison of the ESTIMATE Score of the HCC subtypes. (D) Landscape of the immune infiltration level of the two subtypes. *P < 0.05, **P < 0.01, and ***P < 0.001. NS: Not Significant.





Acquisition of Differential Expressed Genes Between the Two HCC Subtypes

The differentially expressed mRNAs, miRNAs, and lncRNAs were identified between the two HCC subtypes, respectively. As shown in the volcano plot, a total of 2,902 mRNAs, 19 miRNAs, and 308 lncRNAs were identified (Figures 2A–C). Enrichment analysis was employed to investigate the biology functions mediated by the identified genes (Figures 2D, E). Top three enrichment terms of the mRNAs were “NABA matrisome associated”, “Nuclear receptors meta-pathway”, and “Biological oxidations”.




Figure 2 | The gene expression difference in the senescence-related HCC subtypes. (A) The volcano plots of differential expressed lncRNAs in the two HCC subtypes. (B) The volcano plots of differential expressed miRNAs in the two HCC subtypes. (C) The volcano plots of differential expressed mRNAs in the two HCC subtypes. (D) Enrichment analysis based on differentially expressed genes. (E) Network of the differential expressed mRNAs’ significantly enriched pathways.





Construction of the Senescence-Related ceRNA Network-Based Prognostic Model

Next, on the basis of the differentially expressed mRNAs, miRNAs, and lncRNAs, we constructed the senescence-mediated ceRNA network. The network contained 39 senescence signatures, 235 lncRNAs, 19 miRNAs, and 1,546 mRNAs regulated by non-coding RNAs (Figure 3). The 1,546 mRNAs were submitted for the subsequent construction of prognostic model, which is based on the senescence-related ceRNA network.




Figure 3 | The constructed ceRNA network using differentially expressed genes between the two HCC subtypes. The network contained 39 senescence signatures, 235 lncRNAs, 19 miRNAs, and 1,546 mRNAs regulated by non-coding RNAs. The purple triangle represents miRNAs. The yellow diamond represents senescence signatures. The light green circle represents mRNAs regulated by non-coding RNAs. The dark green square represents differential expressed lncRNAs. The orange diamond represents senescence signatures.



To further explore the clinical application potential of the ceRNA network, we constructed the ceRNA network-based prognostic model (S score) by a machine learning–based method. First, univariate Cox regression was conducted to identify the prognosis related genes from the 1,546 identified mRNAs regulated by non-coding RNAs. A total of 122 genes were selected and used for the Lasso Cox regression to construct the S score (Figures 4A, B). The selected genes and their coefficients were presented in Figure 4C. To validate the robustness of the S score, the S score of the training cohort was calculated (Figure 4D). Our results indicated that the S score can well predict the outcome of patients (Figure 4E, P < 0.0001; Figure 4F, AUC = 0.787).




Figure 4 | Construction of a senescence-related prognostic model for HCC. (A) The coefficients of genes calculated by multivariate Cox regression using LASSO. (B) The partial likelihood deviance of genes. (C) The coefficients of selected genes. (D) S score distribution for patients in the TCGA-LIHC database. (E, F) Comparison of patient’s prognosis in high–S score group and low–S score group.





Validation of the Prognostic Efficiency of S Score in External Datasets

Subsequently, four external validation datasets, GSE10143, GSE14520, GSE76427, and LIRI-JP, were employed to further validate the prognostic efficiency of the S score. Patients in each dataset were divided into high–S score group and low–S score group, respectively. In datasets GSE10143, GSE14520, GSE76427, and LIRI-JP, patients of the high–S score group all performed worse prognosis than the low–S score group (Figures 5A, B: P = 0.028, AUC = 0.747; Figures 5C, D: P = 0.00011, AUC = 0.625; Figures 5E, F: P = 0.005, AUC = 0.693; Figures 5G, H: P < 0.0001, AUC = 0.678). The detailed information of sample distribution is presented in Supplementary Figure 1. The integrated results confirmed that the S score has great efficiency in predicting the outcome of patients with HCC.




Figure 5 | Validation of the prognostic efficiency of S score in external datasets. (A) Overall survival of patients in GSE10143. (B) Overall survival of patients in GSE14520. (C) Overall survival of patients in GSE76427. (D) Overall survival of patients in LIRI-JP. (E) AUC curve of the patients with HCC in the GSE10143. (F) AUC curve of the patients with HCC in the GSE14520. (G) AUC curve of the patients with HCC in the GSE76427. (H) AUC curve of the patients with HCC in the LIRI-JP.





The Correlation of the S Score and Immune Features in HCC

The immune features of senescence active and inactive subtype also indicated that senescence mediated an immune-suppressive characteristic. Thus, we further analyzed the correlation between the S score and immune features of patients. Our results indicated that the S score was negatively correlated with the infiltration level of plasma cells, CD8 T cells, activated CD4 memory T cells, gamma delta T cells, and M1 macrophages, as well as ImmuneScore and ESTIMATE Score. Meanwhile, the S score was positively correlated with the infiltration level of memory B cells, naive CD4 T cells, M0 macrophages, M2 macrophages, and eosinophils (Figures 6A–L). The detailed information of the correlation between the S score component genes and immune features is shown in Figure 6M. These results implied that high S score predicts an immune-suppressive feature of HCC.




Figure 6 | The correlation of the S score and immune features in HCC. (A–J) The correlation of S score and IC, including memory B cells (A), plasma cells (B), CD8 T cells (C), naive CD4 T cells (D), activated memory CD4 T cells (E), gamma delta T cells (F), M0 Macrophages (G), M1 Macrophages (H), M2 Macrophages (I), and Eosinophils (J). (K–L) The correlation of S score and immune scores, including Immune Score (K) and ESTIMATE Score (L). (M) Detailed information of the correlation between the S score component genes and immune features. The color bar represents correlation coefficients. *P < 0.05.





The Potential of the S Score in Predicting Response to Immunotherapy of Patients

Our result indicated that the S score can well predict the immune features in HCC. Correlation analysis indicated that the S score is negatively correlated with the expression level of immune check point related genes, which suggested that high S score may predict the low response rate to immunotherapy (Figure 7A). To validate our hypothesis, immunotherapy cohort imv210 was enrolled in the analysis. We found that the IC0 group has the highest S score and that the immune inflamed group has the lowest S score, which implied the high–S score group has low response rate to immunotherapy (Figures 7B, C). Kaplan-Meier curve also demonstrated that patients of the high–S score group had a significantly worse outcome than the low–S score group (Figure 7D). Patients in the high–S score group also had a higher rate of PD (Figure 7E). Thus, the high S score can predict the low responsiveness to immunotherapy in cancer patients. Patients with low S score would be more sensitive to immunotherapy.




Figure 7 | The potential of the S score in predicting response to immunotherapy in cancer. (A) The correlation between the S score and immune checkpoints. (B) Comparison of S score in different ICs (IC) groups. (C) Comparison of S score in groups with different immune microenvironment characteristics. Samples have been classified into three immune microenvironment-related subtypes: immune-deserted, immune-inflamed, and immune-excluded. (D) Comparison of prognosis of patients in high– and low–S score groups. (E) Distribution of responsive status in high– and low–S score groups. SD, stable disease; PD, progressive disease; PR, partial response; CR, complete response. *P < 0.05, **P < 0.01, and ***P < 0.001. NS, Not Significant.






Discussion

HCC is the commonest malignant liver tumor with poor clinical outcomes (38). The heterogeneity of HCC necessitates personalized management. Senescent cells exist in tumor tissues. Senescence is an important hallmark of HCC (39). Senescence is the essential regulator of tumor immune microenvironment (40). The senescence of HCC cells would activate various types of ICs, including T cells, NK cells, and macrophages. Whereas, the activation of innate immune system promotes the clearance of HCC cells (41, 42). The different senescence status is one of the dominant reasons of the heterogeneity of HCC. Therefore, developing a senescence-related prognosis model for HCC is urgently needed.

On the basis of the characteristics of senescence, the HCC samples were classified into senescence active and senescence inactive subtypes. The immune characteristics of the two subtypes were evaluated. ESTIMATE calculations indicate that the senescence active subgroup shows lower immune activity. To further illustrate the differences of immune characteristics in the two subgroups, we calculated their specific immune characteristics using CIBERSHOT and the results provided us new insight into the association between senescence and tumor microenvironment.

The cooperation and interaction of the cancer-associated ICs determine the immune status of cancer. During cancer progression, CD8+ T cells suffer from dysfunction and depletion due to the immunosuppressive signals in the tumor microenvironment. In the present study, a significantly higher infiltration level of Treg cells was observed in senescence active HCC subtype (Figure 1D). Treg cells are one of the major promotors of the CD8+ T cell depletion (43, 44). Under the circumstances, although there is no significant difference in the level of CD8+ T cell infiltration between the two subtypes, Treg may contribute to the depletion of CD8+ T cells, making it an immunosuppressive subtype.

The differentially expressed genes between the two HCC subtypes were then identified. A total of 2,902 mRNAs, 19 miRNAs, and 308 lncRNAs were identified (Figures 2A–C). Enrichment analysis revealed the functions of differentially expressed genes. The top three enriched terms are related to metabolic and differentiation. Then, we constructed a regulatory network using differentially expressed genes between the two subgroups (Figure 3). Some of the hub nodes in the network play an important role in HCC. For example, the expression of miR-339 is decreased in HCC tissues and cells, whereas the enhanced expression of miR-339 can inhibit the invasion ability of HCC cells. Moreover, low miR-339 expression was correlated with poor prognosis of patients with HCC (45). The expression of miR-429 was also downregulated in HCC tissues and cells. The overexpression of miR-429 inhibited the migration and invasion of HCC cells (46). Through the ceRNA mechanism, lncRNAs and mRNAs can competitively bind specific miRNAs. The lncRNAs, miRNAs, and mRNAs in the network could interact with each other. On the basis of the network, we construed a prognosis model consisting of 26 genes for HCC by machine learning approaches. The constructed model has high accuracy in predicting prognosis of HCC in the training and four validation datasets (Figures 4, 5; Supplementary Figure 1).

Immune-based therapies have revolutionized the treatment of HCC (47). Immunotherapy is effective for some HCC cases. However, there are still a proportion of patients that are not responding to immunotherapy (48). The stratification biomarker to predict response of patients is an unmet need. Here, we further explored the potential of the S score in predicting responsiveness to immunotherapy. The results showed that the S Score was correlated with infiltration level of ICs and already defined immune-related scores including Immune Score  and ESTIMATE Score. All genes in the S score were correlated with ICs and/or immune scores (Figure 6).

Characteristics of immune microenvironment have clinical application potential, which could predict the response to immunotherapy. The S score was also shown to be correlated with immune checkpoints including CD274, LAG3, PDCD1L, SIGLE, and TIFIT. The high S score group has a lower response rate to immunotherapy. We also found that immune dessert cancer subtype has the highest S score. The immune status of patients can predict responses to immunotherapy. The immune-inflamed phenotype was correlated with higher responses to immune check point inhibitors (49). Consistent with these findings, our results also showed that the prognosis of the low–S score group was better than the high–S score group. Moreover, the proportion of patients in progressive disease was higher in the high–S score group compared with that in the low–S score group.

Our study still has some limitations. First, this study is based on the predicted miRNA regulatory networks. Further studies are needed to validate the functions and mechanism of key genes. Second, clinic trail is necessary for the transformation of research into clinical practice. Follow-up and high-throughput data from clinical samples are also needed for further study. Last, the present study focuses on the changes at the transcriptome level. The integration of multi-omics data will provide a comprehensively characterization of the senescence-related mechanism in HCC. We will keep working on these points in the further.

In conclusion, our study comprehensively analyzed the potential regulatory mechanism of senescence in HCC and constructed a ceRNA regulatory network. We also analyzed the correlation between senescence and the alteration of tumor immune microenvironment in HCC. Moreover, on the basis of the network, we constructed a prognostic model to predict patient prognosis, immune characteristics, and immunotherapy response. The constructed prognostic model has great clinical application potential, which will promote the precision medicine for HCC.
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Sarcomas are rare malignant tumors that may arise from anywhere of the body, such as bone, adipose, muscle and vascular. However, the conventional pathogenesis of sarcomas has not been found. Therefore, there is an urgent need to identify novel therapeutic strategies and improve prognosis effects for sarcomas. Methylation of N6 adenosine (m6A) regulation is a novel proposed regulatory pattern that works in post-transcription level, which was also the most widely distributed methylation modification in eukaryotic mRNA. Growing evidences have demonstrated that m6A modification played an indispensable role in tumorigenesis. Here, we integrated multi-omics data including genetic alterations, gene expression and epigenomics regulation to systematically analysis the regulatory atlas of 21 m6A regulators in sarcoma. Firstly, we investigated the genetic alterations of m6A regulators and found that ~44% TCGA sarcoma patients have genetic mutations. We also investigated the basic annotation of 21 regulators, such as expression correlation and PPI interactions. Then we identified the upstream and downstream regulatory networks of between transcription factors (TFs)/non-coding RNAs and m6A regulators in sarcoma based on motif analysis and gene expression. These results implied that m6A regulator mediated regulatory axes could be used as prognostic biomarkers in sarcoma. Knockdown experiment results revealed that m6A regulators, YTHDF2 and HNRNPA2B1 participated in the cancer cell invasion and metastasis. Moreover, we also found that the expression levels of m6A regulators were related to immune cell infiltration of sarcoma patients.
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Introduction

Sarcomas are a large category of cancers that arise from mesenchymal cells, which can origin in almost any tissue, including bone, adipose, or muscle (1). For example, bone sarcomas are the most frequent primary solid malignancy of mesenchymal origin characterized by malignant spindle stromal cells that produce bone-like tissue (2). Sarcomas are morphologically heterogeneous, accurate diagnosis of which require an integrated strategy to consider and assess the clinical, molecular, and histologic characteristics of the malignancy (3). In addition, the malignant degree of sarcomas is high, most patients develop metastasis within one year, and the prognosis is rather poor (4). Understanding the molecular mechanisms of sarcoma development is urgent.

Methylation of N6 adenosine (m6A) is the most abundant internal chemical modification in eukaryotic mRNA (5). m6A modification was firstly discovered in 1970s and the detailed functional studies of m6A modification began 2012. Now, m6A modification becomes the most prevalent study of RNA modification that has received increasing attention. A large number of studies have suggested that aberrant m6A modification is the key to tumorigenesis and progression, such as breast cancer, lung cancer, acute myeloid leukemia and hepatocellular carcinoma (HCC) (6–8). The abundances and effects of m6A modification on RNAs are determined by the complex interactions between different types of regulators, including methyltransferases (‘writers’), RNA binding proteins (‘readers’), and demethylases (‘erasers’). Understanding these different m6A regulators could dramatically increase our knowledge about the role of RNA methylation in the regulation of gene expression and various biological processes (9, 10). Recently, lots of studies have demonstrated that m6A regulators were widely perturbed in various types of cancers (11, 12). For example, a component of the m6A methyltransferase complex, methyltransferase-like 3 (METTL3), was reported to be associated with translation machinery and promote the translation of oncogenes (RGFR and TAZ) in human lung cancer (13). The overexpression of METTL3 was also observed in HCC and was associated with poorer survival (14). The overexpression of METTL14 was shown to increase the abundance of m6A methylation on primary miR-126, which suppresses metastasis in HCC and breast cancer (15). Aberrant expression of FTO (m6A eraser) was suggested to be favorable for the survival of diverse cancer cells. And the overexpression of FTO could contribute to the proliferation and invasiveness of gastric cancer, squamous cell, and breast cancer cell lines (16–18). A family of m6A reader proteins IGF2BP1-3 was reported to have oncogenic potential, which was frequently expressed and amplified in cervical or liver cancers (19). All these findings provide strong evidence that m6A regulators play crucial roles in the development and progression of cancers. However, though recent discoveries of the functions and mechanisms of m6A have clarified a new perspective of gene regulation at the RNA level, we still lack a vast amount of knowledge about the functions of m6A regulators in the development and progression of sarcomas.

Therefore, in this study, we emphatically discussed and analyzed the important roles of m6A regulators in sarcomas from a global perspective based on integrative analyses. Firstly, we integrated multi-omics data to analyze the genetic alterations, gene expression and epi-genomics regulation of the of 21 m6A regulators in sarcoma. Secondly, we illustrated the potentials of m6A regulators in tumor immunology, paving the way for the therapeutic strategies of sarcomas based on RNA methylation. We also investigated the associations between the expression of m6A regulators and sarcoma patient survival and explored the clinical prognostic values of m6A regulators. Importantly, we constructed the regulatory networks for m6A regulators by integrating upstream and downstream regulatory information, including regulatory TFs and non-coding RNAs. And we performed knockdown experiments for YTHDF2 and HNRNPA2B1 to reveal the biological role in the cancer cell invasion and metastasis. Moreover, we also investigated the relationship between m6A regulators and immune cell infiltration in sarcoma patients. Our comprehensive analysis of m6A regulators would provide new insights into their function in the mechanism and development of sarcomas.



Materials and Methods


Gene Expression and Genetic Alterations of Sarcoma

The TCGA sarcoma gene expression data and matched clinical data were downloaded from XENA browser (https://xenabrowser.net/hub/). Based on the data processing pipeline to remove null data, sarcoma-related RNA-seq data containing 265 samples with clinical information were used for further study. TCGA sarcoma genetic alteration data were downloaded from cBioportal for Cancer Genomics. List of m6A regulators were downloaded from the previous study. All m6A regulators related gene expression data, clinical data and genetic alteration data were extracted from above data. The raw clinical data was provided in Supplementary Table S1.



Annotation for m6A Regulators in Sarcoma

In this study, we performed multiple annotation analyses for m6A regulators, such as gene expression comparison, gene correlation and crosstalk network. Gene expression comparison was performed to compare regulator expression in control and tumor groups in TCGA cohorts via gglopt2. Pearson correlation analysis was performed on TCGA expression data via Corrplot. Gene crosstalks were downloaded from String database (https://www.string-db.org/).



Survival Analysis

Hazards Ratio (HR) analysis of m6A regulators in sarcoma was analyzed from GEPIA2 database (http://gepia2.cancer-pku.cn/#survival) based on using Mantel–Cox test. For single gene survival analysis, patients were classified into high-Exp group and low-Exp groups based on mean expression. For multiple gene survival analysis, a risk score model was constructed. The risk score for each patient was computed by linear combination of the gene expression values weighted by the regression coefficient of univariate Cox regression analysis, which was defined as follows:

	

Where, ri is the Cox regression coefficient of gene i in gene set, n is the number of genes in gene set and Exp (i) is the expression value of gene i in corresponding patient. The mean risk score was used to classify patients into high-risk and low-risk groups. Kaplan-Meier survival curve was performed for high-risk and low-risk groups of patients via survival R package. The statistical significance was assessed by log-rank test with a threshold of P < 0.05.



TF-m6A Regulator Regulatory Relationships

To identify upstream TFs of m6A regulators, we collected human enhancers from Fantom database and downloaded gene transcription start site (TSS) from UCSC database. For each regulator, we defined the Fantom enhancers located in 2000 bp~50000 bp far from of the TSS as the enhancers of the regulator. Promoters were defined as +/-2000 bp from regulator TSS. Find Individual Motif Occurrences (FIMO) software was used to scan TF motifs for each regulator’s enhancer and promoter at the threshold of P value <1e–4. If a TF located in the enhancer or promoter of the m6A regulator, we considered that this TF could regulate the m6A regulator, which forms a TF-m6A regulator interaction. All TF-m6A regulator interactions were merged to TF-m6A regulator regulatory network and were showed in Cytoscape 3.6.



m6A Regulator-miRNA Regulatory Relationships

m6A regulators were demonstrated to play important roles in miRNA maturation and miRNA expression. Thus, matched TCGA miRNA expression profile was downloaded from XENA database and Pearson correlation was conducted to investigate the potential regulatory relationships between miRNAs and m6A regulators. m6A regulator-miRNA network was constructed by merging all positive correlated regulator-miRNA pairs with Pearson correlation coefficients (PCC) >0.4. Pathway enrichment was performed by miEAA.



Immune Cell Infiltration of m6A Regulators in Sarcoma Patients

Infiltration estimation for all sarcoma patients were downloaded from TIMER2 database. The potential role of m6A regulators in cell infiltration was estimated by calculating the correlation between m6A regulator expression and infiltration estimation scores.



Cell Culture

Ewing sarcoma cell lines (A673, SKNMC, TC32, TC71,EW8, TCC446 and EWS502) were used in this study and were cultured in 25 cm2 cell culture flask (Corning, NYC, USA) with Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen, Waltham, USA) containing 15% fetal bovine serum (Invitrogen, Waltham, USA) at 37°C, 5% CO2 environment. x-treme GENE siRNA (Invitrogen, Carlsbad, USA) were used for gene knockdown experiments for 24 h. siRNA sequences were provided in Supplementary Table S2.



Quantitative Real-Time RT-PCR

Total RNA was extracted from cell lines using Trizol reagent (Invitrogen, Waltham, USA) according to manufacturer’s protocols. cDNA was synthesized by reverse transcription reagent kit (TAKARA, RR037A, Shiga, JAPAN). Gene expression was quantified by SYBR Green PCR Master Mix, and detected using Roche 480 systems. U6 or GAPDH was served as an internal control for miRNAs and mRNAs, respectively. 2-ΔΔCt relative quantification method was used to show gene expression. Primers are listed in Supplementary Table S3.



Western Blotting

Total protein was extracted from cell lines and lysed via RIPA buffer. Degenerated protein concentration was measured by bichinchoninic acid (BCA) Protein Assay Kit (Beyotime, Shanghai, China). In each experiment, 20 μg protein samples were separated in 10% or 15% SDS-PAGE gel and transferred onto nitrocellulose membrane. After 5% non-fat milk blocking, the blots were incubated with primary antibodies including YTHDF2 (1:1000 dilution, #71283, Cell signaling), HNRNPA2B1 (1:2000 dilution, #9304, Cell signaling), HNRNPC (1:1000 dilution, HPA051075, Sigma) and internal control α-Tubulin (1:2000 dilution, #3873, Cell signaling).



Wound Healing Assay and Colony Formation Assays

For wound healing assay, cells were cultured in 6-well plates, and the cell monolayer was wounded by sterile 100-μL pipette tips when cells reached approximately 90% confluence. Cells were then rinsed three times with D-Hanks to wipe off the detached cells and were incubated in RPMI 1640 containing 5% FBS for 48 h. For colony formation assay, cells were also cultured in 6-well plates for 2–3 weeks. Resulting colonies were calculated following 1% crystal violet staining.




Result


Genetic Alterations Overview of m6A Regulator

Here, we collected and analyzed 21 m6A regulators in this study, including 8 writers, 2 erasers and 11 readers. Firstly, we viewed the incidence of copy number variations and somatic mutations of the 21 regulators. Results showed that ~44% sarcoma patients (117 samples of 265 samples) carried mutations of m6A regulators (Figure 1A, top). Amplification is the most types of alterations, which could lead to the dysfunctional gene overexpression. It was found that ALKBH5 exhibited the highest mutation frequency of 13% and the patients with high amplification alteration also exhibited the high gene expression (Figure 1A, bottom and Figure 1B). ELAVL1 also showed the high mutation frequency of 5%. Alterations of ELAVL1 could also determine the ELAVL1 RNA expression. Some reader genes of LRPPRC, YTHDC1 and HNRNPC exhibited low mutation levels. These results demonstrated that genetic alterations could affect the expression of m6A regulators. Genetic alterations were also considered as the risk factor of multiple cancers, these results also implied that m6A regulators might be the driven factors of cancers.




Figure 1 | Landscape of genetic and expression variation of m6A regulators in TCGA sarcoma. (A) The mutation frequency of 21 m6A regulators in 265 patients with sarcoma in TCGA. Each column represented individual patients. The number on the right indicated the mutation frequency in each regulator. The lower heatmap represents m6A regulators’ expression in sarcoma. Three types of regulators were labeled in different colors. (B) The impacts of different genome alterations on gene expression of ALKBH5 and ELAVL1. P<0.01 represents the expression levels were significantly changed in alteration group vs. diploid group.





Annotations of m6A Regulators in Sarcoma

Then we viewed the RNA expression levels of m6A regulators in normal samples and tumor samples. Results showed that most of the regulators were high expressed in tumor samples, excepting IGF2P1 (Figure 2A). Particularly, m6A writers showed high up-regulated expression in tumor samples, such as METTL3, RBM15, RBM15B and WTAP. To investigate the relationships of m6A regulators, we performed Pearson correlation analysis for m6A regulators based on gene expression, results showed that a high correlation existed among writers, erasers, and readers (Figure 2B). IGF2BP1 showed low correlations to other regulators. The higher crosstalks were KIAA1429- YTHDF3 and METTL14-YTHDN1. These results implied that writers and readers were worked synergistically. Importantly, we also performed survival analysis for the 21 regulators by risk score model. Results revealed that the 21regulators model had strong prognosis effect in sarcoma (Figure 2C). Additionally, these writers, erasers, and readers were interacted with each other and formed a close network in String protein-protein interactions (Figure 2D).




Figure 2 | Expression changes and correlations of m6A regulators in sarcoma. (A) The boxplots of expression changes of m6A regulators between controls and tumors. P<0.01 represents the expression levels were significantly changed in tumor groups vs. control groups. (B) Pearson correlations of m6A regulators in sarcoma. Star-labeled nodes represent the higher crosstalks: KIAA1429- YTHDF3 and METTL14-YTHDN1. (C) A Kaplan-Meier survival curve of m6A regulators (risk score model) in sarcoma (P=0.032). (D) PPI interactions of m6A regulators in String database.



We also performed single gene survival analysis for 21 m6A regulators. We mapped all these regulators into GEPIA2 database and yielded the Hazard ratios (HR) of these regulators via Mantel–Cox test. We found that only 4 regulators with HR >1 (Figure 3A). These results showed that these regulators were high risk factors in sarcoma. Overexpression of the 3 regulators (HNRNPC, HNRNPA2B1 and YTHDF2) could lead to a poor prognosis (Figure 3B). Furthermore, we also have tested the protein expression of the 3 regulators in control osteoblast cell lines and 2 types of osteosarcoma cell lines, results showed that all these regulators were up-regulated in sarcoma model cells (Figure 3C).




Figure 3 | Prognostic effects of individual m6A regulator in sarcoma. (A) The hazard ratios of m6A regulators in sarcoma. Red marked regulators represent statistically significant risk factors (HR>1). (B) The Kaplan-Meier survival curve of the 3 regulators with high hazard ratios. Low_Exp group and High_Exp group were divided by mean expression. (C) Expression of the 3 regulators in control and model osteosarcoma cell lines. α-Tubulin was used as the reference.





Upstream Regulation Analysis of m6A Regulators

Based on the above analysis, we found that the expression levels of m6A regulators were dys-regulated between control and tumors. Thus, here we wanted to investigate the upstream regulators of these m6A regulators. Firstly, we collected all the DNA regulatory elements. Briefly, human enhancers were defined as the DNA regions of 2000bp~50000bp far from of the TSS. Promoters were defined as the regions of +/-2000bp from TSS. According to the results of motif scanning, we found that promoters were occupied more TF binding sites than enhancer (Figures 4A, B). YTHDC1, ELAVL1 and HNRNPA2B1 promoter regions occupied more TF binding sites that other genes. And SP family genes, such as SP1, SP2 and SP4 were the broad TFs for m6A regulators (Figure 4A). In enhancer perspective, results showed that binding affinity matrix was sparse (Figure 4B). Only the regulator of IGF2BP1 enhancer occupied more TFs. However, most of upstream TFs showed a negative correlation trend to IGF2BP1, which might explain that the expression of IGF2BP1 was opposite to other m6A regulators.




Figure 4 | Identification of TF-m6A regulator crosstalks in sarcoma. (A) TF motif searching of promoter regions of m6A regulators. Node color represents the PCCs between TFs and m6A regulators. Node size represents the number of TFs that bind to the promoter regions of m6A regulators. (B) TF motif searching of enhancer regions of m6A regulators. Node color represents the correlation score of PCC. Node size represents the number of TFs that bind to the enhancer regions of m6A regulators. (C) Visualization of a TF-m6A regulator crosstalk network. Blue diamond nodes represent m6A regulators and orange circular nodes represent TFs. Green lines represent TFs binding to the enhancer regions of m6A regulators. Pink lines represent TFs binding to the promoter regions of m6A regulators. (D) Upper is the TF-m6A regulator crosstalks that were both regulated via enhancer and promoter. Lower left is the survival p-values of individual genes and combined signature in sarcoma. Lower right is the Kaplan-Meier survival curves of combined signature.



To further uncover the regulatory mechanism of TFs on m6A regulators, we then merged all the TF-m6A regulator pairs (including promoter perspective and enhancer perspective) into a network (Figure 4C). In this network, we found that IGF2BP1 was the biggest degree node. Some TFs, such as SP1, EGR1 and ZNF263 were the common TFs of multiple m6A regulators. Furthermore, we found that some TF-m6A regulator pairs were both regulated occurred in enhancer and promoter perspective (Figure 4D). The TFs of SP1 and SP4 were all demonstrated to participate in oncogenesis processes. For example, Aydemir et al. found that SP1 suppressed ADAMTS3 transcriptional activity. SP1 increased type II and III collagen expression and decreased type I collagen expression levels in Saos-2 cells. They provided the first findings for the SP1-related transcriptional regulation of ADAMTS3 and collagen genes in osteosarcoma cell lines (20). SP1 was also demonstrated to regulate lncRNA LMCD1-AS1 and lncRNA ILF3-AS1 to facilitate osteosarcoma progression (21, 22). Inhibition of SP family (SP1, SP3 and SP4) could suppress rhabdomyosarcoma cell and tumor growth via non-steroidal anti-inflammatory drug (NSAID) tolfenamic acid (TA) (23). Additionally, we also performed survival analysis for these common pairs. Results showed that all these single genes were not strong prognosis biomarkers (Figure 4D). However, combining all these genes as a single risk factor could be used as prognosis marker, which suggested the TF-m6A regulator crosstalks had the strong clinical prognostic value.



Downstream Regulation Analysis of m6A Regulators

Previous studies found that m6A regulators were the key players in miRNA processing and maturation, such as METTL3 and HNRNPA2B1 (24, 25). Thus, in this study, we investigated the potential regulatory axes between m6A regulators and miRNAs. We calculated all Pearson correlations between miRNAs and m6A regulators (Figure 5A). Results showed that the reader regulators, such as YTHDF2, HNRNPA2B1, YTHDF1, IGF2BP1 and HNRNPC, were high correlated with multiple miRNAs. These results were coincided with the biological function of m6A readers in RNA processing. We extracted the m6A regulator-miRNA pairs by filtering the pairs at PCC >0.4 (Figure 5B). We found that HNRNPA2B1 and YTHDF2 were the high-degree nodes in network. Some known pairs, such as HNRNPA2B1-miR-106b, HNRNPA2B1-miR-17 and HNRNPA2B1-miR-93 were identified from this study in sarcoma (24)[5]. We also performed miRNA function enrichment by miEAA. Results showed that multiple cancer-driven pathways were enriched, such as “Ferroptosis”, “VEGF signaling” and so on (26, 27) (Figure 5C). Survival analysis revealed that single miRNA could not be used as prognostic marker (Figure 5D). However, we then integrated m6A regulator-miRNA pair as risk score models to test the prognosis effects of these pairs, results showed that some m6A regulator-miRNA pairs had strong prognostic effects, such as YTHDF2-miR-106b-5p and YTHDF2-miR-186-5p (Figure 5E).




Figure 5 | Identification of m6A regulator-miRNA pairs in sarcoma. (A) The Pearson correlation heatmap of miRNAs and m6A regulators. (B) High-correlated m6A regulator-miRNA pairs. Green circular nodes represent m6A regulators and pink triangle nodes represent miRNAs. (C) Pathway enrichment analysis of miRNAs in network 5B by miEAA. Pathways were ranked based on –log10 (p-value). (D) Survival p-values of individual genes (including single miRNA and single m6A regulator) and combined signature (risk score model) in sarcoma. (E) The Kaplan-Meier survival curves of strong m6A regulator-miRNA pairs.



Importantly, to validate the biological function of m6A regulators in sarcoma, we performed loss of function experiments for two regulators, YTHDF2 and HNRNPA2B1 in osteosarcoma cell line. Results showed that the two regulators were inhibited by siRNA (Figures 6A, E). Inhibition of m6A regulators can affect the downstream miRNAs expression, such as miR-17 and miR-19 families (Figures 6B, F), which were considered as the core downstream miRNAs in Figure 5B. Furthermore, inhibition of m6A regulators expression can lead the tumor cell invasion and metastasis (Figures 6C, D, G, H).




Figure 6 | Loss of function experiments of m6A regulators in osteosarcoma cells line. (A) Expression of YTHDF2 in knockdown groups via western blot. Here we used three candidate siRNAs to target YTHDF2. (B) Expression of YTHDF2 and target miRNAs in knockdown groups via Real-time PCR. * represents p<0.05 vs. NC group, N=6. (C) Wound healing experiment results of YTHDF2 knockdown. Here we used siRNA#1 and siRNA#3. (D) Transwell and clone formation experiments results of YTHDF2 knockdown. Here we used siRNA#1 and siRNA#3. (E-H) Expression, wound healing, transwell and clone formation experiments of HNRNPA2B1 knockdown.





Immune Cell Infiltration of m6A Regulators in Sarcoma

Previous studies found that immune cell level determined the proliferation of cancer cells. In this study, we also investigated the association between m6A regulators and immune cell levels by calculating PCC from TIMER2 data. Results showed that most of m6A regulators were negatively correlated with immune cells (Figure 7A). Specifically, WTAP exhibited most positive correlation with all immune cells (Figure 7C). RBM15B showed most negative correlation with all immune cells (Figure 7D). Additionally, immune cell levels could have significant impact on clinical survival (Figure 7B). All these results suggested that m6A regulator might regulate cancer progression via controlling immune cell levels in sarcoma patients.




Figure 7 | Immune cell infiltration of m6A regulators in sarcoma patients. (A) The visualization of correlations between m6A regulator expression and TIMER2 immune cell estimation score. (B) The Kaplan-Meier survival curves of between CD4 T cell-enriched patients and other patients. (C) Scatter plots of correlations between m6A regulator expression and TIMER2 immune cell estimation score (positive correlation). (D) Scatter plots of correlations between m6A regulator expression and TIMER2 immune cell estimation score (negative correlation).






Discussion

Sarcomas are rare malignant tumors that may arise from anywhere of the body, such as bone, adipose, muscle and vascular. However, the conventional pathogenesis of sarcomas has not been found. Therefore, there is an urgent need to identify novel therapeutic strategies and improve prognosis effects for sarcomas. m6A regulation is a novel proposed regulatory mechanism, which was also the most widely distributed methylation modification in eukaryotic mRNA. Growing evidence have demonstrated that m6A modification played an indispensable role in tumorigenesis. In the field of sarcoma, Zhou et al. demonstrated that knockdown of METTL3 could inhibit the proliferation and invasion of osteosarcoma by regulating ATAD2 (28). Wang et al. found that m6A played a role in the emergence and maintaining of osteosarcoma stem cells and affect the prognosis (29). Miao et al. demonstrated METTL3 promoted osteosarcoma progression by regulating the m6A level of LEF1 (30). Furthermore, m6A regulators, such as RBM15, METTL14 were also demonstrated to act as prognosis markers in multiple cancers, such as pancreatic cancer and hepatocellular carcinoma.

Here, we integrated multi-omics data including genetic alterations, gene expression and epigenomics regulation to systematically analysis the regulatory atlas of 21 m6A regulators in sarcoma. Firstly, we investigated the genetic alterations of m6A regulators and found that ~44% TCGA sarcoma patients have genetic mutations. We also investigated the basic annotation of 21 regulators, such as expression correlation and PPI interactions. Then we identified the upstream and downstream regulatory axes of m6A regulators in sarcoma based on motif analysis and mRNA-miRNA expression. These results implied that m6A regulator mediated regulatory axes could be used as prognostic biomarkers. Moreover, we also demonstrated that the expression level of m6A regulators were high related to immune cell infiltration of sarcoma patients.

Importantly, we found the expression level of m6A regulators were dys-regulated in sarcoma (Figure 2A). Thus, we wanted to investigate the potential mechanism of m6A regulators. One the one hand, genetic alterations could affect gene expression (Figure 1). On the other hand, epigenetics regulation also determined the gene expression level. We collected the distal enhancer and proximal promoters of all 21 m6A regulators and performed motif scanning to find the TF-m6A regulator crosstalks. As a result, some TFs, such as SP TF families (SP1, SP2 and SP4) were extracted as the key regulators for most of m6A regulators. We also found that promoters occupied more TFs than enhancers and m6A readers were more regulated than others, such as ELAVL1, YTHDC1 and WTAP. Additionally, some TF-m6A regulator crosstalks were both occurred in promoter and enhance perspectives, such as SP1-IGF2BP1 and SP4-ELAVL1, which also exhibited strong prognostic effects than single genes.

Recent studies found that m6A regulators were participated in miRNA maturation and processing (31, 32). In this regulatory relationship, m6A regulators showed a positive correlation with miRNAs. Thus, we calculated the PCC between miRNAs and m6A regulators. Interestingly, some known regulatory relationships were also identified in sarcoma, such as HNRNPA2B1-miR-106b, HNRNPA2B1-miR-17 and HNRNPA2B1-miR-93. m6A readers were found to positively correlate with most of miRNAs, such as HNRNPA2B1, YTHDF2, YTHDF1, IGH2BP1 and HNRNPC. Notably, m6A regulator-miRNA pairs also showed high prognostic effects. In addition, we also investigated the potential role of m6A regulators in cancer immunology. Results showed that m6A regulators might participate in cancer cell survival and cancer progression by regulating immune cell levels in sarcoma.

In summary, we systematically investigated the regulatory roles of m6A regulators in sarcoma in multi-perspectives and found the potential clinical values of m6A regulators. However, our study also exits limitations. Up to now, the massive RNA modification methylome data of sarcoma was absent. We will integrate the methylation, transcription data to analysis in the future. Furthermore, here we only used the enhancer dataset from Fantom5, which was a common enhancer of human. This is also the limitation of our current study. We will collect more enhancer datasets, such as Enhancer Atlas, to validate these results.
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Background

Numerous studies have reported that long non-coding RNAs (lncRNAs) play important roles in immune-related pathways in cancer. However, immune-related lncRNAs and their roles in predicting immunotherapeutic response and prognosis of non-small cell lung cancer (NSCLC) patients treated with immunotherapy remain largely unexplored.



Methods

Transcriptomic data from NSCLC patients were used to identify novel lncRNAs by a custom pipeline. ImmuCellAI was utilized to calculate the infiltration score of immune cells. The marker genes of immunotherapeutic response-related (ITR)-immune cells were used to identify immune-related (IR)-lncRNAs. A co-expression network was constructed to determine their functions. LASSO and multivariate Cox analyses were performed on the training set to construct an immunotherapeutic response and immune-related (ITIR)-lncRNA signature for predicting the immunotherapeutic response and prognosis of NSCLC. Four independent datasets involving NSCLC and melanoma patients were used to validate the ITIR-lncRNA signature.



Results

In total, 7,693 novel lncRNAs were identified for NSCLC. By comparing responders with non-responders, 154 ITR-lncRNAs were identified. Based on the correlation between the marker genes of ITR-immune cells and lncRNAs, 39 ITIR-lncRNAs were identified. A co-expression network was constructed and the potential functions of 38 ITIR-lncRNAs were annotated, most of which were related to immune/inflammatory-related pathways. Single-cell RNA-seq analysis was performed to confirm the functional prediction results of an ITIR-lncRNA, LINC01272. Four-ITIR-lncRNA signature was identified and verified for predicting the immunotherapeutic response and prognosis of NSCLC. Compared with non-responders, responders had a lower risk score in both NSCLC datasets (P<0.05). NSCLC patients in the high-risk group had significantly shorter PFS/OS time than those in the low-risk group in the training and testing sets (P<0.05). The AUC value was 1 of responsiveness in the training set. In melanoma validation datasets, patients in the high-risk group also had significantly shorter OS/PFS time than those in the low-risk group (P<0.05). The ITIR-lncRNA signature was an independent prognostic factor (P<0.001).



Conclusion

Thousands of novel lncRNAs in NSCLC were identified and characterized. In total, 39 ITIR-lncRNAs were identified, 38 of which were functionally annotated. Four ITIR-lncRNAs were identified as a novel ITIR-lncRNA signature for predicting the immunotherapeutic response and prognosis in NSCLC patients treated with immunotherapy.
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Introduction

According to the latest GLOBOCAN 2020 data, lung cancer is the second most commonly diagnosed malignancy with an estimated 2.2 million new cases (11.4%), and is the leading cause of cancer-related death accounting for 1.8 million (18% of the total cancer deaths) worldwide, with its number of new cases just behind female breast cancer (1). Non-small cell lung cancer (NSCLC) is the major histological type, and accounts for approximately 80-85% of all lung cancers (2, 3). While surgery, chemotherapy, radiation therapy, and targeted therapy are commonly used in the clinical treatment for NSCLC patients, there were certain limitations. For instance, patients treated with targeted therapy inevitably develop drug resistance (3–5). Recently, immunotherapy has been widely used to treat patients with NSCLC. Immune checkpoint blockade has dramatically changed the prognosis of NSCLC patients (2, 6), whereas long-lasting benefits are only seen in a subgroup of patients (2, 7). Therefore, research on molecular biomarkers in responders is critical for predicting responsiveness and prognosis.

Most studies on clinical biomarkers have focused on protein-coding genes, while few have focused on long non-coding RNAs (lncRNAs), which are defined as non-coding RNAs longer than 200 nucleotides in length with low or no protein-coding potential. Previous studies have explored the functions of lncRNAs, and found that they participate in many biological processes, such as cell proliferation, apoptosis, immune response, cancer immunity, and immune system (8–14). Immune-related pathways play crucial roles in tumor development and progression. In addition, increasing studies have reported that immune-related lncRNA signature could be used to predict the prognosis of various cancer types, including breast cancer, bladder cancer, NSCLC, renal clear cell cancer, and hepatocellular carcinoma (15–19). However, few studies have focused on pre-immunotherapy transcriptomic profiles to predict the immunotherapeutic response and prognosis of NSCLC patients.

Based on the pre-immunotherapy transcriptomic data of NSCLC, we aimed to systematically identify and characterize novel lncRNAs for NSCLC, assess tumor microenvironments, identify and annotate immune-related lncRNAs, and construct a prognostic signature for predicting the immunotherapeutic response and prognosis of NSCLC patients treated with immunotherapy.



Materials and Methods


Datasets Collection, Reads Mapping, and Transcripts Assembly

In this study, pre-immunotherapy transcriptomic profiles, survival information, and annotation information of cell clusters were downloaded from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) and the European Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena/browser/home), including 2 bulk RNA sequencing (bulk-RNA-seq) datasets and one single-cell RNA sequencing (scRNA-seq) dataset from NSCLC patients, and three bulk-RNA-seq datasets from melanoma patients (20–24). Raw bulk-RNA-seq data from NSCLC patients were used to identify novel lncRNAs, and identify and validate immunotherapeutic-response-immune-related (ITIR)-lncRNAs prognostic signature. ScRNA-seq data from NSCLC was used to validate the potential functions of ITIR-lncRNA. In order to validate the reliability of the risk model in another cancer type, three melanoma datasets were used as independent testing sets, which included patients treated with anti-PD-1 monotherapy or combined with ipilimumab immunotherapy.

Raw bulk-RNA-seq data was analyzed by FastQC v0.11.3 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) for quality statistics summary. Adapters and low-quality sequences were removed by TrimGalore-0.6.0 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with default parameters. Clean reads were aligned to the human reference genome (version hg38/GRCh38) by STAR v.2.7.8a (25, 26) with the twopassMode set as Basic. The bam files of each patient were de novo assembled by StringTie v2.1.6 (27). Assembled transcripts from each patient were merged by the cuffmerge function (Cufflinks v2.2.1) (28). Kallisto v.0.46.2 (29) was used to calculate the reads counts and transcripts per million (TPM) value with default parameters.



Identification of Novel lncRNAs in NSCLC Patients

To identify novel lncRNAs in NSCLC patients, firstly, the cuffcompare function of Cufflinks package (28) was used to compare the difference between primary assembled transcripts with human reference genome from GENCODE v38 (30) and RefLncRNA (31) genes annotation, respectively. According to the “class code” information outputted by the cuffcompare function, the merged assembled transcripts were classified into four categories, including completely matched (=), partially matched (j), contained (c), and not matched. Based on the potential novel lncRNAs catalog derived from NSCLC patients, a custom pipeline (32) was used to identify the reliable novel lncRNAs by the following criteria: a. the class codes are “i, x, u”; b. transcript lengths >= 200 nt and exon numbers >= 2; c. non-coding sequences reported by both CPC2 (Coding Potential Calculator) (33) and CNCI (Coding Noncoding Index) (34); d. recurrence >= 2.



Identification of ITR-lncRNAs and ITR-mRNAs in NSCLC

Not appreciably expressed genes were removed, which were expressed in less than two samples, and the sum of count values<10. The R “DESeq2” package was used to calculate immunotherapeutic response-related (ITR)-lncRNAs and ITR-mRNAs by comparing responders with non-responders in two NSCLC datasets, respectively. P value<0.05 and | log2 fold change (log2FC) | >1 served as the cutoff criteria. The intersection analysis was performed of ITR-lncRNAs and ITR-mRNAs in two NSCLC datasets, respectively.



Identification of IR-lncRNAs and ITIR-lncRNAs in NSCLC

The ESTIMATE algorithm (R “estimate” package) was utilized to calculate the immune score in each patient to assess the overall immune status. Riaz’s algorithm (35) was used to calculate the score of immune-related signatures in each patient. The ImmuCellAI algorithm (36) was performed to calculate the infiltration score of 24 types of tumor-infiltrating immune cells in each patient to investigate the tumor microenvironments. The one-tailed Wilcoxon test was used to compare the difference in immune status, immune-related signature, and tumor microenvironments between responders and non-responders. Based on the specific marker genes of ITR-immune cells, immune-related (IR)-lncRNAs were identified by Pearson correlation analysis (R “psych” package) with the cutoff criteria (P<0.05 and r2>0.7). Through the intersection analysis, ITIR-lncRNAs were identified.



Construction of Co-Expression Network

Pearson correlation analysis (R “psych” package) was used to calculate the correlation between ITIR-lncRNA and mRNA. The lncRNA-mRNA pairs were selected with the cutoff criteria (adjust P value<0.05, r2>0.55 and ranked in the top 100). mRNA-mRNA pairs were selected with the cutoff criteria (adjust P value<0.05 and r2>0.8). Based on the lncRNA-mRNA pairs and mRNA-mRNA pairs, a co-expression network was constructed. The co-expression network was produced by Cytoscape 3.8.2 (37).



scRNA-Seq Data Processing

Based on scRNA-seq data, we profiled the transcriptomes of ~45000 cells from 11 early-stage NSCLC samples. Cells and genes filtering were performed as follows: cells without annotation information were removed. Genes with low expression levels (nfeature<200) and expressed in less than three cells were removed. The R “Seurat” package was used to normalize and hierarchical clustering the cells by the standard procedures in each patient, respectively. The “TSNEPlot” and “Vlnplot” method was used to visualize the cell clustering and/or expression levels of CD68, CD163, and LINC01272 in all cell clusters in each NSCLC patient.



Construction and Validation of ITIR-lncRNAs Prognostic Signature

In the training set, LASSO regression analysis (R “glmnet” package) and multivariate Cox regression analysis (R “survival” and “survminer” packages) were used to screen prognosis-related ITIR-lncRNAs and construct the risk model. The risk score for each patient was calculated based on the expression levels (log2-transformed TPM value) of ITIR-lncRNAs, and was calculated by the following formula:

	

According to the third quantile value of risk score, NSCLC patients were divided into the high-risk and low-risk groups. Kaplan-Meier (K-M) curves analysis (R “survival” and “survminer” packages) and receiver-operating characteristic (ROC) (R “pROC” package) were used to evaluate the clinical prognostic capacity of the risk score.

Four independent datasets, including one NSCLC dataset and three melanoma datasets, were used to validate the ITIR-lncRNA signature. The risk score formula was performed to calculate the risk score of each patient. In each testing set, patients were divided into high-risk and low-risk groups according to the same cutoff as the training set. The survival analysis and ROC analysis were performed as well.

Moreover, univariate and multivariate Cox regression analyses were used to evaluate whether ITIR-lncRNA signature can be regarded as an independent predictor of prognosis of NSCLC patients among other clinical information, including age and gender.



Gene Functional Enrichment Analysis

Functional and pathway enrichment analyses were performed using the online database “Metascape” (38) website (http://metascape.org).



Statistical Analysis

All statistical analyses were conducted using the R software version 4.1.1 (https://www.r-project.org/). Forest plots were plotted using the R “forestplot” package. Other packages in R were used in the study including “ggplot2”, “ggpubr” and “pheatmap”. The significance level was set at 0.05 (P<= 0.05).




Results


Construction of Novel lncRNA Catalog for NSCLC Patients Under Immunotherapy

To explore immune-related lncRNAs and their potential roles in NSCLC patients under immunotherapy, raw bulk-RNA-seq data from NSCLC were used to identify novel lncRNAs (study design shown in Figure 1). Through de novo assembly and transcripts merging, a total of 46,633 primary genes were identified (Figure 2A and Supplementary Figures 1A–D). By comparing with the reference genes annotation, we found that 90.74% (18,118/19,966) of protein-coding genes could be verified, and 68.48% (13,672/19,966) were completely matched (Figure 2B). In contrast, 16.36% (9,735/59,489) of known lncRNAs could be verified, and 5.99% (3,566/59,489) were completely matched (Figure 2B). Subsequently, the primary constructed transcripts that did not match with the reference genes annotation were used for the following analyses. In total, 7,693 novel lncRNAs were identified (32). Furthermore, we analyzed the transcript lengths and exon numbers of novel lncRNAs. The results showed that the distribution of transcript lengths (mean=1.2k nt) and exon numbers (93% were ranged from 2 to 4) of novel lncRNAs were close to ReflncRNAs (Figures 2C, D).




Figure 1 | The study design and overall workflow. NSCLC, non-small cell lung cancer; ROC, receiver-operating characteristic; lncRNAs, long non-coding RNAs; ITR, immunotherapeutic response-related; IR, immune-related; ITIR, immunotherapeutic-response-immune-related.






Figure 2 | The identification process of novel lncRNAs and analysis in their characters. (A) The scheme of pipelines was used to identify novel lncRNAs. (B) The statistics of assembled transcripts matched to protein-coding genes (top) and reference lncRNA genes (bottom). (C) Density diagrams showed the transcript lengths in protein-coding genes, Ref lncRNAs, and novel lncRNAs. (D) Bar plot showed exon numbers in protein-coding genes, Ref lncRNAs, and novel lncRNAs.





Identification of ITR-lncRNAs

Based on the lncRNA profile, we systematically analyzed ITR-lncRNAs in NSCLC patients treated with immunotherapy. By comparing responders with non-responders, 154 ITR-lncRNAs (including 44 novel lncRNAs, Supplementary Figures 2A–C and Supplementary Table 1) and 251 ITR-mRNAs (Supplementary Figures 3A–D and Supplementary Table 2) were identified. To further explore the functions of these genes, GO enrichment analysis was performed and found that up-regulated genes were enriched in immune-related pathways, including T cell activation, myeloid leukocyte activation, and positive regulation of immune response, which were consistent with the previous study (35)(Supplementary Figure 3E and Supplementary Table 3). Notably, these pathways are frequently involved in the modulation of the immune environment (39). These findings suggested that ITR-lncRNAs may affect the efficacy of immunotherapy by influencing immune response-associated pathways.



Tumor Microenvironment Analysis and Identification of ITIR-lncRNAs

To further investigate immune regulation-related (IR)-lncRNAs in NSCLC, we compared the immune status, immune-related signature, and immune cells infiltration scores between responders and non-responders. Compared with non-responders, responders had a significantly higher immune score in both NSCLC datasets (P<0.05, Supplementary Figure 4). Responders had significantly higher scores of cytolytic, HLA-I, HLA-II, T-cell naïve, T-cell exhaustion, and CD8+ effector T cell signature than non-responders (P<0.05, Figures 3A, B). In addition, responders had significantly higher immune cells infiltration scores, including cytotoxic T cells, Tfh cells, γδ T cells, NK cells, Tr1 cells, nTreg cells, CD8 T cells, exhausted T cells, CD4 T cells, and macrophages than non-responders (P<=0.05, Figures 3C, D). Based on the specific marker genes of ITR-immune cells (Table 1), 752 IR-lncRNAs were identified by the correlation analysis (Figures 3E, F). Through the intersection analysis of the ITR-lncRNAs and IR-lncRNAs, 39 ITIR-lncRNAs were obtained (Figure 3G).




Figure 3 | Immune infiltration analysis and identification of ITIR-lncRNAs. (A) Boxplot showed the score of immune-related signatures in responders and non-responders in the GSE135222 dataset. (B) Boxplot showed the score of immune-related signatures in responders and non-responders in the GSE126044 dataset. (C) Boxplot showed the infiltration score of 24 types of immune cells in responders and non-responders in the GSE135222 dataset. (D) Boxplot showed the infiltration score of 24 types of immune cells in responders and non-responders in the GSE126044 dataset. (E) Heatmap showed the correlation between marker genes of ITR-immune cells and IR-lncRNAs in the GSE135222 dataset. (F) Heatmap showed the correlation between marker genes of ITR-immune cells and IR-lncRNAs in the GSE126044 dataset. (G) Venn diagram showed the overlapped lncRNAs between ITR-lncRNAs and IR-lncRNAs.




Table 1 | Specific marker genes of ITR-immune cells.





Investigation of the Functions of ITIR-lncRNAs by Co-Expression Network Analysis

To further explore the functions of the 39 ITIR-lncRNAs, a co-expression network was constructed. Based on the correlation between 39 ITIR-lncRNAs and mRNAs, 3,503 lncRNA-mRNA pairs were identified, including 39 ITIR-lncRNAs and 1,299 mRNAs (Figures 4A, B and Supplementary Table 4). GO enrichment analysis revealed that the protein-coding genes in the co-expression network were mainly enriched in immune-related pathways, including leukocyte activation, regulation of cell activation, positive regulation of cytokine production, inflammatory response, innate immune response, and so on (Supplementary Figure 5 and Supplementary Table 5). Accordingly, the 39 ITIR-lncRNAs involved in the co-expression network may play similar roles with their co-expressed coding genes.




Figure 4 | Co-expression network and functional annotation of ITIR-lncRNAs. (A) Heatmap showed the correlation between 39 ITIR-lncRNAs and their top100 highly co-expressed mRNAs in NSCLC. (B) The co-expression network showed the relationship between 39 ITIR-lncRNAs and their top5 highly co-expressed mRNAs in NSCLC. Colored by different types of RNAs. (C) The co-expression network showed the relationship between LINC01272 and its top100 highly co-expressed mRNAs in NSCLC. Colored by different types of RNAs. (D) Barplots showed the top 20 GO enrichment pathways of the LINC01272 (P < 0.05).



Furthermore, we performed GO enrichment analysis for each ITIR-lncRNA. The functions of the 38 ITIR-lncRNAs were successfully annotated (Supplementary Table 6). The annotation results showed that 33 ITIR-lncRNAs were related to immune regulation and immune response, and the other ITIR-lncRNAs were related to Wnt signaling or cell cycle-related pathways. Notably, an ITIR-lncRNA named LINC01272, which was mainly involved in “inflammatory response”, “immune response”, and “regulation of phagocytosis” (Figures 4C, D), was positively correlated with CD68 and CD163 (Figures 5A, B), which act as the specific markers of macrophages. This result was validated using a larger dataset in the GEPIA database (Figures 5C, D). To further validate the potential functions of LINC01272 in macrophages, we performed deep analyses using scRNA-seq data involving 44,900 cells from NSCLC. As shown in Figure 5E, cells in each patient were classified into ten clusters, including macrophages, monocytes, DCs, T lymphocytes, NK cells, MAST cells, fibroblasts, epithelial cells, endothelial cells, and B lymphocytes. Macrophages, monocytes, and DCs were characterized by high expression of CD68, and were further distinguished by the specific expression of CD163 (Figure 5F and Supplementary Figure 6). LINC01272 was also specifically expressed in macrophages and monocytes, especially macrophage clusters (Figure 5F and Supplementary Figure 6), implying that it plays an important role in macrophages. The above findings suggested that ITIR-lncRNAs with immune regulation functions have great potential applications in immunotherapy prognosis and immune response-related markers.




Figure 5 | Validation of the functions of LINC01272 using scRNA-seq data in NSCLC. (A) The scatter plot showed the correlation between LINC01272 and CD68 in NSCLC dataset from the GEO database. (B) The scatter plot showed the correlation between LINC01272 and CD163 in NSCLC dataset from the GEO database. (C) The scatter plot showed the correlation between LINC01272 and CD68 in NSCLC dataset from the GEPIA database. (D) The scatter plot showed the correlation between LINC01272 and CD163 in NSCLC dataset from the GEPIA database. (E) The tSNE projection within each patient was colored by ten cell types, including macrophages, monocytes, DCs, T lymphocytes, NK cells, MAST cells, fibroblasts, epithelial cells, endothelial cells, and B lymphocytes. (F) The tSNE plot showed expression levels of CD68 (top), CD163 (middle), and LINC01272 (bottom) in each NSCLC patient.





Construction and Evaluation of the ITIR-lncRNA Prognostic Signature

Based on 39 ITIR-lncRNAs, we constructed a risk model for predicting the immunotherapeutic responses and prognosis of NSCLC patients treated with immunotherapy. LASSO regression analysis was used, and nine ITIR-lncRNAs were retained when log lambda was equal to –4.73 and the partial likelihood deviation reached the minimum (Figures 6A, B). Subsequently, multivariate Cox regression was used to screen for prognosis-related ITIR-lncRNAs, and four ITIR-lncRNAs were identified for modeling, including AE000661.37, XLOC_020141, XLOC_033882, and LOC105369334. (P<0.05, Figure 6C). The risk score was calculated for each patient.




Figure 6 | Construction of the ITIR-lncRNA signature. (A) The distribution plot of the LASSO coefficient. Nine variables were retained when Log Lambda was equal to –4.73. (B) Nine variables were retained when the partial likelihood deviation reached the minimum (Log Lambda = –4.73). (C) The Forest plot showed the coefficient, p-value, and hazard ratio (HR) of four ITIR-lncRNAs by using the multivariate Cox regression analysis.



According to the third quantile value of the risk score in the training set, NSCLC patients were classified into the high-risk and low-risk groups. Patients in the high-risk group had significantly shorter progression-free survival (PFS) time than those in the low-risk group (P=0.021, Figure 7A). The area under the curve (AUC) of the ITIR-lncRNA signature was 1 of responsiveness and 0.976 of PFS (Figures 7B, C). Compared with non-responders, responders had a significantly lower risk score (P<0.001, Figure 7D).




Figure 7 | Evaluation and validation of the ITIR-lncRNA signature in NSCLC and melanoma datasets. (A) Kaplan-Meier analysis of PFS comparing the high-risk (red) group with the low-risk group (blue) in the training set. (B) ROC curves for responsiveness in the training set. (C) ROC curves for PFS in the training set. (D) Boxplot of risk score comparing responders with non-responders in the training set. (E, F) Kaplan-Meier analysis of PFS and OS comparing the high-risk (red) group with the low-risk group (blue) in the NSCLC testing set. (G) ROC curves for responsiveness in the NSCLC testing set. (H) Boxplot of risk score comparing responders with non-responders in the testing NSCLC dataset. (I) Kaplan-Meier analysis of OS comparing the high-risk (red) group with the low-risk group (blue) in the melanoma dataset. (J) ROC curves for OS in the melanoma dataset. (K) Boxplot of risk score comparing responders with non-responders in the melanoma dataset.





Validation of the ITIR-lncRNA Prognostic Signature

To validate the reliability of the ITIR-lncRNA prognostic signature, four independent datasets were used, including one NSCLC dataset and three melanoma datasets. In the NSCLC dataset, patients were classified into the high-risk and low-risk groups according to the same cutoff of the risk score as the training set. Patients in the high-risk group had shorter PFS (P=0.038) and overall survival (OS, P=0.035, Figures 7E, F) than those in the low-risk group. The AUC was 0.873 of responsiveness (Figure 7G). Compared to non-responders, responders had a significantly lower risk score (P<0.001, Figure 7H).

In three melanoma datasets, the same methods were used. Patients treated with the anti-PD-1 monotherapy or combined with ipilimumab immunotherapy in the high-risk group had shorter survival period than those in the low-risk group (P<0.05, Figure 7I and Supplementary Figures 7A, B). The AUC values were 0.727, 0.662, and 0.648 of survival period in three melanoma dataset, respectively (Figure 7J and Supplementary Figures 7C, D). Additionally, we observed that responders had significantly lower risk scores than non-responders in two of three melanoma datasets (Figure 7K and Supplementary Figures 7E, F). The AUC values were 0.687 and 0.684 of responsiveness in two of three melanoma datasets, respectively (P<0.05, Supplementary Figures 7G, H).



ITIR-lncRNA Signature Was an Independent Prognostic Factor

In addition, we assessed whether the ITIR-lncRNA signature was an independent prognostic factor for NSCLC among other clinical information, including age and gender. Univariate and multivariate Cox regression analyses revealed that the ITIR-lncRNA signature was an independent prognostic factor for NSCLC patients in the training set (P<0.001, Figures 8A, B).




Figure 8 | TIR-lncRNA signature was an independent prognostic factor for NSCLC patients. (A) The forest plot showed the results of univariate Cox regression analysis in the training set. (B) The forest plot showed the results of multivariate Cox regression analysis in the training set.






Discussion

In this study, based on transcriptome data from NSCLC patients treated with immunotherapy, we utilized systematic methods to identify novel lncRNAs and ITIR-lncRNAs for NSCLC, and constructed a prognostic signature for predicting the immunotherapeutic response and prognosis of NSCLC patients treated with immunotherapy. A total of 7,693 novel lncRNAs were identified and characterized in NSCLC based on raw transcriptomics data. By comparing responders with non-responders, ITR-lncRNAs and ITR-mRNAs were obtained. Next, we systematically investigated the differences in immune status, immune-related signatures, and tumor microenvironments between responders and non-responders. Based on the specific marker genes of ITR-immune cells, IR-lncRNAs were obtained by the Pearson correlation analysis. Furthermore, 39 ITIR-lncRNAs were identified through the intersection analysis, and functionally characterized by the co-expression network and GO enrichment analysis. In total, 38 ITIR-lncRNAs were annotated successfully. ScRNA-seq analysis revealed that LINC01272 might play an important role in macrophages in NSCLC. Four prognosis-related ITIR-lncRNAs were screened by LASSO and multivariate Cox regression analyses. In the training set, NSCLC patients were classified into high-risk and low-risk groups based on the third quantile value of risk scores and K-M curves showed that patients in the high-risk group had a shorter PFS than those in the low-risk group. The AUC values were 1 of responsiveness and 0.976 of PFS. Four independent datasets were used to validate the prognostic model, including NSCLC patients and melanoma patients. Patients were classified into the high-risk and low-risk groups according to the same cutoff as the training set, and observed that patients in the high-risk group had shorter survival period than those in the low-risk group in testing sets. Taken together, we identified and validated a four-ITIR-lncRNA signature for predicting the immunotherapeutic response and prognosis of NSCLC patients treated with immunotherapy. Nevertheless, experimental validation of ITIR-lncRNA signature is lacking, which needs to be further explored.

There were four ITIR-lncRNAs in the risk model, including AE000661.37, XLOC_020141, XLOC_033882, and LOC105369334. AE000661.37 and LOC105369334 are known lncRNAs, while the other two lncRNAs are novel. Except for the two novel lncRNAs, very little is known about the role of these two known lncRNAs in cancer and cancer immunity. To further investigate the functions of ITIR-lncRNAs, functional enrichment analyses were performed. AE000661.37 was mainly involved in “leukocyte activation”, “Natural killer cell mediated cytotoxicity”, “innate immune response”, and so on (Supplementary Table 6). The top5 co-expressed coding genes with AE000661.37 were FGL2, KLRD1, CALHM6, FASLG, and CST7. FGL2 is a member of the fibrinogen superfamily, which plays an immunosuppressive factor in the tumor microenvironment. Overexpression of FGL2 can predict worse survival in esophageal carcinoma (40). However, another study found that the expression level of FGL2 correlated with better prognostic outcomes of lung adenocarcinoma (41). LOC105369334 was mainly involved in “G beat gamma signaling through PI3Kgamma”, “Cell migration and invasion through p75NTR”, “Wnt signaling pathway”, and so on (Supplementary Table 6). The top5 co-expressed coding genes with LOC105369334 were MEOX1, GIMAP1, PECAM1, KIF26A, and OAF. Recent studies have reported that MEOX1 plays an important role in breast cancer, ovarian cancer, and lung cancer (42–45). Meanwhile, GIMAP1, as a member of some novel gene signatures, can predict prognosis in pancreatic cancer (46), endometrial cancer (47), and breast cancer (48). XLOC_020141 was mainly involved in “leukocyte activation”, “macrophage activation”, “positive regulation of interleukin-1 beta production”, and so on (Supplementary Table 6). The top5 co-expressed coding genes with XLOC_020141 were TLR6, GALC, FCGR2C, TMEM26, and ARRDC5. TLR6 (transmembrane protein) is a member of the Toll-like receptor (TLR) family which plays an important role in the adaptive immune response. A recent study reported that TLR6, as a member of a novel gene signature, can predicts the prognosis of lung adenocarcinoma (49). TMEM26 is also a transmembrane protein that may act as a tumor suppressor by impeding the acquisition of endocrine resistance in breast cancer (50). XLOC_033882 was mainly involved in “Regulation of RUNX1 Expression and Activity”, “hemopoiesis”, “Endocytosis”, and so on (Supplementary Table 6). The top5 co-expressed coding genes with XLOC_033882 were SPDYE1, KCNJ13, TBC1D3B, ZNF460, and TAOK1. ZNF460 is a member of the ZNFs family, and overexpression of ZNF460 can predict worse survival in colon cancer (51). The mechanism of the functions of these four ITIR-lncRNAs needs to be further explored.
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Cell migration inducing protein (CEMIP) has been linked to carcinogenesis in several types of cancers. However, the role and mechanism of CEMIP in osteosarcoma remain unclear. This study investigated the role of CEMIP in the progression and metastasis of osteosarcoma, CEMIP was found to be overexpressed in osteosarcoma tissues when compared to adjacent non-tumor tissues, and its expression was positively associated with a poor prognosis in osteosarcoma patients. Silencing CEMIP decreased osteosarcoma cells proliferation, migration, and invasion, but enhanced apoptosis in vitro, and suppressed tumor growth and metastasis in vivo. Mechanistically, CEMIP promoted osteosarcoma cells growth and metastasis through activating Notch signaling pathway, silencing CEMIP would reduce the protein expression and activation of Notch/Jagged1/Hes1 signaling pathway in vitro and in vivo, activation of Notch signaling pathway could partially reversed cell proliferation and migration in shCEMIP osteosarcoma cells. In conclusion, our study demonstrated that CEMIP plays a substantial role in the progression of osteosarcoma via Notch signaling pathway, providing a promising therapeutic target in osteosarcoma.
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Introduction

Osteosarcoma is the most frequent primary malignant bone tumor occurs between the ages of 10 and 30, and peaking during the adolescent growth spurt (1, 2). The 5-year overall survival rate for osteosarcoma patients with non-metastasis is 60% to 70% (3), but sharply drops to 20% in patients with lung metastasis (4). Despite recent advances in the diagnosis and systemic chemotherapy of osteosarcoma, the prognosis for many patients remains unsatisfied due to the disease’s proclivity for recurrence and metastasis (5, 6). Numerous studies have been devoted to identifying novel targets and signaling pathways associated with osteosarcoma in order to improve the effectiveness of osteosarcoma treatment, nonetheless, the causes and molecular mechanisms underlying osteosarcoma recurrence and metastasis remain unknown (7). Thus, identifying new targets and elucidating their role and mechanisms in osteosarcoma pathogenesis are critical for the development of novel osteosarcoma therapeutic strategies.

CEMIP, alternatively referred to KIAA1199 and hyaluronan binding protein (HYBID), is a perinuclear space and cell membrane protein that is encoded by a gene on chromosome 15q25.1 (8). CEMIP has been linked to tumor progression and metastasis in different kinds of human cancers, including prostate carcinoma (9), colorectal tumors (10), hepatocellular carcinoma (11), breast carcinoma (12), gastric carcinoma (13) and oral squamous cell carcinoma (14), it acts as an oncogene, playing a vital role in the proliferation, migration and apoptosis in a variety of malignancies (15). Additionally, CEMIP is involved in the regulation of multiple signal pathways, including EMT (16), MEK/ERK (17), AMPK (18), Wnt/β-catenin (8), Ras/Raf/Erk (19) and PI3K/AKT (20), all of which are linked to the development of malignant tumors. However, the significant of CEMIP and its possible mechanism in osteosarcoma remain unknown.

Notch signaling pathway plays an important role in regulating cell proliferation, survival, apoptosis and differentiation (21), dysfunction of Notch signaling pathway impedes normal cell differentiation and causes them to transform into cancer cells, thus it has been implicated in the pathogenesis of a variety of cancers including osteosarcoma (22). CEMIP acts as an oncogene, regulating multiple signal pathways in a variety of malignant tumors, however, it remains unknown whether Notch signaling pathway has been involved in CEMIP-regulated carcinogenesis of tumors.

In this study, we found that CEMIP expression was up-regulated in tumor samples obtained from osteosarcoma patients, and its expression was associated with a poor prognosis in these individuals. Following that, the effect of CEMIP on osteosarcoma was investigated, and it was discovered that suppressing CEMIP could inhibit osteosarcoma growth and metastasis in vitro and in vivo. Finally, the possible mechanism of CEMIP promoting the osteosarcoma pathogenesis was explored, and it was demonstrated that silencing CEMIP may inhibit the carcinogenesis of osteosarcoma via attenuating Notch signaling pathway. Our study provides a potential target for novel osteosarcoma therapeutic strategies.



Materials and Methods


Tissue Samples and Cell Lines

This study was approved by the ethics committee of the Third Xiangya Hospital, Central South University (Approval No.202023), and informed consent was acquired from all patients. Six pairs of osteosarcoma tissues and adjacent non-tumor tissues were obtained from patients who underwent surgery at the Third Xiangya Hospital between October 2019 and December 2020. Additionally, paraffin-embedded tissues of osteosarcoma from 80 individuals recruited between January 2012 to December 2018 were analyzed in conjunction with their clinical characteristics including age, sex, disease stage and prognosis. Cell lines including hFOB, MG63, 143B, Saos-2, U2OS and HOS were purchased from the Chinese Academy of Science Cell Bank (Shanghai, China), and cultured in DMEM (Gibco, USA) except for Saos-2 in McCoys’5A (Gibco, USA) containing 1% penicillin/streptomycin and 10% FBS (Gibco, USA).



shRNA Construction and Transfection

All of the shRNA were purchased from Genechem (Shanghai, China), HOS and U2OS cells were transfected according to the standard protocol, respectively. Puromycin (Beyotime, China) was used to screen the transfected cell. The shRNA sequences of CEMIP were listed in Table 1.


Table 1 | The Sequences of shRNA.





CCK-8 Assay

5000 cells were planted per well in a 96-well plate, then grown for the proper time (12, 24, 36, 48,60 and 72 hours). The cells were cultured for an additional 2 hours before the absorbance value at 460 nm was measured using CCK-8 reagent (Beyotime, China).



EdU Assay

Cells were treated with EdU reagent (Abcam, UK) for 2 hours, then fixed in methanol and stained cell nuclei with hoechst (Abcam, UK). The EdU-positive cells were captured using fluorescence microscopy, then quantified with Image J software (NIH, USA).



Wound Healing Assay

Cells were seeded in 6-well plates, wounded with a 200ul tip when they reached 90% saturation, and photographed at 0 and 48 hours.



Transwell Assay

4× 104 cells were seeded in the upper chambers for migration assay, and 8× 104 cells were seeded in the upper chambers blocked with matrigel (BioCoat USA) for invasion assay. The top chambers were supplemented with 200μl medium containing 5% FBS (Gibco, USA), whereas the lower chambers were supplemented with 600μl medium containing 15% FBS. Cells were fixed and stained after a 24-hour incubation period, and photographed using a microscope.



Western Blot Analysis

RIPA (NCM Biotech, China) and PMSF (NCM Biotech, China) were employed to lyse osteosarcoma cells and tissues, and BCA test were utilized to determine the concentration of protein lysates. SDS-PAGE was used to isolate proteins of various molecular masses, which were then transferred to PVDF membranes and treated with primary antibodies overnight at 4°C after 1 hour of blocking. The following day, the membrane was incubated with the appropriate secondary antibodies for 1 hour, the bands were visualized using an ECL system, and quantitated using Image J software. The antibodies used were as follows: CEMIP (1:1000, Proteintech), Bcl-2 (1:1000, Abcam), Bax (1:1000, Proteintech), MMP2 (1:1000, Proteintech), MMP9 (1:1000, Proteintech), Notch (1:1000, CST), Jagged1(1:1000, CST), Hes1(1:1000, CST), GAPDH (1:1000, CST), goat anti-mouse IgG (1:3000, CST), goat anti-rabbit IgG (1:3000, CST).



Real-Time PCR

The PrimeScript RT reagent kit (TaKaRa, Japan) was used to reverse transcribe the RNA extracted with TRIzol (Invitrogen, USA). On an Applied Biosystems 7300 System, qPCR was done using SYBR Premix ExTaq (TaKaRa, Japan). The sequences of the mRNA primers were listed in Table 2.


Table 2 | The Sequences of the mRNA Primers.





Annexin FITC/PI Double Staining

Cells were collected and rinsed in cold PBS before being incubated with 5 μl Annexin V-FITC and 5 μl PI (Vazyme, China) at 4°C for 10 mins without light. The percentage of apoptosis cells was assessed using a BD FACS III flow cytometer (BD, USA).



Immunohistochemistry

Each slide was deparaffinized and dehydrated prior to incubation in sodium citrate buffer, then in PBS containing 3% H2O2. It was then hatched with primary antibodies and the appropriate secondary antibodies before being incubated with the ABC solution, followed by 3,3’-diaminobenzidine (DAB) staining. Finally, the slides were xylene dehydrated and mounted with neutral glue. Photographs were taken in a light microscope. The antibodies used were as follows: CEMIP (1:100, Proteintech), Notch1 (1:100, CST), Jagged1 (1:100, CST), Hes1 (1:100, CST), goat anti-mouse IgG-FITC (1:100, CST), goat anti-rabbit IgG H&L (1:100, CST).



H&E Staining

Each slide was deparaffinized and washed with ethanolic hydrochloric acid and ammonium hydroxide, followed by staining with eosin and dehydrating with increasing concentrations of alcohol; finally the slides were dehydrated with xylene and sealed with neutral gum.



Animal Experiments

All animal experiments were carried out in compliance with the Experimental Animal Ethics Committee’s guidelines and were approved by the Animal Experimental Committee of the Third Xiangya hospital (Grant number: 2021sydw0221). For subcutaneous xenograft models, 1×106 shCEMIP and shNC HOS cells in 200μl PBS were injected subcutaneously into BALB/c-nude mice separately. The tumor volumes were measured and calculated as previous described (23), and the mice were sacrificed after 30 days. For the metastasis model, 1×106 shCEMIP and shNC HOS cells in 100μl PBS were injected into nude male mice through the tail vein. After 30 days the mice were sacrificed and the liver and lung were stained with H&E.



Statistics Analyses

All data was described as the mean ± SD. Kaplan–Meier curves was utilized for the survival analysis. χ2 test was used for analyzing demographic and biological parameters. The t test was performed to evaluate the significance of a difference between different groups. The SPSS 26.0 was used for the statistical analyses, and p < 0.05 was considered as statistically significant.




[Results]


CEMIP Is Increased Expressed and Positively Associated With a Poor Prognosis in Osteosarcoma Patients

CEMIP has been linked to the pathogenesis of a variety of malignancies in previous studies (9–14); however, its role and mechanism in osteosarcoma remain unknown. To explore the effect of CEMIP on osteosarcoma, we detected the CEMIP expression in six pairs of osteosarcoma tissues and adjacent non-tumor tissues using qPCR and western blot, and found the CEMIP expression was significantly higher in the osteosarcoma tissues compared to the adjacent non-tumor tissues (Figures 1A–C). In addition, clinical data and pathology sections from eighty osteosarcoma patients were collected for IHC measurements of CEMIP expression, the results showed that increased CEMIP expression was associated with advanced osteosarcoma stage (Figure 1D). According to the quantity of CEMIP-positive cells, we divided these individuals into high expression group (n=40) and low expression group (n=40) averagely, the clinical characteristic of the patients were summarized and presented in Table 3, the data indicated that increased CEMIP expression was associated with advanced osteosarcoma stage and poorer prognosis in osteosarcoma patients (Figure 1E). To further confirm the role of CEMIP in osteosarcoma, the expression of CEMIP was evaluated from TARGET datasets. The result showed that the expression of CEMIP in osteosarcoma tissues was significantly higher than that in normal tissues (Figure 1F), and the prognosis of patients with high CEMIP expression was worse than that of patients with low CEMIP expression (Figure 1G), which were consistent with our findings. As a result of these data, it suggests that CEMIP expression is increased and associated with the prognosis in osteosarcoma patients.




Figure 1 | CEMIP is overexpressed in osteosarcoma tissues and related to poor prognosis. (A) qRT-PCR analysis of CEMIP expression in six pairs of osteosarcoma tissues. (B, C) Western blot and its quantitative analysis showed CEMIP was overexpressed in six paired of osteosarcoma tissues and their normal adjacent tissues. (D) Immunohistochemical analysis of CEMIP expression in osteosarcoma tissues at different Enneking stages. (E) Survival analysis of CEMIP expression in osteosarcoma patients from in-house patients. (F) mRNA expression of CEMIP in osteosarcoma patients from the TARGET datasets. (G) Survival analysis of CEMIP expression in osteosarcoma patients from the TARGET datasets. *P < 0.05, **P < 0.01, ***P < 0.001.




Table 3 | The correlation between CEMIP expression and clinical pathology parameters in OS.





CEMIP Promotes the Proliferation of Osteosarcoma Cells

To further investigate the role of CEMIP in pathogenesis of osteosarcoma in vitro, CEMIP expression was determined using qPCR and western blot in a panel of osteosarcoma, and the results indicated that it was most abundantly expressed in HOS and U2OS (Figures 2A–C), which were used in the subsequent assays. Given high expression of CEMIP in HOS and U2OS, we established CEMIP silencing osteosarcoma cells (shCEMIP group) using three kinds of shRNA and its negative control cells (Control group), and the mock group is parental osteosarcoma cells without lentivirus (Mock group). Among all three shCEMIP shRNA, shRNA-1 had the greatest silencing effect in both HOS and U2OS when the CEMIP expression was detected using western blot (Figures 2D–E, G–H), thus cells transfected with shRNA-1 were selected as the shCEMIP group for further studies. Following that, the ability of osteosarcoma cells to proliferate was determined using CCK-8, and the result showed cell proliferation was approximately same in the mock group and control group, but considerably slower in the shCEMIP group (Figures 2F, I). Meanwhile, the EdU assay was used to examine the cell proliferation, and it yielded comparable results as well (Figures 2J, K). These findings indicated that CEMIP could promote osteosarcoma cells proliferation in vitro.




Figure 2 | CEMIP promotes the proliferation of osteosarcoma cells. (A) qRT-PCR analysis of CEMIP expression in hFOB and different osteosarcoma cell lines. (B, C) Western blot and its quantitative expression of CEMIP in hFOB and different osteosarcoma cell lines. (D, E) Western blot and its quantitative expression of silencing CEMIP in HOS cells. (G, H) Western blot and its quantitative expression of silencing CEMIP in U2OS cells. (F, I) The effect of silencing CEMIP on growth of HOS and U2OS cells were measured by CCK-8 assays. (J, K) The effect of silencing CEMIP on growth of HOS and U2OS cells were measured by EdU assays. *P < 0.05, **P < 0.01, ***P < 0.001. ns, no significance.





CEMIP Promotes the Invasion and Migration of Osteosarcoma Cells

To elucidate the role of CEMIP in osteosarcoma pathogenesis, wound healing assays, transwell assays were conducted as well. In the wound healing assay, silencing CEMIP resulted in a reduction of cell migration when compared to the mock and control groups (Figures 3A–D). Transwell assays including migration assay and invasion assay revealed that the shCEMIP group had considerably fewer cells that migrated or penetrated through the membrane than the mock and control groups (Figures 3E–H). Matrix metalloproteinase (MMP) is a type of enzyme that promotes tumor cells metastasis, and MMP-2 and MMP-9 are commonly used as tumor metastasis indicators. MMP-2 and MMP-9 expression were significantly inhibited by shCEMIP group (Figures 3I–L) when compared to the mock and control group. As a result of these findings, we concluded that CEMIP could promote the invasion and migration of osteosarcoma cells in vitro.




Figure 3 | CEMIP promotes the invasion and metastasis of osteosarcoma cells. (A, C) Cell migration capacity in HOS were detected by wound healing assays and their quantitative analysis. (B, D) Cell migration capacity in U2OS were detected by wound healing assays and their quantitative analysis. (E, F) Cell migration ability in HOS and U2OS cells were analyzed by transwell migration assays and their quantitative analysis. (G, H) Cell invasion ability in HOS and U2OS cells were analyzed by transwell invasion assays and their quantitative analysis. (I, J) Western blot and the relative protein expression of MMP2 and MMP9 in HOS cells. (K, L) Western blot and the relative protein expression of MMP2 and MMP9 in U2OS cells. **P < 0.01, ***P < 0.001. ns, no significance.





CEMIP Suppresses Cell Apoptosis in Osteosarcoma

Flow cytometry was used to investigate the effect of CEMIP on cell apoptosis in HOS and U2OS, and the results revealed that the shCEMIP group had a larger proportion of apoptosis cells than the mock and control groups (Figures 4A–D). Additionally, Bax expression, indicator of apoptosis, was up-regulated, while anti-apoptotic protein Bcl-2 was suppressed in the shCEMIP group when compared to mock and control groups (Figures 4E–H). These data indicated that CEMIP could suppress apoptosis of osteosarcoma cells in vitro.




Figure 4 | CEMIP knockdown induces cell apoptosis. (A, B) The role of silencing CEMIP on apoptosis of HOS cells were detected by flow cytometry assays and its quantitative analysis. (C, D) The role of silencing CEMIP on the apoptosis of U2OS cells were detected by flow cytometry assays and their quantitative analysis. (E, F) Western blot showed the relative protein expression of apoptosis markers (pro-apoptotic marker, Bax; anti-apoptotic marker, Bcl-2) in HOS cells. (G, H) Western blot showed the relative protein expression of apoptosis markers (pro-apoptotic marker, Bax; anti-apoptotic marker, Bcl-2) in U2OS cells. ***P < 0.001. ns, no significance.





Silencing CEMIP Inhibits the Growth and Metastasis of Osteosarcoma In Vivo

In order to further determine the role of CEMIP in pathogenesis of osteosarcoma cells in vivo, HOS cells from shCEMIP group and control group were injected subcutaneously into nude mice respectively. Tumor volume was measured every three days and the mice were sacrificed after 30 days, The results indicated that, in comparison to the control group, mice in shCEMIP group had smaller tumor size and lower weight (Figures 5A–D). Additionally, in the metastasis models, although neither group had visible metastatic lesions on the lung surface (Figure 5E), both nude mice groups had visible metastatic tumors on the liver surface (Figure 5F). Moreover, H&E staining of the lungs revealed glimpsed lung metastasis lesions in the control group (Figure 5G), but considerably less in the shCEMIP group (Figure 5H). In the livers, H&E staining showed the control group had more and larger metastatic lesions (Figure 5I) than the shCEMIP group (Figure 5J). Thus, our findings indicated that silencing CEMIP would be able to suppress osteosarcoma growth and metastasis in vivo.




Figure 5 | CEMIP promotes the growth and metastasis of osteosarcoma in vivo. (A) Representative images of xenograft models. (B) Representative images of xenograft tumors from respective groups. (C) Tumor growth curves from respective groups. (D) Average tumors weight from respective groups. (E) Representative images of the lungs of nude mice from metastsis models. (F) Representative images of the livers of nude mice from metastsis models. (G, H) Histological features of lung metastases by H&E staining. (I, J) Histological features of liver metastases by H&E staining. ***P < 0.001.





CEMIP Promotes the Progression of Osteosarcoma Through Notch Signaling Pathway

As showing in the results, we found that silencing CEMIP significantly decreased the protein expression of Notch receptor Notch1, Notch ligand Jagged1, and Notch target gene Hes1 in osteosarcoma cells (Figures 6A–D). In addition, we used western blot and immunohistochemistry to assess Notch1, Jagged1 and Hes1 expression in tumor tissues from nude mice, and the results demonstrated a reduced expression of Notch/Jagged1/Hes1 signaling pathway in tumor tissues from the shCEMIP group in comparison to the control group (Figures 6D–G).




Figure 6 | CEMIP promotes the growth and metastasis through Notch signaling pathway. (A, B) Western blot and their quantitative analysis of silencing CEMIP on expression of Notch1, Jagged1 and Hes1 in HOS cells. (C, D) Western blot and their quantitative analysis of silencing CEMIP on expression of Notch1, Jagged1 and Hes1 in U2OS cells. (E–G) Western blot and their quantitative analysis of CEMIP, Notch1, Jagged1 and Hes1 in tumor tissues from two groups of xenograft tumors. (H) Immunohistochemical analysis of Notch1, Jagged1 and Hes1 in osteosarcoma tissue from two groups of xenograft tumors. **P < 0.01, ***P < 0.001. ns, no significance.



To further confirm the regulatory role of Notch signaling pathway in CEMIP-regulated osteosarcoma cells growth and metastasis, we stimulated shCEMIP osteosarcoma cells using Valproic acid, a Notch signaling activator (VPA), which was dissolved in DMSO. The EdU assay revealed that VPA can promoted cells proliferation in shCEMIP HOS and shCEMIP U2OS cells (Figures 7A, B), the same results were presented in the CCK8 assays (Figure 7C, F). Transwell assays including invasion assay and migration assay revealed that VPA could promote cells migrate or penetrate through the membrane in shCEMIP HOS (Figures 7D, E) and shCEMIP U2OS (Figures 7G, H). Meanwhile, the wound healing assay revealed that VPA promoted shCEMIP HOS and shCEMIP U2OS migration as well (Figures 7I–K). Taken together, our findings revealed that CEMIP could promote osteosarcoma progression and metastasis through activating Notch signaling pathway in vitro and in vivo.




Figure 7 | Activation of Notch signaling pathway reverses growth, invasion and migration of osteosarcoma cells caused by siliencing CEMIP. (A, B) The effect of VPA on growth of shCEMIP osteosarcoma cells were measured by EdU assays. (C, F) The effect of VPA on growth of shCEMIP osteosarcoma cells were measured by CCK-8 assays. (D, E) The effect of VPA on invasion of shCEMIP osteosarcoma cells were analyzed by transwell invasion assays and their quantitative analysis. (G, H) The effect of VPA on migration of shCEMIP osteosarcoma cells were analyzed by transwell migration assays and their quantitative analysis. (I–K) The effect of VPA on migration capacity of shCEMIP osteosarcoma cells were detected by wound healing assays and its quantitative analysis. *P < 0.05, **P < 0.01, ***P < 0.001.






Discussion

In the current study, we found that CEMIP was overexpressed in osteosarcoma tissues, which was positively correlated with advanced tumor stage and poor prognosis of the disease. Mechanically, silencing CEMIP dramatically reduced osteosarcoma cells proliferation, invasion and migration in vitro, inhibited osteosarcoma cells growth and metastasis in vivo, and increased the proportion of apoptotic cells. Additionally, we demonstrated that Notch signaling pathway was involved in the CEMIP-regulated pathogenesis of osteosarcoma. Therefore, we not only investigated the relationship between CEMIP expression and clinical significance of osteosarcoma, but also revealed that CEMIP could promote the proliferation and metastasis and suppress cell death of osteosarcoma cells, thus leading to the malignant progression of osteosarcoma.

CEMIP was first discovered with an unknown function in 1999 (24), four years later, Satoko Abe identified it as an inner ear-specific protein since its genetic abnormalities were linked to non-syndromic hearing loss (25), CEMIP exists in normal human tissues with low expression level, such as brain, pancreas and testis. It was first discovered to be overexpression in tumor cells by Michishita in 2006 (9), since then, CEMIP as a marker of high metastatic potential and poor prognosis has been shown in different malignancies (10–14). Despite the fact that there are many studies on CEMIP and tumors, the studies on CEMIP and musculoskeletal tumors are still quite few. Koike found the forced expression of CEMIP effectively suppressed the tumorigenicity of low‐grade chondrosarcoma with abundant hyaluronan (26). Recently, high expressions of CEMIP and hyaluronan were reported to be as poor prognostic factors for osteosarcoma, but in which no verification or exact mechanism were clarified (27). Given the complex link between CEMIP and musculoskeletal tumors, therefore, additional research on the role of CEMIP in musculoskeletal tumors is extremely desirable. Thus, in the current study, we not only investigated the relationship between CEMIP expression and clinical significance of osteosarcoma, but also revealed that CEMIP could promote the proliferation and metastasis and suppress cell death of osteosarcoma cells, thus leading to the malignant progression of osteosarcoma.

The feature of easy recurrence and metastasis pose a considerable challenge for the clinical treatment of osteosarcoma, resulting in no effective treatment in the advanced stage of the disease (7). Our results provided substantial evidence that CEMIP is an oncogenic and metastatic risk for osteosarcoma, suggesting that targeting CEMIP may provide a novel strategy for osteosarcoma treatment. As an oncogene, CEMIP does more than merely enhance cell proliferation and metastasis, it also plays a vital role in the drug resistance of tumor cells. Studies showed that CEMIP was essential for maintaining cell metastasis and EMT in sorafenib-resistant hepatocellular carcinoma cells (16), and also demonstrated that CEMIP trigged acquired resistance to selumetinib in colorectal cancer cells (17). Furthermore, CEMIP promotes tumor cell adaptation to a harsh microenvironment, Evensen et al. discovered that up-regulation of CEMIP is a critical regulator of colon cancer cells dissemination in a hypoxic microenvironment, hypoxia-inducible-factor-2α (HIF-2α) binds directly to the hypoxia response element within the CEMIP promoter region, resulting in increased CEMIP expression and enhanced cell migration (28). Additionally, it was reported that CEMIP could induce tumor angiogenesis via interacting with the EGFR pathway of cervical tumors in a NF-κB dependent manner (29). Besides, Terashima M revealed that upregulating CEMIP could lead to high tumor incidence by boosting the gluconeogenesis for energy (30), and Liu et al. observed that upregulating CEMIP resulted in increased transcription of SLC7A11 in prostate cancer cells by increasing cystine absorption, thereby promoting ferroptosis resistance in cells detached from the extracellular matrix (31).

According to our findings, CEMIP can promote osteosarcoma cells proliferation and metastasis via Notch signaling pathway. Notch signaling pathway is an evolutionarily conserved signaling system which has been implicated in the pathogenesis of a variety of diseases (23); dysfunction of Notch signaling pathway impairs cell differentiation and induces malignant transformation, leading to tumor angiogenesis, stemness of cancer cells, and EMT (32). Notch pathway is indispensable for skeletal development, however, when it is disrupted, abnormal osteoblast and osteoclast production occurs, leading to skeletal disease (33). According to current studies, notch target genes and notch receptors are overexpressed in osteosarcoma, and govern osteosarcoma cells proliferation and differentiation (34). It has been confirmed that Notch ligand Jagged1 was overexpressed in osteosarcoma (35), and activation of Notch signaling pathway will promote the occurrence, progression and metastasis of osteosarcoma (36–39), as well as to chemotherapy resistance (40, 41). In this study, we revealed that Notch signaling pathway is involved in CEMIP-regulated osteosarcoma, and CEMIP promotes osteosarcoma cells growth and metastasis in vitro and in vivo through activating Notch signaling pathway.

Although the function of CEMIP in osteosarcoma was intensively investigated, there are still some shortcomings in this study. First, we did not further study the downstream target genes that were directly regulated by CEMIP in osteosarcoma. Second, we found that activation of the Notch signaling pathway could partially reverse the proliferation and metastasis of shCEMIP osteosarcoma cells but not completely, which indicated that there are other signaling pathways involved in CEMIP-regulated osteosarcoma cells, this result reflected that CEMIP could modulate tumor progression in multiple ways. Last but not the least was that, in our metastatic models, the main metastatic site is the liver instead of the lung, which was a very unique phenomenon that was different from previous studies, we did not delve into the mechanism of this phenomenon in the current study, but exploring the possible mechanism would be warranted in our follow-up studies.

In summary, our study indicated that CEMIP was over-expressed in osteosarcoma, and correlated with the prognosis of osteosarcoma patients. CEMIP promoted osteosarcoma cells progression and metastasis through activating Notch signaling pathway, thus suggesting that CEMIP could be a potential target for gene therapy of osteosarcoma.
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Background

Early diagnosis of colorectal cancer could significantly improve the prognosis and reduce mortality. However, indeterminate diagnosis is often met in pathology diagnosis in biopsy samples. Abnormal expression of long non-coding RNA (lncRNA) is associated with the initiation and progression of colorectal cancer. It is of great value and clinical significance to explore lncRNAs as candidate diagnostic biomarkers in colorectal cancer.



Methods

Based on the within-sample relative expression levels of lncRNA pairs, we identified a group of candidate diagnostic biomarkers for colorectal cancer. In addition, we validated it in independent datasets produced by different laboratories and different platforms. We also tested it in colorectal cancer tissue samples using quantitative real-time polymerase chain reaction (RT-qPCR).



Results

A biomarker consisting of six lncRNA pairs including nine lncRNAs was identified for the diagnosis of colorectal cancer. For a total of 950 cancer samples and 247 non-cancer samples, both of the sensitivity and specificity could achieve approximately 90%. For adenoma samples, the accuracy could achieve 73%. For normal tissues from inflammatory bowel disease patients, 93% (14/15) were correctly classified as non-cancer. Furthermore, the lncRNA pair biomarker showed excellent performance in all clinical stages; even in the early stage, the accuracy could achieve 87% and 82% in stage I and II. Meanwhile, the biomarker was also robust to the microsatellite instability status. More importantly, we measured the biomarker in 35 colorectal cancer and 30 cancer-adjacent tissue samples using quantitative real-time polymerase chain reaction (RT-qPCR). The accuracy could achieve 93.3% (70/75). Specially, even in early-stage tumors (I and II), the accuracy could also achieve 90.9% (30/33). The enrichment analysis revealed that these lncRNAs were involved in highly associated cancer pathways and immune-related pathways. Immune analysis showed that these marker lncRNAs were associated with multiple immune cells, implying that they might be involved in the regulation of immune cell functions in colorectal cancer. Most of the biomarker lncRNAs were also differentially expressed between the mutant group and wild-type group of colorectal cancer driver genes.



Conclusion

We identified and validated six lncRNA pairs including nine lncRNAs as a biomarker for assisting in the diagnosis of colorectal cancer.





Keywords: long non-coding RNA, colorectal cancer, biomarker, relative expression analysis, diagnostic



Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed and the third most leading cause of mortality cancer worldwide (1). Early detection of CRC can significantly improve the prognosis and reduce the mortality of patients. However, at the early stage, only approximately 4/10 of patients with CRC could be diagnosed (2).

Currently, the established non-invasive tests usually have low sensitivity and a positive predictive value. The sensitivity of the fecal immunochemical test could only reach 79%. Meanwhile, the sensitivity of another methylation-based molecular marker Septin9 is only 48% (3). The current tumor serum protein biomarkers, such as CEA, CA19-9, and CA12-5, are not recommended for early diagnosis of CRC because of their low sensitivity (4). Biopsy sampling with less invasive techniques, colonoscopy, is the gold standard method for CRC screening. However, previous studies indicate that up to 8% of all CRCs are diagnosed after a colonoscopy that found no cancer (5). In addition, indeterminate diagnosis is often met in pathology diagnosis in biopsy samples (6, 7). Moreover, the biopsy location might be inaccurate, which might lead to inaccurate sampling of adjacent non-tumor tissues and reduce the diagnosis performance (8). However, previously reported diagnostic signatures are usually obtained by taking tumor-adjacent normal tissues as the normal samples. Therefore, these signatures cannot classify CRC-adjacent normal tissues that are not accurately sampled as CRC (9). Considering that the adjacent non-tumor colorectal tissues of CRC patients might have some molecular characteristics of CRC, it is possible to develop a signature to discriminate CRC (including CRC-adjacent tissues) from the tissues of non-tumor individuals.

Long non-coding RNA (lncRNA), a kind of RNA with length greater than 200 nt and the lack of protein-coding capacity, is involved in crucial regulatory processes such as apoptosis, cell proliferation, and immune regulation (10, 11). Clear accumulating evidence has shown that abnormal expression of lncRNA is associated with the occurrence and development of a variety of cancers, including CRC, and has a great clinical application value (11, 12). Moreover, lncRNA expression is tissue-specific. Therefore, it is of great value and clinical significance to explore lncRNA as early diagnostic biomarkers in CRC.

Previous marker screening methods are usually based on the absolute expression value of genes, which is sensitive to batch effects and hardly applicable to an individualized diagnosis (13). It has been reported that within-sample relative expressions of genes are robust to systematic biases and interindividual biological variations and tends to be highly stable in specific normal human tissues but widely disturbed in the corresponding cancer tissues (14). Therefore, it is reasonable and worthwhile to identify the candidate lncRNA diagnostic biomarkers of CRC based on the within-sample relative expression levels of lncRNAs.

In this study, six pairs of lncRNA were identified as candidate early diagnostic biomarkers for CRC based on their within-sample relative expressions. The performance was then validated in additional validation datasets. The lncRNA pair biomarker showed excellent performance in all clinical stages, even in the early stage, and robust to the microsatellite instability (MSI) status. This biomarker would be an effective candidate diagnostic biomarker of CRC.



Materials and methods


Data collection and preprocessing

The lncRNA expression profiles of colorectal tissues were collected and downloaded from the Gene Expression Omnibus repository (GEO) database (https://www.ncbi.nlm.nih.gov/geo/), Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra/), The Atlas of Noncoding RNAs in Cancer (TANRIC) database (https://www.tanric.org), The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/), and UCSC Xena (http://xena.ucsc.edu/). It is worth mentioning that the normal tissues used in this study were from GTEx (https://www.gtexportal.org/), all from the autopsy samples of healthy human donors. The detailed information is listed in Table 1, Table 3, and Table 4. Processed matrix data are directly used for the data from the microarray platform in the GEO database. Raw counts were downloaded from UCSC Xena and converted to the fragments per kilobase of transcript per million mapped reads (FPKM) value. The FPKM of the lncRNA profile of the TCGA colorectal dataset was obtained from the TANRIC database. For RNA-seq data from the SRA database, “.sra” data were firstly converted to fastq using the fastq-dump tool and preprocessed using Trimmomatic software (15) and were then aligned to reference human genome GRCh39 by hisat2 (16). Read counts for each transcript were calculated by featureCounts (17) and were then converted to the FPKM value. For data from TANRIC, SRA, and UCSC Xena, the Ensemble gene IDs were converted to Entrenz ID. For data from the microarray platform in GEO, each probe was converted to an ID according to the corresponding platform file. The information for each lncRNA, such as Entrez ID and official gene symbol, was downloaded from the LNCipedia (18). Based on the collected information, we got the Entrez ID and RNA types for each probe. Those probes mapped to multiple genes were discarded. If multiple probes were mapped to the same lncRNA, the expression value of the lncRNA was defined as the arithmetic mean of the values of the mapped probes. The clinical information of CRC from TCGA was also downloaded.


Table 1 | The training datasets used in this study.





Identify candidate long non-coding RNA pairs for diagnosis of colorectal cancer

For each sample, the expression levels of lncRNAs were firstly transformed to the relative expression orderings (REOs) of lncRNAs. For each lncRNA pair, Li and Lj (i = 1…n, j = 1…n, and i ≠ j), and ei and ej represented the expression level of Li and Lj, respectively; n represented the total number of lncRNAs. Then, the REO of Li and Lj in a sample was ei > ej or ei< ej. If the within-sample REO is kept in more than 70% of cancer (non-cancer) tissue samples, this lncRNA pair is defined as consistent lncRNA pairs in CRC (non-cancer) samples. If the expression pattern of a consistent lncRNA pair is ei>ej (or ei<ej) in CRC samples and is ei<ej (or ei>ej) in non-cancer samples, this lncRNA pair is defined as the reversal lncRNA pair between cancer and non-cancer samples. Furthermore, geometric mean (avgRij) is calculated to evaluate the reversal degree for each reversal lncRNA pair as follows, avgRij=   ; Rij=|Ri-Rj|, in which Ri and Rj represent the ranks of lncRNA Li and Lj in a sample, respectively, and Rij is the absolute rank difference between the two lncRNAs within a sample. The mean[Rij(cancer)] represents the mean value of the absolute rank differences of the reversal lncRNA Li and Lj in CRC tissues. Meanwhile, mean[Rij(non-cancer)] represents the mean value of absolute rank differences of the reversal lncRNA pair Li and Lj in non-cancer tissues. Obviously, the higher the reversal degree for an lncRNA pair, the larger the reversal degree of the gene pair will be calculated between CRC and non-CRC samples.

All reversal lncRNA pairs between the CRC and non-CRC samples were identified in the training data, and m was denoted as the total number of the reversal lncRNA pairs. Then, the reversal lncRNA pairs were ranked in a descending order based on the reversal degree of each lncRNA pair. A forward selection procedure was further used to search optimal subsets of the reversal lncRNA pairs as a diagnosis biomarker. Namely, the top k (k=1…m) reversal lncRNA pairs were selected as a biomarker and the half-voting rule was used for classification. A sample would be classified to be a cancer sample if at least half of the biomarker lncRNA pairs showed the same REOs with cancer; otherwise, it would be classified to be a non-cancer sample. When the geometric mean of sensitivity and specificity in the training data reaches the highest, the value of k is selected. The most reversed k lncRNA pairs were selected as a candidate early diagnostic biomarker of CRC. Sensitivity and specificity were calculated as follows:

	

	

Here, cancer samples were defined as positive samples, and non-cancer samples were defined as negative samples. The TP, TN, FP, and FN represented the number of true-positive, true-negative, false-positive, and false-negative samples, respectively. Specially, to correctly classify CRC-adjacent normal tissues that are not accurately sampled as CRC, the CRC samples used to identify signatures include cancer samples and cancer-adjacent samples.



RNA extraction and quantitative real-time polymerase chain reaction

The 75 samples from 35 CRC patients were retrieved from the Department of Pathology, Fudan University Shanghai Cancer Center (Shanghai, China). Clinical information and pathologic features were obtained from the medical record and pathology report. Total RNA was isolated from all fresh- frozen CRC tissues using a TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Complementary DNA (cDNA) was synthesized with the Reverse Transcriptase Kit (Takara, # RR036A). Then, qPCR was performed using TB Green according to a standard protocol (Takara, #RR420A). Actin served as internal control. The primer pairs of lncRNAs used for qPCR are listed in Supplementary Table S1.



Functional analysis of the diagnostic long non-coding RNA biomarkers

To further investigate the functions of the biomarker lncRNAs in CRC, the coexpressed mRNAs and the competing endogenous mRNAs were used to perform pathway enrichment analysis. On one hand, the top 500 mRNAs coexpressed with nine lncRNA biomarkers in the TCGA CRC dataset were taken as a candidate gene set. On the other hand, an lncRNA–mRNA network was constructed based on a competing endogenous RNA (ceRNA) hypothesis (19). Firstly, miRNA–lncRNA interactions were downloaded from the StarBase database (20). miRNA–mRNA interactions were obtained from miRBase (21). LncRNA–miRNA–mRNA relations documented in LncATCdb were also extracted (22). If an lncRNA and mRNA were regulated by an miRNA, then the lncRNA was connected in the lncRNA–mRNA network. By doing this, an lncRNA–mRNA network was constructed with 196,442 interactions between 14,039 mRNAs and 2,945 lncRNAs. Then, the interacted mRNAs with the biomarker lncRNAs were extracted from the constructed network as competing endogenous RNAs. Finally, the coexpressed mRNAs and the competing endogenous mRNAs were used to perform pathway enrichment analysis using R package clusterProfiler (23).



Immune infiltration cell analysis

In order to investigate the association between the immune infiltration and the expression of the diagnostic lncRNA biomarkers, we calculated the immune cell infiltration among the cohort of TCGA CRC patients by CIBERSORT calculation (24). The Spearman correlation analysis was performed between the expression values of each biomarker lncRNA and the infiltration fractions of the immune cells, and the correlation coefficient R-values and significant P-values were calculated.



Driver gene mutations and the diagnostic biomarker long non-coding RNAs

To explore the driver gene mutations related to the expression of biomarker lncRNAs in CRC, we analyzed the top five recurrent mutated driver genes recorded in COSMIC (APC, KRAS, TP53, BRAF, and PIK3CA) (25). Then, the expression differences of the lncRNAs between the mutant group and the wild-type group of each driver gene were analyzed by the Wilcoxon signed rank test using the TCGA CRC dataset.




Results


Identification of the diagnostic long non-coding RNA pair biomarker of colorectal cancer

The workflow of this work is shown in Figure 1. Firstly, the cross-platform-consistent lncRNA pairs in non-cancer samples were detected. For the microarray platform, 160,732 consistent lncRNA pairs were identified in 32 samples of the GSE8671. For the RNA-seq platform, due to the imbalanced number of non-cancer samples between GSE76987 (20 samples) and GTEX (155 samples), we first identified consistent lncRNA pairs in each of the two datasets, and the 120,536 overlapping consistent lncRNA pairs were defined as consistent lncRNA pairs of the RNA-seq platform. Then, a total of 76,239 consistent lncRNA pairs overlapped in both microarray and RNA-seq platforms were defined as the cross-platform-consistent lncRNA pairs of non-cancer samples. Next, the cross-platform-consistent lncRNA pairs in cancer samples were detected. For the microarray platform, 16,884 consistent lncRNA pairs were identified in 40 samples of the GSE117606. For the RNA-seq platform, due to the similar sample size of different datasets, we pooled cancer samples into one dataset, and named it as RNA-seq_CRC (60 samples). Cancer-adjacent samples were also pooled into one dataset, and it was named as RNA-seq_Adjacent (40 samples). We identified 158,242 and 162,678 consistent lncRNA pairs for RNA-seq_CRC and RNA-seq_Adjacent, respectively, and 131,699 overlapping consistent lncRNA pairs were obtained for the RNA-seq platform. Overall, a total of 86,424 cross-platform-consistent lncRNA pairs of cancer samples were obtained for both microarray and RNA-seq platforms. Finally, seven cross-platform reversal lncRNA pairs were detected between CRC and non-cancer tissues. Then, according to the forward selection procedure and the half-voting rule described in the Materials and methods section, six lncRNA pairs were defined as the diagnostic biomarker in CRC. Further analysis showed that the relative expression levels of six lncRNA pairs of non-cancer tissues were significantly reversed in CRC tissues (Fisher’s exact test, P<2.2e-16, Table S2). With this biomarker, the geometric mean of the sensitivity and specificity could achieve 0.97, in which the sensitivity was 0.95 and the specificity was 0.98 (Figure 2). The six candidate lncRNA pairs are listed in Table 2. If at least three of the six lncRNA pairs showed that the expression level of gene A was less than gene B (Table 2), the tested sample was predicted as cancer. Otherwise, it was predicted as non-cancer.




Figure 1 | The workflow of identifying candidate diagnostic biomarker of colorectal cancer (CRC).






Figure 2 | The geometric mean of the sensitivity and specificity of the top long non-coding RNA (lncRNA) pairs in the training data.




Table 2 | Six candidate diagnostic long non-coding RNA (lncRNA) pairs for colorectal cancer (CRC). In each lncRNA pair, gene B always has a higher expression level than gene A in CRC tissue samples compared with non-CRC tissue samples. If at least three of the six lncRNA pairs showed that the expression level of gene A is less than gene B, the tested sample was predicted as cancer.





Validation of the diagnostic long non-coding RNA pair biomarker in independent dataset

For a total of 950 CRC samples and 247 non-cancer samples, both of the sensitivity and specificity could achieve approximately 90% (Table 3). For CRC samples, 94% (89/95) and 89% (520/585) samples were correctly classified as cancer in the microarray platform and RNA-seq platform, respectively. For cancer-adjacent tissue samples, 97% (163/168) and 78% (80/102) of cancer-adjacent tissue samples were classified as cancer in the microarray platform and RNA-seq platform, respectively, indicating that the marker was also effective for most of tissue sampling in inaccurate locations. For adenoma samples, 84% (27/32) and 67% (42/62) of adenoma samples were classified as non-cancer in the microarray platform and RNA-seq platform. This might be because adenoma is a precancerous lesion of CRC, and the samples diagnosed as cancer already have the molecular characteristics of cancer. To further examine the specificity of six lncRNA pairs, another three datasets including inflammatory bowel disease (IBD) and normal tissues from patients with IBD were tested (Table 4). For IBD tissues, 97% (120/124) were correctly classified as non-cancer. For normal tissues from IBD patients, 93% (14/15) were correctly classified as non-cancer. The total specificity could achieve 96%. The results showed that the lncRNA pair marker had high specificity. To further examine the performance of the six lncRNA pairs in different CRC stages, 458 samples contain staging information were obtained from the TCGA dataset. The results showed that 87% of 78 patients with stage I, 82% of 183 patients with stage II, 93% of 132 patients with stage III, and 89% of 65 patients with stage IV were correctly identified as CRC (Table 5). To explore whether the six lncRNA pairs are stable in different microsatellite status, 110 CRC samples with MSI information from TCGA were evaluated. Approximately 95% of 63 patients with an MSS (microsatellite-stable) status and 82% of 47 patients with MSI-H (microsatellite instability–high) were correctly identified as CRC (Table 5). Tumors in the right-sided and left-sided colon exhibit different molecular characteristics and histology (26). Thus, the performance of the six lncRNA pairs in different sites were also tested. The results showed that the accuracy of left sided and right sided were 91% (161/177) and 85% (168/198), respectively.


Table 3 | The performance of the lncRNA pair biomarkers in the validation dataset. .




Table 4 | The performance of the lncRNA pair biomarkers in independent inflammatory bowel disease and normal validation datasets. Accuracy is marked in parentheses.




Table 5 | Performance of the lncRNA pair biomarkers in different stages, the microsatellite instability status, and the site of CRC in the TCGA dataset.





Validation of the diagnostic long non-coding pair biomarker using RT-qPCR (Quantitative real-time PCR)

To further validate the diagnostic lncRNA pair biomarker, A total of 75 samples form 35 CRC patients were enrolled to perform RT-qPCR, of which, cancer tissues and matched cancer-adjacent tissues were obtained from 30 patients, while 5 patients were took only cancer tissues. A total of 35 stage I–IV CRC patients were enrolled; the average age was 71.8 (range 35–80). A total of 20 patients were men, and 15 patients were women. The histology of all tumor specimens was moderately differentiated adenocarcinoma. All patients have undergone radical surgery for CRC (Table 6). In each lncRNA, two holes were established, and the mean value of two replicates was used. The detailed expression values are shown in Table S3. Based on the half-voting rule, one sample with at least three gene pairs showing the same relative expression level pattern with cancer is predicted as cancer. As a result, the accuracy of all 75 patients could achieve 93.3%. Through six lncRNA pair biomarkers, 32 of 35 (85.7%) CRC tissues and 28 of 30 (87.5%) adjacent tissues were correctly predicted as cancer by the six lncRNA pair biomarkers (Table S5). Specially, even in early stage (I and II), the accuracy could also achieve 90.9% (30/33). These results showed that the diagnostic lncRNA pair biomarker was highly sensitive in colorectal tissues.


Table 6 | The characteristics of the CRC tissue samples.





Exploring the functions of the biomarker long non-coding RNAs in colorectal cancer

To further explore the functions of the six lncRNA pairs, 3,618 mRNAs obtained from coexpression or endogenous competition with the lncRNAs (Table S4) were used to perform pathway enrichment analysis. The enrichment analysis revealed that the lncRNAs were involved in highly associated cancer pathways such as cell–cell adhesion and Wnt signaling pathways and immune-associated pathways (Figure 3A). These findings convinced that our biomarker might play significant roles in the progression of cancer. The Kaplan–Meier survival analysis and log-rank test were also performed to test whether the lncRNAs were associated with the prognosis of CRC in the TCGA dataset. However, there was no significance between the expressions of these lncRNAs and the prognosis of CRC except TOB1−AS1 (p = 0.0067, Figure 3B). To investigate the value of these lncRNA biomarkers in the tumor microenvironment, we analyzed 22 tumor immune cells using CIBERSORT and the output was visualized with a heatmap plot (Figure 3C). With a cutoff p-value less than 0.01, some lncRNAs tend to be associated with few types of immune cells. For example, TOB1-AS1 was significantly negatively correlated with neutrophils. LINC02981 was positively correlated with M2 macrophage. POLR2J4 expression was significantly positively correlated with resting NK cells and negatively correlated with neutrophils. While some lncRNAs tend to be associated with multiple type of immune cells. ZNF232-AS1 expression was positively correlated with M2 macrophage, eosinophils, neutrophils, resting mast cells, and naive B cells and negatively correlated with M0 macrophage and Treg. LOC100130691 expression was positively correlated with resting memory CD4 T cells, monocytes, eosinophils, and activated dendritic cells and negatively correlated with T follicular helper cells, CD8 T cells, plasma cells, and activated NK cells. These results implied that these biomarker lncRNAs might be involved in the regulation of immune cell functions in CRC. The driver gene mutations related to the biomarker lncRNAs were also identified. ZNF232-AS1 was significantly differentially expressed between the mutant group and the wild-type group for all five driver genes (Figure 3D). TOB1-AS1 and COPB2-DT were significantly differentially expressed between the mutant group and the wild-type group for four of the five driver genes (PIK3CA, APC, BRAF, TP53). ZNF503-AS2, POLR2J4, LOC100130691, and LINC01547 were significantly differentially expressed between the mutant group and the wild-type group for three of the five driver genes. C10orf25 were significantly differentially expressed between the mutant group and the wild-type group of APC and BRAF genes. There was no significant difference for LINC02981 expression for all driver genes.




Figure 3 | (A) The pathway enrichment analysis of the lncRNA biomarkers. Left is the result of Gene Ontology (GO); right is the result of KEGG. (B) High expression of lncRNA TOB1-AS1 was associated with a worse prognosis outcome in CRC. (C) Association between the immune cell infiltration and the lncRNA biomarkers. *, **, and *** represent the P-values of 0.05, 0.01, and 0.001, respectively. The size of the circle represents the correlation coefficient. (D) The correlation of expression of lncRNA markers and driver genes in CRC. *, **, and *** represent the P-values of 0.05, 0.01, and 0.001, respectively. The size of the circle represents the size of the absolute value of log10 (P-value).






Discussion

In this study, we identified a robust biomarker of six lncRNA pairs for the correct diagnosis of CRC, which can discriminate CRC and CRC adjacent-normal tissues from non-cancer tissues. Regardless of platforms, the biomarker could achieve a sensitivity and specificity of 90%. Especially for the CRC samples and cancer-adjacent tissues, the accuracy could achieve ~90%. For adenoma samples, the accuracy could achieve 73%, which may be because adenoma is a precancerous lesion of CRC, and the samples diagnosed as cancer already have the molecular characteristics of cancer. Furthermore, the lncRNA pair biomarker showed excellent performance in all clinical stages; even in the early stage, the accuracy could achieve 87% and 82% in stage I and II. Meanwhile, the biomarker was also robust to the MSI status and primary tumor sites. These results further indicated that our biomarker is robust against clinicopathological variation.

In clinical practice, colonoscopy is the gold standard method and the most common used for early CRC screening. However, the miss rate of colonoscopy might be up to 8%. Most of these missed lesions were flat, non-polypoid growth-type cases (27). For such cases, the sampling location is often missed or inaccurate. For patients with clinical symptoms, multipoint random sampling can be used as a complement diagnostic method. In addition, indeterminate diagnosis is often met in pathology diagnosis in biopsy samples and highly relied on the experience of the pathologist. Misplaced epithelium in adenomas can occasionally be difficult to distinguish from invasive adenocarcinoma (7). In large sigmoid colonic adenomas, it is difficult to distinguish between the benign misplacement of the epithelium into the submucosa and invasive malignancy. This distinction requires a careful morphological evaluation of key differential features to determine the need for further endoscopic or surgical intervention, but there is little selective application of auxiliary immunohistochemistry (28). Sometimes, patients with IBD may lead to dysplastic changes, which also poses a challenge to the diagnosis of CRC (6). The six lncRNA pairs identified in our study provide a sensitive and robust measure for assisting the diagnosis of CRC. Moreover, the six lncRNA pairs (nine lncRNAs) based on the relative expression levels are robust to batch effects and could be applied to samples measured by either microarray, high-throughput RNA-seq or RT-qPCR. When the expression values of six lncRNA pairs were obtained, we could easily diagnose this sample by our marker. If at least three of the six lncRNA pairs showed that the expression level of gene A was less than that of gene B (Table 2), the tested sample was predicted as cancer. Otherwise, it was predicted as non-cancer.

The biomarker identified in this study consists of six lncRNA pairs from a set of nine lncRNAs, including LOC100130691, LOC441204, ZNF232-AS1, TOB1-AS1, COPB2-DT, LINC01547, ZNF22-AS1, POLR2J4, and ZNF503-AS2. Some of these lncRNAs may have played important roles in the initiation and progression of CRC as well as other tumors. It was reported that POLR2J4 expression was significantly lower in the CRC samples compared with the normal samples, and it might play a significant role in the tumorigenesis of CRC. As the circularized product of POLR2J4, the knockdown of circ_0079993 could significantly inhibit the proliferation of CRC cells in vitro (29). Furthermore, LOC441204 activated by the β-Catenin/p21/CDK4 pathway could promote the growth of tumor cells (30). Moreover, the overexpression of TOB1-AS1 significantly inhibits cell proliferation, cell cycle progression, invasion, and induced apoptosis, while the knockdown of TOB1-AS1 exhibits the opposite effect in both non-small cell lung cancer (31) and cervical cancer (32). In our study, TOB1−AS1 was also found to be associated with the prognosis of CRC in the TCGA dataset. Le et al. found that the high expression of LINC01547 is significantly related to worse overall survival in ovarian cancer patients (33). In addition, downregulated LOC100130691 is associated with worse relapse-free survival and overall survival in patients with basal breast cancer (34). ZNF503-AS2 was associated with a high risk of death in pediatric rhabdoid tumor of the kidney (35). The enrichment analysis revealed that the lncRNAs were involved in highly associated cancer pathways such as cell–cell adhesion and Wnt signaling pathway. Immune analysis showed that these marker lncRNAs were associated with multiple immune cells, implying that they might be involved in the regulation of immune cell functions in CRC. Most of the lncRNA biomarkers were also differentially expressed in the driver genes of CRC. These results implied that the biomarker lncRNAs were highly involved in CRC.

There are also some limitations in this study. Specificity and larger sample size need to be studied in the future. In addition, although the six lncRNA pairs performed excellently in normal and IBD tissues in the public validation set, PCR was not performed because the real normal samples (normal colorectal tissues from healthy people) were difficult to obtain.

In summary, we identified and validated six highly sensitive lncRNA pairs including nine lncRNAs as candidate biomarkers for aiding diagnosis of CRC.
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Transcriptome profiling of hepatocellular carcinoma (HCC) by next-generation sequencing (NGS) technology has been broadly performed by previous studies, which facilitate our understanding of the molecular mechanisms of HCC formation, progression, and metastasis. However, few studies jointly analyze multiple types of noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and micro-RNAs (miRNAs), and further uncover their implications in HCC. In this study, we observed that the circRNA cZRANB1 and lncRNA DUXAP10 were not only significantly upregulated in tumor tissues, but also higher expressed in blood exosomes of HCC as compared with healthy donors. From the analysis of subclass-associated dysregulated ncRNAs, we observed that DLX6-AS1, an antisense RNA of DLX6, and the sense gene DLX6 were highly expressed in S1, a subclass with a more invasive/disseminative phenotype. High correlation between DLX6-AS1 and DLX6 suggested that DLX6-AS1 may function via promoting the transcription of DLX6. Integrative analysis uncovers circRNA–miRNA, lncRNA–miRNA, and competing endogenous RNA networks (ceRNAs). Specifically, cZRANB1, LINC00501, CTD-2008L17.2, and SLC7A11-AS1 may function as ceRNAs that regulate mRNAs by competing the shared miRNAs. Further prognostic analysis demonstrated that the dysregulated ncRNAs had the potential to predict HCC patients’ overall survival. In summary, we identified some novel circRNAs and miRNAs, and dysregulated ncRNAs that could participate in HCC tumorigenesis and progression by inducing transcription of their neighboring genes, increasing their derived miRNAs, or acting as miRNA sponges. Moreover, our systematic analysis provides not only rich data resources for related researchers, but also new insights into the molecular basis of how different ncRNAs coordinately or antagonistically participate in the pathogenesis process of diseases.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignancies and the second leading cause of cancer deaths worldwide (1). It is supposed that newly diagnosed HCC cases each year will be more than 1 million worldwide in 2025 (2, 3). Moreover, both morbidity and mortality of HCC in China are higher than other countries. Overall, the delayed diagnosis of a majority of HCC patients prohibits surgery or other effective radical treatments, resulting in poor prognosis, which makes the 5-year survival rate less than 15% (4). Currently, the widely used clinical biomarker for HCC diagnosis is alpha fetoprotein (AFP), while its sensitivity is only about 60% (5). The available targeted drug recommended by definitive guides in clinical practice (6) for advanced HCC is sorafenib, which, however, is limited in improving the overall survival (7, 8). Besides sorafenib, other targeted drugs, such as sunitinib (9), brivanib (10), and everolimus (11), were tested in clinical trials, but all failed in the third phase (4).

The latest developments in next-generation sequencing (NGS) technologies have profiled mutational spectrums, and deregulated expression and epigenetic changes of several cancers by TCGA studies (12). Whole genome or exome sequencing of HCC has identified some recurrently mutated genes, such as TERT promoter (54%–60%), p53 (12%–48%), β-catenin (11%–37%), and Axin (5%–15%) (13). Transcriptome sequencing, including RNA sequencing and small RNA sequencing, of cancers shows remarkable potential to identify both novel markers and uncharacterized aspects of tumor biology, particularly some non-coding RNAs. Studies about microRNAs (miRNAs) show that miRNAs are closely related to HCC tumorigenesis, development, and metastasis (14, 15). For example, the downregulation of miR-28-5p is related to HCC metastasis, recurrence, and poor prognosis (16). MiR-188-5p can inhibit the proliferation and metastasis of HCC by targeting FGF5 (17). Decreased expression of miRNA-122 has been frequently detected in hepatitis B virus (HBV)-related HCCs, and re-expressing of miRNA-122 conversely inhibits HCC progression (18). Moreover, long non-coding RNAs (lncRNAs), which are generally unable to encode proteins, are also involved in tumor formation, development, or metastasis. Suppression of lncRNA Hotair can significantly inhibit the expression of miR-218 and induce cell cycle arrest in G1 phase and thereby inhibit HCC progression (19). Overexpression of lncRNA HULC in liver cancer promotes HCC proliferation by downregulating tumor suppressor gene p18 (20). In addition to lncRNAs and miRNAs, circular RNAs (circRNAs), produced by non-canonical splicing events that join a splice donor to an upstream splice acceptor, are also abundant and conserved in both normal and tumor cells (21). Numerous studies show that circRNAs can act as key regulators in cancer by regulating transcription or post-transcription of driver genes (22–24).

To comprehensively profile multiple types of ncRNAs in HCC and uncover their roles in HCC tumorigenesis or progression, we performed RNA sequencing in parallel with small RNA sequencing of eight paired HCC and matched pare-cancerous tissues. From the systematic comparisons, we characterized tumorigenesis- and subclass-associated ncRNAs, and predicted their potential biological function and lncRNA/circRNA–miRNA–mRNA interactions (Figure 1), which highlighted some key functional ncRNAs at the post-transcriptional level.




Figure 1 | The overall major findings of this study.





Results


Transcriptome profiling of multiple types of RNAs in HCC and matched para-cancerous tissues

To comprehensively delineate the transcriptome of HCC and matched para-cancerous tissues, we performed small RNA sequencing and rRNA depletion-based total RNA sequencing on eight pairs of HCC and matched para-cancerous tissues, respectively. The workflow analyzing the small RNA and RNA sequencing datasets is illustrated in Figure 2A. We detected 581 mature miRNAs annotated by miRBase (25) (version 20) and 79 novel miRNAs annotated by miRDeep2 (26) with small RNA sequencing (Supplementary Table 1).




Figure 2 | Transcriptome profiling of non-coding RNAs by RNA-seq in HCC. (A) The workflow for ncRNA detection and quantification. The circRNA and miRNA detection were performed by CIRI2 and miRDeep2, respectively. (B) The number of circRNAs originated from different genomic regions, including exonic, intronic, and intergenic regions. The novel circRNAs and miRNAs are displayed in pie charts of (C, D). The pink and blue parts represent the validated and undetermined circRNAs/miRNAs by the independent dataset, respectively.



RNA sequencing datasets were processed by the reference-based (GENCODE (27) version 19) gene expression quantification pipeline and circular RNA (circRNA) prediction pipeline, respectively. We identified a total of 25,197 genes, which consists of 18,038 protein-coding genes and 7,159 lncRNAs (read count >5 in more than four samples). In addition, RNA sequencing based on rRNA-depleted RNA library made it feasible to detect and quantify circRNAs. The circRNA prediction pipeline for the RNA sequencing data identified 13,308 circRNAs, 6,918 of which were annotated by circBase (28) (Supplementary Table 2). To annotate the origin of circRNAs, we determined whether the splice sites of circRNAs have been annotated according to the gene annotation from GENCODE. About 85.82%, 7.0%, and 7.18% of the circRNAs originated from exonic, intergenic, and intronic regions, respectively (Figure 2B). Moreover, we observed 52.81% of genes produced more than two circRNA isoforms, which indicated that alternative circularization extensively existed in HCC and para-cancerous tissues.

To further investigate whether the novel circRNAs and miRNAs could be identified in an independent HCC cohort, we performed identical data analysis on the publicly available RNA-seq and miRNA-seq datasets of 20 paired HCC and para-cancerous tissues (29). For the novel ncRNAs, including circRNAs and miRNAs, 4,871 circRNAs (76%) and 67 miRNAs (85%) were identified in the independent HCC cohort (Figures 2C, D). The high reproducibility demonstrated that the circRNA and miRNA prediction pipelines were robust, and the novel ncRNAs were highly reliable.



Identification and validation of dysregulated ncRNAs in HCC tumorigenesis

The dysregulated ncRNAs in HCC tumorigenesis should be aberrantly expressed between primary HCC and para-cancerous tissues. Prior to identifying the dysregulated ncRNAs in HCC tumorigenesis, the ncRNAs were quantified at count-based level to perform differential expression analysis. In total, we identified 844 lncRNAs, 80 circRNAs, and 114 miRNAs, which were differentially expressed between HCC and para-cancerous tissues (adjusted p-value <0.1 and fold-change >2 or < 1/2). The dysregulation of ~65% lncRNAs, ~76% circRNAs, and ~62% miRNAs was validated in the independent dataset (Figures 3A–C), including 20 novel circRNAs and one novel miRNA. Among the dysregulated ncRNAs validated by the independent dataset, PVT1, GAS5, DDX11-AS1, LINC-ROR, hsa-miR-483-5p, hsa-miR-139-5p, hsa-miR-150-5p, hsa-miR-195-5p, and hsa-miR-199a-5p were associated with HCC by previous studies (30–38).




Figure 3 | Tumorigenesis-associated dysregulated ncRNAs in HCC. The expression patterns of lncRNAs, circRNAs, and miRNAs are displayed in (A-C). The red and blue points represent up- and downregulated ncRNAs in HCC. The solid points were also detected to be differentially expressed in the independent dataset. (D) The normalized expression levels of each of the top 10 ncRNAs by differential expression analysis, which are separated by three panels. HCC and para-cancerous samples were clustered by hierarchical clustering analysis, and are represented by the red and purple band on the top. The expression patterns of circRNA (hsa_circ_0000268) and lncRNA DUXAP10 in blood exosomes of HCC and healthy donors are displayed in (E, F).



We then conducted hierarchical clustering analysis to obtain the systematic comparison of ncRNA expression levels across different samples. Using each of the top 10 ncRNAs, HCC tissues were clustered into the same branch, and the para-cancerous tissues were clustered in the other branch, indicating that the ncRNAs could clearly distinguish cancerous from para-cancerous tissues (Figure 3D). To determine whether these ncRNAs were present in HCC blood exosomes, we investigated their expression patterns in the blood exosomes of 21 HCC and 32 healthy donors from the publicly available RNA-seq dataset (see Materials and Methods).

Notably, one upregulated circRNA hsa_circ_0000268 (cZRANB1) in HCC was also expressed in the exosome of HCC patients higher than the healthy donors (Figure 3E, p-value = 0.01). Moreover, the lncRNA DUXAP10 was also highly expressed in the exosome of HCC patients as compared with healthy controls (Figure 3F, p-value = 4.18e-5). In addition to potentially promoting HCC tumorigenesis, the two upregulated ncRNAs, especially the lncRNA DUXAP10, in the exosome of HCC patients may also be potential diagnostic biomarkers for HCC. The results suggested that the dysregulated ncRNAs in HCC may not only contribute to the tumorigenesis, but also have the potential to be diagnostic biomarkers for HCC.



Identification of dysregulated ncRNAs in HCC subclasses

Hoshida et al. (39) defined three robust HCC subclasses (termed S1, S2, and S3) based on a meta-analysis of gene expression profiles in datasets from eight independent patient cohorts. We classified 8 HCCs in this study and another 20 HCCs in the independent dataset into three subclasses (S1, S2, and S3) with 10, 6, and 12 cases based on the expression patterns of 619 signatures (Materials and Methods). We then performed differential expression analysis to identify dysregulated ncRNAs for each subclass (Figures 4A, B, adjusted p-value <0.25 and fold change >2 or < 1/2, Materials and Methods).




Figure 4 | The subclass-associated dysregulated ncRNAs in HCC. The upregulated (A) and downregulated (B) ncRNAs in Hoshida subclasses. (C) Co-expression-based GSEA for DLX6-AS1. The highly correlated genes with DLX6-AS1 are significantly enriched in the gene set from regulation of nuclear beta-catenin signaling and target gene transcription. The expression patterns of MIR146A (D) and hsa-miR-146a-5p (E) in Hoshida subclasses. The miRNA host gene, MIR146A, and its derived miRNA, hsa-miR-146a-5p, are upregulated in the S1 subclass. (F) The hsa_circ_0007099 is downregulated in the S2 subclass.



As described by Hoshida et al. (39), S1 is a subclass with a more invasive/disseminative phenotype. We observed that DLX6-AS1, an antisense RNA of DLX6, was highly expressed in S1. A previous study (40) found that DLX6-AS1 was highly expressed in lung adenocarcinoma, and knockdown of DLX6-AS1 could significantly decrease the mRNA and protein expression of DLX6. Accordingly, high correlation (Pearson correlation coefficient, PCC > 0.8) between DLX6-AS1 and DLX6 was observed in HCC and para-cancerous tissues, suggesting that DLX6-AS1 may cis-regulate DLX6 transcription in HCC. Co-expression-based GSEA revealed that DLX6-AS1 was co-expressed with genes involved in the regulation of nuclear beta-catenin signaling and target gene transcription (Figure 4C), such as SALL4, ZCCHC12, and BCL9, suggesting that DLX6-AS1 may participate in beta-catenin-induced gene transcription in HCC.

Notably, the lncRNA MIR146A and its derived miRNA hsa-miR-146a-5p were significantly upregulated in the S1 subclass (Figures 4D, E), indicating that MIR146A may function via promoting the transcription of their derived miRNAs. To our knowledge, most of the subclass-related dysregulated circRNAs have not been reported previously. Exceptionally, hsa_circ_0007099, which was downregulated in S2, was reported to be downregulated in gastric cancer (41) (Figure 4F). As characterized by Hoshida et al. (39), MYC and PI3K/Akt activations were the features of subclass S2, which may be inversely associated with hsa_circ_0007099. In summary, the subclass-associated dysregulated ncRNAs may participate in some signaling pathways specifically activated or inactivated in a certain subclass, and were strongly associated with some clinical characteristics.



Identification of functional ncRNAs by constructing ceRNA network

From the systematic analysis above, we identified 1,598 dysregulated lncRNAs and 284 circRNAs; however, for most of them, their functionality remained unknown. To identify the functional ncRNAs responsible for HCC tumorigenesis or progression, we predicted the potential regulatory network involving lncRNAs, circRNAs, miRNAs, and mRNAs, namely, ceRNA (competing endogenous RNA) networks. As ceRNAs could regulate mRNAs by competing for the shared miRNAs, we firstly predicted the miRNA binding sites of the dysregulated ncRNAs using miRanda. Secondly, the predicted and experimentally validated mRNA–miRNA interactions were obtained from TargetScan (42) and miRTarBase (43) databases, respectively. With the threshold at −0.4 for the correlation coefficient between miRNA and target, we successfully predicted 152,881 lncRNA–miRNA pairs, 2,063 circRNA–miRNA pairs, and 8,056 mRNA–miRNA pairs, respectively.

To model the ceRNA network, we performed the hypergeometric test combined with co-expression to predict the ncRNA–miRNA–mRNA regulatory relationships. Finally, we predicted 219 lncRNA–mRNA pairs and 31 circRNA–mRNA pairs (Supplementary Table 3). Notably, the circRNA cZRANB1 (hsa_circ_0000268), which was identified as a miRNA sponge by a previous study (44), shared five miRNAs, including hsa-let-7a-5p, hsa-let-7c-5p, hsa-miR-26a-5p, hsa-miR-125b-5p, hsa-miR-195-5p, and hsa-miR-497-5p, with HMGA1 (Figure 5A). In particular, cZEANB1 was upregulated in both HCC tissues and exosomes. HMGA1 has been found to associate with tumor invasion in several cancers (45–48), which was also observed in HCC based on its significantly positive correlation with MMP9 (PCC > 0.6). The results indicated that cZRANB1 may promote tumor invasion by competing for the miRNAs with HMGA1, thereby increasing the expression level of HMGA1.




Figure 5 | The ceRNA networks for dysregulated ncRNAs. The schematic diagrams for the cZRANB1, LINC00501/CTD-2008L17.2, and SLC7A11-AS1 are displayed in (A-C). The round, rhombus, rectangle, and rhomboid symbols represent the circRNAs, lncRNAs, mRNAs, and microRNAs, respectively. The symbols filled with red or blue color represent up- or downregulated in HCC.



For the lncRNA–mRNA pairs, we noticed that two lncRNAs, LINC00501 and CTD-2008L17.2, which were overexpressed in S2 subclass, may compete for miRNAs with LIN28B (Figure 5B). As described above, the S2 subclass was characterized by activation of MYC and the PI3k/Akt pathway, and the ceRNA network may be associated with these activations. In particular, the shared miRNAs belonged to the let-7 family, which function as tumor suppressor in several cancers (49, 50). Interestingly, LIN28B could also suppress the biogenesis of miRNAs including let-7 family miRNAs (51), indicating that LINC00501, CTD-2008L17.2, let-7 family miRNAs, and LIN28B constituted a complex regulatory network.

Furthermore, we also observed that SLC7A11-AS1 was predicted to regulate the driver gene CCNE1 by competing for the miRNAs, including hsa-miR-125b-5p, hsa-miR-195-5p, hsa-miR-497-5p, hsa-miR-4524a-5p, and hsa-miR-26b-5p (Figure 5C). It should be noted that the shared miRNAs were significantly downregulated, and were inversely correlated with both CCNE1 and SLC7A11-AS1. Based on the analyses, the predicted ceRNA networks provided some evidence about the post-transcriptionally regulatory roles of the ncRNAs in HCC.



Prognostic significance of the dysregulated lncRNAs

To our knowledge, there were no publicly available HCC circRNA expression datasets with clinical characteristics. Moreover, the associations between miRNAs and HCC prognosis have been extensively studied (52–55). Therefore, we only tested the prognostic significance for both tumorigenesis- and subclass-associated dysregulated lncRNAs based on two approaches. Firstly, we evaluated their associations with overall survival in the TCGA cohort (56). However, only 686 of 1,598 dysregulated lncRNAs were detected in the TCGA gene expression dataset due to different gene annotation versions, 68 of which were significantly associated with the HCC overall survival (p-value < 0.05), indicating that these lncRNAs had the potential to predict HCC overall survival. Secondly, to further test the prognostic significance of the dysregulated lncRNAs, especially the undetected lncRNAs in the TCGA cohort, we collected 86 HCC samples from four other independent RNA-seq datasets. Combined with the 28 samples used for ncRNA detection and quantification in our study, 69 of the 114 HCC samples were classified into poor or good prognosis subgroup based on the survival-associated genes by Lee et al. (57) (Materials and Methods, FDR < 0.05). Differential expression analysis was thus performed on the lncRNA expression. Finally, 498 dysregulated lncRNAs were identified as differentially expressed lncRNAs between HCC samples with poor and good prognosis (FDR < 0.05 and fold change >2 or < 1/2).

Notably, CTD-2008L17.2, which may compete for let-7 family miRNAs with LIN28B, was negatively associated with patient’s survival time in the univariate survival analysis of the TCGA dataset (Figure 6A). Twenty-nine lncRNAs were associated with the HCC prognosis based on the two approaches (Figure 6C), of which, AC068196.1, upregulated in S2 subclass, was the lncRNA most significantly associated with HCC survival (Figures 6B, C). In addition, 313 of the undetected lncRNAs in the TCGA dataset were also closely associated with HCC prognosis based on the comparison of their expression levels between HCC with poor and good prognosis. Interestingly, DUXAP10, the potential HCC diagnostic biomarker in HCC blood exosomes, was also overexpressed in HCC samples with poor prognosis (FDR < 0.05), suggesting that the expression of this lncRNA in exosome may be used to predict patient’s prognosis with validation from further clinical studies. The prognostic analysis based on the two approaches further demonstrated that the functional ncRNAs had the potential to predict patient’s survival.




Figure 6 | Clinical associations between dysregulated ncRNAs and HCC prognosis. The Kaplan–Meier curves show significant overall survival between HCC samples with high and low expression of CTD-2008L17.2 (A) and AC068196.1 (B). (C) The 29 dysregulated lncRNAs that are significantly associated with HCC prognosis by both survival analysis of the TCGA dataset and differential expression analysis of HCC samples with good and poor prognosis from six HCC datasets.






Discussion

The molecular basis of HCC about protein-coding genes has largely been studied in the context of tumorigenesis, progression, and metastasis. Despite extensive research about the function of protein-coding genes in HCC, the lack of effective biomarkers for HCC diagnosis or prognostic prediction is still not thoroughly solved. Meanwhile, a majority of non-coding RNAs are characterized to act as cancer driver RNAs, and understanding their deregulation and regulatory roles can facilitate the development of new diagnostic or therapeutic strategies.

To our knowledge, this is the first study utilizing NGS data to simultaneously characterize the dysregulated mRNAs, lncRNA, circRNAs, and miRNAs in HCC and matched para-cancerous tissues. We successfully predicted some novel circRNAs and miRNAs, and quantified their expression levels based on RNA and small RNA sequencing data. The independent dataset validated about ~70% novel circRNAs and miRNAs, and more than 60% dysregulated tumorigenesis-associated ncRNAs, which demonstrated that the data analysis strategies were robust and the predicted novel ncRNAs were highly reliable. Remarkably, the expression levels of circRNA ZRANB1 and lncRNA DUXAP10 that were upregulated in HCC tissues were also observed higher in the blood exosomes of HCC than healthy donors. With the more comprehensive assessment by further experimental and clinical validation, the two ncRNAs may be used for HCC diagnosis.

As the HCC subclasses were well characterized by Hoshida et al., the subclass-associated ncRNAs could be directly linked to HCC clinical characteristics and the activated or inactivated pathways. With the well-characterized clinical phenotypes and dysregulated pathways for the HCC subclasses, we could easily speculate the impact of the dysregulated ncRNAs on HCC tumorigenesis or progression.

Nowadays, more and more studies uncovered the biological function or pathways that some ncRNAs may participate in; however, for most of them, their function still remained unknown. To further uncover the potential regulatory ncRNAs at the post-transcriptional level, we built ncRNA–miRNA–mRNA interaction networks. Non-coding RNAs, including cZRANB1, LINC00501, CTD-2008L17.2, AC092171.4, and SLC7A11-AS1, were identified as functional ncRNAs that competed for the shared miRNAs with mRNAs, and were predicted to be involved in HCC tumorigenesis or progression. In particular, cZRANB1 was upregulated in both HCC tissues and exosomes. The prognostic association analysis highlighted that CTD-2008L17.2, a potential miRNA sponge, and DUXAP10, a potential diagnostic biomarker in HCC exosome, were closely associated with HCC prognosis.

Even though this preliminary study provides an abundant data resource of non-coding RNAs in HCC, the lack of further experimental verification is the major limitation of this study. The systematic analysis revealed that the ncRNAs could function as oncogenic or tumor-suppressive RNAs by regulating gene transcription, post-transcription processes, or other mechanisms, some of which may be used as HCC diagnostic or prognostic biomarkers. Although further characterizing the molecular mechanism of the ncRNAs is extremely essential, our data analysis still provided the hint of how the dysregulated ncRNAs were involved in HCC tumorigenesis or progression for further studies, and novel insights into cancer biology.



Conclusions

In this study, we identified some novel circRNAs and miRNAs that were validated in the independent dataset. Systematic analysis identified dysregulated ncRNAs that participate in HCC tumorigenesis and progression by inducing transcription of their neighboring genes, increasing their derived miRNAs, or acting as miRNA sponges. Remarkably, two upregulated ncRNAs in the blood exosomes of HCC may be potential diagnostic biomarkers. The ncRNAs competing for miRNAs with mRNAs may be key regulators in HCC, which improved our understanding of the mechanisms about HCC tumorigenesis or progression. Moreover, the prognostic association analysis revealed that the dysregulated ncRNAs with key regulatory roles may also have the potential to predict HCC patients’ prognosis. In summary, our systematic analysis provides not only rich data resources for related researchers, but also new insights into the molecular basis of how different ncRNAs coordinately or antagonistically participate in the pathogenesis process of diseases.



Materials and methods


Patient samples

Eight pairs of cancerous and para-cancerous tissues of HCC were obtained from the Department of Hepatopancreatobiliary Surgery (in 2013), the First Affiliated Hospital of Zhejiang University (Hangzhou, China), and were frozen at −70°C.The diagnosis of HCC was confirmed by postsurgery pathology. This project was approved by the Human Research Ethics Committee of the First Affiliated Hospital of Zhejiang University. Prior to surgery, the patients were not treated with anticancer therapy.

All of the eight patients had a history of chronic hepatitis B (CHB), and a single tumor in the liver, without extrahepatic metastasis. Three patients were complicated with alcoholic liver diseases (ALDs), and another three patients had portal vein tumor thrombosis (PVTT) (Table 1).


Table 1 | Clinical information of HCC patients.



All procedures in the experiment were in agreement with the ethical principles. Patients involved in this study have been informed and signed consent before collection of samples, and the data (which do not involve personal information) related to patients were completely anonymous.



RNA extraction and sequencing

Total RNAs from HCC and para-cancerous tissues were extracted using TRIzol following the manufacturer’s protocol. For the preparation of RNA-Seq libraries, total RNA was treated with the Ribo-Zero rRNA Removal Kit to remove rRNA according to the manufacturer’s instructions. Standard protocols recommended for small RNA-seq (Illumina TruSeq Small RNA) were used. RNA and small RNA sequencing libraries for the Illumina Hiseq 2000 platform were constructed according to the manufacturer’s instructions (Illumina).



RNA-seq read mapping, ncRNA detection, and quantification

One hundred-base-pair paired-end reads were mapped to UCSC human reference genome (GRCH37/hg19) using HISAT2 (58) version 2.0.5 with gene models from GENCODE v19 and default options. The SAM format files were compressed and sorted by samtools (59) version 1.3.1. transcripts were quantified by StringTie (60) v1.2.4 at count-based levels. The circRNA was predicted and quantified by CIRI2 (61) based on the alignment by BWA (62). The small RNA-seq data were preprocessed by Trimmomatic (63), and the miRNA prediction and quantification were implemented by miRDeep2 (26). The genes or ncRNAs, which are expressed (read count > 5) in at least 20% of samples, were retained for further analysis. The count-based expression matrix was used for differential expression analysis. The count-based expression values were normalized by a regularized log transformation in DESeq2 (64).



Differential expression analysis

The count-based expression levels of lncRNAs, mRNAs, circRNAs, and miRNAs were respectively analyzed by DESeq2 (64), which performed differential expression analysis based on negative binomial distribution.



Pathway enrichment analysis

The enrichment analysis was implemented in GSEA Java software (65). Pathway database was downloaded from MsigDB (http://software.broadinstitute.org/gsea/index.jsp). We only retained canonical pathways curated by KEGG (66) and NCI-PID (67) for enrichment analysis.



Cox regression-based survival analysis

The survival analysis based on the Cox regression model was implemented in R with packages survival and survcomp. The comparison of survival curves for high- and low-expression groups was performed using the G-rho family of tests with survdiff function.



Collection of independent datasets and identification of prognostic lncRNAs

We collected 106 HCC samples from five independent RNA-seq datasets, with accession numbers SRP039694 (68), SRP050551 (69), SRP062885 (70), SRP068976 (71), and SRP069212 (29) from the SRA (Sequence Read Archive, https://www.ncbi.nlm.nih.gov/sra) database. In particular, the RNA library of the SRP069212 dataset was constructed with the rRNA depletion protocol and small RNA data with accession number SRP068498, which was used to validate the detection and dysregulation of lncRNAs, circRNAs, and miRNAs. In addition, the accession numbers for RNA-seq data of the blood exosomes from HCC and healthy donors were SRP109668 and SRP109666. We adopted the same method to analyze the RNA-seq data of the blood exosomes and detect ncRNAs in blood exosomes.

To identify prognostic lncRNAs, the 106 HCC samples were classified into poor and good prognostic subgroups by the NTP algorithm (72). The survival signatures were obtained from the previous study by Lee et al. (57). The differential expression analysis was conducted between HCC samples with poor and good prognosis to identify the prognostic lncRNAs.



MiRNA–target prediction

MiRNA binding sites of lncRNAs and circRNAs are predicted by miRanda (73) with strict mode, that is, miRNA–target demands strict 5’ seed pairing. Moreover, the miRNAs and targets should be dysregulated with opposite directions; for example, if the miRNA is upregulated in tumor, its target gene should be downregulated in tumor, and vice versa. In addition, the interactions of mRNAs and miRNAs were downloaded from the miRTarBase database (43) (http://mirtarbase.mbc.nctu.edu.tw/php/index.php), which curated the experimentally validated microRNA–target interactions, and TargetScan (42) databases. A ceRNA network was constructed based on the hypergeometric test (p-value < 1e-6), the correlation between lncRNA/circRNA and mRNAs (>0.6), and the number of shared miRNAs (>4).
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