About this Research Topic
While innovative results have been reported, we are still on the way to reach our prospective directions. From a theoretical point of view, improvements on the theoretical and computational treatments of the molecule−intense laser interactions are still required to fully analyze the ultrafast electronic and nucleus quantum dynamics induced by ultrashort intense pulses. The motions of both the electrons and nuclei have been found to be correlated with each others’ in intense laser fields, and effects of nonadiabatic couplings have to be considered. Quantum chemical calculation methods have to be developed to take properly into account electronic correlation effects in the presence of strong electromagnetic fields. Results of quantum dynamical simulations on the laser-driven coherent rotational motion of pi-electrons in aromatic ring molecules indicate generation of unidirectional ring currents. This provides the fundamental principle for realization of functional devices such as highly effective ultrafast switching ones.
We welcome Original Research, Review, Mini Review and Perspective articles on themes including, but not limited to:
• Observation of unidirectional motions of charged particles produced by ultrashort pulses
• Improvement of the theoretical and computational procedures for nonperturbative interactions between molecule and strong laser fields such as dynamic Stark effects
• Quantum optimal control of coherent charged species localized at a site or transfer to an another site
• Experimental and theoretical verification of molecular chirality transformation in a pre-oriented racemic mixture and randomly oriented racemic mixture
• Generation and detection of coherent ring currents in molecular systems like 2D-sheet of polycyclic hydrocarbons
• Magnetic fields induced by inverse Faraday effects in molecular systems
Keywords: attosecond pulses, ring currents, intense laser fields, quantum control, coherent electronic and nuclear motions
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.