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Proteomic Response of Rat Pituitary
Under Chronic Mild Stress Reveals
Insights Into Vulnerability and
Resistance to Anxiety or Depression
Fenfang Tian1†, Dan Liu1†, Jin Chen1,2†, Wei Liao1, Weibo Gong1, Rongzhong Huang3,4,
Liang Xie1,5*, Faping Yi1* and Jian Zhou1*

1Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China, 2Department of Neurology,
The First Affiliated Hospital of Nanchang University, Nanchang, China, 3Statistics Laboratory, ChuangXu Institute of Life Science,
Chongqing, China, 4Chongqing Institute of Life Science, Chongqing, China, 5Department of Neurology, The Second Affiliated
Hospital of Nanchang University, Nanchang, China

Chronic stress as one of the most significant risk factor can trigger overactivity of
hypothalamic-pituitary-adrenal (HPA) axis in depression as well as anxiety. Yet, the
shared and unique neurobiological underpinnings underlying the pituitary abnormality in
these two disorders have not been made clear. We previously have established
depression-susceptible, anxiety-susceptible and insusceptible groups using a valid
chronic mild stress (CMS) model. In this work, the possible protein expression
changes in the rat pituitary of these three groups were continuously investigated
through the use of the comparative quantitative proteomics and bioinformatics
approaches. The pituitary-proteome analysis identified totally 197 differential proteins
as a CMS response. These deregulated proteins were involved in diverse biological
functions and significant pathways potentially connected with the three different
behavioral phenotypes, likely serving as new investigative protein targets. Afterwards,
parallel reaction monitoring-based independent analysis found out that expression
alterations in Oxct1, Sec24c, Ppp1cb, Dock1, and Coq3; Lama1, Glb1, Gapdh,
Sccpdh, and Renbp; Sephs1, Nup188, Spp1, Prodh1, and Srm were specifically
linked to depression-susceptible, anxiety-susceptible and insusceptible groups,
respectively, suggesting that the same CMS had different impacts on the pituitary
protein regulatory system. Collectively, the current proteomics research elucidated an
important molecular basis and furnished new valuable insights into neurochemical
commonalities and specificities of the pituitary dysfunctional mechanisms in HPA axis
underlying vulnerability and resistance to stress-induced anxiety or depression.

Keywords: anxiety, chronic mild stress, depression, proteome, rat pituitary

INTRODUCTION

Anxiety and depression are two severe and chronic neuropsychiatric illnesses. The prevalences of
these disorders are increasing, potentially representing a significant clinical challenge. Mounting
evidence suggests that many risk factors are shared between the anxiety and depression disorders
such as chronic life stress (Krishnan et al., 2007; Zhou et al., 2016; Jefferson et al., 2020). Chronic
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stress can result in the adverse health impacts when it increases
beyond a certain level, thereby causing anxiety and depression
(Chang and Grace, 2014; Tian et al., 2020). However, many
individuals can manage the psychological and physical effects
of the stressful situations and do not have the disease symptoms
(Henningsen et al., 2012). To model the adverse environment
factors that affect humans, chronic mild stress (CMS) protocol
has been commonly employed to induce anxious-like and
depressive-like behaviors in rodent animals (Chang and Grace,
2014; Zhou et al., 2016). To identify the potential biological
relationships between CMS and pathological changes, it may
be useful to focus on the neurobiological components and
processes reflecting adaptive and maladaptive responses to the
stress-caused anxiety and depression.

Generally, the clinical symptoms of anxiety and depression are
different. However, they are frequently presented simultaneously
(Liu et al., 2021; Thorp et al., 2021). Importantly, there are lots of
overlaps with respect of the pathophysiology and comorbidity of
these two disorders. Considerable data in many clinical and
animal researches are usually mixed, thereby confusing our
knowledge of the underlying causes and effects of anxiety and
depression (Chiba et al., 2012; Lucassen et al., 2016; Oh et al.,
2020). In recent years, researchers have attempted to separately
investigate non-comorbid individuals to unravel the specificities
and commonalities of the two disorders (Lotan et al., 2014;
Hamilton et al., 2015; Zhao et al., 2017; Chen et al., 2018).
Many studies have demonstrated that the activity of
hypothalamic-pituitary-adrenal (HPA) axis is perturbed in
these stress-related disorders (Borrow et al., 2016; Delvecchio
et al., 2017; Lee and Rhee, 2017). As an integral part of the HPA
axis, the pituitary synthesizes and secretes a variety of hormones
to mediate a series of biological functions (Yelamanchi et al.,
2018). It may be one of the areas most impacted by stress
dysregulation in anxiety and depression (Stelzhammer et al.,
2015). An increase in the size of the pituitary has also been
found in subjects with depression and anxiety through magnetic
resonance imaging (Tsigos and Chrousos, 2002; Lorenzetti et al.,
2009; Krishnamurthy et al., 2017). To some extent, this reflects an
increase in the size and number of corticotropin-releasing
hormone (CRH) cells that produce and secrete higher levels of
hormones, such as CRH and adrenocorticotrophic hormone
(ACTH) (Tsigos and Chrousos, 2002; Krishnamurthy et al.,
2017). Despite the morphological and functional abnormalities
of the pituitary have been implicated in stress-related anxiety and
depression, the corresponding neurobiological molecular basis
may remain difference and need to be extensively explored.

Our previous study has demonstrated the three different
subpopulations induced by CMS including depression-
susceptible (Dep-Sus), anxiety-susceptible (Anx-Sus), and
insusceptible (Insus) groups and carried out the comparative
proteomic analysis of the rat hippocampal tissues (Tang et al.,
2019). In this work, the pituitary tissues from the identical batch
of CMS-exposed rats were used to continuously study stress-
caused anxiety and depression (Tang et al., 2019). A proteomic
approach based on isobaric tags for relative and absolute
quantitation (iTRAQ) was utilized to gain unbiased profiling
data. Enrichments of Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses were
conducted to analyze the main function and the significant
pathways of the identified abnormally-expressed proteins. The
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) database and Cytoscape were employed to map
protein-protein interaction (PPI) networks. The results help
elucidate commonalities and differences of the complex
molecular mechanisms that underlie stress resistance and
stress-caused anxiety or depression.

METHODS

Animals and Ethics Statement
Healthy adult male Sprague-Dawley rats (weight, about 250 g;
Animal Center of Chongqing Medical University) were used in
the present study. All the rats were individually housed in
standard laboratory conditions (55 ± 5% relative humidity, 12/
12 h light/dark cycle, 21–22°C) with ad libitum feeding. The study
protocol was approved by the local Ethics Committee (2017013).
All animals were treated according to the National Institutes of
Health protocols for the use and care of laboratory animals.

CMS Rat Model
As previously described (Tang et al., 2019), the 8-weeks CMS
protocol was employed to build the rat model. Following
exposure to the CMS, the stressed rats were divided into the
three groups: 1) Dep-Sus group [assessed by sucrose preference
(SP) test and forced swimming (FS) test]; 2) Anx-Sus group
[assessed by elevated plus-maze (EPM) test]; and 3) Insus group.
Additional non-handled rats acted as the control (Ctrl) group.
For a more detailed description, please refer to our previous study
(Tang et al., 2019).

Tissue Isolation and Lysis
After the behavioral assessment, the animals were anesthetized
and decapitated and their whole brains were carefully removed on
ice. The pituitary tissue was isolated from the rat brain and frozen
rapidly in liquid nitrogen and then stored at −80°C in a
refrigerator prior to use. For protein extraction, a sample of
the pituitary of each animal was added to an SDT buffer
composed of 4% SDS, 0.1 M dithiothreitol, 0.1 M Tris–HCl,
pH 8.0, and protease inhibitors. The tissues were homogenized
and lyzed, the extracted proteins were boiled for 5 min. After
centrifugation at 4°C and 40,000 × g for 15 min, the supernatants
were collected and the protein concentrations were quantified
using Pierce bicinchoninic acid assay kit.

Digestion of Pituitary Proteins and iTRAQ
Labeling
Following our previously described procedure (Gong et al., 2021),
the protein samples were in parallel digested using filter-aided
sample preparation (FASP). In this method, an ultrafiltration
filter (10 kD cutoff) was used for effective digestion. In brief, UA
buffer (8 M urea, 0.15 M Tris-HCl, pH 8.0) was added to each
sample. The sample was transferred to an ultrafiltration
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centrifuge tube and then centrifuged, and washed again with UA
buffer. Subsequently, 0.05 M iodoacetamide in UA buffer was
added to the filter. The protein mixture was incubated and
alkylated for 30 min at room temperature in the dark. The
filter unit was centrifuged and then washed twice with UA
buffer. Finally, trypsin solution was added and digested at
37°C overnight. The resulting peptides were collected as a
filtrate and then dried in a Speed Vac.

High-pH Reversed-Phase Liquid
Chromatography (RPLC) Fractionation and
Liquid Chromatography-Tandem Mass
Spectrometry (LC-MS/MS)
The tryptic peptides were labeled with eight-plex iTRAQ reagents
according to the protocol of the manufacturer. The reagents
113–121 were used to label the eight samples from the three
stressed and the Ctrl groups, as depicted in Figure 1A. Each used
sample was obtained from 2 to 3 rats in each group (Lenselink
et al., 2015). Subsequently, the eight labeled samples were pooled

and preliminarily separated using high-pH RPLC. Briefly, the
peptides were dissolved with buffer A (5% acetonitrile, 0.01 M
ammonium formate, pH 10.0) and fractionated through linear
elution in a gradient of 5–38% buffer B (90% acetonitrile (ACN),
0.01 M ammonium formate, pH 10.0) for 80 min at 300 μL/min.
A total of sixteen fractions were collected, desalted and dried for
the subsequent LC-MS/MS analysis.

The peptides in each fraction were re-dissolved in 0.1% formic
acid, and delivered into Thermo Scientific Easy-nLC 1200 system
coupled with a nanoViper C18 trap column (3 μm, 100 Å). The
peptide mixtures were trapped and then desalted using 100%
solvent A (0.1% formic acid). Afterward, the peptides were eluted
with 8–38% solvent B (80% ACN/0.1% formic acid) for 50 min,
and separated with an analytical column (50 μm × 150 mm,
3 μm-C18 100 Å). Q-Exactive Orbitrap mass spectrometer
equipped with a Nano Flex ion source (ThermoFisher) was
used for the MS analysis (interface heater temperature, 275°C;
ion spray voltage, 1.9 kV). The tandem MS data were acquired
through the use of a data-dependent acquisition mode along with
full MS scans. The acquisition range was 350–1,200 m/z for the

FIGURE 1 | Comparative analysis of the pituitary proteomic response of the rats under chronic mild stress (CMS). (A) Schematic representation of quantitative
proteomics analysis of the control (Ctrl), depression-susceptible (Dep-Sus), anxiety-susceptible (Anx-Sus) and insusceptible (Insus) groups. (B) Volcano plot of the
protein expression changes in the three groups. In volcano plot, the red plot represented up-regulated proteins, and the blue plot represented down-regulated proteins.
The x-axis shows the log2-transformed average fold change. The y-axis shows the negative log10-transformed p-value.
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MS1 and 110–1,200 m/z for the MS2. For the information
acquisition, survey scans were acquired in 250 ms and up to
14 product ion scans (50 ms) were collected. Those MS spectra
along with charge state 2–4 were selected and subjected to
fragmentation using higher-energy collision dissociation, and
dynamic exclusion for selected precursor ions was set to 25 s.

Protein Identification and Quantification
Raw files were processed and searched using the Sequest HT
search engine embedded into Proteome Discoverer software 2.1
(ThermoFisher) against the UniProt Rat database. The
following search parameters were set: monoisotopic mass
values, fragment mass tolerance at 0.05 Da and precursor
mass tolerance ± 10 ppm, trypsin as the enzyme, and
allowing up to 2 missed cleavages. Fixed modifications were
defined as iTRAQ labeling and carbamidomethylation of Cys;
Oxidation on Met, acetylation on protein N-term, deamidation
on Asn and Gln, and Pyro-Glu were specified as a variable
modification. The decoy database pattern was set as the reversed
version of the target database. All reported data were based on
99% confidence for peptide identification as determined by a
false discovery rate (FDR) of lower than 1%. Relative ratios of
identified peptides among labeled samples were computed using
relative peak intensities of released iTRAQ reporter ions in each
of the MS/MS spectra, and introduced into Excel spreadsheet for
manual treatment. Then, the ratios of all identified proteins
were analyzed via a two-tailed Student’s t-test. Those proteins
with 1.2-fold expression alterations and p-values lower than
0.05 could be considered as significantly different. The raw data
have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the iProX
partner repository with the dataset identifier PXD025429 (Ma
et al., 2019).

Bioinformatics
GO analyses including biological processes (GO-BP), molecular
functions (GO-MF), and cellular components (GO-CC) were
conducted through the use of the OmicsBean tool (http://
www.omicsbean.cn/). KEGG (http://www.genome.jp/kegg/) was
used to identify the significant pathways with p-values of lower
than 0.1 following the previously described procedure (Yu et al.,
2017). Moreover, the STRING database and Cytoscape were used
to construct PPI networks following the previously reported
protocol (Gong et al., 2021).

Parallel Reaction Monitoring (PRM) MS
Assay
Following the iTRAQ-based proteomics experiment, extraction
and digestion of the pituitary proteins were performed. The
resulting peptides were analyzed using the Q-Exactive
Orbitrap mass spectrometer. A normalized collision energy of
28 was used for the fragmentation of the peptides, and the
resulting fragments were analyzed at a resolution of 35,000.
The acquired raw data were analyzed via the Proteome
Discoverer tool. The MS data were further processed using the
analysis software Skyline 19.1 (ThermoFisher). The statistical

analysis of the data were performed using Student’s t tests of SPSS
software. The data were presented as means ± standard error
(SE). The difference was considered to be statistically significant
when p-values lower than 0.05.

RESULTS

iTRAQ-Based Proteomics Analysis of the
Rat Pituitary Under the CMS
In the present work, our used pituitary tissue samples were from
the identical batch of the stressed animals in our recently
published paper (Tang et al., 2019). Briefly, the stress-induced
depressive-like behavior including anhedonia and behavioral
despair were firstly assessed through the use of the SP and FS
tests. Meanwhile, we also utilized the EPM test for indexing the
anxious-like symptom. Based on these testing data, a subset of the
Dep-Sus, Anx-Sus, Insus, and Ctrl groups was finally obtained.
Overall, these results indicated that we could effectively utilized
the CMS model to investigate the neurobiological processes
associated with the resistance and vulnerability of stress-
related anxious or depressive disorders.

Next, we investigated the effects of CMS on the expression of
the rat pituitary proteins through the use of iTRAQ-based
quantitative proteomics analyses (Figure 1A). In this
experiment five animals per group were used, and the
pituitary proteins from 2 to 3 rats were equally pooled for
each sample (Lenselink et al., 2015). Matching to the UniProt
database, within the Ctrl, Dep-Sus, Anx-Sus and Insus groups,
totally 3,601 non-redundant proteins were identified and
quantified based on the FDR lower than 0.01. The iTRAQ-
based protein expressions that changed greater than 1.2-fold
and p-values lower than 0.05 versus the values for the Ctrl
group were deemed to be significantly different. Overall, 197
proteins were found to exhibit a significant differential expression
in the three groups (Supplementary Table S1). Here, the
proteome profile of the pituitary was contrasted with that of
the hypothalamus from our previous work (Gong et al., 2021)
(Supplementary Figure S1). Despite the profile of hypothalamus
and pituitary was similar based on a 60–70% overlap of the total
quantified proteins, the differential protein sets in each area
exhibited considerably divergent. This suggested that there
were different proteome responses to stress in these two areas.

Functional and Network Characterization of
CMS-Responsive Differential Proteins
The pituitary site-specific proteome signature of the CMS-
exposed rats unraveled 37 downregulated and 32 upregulated
proteins in the Dep-Sus group, 44 downregulated and 26
upregulated proteins in the Anx-Sus group, and 44
downregulated and 68 upregulated in the Insus group
(Figure 1B). In the two stress-susceptible cohorts, 30 proteins
were seen to be similarly deregulated, potentially representing the
commonality of stress-induced anxiety and depression. Among
the susceptible and the insusceptible groups, 27 similarly
deregulated proteins were seen and might sever as a
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consequence of stress exposure (Figure 2A). To sum up, as many
as 78% of these deregulated proteins were uniquely connected
with the three phenotypes, which demonstrated that the three
stressed cohorts had specific protein expression disturbances as a
response of stress. Further, based on the unsupervised
hierarchical clustering analysis, the expression profile of the
197 deregulated proteins were divided into three different
units, to some extent suggesting the three specific CMS
responses (Figure 2B).

We carried out GO classification and pathway enrichment of
the deregulated proteins through the use of the OmicsBean
software, for a better understanding of the significant protein
functions and biological pathways correlated with the three
behavioral phenotypes. The 69 deregulated proteins in the
Dep-Sus group were subjected to enrichment analyses of the
GO and KEGG pathways. Total 377, 85, 82, and 9 terms in the
GO-BP, GO-CC, GO-MF, and KEGG pathways were
significantly overrepresented (Supplementary Table S2). The
ten top enriched GO terms are shown in Figure 3A.
According to the GO-BP annotations, many deregulated
proteins were associated with acute-phase and inflammatory
responses, tRNA modification and processing, interferon-
alpha, type 1 interferon and protein secretion and regulation.
The GO-CC annotations showed that these differential proteins
were mainly located in blood microparticle, extracellular region
and organelle, and membrane-bounded organelle and vesicle.
According to the GO-MF annotations, most of proteins were
involved in enzyme inhibitor, peptidase inhibitor and regulator

activity, and RNA binding. In pathway enrichment analyses, the
deregulated proteins were mainly related to complement and
coagulation cascades, RNA transport, mRNA surveillance
pathway, synthesis and degradation of ketone bodies,
metabolism, apoptosis and SNARE interactions in vesicular
transport (Figure 3B).

At the same time, enrichments of GO annotations and KEGG
pathways of the 70 deregulated proteins in the Anx-Sus group
were carried out. There were 388 GO-BP, 84 GO-CC, 82 GO-MF,
and 9 KEGG pathway terms overrepresented. The top 10
enriched GO terms are indicated in Figure 3C. The GO-BP
annotations displayed that the majority of proteins were
associated with coagulation, hemostasis, and amino acid and
glutathione metabolic processes. According to the GO-CC
annotations, the differential proteins were mainly found in
membrane-bounded and intracellular organelle, protein,
supraspliceosomal and macromolecular complex, and
nucleoplasm and cytoplasm parts. The GO-MF annotations
indicated that most proteins were involved in enzyme activity,
protein and thyroid hormone receptor binding. According to
pathway enrichment analyses, the deregulated proteins were
primarily implicated in complement and coagulation cascades,
metabolism and biosynthesis, cytosolic DNA-sensing pathway,
and endocytosis (Figure 3D).

Afterwards, GO annotation and KEGG pathway enrichments
of the 115 deregulated proteins in the Insus group were also
conducted. There were 516 GO-BP, 116 GO-CC, 104 GO-MF,
and 10 KEGG pathway terms overrepresented. The top ten

FIGURE 2 | Analysis of the deregulated pituitary proteins identified in the depression-susceptible (Dep-Sus), anxiety-susceptible (Anx-Sus), and insusceptible
(Insus) groups. (A) Venn diagrams of the deregulated proteins in the three stressed groups. (B) Heatmap of the deregulated proteins in the three groups. Higher
expressions were indicated by red and lower by blue. The expression levels were shown with various color intensities. In the color bar the log2 scale was used.

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 7519995

Tian et al. Pituitary Proteomic Response to CMS

9

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 3 | Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments. The top ten enriched GO biological
process (GO-BP), cellular component (GO-CC) and molecular function (GO-MF) terms of the deregulated pituitary proteins from the depression-susceptible (Dep-Sus,
A), anxiety-susceptible (Anx-Sus, C) and insusceptible (Insus, E) groups were indicated. Meanwhile, the significantly overrepresented KEGG pathway terms from the
Dep-Sus (B), Anx-Sus (D), and Insus (F) groups were shown with underscores. The x-axis represented the negative log10-transformed p-value. (G) Venn diagram
displaying unique and common significantly-enriched pathways among the three groups.
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enriched GO terms are shown in Figure 3E. According to the
GO-BP annotations, most of the differential proteins were
involved in vesicle-mediated, cytosolic and endosomal transport
and regulation, localization and metabolic process, and GO-CC
category analysis showed that the majority of the deregulated
proteins located in the cytoplasmic and intracellular parts,
endomembrane system, organelle and endosome. The GO-MF
annotations predicted that most of the proteins were engaged in
vitamin, protein and ubiquitin binding, and enzyme and peptidase
regulator, SNAP receptor activities. The pathway enrichment
analyses uncovered that the deregulated proteins were mainly
enriched in SNARE interactions in vesicular transport,
endocytosis, ECM-receptor interaction, focal adhesion,
metabolism and biosynthesis, and GABAergic synapse (Figure 3F).

Interestingly, of these significantly-enriched KEGG pathways,
there were one shared terms among the three cohorts (Figure 3G).
Meanwhile, we could see the two common pathways between the
two susceptible cohorts. Importantly, the 6, 6 and 7 pathways were
seen to be uniquely related to the Dep-Sus, Anx-Sus and Insus

groups, respectively, potentially suggesting the three different
neurobiological response to the identical CMS.

Furthermore, we also focused on the proteome-inferred PPI
networks in the Dep-Sus, Anx-Sus and Insus groups, as shown in
Figures 4A–C. The PPI network maps of the three stressed
groups were built through the use of the deregulated proteins
correlated with the significant pathways. 29, 36, and 71
deregulated proteins were identified to be several important
factors based on the unified conceptual framework of the three
networks from the Dep-Sus, Anx-Sus and Insus groups,
respectively. As expected, these networks unraveled close
relationships between the deregulated proteins and the
significantly enriched pathways, thereby furnishing a useful
and valuable interactome unit connected with the three
different behavioral phenotypes.

PRM Analysis of CMS-Response Proteins
In this work, the PRM technique was used to further
independently validate nineteen abnormally-expressed proteins

FIGURE 4 | Protein–protein interaction (PPI) network and parallel reaction monitoring (PRM) analyses of the deregulated pituitary proteins of the three groups. The
PPI networks of depression-susceptible (Dep-Sus, A), anxiety-susceptible (Anx-Sus, B), and insusceptible (Insus, C) were built based on fold changes of protein
expression, PPIs and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments. Circular nodes represented proteins/genes and rectangles
represented KEGG pathway terms. Lower p-value was indicated in blue and higher p-value in yellow. (D) PRM analysis of the deregulated proteins in the three
stressed groups when compared to the control (Ctrl). Oxct1, Sec24c, Ppp1cb, Dock1, Coq3, Lama1,Glb1,Gapdh, Sccpdh, Renbp, Sephs1, Nup188, Spp1, Prodh1,
Srm, Ifih1, Vamp7, Arfgap3, and Ubqln4 were determined on the pituitary protein extracts of the rats. The relative abundance of target proteins among sample groups
were compared based on the abundance of the corresponding peptides. n � 5 per group, *p < 0.05, **p < 0.01.
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of interest involved in the significant biological functions and
pathways. On the whole, the PRM data mirrored the iTRAQ
results (Supplementary Figure S2). As illustrated in other
proteomics work (Abdi et al., 2006; Cheng et al., 2011; Xu
et al., 2012; Wu et al., 2019), some discrepancies existed
between the iTRAQ and PRM data. Except as the assay
difference of these two approaches, another probable reason
was the additional mixing step in the iTRAQ experiment (Xu
et al., 2012; Wu et al., 2019). Compared with the Ctrl group, the
expressions of Oxct1, Ppp1cb, Dock1, and Coq3 were significantly
down-regulated while Sec24c was up-regulated in the Dep-Sus
group; the expressions ofGapdhwas significantly down-regulated
whereas Lama1, Glb1, Sccpdh, and Renbp were up-regulated in
the Anx-Sus group; the expressions of Sephs1, Spp1, and Srmwere
significantly down-regulated whereas Nup188 and Prodh1 were
up-regulated in the Insus group (Figure 4D). In addition, the
expression level of Ifih1 was displayed to be significantly reduced
in both the Dep-Sus and Anx-Sus groups as compared to the Ctrl
group. The reduced level ofVamp7 in both the Dep-Sus and Insus
groups, and the elevated level of Arfgap3 and Ubqln4 in the three
stressed groups were observed as contrasted with the Ctrl group.

DISCUSSION

Chronic stress is the most major factor among many factors that
may cause psychiatric illnesses, including anxiety and depression
(Henningsen et al., 2012; Chang and Grace, 2014). This is largely
due to the means through which the stress affects the function of
the HPA axis (Tsigos and Chrousos, 2002). A valid CMS paradigm
was thus commonly employed to cause anxious-like and
depressive-like behaviors of rats (Henningsen et al., 2012;
Chang and Grace, 2014). Previously we constructed the CMS
model to gain the three different phenotypes (Dep-Sus, Anx-
Sus, and Insus) of the rats through assessment the behavior
performance (Tang et al., 2019). This stress model provided a
useful means for assay of common and specific neurochemical
characteristics of resistance and susceptibility to anxiety or
depression. Profiling the phenotype-related protein expressions
may lead to new molecular insights into translational research of
depression and anxiety.

To discover the phenotype-related protein deregulations, we
compared the expression of proteins in the pituitary of the rats
exposed to CMS using iTRAQ-based proteomics analyses. There is
a total number of 197 deregulated proteins found in the pituitary of
Dep-Sus, Anx-Sus, and Insus rats. The overlapped protein
deregulations between the Dep-Sus and Anx-Sus groups likely
reflected the shared protein expression patterns of anxiety and
depression. Those similar deregulations between the Insus and
Dep/Anx-Sus groups could be considered to be a general response
to CMS. Interestingly, the specifically deregulated protein
expressions in the three stressed cohorts suggested potential
differences among the stress-induced behavioral phenotypes.
The specific protein dysfunctional profiles were further
exhibited and evidenced through the use of the clustering analysis.

Subsequently, some potentially affected biological processes
and pathways in the pituitary tissue uniquely associated to stress-

induced depressive-like and anxious-like behaviors and stress
resistance were found through integrated analysis of the
proteomics and bioinformatics. The analysis of biological
pathways indicated that the deregulated proteins were
significantly enriched for complement and coagulation, ketone
bodies, vesicular transport, and metabolism dysfunctions in the
Dep-Sus group, complement and coagulation, metabolism and
endocytosis deregulations in the Anx-Sus group, and vesicular
transport, endocytosis, metabolism and synapse repercussions in
the Insus group. Importantly, many significant pathways were
found to be distinctly connected with the three phenotypes, which
reflected differences in active biological processes and events that
happened in these stressed cohorts. The further networkmapping
unraveled the protein deregulation systems and likely offered
some useful clues correlated with resistance and susceptibility to
stress-caused anxiety or depression.

In this work, we further utilized PRM-based quantitative
method to independently validate the nineteen abnormally-
expressed proteins involved with the remarkable biological
functions and pathways. The results indicated that Oxct1,
Sec24c, Ppp1cb, Dock1, and Coq3 were distinctly deregulated in
the pituitary of the Dep-Sus group, whereas Lama1, Glb1, Gapdh,
Sccpdh, and Renbp were distinctly deregulated in the Anx-Sus
group. These specific alterations suggested that the same stimuli
could lead to the different molecular response and
neurobiological processes in the pituitary, thereby triggering
the depression and anxiety behaviors. Meanwhile, we observed
that Sephs1, Nup188, Spp1, Prodh1, and Srm were distinctly
deregulated in the Insus group, suggesting a potential positive
way to dealing with the stress-caused pituitary protein
deregulations for stress protection and behavioral adaptation
(Krishnan et al., 2007; Zhou et al., 2016).

We found that these PRM-determined phenotype-specific
deregulated proteins were mainly involved in the metabolism,
focal adhesion, protein processing and RNA transport. Oxct1,
Coq3, Glb1, Sccpdh, Gapdh, Renbp, Sephs1, Prodh1, and Srm are
involved in a wide range of principal metabolic pathways. In the
Dep-Sus group, specific dysregulations of Oxct1 and Coq3 would
result in the abnormalities of synthesis and degradation of ketone
bodies, and ubiquinone and other terpenoid-quinone
biosynthesis. In the Anx-Sus group, the aberrations of Glb1
and Sccpdh were important for glycosphingolipid and
glycolipid biosynthetic processes, and potentially affected the
formation of lipid (Dakik et al., 2021). In the Insus group,
Sephs1, Prodh1, and Srm have also been reported to
participate in some critical metabolic pathways, such as amino
sugar and nucleotide sugar metabolism, selenocompound
metabolism, and arginine and proline metabolism. More
importantly, these metabolisms were generally considered as a
significant source of energy supply. The regulatory abnormality of
multiple metabolic processes in the pituitary would lead to a
negative or positive energy balance of the HPA axis
(Nieuwenhuizen and Rutters, 2008; Harris, 2015).
Furthermore, Ppp1cb, Dock1, Lama1, and Spp1 were found to
be involved in focal adhesion pathway. These neural cell adhesion
molecule might be vital for the neuronal plasticity of stress-
induced disorders (Cotman et al., 1998; Ditlevsen et al., 2008).
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Moreover, dysregulation of Sec24c in the Dep-Sus group might
affect cell surface levels of the serotonin transporters and thus be
linked to depression (Sucic et al., 2011). Meanwhile, we also noted
the underexpression of Ifih1 in both the two susceptible groups,
which probably was an important pathological clue for
depression and anxiety. In our present work, changes in the
expressions of proteins involved in multiple significant biological
functions and pathways especially metabolism were identified in
the pituitary of the stressed rats, it would be interesting to further
explore the possible complex mechanisms behind these stress-
induced deregulations pointing to the HPA axis dysfunction in
depression and anxiety.

CONCLUSION

In this study, we determined the impacts of CMS on the rat
pituitary proteome via iTRAQ-based and PRM-based quantitative
approaches. We found out some candidate pituitary proteins that
were likely linked to resistance and susceptibility to CMS-induced
depression or anxiety and thus furnished new valuable insights into
the stress-affected molecular deregulations in the chronically
stressed groups. The current proteomic research can serve as an
important molecular underpinning, and help to better understand
similarities and differences of the pituitary dysfunction
mechanisms in the HPA axis that underlie stress resistance and
stress-caused anxiety or depression.
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Positive Idiopathic Normal Pressure
Hydrocephalus: A Diffusion Tensor
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Fangzhou Song3* and Dong Zhou4*
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Chongqing, China, 4 Department of Neurology, West China Hospital, Sichuan University, Chengdu, China

The present study was designed to systemically evaluate changes in the diffusion tensor
imaging (DTI)-derived parameters of iNPH (idiopathic normal pressure hydrocephalus)
patients with different responses to the tap test (TT), and to correlate cognitive
impairment with white matter (WM) degeneration. This study included 22 iNPH patients
and 14 healthy controls with structural magnetic resonance imaging (MRI) and DTI
scanning. DTI was used to explore the differences in fractional anisotropy (FA), mean
diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) for all participants. DTI
parameters were evaluated using an ROI (region of interest)-based and tract-based
spatial statistics (TBSS) approach. Neuropsychological assessments and the idiopathic
normal pressure hydrocephalus grading scoring scale (iNPHGS) were performed.
Compared to the TT non-responders, the TT responders group had significantly lower
FA values in the corpus callosum, cingulum cingulate gyrus, superior longitudinal
fasciculus, and lower AD values in the right cingulum cingulate gyrus and the left
posterior thalamic radiation. Besides, the MD values were significantly increased in the
corpus callosum, left anterior corona radiata, and the RD values in the corpus callosum
and cingulum cingulate gyrus. In addition, the cognitive improvement was negatively
correlated with FA of the corpus callosum, cingulum cingulate gyrus, and MD values of
the genu of corpus callosum. While, the cognitive improvement was positively related
to the AD of the cingulum cingulate gyrus, superior longitudinal, and RD values of the
corpus callosum, cingulum cingulate gyrus and uncinate fasciculus. The ROI specific
WM lesions in iNPH patients are the underlying basis for cognitive impairment.

Keywords: idiopathic normal pressure hydrocephalus (iNPH), tap test, diffusion tensor imaging, tract-based
spatial statistics (TBSS), cognitive impairment
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INTRODUCTION

Idiopathic normal pressure hydrocephalus (iNPH) is a complex
clinical disease with an undetermined etiology. The clinical
characteristics of iNPH include gait disorders, cognitive
impairment and urinary incontinence. Ventriculomegaly on
neuroimaging and cerebrospinal fluid pressures ranging from
70 to 200 mm H2O (1 mm H2O = 0.0098 kPa) are primary
diagnostic criteria for iNPH (Williams and Malm, 2016). iNPH
is one of the few etiologies of reversible dementia. Ventriculo-
peritoneal shunting (VPS) is an effective treatment for iNPH
(Marmarou et al., 2005) that can significantly improve cognitive
function in patients (Klinge et al., 2005; Liu et al., 2016).

The increased aging population across the world has resulted
in dementia becoming a major global public health problem.
As iNPH is a reversible form of dementia, the disease has
become the focus of intense research efforts. The symptoms
and neuroimaging findings of iNPH are similar to other
neurodegenerative diseases such as Alzheimer’s disease (AD) and
Parkinson’s disease (PD) (Kang et al., 2013). All of these clinical
entities mainly occur in elderly patients and so iNPH is often
found along with other neurodegenerative diseases. According
to the uniform diagnostic criteria (Marmarou et al., 2005), the
postoperative effects in different iNPH vary significantly. The
accurate prediction of the shunt response can distinguish patients
with reversible dementia from other forms of the disease.

The tap test (TT) is the most widely used and effective
method for the preoperative evaluation of iNPH (Martín-Láez
et al., 2016). Patients diagnosed with iNPH show differential
responses to the cerebrospinal fluid (Ko et al., 2017). Patients
with a positive TT response can obtain obvious improvements in
cognitive function after shunt surgery, whilst most TT negative
patients usually experience very poor postoperative effects often
with no change in cognitive deficits (McKhann and Mayeux,
2010; Wolfsegger and Topakian, 2017). These observations
suggest that different mechanisms of cognitive impairment may

Abbreviations: DTI, diffusion tensor imaging; TBSS, tract-based spatial statistics;
WM, white matter; FA, fractional anisotropy; MD, mean diffusivity; AD, axial
diffusivity; RD, radial diffusivity; TT, tap test; TT-R, TT responsive group; TT-
nR, TT non-responsive group; MMSE, Mini-Mental State Examination; DST, digit
span forward; VFT-A, Verbal Fluency Test –ANIMAL; TMT-A, Trail Making
Test A; CDT, Clock Drawing Test; CWT-B, Stroop Color Word Test- card B;
L-ATR, anterior thalamic radiation L; R-ATR, anterior thalamic radiation R;
L-PTR, posterior thalamic radiation include optic radiation L; R-PTR, posterior
thalamic radiation include optic radiation R; L-ACR, anterior corona radiata R;
R-ACR, anterior corona radiata L; L-SCR, superior corona radiata R; R-SCR,
superior corona radiata L; L-PCR, posterior corona radiata R; R-PCR, posterior
corona radiata L; F-major, forceps major; F-minor, forceps minor; GCC, genu
of corpus callosum; BCC, body of corpus callosum; SCC, splenium of corpus
callosum; L-TAP, tapetum L; R-TAP, tapetum R; FN, fornix (column and body
of fornix); L-CgC, cingulum cingulate gyrus L; R-CgC, cingulum cingulate
gyrus R; L-CgH, cingulum hippocampus L; R-CgH, cingulum hippocampus
R; L-SFOF, superior fronto-occipital fasciculus L; R-SFOF, superior fronto-
occipital fasciculus R; L-IFOF, inferior frontooccipital fasciculus L; R-IFOF,
inferior frontooccipital fasciculus R; L-ILF, inferior longitudinal fasciculus L;
R-ILF, inferior longitudinal fasciculus R; L-SLF, superior longitudinal fasciculus L;
R-SLF, superior longitudinal fasciculus R; L-SLFT, superior longitudinal fasciculus
temporal part L; R-SLFT, superior longitudinal fasciculus temporal part R; L-SS,
sagittal stratum (include ILF and IFOF) L; R-SS, sagittal stratum (include ILF and
IFOF) R; L-UF, uncinate fasciculus L; R-UF, uncinate fasciculus R.

occur between TT responders and non-responders and could
potentially be used to predict cognitive function outcomes after
surgery in iNPH patients.

The mechanism of cognitive impairment in iNPH patients
remains unclear. The cognitive network is highly complex and
its dysfunction in cognitive disorders is an area of intense
research interest. Diffusion tensor imaging (DTI) is a magnetic
resonance (MR) technique that has recently been used to
study white matter (WM) degeneration in patients with iNPH.
Amongst the DTI parameters, fractional anisotropy (FA) and
mean diffusivity (MD) have been demonstrated as a useful
index of WM impairment in iNPH patients (Kanno et al., 2011;
Nicot et al., 2014; Radovnický et al., 2016). FA is the most
widely used DTI parameter, which reflects the integrity of the
axon and is highly sensitive to change in microstructure. MD
quantifies cellular and membrane density whereas an increase
in MD indicates cellularity, edema, and necrosis of WM (Tae
et al., 2018). Previous studies observed lower FA and higher MD
within various supratentorial regions including the corticospinal
tract (CST), the corpus callosum (CC), and some subcortical
WM (Hattori et al., 2011, 2012; Koyama et al., 2013; Daouk
et al., 2014). However, few studies have systemically analyzed
whole-brain WM microstructures and explored the relationship
between the integrity of WM and cognitive decline. The DTI
parameters of axial diffusivity (AD) and radial diffusivity (RD)
have rarely been reported in previous iNPH studies (Scheel
et al., 2012; Jurcoane et al., 2014). RD is a putative myelin
marker and increases with demyelination. AD is related to
axonal injury and thus decreases in cases of axonal damage
(Tae et al., 2018). Furthermore, few studies have compared
the differences between TT responders and non-responders
in iNPH patients.

This study aimed to systemically evaluate the WM changes in
iNPH patients with different responses to the TT, and to correlate
cognitive impairment and WM microstructural damage in iNPH
patients.

MATERIALS AND METHODS

Participants
A total of 22 patients diagnosed with iNPH in the Neurology
Department of Mianyang Central Hospital from May 2016 to
December 2019 were included in this study. Before lumbar
puncture and at 8, 24, 48, and 72 h after the drainage,
gait disturbance, mini-mental state examination (MMSE) score,
and the idiopathic normal pressure hydrocephalus grading
scoring scale (iNPHGS) were assessed (Tarnaris et al., 2007).
Gait improvements at any observation times after drainage,
improvements in the MMSE score of≥3 points, or improvements
in the iNPHGS of >1 point were considered a positive criterion
for the cerebrospinal fluid discharge test. The twenty-five iNPH
patients consisted of 12 patients in the TT responsive group
and 13 patients in the TT non-responsive group. A total of 14
control subjects with no cognitive impairments were included in
the study across the same period.
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Demographic and Clinical Data
Collection
Cognitive function was assessed using the following tests:

1. The MMSE was used to test the subjects’ overall cognitive
level including orientation, immediate and short-term
memory function, language function, and computational
power (Folstein et al., 1975).

2. The digit span test (DST) was used to assess
attention and immediate memory in memory function
(Richardson, 2007).

3. The verbal fluency test animal (VFT-A) was used
to assess working memory and vocabulary storage
memory in executive functions, and long-term memory
in memory function and semantic smooth function
(Carlesimo et al., 1996).

4. The trail-making test A (TMT-A) was used to assess
performance functions and attention (O’Leary et al., 1977).

5. The Stroop color-word test-card B (CWT-B) was used to
assess attention (Jensen and Rohwer, 1966).

6. The clock drawing test (CDT, Huashan version) was used
to assess multiple cognitive functions including the task
plan in the executive function, the spatial mechanism
function, the semantic and digital memory in the memory
function, the abstract thinking ability, and the anti-
interference ability (Olazarán et al., 2016).

The iNPHGS is a clinician-rated scale to evaluate the
severity of core symptoms of iNPH (cognitive impairment, gait
disturbance, and urinary disturbance). The score of each domain
ranges from 0 to 4, with higher scores indicating worse symptoms
(Tarnaris et al., 2007).

All the subjects were scored at the baseline before the tap
test. All of the iNPH patients were scored at 8, 24, 48, and 72
after the tap test.

Magnetic Resonance Imaging
Acquisition and Image Processing
Magnetic resonance imaging was performed on a 3.0T Siemens
MAGNETON Skyra using a 12-channel head matrix radio
frequency receive coil. The MR imaging protocol included a T1-
weighted sequence (TR = 700 ms, TE = 11 ms, 0.9 mm slice
separation, giving a voxel size 0.9 mm × 0.9 mm × 0.9 mm),
a T2-weighted sequence (TR = 4,910 ms, TE = 99 ms, 5 mm
slice separation, giving a voxel size 0.6 mm × 0.6 mm × 5 mm),
and a fluid attenuated inversion recovery (FLAIR) sequence
(TR = 8000, TE = 99 ms, 5 mm slice separation, giving
a voxel size 0.9 mm × 0.9 mm × 5 mm). The DTI data
set was acquired by using a spin echo diffusion weighted
echo planar imaging sequence with the following parameters:
TR = 10,400 ms; TE = 89 ms; FOV = 256 mm × 256 mm;
acquisition matrix = 128× 128; voxel size 2 mm× 2 mm× 2 mm;
75 axial slices; 4 images without (b0) and 60 images with diffusion
weighting (b = 1,000 s/mm−2) uniformly distributed across 60
gradient directions.

DTI data was processed using several approaches as follows:

a) Tract-based spatial statistics (TBSS): PANDA [Pipeline for
Analyzing braiN Diffusion imAges, a MATLAB toolbox
which consists of FMRIB Software Library (FSL) and
several established packages] was used for the processing
of the DTI raw data1 (Cui et al., 2013). All of the DTI
data of the subjects were automatically processed by TBSS
to achieve the DTI scalars FA, MD, AD, and RD used
in the analysis.

b) ABA-TBSS: FSL was used to generate a WM map (JHU
DTI-based white-matter atlases) by separating all of the
whole WM. This approach was used to automatically
calculate the average skeleton value of each brain region.
The outputs were saved in Excel file format.

Comparison of whole brain WM skeleton (TBSS): quantitative
analysis of the whole brain WM skeleton was performed
using the built-in TBSS randomize statistical tool in FSL.
The statistical results were displayed using the xjview and
fslview software packages. The regions of interest (ROIs)
were mapped using the JHU DTI-based white-matter atlases:
anterior thalamic radiation (ATR), posterior thalamic radiation
include optic radiation (PTR), anterior corona radiata (ACR),
superior corona radiata (SCR), posterior corona radiata (PCR),
tapetum (TAP), cingulum cingulate gyrus (CgC), cingulum
hippocampus (CgH), superior fronto-occipital fasciculus (SFOF),
inferior frontooccipital fasciculus (IFOF), inferior longitudinal
fasciculus (ILF), superior longitudinal fasciculus (SLF), superior
longitudinal fasciculus temporal part (SLFT), sagittal stratum
(include ILF and IFOF) (SS), and uncinate fasciculus (UF) within
each hemisphere, and forceps major (F-major), forceps minor
(F-minor), genu of corpus callosum (GCC), body of corpus
callosum (BCC), splenium of corpus callosum (SCC), and fornix
(column and body of fornix) (FN) across hemispheres (shown in
Supplementary Figure 1) (Alexander et al., 2007).

Statistical Analysis
Statistical analysis was performed using SPSS 20.0 software.
A p-value threshold of <0.05 was used to determine the
level of statistical significance. The demographic data,
neuropsychological scores, and the iNPHGS scores were
presented as the mean ± standard deviation. One-way analysis
of variance (ANOVA) was used to compare demographic data
and baseline cognitive scores among the control group and
the iNPH patients (TT responsive and TT non-responsive
groups). A Mann–Whitney U test was used to compare
the maximum improvement scores (time duration) of the
neuropsychological performance in the two iNPH groups after
the TT. Comparison of the average skeletal values (FA, MD,
AD, and RD) in the ROIs was performed using ANOVA among
different groups. Bonferroni correction was used to control
for multiple comparisons, while uncorrected results are also
presented because Bonferroni’s correction is quite conservative
(Narum, 2006). Correlation analysis was performed between
the DTI parameters (FA, MD, AD, and RD) and the MMSE
scores, the total cognitive scores, and the improvement of

1http://www.nitrc.org/projects/panda/
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TABLE 1 | Demographic and characteristics of all subjects.

Parameter TT-R TT-nR Controls P-value1 P-value2

Number, n 10 12 14 – –

Age, y 76.10 ± 4.15 74.41 ± 7.53 75.18 ± 5.76 0.93 0.52

Gender, M/F 10/0 11/1 11/3 0.36 1

Education, y 6.50 ± 6.10 7.50 ± 5.93 7.05 ± 4.69 0.74 0.70

iNPHGS 7.90 ± 2.08 5.50 ± 1.31 – 0.00

MMSE 16.30 ± 7.45 19.42 ± 5.50 24.57 ± 2.59 0.00 0.27

DST 5.90 ± 1.66 6.17 ± 1.75 9.79 ± 1.48 0.00 0.72

VFT-A 6.90 ± 2.08 7.08 ± 2.35 13.36 ± 2.56 0.00 0.85

CWT-B 38.40 ± 8.49 42.67 ± 6.96 47.14 ± 2.60 0.00 0.21

TMT-A 11.58 ± 8.84 8.23 ± 8.37 0.93 ± 1.27 0.00 0.46

CDT 8.95 ± 8.76 11.15 ± 9.87 22.36 ± 7.82 0.00 0.55

1Comparison between all iNPH patients (TT-R and TT-nR) and control subjects.
2Comparison between TT-R and TT-nR patients.
TT, tap test; TT-R, TT responsive group; TT-nR, TT non-responsive group; MMSE, Mini-Mental State Examination; DST, Digit Span forward; VFT-A, Verbal Fluency
Test –ANIMAL; TMT-A, Trail Making Test A; CDT, Clock Drawing Test; CWT-B, Stroop Color Word Test- card B.

FIGURE 1 | Comparisons of DTI imaging in group analyses of TBSS. Results of TBSS between TT responsive group and TT non-responsive group. Significant
region (P < 0.05) illustrated in warm colors for decreased values and in cool colors for increased values on mean WM skeleton. DTI, diffusion tensor imaging; TBSS,
tract-based spatial statistics; FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity.

cognitive scores by Pearson correlation analysis. The Pearson
coefficient (r-value) > 0.4 and P < 0.05 were set to define
moderate correlation.

RESULTS

Demographic and Clinical Profiles
The detailed demographic and clinical information from the
patients is presented in Table 1. This study involved 22 patients
with iNPH who met the inclusion criteria and 14 healthy controls
(HCs). In the iNPH patient group, 20 patients were male and 2

patients were female. The average age of the patients in this group
was 75.40 ± 5.83 years and the average education period was
6.92 ± 5.72 years. The control group consisted of 11 males and 3
females with an average age of 75.36 ± 5.76 years and an average
education period of 6.43. ± 4.69 years. There were no significant
differences in gender, age, and years of schooling between the
iNPH patients and the HCs. The iNPH patients had significantly
poorer performance in the MMSE, DST, VFT-A, CWT-B, TMT-
A, and CDT compared to the HCs (P < 0.05). According to the
improvements after the TT, 12 patients were classified in the TT
responsive group (TT-R) and 13 patients were classified in the TT
non-responsive group (TT-nR). No significant differences were
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found between the TT-R and TT-nR groups in age, sex, years
of schooling, and baseline cognitive levels (MMSE, DST, VFT-
A, CWT-B, TMT-A, and CDT scores). The iNPHGS score of the
TT-R group was higher than the TT-nR group suggesting that the
clinical symptoms were more severe in the TT-R group.

Tract-Based Spatial Statistics Whole
Brain White Matter Skeleton Comparison
Significant changes were observed in the TT-R group compared
to the TT-nR group. These included decreases in the FA skeleton
values in specific areas (GCC, BCC, SCC, F-major, FN, CgC,
L-CgH, L-ATR, L-IFOF, SLF, L-UF) (P < 0.05), and decreased
in the MD skeleton values in areas of the CC, FN, B-CgC, B-PTR,
L-CgH, L-IFOF, SLF, L-UF (P < 0.05), AD values in areas of the
GCC, BCC, SCC, F-major, CgC, PTR, IFOF (P < 0.05) and RD
values in areas of the CC, CgC, CgH, PTR, IFOF, ILF, ACR, UF
(P < 0.05) (shown in Figure 1).

The Region of Interest Average Skeleton
Values Based on ABA-Tract-Based
Spatial Statistics Comparison
Comparison of the TT-R and TT nR groups showed that the
average FA skeleton values in the areas of the GCC, BCC, SCC,
F-major, CgC, SLF, L-SLFT were significantly lower in the TT-R
group (P < 0.05). The average MD skeleton values in the areas of
the GCC, BCC, L-ACR, and the average RD skeleton values in the
areas of GCC, BCC, SCC, CgC, L-SLFT, L-ACR were significantly
increased in the TT-R group (P < 0.05). Also, the average AD
skeleton values in the areas of the R-CgC, L-PTR, L-SLFT were
significantly reduced in the TT-R group (P < 0.05) (Shown in
Table 2 and Supplementary Table 1).

Correlation Analysis Between the Region
of Interest Average Skeleton Values and
Cognitive Performance in Idiopathic
Normal Pressure Hydrocephalus Patients
Correlation Analysis Between Region of Interest
Average Skeleton Values (Fractional Anisotropy,
Mean Diffusivity, Axial Diffusivity, and Radial
Diffusivity) and Baseline Total Cognitive Scores in
Idiopathic Normal Pressure Hydrocephalus Patients
The total cognitive scores of the iNPH patients were positively
correlated with the average FA values of the GCC, BCC, SCC,
F-major, F-minor, CgC, and the ILF (r > 0.4, P < 0.05). The
total cognitive scores were negatively correlated with the average
MD values of the GCC, BCC, SCC, F-major, F-minor, ACR,
and SCR (r > 0.4, P < 0.05), the total cognitive scores were
negatively correlated with the average AD values of the GCC
and SCR (r > 0.4, P < 0.05) and positively correlated with
the average AD values of the CgC (r > 0.4, P < 0.05). The
total cognitive scores were negatively correlated with the average
RD values of the GCC, BCC, SCC, F-major, F-minor, CgC,
SLF, and ACR (r > 0.4, P < 0.05) (shown in Table 3 and
Supplementary Table 2).

TABLE 2 | ABA-TBSS analysis results.

TT-R vs. HC TT-nR vs. HC TT-R vs. TT-nR

ROI FA MD AD RD FA MD AD RD FA MD AD RD

ATR-L

ATR-R ↓

CgC-L ↓ ↑ ↓ ↑

CgC-R ↓ ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↑

CgH-L ↑

CgH-R

F-major ↓ ↑ ↓ ↑

GCC ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑

BCC ↓ ↑ ↑ ↓ ↑ ↑

SCC ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑

FN ↓

ACR-R ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑

ACR-L ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

F-minor ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↓

IFOF-L ↓ ↑ ↑ ↓ ↑ ↑

IFOF-R ↓ ↑ ↓ ↑ ↑

ILF-L ↓ ↓

ILF-R ↓ ↑ ↓

SLF-L ↓ ↑ ↓ ↑ ↑ ↓

SLF-R ↓ ↑ ↓ ↑ ↓

UF-L ↓ ↑ ↑

UF-R

SLFT-L ↓ ↑ ↓

SLFT-R ↓

SCR-L ↑ ↑ ↑ ↑ ↑

SCR-R ↑ ↑ ↑

PCR-R ↑ ↑

PCR-LPTR-R

PTR-L ↓ ↓ ↓ ↑ ↓

SS-R ↓ ↑ ↑

SS-L ↓ ↑ ↓ ↑ ↑

SFOF-R ↓ ↑ ↑

SFOF-L ↑ ↑ ↑

TAP-R

TAP-L

Up arrows (↑) indicate higher values, and down arrows (↓) indicate lower values in
the former group compared with the later group.
TT, tap test; TT-R, TT responsive group; TT-nR, TT non-responsive group; HC,
healthy controls; TBSS, tract-based spatial statistics; FA, fractional anisotropy; MD,
mean diffusivity; AD, axial diffusivity; RD, radial diffusivity; L-ATR, anterior thalamic
radiation L; R-ATR, anterior thalamic radiation R; L-PTR, posterior thalamic radiation
include optic radiation L; R-PTR, posterior thalamic radiation include optic radiation
R; L-ACR, anterior corona radiata R; R-ACR, anterior corona radiata L; L-SCR,
superior corona radiata R; R-SCR, superior corona radiata L; L-PCR, posterior
corona radiata R; R-PCR, posterior corona radiata L; F-major, forceps major;
F-minor, forceps minor; GCC, genu of corpus callosum; BCC, body of corpus
callosum; SCC, splenium of corpus callosum; L-TAP, tapetum L; R-TAP, tapetum
R; FN, fornix (column and body of fornix); L-CgC, cingulum cingulate gyrus L;
R-CgC, cingulum cingulate gyrus R; L-CgH, cingulum hippocampus L; R-CgH,
cingulum hippocampus R; L-SFOF, superior fronto-occipital fasciculus L; R-SFOF,
superior fronto-occipital fasciculus R; L-IFOF, inferior frontooccipital fasciculus L;
R-IFOF, inferior frontooccipital fasciculus R; L-ILF, inferior longitudinal fasciculus L;
R-ILF, inferior longitudinal fasciculus R; L-SLF, superior longitudinal fasciculus L;
R-SLF, superior longitudinal fasciculus R; L-SLFT, superior longitudinal fasciculus
temporal part L; R-SLFT, superior longitudinal fasciculus temporal part R; L-SS,
sagittal stratum (include ILF and IFOF) L; R-SS, sagittal stratum (include ILF and
IFOF) R; L-UF, uncinate fasciculus L; R-UF, uncinate fasciculus R.
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TABLE 3 | Correlation analysis between the ROI average skeleton values and cognitive performance in iNPH patients.

TS MMSE CI

ROI FA MD AD RD FA MD AD RD FA MD AD RD

ATR-L

ATR-R

CgC-L 0.353 −0.380 −0.680 0.547

CgC-R 0.533 0.427 −0.479 0.441 −0.412 −0.591 −0.472

CgH-L −0.368 −0.395

CgH-R

F-major 0.546 −0.451 −0.522 0.436 −0.360 −0.418

F-minor 0.412 −0.456 −0.351 −0.458 −0.373 −0.377 −0.531

IFOF-L

IFOF-R

LIF-L

ILF-R 0.411

SLF-L 0.389 −0.380 −0.420 −0.473 −0.519

SLF-R −0.353

UF-L

UF-R

SLFT-L −0.527

SLFT-R −0.557

GCC 0.446 −0.576 −0.493 −0.540 0.389 −0.524 −0.439 −0.495 −0.608 0.531

BCC 0.430 −0.508 −0.362 −0.509 0.433 −0.507 −0.346 −0.514 −0.606 0.475 0.574

SCC 0.512 −0.537 −0.541 0.394 −0.398 −0.413 −0.496

FN

ACR-R −0.400 −0.380 −0.400

ACR-L −0.354 −0.386 0.463

SCR-R

SCR-L −0.446 −0.525 −0.368 −0.401 −0.447 −0.345

PCR-R −0.343 −0.360

PCR-L

PTR-R

PTR-L 0.348 −0.503

SS-R −0.149 −0.336 −0.497

SS-L

SFOF-R

SFOF-L −0.396

TAP-R

TAP-L

Only significant correlations were displayed, and more detailed information were shown in the Supplementary Materials.
TS, Total scores; CI, cognitive improvement; MMSE, Mini-Mental State Examination; FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity;
L-ATR, anterior thalamic radiation L; R-ATR, anterior thalamic radiation R; L-PTR, posterior thalamic radiation include optic radiation L; R-PTR, posterior thalamic radiation
include optic radiation R; L-ACR, anterior corona radiata R; R-ACR, anterior corona radiata L; L-SCR, superior corona radiata R; R-SCR, superior corona radiata L;
L-PCR, posterior corona radiata R; R-PCR, posterior corona radiata L; F-major, forceps major; F-minor, forceps minor; GCC, genu of corpus callosum; BCC, body of
corpus callosum; SCC, splenium of corpus callosum; L-TAP, tapetum L; R-TAP, tapetum R; FN, fornix (column and body of fornix); L-CgC, cingulum cingulate gyrus
L; R-CgC, cingulum cingulate gyrus R; L-CgH, cingulum hippocampus L; R-CgH, cingulum hippocampus R; L-SFOF, superior fronto-occipital fasciculus L; R-SFOF,
superior fronto-occipital fasciculus R; L-IFOF, inferior frontooccipital fasciculus L; R-IFOF, inferior frontooccipital fasciculus R; L-ILF, inferior longitudinal fasciculus L; R-ILF,
inferior longitudinal fasciculus R; L-SLF, superior longitudinal fasciculus L; R-SLF, superior longitudinal fasciculus R; L-SLFT, superior longitudinal fasciculus temporal part
L; R-SLFT, superior longitudinal fasciculus temporal part R; L-SS, sagittal stratum (include ILF and IFOF) L; R-SS, sagittal stratum (include ILF and IFOF) R; L-UF, uncinate
fasciculus L; R-UF, uncinate fasciculus R.

Correlation Between the Region of Interest Average
Skeleton Values (Fractional Anisotropy, Mean
Diffusivity, Axial Diffusivity, and Radial Diffusivity) and
Cognitive Improvements After the Tap Test in
Idiopathic Normal Pressure Hydrocephalus Patients
A moderate negative correlation was observed between the
cognitive improvement and the mean FA of GCC, BCC, SCC,

F-minor, CgC, SLF, and SLFT in iNPH patients after lumbar
puncture (r > 0.4, P < 0.05), and also with the mean MD of
GCC (r > 0.4, P < 0.05). The degree of cognitive improvement in
iNPH patients was positively related to the mean AD of the CgC,
SLF, SLFT, and SS (r > 0.4, P < 0.05), and also with the average
RD values of the GCC, BCC, SCC, CgC, ATR, and UF (r > 0.4,
P < 0.05) (shown in Table 3 and Supplementary Material 2).
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DISCUSSION

The underlying mechanisms of cognitive impairment have been
the major research efforts in the field of iNPH research. The TT
is the most widely used and effective method for preoperative
evaluation of iNPH and the test is used to clinically classify
patients into two groups. Patients who respond to the TT can
achieve improvements in cognitive performance after shunt
surgery, whilst patients who are not responsive to the TT usually
experience very poor postoperative effects. These observations
suggest different mechanisms of cognitive impairment between
TT-R and TT-nR patients.

The present study used the TBSS method and a quantitative
ROI analysis of skeletonized brain maps to compare differences in
the cognitive-related WM microstructure of iNPH patients with
different TT responses. Our data showed that the microstructural
WM damage in TT-R patients was significantly more severe than
in TT-nR patients. Furthermore, we assessed the associations
between FA, MD, AD, and RD values and the cognitive
performance of iNPH patients.

The mean FA in the areas of the GCC, BCC, SCC, F-major, FN,
B-CgC, L-CgH, L-ATR, L-IFOF, SLF, and L-UF were significantly
lower in the TT responsive compared to the TT non-responsive
group (P < 0.05). Also, the MD and RD in the area of the
GCC, BCC, SCC, B-CgC, and ATR were significantly increased
(P < 0.05). These results indicated that WM edema or the
destruction of myelin sheath were more severe in the TT-R group
than in the TT-nR group.

In comparison to the subjects in the HC group, patients in
the TT-R and TT-nR groups had more extensive microstructural
damage presenting with lower FA, higher MD, and RD in CC,
CgC, ATR, ACR, SLF, and UF. However, no significant difference
was found in preoperative cognitive performance between the
TT-R and TT-nR groups. These data may indicate that the
cognitive dysfunction in the TT-R group is mostly caused by WM
injury, whilst cortical volume atrophy plays a more contributing
role in the cognitive decline of patients in the TT-nR group. This
hypothesis is supported by previous studies. Kang et al. (2013)
found that CSFTT non-responders had statistically significant
cortical thinning in the left superior frontal gyrus compared
to responders suggesting that comorbid AD pathology might
be related to the cortical thinning patterns found in CSFTT
non-responders. Also, biopsy studies found that iNPH patients
with pathological evidence of AD exhibited more severe initial
symptoms and had lower shunt responsiveness compared to
patients without AD (Golomb et al., 2000; Savolainen et al., 2002;
Picascia et al., 2016).

Correlation analysis showed significant associations between
lower FA, higher MD, higher AD, higher RD and poor executive
performance in the GCC, BCC, SCC, F-major, and F-minor. The
data indicated that the corpus callosum and cingulate gyrus are
involved in both memory and executive function, furthermore,
different parts of the corpus callosum may participate in different
cognitive functions.

The data presented in this study are compatible with other
previous studies (Bettcher et al., 2016). Our data showed that
WM damage is dominated by the anterior and superior part

of the lateral ventricle in iNPH patients, particularly in the
frontal lobe, which may account for the prominent executive
impairment of iNPH patients. Also, our results showed that
more severe damage in the anterior, outer, and upper regions
of the periventricular WM obtains more obvious cognitive
improvement after cerebrospinal fluid drainage in patients with
iNPH. Particularly, the RD values in the corpus callosum
and cingulate gyrus were significantly associated with cognitive
improvement suggesting that the edema and WM degeneration
in the area of anterior and superior lateral ventricles were
reversible. WM demyelination, wallerian degeneration, and
late axonal degeneration are short-term irreversible processes.
In contrast, edema and early axonal degeneration of WM
are reversible pathologies. We speculate that the TT rapidly
reduces the extravasation pressure of the cerebrospinal fluid
by releasing cerebrospinal fluid, and subsequently reduces
edema in the periventricular WM. The changes significantly
improve cognitive function in iNPH patients. However, the
extent of WM fiber stretching in this area is not related
to the degree of cognitive improvement after drainage. Our
findings may suggest that edema in the area of anterior and
superior lateral ventricles contributed mostly to the reversible
cognitive impairment.

Overall, these observations confirm the role of the
hydrocephalus effect in the occurrence of reversible cognitive
impairment in iNPH patients.

This study had several limitations as the analysis was
performed on a relatively small sample size and further validation
is required in larger patient cohorts. Also, due to the low
acceptance rate of shunt surgery for iNPH patients in the
Chinese population, our study lacked postoperative follow-up
data to further validate the longer-term responses of patients.
Prospective cohort studies need to be designed to confirm the
values of DTI parameters as a non-invasive imaging biomarker to
predict post-operative cognitive improvement in iNPH patients.
At last, combining more scales of information, such as radiomics
features, might lead to more fine-grained findings in the future.

CONCLUSION

1. The extensive microstructural damage of cognitive WM in
iNPH patients is the material basis for the development of
cognitive impairment.

2. The microstructural damage of the anterior superior
ventricle and the WM in the frontal ventricle in TT positive
iNPH patients was greater than TT negative patients.

3. The microstructural changes of the CC, the cingulate
ligament and the adjacent radiant fibers can affect the
memory and executive functions in the cognitive field
of iNPH patients, whilst microstructural changes of the
anterior subcortical WM in the frontal lobe mainly affect
the executive features.

4. The more severe the edema degeneration of WM in the
anterior superior region of the lateral ventricle, the more
obvious the cognitive improvement in the iNPH patients
after the TT. The decrease in the WM FA value and increase
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of RD value in this region has diagnostic and prognostic
value in iNPH patients.
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Fam20C Overexpression Predicts
Poor Outcomes and is a Diagnostic
Biomarker in Lower-Grade Glioma
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Glioma is a relatively low aggressive brain tumor. Although the median survival time of
patients for lower-grade glioma (LGG) was longer than that of patients for glioblastoma, the
overall survival was still short. Therefore, it is urgent to find out more effective molecular
prognostic markers. The role of the Fam20 kinase family in different tumors was an emerging
research field. However, the biological function of Fam20C and its prognostic value in brain
tumors have rarely been reported. This study aimed to evaluate the value of Fam20C as a
potential prognostic marker for LGG. A total of 761 LGG samples (our cohort, TCGA and
CGGA) were included to investigate the expression and role of Fam20C in LGG. We found
that Fam20C was drastically overexpressed in LGG and was positively associated with its
clinical progression. Kaplan-Meier analysis and a Cox regression model were employed to
evaluate its prognostic value, and Fam20C was found as an independent risk factor in LGG
patients. Gene set enrichment analysis also revealed the potential signaling pathways
associated with Fam20C gene expression in LGG; these pathways were mainly enriched
in extracellular matrix receptor interactions, cell adhesion, cell apoptosis, NOTCH signaling,
cell cycle, etc. In summary, our findings provide insights for understanding the potential role
of Fam20C and its application as a new prognostic biomarker for LGG.

Keywords: FAM20C, lower-grade gliomas, LGG, biomarker, prognosis, bioinformatics

INTRODUCTION

Malignant central nervous system tumors account for 31.5% of nervous system tumors, and gliomas
account for 80.7% of malignant central nervous system tumors (Goodenberger and Jenkins 2012;
Ostrom et al., 2018). Global cancer statistics in 2018 showed that nervous system cancer was the 19th
most common cancer in the world, with 296,851 new cases, accounting for 1.6% of the total cancer
incidence, and 241,037 deaths each year, accounting for 2.5% of the total case mortality (Bray et al.,
2018). According to the World Health Organization (WHO) 2016 version of the central nervous
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system classification, diffuse gliomas include WHO grade II and
grade III astrocytic tumors, grade II and III oligodendrogliomas,
and grade IV glioblastomas (Louis et al., 2016; Wesseling and
Capper 2018).

At present, the standard treatment of glioma includes surgical
resection to the maximum safety range followed by postoperative
radiotherapy and chemotherapy (Stupp et al., 2005). However,
the prognosis of glioma is still poor. Glioblastoma (GBM) is the
most aggressive type of brain tumor in adults. Despite the
improvement of current treatment methods, the median
survival time is only 17–23 months (Xu et al., 2017; Jiang
et al., 2019). The median survival time of WHO grade II-III
glioblastoma is longer than that of WHO grade IV glioblastoma,
with a median survival time of 1.7–13.3 years (Buckner et al.,
2016; Mair et al., 2021; van den Bent 2014). There is extensive
heterogeneity among lower-grade glioma patients. Some patients
could survive for many years without any treatments; however,
other patients progress quickly after active treatment. Therefore,
it is very important to find more effective molecular prognostic
markers for the treatment of patients with LGG. Understanding
the pathogenesis and etiology of LGG may assist in discovering
advanced treatment methods and effective biomarkers for
diagnosis and prognosis.

The Fam20 kinase family is a newly discovered class of
secreted kinases that can phosphorylate secreted proteins and
proteoglycans. This family includes Fam20A, Fam20B, and
Fam20C (Nalbant et al., 2005; Zhang et al., 2018). Fam20C is
a casein kinase protein enriched in the Golgi that can
phosphorylate a variety of secreted proteins (Tagliabracci
et al., 2014; Cozza et al., 2018). Protein phosphorylation
modification refers to the process of transferring the
phosphate group of ATP or GTP to the amino acid residue of
the substrate protein through the catalytic effect of a protein
kinase (Fischer 2013). This process mediates most of the signal
transduction in eukaryotic cells and it regulates many cellular
processes, including metabolic regulation, transcription
regulation, cell cycle, cytoskeleton rearrangement, apoptosis,
and differentiation (Manning et al., 2002; Sreelatha et al.,
2015). Abnormal protein phosphorylation is the leading cause
of many diseases, including cancer, diabetes, Alzheimer’s disease,
and Parkinson’s disease (Fischer 2013; Klement and
Medzihradszky 2017).

Fam20C is located inside the cell, but it may also play an
important role outside the cell (Wang et al., 2013; Tagliabracci
et al., 2015). Fam20C has been shown to phosphorylate secreted
proteins by recognizing the protein motif “Ser-x-Glu/phospho-
Ser,” thereby being involved in biomineralization, lipid
homeostasis, cell adhesion and migration. More importantly,
many Fam20C substrates are related to tumor cell apoptosis
and metastasis, including insulin-like growth factor binding
proteins, osteopontin, and serine protease inhibitors
(Rangaswami et al., 2006; Baxter 2014; Zhang et al., 2020).
Insulin-like growth factor binding protein 7 (IGFBP7), which
depends on Fam20C phosphorylation, could induce cell
migration (Bieche et al., 2004; Georges et al., 2011). However,
the utility of Fam20C as a potential tumor diagnostic and
prognostic marker has not been fully elucidated.

In this study, we found that Fam20C was overexpressed in a
variety of cancers, including LGG. High expression of Fam20C
was associated with tumor progression. Therefore, Fam20C may
serve as a potential biomarker for the diagnosis and prognosis of
LGG. Moreover, the transcriptional expression of Fam20C in
LGG patients may be an independent risk factor for survival. In
addition, pathway and function enrichment indicated that the
mechanism of Fam20C-mediated tumorigenesis involves
extracellular matrix receptor interactions, cell adhesion, and
the cell cycle. Our results clarified the important role of
Fam20C in the prognosis of LGG and provided a reliable
biomarker for the diagnosis and prognosis of LGG.

MATERIALS AND METHODS

Data Acquisition and Processing
LGG gene expression data and clinical information were obtained
from The Cancer Genome Atlas TCGA database (http://
cancergenome.nih.gov/) and the Chinese Glioma Genome
Atlas CGGA database (http://www.cgga.org.cn). From the
TCGA database, we obtained the original mRNAseq data of
529 LGG samples, which were normalized using the edge R
package in R (version 4.0.2). A total of 132 LGG samples were
obtained from the CGGA database, and the gene expression
profile of each sample and the corresponding clinical data
were sorted (Supplementary Table S1). The RNA-seq data
from the CGGA database were generated from total RNA and
directly expressed as fragment values per thousand bases per
million mapped reads (FPKM). In CGGA database, a rapid
hematoxylin and eosin-stain for frozen sections was applied to
each sample to assess the tumor cell proportion before RNA
extraction. In addition, the RNA was extracted from only those
samples with >80% tumor cells (Zhao Z. et al., 2021).

Patient Information and Ethics
This study was approved by the ethics committee of 900th
Hospital of Joint Logistics Support Force. Between January
2016 and November 2020, a cohort assessment of 100 patients
who underwent neurosurgery was conducted. According to the
WHO 2007 and 2016 standards, all patients were newly
diagnosed with grade II and III gliomas. Patients younger than
16 years old at the time of diagnosis were excluded from this
study (Supplementary Table S1). Clinical data and detailed
follow-up data were obtained from all patients. Sanger
sequencing was then employed to investigate the mutation
status of isocitrate dehydrogenase (IDH). In addition, we also
studied the 1p/19q deletion and the heterozygosity status of LGG
using fluorescence in situ hybridization.

Immunohistochemistry Analysis
One hundred patients with LGG and three normal brain tissues
from grade 1 glioma patients in the 900th Hospital of Joint
Logistics Support Force were collected. The adjacent brain tissues
to the three cases of grade 1 glioma patients were used as
normalized data. The surgical specimens were fixed with 40 g/
L formaldehyde solution, routinely embedded in paraffin, cut into
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4 μm-thick sections, and stained with HE. The EliVision method
was used for Fam20C immunohistochemical staining and the
results were observed through light microscopy. Anti-Fam20C
polyclonal antibody, was purchased from Abcam, UK (product
number ab154740). Non-biotin universal two-step
immunohistochemistry kit (mouse/rabbit enhanced polymer
detection system) was purchased from Beijing Zhongshan
Jinqiao Biotechnology Co., Ltd. The positive control tissue in
this experiment was glioblastoma tumor tissues (Du et al., 2020).
Results interpretation criteria: Fam20C positive expressionmeans
brown-yellow particles in the nucleus and cytoplasm. Dark brown
in the nucleus and cytoplasm of the cells was defined as a strong
cell; Cells with yellow or brown nucleus and cytoplasm were

defined as medium-strength cells; The nucleus and cytoplasm of
the cells were light yellow or had faintly visible staining, which
was defined as a weak intensity cell. No staining of nucleus and
cytoplasm was negative. The histochemical score (H-score) was
employed to quantify the expression of Fam20C. H-score �
(percentage of weak intensity cells×1) + (percentage of
medium intensity cells 2) + (percentage of strong cells×3).

Gene Set Enrichment Analysis (GSEA)
GSEA was conducted to detect whether a set of a priori defined
genes showed statistically significant differential expression
between the high and low Fam20C expression groups during
the MSigDB set enrichment process, with 1000 genome

FIGURE 1 | The expression of FAM20C in different types of cancer, including glioma. (A) The expression of FAM20C in different types of cancer cells was obtained
from the CCLE database, including glioma (n � 66), chondrosarcoma (n � 4), mesothelioma (n � 11), meningioma (n � 3), kidney (n � 37), upper aerodigestive (n � 33),
thyroid (n � 12), giant cell tumour (n � 3), melanoma (n � 63), soft tissue (n � 20), neuroblastoma (n � 17), breast (n � 60), osteosarcoma (n � 10), liver (n � 29), esophagus
(n � 27), Ewing’s sarcoma (n � 12), medulloblastoma (n � 4), bile duct (n � 8), lung NSC (n � 136), pancreas (n � 46), ovary (n � 55), urinary tract (n � 28),
endometrium (n � 28), prostate (n � 8), lung small cell (n � 54), stomach (n � 39), acute myeloid leukemia (n � 39), leukemia other (n � 5), lymphoma Hodgkin (n � 13),
colorectal (n � 63), B cell acute lymphoblastic leukemia (n � 13), T cell acute lymphoblastic leukemia (n � 16), chronic myelogenous leukemia (n � 15), lymphoma DLBCL
(n � 18), multiple myeloma (n � 29), B cell lymphoma other (n � 16), T cell lymphoma other (n � 11), and lymphoma Burkitt (n � 11); (B) the expression of FAM20C in
different types of cancer was obtained from Tumor Immune Estimation Resource database, including ACC (n � 77), BLCA (n � 423), BRCA (n � 1197), CESC (n � 309),
CHOL (n � 45), COAD (n � 316), DLBC (n � 47), ESCA (n � 195), GBM (n � 163), HNSC (n � 563), KICH (n � 91), KIRC (n � 595), KIRP (n � 318), LAML (n � 173), brain
LGG (n � 518), LIHC (n � 419), LUAD (n � 542), LUSC (n � 542), MESO (n � 87), OV (n � 426), PAAD (n � 183), PCPG (n � 185), PRAD (n � 544), READ (n � 102), SARC
(n � 264), SKCM (n � 462), STAD (n � 444), TGCT (n � 137), THCA (n � 571), THYM (n � 120), UCEC (n � 187), UCS (n � 57), and UVM (n � 79). *p < 0.05; ***p < 0.001.
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permutations performed per analysis. In this study, GSEA first
generated an ordered list of all genes based on the correlation
between the genes and Fam20C expression. Then, GSEA was
performed to clarify the significance of the difference in survival
between the high and low Fam20C expression groups. The
expression level of Fam20C was used as the phenotype label.
The phenotypic enrichment pathways were ranked by the
nominal p value and normalized enrichment score. The
calculation results were given using the ggplot2 R packages.

Functional Enrichment Analysis
Gene Ontology (GO) was employed to detect the function of the
differentially expressed genes. The analysis gained a new
understanding of the biological effects of Fam20C. The genes
related to Fam20C expression (absolute Pearson correlation
coefficient>0.5 and p < 0.05) were regarded as risk score-related
genes, and their potential biological functions and pathways were

determined. The Ggplot2 software package in R software was
employed to analyze the GO pathways. The enrichment analysis
of GO was based on a p-value and a q-value threshold <0.05.

Statistical Analysis
TheWilcoxon signed-rank test was used to detect the expression of
Fam20C. The correlation between the clinicopathological
characteristics and Fam20C expression was tested with the
Wilcoxon signed-rank test. The survival ROC software package
in R software was used to generate receiver operating characteristic
(ROC) curves to evaluate the diagnostic value of Fam20C
expression. The area under the curve represents the diagnostic
value. Using the Survival package in R, the overall survival (OS)
rates of the high expression group and the low expression group
were compared by Kaplan-Meier analysis. Univariate Cox analysis
was used to determine the potential survival rate, and multivariate
Cox analysis was used to determine whether Fam20C expression
was an independent risk factor for OS in LGG patients. p< 0.05was
considered statistically significant. All data were processed using R
software (version 4.0.2) and Adobe Photoshop CC.

RESULTS

Fam20C Was Overexpressed in LGG
Data from the Cancer Cell Line Encyclopedia (CCLE) database
showed that Fam20C was highly expressed in multiple cancer cell
lines, especially glioma (Figure 1A). At present, there are few
studies on the relationship between Fam20C and tumorigenesis.
To determine the expression of Fam20C in other tumors, we
conducted a comprehensive analysis of 33 tumors in TCGA.
Among them, there were five cancer types in which Fam20C was
overexpressed (Figure 1B).

Overexpressed Fam20C Was Associated
With Advanced LGG
Next, we analyzed the correlation between the level of Fam20C
mRNA in LGG patients and their clinicopathological parameters.
The TCGA database includes the patient’s tumor grade, sex, and
survival status. The CGGA database includes the patient’s tumor
grade, sex, survival status, IDH mutation/wild-type, and 1p19q
joint deletion status. As shown in Figure 2A, the higher the grade
of the tumor, the higher the Fam20C expression level. In addition,
in the TCGA database, high expression of the Fam20C gene was
positively related to grade and survival status but not to sex. In the
CGGA database, higher Fam20C expression was related to grade,
survival status, IDH wild-type, and 1p19q nonjoint deletion but
not to sex (Figure 2A and Supplementary Figure S1).

Since high expression of Fam20C in LGG patients was related
to tumor grade, we further tried to determine whether this
overexpression of Fam20C in LGG patients was related to a
poor prognosis through the use of Kaplan-Meier curves. As
shown in Figure 2B, higher Fam20C expression levels were
significantly correlated with a worse OS in both the TCGA
and CGGA datasets (Figure 2B). In general, the results
showed that the expression of Fam20C was significantly

FIGURE 2 | Association with FAM20C expression and
clinicopathological characteristics. (A) Clinical in TCGA database, including
grade (grade 2 n � 248, and grade 3 n � 261); fustat (alive n � 400, and dead
n � 109); gender (male n � 281, and female n � 228); Clinical in CGGA
database, including grade (grade 2 n � 87, and grade 3 n � 45); fustat (alive n �
68, and dead n � 64); gender (male n � 81, and female n � 51); TCGA, The
Cancer Genome Atlas. CGGA, Chinese Glioma Genome Atlas. (B)
Kaplan–Meier curves for OS in LGG Higher FAM20C expression was
remarkably associated with poorer OS in TCGA database; Higher FAM20C
expression was remarkably associated with poorer OS in CGGA database.
OS, overall survival. The fustat means the patients’ survival status.
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related to the prognosis of LGG patients and could be used as a
biomarker to predict the survival of LGG patients.

High Fam20C Expression Served as an
Independent Risk Factor Among LGG
Patients
Univariate andmultivariate Cox analyses were utilized to evaluate
the independent prognostic values of Fam20C expression in LGG
patients. The univariate analysis results showed that high
Fam20C expression was significantly correlated with a shorter
OS (HR � 1.02, 95% CI: 1.01–1.03, p < 0.001; HR � 1.01, 95% CI:
1.00–1.01, p � 0.001) in TCGA and CGGA. Other variables

related to poor survival included age and grade in TCGA
(Supplementary Table S2). In CGGA, variables related to
poor survival that including grade IDH and 1p19q
(Supplementary Table S3). Multivariate analysis showed that
high expression of Fam20C in LGG patients was independently
associated with a significant decrease in OS (Figure 3 and
Supplementary Tables S2, S3).

Fam20C Expression Is a Novel Diagnostic
Biomarker for LGG
To evaluate the diagnostic value of Fam20C for LGG, TCGA
RNA-seq data were employed to draw the ROC curve. The area

FIGURE 3 | Multivariate Cox analysis evaluating independently predictive ability of Fam20c for OS in TCGA and CGGA database. **p < 0.01; ***p < 0.001.
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under the ROC curve was 0.690, which had high diagnostic
value (Figure 4A). This result was further verified with the
CGGA data set, and the area under the ROC curve was 0.778
(Figure 4B).

Functional Enrichment Analysis
To clarify the functions and signaling pathways of genes co-
expressed with Fam20C, we performed GO and KEGG
enrichment analyses. GO analysis results showed that co-
expressed genes were mainly closely related to the biological
process of extracellular matrix remodeling (Figure 5A). KEGG
analysis showed that co-expressed genes were mainly enriched in
extracellular matrix receptor interactions, cell adhesion,
apoptosis, cancer pathways, P53 signaling pathways, NOTCH
signaling pathways, and cell cycle signaling pathways
(Figure 5B).

Fam20C Was Also Overexpressed in Our
Cohort
To further verify the expression of Fam20C in our cohort, we
detected its expression in our clinical samples and found that
Fam20C was significantly overexpressed in grade 3 tumors
(Figure 6A). Higher Fam20C expression levels were also
correlated with a worse OS in our cohort (Figure 6B).

Univariate and multivariate Cox analyses were utilized to
evaluate the independent prognostic values of Fam20C
expression in LGG patients. The univariate analysis results
showed that high Fam20C expression was significantly
correlated with a shorter OS (HR � 6.39, 95% CI:
1.86–21.86, p � 0.003). Other variables related to poor
survival included IDH 1p19q and extent of resection
(Supplementary Table S4). Multivariate analysis showed
that high expression of Fam20C in LGG patients was
independently associated with a significant decrease in OS
(Figure 6C and Supplementary Table S4).

DISCUSSION

Glioma is one of the most common primary malignant tumors in
the nervous system. It arises from active glial cells in the brain,
including astrocytes, oligodendrocytes, and ependymal cells.

FIGURE 4 | Diagnosis value of FAM20C expression in LGG analysis. (A) ROC curve for FAM20C expression in LGG tissues in TCGA database; (B) validation of
FAM20C diagnosis value in CGGA database. ROC, receiver operating characteristic.

FIGURE 5 | Functional enrichment analysis of Fam20c in LGG. (A)Gene
Ontology enrichment analysis; (B) enrichment plots fromGSEA. KEGG, Kyoto
Encyclopedia of Genes and Genomes.
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Although the prognosis of lower-grade glioma is better than that of
glioblastoma, there are still some lower-grade gliomas with a poor
prognosis and a short survival time, and 70% of low-grade patients
undergo a high-grade transformation within 10 years. Therefore,
early diagnosis and accurate prognostic biomarkers are essential for
improving the prognosis of patients with LGG.

In recent years, a class of secreted kinases have been newly
discovered that are involved in the regulation of many important
physiological reactions. The Fam20 kinase family includes
Fam20A, Fam20B, and Fam20C (Nalbant et al., 2005; Zhang
et al., 2018). Fam20C is a casein kinase enriched in the Golgi
apparatus that modulates many downstream substrates through
protein phosphorylation and plays an important role in the
formation of the secretome of tumor cells. However, its
diagnostic and prognostic value in cancer is still unclear. Our
results provide insights for further understanding the pathological
role of Fam20C in promoting tumor growth and invasion and its
potential value as a diagnostic and prognostic marker for LGG.

Fam20C protein kinase has a significant promotion effect on the
metastasis and invasion of triple-negative breast cancer
(Tagliabracci et al., 2015). Fam20 is also a potential target gene
related to the pathogenesis of early lung adenocarcinoma (Kang
2013). Therefore, we speculate that the expression of Fam20Cmay

affect the survival of patients through promoting the progression of
tumor cells. However, the expression of Fam20C in cancer and its
effects on other important aspects, such as tumor cell metastasis,
still lack consensus. It has been previously reported that insulin-like
growth factor binding protein 7 (IGFBP-7) regulates the migration
of glioma cells through the AKT-ERK pathway, thereby playing an
important role in the growth and migration of gliomas (Jiang et al.,
2008). Adult diffuse glial tumor GWAS contains variants of
D2HGDH and Fam20C in different molecular subtypes. In IDH
mutant gliomas, the nine variants located on chromosome two of
D2HGDH and those in its vicinity are all significant genome-wide
(Eckel-Passow et al., 2020).

In this study, we systematically detected the expression level of
Fam20C in different types of cancer in the TCGA database. Based on
the available evidence, our results indicated that Fam20Cexpressionwas
elevated in breast cancer. In addition, Fam20C was also overexpressed
in five other cancers, such as glioma, meningioma, and kidney cancer,
and Fam20C overexpression was associated with higher-grade gliomas.

At present, the biological functions of Fam20C and its
mechanism of action in tumorigenesis have rarely been
reported. The phosphorylated substrate of Fam20C is related to
tumor cell apoptosis and migration and can accelerate the process
of tumor metastasis by activating matrix metalloproteinases

FIGURE 6 | Expressions, immunohistochemistry andmultivariateCox analysis of Fam20c in our cohort. (A)Representative figures of FAM20C immune-staining in our clinical
LGG samples (200X; grade II: n � 60, grade III: n � 40, normal: n � 3); (B) Kaplan–Meier curve evaluating the correlation between FAM20C protein expression and LGG patients’
survival (FAM20C low vs high, low n � 51, high n � 49, p < 0.001; Log rank test). (C) Multivariate Cox analysis evaluating independently predictive ability of Fam20c for OS.
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(MMPs). In this study, the Fam20C-related signaling pathways
activated in LGG were mainly enriched in extracellular matrix
receptor interactions, cell adhesion, apoptosis, cancer pathways,
P53 signaling pathways, NOTCH signaling pathways, and the cell
cycle, which further stimulated tumor proliferation and invasion.

Biomarkers are biological characteristics that could be objectively
measured or evaluated. They may be employed as indicators of
biological and pathological processes, or reflect the results of
treatment methods, which are mainly used for disease prevention,
diagnosis, treatment, prognosis, and drug development. Fam20C
was an effective target for the treatment of triple-negative breast
cancer. Fam20C inhibitor induced apoptosis of TNBC cell line
(MDA-MB-468) and potentially inhibited cell migration (Qin
et al., 2016). In our study, Fam20C expression was detected in
postoperative pathological specimens of resectable glioma patients.
Our present data has demonstrated that Fam20c may be a
protentional prognostic marker for LGG. There is no research on
whether Fam20C was highly expressed in the serum of LGG
patients, we will reconsider and complete this topic in the future.

A Fam20C inhibitor induced cell apoptosis through the
mitochondrial pathway and had the potential to inhibit cell
migration (Qin et al., 2016; Zhao R. et al., 2021). Shaonan Du
et al. found that Fam20C may serve as a predictive protein and a
therapeutic target forGBM(Du et al., 2020).However, there have been
few studies on the Fam20C gene in LGG. Hence, we further
investigated whether Fam20C could be used as a diagnostic and
prognostic marker for LGG. The ROC curve showed that the
expression of Fam20C had a high diagnostic value for LGG. In
addition, the Kaplan-Meier curves showed that high expression of
Fam20C mRNA in LGG patients was significantly associated with a
poorOS. In addition, univariate andmultivariateCox analyses showed
that high Fam20C expression was an independent risk factor for a
poor OS of LGG patients. In summary, our research showed that
Fam20C was over-expressed in LGG and was correlated with more
aggressive tumors and a worse prognosis. Our results showed that
Fam20C is a promising biomarker for LGG diagnosis and prognosis.

CONCLUSION

In conclusion, we established a potential prognostic and diagnostic
signature for LGG patients based on two databases (TCGA and
CGGA) and clinical samples. This biomarker could efficiently stratify
the LGG patients into two groups with distinct survival differences.
Moreover, we identified the potential signaling pathways of Fam20C
in LGG patients. Overexpression of Fam20C was correlated with
progressive malignancy and poor survival of LGG patients and was
associated with significant enrichment of extracellular matrix receptor
interactions, cell adhesion and apoptosis in LGG. Taken together, our
results suggest that Fam20C inhibition could be a potential therapeutic
target to prevent LGG progression.
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Multigenomics Reveals the Causal
Effect of Herpes Simplex Virus in
Alzheimer’s Disease: A Two-Sample
Mendelian Randomization Study
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1College of Life Sciences, Institute of Fungal Resources, Guizhou University, Guiyang, China, 2Key Laboratory of Plant Resource
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In recent years, the herpes virus infectious hypothesis for Alzheimer’s disease (AD) has
gained support from an increasing number of researchers. Herpes simplex virus (HSV) is a
potential risk factor associated with AD. This study assessed whether HSV has a causal
relationship with AD using a two-sample Mendelian randomization analysis model. Six
single-nucleotide polymorphisms (SNPs) associated with HSV-1 and thirteen SNPs
associated with HSV-2 were used as instrumental variables in the MR analysis. We
estimated MR values of relevance between exposure and the risk of AD using inverse-
variance weighted (IVW) method, MR-Egger regression (Egger), and weighted median
estimator (WME). To make the conclusion more robust and reliable, sensitivity analyses
and RadialMRwere performed to evaluate the pleiotropy and heterogeneity. We found that
anti-HSV-1 IgG measurements were not associated with risk of AD (OR, 0.96; 95% CI,
0.79–1.18; p � 0.736), and the same was true for HSV-2 (OR, 1.03; 95% CI, 0.94–1.12;
p � 0.533). The findings indicated that any HSV infection does not appear to be a
genetically valid target of intervention in AD.

Keywords: HSV, genome, Mendelian randomization, Alzheimer’s disease, causality

1 INTRODUCTION

Alzheimer’s disease (AD) is a complex chronic progressive degenerative disorder of the central
nervous system, affecting primarily the elderly, which severely reduces the quality of life (Calabrò
et al., 2021). According to the 2015 World Alzheimer Report, the number of AD patients is expected
to double every 20 years, reaching up to 131.5 million by 2050 (Prince et al., 2015; Du et al., 2018)
with the incidence rate of AD increasing exponentially after 65 years of age (Hou et al., 2019). AD is
diagnosed after age 65 as late-onset AD (LOAD) and before age 65 as early-onset AD (EOAD).
LOAD accounts for about 95% of AD cases. EOAD is essentially an inherited disease, with a
92%–100% heritability. In contrast, there are multiple factors influencing LOAD, which are sporadic
(Laval and Enquist, 2021). AD has two central pathological features: the extracellular deposition of
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amyloid plaques and intracellular accumulation of neurofibrillary
tangles (NFTs). Amyloid plaques aremainly composed of amyloid-
β (Aβ) protein and NFTs are composed of hyperphosphorylated
tau proteins. Hence, there have been contrasting theories proposed
about the underlying pathogenesis of AD, such as amyloid
cascade hypothesis, Tau protein hypothesis, and oxidative stress.
Nonetheless, to date, current therapies have failed to delay disease
progression. In recent years, the herpes virus infection hypothesis
has received a renewed interest by scientists who believe that
infection is the main cause of AD.

In the 1980s, herpes simplex virus (HSV) was first proposed to be
associated with AD after viral genetic material was discovered in the
human brain as well as virus-induced lesions present in the limbic
system were associated with AD (Ball, 1982). The viruses belong to
the Alphaherpesviridae subfamily of the Herpesviridae family,
including HSV-1 and HSV-2, which are ubiquitous human
pathogens (Piret and Boivin, 2020). Previous studies (Wozniak
et al., 2010) found that HSV-1 DNA was present in the brains of
both AD patients and normal elderly people; however, in the brains
of AD patients, HSV-1 DNA was found within 90% of the plaques
and 72% of HSV-1 DNA was associated with plaques, while in the
brains of normal elderly people, only 24% of HSV-1 DNA was
associated with plaques. Thus, it was proposed that the HSV-1
infects infants and remains latent in the peripheral nervous system.
Reactivation of latent HSV-1 infections may cause local neuronal
damage and inflammation, which over time may lead to the
deposition of Aβ and abnormal phosphorylation of tau in the
brain. A recent study proposed that Aβ deposition and abnormal
phosphorylation of tau were the brain’s immune response to HSV-1
(Eimer et al., 2018). However, another recent study showed that AD
associated β-amyloid does not protect against HSV-1 infection in the
mouse brain (Bocharova et al., 2021).

To date, the precise molecular events, and biological pathways
underlying the disease have yet to be identified and the existing
evidence does not definitively support the herpesviruses
hypothesis of AD. The deposition of Aβ and abnormal
phosphorylation of tau are not necessarily the cause of AD,
but may be the result of other risk factors leading to AD.
Meanwhile, given the existence of unmeasured confounding
variables and reverse causation, previous epidemiological
studies have demonstrated a correlation but no direct causal
relationship between HSV and AD, which allows for a re-
evaluation of the theory as a possible strategy.

Multi-omics research probes the interaction between multiple
factors in biological systems, including genomics, epigenomics,
transcriptomics, proteomics, metabolomics, and microbiomics.
These factors jointly affect phenotypes and physiological traits.
With the development of high-throughput sequencing
technology, omics research continues to provide more
extensive data. Through high-throughput sequencing, omics,
and data integration studies, we can comprehensively and
systematically understand the relationship between various
factors in the fields of basic research, molecular biology,
clinical diagnosis, and drug discovery. (Hasin et al., 2017).

Genomics is the earliest discipline stemming from histology,
and focuses on the study of the entire genome, and is currently the
most established discipline in the field. Genomics focuses on the

identification of genetic variants associated with disease,
treatment response, or patient prognosis (Hasin et al., 2017).
With the successful development of next-generation sequencing
(NGS) technology and the completion of the human genome
project and the International Human Genome HapMap project
(HapMap), genome-wide association studies (GWAS) have
become a method for identifying millions of genetic variants
related to complex diseases (GWAS catalog https://www.ebi.ac.
uk/gwas/home) in different human populations. In such studies,
millions of individuals are genotyped for many genetic markers,
and the genotypes and phenotypes are subjected to statistical
analysis at a population level. Significant differences in minor
allele frequencies (MAF) between cases and controls are thought
to be markers affecting the trait. GWAS studies provide an
invaluable contribution to our understanding of complex
phenotypes (Hasin et al., 2017).

Mendelian randomization (MR) is a strategy for evaluating the
causality of risk factors of a disease using genetic variants from the
GWAS as instrumental variables (IV) (Lawlor et al., 2008). It is
based on the Mendelian inheritance law of “random allocation of
parental alleles to offspring” in meiosis, which is equivalent to a
randomized controlled trial using genotypes. MR analysis can
remove the limitations of traditional epidemiology. As alleles
were randomly allocated at conception, confounders cannot
influence the result of the allocated alleles. Because the disease
cannot alter genetic variants, reverse causation may be avoided.

IVs should satisfy three major hypotheses (Figure 1), which
have been widely described in recent studies (Liu et al., 2018; Liu
et al., 2021).

1) The IV is associated with the exposure (γ≠0, strong IVs).
2) The IV is not associated with the confounders (φ � 0).
3) The IV does not influence the outcome through some

pathways other than the exposure (α � 0, no directional
pleiotropy).

Scepanovic et al. (2018) measured quantitative IgG responses to
HSV-1 and HSV-2 infection in humoral immunity to explore the
influence of genetic factors on the variability of humoral responses.
After genome-wide genotyping of single-nucleotide polymorphisms
(SNPs) and imputation, they examined associations between genetic
variants and HSV-1 and HSV-2 IgG and performed two genome-
wide association analyses. The International Genomics of
Alzheimer’s Project Consortium (IGAP) (Lambert et al., 2013)
conducted a meta-analysis using genotyped and imputed data on
four previously published GWAS datasets and obtained a novel
genome-wide association analysis demonstrating the relationship of
genetic variants with AD. In the present study, we used many SNPs
of multi-genome association analysis as IVs to perform two-sample
MR analysis (Gibran et al., 2018).

2 MATERIALS AND METHODS

2.1 Data Sources
The exposure risk factors considered in this study were HSV-1
and HSV-2. The genetic variations for both exposures were anti-
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HSV-1 IgG measurement and anti-HSV-2 IgG measurement,
which were downloaded from a GWAS study of Scepanovic et al.
(2018), which was the basis of the summary data published in the
NHGRI-EBI GWAS (https://www.ebi.ac.uk/gwas). The sample
was derived from The French Milieu Interieur cohort, which was
stratified by sex (500 men, 500 women) and age (200 individuals
from each decade of life, between 20 and 70 years of age). The
HSV-2 datasets contained 208 cases and 792 controls, and HSV-1
datasets contained 645 cases and 355 controls.

The summary data of AD derived from the International
Genomics of Alzheimer’s Project Consortium (IGAP), which
was a sizeable two-stage research based on GWASs of AD in
74,046 diseased and normal individuals of European ancestry
(Lambert et al., 2013). In stage 1, the IGAP performed a meta-
analysis of four previously published GWAS datasets containing
17,008 AD patients and 37,154 controls, using genotyped and
imputed data on 7,055,881 SNPs. The outcome data from IGAP
stage 1 results were from the study of Kunkle et al. (2019). Table 1
shows the detailed descriptions of IGAP stage 1 data.

2.2 Methods
All the analyses were performed using R version 4.1.0 software.

2.2.1 Selection of Instrumental Variables
The most critical step in MR design is to identify suitable genetic
variants as IVs. First, we extracted SNPs that had significant (p <
1 × 10–5) associations with HSV-1 and HSV-2. Then, we

performed a linkage disequilibrium (LD) analysis to exclude
mutual linkage SNPs and to discard non-biallelic SNPs. LD (r2

< 0.001, kb > 10,000) was applied to select IVs of HSV-1 and
HSV-2. The samples used to estimate the LD effect derived from
individuals of European ancestry from the 1,000 Genome Project.
Correlated SNPs in LD were excluded using the “clump_data”
function of the “TwoSampleMR” R package. As a result, 7 SNPs
were identified for HSV-1 and 13 SNPs for HSV-2.

2.2.2 Harmonize
A summary set can generate errors if the effect alleles for the SNP
effects in the exposure and outcome datasets are different.We aligned
the effect alleles for exposure and outcome based on reported effect
alleles and effect allele frequencies using the “harmonise_data”
function of the “TwoSampleMR” R package (Gibran et al., 2018).
Furthermore, we used F-statistics (Bowden et al., 2016) to measure
the strength of the selected IVs. If the F-statistic was more than ten,
genetic variants were generally deemed to be a strong IV.

2.2.3 Mendelian Randomization
We conducted the MR analysis using inverse-variance weighted
(IVW) regression analysis, MR-Egger regression analysis, and
weighted median estimator (WME). IVW can provide accurate
estimates when the IV satisfies the MR assumptions that there are
no invalid IVs (Burgess et al., 2013). Themean effect estimate of IVW
is derived froma random effect IVWmeta-analysis of theWald ratios
(SNP-outcome associations divided by SNP-exposure associations)

FIGURE 1 | Directed acyclic graph (DAG) model of instrumental variables in causal associations.

TABLE 1 | Description of consortium datasets for IGAP stage 1.

Consortium N (cases/controls) Percent
women (cases/controls)

Case mean AAO (s.d.) Control
mean AAE (s.d.)

ADGC 10,273/10,892 59.4/58.6 74.7 (7.7) 76.3 (8.1)
CHARGE 1,315/12,968 63.6/57.8 82.7 (6.8) 72.8 (8.6)
EADI 2,243/6,017 64.9/60.7 68.5 (8.9) 74.0 (5.4)
GERAD 3,177/7,277 64.0/51.8 73.0 (8.5) 51.0 (11.8)
N 17,008/37,154

AAO, age at onset; AAE, age at examination.
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estimated for each IV (Staley and Burgess, 2017). MR-Egger
regression is robust for invalid instruments, and can be used to
test for directional pleiotropy, providing an estimate of the causal
effect adjusted for a variable’presence. InMR-Egger, an intercept that
differs from zero estimates the average pleiotropy effect across the
genetic variants, which indicates that the IVW estimate is biased
(Bowden et al., 2015). However, MR-Egger regression is more easily
influenced by regression dilution, so that it should be approximated
using the I2 statistic. If I2 is high (I2 > 0.9), Egger regression can be
considered an unbiased estimation (Bowden et al., 2016). The WME
provides a consistent, valid estimate if at least half of the IVs are valid
(Verbanck et al., 2018). MR analyses were performed using the
R-based package “TwoSampleMR”.

2.2.4 Sensitivity Analysis
The three methods described above were applied to analyze
causal estimation, and we performed the following additional
analyses and assessments to examine the robustness of the results.
First, we used Egger intercept to test the pleiotropy of SNPs
(Burgess and Thompson, 2017). Then, we calculated the
heterogeneity among SNPs using Cochran’s Q-statistic to
assess the robustness of IVs (Kippersluis and Rietveld, 2017).
Furthermore, to evaluate whether the MR estimate was driven or
biased by a single SNP that might have an enormous pleiotropic
effect, RadialMR was applied to present a more straightforward
detection of outliers and to correct horizontal pleiotropy by
removing outliers (Bowden et al., 2018). All sensitivity
analyses were performed using the R-based package
“TwoSampleMR” and “RadialMR”.

3 RESULTS AND DISCUSSION

3.1 The Causality of HSV-1 and AD
After removing the palindrome SNP (rs1738233), six SNPs for
HSV-1 infection were identified, which were significant (p < 1 ×
10–5) and independent (r2 < 0.001). The F-statistics for the six
SNPs were all more than 10, which indicated that all six IVs were
strong instruments (Table 2).

Table 3;Figure 2 showed the estimated associations ofHSV-1 risk
factor with AD from MR analysis. Genetically predicted HSV-1
infection was not associated with AD risk using IVW (OR � 0.96, p �
0.736), WME (OR � 0.97, p � 0.833), andMR-Egger (OR � 0.79, p �
0.653). The MR-Egger intercept indicated no directional pleiotropy
(intercept � 0.018, p � 0.694), suggesting that horizontal pleiotropy
was unlikely to influence the IVW estimate. The I2 statistics was
0.958, indicating that relative bias did not materially affect the
standard MR-Egger analysis. Cochran’s Q test showed no
existence of heterogeneity of SNPs (Cochran’s Q-statistic � 5.83,
p � 0.322), while RadialMR showed that there were no outliers in the
six SNPs.

3.2 The Causality of HSV-2 and AD
Thirteen SNPs for HSV-2 infection were identified, which were
both significant (p < 1 × 10–5) and independent (r2 < 0.001)
(Table 4). The F-statistics for the thirteen SNPs were more
than 10, which indicated that they were strong IVs.

Table 5; Figure 3 showed the estimated associations of HSV-2
risk factors with AD from the MR analysis. Genetically predicted
HSV-2 infection was not associated with the AD using IVW (OR

TABLE 2 | SNPs significantly (p-value < 1 × 10−5) and independently (r2 < 0.001) associated with herpes simplex virus type 1 (HSV-1) infection (SNPs � 6).

Exposure SNP Effect
allele

Other
allele

EAF Beta SE p-value F-statistic

HSV-1 rs10977313 T G 0.11 −0.12 0.02 2.97
× 10−7

26.9

rs1446553 A G 0.25 0.07 0.02 9.85
× 10−6

19.9

rs34018815 A G 0.10 −0.11 0.02 8.35
× 10−6

20.2

rs58599785 T C 0.16 0.08 0.02 4.91
× 10−6

21.3

rs78421079 T C 0.08 −0.12 0.03 6.49
× 10−6

20.7

rs8020017 G A 0.40 −0.06 0.01 9.85
× 10−6

19.9

TABLE 3 | Association of six SNPs for HSV-1 infection with AD using MR with different methods.

Outcome SNPs OR 95% CI p-value Pleiotropy Heterogeneity I2

Intercept
p-value

Cochran’s
Q-statistic

p-value

AD 6 IVW 0.96 [0.79–1.18] 0.736 5.836 0.323
WME 0.97 [0.77–1.23] 0.833
MR-
Egger

0.79 [0.32–1.99] 0.653 0.694 5.586 0.232 0.958
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� 1.03, p � 0.533), WME (OR � 1.08, p � 0.121), and MR-Egger
(OR � 0.95, p � 0.764). The MR-Egger intercept indicated that
there was no directional pleiotropy (intercept � 0.017, p � 0.646).
Furthermore, the Cochran’s Q-statistic indicated the existence of
heterogeneity of SNPs (Cochran’s Q-statistic � 18.8, p � 0.04).
Meanwhile, no outliers were detected using RadialMR.

4 DISCUSSION

We found that both HSV-1 and HSV-2 were not causally
associated with an increased risk of AD using genetic variation
as instrumental variables. Kwok and Schooling (2021) used the
GWAS summary statistics data from the French Milieu Interieur
cohort, the United Kingdom biobank, and the US 23 and Me

Study, pointing out that HSV-1 and HSV-2 were not associated
with AD. SY et al. (2021) used the GWAS summary statistics data
from the 23 and Me cohort, indicating the same result.

4.1 The Result of HSV and AD
Although the causality of the association is unclear, many studies
have proven that HSV is not unrelated to AD. HSV-1 virus was
detected in the brains of both AD patients and elderly normal
people. However, most of the AD patients were APOE-ε4 gene
carriers. The herpesvirus hypothesis proposes that HSV-1 enters the
brains of APOE-ε4 carriers, where it remains a latent life with
limited transcription and low protein synthesis. In response to
immunosuppression, peripheral infection, and inflammation,
HSV-1 reactivates, creating a combination of viral action
and inflammatory effects that are poorly repaired by APOE-ε4
carriers, ultimately leading to the development of AD (Itzhaki,
2018). In addition, a recent study pointed out novel molecular
mechanisms through which recurrent HSV-1 infection may affect
neuronal aging, likely contributing to neurodegeneration (Napoletani
et al., 2021).

We inferred that our results may have occurred mainly due to
several reasons. The major reason is that reactivation after latent
HSV-1 infection may be responsible for a pathogenetic mechanism
of AD, and IgM is a marker of activation of primary infection. Our
study used anti-HSV-1 IgG antibodies rather than IgM as a proxy for
HSV-1 infection, implicitly demonstrating that previous HSV-1
infection is not associated with AD risk. Another reason is the
speculation that HSV-1 infection is not a risk factor for cognitive
decline but rather a phenomenon that co-occurs with neuro-
inflammation or as a result of neuro-inflammation.

Meanwhile, we found that HSV-2 was not causally associated
with an increased risk of AD using genetic variation as an
instrumental variable. This is probably because that according
to the available epidemiological observations, HSV-2 mainly
invades the genitalia and the area from the waist down and is
not associated with the brain.

Future studies should perform MR analyses using anti-HSV-1
IgM antibodies as an IV forHSV-1 infection.What we can conclude,
however, is that AD is not simply a single factor disease caused by
HSV, but that it encompasses complex disease mechanisms.

FIGURE 2 | Forest plot for two-sample Mendelian randomization effect
size between Herpes simplex virus type 1 (HSV-1) and Alzheimer’s
disease (AD).

TABLE 4 | SNPs significantly (p-value < 1 × 10−5) and independently (r2 < 0.001) associated with herpes simplex virus type 2 (HSV-2) infection (SNPs � 13).

Exposure SNP Effect allele Other allele EAF Beta SE p-value F-statistic

HSV-2 rs10888851 G C 0.11 −0.24 0.05 3.27 × 10−6 23.2
rs10782620 G T 0.39 0.16 0.03 2.60 × 10−6 23.7
rs12042287 C T 0.27 −0.16 0.03 7.67 × 10−6 21.3
rs10174926 C T 0.13 −0.24 0.04 9.72 × 10−7 25.9
rs72804080 G A 0.13 0.26 0.05 1.92 × 10−7 29.5
rs355547 C T 0.39 0.17 0.04 2.00 × 10−6 24.3
rs35213774 G A 0.11 0.26 0.05 1.10 × 10−6 25.6
rs6826994 A G 0.06 −0.30 0.06 6.76 × 10−6 21.6
rs113043839 A G 0.06 0.32 0.07 6.94 × 10−6 21.5
rs10100854 T C 0.37 −0.15 0.03 7.00 × 10−6 21.5
rs10964023 T G 0.19 −0.19 0.04 3.58 × 10−6 23.0
rs17802723 G C 0.08 −0.28 0.06 7.90 × 10−6 21.3
rs10790877 A G 0.47 −0.16 0.03 7.82 × 10−7 26.4
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4.2 Advantages and Challenges of MR
Analysis
In the investigation of risk factors for AD, traditional research
methods present many challenges in discovering the cause of the
disease. Observational studies can only demonstrate a correlation
rather than causality between exposure and outcome due to
confounding factors and reverse causality. Cohort studies can
make causal arguments but waste time. Random control trials
(RCT) are considered the gold standard for clinical diagnosis and
have a solid causal view. However, when applied by researchers,
they are difficult to practice due to medical ethics and the many
limitations of the design process. For these reasons, MR analysis
has become a more convenient and effective way of exploring the
causal links between risk factors and AD.

The application of MR analysis in this study has several
advantages. First, reverse causality can be avoided, and second,
it can prevent the interference of confounding factors. MR
analysis can also address situations where an intervention
experiment cannot be performed because of ethical restrictions
(Zheng et al., 2017). Our exposure data were obtained from a
publicly available GWAS database published with credibility. Our

outcome data derived from a study conducted by the IGAP with a
large sample population.

Nonetheless, our study also has some limitations. First, our data
samples were based on individuals of European ancestry, so the
results are not representative of all races. Second, the sample size of
the exposure data was not sufficiently large, leading to the low power
of statistics and false negatives. However, a significant number of IVs
can lead to high power but inevitable heterogeneity and pleiotropy of
IVs. This is where the general challenge of MR.

5 CONCLUSION

We implemented a two-sample MR to demonstrate the causal
relationship between HSV infection and AD risk. The SNPs were
independent and strong instrumental variables, and the result was
robust and reliable. Our findings indicated the negative
association between any HSV IgG and AD. Further research is
needed to investigate whether HSV IgM is corelated with AD, and
whether HSV infections that co-occur with neuro-inflammation
are more relevant.
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TABLE 5 | Association of thirteen SNPs for HSV-2 infection with AD using MR with different methods.

Outcome SNPs OR 95% CI p-value Pleiotropy Heterogeneity I2

Intercept
p-value

Cochran’s
Q-statistic

p-value

AD 13 IVW 1.03 [0.94–1.12] 0.533 18.802 0.043
WME 1.08 [0.98–1.18] 0.121
MR-
Egger

0.95 [0.67–1.34] 0.764 0.017 18.343 0.031 0.959

FIGURE 3 | Forest plot for two-sample Mendelian randomization effect
size between Herpes simplex virus type 2 (HSV-2) and Alzheimer’s
disease (AD).
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Introduction: Alzheimer’s disease (AD) is the most prevalent cause of dementia, and
emerging evidence suggests that ferroptosis is involved in the pathological process
of AD.

Materials and Methods: Three microarray datasets (GSE122063, GSE37263, and
GSE140829) about AD were collected from the GEO database. AD-related module
genes were identified through a weighted gene co-expression network analysis
(WGCNA). The ferroptosis-related genes were extracted from FerrDb. The apoptosis-
related genes were downloaded from UniProt as a control to show the specificity of
ferroptosis. The overlap was performed to obtain the module genes associated with
ferroptosis and apoptosis. Then the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses and the protein-protein
interaction (PPI) were conducted. Cytoscape with CytoHubba was used to identify
the hub genes, and the Logistic regression was performed to distinguish the AD
patients from controls.

Results: 53 ferroptosis-related module genes were obtained. The GO analysis
revealed that response to oxidative stress and starvation, and multicellular organismal
homeostasis were the most highly enriched terms. The KEGG analysis showed that
these overlapped genes were enriched not only in renal cell carcinoma pathways
and central carbon metabolism in cancer, but also in autophagy-related pathways
and ferroptosis. Ferroptosis-related hub genes in AD (JUN, SLC2A1, TFRC, ALB,
and NFE2L2) were finally identified, which could distinguish AD patients from controls
(P < 0.05). The area under the ROC curve (AUC) was 0.643. Apoptosis-related
hub genes in AD (STAT1, MCL1, and BCL2L11) were also identified and also could
distinguish AD patients from controls (P < 0.05). The AUC was 0.608, which was
less than the former AUC value, suggesting that ferroptosis was more special than
apoptosis in AD.

Conclusion: We identified five hub genes (JUN, SLC2A1, TFRC, ALB, and NFE2L2)
that are closely associated with ferroptosis in AD and can differentiate AD patients
from controls. Three hub genes of apoptosis-related genes in AD (STAT1, MCL1, and
BCL2L11) were also identified as a control to show the specificity of ferroptosis. JUN,
SLC2A1, TFRC, ALB, and NFE2L2 are thus potential ferroptosis-related biomarkers for
disease diagnosis and therapeutic monitoring.

Keywords: Alzheimer’s disease (AD), WGCNA, ferroptosis, apoptosis, GEO
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent cause of dementia,
accounting for approximately 60–80% of all cases (Gbd 2016
Dementia Collaborators, 2019). The exact pathogenesis of AD

is still not fully elucidated (Zhang et al., 2021). Ferroptosis
is an iron-dependent lipid peroxidation-driven cell death, and
emerging evidence suggests that it is involved in the pathological
process of AD (Lane et al., 2018; Weiland et al., 2019). In addition,
several characteristics of the pathogenesis of AD were consistent

FIGURE 1 | The workflow chart of data preparation, processing, analysis, and validation.
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with those of ferroptosis, such as excess iron accumulation,
elevated lipid peroxides (Zhang et al., 2012; Hambright et al.,
2017; Ayton et al., 2019). Therefore, ferroptosis is increasingly

being recognized as a unique cell death mechanism participating
in the pathogenesis of AD. However, more direct evidence is
needed to be presented (Chen et al., 2021). Apoptosis is the

FIGURE 2 | (A) Analysis of the scale-free index for various soft-threshold powers (β). (B) Analysis of the mean connectivity for various soft-threshold powers.
(C) Identification of co-expression gene modules. The branches of the dendrogram cluster into 4 modules and each one was labeled in a unique color. (D) A
heatmap showing the correlation between each module eigengene and phenotype. Two modules were correlated with AD-namely, turquoise and blue modules.
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spontaneous and orderly death of cells, which involves the
activation, expression and regulation of a series of genes, and
it is a biological process that plays an essential role in normal
physiology (Obulesu and Lakshmi, 2014). It is now generally
accepted that massive neuronal death due to apoptosis is a
common characteristic in the brains of patients suffering from
neurodegenerative diseases, and apoptotic cell death has been
found in neurons and glial cells in AD (Shimohama, 2000;
Sharma et al., 2021).

Current studies on ferroptosis and AD are mainly focused
on two aspects: one is the mechanism of ferroptosis in the
pathological process of AD, mainly discussing how ferroptosis
participates in the AD (Masaldan et al., 2019; Jakaria et al., 2021);
the second is the clinical efficacy study of ferroptosis inhibitors
in AD, mainly to explore whether ferroptosis as a drug target of
AD can effectively delay the progression of AD (Yan and Zhang,
2019; Plascencia-Villa and Perry, 2021; Vitalakumar et al., 2021).
The purpose of this study is to investigate the association between

ferroptosis-related genes and AD with the gene level, which is a
supplement to existing studies and also a reference for ferroptosis
as a therapeutic target for AD. These hub genes identified by this
study could also serve as the ferroptosis-related biomarkers for
disease diagnosis and therapeutic monitoring.

MATERIALS AND METHODS

Microarray Data Processing
Three microarray datasets (GSE122063, GSE37263, and
GSE140829) of AD were collected from the GEO database1.
GSE122063 was based on the platforms of the GPL16699
(Mckay et al., 2019); GSE37263 was based on the platforms of
the GPL5175 (Tan et al., 2010); and GSE140829 was based on
the platforms of the GPL15988. Data for 56 AD patients and 44
control samples from GSE122063, 8 AD patients and 8 control

1http://www.ncbi.nlm.nih.gov/geo

TABLE 1 | Details for FerrDb.

Data set Category Annotated from Count Annotations

Driver Regulator Gene 108 150

Suppressor Regulator Gene 69 109

Marker Marker Gene 111 123

Inducer Regulator Small molecule 35 54

Inhibitor Regulator Small molecule 41 46

Ferroptosis aggravates disease Ferroptosis-diseaseassociation Ferroptosis and disease 49 58

Ferroptosis alleviates disease Ferroptosis-diseaseassociation Ferroptosis and disease 46 77

The number of “Count” and “Annotations” is inconsistent, because one gene can have multiple annotations.

FIGURE 3 | (A) Venn diagram showing the numbers of overlapped genes between AD-related module genes and ferroptosis-related genes. (B) Venn diagram
showing the numbers of overlapped genes between AD-related module genes and apoptosis-related genes.

TABLE 2 | Ferroptosis-related module genes obtained through the Venn diagram.

Type Genes

Driver PGD, YY1AP1, ATG3, ATG7, DPP4, NRAS, LPIN1, FBXW7, SCP2, EPAS1, TF, ATG16L1, IDH1, TFRC, BAP1, SNX4, PIK3CA, ATF3, PRKAA2

Suppressor SQSTM1, SLC40A1, MTOR, FANCD2, MUC1, TP63, FTMT, PRDX6, NFE2L2, ACSL3, JUN, SLC7A11, FH, CISD2, SESN2, PROM2

Marker TXNIP, HSD17B11, NCF2, PTGS2, ALB, STEAP3, SLC1A4, RRM2, CXCL2, ANGPTL7, PRDX1, SLC2A1, STMN1, RGS4, OXSR1, KLHL24,
CAPG, DRD5
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samples from GSE37263, and 182 AD patients and 207 control
samples from GSE140829 were analyzed in our study. A flow
diagram of the study is shown in Figure 1.

Weighted Gene Co-expression Network
Analysis
Firstly, the expression profiles of three datasets were removed
from the batch effect for further analysis. The gene co-expression
network was constructed with an R package termed “weighted
gene co-expression network analysis (WGCNA)” (Langfelder and
Horvath, 2008, 2012). The Adjacency matrix was constructed by
a weighted correlation coefficient. Subsequently, the adjacency
matrix was transformed into a topological overlap matrix (TOM).

Then, hierarchical clustering was performed to identify modules,
and the eigengene was calculated. Finally, we assessed the
correlation between phenotype (i.e., AD or control samples) and
each module by Pearson’s correlation analysis and identified AD-
related modules. The genes in these modules were considered as
AD-related module genes.

The Extraction of Ferroptosis-Related
Genes From FerrDb and
Apoptosis-Related Genes From UniProt
FerrDb2 is an artificial ferroptosis database for the management
and identification of ferroptosis-related markers and regulatory

2http://www.zhounan.org/ferrdb

FIGURE 4 | (A) Gene Ontology (GO) functional analysis showing enrichment of ferroptosis-related module genes. (B) Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis of ferroptosis-related module genes.
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factors, as well as ferroptosis-related diseases (Zhou and
Bao, 2020). Therefore, ferroptosis-related genes were
downloaded from this database for further analysis. The
UniProt Knowledgebase is the central hub for the collection of
functional information on proteins, with accurate, consistent and
rich annotation, and thus apoptosis-related genes were extracted
from UniProt3.

3https://www.uniprot.org/

Overlap Alzheimer’s Disease-Related
Module Genes With Ferroptosis-Related
Genes and Apoptosis-Related Genes,
Respectively
Ferroptosis-related genes were downloaded from FerrDb
and apoptosis-related genes were downloaded from
UniProt. We overlapped these genes with AD-related
module genes derived from WGCNA, respectively. The

FIGURE 5 | Protein-protein interaction network of 53 ferroptosis-related module genes were analyzed using Cytoscape software. The network includes 44 nodes
and 120 edges (The disconnected nodes were hided). The edges between 2 nodes represent the gene-gene interactions. The size and color of the nodes
corresponding to each gene were determined according to the degree of interaction. Color gradients represent the variation of the degrees of each gene from high
to low.
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Venn diagram was used to describe the details of the
overlapped genes.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Enrichment
Analysis of Overlapped Genes
Functional enrichment analysis was performed in three domains
of GO, including biological process (BP), cellular component
(CC), and molecular function (MF). The KEGG database
contains datasets of pathways involving biological functions,
diseases, chemicals, and drugs. The enrichment analysis was
carried out by clusterProfiler R package to determine the
biological functions of the genes and associated pathways
(Yu et al., 2012).

Protein-Protein Interaction
Establishment and Identification of Hub
Genes
An online tool (Search Tools for the Retrieval of Interacting
Genes, STRING4) was used to analyze protein interactions. The
PPI pairs were screened by confidence score (>0.40), and the
PPI network was visualized by the Cytoscape V3.9.0 software
(Shannon et al., 2003). Three indicators (Degree, closeness, and
Betweenness) were calculated through CytoHubba to evaluate the
importance of each node, and the top 10 nodes were selected. The
hub genes were their common nodes.

Construction and Validation of the
Logistic Regression
To effectively differentiate the AD patients from controls,
the logistic regression was constructed, and to evaluate
the performance of the logistic regression model for
predicting the occurrence of AD, we performed receiver
operating characteristic (ROC) curve analyses using the
pROC package of R (Robin et al., 2011). We selected the
statistically significant genes from hub genes (P < 0.05)
and used the nomogram to predict the occurrence of
AD. The expression level of the hub genes was shown by
the violin plot.

RESULTS

Weighted Co-expression Network
Construction and Identification of Core
Modules
The scale-free network was constructed with the soft threshold
set to 4 (R2 = 0.905) (Figures 2A,B). Then, the adjacency
matrix and topological overlap matrix were built. We then
calculated the module eigengenes representing the overall gene
expression level of each module; these were clustered based
on their correlation. A total of 4 modules were identified and

4https://string-db.org/

labeled with a unique color (Figure 2C). We analyzed the
correlations of each eigengene with phenotype (AD or control
samples), and found two modules were correlated with AD-
namely, the turquoise (cor = −0.32, P = 2e-13), and blue
(cor = 0.30, P = 1e-11) modules (Figure 2D). The 4,617 genes in
these modules-which are associated with AD-were retained for
further analysis.

The Extraction of Ferroptosis-Related
Genes From FerrDb and
Apoptosis-Related Genes From UniProt
The ferroptosis-related genes were downloaded and summarized
from the FerrDb (Zhou and Bao, 2020; Table 1). 253 regulatory
factors (including 108 drivers, 69 suppressors, 35 inducers, and 41
inhibitors), 111 markers, and 95 ferroptosis-related diseases were
collated by FerrDb. We have extracted 2,130 genes from Uniprot,
which is related to apoptosis.

Overlap Alzheimer’s Disease-Related
Module Genes With Ferroptosis-Related
Genes and Apoptosis-Related Genes,
Respectively
We overlapped the AD-related module genes derived from
WGCNA with ferroptosis-related genes extracted from FerrDb,
53 overlapped genes were obtained, namely ferroptosis-related
module genes, which was shown by the Venn diagram
(Figure 3A). The details of overlapped genes, including 19
drivers, 16 suppressors, and 18 markers, were shown in
Table 2. We also overlapped the AD-related module genes
with apoptosis-related genes to obtain apoptosis-related module
genes as a control for further analysis, and 90 overlapped
genes were obtained, which was also shown by the Venn
diagram (Figure 3B).

FIGURE 6 | Protein–protein interaction network for the six hub genes. Three
indicators (degree, closeness and betweenness) were, respectively, calculated
to evaluate the importance of each node and the top 10 nodes were selected.
The six hub genes were their common nodes.
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Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Enrichment
Analysis of Overlapped Genes
The significant GO functional terms of the 53 ferroptosis-
related module genes, including BP, MF, and CC, were
illustrated in Figure 4A. The significant terms of GO-BP were
principally associated with the response to stress, such as the
response to oxidative stress. The pathways enriched by GO-MF

were principally associated with the activity of peroxidase,
oxidoreductase, and antioxidant. The ferric iron-binding was
also enriched by the GO-MF. The analysis of GO-CC indicated
that overlapped genes were significantly enriched in basolateral
plasma membrane, phagophore assembly site, pigment granule,
and melanosome. The KEGG analysis showed that these
overlapped genes were enriched not only in renal cell carcinoma
pathways and central carbon metabolism in cancer, but also in
autophagy-related pathways and ferroptosis (Figure 4B). The

FIGURE 7 | (A) ROC curve was used to evaluate the performance of the logistic regression model. The area under the curve (AUC) was 0.643. (B) The nomogram
was used to predict the occurrence of AD. Ferroptosis-related hub genes, JUN, SLC2A1, TFRC, ALB, and NFE2L2 (P < 0.05), were included in this nomogram.
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pathway of ferroptosis was enriched by KEGG, suggesting that
these overlapped genes were significant for our study and could
be used for further analysis.

Protein-Protein Interaction
Establishment and Identification of Hub
Genes
The PPI analysis of 53 ferroptosis-related module genes was
performed through the STRING database and visualized by
Cytoscape V3.9.0 (Figure 5). JUN, SLC2A1, TFRC, ALB, MTOR,
and NFE2L2 were taken as potential hub genes based on
Degree, closeness, and betweenness. The hub genes were their
common top ten nodes. The PPI network of the hub genes was
presented in Figure 6. Similarly, the identification of hub genes of
apoptosis-related module genes was also conducted, and STAT1,
CFLAR, FASLG, MCL1 and BCL2L11 were obtained from the 90
overlapped genes.

Construction and Validation of the
Logistic Regression
Through constructing the logistic regression, JUN, SLC2A1,
TFRC, ALB, and NFE2L2 were selected, which could effectively
differentiate AD patients from controls (P< 0.05). The P-value of
MTOR was more than 0.05, which was not statistically significant.
We used the ROC curve to evaluate the performance of the

logistic regression model (the area under the ROC curve of the
model was 0.643), and the nomogram was used for predicting the
occurrence of AD (Figures 7A,B). The expression level of the five
hub genes is shown in Figure 8. Similarly, the logistic regression
was also constructed for apoptosis-related hub genes, and STAT1,
MCL1, and BCL2L11 were selected and could distinguish AD
patients from controls (P < 0.05). The AUC was 0.608, which
was less than the former AUC value, suggesting that ferroptosis
was more special than apoptosis in AD. The ROC curve and
nomogram are shown in Figures 9A,B.

DISCUSSION

The pathological process of ferroptosis has some characteristics
in common with AD, such as excess iron accumulation and
elevated lipid peroxides. It has been reported that the pathological
process of ferroptosis could be directly induced by iron overload
(Wang et al., 2017; Fang et al., 2019). Clinically, lipid peroxidation
metabolites were highly correlated with the progression of AD
(Benseny-Cases et al., 2014). Besides, it has also been reported
that reactive oxygen species (Wang et al., 2016) and reduced
glutathione (Chiang et al., 2017) were found in the pathological
process of AD. However, how does ferroptosis mediate AD?
Some ferroptosis-related signaling pathways were found in AD,
such as iron metabolism pathway, redox homeostasis pathway,

FIGURE 8 | Violin plot of the expression level of five hub genes. The red violin reflects the AD group, and the blue violin reflects the control group.
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FIGURE 9 | (A) The area under the curve (AUC) was 0.608. (B) The nomogram of apoptosis-related hub genes, STAT1, MCL1, and BCL2L11 (P < 0.05).

and lipid metabolism pathway (Chen et al., 2021). Exploring
of the mechanism of ferroptosis in AD could provide a novel
therapeutic target for the treatment of AD and possibly, other

FIGURE 10 | The regulation pathways of JUN, SLC2A1, TFRC, ALB, and
NFE2L2 participating in ferroptosis in AD. The gray edge represents the
gene-gene interactions. The orange T-shaped edge denotes suppression, and
the blue arrow denotes promotion.

neurodegenerative diseases (Ashraf and So, 2020). This study
identified five hub genes that may participate in the pathologic
processes associated with ferroptosis in AD. The possible
pathways of these five genes involved in ferroptosis are shown in
Figure 10 (see text footnote 2) (Gao et al., 2016; Shin et al., 2018;
Chen et al., 2019).

Emerging evidence has demonstrated that ferroptosis could
be a therapeutic target for AD (Gleason and Bush, 2021). Some
ferroptosis inhibitors, such as iron-chelators and vitamin E,
have shown clinical efficacy in treating AD. Deiprone is a brain
osmotic iron-chelating agent currently in phase II clinical trials
to treat AD (Nikseresht et al., 2019). Antioxidant vitamin E could
delay decline in function and relieve caregiver burden in patients
with AD (Dysken et al., 2014a,b). Collectively, Patients with
AD may benefit from ferroptosis as a therapeutic target. Unlike
targeting β-amyloid, the clinical trials of ferroptosis inhibitors are
still in the exploratory stage and need to be dose-optimized and
replicated on a larger scale (Nikseresht et al., 2019). The clinical
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efficacy of ferroptosis inhibitors in the treatment of AD also needs
to be further improved.

There were some limitations to this study. Firstly, while
selecting datasets for differentially expressed analysis, it was
found that some datasets had fewer or no differentially expressed
genes (DEGs, correcting P-value < 0.05 and | logFC| ≥ 1.0),
such as GSE48350 (Berchtold et al., 2013) and GSE131617
(Miyashita et al., 2014; Kikuchi et al., 2020). Therefore, the
datasets and related AD patients we can choose are still limited.
In addition, if the DEGs further overlaps with the ferroptosis-
related module genes, the number of available genes are limited
and could not be used for further analysis. Secondly, the potential
ferroptosis-related biomarkers identified by this study still need
further literature support and laboratory evidence verification.
Thirdly, the ferroptosis-related genes are derived from FerrDb,
which is being updated continuously, and more genes are yet
to be discovered.

CONCLUSION

We identified five hub genes (JUN, SLC2A1, TFRC, ALB, and
NFE2L2) that are closely associated with ferroptosis in AD
and can differentiate AD patients from controls, and are thus
potential ferroptosis-related biomarkers for disease diagnosis and
therapeutic monitoring. Three hub genes of apoptosis-related

genes in AD (STAT1, MCL1, and BCL2L11) were also identified
as a control to show the specificity of Ferroptosis. JUN, SLC2A1,
TFRC, ALB, and NFE2L2 are thus potential ferroptosis-related
biomarkers for disease diagnosis and therapeutic monitoring.
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Previous studies have suggested an association between infection with herpes simplex
virus (HSV) and liability to multiple sclerosis (MS), but it remains largely unknown whether
the effect is causal. We performed a two-sample Mendelian randomization (MR) study
to explore the relationship between genetically predicted HSV infection and MS risk.
Genetic instrumental variables for diagnosed infections with HSV (p < 5 × 10−6) were
retrieved from the FinnGen study, and single nucleotide polymorphisms associated
with circulating immunoglobulin G (IgG) levels of HSV-1 and HSV-2 and corresponding
summary-level statistics of MS were obtained from genome-wide association studies
of the European-ancestry. Inverse-variance weighted MR was employed as the primary
method and multiple sensitivity analyses were performed. Genetically proxied infection
with HSV was not associated with the risk of MS (odds ratio [OR], 0.96; 95% confidence
interval [CI], 0.90–1.02; p = 0.22) per one-unit increase in log-OR of herpes viral
infections. MR results provided no evidence for the relationship between circulating HSV-
1 IgG levels and MS risks (OR = 0.91; 95% CI, 0.81–1.03; p = 0.37), and suggested
no causal effect of HSV-2 IgG (OR = 1.04; 95% CI, 0.96–1.13; p = 0.32). Additional
sensitivity analyses confirmed the robustness of these null findings. The MR study
did not support the causal relationship between genetic susceptibly to HSV and MS
in the European population. Further studies are still warranted to provide informative
knowledge, and triangulating evidence across multiple lines of evidence are necessary
to plan interventions for the treatment and prevention of MS.

Keywords: multiple sclerosis, herpes simplex virus, genetic epidemiology, Mendelian randomization, causal risk
factors
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INTRODUCTION

Multiple sclerosis (MS) is the most common chronic
demyelinating and neurodegenerative disease of the central
nervous system (CNS) (Hauser and Cree, 2020). It is the leading
cause of non-traumatic neurological disability in young adults,
affecting more than 2 million people worldwide (GBD, 2017).
The symptoms of MS usually follow relapsing or progressive
path, eventually leading to impaired mobility or cognition
(Reich et al., 2018). MS is currently incurable though therapeutic
advances have remarkably improved the long-term outcome
for patients at this time (Hauser and Cree, 2020; Iqubal et al.,
2020). The etiology of MS has not been fully elucidated. Early
infections with herpes simplex virus (HSV) infection are
constantly proposed to be involved in the pathogenesis of MS.
HSV-1 and HSV-2 infections usually occur in the early years
of life, mostly latent and asymptomatic (Koyuncu et al., 2013).
HSV viruses lurk in the sensory ganglion of the trigeminal
nerve, remain exist lifelong, and could invade CNS (Kimberlin
et al., 2001). Post-mortem results have also confirmed the
presence of HSV in brain demyelinating plaques of MS patients
(Sanders et al., 1996).

Based on retrospective data in Sarajevo, the positive incidence
of HSV immunoglobulin G (IgG) antibodies was 93.2% in 110
newly diagnosed MS patients (Djelilovic-Vranic and Alajbegovic,
2012). In another study, the prevalence of HSV-1 mRNA and
DNA in the peripheral blood mononuclear cells (PBMC) of
acute MS patients is significantly higher compared to controls
(Ferrante et al., 2000). They also suggested that HSV-1 reactivate
in the acute attack and might trigger MS relapses (Ferrante
et al., 2000). Data addressing pediatric MS showed that HSV-1
IgG antibodies in serum was associated with increased risk of
pediatric MS (Waubant et al., 2011; Nourbakhsh et al., 2018).
Waubant et al. (2011) recruited 189 pediatric MS patients and
found that HSV-1 was associated with an increased risk of
MS in those negative for HLA DRB1∗1501. Another multi-
center research suggested that sero-positivity for HSV-1 was
significantly increased in pediatric MS patients, but the increase
was only seen in Caucasian people and those without a DRB1∗15
allele (Nourbakhsh et al., 2018). Pooled results of a recent
meta-analysis has implicated a statistical difference in the serum
prevalence of IgG against HSV-2 between patients with MS and
controls (Xu et al., 2021).

However, other studies reported conflicting results, and
did not find any relationship between HSV infection and
MS risk. Data in several studies showed that the prevalence
of antibodies against HSV-1 or HSV-2 had no statistical
associations with adult MS (Wandinger et al., 2000; Kiriyama
et al., 2010; Sotelo et al., 2014; Etemadifar et al., 2019). By
testing HSV DNA in cerebrospinal fluid or in PBMC, Koros
et al. (2014) and Sotelo et al. (2014) reported no significant
difference of HSV DNA between adult MS and healthy controls.
Another pediatric study found no difference in the association
of prior HSV infections with the onset of pediatric MS
(Mowry et al., 2011).

Those equivocal results might be caused by methodological
shortcomings of observational studies, such as residual

confounding and reverse causality. Confined by these
limitations, observational research is unable to deduce the
causal role of HSV infection in the development of MS.
With the exponential growth in and widespread availability
of genotype data, Mendelian randomization (MR) approach
as an epidemiologic study designed to establish causality
between exposures and outcomes has gained its popularity
in the last two decades (Zhuang et al., 2019; Huang et al.,
2021; Kwok and Schooling, 2021; Zhang et al., 2021).
MR utilizes germline genetic variants as proxies. Since
genetic variants are unaffected by environmental factors or
disease process, MR can diminish confounding, strengthen
exposure-outcome associations and avoid reverse causalities
(Smith and Ebrahim, 2003). In this study, we leveraged the
MR approach to infer the associations of HSV infection
with risk of MS.

MATERIALS AND METHODS

The schematic for the MR design was shown in Figure 1 and
datasets underlying the study was summarized in Supplementary
Table 1. This study was built upon summary-level statistics which
were publicly accessible. Informed consent from participants and
approval by ethical committees had been completed by consortia
involved in original studies.

Instrumental Variables for Herpes
Simplex Virus
Genetic instrumental variants for HSV infection were obtained
from the FinnGen study (FinnGen, 2021). Diagnosed infections
with HSV were defined by International Classification of Diseases
(ICD) from the Finnish registries of inpatient, outpatient and
cause of death. In the R5 release, there were 1,595 cases (ICD-
10, B00; ICD-9, and ICD-8, 054) and 211,856 participating
controls of Finnish ancestry. Sex, age, 10 principal components
and genotyping batch were included as logistic regression
covariates. Eight instrumental single-nucleotide polymorphisms
(SNPs) were selected at a suggestive genome-wide significance
threshold (p < 5 × 10−6) as previous studies did (Kodali et al.,
2018; Bae and Lee, 2020; Kwok and Schooling, 2021). The effect
size was presented in a unit of log- odds ratio (OR) using the
additive model (Supplementary Table 2).

Instrumental variables for circulating HSV-1 and HSV-2 IgG
levels were selected from one genome-wide association study
(GWAS) conducted in the Milieu Intérieur cohort (Scepanovic
et al., 2018). Total IgG levels and antigen specific seropositivity
was tested in 1,000 individuals, and in seropositive donors, serum
IgGs specific for HSV-1 (n = 645) and HSV-2 (n = 208) were
further measured using the BioPlexTM 2200 HSV-1 and HSV-2
IgG kit (Bio-Rad, Hercules, CA, United States). After log10-
transformed of IgG levels, genetic association analyses were
performed with the additive regression adjusted for age, sex,
total IgG and the first two principal components incorporated
as covariates. Four and eight SNPs were utilized as instrumental
variables for HSV-1 IgG (Supplementary Table 3) and HSV-2
IgG (Supplementary Table 4), respectively.
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FIGURE 1 | Schematic diagram of the Mendelian randomization study. HSV, herpes simplex virus; MR, Mendelian randomization; MS, multiple sclerosis; SNP, single
nucleotide polymorphism.

TABLE 1 | Association of genetically predicted herpes simplex virus infection with the risk of multiple sclerosis by different Mendelian randomization approaches.

MR methods HSV infection HSV-1 IgG HSV-2 IgG

OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value

Inverse variance weighted 0.96 0.90–1.02 0.22 0.75 0.35–1.60 0.45 1.04 0.96–1.13 0.32

Weighted median 0.98 0.90–1.06 0.58 0.92 0.67–1.27 0.62 1.03 0.94–1.14 0.49

MR-Egger regression slope 0.95 0.80–1.13 0.59 0.45 0.004–44.82 0.76 0.89 0.58–1.36 0.60

MR-PRESSO raw estimate 0.96 0.92–1.01 0.12 0.75 0.35–1.60 0.51 1.04 0.96–1.13 0.35

MR-PRESSO outlier corrected – – – 0.91 0.81–1.03 0.37 – – –

CI, confidence interval; HSV, herpes simplex virus; MR, Mendelian randomization; MR-PRESSO, Mendelian randomization pleiotropy residual sum and
outlier; OR, odds ratio.

TABLE 2 | Results from Mendelian randomization sensitivity analyses between herpes simplex virus (HSV) and multiple sclerosis (MS).

Exposures MR-Egger regression Heterogeneity test MR-PRESSO global test

Intercept SE P-value Q statistic P-value RSSobs P-value

HSV infection 0.002 0.02 0.91 4.05 0.85 4.92 0.88

HSV-1 IgG 0.05 0.21 0.84 33.98 <0.001 58.55 <0.001

HSV-1 IgG (excluding rs3132935) 0.04 0.11 0.79 5.06 0.08 – –

HSV-2 IgG 0.03 0.04 0.47 8.77 0.27 11.42 0.30

MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; RSSobs, observed residual sum of squares; SE, standard error.
MR-PRESSO global test was not available when examining the association of HSV-IgG (excluding rs3132935) with multiple sclerosis due to insufficient number of genetic
instrumental variables.

Summary-Level Datasets of Multiple
Sclerosis
Summary-level GWAS results of MS were released by the
International Multiple Sclerosis Genetics Consortium (2019). In
total, 14,802 individuals diagnosed with MS and 26,703 healthy
controls of the European-ancestry were recruited in the discovery
stage with 8,589,719 SNPs being meta-analyzed. Diagnostic
criteria and demographic descriptions in each contributing
cohort were summarized in the published GWAS (International
Multiple Sclerosis Genetics Consortium, 2019). Effect estimates
were adjusted for age, sex, batch effects and ten principal
components in the logistic regression, and Beta represented
one-unit increase in log-OR of MS per additional effect allele
(Supplementary Table 5). Here, the following formulae were
employed in transforming variables: Beta = log(OR) and
Standard error = Beta/abs((qnorm(P − value/2)). We kept

instrumental SNPs which were present in the MS dataset, or
whose proxied SNPs (r2 > 0.8 or D’ > 0.8, EUR panel 1000
Genomes Phase 3) were available. We harmonized the exposure
and outcome effect size in terms of the effect allele and merged
datasets were used for subsequent analyses.

Statistical Analysis
We performed MR analyses in the R language, version 3.6.1
(R Foundation for Statistical Computing, Vienna, Austria) with
the TwoSampleMR and MR-PRESSO packages (Hemani et al.,
2018; Verbanck et al., 2018). Effect of HSV related exposures on
the risk of MS contributed by individual instrumental variable
was first given by Wald ratio: Yk/Xk with its standard error
óóYk/Xk, where the SNP-effect on HSV was denoted with Xk
and its standard error σXk , and the SNP-MS association statistics
denoted with Yk and σYk . Then the primary MR method,
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FIGURE 2 | Scatter plot (A) and leave-one-out plot (B) in the Mendelian randomization analysis of HSV infection on MS risk. HSV, herpes simplex virus; MR,
Mendelian randomization; MS, multiple sclerosis.

the inverse-variance weighted (IVW) model combined ratio
estimates for each exposure and yielded an overall estimate:
β̂MR =

∑
XkYkσ

−2
Yk /

∑
X2
kσ
−2
Yk with σ̂MR =

√
1/

∑
X2
kσ
−2
Yk .

Based on stringent prerequisites, IVW estimates would be
biased if not all variants are valid or unbalanced pleiotropy
exists (Burgess et al., 2013). Three additional approaches
were implemented. Weighted median method effectively pooled
individual estimate if less than half instrumental SNPs were
invalid (Bowden et al., 2016). MR-Egger regression identified
horizontal pleiotropic effects with p for intercept <0.05,
meanwhile the regression slope provided a causal estimate
corrected for unbalanced pleiotropy (Bowden et al., 2015). MR-
PRESSO also examined outlier SNPs with potential pleiotropy
by the global test and computed both a raw estimate and an
outlier-adjusted estimate (Verbanck et al., 2018). We conducted
Cochran’s Q test and leave-one-out analysis to identify individual
SNP which exerted an extremely heterogenous effect. As a
measure of causal associations between HSV-related exposures
and the risk of MS, we reported OR and 95% confidence interval
(CI) per one unit increase in log-OR of diagnosed HSV infection
or one SD elevation in circulating IgG levels of HSV-1 or HSV-
2. Associations with P < 0.05/3, using the Bonferroni correction,
were deemed as significant.

RESULTS

Association of Herpes Simplex Virus
Infection With Multiple Sclerosis Risk
In the MR analysis investigating the relationship between
infections with HSV and MS risk, nine instrumental SNPs were
utilized and they collectively explained 0.09% variances of HSV
(Supplementary Table 2). MR results suggested that diagnosed
infections with HSV were not associated with the risk of MS
(Table 1). By the IVW method, OR of MS was 0.96 (95% CI,
0.90–1.02; p = 0.22) per one-unit increase in log-OR of herpes
viral infections. Sensitivity analyses by weighted median, MR-
Egger regression slope and MR-PRESSO provided similar and

consistent results. There was no evidence of pleiotropy by MR-
Egger regression intercept (p = 0.85) or MR-PRESSO global test
(p = 0.91). Besides, Cochran’s Q test (Table 2) and leave-one-
out analysis (Figure 2) indicated no heterogeneity among the
instrumental SNPs.

Effect of Circulating Herpes Simplex
Virus-1 and Herpes Simplex Virus-2
Immunoglobulin G Levels on Multiple
Sclerosis Risk
Genetically predicted HSV-1 IgG was not associated with the risk
of MS (OR = 0.75; 95% CI, 0.35–1.60; p = 0.45) by the IVW
method. Notably, rs3132935 was associated with MS at genome-
wide significance (p = 3.40 × 10−9). MR-PRESSO global test,
Cochran’s Q test (Table 2) and leave-one-out analysis (Figure 3)
all indicated that rs3132935 might have pleiotropic effects and
was an outlier variant in the MR analysis. Nevertheless, the
MR-PRESSO corrected estimate with the removal of rs3132935
suggested no causal effect of circulating HSV-1 IgG levels on MS
risks (OR = 0.91; 95% CI, 0.81–1.03; p = 0.37), either.

The MR analyses did not support the causal effect of HSV-
2 IgG on MS (OR = 1.04; 95% CI, 0.96–1.13; p = 0.32)
per one SD increase in HSV-2 IgG levels. Additional MR
methods provided consistent results (Table 1). Furthermore, no
unbalanced horizontal pleiotropy or evident heterogeneity was
identified through multiple sensitivity analysis (Figure 4).

DISCUSSION

Seroprevalence of HSV is ubiquitous in populations where MS
is prevalent (50–100% in adult members) (Lycke, 2017). In
response to exposure to HSV-1, persistent lymphocytic cells
would infiltrate in the CNS, levels of cytokine transcripts would
elevate, and amounts of chemokine mRNAs would increase,
which suggest that latent HSV-1 infection might trigger a chronic
inflammatory process in brain tissue (Theil et al., 2003; Menendez
et al., 2016). Meanwhile, levels of matrix metalloproteinases 2
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FIGURE 3 | Scatter plot (A) and leave-one-out plot (B) in the Mendelian randomization analysis of HSV-1 IgG levels on multiple sclerosis. MR-PRESSO
outlier-corrected estimate was calculated with the removal of rs3132935 as an outlying variant, while the raw estimate was not delineated since it was nearly the
same as the value given by inverse-variance-weighted method. HSV, herpes simplex virus; MR, Mendelian randomization; MR-PRESSO, Mendelian randomization
pleiotropy residual sum and outlier; MS, multiple sclerosis.

FIGURE 4 | Scatter plot (A) and leave-one-out plot (B) in the Mendelian randomization analysis of HSV-2 IgG on MS risk. HSV, herpes simplex virus; MR, Mendelian
randomization; MS, multiple sclerosis.

and 9 would increase in infected CNS, and contribute to a
partial breakdown of the blood brain barrier which is crucial
in MS (Martínez-Torres et al., 2004). After exposure to HSV-
1, plasmacytoid dendritic cells (DC) produce a great deal of
Type I IFNs, including IFN-α and β (Soumelis and Liu, 2006).
Plasmacytoid DC can promote naïve T cells to produce IL-
10, which leads to anti-inflammatory reactions (Rissoan et al.,
1999). Type I IFNs can inhibit the production of IL-12 and
increase IL-10 production, which act on myeloid DC and switch
pro- to anti-inflammation (Sanna et al., 2008). PBMC of MS
patients showed increased production of IFN-α, IL-6, and IL-
10 but decreased production of IL-4 (Sanna et al., 2008) and
productions of IL-6 and IL-10 by PBMC and plasmacytoid DC
were lower in MS patients compared with healthy controls (Sanna
et al., 2008). The above data implied impaired anti-inflammatory
response after HSV-1 infection in MS. Animal experiments
have further proved that previous exposure to HSV-1 can cause

an earlier onset of symptoms and more severe experimental
autoimmune encephalomyelitis compared to uninfected control
mice (Duarte et al., 2021).

Clinical trials of antiviral treatments in MS (Lycke et al.,
1996; Bech et al., 2002; Friedman et al., 2005) were limited when
compared with the development of other therapies (Lizak et al.,
2017; Islam et al., 2020). There are three phase II clinical trials
of acyclovir or valacyclovir in MS patients (Lycke et al., 1996;
Bech et al., 2002; Friedman et al., 2005). One trial showed 34%
reduction of annualized relapse rate in acyclovir-treated patients
and a significant reduction in the relapse rate in favor of acyclovir
treatment (Bech et al., 2002). In a high-activity group of another
trial, valacyclovir-treated patients had significant reduction of
new lesions compared to placebo-treated patients (Friedman
et al., 2005). Although the above research suspected HSV as a
candidate for the etiology of MS, the fact that HSV infection
is far more prevalent in human populations compared to MS
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argues against this viewpoint. HSV DNA in 77 demyelinated
plaques from 23 MS patients revealed that HSV-1 DNA was
amplified from only one plaque and HSV-2 DNA was amplified
from none of the plaques (Nicoll et al., 1992). The infection
of HSV in the CNS might be insufficient for the development
of MS which requires other genetic and environmental triggers.
Further investigations are warranted to detangle the role of HSV
in disease onset or disease progression of MS.

The major strength of this study is the multivariable MR
method, which explicated the roles of HSV infection in MS
and exempted the result from residual confounding or reverse
causality. Also, up-to-date genetic instruments for HSV infection
traits and the largest GWAS dataset for MS were used to boost
the power. There are several limitations for this study. Firstly,
instrumental SNPs collectively explained small proportions of
variance for HSV infection, and especially for circulating IgG
levels of HSV-1 and HSV-2 due to inadequate sample size. Hence,
we had restricted power to identify small causal effects. Secondly,
we used a relaxed significance level (p< 5× 10−6) rather than the
classical GWAS threshold (p< 5× 10−8) to choose instrumental
variables. Distortion to the overall estimate might occur in the
scenario, albeit no weak instrument was identified in the present
study. Thirdly, biological implications for most SNPs are yet to
be explored; thus, the suitability of current instrumental sets
would be disputed by the possibility of pleiotropy, although no
pleiotropic effects (except for rs3132935) were indicated through
our sensitivity analyses. Lastly, this study was based on genome-
wide association data only from the Europeans and we should be
cautious with the interpretation and generalization when it comes
to other populations.

CONCLUSION

In conclusion, we failed to provide evidence for the effect of HSV
on the risk of MS. Further studies triangulating evidence from
observational cohorts, clinical trials and genetic-epidemiological
biobanks are still warranted to elucidate whether targeting HSV
is an effective intervention for MS.
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Posttraumatic stress disorder (PTSD) is a serious stress disorder that occurs in
individuals who have experienced major traumatic events. The underlying pathological
mechanisms of PTSD are complex, and the related predisposing factors are still
not fully understood. In this study, label-free quantitative proteomics and untargeted
metabolomics were used to comprehensively characterize changes in a PTSD mice
model. Differential expression analysis showed that 12 metabolites and 27 proteins were
significantly differentially expressed between the two groups. Bioinformatics analysis
revealed that the differentiated proteins were mostly enriched in: small molecule binding,
transporter activity, extracellular region, extracellular space, endopeptidase activity,
zymogen activation, hydrolase activity, proteolysis, peptidase activity, sodium channel
regulator activity. The differentially expressed metabolites were mainly enriched in
Pyrimidine metabolism, D-Glutamine and D-glutamate metabolism, Alanine, aspartate
and glutamate metabolism, Arginine biosynthesis, Glutathione metabolism, Arginine,
and proline metabolism. These results expand the existing understanding of the
molecular basis of the pathogenesis and progression of PTSD, and also suggest a new
direction for potential therapeutic targets of PTSD. Therefore, the combination of urine
proteomics and metabolomics explores a new approach for the study of the underlying
pathological mechanisms of PTSD.

Keywords: posttraumatic stress disorder (PTSD), PTSD model, urine, metabolomics, proteomics, mice

INTRODUCTION

Post-Traumatic Stress Disorder (PTSD) is a persistent stress disorder type that may be delayed or
imminent following major psychological trauma (Kessler et al., 1995; Breslau et al., 1998). PTSD
can be caused by a variety of major events, including diseases (Kangas et al., 2005; Bush, 2010),
war incidents (Owens et al., 2005), natural disasters (Wu et al., 2009), etc. PTSD has four core
symptoms according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5); the
re-experiencing of traumatic event(s), continuous avoidance of trauma-related stimuli, negative
emotions related to cognitive trauma, and continued increase in alertness (Mahan and Ressler,
2012; Tandon, 2014; Tanaka et al., 2019). Several of these aspects can be captured using situational
reminder programming in animal models, leading it to become a common model for studying the
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symptoms and mechanisms of PTSD. However, the precise
molecular changes occurring in these models remains
incompletely understood.

Assessments for compositional changes in urine have been
demonstrated to have considerable potential for monitoring
bodily health (Gao, 2013; Nicholas, 2020). In comparison
with blood, urine has the advantages of being non-invasive,
convenient to sample repeatedly, biochemical stability, and so
on (Wu and Gao, 2015; Jing and Gao, 2018). In addition, urine
may not be as strongly regulated by homeostatic mechanisms
(Wang et al., 2014; Huang and Lo, 2018). The detection of blood
biomarkers usually reflects the relatively stable state in the middle
and late stages of the disease (Li, 2015), but misses the signals of
short-term changes in the early stage of the disease. In opposite
urine, as a blood filter, will collect all the body’s metabolites,
thereby detecting more differentiated factors (Li et al., 2014;
Gao, 2015). Moreover, recent reports have shown that urine can
provide a lot of non-urogenital information, including regarding
neuropsychiatric disorders (Emanuele et al., 2010; Marc et al.,
2011).

In the past few years, advances in “omics” technology have
yielded powerful new tools for biomarker screening, disease
mechanism identification, and diagnostic modeling (Petricoin
et al., 2006). Cutting-edge “omics” technology has already
been deployed to study PTSD. Diverse epigenetic phenomena
have enabled researchers to discover conserved molecular
mechanisms involved in chromatin modification (Goldberg et al.,
2007), especially non-coding RNAs, which play an important
role in multiple epigenetic phenomena (Bernstein and Allis,
2005). Studies on PTSD and miRNA have revealed several
key contributors to the underlying pathophysiological basis of
PTSD (Wingo et al., 2015; Bam et al., 2016a,b; Martin et al.,
2017). Genomics research can be used to analyze DNA and
RNA sequences by second-generation sequencing and third-
generation sequencing techniques to discover new transcripts
or exon single nucleotide polymorphisms (SNPS) (Girgenti and
Duman, 2018). However, researchers thus far have primarily used
blood and postmortem brain tissue to identify biomarkers for
PTSD (Thomson et al., 2014; Breen et al., 2015; Bharadwaj et al.,
2018). Glycomics studies can analyze the biological functions
of all glycans by studying the unique pond group of organisms
(Miura and Endo, 2016). Compared with genome sequence
discovery, glycomics can better reflect the biological state of
complex diseases (Zoldos et al., 2013; Lauc et al., 2016). It
has been reported that there are significant changes in the
N-glycomic group in psychiatric and neurodegenerative diseases
(Vanhooren et al., 2010; Lundstrom et al., 2014; Park et al.,
2018). Proteomics studies the complete set of proteins in a
biological system (cell, tissue or organism) in a given state at
a given time, analyzing changes in protein expression, post-
translational modifications, and protein-protein interactions
(Wilkins et al., 1996; Jensen, 2006). It is more complex than
genomics, but can reflect the precise functional characteristics
of proteins (Baloyianni and Tsangaris, 2009). Metabolomics
mainly analyses final or intermediate small molecule metabolites
produced by gene regulation and can evaluate metabolites altered
by treatment or disease (Kaddurah-Daouk and Krishnan, 2009;

Mastrangelo et al., 2016). It is reported that metabolomics
plays an important role in analyzing the metabolic profile,
inflammatory mechanisms and biomarker identification of PTSD
(De Bellis et al., 2000; Pace and Heim, 2011; Karabatsiakis et al.,
2015; Bersani et al., 2016; de Vries et al., 2016; Hemmings
et al., 2017; Mellon et al., 2018; Nedic Erjavec et al., 2018).
Therefore, Omics technologies can be further improved study
the underlined mechanisms of PTSD and identify diagnostic and
prognostic biosignatures.

Despite the promising features of urine biomarkers, the
biological interpretation of single typology data is very
challenging due to the complexity of urine samples. Therefore,
in this study, the analytical capabilities of proteomics and
metabolomics were combined to obtain more comprehensive
data on mice in the normal group and PTSD group, aiming to
discover new potential biomarkers.

MATERIALS AND METHODS

Induction of Electric Foot Shock Stress
Twelve healthy male 8–10 weeks old C57BL/6 mice were
purchased from Laboratory Animal Centre at the Army Medical
University. All mice were housed in individual cages under a
reversed 12 h light/12 h dark cycle (light on at 6 AM) and
standard laboratory conditions (21 ± 1◦C, 55 ± 5% relative
humidity). Food and water were provided ad libitum. This
study was approved by the Ethics Committee of Army Medical
University (Animal Ethics Statement: AMUWEC20211605). As
shown in Figure 1, after a 14-day adaptation phase, the mice were
divided into plantar foot shock group (PTSD group, n = 6) and
non-foot shock group (control group, n = 6). Mice were subjected
to electric foot shock in a Plexiglas chamber (27× 20× 300 cm3)
with a grid floor made of stainless-steel rods (0.3 cm diameter,
spaced 1.0 cm apart) connected to a shock generator. After a
habituation period of 2 min, the mice in the foot shock group
received a series of foot shocks of medium (0.15 mA) intensity of
10 s duration with foot shock interval of 10 s being delivered for
5 min to produce acute stress (Rabasa et al., 2011). The mice in
the control group were placed in the chamber for a similar period
without receiving a foot shock. Thereafter, the mice in the foot
shock group were subjected to the same moderate electric foot
shock stressor for 12 days (twice a day) to induce stress adaptation
(Van den Berg et al., 1998; Daniels et al., 2008).

Behavioral Test
All the behavioral tests were performed in daytime from 8 AM
to 3 PM. Mice were given two tests a day to avoid the potential
interference from the other tests. Animal cages were moved to a
testing room at least 0.5 h before each test. After completion of the
test session, the behavioral apparatus and chamber were cleaned
with 70% ethanol and then completely hand-fan dried.

Elevated Plus Maze Test
The apparatus consisted of four arms (28 cm × 5.8 cm width),
with two arms open and two closed by gray walls (15.5 cm height)
arranged on the opposite side of the same type. The platform was
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FIGURE 1 | The experimental procedure for PTSD. EPM, elevated plus maze; OFT, open field test.

located 55 cm above the floor of the testing room illuminated and
four arms were connected in the center platform (5 cm × 5 cm),
where the animal was placed facing a closed arm. The position
and movement of the animal were monitored for 5 min by a video
camera. An entry was defined as more than half of the animal’s
full body entering the open arm. The time spent in the open arms
and the number of visits to the open arms were analyzed.

Open Field Test
The periphery and bottom of the test space were made of black
opaque metal sheets, with length 72 cm, width 72 cm, and height
60 cm. The floor area was divided into 16 squares of the same size.
During the test, each mouse was placed in the center of the area
and was allowed to freely explore the area for 5 min. The numbers
of crossing and standing were recorded during the last 4 min by
technicians. After each test, the open area was washed with 70%
ethanol to avoid any olfactory cues.

Urine Sample Collection
Urine was collected on ice using metabolic cages at the end of
the experiment from 9:00 pm to 9:00 am in the next day. The
collected urine was centrifuged at 13,000 g for 20 min at 4◦C to
obtain the supernatant sample. The average sample size was 2 mL.
The urine sample was stored at−80◦C before analysis.

Metabolomics Analysis
Urine samples (50 µL) were thawed on ice and immediately
mixed with 200 µL of ice-cold acetonitrile. After mixing by
vortex for 1 min, the mixture was centrifuged at 13,000 g
for 15 min at 4◦C. A supernatant aliquot of 10 µL was
used for liquid chromatography-mass spectrometry (LC-MS/MS)
analysis. Quality control (QC) samples were prepared by
supernatant aliquot with an equal amount (15 µL) and
were periodically analyzed throughout the complete run to
monitor signal drift.

The LC 30A UHPLC system (Shimadzu, Kyoto, Japan) was
linked to a Triple TOF 4600 system (SCIEX, Framingham,
MA, United States). The separation step was conducted using
the hydrophilic interaction liquid chromatography (HILIC) and
the reversed-phase liquid chromatography (RPLC) methods.

A Kinetex C18 column (2.1 mm × 100 mm, 2.6 µm, 100 Å,
Phenomenex) was used with a binary gradient method. Solvent A
was 0.1% formic acid in water (vol/vol), and solvent B was 0.1%
formic acid in acetonitrile (vol/vol). A flow rate of 0.35 mL/min
was used, and the injection volume was 2 µL. The gradient
program used was 15% B at 0 min to 85% B at 10 min, with
a total running time of 15 min. A TSK gel NH2-100 column
(2.1 mm× 100 mm, 3.0 µm, TOSOH) was also used with a binary
gradient method. Solvent A was 5 mmol/L ammonium acetate,
and solvent B was acetonitrile. A flow rate of 0.25 mL/min was
used, and the injection volume was 2 µL. The gradient program
used was 100% B at 2 min to 15% B at 15 min, and at 20 min to
100% B, with a total running time of 25 min.

Proteomics Analysis
1 mL urine sample was thawed and transferred to a centrifuge
tube, and then centrifuged at 12,000 g at 4◦C for 30 min to
remove impurities. The samples were six times mixed with the
volume of acetone, fully mixed, and precipitated overnight at
– 20◦C. The mixture was removed and centrifuged at 12,000 g
at 4◦C for 30 min to remove the supernatant. The precipitate
was dissolved in pyrolysis buffer solution (8 mol/L urea, 2 mol/L
Thiourea, 50 mmol/L Tris, and 25 mmol/L DTT), and completely
dissolved, centrifuged at 12,000 g for 30 min at 4◦C, and
then the supernatant was saved. Protein concentration was
determined using the Bradford method. 100 ug protein was added
to each sample in a 30 KDa filter (millipore, MRCF0R030),
Urea buffer solution (UA, 8 mol/L, 0.1 mol/L Tris–HCl, pH
8.5), and 25 mmol/L NH4HCO3 solutions were in turn washed
several times. Protein samples were reduced with 20 mmol/L
dithiothreitol (DTT, Sigma) at 37◦C for 1 h, followed by
50 mmol/L iodoacetamide (IAA, Sigma) in darkness for 30 min.
Then, the samples were centrifuged at 18◦C for 30 min at
14,000 g, washed with UA and NH4HCO3, with trypsin being
added (enzyme protein ratio 1:50) and digested overnight at
37◦C. The peptide mixture was desalted using a C18 column
(Thermo, 84850), concentrated, dried in vacuum, and stored at
−80◦C.

AU3000 UHPLC system (Thermo Fisher Scientific, Waltham,
MA, United States) was used to separate the peptides. Peptides
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were loaded onto an analytical column (AcclaimTM PepMapTM

100, 75 µm × 15 cm, C18, 3 µm, 100 Å, Thermo Fisher
Scientific, Waltham, MA, United States) with a Trap Column
(AcclaimTM PepMapTM 100, 75 µm × 2 cm, C18, 3 µm,
100 Å, Thermo Fisher Scientific, Waltham, MA, United States)
and separated by reversed-phase chromatography (U3000nano,
Thermo Fisher Scientific, Waltham, MA, United States) using
a 106 min gradient. The gradient was composed of Solvent A
(0.1% formic acid in water) and Solvent B (0.1% formic acid
in 80% acetonitrile) elution gradient: 1% B for 13 min, 1–30%
B in 70 min, 30–90% B in 10 min, 90% B for 2 min and 90–
1% B in 1 min, 1% B for 10 min. The eluted peptides were
analyzed using the Data Dependent Acquisition (DDA) method
applying one full MS scan (350.00–1800.00 m/z) in the Orbitrap
at a resolution of 60,000 M/∆M, followed by consecutive MS/MS
(profile) scans in the ion trap by product ion scans (relative CID
energy 35) of the 16 most abundant ions in each survey scan.
The product ion scans were acquired with a 2.0 unit isolation
width and a normalized collision energy of 35 in an LTQ-Orbitrap
Velos Pro MS spectrometer (Thermo Fisher Scientific, Waltham,
MA, United States).

Statistical Analysis
Statistical analyses were performed using SPSS 20.0 software,
values are expressed as mean ± standard deviation (X ± SD,
n = 6 per group), the graphics were generated using GraphPad
Prism 8.0.1 software. Metabolomics and Proteomics data analyses
were performed in MetaboAnalyst 5.0 and Proteome Discover
Daemon 2.5. The metabolite peaks of the urine samples
were normalized, analyses performed using SIMCA-P 14.1
multivariate statistical analysis software. All variables were tested
and found to be normally distributed, an independent-samples
student’s t-test was used to compare differences between the
two groups, and identify differentially expressed metabolites
and proteins, and then we used Ingenuity Pathway Analysis
to analyze the significantly altered canonical pathways and
molecular interaction networks. A p-value threshold of 0.05 was
used to infer statistically significant findings, and a more strict
p-value threshold of 0.01 was used to infer highly statistically
significant changes.

RESULTS

The Results of the Behavioral Test
Elevated Plus Maze Test
Elevated plus maze test was deployed to explore the potential
anxiety actions of the induction of electric foot shock stress.
There was no significant difference in terms of total arms entries
(Figure 2A) and total time spent in the arms (Figure 2B) between
the control and the PTSD groups.

The induction of the electric foot shock stress caused a
significant reduction in the percent of open arm entries (open
arm/total × 100) with the ones of the control and the PTSD
group being 45.4 and 27.5%, respectively (Figure 2C). The
percent of time spent in open arms was also significantly
reduced when applying induction of electric foot shock stress

FIGURE 2 | The effect of the induction of electric foot shock on anxiety in the
elevated plus-maze test in mice compared to the control group (n = 6).
(A) Total arms entries; (B) Total time spent in the arms; (C) The percent of
entries in open arms; (D) The percent of time spent in open arms; (E) The
actual times spent in open arms; (F) The actual amount of entries in open
arms. Results are provided in the form of mean ± SD. ∗p < 0.05; ∗∗p < 0.01.

with control and PTSD group values being 23.1 and 14.7%,
respectively (Figure 2D). The actual times spent in open arms
in the control group and the PTSD group were 578 s and 319 s,
respectively (Figure 2E). The actual amount of entries in open
arms in the control group and the PTSD group were 99 and 72,
respectively (Figure 2F).

Open Field Test
The anxiety-like behavior of the induction of electric foot shock
stress was measured with an open-field test. The overall distance
was significantly reduced when applying induction of electric foot
shock stress with the values of the control and PTSD groups being
1511.18 and 1292.94 cm, respectively (Figure 3A). The number
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FIGURE 3 | The effect of the induction of electric foot shock on anxiety in the open-field test in mice compared to the control group (n = 6). (A) Overall distance;
(B) Numbers of crossing; (C) Numbers of standing. Data are expressed as mean ± SD. ∗∗p < 0.01.

FIGURE 4 | OPLS-DA score results and OPLS-DA quality control figure of mice urine samples. (A) Positive ion mode OPLS-DA scores; (B) Negative ion mode
OPLS-DA scores; (C) Positive ion mode OPLS-DA permutation test; (D) Negative ion mode OPLS-DA permutation test; intercepts: R2 and Q2 represent y-intercept
of R2 and Q2 regression lines.

of crossing and standing was also significantly reduced by the
Induction of electric foot shock stress. The numbers of crossing
in the control group and the PTSD group were 77.1 and 36.0
times, respectively (Figure 3B). The amount of times of standing
in the control group and the PTSD group were 18.4 and 7.2 times,
respectively (Figure 3C).

Metabolomics Analysis
Quality control results pinpointed that the variation caused
by instrument error is small and the data quality is reliable
(Supplementary Figure 1). The PCA results plot does not show
clear segregation between the PTSD group and the control
group (Supplementary Figure 2). In addition, The OPLS-DA
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FIGURE 5 | Metabolites profile shift during of mice urine samples between the PTSD group and the control group. (A) Volcano plot showing altered metabolites,
Positive (up), negative (down) ion mode. The red dots indicate significantly upregulated metabolites (fold change > 1.2), while the green dots indicate significantly
downregulated metabolites (fold change < 0.8). (B) Heat map of the differentially expressed metabolites. The red band indicates the upregulation of metabolites
levels (fold change > 1.2), while the blue band indicates the downregulation of metabolites levels (fold change < 0.8). (C) KEGG pathway enrichment category of the
differentially expressed metabolites, n = 6.

model was established and a permutation test of the OPLS-DA
model was performed (positive mode: R2X = 0.919, R2Y = 1.0,
Q2 = 0.723; negative mode: R2X = 0.854, R2Y = 0.998,
Q2 = 0.657; Figures 4A,B). The results of the permutation test
showed the absence of overfitting (positive mode: R2 = 0.999,
Q2 = −0.0431; negative mode: R2 = 0.995, Q2 = −0.0933;
Figures 4C,D). In conclusion, the model presented good
reliability and predictability.

Differential Metabolites
Metabolomics profiling of urine from the C57BL/6 normal group
mice and the PTSD mouse-model group detected a total of 559
metabolite components and revealed 12 differentially expressed

metabolites between the PTSD group and the Control group
using as criteria to infer significant findings the VIP > 1 and
p < 0.05 (Figure 5A and Table 1). These differentially expressed
metabolites possess different characteristics (Figure 5B) and were
enriched for several KEGG pathways associated with amino acid
and nucleic acid metabolism, including Pyrimidine metabolism,
D-Glutamine and D-glutamate metabolism, Alanine, aspartate
and glutamate metabolism, Arginine biosynthesis, Glutathione
metabolism, Arginine, and proline metabolism (Figure 5C).

Proteomics Analysis
The number of peptide-spectral matches, unique peptide
number, and quantified proteins, were 88,734, 4,125, and 691
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TABLE 1 | The significantly differentiated metabolites in control vs. post-traumatic stress disorder (PTSD) groups.

No Metabolites VIP FC P-value Trend

1 L-Methionine sulfone 1.27643 0.39592211 0.00128436 ↓

2 Docosanoic acid 1.11139 1.24292539 0.00153343 ↑

3 Uridine 2.21959 0.54969523 0.00295338 ↓

4 3-Hydroxyhippuric acid 1.10166 0.58905271 0.00886306 ↓

5 L-Glutamic acid 1.04933 0.42636368 0.00901154 ↓

6 Uridine 5′ monophosphate(UMP) 2.42806 0.47128583 0.02161141 ↓

7 Trans-2,3,4-Trimethoxycinnamic Acid 1.05031 0.46980814 0.02427128 ↓

8 β-D-Lactose 1.65882 0.51933915 0.02631537 ↓

9 Cytidine 3′-monophisphoric acid 3.48481 0.49014935 0.02692515 ↓

10 N-γ-Acetyl-N-2-Formyl-5-methoxykynurenamine 1.5343 0.52282757 0.02905089 ↓

11 Thymidine-5′-monophosphate(dTMP) 7.26583 0.50788472 0.03078474 ↓

12 Uridine-5′-diphosphate-mannose(UDP-Gal) 1.16583 0.49116102 0.03410945 ↓

for both PTSD and control groups. 27 proteins exhibited
significantly differentiated expression between the two groups
using the criteria of p-value < 0.05 and fold change > 1.20 or
<0.80. A total of 18 proteins among these were upregulated
and 9 downregulated in the PTSD group compared to the
Control group (Figure 6A and Table 2). These altered features
were subjected to clustering, and the heat map revealed
clusters with the ability to discriminate between control and
PTSD samples (Figure 6B). Gene Ontology (GO) function
annotation analysis showed that these differentially expressed
proteins were mainly involved in biological processes, such
as small molecule binding, transporter activity, extracellular
region, extracellular space, endopeptidase activity, zymogen
activation, hydrolase activity, proteolysis, peptidase activity
and sodium channel regulator activity (Figure 6C). Based
on the KEGG database, the significantly enriched pathways
(P < 0.05) were Endocrine and other factor-regulated
calcium reabsorption, Lysosome, Renin-angiotensin system,
Carbohydrate digestion and absorption, Thyroid hormone
synthesis, Metabolic pathways, Proximal tubule bicarbonate
reclamation, Galactose metabolism and Starch and sucrose
metabolism (Figure 6D).

Integrative Analysis of the Metabolomics
and Proteomics
A total of 12 differential expression metabolites and 27
differential expression proteins that were submitted to Ingenuity
Pathway Analysis (IPA) for significantly altered canonical
pathways analysis. As shown in Table 3, We found three
pathways significantly expressed proteins and metabolites.
They were Pyrimidine Metabolism, Metabolic pathways, and
Small Molecule Biochemistry. These significantly differential
metabolic pathways were selected for more detailed analysis
(Figure 7). In these pathways, L-Glutamic acid(L-Glu), Uridine5-
monophosphate(UMP), Thymidine 5-monophosphate(dTMP),
Uridine, URIDINE-5′-DIPHOSPHATE-MANNOSE(UDP-
Gal), CTSH and CTS6 were downregulated, and UMOD,
Fxyd2, AHCY, ACY3, Hamp2, CTSE, SCLT1, WFDC2
were upregulated.

DISCUSSION

Currently, diagnosis of PTSD is primarily based on subjective
symptom representation and patient self-reporting, and the
molecular mechanism remains unclear. As such, rates of PTSD
in the general population may be significantly underestimated.
In the present manuscript, we established a mouse model
of PTSD to investigate some of its qualitative biomarkers
and potential mechanistic contributors. The elevated cross
maze and open-field test were evaluated based on the fact
that the plantar shock can continuously produce traumatic
stimulation. The mice with the PTSD group were observed to
have reduced movement, weakened active exploration ability,
and showed negative avoidance and anxiety in comparison
to the mice of the control group (Montgomery, 1955; Pellow
et al., 1985), indicating significant stress disorder. Combined
proteomics and metabolomics analysis was performed revealing
27 significantly dysregulated proteins and 12 significantly
dysregulated metabolites.

In this study, urinary uridine levels in the mice model were
significantly reduced, suggesting that PTSD can cause metabolic
abnormalities of uridine in urine. It has been reported that
uridine has a protective effect on mental disorders (Mironova
et al., 2018) and can improve neurophysiological functions
(Connolly and Duley, 1999). Uridine excretion is mainly achieved
through renal and pyrimidine metabolism, producing uracil and
β -alanine, which can enter the tricarboxylic acid (TCA) cycle
(Gonzalez and Fernandez-Salguero, 1995; Connolly et al., 1996).
The homeostasis and metabolic abnormalities of uridine can be
accurately monitored by the detection of uridine in urine.

In mammals, in pyrimidine metabolism, uridine (UR) is
involved in the de initio synthesis of uridine monophosphate
(UMP) to form uridine 5′ -diphosphate (UDP), which can
be combined with UDP-galactose and plays an important role
in the glycosylation of protein (Connolly and Duley, 1999).
It has been reported that pyrimidines are mainly recovered
from uridine, which synthesizes RNA and biofilms through
pyrimidine nucleotide – lipid conjugates (Yamamoto et al., 2011).
In the study, the urine metabolism of uridine (UR), uridine
monophosphate (UMP), and UDP-galactose in mice of the PTSD
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FIGURE 6 | Proteomic profile shift of mice urine samples between the PTSD group and the control group. (A) Volcano plot showing dysregulated proteins. The red
dots indicate significantly upregulated proteins (fold change > 1.2), while the green dots indicate significantly downregulated proteins (fold change < 0.8); (B) Heat
map of the differentially expressed proteins. The red band indicates the upregulated proteins (fold change > 1.2), while the blue band indicates the downregulated
proteins (fold change < 0.8); (C) Differentially expressed protein GO function enrichment diagram; (D) KEGG pathway enrichment of the differentially expressed
proteins, n = 6.

model group showed decreased expression, suggesting that the
PTSD mice induced by plantar electric shock exhibit disorder of
pyrimidine metabolism.

Glutamate (L-glutamate) is a major excitatory
neurotransmitter, and glutamate disorder in the brain is often
observed in depression models (Hemanth Kumar et al., 2012;
Liu et al., 2016). In this study, the expression of L-glutamate in
urine metabolism was decreased in the PTSD model group, while

glutamate can provide a nitrogen source for pyrimidine synthesis
(Vincenzetti et al., 2016). The pyrimidine metabolism disorder
can directly reflect abnormal glutamate metabolism. Studies
have reported that patients with PTSD and alcohol use disorder
(AUD) have significantly reduced glutamate in the anterior
cingulate cortex (ACC; Pennington et al., 2014). Glutamate is
the basis of synaptic plasticity and memory formation, and stress
response significantly affects glutamate transmission and plays a
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TABLE 2 | The differentially expressed proteins in control vs. PTSD groups.

No UniProt accession Gene symbol Protein name FC P-value Trend

1 P49935 Ctsh Pro-cathepsin H −1.99023949 0.00163517 ↓

2 G5E861 Sclt1 Sodium channel and clathrin
linker 1

2.07219424 0.00209911 ↑

3 A0A1L1SQP8 Fxyd2 FXYD domain-containing ion
transport regulator

2.72899236 0.00222118 ↑

4 Q3TWT5 Asah1 Ceramidase 1.64659341 0.00282754 ↑

5 J3QK77 Scgb2b20 ABPBG20 3.07210788 0.00413095 ↑

6 Q9D1B1 Cst6 Cystatin E/M −3.19900397 0.00422517 ↓

7 A0A571BF69 Mgam Maltase-glucoamylase 2.37524214 0.00543735 ↑

8 Q4FZJ6 Wfdc2 WAP four-disulfide core domain
2

1.64128707 0.00604615 ↑

9 Q8K1H9 Obp2a Odorant-binding protein 2a 1.81533979 0.00799517 ↑

10 Q80YX8 Mup21 Major urinary protein 21 −2.29692495 0.00913460 ↓

11 Q3KQQ2 Mup3 Major urinary protein 25 −1.49751001 0.01240960 ↓

12 Q91WR8 Gpx6 Glutathione peroxidase 6 1.59143645 0.01390856 ↑

13 Q9D3H2 Obp1a Odorant-binding protein 1a −1.67221913 0.01499012 ↓

14 A2BHR2 Lcn11 Lipocalin 11 1.54440618 0.01672011 ↑

15 Q3TF14 Ahcy Adenosylhomocysteinase 1.82072680 0.01895520 ↑

16 A0A0U1RPF4 Hamp2 Hepcidin-2 (Fragment) 2.95442297 0.02102362 ↑

17 P10639 Txn Thioredoxin 1.993343846 0.027021861 ↑

18 A2CEK6 Mup13 Major urinary protein 11 −1.85239538 0.02745480 ↓

19 P15947 Klk1 Kallikrein-1 1.37162847 0.02874193 ↑

20 P70269 Ctse Cathepsin E 1.84456216 0.03194560 ↑

21 P51910 Apod Apolipoprotein D 1.69316293 0.03324157 ↑

22 P15948 Klk1b22 Kallikrein 1-related peptidase
b22

1.73666194 0.03657697 ↑

23 H3BKH6 Esd S-formylglutathione hydrolase −1.63242181 0.03836365 ↓

24 L7MUC7 Mup7 Major urinary protein 7
(Fragment)

−1.84000481 0.03930886 ↓

25 Q91XE4 Acy3 N-acyl-aromatic-L-amino acid
amidohydrolase

(carboxylate-forming)

2.79646484 0.04085258 ↑

26 Q91 × 17 Umod Uromodulin 1.56345644 0.04212900 ↑

27 B8JI96 Mup14 Major urinary protein 14
(Fragment)

−1.54699463 0.04765555 ↓

TABLE 3 | Significantly altered pathways with differentially expressed proteins and metabolites.

No Pathway name Proteins Metabolites

1 Pyrimidine metabolism Uridine, UMP, dTMP, UDP-Gal

2 Metabolic pathways UMOD,Fxyd2,AHCY,ACY3 L-Glu

3 Small Molecule Biochemistry Hamp2,CTSE,SCLT1,WFDC2 UMP

key role in PTSD (Chambers et al., 1999; Lamprecht and LeDoux,
2004; Popoli et al., 2011; Kelmendi et al., 2016). Urine collects all
metabolites of the body and is not regulated by the homeostasis
mechanism. Abnormal l-glutamate metabolism detected in urine
directly reflects PTSD.

In addition to metabolomic changes, significant proteomics
differences were also identified. GO analysis of the urine
proteome data showed that proteins with differential expression
were mainly located in the extracellular space and extracellular
region. It mainly binds to small-molecule, and it is involved
in hydrolase activity, endopeptidase activity, and sodium

channel regulator activity. Pathway enrichment analysis showed
that these proteins are mainly involved in Endocrine and
other factor-regulated calcium reabsorption, Lysosome, Renin-
angiotensin system, Carbohydrate digestion and absorption,
Metabolic pathways, etc.

Hepcidin is a circulating antimicrobial peptide involved
in iron homeostasis, inflammation, infection, and metabolic
signaling (Lu et al., 2015), There are two murine hepcidin
genes: hepcidin-1 (Hamp1) and hepcidin-2 (Hamp2) (Truksa
et al., 2007). Studies have shown that in addition to liver level,
inflammation can increase the expression level of iron modulin
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FIGURE 7 | Network of significantly differential metabolic pathways for Posttraumatic stress disorder. Yellow dashed areas represent the pathways. metabolites are
shown as rectangles, and Proteins are shown without no rectangles. Red represents significant upregulation in the PTSD group compared to the control group,
green represents significant downregulation.

(Kanamori et al., 2017; Silva et al., 2019). In this study, hepcidin-
2 (Hamp2) expression increased. It has been reported that people
with PTSD show elevated levels of pro-inflammatory cytokines,
including IL1B (Dinarello, 2011; Tursich et al., 2014; Passos et al.,
2015). In animal studies, IL1B expression level in hippocampus
of depressed animal model was increased (Goshen et al., 2008).
Therefore, Hamp2 expression may be induced by inflammatory
factors in mice with PTSD. At the same time, IPA analysis showed
that increased Hamp2 expression was correlated with IL1B, and
the relationship between Hamp2 and IL1B in THE urine of PTSD
will be further discussed in subsequent studies.

There are some limitations in the present study. First, the
abundance of metabolites and proteins in the urine itself is small,
and removing the peak degree through database construction
ends up in data-loss, suggesting a potential data loss in urine
protein-metabolism combined analysis. Second, only 6 eligible
mice from each group were used for protein-metabolic analysis,
and the results of the discovery omics study were not validated
by targeted methods (e.g., western blotting). Therefore, further
studies are required to validate these findings.

CONCLUSION

In this study, based on urine protein-metabolomics combined
analysis, we found that the differentially expressed proteins

of PTSD in mice were mainly in the extracellular space and
region, and showed dysfunction of pyrimidine metabolism.
Furthermore, Uridine and L-glutamate can be used as key
urine biomarkers to provide a reference for subsequent
studies on PTSD.
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A de Novo ZMIZ1 Pathogenic Variant
for Neurodevelopmental DisorderWith
Dysmorphic Facies and Distal Skeletal
Anomalies
Guanting Lu1†, Liya Ma2†, Pei Xu1, Binqiang Xian2, Lianying Wu1, Jianying Ding2,
Xiaoyan He1, Huiyun Xia2, Wuwu Ding1, Zhirong Yang1* and Qiongling Peng2*

1Deyang Key Laboratory of Tumor Molecular Research, Department of Pathology, Translational Medicine Research Center,
Deyang People’s Hospital, Deyang, China, 2Department of Child Healthcare, Shenzhen BaoanWomen’s and Children’s Hospital,
Jinan University, Shenzhen, China

Background: Neurodevelopmental disorder with dysmorphic facies and distal skeletal
anomalies (NEDDFSA) is a rare syndromic disorder characterized by global
neurodevelopmental delay, early-onset hypotonia, poor overall growth, poor speech/
language ability, and additional common phenotypes such as eye anomalies, joint
hypermobility, and skeletal anomalies of the hands and feet. NEDDFSA is caused by
heterozygous pathogenic variants in the ZMIZ1 gene on chromosome 10q22.3 with
autosomal dominant (AD) mode of inheritance. All the 32 reported cases with variants in
ZMIZ1 gene had a genetic background in Caucasian, Hispanic, North African, and
Southeastern Asian. Until now, there are no reports of Chinese patients with ZMIZ1
pathogenic variants.

Methods: A 5-year-old girl was found to have the characteristic phenotypes of NEDDFSA.
Array-Comparative Genomic Hybridization (array-CGH) and whole exome sequencing
(WES) were applied for the trio of this female patient. Sanger sequencing was used to verify
the selected variants. A comprehensive molecular analysis was carried out by protein
structure prediction, evolutionary conservation, motif scanning, tissue-specific expression,
and protein interaction network to elucidate pathogenicity of the identified ZMIZ1 variants.

Results: The karyotype was 46, XX with no micro-chromosomal abnormalities identified
by array-CGH. There were 20 variants detected in the female patient by WES. A de novo
heterozygous missense variant (c.2330G > A, p.Gly777Glu, G777E) was identified in the
exon 20 of ZMIZ1. No variants of ZMIZ1 were identified in the non-consanguineous
parents and her healthy elder sister. It was predicted that G777E was pathogenic and
detrimental to the spatial conformation of the MIZ/SP-RING zinc finger domain of ZMIZ1.

Conclusion: Thus far, only four scientific articles reported deleterious variants in ZMIZ1
andmost of the cases were fromWestern countries. This is the first report about a Chinese
patient with ZMIZ1 variant. It will broaden the current knowledge of ZMIZ1 variants and
variable clinical presentations for clinicians and genetic counselors.

Keywords: Zmiz1, NEDDFSA, Chinese, low-complexity region, whole-exome sequencing
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INTRODUCTION

Neurodevelopmental disorder with dysmorphic facies and distal
skeletal anomalies (NEDDFSA; OMIM #618659) is a rare
syndromic disorder characterized by global
neurodevelopmental delay, hypotonia, poor overall growth,
poor speech/language ability, and other common phenotypes
such as eye anomalies, joint hypermobility, and distal skeletal
anomalies of the hands and feet (Carapito et al., 2019). A balanced
translocation t (10; 19) (q22.3; q13.33) was first reported in 2015,
involving zinc finger MIZ-type containing 1 (ZMIZ1, OMIM
#607159) and proline-rich protein 12 (PRR12, OMIM #616633).
It produced two types of fusion genes, ZMIZ1-PRR12 and
PRR12-ZMIZ1, which might be related to the occurrence of
intellectual disability (ID) and neuropsychiatric alterations
(Córdova-Fletes et al., 2015). Later, in 2019, pathogenic
variants involving the gene ZMIZ1 were identified in a cohort
of 19 NEDDFSA cases from a transatlantic collaborative
effort (Carapito et al., 2019). In the same year of 2019, an
affected father and his two sons were identified to be suffering
from the ZMIZ1-related neurodevelopmental disorder in Florida
(Latchman et al., 2020). In 2021, Phetthong et al. reported a 5-
year-old Thai girl with developmental delay, facial phenotypes
resembling Williams syndrome, and cardiac defects. She carried
three types of compound variants, a heterozygous ZMIZ1 variant
(c.1497+2T > C), a heterozygous frameshift variant of OTUD6B
(OMIM #612021) (c.873delA, p.Lys291AsnfsTer3), and a
0.118 Mb 8q21.3 microdeletion involving OTUD6B (Phetthong
et al., 2021).

The gene ZMIZ1 was mapped to chromosome 10q22.3 and it
contains 21 exons to produce a 1067-amino acid protein with a
calculated molecular mass of 123 kDa (Sharma et al., 2003).
According to the Conserved Domain database (CDD) (Lu
et al., 2020), ZMIZ1 contains a Zmiz1 N-terminal
tetratricopeptide repeat domain (Zmiz1_N, 8–100), Med15
domain (184–557), a nuclear localization signal (NLS,
697–711), a SP-RING zine finger domain (SP-RING_ZMIZ,
739–786), and a transactivation domain (TAD, 837–1067). In
1999, Nagase et al. identified the gene ZMIZ1 (previously called
KIAA1224) from a fetal brain cDNA library (Nagase et al., 1999).
The encoded protein is a transcriptional co-activator, which
belongs to the Protein Inhibitor of Activated STAT (PIAS)
family. As a member of the PIAS family, ZMIZ1 has a highly
conserved MIZ (Msx-interacting zinc finger) domain which is
important for protein-protein interaction and SUMOylation
(Sharma et al., 2003; Beliakoff and Sun, 2006). It had been
reported that ZMIZ1 could regulate the activity of many
transcription factors, such as androgen receptor (AR)
(Beliakoff and Sun, 2006), SMAD3 (Li et al., 2006), SMAD4
(Li et al., 2006), and p53 (Lee et al., 2007). As an ortholog of
ZMIZ1, tonalli (tna) was identified in Drosophila melanogaster
and interacted with the ATP-dependent SWI/SNF complexes,
which suggested a potential role in chromatin remodeling
(Gutiérrez et al., 2003). Recently, ZMIZ1 was identified to be
interacted with BRG1 (SMARCA4) (Li et al., 2011), BAF57
(SMARCE1) (Li et al., 2011), or SATB1 (Pinnell et al., 2015)
to regulate the chromatin remodeling in humans. Chromatin

remodeling complex could regulate the expression of genes which
were essential for the normal dendrite development, synaptic
plasticity, and synapse formation (Wu et al., 2007; Vogel-Ciernia
et al., 2013; Vogel-Ciernia and Wood, 2014). It has been reported
that in utero electroporation of ZMIZ1 pathogenic variants into
the progenitor cells in the ventricular zone (VZ) of mice cortices
(E14.5) resulted in impaired neuronal positioning with an
accumulation in the ventricular and subventricular zones (VZ/
SVZ) and intermediate zone (IZ) and a corresponding depletion
in the upper cortical plate (CP). Therefore, ZMIZ1 variants were
regarded as the causal genetic factors for NEDDFSA (Carapito
et al., 2019).

Thus far, no patients with ZMIZ1 variants have been reported
in Chinese. In order to decipher the genetic factors for
neurodevelopmental disorder or intellectual disability (NEDD/
ID) in China, array-CGH and WES were carried out for a cohort
of 54 patients with NEDD/ID living in Shenzhen, Guangdong
Province, China. After comprehensive bioinformatic analysis, a
de novo missense variant (c.2330G > A, p.Gly777Glu, or
p.G777E) was identified in the exon 20 of ZMIZ1 in a 5-year-
old girl with mild development delay, mild intellectual disability,
bilateral hip dysplasia, joint hypermobility, amblyopia in both
eyes, strabismus in the right eye, and dysmorphic facial features.
According to the criteria proposed by the American College of
Medical Genetics and Genomics (ACMG) (Richards et al., 2015),
this variant was classified as PS2 + PM1 + PM2 + PP2 + PP3 and
annotated as “Pathogenic.” After comparing the clinical
phenotypes described for NEDDFSA with the clinical
phenotypes of our current Chinese patient, this girl was
diagnosed as NEDDFSA. This variant is located in the highly
conserved zf-MIZ domain and affected the three-dimensional
conformation which might be detrimental for the binding of
ZMIZ1 to its partners.

To our knowledge, this is the first case of Chinese NEDD/ID
caused by a ZIMI1 variant. Due to the huge population, more
patients with ZMIZ1-related disorder will be found in the near
future.

METHODS

Sample Collection
This study was conducted in accordance with the Code of Ethics
of the World Medical Association (Declaration of Helsinki) for
experiments involving humans. This study was approved by the
Ethics Committee of the Shenzhen Baoan Women’s and
Children’s Hospital. Written informed consent was obtained
from each individual.

Peripheral venous blood was collected from the 54 NEDD/ID
patients and their parents. Genomic DNAwas extracted using the
TIANamp Blood DNA Kit (DP348, Tiangen Biotech, Beijing,
China) according to the manufacturer’s instructions.

Array-Comparative Genomic Hybridization
Array-CGH was performed using the Fetal DNA Chip (Version
1.2) designed by The Chinese University of Hong Kong (CUHK)
(Leung et al., 2011; Huang et al., 2014). The chip contains a total
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of 60,000 probes for more than 100 diseases caused by known
microduplication/microdeletions. It does not include small-size
chromosomal abnormalities, copy number polymorphism,
chimerism, or chromosomal rearrangement (Iafrate et al.,
2004). The experimental procedures were carried out
according to the standard Agilent protocol (Agilent
Oligonucleotide Array-Based CGH for Genomic DNA
Analysis, version 3.5). Hybridized slides were scanned with
SureScan High-Resolution Microarray Scanner (G2505B,
Agilent Technologies, Santa Clara, CA), and the image data
were extracted and converted to text files using Agilent
Feature Extraction software (Version 10.5.1.1). The data were
graphed and analyzed using Agilent CGH Analytics software.

Only gains or losses that were encompassed by at least three
consecutive oligomers on the array were considered. Then, the
clinical relevance of observed chromosomal aberrations was
estimated according to data found in the scientific literature
and databases for each of the regions and genes involved,
using the DECIPHER database (Swaminathan et al., 2012) for
known microdeletion and microduplication syndromes and the
Online Mendelian Inheritance in Man (OMIM) (Sayers et al.,

2021) for known disease-causing genes, gene functions, and
inheritance patterns. Copy number variations were considered
as “likely pathogenic/pathogenic” when they involved regions
known to be associated with microdeletion or microduplication
syndromes.

High-Throughput Whole Exome
Sequencing
WES was performed for family trios (trio-WES) without
chromosomal abnormalities at MyGenostics or BerryGenomics
Co. LTD. Briefly, the fragmented genomic DNAs were ligated
with the 3ʹ end of the Illumina adapters and amplified by
polymerase chain reaction (PCR). The amplified DNA was
captured with Gencap Human whole Exon Kit (52M) at
MyGenostics or with xGen Exome Research Panel v2.0
(Integrated DNA Technologies, Coralville, IA) at
BerryGenomics. The capture procedure was performed in
accordance with the manufacturer’s protocol. Finally, the
generated libraries were sequenced on Illumina HiSeq 2500
platform for paired-end sequencing.

FIGURE 1 | Analysis flowchart of the whole exome sequencing data.
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The sequencing depth of each sample was about 100.
Sequencing reads were aligned with the human reference
genome (UCSC hg19). The workflow of the screening for
causal variants was depicted in Figure 1. Briefly, clean reads
were obtained after removal of adaptors and low-quality reads.
GATK (Genome Analysis Toolkit) was used to trim the variant
calling in the trimmed WES clean data (https://gatk.
broadinstitute.org/hc/en-us). ANNOVAR was applied to
annotate the generated VCF file (Wang et al., 2010).
Deleted variants with a minor allele frequency (MAF) > 5%
in the 1000 Genome Project, MAF >2% in in-house data, or
synonymous single nucleotide variants (SNVs) were removed.
SNVs that caused splicing, frameshift, stop gain, or stop loss
were retained for subsequent analysis. A position was called as
heterozygous if 25% or more of the reads identify the minor
allele.

The chromosomal location and type of the identified variants
were retrieved in UCSC Genome Browser (Navarro Gonzalez
et al., 2021) and NCBI dbSNP (Bhagwat, 2010). The MAFs of the
variants were screened in several public databases with a large
number of human samples, such as 1000 Genome Project (n =
2504) (Siva, 2008), NHLBI Exome Sequencing Project (GO-ESP)
(n = 6503) (Amendola et al., 2015), The Exome Aggregation
Consortium (ExAC) (n = 60,706) (Lek et al., 2016), gnomAD (n =
15,708) (Scheps et al., 2020), and NHLBI Trans-Omics for
Precision Medicine (TOPMED) (n = 60,000) (Taliun et al.,
2021). The function prediction of these variants was carried
out by online software, PolyPhen-2 (Adzhubei et al., 2010),
and PROVEAN (Choi et al., 2012). Pathogenicity of the
variants was evaluated according to the American College of
Medical Genetics and Genomics (ACMG) guidelines (Richards
et al., 2015). The selected variants were verified by Sanger
sequencing using the ABI 3500 Genetic Analyzer (Applied
Biosystems, Foster City, CA).

Computational Analysis for the G777E
Variant of ZMIZ1
Protein sequences of ZMIZ1 in 34 species were downloaded
from NCBI GenBank, including five primates (Homo sapiens,
Pan troglodytes, Gorilla Gorilla gorilla, Hylobates moloch, and
Macaca fascicularis), one cattle (Bos taurus), one horse (Equus
caballus), one dog (Canis lupus familiar), three carnivores
(Neogale vison, Panthera tigris, and Halichoerus grypus),
three rodents (Eptesicus fuscus, Mus musculus, and Rattus
norvegicus), five reptiles (Crotalus tigris, Varanus
komodoensis, Dermochelys coriacea, Chelonoidis abingdonii,
and Mauremys mutica), two birds (Falco rusticolus, Gallus
gallus), three amphibians (Bufo bufo, Xenopus tropicalis, and
Oryzias latipes), three fish (Takifugu rubripes, Hippocampus
comes, and Danio rerio), three arthropods (Limulus
polyphemus, Penaeus monodon, and Ceratitis capitata), and
four mollusks (Acropora millepora, Crassostrea gigas, Octopus
sinensis, and Exaiptasia diaphana). The protein sequences
were aligned by the ClustalW alignment algorithms of
MEGA X (Kumar et al., 2018) (gap opening penalty and
gap extension penalty for pairwise alignment and multiple

alignment were set as 10.00, 0.10 and 10.00, 0.20, respectively;
the delay divergent cutoff was 30%).

The intrinsically disordered regions of ZMIZ1 protein
(NP_065071) were analyzed using the online web server
IUPred2A (https://iupred2a.elte.hu/) with long disorder setting
to identify probable disordered regions using the IUPred2 model
and disordered binding regions using the ANCHOR2 model
(Erdos and Dosztanyi, 2020). The distinct motifs of ZMIZ1
were analyzed using the online software Motif Scan (https://
myhits.sib.swiss/cgi-bin/motif_scan) under default settings to
search all known motifs in HAMAP (Pedruzzi et al., 2015),
PROSITE (Hulo et al., 2006), Pfam (Mistry et al., 2021), and
InterPro databases (Mitchell et al., 2019). The possible
phosphorylation sites of ZMIZ1 were predicted by Disorder
Enhanced Phosphorylation Predictor (DEEP, http://www.
pondr.com/cgi-bin/depp.cgi) using 0.50 as the cutoff value
(Iakoucheva et al., 2004).

The effect of G777E on the structural change was predicted
by the online protein structure and function prediction tool,
I-TASSER (Iterative Threading ASSEmbly Refinement) under
default parameters (Yang and Zhang, 2015) for the whole
second globular region (aa575-820) and visualized using
Mol* 3D Viewer (Sehnal et al., 2021). The gene expression
data of ZMIZ1 were evaluated according to the normalized
signal intensity of probe 212124 at which were extracted from a
gene atlas of human protein-encoding transcriptomes for 79
human tissues (NCBI GEO #GSE1133) (Su et al., 2004). The
protein interaction network with ZMIZ1 (PPI enrichment p
value = 1.51E-03) was generated by STRING (version 11.5,
https://string-db.org/) under default settings. Gene Ontology
(GO) analysis was performed on the nine members of the
network in the GO knowledgebase (http://geneontology.org/)
under default parameters.

RESULTS

Sample Description
There were 54 cases in our current NEDD/ID cohort collected
from southern China. There were 48.15% (26/54) women and
51.85% (28/54) men. The mean age of women and men patients
was 2.45 ± 1.15 and 2.67 ± 1.71, respectively. In these 54 samples,
pathogenic variants were found in 33 patients, 5 with
microdeletions and 28 with variants in protein-coding genes
(Supplementary Table S1). The positive rate was 61.11% (33/
54). In one patient, ZMIZ1 was detected to have a pathogenic
missense variant (c.2330G > A, p.G777E). This patient was a 5-
year-old girl who was referred to our department because of
psychomotor developmental delay. She was the second child of a
non-consanguineous couple (Figure 2A). The proband was
delivered at term to a 36-year-old mother by Cesarean section
due to breech position at 2016-10. Her birth weight was 3000 g,
and there was no history of asphyxia at birth. At the sixth month
after birth, asymmetric dermatoglyphs were found on both of her
lower limbs after a physical examination and later diagnosed as
dysplasia of bilateral hip joints. At 1 year old, the patient had
chronic constipation. Since 2017, she has been sent to the
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ophthalmology department several times due to binocular weak
eyesight and strabismus in the right eye. After 1 year old, she was
still unable to speak and walk without support and was sent to the
rehabilitation center for special training. Until 2 years old, she
was able to speak simple words and walk, and was finally
diagnosed as “developmental delay”.

For facial features, the patient had epicanthus, ptosis, up-
slanting eyelid fissure, wide eye distance, wide nose bridge,
Cupid lip arch and low-set ear. Regarding skeletal
abnormalities, she had short fingers and toes, conical
fingers (Figure 2B), and excessive joint mobility. As for the
gross motor, the patient could walk alone. She could not stand
on one foot for more than 3 s and jump on one foot. The
trotting posture was slightly abnormal, and easy to fall. In
terms of fine motor, she could draw a straight line, pull a
zipper, unbutton buckles, cut paper inflexibly with scissors, eat
with spoons and chopsticks, but couldn’t draw circles, squares,
and triangles. In terms of the language, she could speak simple
and long sentences with clear pronunciation, understand a few
Chinese characters, recite numbers from 1 to 20, answer simple
questions, but sometimes with confused word order and logic.
For the social adaptive capacity, she could wear and take off
clothes, shoes, and socks, could go to the bathroom, and eat by
herself. She had the initiative to share and express her needs
but without the initiative to say hello and goodbye. Besides, she
had poor name calling response, poor sitting quietly ability,
and hyperactive behavior.

The visually evoked potential (VEP) test showed that after
blink flash stimulation for both eyes, N75, P100, and N145 waves
could be induced with good repeatability. However, the latency of
the P100 andN145 waves on both sides was prolonged, which was
slightly abnormal. The evaluations for audiology system, heart,
and urinary system were normal. DR X ray film for hip joint
anteroposterior projection at 4-years-7-months old showed that

the left and right acetabular angles were about 22 and 25°,
respectively (Figure 2C). She was diagnosed with congenital
dysplasia of the hip by an orthopedic surgeon at a tertiary
children’s hospital. She received 2 brain MRI scans (March 28,
2019and October 26, 2021) and 3 electroencephalogram (EEG)
examinations (March 15, 2019, August 20, 2020, and June 23,
2021). No obvious irregularities were identified.

Neuropsychological development assessment was
performed for the patient at 5-years-1-month old using the
Wechsler Preschool and Primary Scale of Intelligence Fourth
Edition (WPPSI-IV) and the parent-rated Adaptive Behavior
Assessment System II (ABAS-II) infant version. Her score on
the full-scale intelligence quotient of WPPSI-IV was 75 (95%
CI: 70-82, P5). The verbal comprehension index, visual spatial
index, perceptual reasoning index, working memory index,
and processing speed index of WPPSI-IV were 77 (95% CI: 71-
86, P6), 83 (95% CI 76-94, P13), 79 (95% CI 73-87, P8), 76
(95% CI 76-94, P5), and 71 (95% CI 66-85, P3), respectively.
The overall adaptive function score of ABAS-II was 77 (95%
CI: 73-81, P6). The scores of social skills, conceptual skills, and
practical skills in the three composite areas of adaptive
function were 71 (95% CI 64-78, P3), 84 (95% CI 77-91,
P14), and 80 (95% CI 74-86, P9), respectively. According to
the clinical evaluation, she was at the edge level of intellectual
development.

Trio-WES Identified a de Novo Missense
Variant of ZMIZ1 Gene
Whole exome sequencing was performed for the trio to identify
possible genetic factors of the proband. After removal of adaptors
and low-quality reads, the obtained total clean data obtained for
the trio were 11,959.04 (Mb) for the proband, 15,681.80 (Mb) for
the father, and 12,202.51 (Mb) for the mother (Table 1). The

FIGURE 2 | Characterization of the patient’s information. (A) Pedigree; (B) pictures of hands and foot; (C) DR X-ray film for bilateral hip joints.
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target coverage was at least or more than 98%. The average depth
of target region was more than 100X. The on-target ratio was
more than 35%. In these samples, the total numbers of identified
SNVs were 175,809 for the proband, 197,560 for the father, and
179,722 for the mother, respectively. The percentages of
pathogenic variants were around 4%. The total number of
small insertions and deletions were 36,452, 42,698, and 36,816
for the proband, father, and mother, respectively.

In this proband, 20 specific variants were selected. Twelve of
them were heterozygous in 10 genes (ANKRD36C, MUC2,
MUC4, HRCT1, KLHL29, MYO15B, PER3, RPTN, TWIST1,
and ZMIZ1) and 8 homozygous in 8 genes (AGAP3,
CCDC177, CGN, DSPP, ESX1, FOXN4, MUC4, POTEB3, and
SLC35E2A) (Table 2). According to the criteria of ACMG
guidelines, 10 heterozygous and 8 homozygous variants were
annotated as variants of uncertain significance (VUS). Most of
these variants were predicted to be “neutral” by Provean or
“benign” by Polyphen. PER3 (OMIM #603427), TWIST1
(OMIM #601622), and DSPP (OMIM #125485) were also
recorded in the OMIM database as disease-causing genes.
However, the phenotypes caused by these genes were not in
line with our female proband. Besides, two rare heterozygous
variants (c.148C > T, p.R50W in KLHL29 and c.2330G > A,
p.G777E in ZMIZ1) were annotated as “likely pathogenic” (PS2 +
PM2 + PP2) and “pathogenic” (PS2 + PM1 + PM2 + PP2 + PP3),
respectively.

Since there was no experimental evidence for KLHL29
leading to neurodevelopmental disorder, ZMIZ1 was
considered as the most potential disease-causing gene. The
c.2330G > A (p.G777E) was a heterozygous SNV in the exon 20
of ZMIZ1 gene (NM_020338) (Figures 3A,B) and confirmed
by Sanger sequencing (Figure 3C) only in the patient, but not
in her healthy parents or her elder sister. Thus, it was a de novo
variant. The protein sequences of ZMIZ1 from more than 34
species (Mollusca, crabs, fish, amphibians, insects, reptiles,
rodents, dogs, cats, cattle, and primates) were downloaded
from NCBI GenBank and aligned by the ClustalW alignment
algorithms of MEGA 11, the G777 was highly conserved in the
animals during evolution (Figure 3D). G777E was localized in
the functional MSX-interacting zinc finger (zf-MIZ) domain
(Figure 3E) and predicted to be “deleterious” with a score of
0.536, “deleterious” with a score of -7.736 (Provean) and

“probably damaging” with a score of 0.992 (PolyPhen-2). In
addition, this SNV has not been detected in multiple public
genome databases, such as 1000 Genome Project (n = 2504),
NHLBI Exome Sequencing Project (GO-ESP) (n = 6503), the
Exome Aggregation Consortium (ExAC) (n = 60,706),
Genome Aggregation database (gnomAD) (n = 15,708), and
NHLBI Trans-Omics for Precision Medicine (TOPMED) (n =
60,000). Since this amino acid changing variant was only
identified in the patient, and not in her parents, it was
regarded as “spontaneous.” According to the Probability of
Loss-of-function Intolerance (pLI) analysis, the pLI value of
ZMIZ1 was 1.000, which indicated ZMIZ1 being a
haploinsufficient gene. It has been reported that ZMIZ1
could cause the occurrence of a rare neurodevelopmental
disorder, neurodevelopmental disorder with dysmorphic
facies and distal skeletal anomalies (NEDDFSA). Based on
the recorded clinical phenotypes (Supplementary Table S2),
this patient was finally diagnosed as NEDDFSA. Besides, four
rare variants in ZMIZ1 were also detected in another four
NEDD patients, namely, c.3096 + 15C > T, c.1024A > G
(p.M342V), c.540 + 20T > C and c.679G > A (p.A227T)
(Supplementary Table S3).

The intrinsically disordered regions of ZMIZ1 protein
(NP_065071) were analyzed using the online web server
IUPred2A. Two functional globular regions were identified
at two portions (aa2-110 and 575-820), which overlapped with
the two important functional domains, Zmiz1 N-terminal
tetratricopeptide repeat domain (Zmiz1_N, aa8-100) and
MIZ/SP-RING zinc finger (zf-MIZ, aa739-786), respectively.
The predicted two globular regions and two intrinsically
disordered regions are displayed in Figure 3E. The possible
phosphorylation sites of ZMIZ1 were predicted using DEEP
under default parameters. Interestingly, most of the
phosphorylation sites were located in the two long
disordered regions (Figure 3F). As for G777E, it was
localized in the second globular regions containing zf-MIZ
domain and might affect the probable tertiary structures as
predicted by I-TASSER (Supplementary Figure S1).

Analysis of the Distinct Regions of ZMIZ1
The distinct regions of ZMIZ1 were analyzed using the online
software Motif Scan under default settings. Seven distinct

TABLE 1 | Characterization of the whole exome sequencing for the trio.

Items Proband Father Mother

Total clean data (Mb) 11,959.04 15,681.80 12,202.51
Target coverage 98.00% 98.31% 98.04%
Average depth of target region (X) 110.73 138.49 114.47
Ratio of average depth of target region (>4X) 97.59% 97.89% 97.64%
Ratio of average depth of target region (>10X) 97.29% 97.62% 97.36%
Ratio of average depth of target region (>20X) 96.77% 97.29% 96.85%
Ratio of average depth of target region (>30X) 95.64% 96.76% 95.71%
On target ratio 39.66% 37.83% 40.19%
Total SNVs 175,809 197,560 179,722
Percentage of pathogenic variants 3.57% 4.46% 3.47%
Total small insertion (and duplications) 17,011 19,694 17,254
Total small deletions 19,441 23,004 19,562

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8405776

Lu et al. Novel ZMIZ1 Variant for NEDDFSA

77

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


TABLE 2 | Identified variants in the five-year-old proband.

No Location
(GRCH37)

Genes Ref genes Variants dbSNP ID Zygosity
(P/F/M)

ACMG
annotation

1000
genomes

ExAC gnomAD
exome

PROVEAN
(score)

Polyphen2
(score)

Phenotype
OMIM

Inheritance
and phenotype

1 2:
96521280

ANKRD36C NM_001310154 c.5827A > C
(p.I1943L)

rs112858216 Het/
WT/WT

VUS: PS2 — 3.26E-
02

— Neutral
−0.876

— — —

2 9:
35906601

HRCT1 NM_001039792 c.317C > A
(p.P106H)

rs112212538 Het/
WT/WT

VUS: PS2 — — — Neutral
0.071

Benign
0.146

— —

3 2:
23785214

KLHL29 NM_052920 c.148C > T
(p.R50W)

rs558454968 Het/
WT/WT

Likely pathogenic:
PS2+PM2+PP2

— 1.52E-
04

9.87E-05 Neutral
−1.567

Damaging
0.988

— —

4 11:
1093349

MUC2 NM_002457 c.6863C > T
(p.P2288L)

rs1382972456 Het/
WT/WT

VUS: PM2 — — — Neutral
−0.461

— — —

5 3:
195507271

MUC4 NM_018406 c.11180C > G
(p.T3727S)

rs868067409 Het/
WT/WT

VUS: PM2 — 1.67E-
04

1.76E-04 Neutral
0.217

Benign
0.301

— —

6 3:
195508523

MUC4 NM_018406 c.9928G > A
(p.A3310T)

rs879281830 Het/
WT/WT

VUS: NA — 2.79E-
03

4.42E-04 Neutral
0.500

Damaging
0.494

— —

7 3:
195508526

MUC4 NM_018406 c.9925C > G
(p.H3309D)

rs1424606542 Het/
WT/WT

VUS: NA — 2.43E-
03

3.27E-04 Neutral
0.083

Benign
0.234

— —

8 17:
73585468

MYO15B NM_001309242 c.1330C > T
(p.R444C)

rs185791490 Het/
WT/WT

VUS: PM2 — — — Neutral
−0.446

— — —

9 1:7890053 PER3 NM_016831 c.3019G > A
(p.A1007T)

rs1776342 Het/
WT/WT

VUS: PM2+PP3+BP4 — — 9.47E-06 Neutral
−0.848

Benign
0.004

#616882 AD: Advanced sleep
phase syndrome,
familial, 3

10 1:
152129100

RPTN NM_001122965 c.475G > A
(p.G159S)

rs200003389 Het/
WT/WT

VUS: PM2+BP4 — — — Neutral
−1.883

Benign
0.275

— —

11 7:
19156668

TWIST1 NM_000474 c.256_276dup
(p.G86_G92dup)

— Het/
WT/WT

VUS: PS2+BP3 — 0 1.58E-05 — — #123100 AD:
Craniosynostosis 1

#180750 AD: Robinow-Sorauf
syndrome

#101400 AD: Saethre-Chotzen
syndrome with or
without eyelid
anomalies

#617746 AD: Sweeney-Cox
syndrome

12 10:
81064964

ZMIZ1 NM_020338 c.2330G > A
(p.G777E)

— Het/
WT/WT

Pathogenic:
PS2+PM1+PM2+PP2+PP3

— — — Deleterious
-7.736

Damaging
0.992

#618659 AD:
Neurodevelopmental
disorder with
dysmorphic facies
and distal skeletal
anomalies
(NEDDFSA)

13 7:
150783920

AGAP3 NM_031946 c.92T > G
(p.V31G)

rs1171186819 Hom/
WT/WT

VUS: PM2 — — — Neutral
−0.091

— — —

14 14:
70039807-
70039809

CCDC177 NM_001271507 c.534_536del
(p.A180del)

— Hom/
Het/Het

VUS: PM2+
PM3_supporting + BP3

— — — — — — —

15 1:
151491411

CGN NM_020770 c.416C > T
(p.A139V)

rs181435993 Hom/
Het/Het

VUS: NA 9.98E-04 7.44E-
04

6.33E-04 Neutral
−1.470

Damaging
0.937

— —

16 4:
88535832

DSPP NM_014208 c.2018A > G
(p.D673G)

rs201553143 Hom/
Het/Het

VUS: PM2 — 1.98E-
04

— Neutral
−1.162

Benign
0.004

#605594 AD: Deafness,
autosomal dominant
39, with
dentinogenesis

#125420 AD: Dentin dysplasia,
type II
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regions were identified, one alanine-rich region (aa280-305,
E-score = 2.1E-06), two proline-rich regions (aa334-555,
E-score = 3.9E-16; aa867-1002, E-score = 3.8E-07), one
bipartite nuclear localization signal (NLS, aa697-711,
E-score = 2.1E+04), MIZ/SP-RING zinc finger (aa738-787,
E-score = 1.1E-33), and one copper binding octapeptide
(aa947-954, E-value = 1.5). All variants of ZMIZ1 were also
recruited from the DECIPHER database (Swaminathan et al.,
2012) and the four published articles (Córdova-Fletes et al.,
2015; Carapito et al., 2019; Latchman et al., 2020; Phetthong
et al., 2021). A total of 33 patients with ZMIZ1 pathogenic
variants were collected, 1 from our current cohort (Figures
4A,B), 8 from the DECIPHER database (Figure 4C), and 24
from published articles (Figure 4D). Except for K91R, H581R,
and H683Y, other variants were localized in the low-
complexity regions, such as the alanine-rich region and the
proline-rich region of the Med15 (mediator complex subunit
15) domain, and the proline-rich region in the C-terminal
transactivation domain (TAD). There were nine amino acid-
changing variants, which were strongly conserved during
evolution (Figure 4E). Six of them were in the alanine-rich
region, accounting for 66.67% (6/9). From the
phosphorylation prediction by DEEP, except for T300M,
other variants could distinctly change the phosphorylation
pattern of the alanine-rich region (Figure 4F).

Interaction Network of ZMIZ1
The gene expression data of 79 human tissues showed that ZMIZ1
was expressed in the heart, thyroid, immune cells, ovary, retina,
and brain, with the highest in the pineal (Figure 5A). The protein
interaction network with ZMIZ1 indicated that ZMIZ1 could
interact with SMAD3, SMAD4, MYC, NOTCH1, RBPJ,
SMARCA4, ETS1, and UBE2I (Figure 5B). According to the
GO analysis for the 9 members (Figure 5C), the network was
involved significantly in mesenchyme morphogenesis, hypoxia,
tube morphogenesis, regulation of transcription, response to
stimulus, endocardium development, epithelial to
mesenchymal transition, and cardiac left ventricle
morphogenesis in GO term “biological process.” In “molecular
function,” transcription, SMAD binding, and SUMOylation were
significantly enriched. As for “cellular component” and
“subcellular localization,” members of this network were
localized in nuclear to form multiple protein complexes,
mainly MAML1-RBP-Jκ-ICN1 (Intracellular Notch1) complex
and SMAD protein complex to regulate the expression of
target genes.

DISCUSSION

Pathogenic variants of the zinc finger MIZ-type containing 1
(ZMIZ1, OMIM#607159) could cause the occurrence of a rare
syndromic disease, neurodevelopmental disorder with
dysmorphic facies and distal skeletal anomalies (NEDDFSA)
with an autosomal dominant (AD) mode of inheritance.
Currently, 32 patients with neurodevelopmental disorders
have reported carrying pathogenic variants in the proteinT
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coding sequences of ZMIZ1 (n = 29) and chromosomal
translocations involving ZMIZ1 (n = 3) (Supplementary
File S2). Among these patients, except for c.1491+2T > C
identified in a Thai female, the remaining 31 variants were
detected in patients with Caucasian origin in Western
countries. In our small cohort of NEDD/ID cases in China,
a de novo missense pathogenic variant c.2330G > A (p.G777E)
was detected in a 5-year-old girl. This patient presented the
characteristic clinical phenotypes of NEDDFSA, such as
neurodevelopmental delay, mild intellectual disability,
hypotonia, language delay, dysmorphic facial features, joint

hypermobility, and hand and foot anomalies, which were the
common features of NEDDFSA (Figure 5D, Supplementary
Table S2). As far as we know, this was the first report of ZMIZ1
variant in Chinese. Besides, we also identified four other rare
variants in the ZMIZ1 gene (c.540 + 20T > C, c.679G > A,
c.1024A > G, and c.3096 + 15C > T) (Supplementary Table
S3). Although predicted as “neutral” or “benign” to the
function of ZMIZ1, it still could not rule out their
pathogenicity. Cellular and animal experiments should be
taken to verify the function of these variants, including the
c.2330G > A (p.G777E).

FIGURE 3 |Molecular analysis of the c.2330G > A (p.G777E) in ZMIZ1 gene. (A) Gene structure of ZMIZ1; (B) IGV view of the c.2330G > A identified by WES; (C)
Sanger sequencing of the c.2330G > A variant; (D) evolutionary conservation analysis; (E) protein structure of ZMIZ1; (F) analysis for intrinsically disordered regions and
phosphorylation sites.
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ZMIZ1 was previously known as ZIMP10, RAI17, or
KIAA1224. In 1999, Nagase et al. identified the gene ZMIZ1
(previously called KIAA1224) from a fetal brain cDNA library
(Nagase et al., 1999). According to the human tissue-specific
transcriptomes, it was expressed in the heart, thyroid, immune
cells, ovary, retina, and brain, with the highest in the pineal
gland (Su et al., 2004). The encoded protein is a transcriptional
co-activator, which belongs to the Protein Inhibitor of
Activated STAT (PIAS) family. As a member of the PIAS
family, ZMIZ1 has a highly conserved MIZ (Msx-interacting
zinc finger) domain which is important for protein-protein
interaction and SUMOylation (Sharma et al., 2003; Beliakoff
and Sun, 2006). It had been reported that ZMIZ1 could
regulate the activity of many transcription factors, such as

androgen receptor (AR) (Beliakoff and Sun, 2006), SMAD3 (Li
et al., 2006), SMAD4 (Li et al., 2006), and p53 (Lee et al., 2007).
As an ortholog of ZMIZ1, tonalli (tna) was identified in
Drosophila melanogaster and interacted with the ATP-
dependent SWI/SNF complexes, which suggested a potential
role in chromatin remodeling (Gutiérrez et al., 2003). Recently,
ZMIZ1 was identified to be interacted with BRG1 (SMARCA4)
(Li et al., 2011), BAF57 (SMARCE1) (Li et al., 2011), or SATB1
(Pinnell et al., 2015) to regulate the chromatin remodeling in
humans. The protein-protein interaction network showed that
ZMIZ1 could interact with SMAD3, SMAD4, MYC, NOTCH1,
RBPJ, SMARCA4, ETS1, and UBE2I. According to the GO
analysis for the 9 members of the protein network containing
ZMIZ1, the network was significantly involved in mesenchyme

FIGURE 4 | Molecular analysis of variants of ZMIZ1. (A) Variant in our cohort; (B) diagram of ZMIZ1 protein; (C) variants in DECIPHER; (D) variants in reported
articles; (E) evolutionary conservation; (F) phosphorylation analysis in the alanine-rich region.
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morphogenesis, hypoxia, tube morphogenesis, regulation of
transcription, response to stimulus, endocardium
development, epithelial to mesenchymal transition, and
cardiac left ventricle morphogenesis. This explained why
ZMIZ1 pathogenic variant could affect the normal
development of multiple systems, such as nerve, heart, and
bones. GO analysis also showed that members of this network
were localized in the nucleus to form two multiple protein
complexes, mainly MAML1-RBP-Jκ-ICN1 complex and
SMAD protein complex, to regulate the expression of target
genes. The proper expression of ZMIZ1 was essential for the
standard embryonic development. It has been revealed in mice
embryos at different stages that ZMIZ1 was expressed
dynamically in the neural tissues, craniofacial tissues,
mandibular, foregut, limb buds, optic vesicle and otic pit,
and somite (Beliakoff et al., 2008; Rodriguez-Magadán et al.,

2008). This was consistent with the above-mentioned clinical
features produced by the mutant ZMIZ1.

After compiling all the ZMIZ1 variants in the DECIPHER
database, published articles, and our cohort (Supplementary
Table S2), 12 patients were found to carry amino-acid
changing variants, and half of them (6/12) had variants in
the alanine-rich sequence. The alanine-rich low-complexity
region (LCR) was localized in the N-terminal intrinsic
disordered region of ZMIZ1. The alanine-rich sequences
were extremely conserved in different species during
evolution, suggesting its importance for the proper
function of ZMIZ1. According to the reports, many
transcription factors or transcription mediators, such as
FUS (FUS RNA binding protein), EWSR1 (EWS RNA
binding protein 1), TAF15 (TATA-box binding protein
associated factor 15), Sp1 (Sp1 transcription factor), and

FIGURE 5 | Expression of ZMIZ1 in different human tissues, and network analysis. (A) Tissue-specific expression of ZMIZ1; (B) protein interaction network
produced by STRING; (C) GO analysis for the 9 members of the network; (D) phenotypes of the patients carrying ZMIZ1pathogenic variants.
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AR could interact with ZMIZ1 at the transcriptional start sites
via their extremely low-complexity regions (LCRs) to form
local phase-separated condensates (or called droplets) to
stabilize DNA binding, recruit RNA polymerase II (RNA
Pol II), and activate transcription (Chong et al., 2018;
Zamudio et al., 2019). These special condensates were a
trade-off between proper functionality and risk of
abnormal aggregation. The aberrant phase transitions
within liquid-like droplets lie at the heart of many kinds of
diseases, such as TATA box-binding protein (TBP,
OMIM#600075) for spinocerebellar ataxia 17 (SCA17,
OMIM#607136) (Friedman et al., 2007), FUS
(OMIM#137070) for amyotrophic lateral sclerosis 6 (ALS6,
OMIM#608030) (Patel et al., 2015), and androgen receptor
(AR, OMIM#313700) for spinal and bulbar muscular atrophy
(SBMA, OMIM#313200). As predicted by IUPred2A, ZMIZ1
contained three low-complexity regions (one alanine-rich and
two proline-rich regions). It is reasonable that the alanine-
rich region might be indispensable for the phase separation of
ZMIZ1 to carry out the transcription mediator function. As
predicted, the variants could change the phosphorylation
pattern in the alanine-rich region, which might affect the
local conformation. This might be the underlying molecular
mechanism for the alanine-rich region being the variation
hotspot of ZMIZ1. However, this has not yet been
experimentally verified.

CONCLUSION

In conclusion, a de novo missense variant was first discovered
in a Chinese female with a rare heterozygous syndromic
disease, neurodevelopmental disorder with dysmorphic
facies, and distal skeletal anomalies (NEDDFSA). Currently,
a total of 32 patients with 27 types of variants of ZMIZ1 (24 in
protein-coding sequences and 3 translocations) have been
identified globally. However, the underlying molecular
mechanism of these variants has not been elucidated.
Further experimental studies should be carried out to clarify
these unknown fields to determine potential drug targets for
the treatment of NEDDFSA.
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Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease,
and many other disease types, cause cognitive dysfunctions such as dementia via the
progressive loss of structure or function of the body’s neurons. However, the etiology of
these diseases remains unknown, and diagnosing less common cognitive disorders such
as vascular dementia (VaD) remains a challenge. In this work, we developed a machine-
leaning-based technique to distinguish between normal control (NC), AD, VaD, dementia
with Lewy bodies, and mild cognitive impairment at the microRNA (miRNA) expression
level. First, unnecessary miRNA features in the miRNA expression profiles were removed
using the Boruta feature selection method, and the retained feature sets were sorted using
minimum redundancy maximum relevance and Monte Carlo feature selection to provide
two ranking feature lists. The incremental feature selectionmethodwas used to construct a
series of feature subsets from these feature lists, and the random forest and PART
classifiers were trained on the sample data consisting of these feature subsets. On the
basis of the model performance of these classifiers with different number of features, the
best feature subsets and classifiers were identified, and the classification rules were
retrieved from the optimal PART classifiers. Finally, the link between candidate miRNA
features, including hsa-miR-3184-5p, has-miR-6088, and has-miR-4649, and
neurodegenerative diseases was confirmed using recently published research, laying
the groundwork for more research on miRNAs in neurodegenerative diseases for the
diagnosis of cognitive impairment and the understanding of potential pathogenic
mechanisms.
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1 INTRODUCTION

Dementia is one kind of cognitive impairment that is
characterized by difficulties in memory, language, and
behavior. Of all chronic diseases, dementia has become one of
the most important contributors to dependence and disability
(Iliffe et al., 2009). With an increasing number of morbidity,
dementia has become a great concern worldwide (Prince et al.,
2016). Unfortunately, there is no cure for this disease at present,
and earlier diagnosis and interventions to slow down the disease
progress are needed (Iliffe et al., 2009). Therefore, researchers
have focused on searching effective diagnostic methods, including
the identification of new biomarkers for diagnosis, and
interventions for dementia.

Although young-onset cases are increasingly recognized,
dementia is typically a condition that affects older people.
Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder and the most common cause of intellectual deficit in
populations older than 65 years. More than 20% of individuals
over 80 years of age are affected by AD, and epidemiological data
predict that there will be over 35 million AD patients by 2050
(Danborg et al., 2014). Other less common causes of cognitive
impairment include vascular dementia (VaD) whose definition
and distinction remain controversial, mixed dementia, and
dementia with Lewy bodies (DLB) (Mckeith et al., 1996).
Diagnosing dementia is markedly difficult due to its insidious
onset and diversity of other presenting symptoms such as
difficulty in making decisions (Kostopoulou et al., 2008).
Recent studies have reported that certain protein biomarkers
in cerebrospinal fluid (CSF) can be applied in the clinical
diagnosis of AD with a high predictive accuracy (De Meyer
et al., 2010). However, such biomarkers have their limitations
in differentiating AD from other types of dementia. In addition,
biomarkers in CSF require an invasive collection process; thus,
new methods through less invasive procedures are needed.
Considering that the diagnosis of dementia subtypes is
important to manage different therapies, disease courses, and
outcomes for different dementias (Robinson et al., 2015),
development of better biomarkers for AD and other dementias
will contribute to more accurate diagnosis for an early and
specialized treatment.

For a better clinical care in disease prevention and treatment,
several computational models have been developed to predict
dementia risk or subtypes (Stephan et al., 2010). For example,
Licher et al. (2019) reported a dementia risk model using
optimism-corrected C-statistics, which can be used to identify
individuals with high risk of dementia with an accuracy of 0.86.
This model was based on comprehensive clinical information
such as age, cognitive impairment, and lifestyle factors.
Interestingly, a novel machine learning prediction model for
dementia risk identification using the voice data from daily
conversations was proposed by Shimoda et al. (2021). They
applied three strategies including extreme gradient boosting,
random forest (RF), and logistic regression methods in
developing models, which had AUCs of 0.86, 0.88, and 0.89,
respectively. Li et al. (2019) reported a deep learning model for
the early prediction of AD using hippocampal magnetic

resonance imaging data, which achieved a concordance index
of 0.762. In addition, genetic data were taken into account to
improve the ability of the prediction model given that many genes
were confirmed to be associated with AD (Seshadri et al., 2010).
So far, models in dementia prediction lack molecular signatures
such as transcriptional expression, which can reflect the
underlying pathogenic mechanisms.

MicroRNAs (miRNAs) are small non-coding RNA molecules
of approximately 22 nucleotides in length, which have been
shown to regulate gene expression by binding to
complementary regions of messenger transcripts (Lagos-
Quintana et al., 2001). The detection of circulating miRNA
levels has been proposed to be a potential diagnostic tool for a
number of diseases (Gilad et al., 2008). MiRNAs play a crucial
role in the control of neuronal cell development (Mistur et al.,
2009). The alteration of the expression of some miRNAs has been
shown to relate to various neurological diseases including AD.
For example, miR-137, miR-181c, and miR-29a/b were reported
to be involved in AD bymodulating ceramide levels (Geekiyanage
and Chan, 2011). The downregulation of miR-16, miR-195, and
miR-103 was observed in the brain of AD patients, and these
miRNAs were shown to target the β-site amyloid precursor
protein cleaving enzyme 1 (BACE1), which is involved in
amyloid plaque formation (Bekris et al., 2013). Cogswell et al.
found significantly decreased expression of miR-9, which
regulates neuronal differentiation, in the human hippocampus
of AD patients (Cogswell et al., 2008; Coolen et al., 2013).
Different expression patterns of miRNAs have also been found
between AD and other neurodegenerative diseases; for example,
miR-15a is uniquely elevated in the plasma of AD patients (Bekris
et al., 2013). Therefore, miRNAs in the blood or serum are easily
accessible and noninvasive biomarkers for diagnosing dementia.
In addition, some miRNAs can be used to distinguish different
subtypes of dementia for more precise treatment.

In this study, on the basis of the miRNA expression profiles
from 1601 serum samples (Shigemizu et al., 2019a), including AD
cases, VaD cases, DLB cases, mild cognitive impairment (MCI)
cases, and normal controls (NC), we computationally analyzed
such expression data. The data was first analyzed by Boruta
(Kursa and Rudnicki, 2010), irrelevant miRNA features were
excluded. Remaining miRNA features were evaluated by
minimum redundancy maximum relevance (mRMR) (Peng
et al., 2005) and Monte Carlo feature selection (MCFS)
(Dramiński et al., 2007), respectively. Two feature lists were
generated, which were fed into incremental feature selection
(IFS) (Liu and Setiono, 1998), incorporating random forest
(RF) (Breiman, 2001) or PART (Frank and Witten, 1998). As
a result, we identified the crucial miRNAs that show the most
relevance to the distinction of four different types of dementia
and NC, suggesting that these selected miRNAs may play crucial
roles in neuronal development. Furthermore, we also identified
interesting classification rules, which suggested different miRNA
expression patterns on different dementia subtypes and NC.
These results can guide further research about the interaction
between miRNAs and neurodegenerative diseases. Finally, we
constructed two optimal classifiers with high accuracy to group
individuals into the corresponding categories (four dementia
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subtypes and NC). They can be useful tools for the precise
diagnosis of dementia subtypes. Our study highlights the
potential application of miRNAs in dementia subtype
diagnosis, indicating that the prediction framework using
serum miRNA expression data can provide feasible therapeutic
and diagnostic targets for dementia.

2 MATERIALS AND METHODS

2.1 Dataset
In this study, the miRNA expression profiles were obtained from
the Gene Expression Omnibus database under the accession code
GSE120584 (Shigemizu et al., 2019a; Shigemizu et al., 2019b;
Asanomi et al., 2021). These expression profiles include 1,601
samples, which are composed of AD cases, VaD cases, DLB cases,
MCI cases, and NC. The sample sizes of different cases are
provided in Table 1. A total of 2547 miRNAs were identified
in the expression profiles. Subsequently, we performed a
computational workflow to detect key miRNA features and
expression patterns in the expression profiles.

2.2 Boruta Feature Filtering
Aside from the time and energy costs of dealing with a high
number of features, most machine learning algorithms work
better when the number of predicting features employed is
kept as small as possible. We thus applied a Boruta analysis
on the miRNA expression profiles to reduce feature dimension
and retain important miRNA features (Kursa and Rudnicki,
2010). Boruta is a feature selection approach based on the RF
model to access feature importance (Z-score) by comparing the
relevance of real features with shadow features, which are
randomly shuffled from original features. The python
application from https://github.com/scikit-learn-contrib/
boruta_py with default parameters was used for Boruta feature
selection in this analysis.

2.3 Feature Ranking
2.3.1 Minimum Redundancy Maximum Relevance
The mRMR algorithm (Peng et al., 2005) is an entropy-based
feature selection method that calculates the mutual information
(MI) between a group of features and class variable. The MI is
defined as follows:

I(X;Y) � ∫∫p(x, y)log p(x, y)
p(x)p(y)dxdy (1)

where p(x, y) is the joint probability density function of X and Y,
p(x) and p(y) are the marginal probability density functions of
X and Y, respectively. In the mRMR method, the correlation (D)
between features and target label and the redundancy (R) between
features and other features are computed as follows:

D � 1

|S| ∑xi∈S
I(xi; c), (2)

where S is the selected features and I(xi; c) is the MI between
feature xi and the target label c.

R � 1∣∣∣∣S∣∣∣∣2 ∑xi,xj∈S
I(xi, xj), (3)

where I(xi, xj) is the MI between feature xi and feature xj. To
repeatedly add a new feature to a feature subset S, the following
objective function is optimized:

maxΦ(D, R), Φ � D − R, (4)
In this study, we used the mRMR program acquired from

http://home.penglab.com/proj/mRMR/ to rank all the features
obtained by Boruta analysis, resulting in an mRMR feature list.

2.3.2 Monte Carlo Feature Selection
The MCFS method (Dramiński et al., 2007) evaluates the feature
importance by creating numerous decision trees. More
specifically, for a dataset with M features, MCFS first
randomly constructs s feature subsets with m features (m <<
M). For each feature subset, t decision trees are constructed using
the bootstrap sampling method. Finally, s✕t classification trees
are constructed and evaluated. The RI score of feature g based on
these classification trees is defined as follows:

RIg � ∑st
τ�1

(wAcc)u ∑
ng(τ)

IG(ng(τ))(no. in ng(τ)
no. in τ

)v

(5)

where wAcc is the weight accuracy of the decision tree τ;
IG(ng(τ)) denotes the gain information of node ng(τ);
(no.in ng(τ)) and (no.in τ) represent the number of samples
of node ng(τ) and the number of samples in tree τ,
respectively; and u and v are parameters that are
recommended to be 1. After MCFS processing, all features are
ranked in a feature list in descending order of RI values. In this
study, we applied the MCFS program developed by Draminski
et al., which can be accessed at http://www.ipipan.eu/staff/m.
draminski/mcfs.html, for feature sorting, and the parameters
were set to default values. The obtained feature list was called
MCFS feature list.

2.4 Incremental Feature Selection
In the previous analysis, the mRMR and MCFS feature ranking
lists were obtained, but it was not possible to determine the
optimal feature subsets for classifying disease cases. Thus, the IFS
method (Liu and Setiono, 1998) was used in this study to identify
the best number of features in a feature list for a specific
classification algorithm. IFS first generates a series of feature
subsets on the basis of a step size. For example, if the step size

TABLE 1 | Sample size for normal control and four neurodegenerative diseases.

Disease case Sample size

Alzheimer’s disease (AD) 1,021
Vascular dementia (VaD) 91
Dementia with lewy bodies (DLB) 169
Mild cognitive impairment (MCI) 32
Normal control (NC) 288
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equals to 1, the first feature subset includes one top-ranked
feature, the second feature subset is made up of two top-
ranked features, and so on. Then, the sample datasets
represented by these feature subsets are trained by one
classification algorithm (RF or PART in this study). The
classifiers are evaluated by using 10-fold cross-validation
(Kohavi, 1995; Tang and Chen, 2022; Yang and Chen, 2022).
The evaluation metrics (e.g., Matthews correlation coefficient
[MCC]) for each classifier with different number of features
are obtained and used to plot IFS curves, where the X-axis is
the number of features and the Y-axis is the evaluation metrics. In
the end, the optimal feature subsets that achieves the best
classification results are identified, and the optimal classifiers
are built.

2.5 Classification Algorithms
2.5.1 RF
The RF (Breiman, 2001) is an ensemble learning algorithm that
takes decision trees as the base learner. It first produces a number
of training sets from the original dataset using a bootstrapping
method with randomized put-back sampling. These training sets
are then used to train the decision tree model individually, and
the generated decision trees are formed into a forest. Lastly, the
final result is determined by aggregating the voting results of
many tree classifiers. As RF is powerful, it is always an important
candidate for constructing efficient classifiers (Chen et al., 2017;
Zhao et al., 2018; Chen et al., 2021; Li X. et al., 2022; Li Z. et al.,
2022; Chen et al., 2022; Ding et al., 2022). In this study, the RF
program in Weka (Frank et al., 2004) was employed with default
parameters.

2.5.2 PART
In contrast to black-box models, such as RF, rule learning models
may learn rules from data to make discriminations on unknown
data, and these rules are commonly expressed in an IF–THEN
structure, which clearly expresses the patterns existing in the data.
PART is a rule-generating method that combines the Ripper and
C4.5 approaches without the need for global optimization (Frank
and Witten, 1998). It uses a separate-and-conquer technique to
develop several partial decision trees, in which a rule is
constructed each time. Then, the instances it covers are
eliminated, and rules are created recursively for the remaining
instances until the end. The PART program in WEKA was used
with the default parameters in this investigation.

2.6 SMOTE
The distribution of samples under five cases is uneven, whichmay
lead to the poor performance of the established classifiers. To
address this issue, we applied SMOTE methods to increase the
sample size of the minority class, which is an oversampling
technique presented by Chawla et al. (2002). SMOTE
generates synthetic samples randomly between samples of a
minority class and their neighbors on the basis of the
k-nearest neighbor concept. The SMOTE algorithm in Weka
software was used to process the miRNA expression profiles in
this investigation, resulting in an equal number of samples in each
class. It was necessary to pointed out that SMOTE was only used

in evaluating the performance of classifiers in the IFS method.
Pseudo samples generated by SMOTE did not participate in the
mRMR or MCFS methods as they can influence the feature
selection results.

2.7 Performance Measurement
For the 10-fold cross-validation, we used the MCC as a predictive
metric for the evaluation of classifiers. In this study, considering
that the analyzed miRNA dataset includes multiple disease cases,
the multi-categorical version of MCC (Gorodkin, 2004) was
applied and calculated as follows:

MCC � cov(X,Y)����������������
cov(X,X)cov(Y, Y)√ (6)

where the binary matrix X represents the prediction results, the
binary matrix Y indicates the real class label, and cov(X,Y)
stands for the covariance of the two matrices. The MCC ranges
from −1 to 1, with a value closer to 1 indicating stronger model
performance.

To fully display the performance of classification models, we
also calculated other measurements, including individual
accuracy on each class and overall accuracy (ACC). For one
class, its individual accuracy was defined as the proportion of
correctly predicted samples in this class. The ACC was defined as
the proportion of correctly predicted samples.

3 RESULTS

3.1 Feature Selection Results on miRNA
Expression Profiles
A flow chart of the present study is illustrated in Figure 1. We
started by removing unnecessary features using the Boruta feature
selection method, and the 108 retained features are listed in
Supplementary Table S1.

Then, using mRMR and MCFS, remaining 108 features were
ranked according to feature importance, yielding two ranked
feature lists (mRMR feature list and MCFS feature list), as shown
in Supplementary Table S1. Top ten miRNA features in these
two lists were investigated, as shown in Figure 2. Four miRNAs,
including hsa-miR-3184-5p, hsa-miR-1227-5p, hsa-miR-3181,
and hsa-miR-6088, appeared in the top 10 features yielded by
two methods, highlighting their visibility and importance. The
biological roles of these miRNA features will be explored in
Section 4.

3.2 IFS Results on the mRMR Feature List
Based on the mRMR feature list, it was fed into the IFS method
with a step size of 1, returning 108 feature subsets. For example,
the first feature subset includes the first feature, the second feature
subset includes the first two features, and so on. The RF and
PART classifiers were trained using the sample set consisting of
these feature subsets, and the performance was assessed using 10-
fold cross-validation. Obtained measurements are provided in
Supplementary Table S2. To clearly display the performance of
classifiers on different feature subsets, an IFS curve was plotted
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for each classification algorithm, which is shown in Figure 3A.
When RF was selected as the classification algorithm in the IFS
method, the highest MCCwas 0.683, which was obtained by using
top 106 features. Accordingly, the optimal RF classifier can be
built with these features. The ACC of such classifier was 0.802, as
listed in Table 2. As for PART, the highest MCC was 0.359. It was
obtained by using top 72 features, with which the optimal PART
classifier can be built. The ACC of such PART classifier was 0.570,
as listed in Table 2. Clearly, the optimal PART classifier was

much inferior to the optimal RF classifier. As for their
performance on five classes, individual accuracies are shown in
Figure 4A. Evidently, the optimal RF classifier provided better
performance than the optimal PART classifier on all classes. Both
MCI and VaD have an individual accuracy of over 0.900 in the
optimal RF classifier.

Although the optimal RF classifier gave good performance, it
was not very proper to do large-scale tests because lots of miRNA
features involved. In view of this, we carefully checked the IFS

FIGURE 1 | Analysis flowchart for this study, which consists of three main steps: 1) miRNA dataset collection; 2) filtering and ranking of miRNA features in the
dataset using Boruta, mRMR, and MCFS; 3) determining the essential miRNA features and building the best classifiers and classification rules using IFS method with RF
and PART algorithms.

FIGURE 2 | Venn diagram to show top ten miRNA features obtained by mRMR and MCFS methods. Four miRNA features are commonly identified.
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results with RF and found that RF provided the MCC of 0.587
when top 41 features were used (Figure 3A). This classifier
yielded the ACC of 0.743 (Table 2). Its performance on five
classes is shown in Figure 4A. Although it provided lower
performance than the optimal RF classifier, it was much faster
as much less miRNA features were needed. This classifier can be
an efficient tool to identify four dementia subtypes and NC.

FIGURE 3 | IFS curves with different number of features in RF and PART under the mRMR and MCFS feature lists. (A). With the mRMR feature list, RF reaches the
highest point (MCC = 0.683) with the top 106 features, and PART obtains the highest MCC (0.359) when using the top 72 features. The RF with top 41 features also
provides high performance (MCC = 0.587). (B). With the MCFS feature list, RF and PART reach the highest points (MCC = 0.681 and 0.360, respectively) at the top 106
and 89 features. The RF with top 31 features also yields high performance (MCC = 0.575).

TABLE 2 | Performance of key classifiers with different algorithms based on the
mRMR feature list.

Classification algorithm Number of features ACC MCC

Random forest 106 0.802 0.683
Random forest 41 0.743 0.587
PART 72 0.570 0.359
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3.3 IFS Results on the MCFS Feature List
For the MCFS feature list, the same procedures were
conducted. Detailed performance of RF and PART on
different number of features is listed in Supplementary
Table S3. Likewise, an IFS curve was plotted for each
classification algorithm to display the performance of them
on different feature subsets, as illustrated in Figure 3B. It can
be observed that the highest MCC for RF was 0.681, which was
obtained by using top 106 features. Thus, we can build the
optimal RF classifier with these features. The ACC of such
classifier was 0.803, as listed in Table 3. Its performance on
each class is shown in Figure 4B. Compared with the
performance of the optimal RF classifier in Section 3.2,
their performance was almost equal. As for PART, its
highest MCC was 0.360. It was obtained by using top 89
miRNA features. Accordingly, the optimal PART classifier
was built using these features. The ACC of this classifier
was 0.555 (Table 3). The performance of this classifier on
each class is shown in Figure 4B. Evidently, this PART
classifier provided equal performance to the optimal PART
classifier in Section 3.2. However, they were all inferior to the
optimal RF classifiers.

Similar to the optimal RF classifier in Section 3.2, this optimal
RF classifier also need several features. It was necessary to
discover another RF classifier with a higher efficiency. After
careful checking, we found that RF classifier with top 31
features can produce the MCC of 0.575 (Figure 3B) and ACC

of 0.713 (Table 3). Its performance on five classes is shown in
Figure 4B. Clearly, it was inferior to the optimal RF classifier.
However, it had a higher efficiency because it used much less
features. Thus, it can be a useful tool to identify four dementia
subtypes and NC. Furthermore, the performance of such RF
classifier and RF classifier with top 41 features yielded by mRMR
method was almost equal.

3.4 miRNA Expression Patterns Extracted
From the Optimal PART Classifiers
Although the performance of two optimal PART classifier was
much lower than two optimal RF classifiers, they can give
interpretable rules, which can help us uncover the difference
between four dementia subtypes and NC at miRNA level. For the
mRMR feature list, the optimal PART classifier used top 72
features. With these features, PART was applied to all
samples, resulting in 245 rules. These rules are provided in
Supplementary Table S4. Likewise, for the MCFS feature list,
top 89 features were adopted in the optimal PART classifier. 251
decision rules were obtained by applying PART on these features,
which are also available in Supplementary Table S4.
Accordingly, we accessed two groups of decision rules. For
each group, each class received some rules. The number of
rules for each class on each group is shown in Figure 5. With
the exception of MCI, which has a relatively small number of
rules, the numbers of rules of other classes were quite
considerable. Some key expression rules are listed in Tables 4,
5 and the relevance of these rules in differentiating neurological
disorders will be reviewed in Section 4.1.

3.5 Comparison of Optimal Classifiers
Without SMOTE
In the IFS method, we employed SMOTE to reduce the influence
of imbalanced problem. To elaborate the utility of SMOTE, the

FIGURE 4 | Performance of the key RF and PART classifiers on each class based on mRMR (A) and MCFS (B) feature lists. AD, VaD, DLB, MCI, and NC stand for
Alzheimer’s disease, Vascular dementia, Dementia with Lewy bodies, Mild cognitive impairment and Normal control, respectively.

TABLE 3 | Performance of key classifiers with different algorithms based on the
MCFS feature list.

Classification algorithm Number of features ACC MCC

Random forest 106 0.803 0.681
Random forest 31 0.713 0.575
PART 89 0.555 0.360
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RF and PART classifiers mentioned in Sections 3.2, 3.3 were
tested when SMOTEwas not adopted. All classifiers were assessed
by 10-fold cross-validation. The ACCs and MCCs of these
classifiers are listed in Table 6. Compared with the ACCs and
MCCs listed in Tables 2, 3, MCC greatly decreased by at least
19%, even over 30% for the optimal RF classifiers. The ACC also
decreased, but the degree was much smaller than that of the
MCC. As the dataset was imbalanced, classifiers directly built on
such dataset may be apt to the major classes (AD and NC in this
study). Individual accuracies on these classes may be high,
whereas individual accuracies on other classes may be low.
The individual accuracies shown Figure 6 confirmed this fact.
The individual accuracies on AD were very high, followed by
those on NC, whereas the individual accuracies on other three
classes were very low, even zero. By employing SMOTE, the
individual accuracies on AD decreased and those on other classes
greatly increased, improving the entire performance of the
classifiers. All these indicated the utility of the SMOTE.

4 DISCUSSION

The alteration of miRNA expression has been shown to relate
with many pathological processes, including nervous system
disorders. In this study, using the expression data of serum
miRNAs, two optimal classifiers were constructed with high
accuracy to identify the expression features of miRNAs
through mRMR and MCFS method. We identified several
putative miRNA biomarkers, which displayed strong relevance
to the classification, suggesting that these miRNAs have specific

effect in different types of neurodegenerative diseases.
Additionally, the optimal PART classifiers yielded by mRMR
and MCFS feature lists were then applied to generate 245 and 251
decision rules, respectively, which can classify each sample into
one of five categories, namely, AD, VaD, DLB, MCI, and NC. In
this section, we mainly focused on several optimal and common
features identified both by mRMR and MCFS methods,
considering that common features are much more important
in the classification. We examined the selected features and
decision rules and searched for the function and target genes
of each miRNA using miRBase, an online database of miRNA
sequences and annotation (Kozomara et al., 2018). For some
miRNAs that have never been reported, we conducted
bioinformatic analysis using miRDB for miRNA target
prediction and functional annotation (Liu and Wang, 2019).
Through literature review, several pieces of experimental
evidence have been found to support the reliability of our
prediction.

4.1 Analysis of Decision Rules Identified by
mRMR and MCFS Methods
The most impactful feature in our computational analysis is miR-
3184-5p, the mature miRNA product originating from the
stem–loop precursor miRNA through cleavage by
ribonuclease. As demonstrated by miRNA array experiment in
multiple system atrophy disorders, a downregulated expression of
miR-3184-5p was found in the FFPE sample of pons compared
with controls, which indicates that this miRNAmolecule plays an
important role in normal brain development and may contribute

FIGURE 5 |Number of rules generated by the optimal PART classifiers based onmRMR andMCFS feature lists. AD, VaD, DLB, MCI, and NC stand for Alzheimer’s
disease, Vascular dementia, Dementia with Lewy bodies, Mild cognitive impairment and Normal control, respectively.
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in the prevention of neurodegenerative disorders (Wakabayashi
et al., 2016). In another research of spinocerebellar ataxia type 3
(SCA3), which is known as a highly heterogeneous
neurodegenerative disorder, significantly downregulated
expression of miR-3184 was observed in plasma from SCA3
patients compared with healthy controls (Hou et al., 2019).
Therefore, we concluded that miR-3184-5p is necessary for the
normal function of the brain, and the depletion of this molecule
will lead to certain neurodegenerative disorders. Consistent with
this finding, several decision rules in which miR-3184-5p is
implicated show similar prediction that low expression levels
of miR-3184-5p indicate AD and VaD categories, while relatively
high expression levels indicate healthy controls.

In many decision rules that indicate the AD category, a
relatively high expression of miR-6088 is required for the
classification. Although little has been known about this
miRNA, we found a report that miR-6088 displays a
significantly upregulated expression in patients with stroke
compared with NC (Gui et al., 2019). Considering that stroke
is a brain disease induced by deficient blood supply and will lead
to nervous system injury, we inferred that miR-6088 may also
participate in the process of neurodegeneration. Additionally,

miR-6088 was identified as one of the differentially methylated
genes with high relevance to Parkinson’s disease and
neurodegeneration (Marsh et al., 2016), which provides strong
support for the crucial role of miR-6088 in pathological processes
of the nervous system.

Another important miRNA (miR-4327) is significantly
associated with dementia, especially AD, through literature
review. In the decision rules, we found that high expression of
miR-4327 will lead to the classification of dementia, while
relatively low expression indicates the normal cohort. As
demonstrated by a miRNA expression profile experiment with
Down syndrome, the expression level of miR-4327 was
significantly higher in the case group than in the control
group, suggesting that dysregulated miR-4327 may be related
to abnormal development (Karaca et al., 2018). Individuals with
Down syndrome usually show characteristics of damaged brain
and intellectual disability, suggesting that miR-4327 affects brain
development and results in several pathological processes
including neurodegeneration. Moreover, using miRDB website
tools, we found that the OTUD1 gene is predicted as one of the
target genes of miR-4327. OTUD1 encodes a deubiquitinase, and
mutations in this gene were reported to be associated with the

TABLE 4 | Some important rules extracted by the optimal PART classifier under the mRMR feature list.

Index Decision Rules Class

1 (hsa-miR-6088 ≤ 10.1065) & (hsa-miR-520f-5> 2.0854) & (hsa-miR-6836–3 ≤8.6821) & (hsa-miR-6811–5>1.8782) & (hsa-
miR-4667–5> 6.1925) & (hsa-miR-6823–5 > 1.8811) & (hsa-miR-7851–3> 5.1826) & (hsa-miR-4667–5 ≤7.1244) & (hsa-
miR-6756–5 ≤8.7714)

Normal control

2 (hsa-miR-6088 ≤ 9.9516) & (hsa-miR-4327 > 7.8591) & (hsa-miR-6861–5> 6.5728) & (hsa-miR-4485–5 ≤6.5037) & (hsa-
miR-3622a-3> 4.5067) & (hsa-miR-6875–5 ≤10.0546) & (hsa-miR-7854–3 ≤4.8701)

Alzheimer’s disease

3 (hsa-miR-208a-5> 5.8741) & (hsa-miR-548f-3 ≤2.1097) & (hsa-miR-4667–5> 6.7261) & (hsa-miR-6761–3> 4.7880) & (hsa-
miR-520f-5 ≤1.8849)

Vascular dementia

4 (hsa-miR-208a-5> 5.8741) & (hsa-miR-548f-3 ≤2.1097) & (hsa-miR-4649–5>10.8160) & (hsa-miR-3622a-3 ≤4.4907) &
(hsa-miR-6070 > 1.8843) & (hsa-miR-663b ≤ 8.7018)

Dementia with lewy bodies

5 (hsa-miR-520f-5 ≤1.8945) & (hsa-miR-6840–3 ≤7.6738) & (hsa-miR-185–5 ≤2.9551) Mild cognitive impairment

TABLE 5 | Some important rules extracted by the optimal PART classifier under the MCFS feature list.

Index Decision rules Class

1 (hsa-miR-6088 ≤ 10.1065) & (hsa-miR-520f-5> 2.0854) & (hsa-miR-6836–3 ≤8.6821) & (hsa-miR-6811–5> 1.8782) & (hsa-
miR-4667–5> 6.1925) & (hsa-miR-4746–3 ≤7.4409) & hsa-miR-3917 > 5.1453) & (hsa-miR-6070 ≤ 2.9233) & (hsa-miR-
6869–3>1.8805)

Normal control

2 (hsa-miR-6088 ≤ 9.9516) & (hsa-miR-4327 > 7.8591) & (hsa-miR-1292–3> 4.0332) & (hsa-miR-6861–5> 6.5728) & (hsa-
miR-125b-1–3 ≤ 4.7145) & (hsa-miR-128-1-5> 7.0405) & (hsa-miR-7854–3 ≤4.8762) & (hsa-miR-6088 ≤ 9.7663) & (hsa-
miR-4506 ≤ 3.6756)

Alzheimer’s disease

3 (hsa-miR-520f-5 ≤1.8945) & (hsa-miR-4485–3> 1.8928) & (hsa-miR-3184–5 ≤8.4938) & (hsa-miR-4496 > 1.8938) & (hsa-
miR-6756–5 ≤8.5013) & (hsa-miR-548f-3 ≤1.8935) & (hsa-miR-6822–5> 3.4091) & (hsa-miR-4472 ≤ 6.3202) & (hsa-miR-
1914–5 ≤4.1342) & (hsa-miR-6776–3> 4.0568) & (hsa-miR-548o-3> 1.8798)

Vascular dementia

4 (hsa-miR-208a-5> 5.8741) & (hsa-miR-548f-3 ≤2.1097) & (hsa-miR-4667–5 ≤6.7261) & (hsa-miR-4649–5>10.8290) &
(hsa-miR-195–3> 1.8967)

Dementia with lewy bodies

5 (hsa-miR-520f-5 ≤1.8945) & (hsa-miR-4485–3> 1.8928) & (hsa-miR-1254 > 6.9170) & (hsa-miR-197–5> 7.3729) Mild cognitive impairment
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development of neurological phenotypes including ataxia with
cerebellar atrophy and dementia (De Roux et al., 2016). On the
basis of this finding, OTUD1 is necessary for the normal
neurological function, while excessive miR-4327 levels may
inhibit OTUD1 transcription and break the normal expression
status. Therefore, the high level of miR-4327 is a risk indicator of
dementia, which is consistent with our prediction model.

The high expression levels of miR-208a-5p display a strong
indication to the categories of dementia in decision rules,
suggesting that this miRNA plays a potential role in the
associated processes. Several studies have described the role of
miR-208a in cardiovascular diseases; for example, circulating
levels of miR-208a are significantly elevated in patients with
acute coronary syndrome (De Rosa et al., 2011). MiR-208a

was undetectable in the blood from healthy individuals, while
upregulated expression was observed in the plasma of patients
with acute myocardial infarction (Wang et al., 2010). Transgenic
overexpression of miR-208a in heart tissue led to hypertrophic
growth and arrhythmias in mice (Callis et al., 2009), providing
reliable experimental evidence regarding the key function of miR-
208a in cardiovascular diseases. Healthy brain functioning is
dependent on adequate blood supply, while certain vascular
diseases will cause brain injury such as VaD. We inferred that
high expression of miR-208a first induces disorders in the
vascular system that gradually develop into VaD, which is
consistent with the decision rules. Our study is the first to
present the role of miR-208a in neurodegenerative diseases,
and this will contribute to the clinical diagnosis of dementia.

TABLE 6 | Performance of key classifiers without SMOTE.

Feature selection method Classification algorithm Number of features ACC MCC

mRMR Random forest 106 0.691 0.323
Random forest 41 0.690 0.313
PART 72 0.550 0.158

MCFS Random forest 106 0.690 0.319
Random forest 31 0.691 0.317
PART 89 0.547 0.162

FIGURE 6 | Performance of the key RF and PART classifiers without SMOTE. (A). Classifiers obtained by using mRMR feature list; (B). Classifiers obtained by using
MCFS feature list. AD, VaD, DLB, MCI, and NC stand for Alzheimer’s disease, Vascular dementia, Dementia with Lewy bodies, Mild cognitive impairment and Normal
control, respectively.
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The high expression of miR-520f, one of the identified features
implicated in both decision rules, indicates dementia. MiR-520f
was found to be significantly increased in the CSF of patients with
Huntington’s disease compared with controls, suggesting that
miR-520f can be used as a CSF biomarker for evaluating
treatments (Reed et al., 2018). Huntington’s disease is a
neurodegenerative disease typically diagnosed in midlife, and
this disease shares similar neuropathologic phenotypes to
dementia. Thus, we inferred that an elevated level of miR-520f
may also influence the pathologic processes of dementia. In
addition, miR-520f is also significantly upregulated in multiple
system atrophy, and its expression is negatively correlated with
the target gene AKT3 (Kim et al., 2019). AKT3 has been reported
to be related to neuronal insulin resistance in neurodegenerative
diseases (Schubert et al., 2004). Taken together, we concluded that
miR-520f acts as a transcriptional inhibitor of AKT3, and AKT3
reduction will cause the neuropathologic processes of dementia.

The expression level of miR-1227 can be efficiently used to
distinguish the types of dementia and NC in the prediction
model, which suggests that miR-1227 is another important
functional molecule involved in neurodegeneration. On the
basis of a rabbit AD model, the specific expression pattern of
miR-1227 was observed, which showed similar profiles to those
observed in human AD samples (Liu et al., 2014), indicating the
potential role of miR-1227 in AD and other dementia diseases. A
recent study reported that LINC00639, the target gene of miR-
1227, was downregulated in HIV-associated dementia (HAD), a
kind of cognitive impairment induced by HIV infection (Li et al.,
2018). Even though the pathogenesis of HAD remains unclear,
the aberration of certain miRNAs such as miR-1227 can provide
novel direction for further research. Similarly, increased
expression of miR-1227 was detected in CSF from patients
with intracerebral hemorrhage (Shi et al., 2018). In summary,
miR-1227 displays distinct expression profiles in many brain
injury disorders or dementia, suggesting that it may be an
auxiliary diagnostic biomarker for these diseases. These
findings confirmed the reliability of our decision rules and

implied that the expression criteria of identified miRNAs can
be used in disease risk classification and clinical diagnostic.

4.2 Analysis of the Top Features Identified
by mRMR and MCFS Methods
In addition to the quantitative analysis discussed above, we have
also identified many miRNAs that can be used as indicators for
dementia. As the RF classifier with less features provided slight
lower performance than the corresponding optimal RF classifier,
miRNA features used in these two RF classifiers with less features
were investigated in this section. Based on the mRMR feature list,
41 miRNA features were obtained, whereas 31 miRNA features
were accessed from the MCFS feature list. After taking the union
of these two feature subsets, 53 different miRNA features were
obtained, which are listed in Supplementary Table S5. A Venn
diagram was plotted to show the distribution of these miRNA
features in two feature sets, as shown in Figure 7. It can be
observed that nineteen miRNA features were commonly
identified. These features were thought to be more reliable
than others. Some of them were discussed as follows.

MiR-4649-5p exhibits an upregulated expression profile in
neurodegenerative disorders (Viswambharan et al., 2017). In
amyotrophic lateral sclerosis (ALS), which is a fatal
neurodegenerative disease, increasing concentration of miR-
4649-5p was observed in the plasma of ALS patients,
suggesting that this miRNA can be used in the diagnosis of
ALS (Takahashi et al., 2015). On the basis of the miRDB database,
we found that miR-4649-5p can target INSYN2, a protein coding
gene implicated in inhibitory synapses. This synaptic inhibition is
fundamental for the functioning of the central nervous system,
shaping and orchestrating the flow of information through
neuronal networks to generate a precise neural code (Uezu
et al., 2016). Therefore, miR-4649-5p plays an important role
in neural development, which confirms the reliability of our
computational analysis.

MiR-3181 is one of the most related features in our
computational analysis, and many studies indicate the close
association between this miRNA and vascular diseases.
Significantly upregulated miR-3181 was detected in endothelial
cells treated with acrolein, which is a component of cigarette
smoke and has been implicated in the development of vascular
disease, suggesting that this miRNAmay improve the diagnosis of
vascular disease induced by environmental pollutants (Lee et al.,
2015). As discussed previously, the development of vascular
disease may be accompanied by brain injury such as VaD,
suggesting the role of miR-3181 in dementia. The TCL1B
gene, which is predicted as one target of miR-3181, showed
significant differential expression between Parkinson’s disease
patients and NC (Infante et al., 2015). TCL1B is also an activator
of Akt, a kinase involved in neuron survival (Hashimoto et al.,
2013), and abnormal Akt signaling has been reported to induce
dopamine neuron degeneration (Greene et al., 2011).

The expression profile of miR-128-1-5p is also a strong
indicator for the classification in our analysis. MiR-128 is a
neuronally enriched miRNA that plays a crucial role in
neuronal differentiation and survival (Guidi et al., 2010). The

FIGURE 7 | Venn diagram to show top 41 miRNA features obtained by
mRMR method and top 31 miRNA features obtained by MCFS method.
Nineteen miRNA features are commonly identified.
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expression of miR-128 is increased in the hippocampus of AD
patients (Lukiw and Pogue, 2007). In addition, upregulated miR-
128 can cause a decreased expression of SNAP25 and lead to the
perturbation of neuronal activity (Eletto et al., 2008). These
results support the role of miR-128 in neurodegenerative
disease. Using RNA sequencing techniques, miR-128 showed
decreased expression in Huntington’s disease (Martí et al.,
2010). MiR-128 displays distinct expression patterns in
different neurodegenerative diseases, indicating its potential
capability of distinguishing varied disease subtypes and
confirming the ability of our prediction model to classify
different dementias.

Besides above commonly identified miRNAs, some miRNAs
identified by exact one feature selection method (mRMR or
MCFS) were also quite essential. For example, miR-185-5p is
identified as one of the most relevant features that contribute to
the classification. MiR-185 has been suggested to participate in
the pathogenesis of major depression, a psychosocial impairment,
and finally lead to suicide. It was thought to influence neuronal
and circuit formation by regulating target downstream gene,
TrkB-T1, which has been associated with suicidal behavior
(Serafini et al., 2014). This finding suggests the key role of
miR-185-5p involved in nervous system development,
physiology, and diseases.

In this section, we discussed the verified or speculative
functions of miRNAs identified by our computational analysis.
All these miRNAs have been confirmed to contribute to
distinguishing patients with dementia from healthy and varied
disease subtypes. Strikingly, many miRNAs related to vascular
diseases usually play a putative role in neurodegenerative
diseases. This finding suggests the interaction between these
two distinct disease types. In summary, this study presented a
novel computational approach to identify potential biomarkers
for diagnosis and therapy, and also set up a basic research
foundation for further studies on the detailed pathological
mechanism of miRNAs in neurodegenerative diseases.

5 CONCLUSION

We employed a computational analysis approach to discovery key
miRNA properties that differentiate normal and
neurodegenerative disease subgroups in this work. The Boruta
feature selection method was utilized to exclude unnecessary
miRNA features, and then mRMR and MCFS were used to
rank the remaining features. A series of feature subsets was
generated from these ranked feature lists using the IFS
method, and the sample data containing these feature subsets
was used to train the RF and PART classifiers. As a result, the
optimal miRNA biomarker set was identified on the basis of the
evaluationmetrics of classifiers under varying number of features,

and the classification rules were extracted from the optimal
PARTs. Finally, the relationship between candidate features
including hsa-miR-3184-5p, has-miR-6088, and has-miR-4649
and neurodegenerative diseases was validated in recent studies,
confirming the efficacy of our methods and establishing the
groundwork for further investigation into the underlying
pathogenic mechanisms of miRNAs in neurodegenerative
illnesses.
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Revealing Potential Spinal Cord Injury
Biomarkers and Immune Cell
Infiltration Characteristics in Mice
Liang Cao1,2 and Qing Li3*

1Department of Traumatic Orthopedics, The Second Affiliated Hospital, University of South China, Hengyang, China, 2School of
Clinical Medicine, Guizhou Medical University, Guiyang, China, 3Department of Orthopedics Traumatic, The Affiliated Hospital of
Guizhou Medical University, Guiyang, China

Spinal cord injury (SCI) is a disabling condition with significant morbidity and mortality.
Currently, no effective SCI treatment exists. This study aimed to identify potential
biomarkers and characterize the properties of immune cell infiltration during this
pathological event. To eliminate batch effects, we concurrently analyzed two mouse
SCI datasets (GSE5296, GSE47681) from the GEO database. First, we identified
differentially expressed genes (DEGs) using linear models for microarray data (LIMMA)
and performed functional enrichment studies on those DEGs. Next, we employed
bioinformatics and machine-learning methods to identify and define the characteristic
genes of SCI. Finally, we validated them using immunofluorescence and qRT-PCR.
Additionally, this study assessed the inflammatory status of SCI by identifying cell
types using CIBERSORT. Furthermore, we investigated the link between key markers
and infiltrating immune cells. In total, we identified 561 robust DEGs. We identified Rab20
and Klf6 as SCI-specific biomarkers and demonstrated their significance using qRT-PCR
in the mouse model. According to the examination of immune cell infiltration, M0, M1, and
M2macrophages, along with naive CD8, dendritic cell-activated, and CD4 Follicular T cells
may have a role in the progression of SCI. Therefore, Rab20 and Klf6 could be accessible
targets for diagnosing and treating SCI. Moreover, as previously stated, immune cell
infiltration may significantly impact the development and progression of SCI.

Keywords: spinal cord injury, immune cells, key genes, bioinformatics analysis, machine learning strategies

INTRODUCTION

Spinal cord injury (SCI) is a devastating injury that frequently results in total or partial impairment of
motor, sensory, and sphincter function (Lago et al., 2018). Moreover, whether classified as traumatic
or non-traumatic, SCI always causes significant lifelong disability. SCI is becoming more common as
vehicle accidents and extreme sports increase. As a result, this condition has disastrous impacts on
patients, families, and society (Ropper and Ropper, 2017).

The pathological process of SCI is generally divided into two stages (Alizadeh et al., 2019). The
primary injury causes hemorrhage, ischemia, edema, anoxia, and neuron and glial cell necrosis. The
secondary injury involves complex pathophysiologic mechanisms, including ionic imbalance, free
radical stress, inflammatory responses, and glial scars. Although the creation of glial scars can slow
secondary damage spread, it also inhibits axon regrowth. Secondary injuries impair nerve plasticity
and functional recovery. The main challenge in SCI treatment development is the difficulty of
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repairing injured neurons and restoring the conducting function
of axons. Currently, no effective drugs or therapeutic approaches
exist for SCI (Badhiwala et al., 2019). Asmany patients experience
severe physical and psychological consequences, SCI has become
a global issue. Thus, elucidating the specific molecular
mechanisms underlying the pathophysiology of SCI is crucial.

Recently, an increasing number of articles revealed that
immune cell infiltration plays a pivotal role in SCI healing.
For example, microRNA-151-3p is abundant in microglia-
derived exosomes and has neuroprotective properties during
SCI healing (Li et al., 2021). The chemokine (C-C motif)
ligand 28 (CCL28) acts as a protective factor after SCI by
recruiting C-C chemokine receptor 10 (CCR10)-positive and
immunosuppressive regulatory T cells (Wang et al., 2019).
After SCI, interleukin 19 (IL-19) enhances locomotor function
recovery and decreases motor neuron loss, as well as microglial
and glial activation (Guo et al., 2018). C3 is a novel Th2
interleukin reducing neurite outgrowth and neuronal survival
in vitro and axon regeneration in vivo (Peterson et al., 2017).
Chronic SCI can impair CD8 T cell function by up-regulating
programmed cell death-1 expression (Zha et al., 2014). γδ T cells
are recruited to the SCI site, promoting the inflammatory
response and exacerbating neurological impairment. CCL2/
CCR2 signaling is critical for T cell recruitment to the SCI site
and may be used as a novel therapeutic target in the future (Xu P.
et al., 2021). Nonetheless, it is necessary to elucidate the molecular
mechanism by which diverse immune cells influence SCI
progression. As previously stated, assessing immune cell
infiltration and dissecting the components of invading
immune cells is crucial for unraveling the SCI molecular
system and identifying novel immunotherapeutic targets
(Ahmed et al., 2018; Al Mamun et al., 2021). CIBERSORT is a
computational method for quantifying cell composition using
gene expression data. This approach may help characterize
immune cell infiltration (Newman et al., 2015).

We used the GEO database to obtain microarray datasets and
conduct differential expression gene analyses. Additionally, we
combined bioinformatics analysis and machine-learning
techniques to thoroughly screen and identify key SCI genes.
Next, we used CIBERSORT to compare immune cell
infiltration in 25 immune cell subsets between SCI and sham
samples. Additionally, we explored the relationships between the
key genes and immune cells to better understand the molecular
immunological mechanisms during SCI development.

MATERIALS AND METHODS

Data Source
We downloaded two SCI datasets (GSE5296, GSE47681) from the
NCBI Gene Expression Omnibus (GEO) (Clough and Barrett,
2016). These two datasets were gene expression arrays generated
using GPL1261 [Mouse430_2] Affymetrix Mouse Genome
430 2.0 Array (Affymetrix, Santa Clara, CA, United States)
(Barrett et al., 2013). We selected 18 samples with SCI and 12
sham samples from the GSE5296 dataset. Similarly, we selected
17 spinal cord tissue samples from the GSE47681 dataset (Wu

et al., 2013), including 13 samples with SCI and 4 sham spinal
cord tissue samples.

Data Normalization and Differentially
Expressed Genes Screening
We processed the two SCI datasets using the R package “affy,”
notably for normalization and log2 transformation (Irizarry et al.,
2003). Here, we considered the average value as the expression
value when a group of probes corresponded to the same gene.
Moreover, we eliminated the batch effects between two datasets
using the surrogate variable analysis (SVA) package from
Bioconductor (Leek et al., 2012). Finally, we screened the
DEGs using the LIMMA package with a p-value < 0.05 and |
log2 Fold change (FC)| > 1 (Ritchie et al., 2015).

GO, Kyoto Encyclopedia of Genes and
Genomes, and GSEA Analysis of the
Differentially Expressed Genes
We performed the analysis of Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) for the DEGs using
DAVID 6.8 (https://david-d.ncifcrf.gov/). To understand the
function of the DEGs, we uploaded them to the DAVID
(Ritchie et al., 2015) and KOBAS databases (http://kobas.cbi.
pku.edu.cn/) (Wu et al., 2006). We used a p-value < 0.05 and
count ≥ 2 as the significant enrichment threshold. To provide a
more intuitive understanding of the gene expression levels
associated with significantly enriched functional pathways, we
performed a gene set enrichment analysis (GSEA) using the R
software (Subramanian et al., 2005).

Screening and Validation of Characteristic
Genes
We screened for key genes associated with SCI using three
algorithms: least absolute shrinkage and selection operator
(LASSO) regression analysis (Tibshirani, 1996), random forests
analysis (Strobl et al., 2007;Wang et al., 2016), and support vector
machine-recursive feature elimination (SVM-RFE) analysis
(Suykens and Vandewalle, 1999). For the random forest
method, we used the R package “randomForest”. We
performed the LASSO logistic regression using the R package
“glmnet,” and a lambda of zero was considered optimal. We
constructed the SVM classifier with tenfold cross-validation using
the R package “e1071.”We also used the RFE function within the
“caret” package to select the featured gene using tenfold cross-
validation. Then, we selected the genes from the three
classification models for further analysis. The GSE45006
dataset was used as a validation dataset (Niu et al., 2021).

Spinal Cord Injury Procedure and
Immunofluorescence
6–8 weeks C57BL/6 mice were obtained from the Experimental
Animal Center of Guizhou Medical University [license no. SCXK
(Qian) 2018-0001]. All animal experiments were approved by the
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Animal Care and Use Committee of GuizhouMedical University.
We divided the mice into an SCI group and a sham group. All
mice were anesthetized with 1.25% Avertin. First, we performed a
1-cm dorsal incision and performed a laminectomy of the T10
vertebra. We crushed the spinal cord with vessel clamping for
15 s. Paralysis of both lower limbs indicated successful modeling.
For the sham group, we isolated the skin and tissue to expose the
spinal cord without injuring the animals. After surgery, we
returned the mice to their home cages and performed manual
bladder expression three times a day. We sacrificed the animals
7 days later. We injected 100 ml of phosphate-buffered saline
(PBS) from the apex with a syringe to remove the blood, followed
by 100 ml of 4% paraformaldehyde for tissue fixation until the
mouse body was rigid. Next, we fixed the spinal cord with
formalin and embedded it in paraffin before transversely
cutting 20-µm-thick tissue sections using a Cryotome. We
washed the sections three times with PBS for 5 min and added
blocking buffer (10% goat serum and 0.3% TritonX-100) for 1 h.
We then incubated the sections with the primary antibody
overnight at 4°C, washed them three times with PBS for 5 min,
incubated themwith secondary antibodies (goat anti-rabbit Alexa
Fluor 488,1:500,CST) in the dark for 2 h, and stained cells nuclei
with DAPI (4’,6-diamidino-2-phenylindole). Finally, we
photographed the sections with a laser confocal microscope.

We used Rab20 (YT3922, 1:200, Immunoway) and Klf6
(14716-1-AP, 1:200, Proteintech) as primary antibodies.

Quantitative PCR Analysis
To summarize, we extracted total RNA from the spinal cord of
mice using the TRIZOL reagent (TIANGEN BIOTECH Corp,
Beijing, China), then polyadenylated and reverse-transcribed it
into cDNA using a poly(T) adapter following the manufacturer’s
instructions. We performed real-time PCR using a thermal cycler
with the following parameters: a 5 min initial denaturation step at
95°C; 44 cycles at 95°C for 15 s; 55°C for 30 s, and 72°C for 20 s.
We subjected each sample to the entire experimental procedure in
triplicate. Table 1 lists the primers specific for mRNA.

Immune Cell Infiltration Analysis
We measured the relative proportions of immune cells in SCI
mouse tissue using the CIBERSORT method to annotate merged
expression data and calculate immune cell infiltrations based on
mouse tissue expression profiles (Chen et al., 2017). Next, we
compared the relative levels of 25 immune cells between the SCI
and sham groups. A correlation heatmap, produced using the
“corrplot” package, revealed the relationships between 25 types of

infiltrating immune cells. Finally, we analyzed and visualized the
Spearman correlation between key biomarkers and immune
infiltrating cells using the “ggstatplot” and “ggplot2” packages.

RESULTS

Identification of Differentially Expressed
Genes
Figure 1 shows the workflow of this study. We integrated two SCI
datasets (GSE5296, GSE47681), including 16 sham samples and
31 SCI samples (Figure 2A). We found a total of 561
DEGs—536 up-regulated genes and 25 downregulated genes.
Figures 1B, 2B display the DEGs heatmap and volcano plot,
respectively.

Function Enrichment Analysis
The GO and KEGG analyses revealed that the DEGs were mainly
involved in the biological processes of leukocyte migration,
cytokine-mediated signaling pathway, positive regulation of
cytokine production, positive regulation of defense response,
tumor necrosis factor superfamily cytokine production,
response to molecule of bacterial origin, regulation of
inflammatory response, and cell chemotaxis. Regarding the
cellular components, these DEGs were mainly associated with
the membrane raft receptor complex, endocytic vesicle, Golgi
apparatus sub-compartment, membrane microdomain,
phagocytic vesicle, collagen trimer, collagen-containing
extracellular matrix, inflammasome complex, and NADPH
oxidase complex (Figure 3A). The KEGG pathway analysis
showed that the DEGs were involved in lipid metabolism,
cytokine–cytokine receptor interaction, atherosclerosis,
osteoclast differentiation, tuberculosis, phagosome, TNF
signaling pathway, rheumatoid arthritis, Leishmaniasis, viral
protein interaction with cytokine and cytokine receptor, and
IL-17 signaling pathway (Figure 3B). Additionally, GSEA data
indicated that certain pathways were enriched (Figure 3C). These
results suggested that the immune system plays a vital role in SCI.

Key Biomarkers Screening and Validation
We used the LASSO logistic regression method to find 14
important biomarkers from the DEGs (Figure 4A). With the
SVM-RFE method, we identified four genes qualifying as key
biomarkers among the DEGs (Figure 4B). Additionally, we
identified 30 genes as significant biomarkers using the random
forest strategy (Figures 4C,D). The Rab20 and Klf6 genes were
overlapped genes. Thus, we selected Rab20 and Klf6 as key
biomarkers for further validation (Figure 4E). To verify the
relationship between key genes and SCI vulnerability, we
selected GSE45006 as the training data and Rab20 and Klf6 as
the test genes. We compared the expression of hub genes during
the SCI process. The SCI group had higher Rab20 and Klf6
expression levels than the sham group (Figures 4F,G). To
confirm this, we performed immunofluorescence staining
experiments using mouse spinal cord tissue. SCI tissues had
significantly higher Rab20 and Klf6 levels than those from the
sham group (Figures 5A,B). Finally, we quantified Rab20 and

TABLE 1 | mRNA-specific primers of key genes.

Gene Primer Sequence (59-39) PCR products

Klf6 Forward GTTTCTGCTCGGACTCCTGAT 108bp
Reverse TTCCTGGAAGATGCTACACATTG

Rab20 Forward GGGAGCAGTTTCATGGTCTGG 143bp
Reverse GCAGTCATTGTTGGCTGTTTC

β-tubulin Forward CTGTCCGTCCATCAGTTGGT 122bp
Reverse TGGTTCAGGTCTCCGTAGGT
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Klf6 expression in mouse samples using qRT-PCR. The SCI
group had considerably higher levels of these two biomarkers
(Rab20 and Klf6) than the sham group (Figure 5C).

Immune Cell Infiltration Analysis
To further investigate the association between SCI and immune
cells during the development of SCI, we predicted immune cell
infiltration using the CIBERSORT method. Figure 6A is a bar
plot depicting the percentages of the 25 different kinds of immune
cells. As revealed by the correlation heatmap for the 25 different
types of immune cells, memory B cells and M0 macrophages, we
found that neutrophil cells and M0 macrophages exhibited a
substantial negative association. We also found substantial
positive associations between monocytes and memory CD4
T cells, γδ T cells and naive CD4 T cells, γδ T cells and mast

cells, eosinophils and neutrophils, natural killer resting cells and
plasma cells, and memory CD8 T cells and plasma cells
(Figure 6B). Furthermore, the SCI group had significantly
higher proportions of naive CD8 T Cells, CD4 Follicular
T cells, M0 macrophages, M1 macrophages, M2 macrophages,
DC-activated cells than the sham group, and markedly lower
proportions of memory B cells, plasma cells, memory CD8 T cells,
memory CD4 T cells, naive CD4 T cells, Th17 Cells, and γδ T cells
(Figure 6C).

Immune cell infiltration gradually played an important role
after SCI. Thus, we selected different time points (1, 3, 7, 28 days
of post-injury) to show the relationship between SCI and immune
cells. We found no obvious difference between the SCI group and
the sham group on the first day. However, the SCI group had
significantly higher proportions of M0 macrophages, M2

FIGURE 1 | The flowchart of the analysis process.
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FIGURE 2 | Heat map and Volcano plot of the DEGs. (A) Each row of the heat map represented one DEG, and each column represents one sample. The red and
blue colors represent upregulated and downregulated DEGs, respectively. (B) Red points represented upregulated DEGs, and green points displayed downregulated
DEGs.
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macrophages than the sham group, and markedly lower
proportions of memory B cells, plasma cells, naive CD4
T cells, and NK resting cells at day 3. At 7 days, the SCI
group displayed higher ratios of M0 macrophages, M1
macrophages, M2 macrophages than the sham group, and

noticeably lower ratios of memory B cells, plasma cells,
memory CD8 T cells, and naive CD4 T cells at day 7. On day
28, there was no apparent difference between the SCI group and
the sham group (Figure 7).

Based on the correlation analysis, Rab20 was positively
correlated with M0 macrophages, M2 macrophages, and naive
CD8 T cells and negatively correlated with memory CD4 T cells,
naive CD4 T cells, plasma cells, memory B cells, γδ T Cells, and
memory CD8 T cells (Figure 8A). In addition, Klf6 was positively
correlated with naive CD8 T cells, DC-activated cells, M2
macrophages, and activated CD8 T cells and negatively
correlated with plasma cells, memory CD4 T cells, naive CD4
T cells, γδ T cells, and memory CD8 T Cells (Figure 8B).

DISCUSSION

SCI frequently results in permanent functional deficits below the
affected spinal cord region. The pathology of SCI is generally
divided into two processes, named the primary injury and
secondary injury. The secondary injury plays a crucial role in
SCI onset and progression, leading to acute and chronic
inflammation, tissue architecture damage, and motor and
sensory dysfunction (Kong and Gao, 2017). Additionally,
current research indicates that immune cell infiltration
noticeably affects SCI development and progression (Al
Mamun et al., 2021). Therefore, this study aimed to discover
relevant SCI biomarkers and to investigate the role of immune
cell infiltration in SCI.

Based on the GEO database, researchers can easily access
Spinal cord injury (SCI) related datasets. Two SCI datasets
(GSE5296, GSE47681) were included in this study (Zhao et al.,
2018; Liu et al., 2019; Wei et al., 2019). We identified 561 DEGs in
total. Among them, 536 were up-regulated and 25 were
downregulated. Next, we performed functional enrichment
analysis on these DEGs and found potential associations with
immune responses and inflammatory signals (e.g., regulation of
inflammatory response, leukocyte migration, positive regulation
of cytokine production, and cytokine-mediated signaling
pathway). Furthermore, The top 10 pathways of these DEGs
according to p value were screened. Cytokines are crucial for
immune response, pro-inflammatory cytokines influence the
progression of disease (Bass et al., 2008). Cytokine–cytokine
receptor interaction can be activated by neuroinflammation
after SCI (Baek et al., 2017). Phagocytosis has important
functions in immunity. Innate immune cells recognize and
degrade microbes and debris by phagosomes. Macrophages
process the debris of the spinal cord and promote the
neurological function recovery after SCI (Zhou et al., 2020).
TNF signaling pathway involves in the modulation of immune
response and triggering the activation of T cells to induce cell
death. The suppression of the TNF-α signaling pathway promotes
function restoration after SCI (Wang N. et al., 2018). IL-17 is a
pro-inflammatory cytokine and generated by T helper 17 cells
(Torchinsky and Blander, 2010). IL-17 exacerbates the
neuroinflammation of the spinal cord after SCI in the rat
(Zong et al., 2014). Atherosclerosis is a chronic inflammatory

FIGURE 3 | The results of functional enrichment analyses. (A) GO
analysis results of DEGs. (B) KEGG analysis results of DEGs. (C) GSEA
profiles showed the ten significant GSEA sets.
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FIGURE 4 | Screening of key genes via the comprehensive strategy. (A) screening key markers using Least absolute shrinkage and selection operator (LASSO)
logistic regression method. (B) screening key markers through support vector machine recursive feature elimination (SVMRFE) method. (C,D) random forest (RF)
strategy to screen biomarkers. (E)Venn diagram displayed the intersection of key markers obtained by the three methods. (F,G) The expression levels of Rab20 and Klf6
in GSE45006.
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disease. Monocytes and macrophages contribute to the initiation
and development of atherosclerosis (Moroni et al., 2019).
Osteoclasts originated from hematopoietic monocyte-
macrophage lineage. Osteoclast differentiation is mainly
regulated by receptor activators of NF-κB and immune
receptors (Park-Min et al., 2009). The pathology of
tuberculosis is closely related to immune cells. Innate immune
cells determined the inflammatory environment against
Mycobacterium tuberculosis infection and induced adaptive

immune responses (de Martino et al., 2019). Rheumatoid
arthritis (RA) is a systemic inflammatory disorder. Immune
cells (like T-cells, B cells, and macrophages) played a crucial
role in the pathogenesis of RA (Yap et al., 2018). Viruses have
produced many mechanisms to escape detection and destruction
from the immune system by copying and repurposing host
cytokine and cytokine receptor genes. Viral protein interaction
with cytokine and cytokine receptor activates downstream
cytokine signaling and affects different immune processes

FIGURE 5 | Key genes validation. (A) Representative images showed that Rab20 expression was examined using immunofluorescence. (B) Representative
images showed that Klf6 expression was examined using immunofluorescence. (C) qRT-PCR verification of Rab20 and Klf6 in SCI samples of mice and sham samples
of mice. The results were represented as mean average ± SE with p < 0.05. scale bar represents 100 µM in (A,B).
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(Bruggeman, 2007). Immunity and leishmaniasis are also closely
related. Leishmania first infected macrophages in the host. Then
neutrophils secreted chemokine (C-C motif) ligand 3 (CCL3) to
recruit dendritic cells. The interleukin (IL) 12 was produced by
dendritic cell, which induced the differentiation of T helper type
(Th) 1 cell to produce more IFN-γ to control the infection of
Leishmania (de Freitas and von Stebut, 2021).

To explore the potential biomarkers during the development
of SCI, we integrated and analyzed two mouse SCI datasets. We
only selected SCI-related data. Thus, 47 samples were included.
Based on the differentially expressed genes (DEGs), three
machinery learning methods were applied for screening

important genes. The random forest (RF) is a non-parametric
approach for achieving classification under supervision. The term
“random forest” refers to decision trees constructed from a
subdivided data set. This method does not generate overfitting
phenomena readily and exhibits strong anti-noise properties
(Yang et al., 2020). Thus, the RF method has been employed

FIGURE 6 | Assessment and visualization of immune cell infiltration. (A)
The relative percentage of 25 types of immune cells. (B) Heatmap exhibited
the correlation of 25 types of immune cells. Both horizontal and vertical axes
demonstrate immune cell subtypes. (C) The violin diagram displayed the
ratio of 25 types of immune cells. The red represents the SCI group, and the
green represents the sham group.

FIGURE 7 | Different time points of immune cell infiltration. The violin
diagram exhibited the ratio of immune cells at different time points (1, 3, 7,
28 days of post-injury). The red represents the SCI group, and the green
represents the sham group.
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widely in recent years for prediction. ASSO logistic regression is a
comprehensive machine-learning method for selecting variables
by identifying those with the lowest chance of classification error.
SVM-RFE is a machine learning approach for ranking and
selecting the most significant features for classification. Every
method obtained some essential genes. This study integrated
these three distinct methods. We picked Rab20 and Klf6
because they were overlapped genes. In a previous study,
researchers found a possible link with the immune and
inflammatory functions, neuronal function, and synaptic
transmission based on the functional enrichment analysis (GO
and KEGG) of differentially expressed genes (DEGs) from
GSE5296. Then they defined and collected these Neuronal
function and synaptic transmission-associated genes and

inflammation-associated genes from the literature review and
investigated their expression in trauma site (R), adjacent rostral
(M), and caudal (C) regions at different time points after SCI
(Chen et al., 2015; Zhao et al., 2018). Another study aimed to
explore the critical genes with genes expression of SCI from
trkB.T1 knockout mice. This study identified the top four
modules genes from GSE47681 using Weighted correlation
network analysis (WGCNA). These module genes were used
to construct the Protein-protein interaction (PPI) network.
Finally, protein tyrosine phosphatase, receptor type C
(PTPRC), coagulation factor II, thrombin (F2), plasminogen
(PLG) were the most significant nodes in the PPI network
(Wei et al., 2019). Compared to these two studies, we
confirmed the differential expression of Rab20 and Klf6 with
validation experiments, whereas other did not. Secondly, we used
different screening methods to obtain SCI-related biomarkers.
Importantly, our combined approach is more innovative as it
points straightforward to relevant SCI markers Rab20 and Klf6,
which are still not that much investigated.

Rab20 is a member of the Rab GTPase family, associating with
macropinosomes at stages that overlap with those of Rab5, Rab21,
Rab7, and Lamp1. Rab20 up-regulation may contribute to plaque
destabilization via increased autophagy and cell death
(Cederstrom et al., 2020). High Rab20 levels promote B cell
activation and facilitate rheumatoid arthritis development
(Tseng et al., 2019). Rab20’s expression was increased during
B cell transformation by a polymorphism associated with Crohn’s
disease and vaccination (Mehta et al., 2017). Additionally, Rab20
is an interferon-regulated Rab GTPase that promotes the
homotypic fusion of early endosomes and directs endosomal
cargo to lysosomes for degradation (Pei et al., 2015).

The Klf family of zinc finger transcription factors participates
in various processes, including development, cellular
differentiation, and stem cell biology. Klf6 promotes
corticospinal tract sprouting and regeneration after SCI
(Kramer et al., 2021). Alternatively, Klf6 is required for
chronic pain maintenance, emphasizing its potential as a
therapeutic target in chronic pain management (Mamet et al.,
2017). When expressed ectopically in the adult injured central
nervous system, Klf6 can promote axon growth (Wang Z. et al.,
2018). Therefore, the identification of Rab20 and Klf6 together
may imply that Rab20-mediated phagosomes cause cell death and
KLf6 promotes nerve regeneration during SCI.

To more precisely assess the impact of immune cell infiltration
in SCI, we analyzed immune cell infiltration through mice tissue
expression profiles using CIBERSORT (Chen et al., 2017). The
immune cell infiltration of M1, M0, and M2 macrophages, naive
CD8 T cells, follicular CD4 T Cells, and DC-activated cells
increased, indicating possible associations with SCI
development and progression. Additionally, immune cell
infiltration may have the property of dynamic changes at
different time points after SCI. Microglia are well-known as
the central nervous system’s resident immune cells. After
traumatic SCI, microglia/macrophages and neutrophils are
recruited to the damaged location (Xu L. et al., 2021).
Macrophages, microglia, and other antigen-presenting cells
(APCs) activate T lymphocytes. SCI inhibits B cell activation

FIGURE 8 | The Correlation between key markers and infiltrating
immune cells. (A)Correlation between Rab20 and infiltrating immune cells. (B)
Correlation between Klf6 and infiltrating immune cells.
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and antibody production (Ankeny and Popovich, 2010).
Autoantibodies aggravate post-SCI complications such as
cardiovascular, renal, and reproductive failure (Alizadeh et al.,
2019). Although this has been mentioned previously, more
investigation into the molecular mechanisms and effects of
immune cell infiltration in SCI seems required.

Regarding the associations between immune cells and key
genes, Rab20 was positively correlated with M0 and M2
macrophages and naive CD8 T cells during activation and
negatively correlated with memory CD4 T cells, naive CD4
T cells, plasma cells and memory B cells, γδ T cells, and
memory CD8 T cells. Further, Klf6 was positively correlated
with naive CD8 T cells, DC-activated cells, M2 macrophages, and
activated CD8 T cells, but negatively correlated with plasma cells,
memory CD4 T cells, naive CD4 T cells, γδ T cells, and memory
CD8 T cells. According to one study, the expression of a
dominant-negative Rab20 mutant may impair macrophage
phagosome maturation (Pei et al., 2014). KLF6 promotes HIF1
expression inmacrophages, regulating inflammatory and hypoxic
responses (Kim et al., 2019). Because there is no additional
information about the sophisticated interaction mechanisms
between key genes and immune cells, they should be
thoroughly investigated based on the assumption
mentioned above.

We used novel and scientific approaches (e.g., LASSO logistic
regression, random forest, and SVM-RFE algorithm) to identify
characteristic SCI makers. Additionally, we used CIBERSORT to
investigate immune cell infiltration. Nonetheless, this study has
some limitations. First, it is the result of the second round of data
mining and analysis. Additionally, we did not obtain clinical

specimens for this study and had to rely on mouse tissue to
confirm our predictions. Finally, the results’ reliability should be
thoroughly validated using large samples.
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Deletion of brain-derived neurotrophic factor (BDNF) and upregulation of indoleamine 2,3-
dioxygenase 1 (IDO1) are associated with depression severity in animals. The
neurotransmitter hypothesis of depression at the transcriptomic level can be tested
using BDNF- and IDO1-knockout mouse models and RNA-seq. In this study,
BDNF+/−, IDO1−/−, and chronic ultra-mild stress (CUMS)-induced depression mouse
models and controls were developed, and the differentially expressed genes were
analyzed. Furthermore, the ceRNA package was used to search the lncRNA2Target
database for potential lncRNAs. Finally, a protein–protein interaction (PPI) network was
constructed using STRINGdb. By comparing the control and CUMS model groups, it was
found that pathway enrichment analysis and ceRNA network analysis revealed that most
differentially expressed genes (DEGs) were associated with protection of vulnerable
neuronal circuits. In addition, we found the enriched pathways were associated with
nervous system development and synapse organization when comparing the control and
BDNF+/−model groups. When replicating the neurotransmitter disruption features of
clinical patients, such comparisons revealed the considerable differences between
CUMS and knockdown BDNF models, and the BDNF+/−model may be superior to the
classic CUMSmodel. The data obtained in the present study implicated the potential DEGs
and their enriched pathway in threemousemodels related to depression and the regulation
of the ceRNA network-mediated gene in the progression of depression. Together, our
findings may be crucial for uncovering the mechanisms underlying the neurotransmitter
hypothesis of depression in animals.

Keywords: depression, RNA-seq, pathway enrichment analysis, protein–protein interaction (PPI) network, brain-
derived neurotrophic factor (BDNF), indoleamine 2,3-dioxygenase 1 (IDO1)

Edited by:
Liang Cheng,

Harbin Medical University, China

Reviewed by:
Yanglan Gan,

Donghua University, China
Hui Ding,

University of Electronic Science and
Technology of China, China

*Correspondence:
Peng Huang

huangpengsmu@126.com
Jiangping Xu

jpx@smu.edu.cn

†These authors have contributed
equally to this work and share first

authorship.

Specialty section:
This article was submitted to

Neurogenomics,
a section of the journal
Frontiers in Genetics

Received: 07 March 2022
Accepted: 15 April 2022
Published: 30 May 2022

Citation:
Ren J, Li C, Wei S, He Y, Huang P and
Xu J (2022) Identifying Antidepressant
Effects of Brain-Derived Neurotrophic
Factor and IDO1 in the Mouse Model

Based on RNA-Seq Data.
Front. Genet. 13:890961.

doi: 10.3389/fgene.2022.890961

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8909611

ORIGINAL RESEARCH
published: 30 May 2022

doi: 10.3389/fgene.2022.890961

113

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.890961&domain=pdf&date_stamp=2022-05-30
https://www.frontiersin.org/articles/10.3389/fgene.2022.890961/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.890961/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.890961/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.890961/full
http://creativecommons.org/licenses/by/4.0/
mailto:huangpengsmu@126.com
mailto:jpx@smu.edu.cn
https://doi.org/10.3389/fgene.2022.890961
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.890961


INTRODUCTION

Depression is a common mental disorder characterized by high
morbidity and suicidal risk (Auerbach et al., 2018; Devendorf
et al., 2020). Previous studies have shown that depression is a
complex disorder involving multiple genes (Fan et al., 2020; Kang
et al., 2020). The brain-derived neurotrophic factor (BDNF) gene,
which is widely involved in emotion and cognition, has
neurotrophic effects and modulates neuron regeneration,
synaptic plasticity, and dendritic growth (Kowianski et al.,
2018; Lima Giacobbo et al., 2019). Several studies have shown
that BDNF is involved in the pathogenesis of neuropsychiatric
diseases (Lima Giacobbo et al., 2019; Colucci-D’amato et al.,
2020). Chronic social defeat stress in a rat model of depression
has revealed a significant reduction of BDNF levels in the
hippocampus and prefrontal cortex (Amidfar et al., 2018).

Increasing studies have shown that rats that have been
deprived of maternal care during their young stage exhibit
reduced hippocampal BDNF levels, short- and long-term
deficits in aversion, and recognition memory, as well as
cognitive flexibility (Menezes et al., 2020). Environmental
enrichment interventions restore the levels of hippocampal
BDNF in rats and protect their memory and cognitive
flexibility (Zhang et al., 2020). Furthermore, the reduced level
of BDNF has been associated with anhedonia (Dong et al., 2018)
which is the main symptom of depression. The deletion of brain-
derived neurotrophic factor (BDNF) and upregulation of
indoleamine 2,3-dioxygenase 1 (IDO1) are associated with
depression severity in animals. The neurotransmitter
hypothesis of depression at the transcriptomic level can be
tested using BDNF- and IDO1-knockout mouse models and
RNA-seq. In this study, BDNF+/−, IDO1−/−, and chronic ultra-
mild stress (CUMS)-induced depression mouse models and
controls were developed, and the differentially expressed genes
were analyzed. Furthermore, the ceRNA package was used to
search the lncRNA2Target database for potential lncRNAs.
Finally, a protein–protein interaction (PPI) network was
constructed using STRINGdb. By comparing the control and
CUMS model groups, it was found that pathway enrichment
analysis and ceRNA network analysis revealed that most
differentially expressed genes (DEGs) were associated with the
protection of vulnerable neuronal circuits. In addition, we found
the enriched pathways were associated with nervous system
development and synapse organization when comparing the
control and BDNF+/−model groups. When replicating the
neurotransmitter disruption features of clinical patients, such
comparisons revealed the considerable differences between
CUMS and knockdown BDNF models, and the
BDNF+/−model may be superior to the classic CUMS model.
The data obtained in the current study implicated the potential
DEGs and their enriched pathway in three mouse models related
to depression and the regulation of the ceRNA network-mediated
gene in the progression of depression. Together, our findings may
be crucial for uncovering the mechanisms.

Indoleamine 2,3-dioxygenase 1 (IDO1), which is the
tryptophan catabolizing enzyme, affects the nervous system
through two mechanisms. The first mechanism involves

tryptophan depletion through over-activation of IDO1 which
increases tryptophan catabolism and thereby reduces the levels of
tryptophan, as well as suppressing the synthesis of 5-HT, hence
resulting in depression (Chaves Filho et al., 2018). The second
mechanism is the increase in kynurenine toxicity mediated by
IDO1 (Jiang et al., 2020). It has been found that although
kynurenine is neuroprotective, it is neurotoxic at excessive levels.

Therefore, it is evident that the reduction of BDNF can cause
depression-like symptoms in mice (Jiang et al., 2019) whereas the
knockout of IDO1 has antidepressant-like effects (Gao et al.,
2021). Furthermore, there is no corresponding report on the
mRNA sequencing of the comparison between BDNF and IDO1,
but this study sequenced the mRNA expression in BDNF+/−,
IDO1−/−, chronic ultra-mild stress (CUMS), and control mice.

MATERIALS AND METHODS

Animals and Experimental Groups
To avoid the effects of sex differences and hormones, only male
mice were selected for the current study. Mice (10 per group)
were randomly assigned to the control (untreated), CUMS-
exposed (mimicking adult stress), BDNF+/− (strain
BDNFtm1Krj/J, C57BL6/J background, Jax Strain #006579),
and IDO1−/− (strain IDO1tm1Alm/J, Jax Strain #005867)
groups. The detailed information about the mice is shown in
Supplementary Table S1. They were housed in a pathogen-free,
temperature-controlled environment (22 ± 1°C) and subjected
to 12/12 h light/dark cycles, with ad libitum access to food and
water except during model building. Animal experimental
protocols in the current study were approved by the National
Institutional Animal Care and Ethical Committee of Southern
Medical University.

Chronic Ultra-Mild Stress Protocol
CUMS modeling was performed, as previously described (Huang
et al., 2017; Gao et al., 2018). Briefly, the protocol involved the
sequential application of various mild stressors: 1) 24 h of food
and water deprivation, 2) 1 h of empty bottle, 3) 17 h of 45° cage
tilt, 4) overnight illumination, 5) 24 h of wet cage, 6) 5 min
swimming in water at 4°C, 7) 24 h of disrupting the squirrel
cage, 8) 24 h of foreign body stimulation, and 9) 4 h of restriction
in movement.

RNA Sequencing
TRIzol reagent was used to isolate RNA (Invitrogen,
United States). The mRNA sequencing libraries were
constructed using multiplex PCR amplification techniques.
The sequencing of mRNA was carried out on the Illumina
sequencing platform NextSeq 550, while the sequencing of
microRNA was carried out on the Illumina sequencing
platform Hiseq 4000.

Mapping
Adaptors were removed by FastQC and Trimmomatic. The
alignment of mRNA was conducted by STAR software with
the reference mm10, while miRNA was aligned with data from
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miRBase. Downstream statistical analyses were carried out in R
software.

Differential Expression Analysis
The mRNA expression differential analysis was carried out using
DESeq2. Volcano plots were plotted by the EnhancedVolcano
package with a default cut-off for log2FC >|2|, and the default cut-
off for p-value 10e-6 to highlight the top genes.

Differential miRNA: mRNA Interaction
miRNAs were searched on multiple miRNA-mRNA databases
using multiMiR. The differential miRNA–mRNA interaction was
calculated by using the binomial test. FDR was also used to adjust
for multiple tests.

ceRNA Network Analysis
The potential lncRNAs targeting differentially expressed genes
(DEGs) were searched on lncRNA2Target for the analysis of
ceRNA. In addition, the ceRNA network of the collected miRNAs
and lncRNAs was constructed and visualized by using the igraph

package by querying interactions between them from multiple
miRNA-lncRNA databases from multiMiR.

Protein–Protein Interaction Network
Analysis
The analysis of the protein–protein interaction (PPI) network of
the mRNA DEGs was performed using the R package STRINGdb
to generate an interaction table, and the interaction network was
visualized by using the igraph package.

RESULTS

Identification of Differentially Expressed
Genes
It was found that the differences in expressed genes were highly
significant between BDNF+/− and IDO1−/− mice, whereas there
was a less evident difference in the gene expression between the
CUMS and control groups.

FIGURE 1 | Identified DEGs in each group. (A) Bar plot showing statistical data of DEGs. (B) Sample clustering based on the expression level of top DEGs. (C)
Volcano plot of DEGs between BDNF+/− and control. (D) Volcano plot of DEGs between BDNF+/− and IDO1−/−. (E) Volcano plot of DEGs between BDNF+/− and CUMS.
In the Volcano plot, blue and green scatter points represent insignificant DEGs, red scatter points represent upregulated DEGs, and blue scatter points represent
downregulated DEGs. The statistical method is the default cut-off for log2FCwhich is >|2|, and the default cut-off for p-value is 10e-6 to highlight the top genes with
red color.
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Mouse medial prefrontal cortex (mPFC) was obtained for
sequencing from BDNF+/−, IDO1−/−, CUMS-exposed, and
control mice. Results of the DEG analysis revealed gene
expression differences between BDNF+/− and other groups, as
well as modest gene expression differences in CUMS vs. control
groups (Figure 1A). Consistently, the results of clustering
analysis revealed close clustering between the control and
CUMS samples (Figure 1B).

It was found that the analysis of gene expression identified 859
significantly upregulated and 975 significantly downregulated
genes in BDNF+/− vs. control samples (Figure 1A,
Supplementary Table S2). Furthermore, the results of volcano
plot visualization revealed that the top DEGs included Lnpep,
Adhd2, Nf2c2, Mgat2, and Rn18s (Figure 1C). A heatmap with
sample clustering showed themost genes that were upregulated in
the expression of the top 50 different genes in BDNF+/−

(Supplementary Figure S1A). In addition, the results of
analysis of the top five DEGs revealed that relative to
BDNF+/−, Lnpep, Abhd2, Mgat5, Nr2c2, and Rn18s
expressions were significantly higher in controls
(Supplementary Figure 1B). It was evidently noted that
among the DEGs, Mgat5 influences behavior and physical
outcomes in response to early life stress by remodeling
N-glycans and cell surface glycoproteins.

Comparison BDNF+/− vs. IDO1−/− identified a total of 1,145
downregulated and 447 upregulated DEGs (Figure 1A,
Supplementary Table S2), including Entppl, Idem, and
Kirrel2 (Figure 1D). A heatmap showed an even regulated
difference among the expressions of the top 50 DEGs,
indicating that IDO1−/− may have a unique expression pattern
under different biological mechanisms as compared with
BDNF+/− (Supplementary Figure S2A). It was found that the
top five DEGs exhibited an evenly matched relationship between
these two groups (Supplementary Figure S2B). Etnppl was
evaluated as an astrocyte-specific fasting-induced gene that
induces the catabolization of phosphoethanolamine (PEtN),
regulating brain lipid homeostasis (White et al., 2021). The
altered Etnppl expression has also been associated with mood

disorders (White et al., 2021). Both genes indicated a strong
change in the neural level under these two groups of models.

A comparison of BDNF+/− vs. CUMS groups identified a total
of 1,195 downregulated and 968 upregulated genes
(Supplementary Table S2, Figure 1A). The DEGs included
Lnpep, Mgat5, Rn18s, and Abdh2, which are quite similar to
the results from BDNF+/− vs. control (Figure 1E). Similar to the
control group, the heatmap also showed the most upregulated
expression in BDNF+/− among the top 50 DEGs, and the top five
DEGs, Abhd2, Lnpep, Mgat5, Nr2c2, and Rn18s also presented a
higher expression in BDNF+/− (Supplementary Figure S3). This
comparison illustrated a similar result of DEGs with previous
groups of BDNF+/− and control, indicating that there was likely
no significant difference in the gene expression between the
CUMS and control groups. For the significantly different
aforementioned genes , the significance threshold for statistical
analysis was log2FC >|2|, and the default cut-off for p-value was
10e-6 to highlight the top genes with red dots.

Pathway Enrichment Among Models
It was found that there was little difference in neural activities
between BDNF+/− that were involved in negative
neuromodulatory pathways and IDO1−/− mice, but the CUMS
model did not significantly differ from controls as compared with
BDNF+/−.

To assess pathway activation differences between the models,
we subjected the DEGs to pathway enrichment analysis. Gene
ontology (GO) term enrichment analysis of the BDNF+/− vs.
control groups identified a total of 427 pathways (Supplementary
Table S3), including the negative regulation of neurogenesis,
negative regulation of nervous system development, synapse
organization, and negative regulation of neuron differentiation
(Figure 2A), which indicated a negative neural regulation in
BDNF+/− mice.

The results of the heatmap and upset plot showed a common
sharing gene enriched by different pathways (Supplementary
Figure S7A,B). Furthermore, a comparison between the top
pathways in the upset plot and their significant genes

FIGURE 2 | Pathway enrichment of DEGs between BDNF+/− and controls. (A) Top 10 enriched pathways in GO terms for BDNF+/− and control groups. (B) Top 10
enriched pathways for GO terms for BDNF+/− and IDO1−/− groups. (C) Top 10 enriched pathways for GO terms in BDNF+/− and CUMS groups.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8909614

Ren et al. Identifying Mouse Model by RNA-Seq

116

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


identified a high concentrated gene set that included Mib1,
Foxo3, Ptbp1, Sema3c, and Sorl, enriched in a cluster of
neural regulation pathways such as negative regulation of
neuron differentiation, neuron projection guidance, and
axonogenesis (Supplementary Figure 7C).

We identified a total of 237 significant GO terms and revealed
the DEGs to be enriched for various pathways that are not related
to neural regulation, including extracellular matrix organization,
extracellular structure organization, collagen fibril organization,
cell-substrate adhesion, and renal system development
(Figure 2B, Supplementary Table S3). This indicated little
difference in neural activities between BDNF+/− and IDO1−/−

mice. The count of shared genes among top pathways was lower
as compared to BDNF+/− vs. control, which indicates a discrete
distribution of biological functions (Supplementary Figure
S8A,B).

In the top five pathways, the high concentrated gene set,
including Cxcr2, Tnxb, P4ha1, Adams1, and Col4a5 among
others, was not highly related to neural function
(Supplementary Figure S8C). The CXCL1 chemokine deletion
can cause rat depression-like behaviors, and CXCL1/CXCL2
correlates with depression-like behavior in response to chronic
stress (Chai et al., 2019; Song et al., 2020).

We identified a total of 625 significant GO terms and revealed
that the DEGs were significantly enriched in synapse
organization, negative regulation of neuron differentiation, and
negative regulation of neurogenesis (Figure 2C, Supplementary
Table S3). Enriched pathways were highly associated with neural
activities but slightly differed from the results of the analysis of

BDNF+/− vs. control which indicated that the main pathways in
BDNF+/− vs. CUMS and BDNF+/− vs. control were the same. The
current study found genes similar to those identified in BDNF+/−

vs. control pathway enrichment, including Mib1, Sema3c, and
Foxo3, which were still enriched in relevant negative regulation of
neuron activities, indicating that the CUMS model did not differ
significantly from the controls as compared with BDNF+/−

(Supplementary Figure S9).

Network Analysis of the Protein–Protein
Interaction
PPI differences between BDNF+/−, a series of strong protein
interactions, and IDO1−/− were not focused or related to
neural activities, whereas internal consistency was similar
between the control and CUMS groups.

To analyze the interactions with other molecules, we
performed PPI based on the DEGs. Results in the BDNF+/− vs.
control groups and the PPI network of DEGs revealed highly
confident interactions which illustrated a series of strong
interactions between proteins in BDNF+/− mice (Figure 3A). It
was found that the whole network includes 171 links with the
highest confidence among 60 nodes (score: >700). In addition, the
whole network was mainly connected using several hub genes,
including Trp53, Foxo3, EGFR, and CDK families. Furthermore,
Trp53 responds to diverse cellular stresses to regulate target genes
that induce cell cycle arrest, apoptosis, and senescence, as well as
commonly interacts with CDKs which indicate cell cycle
regulation changes in BDNF+/− mice (Rufini et al., 2013).

FIGURE 3 | Result of the PPI network analysis. (A) PPI network of the top 60 DEGs in BDNF+/− and control groups. (B) PPI network of the top 60 DEGs in BDNF+/−

and IDO1−/− groups. (C) PPI network of the top 60 DEGs in BDNF+/− and CUMS. The degree of red color and the size of each vertex indicate the number of connections.
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In BDNF+/− vs. IDO1−/−, it was found that the PPI network
contained 178 links and 60 nodes (Figure 3B). Notably, the
network had three dense subnetworks of nearly equal size. The
densest was mostly composed of Rpl family genes, including
Rpl36a, Rpl38, and Rpl39. Furthermore, the Rpl family is
composed of L ribosomal proteins. It was found that between
the other two subnetworks one was led by Cdk2, P1k1, and
Psmb10, and the other was led by Ndufb6, Ndufb4, Ndufb9, and
the relevant gene of the NADH dehydrogenase subunit. The three
subnetworks showed a dispersion in different biological
functions, indicating that PPI differences between BDNF+/− vs.
IDO1−/− are not focused or related to neural activities.

It was found that in BDNF+/− vs. CUMS, the network was
composed of the top 60 DEGs with 163 interaction links
(Figure 3C). The results of the PPI network revealed only one
cluster of similar topology to the one in BDNF+/− vs. control, as
well as similar hub genes, including Trp53, EGRF, Fox, Foxo3,
and CDKs, reflecting consistent similarity between control and
CUMS. However, it contained other hub genes, including Uba52,
Bdnf, and Zap70.

Network Analysis of lncRNA–miRNA–mRNA
ceRNA
In BDNF+/− vs. control, BDNF+/− vs. CUMS, and BDNF+/− vs.
IDO1−/− mice, most differentially expressed genes were
associated with the protection of vulnerable neuronal circuits.
To investigate the potential interactions between DEGs and
lncRNAs, we analyzed ceRNA based on DEGs among different
models. For each comparison, lncRNAs and miRNAs that may

interact with the DEGs were identified, and relevant interaction
networks were built.

The BDNF+/− vs. control lncRNA-mRNA data were obtained
from lncRNA2 targets. The lncRNA-mRNA network revealed
150 interactions between 40 DEGs and 46 lncRNAs
(Supplementary Figure S10A). Lnpep, Slc36a4, and Amy1
interacted with most lncRNAs whereas AK040954, Linc-RAM,
H19, and Linc1388 targeted most mRNAs. The hub genes in the
miRNA-mRNA network included miR-124-3p, miR-132-3p, and
miR-9-5p in miRNA and Dyrk2 as well as Nr2c2 and Nbeal1 in
mRNA. miR-124-3p, which had the most connections in the
current study, is a well-known biomarker of neural diseases
(Supplementary Figure S10B).

A ceRNA network was further reconstructed (Figure 4A). In
addition, it was noted that the network included lncRNAs H19,
Evx1, and Pvt1, whereby H19 connected most miRNAs. The hub
miRNAs included miR-130a-3p, miR-130b-3p, miR-223-3p,
miR-423-5p, and miR-301b-3p whereas the hub mRNAs
included Stox2, Ulk2, Npepl1, Aff4, and Ddx6.

In BDNF+/− vs. IDO1−/−, the lncRNA-mRNA network was
composed of 147 interactions between 39 DEGs and 44 lncRNAs
(Supplementary Figure S11A). Myh9, Adam12, Iqgap1, and Tfrc
interacted with most lncRNAs whereas linc1388, linc1382, linc1470,
and linc1558 targetedmostmRNAs. In themiRNA-mRNAnetwork,
miR-124-3p, miR-30e-5p, and miR-30a-5p connected with most
mRNAs, whereas Ptpn13, Tfrc, Zfp36l1, and Myh9 connected
with most miRNAs (Supplementary Figure S11B).

The mRNA–miRNA–lncRNA ceRNA network had three
lncRNA nodes, 20 mRNA nodes, and 10 miRNA nodes
(Figure 4B). The lncRNA nodes with the most connections were

FIGURE 4 | Result of ceRNA network analysis. (A) ceRNA network of all DEGs in BDNF+/− and control groups. (B) ceRNA network of all DEGs in BDNF+/− and
IDO1−/− groups. (C) ceRNA network of all DEGs in BDNF+/− and CUMS groups. The size of the vertex indicates the number of connections.
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H19, Evx1, and Pvt1 as compared with BDNF+/− vs. control.
Furthermore, the miRNA nodes included miR-107-3p, miR-130b-
3p, miR-130a-3p, miR-195a-5p, miR-301b-3p, and miR-103-3p. The
average connection per miRNA was higher than in BDNF+/− vs.
control. The hub mRNAs included Tnrc6b, Mob3b, Otud4,
Ankrd52m, Tardbp, Sh3d19, and Cav1, and it was found that
they had little overlap with results from BDNF+/− vs. control.

In BDNF+/− vs. CUMS, the lncRNA-mRNA network showed 139
interactions between 37 DEGs and 46 lncRNAs (Supplementary
Figure S12A). Lnpep, Slc36a4, and Amy1 still interacted with most
lncRNAs, whereas AK040954, Linc-RAM, H19, and Linc1388
targeted most of the mRNAs. In the miRNA-mRNA network,
hub miRNAs included miR-124-3p, miR-106-5p, miR-132-3p, and
miR-9-5p, whereas hubmRNAs includedDyrk2, Nr2c2, Nbeal1, and
Ptbp1 (Supplementary Figure S12B). In the
mRNA–miRNA–lncRNA network, lncRNA nodes still included
H19, Evx1, and Pvt1, with H19 still having the most connections
(Figure 4C). Furthermore, the hub miRNAs included miR-301b-3p,
miR-223-3p, miR-130a-3p, miR-130b-3p, and miR-223-3p whereas
the hub mRNA gene included Mybl1, Ddx6, Aff4, Stox2, and Ddx6,
which was similar to BDNF+/− vs. control.

Following the consistency of the aforementioned three PPI
networks, we determined the mRNA network of the BDNF+/− vs.

control, BDNF+/− vs. IDO1−/−, and BDNF+/− vs. CUMS mice. It
showed that BDNF was a common difference between them,
which was also in line with the differential expression of the
prefrontal lobe after the knockdown of the Bdnf. Among them,
we found that not only was the upstream Bmp1 of Bdnf different
but also the downstream Fos of Bdnf and Fos was also an
important indicator of activating neuronal activity (Figure 5).

DISCUSSION

The current study identified several differentially expressed genes in
normal vs. depression-like mouse tissues from diverse genomic
locations. These genes were collected in an mPFC manner.
Pathway enrichment and ceRNA network analyses evidently
revealed that most differentially expressed genes were associated
with the protection of vulnerable neuronal circuits, and enriched
pathways were associated with nervous system development and
synapse organization.

Consistent with several previous studies, it was found that there
were no significant gene expression differences in control vs. CUMS
mice (Ma et al., 2016; Ma et al., 2019). It was evident that the possible
differences are not reflected at the transcriptomic level but in protein

FIGURE 5 | Consistency of the three PPI networks, including BDNF+/− vs. control, BDNF+/− vs. IDO1−/−, and BDNF+/− vs. CUMS.
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modification or neurotransmitter content. However, it was found that
BDNF-knockdown mice exhibited depression-like features based on
reduced levels of neurotransmitter content (Kojima et al., 2020).
Furthermore, it was found that the BDNF+/− mice exhibited
significant gene expression differences as compared with control
or IDO1−/− mice.

It was also evident that various genes, including Ptbp1, were
predominantly expressed in BDNF+/− as comparedwith other groups
which suggested that they were purposefully produced. This study
focused on mouse mPFC sequencing of gene modification, especially
in BDNF+/− and IDO1−/−mice. Other previous studies have reported
more differential mRNA expressions in the hippocampus, and there
are possibilities of molecular lateralization in other subcortical areas
(Hu et al., 2020; Chae et al., 2021). Furthermore, various abundant
genes are specifically expressed in the gene-editing group and
differentially expressed in the depression-like group as compared
with the normal or depression-like antagonism groups, hence
indicating that they serve specific functions in specific pathways
(Le et al., 2018; Xu et al., 2019).

The current study had some limitations. The first limitation was
the lack of sequencing comparison between other brain regions such
as the hippocampus of the limbic system or the parahippocampal
gyrus and cingulate gyrus. The lack of comparison of human samples
was also a shortcoming of this study. Adding human-derived
depression samples would have enriched the understanding of the
degree of gene expression changes in depression-like lesions. Overall,
the current study only performed RNA sequencing studies on a
CUMS-based depression-like mouse model, BDNF knockdownmice
(simulating depression-like), and IDO knock-out mice (antagonizing
depression-like). The sample area was the prefrontal cortex, and
because no human samples were analyzed for comparison in the
current study, there was no experimental verification of whether the
differential gene expression, including Ptbp1, is associated with
depression pathogenesis.

Nevertheless, the results of the current study suggest that in a
mouse model of depression (BDNF+/−), CXCL1 deletion (Chai
et al., 2019) and Slc17a7 reduction (Lindstrom et al., 2020) are
related to the loss of excitatory neurons in the prefrontal lobe,
whereas Ptbp1 downregulation (Qian et al., 2020) correlates with
neuronal regeneration. However, there is a need for experimental
validation of these findings in future research.

CONCLUSION

Depression mouse models and controls were studied for possible
DEGs and enriched pathways. The findings show a function for
ceRNA network-mediated genes in the development of depression.
There is a difference in the expression between BDNF+/− and CUMS

model depressed mice, showing that the BDNF knockout model can
only assist in imitating neurotransmitter models. A neurotransmitter
disruption was not seen in the IDO1−/− mouse model, in contrast to
the CUMS and BDNF+/−models. Our findings may help unravel the
neurotransmitter hypothesis of depression in animals.
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Association of Single-Nucleotide
Polymorphisms of rs2383206,
rs2383207, and rs10757278 With
Stroke Risk in the Chinese Population:
A Meta-analysis
Xuemei Hu1,2‡, Dongsen Wang1,2‡, Chunying Cui2 and Qingjian Wu2*†

1Clinical Medical College of Jining Medical University, Jining, China, 2Department of Emergency, Jining No. 1 People’s Hospital,
Jining, China

Several studies have reported that chromosome 9p21 is significantly associated with
ischemic stroke (IS) risk, with the G allele associated with increased risk. However,
controversial results have been reported in the literature. We systematically assessed the
relationship between stroke and three 9p21 loci (rs2383206, rs2383207, and rs10757278)
in this meta-analysis. First, we searched the PubMed and Embase databases for relevant
studies. We then calculated odds ratios using the chi-squared test. The evaluation of
experimental data was performed using bias tests and sensitivity analyses. We analyzed
data from 16 studies involving 18,584 individuals of Chinese ancestry, including 14,033
cases and 14,656 controls. Our results indicated that chromosome 9p21 is significantly
associated with IS (odds ratio: 1.15, 95% confidence interval: 1.1–1.20, p < 0.0001).
Because the three single-nucleotide polymorphisms (rs2383206, rs2383207, and
10757278) have a linkage disequilibrium relationship, all three may increase the risk of IS.

Keywords: ischemic stroke, chromosome 9p21, rs2383206, rs2383207, rs10757278, Chinese

INTRODUCTION

Stroke is a severe disease and is the leading cause of disability and death in China (Liu et al., 2011). It is
an acute cerebrovascular disease that is characterized by focal loss of nerve function and high mortality
and disability, and it currently poses a serious threat to human life and health (Li et al., 2021). Stroke is
thought to be caused by environmental risk factors, multiple genes, and their interactions. To date,
however, a large proportion of stroke risk remains unexplained (Ganesh et al., 2016). Genetic variation
on chromosome 9p21 is widely believed to be linked to risk of coronary heart disease (McPherson et al.,
2007; Samani et al., 2007), but it has a different role in stroke (Matarin et al., 2008; Gschwendtner et al.,
2009). Previously, genome-wide association studies (GWAS) have analyzed genes associated with
ischemic stroke (IS) (Söderholm et al., 2019). Single-nucleotide polymorphisms (SNPs) of rs2383206,
rs2383207, and rs10757278 on chromosome 9p21 are linked to stroke. However, although several
recent genetic studies have reported that chromosome 9p21 plays an important role in the mechanism
of stroke, studies of different races and from different geographic locations have provided very different
results. Therefore, an association between 9p21 polymorphisms and stroke has been established for
individuals of European descent; the main aim of this meta-analysis was to study the relationship
between three SNPs on chromosome 9p21 and stroke in the Chinese population.
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METHODS

Search Strategy
We searched the PubMed and Embase databases and selected all
possible studies using the keywords “Stroke Chinese” and
“rs2383206,” “rs2383207,” “rs10757278,” and “9p21.” The
relevant literature was updated on 31 January 2022.

Selection Criteria
The following selection criteria were used: (1) an association
between the proposed SNPs and stroke was evaluated using a
case–control design; (2) an accurate genotype number was
provided or could be calculated (Liu et al., 2013); (3) the odds
ratio (OR) and 95% confidence interval (CI) were provided to
measure the risk of disease; (4) the OR value and 95% CI were
calculated by providing enough data; (5) the same diagnostic
criteria were used for stroke. The exclusion criteria were (1) the
research was presented as a poster presentation, summary, meta-
analysis, conference summary or article, or case series analysis;
(2) the study was not performed in a Chinese population; (3) the
three SNPs were not used; (4) the study was not consistent with
the research topic; and (5) the exact number of genotypes was not
provided and could not be calculated and/or the OR and 95% CI
were not provided and could not be calculated. Two authors (DW
and XH) independently screened all studies by their title or
abstract and then evaluated the full text. Any differences in
opinion were resolved through discussion.

Data Extraction
Trial data from each identified study were extracted separately by
two investigators (DW and XH). Any differences were eliminated
by discussing the data extraction for each study using standard
data collection tables. The data and information that were
extracted for inclusion in the analysis included the first
author’s name, publication year, language, population, study
type, sample size, numbers, and frequencies of rs2383206,

rs2383207, and rs10757278 polymorphism genotypes in the
cases and controls, ORs, and 95% CIs. All extracted data are
presented in Tables 1, 2.

Statistical Analysis
We investigated the Hardy–Weinberg equilibrium of rs2383206,
rs2383207, and rs10757278. We also investigated their
association with stroke using the chi-squared test, which was
performed using R (http://www.r-project.org/) (Liu et al., 2013).
For the meta-analysis, we determined the heterogeneity among
datasets using Cochran’s Q test and I2 = (Q – (k – 1))/Q × 100%.
The Q statistic approximately follows a χ2 distribution, with k-1
degrees of freedom (k is the number of studies in the analysis)
(Liu et al., 2017). When I2 was greater than 50% and the p-value
was less than 0.1 (Higgins et al., 2021), the DerSimonian and
Laird random-effects model was used as the pooling method;
otherwise, the Mantel–Haenszel or inverse variance fixed-effects
model was used as the pooling method, as appropriate. We also
used funnel plots to assess potential publication bias. When there
is no bias, funnel plots are symmetrical; conversely, when bias is
present, funnel plots are asymmetrical (Liu et al., 2014).

RESULTS

Characteristics of Included Studies
In this meta-analysis, 18,584 participants were included: 14,033 in
the IS group (7,235 cases with rs2383207, 3,762 cases with
rs2383206, and 3,036 cases with rs10757278) and 14,656 cases
in the control group (7,653 cases with rs2383207, 3,807 cases with
rs2383206, and 3,196 cases with rs10757278). Eleven articles were
selected, comprising 16 studies, of which six investigated
rs2383207 (Lin et al., 2011; Zhang et al., 2012; Li et al., 2017;
Yang et al., 2018; Jin et al., 2021; Li et al., 2021), five investigated
rs2383206 (Ding et al., 2009; Hu et al., 2009; Zhang et al., 2012;
Xiong et al., 2018; Li et al., 2021), and five investigated rs10757278

TABLE 1 | Sixteen studies in 11 articles investigating the association between rs2383207, rs2383206, and rs10757278 and IS.

SNP First author;
year

Population Case Control Case genotype Control genotype

GG GA AA GG GA AA

rs2383207 Lin-2011 Chinese 627 1,349 288 274 65 568 609 172
Jin-2021 Chinese 1,640 1755 795 665 180 815 690 250
Yang-2018 Chinese 550 548 236 237 77 244 251 53
Li-2017 Chinese 1,429 1,191 633 642 154 492 525 174
Li-20211 Chinese 987 946 480 425 82 410 407 129
Zhang-20122 Chinese 1,657 1,664 700 743 214 652 796 216

rs2303206 Hua-2009 Chinese 352 423 67 188 97 78 191 154
Ding-20094 Chinese 440 498 113 213 114 94 264 140
Li-20211 Chinese 1,006 949 233 493 280 197 447 305
Xiong-20183 Chinese 200 205 48 96 56 46 98 61
Zhang-20122 Chinese 1,657 1,664 379 802 476 317 833 514

rs10757278 Bi-2015 Chinese 116 118 29 49 38 15 47 56
Han-2020 Chinese 505 652 149 235 121 140 310 203
Xiong-20183 Chinese 200 205 52 95 53 47 99 59
Ding-20094 Chinese 441 501 40 181 220 45 236 220
Zhang-20212 Chinese 1,657 1,664 509 774 374 420 832 412

Note: The same numbers indicate the same article. SNP, single-nucleotide polymorphism.
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(Ding et al., 2009; Zhang et al., 2012; Bi et al., 2015; Xiong et al.,
2018; Han et al., 2020). The study identification and selection
process is shown in detail in Figure 1.

Linkage Disequilibrium
The three SNPs—rs10757278, rs2383206, and rs2383207—are
located within 10 kb of one another on chromosome 9p21
(https://snipa.helmholtz-muenchen.de/snipa3/).

Meta-Analysis Results of 9p21
There is a linkage disequilibrium relationship among the three
SNPS (rs2303206, rs2383207, and rs10757278). Thus, we
performed an analysis of the OR values of all studies involving
rs2383206, rs2383207, and rs10757278 in which the G allele was a
minor allele. Because I2 = 50%, a random-effects model was used

to compare alleles (Figure 2). Chromosome 9p21 was
significantly associated with IS risk, and the G allele was
associated with increased IS risk (OR: 1.14, 95% CI: 1.08–1.19,
p < 0.0001, Figure 2).

Publication Bias
TheHarbord test was used to evaluate publication bias. The bias =
0.3228, p = 0.7661, indicating no publication bias in the studies of
9p21 (Figure 3).

Sensitivity Analysis
Because the I2 is > 50% in this meta-analysis, a random-effects
model was used. To assess the impact of each individual study on
the pooled effect estimate, we performed a sensitivity analysis by
removing one study at a time. The pooled estimate I2 = 49.8%;

TABLE 2 | Correlation analysis between different genetic patterns of rs2383207, rs2383206, and rs10757278 at 9p21 locus and IS susceptibility.

SNP First author;
year

G (case/control) A (case/control) OR 95% CI SE (ln
(OR))

rs2383207 Lin-2011 850/1745 404/953 1.15 0.997 ~ 1.325 0.073
Jin-2021 2255/2320 1,025/1,190 1.13 1.019 ~ 1.249 0.052
Yang-2018 709/391 739/357 0.88 0.734 ~ 1.045 0.09
Li-2017 1908/1,509 950/873 1.16 1.037 ~ 1.302 0.058
Li-20211 1,385/1,227 589/665 1.27 1.114 ~ 1.458 0.069
Zhang-20122 2143/2100 1,171/1,228 1.07 0.968 ~ 1.183 0.051

rs2303206 Hua-2009 322/347 382/499 1.21 0.988 ~ 1.479 0.103
Ding-20094 439/452 441/544 1.19 0.999 ~ 1.437 0.093
Li-20211 959/841 1,053/1,057 1.14 1.009 ~ 1.298 0.064
Xiong-20183 192/190 208/220 1.07 0.811 ~ 1.408 0.141
Zhang-20122 1,560/1,467 1754/1801 1.12 1.024 ~ 1.243 0.049

rs10757278 Bi-2015 107/77 125/159 1.75 1.199 ~ 2.541 0.192
Han-2020 533/590 477/714 1.35 1.147 ~ 1.594 0.084
Xiong-20183 199/193 201/217 1.11 0.845 ~ 1.467 0.141
Ding-20094 261/326 621/676 0.87 0.716 ~ 1.060 0.100
Zhang-20212 1792/1,672 1,522/1,656 1.17 1.059 ~ 1.284 0.049

Note: The same numbers indicate the same article; SNP, single-nucleotide polymorphism; OR, odds ratio; CI, confidence interval; SE, standard error.

FIGURE 1 | Flow chart of study selection in this meta-analysis.
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thus, no single study significantly affected the results of each
single-locus sensitivity analysis.

Second and Third Analyses
According to the results of the bias test and sensitivity analysis, it was
found that the studies by Yang et al. (rs2383207) (Yang et al., 2018)
and Ding et al. (rs10757278) (Ding et al., 2009) had roughly the same
weight and were outside the funnel plot. We decided to remove the
two studies and re-analyze the results. After removing two studies, we
used R program to re-analyze the remaining studies. In the second
analysis, chromosome 9p21 remained significantly associated with IS
risk, and the G allele was associated with increased IS risk (OR: 1.16,
95% CI: 1.12–1.20, p < 0.0001, Figure 4). The results of this second
analysis further confirmed that the two removed studies had little

influence on the initial results. Moreover, there was homogeneity
between the studies (I2 = 5%, p = 0.40), and the two experiments were
outliers. A second bias test revealed that bias = 1.4217, p = 0.0696
(Figure 5). Sensitivity tests for the individual studies were again
performed to ensure that no single study significantly affected the
results of each single-locus sensitivity analysis.

We know from Figure 4 that the included studies were
homogeneous, and the sensitivity analysis of each study also
indicated that no single experiment significantly affected the
experimental results. Therefore, based on the forest map and
funnel plot, we also removed the study by Bi et al. (Bi et al.,
2015), located outside the funnel plot, in the third analysis. In this
third analysis, an increased risk of IS was associated with the G allele
(OR: 1.16, 95% CI: 1.11–1.20, p < 0.0001, Figure 6). Further analysis

FIGURE 2 | Random-effects meta-analysis of the association between the three single-nucleotide polymorphisms (SNPs; rs2383207, rs2383206, and
rs10757278) and ischemic stroke (IS). CI, confidence interval; OR, odds ratios.

FIGURE 3 | Funnel plots corresponding to the random-effects meta-analysis of all studies of the three single-nucleotide polymorphisms (SNPs; rs2383207,
rs2383206, and rs10757278) and ischemic stroke (IS).
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confirmed that the homogeneity between studies wasmore significant
after removing the study by Bi-2015 (I2 = 0%, p = 0.71, Figure 7), and
there was a more significant correlation between chromosome 9p21
and IS risk. Thus, the removal of the study by Bi et al. (2015) further
verified our original conclusions. The experimental results indicate
that chromosome 9p21 is significantly associated with IS risk, and an
increased risk of IS is associated with the G allele.

DISCUSSION

Stroke is currently the main cause of death in China; it has high
morbidity, mortality, and disability rates (Kim et al., 2015). Stroke
can be clinically divided into two types: IS and hemorrhagic
stroke. Among the stroke subtypes, hemorrhagic stroke accounts
for 20–40% of strokes in Chinese population, while in most

Western populations, the majority of strokes (80–90%) are
cerebral infarctions (Reed, 1990). Furthermore, IS accounts for
approximately 87% of all stroke types, and IS a multifactorial
disease that is influenced by both genetic and environmental
factors (Wang et al., 2021). Chromosome 921 was originally
reported to be associated with coronary heart disease (Matarin
et al., 2008). There are some similarities between the etiologies
and mechanisms of coronary heart disease and stroke, and 9p21
variants are associated with both diseases (Matarin et al., 2008).
However, when investigating the association between 9p21 and
IS, the conclusions drawn by researchers in China and in the rest
of the world have been inconsistent. Stroke is influenced by many
factors, including genetic, environmental, and vascular risk
factors. The main method of studying susceptibility sites and
genes in complex diseases is GWAS, based on SNPs (McPherson
et al., 2007).

FIGURE 4 | Fixed effects meta-analysis of the association between the three single-nucleotide polymorphisms (SNPs; rs2383207, rs2383206, and rs10757278)
and ischemic stroke (IS) in the second analysis. CI, confidence interval; OR, odds ratios.

FIGURE 5 | Funnel plots corresponding to the fixed-effects meta-analysis of the three single-nucleotide polymorphisms (SNPs; rs2383207, rs2383206, and
rs10757278) and ischemic stroke (IS) in the second analysis.
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Matthew Traylor et al. found that chromosome 9p21 and histone
deacetylase were associated with stroke in individuals of European
ancestry (Traylor et al., 2012). Furthermore, Akinyemi et al. reported
that rs2383207 increases IS incidence in indigenous West African men
(Akinyemi et al., 2017). Previously, GWAS was also used to
demonstrate that the antisense non-coding RNA in the INK4 locus
(ANRIL) variants rs2383207 and rs1333049 increases the risk of IS and
coronary heart disease in Caucasian populations (Dichgans et al., 2014;
Dehghan et al., 2016). Notably, studies investigating the genetic
associations of chromosome 9p21 variants have mainly been
performed among Caucasian populations, and relatively few studies
have been carried out inHanChinese populations.AlthoughChen et al.
(2019) studied chromosome 9p21 variants in Chinese populations, they
concluded that mutations in rs2383207 may reduce the risk of IS but
reported no definite correlation between rs10757278 and IS (Chen et al.,
2019). In the present study, we once again focused on the relationship
between stroke and chromosome 9p21.

In this meta-analysis, 18,584 participants were included; the IS
and control groups contained 14,033 and 14,656 individuals,
respectively. The three investigated SNPs have a linkage
disequilibrium relationship, and we arrived at the same
conclusions through unified analysis. All three SNPs were
associated with IS risk. However, there was heterogeneity between
the experimental results and studies; thus, bias detection and
sensitivity analyses were carried out. Figure 3 suggested that the
research may have been biased; therefore, to remove any possible
bias, we performed another set of analyses. These further analyses
had similar results that were more significant than those of the
original analysis, further confirming that our analysis was correct.

In conclusion, our results indicate that rs2383206, rs2383207,
and rs10757278 are significantly associated with IS risk and the G
allele is associated with an increased risk of IS. Because the three
SNPs in the present study have linkage disequilibrium and are in
similar positions on chromosome 9p21, a unified analysis was

FIGURE 6 | Fixed-effects meta-analysis of the associated between the three single-nucleotide polymorphisms (SNPs; rs2383207, rs2383206, and rs10757278)
and ischemic stroke (IS) in the third analysis. CI, confidence interval; OR, odds ratios.

FIGURE 7 | Funnel plots corresponding to the fixed-effects meta-analysis of the three single-nucleotide polymorphisms (SNPs; rs2383207, rs2383206, and
rs10757278) and ischemic stroke (IS) in the third analysis.
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performed. Environmental factors such as smoking and alcohol use
may also be associated with IS risk, but not all studies considered
these risk factors. Therefore, the influence of genes and the
environment on IS pathogenesis needs to be further studied.
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Vascular dementia (VaD) is the second most common cause of dementia. At present,
precise molecular processes of VaD are unclear. We attempted to discover the VaD
relevant candidate genes, enrichment biological processes and pathways, key targets,
and the underlying mechanism by microarray bioinformatic analysis. We selected
GSE122063 related to the autopsy samples of VaD for analysis. We first took use of
Weighted Gene Co-expression Network Analysis (WGCNA) to achieve modules related to
VaD and hub genes. Second, we filtered out significant differentially expressed genes
(DEGs). Third, significant DEGs then went through Geno Ontology and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis. Fourth, Gene Set Enrichment
Analysis (GSEA) was performed. At last, we constructed the protein–protein interaction
(PPI) network. The results showed that the yellow module had the strongest correlation
with VaD, andwe finally identified 21 hub genes. Toll-like receptor 2 (TLR2) was the top hub
gene and was strongly correlated with other possible candidate genes. In total, 456
significant DEGs were filtered out and these genes were found to be enriched in the Toll
receptor signaling pathway and several other immune-related pathways. In addition, Gene
Set Enrichment Analysis results showed that similar pathways were significantly over-
represented in TLR2-high samples. In the PPI network, TLR2 was still an important node
with high weight and combined scores. We concluded that the TLR2 acts as a key target in
neuroinflammation which may participate in the pathophysiological process of VaD.

Keywords: vascular dementia, TLR2, neuroinflammation, bioinformatic analysis, WGCNA

INTRODUCTION

Vascular dementia (VaD), following Alzheimer’s disease (AD), is one of the most prevalent
causes of dementia (O’Brien and Thomas, 2015). A study in 6,481 Korean older adults showed
that in 2016 disability-adjusted life-years (DALYs) caused by VaD (316 per 100,000) comprised
20% of the total DALYs caused by mild cognitive impairment (MCI) and dementia. In 2065,
DALYs due to VaD (3654 per 100,000) would comprise 38% of the total DALYs as mentioned
before. In parallel, the years of life lived with disability (YLDs) attributed to VaD (85 per
100,000) accounted for 18% of the total YLDs caused by MCI and dementia in 2016, while in
2065 YLDs attributed to VaD (410 per 100,000) will account for 15% of total YLDs (Moon et al.,
2021). As the data shows, DALYs and YLDs of VaD are estimated to increase. However, there are
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fewer relative studies about VaD than those about AD, and
there are no licensed treatments for VaD.

As a multifactorial disease, various risk factors participate in
the development of VaD. Age and stroke are both major risk
factors for the pathogenesis of VaD. VaD is also associated with
vascular risk factors (O’Brien and Thomas, 2015; Iadecola et al.,
2019). In addition, genetic linkage analyses investigated penetrant
monogenic causes of VaD (Romay et al., 2019). Thus, a
comprehensive understanding of key risk factors and genetic
predispositions that lead to VaD needs to be clarified.

In nervous system, Toll-like receptors (TLRs) were reported to
regulate the numbers of neurons and the size of brain, modulating
structural plasticity in the adult brain (Li G et al., 2020). TLRs were
an ancient family of pattern recognition receptors (PRRs). The role
of TLRs in immunity control has been broadly discussed (Fitzgerald
and Kagan, 2020). In neurological diseases, TLRs were reported to
participate in AD (7), Parkinson’s disease (PD) (Kouli et al., 2019),
ischemic stroke (IS) (Wang et al., 2013; Tajalli-Nezhad et al., 2019),
and multiple sclerosis (MS) (Racke and Drew, 2009). However, the
role of TLRs in VaD remained unclear.

In the present study, we performed a bioinformatic analysis
based on GSE122063 (McKay et al., 2019). We first tried to figure
out hub genes and top hub gene. Then we conducted a basic
analysis on DEGs. Last, we performed relative analyses centered
on the top hub gene to further investigate the probable
mechanism of that gene in VaD.

MATERIALS AND METHODS

Microarray Data Processing
In the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/) database, we chose GSE122063 which included the
autopsy samples of VaD for analysis. GSE122063 was based on
GPL16699 which used Agilent-039494 SurePrint G3 Human GE v2
8 × 60 K Microarray to detect the expression of genes. The
microarray data includes eight VaD patients, 12 AD patients, and
11 controls postmortem frontal and temporal cortex samples. Each
sample was run with at least two technical replicates. Data from AD
patients were excluded from analysis and VaD sample 1063 was
removed due to poor data quality according to the clustering result.
The raw expression matrix was directly downloaded from the
website, and the SOFT format file was downloaded and parsed
by the GEOquery package (Davis and Meltzer, 2007). Then we used
GPL1699 to transit ID into gene names and gene symbols using
merge function in R. In addition, we checked if the data need log
transformation or normalization. After pre-processing, a normalized
expression matrix was constructed. The group matrix was
constructed based on clinical information. All bioinformatic
analyses and visualization were processed based on R.

Weighted Gene Co-Expression Network
Analysis (WGCNA)
The WGCNA package (Langfelder and Horvath, 2008) was used
to create a gene co-expression network. By median absolute
deviation (MAD), the top 5,000 ranking genes were selected at

first. Then a soft-thresholding power β was calculated by using
the “pickSoftThreshold” function. A suitable power value was
defined as the first number reaching which the degree of
independence was at least 0.9. The gene expression matrix was
then converted into a topological overlap matrix (TOM), and the
genes were divided into several gene modules, each represented
by a distinct color. Next, a hierarchical clustering analysis was
performed by using the hclust function. Except for the WGCNA
package, the gplots package (Warnes et al., 2020) was used for
visualization. In addition, the top 100 networks sorted by weight
were exported to Cytoscape software for visualization.

In WGCNA, gene significance (GS) was used to describe the
relationship between gene and phenotype. Module membership
(MM) was calculated to evaluate the importance of a gene in the
module by using the cor function. In this study, genes with both
GS > 0.3 and MM > 0.9 was defined as hub genes among the
candidate gene modules (Jin et al., 2021). The correlation
relationship of hub genes was explored by using the gpairs
package (Emerson and Green, 2020).

Identification of DEGs
We first used lmFit and eBayes functions in the limma package
(Ritchie et al., 2015) to identify the DEGs between VaD and
control groups. The statistical method to calculate false
discovery rate (FDR) was the Benjamini–Hochberg method.
Then a threshold of adjust-p < 0.05 and the absolute value of
log2 fold change (log2FC) > 1 were set, and the significant
DEGs between the VaD and controls were filtered out. A
volcano plot was presented by using EnhancedVolcano
(Blighe et al., 2018). The distribution shape of TLR2 was
shown in the violin plot by using the ggpubr package
(Kassambara, 2020).

Geno Ontology and Kyoto Encyclopedia of
Genes and Genomes Enrichment Analysis
A GO enrichment analysis was run to annotate the functions of the
significant DEGs with GO terms. The GO enrichment analysis could
explain the features of changed genes from the following three
structural networks of terms: biological processes (BP), cellular
components (CC), and molecular functions (MF). The KEGG
pathway analysis was performed to investigate the pathway that
the significant DEGs might be involved in. The org. Hs.eg.db
package (Carlson, 2021) was used for transition from gene
symbols to Entrez ID. Then the clusterProfiler package (Yu et al.,
2012; Wu et al., 2021) was used for the enrichment analysis. At last,
the ggplot2 (Wickham, 2016) package was used for visualization.
The aforementioned analysis results enabled us to discover the
biological pathways of the altered genes in the VaD group.

Gene Set Enrichment Analysis (GSEA)
In the GSE122063 datasets, GSEA was used to explore distinct
GO terms and KEGG pathways that may be associated with
TLR2. All genes were included in the analysis. Gene sets were
directly downloaded from the website (http://www.gsea-msigdb.
org/gsea/downloads.jsp). Except for the VaD and control groups,
we set the median expression level of TLR2 as the cutoff value to
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divide patients into TLR2-high and TLR2-low expression groups.
The org. Hs.eg.db package (Carlson, 2021) was used for Entrez ID
transition, and the clusterProfiler package (Yu et al., 2012; Wu
et al., 2021) was used for the enrichment analysis. Furthermore,
the gseaplot2 function in the enrichplot package (Yu, 2021) was
used for visualization of enrichment results.

Construction of a Protein–Protein
Interaction Network
We used the STRING online database (https://string-db.org/) to
construct a PPI network. Significant DEGs were uploaded to the
STRING website. After being filtered by the “no more than 50
interactors” and “k-means clustering” options, the PPI network
was exported into a TSV file. At last, the analysis and visualization
of the interaction network were achieved by Cytoscape software.
The function of network analysis function in the Cytoscape
software calculated the degree which was utilized as the
continuous mapping of nodes both in size and fill color (from
blue to red). The combined score exported directly from the
string database was used for the continuous mapping of edges
both in width and stroke color (from blue to red). Larger size and
bluer nodes indicated the higher degree, while wider and bluer
lines indicated the higher combined scores.

RESULTS

WGCNA and Module Related With VaD
Using the expression matrix, WGCNA was used to determine the
main module which was most linked with VaD. At first, we chose

the top 5,000 genes sorted by MAD in the GSE122063 microarray
assay for analysis. According to the calculation result, the soft-
thresholding power βwas 2 as the plot showed, with the scale-free
topology R2-value achieving 0.9 (Figure 1A). To visualize the
weighted network, a heat map was plotted. The gene co-
expression network was created, and the genes were clarified
into five modules represented by distinct colors including grey,
turquoise, blue, brown, and yellow. This is called a cluster
dendrogram, and it was presented along the axis. a network
heat map of all 5,000 genes was shown by using the TOMplot
function in Figure 1B. Each row and column in the heat map
represented the same gene, and thus the network heat map is a
symmetric plot. The genes with strong correlations were clustered
into modules, which were represented as dark sections
symmetrically distributed along the diagonal in the heat map,
corresponding to the cluster dendrogram. The biggest grey
module included 2,783 genes, and the smallest yellow module
included 400 genes. As shown in the module–trait relationships
plot, the yellow module was most positively associated with VaD
(correlation coefficient = 0.57, ***p < 0.001; Figure 1C) and was
chosen as the key module. The functional annotation of three
significantly related modules (blue, turquoise, and yellow) are
shown in Supplementary Figure S1. The yellow module was
most related to immunity and inflammation.

Identification of Hub Genes and Top Hub
Gene
Among the 400 genes in the yellow module, genes with MM > 0.9
and GS > 0.3 were sorted out as hub genes. The red dotted lines
represent the thresholds value of MM > 0.9 and GS > 0.3 set for

FIGURE 1 | Results and visualization of Weighted Gene Co-expression Network Analysis (WGCNA) analysis. (A) Determination of soft threshold β. Left: scale
independence; right: mean connectivity. (B) Heat map showing the TOM among all 5,000 genes involved in the WGCNA with cluster dendrogram showing on the axis.
Each color represents one specific co-expression module; the above branches represent genes. The genes with strong correlations are clustered into modules, which
are represented as dark sections symmetrically distributed along the diagonal in the heatmap, corresponding to the cluster dendrogram. (C) Module–trait
relationships among the five gene modules. The yellow module is the most correlated module (correlation coefficient = 0.57, ***p < 0.001).
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hub genes and separated an area in the upper right corner. The
correlation analysis between yellow module memberships and
gene significance showed statistical significance (correlation
coefficient = 0.65, ***p < 0.001). In total, 21 hub genes were
identified (TLR2, CD163, VSIG4, SLAMF8, C1QB, CD16a,
CD32, ALOX5AP, integrinβ2, EBI3, HCLS1, CD14, LAIR-1,
CD300a, IFI30, LCP1, C1orf162, γ-parvin, ALOX5, SLA, and
CMTM7). According to MM or the
chooseTopHubInEachModule function, TLR2 was the top hub
gene in the yellow module (Figure 2). Furthermore, we found
that TLR2 shows a strong positive correlation with other
candidate genes, which indicated that changes in TLR2
expression might cause changes in these genes
(Supplementary Figure S2).

Identification of DEGs in VaD
The gene expression levels of the samples were distributed at the
same baseline after normalization. Compared to the control
group, significant DEGs were identified in the VaD group by
setting the threshold value as adjust-p < 0.05 and |log2FC| > 1.
The expression of the genes was displayed as a volcano plot in
which the size of the dot reflects |log2FC| of the gene (Figure 3A).
There were 456 significant DEGs between the VaD and control
groups among the 23,320 genes detected in microarray, including
198 upregulated ones and 258 downregulated ones. TLR2 was one
of the significant DEGs and was marked out in the volcano plot.
Specifically, the expression level of TLR2 in the VaD and control
groups was shown in the violin plot (***p < 0.001, Figure 3B).
TLR2 was significantly differentially expressed between the two
groups.

Results of GO and KEGG Analysis
Significantly upregulated and downregulated DEGs were
enriched in BP, CC, and MF terms and the KEGG pathway,
respectively. The horizontal axis represents −log10 (p-value),
while the color indicated the change direction. In detail, BP,
Toll-like receptor signaling pathway was enriched, which was
consistent with our previous result. Other BPs such as negative
regulation of immune system process, antigen processing, and
presentation and regulation of B, T, and NK cells were examples
of significantly enriched upregulated GO terms (*p < 0.05,
Figure 4A), while CCs, including azurophil granule, endocytic
vesicle, and secretory granule membrane are shown (*p < 0.05,
Figure 4B). Upregulated MFs, such as scavenger receptor activity
and RAGE receptor activity, were significantly enriched.
Neuropeptide hormone activity, neuropeptide receptor
binding, and signaling receptor activation activity were
downregulated (*p < 0.05, Figure 4C). Most enriched KEGG
pathways did not reach statistical significance in which we

FIGURE 2 | Selection of hub genes. Module membership (MM) vs. gene
significance (GS) in the yellow module (correlation coefficient = 0.65, ***p <
0.001). The red dotted lines represented the thresholds of MM > 0.9 and GS >
0.3 set for hub genes and separated an area in the upper right corner.
Toll-like receptor 2 (TLR2) is selected as the top hub gene.

FIGURE3 |Differentially expressed genes (DEGs) present in vascular dementia (VaD) and control groups inmicroarray fromGSE122063 and the expression level of
Toll-like receptor-2 (TLR2). (A) Volcano plot showed the distribution of the DEGs between two groups. The red dots correspond to the significantly regulated genes. (B)
Violin plot of TLR2. TLR2 is upregulated in the VaD group (***p < 0.001).
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observed a trend in Toll-like receptor signaling pathway and
neuroactive ligand–receptor interaction was significantly
downregulated (Supplementary Figure S3).

GSEA Enrichment Results
GSEA was analyzed in the disease group versus control as well as
groups divided by the expression level of TLR2. When comparing
the VaD group with the control group, the Toll-like receptor
pathway was enriched, which was the same as the results from
DEGs. Other immunity and inflammation-related processes were
also enriched which indicated the representativeness of the data
and complemented evidence for the role of TLR2 in
neuroinflammation. The results are shown in Supplementary

Figure S4. When comparing the TLR2-high group with the low
group, the results showed that BPs, such as cytokine-mediated
signaling pathway and defense response to other organism, were
significantly enriched in the TLR2-high samples (*p < 0.05,
Figure 5A). CCs, such as synapse, vacuole, and cell surface
granule, and MFs, such as immune receptor activity and
molecular transducer activity, were significantly enriched in
the TLR2-high samples, shown in Figures 5B, C, respectively
(*p < 0.05, Figures 5B,C). When it comes to the KEGG
enrichment analysis, pathways such as antigen processing and
presentation, ribosome, and cytokine–cytokine receptor reaction
were significantly over-represented in TLR2-high samples (*p <
0.05, Figure 5D). The similar enrichment results in VaD and

FIGURE 4 | Results of the Geno Ontology (GO) terms enrichment analysis of significant DEGs. (*p < 0.05). Blue bars showed the results of upregulated genes while
red bars showed the results of downregulated genes.
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control groups, as well as in the TLR2-high and low groups
further demonstrated the important role of TLR2 in VaD.
Moreover, high expression level of TLR2 was related to many
genes, including myeloid differentiation factor 88 (MyD88),
nuclear factor kappa B (NF-κB), protein kinase B (AKT), glial
fibrillary acidic protein (GFAP), ionized calcium-binding adapter
molecule 1 (Iba1), and many cytokines according to the
expression matrix and the KEGG pathway.

PPI Network Construction
With the combined use of STRING and Cytoscape, the PPI network
of the significant DEGs was created. The size and color reflected the

degree of nodes in which the more edges connected to this node, the
greater its degree. The larger size and bluer node indicated the higher
degree. The width and color reflected the combined score of edges in
which the combined scores were positively related to the interaction
relationships between the two proteins. The wider and bluer line
indicated higher combined scores. The overall network of DEG-
correlated proteins is shown in Figure 6A. TLR2 got a relatively high
degree in this overall network which suggested that TLR2 played a
crucial role in the network. Considering the complication of the
network, a new network centered on TLR2 was further constructed
and amplified. TLR2 was most associated with Complement C5a
Receptor 1 (C5AR1), Heat Shock Protein Family A Member 1 A

FIGURE 5 |Gene Set Enrichment Analysis (GSEA) results grouped by the expression level of TLR2. (A) BP enriched in TLR2-high group. (B)CC enriched in TLR2-
high group. (C) MF enriched in TLR2-high group. (D) KEGG pathways enriched in TLR2-high group.
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(HSPA1A), cluster of differentiation (CD14), and cytochrome B-245
Beta Chain (CYBB) (Figure 6B).

DISCUSSION

Cognitive impairment related to aging has become one of the
major public health burdens for us. Although Alzheimer’s disease
is the most prevalent cause of clinically diagnosed dementia in
western nations, vascular etiology is the second most common
cause. Also, vascular etiology is the most common cause in East
Asia (Iadecola et al., 2019). Thus, it is worthwhile to investigate
the underlying mechanism of VaD development. Much progress
has been made during the past years; however, several
controversies remain to be interpreted.

In the present study, we first took use of WGCNA to achieve
modules related to VaD and hub genes. According to the
correlation coefficient, a yellow module was chosen which was
closely related to immunity and we finally identified 21 hub genes.
TLR2 was the top hub gene which was strongly correlated with
other possible candidate genes. Second, we filtered out 456
significant DEGs by adjust-p < 0.05 and |log2FC| > 1. TLR2
was one of the DEGs and was significantly upregulated in the
VaD group. Third, significantly upregulated and downregulated
DEGs were gone through GO and KEGG analyses and the Toll-like
receptor pathway, and other inflammation related processes were
found to be upregulated in the VaD group. Fourth, GSEA results
showed that cytokine-mediated signaling pathway, cell surface,
immune receptor activity, and cytokine–cytokine receptor reaction

FIGURE 6 | Construction of the protein–protein interaction (PPI) network consisting of DEGs. (A) PPI of DEGs. (B) Partial network centered on TLR2. The size and
color of the nodes reflect the degree and the width and color of the edges reflect the combined scores (color: from blue to red). Larger size and bluer nodes indicated the
higher degree while wider and bluer lines indicated the higher combined scores.
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were significantly over-represented in TLR2-high samples. The
results were similar to enrichment results achieved by samples
being divided by disease status. Finally, in the PPI analysis, TLR2
was an important node with a higher degree and combined scores
edges which indicated that TLR2 remained a key target at the
protein level. In summary, with five approaches complementing
each other, TLR2 might participate in the pathophysiological
process of VaD via the neuroinflammation pathway.

TLRs were proved to be involved in the control of immunity and
neurological diseases (Racke and Drew, 2009; Kouli et al., 2019; Lin
et al., 2019; Tajalli-Nezhad et al., 2019; Fitzgerald and Kagan, 2020).
TLR2, as a member of TLRs, also played a vital role in nervous
system. Based on the KEGGToll-like receptor signaling pathway, we
summarized a mechanism chart. After comparing the pathway with
our analysis results, we found that a high expression level of TLR2
was related to many genes, including MYD88, AKT, NF-κB, Iba1,
GFAP, and many cytokines, suggesting that TLR2 might participate
in the development of VaD via the neuroinflammation pathway.
The genes that were upregulated in this microarray were marked in
red. High expression of TLR2 induced activation of astrocytes and
microglia, which further lead to the secretion of cytokines (Figure 7).
Previous studies were consistent with our results and provided a
foundation for this prediction. Knockdown ofMyD88 attenuated the
mRNA expression of TNF-α and inducible nitric oxide synthase
(iNOS) (Jana et al., 2008) in AD, while reduced inflammatory
response was observed in MYD88 knockdown mice with
traumatic brain injury (TBI) (Krieg et al., 2017). These results
revealed the role of MYD88 in neuroinflammation. Meanwhile,
AKT and NF-κB were involved in the neuroinflammation pathway
in experimental models of AD (Yang et al., 2020). In addition, GFAP
is an activation marker of astrocytes, while Iba1 and CD68 are the
activation markers of microglia. The anti-TLR2 antibody group had
lower GFAP and CD68 immunoreactivity than the control group
(McDonald et al., 2016). At last, the expression levels of

inflammatory cytokines increased (Brea et al., 2011; Dzamko
et al., 2017; Sun et al., 2017). At the protein level, TLR2 was
proven to be strongly correlated with proteins such as C5AR1
(Mödinger et al., 2018), HSPA1A (Yang et al., 2013), and CD14
(Aguilar-Briseño et al., 2020), according to the previous study which
was coincident with our results. These molecules, as well as CYBB,
were all related to neuroinflammation which further proved our
results (Tarassishin et al., 2014; Qu et al., 2017; Michailidou et al.,
2018; Keller et al., 2021). All the results proved that TLR2 could be an
efficient target to regulate the unwanted inflammatory responses in
neurological conditions (Hayward and Lee, 2014). Thus, we
suggested that TLR2 might participate in the development of
VaD via the neuroinflammation pathway.

In parallel, there was other evidence that also supported the role
of TLR2 in the development of VaD. First, TLR2 regulated the risk
factors of vascular diseases which further affect VaD development,
such as atherosclerosis (Li B et al., 2020) and diabetes. TLR2 was
found to promote vascular smooth muscle cell chondrogenic
differentiation and consequent calcification in atherosclerosis by
activating p38 and extracellular regulated protein kinases (ERK) 1/2
signaling (Lee et al., 2019). Activation of TLR2 stimulated the pro-
inflammatory cytokines and chemokines secretion, which would
cause vascular injuries. Diabetes-induced changes in cerebral blood
flow and cognitive deficits were prevented when TLR2 was knocked
out (Hardigan et al., 2017).

Second, TLR2 participated in the pathophysiological process
of stroke and other neurodegeneration diseases. In IS, TLR2 was
associated with the outcome (Brea et al., 2011), and TLR2
inhibition improved neuronal survival (Ziegler et al., 2011),
which indicated a future therapy. Repeated exposure to TLR2
agonists may exacerbate neurodegeneration in AD by their
microglial-mediated toxicity (Lax et al., 2020) and inhibition
of TLR2 in microglia (Liu et al., 2012) or mouse model could
be beneficial in AD pathogenesis. Similarly, TLR2 was reported to
exert a prominent role in the microglial-mediated responses
which is vital for PD progression (Doorn et al., 2014).

Third, TLR2 exerted functions in biological processes or other
neurological diseases via the neuroinflammation pathway.
Neuraminidase-induced inflammatory reaction in vivo was partly
dependent on TLR2 (Fernández-Arjona et al., 2019), while
interferon-γ (IFN-γ) enhanced α-syn stimulation and
inflammatory responses via TLR2, TLR3, and TNF-α in vitro
(Wang et al., 2019). TLR2 and TLR4 could serve as important
mediators of repeated social defeat stress (R-SDS)–induced
microglial activation in the medial prefrontal cortex (mPFC),
which caused neuronal and behavioral alternations via
inflammatory-related cytokines (Nie et al., 2018). In addition,
TLR2 and TLR4 were shown to potentially advance secondary
brain injury after experimentally controlled cortical impact (CCI)
via neuroinflammation (Krieg et al., 2017) while activation of
microglia, via a TLR2-sphingosine kinase 1 (Sphk1)-pro-
inflammatory cytokines (IL-1β, TNF-α, IL-17, and IL-23)
pathway, may be involved in ischemia/reperfusion (I/R) injury
(Sun et al., 2017). In IS, TLR2 activation was associated with a
higher interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and IL-6
expression level (Brea et al., 2011). The expression of TLR2 was
increased in affected regions, further inducing TNF-α expression and

FIGURE 7 | Potential mechanism for high expression of TLR2 to
promote VaD. The network is summarized according to GSE122063
database and public KEGG pathway. Red indicates the upregulated genes.
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increased phosphorylation of NF-κB p105 subunit in PD (32). In AD,
TLR2 was proved to be a natural receptor for Aβ to trigger
neuroinflammatory activation (Richard et al., 2008; Liu et al.,
2012). TLR2 deficits in microglia shifted related inflammatory
activation in vivo, while TLR2 insufficiency reduced Aβ42-
triggered inflammatory activation and increased Aβ phagocytosis
in vitro, whichwere both related to improved neuronal function (Jana
et al., 2008; Liu et al., 2012; McDonald et al., 2016). TLR2 could
enhance macrophage receptor with collagenous structure
(Marco)–induced neuroinflammation by acting on the scavenger
receptors cysteine-reach (SRCR) domain of Marco, which also
suggested that TLR2 could serve as a novel target for reducing
neuroinflammation in neurodegenerative diseases (Wang et al.,
2021). Therefore, it is reasonable to speculate that TLR2
participates in the pathophysiological process of VaD through the
neuroinflammation pathway and could serve as a key target.

Our research showed that using bioinformatics to investigate
the molecular processes underlying VaD could provide valuable
information. Bioinformatic techniques, however, were used to
identify probable critical pathways and genes. Thus, molecular
experiments based on clinical samples or animal models should be
performed to further validate the results. It remained to be clarified
whether TLR2 is involved in the pathophysiological process of VaD
and inhibition of TLR2 would contribute to VaD treatment.

In conclusion, we identified TLR2 as a neuroinflammatory
leading change during VaD.
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Alzheimer’s disease (AD) is a life-threatening neurodegenerative disease of the elderly.
In recent observations, exposure to heavy metals environmental may increase the
risk of AD. However, there are few studies on the causal relationship between heavy
metal exposure and AD. In this study, we integrated two large-scale summaries of
AD genome-wide association study (GWAS) datasets and a blood lead level GWAS
dataset and performed the two-sample Mendelian randomization analysis to assess
the causality of blood lead level and AD risk. The results showed that there is a
significantly positive causality between blood lead level and AD risk both in the inverse-
variance weighted (IVW) model and the weighted median estimator (WME) model. An
independent additional verification also reached a consistent conclusion. These findings
further confirm the conclusions of previous studies and improve the understanding of the
relationship between AD pathogenesis and the toxicity of lead in environmental pollution.

Keywords: blood lead, heavy metal pollution, Alzheimer’s disease, multigenomics, Mendelian randomization

INTRODUCTION

Heavy metals are non-biodegradable, and well-documented evidence supports that chronic
exposure to heavy metals can cause neurodegenerative diseases (Bush, 2003; Mates et al., 2010).
These pollutants arise from rapid urbanization and industrialization, such as municipal waste,
traffic, aquaculture, agricultural chemicals, paint coatings, petrochemical industry, electronic
industry, mining, and smelting (Tchounwou et al., 2012; Wang et al., 2013; Ojuederie and
Babalola, 2017; Fan et al., 2020). Human exposure to heavy metals mainly via ingestion of metal-
contaminated food, water, and employment in metal-contaminated workplaces (Tchounwou et al.,
2012). Several epidemiological studies have shown a significant association between cumulative
metals exposure and neurodegenerative diseases (Bjorklund et al., 2018; Bakulski et al., 2020). There
is robust evidence that heavy metals can disturb neurotransmitter systems by multiple mechanisms,
including the interaction with neurotransmitter receptors, the modification of certain gene and/or
protein expression, and the collateral damage of their functions following Reactive Oxygen Species
(ROS) production (Bertram and Tanzi, 2005; Carmona et al., 2021). A previous study found that
some amyotrophic lateral sclerosis patients have a 2.3- to 3.6-fold increase both in the patellar and
tibial lead, which is a dose-dependent increased risk of this disease (Kamel et al., 2002).
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There are many kinds of neurodegenerative diseases,
including Parkinson’s disease, amyotrophic lateral sclerosis,
Lewy body dementia, Alzheimer’s disease (AD), and so on.
Among them, AD is the most typical neurodegenerative disease
(Bakulski et al., 2020). AD is a neurodegenerative disease that
threatens the life of the elderly, and currently, there is no efficient
treatment for AD (Bakulski et al., 2020). AD is caused by a variety
of environmental, lifestyle, and genetic factors that influence the
degeneration of neuronal cells over some time (Bakulski et al.,
2020; Huang et al., 2022). The neuropathological features of AD
are hyperphosphorylated tau (a microtubule-binding protein),
neurofibrillary tangles (NFTs), and aging plaques consisting of
accumulated amyloid protein (Aβ) and contained metal ions
(Han et al., 2019; Bakulski et al., 2020).

Accumulating evidence suggests that heavy metal pollution
may be an important contributor to AD, but there is
no comprehensive understanding of the effects of heavy
metal pollution on AD. This study attempts to analyze the
correlation between heavy metal pollution and AD by the
Mendelian randomization. Mendelian randomization analysis is
an analytical method for evaluating the observed correlation
between a changeable risk or exposure factor and a clinically
relevant outcome (Sekula et al., 2016). The use of as many
instrumental variables as possible can reduce the concern of weak
instrumental bias (Burgess and Thompson, 2011). This research
uses genetic variants to assess the causal relationship between
heavy metal exposure and AD.

In this study, we first selected the genome-wide association
study (GWAS) summary data of AD and environmental
pollutants from multiple authoritative databases. Then, we
filtered the GWAS summary data and selected independent and
matched exposure risk factor-related SNPs as the instrumental
variables. Next, based on the instrumental variables with their
GWAS summary results, we used two models to assess the
causality of environmental pollutants and AD risk by the two-
samples Mendelian randomization analysis. Finally, we used
three check methods to ensure the reliability of the results of the
Mendelian randomization analysis.

MATERIALS AND METHODS

Data Sources
The common water quality pollutants were considered as the
exposure risk factors in this study. The related genetic variations
of these exposure risk factors were selected by searching the
NHGRI-EBI GWAS Catalog1 using the keywords: “Cadmium,”
“Chromium,” “Mercury,” “Manganese,” “Lead,” “Molybdenum,”
and “Nickel.” The NHGRI-EBI GWAS Catalog is a curated
collection for delivering the high-quality published (GWAS)
summary results of various human traits (Buniello et al., 2019).
Finally, we only identified 14 blood lead level-related SNPs
from a 5,433-sample size European ancestry GWAS study. This
study used the blood samples from the Queensland Institute of
Medical Research in Australia and the Avon Longitudinal Study

1https://www.ebi.ac.uk/gwas

of Parents and Children in the United Kingdom to measure
blood lead levels and genotype of the SNPs (Warrington et al.,
2015). The details were shown in Supplementary Table 1. The
summary of GWAS data on AD is derived from a consortium
consisting of the Alzheimer’s Disease Genetics Consortium
(ADGC), European Alzheimer’s Disease Initiative (EADI),
Cohorts for Heart and Aging Research in Genomic Epidemiology
Consortium (CHARGE), and Genetic and Environmental Risk
in AD/Defining Genetic, Polygenic and Environmental Risk for
Alzheimer’s Disease Consortium (GERAD/PERADES). A total of
10,528,610 variants are genotyped and measured using 21,982
AD individuals and 41,944 controls (Kunkle et al., 2019). In
addition, to ensure the reliability of the results, we further used an
independent GWAS dataset EFO_0000249, which includes 5,918
AD individuals and 212,874 controls, to conduct a verification
using the Mendelian randomization analysis.2

Selection and Filtration of Instrumental
Variables
According to the threshold of significant association P < 10−5,
we first selected the 14 blood lead level-related SNPs as the
instrumental variables and further discarded the non-biallelic
SNPs. Then, we matched the remaining SNPs to the AD GWAS
results and attempted to align strands of the palindromic SNPs
for allele harmonization. Next, to ensure mutual independence
between the instrumental variables, we performed a linkage
disequilibrium (LD) analysis and filtered the non-independent
SNPs according to the significance threshold, i.e., r2 < 0.001
within the 10,000 kb window. The samples used to estimate the
LD effect were derived from the 1,000 Genome Project European
ancestry individuals (Consortium, 2012). Finally, if blood lead
level-related SNP is not present in the AD GWAS results, we tried
to use the proxy SNPs through LD tagging (r2 = 1) instead of it
and integrated the filtered SNPs with the GWAS results of blood
lead level and AD as the instrumental variables.

Mendelian Randomization Analysis
We used the R package “TwoSampleMR” and its web
server “MRBASE” to perform the two-sample Mendelian
randomization analysis (Hemani et al., 2018). Particularly,
we conducted the inverse-variance weighted (IVW) model
and the weighted median estimator (WME) model to assess
the causal effect of blood lead level on AD risk. The IVW
model ignores the intercept in the regression analysis and uses
the inverse of the variance as a weight for the fit. The WME
model is a consistency estimator under the assumption that
more than half of the instrumental variables are valid. For the
IVW model, each inverse-variance was estimated by dividing
SNP-AD associations by SNP-blood lead level associations (i.e.,
Wald ratios). Then, the mean effect of blood lead level on AD
risk was estimated by a random effect meta-analysis of the
Wald ratios. When the inverse-variance satisfies the primary
assumptions of Mendelian randomization analysis [i.e., the
inverse-variance: (1) is associated with the exposure, (2) is not
associated with the confounders, and (3) does not influence the

2https://r5.risteys.finngen.fi/phenocode/G6_AD_WIDE
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TABLE 1 | The causality of blood lead level and Alzheimer’s disease (AD) risk by two-sample Mendelian randomization (MR) analysis using the data of AD consortium
(Kunkle et al., 2019).

SNP Position Effect
allele

GWAS of blood lead level GWAS of AD Model MR analysis Heterogeneity test Horizontal pleiotropy

Beta P-value Beta P-value Beta P-value Cochran’s
Q

P-value Intercept P-value

rs76153987 chr3:9214817 T −0.195 4 × 10−6
−0.073 0.0266

IVW 0.245 0.0103 2.161 0.34
rs116864947 chr7:11705786 T −0.431 3 × 10−7

−0.123 0.0376 −0.029 0.44
WME 0.262 0.0367 0.684 0.41

rs6462018 chr7:27519118 G −0.084 4 × 10−6
−0.002 0.8994

TABLE 2 | The causality of blood lead level and AD risk by two-sample MR analysis using the data of EFO_0000249.

SNP Position Effect
allele

GWAS of blood lead level GWAS of AD Model MR analysis Heterogeneity test Horizontal pleiotropy

Beta P-value Beta P-value Beta P-value Cochran’s
Q

P-value Intercept P-value

rs76153987 chr3:9214817 T −0.195 4 × 10−6
−0.036 0.4025

IVW 0.242 0.0046 3.297 0.51
rs116864947 chr7:11705786 T −0.431 3 × 10−7 0.128 0.0333

rs6462018 chr7:27519118 G −0.084 4 × 10−6
−0.005 0.8136 –0.026 0.385

rs798338 chr7:78287721 A −0.111 4 × 10−6
−0.015 0.4901

WME 0.220 0.0059 2.269 0.52
rs10121150 chr9:113369415 C −0.143 3 × 10−8 0.069 0.0183

outcome through some pathways other than the exposure], IVW
model can provide accurate estimates (Burgess et al., 2013; Staley
and Burgess, 2017). For the WME model, the intercept of the
fitted curve was calculated to estimate the average pleiotropy
effect across the genetic variants. The WME can also provide a
consistent estimate when more than half of the inverse variance
satisfies the primary assumptions of Mendelian randomization
analysis (Verbanck et al., 2018). The threshold of significant
causal effect was set as P < 0.05. Moreover, the causal effect was
considered positive and negative when the beta value was greater
and less than zero, respectively.

Reliability Check
To ensure the reliability of the results of Mendelian
randomization analysis, we performed the horizontal pleiotropy
test, heterogeneity test, and sensitivity analysis. Particularly, we
used the Egger regression intercept to estimate the magnitude of
horizontal pleiotropy. If the SNPs influence the AD risk through a
pathway other than the blood lead level, the significant horizontal
pleiotropic (P < 0.05) can bias the Mendelian randomization
estimates (Burgess and Thompson, 2017). Then, we assessed the
heterogeneity by a funnel plot. The asymmetry and large spread
of the funnel plot indicate a high heterogeneity. The significant
threshold was set as P < 0.05 (Van Kippersluis and Rietveld,
2018). Finally, we conducted the sensitivity analysis by removing
each SNP from the original Mendelian randomization analysis.
The leave-one-out sensitivity analysis was used to ascertain if
an association is being disproportionately influenced by a single
SNP, and the forest plot was used to show the results.

RESULTS AND DISCUSSION

The Selected Instrumental Variables for
Mendelian Randomization Analysis
We collected the summary GWAS data of blood lead levels
from the NHGRI-EBI GWAS Catalog, and AD from the
EFO_0000249 and a consortium consisting of the ADGC,
EADI, CHARGE, and GERAD/PERADES, respectively. All of
the samples are derived from European ancestry individuals.
The blood lead level GWAS dataset was intersected with two
AD GWAS datasets, respectively. After the allele harmonization,
LD filtering, and SNP proxy, we selected a total of three
SNPs as the instrumental variables for Mendelian randomization
analysis which are significantly associated with the blood lead
level and independent of each other for the consortium’s AD
GWAS dataset. Particularly, SNP rs76153987 (chr3:9173133),
rs116864947 (chr7:11666159), and rs6462018 (chr7:27479499)
are located in genes SRGAP3, THSD7A, and EVX1, respectively,
and all of them are negatively associated with the blood lead
level (beta = −0.195, −0.431, and −0.084; P = 4 × 10−6,
3 × 10−7 and 4 × 10−6, respectively) (Warrington et al.,
2015). The AD GWAS results of them are beta = −0.073,
−0.123, and −0.002 and P = 0.033, and 0.059 and 0.015,
respectively (Table 1). For the EFO_0000249 dataset, we
identified two additional SNPs, rs798338 (chr7:78287721 in
MAGI2), and rs10121150 (chr9:113369415 in BSPRY), after
the screening process. The AD GWAS results of them are
beta = −0.015 and 0.069 and P = 0.490 and 0.018, respectively
(Table 2). The human reference genome hg38 was used in
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FIGURE 1 | The Mendelian randomization (MR) analysis for the causality of blood lead level and Alzheimer’s disease (AD) risk. (A) The forest plot represents the
causal effect of blood lead level on AD using the Wald ratio. The Mendelian randomization using singly each SNP and all SNPs by the WME and IVW models are
shown in it. (B) The method comparison plot shows the SNP effects on AD against SNP effects on blood lead levels in the WME and IVW models. Each method has
a different line, and the slope of the line represents the causal association. Panels (C,D) show the forest plot of causal effect and the method comparison plot of
WME and IVW models for the EFO_0000249 dataset, respectively.

this study. The more detailed information was shown in
Supplementary Table 1.

The Causality of Blood Lead Level and
Alzheimer’s Disease Risk
Using the three SNPs with their GWAS results about blood
lead level and AD, we performed the two-sample Mendelian
randomization analysis to assess the causal effect of blood lead

level on AD risk. The results of the IVW model showed that there
is a significant positive causality between blood lead level and
AD risk (beta = 0.2445 and P = 0.0103). The whole confidence
interval of Mendelian randomization effect size for blood lead
level on AD is greater than zero (Figure 1A). The WME
model showed similar results (beta = 0.2621 and P = 0.0382)
(Figure 1A). As Figure 1B shows, the influence of the three
SNPs on blood lead level and AD in the two models exhibits
good consistency. To ensure the reliability of the results, we
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FIGURE 2 | The heterogeneity test and sensitivity analysis of the Mendelian randomization analysis. (A) Funnel plot to assess heterogeneity. Asymmetry and large
spread suggest a high heterogeneity. (B) The forest plot of leave-one-out sensitivity analysis shows if an association is being disproportionately influenced by a single
SNP. Each black point represents the Mendelian randomization analysis excluding that particular SNP. Panels (C,D) show the results of the heterogeneity test and
leave-one-out sensitivity analysis for the EFO_0000249 dataset, respectively.

further performed a Mendelian randomization analysis using
the five SNPs from the EFO_0000249 dataset. We found a
similar result, i.e., beta = 0.2421 and 0.2203 and P = 0.0046 and
0.0059 in IVW and WME model, respectively (Figure 1C). The
influence of the five SNPs on blood lead level and AD in the
two models also exhibits a good consistency (Figure 1D). These
results suggest that the elevated blood lead level increases the
risk of AD. The previous studies reported that the toxicity of
lead gives rise to severe environmental pollution with the use

of petrol and its exposure results in cognitive decline in elderly
men and women. Moreover, the blood lead level was found
significantly higher in the patients with AD and is associated
with an increase in AD mortality after adjusting for identified
confounders (Laidlaw et al., 2017; Fathabadi et al., 2018; Horton
et al., 2019). Our findings are consistent with these studies
and further confirm previous conclusions, which suggest that
the exposure of lead may damage the nervous system and
increase risk of AD.
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Reliability Check
We further performed the horizontal pleiotropy test,
heterogeneity test, and sensitivity analysis to check reliability of
the Mendelian randomization analysis. For the consortium’s AD
GWAS dataset, the results showed that there is no directional
horizontal pleiotropy affecting the IVW and WME estimate
(intercept = −0.029 and P = 0.438) (Table 1). Then, Cochran’s Q
test showed that there is also no significant heterogeneity in IVW
(Cochran’s Q-statistic = 2.161 and P = 0.340) and WME estimate
(Cochran’s Q-statistic = 0.684 and P = 0.408) (Figure 2A).
Moreover, the leave-one-out sensitivity analysis showed that the
results of the Mendelian randomization analysis do not extremely
change when we removed each of the SNP orderly (Figure 2B).
For the EFO_0000249 dataset, the similar results also showed a
non-directional horizontal pleiotropy (intercept = −0.026 and
P = 0.385) (Table 2), non-significant heterogeneity in IVW
(Cochran’s Q-statistic = 3.297 and P = 0.510), WME estimate
(Cochran’s Q-statistic = 2.269 and P = 0.520) (Figure 2C), and
insignificant changes in sensitivity analysis (Figure 2D). These
results demonstrate that the causality of blood lead level and AD
is reliable, and further suggest that the elevated blood lead level
increases the risk of AD.

CONCLUSION

The lead pollution is a serious environmental problem and
damages to the human central nervous system. In this study,
we integrated two large-scale summary AD GWAS datasets
and a blood lead level GWAS dataset to assess the causality
of blood lead level and AD risk by the two-sample Mendelian
randomization analysis. After the reliability check, we found a
significant positive causality between blood lead level and AD

risk. Our findings suggest that the exposure of lead may increase
risk of AD, which is further confirm the results of previous studies
and benefit to understanding of AD pathogenesis and the toxicity
of lead in environmental pollution.
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Clusterin (CLU) is an extracellular chaperone involved in reducing amyloid

beta (Aβ) toxicity and aggregation. Although previous genome-wide

association studies (GWAS) have reported a potential protective effect of

CLU on Alzheimer’s disease (AD) patients, how intron-located rs11136000

(CLU) affects AD risk by regulating CLU expression remains unknown. In

this study, we integrated multiple omics data to construct the regulated

pathway of rs11136000-CLU-AD. In step 1, we investigated the effects

of variant rs11136000 on AD risk with different genders and diagnostic

methods using GWAS summary statistics for AD from International Genomics

of Alzheimer’s Project (IGAP) and UK Biobank. In step 2, we assessed

the regulation of rs11136000 on CLU expression in AD brain samples

from Mayo clinic and controls from Genotype-Tissue Expression (GTEx).

In step 3, we investigated the differential gene/protein expression of CLU

in AD and controls from four large cohorts. The results showed that

rs11136000 T allele reduced AD risk in either clinically diagnosed or proxy

AD patients. By using expression quantitative trait loci (eQTL) analysis,

rs11136000 variant downregulated CLU expression in 13 normal brain

tissues, but upregulated CLU expression in cerebellum and temporal cortex

of AD samples. Importantly, CLU was significantly differentially expressed

in temporal cortex, dorsolateral prefrontal cortex and anterior prefrontal

cortex of AD patients compared with normal controls. Together, rs11136000

may reduce AD risk by regulating CLU expression, which may provide

important information about the biological mechanism of rs9848497 in

AD progress.

KEYWORDS

Alzheimer’s disease, genetic variant, CLU, genome-wide association study,
rs11136000, eQTL
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
of the central nervous system characterized by progressive
cognitive dysfunction and behavioral impairment (Scheltens
et al., 2016; Van Cauwenberghe et al., 2016; Pimenova et al.,
2018; Hu et al., 2021b). It is estimated that at least 40
million middle-aged and elderly people worldwide suffer from
AD (Van Cauwenberghe et al., 2016). Among all the AD
susceptibility genes, Apolipoprotein E (APOE), which mediates
the binding, internalization, and catabolism of lipoprotein
particles, is considered to be the major risk factor (Namba
et al., 1991; Belloy et al., 2019). APOE not only co-deposits
with beta-amyloid (Aβ) through protein-protein interaction,
but also directly leads to secretion and impaired clearance
of Aβ (Namba et al., 1991; Huynh et al., 2017; Belloy et al.,
2019).

Other susceptibility genes, such as CLU, also affect
the occurrence and progression of AD through the
accumulation and clearance of Aβ, nerve inflammation,
and lipid metabolism (Foster et al., 2019; Uddin et al., 2020a).
Previous genome-wide association studies (GWAS) have
shown that rs11136000 (CLU) is a protective locus for AD
risk, and several case-control association studies replicate
this result (Harold et al., 2009; Lancaster et al., 2015; Balcar
et al., 2021). However, some of other studies report no
statistically significant association of rs11136000 on AD or
no association in non-European populations (Carrasquillo
et al., 2010; Seshadri et al., 2010; Seripa et al., 2018; Zhu
et al., 2018). The conflicting results of these studies made
us interested in investigating the effect of rs11136000 on
AD. Moreover, how rs11136000 regulates CLU expression
and leads to AD needs further evaluation (Hu et al., 2020,
2021a).

In this study, we integrated multiple omics data,
including genome-wide association study (GWAS), expression
quantitative trait loci (eQTLs), transcriptome and proteome
data, to investigate whether rs11136000 regulates CLU
expression and thereby contribute to AD. In addition, we
identified the different effects of rs11136000 on AD patients of
different genders.

Materials and methods

Genome-wide association studies
datasets

Genome-wide association studies uses single nucleotide
polymorphisms (SNPs) in the human genome as molecular
genetic markers to analyze the correlation between genotype
and phenotype, aiming to discover genetic risk variants that

affect phenotype (Tam et al., 2019). A total of five large-scale
GWAS datasets for AD were included in the statistical analysis
of this study. First, we obtained two GWAS datasets for AD
patients with clinical or autopsy diagnosis from International
Genomics of Alzheimer’s Project (IGAP), including 17,008 AD
cases and 37,154 controls, and 21,982 AD cases and 41,944
controls, respectively (Table 1; Lambert et al., 2013; Kunkle
et al., 2019). In addition, we obtained three large GWAS cohorts
for AD proxy from UK Biobank, including family history of
maternal AD (27,696 cases and 260,980 controls), family history
of patrilineal AD (14,338 cases and 245,941 controls), and family
history of all AD patients (Marioni et al., 2018). All of the
participants were of European descent.

Expression quantitative trait loci
datasets

Expression quantitative trait loci are genetic variants that
control the expression levels of quantitative trait genes. In
particular, variants located in non-coding regions may cause
disease by modulating gene expression. In this study, we
obtained datasets that rs11136000 regulates gene expression
in AD patients and controls, respectively. The eQTL data of
AD and non-AD samples were obtained from Mayo clinic
and Genotype-Tissue Expression (GTEx) project, respectively
(Table 2; Allen et al., 2012; GTEx Consortium., 2017). The
Mayo dataset contained gene expression data for temporal
cortex (TCX) in 186 AD subjects and 170 normal subjects, and
cerebellar tissue (CER) in 191 AD subjects and 181 normal
subjects (Allen et al., 2012). In addition, eQTL data of 13 brain
tissues, including amygdala, anterior cingulate cortex, caudate,
cerebellar hemisphere, cerebellum, cortex, frontal cortex,
hippocampus, hypothalamus, nucleus accumbens, putamen,
spinal cord, and substantia nigra were obtained from GTEx
(version 8) as controls (GTEx Consortium., 2017). The donors
in GTEx were of multiple descents including European (85.3%),
African (12.3%), Asian (1.4%), etc., (GTEx Consortium., 2017).

RNA expression datasets

RNA-seq data for AD versus controls was generated from
over 2,100 samples from post-mortem brains of more than 1,100
individuals from seven distinct brain regions from three human
cohort studies, including Religious Orders Study and Memory
and Aging Project (ROSMAP), Mayo RNAseq (MAYO), and
Mount Sinai Brain Bank (MSBB) (Bennett et al., 2012a,b; Zou
et al., 2012; Ng et al., 2017). The seven brain regions contained
dorsolateral prefrontal cortex (DLPFC), CER, TCX, frontal
pole (FP), inferior frontal gyrus (IFG), parahippocampal gyrus
(PHG), and superior temporal gyrus (STG).
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TABLE 1 Data sources of GWAS.

Study Traits Diagnosis Cases Controls Ethnicity

IGAP2013 (Lambert et al., 2013) GWAS Clinical or autopsy 25,580 48,466 European

IGAP2019 (Kunkle et al., 2019) GWAS Clinical or autopsy 35,274 59,163 European

UK Biobank (all) (Marioni et al., 2018) GWAX Clinical or autopsy 42,034 272,244 European

UK Biobank (maternal) (Marioni et al., 2018) GWAX Proxy 27,696 260,980 European

UK Biobank (paternal) (Marioni et al., 2018) GWAX Proxy 14,338 245,941 European

GWAX, genome-wide association studies by proxy. GWAS, genome-wide association studies.

Proteomics datasets

Proteomic data was generated from post-mortem brains of
more than 500 individuals from four human cohort studies,
including Banner Sun Health Research Institute (Banner),
Baltimore Longitudinal Study on Aging (BLSA), MAYO and
MSBB. Brain samples consisted of four different brain regions

TABLE 2 The effect of genetic variant rs11136000 on CLU expression
in AD and normal samples.

Data
sources

Brain tissue No. Samples Beta P-value

GTEx Amygdala (non-AD) 88 −0.065 0.23

Anterior cingulate
cortex (non-AD)

109 −0.10 0.027

Caudate (non-AD) 144 −0.041 0.16

Cerebellar
Hemisphere
(non-AD)

125 −0.0012 0.98

Cerebellum
(non-AD)

154 −0.049 0.12

Cortex (non-AD) 136 −0.058 0.065

Frontal Cortex
(non-AD)

118 −0.068 0.036

Hippocampus
(non-AD)

111 −0.069 0.076

Hypothalamus
(non-AD)

108 −0.0095 0.81

Nucleus accumbens
(non-AD)

130 −0.16 0.00023

Putamen (non-AD) 111 −0.12 0.00082

Spinal cord
(non-AD)

83 −0.064 0.24

Substantia nigra
(non-AD)

80 −0.021 0.75

MAYO Cerebellum (AD) 186 0.0635 0.23

Cerebellum
(non-AD)

170 −0.0905 0.048

Temporal cortex
(AD)

191 0.0588 0.031

Temporal cortex
(non-AD)

181 0.286 0.00029

Beta is the regression coefficient based on the effect allele. Beta > 0 and beta < 0 mean that
this effect allele could increase and reduce gene expression, respectively. The statistically
significant association is defined to be P < 0.05/17 = 0.00294.

[DLPFC, Middle Frontal Gyrus (MFG), TCX and Anterior
Prefrontal Cortex (AntPFC)]. Protein abundance was quantified
using liquid-free quantification (LFQ). The proteomic data was
adjusted for age, sex, and post mortem interval (PMI).

The effect of genetic variant
rs11136000 on Alzheimer’s disease risk

We investigated the effect of rs11136000 T allele on AD
risk in GWAS summary statistics for AD of clinically diagnosed
or autopsy and first-degree relative proxies, respectively. In
addition, we explored the effect of rs11136000 on AD patients
with different genders using GWAS by proxy (GWAX) from UK
Biobank. The statistically significant association is defined to be
P < 5E-08 after adjusting for multiple testing.

The effect of rs11136000 on clusterin
expression in Alzheimer’s disease and
controls

We investigated the potential differential cis-regulated effect
of rs11136000 on CLU in AD versus controls using an additive
model eQTL analysis (Hu et al., 2020, 2021b; Qiu et al., 2022).
According to the additive model, each allele has an independent
effect on the trait. Here, we coded the possible genotypes
of rs11136000 (TT = 2, TC = 1, CC = 0), where T is an
effect allele and C is a non-effect allele. Thus, the differential
regulation of CLU expression in rs11136000 T allele carriers
of AD and controls can be calculated using linear regression
models. The statistically significant association is defined to be
P < 0.05/(number of brain tissues) = 0.05/17 = 0.00294 after
multiple testing.

Differential expression of clusterin
between Alzheimer’s disease and
normal individuals

We evaluated the differential mRNA expression of CLU in
seven brain regions between AD and controls from ROSMAP,
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MAYO and MSBB. Meanwhile, we investigated the differential
protein expression of CLU in four brain regions of AD versus
controls from DLPFC, MFG, TCX, and AntPFC. The differential
expression was determined via ANOVA. The significance level
of differential expression was defined as P < 0.05/7 = 0.00714
and P < 0.05/4 = 0.0125 after multiple testing.

Results

rs11136000 T allele reduced
Alzheimer’s disease risk

rs11136000 T allele significantly reduced AD risk in both
clinically diagnosed Alzheimer’s cohorts from IGAP (OR:
0.92, 95%CI: 0.91-0.94, P = 1.38E-24; OR: 0.88, 95%CI:
0.86-0.91, P = 4.90E-16) (Figure 1). In the UK Biobank
cohort (using participants whose parents suffered from AD
as a proxy for cases), rs11136000 T allele was suggestively
protective against AD (OR: 0.95, 95%CI: 0.93-0.97, P = 1.88E-
07) (Figure 1). However, rs11136000 only potentially affected
female individuals with AD (OR: 0.94, 95%CI: 0.92-0.96,
P = 3.96E-07).

rs11136000 upregulated clusterin
expression in Alzheimer’s disease

rs11136000 downregulated CLU expression in all 13 normal
brain tissues from GTEx, two of which passed multiple testing
(Pnucleusaccumbens = 0.00023 and Pputamen = 0.00082) (Table 2).
However, rs11136000 suggestively upregulated CLU expression
in cerebellum (β = 0.0635, P = 0.23) and temporal cortex samples
of AD (β = 0.0588, P = 0.031) (Table 2).

Clusterin differentially expressed in
Alzheimer’s disease versus controls

To further determine the effect of CLU in AD patients,
we investigated the differential expression of CLU between
AD and controls in various brain regions at the level of
gene expression and protein expression, respectively. The
CLU mRNA expression in temporal cortex region of AD
patients significantly differed from controls regardless of gender
(logFC2 = 0.83, PTCX = 2.96E-10) (Table 3). However, CLU was
only significantly differentially expressed in parahippocampal
gyrus region of female AD patients compared to controls
(logFC2 = 0.34, PPHG = 0.00032). Furthermore, CLU protein
was detected in DLPFC and AntPFC, and was significantly
differentially expressed in both two brain tissues (logFC2 = 0.29,
PAntPFC = 0.00022; logFC2 = 0.23, PDLPFC = 5.09E-06) (Figure 2).

Discussion

Large-scale GWAS in recent years have identified substantial
genetic variants and genes associated with AD risk (Jansen
et al., 2019; Kunkle et al., 2019; Schwartzentruber et al.,
2021). Susceptibility loci including APOE have been confirmed
by numerous studies (Al Mamun et al., 2020; Uddin et al.,
2020b). CLU, also known as apolipoprotein J (APOJ) protein,
is identified as the third-highest risk gene for late-onset AD
(LOAD), contributing approximately 9% of AD risk (Bertram
et al., 2007; Foster et al., 2019; Uddin et al., 2020a). Previous
studies have shown that elevated CLU levels have been detected
in the brain and plasma of AD individuals and are involved
in neuroinflammation, lipid metabolism, and Aβ clearance in
AD patients (Lidstrom et al., 1998; Bu, 2009; Thambisetty et al.,
2010; Uddin et al., 2020a). However, some studies have also
reported that CLU incorporation into amyloid aggregates is

FIGURE 1

Association between rs11136000 variant T allele and AD. IGAP, International Genomics of Alzheimer’s Project. The statistically significant
association is defined to be P < 5E-08.
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TABLE 3 Differential mRNA expression of CLU in AD
and normal samples.

Phenotype Brain tissue logFC2 P-value

AD (all) Cerebellum 0.12 0.43

Dorsolateral Prefrontal Cortex 0.016 0.78

Frontal Pole 0.15 0.033

Inferior Frontal Gyrus 0.13 0.13

Parahippocampal Gyrus 0.31 8.17E-07

Superior Temporal Gyrus 0.17 0.27

Temporal Cortex 0.83 2.96E-10

AD (female) Cerebellum 0.20 0.29

Dorsolateral Prefrontal Cortex −0.013 0.87

Frontal Pole 0.15 0.23

Inferior Frontal Gyrus 0.19 0.14

Parahippocampal Gyrus 0.34 0.00032

Superior Temporal Gyrus 0.23 0.061

Temporal Cortex 0.82 1.89E-06

AD (male) Cerebellum 0.012 0.97

Dorsolateral Prefrontal Cortex 0.028 0.78

Frontal Pole 0.12 0.38

Inferior Frontal Gyrus 0.64 0.79

Parahippocampal Gyrus 0.24 0.084

Superior Temporal Gyrus 0.076 0.67

Temporal Cortex 0.84 0.00004

logFC2 : log fold change value.

more harmful than Aβ42 aggregates alone (Uddin et al., 2020a).
The ambiguous and complex role of CLU in AD prevents it from
becoming a therapeutic target for AD.

In this study, we integrated GWAS, eQTL, gene expression
and protein expression data to investigate whether rs11136000
(CLU) affects AD risk by regulating CLU expression. We
successfully explained the pathway of rs11136000-CLU-AD. The
results showed that rs11136000 significantly reduced AD risk
in both clinically diagnosed AD and AD proxy. The effects of
rs11136000 on AD risk with different genders and different
diagnostic modalities were slightly different. In addition,
previous meta-analyses and systematic reviews suggested that
the heterogeneity of rs11136000 on AD risk was also reflected
by race. Both Han et al. (2018) and Zhu et al. (2018) believed
that rs11136000 only reduced the risk of AD in the European
population, while the association was weak in the East Asian
population. Subsequent eQTL analysis revealed heterogeneity
of rs11136000 expression in various brain tissues. Significant
difference of the regulation of rs11136000 on CLU expression
was only showed in temporal cortex region between AD
patients versus controls. Interestingly, CLU-immunopositive Aβ

deposits were found in the temporal cortex of AD patients, and
29% of Aβ in brain tissue was associated with CLU protein
(Martin-Rehrmann et al., 2005; Uddin et al., 2020a).

The study has some advantages. The multiple omics data
used in this study were all from European populations, avoiding
the bias associated with population stratification. Multiple omics
data constructed a complete pathway that genetic variants
regulate gene expression and then affect disease phenotype,
which better explains the role of rs11136000 in the brain of
AD patients than previous studies. However, this study also
has certain limitations. It is difficult for us to obtain gender-
and ethnic-specific multi-omics data, which limits the further
disclosure of the specific regulatory role of rs11136000 on AD
patients in different populations.

FIGURE 2

Differential protein expression of CLU between AD and normal samples. The gray boxplots represent the expression levels of CLU protein in the
brain tissues of healthy participants. The orange dots represent the expression levels of CLU protein in the brain tissues of AD patients. AntPFC,
anterior prefrontal cortex; DLPFC, dorsolateral prefrontal cortex.
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In conclusion, this study highlights the potential role of the
variant rs11136000 on AD risk by regulating CLU expression.
These findings reveal the importance of a better understanding
of CLU function and dysfunction in the context of normal
and AD individuals.
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Variants rs2200733 and rs6843082
Show Different Associations in Asian
and Non-Asian Populations With
Ischemic Stroke
Dongsen Wang1,2‡, Xuemei Hu1,2‡, Xue Yang2, Mingfeng Yang3*† and Qingjian Wu2*†

1Clinical Medical College of Jining Medical University, Jining, China, 2Department of Emergency, Jining No. 1 People’s Hospital,
Jining, China, 3Second Affiliated Hospital, Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Brain Science
Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China

A previous genome-wide association study (GWAS) has reported that variants rs2200733
and rs6843082 in the paired-like homeodomain transcription factor 2 (PITX2) gene may be
one of the risk factors for ischemic stroke (IS) in European populations. However, more
recently, studies in Asia have reported that rs2200733 and rs6843082 are only weakly or
not associated with increased risk of IS. This difference may be caused by the sample size
and genetic heterogeneity of rs2200733 and rs6843082 among different races. For this
study, we selected eight articles with nine studies from the PubMed and Embase
databases, including five articles from Asian and three articles from non-Asian, to
evaluate the risk of IS caused by rs2200733 and rs6843082. Then, we investigated
rs2200733 and rs6843082 single-nucleotide polymorphisms (SNPs) by analysis using
allele, recessive, dominant, and additive models. We identified that rs2200733 and
rs6843082 are weakly significantly associated with IS for the allele model (p = 0.8),
recessive model (p = 0.8), dominant model (p = 0.49), and additive model (p = 0.76) in a
pooled population. Next, we performed a subgroup analysis of the population, the result of
which showed that rs2200733 and rs6843082 covey genetic risk for IS in a non-Asian
population, but not in an Asian population. In conclusion, our analysis shows that the effect
of PITX2 rs2200733 and rs6843082 SNPs on IS risk in Asia is inconsistent with the effect
observed in European IS cohorts.

Keywords: ischemic stroke, genome-wide association study, rs2200733, rs6843082, population

INTRODUCTION

Ischemic stroke (IS) is the second leading cause of death worldwide and the main leading cause of
intellectual disability in adults (Orellana-Urzua et al., 2020). The pathogenesis of IS has been studied
using genome-wide association studies (GWAS), which provide a crucial direction for studying the
genetic mechanism of IS (Chauhan and Debette, 2016; Liu et al., 2019b; Wei et al., 2019). In 2008, the
PITX2 rs2200733 and rs10033464 variants were identified as significant contributors to IS in a
European population (p = 2.18 × 10–10) (Gretarsdottir et al., 2008). However, a series of subsequent
studies failed to replicate those results.

In 2009, Shi et al. analyzed 383 patients with atrial fibrillation (AF) versus (vs.) 851 patients
without AF and 811 patients with IS vs. 688 patients without IS, all of Chinese. After analysis,
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rs2200733 was meaningfully correlated with AF (p = 4.1 × 10–12)
but not IS in this Chinese population (Shi et al., 2009).

In 2012, Bertrand et al. analyzed 3548 patients with stroke vs.
5972 patients without stroke and then replicated their result in
5859 patients with stroke vs. 6281 patients without stroke, all of
European ancestry. Their results showed that both rs2200733 and
rs1906599 were associated with IS (OR = 1.32) (International
Stroke Genetics Consortium et al., 2012). Their study again
identified a significant association between rs2200733 and IS.

In 2022, Zhao et al. analyzed 476 patients with IS vs. 501
control individuals, all Chinese (Zhao et al., 2022). Their analysis
found no meaningful association between rs6843082 and IS (p =
0.448).

In summary, previous studies have reported different results as
to whether rs2200733 and rs6843082 increase susceptibility to IS.
It is not clear whether the two SNPs (rs2200733 and rs6843082)
are related to IS susceptibility. In this study, we further evaluate
whether these two SNPs (rs2200733 and rs68430828) increase the
risk of IS using nine studies from eight articles.

MATERIALS AND METHODS

Literature Search
The relevant literature was searched in PubMed (http://www.
ncbi.nlm.nih.gov/pubmed) and Embase (https://www.embase.
com/) databases. We filtered all relevant studies based on the
keywords “Stroke,” “PITX2,” “rs2200733,” and “rs6843082.” The
literature search was completed by 10 March 2022. In the
following paragraph, we describe the criteria for inclusion.

Inclusion Criteria
The inclusion criteria for our meta-analysis were as follows: (1)
the study used a case–control design, (2) the study evaluated
whether the two SNPs (rs2200733 and rs6843082) are risk factors
for IS, (3) the study provided a clear and definite number of
genotypes or alleles or enough data to calculate these numbers,
and (4) the study provided an explicit odds ratio (OR) and 95%
confidence interval (CI) or sufficient data to calculate the OR and
95% CI. All studies that did not meet the inclusion criteria were
eliminated.

Data Extraction
For each study that met the inclusion criteria, we extracted the
following information: (1) first author, (2) year of publication, (3)
race of the study subjects, (4) number of cases and controls, and
(5) quantity of rs2200733 and rs6843082 genotypes in cases and
controls. The full results are shown in Table 1.

Genetic Model
We used four common genetic models for this meta-analysis,
including the allele model (A vs. G), recessive model (AA vs.
AG+GG), dominant model (AA+AG vs. GG), and additive model
(AA vs. GG). These results are helpful to evaluate the
susceptibility to IS with the two SNPs (rs2200733 and
rs6843082): A allele vs. G allele.

Hardy–Weinberg Equilibrium
The HWE of the two SNPs (rs2200733 and rs6843082) in IS cases
and the control group were analyzed using the Chi-square test.
The relationship between the two SNPs (rs2200733 and
rs6843082) and IS was analyzed using four gene models: allele
model (A vs. G), recessive model (AA vs. AG+GG), dominant
model (AA+AG vs. GG), and additive model (AA vs. GG). We
performed all relevant Chi-square tests using the R program
(http://www.r-project.org/).

Heterogeneity Test
First, we extracted the summary statistical information
corresponding to the two SNPs (rs2200733 and rs6843082) in
the above study. Then, Cochran’s Q test and I2 = [Q—(k—1)]/Q ×
100% (Liu et al., 2017) were used to analyze the heterogeneity of
the two SNPs (rs2200733 and rs6843082) among these datasets.
The Q statistic approximately follows a χ2 distribution with k-1
degrees of freedom (k stands for the number of studies for
analysis). When the P value from Cochran’s Q statistic <0.1
and the I2 value fromCochran’s Q statistic >50%, the data showed
considerable heterogeneity (Hu et al., 2017; Liu et al., 2017).

Meta-Analysis
In Cochran’s Q statistic, if p < 0.05 or I2 >50%, it indicated that
there was heterogeneity between studies, and a random-effect
model (DerSimonian–Laird) was used to calculate the pooled OR.

TABLE 1 | Characteristics of studies included in the meta-analysis.

SNPs Study Population Case Control Case genotypes Control genotypes

AA AG GG AA AG GG

rs2200733 Gretarsdottir et al. (2008) European 29474 6222 514 6754 22206 71 1189 4962
Shi et al. (2009) Chinese 811 688 200 405 206 180 344 164
Bevan et al. (2012) European 5859 6281 NR NR NR NR NR NR
Cao et al. (2013) Chinese 1388 1629 311 692 385 342 809 478
Su et al. (2015) Chinese 816 816 194 417 205 191 408 217

rs6843082 Su et al. (2015) Chinese 816 816 49 305 462 60 316 440
Wu et al. (2015) Chinese 167 176 12 66 89 20 78 78
Ferreira et al. (2019) Brazilian 240 285 128 95 17 140 120 25
Zhao et al. (2022) Chinese 476 501 34 187 255 40 203 258

SNP, single-nucleotide polymorphisms; NA, not publicly available; IS, ischemic stroke.
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FIGURE 1 | Flowchart of the selection of studies included in this meta-analysis.

FIGURE 2 | Fixed-effect meta-analysis of the allele model for rs2200733 and rs6843082 in the Asian, non-Asian, and pooled populations.
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If not, we used a fixed-effect model (Mantel–Haenszel). All
statistical methods in the meta-analysis were applied by
program R (http://www.r-project.org/).

Publication Bias Analyses
In this analysis, we used funnel plots to assess the possible
publication bias. When there was no publication bias, the plot
of the funnel was symmetrically inverted. Otherwise, it was an
asymmetric inverted funnel (Liu et al., 2014). The asymmetry of
the funnel plot was evaluated by the Egger test. We performed all
statistical tests using the R program (http://www.r-project.org/).

RESULTS

Comprehensive Literature Search
We retrieved 29 articles from PubMed and 44 articles from the
Embase database. Finally, eight articles (Gretarsdottir et al., 2008;
Shi et al., 2009; Bevan et al., 2012; Cao et al., 2013; Su et al., 2015;
Wu et al., 2015; Ferreira et al., 2019; Zhao et al., 2022), including
nine studies, were chosen for meta-analysis by excluding
overlapping studies. A total of 55,829 participants were
included in this meta-analysis: 39,231 cases in the case group
(38,348 cases with rs2200733 and 1699 cases with rs6843082) and

TABLE 2 | Analysis of four genetic models’ association of rs2200733 and rs6843082 with ischemic stroke.

Model Asian Non-Asian Pooled population

OR
(95%CI)

P OR
(95%CI)

P OR
(95%CI)

P

Allele (A vs. G) 0.92 (0.73–1.15) 0.45 1.03 (0.85–1.26) 0.74 0.98 (0.85–0.14) 0.80
Recessive (AA vs. AG+GG) 0.94 (0.69–1.28) 0.70 1.38 (0.81–2.35) 0.24 1.04 (0.79–1.36) 0.80
Dominant ( AA+AG vs. GG) 0.95 (0.72–1.26) 0.73 1.30 (0.93–1.81) 0.13 1.08 (0.87–1.33) 0.49
Additive ( AA vs. GG) 0.93 (0.67–1.30) 0.67 1.54 (0.84–2.82) 0.16 1.05 (0.78–1.40) 0.76

OR: odds ratio.

FIGURE 3 | Fixed-effect meta-analysis of the recessive model for rs2200733 and rs6843082 in the Asian, non-Asian, and pooled populations.
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16,598 cases in the control group (15,636 cases with rs2200733
and 1778 cases with rs6843082). The study by Su et al. analyzed
the two SNPs based on 1632 participants, and so the total number
of case and controls overlapped. The specifics are shown in
Figure 1. The primary features of the studies we included are
presented in Table 1.

Linkage Disequilibrium
The rs2200733 and rs6843082 SNPs were located within 10 kb on
PITX2 gene (https://snipa.helmholtz-muenchen.de/snipa3/).

Heterogeneity Test
The study of Bevan et al. was excluded from the dominant,
recessive, and additive models. For this analysis, we observed no
remarkable heterogeneity in the pooled population when using
the four genetic models (Table 2).

Meta-Analysis With the Allele Model
We computed the overall OR using a fixed-effect model in
accordance with the outcomes of the heterogeneity test. The
allele model tests showed that IS did not have a relationship with
rs2200733 and rs6843082 in the Asian (p = 0.45), non-Asian
(p = 0.74), and pooled populations (p = 0.80) (Table 2). Our
results also showed that the two SNPs did not contribute to IS in
Asian populations (OR = 0.92), but interestingly, the opposite
results were seen in non-Asian populations, where both
rs2200733 and rs6843082 were genetic risk factors for IS (OR
= 1.03) (Figure 2).

Meta-Analysis With the Recessive Model
Similarly, we calculated the overall OR using a fixed-effect model
based on the recessive model. The recessive model indicated that
rs2200733 and rs6843082 and IS in the Asian (p = 0.70), non-
Asian (p = 0.24), and pooled population (p = 0.80) (Table 2) were
not closely related. The two SNPs were not associated with IS in
Asian populations (OR = 0.94). Conversely, rs2200733 and
rs6843082 could increase the incidence of IS disease in non-
Asian populations (OR = 1.38) (Figure 3).

Meta-Analysis With the Dominant Model
Likewise, we calculated the overall OR using a fixed-effect model
in accordance with the dominant model in the three groups. The
dominant model showed that the two SNPs (rs2200733 and
rs6843082) had no significant relationship with IS in Asian
(p = 0.73), non-Asian (p = 0.13), and pooled (p = 0.49)
populations (Table 2). The result of the subgroup analysis
indicated that in the Asian population, the two SNPs were not
genetic risk factors for IS (OR = 0.95); however, in the non-Asian
population (OR = 1.30), the two SNPs were genetic risk factors for
IS (OR = 1.08) (Figure 4).

Meta-Analysis With the Additive Model
Finally, we used the fixed-effect model to calculate the overall OR
based on the additive model, where IS had no meaningful
relationship with the two SNPs (rs2200733 and rs6843082) in
Asian (p = 0.67), non-Asian (p = 0.16), and pooled populations
(p = 0.76) (Table 2). The results were the same as the three

FIGURE 4 | Fixed-effect meta-analysis of the dominant model for rs2200733 and rs6843082 in the Asian, non-Asian, and pooled populations.
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previous genetic models; the two SNPs were not associated with
IS in the Asian population (OR = 0.93); however, rs2200733 and
rs6843082 were associated with an increased incidence of IS
disease in the non-Asian population (OR = 1.54) (Figure 5).

Publication Bias Analysis
The funnel plot and Egger’s test were applied to assess the
existence of the potential publication bias in the four genetic
models. There was no bias in the four plots, which were
symmetrical inverted funnels. For the allele, recessive,
dominant, and additive models, p = 0.943, 0.133, 0.053, and
0.204, respectively (Figure 6).

DISCUSSION

Previous GWAS studies have shown that rs2200733 and
rs6843082 SNPs in PITX2 are associated with genetic
susceptibility to IS in European populations (Gretarsdottir
et al., 2008). Subsequently, however, our results indicated that
rs2200733 and rs6843082 conveyed no increased risk of IS.

Overall, most studies have shown that the rs2200733 SNP in
PITX2 is associated with European IS, but five studies conducted
in Chinese populations all concluded that the rs2200733 SNP was
not associated with the IS risk. Meanwhile, three studies analyzed
the association between rs2200733 and AF in the Chinese
population, and the results suggested that the expression of
rs2200733 had a potential genetic risk for AF, but not IS (Shi
et al., 2009; Cao et al., 2013; Su et al., 2015).

In accordance with the analysis of the two SNPs (rs2200733
and rs6843082) in a pooled population, we can conclude that the
G allele has low importance for the risk of IS. In the subgroup
analysis, the results showed that the two SNPs had no correlation
with the risk of IS in an Asian population, but the results in a non-
Asian population showed a significant relevance with the risk of
IS. These results suggest that the specific gene expression of that
population and/or disease could be affected by genetic variation
(Liu et al., 2019a). Therefore, two possibilities may lead to
different associations between the two SNPs and human IS
gene expression. The first factor is the racial difference, such
as the genetic difference between Asian and non-Asian
populations. For example, Gretarsdottir et al. indicated that

FIGURE 5 | Fixed-effect meta-analysis of the additive model for rs2200733 and rs6843082 in the Asian, non-Asian, and pooled populations.
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rs2200733 has a strong association with IS (Gretarsdottir et al.,
2008), but Cao et al. showed that rs2200733 has no association
with any type of stroke (Cao et al., 2013). The second probability
is that the disease condition has an effect on gene expression
(Tammen et al., 2013; Maruthai et al., 2022). Haplotype
association analysis by Su et al. showed that rs6843082 was
significantly correlated with serum total cholesterol (TC) in IS
patients in the additive and dominant models (Su et al., 2015).
Moreover, for female individuals, the result of the recessive model
also showed that rs2200733 was associated with high levels of TC,
increasing the risk of IS (Su et al., 2015). The two SNPs
(rs2200733 and rs6843082) are closely related to the PITX2
gene on chromosome 4q25, which is associated with cardiac
morphogenesis, particularly the differential identity of the left
atrium from the right atrium and the growth of myocardial
sleeves of pulmonary veins (Logan et al., 1998; Mommersteeg
et al., 2007; Tessari et al., 2008). Therefore, the PITX2 genemay be
expressed during the development of the circulatory system and
play a role in IS-related risk factors. Further studies are required

to determine whether these two SNPs are risk factors for IS and
provide a new direction for the treatment of IS.

Numerous studies on the relationship between PITX2 and IS
have produced conflicting results. So far, there is still no final
and unanimous conclusion. Our analysis includes samples
from multiple researchers; therefore, the results of our study
may be more reliable than those of single studies. However,
some potential limitations in our meta-analysis should be
acknowledged. First, there was a small sample of GWAS and
candidate gene studies, which may influence the pooled
estimated value. Second, environmental factors, such as
smoking and alcohol use, may affect the risk of IS, but
some studies did not consider these risk factors. Third,
different populations have different genetic susceptibilities
both to the two SNPs (rs2200733 and rs6843082) and to IS,
which can make the primary cause difficult to distinguish. IS is
a disease that is effected by the interactions of multiple
environmental and genetic factors (Dichgans, 2007; Cai
et al., 2020), and so the influence of genes and

FIGURE 6 | Sensitivity analysis of the four genetic models for rs2200733 and rs6843082 in the pooled population: (A) allele model for the two SNPs in the pooled
population, (B) recessive model for the two SNPs in the pooled population, (C) dominant model for the two SNPs in the pooled population, and (D) additive model for the
two SNPs in the pooled population.
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environment on the pathogenesis of IS needs to be more
deeply investigated.
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